memcontrol.c 179.4 KB
Newer Older
B
Balbir Singh 已提交
1 2 3 4 5
/* memcontrol.c - Memory Controller
 *
 * Copyright IBM Corporation, 2007
 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
 *
6 7 8
 * Copyright 2007 OpenVZ SWsoft Inc
 * Author: Pavel Emelianov <xemul@openvz.org>
 *
9 10 11 12
 * Memory thresholds
 * Copyright (C) 2009 Nokia Corporation
 * Author: Kirill A. Shutemov
 *
13 14 15 16
 * Kernel Memory Controller
 * Copyright (C) 2012 Parallels Inc. and Google Inc.
 * Authors: Glauber Costa and Suleiman Souhlal
 *
B
Balbir Singh 已提交
17 18 19 20 21 22 23 24 25 26 27 28 29 30
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 */

#include <linux/res_counter.h>
#include <linux/memcontrol.h>
#include <linux/cgroup.h>
31
#include <linux/mm.h>
32
#include <linux/hugetlb.h>
K
KAMEZAWA Hiroyuki 已提交
33
#include <linux/pagemap.h>
34
#include <linux/smp.h>
35
#include <linux/page-flags.h>
36
#include <linux/backing-dev.h>
37 38
#include <linux/bit_spinlock.h>
#include <linux/rcupdate.h>
39
#include <linux/limits.h>
40
#include <linux/export.h>
41
#include <linux/mutex.h>
42
#include <linux/slab.h>
43
#include <linux/swap.h>
44
#include <linux/swapops.h>
45
#include <linux/spinlock.h>
46 47
#include <linux/eventfd.h>
#include <linux/sort.h>
48
#include <linux/fs.h>
49
#include <linux/seq_file.h>
50
#include <linux/vmalloc.h>
51
#include <linux/vmpressure.h>
52
#include <linux/mm_inline.h>
53
#include <linux/page_cgroup.h>
54
#include <linux/cpu.h>
55
#include <linux/oom.h>
K
KAMEZAWA Hiroyuki 已提交
56
#include "internal.h"
G
Glauber Costa 已提交
57
#include <net/sock.h>
M
Michal Hocko 已提交
58
#include <net/ip.h>
G
Glauber Costa 已提交
59
#include <net/tcp_memcontrol.h>
B
Balbir Singh 已提交
60

61 62
#include <asm/uaccess.h>

63 64
#include <trace/events/vmscan.h>

65
struct cgroup_subsys mem_cgroup_subsys __read_mostly;
66 67
EXPORT_SYMBOL(mem_cgroup_subsys);

68
#define MEM_CGROUP_RECLAIM_RETRIES	5
69
static struct mem_cgroup *root_mem_cgroup __read_mostly;
B
Balbir Singh 已提交
70

A
Andrew Morton 已提交
71
#ifdef CONFIG_MEMCG_SWAP
L
Li Zefan 已提交
72
/* Turned on only when memory cgroup is enabled && really_do_swap_account = 1 */
73
int do_swap_account __read_mostly;
74 75

/* for remember boot option*/
A
Andrew Morton 已提交
76
#ifdef CONFIG_MEMCG_SWAP_ENABLED
77 78 79 80 81
static int really_do_swap_account __initdata = 1;
#else
static int really_do_swap_account __initdata = 0;
#endif

82
#else
83
#define do_swap_account		0
84 85 86
#endif


87 88 89 90 91 92 93
/*
 * Statistics for memory cgroup.
 */
enum mem_cgroup_stat_index {
	/*
	 * For MEM_CONTAINER_TYPE_ALL, usage = pagecache + rss.
	 */
94 95 96 97 98
	MEM_CGROUP_STAT_CACHE,		/* # of pages charged as cache */
	MEM_CGROUP_STAT_RSS,		/* # of pages charged as anon rss */
	MEM_CGROUP_STAT_RSS_HUGE,	/* # of pages charged as anon huge */
	MEM_CGROUP_STAT_FILE_MAPPED,	/* # of pages charged as file rss */
	MEM_CGROUP_STAT_SWAP,		/* # of pages, swapped out */
99 100 101
	MEM_CGROUP_STAT_NSTATS,
};

102 103 104
static const char * const mem_cgroup_stat_names[] = {
	"cache",
	"rss",
105
	"rss_huge",
106 107 108 109
	"mapped_file",
	"swap",
};

110 111 112
enum mem_cgroup_events_index {
	MEM_CGROUP_EVENTS_PGPGIN,	/* # of pages paged in */
	MEM_CGROUP_EVENTS_PGPGOUT,	/* # of pages paged out */
113 114
	MEM_CGROUP_EVENTS_PGFAULT,	/* # of page-faults */
	MEM_CGROUP_EVENTS_PGMAJFAULT,	/* # of major page-faults */
115 116
	MEM_CGROUP_EVENTS_NSTATS,
};
117 118 119 120 121 122 123 124

static const char * const mem_cgroup_events_names[] = {
	"pgpgin",
	"pgpgout",
	"pgfault",
	"pgmajfault",
};

125 126 127 128 129 130 131 132
static const char * const mem_cgroup_lru_names[] = {
	"inactive_anon",
	"active_anon",
	"inactive_file",
	"active_file",
	"unevictable",
};

133 134 135 136 137 138 139 140
/*
 * Per memcg event counter is incremented at every pagein/pageout. With THP,
 * it will be incremated by the number of pages. This counter is used for
 * for trigger some periodic events. This is straightforward and better
 * than using jiffies etc. to handle periodic memcg event.
 */
enum mem_cgroup_events_target {
	MEM_CGROUP_TARGET_THRESH,
141
	MEM_CGROUP_TARGET_SOFTLIMIT,
142
	MEM_CGROUP_TARGET_NUMAINFO,
143 144
	MEM_CGROUP_NTARGETS,
};
145 146 147
#define THRESHOLDS_EVENTS_TARGET 128
#define SOFTLIMIT_EVENTS_TARGET 1024
#define NUMAINFO_EVENTS_TARGET	1024
148

149
struct mem_cgroup_stat_cpu {
150
	long count[MEM_CGROUP_STAT_NSTATS];
151
	unsigned long events[MEM_CGROUP_EVENTS_NSTATS];
152
	unsigned long nr_page_events;
153
	unsigned long targets[MEM_CGROUP_NTARGETS];
154 155
};

156
struct mem_cgroup_reclaim_iter {
M
Michal Hocko 已提交
157 158 159 160
	/*
	 * last scanned hierarchy member. Valid only if last_dead_count
	 * matches memcg->dead_count of the hierarchy root group.
	 */
161
	struct mem_cgroup *last_visited;
M
Michal Hocko 已提交
162 163
	unsigned long last_dead_count;

164 165 166 167
	/* scan generation, increased every round-trip */
	unsigned int generation;
};

168 169 170 171
/*
 * per-zone information in memory controller.
 */
struct mem_cgroup_per_zone {
172
	struct lruvec		lruvec;
173
	unsigned long		lru_size[NR_LRU_LISTS];
K
KOSAKI Motohiro 已提交
174

175 176
	struct mem_cgroup_reclaim_iter reclaim_iter[DEF_PRIORITY + 1];

177
	struct mem_cgroup	*memcg;		/* Back pointer, we cannot */
178
						/* use container_of	   */
179 180 181 182 183 184
};

struct mem_cgroup_per_node {
	struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
};

185 186 187 188 189
struct mem_cgroup_threshold {
	struct eventfd_ctx *eventfd;
	u64 threshold;
};

K
KAMEZAWA Hiroyuki 已提交
190
/* For threshold */
191
struct mem_cgroup_threshold_ary {
192
	/* An array index points to threshold just below or equal to usage. */
193
	int current_threshold;
194 195 196 197 198
	/* Size of entries[] */
	unsigned int size;
	/* Array of thresholds */
	struct mem_cgroup_threshold entries[0];
};
199 200 201 202 203 204 205 206 207 208 209 210

struct mem_cgroup_thresholds {
	/* Primary thresholds array */
	struct mem_cgroup_threshold_ary *primary;
	/*
	 * Spare threshold array.
	 * This is needed to make mem_cgroup_unregister_event() "never fail".
	 * It must be able to store at least primary->size - 1 entries.
	 */
	struct mem_cgroup_threshold_ary *spare;
};

K
KAMEZAWA Hiroyuki 已提交
211 212 213 214 215
/* for OOM */
struct mem_cgroup_eventfd_list {
	struct list_head list;
	struct eventfd_ctx *eventfd;
};
216

217 218
static void mem_cgroup_threshold(struct mem_cgroup *memcg);
static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
219

B
Balbir Singh 已提交
220 221 222 223 224 225 226
/*
 * The memory controller data structure. The memory controller controls both
 * page cache and RSS per cgroup. We would eventually like to provide
 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
 * to help the administrator determine what knobs to tune.
 *
 * TODO: Add a water mark for the memory controller. Reclaim will begin when
227 228 229
 * we hit the water mark. May be even add a low water mark, such that
 * no reclaim occurs from a cgroup at it's low water mark, this is
 * a feature that will be implemented much later in the future.
B
Balbir Singh 已提交
230 231 232 233 234 235 236
 */
struct mem_cgroup {
	struct cgroup_subsys_state css;
	/*
	 * the counter to account for memory usage
	 */
	struct res_counter res;
237

238 239 240
	/* vmpressure notifications */
	struct vmpressure vmpressure;

241 242 243 244
	/*
	 * the counter to account for mem+swap usage.
	 */
	struct res_counter memsw;
245

246 247 248 249
	/*
	 * the counter to account for kernel memory usage.
	 */
	struct res_counter kmem;
250 251 252 253
	/*
	 * Should the accounting and control be hierarchical, per subtree?
	 */
	bool use_hierarchy;
254
	unsigned long kmem_account_flags; /* See KMEM_ACCOUNTED_*, below */
255 256 257 258

	bool		oom_lock;
	atomic_t	under_oom;

259
	int	swappiness;
260 261
	/* OOM-Killer disable */
	int		oom_kill_disable;
K
KOSAKI Motohiro 已提交
262

263 264 265
	/* set when res.limit == memsw.limit */
	bool		memsw_is_minimum;

266 267 268 269
	/* protect arrays of thresholds */
	struct mutex thresholds_lock;

	/* thresholds for memory usage. RCU-protected */
270
	struct mem_cgroup_thresholds thresholds;
271

272
	/* thresholds for mem+swap usage. RCU-protected */
273
	struct mem_cgroup_thresholds memsw_thresholds;
274

K
KAMEZAWA Hiroyuki 已提交
275 276
	/* For oom notifier event fd */
	struct list_head oom_notify;
277

278 279 280 281 282
	/*
	 * Should we move charges of a task when a task is moved into this
	 * mem_cgroup ? And what type of charges should we move ?
	 */
	unsigned long 	move_charge_at_immigrate;
283 284 285 286
	/*
	 * set > 0 if pages under this cgroup are moving to other cgroup.
	 */
	atomic_t	moving_account;
287 288
	/* taken only while moving_account > 0 */
	spinlock_t	move_lock;
289
	/*
290
	 * percpu counter.
291
	 */
292
	struct mem_cgroup_stat_cpu __percpu *stat;
293 294 295 296 297 298
	/*
	 * used when a cpu is offlined or other synchronizations
	 * See mem_cgroup_read_stat().
	 */
	struct mem_cgroup_stat_cpu nocpu_base;
	spinlock_t pcp_counter_lock;
G
Glauber Costa 已提交
299

M
Michal Hocko 已提交
300
	atomic_t	dead_count;
M
Michal Hocko 已提交
301
#if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_INET)
G
Glauber Costa 已提交
302 303
	struct tcp_memcontrol tcp_mem;
#endif
304 305 306 307 308 309 310 311
#if defined(CONFIG_MEMCG_KMEM)
	/* analogous to slab_common's slab_caches list. per-memcg */
	struct list_head memcg_slab_caches;
	/* Not a spinlock, we can take a lot of time walking the list */
	struct mutex slab_caches_mutex;
        /* Index in the kmem_cache->memcg_params->memcg_caches array */
	int kmemcg_id;
#endif
312 313 314 315 316 317 318

	int last_scanned_node;
#if MAX_NUMNODES > 1
	nodemask_t	scan_nodes;
	atomic_t	numainfo_events;
	atomic_t	numainfo_updating;
#endif
319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334
	/*
	 * Protects soft_contributed transitions.
	 * See mem_cgroup_update_soft_limit
	 */
	spinlock_t soft_lock;

	/*
	 * If true then this group has increased parents' children_in_excess
         * when it got over the soft limit.
	 * When a group falls bellow the soft limit, parents' children_in_excess
	 * is decreased and soft_contributed changed to false.
	 */
	bool soft_contributed;

	/* Number of children that are in soft limit excess */
	atomic_t children_in_excess;
335

336 337
	struct mem_cgroup_per_node *nodeinfo[0];
	/* WARNING: nodeinfo must be the last member here */
B
Balbir Singh 已提交
338 339
};

340 341 342 343 344 345
static size_t memcg_size(void)
{
	return sizeof(struct mem_cgroup) +
		nr_node_ids * sizeof(struct mem_cgroup_per_node);
}

346 347 348
/* internal only representation about the status of kmem accounting. */
enum {
	KMEM_ACCOUNTED_ACTIVE = 0, /* accounted by this cgroup itself */
349
	KMEM_ACCOUNTED_ACTIVATED, /* static key enabled. */
350
	KMEM_ACCOUNTED_DEAD, /* dead memcg with pending kmem charges */
351 352
};

353 354 355
/* We account when limit is on, but only after call sites are patched */
#define KMEM_ACCOUNTED_MASK \
		((1 << KMEM_ACCOUNTED_ACTIVE) | (1 << KMEM_ACCOUNTED_ACTIVATED))
356 357 358 359 360 361

#ifdef CONFIG_MEMCG_KMEM
static inline void memcg_kmem_set_active(struct mem_cgroup *memcg)
{
	set_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags);
}
362 363 364 365 366 367

static bool memcg_kmem_is_active(struct mem_cgroup *memcg)
{
	return test_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags);
}

368 369 370 371 372
static void memcg_kmem_set_activated(struct mem_cgroup *memcg)
{
	set_bit(KMEM_ACCOUNTED_ACTIVATED, &memcg->kmem_account_flags);
}

373 374 375 376 377
static void memcg_kmem_clear_activated(struct mem_cgroup *memcg)
{
	clear_bit(KMEM_ACCOUNTED_ACTIVATED, &memcg->kmem_account_flags);
}

378 379
static void memcg_kmem_mark_dead(struct mem_cgroup *memcg)
{
380 381 382 383 384
	/*
	 * Our caller must use css_get() first, because memcg_uncharge_kmem()
	 * will call css_put() if it sees the memcg is dead.
	 */
	smp_wmb();
385 386 387 388 389 390 391 392 393
	if (test_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags))
		set_bit(KMEM_ACCOUNTED_DEAD, &memcg->kmem_account_flags);
}

static bool memcg_kmem_test_and_clear_dead(struct mem_cgroup *memcg)
{
	return test_and_clear_bit(KMEM_ACCOUNTED_DEAD,
				  &memcg->kmem_account_flags);
}
394 395
#endif

396 397
/* Stuffs for move charges at task migration. */
/*
398 399
 * Types of charges to be moved. "move_charge_at_immitgrate" and
 * "immigrate_flags" are treated as a left-shifted bitmap of these types.
400 401
 */
enum move_type {
402
	MOVE_CHARGE_TYPE_ANON,	/* private anonymous page and swap of it */
403
	MOVE_CHARGE_TYPE_FILE,	/* file page(including tmpfs) and swap of it */
404 405 406
	NR_MOVE_TYPE,
};

407 408
/* "mc" and its members are protected by cgroup_mutex */
static struct move_charge_struct {
409
	spinlock_t	  lock; /* for from, to */
410 411
	struct mem_cgroup *from;
	struct mem_cgroup *to;
412
	unsigned long immigrate_flags;
413
	unsigned long precharge;
414
	unsigned long moved_charge;
415
	unsigned long moved_swap;
416 417 418
	struct task_struct *moving_task;	/* a task moving charges */
	wait_queue_head_t waitq;		/* a waitq for other context */
} mc = {
419
	.lock = __SPIN_LOCK_UNLOCKED(mc.lock),
420 421
	.waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
};
422

D
Daisuke Nishimura 已提交
423 424
static bool move_anon(void)
{
425
	return test_bit(MOVE_CHARGE_TYPE_ANON, &mc.immigrate_flags);
D
Daisuke Nishimura 已提交
426 427
}

428 429
static bool move_file(void)
{
430
	return test_bit(MOVE_CHARGE_TYPE_FILE, &mc.immigrate_flags);
431 432
}

433 434 435 436
/*
 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
 * limit reclaim to prevent infinite loops, if they ever occur.
 */
437
#define	MEM_CGROUP_MAX_RECLAIM_LOOPS		100
438

439 440
enum charge_type {
	MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
441
	MEM_CGROUP_CHARGE_TYPE_ANON,
K
KAMEZAWA Hiroyuki 已提交
442
	MEM_CGROUP_CHARGE_TYPE_SWAPOUT,	/* for accounting swapcache */
K
KAMEZAWA Hiroyuki 已提交
443
	MEM_CGROUP_CHARGE_TYPE_DROP,	/* a page was unused swap cache */
444 445 446
	NR_CHARGE_TYPE,
};

447
/* for encoding cft->private value on file */
G
Glauber Costa 已提交
448 449 450 451
enum res_type {
	_MEM,
	_MEMSWAP,
	_OOM_TYPE,
452
	_KMEM,
G
Glauber Costa 已提交
453 454
};

455 456
#define MEMFILE_PRIVATE(x, val)	((x) << 16 | (val))
#define MEMFILE_TYPE(val)	((val) >> 16 & 0xffff)
457
#define MEMFILE_ATTR(val)	((val) & 0xffff)
K
KAMEZAWA Hiroyuki 已提交
458 459
/* Used for OOM nofiier */
#define OOM_CONTROL		(0)
460

461 462 463 464 465 466 467 468
/*
 * Reclaim flags for mem_cgroup_hierarchical_reclaim
 */
#define MEM_CGROUP_RECLAIM_NOSWAP_BIT	0x0
#define MEM_CGROUP_RECLAIM_NOSWAP	(1 << MEM_CGROUP_RECLAIM_NOSWAP_BIT)
#define MEM_CGROUP_RECLAIM_SHRINK_BIT	0x1
#define MEM_CGROUP_RECLAIM_SHRINK	(1 << MEM_CGROUP_RECLAIM_SHRINK_BIT)

469 470 471 472 473 474 475
/*
 * The memcg_create_mutex will be held whenever a new cgroup is created.
 * As a consequence, any change that needs to protect against new child cgroups
 * appearing has to hold it as well.
 */
static DEFINE_MUTEX(memcg_create_mutex);

476 477
struct mem_cgroup *mem_cgroup_from_css(struct cgroup_subsys_state *s)
{
478
	return s ? container_of(s, struct mem_cgroup, css) : NULL;
479 480
}

481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498
/* Some nice accessors for the vmpressure. */
struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
{
	if (!memcg)
		memcg = root_mem_cgroup;
	return &memcg->vmpressure;
}

struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr)
{
	return &container_of(vmpr, struct mem_cgroup, vmpressure)->css;
}

struct vmpressure *css_to_vmpressure(struct cgroup_subsys_state *css)
{
	return &mem_cgroup_from_css(css)->vmpressure;
}

499 500 501 502 503
static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
{
	return (memcg == root_mem_cgroup);
}

G
Glauber Costa 已提交
504
/* Writing them here to avoid exposing memcg's inner layout */
M
Michal Hocko 已提交
505
#if defined(CONFIG_INET) && defined(CONFIG_MEMCG_KMEM)
G
Glauber Costa 已提交
506 507 508

void sock_update_memcg(struct sock *sk)
{
509
	if (mem_cgroup_sockets_enabled) {
G
Glauber Costa 已提交
510
		struct mem_cgroup *memcg;
511
		struct cg_proto *cg_proto;
G
Glauber Costa 已提交
512 513 514

		BUG_ON(!sk->sk_prot->proto_cgroup);

515 516 517 518 519 520 521 522 523 524
		/* Socket cloning can throw us here with sk_cgrp already
		 * filled. It won't however, necessarily happen from
		 * process context. So the test for root memcg given
		 * the current task's memcg won't help us in this case.
		 *
		 * Respecting the original socket's memcg is a better
		 * decision in this case.
		 */
		if (sk->sk_cgrp) {
			BUG_ON(mem_cgroup_is_root(sk->sk_cgrp->memcg));
525
			css_get(&sk->sk_cgrp->memcg->css);
526 527 528
			return;
		}

G
Glauber Costa 已提交
529 530
		rcu_read_lock();
		memcg = mem_cgroup_from_task(current);
531
		cg_proto = sk->sk_prot->proto_cgroup(memcg);
532 533
		if (!mem_cgroup_is_root(memcg) &&
		    memcg_proto_active(cg_proto) && css_tryget(&memcg->css)) {
534
			sk->sk_cgrp = cg_proto;
G
Glauber Costa 已提交
535 536 537 538 539 540 541 542
		}
		rcu_read_unlock();
	}
}
EXPORT_SYMBOL(sock_update_memcg);

void sock_release_memcg(struct sock *sk)
{
543
	if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
G
Glauber Costa 已提交
544 545 546
		struct mem_cgroup *memcg;
		WARN_ON(!sk->sk_cgrp->memcg);
		memcg = sk->sk_cgrp->memcg;
547
		css_put(&sk->sk_cgrp->memcg->css);
G
Glauber Costa 已提交
548 549
	}
}
G
Glauber Costa 已提交
550 551 552 553 554 555 556 557 558

struct cg_proto *tcp_proto_cgroup(struct mem_cgroup *memcg)
{
	if (!memcg || mem_cgroup_is_root(memcg))
		return NULL;

	return &memcg->tcp_mem.cg_proto;
}
EXPORT_SYMBOL(tcp_proto_cgroup);
G
Glauber Costa 已提交
559

560 561 562 563 564 565 566 567 568 569 570 571
static void disarm_sock_keys(struct mem_cgroup *memcg)
{
	if (!memcg_proto_activated(&memcg->tcp_mem.cg_proto))
		return;
	static_key_slow_dec(&memcg_socket_limit_enabled);
}
#else
static void disarm_sock_keys(struct mem_cgroup *memcg)
{
}
#endif

572
#ifdef CONFIG_MEMCG_KMEM
573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590
/*
 * This will be the memcg's index in each cache's ->memcg_params->memcg_caches.
 * There are two main reasons for not using the css_id for this:
 *  1) this works better in sparse environments, where we have a lot of memcgs,
 *     but only a few kmem-limited. Or also, if we have, for instance, 200
 *     memcgs, and none but the 200th is kmem-limited, we'd have to have a
 *     200 entry array for that.
 *
 *  2) In order not to violate the cgroup API, we would like to do all memory
 *     allocation in ->create(). At that point, we haven't yet allocated the
 *     css_id. Having a separate index prevents us from messing with the cgroup
 *     core for this
 *
 * The current size of the caches array is stored in
 * memcg_limited_groups_array_size.  It will double each time we have to
 * increase it.
 */
static DEFINE_IDA(kmem_limited_groups);
591 592
int memcg_limited_groups_array_size;

593 594 595 596 597 598 599 600 601 602 603 604 605 606 607
/*
 * MIN_SIZE is different than 1, because we would like to avoid going through
 * the alloc/free process all the time. In a small machine, 4 kmem-limited
 * cgroups is a reasonable guess. In the future, it could be a parameter or
 * tunable, but that is strictly not necessary.
 *
 * MAX_SIZE should be as large as the number of css_ids. Ideally, we could get
 * this constant directly from cgroup, but it is understandable that this is
 * better kept as an internal representation in cgroup.c. In any case, the
 * css_id space is not getting any smaller, and we don't have to necessarily
 * increase ours as well if it increases.
 */
#define MEMCG_CACHES_MIN_SIZE 4
#define MEMCG_CACHES_MAX_SIZE 65535

608 609 610 611 612 613
/*
 * A lot of the calls to the cache allocation functions are expected to be
 * inlined by the compiler. Since the calls to memcg_kmem_get_cache are
 * conditional to this static branch, we'll have to allow modules that does
 * kmem_cache_alloc and the such to see this symbol as well
 */
614
struct static_key memcg_kmem_enabled_key;
615
EXPORT_SYMBOL(memcg_kmem_enabled_key);
616 617 618

static void disarm_kmem_keys(struct mem_cgroup *memcg)
{
619
	if (memcg_kmem_is_active(memcg)) {
620
		static_key_slow_dec(&memcg_kmem_enabled_key);
621 622
		ida_simple_remove(&kmem_limited_groups, memcg->kmemcg_id);
	}
623 624 625 626 627
	/*
	 * This check can't live in kmem destruction function,
	 * since the charges will outlive the cgroup
	 */
	WARN_ON(res_counter_read_u64(&memcg->kmem, RES_USAGE) != 0);
628 629 630 631 632 633 634 635 636 637 638 639 640
}
#else
static void disarm_kmem_keys(struct mem_cgroup *memcg)
{
}
#endif /* CONFIG_MEMCG_KMEM */

static void disarm_static_keys(struct mem_cgroup *memcg)
{
	disarm_sock_keys(memcg);
	disarm_kmem_keys(memcg);
}

641
static void drain_all_stock_async(struct mem_cgroup *memcg);
642

643
static struct mem_cgroup_per_zone *
644
mem_cgroup_zoneinfo(struct mem_cgroup *memcg, int nid, int zid)
645
{
646
	VM_BUG_ON((unsigned)nid >= nr_node_ids);
647
	return &memcg->nodeinfo[nid]->zoneinfo[zid];
648 649
}

650
struct cgroup_subsys_state *mem_cgroup_css(struct mem_cgroup *memcg)
651
{
652
	return &memcg->css;
653 654
}

655
static struct mem_cgroup_per_zone *
656
page_cgroup_zoneinfo(struct mem_cgroup *memcg, struct page *page)
657
{
658 659
	int nid = page_to_nid(page);
	int zid = page_zonenum(page);
660

661
	return mem_cgroup_zoneinfo(memcg, nid, zid);
662 663
}

664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682
/*
 * Implementation Note: reading percpu statistics for memcg.
 *
 * Both of vmstat[] and percpu_counter has threshold and do periodic
 * synchronization to implement "quick" read. There are trade-off between
 * reading cost and precision of value. Then, we may have a chance to implement
 * a periodic synchronizion of counter in memcg's counter.
 *
 * But this _read() function is used for user interface now. The user accounts
 * memory usage by memory cgroup and he _always_ requires exact value because
 * he accounts memory. Even if we provide quick-and-fuzzy read, we always
 * have to visit all online cpus and make sum. So, for now, unnecessary
 * synchronization is not implemented. (just implemented for cpu hotplug)
 *
 * If there are kernel internal actions which can make use of some not-exact
 * value, and reading all cpu value can be performance bottleneck in some
 * common workload, threashold and synchonization as vmstat[] should be
 * implemented.
 */
683
static long mem_cgroup_read_stat(struct mem_cgroup *memcg,
684
				 enum mem_cgroup_stat_index idx)
685
{
686
	long val = 0;
687 688
	int cpu;

689 690
	get_online_cpus();
	for_each_online_cpu(cpu)
691
		val += per_cpu(memcg->stat->count[idx], cpu);
692
#ifdef CONFIG_HOTPLUG_CPU
693 694 695
	spin_lock(&memcg->pcp_counter_lock);
	val += memcg->nocpu_base.count[idx];
	spin_unlock(&memcg->pcp_counter_lock);
696 697
#endif
	put_online_cpus();
698 699 700
	return val;
}

701
static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg,
702 703 704
					 bool charge)
{
	int val = (charge) ? 1 : -1;
705
	this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_SWAP], val);
706 707
}

708
static unsigned long mem_cgroup_read_events(struct mem_cgroup *memcg,
709 710 711 712 713 714
					    enum mem_cgroup_events_index idx)
{
	unsigned long val = 0;
	int cpu;

	for_each_online_cpu(cpu)
715
		val += per_cpu(memcg->stat->events[idx], cpu);
716
#ifdef CONFIG_HOTPLUG_CPU
717 718 719
	spin_lock(&memcg->pcp_counter_lock);
	val += memcg->nocpu_base.events[idx];
	spin_unlock(&memcg->pcp_counter_lock);
720 721 722 723
#endif
	return val;
}

724
static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
725
					 struct page *page,
726
					 bool anon, int nr_pages)
727
{
728 729
	preempt_disable();

730 731 732 733 734 735
	/*
	 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
	 * counted as CACHE even if it's on ANON LRU.
	 */
	if (anon)
		__this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS],
736
				nr_pages);
737
	else
738
		__this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_CACHE],
739
				nr_pages);
740

741 742 743 744
	if (PageTransHuge(page))
		__this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
				nr_pages);

745 746
	/* pagein of a big page is an event. So, ignore page size */
	if (nr_pages > 0)
747
		__this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGIN]);
748
	else {
749
		__this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]);
750 751
		nr_pages = -nr_pages; /* for event */
	}
752

753
	__this_cpu_add(memcg->stat->nr_page_events, nr_pages);
754

755
	preempt_enable();
756 757
}

758
unsigned long
759
mem_cgroup_get_lru_size(struct lruvec *lruvec, enum lru_list lru)
760 761 762 763 764 765 766 767
{
	struct mem_cgroup_per_zone *mz;

	mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
	return mz->lru_size[lru];
}

static unsigned long
768
mem_cgroup_zone_nr_lru_pages(struct mem_cgroup *memcg, int nid, int zid,
769
			unsigned int lru_mask)
770 771
{
	struct mem_cgroup_per_zone *mz;
H
Hugh Dickins 已提交
772
	enum lru_list lru;
773 774
	unsigned long ret = 0;

775
	mz = mem_cgroup_zoneinfo(memcg, nid, zid);
776

H
Hugh Dickins 已提交
777 778 779
	for_each_lru(lru) {
		if (BIT(lru) & lru_mask)
			ret += mz->lru_size[lru];
780 781 782 783 784
	}
	return ret;
}

static unsigned long
785
mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
786 787
			int nid, unsigned int lru_mask)
{
788 789 790
	u64 total = 0;
	int zid;

791
	for (zid = 0; zid < MAX_NR_ZONES; zid++)
792 793
		total += mem_cgroup_zone_nr_lru_pages(memcg,
						nid, zid, lru_mask);
794

795 796
	return total;
}
797

798
static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
799
			unsigned int lru_mask)
800
{
801
	int nid;
802 803
	u64 total = 0;

804
	for_each_node_state(nid, N_MEMORY)
805
		total += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask);
806
	return total;
807 808
}

809 810
static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
				       enum mem_cgroup_events_target target)
811 812 813
{
	unsigned long val, next;

814
	val = __this_cpu_read(memcg->stat->nr_page_events);
815
	next = __this_cpu_read(memcg->stat->targets[target]);
816
	/* from time_after() in jiffies.h */
817 818 819 820 821
	if ((long)next - (long)val < 0) {
		switch (target) {
		case MEM_CGROUP_TARGET_THRESH:
			next = val + THRESHOLDS_EVENTS_TARGET;
			break;
822 823 824
		case MEM_CGROUP_TARGET_SOFTLIMIT:
			next = val + SOFTLIMIT_EVENTS_TARGET;
			break;
825 826 827 828 829 830 831 832
		case MEM_CGROUP_TARGET_NUMAINFO:
			next = val + NUMAINFO_EVENTS_TARGET;
			break;
		default:
			break;
		}
		__this_cpu_write(memcg->stat->targets[target], next);
		return true;
833
	}
834
	return false;
835 836
}

837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866
/*
 * Called from rate-limitted memcg_check_events when enough
 * MEM_CGROUP_TARGET_SOFTLIMIT events are accumulated and it makes sure
 * that all the parents up the hierarchy will be noticed that this group
 * is in excess or that it is not in excess anymore. mmecg->soft_contributed
 * makes the transition a single action whenever the state flips from one to
 * other.
 */
static void mem_cgroup_update_soft_limit(struct mem_cgroup *memcg)
{
	unsigned long long excess = res_counter_soft_limit_excess(&memcg->res);
	struct mem_cgroup *parent = memcg;
	int delta = 0;

	spin_lock(&memcg->soft_lock);
	if (excess) {
		if (!memcg->soft_contributed) {
			delta = 1;
			memcg->soft_contributed = true;
		}
	} else {
		if (memcg->soft_contributed) {
			delta = -1;
			memcg->soft_contributed = false;
		}
	}

	/*
	 * Necessary to update all ancestors when hierarchy is used
	 * because their event counter is not touched.
867 868 869 870
	 * We track children even outside the hierarchy for the root
	 * cgroup because tree walk starting at root should visit
	 * all cgroups and we want to prevent from pointless tree
	 * walk if no children is below the limit.
871 872 873
	 */
	while (delta && (parent = parent_mem_cgroup(parent)))
		atomic_add(delta, &parent->children_in_excess);
874 875
	if (memcg != root_mem_cgroup && !root_mem_cgroup->use_hierarchy)
		atomic_add(delta, &root_mem_cgroup->children_in_excess);
876 877 878
	spin_unlock(&memcg->soft_lock);
}

879 880 881 882
/*
 * Check events in order.
 *
 */
883
static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
884
{
885
	preempt_disable();
886
	/* threshold event is triggered in finer grain than soft limit */
887 888
	if (unlikely(mem_cgroup_event_ratelimit(memcg,
						MEM_CGROUP_TARGET_THRESH))) {
889
		bool do_softlimit;
890
		bool do_numainfo __maybe_unused;
891

892 893
		do_softlimit = mem_cgroup_event_ratelimit(memcg,
						MEM_CGROUP_TARGET_SOFTLIMIT);
894 895 896 897 898 899
#if MAX_NUMNODES > 1
		do_numainfo = mem_cgroup_event_ratelimit(memcg,
						MEM_CGROUP_TARGET_NUMAINFO);
#endif
		preempt_enable();

900
		mem_cgroup_threshold(memcg);
901 902
		if (unlikely(do_softlimit))
			mem_cgroup_update_soft_limit(memcg);
903
#if MAX_NUMNODES > 1
904
		if (unlikely(do_numainfo))
905
			atomic_inc(&memcg->numainfo_events);
906
#endif
907 908
	} else
		preempt_enable();
909 910
}

911
struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
912
{
913 914 915 916 917 918 919 920
	/*
	 * mm_update_next_owner() may clear mm->owner to NULL
	 * if it races with swapoff, page migration, etc.
	 * So this can be called with p == NULL.
	 */
	if (unlikely(!p))
		return NULL;

921
	return mem_cgroup_from_css(task_css(p, mem_cgroup_subsys_id));
922 923
}

924
struct mem_cgroup *try_get_mem_cgroup_from_mm(struct mm_struct *mm)
925
{
926
	struct mem_cgroup *memcg = NULL;
927 928 929

	if (!mm)
		return NULL;
930 931 932 933 934 935 936
	/*
	 * Because we have no locks, mm->owner's may be being moved to other
	 * cgroup. We use css_tryget() here even if this looks
	 * pessimistic (rather than adding locks here).
	 */
	rcu_read_lock();
	do {
937 938
		memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
		if (unlikely(!memcg))
939
			break;
940
	} while (!css_tryget(&memcg->css));
941
	rcu_read_unlock();
942
	return memcg;
943 944
}

945 946 947 948 949 950 951 952 953
static enum mem_cgroup_filter_t
mem_cgroup_filter(struct mem_cgroup *memcg, struct mem_cgroup *root,
		mem_cgroup_iter_filter cond)
{
	if (!cond)
		return VISIT;
	return cond(memcg, root);
}

954 955 956 957 958 959 960
/*
 * Returns a next (in a pre-order walk) alive memcg (with elevated css
 * ref. count) or NULL if the whole root's subtree has been visited.
 *
 * helper function to be used by mem_cgroup_iter
 */
static struct mem_cgroup *__mem_cgroup_iter_next(struct mem_cgroup *root,
961
		struct mem_cgroup *last_visited, mem_cgroup_iter_filter cond)
962
{
963
	struct cgroup_subsys_state *prev_css, *next_css;
964

965
	prev_css = last_visited ? &last_visited->css : NULL;
966
skip_node:
967
	next_css = css_next_descendant_pre(prev_css, &root->css);
968 969 970 971 972 973 974 975

	/*
	 * Even if we found a group we have to make sure it is
	 * alive. css && !memcg means that the groups should be
	 * skipped and we should continue the tree walk.
	 * last_visited css is safe to use because it is
	 * protected by css_get and the tree walk is rcu safe.
	 */
976 977 978
	if (next_css) {
		struct mem_cgroup *mem = mem_cgroup_from_css(next_css);

979 980
		switch (mem_cgroup_filter(mem, root, cond)) {
		case SKIP:
981
			prev_css = next_css;
982
			goto skip_node;
983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003
		case SKIP_TREE:
			if (mem == root)
				return NULL;
			/*
			 * css_rightmost_descendant is not an optimal way to
			 * skip through a subtree (especially for imbalanced
			 * trees leaning to right) but that's what we have right
			 * now. More effective solution would be traversing
			 * right-up for first non-NULL without calling
			 * css_next_descendant_pre afterwards.
			 */
			prev_css = css_rightmost_descendant(next_css);
			goto skip_node;
		case VISIT:
			if (css_tryget(&mem->css))
				return mem;
			else {
				prev_css = next_css;
				goto skip_node;
			}
			break;
1004 1005 1006 1007 1008 1009
		}
	}

	return NULL;
}

1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061
static void mem_cgroup_iter_invalidate(struct mem_cgroup *root)
{
	/*
	 * When a group in the hierarchy below root is destroyed, the
	 * hierarchy iterator can no longer be trusted since it might
	 * have pointed to the destroyed group.  Invalidate it.
	 */
	atomic_inc(&root->dead_count);
}

static struct mem_cgroup *
mem_cgroup_iter_load(struct mem_cgroup_reclaim_iter *iter,
		     struct mem_cgroup *root,
		     int *sequence)
{
	struct mem_cgroup *position = NULL;
	/*
	 * A cgroup destruction happens in two stages: offlining and
	 * release.  They are separated by a RCU grace period.
	 *
	 * If the iterator is valid, we may still race with an
	 * offlining.  The RCU lock ensures the object won't be
	 * released, tryget will fail if we lost the race.
	 */
	*sequence = atomic_read(&root->dead_count);
	if (iter->last_dead_count == *sequence) {
		smp_rmb();
		position = iter->last_visited;
		if (position && !css_tryget(&position->css))
			position = NULL;
	}
	return position;
}

static void mem_cgroup_iter_update(struct mem_cgroup_reclaim_iter *iter,
				   struct mem_cgroup *last_visited,
				   struct mem_cgroup *new_position,
				   int sequence)
{
	if (last_visited)
		css_put(&last_visited->css);
	/*
	 * We store the sequence count from the time @last_visited was
	 * loaded successfully instead of rereading it here so that we
	 * don't lose destruction events in between.  We could have
	 * raced with the destruction of @new_position after all.
	 */
	iter->last_visited = new_position;
	smp_wmb();
	iter->last_dead_count = sequence;
}

1062 1063 1064 1065 1066
/**
 * mem_cgroup_iter - iterate over memory cgroup hierarchy
 * @root: hierarchy root
 * @prev: previously returned memcg, NULL on first invocation
 * @reclaim: cookie for shared reclaim walks, NULL for full walks
1067
 * @cond: filter for visited nodes, NULL for no filter
1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079
 *
 * Returns references to children of the hierarchy below @root, or
 * @root itself, or %NULL after a full round-trip.
 *
 * Caller must pass the return value in @prev on subsequent
 * invocations for reference counting, or use mem_cgroup_iter_break()
 * to cancel a hierarchy walk before the round-trip is complete.
 *
 * Reclaimers can specify a zone and a priority level in @reclaim to
 * divide up the memcgs in the hierarchy among all concurrent
 * reclaimers operating on the same zone and priority.
 */
1080
struct mem_cgroup *mem_cgroup_iter_cond(struct mem_cgroup *root,
1081
				   struct mem_cgroup *prev,
1082 1083
				   struct mem_cgroup_reclaim_cookie *reclaim,
				   mem_cgroup_iter_filter cond)
K
KAMEZAWA Hiroyuki 已提交
1084
{
1085
	struct mem_cgroup *memcg = NULL;
1086
	struct mem_cgroup *last_visited = NULL;
1087

1088 1089 1090 1091
	if (mem_cgroup_disabled()) {
		/* first call must return non-NULL, second return NULL */
		return (struct mem_cgroup *)(unsigned long)!prev;
	}
1092

1093 1094
	if (!root)
		root = root_mem_cgroup;
K
KAMEZAWA Hiroyuki 已提交
1095

1096
	if (prev && !reclaim)
1097
		last_visited = prev;
K
KAMEZAWA Hiroyuki 已提交
1098

1099 1100
	if (!root->use_hierarchy && root != root_mem_cgroup) {
		if (prev)
1101
			goto out_css_put;
1102 1103 1104
		if (mem_cgroup_filter(root, root, cond) == VISIT)
			return root;
		return NULL;
1105
	}
K
KAMEZAWA Hiroyuki 已提交
1106

1107
	rcu_read_lock();
1108
	while (!memcg) {
1109
		struct mem_cgroup_reclaim_iter *uninitialized_var(iter);
1110
		int uninitialized_var(seq);
1111

1112 1113 1114 1115 1116 1117 1118
		if (reclaim) {
			int nid = zone_to_nid(reclaim->zone);
			int zid = zone_idx(reclaim->zone);
			struct mem_cgroup_per_zone *mz;

			mz = mem_cgroup_zoneinfo(root, nid, zid);
			iter = &mz->reclaim_iter[reclaim->priority];
1119
			if (prev && reclaim->generation != iter->generation) {
M
Michal Hocko 已提交
1120
				iter->last_visited = NULL;
1121 1122
				goto out_unlock;
			}
M
Michal Hocko 已提交
1123

1124
			last_visited = mem_cgroup_iter_load(iter, root, &seq);
1125
		}
K
KAMEZAWA Hiroyuki 已提交
1126

1127
		memcg = __mem_cgroup_iter_next(root, last_visited, cond);
K
KAMEZAWA Hiroyuki 已提交
1128

1129
		if (reclaim) {
1130
			mem_cgroup_iter_update(iter, last_visited, memcg, seq);
1131

M
Michal Hocko 已提交
1132
			if (!memcg)
1133 1134 1135 1136
				iter->generation++;
			else if (!prev && memcg)
				reclaim->generation = iter->generation;
		}
1137

1138 1139 1140 1141 1142
		/*
		 * We have finished the whole tree walk or no group has been
		 * visited because filter told us to skip the root node.
		 */
		if (!memcg && (prev || (cond && !last_visited)))
1143
			goto out_unlock;
1144
	}
1145 1146
out_unlock:
	rcu_read_unlock();
1147 1148 1149 1150
out_css_put:
	if (prev && prev != root)
		css_put(&prev->css);

1151
	return memcg;
K
KAMEZAWA Hiroyuki 已提交
1152
}
K
KAMEZAWA Hiroyuki 已提交
1153

1154 1155 1156 1157 1158 1159 1160
/**
 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
 * @root: hierarchy root
 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
 */
void mem_cgroup_iter_break(struct mem_cgroup *root,
			   struct mem_cgroup *prev)
1161 1162 1163 1164 1165 1166
{
	if (!root)
		root = root_mem_cgroup;
	if (prev && prev != root)
		css_put(&prev->css);
}
K
KAMEZAWA Hiroyuki 已提交
1167

1168 1169 1170 1171 1172 1173
/*
 * Iteration constructs for visiting all cgroups (under a tree).  If
 * loops are exited prematurely (break), mem_cgroup_iter_break() must
 * be used for reference counting.
 */
#define for_each_mem_cgroup_tree(iter, root)		\
1174
	for (iter = mem_cgroup_iter(root, NULL, NULL);	\
1175
	     iter != NULL;				\
1176
	     iter = mem_cgroup_iter(root, iter, NULL))
1177

1178
#define for_each_mem_cgroup(iter)			\
1179
	for (iter = mem_cgroup_iter(NULL, NULL, NULL);	\
1180
	     iter != NULL;				\
1181
	     iter = mem_cgroup_iter(NULL, iter, NULL))
K
KAMEZAWA Hiroyuki 已提交
1182

1183
void __mem_cgroup_count_vm_event(struct mm_struct *mm, enum vm_event_item idx)
1184
{
1185
	struct mem_cgroup *memcg;
1186 1187

	rcu_read_lock();
1188 1189
	memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
	if (unlikely(!memcg))
1190 1191 1192 1193
		goto out;

	switch (idx) {
	case PGFAULT:
1194 1195 1196 1197
		this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGFAULT]);
		break;
	case PGMAJFAULT:
		this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGMAJFAULT]);
1198 1199 1200 1201 1202 1203 1204
		break;
	default:
		BUG();
	}
out:
	rcu_read_unlock();
}
1205
EXPORT_SYMBOL(__mem_cgroup_count_vm_event);
1206

1207 1208 1209
/**
 * mem_cgroup_zone_lruvec - get the lru list vector for a zone and memcg
 * @zone: zone of the wanted lruvec
1210
 * @memcg: memcg of the wanted lruvec
1211 1212 1213 1214 1215 1216 1217 1218 1219
 *
 * Returns the lru list vector holding pages for the given @zone and
 * @mem.  This can be the global zone lruvec, if the memory controller
 * is disabled.
 */
struct lruvec *mem_cgroup_zone_lruvec(struct zone *zone,
				      struct mem_cgroup *memcg)
{
	struct mem_cgroup_per_zone *mz;
1220
	struct lruvec *lruvec;
1221

1222 1223 1224 1225
	if (mem_cgroup_disabled()) {
		lruvec = &zone->lruvec;
		goto out;
	}
1226 1227

	mz = mem_cgroup_zoneinfo(memcg, zone_to_nid(zone), zone_idx(zone));
1228 1229 1230 1231 1232 1233 1234 1235 1236 1237
	lruvec = &mz->lruvec;
out:
	/*
	 * Since a node can be onlined after the mem_cgroup was created,
	 * we have to be prepared to initialize lruvec->zone here;
	 * and if offlined then reonlined, we need to reinitialize it.
	 */
	if (unlikely(lruvec->zone != zone))
		lruvec->zone = zone;
	return lruvec;
1238 1239
}

K
KAMEZAWA Hiroyuki 已提交
1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252
/*
 * Following LRU functions are allowed to be used without PCG_LOCK.
 * Operations are called by routine of global LRU independently from memcg.
 * What we have to take care of here is validness of pc->mem_cgroup.
 *
 * Changes to pc->mem_cgroup happens when
 * 1. charge
 * 2. moving account
 * In typical case, "charge" is done before add-to-lru. Exception is SwapCache.
 * It is added to LRU before charge.
 * If PCG_USED bit is not set, page_cgroup is not added to this private LRU.
 * When moving account, the page is not on LRU. It's isolated.
 */
1253

1254
/**
1255
 * mem_cgroup_page_lruvec - return lruvec for adding an lru page
1256
 * @page: the page
1257
 * @zone: zone of the page
1258
 */
1259
struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct zone *zone)
K
KAMEZAWA Hiroyuki 已提交
1260 1261
{
	struct mem_cgroup_per_zone *mz;
1262 1263
	struct mem_cgroup *memcg;
	struct page_cgroup *pc;
1264
	struct lruvec *lruvec;
1265

1266 1267 1268 1269
	if (mem_cgroup_disabled()) {
		lruvec = &zone->lruvec;
		goto out;
	}
1270

K
KAMEZAWA Hiroyuki 已提交
1271
	pc = lookup_page_cgroup(page);
1272
	memcg = pc->mem_cgroup;
1273 1274

	/*
1275
	 * Surreptitiously switch any uncharged offlist page to root:
1276 1277 1278 1279 1280 1281 1282
	 * an uncharged page off lru does nothing to secure
	 * its former mem_cgroup from sudden removal.
	 *
	 * Our caller holds lru_lock, and PageCgroupUsed is updated
	 * under page_cgroup lock: between them, they make all uses
	 * of pc->mem_cgroup safe.
	 */
1283
	if (!PageLRU(page) && !PageCgroupUsed(pc) && memcg != root_mem_cgroup)
1284 1285
		pc->mem_cgroup = memcg = root_mem_cgroup;

1286
	mz = page_cgroup_zoneinfo(memcg, page);
1287 1288 1289 1290 1291 1292 1293 1294 1295 1296
	lruvec = &mz->lruvec;
out:
	/*
	 * Since a node can be onlined after the mem_cgroup was created,
	 * we have to be prepared to initialize lruvec->zone here;
	 * and if offlined then reonlined, we need to reinitialize it.
	 */
	if (unlikely(lruvec->zone != zone))
		lruvec->zone = zone;
	return lruvec;
K
KAMEZAWA Hiroyuki 已提交
1297
}
1298

1299
/**
1300 1301 1302 1303
 * mem_cgroup_update_lru_size - account for adding or removing an lru page
 * @lruvec: mem_cgroup per zone lru vector
 * @lru: index of lru list the page is sitting on
 * @nr_pages: positive when adding or negative when removing
1304
 *
1305 1306
 * This function must be called when a page is added to or removed from an
 * lru list.
1307
 */
1308 1309
void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
				int nr_pages)
1310 1311
{
	struct mem_cgroup_per_zone *mz;
1312
	unsigned long *lru_size;
1313 1314 1315 1316

	if (mem_cgroup_disabled())
		return;

1317 1318 1319 1320
	mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
	lru_size = mz->lru_size + lru;
	*lru_size += nr_pages;
	VM_BUG_ON((long)(*lru_size) < 0);
K
KAMEZAWA Hiroyuki 已提交
1321
}
1322

1323
/*
1324
 * Checks whether given mem is same or in the root_mem_cgroup's
1325 1326
 * hierarchy subtree
 */
1327 1328
bool __mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg,
				  struct mem_cgroup *memcg)
1329
{
1330 1331
	if (root_memcg == memcg)
		return true;
1332
	if (!root_memcg->use_hierarchy || !memcg)
1333
		return false;
1334 1335 1336 1337 1338 1339 1340 1341
	return css_is_ancestor(&memcg->css, &root_memcg->css);
}

static bool mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg,
				       struct mem_cgroup *memcg)
{
	bool ret;

1342
	rcu_read_lock();
1343
	ret = __mem_cgroup_same_or_subtree(root_memcg, memcg);
1344 1345
	rcu_read_unlock();
	return ret;
1346 1347
}

1348 1349
bool task_in_mem_cgroup(struct task_struct *task,
			const struct mem_cgroup *memcg)
1350
{
1351
	struct mem_cgroup *curr = NULL;
1352
	struct task_struct *p;
1353
	bool ret;
1354

1355
	p = find_lock_task_mm(task);
1356 1357 1358 1359 1360 1361 1362 1363 1364
	if (p) {
		curr = try_get_mem_cgroup_from_mm(p->mm);
		task_unlock(p);
	} else {
		/*
		 * All threads may have already detached their mm's, but the oom
		 * killer still needs to detect if they have already been oom
		 * killed to prevent needlessly killing additional tasks.
		 */
1365
		rcu_read_lock();
1366 1367 1368
		curr = mem_cgroup_from_task(task);
		if (curr)
			css_get(&curr->css);
1369
		rcu_read_unlock();
1370
	}
1371
	if (!curr)
1372
		return false;
1373
	/*
1374
	 * We should check use_hierarchy of "memcg" not "curr". Because checking
1375
	 * use_hierarchy of "curr" here make this function true if hierarchy is
1376 1377
	 * enabled in "curr" and "curr" is a child of "memcg" in *cgroup*
	 * hierarchy(even if use_hierarchy is disabled in "memcg").
1378
	 */
1379
	ret = mem_cgroup_same_or_subtree(memcg, curr);
1380
	css_put(&curr->css);
1381 1382 1383
	return ret;
}

1384
int mem_cgroup_inactive_anon_is_low(struct lruvec *lruvec)
1385
{
1386
	unsigned long inactive_ratio;
1387
	unsigned long inactive;
1388
	unsigned long active;
1389
	unsigned long gb;
1390

1391 1392
	inactive = mem_cgroup_get_lru_size(lruvec, LRU_INACTIVE_ANON);
	active = mem_cgroup_get_lru_size(lruvec, LRU_ACTIVE_ANON);
1393

1394 1395 1396 1397 1398 1399
	gb = (inactive + active) >> (30 - PAGE_SHIFT);
	if (gb)
		inactive_ratio = int_sqrt(10 * gb);
	else
		inactive_ratio = 1;

1400
	return inactive * inactive_ratio < active;
1401 1402
}

1403 1404 1405
#define mem_cgroup_from_res_counter(counter, member)	\
	container_of(counter, struct mem_cgroup, member)

1406
/**
1407
 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
W
Wanpeng Li 已提交
1408
 * @memcg: the memory cgroup
1409
 *
1410
 * Returns the maximum amount of memory @mem can be charged with, in
1411
 * pages.
1412
 */
1413
static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1414
{
1415 1416
	unsigned long long margin;

1417
	margin = res_counter_margin(&memcg->res);
1418
	if (do_swap_account)
1419
		margin = min(margin, res_counter_margin(&memcg->memsw));
1420
	return margin >> PAGE_SHIFT;
1421 1422
}

1423
int mem_cgroup_swappiness(struct mem_cgroup *memcg)
K
KOSAKI Motohiro 已提交
1424 1425
{
	/* root ? */
T
Tejun Heo 已提交
1426
	if (!css_parent(&memcg->css))
K
KOSAKI Motohiro 已提交
1427 1428
		return vm_swappiness;

1429
	return memcg->swappiness;
K
KOSAKI Motohiro 已提交
1430 1431
}

1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445
/*
 * memcg->moving_account is used for checking possibility that some thread is
 * calling move_account(). When a thread on CPU-A starts moving pages under
 * a memcg, other threads should check memcg->moving_account under
 * rcu_read_lock(), like this:
 *
 *         CPU-A                                    CPU-B
 *                                              rcu_read_lock()
 *         memcg->moving_account+1              if (memcg->mocing_account)
 *                                                   take heavy locks.
 *         synchronize_rcu()                    update something.
 *                                              rcu_read_unlock()
 *         start move here.
 */
1446 1447 1448 1449

/* for quick checking without looking up memcg */
atomic_t memcg_moving __read_mostly;

1450
static void mem_cgroup_start_move(struct mem_cgroup *memcg)
1451
{
1452
	atomic_inc(&memcg_moving);
1453
	atomic_inc(&memcg->moving_account);
1454 1455 1456
	synchronize_rcu();
}

1457
static void mem_cgroup_end_move(struct mem_cgroup *memcg)
1458
{
1459 1460 1461 1462
	/*
	 * Now, mem_cgroup_clear_mc() may call this function with NULL.
	 * We check NULL in callee rather than caller.
	 */
1463 1464
	if (memcg) {
		atomic_dec(&memcg_moving);
1465
		atomic_dec(&memcg->moving_account);
1466
	}
1467
}
1468

1469 1470 1471
/*
 * 2 routines for checking "mem" is under move_account() or not.
 *
1472 1473
 * mem_cgroup_stolen() -  checking whether a cgroup is mc.from or not. This
 *			  is used for avoiding races in accounting.  If true,
1474 1475 1476 1477 1478 1479 1480
 *			  pc->mem_cgroup may be overwritten.
 *
 * mem_cgroup_under_move() - checking a cgroup is mc.from or mc.to or
 *			  under hierarchy of moving cgroups. This is for
 *			  waiting at hith-memory prressure caused by "move".
 */

1481
static bool mem_cgroup_stolen(struct mem_cgroup *memcg)
1482 1483
{
	VM_BUG_ON(!rcu_read_lock_held());
1484
	return atomic_read(&memcg->moving_account) > 0;
1485
}
1486

1487
static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
1488
{
1489 1490
	struct mem_cgroup *from;
	struct mem_cgroup *to;
1491
	bool ret = false;
1492 1493 1494 1495 1496 1497 1498 1499 1500
	/*
	 * Unlike task_move routines, we access mc.to, mc.from not under
	 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
	 */
	spin_lock(&mc.lock);
	from = mc.from;
	to = mc.to;
	if (!from)
		goto unlock;
1501

1502 1503
	ret = mem_cgroup_same_or_subtree(memcg, from)
		|| mem_cgroup_same_or_subtree(memcg, to);
1504 1505
unlock:
	spin_unlock(&mc.lock);
1506 1507 1508
	return ret;
}

1509
static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1510 1511
{
	if (mc.moving_task && current != mc.moving_task) {
1512
		if (mem_cgroup_under_move(memcg)) {
1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524
			DEFINE_WAIT(wait);
			prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
			/* moving charge context might have finished. */
			if (mc.moving_task)
				schedule();
			finish_wait(&mc.waitq, &wait);
			return true;
		}
	}
	return false;
}

1525 1526 1527 1528
/*
 * Take this lock when
 * - a code tries to modify page's memcg while it's USED.
 * - a code tries to modify page state accounting in a memcg.
1529
 * see mem_cgroup_stolen(), too.
1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542
 */
static void move_lock_mem_cgroup(struct mem_cgroup *memcg,
				  unsigned long *flags)
{
	spin_lock_irqsave(&memcg->move_lock, *flags);
}

static void move_unlock_mem_cgroup(struct mem_cgroup *memcg,
				unsigned long *flags)
{
	spin_unlock_irqrestore(&memcg->move_lock, *flags);
}

1543
#define K(x) ((x) << (PAGE_SHIFT-10))
1544
/**
1545
 * mem_cgroup_print_oom_info: Print OOM information relevant to memory controller.
1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562
 * @memcg: The memory cgroup that went over limit
 * @p: Task that is going to be killed
 *
 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
 * enabled
 */
void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
{
	struct cgroup *task_cgrp;
	struct cgroup *mem_cgrp;
	/*
	 * Need a buffer in BSS, can't rely on allocations. The code relies
	 * on the assumption that OOM is serialized for memory controller.
	 * If this assumption is broken, revisit this code.
	 */
	static char memcg_name[PATH_MAX];
	int ret;
1563 1564
	struct mem_cgroup *iter;
	unsigned int i;
1565

1566
	if (!p)
1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584
		return;

	rcu_read_lock();

	mem_cgrp = memcg->css.cgroup;
	task_cgrp = task_cgroup(p, mem_cgroup_subsys_id);

	ret = cgroup_path(task_cgrp, memcg_name, PATH_MAX);
	if (ret < 0) {
		/*
		 * Unfortunately, we are unable to convert to a useful name
		 * But we'll still print out the usage information
		 */
		rcu_read_unlock();
		goto done;
	}
	rcu_read_unlock();

1585
	pr_info("Task in %s killed", memcg_name);
1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597

	rcu_read_lock();
	ret = cgroup_path(mem_cgrp, memcg_name, PATH_MAX);
	if (ret < 0) {
		rcu_read_unlock();
		goto done;
	}
	rcu_read_unlock();

	/*
	 * Continues from above, so we don't need an KERN_ level
	 */
1598
	pr_cont(" as a result of limit of %s\n", memcg_name);
1599 1600
done:

1601
	pr_info("memory: usage %llukB, limit %llukB, failcnt %llu\n",
1602 1603 1604
		res_counter_read_u64(&memcg->res, RES_USAGE) >> 10,
		res_counter_read_u64(&memcg->res, RES_LIMIT) >> 10,
		res_counter_read_u64(&memcg->res, RES_FAILCNT));
1605
	pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %llu\n",
1606 1607 1608
		res_counter_read_u64(&memcg->memsw, RES_USAGE) >> 10,
		res_counter_read_u64(&memcg->memsw, RES_LIMIT) >> 10,
		res_counter_read_u64(&memcg->memsw, RES_FAILCNT));
1609
	pr_info("kmem: usage %llukB, limit %llukB, failcnt %llu\n",
1610 1611 1612
		res_counter_read_u64(&memcg->kmem, RES_USAGE) >> 10,
		res_counter_read_u64(&memcg->kmem, RES_LIMIT) >> 10,
		res_counter_read_u64(&memcg->kmem, RES_FAILCNT));
1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636

	for_each_mem_cgroup_tree(iter, memcg) {
		pr_info("Memory cgroup stats");

		rcu_read_lock();
		ret = cgroup_path(iter->css.cgroup, memcg_name, PATH_MAX);
		if (!ret)
			pr_cont(" for %s", memcg_name);
		rcu_read_unlock();
		pr_cont(":");

		for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
			if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
				continue;
			pr_cont(" %s:%ldKB", mem_cgroup_stat_names[i],
				K(mem_cgroup_read_stat(iter, i)));
		}

		for (i = 0; i < NR_LRU_LISTS; i++)
			pr_cont(" %s:%luKB", mem_cgroup_lru_names[i],
				K(mem_cgroup_nr_lru_pages(iter, BIT(i))));

		pr_cont("\n");
	}
1637 1638
}

1639 1640 1641 1642
/*
 * This function returns the number of memcg under hierarchy tree. Returns
 * 1(self count) if no children.
 */
1643
static int mem_cgroup_count_children(struct mem_cgroup *memcg)
1644 1645
{
	int num = 0;
K
KAMEZAWA Hiroyuki 已提交
1646 1647
	struct mem_cgroup *iter;

1648
	for_each_mem_cgroup_tree(iter, memcg)
K
KAMEZAWA Hiroyuki 已提交
1649
		num++;
1650 1651 1652
	return num;
}

D
David Rientjes 已提交
1653 1654 1655
/*
 * Return the memory (and swap, if configured) limit for a memcg.
 */
1656
static u64 mem_cgroup_get_limit(struct mem_cgroup *memcg)
D
David Rientjes 已提交
1657 1658 1659
{
	u64 limit;

1660 1661
	limit = res_counter_read_u64(&memcg->res, RES_LIMIT);

D
David Rientjes 已提交
1662
	/*
1663
	 * Do not consider swap space if we cannot swap due to swappiness
D
David Rientjes 已提交
1664
	 */
1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678
	if (mem_cgroup_swappiness(memcg)) {
		u64 memsw;

		limit += total_swap_pages << PAGE_SHIFT;
		memsw = res_counter_read_u64(&memcg->memsw, RES_LIMIT);

		/*
		 * If memsw is finite and limits the amount of swap space
		 * available to this memcg, return that limit.
		 */
		limit = min(limit, memsw);
	}

	return limit;
D
David Rientjes 已提交
1679 1680
}

1681 1682
static void mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
				     int order)
1683 1684 1685 1686 1687 1688 1689
{
	struct mem_cgroup *iter;
	unsigned long chosen_points = 0;
	unsigned long totalpages;
	unsigned int points = 0;
	struct task_struct *chosen = NULL;

1690
	/*
1691 1692 1693
	 * If current has a pending SIGKILL or is exiting, then automatically
	 * select it.  The goal is to allow it to allocate so that it may
	 * quickly exit and free its memory.
1694
	 */
1695
	if (fatal_signal_pending(current) || current->flags & PF_EXITING) {
1696 1697 1698 1699 1700
		set_thread_flag(TIF_MEMDIE);
		return;
	}

	check_panic_on_oom(CONSTRAINT_MEMCG, gfp_mask, order, NULL);
1701 1702
	totalpages = mem_cgroup_get_limit(memcg) >> PAGE_SHIFT ? : 1;
	for_each_mem_cgroup_tree(iter, memcg) {
1703
		struct css_task_iter it;
1704 1705
		struct task_struct *task;

1706 1707
		css_task_iter_start(&iter->css, &it);
		while ((task = css_task_iter_next(&it))) {
1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719
			switch (oom_scan_process_thread(task, totalpages, NULL,
							false)) {
			case OOM_SCAN_SELECT:
				if (chosen)
					put_task_struct(chosen);
				chosen = task;
				chosen_points = ULONG_MAX;
				get_task_struct(chosen);
				/* fall through */
			case OOM_SCAN_CONTINUE:
				continue;
			case OOM_SCAN_ABORT:
1720
				css_task_iter_end(&it);
1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736
				mem_cgroup_iter_break(memcg, iter);
				if (chosen)
					put_task_struct(chosen);
				return;
			case OOM_SCAN_OK:
				break;
			};
			points = oom_badness(task, memcg, NULL, totalpages);
			if (points > chosen_points) {
				if (chosen)
					put_task_struct(chosen);
				chosen = task;
				chosen_points = points;
				get_task_struct(chosen);
			}
		}
1737
		css_task_iter_end(&it);
1738 1739 1740 1741 1742 1743 1744 1745 1746
	}

	if (!chosen)
		return;
	points = chosen_points * 1000 / totalpages;
	oom_kill_process(chosen, gfp_mask, order, points, totalpages, memcg,
			 NULL, "Memory cgroup out of memory");
}

1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782
static unsigned long mem_cgroup_reclaim(struct mem_cgroup *memcg,
					gfp_t gfp_mask,
					unsigned long flags)
{
	unsigned long total = 0;
	bool noswap = false;
	int loop;

	if (flags & MEM_CGROUP_RECLAIM_NOSWAP)
		noswap = true;
	if (!(flags & MEM_CGROUP_RECLAIM_SHRINK) && memcg->memsw_is_minimum)
		noswap = true;

	for (loop = 0; loop < MEM_CGROUP_MAX_RECLAIM_LOOPS; loop++) {
		if (loop)
			drain_all_stock_async(memcg);
		total += try_to_free_mem_cgroup_pages(memcg, gfp_mask, noswap);
		/*
		 * Allow limit shrinkers, which are triggered directly
		 * by userspace, to catch signals and stop reclaim
		 * after minimal progress, regardless of the margin.
		 */
		if (total && (flags & MEM_CGROUP_RECLAIM_SHRINK))
			break;
		if (mem_cgroup_margin(memcg))
			break;
		/*
		 * If nothing was reclaimed after two attempts, there
		 * may be no reclaimable pages in this hierarchy.
		 */
		if (loop && !total)
			break;
	}
	return total;
}

1783
#if MAX_NUMNODES > 1
1784 1785
/**
 * test_mem_cgroup_node_reclaimable
W
Wanpeng Li 已提交
1786
 * @memcg: the target memcg
1787 1788 1789 1790 1791 1792 1793
 * @nid: the node ID to be checked.
 * @noswap : specify true here if the user wants flle only information.
 *
 * This function returns whether the specified memcg contains any
 * reclaimable pages on a node. Returns true if there are any reclaimable
 * pages in the node.
 */
1794
static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
1795 1796
		int nid, bool noswap)
{
1797
	if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE))
1798 1799 1800
		return true;
	if (noswap || !total_swap_pages)
		return false;
1801
	if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON))
1802 1803 1804 1805
		return true;
	return false;

}
1806 1807 1808 1809 1810 1811 1812

/*
 * Always updating the nodemask is not very good - even if we have an empty
 * list or the wrong list here, we can start from some node and traverse all
 * nodes based on the zonelist. So update the list loosely once per 10 secs.
 *
 */
1813
static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
1814 1815
{
	int nid;
1816 1817 1818 1819
	/*
	 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
	 * pagein/pageout changes since the last update.
	 */
1820
	if (!atomic_read(&memcg->numainfo_events))
1821
		return;
1822
	if (atomic_inc_return(&memcg->numainfo_updating) > 1)
1823 1824 1825
		return;

	/* make a nodemask where this memcg uses memory from */
1826
	memcg->scan_nodes = node_states[N_MEMORY];
1827

1828
	for_each_node_mask(nid, node_states[N_MEMORY]) {
1829

1830 1831
		if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
			node_clear(nid, memcg->scan_nodes);
1832
	}
1833

1834 1835
	atomic_set(&memcg->numainfo_events, 0);
	atomic_set(&memcg->numainfo_updating, 0);
1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849
}

/*
 * Selecting a node where we start reclaim from. Because what we need is just
 * reducing usage counter, start from anywhere is O,K. Considering
 * memory reclaim from current node, there are pros. and cons.
 *
 * Freeing memory from current node means freeing memory from a node which
 * we'll use or we've used. So, it may make LRU bad. And if several threads
 * hit limits, it will see a contention on a node. But freeing from remote
 * node means more costs for memory reclaim because of memory latency.
 *
 * Now, we use round-robin. Better algorithm is welcomed.
 */
1850
int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1851 1852 1853
{
	int node;

1854 1855
	mem_cgroup_may_update_nodemask(memcg);
	node = memcg->last_scanned_node;
1856

1857
	node = next_node(node, memcg->scan_nodes);
1858
	if (node == MAX_NUMNODES)
1859
		node = first_node(memcg->scan_nodes);
1860 1861 1862 1863 1864 1865 1866 1867 1868
	/*
	 * We call this when we hit limit, not when pages are added to LRU.
	 * No LRU may hold pages because all pages are UNEVICTABLE or
	 * memcg is too small and all pages are not on LRU. In that case,
	 * we use curret node.
	 */
	if (unlikely(node == MAX_NUMNODES))
		node = numa_node_id();

1869
	memcg->last_scanned_node = node;
1870 1871 1872 1873
	return node;
}

#else
1874
int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1875 1876 1877
{
	return 0;
}
1878

1879 1880
#endif

1881
/*
1882 1883 1884
 * A group is eligible for the soft limit reclaim under the given root
 * hierarchy if
 * 	a) it is over its soft limit
1885
 * 	b) any parent up the hierarchy is over its soft limit
1886 1887 1888
 *
 * If the given group doesn't have any children over the limit then it
 * doesn't make any sense to iterate its subtree.
1889
 */
1890 1891
enum mem_cgroup_filter_t
mem_cgroup_soft_reclaim_eligible(struct mem_cgroup *memcg,
1892
		struct mem_cgroup *root)
1893
{
1894 1895 1896 1897 1898
	struct mem_cgroup *parent;

	if (!memcg)
		memcg = root_mem_cgroup;
	parent = memcg;
1899 1900

	if (res_counter_soft_limit_excess(&memcg->res))
1901
		return VISIT;
1902 1903

	/*
1904 1905
	 * If any parent up to the root in the hierarchy is over its soft limit
	 * then we have to obey and reclaim from this group as well.
1906 1907 1908
	 */
	while((parent = parent_mem_cgroup(parent))) {
		if (res_counter_soft_limit_excess(&parent->res))
1909
			return VISIT;
1910 1911
		if (parent == root)
			break;
1912
	}
1913

1914 1915
	if (!atomic_read(&memcg->children_in_excess))
		return SKIP_TREE;
1916
	return SKIP;
1917 1918
}

K
KAMEZAWA Hiroyuki 已提交
1919 1920 1921
/*
 * Check OOM-Killer is already running under our hierarchy.
 * If someone is running, return false.
1922
 * Has to be called with memcg_oom_lock
K
KAMEZAWA Hiroyuki 已提交
1923
 */
1924
static bool mem_cgroup_oom_lock(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
1925
{
1926
	struct mem_cgroup *iter, *failed = NULL;
1927

1928
	for_each_mem_cgroup_tree(iter, memcg) {
1929
		if (iter->oom_lock) {
1930 1931 1932 1933 1934
			/*
			 * this subtree of our hierarchy is already locked
			 * so we cannot give a lock.
			 */
			failed = iter;
1935 1936
			mem_cgroup_iter_break(memcg, iter);
			break;
1937 1938
		} else
			iter->oom_lock = true;
K
KAMEZAWA Hiroyuki 已提交
1939
	}
K
KAMEZAWA Hiroyuki 已提交
1940

1941
	if (!failed)
1942
		return true;
1943 1944 1945 1946 1947

	/*
	 * OK, we failed to lock the whole subtree so we have to clean up
	 * what we set up to the failing subtree
	 */
1948
	for_each_mem_cgroup_tree(iter, memcg) {
1949
		if (iter == failed) {
1950 1951
			mem_cgroup_iter_break(memcg, iter);
			break;
1952 1953 1954
		}
		iter->oom_lock = false;
	}
1955
	return false;
1956
}
1957

1958
/*
1959
 * Has to be called with memcg_oom_lock
1960
 */
1961
static int mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
1962
{
K
KAMEZAWA Hiroyuki 已提交
1963 1964
	struct mem_cgroup *iter;

1965
	for_each_mem_cgroup_tree(iter, memcg)
1966 1967 1968 1969
		iter->oom_lock = false;
	return 0;
}

1970
static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
1971 1972 1973
{
	struct mem_cgroup *iter;

1974
	for_each_mem_cgroup_tree(iter, memcg)
1975 1976 1977
		atomic_inc(&iter->under_oom);
}

1978
static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
1979 1980 1981
{
	struct mem_cgroup *iter;

K
KAMEZAWA Hiroyuki 已提交
1982 1983 1984 1985 1986
	/*
	 * When a new child is created while the hierarchy is under oom,
	 * mem_cgroup_oom_lock() may not be called. We have to use
	 * atomic_add_unless() here.
	 */
1987
	for_each_mem_cgroup_tree(iter, memcg)
1988
		atomic_add_unless(&iter->under_oom, -1, 0);
1989 1990
}

1991
static DEFINE_SPINLOCK(memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
1992 1993
static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);

K
KAMEZAWA Hiroyuki 已提交
1994
struct oom_wait_info {
1995
	struct mem_cgroup *memcg;
K
KAMEZAWA Hiroyuki 已提交
1996 1997 1998 1999 2000 2001
	wait_queue_t	wait;
};

static int memcg_oom_wake_function(wait_queue_t *wait,
	unsigned mode, int sync, void *arg)
{
2002 2003
	struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
	struct mem_cgroup *oom_wait_memcg;
K
KAMEZAWA Hiroyuki 已提交
2004 2005 2006
	struct oom_wait_info *oom_wait_info;

	oom_wait_info = container_of(wait, struct oom_wait_info, wait);
2007
	oom_wait_memcg = oom_wait_info->memcg;
K
KAMEZAWA Hiroyuki 已提交
2008 2009

	/*
2010
	 * Both of oom_wait_info->memcg and wake_memcg are stable under us.
K
KAMEZAWA Hiroyuki 已提交
2011 2012
	 * Then we can use css_is_ancestor without taking care of RCU.
	 */
2013 2014
	if (!mem_cgroup_same_or_subtree(oom_wait_memcg, wake_memcg)
		&& !mem_cgroup_same_or_subtree(wake_memcg, oom_wait_memcg))
K
KAMEZAWA Hiroyuki 已提交
2015 2016 2017 2018
		return 0;
	return autoremove_wake_function(wait, mode, sync, arg);
}

2019
static void memcg_wakeup_oom(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
2020
{
2021 2022
	/* for filtering, pass "memcg" as argument. */
	__wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
K
KAMEZAWA Hiroyuki 已提交
2023 2024
}

2025
static void memcg_oom_recover(struct mem_cgroup *memcg)
2026
{
2027 2028
	if (memcg && atomic_read(&memcg->under_oom))
		memcg_wakeup_oom(memcg);
2029 2030
}

K
KAMEZAWA Hiroyuki 已提交
2031 2032 2033
/*
 * try to call OOM killer. returns false if we should exit memory-reclaim loop.
 */
2034 2035
static bool mem_cgroup_handle_oom(struct mem_cgroup *memcg, gfp_t mask,
				  int order)
2036
{
K
KAMEZAWA Hiroyuki 已提交
2037
	struct oom_wait_info owait;
2038
	bool locked, need_to_kill;
K
KAMEZAWA Hiroyuki 已提交
2039

2040
	owait.memcg = memcg;
K
KAMEZAWA Hiroyuki 已提交
2041 2042 2043 2044
	owait.wait.flags = 0;
	owait.wait.func = memcg_oom_wake_function;
	owait.wait.private = current;
	INIT_LIST_HEAD(&owait.wait.task_list);
2045
	need_to_kill = true;
2046
	mem_cgroup_mark_under_oom(memcg);
2047

2048
	/* At first, try to OOM lock hierarchy under memcg.*/
2049
	spin_lock(&memcg_oom_lock);
2050
	locked = mem_cgroup_oom_lock(memcg);
K
KAMEZAWA Hiroyuki 已提交
2051 2052 2053 2054 2055
	/*
	 * Even if signal_pending(), we can't quit charge() loop without
	 * accounting. So, UNINTERRUPTIBLE is appropriate. But SIGKILL
	 * under OOM is always welcomed, use TASK_KILLABLE here.
	 */
2056
	prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
2057
	if (!locked || memcg->oom_kill_disable)
2058 2059
		need_to_kill = false;
	if (locked)
2060
		mem_cgroup_oom_notify(memcg);
2061
	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
2062

2063 2064
	if (need_to_kill) {
		finish_wait(&memcg_oom_waitq, &owait.wait);
2065
		mem_cgroup_out_of_memory(memcg, mask, order);
2066
	} else {
K
KAMEZAWA Hiroyuki 已提交
2067
		schedule();
K
KAMEZAWA Hiroyuki 已提交
2068
		finish_wait(&memcg_oom_waitq, &owait.wait);
K
KAMEZAWA Hiroyuki 已提交
2069
	}
2070
	spin_lock(&memcg_oom_lock);
2071
	if (locked)
2072 2073
		mem_cgroup_oom_unlock(memcg);
	memcg_wakeup_oom(memcg);
2074
	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
2075

2076
	mem_cgroup_unmark_under_oom(memcg);
2077

K
KAMEZAWA Hiroyuki 已提交
2078 2079 2080
	if (test_thread_flag(TIF_MEMDIE) || fatal_signal_pending(current))
		return false;
	/* Give chance to dying process */
2081
	schedule_timeout_uninterruptible(1);
K
KAMEZAWA Hiroyuki 已提交
2082
	return true;
2083 2084
}

2085 2086 2087
/*
 * Currently used to update mapped file statistics, but the routine can be
 * generalized to update other statistics as well.
2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104
 *
 * Notes: Race condition
 *
 * We usually use page_cgroup_lock() for accessing page_cgroup member but
 * it tends to be costly. But considering some conditions, we doesn't need
 * to do so _always_.
 *
 * Considering "charge", lock_page_cgroup() is not required because all
 * file-stat operations happen after a page is attached to radix-tree. There
 * are no race with "charge".
 *
 * Considering "uncharge", we know that memcg doesn't clear pc->mem_cgroup
 * at "uncharge" intentionally. So, we always see valid pc->mem_cgroup even
 * if there are race with "uncharge". Statistics itself is properly handled
 * by flags.
 *
 * Considering "move", this is an only case we see a race. To make the race
2105 2106
 * small, we check mm->moving_account and detect there are possibility of race
 * If there is, we take a lock.
2107
 */
2108

2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121
void __mem_cgroup_begin_update_page_stat(struct page *page,
				bool *locked, unsigned long *flags)
{
	struct mem_cgroup *memcg;
	struct page_cgroup *pc;

	pc = lookup_page_cgroup(page);
again:
	memcg = pc->mem_cgroup;
	if (unlikely(!memcg || !PageCgroupUsed(pc)))
		return;
	/*
	 * If this memory cgroup is not under account moving, we don't
2122
	 * need to take move_lock_mem_cgroup(). Because we already hold
2123
	 * rcu_read_lock(), any calls to move_account will be delayed until
2124
	 * rcu_read_unlock() if mem_cgroup_stolen() == true.
2125
	 */
2126
	if (!mem_cgroup_stolen(memcg))
2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143
		return;

	move_lock_mem_cgroup(memcg, flags);
	if (memcg != pc->mem_cgroup || !PageCgroupUsed(pc)) {
		move_unlock_mem_cgroup(memcg, flags);
		goto again;
	}
	*locked = true;
}

void __mem_cgroup_end_update_page_stat(struct page *page, unsigned long *flags)
{
	struct page_cgroup *pc = lookup_page_cgroup(page);

	/*
	 * It's guaranteed that pc->mem_cgroup never changes while
	 * lock is held because a routine modifies pc->mem_cgroup
2144
	 * should take move_lock_mem_cgroup().
2145 2146 2147 2148
	 */
	move_unlock_mem_cgroup(pc->mem_cgroup, flags);
}

2149 2150
void mem_cgroup_update_page_stat(struct page *page,
				 enum mem_cgroup_page_stat_item idx, int val)
2151
{
2152
	struct mem_cgroup *memcg;
2153
	struct page_cgroup *pc = lookup_page_cgroup(page);
2154
	unsigned long uninitialized_var(flags);
2155

2156
	if (mem_cgroup_disabled())
2157
		return;
2158

2159 2160
	memcg = pc->mem_cgroup;
	if (unlikely(!memcg || !PageCgroupUsed(pc)))
2161
		return;
2162 2163

	switch (idx) {
2164 2165
	case MEMCG_NR_FILE_MAPPED:
		idx = MEM_CGROUP_STAT_FILE_MAPPED;
2166 2167 2168
		break;
	default:
		BUG();
2169
	}
2170

2171
	this_cpu_add(memcg->stat->count[idx], val);
2172
}
2173

2174 2175 2176 2177
/*
 * size of first charge trial. "32" comes from vmscan.c's magic value.
 * TODO: maybe necessary to use big numbers in big irons.
 */
2178
#define CHARGE_BATCH	32U
2179 2180
struct memcg_stock_pcp {
	struct mem_cgroup *cached; /* this never be root cgroup */
2181
	unsigned int nr_pages;
2182
	struct work_struct work;
2183
	unsigned long flags;
2184
#define FLUSHING_CACHED_CHARGE	0
2185 2186
};
static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
2187
static DEFINE_MUTEX(percpu_charge_mutex);
2188

2189 2190 2191 2192 2193 2194 2195 2196 2197 2198
/**
 * consume_stock: Try to consume stocked charge on this cpu.
 * @memcg: memcg to consume from.
 * @nr_pages: how many pages to charge.
 *
 * The charges will only happen if @memcg matches the current cpu's memcg
 * stock, and at least @nr_pages are available in that stock.  Failure to
 * service an allocation will refill the stock.
 *
 * returns true if successful, false otherwise.
2199
 */
2200
static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2201 2202 2203 2204
{
	struct memcg_stock_pcp *stock;
	bool ret = true;

2205 2206 2207
	if (nr_pages > CHARGE_BATCH)
		return false;

2208
	stock = &get_cpu_var(memcg_stock);
2209 2210
	if (memcg == stock->cached && stock->nr_pages >= nr_pages)
		stock->nr_pages -= nr_pages;
2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223
	else /* need to call res_counter_charge */
		ret = false;
	put_cpu_var(memcg_stock);
	return ret;
}

/*
 * Returns stocks cached in percpu to res_counter and reset cached information.
 */
static void drain_stock(struct memcg_stock_pcp *stock)
{
	struct mem_cgroup *old = stock->cached;

2224 2225 2226 2227
	if (stock->nr_pages) {
		unsigned long bytes = stock->nr_pages * PAGE_SIZE;

		res_counter_uncharge(&old->res, bytes);
2228
		if (do_swap_account)
2229 2230
			res_counter_uncharge(&old->memsw, bytes);
		stock->nr_pages = 0;
2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242
	}
	stock->cached = NULL;
}

/*
 * This must be called under preempt disabled or must be called by
 * a thread which is pinned to local cpu.
 */
static void drain_local_stock(struct work_struct *dummy)
{
	struct memcg_stock_pcp *stock = &__get_cpu_var(memcg_stock);
	drain_stock(stock);
2243
	clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
2244 2245
}

2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256
static void __init memcg_stock_init(void)
{
	int cpu;

	for_each_possible_cpu(cpu) {
		struct memcg_stock_pcp *stock =
					&per_cpu(memcg_stock, cpu);
		INIT_WORK(&stock->work, drain_local_stock);
	}
}

2257 2258
/*
 * Cache charges(val) which is from res_counter, to local per_cpu area.
2259
 * This will be consumed by consume_stock() function, later.
2260
 */
2261
static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2262 2263 2264
{
	struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);

2265
	if (stock->cached != memcg) { /* reset if necessary */
2266
		drain_stock(stock);
2267
		stock->cached = memcg;
2268
	}
2269
	stock->nr_pages += nr_pages;
2270 2271 2272 2273
	put_cpu_var(memcg_stock);
}

/*
2274
 * Drains all per-CPU charge caches for given root_memcg resp. subtree
2275 2276
 * of the hierarchy under it. sync flag says whether we should block
 * until the work is done.
2277
 */
2278
static void drain_all_stock(struct mem_cgroup *root_memcg, bool sync)
2279
{
2280
	int cpu, curcpu;
2281

2282 2283
	/* Notify other cpus that system-wide "drain" is running */
	get_online_cpus();
2284
	curcpu = get_cpu();
2285 2286
	for_each_online_cpu(cpu) {
		struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2287
		struct mem_cgroup *memcg;
2288

2289 2290
		memcg = stock->cached;
		if (!memcg || !stock->nr_pages)
2291
			continue;
2292
		if (!mem_cgroup_same_or_subtree(root_memcg, memcg))
2293
			continue;
2294 2295 2296 2297 2298 2299
		if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
			if (cpu == curcpu)
				drain_local_stock(&stock->work);
			else
				schedule_work_on(cpu, &stock->work);
		}
2300
	}
2301
	put_cpu();
2302 2303 2304 2305 2306 2307

	if (!sync)
		goto out;

	for_each_online_cpu(cpu) {
		struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2308
		if (test_bit(FLUSHING_CACHED_CHARGE, &stock->flags))
2309 2310 2311
			flush_work(&stock->work);
	}
out:
2312
 	put_online_cpus();
2313 2314 2315 2316 2317 2318 2319 2320
}

/*
 * Tries to drain stocked charges in other cpus. This function is asynchronous
 * and just put a work per cpu for draining localy on each cpu. Caller can
 * expects some charges will be back to res_counter later but cannot wait for
 * it.
 */
2321
static void drain_all_stock_async(struct mem_cgroup *root_memcg)
2322
{
2323 2324 2325 2326 2327
	/*
	 * If someone calls draining, avoid adding more kworker runs.
	 */
	if (!mutex_trylock(&percpu_charge_mutex))
		return;
2328
	drain_all_stock(root_memcg, false);
2329
	mutex_unlock(&percpu_charge_mutex);
2330 2331 2332
}

/* This is a synchronous drain interface. */
2333
static void drain_all_stock_sync(struct mem_cgroup *root_memcg)
2334 2335
{
	/* called when force_empty is called */
2336
	mutex_lock(&percpu_charge_mutex);
2337
	drain_all_stock(root_memcg, true);
2338
	mutex_unlock(&percpu_charge_mutex);
2339 2340
}

2341 2342 2343 2344
/*
 * This function drains percpu counter value from DEAD cpu and
 * move it to local cpu. Note that this function can be preempted.
 */
2345
static void mem_cgroup_drain_pcp_counter(struct mem_cgroup *memcg, int cpu)
2346 2347 2348
{
	int i;

2349
	spin_lock(&memcg->pcp_counter_lock);
2350
	for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
2351
		long x = per_cpu(memcg->stat->count[i], cpu);
2352

2353 2354
		per_cpu(memcg->stat->count[i], cpu) = 0;
		memcg->nocpu_base.count[i] += x;
2355
	}
2356
	for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
2357
		unsigned long x = per_cpu(memcg->stat->events[i], cpu);
2358

2359 2360
		per_cpu(memcg->stat->events[i], cpu) = 0;
		memcg->nocpu_base.events[i] += x;
2361
	}
2362
	spin_unlock(&memcg->pcp_counter_lock);
2363 2364
}

2365
static int memcg_cpu_hotplug_callback(struct notifier_block *nb,
2366 2367 2368 2369 2370
					unsigned long action,
					void *hcpu)
{
	int cpu = (unsigned long)hcpu;
	struct memcg_stock_pcp *stock;
2371
	struct mem_cgroup *iter;
2372

2373
	if (action == CPU_ONLINE)
2374 2375
		return NOTIFY_OK;

2376
	if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
2377
		return NOTIFY_OK;
2378

2379
	for_each_mem_cgroup(iter)
2380 2381
		mem_cgroup_drain_pcp_counter(iter, cpu);

2382 2383 2384 2385 2386
	stock = &per_cpu(memcg_stock, cpu);
	drain_stock(stock);
	return NOTIFY_OK;
}

2387 2388 2389 2390 2391 2392 2393 2394 2395 2396

/* See __mem_cgroup_try_charge() for details */
enum {
	CHARGE_OK,		/* success */
	CHARGE_RETRY,		/* need to retry but retry is not bad */
	CHARGE_NOMEM,		/* we can't do more. return -ENOMEM */
	CHARGE_WOULDBLOCK,	/* GFP_WAIT wasn't set and no enough res. */
	CHARGE_OOM_DIE,		/* the current is killed because of OOM */
};

2397
static int mem_cgroup_do_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
2398 2399
				unsigned int nr_pages, unsigned int min_pages,
				bool oom_check)
2400
{
2401
	unsigned long csize = nr_pages * PAGE_SIZE;
2402 2403 2404 2405 2406
	struct mem_cgroup *mem_over_limit;
	struct res_counter *fail_res;
	unsigned long flags = 0;
	int ret;

2407
	ret = res_counter_charge(&memcg->res, csize, &fail_res);
2408 2409 2410 2411

	if (likely(!ret)) {
		if (!do_swap_account)
			return CHARGE_OK;
2412
		ret = res_counter_charge(&memcg->memsw, csize, &fail_res);
2413 2414 2415
		if (likely(!ret))
			return CHARGE_OK;

2416
		res_counter_uncharge(&memcg->res, csize);
2417 2418 2419 2420
		mem_over_limit = mem_cgroup_from_res_counter(fail_res, memsw);
		flags |= MEM_CGROUP_RECLAIM_NOSWAP;
	} else
		mem_over_limit = mem_cgroup_from_res_counter(fail_res, res);
2421 2422 2423 2424
	/*
	 * Never reclaim on behalf of optional batching, retry with a
	 * single page instead.
	 */
2425
	if (nr_pages > min_pages)
2426 2427 2428 2429 2430
		return CHARGE_RETRY;

	if (!(gfp_mask & __GFP_WAIT))
		return CHARGE_WOULDBLOCK;

2431 2432 2433
	if (gfp_mask & __GFP_NORETRY)
		return CHARGE_NOMEM;

2434
	ret = mem_cgroup_reclaim(mem_over_limit, gfp_mask, flags);
2435
	if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
2436
		return CHARGE_RETRY;
2437
	/*
2438 2439 2440 2441 2442 2443 2444
	 * Even though the limit is exceeded at this point, reclaim
	 * may have been able to free some pages.  Retry the charge
	 * before killing the task.
	 *
	 * Only for regular pages, though: huge pages are rather
	 * unlikely to succeed so close to the limit, and we fall back
	 * to regular pages anyway in case of failure.
2445
	 */
2446
	if (nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER) && ret)
2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459
		return CHARGE_RETRY;

	/*
	 * At task move, charge accounts can be doubly counted. So, it's
	 * better to wait until the end of task_move if something is going on.
	 */
	if (mem_cgroup_wait_acct_move(mem_over_limit))
		return CHARGE_RETRY;

	/* If we don't need to call oom-killer at el, return immediately */
	if (!oom_check)
		return CHARGE_NOMEM;
	/* check OOM */
2460
	if (!mem_cgroup_handle_oom(mem_over_limit, gfp_mask, get_order(csize)))
2461 2462 2463 2464 2465
		return CHARGE_OOM_DIE;

	return CHARGE_RETRY;
}

2466
/*
2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485
 * __mem_cgroup_try_charge() does
 * 1. detect memcg to be charged against from passed *mm and *ptr,
 * 2. update res_counter
 * 3. call memory reclaim if necessary.
 *
 * In some special case, if the task is fatal, fatal_signal_pending() or
 * has TIF_MEMDIE, this function returns -EINTR while writing root_mem_cgroup
 * to *ptr. There are two reasons for this. 1: fatal threads should quit as soon
 * as possible without any hazards. 2: all pages should have a valid
 * pc->mem_cgroup. If mm is NULL and the caller doesn't pass a valid memcg
 * pointer, that is treated as a charge to root_mem_cgroup.
 *
 * So __mem_cgroup_try_charge() will return
 *  0       ...  on success, filling *ptr with a valid memcg pointer.
 *  -ENOMEM ...  charge failure because of resource limits.
 *  -EINTR  ...  if thread is fatal. *ptr is filled with root_mem_cgroup.
 *
 * Unlike the exported interface, an "oom" parameter is added. if oom==true,
 * the oom-killer can be invoked.
2486
 */
2487
static int __mem_cgroup_try_charge(struct mm_struct *mm,
A
Andrea Arcangeli 已提交
2488
				   gfp_t gfp_mask,
2489
				   unsigned int nr_pages,
2490
				   struct mem_cgroup **ptr,
2491
				   bool oom)
2492
{
2493
	unsigned int batch = max(CHARGE_BATCH, nr_pages);
2494
	int nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
2495
	struct mem_cgroup *memcg = NULL;
2496
	int ret;
2497

K
KAMEZAWA Hiroyuki 已提交
2498 2499 2500 2501 2502 2503 2504 2505
	/*
	 * Unlike gloval-vm's OOM-kill, we're not in memory shortage
	 * in system level. So, allow to go ahead dying process in addition to
	 * MEMDIE process.
	 */
	if (unlikely(test_thread_flag(TIF_MEMDIE)
		     || fatal_signal_pending(current)))
		goto bypass;
2506

2507
	/*
2508 2509
	 * We always charge the cgroup the mm_struct belongs to.
	 * The mm_struct's mem_cgroup changes on task migration if the
2510
	 * thread group leader migrates. It's possible that mm is not
2511
	 * set, if so charge the root memcg (happens for pagecache usage).
2512
	 */
2513
	if (!*ptr && !mm)
2514
		*ptr = root_mem_cgroup;
K
KAMEZAWA Hiroyuki 已提交
2515
again:
2516 2517 2518
	if (*ptr) { /* css should be a valid one */
		memcg = *ptr;
		if (mem_cgroup_is_root(memcg))
K
KAMEZAWA Hiroyuki 已提交
2519
			goto done;
2520
		if (consume_stock(memcg, nr_pages))
K
KAMEZAWA Hiroyuki 已提交
2521
			goto done;
2522
		css_get(&memcg->css);
2523
	} else {
K
KAMEZAWA Hiroyuki 已提交
2524
		struct task_struct *p;
2525

K
KAMEZAWA Hiroyuki 已提交
2526 2527 2528
		rcu_read_lock();
		p = rcu_dereference(mm->owner);
		/*
2529
		 * Because we don't have task_lock(), "p" can exit.
2530
		 * In that case, "memcg" can point to root or p can be NULL with
2531 2532 2533 2534 2535 2536
		 * race with swapoff. Then, we have small risk of mis-accouning.
		 * But such kind of mis-account by race always happens because
		 * we don't have cgroup_mutex(). It's overkill and we allo that
		 * small race, here.
		 * (*) swapoff at el will charge against mm-struct not against
		 * task-struct. So, mm->owner can be NULL.
K
KAMEZAWA Hiroyuki 已提交
2537
		 */
2538
		memcg = mem_cgroup_from_task(p);
2539 2540 2541
		if (!memcg)
			memcg = root_mem_cgroup;
		if (mem_cgroup_is_root(memcg)) {
K
KAMEZAWA Hiroyuki 已提交
2542 2543 2544
			rcu_read_unlock();
			goto done;
		}
2545
		if (consume_stock(memcg, nr_pages)) {
K
KAMEZAWA Hiroyuki 已提交
2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557
			/*
			 * It seems dagerous to access memcg without css_get().
			 * But considering how consume_stok works, it's not
			 * necessary. If consume_stock success, some charges
			 * from this memcg are cached on this cpu. So, we
			 * don't need to call css_get()/css_tryget() before
			 * calling consume_stock().
			 */
			rcu_read_unlock();
			goto done;
		}
		/* after here, we may be blocked. we need to get refcnt */
2558
		if (!css_tryget(&memcg->css)) {
K
KAMEZAWA Hiroyuki 已提交
2559 2560 2561 2562 2563
			rcu_read_unlock();
			goto again;
		}
		rcu_read_unlock();
	}
2564

2565 2566
	do {
		bool oom_check;
2567

2568
		/* If killed, bypass charge */
K
KAMEZAWA Hiroyuki 已提交
2569
		if (fatal_signal_pending(current)) {
2570
			css_put(&memcg->css);
2571
			goto bypass;
K
KAMEZAWA Hiroyuki 已提交
2572
		}
2573

2574 2575 2576 2577
		oom_check = false;
		if (oom && !nr_oom_retries) {
			oom_check = true;
			nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
2578
		}
2579

2580 2581
		ret = mem_cgroup_do_charge(memcg, gfp_mask, batch, nr_pages,
		    oom_check);
2582 2583 2584 2585
		switch (ret) {
		case CHARGE_OK:
			break;
		case CHARGE_RETRY: /* not in OOM situation but retry */
2586
			batch = nr_pages;
2587 2588
			css_put(&memcg->css);
			memcg = NULL;
K
KAMEZAWA Hiroyuki 已提交
2589
			goto again;
2590
		case CHARGE_WOULDBLOCK: /* !__GFP_WAIT */
2591
			css_put(&memcg->css);
2592 2593
			goto nomem;
		case CHARGE_NOMEM: /* OOM routine works */
K
KAMEZAWA Hiroyuki 已提交
2594
			if (!oom) {
2595
				css_put(&memcg->css);
K
KAMEZAWA Hiroyuki 已提交
2596
				goto nomem;
K
KAMEZAWA Hiroyuki 已提交
2597
			}
2598 2599 2600 2601
			/* If oom, we never return -ENOMEM */
			nr_oom_retries--;
			break;
		case CHARGE_OOM_DIE: /* Killed by OOM Killer */
2602
			css_put(&memcg->css);
K
KAMEZAWA Hiroyuki 已提交
2603
			goto bypass;
2604
		}
2605 2606
	} while (ret != CHARGE_OK);

2607
	if (batch > nr_pages)
2608 2609
		refill_stock(memcg, batch - nr_pages);
	css_put(&memcg->css);
2610
done:
2611
	*ptr = memcg;
2612 2613
	return 0;
nomem:
2614
	*ptr = NULL;
2615
	return -ENOMEM;
K
KAMEZAWA Hiroyuki 已提交
2616
bypass:
2617 2618
	*ptr = root_mem_cgroup;
	return -EINTR;
2619
}
2620

2621 2622 2623 2624 2625
/*
 * Somemtimes we have to undo a charge we got by try_charge().
 * This function is for that and do uncharge, put css's refcnt.
 * gotten by try_charge().
 */
2626
static void __mem_cgroup_cancel_charge(struct mem_cgroup *memcg,
2627
				       unsigned int nr_pages)
2628
{
2629
	if (!mem_cgroup_is_root(memcg)) {
2630 2631
		unsigned long bytes = nr_pages * PAGE_SIZE;

2632
		res_counter_uncharge(&memcg->res, bytes);
2633
		if (do_swap_account)
2634
			res_counter_uncharge(&memcg->memsw, bytes);
2635
	}
2636 2637
}

2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655
/*
 * Cancel chrages in this cgroup....doesn't propagate to parent cgroup.
 * This is useful when moving usage to parent cgroup.
 */
static void __mem_cgroup_cancel_local_charge(struct mem_cgroup *memcg,
					unsigned int nr_pages)
{
	unsigned long bytes = nr_pages * PAGE_SIZE;

	if (mem_cgroup_is_root(memcg))
		return;

	res_counter_uncharge_until(&memcg->res, memcg->res.parent, bytes);
	if (do_swap_account)
		res_counter_uncharge_until(&memcg->memsw,
						memcg->memsw.parent, bytes);
}

2656 2657
/*
 * A helper function to get mem_cgroup from ID. must be called under
T
Tejun Heo 已提交
2658 2659 2660
 * rcu_read_lock().  The caller is responsible for calling css_tryget if
 * the mem_cgroup is used for charging. (dropping refcnt from swap can be
 * called against removed memcg.)
2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671
 */
static struct mem_cgroup *mem_cgroup_lookup(unsigned short id)
{
	struct cgroup_subsys_state *css;

	/* ID 0 is unused ID */
	if (!id)
		return NULL;
	css = css_lookup(&mem_cgroup_subsys, id);
	if (!css)
		return NULL;
2672
	return mem_cgroup_from_css(css);
2673 2674
}

2675
struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page)
2676
{
2677
	struct mem_cgroup *memcg = NULL;
2678
	struct page_cgroup *pc;
2679
	unsigned short id;
2680 2681
	swp_entry_t ent;

2682 2683 2684
	VM_BUG_ON(!PageLocked(page));

	pc = lookup_page_cgroup(page);
2685
	lock_page_cgroup(pc);
2686
	if (PageCgroupUsed(pc)) {
2687 2688 2689
		memcg = pc->mem_cgroup;
		if (memcg && !css_tryget(&memcg->css))
			memcg = NULL;
2690
	} else if (PageSwapCache(page)) {
2691
		ent.val = page_private(page);
2692
		id = lookup_swap_cgroup_id(ent);
2693
		rcu_read_lock();
2694 2695 2696
		memcg = mem_cgroup_lookup(id);
		if (memcg && !css_tryget(&memcg->css))
			memcg = NULL;
2697
		rcu_read_unlock();
2698
	}
2699
	unlock_page_cgroup(pc);
2700
	return memcg;
2701 2702
}

2703
static void __mem_cgroup_commit_charge(struct mem_cgroup *memcg,
2704
				       struct page *page,
2705
				       unsigned int nr_pages,
2706 2707
				       enum charge_type ctype,
				       bool lrucare)
2708
{
2709
	struct page_cgroup *pc = lookup_page_cgroup(page);
2710
	struct zone *uninitialized_var(zone);
2711
	struct lruvec *lruvec;
2712
	bool was_on_lru = false;
2713
	bool anon;
2714

2715
	lock_page_cgroup(pc);
2716
	VM_BUG_ON(PageCgroupUsed(pc));
2717 2718 2719 2720
	/*
	 * we don't need page_cgroup_lock about tail pages, becase they are not
	 * accessed by any other context at this point.
	 */
2721 2722 2723 2724 2725 2726 2727 2728 2729

	/*
	 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
	 * may already be on some other mem_cgroup's LRU.  Take care of it.
	 */
	if (lrucare) {
		zone = page_zone(page);
		spin_lock_irq(&zone->lru_lock);
		if (PageLRU(page)) {
2730
			lruvec = mem_cgroup_zone_lruvec(zone, pc->mem_cgroup);
2731
			ClearPageLRU(page);
2732
			del_page_from_lru_list(page, lruvec, page_lru(page));
2733 2734 2735 2736
			was_on_lru = true;
		}
	}

2737
	pc->mem_cgroup = memcg;
2738 2739 2740 2741 2742 2743 2744
	/*
	 * We access a page_cgroup asynchronously without lock_page_cgroup().
	 * Especially when a page_cgroup is taken from a page, pc->mem_cgroup
	 * is accessed after testing USED bit. To make pc->mem_cgroup visible
	 * before USED bit, we need memory barrier here.
	 * See mem_cgroup_add_lru_list(), etc.
 	 */
K
KAMEZAWA Hiroyuki 已提交
2745
	smp_wmb();
2746
	SetPageCgroupUsed(pc);
2747

2748 2749
	if (lrucare) {
		if (was_on_lru) {
2750
			lruvec = mem_cgroup_zone_lruvec(zone, pc->mem_cgroup);
2751 2752
			VM_BUG_ON(PageLRU(page));
			SetPageLRU(page);
2753
			add_page_to_lru_list(page, lruvec, page_lru(page));
2754 2755 2756 2757
		}
		spin_unlock_irq(&zone->lru_lock);
	}

2758
	if (ctype == MEM_CGROUP_CHARGE_TYPE_ANON)
2759 2760 2761 2762
		anon = true;
	else
		anon = false;

2763
	mem_cgroup_charge_statistics(memcg, page, anon, nr_pages);
2764
	unlock_page_cgroup(pc);
2765

2766
	/*
2767
	 * "charge_statistics" updated event counter.
2768
	 */
2769
	memcg_check_events(memcg, page);
2770
}
2771

2772 2773
static DEFINE_MUTEX(set_limit_mutex);

2774 2775 2776 2777 2778 2779 2780
#ifdef CONFIG_MEMCG_KMEM
static inline bool memcg_can_account_kmem(struct mem_cgroup *memcg)
{
	return !mem_cgroup_disabled() && !mem_cgroup_is_root(memcg) &&
		(memcg->kmem_account_flags & KMEM_ACCOUNTED_MASK);
}

G
Glauber Costa 已提交
2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793
/*
 * This is a bit cumbersome, but it is rarely used and avoids a backpointer
 * in the memcg_cache_params struct.
 */
static struct kmem_cache *memcg_params_to_cache(struct memcg_cache_params *p)
{
	struct kmem_cache *cachep;

	VM_BUG_ON(p->is_root_cache);
	cachep = p->root_cache;
	return cachep->memcg_params->memcg_caches[memcg_cache_id(p->memcg)];
}

2794
#ifdef CONFIG_SLABINFO
2795 2796
static int mem_cgroup_slabinfo_read(struct cgroup_subsys_state *css,
				    struct cftype *cft, struct seq_file *m)
2797
{
2798
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814
	struct memcg_cache_params *params;

	if (!memcg_can_account_kmem(memcg))
		return -EIO;

	print_slabinfo_header(m);

	mutex_lock(&memcg->slab_caches_mutex);
	list_for_each_entry(params, &memcg->memcg_slab_caches, list)
		cache_show(memcg_params_to_cache(params), m);
	mutex_unlock(&memcg->slab_caches_mutex);

	return 0;
}
#endif

2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867
static int memcg_charge_kmem(struct mem_cgroup *memcg, gfp_t gfp, u64 size)
{
	struct res_counter *fail_res;
	struct mem_cgroup *_memcg;
	int ret = 0;
	bool may_oom;

	ret = res_counter_charge(&memcg->kmem, size, &fail_res);
	if (ret)
		return ret;

	/*
	 * Conditions under which we can wait for the oom_killer. Those are
	 * the same conditions tested by the core page allocator
	 */
	may_oom = (gfp & __GFP_FS) && !(gfp & __GFP_NORETRY);

	_memcg = memcg;
	ret = __mem_cgroup_try_charge(NULL, gfp, size >> PAGE_SHIFT,
				      &_memcg, may_oom);

	if (ret == -EINTR)  {
		/*
		 * __mem_cgroup_try_charge() chosed to bypass to root due to
		 * OOM kill or fatal signal.  Since our only options are to
		 * either fail the allocation or charge it to this cgroup, do
		 * it as a temporary condition. But we can't fail. From a
		 * kmem/slab perspective, the cache has already been selected,
		 * by mem_cgroup_kmem_get_cache(), so it is too late to change
		 * our minds.
		 *
		 * This condition will only trigger if the task entered
		 * memcg_charge_kmem in a sane state, but was OOM-killed during
		 * __mem_cgroup_try_charge() above. Tasks that were already
		 * dying when the allocation triggers should have been already
		 * directed to the root cgroup in memcontrol.h
		 */
		res_counter_charge_nofail(&memcg->res, size, &fail_res);
		if (do_swap_account)
			res_counter_charge_nofail(&memcg->memsw, size,
						  &fail_res);
		ret = 0;
	} else if (ret)
		res_counter_uncharge(&memcg->kmem, size);

	return ret;
}

static void memcg_uncharge_kmem(struct mem_cgroup *memcg, u64 size)
{
	res_counter_uncharge(&memcg->res, size);
	if (do_swap_account)
		res_counter_uncharge(&memcg->memsw, size);
2868 2869 2870 2871 2872

	/* Not down to 0 */
	if (res_counter_uncharge(&memcg->kmem, size))
		return;

2873 2874 2875 2876 2877 2878 2879 2880
	/*
	 * Releases a reference taken in kmem_cgroup_css_offline in case
	 * this last uncharge is racing with the offlining code or it is
	 * outliving the memcg existence.
	 *
	 * The memory barrier imposed by test&clear is paired with the
	 * explicit one in memcg_kmem_mark_dead().
	 */
2881
	if (memcg_kmem_test_and_clear_dead(memcg))
2882
		css_put(&memcg->css);
2883 2884
}

2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904
void memcg_cache_list_add(struct mem_cgroup *memcg, struct kmem_cache *cachep)
{
	if (!memcg)
		return;

	mutex_lock(&memcg->slab_caches_mutex);
	list_add(&cachep->memcg_params->list, &memcg->memcg_slab_caches);
	mutex_unlock(&memcg->slab_caches_mutex);
}

/*
 * helper for acessing a memcg's index. It will be used as an index in the
 * child cache array in kmem_cache, and also to derive its name. This function
 * will return -1 when this is not a kmem-limited memcg.
 */
int memcg_cache_id(struct mem_cgroup *memcg)
{
	return memcg ? memcg->kmemcg_id : -1;
}

2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967
/*
 * This ends up being protected by the set_limit mutex, during normal
 * operation, because that is its main call site.
 *
 * But when we create a new cache, we can call this as well if its parent
 * is kmem-limited. That will have to hold set_limit_mutex as well.
 */
int memcg_update_cache_sizes(struct mem_cgroup *memcg)
{
	int num, ret;

	num = ida_simple_get(&kmem_limited_groups,
				0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
	if (num < 0)
		return num;
	/*
	 * After this point, kmem_accounted (that we test atomically in
	 * the beginning of this conditional), is no longer 0. This
	 * guarantees only one process will set the following boolean
	 * to true. We don't need test_and_set because we're protected
	 * by the set_limit_mutex anyway.
	 */
	memcg_kmem_set_activated(memcg);

	ret = memcg_update_all_caches(num+1);
	if (ret) {
		ida_simple_remove(&kmem_limited_groups, num);
		memcg_kmem_clear_activated(memcg);
		return ret;
	}

	memcg->kmemcg_id = num;
	INIT_LIST_HEAD(&memcg->memcg_slab_caches);
	mutex_init(&memcg->slab_caches_mutex);
	return 0;
}

static size_t memcg_caches_array_size(int num_groups)
{
	ssize_t size;
	if (num_groups <= 0)
		return 0;

	size = 2 * num_groups;
	if (size < MEMCG_CACHES_MIN_SIZE)
		size = MEMCG_CACHES_MIN_SIZE;
	else if (size > MEMCG_CACHES_MAX_SIZE)
		size = MEMCG_CACHES_MAX_SIZE;

	return size;
}

/*
 * We should update the current array size iff all caches updates succeed. This
 * can only be done from the slab side. The slab mutex needs to be held when
 * calling this.
 */
void memcg_update_array_size(int num)
{
	if (num > memcg_limited_groups_array_size)
		memcg_limited_groups_array_size = memcg_caches_array_size(num);
}

2968 2969
static void kmem_cache_destroy_work_func(struct work_struct *w);

2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980
int memcg_update_cache_size(struct kmem_cache *s, int num_groups)
{
	struct memcg_cache_params *cur_params = s->memcg_params;

	VM_BUG_ON(s->memcg_params && !s->memcg_params->is_root_cache);

	if (num_groups > memcg_limited_groups_array_size) {
		int i;
		ssize_t size = memcg_caches_array_size(num_groups);

		size *= sizeof(void *);
2981
		size += offsetof(struct memcg_cache_params, memcg_caches);
2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020

		s->memcg_params = kzalloc(size, GFP_KERNEL);
		if (!s->memcg_params) {
			s->memcg_params = cur_params;
			return -ENOMEM;
		}

		s->memcg_params->is_root_cache = true;

		/*
		 * There is the chance it will be bigger than
		 * memcg_limited_groups_array_size, if we failed an allocation
		 * in a cache, in which case all caches updated before it, will
		 * have a bigger array.
		 *
		 * But if that is the case, the data after
		 * memcg_limited_groups_array_size is certainly unused
		 */
		for (i = 0; i < memcg_limited_groups_array_size; i++) {
			if (!cur_params->memcg_caches[i])
				continue;
			s->memcg_params->memcg_caches[i] =
						cur_params->memcg_caches[i];
		}

		/*
		 * Ideally, we would wait until all caches succeed, and only
		 * then free the old one. But this is not worth the extra
		 * pointer per-cache we'd have to have for this.
		 *
		 * It is not a big deal if some caches are left with a size
		 * bigger than the others. And all updates will reset this
		 * anyway.
		 */
		kfree(cur_params);
	}
	return 0;
}

G
Glauber Costa 已提交
3021 3022
int memcg_register_cache(struct mem_cgroup *memcg, struct kmem_cache *s,
			 struct kmem_cache *root_cache)
3023
{
3024
	size_t size;
3025 3026 3027 3028

	if (!memcg_kmem_enabled())
		return 0;

3029 3030
	if (!memcg) {
		size = offsetof(struct memcg_cache_params, memcg_caches);
3031
		size += memcg_limited_groups_array_size * sizeof(void *);
3032 3033
	} else
		size = sizeof(struct memcg_cache_params);
3034

3035 3036 3037 3038
	s->memcg_params = kzalloc(size, GFP_KERNEL);
	if (!s->memcg_params)
		return -ENOMEM;

G
Glauber Costa 已提交
3039
	if (memcg) {
3040
		s->memcg_params->memcg = memcg;
G
Glauber Costa 已提交
3041
		s->memcg_params->root_cache = root_cache;
3042 3043
		INIT_WORK(&s->memcg_params->destroy,
				kmem_cache_destroy_work_func);
3044 3045 3046
	} else
		s->memcg_params->is_root_cache = true;

3047 3048 3049 3050 3051
	return 0;
}

void memcg_release_cache(struct kmem_cache *s)
{
3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075
	struct kmem_cache *root;
	struct mem_cgroup *memcg;
	int id;

	/*
	 * This happens, for instance, when a root cache goes away before we
	 * add any memcg.
	 */
	if (!s->memcg_params)
		return;

	if (s->memcg_params->is_root_cache)
		goto out;

	memcg = s->memcg_params->memcg;
	id  = memcg_cache_id(memcg);

	root = s->memcg_params->root_cache;
	root->memcg_params->memcg_caches[id] = NULL;

	mutex_lock(&memcg->slab_caches_mutex);
	list_del(&s->memcg_params->list);
	mutex_unlock(&memcg->slab_caches_mutex);

3076
	css_put(&memcg->css);
3077
out:
3078 3079 3080
	kfree(s->memcg_params);
}

3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111
/*
 * During the creation a new cache, we need to disable our accounting mechanism
 * altogether. This is true even if we are not creating, but rather just
 * enqueing new caches to be created.
 *
 * This is because that process will trigger allocations; some visible, like
 * explicit kmallocs to auxiliary data structures, name strings and internal
 * cache structures; some well concealed, like INIT_WORK() that can allocate
 * objects during debug.
 *
 * If any allocation happens during memcg_kmem_get_cache, we will recurse back
 * to it. This may not be a bounded recursion: since the first cache creation
 * failed to complete (waiting on the allocation), we'll just try to create the
 * cache again, failing at the same point.
 *
 * memcg_kmem_get_cache is prepared to abort after seeing a positive count of
 * memcg_kmem_skip_account. So we enclose anything that might allocate memory
 * inside the following two functions.
 */
static inline void memcg_stop_kmem_account(void)
{
	VM_BUG_ON(!current->mm);
	current->memcg_kmem_skip_account++;
}

static inline void memcg_resume_kmem_account(void)
{
	VM_BUG_ON(!current->mm);
	current->memcg_kmem_skip_account--;
}

G
Glauber Costa 已提交
3112 3113 3114 3115 3116 3117 3118 3119 3120
static void kmem_cache_destroy_work_func(struct work_struct *w)
{
	struct kmem_cache *cachep;
	struct memcg_cache_params *p;

	p = container_of(w, struct memcg_cache_params, destroy);

	cachep = memcg_params_to_cache(p);

G
Glauber Costa 已提交
3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141
	/*
	 * If we get down to 0 after shrink, we could delete right away.
	 * However, memcg_release_pages() already puts us back in the workqueue
	 * in that case. If we proceed deleting, we'll get a dangling
	 * reference, and removing the object from the workqueue in that case
	 * is unnecessary complication. We are not a fast path.
	 *
	 * Note that this case is fundamentally different from racing with
	 * shrink_slab(): if memcg_cgroup_destroy_cache() is called in
	 * kmem_cache_shrink, not only we would be reinserting a dead cache
	 * into the queue, but doing so from inside the worker racing to
	 * destroy it.
	 *
	 * So if we aren't down to zero, we'll just schedule a worker and try
	 * again
	 */
	if (atomic_read(&cachep->memcg_params->nr_pages) != 0) {
		kmem_cache_shrink(cachep);
		if (atomic_read(&cachep->memcg_params->nr_pages) == 0)
			return;
	} else
G
Glauber Costa 已提交
3142 3143 3144 3145 3146 3147 3148 3149
		kmem_cache_destroy(cachep);
}

void mem_cgroup_destroy_cache(struct kmem_cache *cachep)
{
	if (!cachep->memcg_params->dead)
		return;

G
Glauber Costa 已提交
3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169
	/*
	 * There are many ways in which we can get here.
	 *
	 * We can get to a memory-pressure situation while the delayed work is
	 * still pending to run. The vmscan shrinkers can then release all
	 * cache memory and get us to destruction. If this is the case, we'll
	 * be executed twice, which is a bug (the second time will execute over
	 * bogus data). In this case, cancelling the work should be fine.
	 *
	 * But we can also get here from the worker itself, if
	 * kmem_cache_shrink is enough to shake all the remaining objects and
	 * get the page count to 0. In this case, we'll deadlock if we try to
	 * cancel the work (the worker runs with an internal lock held, which
	 * is the same lock we would hold for cancel_work_sync().)
	 *
	 * Since we can't possibly know who got us here, just refrain from
	 * running if there is already work pending
	 */
	if (work_pending(&cachep->memcg_params->destroy))
		return;
G
Glauber Costa 已提交
3170 3171 3172 3173 3174 3175 3176
	/*
	 * We have to defer the actual destroying to a workqueue, because
	 * we might currently be in a context that cannot sleep.
	 */
	schedule_work(&cachep->memcg_params->destroy);
}

3177 3178 3179 3180 3181 3182 3183 3184 3185
/*
 * This lock protects updaters, not readers. We want readers to be as fast as
 * they can, and they will either see NULL or a valid cache value. Our model
 * allow them to see NULL, in which case the root memcg will be selected.
 *
 * We need this lock because multiple allocations to the same cache from a non
 * will span more than one worker. Only one of them can create the cache.
 */
static DEFINE_MUTEX(memcg_cache_mutex);
3186

3187 3188 3189
/*
 * Called with memcg_cache_mutex held
 */
3190 3191 3192 3193
static struct kmem_cache *kmem_cache_dup(struct mem_cgroup *memcg,
					 struct kmem_cache *s)
{
	struct kmem_cache *new;
3194
	static char *tmp_name = NULL;
3195

3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213
	lockdep_assert_held(&memcg_cache_mutex);

	/*
	 * kmem_cache_create_memcg duplicates the given name and
	 * cgroup_name for this name requires RCU context.
	 * This static temporary buffer is used to prevent from
	 * pointless shortliving allocation.
	 */
	if (!tmp_name) {
		tmp_name = kmalloc(PATH_MAX, GFP_KERNEL);
		if (!tmp_name)
			return NULL;
	}

	rcu_read_lock();
	snprintf(tmp_name, PATH_MAX, "%s(%d:%s)", s->name,
			 memcg_cache_id(memcg), cgroup_name(memcg->css.cgroup));
	rcu_read_unlock();
3214

3215
	new = kmem_cache_create_memcg(memcg, tmp_name, s->object_size, s->align,
G
Glauber Costa 已提交
3216
				      (s->flags & ~SLAB_PANIC), s->ctor, s);
3217

3218 3219 3220
	if (new)
		new->allocflags |= __GFP_KMEMCG;

3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235
	return new;
}

static struct kmem_cache *memcg_create_kmem_cache(struct mem_cgroup *memcg,
						  struct kmem_cache *cachep)
{
	struct kmem_cache *new_cachep;
	int idx;

	BUG_ON(!memcg_can_account_kmem(memcg));

	idx = memcg_cache_id(memcg);

	mutex_lock(&memcg_cache_mutex);
	new_cachep = cachep->memcg_params->memcg_caches[idx];
3236 3237
	if (new_cachep) {
		css_put(&memcg->css);
3238
		goto out;
3239
	}
3240 3241 3242 3243

	new_cachep = kmem_cache_dup(memcg, cachep);
	if (new_cachep == NULL) {
		new_cachep = cachep;
3244
		css_put(&memcg->css);
3245 3246 3247
		goto out;
	}

G
Glauber Costa 已提交
3248
	atomic_set(&new_cachep->memcg_params->nr_pages , 0);
3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260

	cachep->memcg_params->memcg_caches[idx] = new_cachep;
	/*
	 * the readers won't lock, make sure everybody sees the updated value,
	 * so they won't put stuff in the queue again for no reason
	 */
	wmb();
out:
	mutex_unlock(&memcg_cache_mutex);
	return new_cachep;
}

3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299
void kmem_cache_destroy_memcg_children(struct kmem_cache *s)
{
	struct kmem_cache *c;
	int i;

	if (!s->memcg_params)
		return;
	if (!s->memcg_params->is_root_cache)
		return;

	/*
	 * If the cache is being destroyed, we trust that there is no one else
	 * requesting objects from it. Even if there are, the sanity checks in
	 * kmem_cache_destroy should caught this ill-case.
	 *
	 * Still, we don't want anyone else freeing memcg_caches under our
	 * noses, which can happen if a new memcg comes to life. As usual,
	 * we'll take the set_limit_mutex to protect ourselves against this.
	 */
	mutex_lock(&set_limit_mutex);
	for (i = 0; i < memcg_limited_groups_array_size; i++) {
		c = s->memcg_params->memcg_caches[i];
		if (!c)
			continue;

		/*
		 * We will now manually delete the caches, so to avoid races
		 * we need to cancel all pending destruction workers and
		 * proceed with destruction ourselves.
		 *
		 * kmem_cache_destroy() will call kmem_cache_shrink internally,
		 * and that could spawn the workers again: it is likely that
		 * the cache still have active pages until this very moment.
		 * This would lead us back to mem_cgroup_destroy_cache.
		 *
		 * But that will not execute at all if the "dead" flag is not
		 * set, so flip it down to guarantee we are in control.
		 */
		c->memcg_params->dead = false;
G
Glauber Costa 已提交
3300
		cancel_work_sync(&c->memcg_params->destroy);
3301 3302 3303 3304 3305
		kmem_cache_destroy(c);
	}
	mutex_unlock(&set_limit_mutex);
}

3306 3307 3308 3309 3310 3311
struct create_work {
	struct mem_cgroup *memcg;
	struct kmem_cache *cachep;
	struct work_struct work;
};

G
Glauber Costa 已提交
3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328
static void mem_cgroup_destroy_all_caches(struct mem_cgroup *memcg)
{
	struct kmem_cache *cachep;
	struct memcg_cache_params *params;

	if (!memcg_kmem_is_active(memcg))
		return;

	mutex_lock(&memcg->slab_caches_mutex);
	list_for_each_entry(params, &memcg->memcg_slab_caches, list) {
		cachep = memcg_params_to_cache(params);
		cachep->memcg_params->dead = true;
		schedule_work(&cachep->memcg_params->destroy);
	}
	mutex_unlock(&memcg->slab_caches_mutex);
}

3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340
static void memcg_create_cache_work_func(struct work_struct *w)
{
	struct create_work *cw;

	cw = container_of(w, struct create_work, work);
	memcg_create_kmem_cache(cw->memcg, cw->cachep);
	kfree(cw);
}

/*
 * Enqueue the creation of a per-memcg kmem_cache.
 */
3341 3342
static void __memcg_create_cache_enqueue(struct mem_cgroup *memcg,
					 struct kmem_cache *cachep)
3343 3344 3345 3346
{
	struct create_work *cw;

	cw = kmalloc(sizeof(struct create_work), GFP_NOWAIT);
3347 3348
	if (cw == NULL) {
		css_put(&memcg->css);
3349 3350 3351 3352 3353 3354 3355 3356 3357 3358
		return;
	}

	cw->memcg = memcg;
	cw->cachep = cachep;

	INIT_WORK(&cw->work, memcg_create_cache_work_func);
	schedule_work(&cw->work);
}

3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376
static void memcg_create_cache_enqueue(struct mem_cgroup *memcg,
				       struct kmem_cache *cachep)
{
	/*
	 * We need to stop accounting when we kmalloc, because if the
	 * corresponding kmalloc cache is not yet created, the first allocation
	 * in __memcg_create_cache_enqueue will recurse.
	 *
	 * However, it is better to enclose the whole function. Depending on
	 * the debugging options enabled, INIT_WORK(), for instance, can
	 * trigger an allocation. This too, will make us recurse. Because at
	 * this point we can't allow ourselves back into memcg_kmem_get_cache,
	 * the safest choice is to do it like this, wrapping the whole function.
	 */
	memcg_stop_kmem_account();
	__memcg_create_cache_enqueue(memcg, cachep);
	memcg_resume_kmem_account();
}
3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398
/*
 * Return the kmem_cache we're supposed to use for a slab allocation.
 * We try to use the current memcg's version of the cache.
 *
 * If the cache does not exist yet, if we are the first user of it,
 * we either create it immediately, if possible, or create it asynchronously
 * in a workqueue.
 * In the latter case, we will let the current allocation go through with
 * the original cache.
 *
 * Can't be called in interrupt context or from kernel threads.
 * This function needs to be called with rcu_read_lock() held.
 */
struct kmem_cache *__memcg_kmem_get_cache(struct kmem_cache *cachep,
					  gfp_t gfp)
{
	struct mem_cgroup *memcg;
	int idx;

	VM_BUG_ON(!cachep->memcg_params);
	VM_BUG_ON(!cachep->memcg_params->is_root_cache);

3399 3400 3401
	if (!current->mm || current->memcg_kmem_skip_account)
		return cachep;

3402 3403 3404 3405
	rcu_read_lock();
	memcg = mem_cgroup_from_task(rcu_dereference(current->mm->owner));

	if (!memcg_can_account_kmem(memcg))
3406
		goto out;
3407 3408 3409 3410 3411 3412 3413 3414

	idx = memcg_cache_id(memcg);

	/*
	 * barrier to mare sure we're always seeing the up to date value.  The
	 * code updating memcg_caches will issue a write barrier to match this.
	 */
	read_barrier_depends();
3415 3416 3417
	if (likely(cachep->memcg_params->memcg_caches[idx])) {
		cachep = cachep->memcg_params->memcg_caches[idx];
		goto out;
3418 3419
	}

3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446
	/* The corresponding put will be done in the workqueue. */
	if (!css_tryget(&memcg->css))
		goto out;
	rcu_read_unlock();

	/*
	 * If we are in a safe context (can wait, and not in interrupt
	 * context), we could be be predictable and return right away.
	 * This would guarantee that the allocation being performed
	 * already belongs in the new cache.
	 *
	 * However, there are some clashes that can arrive from locking.
	 * For instance, because we acquire the slab_mutex while doing
	 * kmem_cache_dup, this means no further allocation could happen
	 * with the slab_mutex held.
	 *
	 * Also, because cache creation issue get_online_cpus(), this
	 * creates a lock chain: memcg_slab_mutex -> cpu_hotplug_mutex,
	 * that ends up reversed during cpu hotplug. (cpuset allocates
	 * a bunch of GFP_KERNEL memory during cpuup). Due to all that,
	 * better to defer everything.
	 */
	memcg_create_cache_enqueue(memcg, cachep);
	return cachep;
out:
	rcu_read_unlock();
	return cachep;
3447 3448 3449
}
EXPORT_SYMBOL(__memcg_kmem_get_cache);

3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470
/*
 * We need to verify if the allocation against current->mm->owner's memcg is
 * possible for the given order. But the page is not allocated yet, so we'll
 * need a further commit step to do the final arrangements.
 *
 * It is possible for the task to switch cgroups in this mean time, so at
 * commit time, we can't rely on task conversion any longer.  We'll then use
 * the handle argument to return to the caller which cgroup we should commit
 * against. We could also return the memcg directly and avoid the pointer
 * passing, but a boolean return value gives better semantics considering
 * the compiled-out case as well.
 *
 * Returning true means the allocation is possible.
 */
bool
__memcg_kmem_newpage_charge(gfp_t gfp, struct mem_cgroup **_memcg, int order)
{
	struct mem_cgroup *memcg;
	int ret;

	*_memcg = NULL;
3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498

	/*
	 * Disabling accounting is only relevant for some specific memcg
	 * internal allocations. Therefore we would initially not have such
	 * check here, since direct calls to the page allocator that are marked
	 * with GFP_KMEMCG only happen outside memcg core. We are mostly
	 * concerned with cache allocations, and by having this test at
	 * memcg_kmem_get_cache, we are already able to relay the allocation to
	 * the root cache and bypass the memcg cache altogether.
	 *
	 * There is one exception, though: the SLUB allocator does not create
	 * large order caches, but rather service large kmallocs directly from
	 * the page allocator. Therefore, the following sequence when backed by
	 * the SLUB allocator:
	 *
	 * 	memcg_stop_kmem_account();
	 * 	kmalloc(<large_number>)
	 * 	memcg_resume_kmem_account();
	 *
	 * would effectively ignore the fact that we should skip accounting,
	 * since it will drive us directly to this function without passing
	 * through the cache selector memcg_kmem_get_cache. Such large
	 * allocations are extremely rare but can happen, for instance, for the
	 * cache arrays. We bring this test here.
	 */
	if (!current->mm || current->memcg_kmem_skip_account)
		return true;

3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572
	memcg = try_get_mem_cgroup_from_mm(current->mm);

	/*
	 * very rare case described in mem_cgroup_from_task. Unfortunately there
	 * isn't much we can do without complicating this too much, and it would
	 * be gfp-dependent anyway. Just let it go
	 */
	if (unlikely(!memcg))
		return true;

	if (!memcg_can_account_kmem(memcg)) {
		css_put(&memcg->css);
		return true;
	}

	ret = memcg_charge_kmem(memcg, gfp, PAGE_SIZE << order);
	if (!ret)
		*_memcg = memcg;

	css_put(&memcg->css);
	return (ret == 0);
}

void __memcg_kmem_commit_charge(struct page *page, struct mem_cgroup *memcg,
			      int order)
{
	struct page_cgroup *pc;

	VM_BUG_ON(mem_cgroup_is_root(memcg));

	/* The page allocation failed. Revert */
	if (!page) {
		memcg_uncharge_kmem(memcg, PAGE_SIZE << order);
		return;
	}

	pc = lookup_page_cgroup(page);
	lock_page_cgroup(pc);
	pc->mem_cgroup = memcg;
	SetPageCgroupUsed(pc);
	unlock_page_cgroup(pc);
}

void __memcg_kmem_uncharge_pages(struct page *page, int order)
{
	struct mem_cgroup *memcg = NULL;
	struct page_cgroup *pc;


	pc = lookup_page_cgroup(page);
	/*
	 * Fast unlocked return. Theoretically might have changed, have to
	 * check again after locking.
	 */
	if (!PageCgroupUsed(pc))
		return;

	lock_page_cgroup(pc);
	if (PageCgroupUsed(pc)) {
		memcg = pc->mem_cgroup;
		ClearPageCgroupUsed(pc);
	}
	unlock_page_cgroup(pc);

	/*
	 * We trust that only if there is a memcg associated with the page, it
	 * is a valid allocation
	 */
	if (!memcg)
		return;

	VM_BUG_ON(mem_cgroup_is_root(memcg));
	memcg_uncharge_kmem(memcg, PAGE_SIZE << order);
}
G
Glauber Costa 已提交
3573 3574 3575 3576
#else
static inline void mem_cgroup_destroy_all_caches(struct mem_cgroup *memcg)
{
}
3577 3578
#endif /* CONFIG_MEMCG_KMEM */

3579 3580
#ifdef CONFIG_TRANSPARENT_HUGEPAGE

3581
#define PCGF_NOCOPY_AT_SPLIT (1 << PCG_LOCK | 1 << PCG_MIGRATION)
3582 3583
/*
 * Because tail pages are not marked as "used", set it. We're under
3584 3585 3586
 * zone->lru_lock, 'splitting on pmd' and compound_lock.
 * charge/uncharge will be never happen and move_account() is done under
 * compound_lock(), so we don't have to take care of races.
3587
 */
3588
void mem_cgroup_split_huge_fixup(struct page *head)
3589 3590
{
	struct page_cgroup *head_pc = lookup_page_cgroup(head);
3591
	struct page_cgroup *pc;
3592
	struct mem_cgroup *memcg;
3593
	int i;
3594

3595 3596
	if (mem_cgroup_disabled())
		return;
3597 3598

	memcg = head_pc->mem_cgroup;
3599 3600
	for (i = 1; i < HPAGE_PMD_NR; i++) {
		pc = head_pc + i;
3601
		pc->mem_cgroup = memcg;
3602 3603 3604
		smp_wmb();/* see __commit_charge() */
		pc->flags = head_pc->flags & ~PCGF_NOCOPY_AT_SPLIT;
	}
3605 3606
	__this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
		       HPAGE_PMD_NR);
3607
}
3608
#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
3609

3610
/**
3611
 * mem_cgroup_move_account - move account of the page
3612
 * @page: the page
3613
 * @nr_pages: number of regular pages (>1 for huge pages)
3614 3615 3616 3617 3618
 * @pc:	page_cgroup of the page.
 * @from: mem_cgroup which the page is moved from.
 * @to:	mem_cgroup which the page is moved to. @from != @to.
 *
 * The caller must confirm following.
K
KAMEZAWA Hiroyuki 已提交
3619
 * - page is not on LRU (isolate_page() is useful.)
3620
 * - compound_lock is held when nr_pages > 1
3621
 *
3622 3623
 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
 * from old cgroup.
3624
 */
3625 3626 3627 3628
static int mem_cgroup_move_account(struct page *page,
				   unsigned int nr_pages,
				   struct page_cgroup *pc,
				   struct mem_cgroup *from,
3629
				   struct mem_cgroup *to)
3630
{
3631 3632
	unsigned long flags;
	int ret;
3633
	bool anon = PageAnon(page);
3634

3635
	VM_BUG_ON(from == to);
3636
	VM_BUG_ON(PageLRU(page));
3637 3638 3639 3640 3641 3642 3643
	/*
	 * The page is isolated from LRU. So, collapse function
	 * will not handle this page. But page splitting can happen.
	 * Do this check under compound_page_lock(). The caller should
	 * hold it.
	 */
	ret = -EBUSY;
3644
	if (nr_pages > 1 && !PageTransHuge(page))
3645 3646 3647 3648 3649 3650 3651 3652
		goto out;

	lock_page_cgroup(pc);

	ret = -EINVAL;
	if (!PageCgroupUsed(pc) || pc->mem_cgroup != from)
		goto unlock;

3653
	move_lock_mem_cgroup(from, &flags);
3654

3655
	if (!anon && page_mapped(page)) {
3656 3657 3658 3659 3660
		/* Update mapped_file data for mem_cgroup */
		preempt_disable();
		__this_cpu_dec(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
		__this_cpu_inc(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
		preempt_enable();
3661
	}
3662
	mem_cgroup_charge_statistics(from, page, anon, -nr_pages);
3663

3664
	/* caller should have done css_get */
K
KAMEZAWA Hiroyuki 已提交
3665
	pc->mem_cgroup = to;
3666
	mem_cgroup_charge_statistics(to, page, anon, nr_pages);
3667
	move_unlock_mem_cgroup(from, &flags);
3668 3669
	ret = 0;
unlock:
3670
	unlock_page_cgroup(pc);
3671 3672 3673
	/*
	 * check events
	 */
3674 3675
	memcg_check_events(to, page);
	memcg_check_events(from, page);
3676
out:
3677 3678 3679
	return ret;
}

3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699
/**
 * mem_cgroup_move_parent - moves page to the parent group
 * @page: the page to move
 * @pc: page_cgroup of the page
 * @child: page's cgroup
 *
 * move charges to its parent or the root cgroup if the group has no
 * parent (aka use_hierarchy==0).
 * Although this might fail (get_page_unless_zero, isolate_lru_page or
 * mem_cgroup_move_account fails) the failure is always temporary and
 * it signals a race with a page removal/uncharge or migration. In the
 * first case the page is on the way out and it will vanish from the LRU
 * on the next attempt and the call should be retried later.
 * Isolation from the LRU fails only if page has been isolated from
 * the LRU since we looked at it and that usually means either global
 * reclaim or migration going on. The page will either get back to the
 * LRU or vanish.
 * Finaly mem_cgroup_move_account fails only if the page got uncharged
 * (!PageCgroupUsed) or moved to a different group. The page will
 * disappear in the next attempt.
3700
 */
3701 3702
static int mem_cgroup_move_parent(struct page *page,
				  struct page_cgroup *pc,
3703
				  struct mem_cgroup *child)
3704 3705
{
	struct mem_cgroup *parent;
3706
	unsigned int nr_pages;
3707
	unsigned long uninitialized_var(flags);
3708 3709
	int ret;

3710
	VM_BUG_ON(mem_cgroup_is_root(child));
3711

3712 3713 3714 3715 3716
	ret = -EBUSY;
	if (!get_page_unless_zero(page))
		goto out;
	if (isolate_lru_page(page))
		goto put;
3717

3718
	nr_pages = hpage_nr_pages(page);
K
KAMEZAWA Hiroyuki 已提交
3719

3720 3721 3722 3723 3724 3725
	parent = parent_mem_cgroup(child);
	/*
	 * If no parent, move charges to root cgroup.
	 */
	if (!parent)
		parent = root_mem_cgroup;
3726

3727 3728
	if (nr_pages > 1) {
		VM_BUG_ON(!PageTransHuge(page));
3729
		flags = compound_lock_irqsave(page);
3730
	}
3731

3732
	ret = mem_cgroup_move_account(page, nr_pages,
3733
				pc, child, parent);
3734 3735
	if (!ret)
		__mem_cgroup_cancel_local_charge(child, nr_pages);
3736

3737
	if (nr_pages > 1)
3738
		compound_unlock_irqrestore(page, flags);
K
KAMEZAWA Hiroyuki 已提交
3739
	putback_lru_page(page);
3740
put:
3741
	put_page(page);
3742
out:
3743 3744 3745
	return ret;
}

3746 3747 3748 3749 3750 3751 3752
/*
 * Charge the memory controller for page usage.
 * Return
 * 0 if the charge was successful
 * < 0 if the cgroup is over its limit
 */
static int mem_cgroup_charge_common(struct page *page, struct mm_struct *mm,
3753
				gfp_t gfp_mask, enum charge_type ctype)
3754
{
3755
	struct mem_cgroup *memcg = NULL;
3756
	unsigned int nr_pages = 1;
3757
	bool oom = true;
3758
	int ret;
A
Andrea Arcangeli 已提交
3759

A
Andrea Arcangeli 已提交
3760
	if (PageTransHuge(page)) {
3761
		nr_pages <<= compound_order(page);
A
Andrea Arcangeli 已提交
3762
		VM_BUG_ON(!PageTransHuge(page));
3763 3764 3765 3766 3767
		/*
		 * Never OOM-kill a process for a huge page.  The
		 * fault handler will fall back to regular pages.
		 */
		oom = false;
A
Andrea Arcangeli 已提交
3768
	}
3769

3770
	ret = __mem_cgroup_try_charge(mm, gfp_mask, nr_pages, &memcg, oom);
3771
	if (ret == -ENOMEM)
3772
		return ret;
3773
	__mem_cgroup_commit_charge(memcg, page, nr_pages, ctype, false);
3774 3775 3776
	return 0;
}

3777 3778
int mem_cgroup_newpage_charge(struct page *page,
			      struct mm_struct *mm, gfp_t gfp_mask)
3779
{
3780
	if (mem_cgroup_disabled())
3781
		return 0;
3782 3783 3784
	VM_BUG_ON(page_mapped(page));
	VM_BUG_ON(page->mapping && !PageAnon(page));
	VM_BUG_ON(!mm);
3785
	return mem_cgroup_charge_common(page, mm, gfp_mask,
3786
					MEM_CGROUP_CHARGE_TYPE_ANON);
3787 3788
}

3789 3790 3791
/*
 * While swap-in, try_charge -> commit or cancel, the page is locked.
 * And when try_charge() successfully returns, one refcnt to memcg without
3792
 * struct page_cgroup is acquired. This refcnt will be consumed by
3793 3794
 * "commit()" or removed by "cancel()"
 */
3795 3796 3797 3798
static int __mem_cgroup_try_charge_swapin(struct mm_struct *mm,
					  struct page *page,
					  gfp_t mask,
					  struct mem_cgroup **memcgp)
3799
{
3800
	struct mem_cgroup *memcg;
3801
	struct page_cgroup *pc;
3802
	int ret;
3803

3804 3805 3806 3807 3808 3809 3810 3811 3812 3813
	pc = lookup_page_cgroup(page);
	/*
	 * Every swap fault against a single page tries to charge the
	 * page, bail as early as possible.  shmem_unuse() encounters
	 * already charged pages, too.  The USED bit is protected by
	 * the page lock, which serializes swap cache removal, which
	 * in turn serializes uncharging.
	 */
	if (PageCgroupUsed(pc))
		return 0;
3814 3815
	if (!do_swap_account)
		goto charge_cur_mm;
3816 3817
	memcg = try_get_mem_cgroup_from_page(page);
	if (!memcg)
3818
		goto charge_cur_mm;
3819 3820
	*memcgp = memcg;
	ret = __mem_cgroup_try_charge(NULL, mask, 1, memcgp, true);
3821
	css_put(&memcg->css);
3822 3823
	if (ret == -EINTR)
		ret = 0;
3824
	return ret;
3825
charge_cur_mm:
3826 3827 3828 3829
	ret = __mem_cgroup_try_charge(mm, mask, 1, memcgp, true);
	if (ret == -EINTR)
		ret = 0;
	return ret;
3830 3831
}

3832 3833 3834 3835 3836 3837
int mem_cgroup_try_charge_swapin(struct mm_struct *mm, struct page *page,
				 gfp_t gfp_mask, struct mem_cgroup **memcgp)
{
	*memcgp = NULL;
	if (mem_cgroup_disabled())
		return 0;
3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851
	/*
	 * A racing thread's fault, or swapoff, may have already
	 * updated the pte, and even removed page from swap cache: in
	 * those cases unuse_pte()'s pte_same() test will fail; but
	 * there's also a KSM case which does need to charge the page.
	 */
	if (!PageSwapCache(page)) {
		int ret;

		ret = __mem_cgroup_try_charge(mm, gfp_mask, 1, memcgp, true);
		if (ret == -EINTR)
			ret = 0;
		return ret;
	}
3852 3853 3854
	return __mem_cgroup_try_charge_swapin(mm, page, gfp_mask, memcgp);
}

3855 3856 3857 3858 3859 3860 3861 3862 3863
void mem_cgroup_cancel_charge_swapin(struct mem_cgroup *memcg)
{
	if (mem_cgroup_disabled())
		return;
	if (!memcg)
		return;
	__mem_cgroup_cancel_charge(memcg, 1);
}

D
Daisuke Nishimura 已提交
3864
static void
3865
__mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *memcg,
D
Daisuke Nishimura 已提交
3866
					enum charge_type ctype)
3867
{
3868
	if (mem_cgroup_disabled())
3869
		return;
3870
	if (!memcg)
3871
		return;
3872

3873
	__mem_cgroup_commit_charge(memcg, page, 1, ctype, true);
3874 3875 3876
	/*
	 * Now swap is on-memory. This means this page may be
	 * counted both as mem and swap....double count.
3877 3878 3879
	 * Fix it by uncharging from memsw. Basically, this SwapCache is stable
	 * under lock_page(). But in do_swap_page()::memory.c, reuse_swap_page()
	 * may call delete_from_swap_cache() before reach here.
3880
	 */
3881
	if (do_swap_account && PageSwapCache(page)) {
3882
		swp_entry_t ent = {.val = page_private(page)};
3883
		mem_cgroup_uncharge_swap(ent);
3884
	}
3885 3886
}

3887 3888
void mem_cgroup_commit_charge_swapin(struct page *page,
				     struct mem_cgroup *memcg)
D
Daisuke Nishimura 已提交
3889
{
3890
	__mem_cgroup_commit_charge_swapin(page, memcg,
3891
					  MEM_CGROUP_CHARGE_TYPE_ANON);
D
Daisuke Nishimura 已提交
3892 3893
}

3894 3895
int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm,
				gfp_t gfp_mask)
3896
{
3897 3898 3899 3900
	struct mem_cgroup *memcg = NULL;
	enum charge_type type = MEM_CGROUP_CHARGE_TYPE_CACHE;
	int ret;

3901
	if (mem_cgroup_disabled())
3902 3903 3904 3905 3906 3907 3908
		return 0;
	if (PageCompound(page))
		return 0;

	if (!PageSwapCache(page))
		ret = mem_cgroup_charge_common(page, mm, gfp_mask, type);
	else { /* page is swapcache/shmem */
3909 3910
		ret = __mem_cgroup_try_charge_swapin(mm, page,
						     gfp_mask, &memcg);
3911 3912 3913 3914
		if (!ret)
			__mem_cgroup_commit_charge_swapin(page, memcg, type);
	}
	return ret;
3915 3916
}

3917
static void mem_cgroup_do_uncharge(struct mem_cgroup *memcg,
3918 3919
				   unsigned int nr_pages,
				   const enum charge_type ctype)
3920 3921 3922
{
	struct memcg_batch_info *batch = NULL;
	bool uncharge_memsw = true;
3923

3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934
	/* If swapout, usage of swap doesn't decrease */
	if (!do_swap_account || ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT)
		uncharge_memsw = false;

	batch = &current->memcg_batch;
	/*
	 * In usual, we do css_get() when we remember memcg pointer.
	 * But in this case, we keep res->usage until end of a series of
	 * uncharges. Then, it's ok to ignore memcg's refcnt.
	 */
	if (!batch->memcg)
3935
		batch->memcg = memcg;
3936 3937
	/*
	 * do_batch > 0 when unmapping pages or inode invalidate/truncate.
L
Lucas De Marchi 已提交
3938
	 * In those cases, all pages freed continuously can be expected to be in
3939 3940 3941 3942 3943 3944 3945 3946
	 * the same cgroup and we have chance to coalesce uncharges.
	 * But we do uncharge one by one if this is killed by OOM(TIF_MEMDIE)
	 * because we want to do uncharge as soon as possible.
	 */

	if (!batch->do_batch || test_thread_flag(TIF_MEMDIE))
		goto direct_uncharge;

3947
	if (nr_pages > 1)
A
Andrea Arcangeli 已提交
3948 3949
		goto direct_uncharge;

3950 3951 3952 3953 3954
	/*
	 * In typical case, batch->memcg == mem. This means we can
	 * merge a series of uncharges to an uncharge of res_counter.
	 * If not, we uncharge res_counter ony by one.
	 */
3955
	if (batch->memcg != memcg)
3956 3957
		goto direct_uncharge;
	/* remember freed charge and uncharge it later */
3958
	batch->nr_pages++;
3959
	if (uncharge_memsw)
3960
		batch->memsw_nr_pages++;
3961 3962
	return;
direct_uncharge:
3963
	res_counter_uncharge(&memcg->res, nr_pages * PAGE_SIZE);
3964
	if (uncharge_memsw)
3965 3966 3967
		res_counter_uncharge(&memcg->memsw, nr_pages * PAGE_SIZE);
	if (unlikely(batch->memcg != memcg))
		memcg_oom_recover(memcg);
3968
}
3969

3970
/*
3971
 * uncharge if !page_mapped(page)
3972
 */
3973
static struct mem_cgroup *
3974 3975
__mem_cgroup_uncharge_common(struct page *page, enum charge_type ctype,
			     bool end_migration)
3976
{
3977
	struct mem_cgroup *memcg = NULL;
3978 3979
	unsigned int nr_pages = 1;
	struct page_cgroup *pc;
3980
	bool anon;
3981

3982
	if (mem_cgroup_disabled())
3983
		return NULL;
3984

A
Andrea Arcangeli 已提交
3985
	if (PageTransHuge(page)) {
3986
		nr_pages <<= compound_order(page);
A
Andrea Arcangeli 已提交
3987 3988
		VM_BUG_ON(!PageTransHuge(page));
	}
3989
	/*
3990
	 * Check if our page_cgroup is valid
3991
	 */
3992
	pc = lookup_page_cgroup(page);
3993
	if (unlikely(!PageCgroupUsed(pc)))
3994
		return NULL;
3995

3996
	lock_page_cgroup(pc);
K
KAMEZAWA Hiroyuki 已提交
3997

3998
	memcg = pc->mem_cgroup;
3999

K
KAMEZAWA Hiroyuki 已提交
4000 4001 4002
	if (!PageCgroupUsed(pc))
		goto unlock_out;

4003 4004
	anon = PageAnon(page);

K
KAMEZAWA Hiroyuki 已提交
4005
	switch (ctype) {
4006
	case MEM_CGROUP_CHARGE_TYPE_ANON:
4007 4008 4009 4010 4011
		/*
		 * Generally PageAnon tells if it's the anon statistics to be
		 * updated; but sometimes e.g. mem_cgroup_uncharge_page() is
		 * used before page reached the stage of being marked PageAnon.
		 */
4012 4013
		anon = true;
		/* fallthrough */
K
KAMEZAWA Hiroyuki 已提交
4014
	case MEM_CGROUP_CHARGE_TYPE_DROP:
4015
		/* See mem_cgroup_prepare_migration() */
4016 4017 4018 4019 4020 4021 4022 4023 4024 4025
		if (page_mapped(page))
			goto unlock_out;
		/*
		 * Pages under migration may not be uncharged.  But
		 * end_migration() /must/ be the one uncharging the
		 * unused post-migration page and so it has to call
		 * here with the migration bit still set.  See the
		 * res_counter handling below.
		 */
		if (!end_migration && PageCgroupMigration(pc))
K
KAMEZAWA Hiroyuki 已提交
4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036
			goto unlock_out;
		break;
	case MEM_CGROUP_CHARGE_TYPE_SWAPOUT:
		if (!PageAnon(page)) {	/* Shared memory */
			if (page->mapping && !page_is_file_cache(page))
				goto unlock_out;
		} else if (page_mapped(page)) /* Anon */
				goto unlock_out;
		break;
	default:
		break;
4037
	}
K
KAMEZAWA Hiroyuki 已提交
4038

4039
	mem_cgroup_charge_statistics(memcg, page, anon, -nr_pages);
K
KAMEZAWA Hiroyuki 已提交
4040

4041
	ClearPageCgroupUsed(pc);
4042 4043 4044 4045 4046 4047
	/*
	 * pc->mem_cgroup is not cleared here. It will be accessed when it's
	 * freed from LRU. This is safe because uncharged page is expected not
	 * to be reused (freed soon). Exception is SwapCache, it's handled by
	 * special functions.
	 */
4048

4049
	unlock_page_cgroup(pc);
K
KAMEZAWA Hiroyuki 已提交
4050
	/*
4051
	 * even after unlock, we have memcg->res.usage here and this memcg
L
Li Zefan 已提交
4052
	 * will never be freed, so it's safe to call css_get().
K
KAMEZAWA Hiroyuki 已提交
4053
	 */
4054
	memcg_check_events(memcg, page);
K
KAMEZAWA Hiroyuki 已提交
4055
	if (do_swap_account && ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT) {
4056
		mem_cgroup_swap_statistics(memcg, true);
L
Li Zefan 已提交
4057
		css_get(&memcg->css);
K
KAMEZAWA Hiroyuki 已提交
4058
	}
4059 4060 4061 4062 4063 4064
	/*
	 * Migration does not charge the res_counter for the
	 * replacement page, so leave it alone when phasing out the
	 * page that is unused after the migration.
	 */
	if (!end_migration && !mem_cgroup_is_root(memcg))
4065
		mem_cgroup_do_uncharge(memcg, nr_pages, ctype);
4066

4067
	return memcg;
K
KAMEZAWA Hiroyuki 已提交
4068 4069 4070

unlock_out:
	unlock_page_cgroup(pc);
4071
	return NULL;
4072 4073
}

4074 4075
void mem_cgroup_uncharge_page(struct page *page)
{
4076 4077 4078
	/* early check. */
	if (page_mapped(page))
		return;
4079
	VM_BUG_ON(page->mapping && !PageAnon(page));
4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091
	/*
	 * If the page is in swap cache, uncharge should be deferred
	 * to the swap path, which also properly accounts swap usage
	 * and handles memcg lifetime.
	 *
	 * Note that this check is not stable and reclaim may add the
	 * page to swap cache at any time after this.  However, if the
	 * page is not in swap cache by the time page->mapcount hits
	 * 0, there won't be any page table references to the swap
	 * slot, and reclaim will free it and not actually write the
	 * page to disk.
	 */
4092 4093
	if (PageSwapCache(page))
		return;
4094
	__mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_ANON, false);
4095 4096 4097 4098 4099
}

void mem_cgroup_uncharge_cache_page(struct page *page)
{
	VM_BUG_ON(page_mapped(page));
4100
	VM_BUG_ON(page->mapping);
4101
	__mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_CACHE, false);
4102 4103
}

4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117
/*
 * Batch_start/batch_end is called in unmap_page_range/invlidate/trucate.
 * In that cases, pages are freed continuously and we can expect pages
 * are in the same memcg. All these calls itself limits the number of
 * pages freed at once, then uncharge_start/end() is called properly.
 * This may be called prural(2) times in a context,
 */

void mem_cgroup_uncharge_start(void)
{
	current->memcg_batch.do_batch++;
	/* We can do nest. */
	if (current->memcg_batch.do_batch == 1) {
		current->memcg_batch.memcg = NULL;
4118 4119
		current->memcg_batch.nr_pages = 0;
		current->memcg_batch.memsw_nr_pages = 0;
4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139
	}
}

void mem_cgroup_uncharge_end(void)
{
	struct memcg_batch_info *batch = &current->memcg_batch;

	if (!batch->do_batch)
		return;

	batch->do_batch--;
	if (batch->do_batch) /* If stacked, do nothing. */
		return;

	if (!batch->memcg)
		return;
	/*
	 * This "batch->memcg" is valid without any css_get/put etc...
	 * bacause we hide charges behind us.
	 */
4140 4141 4142 4143 4144 4145
	if (batch->nr_pages)
		res_counter_uncharge(&batch->memcg->res,
				     batch->nr_pages * PAGE_SIZE);
	if (batch->memsw_nr_pages)
		res_counter_uncharge(&batch->memcg->memsw,
				     batch->memsw_nr_pages * PAGE_SIZE);
4146
	memcg_oom_recover(batch->memcg);
4147 4148 4149 4150
	/* forget this pointer (for sanity check) */
	batch->memcg = NULL;
}

4151
#ifdef CONFIG_SWAP
4152
/*
4153
 * called after __delete_from_swap_cache() and drop "page" account.
4154 4155
 * memcg information is recorded to swap_cgroup of "ent"
 */
K
KAMEZAWA Hiroyuki 已提交
4156 4157
void
mem_cgroup_uncharge_swapcache(struct page *page, swp_entry_t ent, bool swapout)
4158 4159
{
	struct mem_cgroup *memcg;
K
KAMEZAWA Hiroyuki 已提交
4160 4161 4162 4163 4164
	int ctype = MEM_CGROUP_CHARGE_TYPE_SWAPOUT;

	if (!swapout) /* this was a swap cache but the swap is unused ! */
		ctype = MEM_CGROUP_CHARGE_TYPE_DROP;

4165
	memcg = __mem_cgroup_uncharge_common(page, ctype, false);
4166

K
KAMEZAWA Hiroyuki 已提交
4167 4168
	/*
	 * record memcg information,  if swapout && memcg != NULL,
L
Li Zefan 已提交
4169
	 * css_get() was called in uncharge().
K
KAMEZAWA Hiroyuki 已提交
4170 4171
	 */
	if (do_swap_account && swapout && memcg)
4172
		swap_cgroup_record(ent, css_id(&memcg->css));
4173
}
4174
#endif
4175

A
Andrew Morton 已提交
4176
#ifdef CONFIG_MEMCG_SWAP
4177 4178 4179 4180 4181
/*
 * called from swap_entry_free(). remove record in swap_cgroup and
 * uncharge "memsw" account.
 */
void mem_cgroup_uncharge_swap(swp_entry_t ent)
K
KAMEZAWA Hiroyuki 已提交
4182
{
4183
	struct mem_cgroup *memcg;
4184
	unsigned short id;
4185 4186 4187 4188

	if (!do_swap_account)
		return;

4189 4190 4191
	id = swap_cgroup_record(ent, 0);
	rcu_read_lock();
	memcg = mem_cgroup_lookup(id);
4192
	if (memcg) {
4193 4194 4195 4196
		/*
		 * We uncharge this because swap is freed.
		 * This memcg can be obsolete one. We avoid calling css_tryget
		 */
4197
		if (!mem_cgroup_is_root(memcg))
4198
			res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
4199
		mem_cgroup_swap_statistics(memcg, false);
L
Li Zefan 已提交
4200
		css_put(&memcg->css);
4201
	}
4202
	rcu_read_unlock();
K
KAMEZAWA Hiroyuki 已提交
4203
}
4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219

/**
 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
 * @entry: swap entry to be moved
 * @from:  mem_cgroup which the entry is moved from
 * @to:  mem_cgroup which the entry is moved to
 *
 * It succeeds only when the swap_cgroup's record for this entry is the same
 * as the mem_cgroup's id of @from.
 *
 * Returns 0 on success, -EINVAL on failure.
 *
 * The caller must have charged to @to, IOW, called res_counter_charge() about
 * both res and memsw, and called css_get().
 */
static int mem_cgroup_move_swap_account(swp_entry_t entry,
4220
				struct mem_cgroup *from, struct mem_cgroup *to)
4221 4222 4223 4224 4225 4226 4227 4228
{
	unsigned short old_id, new_id;

	old_id = css_id(&from->css);
	new_id = css_id(&to->css);

	if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
		mem_cgroup_swap_statistics(from, false);
4229
		mem_cgroup_swap_statistics(to, true);
4230
		/*
4231 4232 4233
		 * This function is only called from task migration context now.
		 * It postpones res_counter and refcount handling till the end
		 * of task migration(mem_cgroup_clear_mc()) for performance
L
Li Zefan 已提交
4234 4235 4236 4237 4238 4239
		 * improvement. But we cannot postpone css_get(to)  because if
		 * the process that has been moved to @to does swap-in, the
		 * refcount of @to might be decreased to 0.
		 *
		 * We are in attach() phase, so the cgroup is guaranteed to be
		 * alive, so we can just call css_get().
4240
		 */
L
Li Zefan 已提交
4241
		css_get(&to->css);
4242 4243 4244 4245 4246 4247
		return 0;
	}
	return -EINVAL;
}
#else
static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
4248
				struct mem_cgroup *from, struct mem_cgroup *to)
4249 4250 4251
{
	return -EINVAL;
}
4252
#endif
K
KAMEZAWA Hiroyuki 已提交
4253

4254
/*
4255 4256
 * Before starting migration, account PAGE_SIZE to mem_cgroup that the old
 * page belongs to.
4257
 */
4258 4259
void mem_cgroup_prepare_migration(struct page *page, struct page *newpage,
				  struct mem_cgroup **memcgp)
4260
{
4261
	struct mem_cgroup *memcg = NULL;
4262
	unsigned int nr_pages = 1;
4263
	struct page_cgroup *pc;
4264
	enum charge_type ctype;
4265

4266
	*memcgp = NULL;
4267

4268
	if (mem_cgroup_disabled())
4269
		return;
4270

4271 4272 4273
	if (PageTransHuge(page))
		nr_pages <<= compound_order(page);

4274 4275 4276
	pc = lookup_page_cgroup(page);
	lock_page_cgroup(pc);
	if (PageCgroupUsed(pc)) {
4277 4278
		memcg = pc->mem_cgroup;
		css_get(&memcg->css);
4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309
		/*
		 * At migrating an anonymous page, its mapcount goes down
		 * to 0 and uncharge() will be called. But, even if it's fully
		 * unmapped, migration may fail and this page has to be
		 * charged again. We set MIGRATION flag here and delay uncharge
		 * until end_migration() is called
		 *
		 * Corner Case Thinking
		 * A)
		 * When the old page was mapped as Anon and it's unmap-and-freed
		 * while migration was ongoing.
		 * If unmap finds the old page, uncharge() of it will be delayed
		 * until end_migration(). If unmap finds a new page, it's
		 * uncharged when it make mapcount to be 1->0. If unmap code
		 * finds swap_migration_entry, the new page will not be mapped
		 * and end_migration() will find it(mapcount==0).
		 *
		 * B)
		 * When the old page was mapped but migraion fails, the kernel
		 * remaps it. A charge for it is kept by MIGRATION flag even
		 * if mapcount goes down to 0. We can do remap successfully
		 * without charging it again.
		 *
		 * C)
		 * The "old" page is under lock_page() until the end of
		 * migration, so, the old page itself will not be swapped-out.
		 * If the new page is swapped out before end_migraton, our
		 * hook to usual swap-out path will catch the event.
		 */
		if (PageAnon(page))
			SetPageCgroupMigration(pc);
4310
	}
4311
	unlock_page_cgroup(pc);
4312 4313 4314 4315
	/*
	 * If the page is not charged at this point,
	 * we return here.
	 */
4316
	if (!memcg)
4317
		return;
4318

4319
	*memcgp = memcg;
4320 4321 4322 4323 4324 4325 4326
	/*
	 * We charge new page before it's used/mapped. So, even if unlock_page()
	 * is called before end_migration, we can catch all events on this new
	 * page. In the case new page is migrated but not remapped, new page's
	 * mapcount will be finally 0 and we call uncharge in end_migration().
	 */
	if (PageAnon(page))
4327
		ctype = MEM_CGROUP_CHARGE_TYPE_ANON;
4328
	else
4329
		ctype = MEM_CGROUP_CHARGE_TYPE_CACHE;
4330 4331 4332 4333 4334
	/*
	 * The page is committed to the memcg, but it's not actually
	 * charged to the res_counter since we plan on replacing the
	 * old one and only one page is going to be left afterwards.
	 */
4335
	__mem_cgroup_commit_charge(memcg, newpage, nr_pages, ctype, false);
4336
}
4337

4338
/* remove redundant charge if migration failed*/
4339
void mem_cgroup_end_migration(struct mem_cgroup *memcg,
4340
	struct page *oldpage, struct page *newpage, bool migration_ok)
4341
{
4342
	struct page *used, *unused;
4343
	struct page_cgroup *pc;
4344
	bool anon;
4345

4346
	if (!memcg)
4347
		return;
4348

4349
	if (!migration_ok) {
4350 4351
		used = oldpage;
		unused = newpage;
4352
	} else {
4353
		used = newpage;
4354 4355
		unused = oldpage;
	}
4356
	anon = PageAnon(used);
4357 4358 4359 4360
	__mem_cgroup_uncharge_common(unused,
				     anon ? MEM_CGROUP_CHARGE_TYPE_ANON
				     : MEM_CGROUP_CHARGE_TYPE_CACHE,
				     true);
4361
	css_put(&memcg->css);
4362
	/*
4363 4364 4365
	 * We disallowed uncharge of pages under migration because mapcount
	 * of the page goes down to zero, temporarly.
	 * Clear the flag and check the page should be charged.
4366
	 */
4367 4368 4369 4370 4371
	pc = lookup_page_cgroup(oldpage);
	lock_page_cgroup(pc);
	ClearPageCgroupMigration(pc);
	unlock_page_cgroup(pc);

4372
	/*
4373 4374 4375 4376 4377 4378
	 * If a page is a file cache, radix-tree replacement is very atomic
	 * and we can skip this check. When it was an Anon page, its mapcount
	 * goes down to 0. But because we added MIGRATION flage, it's not
	 * uncharged yet. There are several case but page->mapcount check
	 * and USED bit check in mem_cgroup_uncharge_page() will do enough
	 * check. (see prepare_charge() also)
4379
	 */
4380
	if (anon)
4381
		mem_cgroup_uncharge_page(used);
4382
}
4383

4384 4385 4386 4387 4388 4389 4390 4391
/*
 * At replace page cache, newpage is not under any memcg but it's on
 * LRU. So, this function doesn't touch res_counter but handles LRU
 * in correct way. Both pages are locked so we cannot race with uncharge.
 */
void mem_cgroup_replace_page_cache(struct page *oldpage,
				  struct page *newpage)
{
4392
	struct mem_cgroup *memcg = NULL;
4393 4394 4395 4396 4397 4398 4399 4400 4401
	struct page_cgroup *pc;
	enum charge_type type = MEM_CGROUP_CHARGE_TYPE_CACHE;

	if (mem_cgroup_disabled())
		return;

	pc = lookup_page_cgroup(oldpage);
	/* fix accounting on old pages */
	lock_page_cgroup(pc);
4402 4403
	if (PageCgroupUsed(pc)) {
		memcg = pc->mem_cgroup;
4404
		mem_cgroup_charge_statistics(memcg, oldpage, false, -1);
4405 4406
		ClearPageCgroupUsed(pc);
	}
4407 4408
	unlock_page_cgroup(pc);

4409 4410 4411 4412 4413 4414
	/*
	 * When called from shmem_replace_page(), in some cases the
	 * oldpage has already been charged, and in some cases not.
	 */
	if (!memcg)
		return;
4415 4416 4417 4418 4419
	/*
	 * Even if newpage->mapping was NULL before starting replacement,
	 * the newpage may be on LRU(or pagevec for LRU) already. We lock
	 * LRU while we overwrite pc->mem_cgroup.
	 */
4420
	__mem_cgroup_commit_charge(memcg, newpage, 1, type, true);
4421 4422
}

4423 4424 4425 4426 4427 4428
#ifdef CONFIG_DEBUG_VM
static struct page_cgroup *lookup_page_cgroup_used(struct page *page)
{
	struct page_cgroup *pc;

	pc = lookup_page_cgroup(page);
4429 4430 4431 4432 4433
	/*
	 * Can be NULL while feeding pages into the page allocator for
	 * the first time, i.e. during boot or memory hotplug;
	 * or when mem_cgroup_disabled().
	 */
4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452
	if (likely(pc) && PageCgroupUsed(pc))
		return pc;
	return NULL;
}

bool mem_cgroup_bad_page_check(struct page *page)
{
	if (mem_cgroup_disabled())
		return false;

	return lookup_page_cgroup_used(page) != NULL;
}

void mem_cgroup_print_bad_page(struct page *page)
{
	struct page_cgroup *pc;

	pc = lookup_page_cgroup_used(page);
	if (pc) {
4453 4454
		pr_alert("pc:%p pc->flags:%lx pc->mem_cgroup:%p\n",
			 pc, pc->flags, pc->mem_cgroup);
4455 4456 4457 4458
	}
}
#endif

4459
static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
4460
				unsigned long long val)
4461
{
4462
	int retry_count;
4463
	u64 memswlimit, memlimit;
4464
	int ret = 0;
4465 4466
	int children = mem_cgroup_count_children(memcg);
	u64 curusage, oldusage;
4467
	int enlarge;
4468 4469 4470 4471 4472 4473 4474 4475 4476

	/*
	 * For keeping hierarchical_reclaim simple, how long we should retry
	 * is depends on callers. We set our retry-count to be function
	 * of # of children which we should visit in this loop.
	 */
	retry_count = MEM_CGROUP_RECLAIM_RETRIES * children;

	oldusage = res_counter_read_u64(&memcg->res, RES_USAGE);
4477

4478
	enlarge = 0;
4479
	while (retry_count) {
4480 4481 4482 4483
		if (signal_pending(current)) {
			ret = -EINTR;
			break;
		}
4484 4485 4486
		/*
		 * Rather than hide all in some function, I do this in
		 * open coded manner. You see what this really does.
4487
		 * We have to guarantee memcg->res.limit <= memcg->memsw.limit.
4488 4489 4490 4491 4492 4493
		 */
		mutex_lock(&set_limit_mutex);
		memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
		if (memswlimit < val) {
			ret = -EINVAL;
			mutex_unlock(&set_limit_mutex);
4494 4495
			break;
		}
4496 4497 4498 4499 4500

		memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
		if (memlimit < val)
			enlarge = 1;

4501
		ret = res_counter_set_limit(&memcg->res, val);
4502 4503 4504 4505 4506 4507
		if (!ret) {
			if (memswlimit == val)
				memcg->memsw_is_minimum = true;
			else
				memcg->memsw_is_minimum = false;
		}
4508 4509 4510 4511 4512
		mutex_unlock(&set_limit_mutex);

		if (!ret)
			break;

4513 4514
		mem_cgroup_reclaim(memcg, GFP_KERNEL,
				   MEM_CGROUP_RECLAIM_SHRINK);
4515 4516 4517 4518 4519 4520
		curusage = res_counter_read_u64(&memcg->res, RES_USAGE);
		/* Usage is reduced ? */
  		if (curusage >= oldusage)
			retry_count--;
		else
			oldusage = curusage;
4521
	}
4522 4523
	if (!ret && enlarge)
		memcg_oom_recover(memcg);
4524

4525 4526 4527
	return ret;
}

L
Li Zefan 已提交
4528 4529
static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
					unsigned long long val)
4530
{
4531
	int retry_count;
4532
	u64 memlimit, memswlimit, oldusage, curusage;
4533 4534
	int children = mem_cgroup_count_children(memcg);
	int ret = -EBUSY;
4535
	int enlarge = 0;
4536

4537 4538 4539
	/* see mem_cgroup_resize_res_limit */
 	retry_count = children * MEM_CGROUP_RECLAIM_RETRIES;
	oldusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
4540 4541 4542 4543 4544 4545 4546 4547
	while (retry_count) {
		if (signal_pending(current)) {
			ret = -EINTR;
			break;
		}
		/*
		 * Rather than hide all in some function, I do this in
		 * open coded manner. You see what this really does.
4548
		 * We have to guarantee memcg->res.limit <= memcg->memsw.limit.
4549 4550 4551 4552 4553 4554 4555 4556
		 */
		mutex_lock(&set_limit_mutex);
		memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
		if (memlimit > val) {
			ret = -EINVAL;
			mutex_unlock(&set_limit_mutex);
			break;
		}
4557 4558 4559
		memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
		if (memswlimit < val)
			enlarge = 1;
4560
		ret = res_counter_set_limit(&memcg->memsw, val);
4561 4562 4563 4564 4565 4566
		if (!ret) {
			if (memlimit == val)
				memcg->memsw_is_minimum = true;
			else
				memcg->memsw_is_minimum = false;
		}
4567 4568 4569 4570 4571
		mutex_unlock(&set_limit_mutex);

		if (!ret)
			break;

4572 4573 4574
		mem_cgroup_reclaim(memcg, GFP_KERNEL,
				   MEM_CGROUP_RECLAIM_NOSWAP |
				   MEM_CGROUP_RECLAIM_SHRINK);
4575
		curusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
4576
		/* Usage is reduced ? */
4577
		if (curusage >= oldusage)
4578
			retry_count--;
4579 4580
		else
			oldusage = curusage;
4581
	}
4582 4583
	if (!ret && enlarge)
		memcg_oom_recover(memcg);
4584 4585 4586
	return ret;
}

4587 4588 4589 4590 4591 4592 4593
/**
 * mem_cgroup_force_empty_list - clears LRU of a group
 * @memcg: group to clear
 * @node: NUMA node
 * @zid: zone id
 * @lru: lru to to clear
 *
4594
 * Traverse a specified page_cgroup list and try to drop them all.  This doesn't
4595 4596
 * reclaim the pages page themselves - pages are moved to the parent (or root)
 * group.
4597
 */
4598
static void mem_cgroup_force_empty_list(struct mem_cgroup *memcg,
K
KAMEZAWA Hiroyuki 已提交
4599
				int node, int zid, enum lru_list lru)
4600
{
4601
	struct lruvec *lruvec;
4602
	unsigned long flags;
4603
	struct list_head *list;
4604 4605
	struct page *busy;
	struct zone *zone;
4606

K
KAMEZAWA Hiroyuki 已提交
4607
	zone = &NODE_DATA(node)->node_zones[zid];
4608 4609
	lruvec = mem_cgroup_zone_lruvec(zone, memcg);
	list = &lruvec->lists[lru];
4610

4611
	busy = NULL;
4612
	do {
4613
		struct page_cgroup *pc;
4614 4615
		struct page *page;

K
KAMEZAWA Hiroyuki 已提交
4616
		spin_lock_irqsave(&zone->lru_lock, flags);
4617
		if (list_empty(list)) {
K
KAMEZAWA Hiroyuki 已提交
4618
			spin_unlock_irqrestore(&zone->lru_lock, flags);
4619
			break;
4620
		}
4621 4622 4623
		page = list_entry(list->prev, struct page, lru);
		if (busy == page) {
			list_move(&page->lru, list);
4624
			busy = NULL;
K
KAMEZAWA Hiroyuki 已提交
4625
			spin_unlock_irqrestore(&zone->lru_lock, flags);
4626 4627
			continue;
		}
K
KAMEZAWA Hiroyuki 已提交
4628
		spin_unlock_irqrestore(&zone->lru_lock, flags);
4629

4630
		pc = lookup_page_cgroup(page);
4631

4632
		if (mem_cgroup_move_parent(page, pc, memcg)) {
4633
			/* found lock contention or "pc" is obsolete. */
4634
			busy = page;
4635 4636 4637
			cond_resched();
		} else
			busy = NULL;
4638
	} while (!list_empty(list));
4639 4640 4641
}

/*
4642 4643
 * make mem_cgroup's charge to be 0 if there is no task by moving
 * all the charges and pages to the parent.
4644
 * This enables deleting this mem_cgroup.
4645 4646
 *
 * Caller is responsible for holding css reference on the memcg.
4647
 */
4648
static void mem_cgroup_reparent_charges(struct mem_cgroup *memcg)
4649
{
4650
	int node, zid;
4651
	u64 usage;
4652

4653
	do {
4654 4655
		/* This is for making all *used* pages to be on LRU. */
		lru_add_drain_all();
4656 4657
		drain_all_stock_sync(memcg);
		mem_cgroup_start_move(memcg);
4658
		for_each_node_state(node, N_MEMORY) {
4659
			for (zid = 0; zid < MAX_NR_ZONES; zid++) {
H
Hugh Dickins 已提交
4660 4661
				enum lru_list lru;
				for_each_lru(lru) {
4662
					mem_cgroup_force_empty_list(memcg,
H
Hugh Dickins 已提交
4663
							node, zid, lru);
4664
				}
4665
			}
4666
		}
4667 4668
		mem_cgroup_end_move(memcg);
		memcg_oom_recover(memcg);
4669
		cond_resched();
4670

4671
		/*
4672 4673 4674 4675 4676
		 * Kernel memory may not necessarily be trackable to a specific
		 * process. So they are not migrated, and therefore we can't
		 * expect their value to drop to 0 here.
		 * Having res filled up with kmem only is enough.
		 *
4677 4678 4679 4680 4681 4682
		 * This is a safety check because mem_cgroup_force_empty_list
		 * could have raced with mem_cgroup_replace_page_cache callers
		 * so the lru seemed empty but the page could have been added
		 * right after the check. RES_USAGE should be safe as we always
		 * charge before adding to the LRU.
		 */
4683 4684 4685
		usage = res_counter_read_u64(&memcg->res, RES_USAGE) -
			res_counter_read_u64(&memcg->kmem, RES_USAGE);
	} while (usage > 0);
4686 4687
}

4688 4689 4690 4691 4692 4693 4694
/*
 * This mainly exists for tests during the setting of set of use_hierarchy.
 * Since this is the very setting we are changing, the current hierarchy value
 * is meaningless
 */
static inline bool __memcg_has_children(struct mem_cgroup *memcg)
{
4695
	struct cgroup_subsys_state *pos;
4696 4697

	/* bounce at first found */
4698
	css_for_each_child(pos, &memcg->css)
4699 4700 4701 4702 4703
		return true;
	return false;
}

/*
4704 4705
 * Must be called with memcg_create_mutex held, unless the cgroup is guaranteed
 * to be already dead (as in mem_cgroup_force_empty, for instance).  This is
4706 4707 4708 4709 4710 4711 4712 4713 4714
 * from mem_cgroup_count_children(), in the sense that we don't really care how
 * many children we have; we only need to know if we have any.  It also counts
 * any memcg without hierarchy as infertile.
 */
static inline bool memcg_has_children(struct mem_cgroup *memcg)
{
	return memcg->use_hierarchy && __memcg_has_children(memcg);
}

4715 4716 4717 4718 4719 4720 4721 4722 4723 4724
/*
 * Reclaims as many pages from the given memcg as possible and moves
 * the rest to the parent.
 *
 * Caller is responsible for holding css reference for memcg.
 */
static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
{
	int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
	struct cgroup *cgrp = memcg->css.cgroup;
4725

4726
	/* returns EBUSY if there is a task or if we come here twice. */
4727 4728 4729
	if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children))
		return -EBUSY;

4730 4731
	/* we call try-to-free pages for make this cgroup empty */
	lru_add_drain_all();
4732
	/* try to free all pages in this cgroup */
4733
	while (nr_retries && res_counter_read_u64(&memcg->res, RES_USAGE) > 0) {
4734
		int progress;
4735

4736 4737 4738
		if (signal_pending(current))
			return -EINTR;

4739
		progress = try_to_free_mem_cgroup_pages(memcg, GFP_KERNEL,
4740
						false);
4741
		if (!progress) {
4742
			nr_retries--;
4743
			/* maybe some writeback is necessary */
4744
			congestion_wait(BLK_RW_ASYNC, HZ/10);
4745
		}
4746 4747

	}
K
KAMEZAWA Hiroyuki 已提交
4748
	lru_add_drain();
4749 4750 4751
	mem_cgroup_reparent_charges(memcg);

	return 0;
4752 4753
}

4754 4755
static int mem_cgroup_force_empty_write(struct cgroup_subsys_state *css,
					unsigned int event)
4756
{
4757
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4758

4759 4760
	if (mem_cgroup_is_root(memcg))
		return -EINVAL;
4761
	return mem_cgroup_force_empty(memcg);
4762 4763
}

4764 4765
static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
				     struct cftype *cft)
4766
{
4767
	return mem_cgroup_from_css(css)->use_hierarchy;
4768 4769
}

4770 4771
static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
				      struct cftype *cft, u64 val)
4772 4773
{
	int retval = 0;
4774
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
T
Tejun Heo 已提交
4775
	struct mem_cgroup *parent_memcg = mem_cgroup_from_css(css_parent(&memcg->css));
4776

4777
	mutex_lock(&memcg_create_mutex);
4778 4779 4780 4781

	if (memcg->use_hierarchy == val)
		goto out;

4782
	/*
4783
	 * If parent's use_hierarchy is set, we can't make any modifications
4784 4785 4786 4787 4788 4789
	 * in the child subtrees. If it is unset, then the change can
	 * occur, provided the current cgroup has no children.
	 *
	 * For the root cgroup, parent_mem is NULL, we allow value to be
	 * set if there are no children.
	 */
4790
	if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
4791
				(val == 1 || val == 0)) {
4792
		if (!__memcg_has_children(memcg))
4793
			memcg->use_hierarchy = val;
4794 4795 4796 4797
		else
			retval = -EBUSY;
	} else
		retval = -EINVAL;
4798 4799

out:
4800
	mutex_unlock(&memcg_create_mutex);
4801 4802 4803 4804

	return retval;
}

4805

4806
static unsigned long mem_cgroup_recursive_stat(struct mem_cgroup *memcg,
4807
					       enum mem_cgroup_stat_index idx)
4808
{
K
KAMEZAWA Hiroyuki 已提交
4809
	struct mem_cgroup *iter;
4810
	long val = 0;
4811

4812
	/* Per-cpu values can be negative, use a signed accumulator */
4813
	for_each_mem_cgroup_tree(iter, memcg)
K
KAMEZAWA Hiroyuki 已提交
4814 4815 4816 4817 4818
		val += mem_cgroup_read_stat(iter, idx);

	if (val < 0) /* race ? */
		val = 0;
	return val;
4819 4820
}

4821
static inline u64 mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
4822
{
K
KAMEZAWA Hiroyuki 已提交
4823
	u64 val;
4824

4825
	if (!mem_cgroup_is_root(memcg)) {
4826
		if (!swap)
4827
			return res_counter_read_u64(&memcg->res, RES_USAGE);
4828
		else
4829
			return res_counter_read_u64(&memcg->memsw, RES_USAGE);
4830 4831
	}

4832 4833 4834 4835
	/*
	 * Transparent hugepages are still accounted for in MEM_CGROUP_STAT_RSS
	 * as well as in MEM_CGROUP_STAT_RSS_HUGE.
	 */
4836 4837
	val = mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_CACHE);
	val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_RSS);
4838

K
KAMEZAWA Hiroyuki 已提交
4839
	if (swap)
4840
		val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_SWAP);
4841 4842 4843 4844

	return val << PAGE_SHIFT;
}

4845 4846 4847
static ssize_t mem_cgroup_read(struct cgroup_subsys_state *css,
			       struct cftype *cft, struct file *file,
			       char __user *buf, size_t nbytes, loff_t *ppos)
B
Balbir Singh 已提交
4848
{
4849
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4850
	char str[64];
4851
	u64 val;
G
Glauber Costa 已提交
4852 4853
	int name, len;
	enum res_type type;
4854 4855 4856

	type = MEMFILE_TYPE(cft->private);
	name = MEMFILE_ATTR(cft->private);
4857

4858 4859
	switch (type) {
	case _MEM:
4860
		if (name == RES_USAGE)
4861
			val = mem_cgroup_usage(memcg, false);
4862
		else
4863
			val = res_counter_read_u64(&memcg->res, name);
4864 4865
		break;
	case _MEMSWAP:
4866
		if (name == RES_USAGE)
4867
			val = mem_cgroup_usage(memcg, true);
4868
		else
4869
			val = res_counter_read_u64(&memcg->memsw, name);
4870
		break;
4871 4872 4873
	case _KMEM:
		val = res_counter_read_u64(&memcg->kmem, name);
		break;
4874 4875 4876
	default:
		BUG();
	}
4877 4878 4879

	len = scnprintf(str, sizeof(str), "%llu\n", (unsigned long long)val);
	return simple_read_from_buffer(buf, nbytes, ppos, str, len);
B
Balbir Singh 已提交
4880
}
4881

4882
static int memcg_update_kmem_limit(struct cgroup_subsys_state *css, u64 val)
4883 4884 4885
{
	int ret = -EINVAL;
#ifdef CONFIG_MEMCG_KMEM
4886
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4887 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898
	/*
	 * For simplicity, we won't allow this to be disabled.  It also can't
	 * be changed if the cgroup has children already, or if tasks had
	 * already joined.
	 *
	 * If tasks join before we set the limit, a person looking at
	 * kmem.usage_in_bytes will have no way to determine when it took
	 * place, which makes the value quite meaningless.
	 *
	 * After it first became limited, changes in the value of the limit are
	 * of course permitted.
	 */
4899
	mutex_lock(&memcg_create_mutex);
4900 4901
	mutex_lock(&set_limit_mutex);
	if (!memcg->kmem_account_flags && val != RESOURCE_MAX) {
4902
		if (cgroup_task_count(css->cgroup) || memcg_has_children(memcg)) {
4903 4904 4905 4906 4907 4908
			ret = -EBUSY;
			goto out;
		}
		ret = res_counter_set_limit(&memcg->kmem, val);
		VM_BUG_ON(ret);

4909 4910 4911 4912 4913
		ret = memcg_update_cache_sizes(memcg);
		if (ret) {
			res_counter_set_limit(&memcg->kmem, RESOURCE_MAX);
			goto out;
		}
4914 4915 4916 4917 4918 4919
		static_key_slow_inc(&memcg_kmem_enabled_key);
		/*
		 * setting the active bit after the inc will guarantee no one
		 * starts accounting before all call sites are patched
		 */
		memcg_kmem_set_active(memcg);
4920 4921 4922 4923
	} else
		ret = res_counter_set_limit(&memcg->kmem, val);
out:
	mutex_unlock(&set_limit_mutex);
4924
	mutex_unlock(&memcg_create_mutex);
4925 4926 4927 4928
#endif
	return ret;
}

4929
#ifdef CONFIG_MEMCG_KMEM
4930
static int memcg_propagate_kmem(struct mem_cgroup *memcg)
4931
{
4932
	int ret = 0;
4933 4934
	struct mem_cgroup *parent = parent_mem_cgroup(memcg);
	if (!parent)
4935 4936
		goto out;

4937
	memcg->kmem_account_flags = parent->kmem_account_flags;
4938 4939 4940 4941 4942 4943 4944 4945 4946 4947
	/*
	 * When that happen, we need to disable the static branch only on those
	 * memcgs that enabled it. To achieve this, we would be forced to
	 * complicate the code by keeping track of which memcgs were the ones
	 * that actually enabled limits, and which ones got it from its
	 * parents.
	 *
	 * It is a lot simpler just to do static_key_slow_inc() on every child
	 * that is accounted.
	 */
4948 4949 4950 4951
	if (!memcg_kmem_is_active(memcg))
		goto out;

	/*
4952 4953 4954
	 * __mem_cgroup_free() will issue static_key_slow_dec() because this
	 * memcg is active already. If the later initialization fails then the
	 * cgroup core triggers the cleanup so we do not have to do it here.
4955 4956 4957 4958
	 */
	static_key_slow_inc(&memcg_kmem_enabled_key);

	mutex_lock(&set_limit_mutex);
4959
	memcg_stop_kmem_account();
4960
	ret = memcg_update_cache_sizes(memcg);
4961
	memcg_resume_kmem_account();
4962 4963 4964
	mutex_unlock(&set_limit_mutex);
out:
	return ret;
4965
}
4966
#endif /* CONFIG_MEMCG_KMEM */
4967

4968 4969 4970 4971
/*
 * The user of this function is...
 * RES_LIMIT.
 */
4972
static int mem_cgroup_write(struct cgroup_subsys_state *css, struct cftype *cft,
4973
			    const char *buffer)
B
Balbir Singh 已提交
4974
{
4975
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
G
Glauber Costa 已提交
4976 4977
	enum res_type type;
	int name;
4978 4979 4980
	unsigned long long val;
	int ret;

4981 4982
	type = MEMFILE_TYPE(cft->private);
	name = MEMFILE_ATTR(cft->private);
4983

4984
	switch (name) {
4985
	case RES_LIMIT:
4986 4987 4988 4989
		if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
			ret = -EINVAL;
			break;
		}
4990 4991
		/* This function does all necessary parse...reuse it */
		ret = res_counter_memparse_write_strategy(buffer, &val);
4992 4993 4994
		if (ret)
			break;
		if (type == _MEM)
4995
			ret = mem_cgroup_resize_limit(memcg, val);
4996
		else if (type == _MEMSWAP)
4997
			ret = mem_cgroup_resize_memsw_limit(memcg, val);
4998
		else if (type == _KMEM)
4999
			ret = memcg_update_kmem_limit(css, val);
5000 5001
		else
			return -EINVAL;
5002
		break;
5003 5004 5005 5006 5007 5008 5009 5010 5011 5012 5013 5014 5015 5016
	case RES_SOFT_LIMIT:
		ret = res_counter_memparse_write_strategy(buffer, &val);
		if (ret)
			break;
		/*
		 * For memsw, soft limits are hard to implement in terms
		 * of semantics, for now, we support soft limits for
		 * control without swap
		 */
		if (type == _MEM)
			ret = res_counter_set_soft_limit(&memcg->res, val);
		else
			ret = -EINVAL;
		break;
5017 5018 5019 5020 5021
	default:
		ret = -EINVAL; /* should be BUG() ? */
		break;
	}
	return ret;
B
Balbir Singh 已提交
5022 5023
}

5024 5025 5026 5027 5028 5029 5030 5031 5032 5033
static void memcg_get_hierarchical_limit(struct mem_cgroup *memcg,
		unsigned long long *mem_limit, unsigned long long *memsw_limit)
{
	unsigned long long min_limit, min_memsw_limit, tmp;

	min_limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
	min_memsw_limit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
	if (!memcg->use_hierarchy)
		goto out;

T
Tejun Heo 已提交
5034 5035
	while (css_parent(&memcg->css)) {
		memcg = mem_cgroup_from_css(css_parent(&memcg->css));
5036 5037 5038 5039 5040 5041 5042 5043 5044 5045 5046 5047
		if (!memcg->use_hierarchy)
			break;
		tmp = res_counter_read_u64(&memcg->res, RES_LIMIT);
		min_limit = min(min_limit, tmp);
		tmp = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
		min_memsw_limit = min(min_memsw_limit, tmp);
	}
out:
	*mem_limit = min_limit;
	*memsw_limit = min_memsw_limit;
}

5048
static int mem_cgroup_reset(struct cgroup_subsys_state *css, unsigned int event)
5049
{
5050
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
G
Glauber Costa 已提交
5051 5052
	int name;
	enum res_type type;
5053

5054 5055
	type = MEMFILE_TYPE(event);
	name = MEMFILE_ATTR(event);
5056

5057
	switch (name) {
5058
	case RES_MAX_USAGE:
5059
		if (type == _MEM)
5060
			res_counter_reset_max(&memcg->res);
5061
		else if (type == _MEMSWAP)
5062
			res_counter_reset_max(&memcg->memsw);
5063 5064 5065 5066
		else if (type == _KMEM)
			res_counter_reset_max(&memcg->kmem);
		else
			return -EINVAL;
5067 5068
		break;
	case RES_FAILCNT:
5069
		if (type == _MEM)
5070
			res_counter_reset_failcnt(&memcg->res);
5071
		else if (type == _MEMSWAP)
5072
			res_counter_reset_failcnt(&memcg->memsw);
5073 5074 5075 5076
		else if (type == _KMEM)
			res_counter_reset_failcnt(&memcg->kmem);
		else
			return -EINVAL;
5077 5078
		break;
	}
5079

5080
	return 0;
5081 5082
}

5083
static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
5084 5085
					struct cftype *cft)
{
5086
	return mem_cgroup_from_css(css)->move_charge_at_immigrate;
5087 5088
}

5089
#ifdef CONFIG_MMU
5090
static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
5091 5092
					struct cftype *cft, u64 val)
{
5093
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5094 5095 5096

	if (val >= (1 << NR_MOVE_TYPE))
		return -EINVAL;
5097

5098
	/*
5099 5100 5101 5102
	 * No kind of locking is needed in here, because ->can_attach() will
	 * check this value once in the beginning of the process, and then carry
	 * on with stale data. This means that changes to this value will only
	 * affect task migrations starting after the change.
5103
	 */
5104
	memcg->move_charge_at_immigrate = val;
5105 5106
	return 0;
}
5107
#else
5108
static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
5109 5110 5111 5112 5113
					struct cftype *cft, u64 val)
{
	return -ENOSYS;
}
#endif
5114

5115
#ifdef CONFIG_NUMA
5116 5117
static int memcg_numa_stat_show(struct cgroup_subsys_state *css,
				struct cftype *cft, struct seq_file *m)
5118 5119 5120 5121
{
	int nid;
	unsigned long total_nr, file_nr, anon_nr, unevictable_nr;
	unsigned long node_nr;
5122
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5123

5124
	total_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL);
5125
	seq_printf(m, "total=%lu", total_nr);
5126
	for_each_node_state(nid, N_MEMORY) {
5127
		node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL);
5128 5129 5130 5131
		seq_printf(m, " N%d=%lu", nid, node_nr);
	}
	seq_putc(m, '\n');

5132
	file_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL_FILE);
5133
	seq_printf(m, "file=%lu", file_nr);
5134
	for_each_node_state(nid, N_MEMORY) {
5135
		node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
5136
				LRU_ALL_FILE);
5137 5138 5139 5140
		seq_printf(m, " N%d=%lu", nid, node_nr);
	}
	seq_putc(m, '\n');

5141
	anon_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL_ANON);
5142
	seq_printf(m, "anon=%lu", anon_nr);
5143
	for_each_node_state(nid, N_MEMORY) {
5144
		node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
5145
				LRU_ALL_ANON);
5146 5147 5148 5149
		seq_printf(m, " N%d=%lu", nid, node_nr);
	}
	seq_putc(m, '\n');

5150
	unevictable_nr = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_UNEVICTABLE));
5151
	seq_printf(m, "unevictable=%lu", unevictable_nr);
5152
	for_each_node_state(nid, N_MEMORY) {
5153
		node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
5154
				BIT(LRU_UNEVICTABLE));
5155 5156 5157 5158 5159 5160 5161
		seq_printf(m, " N%d=%lu", nid, node_nr);
	}
	seq_putc(m, '\n');
	return 0;
}
#endif /* CONFIG_NUMA */

5162 5163 5164 5165 5166
static inline void mem_cgroup_lru_names_not_uptodate(void)
{
	BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS);
}

5167
static int memcg_stat_show(struct cgroup_subsys_state *css, struct cftype *cft,
5168
				 struct seq_file *m)
5169
{
5170
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5171 5172
	struct mem_cgroup *mi;
	unsigned int i;
5173

5174
	for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
5175
		if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
5176
			continue;
5177 5178
		seq_printf(m, "%s %ld\n", mem_cgroup_stat_names[i],
			   mem_cgroup_read_stat(memcg, i) * PAGE_SIZE);
5179
	}
L
Lee Schermerhorn 已提交
5180

5181 5182 5183 5184 5185 5186 5187 5188
	for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++)
		seq_printf(m, "%s %lu\n", mem_cgroup_events_names[i],
			   mem_cgroup_read_events(memcg, i));

	for (i = 0; i < NR_LRU_LISTS; i++)
		seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i],
			   mem_cgroup_nr_lru_pages(memcg, BIT(i)) * PAGE_SIZE);

K
KAMEZAWA Hiroyuki 已提交
5189
	/* Hierarchical information */
5190 5191
	{
		unsigned long long limit, memsw_limit;
5192
		memcg_get_hierarchical_limit(memcg, &limit, &memsw_limit);
5193
		seq_printf(m, "hierarchical_memory_limit %llu\n", limit);
5194
		if (do_swap_account)
5195 5196
			seq_printf(m, "hierarchical_memsw_limit %llu\n",
				   memsw_limit);
5197
	}
K
KOSAKI Motohiro 已提交
5198

5199 5200 5201
	for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
		long long val = 0;

5202
		if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
5203
			continue;
5204 5205 5206 5207 5208 5209 5210 5211 5212 5213 5214 5215 5216 5217 5218 5219 5220 5221 5222 5223
		for_each_mem_cgroup_tree(mi, memcg)
			val += mem_cgroup_read_stat(mi, i) * PAGE_SIZE;
		seq_printf(m, "total_%s %lld\n", mem_cgroup_stat_names[i], val);
	}

	for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
		unsigned long long val = 0;

		for_each_mem_cgroup_tree(mi, memcg)
			val += mem_cgroup_read_events(mi, i);
		seq_printf(m, "total_%s %llu\n",
			   mem_cgroup_events_names[i], val);
	}

	for (i = 0; i < NR_LRU_LISTS; i++) {
		unsigned long long val = 0;

		for_each_mem_cgroup_tree(mi, memcg)
			val += mem_cgroup_nr_lru_pages(mi, BIT(i)) * PAGE_SIZE;
		seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i], val);
5224
	}
K
KAMEZAWA Hiroyuki 已提交
5225

K
KOSAKI Motohiro 已提交
5226 5227 5228 5229
#ifdef CONFIG_DEBUG_VM
	{
		int nid, zid;
		struct mem_cgroup_per_zone *mz;
5230
		struct zone_reclaim_stat *rstat;
K
KOSAKI Motohiro 已提交
5231 5232 5233 5234 5235
		unsigned long recent_rotated[2] = {0, 0};
		unsigned long recent_scanned[2] = {0, 0};

		for_each_online_node(nid)
			for (zid = 0; zid < MAX_NR_ZONES; zid++) {
5236
				mz = mem_cgroup_zoneinfo(memcg, nid, zid);
5237
				rstat = &mz->lruvec.reclaim_stat;
K
KOSAKI Motohiro 已提交
5238

5239 5240 5241 5242
				recent_rotated[0] += rstat->recent_rotated[0];
				recent_rotated[1] += rstat->recent_rotated[1];
				recent_scanned[0] += rstat->recent_scanned[0];
				recent_scanned[1] += rstat->recent_scanned[1];
K
KOSAKI Motohiro 已提交
5243
			}
5244 5245 5246 5247
		seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]);
		seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]);
		seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]);
		seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]);
K
KOSAKI Motohiro 已提交
5248 5249 5250
	}
#endif

5251 5252 5253
	return 0;
}

5254 5255
static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
				      struct cftype *cft)
K
KOSAKI Motohiro 已提交
5256
{
5257
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
K
KOSAKI Motohiro 已提交
5258

5259
	return mem_cgroup_swappiness(memcg);
K
KOSAKI Motohiro 已提交
5260 5261
}

5262 5263
static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
				       struct cftype *cft, u64 val)
K
KOSAKI Motohiro 已提交
5264
{
5265
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
T
Tejun Heo 已提交
5266
	struct mem_cgroup *parent = mem_cgroup_from_css(css_parent(&memcg->css));
K
KOSAKI Motohiro 已提交
5267

T
Tejun Heo 已提交
5268
	if (val > 100 || !parent)
K
KOSAKI Motohiro 已提交
5269 5270
		return -EINVAL;

5271
	mutex_lock(&memcg_create_mutex);
5272

K
KOSAKI Motohiro 已提交
5273
	/* If under hierarchy, only empty-root can set this value */
5274
	if ((parent->use_hierarchy) || memcg_has_children(memcg)) {
5275
		mutex_unlock(&memcg_create_mutex);
K
KOSAKI Motohiro 已提交
5276
		return -EINVAL;
5277
	}
K
KOSAKI Motohiro 已提交
5278 5279 5280

	memcg->swappiness = val;

5281
	mutex_unlock(&memcg_create_mutex);
5282

K
KOSAKI Motohiro 已提交
5283 5284 5285
	return 0;
}

5286 5287 5288 5289 5290 5291 5292 5293
static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
{
	struct mem_cgroup_threshold_ary *t;
	u64 usage;
	int i;

	rcu_read_lock();
	if (!swap)
5294
		t = rcu_dereference(memcg->thresholds.primary);
5295
	else
5296
		t = rcu_dereference(memcg->memsw_thresholds.primary);
5297 5298 5299 5300 5301 5302 5303

	if (!t)
		goto unlock;

	usage = mem_cgroup_usage(memcg, swap);

	/*
5304
	 * current_threshold points to threshold just below or equal to usage.
5305 5306 5307
	 * If it's not true, a threshold was crossed after last
	 * call of __mem_cgroup_threshold().
	 */
5308
	i = t->current_threshold;
5309 5310 5311 5312 5313 5314 5315 5316 5317 5318 5319 5320 5321 5322 5323 5324 5325 5326 5327 5328 5329 5330 5331

	/*
	 * Iterate backward over array of thresholds starting from
	 * current_threshold and check if a threshold is crossed.
	 * If none of thresholds below usage is crossed, we read
	 * only one element of the array here.
	 */
	for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
		eventfd_signal(t->entries[i].eventfd, 1);

	/* i = current_threshold + 1 */
	i++;

	/*
	 * Iterate forward over array of thresholds starting from
	 * current_threshold+1 and check if a threshold is crossed.
	 * If none of thresholds above usage is crossed, we read
	 * only one element of the array here.
	 */
	for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
		eventfd_signal(t->entries[i].eventfd, 1);

	/* Update current_threshold */
5332
	t->current_threshold = i - 1;
5333 5334 5335 5336 5337 5338
unlock:
	rcu_read_unlock();
}

static void mem_cgroup_threshold(struct mem_cgroup *memcg)
{
5339 5340 5341 5342 5343 5344 5345
	while (memcg) {
		__mem_cgroup_threshold(memcg, false);
		if (do_swap_account)
			__mem_cgroup_threshold(memcg, true);

		memcg = parent_mem_cgroup(memcg);
	}
5346 5347 5348 5349 5350 5351 5352
}

static int compare_thresholds(const void *a, const void *b)
{
	const struct mem_cgroup_threshold *_a = a;
	const struct mem_cgroup_threshold *_b = b;

5353 5354 5355 5356 5357 5358 5359
	if (_a->threshold > _b->threshold)
		return 1;

	if (_a->threshold < _b->threshold)
		return -1;

	return 0;
5360 5361
}

5362
static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
5363 5364 5365
{
	struct mem_cgroup_eventfd_list *ev;

5366
	list_for_each_entry(ev, &memcg->oom_notify, list)
K
KAMEZAWA Hiroyuki 已提交
5367 5368 5369 5370
		eventfd_signal(ev->eventfd, 1);
	return 0;
}

5371
static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
5372
{
K
KAMEZAWA Hiroyuki 已提交
5373 5374
	struct mem_cgroup *iter;

5375
	for_each_mem_cgroup_tree(iter, memcg)
K
KAMEZAWA Hiroyuki 已提交
5376
		mem_cgroup_oom_notify_cb(iter);
K
KAMEZAWA Hiroyuki 已提交
5377 5378
}

5379
static int mem_cgroup_usage_register_event(struct cgroup_subsys_state *css,
K
KAMEZAWA Hiroyuki 已提交
5380
	struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
5381
{
5382
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5383 5384
	struct mem_cgroup_thresholds *thresholds;
	struct mem_cgroup_threshold_ary *new;
G
Glauber Costa 已提交
5385
	enum res_type type = MEMFILE_TYPE(cft->private);
5386
	u64 threshold, usage;
5387
	int i, size, ret;
5388 5389 5390 5391 5392 5393

	ret = res_counter_memparse_write_strategy(args, &threshold);
	if (ret)
		return ret;

	mutex_lock(&memcg->thresholds_lock);
5394

5395
	if (type == _MEM)
5396
		thresholds = &memcg->thresholds;
5397
	else if (type == _MEMSWAP)
5398
		thresholds = &memcg->memsw_thresholds;
5399 5400 5401 5402 5403 5404
	else
		BUG();

	usage = mem_cgroup_usage(memcg, type == _MEMSWAP);

	/* Check if a threshold crossed before adding a new one */
5405
	if (thresholds->primary)
5406 5407
		__mem_cgroup_threshold(memcg, type == _MEMSWAP);

5408
	size = thresholds->primary ? thresholds->primary->size + 1 : 1;
5409 5410

	/* Allocate memory for new array of thresholds */
5411
	new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
5412
			GFP_KERNEL);
5413
	if (!new) {
5414 5415 5416
		ret = -ENOMEM;
		goto unlock;
	}
5417
	new->size = size;
5418 5419

	/* Copy thresholds (if any) to new array */
5420 5421
	if (thresholds->primary) {
		memcpy(new->entries, thresholds->primary->entries, (size - 1) *
5422
				sizeof(struct mem_cgroup_threshold));
5423 5424
	}

5425
	/* Add new threshold */
5426 5427
	new->entries[size - 1].eventfd = eventfd;
	new->entries[size - 1].threshold = threshold;
5428 5429

	/* Sort thresholds. Registering of new threshold isn't time-critical */
5430
	sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
5431 5432 5433
			compare_thresholds, NULL);

	/* Find current threshold */
5434
	new->current_threshold = -1;
5435
	for (i = 0; i < size; i++) {
5436
		if (new->entries[i].threshold <= usage) {
5437
			/*
5438 5439
			 * new->current_threshold will not be used until
			 * rcu_assign_pointer(), so it's safe to increment
5440 5441
			 * it here.
			 */
5442
			++new->current_threshold;
5443 5444
		} else
			break;
5445 5446
	}

5447 5448 5449 5450 5451
	/* Free old spare buffer and save old primary buffer as spare */
	kfree(thresholds->spare);
	thresholds->spare = thresholds->primary;

	rcu_assign_pointer(thresholds->primary, new);
5452

5453
	/* To be sure that nobody uses thresholds */
5454 5455 5456 5457 5458 5459 5460 5461
	synchronize_rcu();

unlock:
	mutex_unlock(&memcg->thresholds_lock);

	return ret;
}

5462
static void mem_cgroup_usage_unregister_event(struct cgroup_subsys_state *css,
K
KAMEZAWA Hiroyuki 已提交
5463
	struct cftype *cft, struct eventfd_ctx *eventfd)
5464
{
5465
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5466 5467
	struct mem_cgroup_thresholds *thresholds;
	struct mem_cgroup_threshold_ary *new;
G
Glauber Costa 已提交
5468
	enum res_type type = MEMFILE_TYPE(cft->private);
5469
	u64 usage;
5470
	int i, j, size;
5471 5472 5473

	mutex_lock(&memcg->thresholds_lock);
	if (type == _MEM)
5474
		thresholds = &memcg->thresholds;
5475
	else if (type == _MEMSWAP)
5476
		thresholds = &memcg->memsw_thresholds;
5477 5478 5479
	else
		BUG();

5480 5481 5482
	if (!thresholds->primary)
		goto unlock;

5483 5484 5485 5486 5487 5488
	usage = mem_cgroup_usage(memcg, type == _MEMSWAP);

	/* Check if a threshold crossed before removing */
	__mem_cgroup_threshold(memcg, type == _MEMSWAP);

	/* Calculate new number of threshold */
5489 5490 5491
	size = 0;
	for (i = 0; i < thresholds->primary->size; i++) {
		if (thresholds->primary->entries[i].eventfd != eventfd)
5492 5493 5494
			size++;
	}

5495
	new = thresholds->spare;
5496

5497 5498
	/* Set thresholds array to NULL if we don't have thresholds */
	if (!size) {
5499 5500
		kfree(new);
		new = NULL;
5501
		goto swap_buffers;
5502 5503
	}

5504
	new->size = size;
5505 5506

	/* Copy thresholds and find current threshold */
5507 5508 5509
	new->current_threshold = -1;
	for (i = 0, j = 0; i < thresholds->primary->size; i++) {
		if (thresholds->primary->entries[i].eventfd == eventfd)
5510 5511
			continue;

5512
		new->entries[j] = thresholds->primary->entries[i];
5513
		if (new->entries[j].threshold <= usage) {
5514
			/*
5515
			 * new->current_threshold will not be used
5516 5517 5518
			 * until rcu_assign_pointer(), so it's safe to increment
			 * it here.
			 */
5519
			++new->current_threshold;
5520 5521 5522 5523
		}
		j++;
	}

5524
swap_buffers:
5525 5526
	/* Swap primary and spare array */
	thresholds->spare = thresholds->primary;
5527 5528 5529 5530 5531 5532
	/* If all events are unregistered, free the spare array */
	if (!new) {
		kfree(thresholds->spare);
		thresholds->spare = NULL;
	}

5533
	rcu_assign_pointer(thresholds->primary, new);
5534

5535
	/* To be sure that nobody uses thresholds */
5536
	synchronize_rcu();
5537
unlock:
5538 5539
	mutex_unlock(&memcg->thresholds_lock);
}
5540

5541
static int mem_cgroup_oom_register_event(struct cgroup_subsys_state *css,
K
KAMEZAWA Hiroyuki 已提交
5542 5543
	struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
{
5544
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
K
KAMEZAWA Hiroyuki 已提交
5545
	struct mem_cgroup_eventfd_list *event;
G
Glauber Costa 已提交
5546
	enum res_type type = MEMFILE_TYPE(cft->private);
K
KAMEZAWA Hiroyuki 已提交
5547 5548 5549 5550 5551 5552

	BUG_ON(type != _OOM_TYPE);
	event = kmalloc(sizeof(*event),	GFP_KERNEL);
	if (!event)
		return -ENOMEM;

5553
	spin_lock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
5554 5555 5556 5557 5558

	event->eventfd = eventfd;
	list_add(&event->list, &memcg->oom_notify);

	/* already in OOM ? */
5559
	if (atomic_read(&memcg->under_oom))
K
KAMEZAWA Hiroyuki 已提交
5560
		eventfd_signal(eventfd, 1);
5561
	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
5562 5563 5564 5565

	return 0;
}

5566
static void mem_cgroup_oom_unregister_event(struct cgroup_subsys_state *css,
K
KAMEZAWA Hiroyuki 已提交
5567 5568
	struct cftype *cft, struct eventfd_ctx *eventfd)
{
5569
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
K
KAMEZAWA Hiroyuki 已提交
5570
	struct mem_cgroup_eventfd_list *ev, *tmp;
G
Glauber Costa 已提交
5571
	enum res_type type = MEMFILE_TYPE(cft->private);
K
KAMEZAWA Hiroyuki 已提交
5572 5573 5574

	BUG_ON(type != _OOM_TYPE);

5575
	spin_lock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
5576

5577
	list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
K
KAMEZAWA Hiroyuki 已提交
5578 5579 5580 5581 5582 5583
		if (ev->eventfd == eventfd) {
			list_del(&ev->list);
			kfree(ev);
		}
	}

5584
	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
5585 5586
}

5587
static int mem_cgroup_oom_control_read(struct cgroup_subsys_state *css,
5588 5589
	struct cftype *cft,  struct cgroup_map_cb *cb)
{
5590
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5591

5592
	cb->fill(cb, "oom_kill_disable", memcg->oom_kill_disable);
5593

5594
	if (atomic_read(&memcg->under_oom))
5595 5596 5597 5598 5599 5600
		cb->fill(cb, "under_oom", 1);
	else
		cb->fill(cb, "under_oom", 0);
	return 0;
}

5601
static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
5602 5603
	struct cftype *cft, u64 val)
{
5604
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
T
Tejun Heo 已提交
5605
	struct mem_cgroup *parent = mem_cgroup_from_css(css_parent(&memcg->css));
5606 5607

	/* cannot set to root cgroup and only 0 and 1 are allowed */
T
Tejun Heo 已提交
5608
	if (!parent || !((val == 0) || (val == 1)))
5609 5610
		return -EINVAL;

5611
	mutex_lock(&memcg_create_mutex);
5612
	/* oom-kill-disable is a flag for subhierarchy. */
5613
	if ((parent->use_hierarchy) || memcg_has_children(memcg)) {
5614
		mutex_unlock(&memcg_create_mutex);
5615 5616
		return -EINVAL;
	}
5617
	memcg->oom_kill_disable = val;
5618
	if (!val)
5619
		memcg_oom_recover(memcg);
5620
	mutex_unlock(&memcg_create_mutex);
5621 5622 5623
	return 0;
}

A
Andrew Morton 已提交
5624
#ifdef CONFIG_MEMCG_KMEM
5625
static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
5626
{
5627 5628
	int ret;

5629
	memcg->kmemcg_id = -1;
5630 5631 5632
	ret = memcg_propagate_kmem(memcg);
	if (ret)
		return ret;
5633

5634
	return mem_cgroup_sockets_init(memcg, ss);
5635
}
5636

5637
static void memcg_destroy_kmem(struct mem_cgroup *memcg)
G
Glauber Costa 已提交
5638
{
5639
	mem_cgroup_sockets_destroy(memcg);
5640 5641 5642 5643 5644 5645 5646 5647 5648 5649 5650 5651 5652 5653 5654 5655 5656 5657 5658 5659 5660 5661 5662 5663 5664 5665
}

static void kmem_cgroup_css_offline(struct mem_cgroup *memcg)
{
	if (!memcg_kmem_is_active(memcg))
		return;

	/*
	 * kmem charges can outlive the cgroup. In the case of slab
	 * pages, for instance, a page contain objects from various
	 * processes. As we prevent from taking a reference for every
	 * such allocation we have to be careful when doing uncharge
	 * (see memcg_uncharge_kmem) and here during offlining.
	 *
	 * The idea is that that only the _last_ uncharge which sees
	 * the dead memcg will drop the last reference. An additional
	 * reference is taken here before the group is marked dead
	 * which is then paired with css_put during uncharge resp. here.
	 *
	 * Although this might sound strange as this path is called from
	 * css_offline() when the referencemight have dropped down to 0
	 * and shouldn't be incremented anymore (css_tryget would fail)
	 * we do not have other options because of the kmem allocations
	 * lifetime.
	 */
	css_get(&memcg->css);
5666 5667 5668 5669 5670 5671 5672

	memcg_kmem_mark_dead(memcg);

	if (res_counter_read_u64(&memcg->kmem, RES_USAGE) != 0)
		return;

	if (memcg_kmem_test_and_clear_dead(memcg))
5673
		css_put(&memcg->css);
G
Glauber Costa 已提交
5674
}
5675
#else
5676
static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
5677 5678 5679
{
	return 0;
}
G
Glauber Costa 已提交
5680

5681 5682 5683 5684 5685
static void memcg_destroy_kmem(struct mem_cgroup *memcg)
{
}

static void kmem_cgroup_css_offline(struct mem_cgroup *memcg)
G
Glauber Costa 已提交
5686 5687
{
}
5688 5689
#endif

B
Balbir Singh 已提交
5690 5691
static struct cftype mem_cgroup_files[] = {
	{
5692
		.name = "usage_in_bytes",
5693
		.private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
5694
		.read = mem_cgroup_read,
K
KAMEZAWA Hiroyuki 已提交
5695 5696
		.register_event = mem_cgroup_usage_register_event,
		.unregister_event = mem_cgroup_usage_unregister_event,
B
Balbir Singh 已提交
5697
	},
5698 5699
	{
		.name = "max_usage_in_bytes",
5700
		.private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
5701
		.trigger = mem_cgroup_reset,
5702
		.read = mem_cgroup_read,
5703
	},
B
Balbir Singh 已提交
5704
	{
5705
		.name = "limit_in_bytes",
5706
		.private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
5707
		.write_string = mem_cgroup_write,
5708
		.read = mem_cgroup_read,
B
Balbir Singh 已提交
5709
	},
5710 5711 5712 5713
	{
		.name = "soft_limit_in_bytes",
		.private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
		.write_string = mem_cgroup_write,
5714
		.read = mem_cgroup_read,
5715
	},
B
Balbir Singh 已提交
5716 5717
	{
		.name = "failcnt",
5718
		.private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
5719
		.trigger = mem_cgroup_reset,
5720
		.read = mem_cgroup_read,
B
Balbir Singh 已提交
5721
	},
5722 5723
	{
		.name = "stat",
5724
		.read_seq_string = memcg_stat_show,
5725
	},
5726 5727 5728 5729
	{
		.name = "force_empty",
		.trigger = mem_cgroup_force_empty_write,
	},
5730 5731
	{
		.name = "use_hierarchy",
5732
		.flags = CFTYPE_INSANE,
5733 5734 5735
		.write_u64 = mem_cgroup_hierarchy_write,
		.read_u64 = mem_cgroup_hierarchy_read,
	},
K
KOSAKI Motohiro 已提交
5736 5737 5738 5739 5740
	{
		.name = "swappiness",
		.read_u64 = mem_cgroup_swappiness_read,
		.write_u64 = mem_cgroup_swappiness_write,
	},
5741 5742 5743 5744 5745
	{
		.name = "move_charge_at_immigrate",
		.read_u64 = mem_cgroup_move_charge_read,
		.write_u64 = mem_cgroup_move_charge_write,
	},
K
KAMEZAWA Hiroyuki 已提交
5746 5747
	{
		.name = "oom_control",
5748 5749
		.read_map = mem_cgroup_oom_control_read,
		.write_u64 = mem_cgroup_oom_control_write,
K
KAMEZAWA Hiroyuki 已提交
5750 5751 5752 5753
		.register_event = mem_cgroup_oom_register_event,
		.unregister_event = mem_cgroup_oom_unregister_event,
		.private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
	},
5754 5755 5756 5757 5758
	{
		.name = "pressure_level",
		.register_event = vmpressure_register_event,
		.unregister_event = vmpressure_unregister_event,
	},
5759 5760 5761
#ifdef CONFIG_NUMA
	{
		.name = "numa_stat",
5762
		.read_seq_string = memcg_numa_stat_show,
5763 5764
	},
#endif
5765 5766 5767 5768 5769 5770 5771 5772 5773 5774 5775 5776 5777 5778 5779 5780 5781 5782 5783 5784 5785 5786 5787 5788
#ifdef CONFIG_MEMCG_KMEM
	{
		.name = "kmem.limit_in_bytes",
		.private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
		.write_string = mem_cgroup_write,
		.read = mem_cgroup_read,
	},
	{
		.name = "kmem.usage_in_bytes",
		.private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
		.read = mem_cgroup_read,
	},
	{
		.name = "kmem.failcnt",
		.private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
		.trigger = mem_cgroup_reset,
		.read = mem_cgroup_read,
	},
	{
		.name = "kmem.max_usage_in_bytes",
		.private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
		.trigger = mem_cgroup_reset,
		.read = mem_cgroup_read,
	},
5789 5790 5791 5792 5793 5794
#ifdef CONFIG_SLABINFO
	{
		.name = "kmem.slabinfo",
		.read_seq_string = mem_cgroup_slabinfo_read,
	},
#endif
5795
#endif
5796
	{ },	/* terminate */
5797
};
5798

5799 5800 5801 5802 5803 5804 5805 5806 5807 5808 5809 5810 5811 5812 5813 5814 5815 5816 5817 5818 5819 5820 5821 5822 5823 5824 5825 5826 5827 5828
#ifdef CONFIG_MEMCG_SWAP
static struct cftype memsw_cgroup_files[] = {
	{
		.name = "memsw.usage_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
		.read = mem_cgroup_read,
		.register_event = mem_cgroup_usage_register_event,
		.unregister_event = mem_cgroup_usage_unregister_event,
	},
	{
		.name = "memsw.max_usage_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
		.trigger = mem_cgroup_reset,
		.read = mem_cgroup_read,
	},
	{
		.name = "memsw.limit_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
		.write_string = mem_cgroup_write,
		.read = mem_cgroup_read,
	},
	{
		.name = "memsw.failcnt",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
		.trigger = mem_cgroup_reset,
		.read = mem_cgroup_read,
	},
	{ },	/* terminate */
};
#endif
5829
static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
5830 5831
{
	struct mem_cgroup_per_node *pn;
5832
	struct mem_cgroup_per_zone *mz;
5833
	int zone, tmp = node;
5834 5835 5836 5837 5838 5839 5840 5841
	/*
	 * This routine is called against possible nodes.
	 * But it's BUG to call kmalloc() against offline node.
	 *
	 * TODO: this routine can waste much memory for nodes which will
	 *       never be onlined. It's better to use memory hotplug callback
	 *       function.
	 */
5842 5843
	if (!node_state(node, N_NORMAL_MEMORY))
		tmp = -1;
5844
	pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
5845 5846
	if (!pn)
		return 1;
5847 5848 5849

	for (zone = 0; zone < MAX_NR_ZONES; zone++) {
		mz = &pn->zoneinfo[zone];
5850
		lruvec_init(&mz->lruvec);
5851
		mz->memcg = memcg;
5852
	}
5853
	memcg->nodeinfo[node] = pn;
5854 5855 5856
	return 0;
}

5857
static void free_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
5858
{
5859
	kfree(memcg->nodeinfo[node]);
5860 5861
}

5862 5863
static struct mem_cgroup *mem_cgroup_alloc(void)
{
5864
	struct mem_cgroup *memcg;
5865
	size_t size = memcg_size();
5866

5867
	/* Can be very big if nr_node_ids is very big */
5868
	if (size < PAGE_SIZE)
5869
		memcg = kzalloc(size, GFP_KERNEL);
5870
	else
5871
		memcg = vzalloc(size);
5872

5873
	if (!memcg)
5874 5875
		return NULL;

5876 5877
	memcg->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
	if (!memcg->stat)
5878
		goto out_free;
5879 5880
	spin_lock_init(&memcg->pcp_counter_lock);
	return memcg;
5881 5882 5883

out_free:
	if (size < PAGE_SIZE)
5884
		kfree(memcg);
5885
	else
5886
		vfree(memcg);
5887
	return NULL;
5888 5889
}

5890
/*
5891 5892 5893 5894 5895 5896 5897 5898
 * At destroying mem_cgroup, references from swap_cgroup can remain.
 * (scanning all at force_empty is too costly...)
 *
 * Instead of clearing all references at force_empty, we remember
 * the number of reference from swap_cgroup and free mem_cgroup when
 * it goes down to 0.
 *
 * Removal of cgroup itself succeeds regardless of refs from swap.
5899
 */
5900 5901

static void __mem_cgroup_free(struct mem_cgroup *memcg)
5902
{
5903
	int node;
5904
	size_t size = memcg_size();
5905

5906 5907 5908 5909 5910 5911 5912
	free_css_id(&mem_cgroup_subsys, &memcg->css);

	for_each_node(node)
		free_mem_cgroup_per_zone_info(memcg, node);

	free_percpu(memcg->stat);

5913 5914 5915 5916 5917 5918 5919 5920 5921 5922 5923
	/*
	 * We need to make sure that (at least for now), the jump label
	 * destruction code runs outside of the cgroup lock. This is because
	 * get_online_cpus(), which is called from the static_branch update,
	 * can't be called inside the cgroup_lock. cpusets are the ones
	 * enforcing this dependency, so if they ever change, we might as well.
	 *
	 * schedule_work() will guarantee this happens. Be careful if you need
	 * to move this code around, and make sure it is outside
	 * the cgroup_lock.
	 */
5924
	disarm_static_keys(memcg);
5925 5926 5927 5928
	if (size < PAGE_SIZE)
		kfree(memcg);
	else
		vfree(memcg);
5929
}
5930

5931 5932 5933
/*
 * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
 */
G
Glauber Costa 已提交
5934
struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg)
5935
{
5936
	if (!memcg->res.parent)
5937
		return NULL;
5938
	return mem_cgroup_from_res_counter(memcg->res.parent, res);
5939
}
G
Glauber Costa 已提交
5940
EXPORT_SYMBOL(parent_mem_cgroup);
5941

L
Li Zefan 已提交
5942
static struct cgroup_subsys_state * __ref
5943
mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
B
Balbir Singh 已提交
5944
{
5945
	struct mem_cgroup *memcg;
K
KAMEZAWA Hiroyuki 已提交
5946
	long error = -ENOMEM;
5947
	int node;
B
Balbir Singh 已提交
5948

5949 5950
	memcg = mem_cgroup_alloc();
	if (!memcg)
K
KAMEZAWA Hiroyuki 已提交
5951
		return ERR_PTR(error);
5952

B
Bob Liu 已提交
5953
	for_each_node(node)
5954
		if (alloc_mem_cgroup_per_zone_info(memcg, node))
5955
			goto free_out;
5956

5957
	/* root ? */
5958
	if (parent_css == NULL) {
5959
		root_mem_cgroup = memcg;
5960 5961 5962
		res_counter_init(&memcg->res, NULL);
		res_counter_init(&memcg->memsw, NULL);
		res_counter_init(&memcg->kmem, NULL);
5963
	}
5964

5965 5966 5967 5968 5969
	memcg->last_scanned_node = MAX_NUMNODES;
	INIT_LIST_HEAD(&memcg->oom_notify);
	memcg->move_charge_at_immigrate = 0;
	mutex_init(&memcg->thresholds_lock);
	spin_lock_init(&memcg->move_lock);
5970
	vmpressure_init(&memcg->vmpressure);
5971
	spin_lock_init(&memcg->soft_lock);
5972 5973 5974 5975 5976 5977 5978 5979 5980

	return &memcg->css;

free_out:
	__mem_cgroup_free(memcg);
	return ERR_PTR(error);
}

static int
5981
mem_cgroup_css_online(struct cgroup_subsys_state *css)
5982
{
5983 5984
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
	struct mem_cgroup *parent = mem_cgroup_from_css(css_parent(css));
5985 5986
	int error = 0;

T
Tejun Heo 已提交
5987
	if (!parent)
5988 5989
		return 0;

5990
	mutex_lock(&memcg_create_mutex);
5991 5992 5993 5994 5995 5996

	memcg->use_hierarchy = parent->use_hierarchy;
	memcg->oom_kill_disable = parent->oom_kill_disable;
	memcg->swappiness = mem_cgroup_swappiness(parent);

	if (parent->use_hierarchy) {
5997 5998
		res_counter_init(&memcg->res, &parent->res);
		res_counter_init(&memcg->memsw, &parent->memsw);
5999
		res_counter_init(&memcg->kmem, &parent->kmem);
6000

6001
		/*
6002 6003
		 * No need to take a reference to the parent because cgroup
		 * core guarantees its existence.
6004
		 */
6005
	} else {
6006 6007
		res_counter_init(&memcg->res, NULL);
		res_counter_init(&memcg->memsw, NULL);
6008
		res_counter_init(&memcg->kmem, NULL);
6009 6010 6011 6012 6013
		/*
		 * Deeper hierachy with use_hierarchy == false doesn't make
		 * much sense so let cgroup subsystem know about this
		 * unfortunate state in our controller.
		 */
6014
		if (parent != root_mem_cgroup)
6015
			mem_cgroup_subsys.broken_hierarchy = true;
6016
	}
6017 6018

	error = memcg_init_kmem(memcg, &mem_cgroup_subsys);
6019
	mutex_unlock(&memcg_create_mutex);
6020
	return error;
B
Balbir Singh 已提交
6021 6022
}

M
Michal Hocko 已提交
6023 6024 6025 6026 6027 6028 6029 6030
/*
 * Announce all parents that a group from their hierarchy is gone.
 */
static void mem_cgroup_invalidate_reclaim_iterators(struct mem_cgroup *memcg)
{
	struct mem_cgroup *parent = memcg;

	while ((parent = parent_mem_cgroup(parent)))
6031
		mem_cgroup_iter_invalidate(parent);
M
Michal Hocko 已提交
6032 6033 6034 6035 6036 6037

	/*
	 * if the root memcg is not hierarchical we have to check it
	 * explicitely.
	 */
	if (!root_mem_cgroup->use_hierarchy)
6038
		mem_cgroup_iter_invalidate(root_mem_cgroup);
M
Michal Hocko 已提交
6039 6040
}

6041
static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
6042
{
6043
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
6044

6045 6046
	kmem_cgroup_css_offline(memcg);

M
Michal Hocko 已提交
6047
	mem_cgroup_invalidate_reclaim_iterators(memcg);
6048
	mem_cgroup_reparent_charges(memcg);
6049 6050 6051
	if (memcg->soft_contributed) {
		while ((memcg = parent_mem_cgroup(memcg)))
			atomic_dec(&memcg->children_in_excess);
6052 6053 6054

		if (memcg != root_mem_cgroup && !root_mem_cgroup->use_hierarchy)
			atomic_dec(&root_mem_cgroup->children_in_excess);
6055
	}
G
Glauber Costa 已提交
6056
	mem_cgroup_destroy_all_caches(memcg);
6057
	vmpressure_cleanup(&memcg->vmpressure);
6058 6059
}

6060
static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
B
Balbir Singh 已提交
6061
{
6062
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
6063

6064
	memcg_destroy_kmem(memcg);
6065
	__mem_cgroup_free(memcg);
B
Balbir Singh 已提交
6066 6067
}

6068
#ifdef CONFIG_MMU
6069
/* Handlers for move charge at task migration. */
6070 6071
#define PRECHARGE_COUNT_AT_ONCE	256
static int mem_cgroup_do_precharge(unsigned long count)
6072
{
6073 6074
	int ret = 0;
	int batch_count = PRECHARGE_COUNT_AT_ONCE;
6075
	struct mem_cgroup *memcg = mc.to;
6076

6077
	if (mem_cgroup_is_root(memcg)) {
6078 6079 6080 6081 6082 6083 6084 6085
		mc.precharge += count;
		/* we don't need css_get for root */
		return ret;
	}
	/* try to charge at once */
	if (count > 1) {
		struct res_counter *dummy;
		/*
6086
		 * "memcg" cannot be under rmdir() because we've already checked
6087 6088 6089 6090
		 * by cgroup_lock_live_cgroup() that it is not removed and we
		 * are still under the same cgroup_mutex. So we can postpone
		 * css_get().
		 */
6091
		if (res_counter_charge(&memcg->res, PAGE_SIZE * count, &dummy))
6092
			goto one_by_one;
6093
		if (do_swap_account && res_counter_charge(&memcg->memsw,
6094
						PAGE_SIZE * count, &dummy)) {
6095
			res_counter_uncharge(&memcg->res, PAGE_SIZE * count);
6096 6097 6098 6099 6100 6101 6102 6103 6104 6105 6106 6107 6108 6109 6110 6111
			goto one_by_one;
		}
		mc.precharge += count;
		return ret;
	}
one_by_one:
	/* fall back to one by one charge */
	while (count--) {
		if (signal_pending(current)) {
			ret = -EINTR;
			break;
		}
		if (!batch_count--) {
			batch_count = PRECHARGE_COUNT_AT_ONCE;
			cond_resched();
		}
6112 6113
		ret = __mem_cgroup_try_charge(NULL,
					GFP_KERNEL, 1, &memcg, false);
6114
		if (ret)
6115
			/* mem_cgroup_clear_mc() will do uncharge later */
6116
			return ret;
6117 6118
		mc.precharge++;
	}
6119 6120 6121 6122
	return ret;
}

/**
6123
 * get_mctgt_type - get target type of moving charge
6124 6125 6126
 * @vma: the vma the pte to be checked belongs
 * @addr: the address corresponding to the pte to be checked
 * @ptent: the pte to be checked
6127
 * @target: the pointer the target page or swap ent will be stored(can be NULL)
6128 6129 6130 6131 6132 6133
 *
 * Returns
 *   0(MC_TARGET_NONE): if the pte is not a target for move charge.
 *   1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
 *     move charge. if @target is not NULL, the page is stored in target->page
 *     with extra refcnt got(Callers should handle it).
6134 6135 6136
 *   2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
 *     target for charge migration. if @target is not NULL, the entry is stored
 *     in target->ent.
6137 6138 6139 6140 6141
 *
 * Called with pte lock held.
 */
union mc_target {
	struct page	*page;
6142
	swp_entry_t	ent;
6143 6144 6145
};

enum mc_target_type {
6146
	MC_TARGET_NONE = 0,
6147
	MC_TARGET_PAGE,
6148
	MC_TARGET_SWAP,
6149 6150
};

D
Daisuke Nishimura 已提交
6151 6152
static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
						unsigned long addr, pte_t ptent)
6153
{
D
Daisuke Nishimura 已提交
6154
	struct page *page = vm_normal_page(vma, addr, ptent);
6155

D
Daisuke Nishimura 已提交
6156 6157 6158 6159
	if (!page || !page_mapped(page))
		return NULL;
	if (PageAnon(page)) {
		/* we don't move shared anon */
6160
		if (!move_anon())
D
Daisuke Nishimura 已提交
6161
			return NULL;
6162 6163
	} else if (!move_file())
		/* we ignore mapcount for file pages */
D
Daisuke Nishimura 已提交
6164 6165 6166 6167 6168 6169 6170
		return NULL;
	if (!get_page_unless_zero(page))
		return NULL;

	return page;
}

6171
#ifdef CONFIG_SWAP
D
Daisuke Nishimura 已提交
6172 6173 6174 6175 6176 6177 6178 6179
static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
			unsigned long addr, pte_t ptent, swp_entry_t *entry)
{
	struct page *page = NULL;
	swp_entry_t ent = pte_to_swp_entry(ptent);

	if (!move_anon() || non_swap_entry(ent))
		return NULL;
6180 6181 6182 6183
	/*
	 * Because lookup_swap_cache() updates some statistics counter,
	 * we call find_get_page() with swapper_space directly.
	 */
6184
	page = find_get_page(swap_address_space(ent), ent.val);
D
Daisuke Nishimura 已提交
6185 6186 6187 6188 6189
	if (do_swap_account)
		entry->val = ent.val;

	return page;
}
6190 6191 6192 6193 6194 6195 6196
#else
static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
			unsigned long addr, pte_t ptent, swp_entry_t *entry)
{
	return NULL;
}
#endif
D
Daisuke Nishimura 已提交
6197

6198 6199 6200 6201 6202 6203 6204 6205 6206 6207 6208 6209 6210 6211 6212 6213 6214 6215 6216
static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
			unsigned long addr, pte_t ptent, swp_entry_t *entry)
{
	struct page *page = NULL;
	struct address_space *mapping;
	pgoff_t pgoff;

	if (!vma->vm_file) /* anonymous vma */
		return NULL;
	if (!move_file())
		return NULL;

	mapping = vma->vm_file->f_mapping;
	if (pte_none(ptent))
		pgoff = linear_page_index(vma, addr);
	else /* pte_file(ptent) is true */
		pgoff = pte_to_pgoff(ptent);

	/* page is moved even if it's not RSS of this task(page-faulted). */
6217 6218 6219 6220 6221 6222
	page = find_get_page(mapping, pgoff);

#ifdef CONFIG_SWAP
	/* shmem/tmpfs may report page out on swap: account for that too. */
	if (radix_tree_exceptional_entry(page)) {
		swp_entry_t swap = radix_to_swp_entry(page);
6223
		if (do_swap_account)
6224
			*entry = swap;
6225
		page = find_get_page(swap_address_space(swap), swap.val);
6226
	}
6227
#endif
6228 6229 6230
	return page;
}

6231
static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
D
Daisuke Nishimura 已提交
6232 6233 6234 6235
		unsigned long addr, pte_t ptent, union mc_target *target)
{
	struct page *page = NULL;
	struct page_cgroup *pc;
6236
	enum mc_target_type ret = MC_TARGET_NONE;
D
Daisuke Nishimura 已提交
6237 6238 6239 6240 6241 6242
	swp_entry_t ent = { .val = 0 };

	if (pte_present(ptent))
		page = mc_handle_present_pte(vma, addr, ptent);
	else if (is_swap_pte(ptent))
		page = mc_handle_swap_pte(vma, addr, ptent, &ent);
6243 6244
	else if (pte_none(ptent) || pte_file(ptent))
		page = mc_handle_file_pte(vma, addr, ptent, &ent);
D
Daisuke Nishimura 已提交
6245 6246

	if (!page && !ent.val)
6247
		return ret;
6248 6249 6250 6251 6252 6253 6254 6255 6256 6257 6258 6259 6260 6261 6262
	if (page) {
		pc = lookup_page_cgroup(page);
		/*
		 * Do only loose check w/o page_cgroup lock.
		 * mem_cgroup_move_account() checks the pc is valid or not under
		 * the lock.
		 */
		if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
			ret = MC_TARGET_PAGE;
			if (target)
				target->page = page;
		}
		if (!ret || !target)
			put_page(page);
	}
D
Daisuke Nishimura 已提交
6263 6264
	/* There is a swap entry and a page doesn't exist or isn't charged */
	if (ent.val && !ret &&
6265
			css_id(&mc.from->css) == lookup_swap_cgroup_id(ent)) {
6266 6267 6268
		ret = MC_TARGET_SWAP;
		if (target)
			target->ent = ent;
6269 6270 6271 6272
	}
	return ret;
}

6273 6274 6275 6276 6277 6278 6279 6280 6281 6282 6283 6284 6285 6286 6287 6288 6289 6290 6291 6292 6293 6294 6295 6296 6297 6298 6299 6300 6301 6302 6303 6304 6305 6306 6307
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
/*
 * We don't consider swapping or file mapped pages because THP does not
 * support them for now.
 * Caller should make sure that pmd_trans_huge(pmd) is true.
 */
static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
		unsigned long addr, pmd_t pmd, union mc_target *target)
{
	struct page *page = NULL;
	struct page_cgroup *pc;
	enum mc_target_type ret = MC_TARGET_NONE;

	page = pmd_page(pmd);
	VM_BUG_ON(!page || !PageHead(page));
	if (!move_anon())
		return ret;
	pc = lookup_page_cgroup(page);
	if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
		ret = MC_TARGET_PAGE;
		if (target) {
			get_page(page);
			target->page = page;
		}
	}
	return ret;
}
#else
static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
		unsigned long addr, pmd_t pmd, union mc_target *target)
{
	return MC_TARGET_NONE;
}
#endif

6308 6309 6310 6311 6312 6313 6314 6315
static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
					unsigned long addr, unsigned long end,
					struct mm_walk *walk)
{
	struct vm_area_struct *vma = walk->private;
	pte_t *pte;
	spinlock_t *ptl;

6316 6317 6318 6319
	if (pmd_trans_huge_lock(pmd, vma) == 1) {
		if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
			mc.precharge += HPAGE_PMD_NR;
		spin_unlock(&vma->vm_mm->page_table_lock);
6320
		return 0;
6321
	}
6322

6323 6324
	if (pmd_trans_unstable(pmd))
		return 0;
6325 6326
	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
	for (; addr != end; pte++, addr += PAGE_SIZE)
6327
		if (get_mctgt_type(vma, addr, *pte, NULL))
6328 6329 6330 6331
			mc.precharge++;	/* increment precharge temporarily */
	pte_unmap_unlock(pte - 1, ptl);
	cond_resched();

6332 6333 6334
	return 0;
}

6335 6336 6337 6338 6339
static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
{
	unsigned long precharge;
	struct vm_area_struct *vma;

6340
	down_read(&mm->mmap_sem);
6341 6342 6343 6344 6345 6346 6347 6348 6349 6350 6351
	for (vma = mm->mmap; vma; vma = vma->vm_next) {
		struct mm_walk mem_cgroup_count_precharge_walk = {
			.pmd_entry = mem_cgroup_count_precharge_pte_range,
			.mm = mm,
			.private = vma,
		};
		if (is_vm_hugetlb_page(vma))
			continue;
		walk_page_range(vma->vm_start, vma->vm_end,
					&mem_cgroup_count_precharge_walk);
	}
6352
	up_read(&mm->mmap_sem);
6353 6354 6355 6356 6357 6358 6359 6360 6361

	precharge = mc.precharge;
	mc.precharge = 0;

	return precharge;
}

static int mem_cgroup_precharge_mc(struct mm_struct *mm)
{
6362 6363 6364 6365 6366
	unsigned long precharge = mem_cgroup_count_precharge(mm);

	VM_BUG_ON(mc.moving_task);
	mc.moving_task = current;
	return mem_cgroup_do_precharge(precharge);
6367 6368
}

6369 6370
/* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
static void __mem_cgroup_clear_mc(void)
6371
{
6372 6373
	struct mem_cgroup *from = mc.from;
	struct mem_cgroup *to = mc.to;
L
Li Zefan 已提交
6374
	int i;
6375

6376
	/* we must uncharge all the leftover precharges from mc.to */
6377 6378 6379 6380 6381 6382 6383 6384 6385 6386 6387
	if (mc.precharge) {
		__mem_cgroup_cancel_charge(mc.to, mc.precharge);
		mc.precharge = 0;
	}
	/*
	 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
	 * we must uncharge here.
	 */
	if (mc.moved_charge) {
		__mem_cgroup_cancel_charge(mc.from, mc.moved_charge);
		mc.moved_charge = 0;
6388
	}
6389 6390 6391 6392 6393 6394
	/* we must fixup refcnts and charges */
	if (mc.moved_swap) {
		/* uncharge swap account from the old cgroup */
		if (!mem_cgroup_is_root(mc.from))
			res_counter_uncharge(&mc.from->memsw,
						PAGE_SIZE * mc.moved_swap);
L
Li Zefan 已提交
6395 6396 6397

		for (i = 0; i < mc.moved_swap; i++)
			css_put(&mc.from->css);
6398 6399 6400 6401 6402 6403 6404 6405 6406

		if (!mem_cgroup_is_root(mc.to)) {
			/*
			 * we charged both to->res and to->memsw, so we should
			 * uncharge to->res.
			 */
			res_counter_uncharge(&mc.to->res,
						PAGE_SIZE * mc.moved_swap);
		}
L
Li Zefan 已提交
6407
		/* we've already done css_get(mc.to) */
6408 6409
		mc.moved_swap = 0;
	}
6410 6411 6412 6413 6414 6415 6416 6417 6418 6419 6420 6421 6422 6423 6424
	memcg_oom_recover(from);
	memcg_oom_recover(to);
	wake_up_all(&mc.waitq);
}

static void mem_cgroup_clear_mc(void)
{
	struct mem_cgroup *from = mc.from;

	/*
	 * we must clear moving_task before waking up waiters at the end of
	 * task migration.
	 */
	mc.moving_task = NULL;
	__mem_cgroup_clear_mc();
6425
	spin_lock(&mc.lock);
6426 6427
	mc.from = NULL;
	mc.to = NULL;
6428
	spin_unlock(&mc.lock);
6429
	mem_cgroup_end_move(from);
6430 6431
}

6432
static int mem_cgroup_can_attach(struct cgroup_subsys_state *css,
6433
				 struct cgroup_taskset *tset)
6434
{
6435
	struct task_struct *p = cgroup_taskset_first(tset);
6436
	int ret = 0;
6437
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
6438
	unsigned long move_charge_at_immigrate;
6439

6440 6441 6442 6443 6444 6445 6446
	/*
	 * We are now commited to this value whatever it is. Changes in this
	 * tunable will only affect upcoming migrations, not the current one.
	 * So we need to save it, and keep it going.
	 */
	move_charge_at_immigrate  = memcg->move_charge_at_immigrate;
	if (move_charge_at_immigrate) {
6447 6448 6449
		struct mm_struct *mm;
		struct mem_cgroup *from = mem_cgroup_from_task(p);

6450
		VM_BUG_ON(from == memcg);
6451 6452 6453 6454 6455

		mm = get_task_mm(p);
		if (!mm)
			return 0;
		/* We move charges only when we move a owner of the mm */
6456 6457 6458 6459
		if (mm->owner == p) {
			VM_BUG_ON(mc.from);
			VM_BUG_ON(mc.to);
			VM_BUG_ON(mc.precharge);
6460
			VM_BUG_ON(mc.moved_charge);
6461
			VM_BUG_ON(mc.moved_swap);
6462
			mem_cgroup_start_move(from);
6463
			spin_lock(&mc.lock);
6464
			mc.from = from;
6465
			mc.to = memcg;
6466
			mc.immigrate_flags = move_charge_at_immigrate;
6467
			spin_unlock(&mc.lock);
6468
			/* We set mc.moving_task later */
6469 6470 6471 6472

			ret = mem_cgroup_precharge_mc(mm);
			if (ret)
				mem_cgroup_clear_mc();
6473 6474
		}
		mmput(mm);
6475 6476 6477 6478
	}
	return ret;
}

6479
static void mem_cgroup_cancel_attach(struct cgroup_subsys_state *css,
6480
				     struct cgroup_taskset *tset)
6481
{
6482
	mem_cgroup_clear_mc();
6483 6484
}

6485 6486 6487
static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
				unsigned long addr, unsigned long end,
				struct mm_walk *walk)
6488
{
6489 6490 6491 6492
	int ret = 0;
	struct vm_area_struct *vma = walk->private;
	pte_t *pte;
	spinlock_t *ptl;
6493 6494 6495 6496
	enum mc_target_type target_type;
	union mc_target target;
	struct page *page;
	struct page_cgroup *pc;
6497

6498 6499 6500 6501 6502 6503 6504 6505 6506 6507 6508
	/*
	 * We don't take compound_lock() here but no race with splitting thp
	 * happens because:
	 *  - if pmd_trans_huge_lock() returns 1, the relevant thp is not
	 *    under splitting, which means there's no concurrent thp split,
	 *  - if another thread runs into split_huge_page() just after we
	 *    entered this if-block, the thread must wait for page table lock
	 *    to be unlocked in __split_huge_page_splitting(), where the main
	 *    part of thp split is not executed yet.
	 */
	if (pmd_trans_huge_lock(pmd, vma) == 1) {
6509
		if (mc.precharge < HPAGE_PMD_NR) {
6510 6511 6512 6513 6514 6515 6516 6517 6518
			spin_unlock(&vma->vm_mm->page_table_lock);
			return 0;
		}
		target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
		if (target_type == MC_TARGET_PAGE) {
			page = target.page;
			if (!isolate_lru_page(page)) {
				pc = lookup_page_cgroup(page);
				if (!mem_cgroup_move_account(page, HPAGE_PMD_NR,
6519
							pc, mc.from, mc.to)) {
6520 6521 6522 6523 6524 6525 6526 6527
					mc.precharge -= HPAGE_PMD_NR;
					mc.moved_charge += HPAGE_PMD_NR;
				}
				putback_lru_page(page);
			}
			put_page(page);
		}
		spin_unlock(&vma->vm_mm->page_table_lock);
6528
		return 0;
6529 6530
	}

6531 6532
	if (pmd_trans_unstable(pmd))
		return 0;
6533 6534 6535 6536
retry:
	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
	for (; addr != end; addr += PAGE_SIZE) {
		pte_t ptent = *(pte++);
6537
		swp_entry_t ent;
6538 6539 6540 6541

		if (!mc.precharge)
			break;

6542
		switch (get_mctgt_type(vma, addr, ptent, &target)) {
6543 6544 6545 6546 6547
		case MC_TARGET_PAGE:
			page = target.page;
			if (isolate_lru_page(page))
				goto put;
			pc = lookup_page_cgroup(page);
6548
			if (!mem_cgroup_move_account(page, 1, pc,
6549
						     mc.from, mc.to)) {
6550
				mc.precharge--;
6551 6552
				/* we uncharge from mc.from later. */
				mc.moved_charge++;
6553 6554
			}
			putback_lru_page(page);
6555
put:			/* get_mctgt_type() gets the page */
6556 6557
			put_page(page);
			break;
6558 6559
		case MC_TARGET_SWAP:
			ent = target.ent;
6560
			if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
6561
				mc.precharge--;
6562 6563 6564
				/* we fixup refcnts and charges later. */
				mc.moved_swap++;
			}
6565
			break;
6566 6567 6568 6569 6570 6571 6572 6573 6574 6575 6576 6577 6578 6579
		default:
			break;
		}
	}
	pte_unmap_unlock(pte - 1, ptl);
	cond_resched();

	if (addr != end) {
		/*
		 * We have consumed all precharges we got in can_attach().
		 * We try charge one by one, but don't do any additional
		 * charges to mc.to if we have failed in charge once in attach()
		 * phase.
		 */
6580
		ret = mem_cgroup_do_precharge(1);
6581 6582 6583 6584 6585 6586 6587 6588 6589 6590 6591 6592
		if (!ret)
			goto retry;
	}

	return ret;
}

static void mem_cgroup_move_charge(struct mm_struct *mm)
{
	struct vm_area_struct *vma;

	lru_add_drain_all();
6593 6594 6595 6596 6597 6598 6599 6600 6601 6602 6603 6604 6605
retry:
	if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
		/*
		 * Someone who are holding the mmap_sem might be waiting in
		 * waitq. So we cancel all extra charges, wake up all waiters,
		 * and retry. Because we cancel precharges, we might not be able
		 * to move enough charges, but moving charge is a best-effort
		 * feature anyway, so it wouldn't be a big problem.
		 */
		__mem_cgroup_clear_mc();
		cond_resched();
		goto retry;
	}
6606 6607 6608 6609 6610 6611 6612 6613 6614 6615 6616 6617 6618 6619 6620 6621 6622 6623
	for (vma = mm->mmap; vma; vma = vma->vm_next) {
		int ret;
		struct mm_walk mem_cgroup_move_charge_walk = {
			.pmd_entry = mem_cgroup_move_charge_pte_range,
			.mm = mm,
			.private = vma,
		};
		if (is_vm_hugetlb_page(vma))
			continue;
		ret = walk_page_range(vma->vm_start, vma->vm_end,
						&mem_cgroup_move_charge_walk);
		if (ret)
			/*
			 * means we have consumed all precharges and failed in
			 * doing additional charge. Just abandon here.
			 */
			break;
	}
6624
	up_read(&mm->mmap_sem);
6625 6626
}

6627
static void mem_cgroup_move_task(struct cgroup_subsys_state *css,
6628
				 struct cgroup_taskset *tset)
B
Balbir Singh 已提交
6629
{
6630
	struct task_struct *p = cgroup_taskset_first(tset);
6631
	struct mm_struct *mm = get_task_mm(p);
6632 6633

	if (mm) {
6634 6635
		if (mc.to)
			mem_cgroup_move_charge(mm);
6636 6637
		mmput(mm);
	}
6638 6639
	if (mc.to)
		mem_cgroup_clear_mc();
B
Balbir Singh 已提交
6640
}
6641
#else	/* !CONFIG_MMU */
6642
static int mem_cgroup_can_attach(struct cgroup_subsys_state *css,
6643
				 struct cgroup_taskset *tset)
6644 6645 6646
{
	return 0;
}
6647
static void mem_cgroup_cancel_attach(struct cgroup_subsys_state *css,
6648
				     struct cgroup_taskset *tset)
6649 6650
{
}
6651
static void mem_cgroup_move_task(struct cgroup_subsys_state *css,
6652
				 struct cgroup_taskset *tset)
6653 6654 6655
{
}
#endif
B
Balbir Singh 已提交
6656

6657 6658 6659 6660
/*
 * Cgroup retains root cgroups across [un]mount cycles making it necessary
 * to verify sane_behavior flag on each mount attempt.
 */
6661
static void mem_cgroup_bind(struct cgroup_subsys_state *root_css)
6662 6663 6664 6665 6666 6667
{
	/*
	 * use_hierarchy is forced with sane_behavior.  cgroup core
	 * guarantees that @root doesn't have any children, so turning it
	 * on for the root memcg is enough.
	 */
6668 6669
	if (cgroup_sane_behavior(root_css->cgroup))
		mem_cgroup_from_css(root_css)->use_hierarchy = true;
6670 6671
}

B
Balbir Singh 已提交
6672 6673 6674
struct cgroup_subsys mem_cgroup_subsys = {
	.name = "memory",
	.subsys_id = mem_cgroup_subsys_id,
6675
	.css_alloc = mem_cgroup_css_alloc,
6676
	.css_online = mem_cgroup_css_online,
6677 6678
	.css_offline = mem_cgroup_css_offline,
	.css_free = mem_cgroup_css_free,
6679 6680
	.can_attach = mem_cgroup_can_attach,
	.cancel_attach = mem_cgroup_cancel_attach,
B
Balbir Singh 已提交
6681
	.attach = mem_cgroup_move_task,
6682
	.bind = mem_cgroup_bind,
6683
	.base_cftypes = mem_cgroup_files,
6684
	.early_init = 0,
K
KAMEZAWA Hiroyuki 已提交
6685
	.use_id = 1,
B
Balbir Singh 已提交
6686
};
6687

A
Andrew Morton 已提交
6688
#ifdef CONFIG_MEMCG_SWAP
6689 6690
static int __init enable_swap_account(char *s)
{
6691
	if (!strcmp(s, "1"))
6692
		really_do_swap_account = 1;
6693
	else if (!strcmp(s, "0"))
6694 6695 6696
		really_do_swap_account = 0;
	return 1;
}
6697
__setup("swapaccount=", enable_swap_account);
6698

6699 6700
static void __init memsw_file_init(void)
{
6701 6702 6703 6704 6705 6706 6707 6708 6709
	WARN_ON(cgroup_add_cftypes(&mem_cgroup_subsys, memsw_cgroup_files));
}

static void __init enable_swap_cgroup(void)
{
	if (!mem_cgroup_disabled() && really_do_swap_account) {
		do_swap_account = 1;
		memsw_file_init();
	}
6710
}
6711

6712
#else
6713
static void __init enable_swap_cgroup(void)
6714 6715
{
}
6716
#endif
6717 6718

/*
6719 6720 6721 6722 6723 6724
 * subsys_initcall() for memory controller.
 *
 * Some parts like hotcpu_notifier() have to be initialized from this context
 * because of lock dependencies (cgroup_lock -> cpu hotplug) but basically
 * everything that doesn't depend on a specific mem_cgroup structure should
 * be initialized from here.
6725 6726 6727 6728
 */
static int __init mem_cgroup_init(void)
{
	hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
6729
	enable_swap_cgroup();
6730
	memcg_stock_init();
6731 6732 6733
	return 0;
}
subsys_initcall(mem_cgroup_init);