memcontrol.c 179.2 KB
Newer Older
B
Balbir Singh 已提交
1 2 3 4 5
/* memcontrol.c - Memory Controller
 *
 * Copyright IBM Corporation, 2007
 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
 *
6 7 8
 * Copyright 2007 OpenVZ SWsoft Inc
 * Author: Pavel Emelianov <xemul@openvz.org>
 *
9 10 11 12
 * Memory thresholds
 * Copyright (C) 2009 Nokia Corporation
 * Author: Kirill A. Shutemov
 *
13 14 15 16
 * Kernel Memory Controller
 * Copyright (C) 2012 Parallels Inc. and Google Inc.
 * Authors: Glauber Costa and Suleiman Souhlal
 *
B
Balbir Singh 已提交
17 18 19 20 21 22 23 24 25 26 27 28 29 30
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 */

#include <linux/res_counter.h>
#include <linux/memcontrol.h>
#include <linux/cgroup.h>
31
#include <linux/mm.h>
32
#include <linux/hugetlb.h>
K
KAMEZAWA Hiroyuki 已提交
33
#include <linux/pagemap.h>
34
#include <linux/smp.h>
35
#include <linux/page-flags.h>
36
#include <linux/backing-dev.h>
37 38
#include <linux/bit_spinlock.h>
#include <linux/rcupdate.h>
39
#include <linux/limits.h>
40
#include <linux/export.h>
41
#include <linux/mutex.h>
42
#include <linux/rbtree.h>
43
#include <linux/slab.h>
44
#include <linux/swap.h>
45
#include <linux/swapops.h>
46
#include <linux/spinlock.h>
47 48
#include <linux/eventfd.h>
#include <linux/sort.h>
49
#include <linux/fs.h>
50
#include <linux/seq_file.h>
51
#include <linux/vmalloc.h>
52
#include <linux/mm_inline.h>
53
#include <linux/page_cgroup.h>
54
#include <linux/cpu.h>
55
#include <linux/oom.h>
K
KAMEZAWA Hiroyuki 已提交
56
#include "internal.h"
G
Glauber Costa 已提交
57
#include <net/sock.h>
M
Michal Hocko 已提交
58
#include <net/ip.h>
G
Glauber Costa 已提交
59
#include <net/tcp_memcontrol.h>
B
Balbir Singh 已提交
60

61 62
#include <asm/uaccess.h>

63 64
#include <trace/events/vmscan.h>

65
struct cgroup_subsys mem_cgroup_subsys __read_mostly;
66 67
EXPORT_SYMBOL(mem_cgroup_subsys);

68
#define MEM_CGROUP_RECLAIM_RETRIES	5
69
static struct mem_cgroup *root_mem_cgroup __read_mostly;
B
Balbir Singh 已提交
70

A
Andrew Morton 已提交
71
#ifdef CONFIG_MEMCG_SWAP
L
Li Zefan 已提交
72
/* Turned on only when memory cgroup is enabled && really_do_swap_account = 1 */
73
int do_swap_account __read_mostly;
74 75

/* for remember boot option*/
A
Andrew Morton 已提交
76
#ifdef CONFIG_MEMCG_SWAP_ENABLED
77 78 79 80 81
static int really_do_swap_account __initdata = 1;
#else
static int really_do_swap_account __initdata = 0;
#endif

82
#else
83
#define do_swap_account		0
84 85 86
#endif


87 88 89 90 91 92 93 94
/*
 * Statistics for memory cgroup.
 */
enum mem_cgroup_stat_index {
	/*
	 * For MEM_CONTAINER_TYPE_ALL, usage = pagecache + rss.
	 */
	MEM_CGROUP_STAT_CACHE, 	   /* # of pages charged as cache */
95
	MEM_CGROUP_STAT_RSS,	   /* # of pages charged as anon rss */
96
	MEM_CGROUP_STAT_FILE_MAPPED,  /* # of pages charged as file rss */
97
	MEM_CGROUP_STAT_SWAP, /* # of pages, swapped out */
98 99 100
	MEM_CGROUP_STAT_NSTATS,
};

101 102 103 104 105 106 107
static const char * const mem_cgroup_stat_names[] = {
	"cache",
	"rss",
	"mapped_file",
	"swap",
};

108 109 110
enum mem_cgroup_events_index {
	MEM_CGROUP_EVENTS_PGPGIN,	/* # of pages paged in */
	MEM_CGROUP_EVENTS_PGPGOUT,	/* # of pages paged out */
111 112
	MEM_CGROUP_EVENTS_PGFAULT,	/* # of page-faults */
	MEM_CGROUP_EVENTS_PGMAJFAULT,	/* # of major page-faults */
113 114
	MEM_CGROUP_EVENTS_NSTATS,
};
115 116 117 118 119 120 121 122

static const char * const mem_cgroup_events_names[] = {
	"pgpgin",
	"pgpgout",
	"pgfault",
	"pgmajfault",
};

123 124 125 126 127 128 129 130
static const char * const mem_cgroup_lru_names[] = {
	"inactive_anon",
	"active_anon",
	"inactive_file",
	"active_file",
	"unevictable",
};

131 132 133 134 135 136 137 138 139
/*
 * Per memcg event counter is incremented at every pagein/pageout. With THP,
 * it will be incremated by the number of pages. This counter is used for
 * for trigger some periodic events. This is straightforward and better
 * than using jiffies etc. to handle periodic memcg event.
 */
enum mem_cgroup_events_target {
	MEM_CGROUP_TARGET_THRESH,
	MEM_CGROUP_TARGET_SOFTLIMIT,
140
	MEM_CGROUP_TARGET_NUMAINFO,
141 142
	MEM_CGROUP_NTARGETS,
};
143 144 145
#define THRESHOLDS_EVENTS_TARGET 128
#define SOFTLIMIT_EVENTS_TARGET 1024
#define NUMAINFO_EVENTS_TARGET	1024
146

147
struct mem_cgroup_stat_cpu {
148
	long count[MEM_CGROUP_STAT_NSTATS];
149
	unsigned long events[MEM_CGROUP_EVENTS_NSTATS];
150
	unsigned long nr_page_events;
151
	unsigned long targets[MEM_CGROUP_NTARGETS];
152 153
};

154 155 156 157 158 159 160
struct mem_cgroup_reclaim_iter {
	/* css_id of the last scanned hierarchy member */
	int position;
	/* scan generation, increased every round-trip */
	unsigned int generation;
};

161 162 163 164
/*
 * per-zone information in memory controller.
 */
struct mem_cgroup_per_zone {
165
	struct lruvec		lruvec;
166
	unsigned long		lru_size[NR_LRU_LISTS];
K
KOSAKI Motohiro 已提交
167

168 169
	struct mem_cgroup_reclaim_iter reclaim_iter[DEF_PRIORITY + 1];

170 171 172 173
	struct rb_node		tree_node;	/* RB tree node */
	unsigned long long	usage_in_excess;/* Set to the value by which */
						/* the soft limit is exceeded*/
	bool			on_tree;
174
	struct mem_cgroup	*memcg;		/* Back pointer, we cannot */
175
						/* use container_of	   */
176 177 178 179 180 181 182 183 184 185
};

struct mem_cgroup_per_node {
	struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
};

struct mem_cgroup_lru_info {
	struct mem_cgroup_per_node *nodeinfo[MAX_NUMNODES];
};

186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205
/*
 * Cgroups above their limits are maintained in a RB-Tree, independent of
 * their hierarchy representation
 */

struct mem_cgroup_tree_per_zone {
	struct rb_root rb_root;
	spinlock_t lock;
};

struct mem_cgroup_tree_per_node {
	struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
};

struct mem_cgroup_tree {
	struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
};

static struct mem_cgroup_tree soft_limit_tree __read_mostly;

206 207 208 209 210
struct mem_cgroup_threshold {
	struct eventfd_ctx *eventfd;
	u64 threshold;
};

K
KAMEZAWA Hiroyuki 已提交
211
/* For threshold */
212
struct mem_cgroup_threshold_ary {
213
	/* An array index points to threshold just below or equal to usage. */
214
	int current_threshold;
215 216 217 218 219
	/* Size of entries[] */
	unsigned int size;
	/* Array of thresholds */
	struct mem_cgroup_threshold entries[0];
};
220 221 222 223 224 225 226 227 228 229 230 231

struct mem_cgroup_thresholds {
	/* Primary thresholds array */
	struct mem_cgroup_threshold_ary *primary;
	/*
	 * Spare threshold array.
	 * This is needed to make mem_cgroup_unregister_event() "never fail".
	 * It must be able to store at least primary->size - 1 entries.
	 */
	struct mem_cgroup_threshold_ary *spare;
};

K
KAMEZAWA Hiroyuki 已提交
232 233 234 235 236
/* for OOM */
struct mem_cgroup_eventfd_list {
	struct list_head list;
	struct eventfd_ctx *eventfd;
};
237

238 239
static void mem_cgroup_threshold(struct mem_cgroup *memcg);
static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
240

B
Balbir Singh 已提交
241 242 243 244 245 246 247
/*
 * The memory controller data structure. The memory controller controls both
 * page cache and RSS per cgroup. We would eventually like to provide
 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
 * to help the administrator determine what knobs to tune.
 *
 * TODO: Add a water mark for the memory controller. Reclaim will begin when
248 249 250
 * we hit the water mark. May be even add a low water mark, such that
 * no reclaim occurs from a cgroup at it's low water mark, this is
 * a feature that will be implemented much later in the future.
B
Balbir Singh 已提交
251 252 253 254 255 256 257
 */
struct mem_cgroup {
	struct cgroup_subsys_state css;
	/*
	 * the counter to account for memory usage
	 */
	struct res_counter res;
258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275

	union {
		/*
		 * the counter to account for mem+swap usage.
		 */
		struct res_counter memsw;

		/*
		 * rcu_freeing is used only when freeing struct mem_cgroup,
		 * so put it into a union to avoid wasting more memory.
		 * It must be disjoint from the css field.  It could be
		 * in a union with the res field, but res plays a much
		 * larger part in mem_cgroup life than memsw, and might
		 * be of interest, even at time of free, when debugging.
		 * So share rcu_head with the less interesting memsw.
		 */
		struct rcu_head rcu_freeing;
		/*
276 277
		 * We also need some space for a worker in deferred freeing.
		 * By the time we call it, rcu_freeing is no longer in use.
278 279 280 281
		 */
		struct work_struct work_freeing;
	};

282 283 284 285
	/*
	 * the counter to account for kernel memory usage.
	 */
	struct res_counter kmem;
286 287 288 289
	/*
	 * Per cgroup active and inactive list, similar to the
	 * per zone LRU lists.
	 */
290
	struct mem_cgroup_lru_info info;
291 292 293
	int last_scanned_node;
#if MAX_NUMNODES > 1
	nodemask_t	scan_nodes;
294 295
	atomic_t	numainfo_events;
	atomic_t	numainfo_updating;
296
#endif
297 298 299 300
	/*
	 * Should the accounting and control be hierarchical, per subtree?
	 */
	bool use_hierarchy;
301
	unsigned long kmem_account_flags; /* See KMEM_ACCOUNTED_*, below */
302 303 304 305

	bool		oom_lock;
	atomic_t	under_oom;

306
	atomic_t	refcnt;
307

308
	int	swappiness;
309 310
	/* OOM-Killer disable */
	int		oom_kill_disable;
K
KOSAKI Motohiro 已提交
311

312 313 314
	/* set when res.limit == memsw.limit */
	bool		memsw_is_minimum;

315 316 317 318
	/* protect arrays of thresholds */
	struct mutex thresholds_lock;

	/* thresholds for memory usage. RCU-protected */
319
	struct mem_cgroup_thresholds thresholds;
320

321
	/* thresholds for mem+swap usage. RCU-protected */
322
	struct mem_cgroup_thresholds memsw_thresholds;
323

K
KAMEZAWA Hiroyuki 已提交
324 325
	/* For oom notifier event fd */
	struct list_head oom_notify;
326

327 328 329 330 331
	/*
	 * Should we move charges of a task when a task is moved into this
	 * mem_cgroup ? And what type of charges should we move ?
	 */
	unsigned long 	move_charge_at_immigrate;
332 333 334 335
	/*
	 * set > 0 if pages under this cgroup are moving to other cgroup.
	 */
	atomic_t	moving_account;
336 337
	/* taken only while moving_account > 0 */
	spinlock_t	move_lock;
338
	/*
339
	 * percpu counter.
340
	 */
341
	struct mem_cgroup_stat_cpu __percpu *stat;
342 343 344 345 346 347
	/*
	 * used when a cpu is offlined or other synchronizations
	 * See mem_cgroup_read_stat().
	 */
	struct mem_cgroup_stat_cpu nocpu_base;
	spinlock_t pcp_counter_lock;
G
Glauber Costa 已提交
348

M
Michal Hocko 已提交
349
#if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_INET)
G
Glauber Costa 已提交
350 351
	struct tcp_memcontrol tcp_mem;
#endif
352 353 354 355 356 357 358 359
#if defined(CONFIG_MEMCG_KMEM)
	/* analogous to slab_common's slab_caches list. per-memcg */
	struct list_head memcg_slab_caches;
	/* Not a spinlock, we can take a lot of time walking the list */
	struct mutex slab_caches_mutex;
        /* Index in the kmem_cache->memcg_params->memcg_caches array */
	int kmemcg_id;
#endif
B
Balbir Singh 已提交
360 361
};

362 363 364
/* internal only representation about the status of kmem accounting. */
enum {
	KMEM_ACCOUNTED_ACTIVE = 0, /* accounted by this cgroup itself */
365
	KMEM_ACCOUNTED_ACTIVATED, /* static key enabled. */
366
	KMEM_ACCOUNTED_DEAD, /* dead memcg with pending kmem charges */
367 368
};

369 370 371
/* We account when limit is on, but only after call sites are patched */
#define KMEM_ACCOUNTED_MASK \
		((1 << KMEM_ACCOUNTED_ACTIVE) | (1 << KMEM_ACCOUNTED_ACTIVATED))
372 373 374 375 376 377

#ifdef CONFIG_MEMCG_KMEM
static inline void memcg_kmem_set_active(struct mem_cgroup *memcg)
{
	set_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags);
}
378 379 380 381 382 383

static bool memcg_kmem_is_active(struct mem_cgroup *memcg)
{
	return test_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags);
}

384 385 386 387 388
static void memcg_kmem_set_activated(struct mem_cgroup *memcg)
{
	set_bit(KMEM_ACCOUNTED_ACTIVATED, &memcg->kmem_account_flags);
}

389 390 391 392 393
static void memcg_kmem_clear_activated(struct mem_cgroup *memcg)
{
	clear_bit(KMEM_ACCOUNTED_ACTIVATED, &memcg->kmem_account_flags);
}

394 395 396 397 398 399 400 401 402 403 404
static void memcg_kmem_mark_dead(struct mem_cgroup *memcg)
{
	if (test_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags))
		set_bit(KMEM_ACCOUNTED_DEAD, &memcg->kmem_account_flags);
}

static bool memcg_kmem_test_and_clear_dead(struct mem_cgroup *memcg)
{
	return test_and_clear_bit(KMEM_ACCOUNTED_DEAD,
				  &memcg->kmem_account_flags);
}
405 406
#endif

407 408 409 410 411 412
/* Stuffs for move charges at task migration. */
/*
 * Types of charges to be moved. "move_charge_at_immitgrate" is treated as a
 * left-shifted bitmap of these types.
 */
enum move_type {
413
	MOVE_CHARGE_TYPE_ANON,	/* private anonymous page and swap of it */
414
	MOVE_CHARGE_TYPE_FILE,	/* file page(including tmpfs) and swap of it */
415 416 417
	NR_MOVE_TYPE,
};

418 419
/* "mc" and its members are protected by cgroup_mutex */
static struct move_charge_struct {
420
	spinlock_t	  lock; /* for from, to */
421 422 423
	struct mem_cgroup *from;
	struct mem_cgroup *to;
	unsigned long precharge;
424
	unsigned long moved_charge;
425
	unsigned long moved_swap;
426 427 428
	struct task_struct *moving_task;	/* a task moving charges */
	wait_queue_head_t waitq;		/* a waitq for other context */
} mc = {
429
	.lock = __SPIN_LOCK_UNLOCKED(mc.lock),
430 431
	.waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
};
432

D
Daisuke Nishimura 已提交
433 434 435 436 437 438
static bool move_anon(void)
{
	return test_bit(MOVE_CHARGE_TYPE_ANON,
					&mc.to->move_charge_at_immigrate);
}

439 440 441 442 443 444
static bool move_file(void)
{
	return test_bit(MOVE_CHARGE_TYPE_FILE,
					&mc.to->move_charge_at_immigrate);
}

445 446 447 448
/*
 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
 * limit reclaim to prevent infinite loops, if they ever occur.
 */
449 450
#define	MEM_CGROUP_MAX_RECLAIM_LOOPS		100
#define	MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS	2
451

452 453
enum charge_type {
	MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
454
	MEM_CGROUP_CHARGE_TYPE_ANON,
K
KAMEZAWA Hiroyuki 已提交
455
	MEM_CGROUP_CHARGE_TYPE_SWAPOUT,	/* for accounting swapcache */
K
KAMEZAWA Hiroyuki 已提交
456
	MEM_CGROUP_CHARGE_TYPE_DROP,	/* a page was unused swap cache */
457 458 459
	NR_CHARGE_TYPE,
};

460
/* for encoding cft->private value on file */
G
Glauber Costa 已提交
461 462 463 464
enum res_type {
	_MEM,
	_MEMSWAP,
	_OOM_TYPE,
465
	_KMEM,
G
Glauber Costa 已提交
466 467
};

468 469
#define MEMFILE_PRIVATE(x, val)	((x) << 16 | (val))
#define MEMFILE_TYPE(val)	((val) >> 16 & 0xffff)
470
#define MEMFILE_ATTR(val)	((val) & 0xffff)
K
KAMEZAWA Hiroyuki 已提交
471 472
/* Used for OOM nofiier */
#define OOM_CONTROL		(0)
473

474 475 476 477 478 479 480 481
/*
 * Reclaim flags for mem_cgroup_hierarchical_reclaim
 */
#define MEM_CGROUP_RECLAIM_NOSWAP_BIT	0x0
#define MEM_CGROUP_RECLAIM_NOSWAP	(1 << MEM_CGROUP_RECLAIM_NOSWAP_BIT)
#define MEM_CGROUP_RECLAIM_SHRINK_BIT	0x1
#define MEM_CGROUP_RECLAIM_SHRINK	(1 << MEM_CGROUP_RECLAIM_SHRINK_BIT)

482 483
static void mem_cgroup_get(struct mem_cgroup *memcg);
static void mem_cgroup_put(struct mem_cgroup *memcg);
G
Glauber Costa 已提交
484

485 486 487 488 489 490
static inline
struct mem_cgroup *mem_cgroup_from_css(struct cgroup_subsys_state *s)
{
	return container_of(s, struct mem_cgroup, css);
}

491 492 493 494 495
static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
{
	return (memcg == root_mem_cgroup);
}

G
Glauber Costa 已提交
496
/* Writing them here to avoid exposing memcg's inner layout */
M
Michal Hocko 已提交
497
#if defined(CONFIG_INET) && defined(CONFIG_MEMCG_KMEM)
G
Glauber Costa 已提交
498 499 500

void sock_update_memcg(struct sock *sk)
{
501
	if (mem_cgroup_sockets_enabled) {
G
Glauber Costa 已提交
502
		struct mem_cgroup *memcg;
503
		struct cg_proto *cg_proto;
G
Glauber Costa 已提交
504 505 506

		BUG_ON(!sk->sk_prot->proto_cgroup);

507 508 509 510 511 512 513 514 515 516 517 518 519 520
		/* Socket cloning can throw us here with sk_cgrp already
		 * filled. It won't however, necessarily happen from
		 * process context. So the test for root memcg given
		 * the current task's memcg won't help us in this case.
		 *
		 * Respecting the original socket's memcg is a better
		 * decision in this case.
		 */
		if (sk->sk_cgrp) {
			BUG_ON(mem_cgroup_is_root(sk->sk_cgrp->memcg));
			mem_cgroup_get(sk->sk_cgrp->memcg);
			return;
		}

G
Glauber Costa 已提交
521 522
		rcu_read_lock();
		memcg = mem_cgroup_from_task(current);
523 524
		cg_proto = sk->sk_prot->proto_cgroup(memcg);
		if (!mem_cgroup_is_root(memcg) && memcg_proto_active(cg_proto)) {
G
Glauber Costa 已提交
525
			mem_cgroup_get(memcg);
526
			sk->sk_cgrp = cg_proto;
G
Glauber Costa 已提交
527 528 529 530 531 532 533 534
		}
		rcu_read_unlock();
	}
}
EXPORT_SYMBOL(sock_update_memcg);

void sock_release_memcg(struct sock *sk)
{
535
	if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
G
Glauber Costa 已提交
536 537 538 539 540 541
		struct mem_cgroup *memcg;
		WARN_ON(!sk->sk_cgrp->memcg);
		memcg = sk->sk_cgrp->memcg;
		mem_cgroup_put(memcg);
	}
}
G
Glauber Costa 已提交
542 543 544 545 546 547 548 549 550

struct cg_proto *tcp_proto_cgroup(struct mem_cgroup *memcg)
{
	if (!memcg || mem_cgroup_is_root(memcg))
		return NULL;

	return &memcg->tcp_mem.cg_proto;
}
EXPORT_SYMBOL(tcp_proto_cgroup);
G
Glauber Costa 已提交
551

552 553 554 555 556 557 558 559 560 561 562 563
static void disarm_sock_keys(struct mem_cgroup *memcg)
{
	if (!memcg_proto_activated(&memcg->tcp_mem.cg_proto))
		return;
	static_key_slow_dec(&memcg_socket_limit_enabled);
}
#else
static void disarm_sock_keys(struct mem_cgroup *memcg)
{
}
#endif

564
#ifdef CONFIG_MEMCG_KMEM
565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582
/*
 * This will be the memcg's index in each cache's ->memcg_params->memcg_caches.
 * There are two main reasons for not using the css_id for this:
 *  1) this works better in sparse environments, where we have a lot of memcgs,
 *     but only a few kmem-limited. Or also, if we have, for instance, 200
 *     memcgs, and none but the 200th is kmem-limited, we'd have to have a
 *     200 entry array for that.
 *
 *  2) In order not to violate the cgroup API, we would like to do all memory
 *     allocation in ->create(). At that point, we haven't yet allocated the
 *     css_id. Having a separate index prevents us from messing with the cgroup
 *     core for this
 *
 * The current size of the caches array is stored in
 * memcg_limited_groups_array_size.  It will double each time we have to
 * increase it.
 */
static DEFINE_IDA(kmem_limited_groups);
583 584
int memcg_limited_groups_array_size;

585 586 587 588 589 590 591 592 593 594 595 596 597 598 599
/*
 * MIN_SIZE is different than 1, because we would like to avoid going through
 * the alloc/free process all the time. In a small machine, 4 kmem-limited
 * cgroups is a reasonable guess. In the future, it could be a parameter or
 * tunable, but that is strictly not necessary.
 *
 * MAX_SIZE should be as large as the number of css_ids. Ideally, we could get
 * this constant directly from cgroup, but it is understandable that this is
 * better kept as an internal representation in cgroup.c. In any case, the
 * css_id space is not getting any smaller, and we don't have to necessarily
 * increase ours as well if it increases.
 */
#define MEMCG_CACHES_MIN_SIZE 4
#define MEMCG_CACHES_MAX_SIZE 65535

600 601 602 603 604 605
/*
 * A lot of the calls to the cache allocation functions are expected to be
 * inlined by the compiler. Since the calls to memcg_kmem_get_cache are
 * conditional to this static branch, we'll have to allow modules that does
 * kmem_cache_alloc and the such to see this symbol as well
 */
606
struct static_key memcg_kmem_enabled_key;
607
EXPORT_SYMBOL(memcg_kmem_enabled_key);
608 609 610

static void disarm_kmem_keys(struct mem_cgroup *memcg)
{
611
	if (memcg_kmem_is_active(memcg)) {
612
		static_key_slow_dec(&memcg_kmem_enabled_key);
613 614
		ida_simple_remove(&kmem_limited_groups, memcg->kmemcg_id);
	}
615 616 617 618 619
	/*
	 * This check can't live in kmem destruction function,
	 * since the charges will outlive the cgroup
	 */
	WARN_ON(res_counter_read_u64(&memcg->kmem, RES_USAGE) != 0);
620 621 622 623 624 625 626 627 628 629 630 631 632
}
#else
static void disarm_kmem_keys(struct mem_cgroup *memcg)
{
}
#endif /* CONFIG_MEMCG_KMEM */

static void disarm_static_keys(struct mem_cgroup *memcg)
{
	disarm_sock_keys(memcg);
	disarm_kmem_keys(memcg);
}

633
static void drain_all_stock_async(struct mem_cgroup *memcg);
634

635
static struct mem_cgroup_per_zone *
636
mem_cgroup_zoneinfo(struct mem_cgroup *memcg, int nid, int zid)
637
{
638
	return &memcg->info.nodeinfo[nid]->zoneinfo[zid];
639 640
}

641
struct cgroup_subsys_state *mem_cgroup_css(struct mem_cgroup *memcg)
642
{
643
	return &memcg->css;
644 645
}

646
static struct mem_cgroup_per_zone *
647
page_cgroup_zoneinfo(struct mem_cgroup *memcg, struct page *page)
648
{
649 650
	int nid = page_to_nid(page);
	int zid = page_zonenum(page);
651

652
	return mem_cgroup_zoneinfo(memcg, nid, zid);
653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670
}

static struct mem_cgroup_tree_per_zone *
soft_limit_tree_node_zone(int nid, int zid)
{
	return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
}

static struct mem_cgroup_tree_per_zone *
soft_limit_tree_from_page(struct page *page)
{
	int nid = page_to_nid(page);
	int zid = page_zonenum(page);

	return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
}

static void
671
__mem_cgroup_insert_exceeded(struct mem_cgroup *memcg,
672
				struct mem_cgroup_per_zone *mz,
673 674
				struct mem_cgroup_tree_per_zone *mctz,
				unsigned long long new_usage_in_excess)
675 676 677 678 679 680 681 682
{
	struct rb_node **p = &mctz->rb_root.rb_node;
	struct rb_node *parent = NULL;
	struct mem_cgroup_per_zone *mz_node;

	if (mz->on_tree)
		return;

683 684 685
	mz->usage_in_excess = new_usage_in_excess;
	if (!mz->usage_in_excess)
		return;
686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701
	while (*p) {
		parent = *p;
		mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
					tree_node);
		if (mz->usage_in_excess < mz_node->usage_in_excess)
			p = &(*p)->rb_left;
		/*
		 * We can't avoid mem cgroups that are over their soft
		 * limit by the same amount
		 */
		else if (mz->usage_in_excess >= mz_node->usage_in_excess)
			p = &(*p)->rb_right;
	}
	rb_link_node(&mz->tree_node, parent, p);
	rb_insert_color(&mz->tree_node, &mctz->rb_root);
	mz->on_tree = true;
702 703 704
}

static void
705
__mem_cgroup_remove_exceeded(struct mem_cgroup *memcg,
706 707 708 709 710 711 712 713 714
				struct mem_cgroup_per_zone *mz,
				struct mem_cgroup_tree_per_zone *mctz)
{
	if (!mz->on_tree)
		return;
	rb_erase(&mz->tree_node, &mctz->rb_root);
	mz->on_tree = false;
}

715
static void
716
mem_cgroup_remove_exceeded(struct mem_cgroup *memcg,
717 718 719 720
				struct mem_cgroup_per_zone *mz,
				struct mem_cgroup_tree_per_zone *mctz)
{
	spin_lock(&mctz->lock);
721
	__mem_cgroup_remove_exceeded(memcg, mz, mctz);
722 723 724 725
	spin_unlock(&mctz->lock);
}


726
static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
727
{
728
	unsigned long long excess;
729 730
	struct mem_cgroup_per_zone *mz;
	struct mem_cgroup_tree_per_zone *mctz;
731 732
	int nid = page_to_nid(page);
	int zid = page_zonenum(page);
733 734 735
	mctz = soft_limit_tree_from_page(page);

	/*
736 737
	 * Necessary to update all ancestors when hierarchy is used.
	 * because their event counter is not touched.
738
	 */
739 740 741
	for (; memcg; memcg = parent_mem_cgroup(memcg)) {
		mz = mem_cgroup_zoneinfo(memcg, nid, zid);
		excess = res_counter_soft_limit_excess(&memcg->res);
742 743 744 745
		/*
		 * We have to update the tree if mz is on RB-tree or
		 * mem is over its softlimit.
		 */
746
		if (excess || mz->on_tree) {
747 748 749
			spin_lock(&mctz->lock);
			/* if on-tree, remove it */
			if (mz->on_tree)
750
				__mem_cgroup_remove_exceeded(memcg, mz, mctz);
751
			/*
752 753
			 * Insert again. mz->usage_in_excess will be updated.
			 * If excess is 0, no tree ops.
754
			 */
755
			__mem_cgroup_insert_exceeded(memcg, mz, mctz, excess);
756 757
			spin_unlock(&mctz->lock);
		}
758 759 760
	}
}

761
static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
762 763 764 765 766
{
	int node, zone;
	struct mem_cgroup_per_zone *mz;
	struct mem_cgroup_tree_per_zone *mctz;

B
Bob Liu 已提交
767
	for_each_node(node) {
768
		for (zone = 0; zone < MAX_NR_ZONES; zone++) {
769
			mz = mem_cgroup_zoneinfo(memcg, node, zone);
770
			mctz = soft_limit_tree_node_zone(node, zone);
771
			mem_cgroup_remove_exceeded(memcg, mz, mctz);
772 773 774 775
		}
	}
}

776 777 778 779
static struct mem_cgroup_per_zone *
__mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
{
	struct rb_node *rightmost = NULL;
780
	struct mem_cgroup_per_zone *mz;
781 782

retry:
783
	mz = NULL;
784 785 786 787 788 789 790 791 792 793
	rightmost = rb_last(&mctz->rb_root);
	if (!rightmost)
		goto done;		/* Nothing to reclaim from */

	mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
	/*
	 * Remove the node now but someone else can add it back,
	 * we will to add it back at the end of reclaim to its correct
	 * position in the tree.
	 */
794 795 796
	__mem_cgroup_remove_exceeded(mz->memcg, mz, mctz);
	if (!res_counter_soft_limit_excess(&mz->memcg->res) ||
		!css_tryget(&mz->memcg->css))
797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812
		goto retry;
done:
	return mz;
}

static struct mem_cgroup_per_zone *
mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
{
	struct mem_cgroup_per_zone *mz;

	spin_lock(&mctz->lock);
	mz = __mem_cgroup_largest_soft_limit_node(mctz);
	spin_unlock(&mctz->lock);
	return mz;
}

813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831
/*
 * Implementation Note: reading percpu statistics for memcg.
 *
 * Both of vmstat[] and percpu_counter has threshold and do periodic
 * synchronization to implement "quick" read. There are trade-off between
 * reading cost and precision of value. Then, we may have a chance to implement
 * a periodic synchronizion of counter in memcg's counter.
 *
 * But this _read() function is used for user interface now. The user accounts
 * memory usage by memory cgroup and he _always_ requires exact value because
 * he accounts memory. Even if we provide quick-and-fuzzy read, we always
 * have to visit all online cpus and make sum. So, for now, unnecessary
 * synchronization is not implemented. (just implemented for cpu hotplug)
 *
 * If there are kernel internal actions which can make use of some not-exact
 * value, and reading all cpu value can be performance bottleneck in some
 * common workload, threashold and synchonization as vmstat[] should be
 * implemented.
 */
832
static long mem_cgroup_read_stat(struct mem_cgroup *memcg,
833
				 enum mem_cgroup_stat_index idx)
834
{
835
	long val = 0;
836 837
	int cpu;

838 839
	get_online_cpus();
	for_each_online_cpu(cpu)
840
		val += per_cpu(memcg->stat->count[idx], cpu);
841
#ifdef CONFIG_HOTPLUG_CPU
842 843 844
	spin_lock(&memcg->pcp_counter_lock);
	val += memcg->nocpu_base.count[idx];
	spin_unlock(&memcg->pcp_counter_lock);
845 846
#endif
	put_online_cpus();
847 848 849
	return val;
}

850
static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg,
851 852 853
					 bool charge)
{
	int val = (charge) ? 1 : -1;
854
	this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_SWAP], val);
855 856
}

857
static unsigned long mem_cgroup_read_events(struct mem_cgroup *memcg,
858 859 860 861 862 863
					    enum mem_cgroup_events_index idx)
{
	unsigned long val = 0;
	int cpu;

	for_each_online_cpu(cpu)
864
		val += per_cpu(memcg->stat->events[idx], cpu);
865
#ifdef CONFIG_HOTPLUG_CPU
866 867 868
	spin_lock(&memcg->pcp_counter_lock);
	val += memcg->nocpu_base.events[idx];
	spin_unlock(&memcg->pcp_counter_lock);
869 870 871 872
#endif
	return val;
}

873
static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
874
					 bool anon, int nr_pages)
875
{
876 877
	preempt_disable();

878 879 880 881 882 883
	/*
	 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
	 * counted as CACHE even if it's on ANON LRU.
	 */
	if (anon)
		__this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS],
884
				nr_pages);
885
	else
886
		__this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_CACHE],
887
				nr_pages);
888

889 890
	/* pagein of a big page is an event. So, ignore page size */
	if (nr_pages > 0)
891
		__this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGIN]);
892
	else {
893
		__this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]);
894 895
		nr_pages = -nr_pages; /* for event */
	}
896

897
	__this_cpu_add(memcg->stat->nr_page_events, nr_pages);
898

899
	preempt_enable();
900 901
}

902
unsigned long
903
mem_cgroup_get_lru_size(struct lruvec *lruvec, enum lru_list lru)
904 905 906 907 908 909 910 911
{
	struct mem_cgroup_per_zone *mz;

	mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
	return mz->lru_size[lru];
}

static unsigned long
912
mem_cgroup_zone_nr_lru_pages(struct mem_cgroup *memcg, int nid, int zid,
913
			unsigned int lru_mask)
914 915
{
	struct mem_cgroup_per_zone *mz;
H
Hugh Dickins 已提交
916
	enum lru_list lru;
917 918
	unsigned long ret = 0;

919
	mz = mem_cgroup_zoneinfo(memcg, nid, zid);
920

H
Hugh Dickins 已提交
921 922 923
	for_each_lru(lru) {
		if (BIT(lru) & lru_mask)
			ret += mz->lru_size[lru];
924 925 926 927 928
	}
	return ret;
}

static unsigned long
929
mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
930 931
			int nid, unsigned int lru_mask)
{
932 933 934
	u64 total = 0;
	int zid;

935
	for (zid = 0; zid < MAX_NR_ZONES; zid++)
936 937
		total += mem_cgroup_zone_nr_lru_pages(memcg,
						nid, zid, lru_mask);
938

939 940
	return total;
}
941

942
static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
943
			unsigned int lru_mask)
944
{
945
	int nid;
946 947
	u64 total = 0;

948
	for_each_node_state(nid, N_MEMORY)
949
		total += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask);
950
	return total;
951 952
}

953 954
static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
				       enum mem_cgroup_events_target target)
955 956 957
{
	unsigned long val, next;

958
	val = __this_cpu_read(memcg->stat->nr_page_events);
959
	next = __this_cpu_read(memcg->stat->targets[target]);
960
	/* from time_after() in jiffies.h */
961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976
	if ((long)next - (long)val < 0) {
		switch (target) {
		case MEM_CGROUP_TARGET_THRESH:
			next = val + THRESHOLDS_EVENTS_TARGET;
			break;
		case MEM_CGROUP_TARGET_SOFTLIMIT:
			next = val + SOFTLIMIT_EVENTS_TARGET;
			break;
		case MEM_CGROUP_TARGET_NUMAINFO:
			next = val + NUMAINFO_EVENTS_TARGET;
			break;
		default:
			break;
		}
		__this_cpu_write(memcg->stat->targets[target], next);
		return true;
977
	}
978
	return false;
979 980 981 982 983 984
}

/*
 * Check events in order.
 *
 */
985
static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
986
{
987
	preempt_disable();
988
	/* threshold event is triggered in finer grain than soft limit */
989 990
	if (unlikely(mem_cgroup_event_ratelimit(memcg,
						MEM_CGROUP_TARGET_THRESH))) {
991 992
		bool do_softlimit;
		bool do_numainfo __maybe_unused;
993 994 995 996 997 998 999 1000 1001

		do_softlimit = mem_cgroup_event_ratelimit(memcg,
						MEM_CGROUP_TARGET_SOFTLIMIT);
#if MAX_NUMNODES > 1
		do_numainfo = mem_cgroup_event_ratelimit(memcg,
						MEM_CGROUP_TARGET_NUMAINFO);
#endif
		preempt_enable();

1002
		mem_cgroup_threshold(memcg);
1003
		if (unlikely(do_softlimit))
1004
			mem_cgroup_update_tree(memcg, page);
1005
#if MAX_NUMNODES > 1
1006
		if (unlikely(do_numainfo))
1007
			atomic_inc(&memcg->numainfo_events);
1008
#endif
1009 1010
	} else
		preempt_enable();
1011 1012
}

G
Glauber Costa 已提交
1013
struct mem_cgroup *mem_cgroup_from_cont(struct cgroup *cont)
B
Balbir Singh 已提交
1014
{
1015 1016
	return mem_cgroup_from_css(
		cgroup_subsys_state(cont, mem_cgroup_subsys_id));
B
Balbir Singh 已提交
1017 1018
}

1019
struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
1020
{
1021 1022 1023 1024 1025 1026 1027 1028
	/*
	 * mm_update_next_owner() may clear mm->owner to NULL
	 * if it races with swapoff, page migration, etc.
	 * So this can be called with p == NULL.
	 */
	if (unlikely(!p))
		return NULL;

1029
	return mem_cgroup_from_css(task_subsys_state(p, mem_cgroup_subsys_id));
1030 1031
}

1032
struct mem_cgroup *try_get_mem_cgroup_from_mm(struct mm_struct *mm)
1033
{
1034
	struct mem_cgroup *memcg = NULL;
1035 1036 1037

	if (!mm)
		return NULL;
1038 1039 1040 1041 1042 1043 1044
	/*
	 * Because we have no locks, mm->owner's may be being moved to other
	 * cgroup. We use css_tryget() here even if this looks
	 * pessimistic (rather than adding locks here).
	 */
	rcu_read_lock();
	do {
1045 1046
		memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
		if (unlikely(!memcg))
1047
			break;
1048
	} while (!css_tryget(&memcg->css));
1049
	rcu_read_unlock();
1050
	return memcg;
1051 1052
}

1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072
/**
 * mem_cgroup_iter - iterate over memory cgroup hierarchy
 * @root: hierarchy root
 * @prev: previously returned memcg, NULL on first invocation
 * @reclaim: cookie for shared reclaim walks, NULL for full walks
 *
 * Returns references to children of the hierarchy below @root, or
 * @root itself, or %NULL after a full round-trip.
 *
 * Caller must pass the return value in @prev on subsequent
 * invocations for reference counting, or use mem_cgroup_iter_break()
 * to cancel a hierarchy walk before the round-trip is complete.
 *
 * Reclaimers can specify a zone and a priority level in @reclaim to
 * divide up the memcgs in the hierarchy among all concurrent
 * reclaimers operating on the same zone and priority.
 */
struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
				   struct mem_cgroup *prev,
				   struct mem_cgroup_reclaim_cookie *reclaim)
K
KAMEZAWA Hiroyuki 已提交
1073
{
1074 1075
	struct mem_cgroup *memcg = NULL;
	int id = 0;
1076

1077 1078 1079
	if (mem_cgroup_disabled())
		return NULL;

1080 1081
	if (!root)
		root = root_mem_cgroup;
K
KAMEZAWA Hiroyuki 已提交
1082

1083 1084
	if (prev && !reclaim)
		id = css_id(&prev->css);
K
KAMEZAWA Hiroyuki 已提交
1085

1086 1087
	if (prev && prev != root)
		css_put(&prev->css);
K
KAMEZAWA Hiroyuki 已提交
1088

1089 1090 1091 1092 1093
	if (!root->use_hierarchy && root != root_mem_cgroup) {
		if (prev)
			return NULL;
		return root;
	}
K
KAMEZAWA Hiroyuki 已提交
1094

1095
	while (!memcg) {
1096
		struct mem_cgroup_reclaim_iter *uninitialized_var(iter);
1097
		struct cgroup_subsys_state *css;
1098

1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109
		if (reclaim) {
			int nid = zone_to_nid(reclaim->zone);
			int zid = zone_idx(reclaim->zone);
			struct mem_cgroup_per_zone *mz;

			mz = mem_cgroup_zoneinfo(root, nid, zid);
			iter = &mz->reclaim_iter[reclaim->priority];
			if (prev && reclaim->generation != iter->generation)
				return NULL;
			id = iter->position;
		}
K
KAMEZAWA Hiroyuki 已提交
1110

1111 1112 1113 1114
		rcu_read_lock();
		css = css_get_next(&mem_cgroup_subsys, id + 1, &root->css, &id);
		if (css) {
			if (css == &root->css || css_tryget(css))
1115
				memcg = mem_cgroup_from_css(css);
1116 1117
		} else
			id = 0;
K
KAMEZAWA Hiroyuki 已提交
1118 1119
		rcu_read_unlock();

1120 1121 1122 1123 1124 1125 1126
		if (reclaim) {
			iter->position = id;
			if (!css)
				iter->generation++;
			else if (!prev && memcg)
				reclaim->generation = iter->generation;
		}
1127 1128 1129 1130 1131

		if (prev && !css)
			return NULL;
	}
	return memcg;
K
KAMEZAWA Hiroyuki 已提交
1132
}
K
KAMEZAWA Hiroyuki 已提交
1133

1134 1135 1136 1137 1138 1139 1140
/**
 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
 * @root: hierarchy root
 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
 */
void mem_cgroup_iter_break(struct mem_cgroup *root,
			   struct mem_cgroup *prev)
1141 1142 1143 1144 1145 1146
{
	if (!root)
		root = root_mem_cgroup;
	if (prev && prev != root)
		css_put(&prev->css);
}
K
KAMEZAWA Hiroyuki 已提交
1147

1148 1149 1150 1151 1152 1153
/*
 * Iteration constructs for visiting all cgroups (under a tree).  If
 * loops are exited prematurely (break), mem_cgroup_iter_break() must
 * be used for reference counting.
 */
#define for_each_mem_cgroup_tree(iter, root)		\
1154
	for (iter = mem_cgroup_iter(root, NULL, NULL);	\
1155
	     iter != NULL;				\
1156
	     iter = mem_cgroup_iter(root, iter, NULL))
1157

1158
#define for_each_mem_cgroup(iter)			\
1159
	for (iter = mem_cgroup_iter(NULL, NULL, NULL);	\
1160
	     iter != NULL;				\
1161
	     iter = mem_cgroup_iter(NULL, iter, NULL))
K
KAMEZAWA Hiroyuki 已提交
1162

1163
void __mem_cgroup_count_vm_event(struct mm_struct *mm, enum vm_event_item idx)
1164
{
1165
	struct mem_cgroup *memcg;
1166 1167

	rcu_read_lock();
1168 1169
	memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
	if (unlikely(!memcg))
1170 1171 1172 1173
		goto out;

	switch (idx) {
	case PGFAULT:
1174 1175 1176 1177
		this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGFAULT]);
		break;
	case PGMAJFAULT:
		this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGMAJFAULT]);
1178 1179 1180 1181 1182 1183 1184
		break;
	default:
		BUG();
	}
out:
	rcu_read_unlock();
}
1185
EXPORT_SYMBOL(__mem_cgroup_count_vm_event);
1186

1187 1188 1189
/**
 * mem_cgroup_zone_lruvec - get the lru list vector for a zone and memcg
 * @zone: zone of the wanted lruvec
1190
 * @memcg: memcg of the wanted lruvec
1191 1192 1193 1194 1195 1196 1197 1198 1199
 *
 * Returns the lru list vector holding pages for the given @zone and
 * @mem.  This can be the global zone lruvec, if the memory controller
 * is disabled.
 */
struct lruvec *mem_cgroup_zone_lruvec(struct zone *zone,
				      struct mem_cgroup *memcg)
{
	struct mem_cgroup_per_zone *mz;
1200
	struct lruvec *lruvec;
1201

1202 1203 1204 1205
	if (mem_cgroup_disabled()) {
		lruvec = &zone->lruvec;
		goto out;
	}
1206 1207

	mz = mem_cgroup_zoneinfo(memcg, zone_to_nid(zone), zone_idx(zone));
1208 1209 1210 1211 1212 1213 1214 1215 1216 1217
	lruvec = &mz->lruvec;
out:
	/*
	 * Since a node can be onlined after the mem_cgroup was created,
	 * we have to be prepared to initialize lruvec->zone here;
	 * and if offlined then reonlined, we need to reinitialize it.
	 */
	if (unlikely(lruvec->zone != zone))
		lruvec->zone = zone;
	return lruvec;
1218 1219
}

K
KAMEZAWA Hiroyuki 已提交
1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232
/*
 * Following LRU functions are allowed to be used without PCG_LOCK.
 * Operations are called by routine of global LRU independently from memcg.
 * What we have to take care of here is validness of pc->mem_cgroup.
 *
 * Changes to pc->mem_cgroup happens when
 * 1. charge
 * 2. moving account
 * In typical case, "charge" is done before add-to-lru. Exception is SwapCache.
 * It is added to LRU before charge.
 * If PCG_USED bit is not set, page_cgroup is not added to this private LRU.
 * When moving account, the page is not on LRU. It's isolated.
 */
1233

1234
/**
1235
 * mem_cgroup_page_lruvec - return lruvec for adding an lru page
1236
 * @page: the page
1237
 * @zone: zone of the page
1238
 */
1239
struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct zone *zone)
K
KAMEZAWA Hiroyuki 已提交
1240 1241
{
	struct mem_cgroup_per_zone *mz;
1242 1243
	struct mem_cgroup *memcg;
	struct page_cgroup *pc;
1244
	struct lruvec *lruvec;
1245

1246 1247 1248 1249
	if (mem_cgroup_disabled()) {
		lruvec = &zone->lruvec;
		goto out;
	}
1250

K
KAMEZAWA Hiroyuki 已提交
1251
	pc = lookup_page_cgroup(page);
1252
	memcg = pc->mem_cgroup;
1253 1254

	/*
1255
	 * Surreptitiously switch any uncharged offlist page to root:
1256 1257 1258 1259 1260 1261 1262
	 * an uncharged page off lru does nothing to secure
	 * its former mem_cgroup from sudden removal.
	 *
	 * Our caller holds lru_lock, and PageCgroupUsed is updated
	 * under page_cgroup lock: between them, they make all uses
	 * of pc->mem_cgroup safe.
	 */
1263
	if (!PageLRU(page) && !PageCgroupUsed(pc) && memcg != root_mem_cgroup)
1264 1265
		pc->mem_cgroup = memcg = root_mem_cgroup;

1266
	mz = page_cgroup_zoneinfo(memcg, page);
1267 1268 1269 1270 1271 1272 1273 1274 1275 1276
	lruvec = &mz->lruvec;
out:
	/*
	 * Since a node can be onlined after the mem_cgroup was created,
	 * we have to be prepared to initialize lruvec->zone here;
	 * and if offlined then reonlined, we need to reinitialize it.
	 */
	if (unlikely(lruvec->zone != zone))
		lruvec->zone = zone;
	return lruvec;
K
KAMEZAWA Hiroyuki 已提交
1277
}
1278

1279
/**
1280 1281 1282 1283
 * mem_cgroup_update_lru_size - account for adding or removing an lru page
 * @lruvec: mem_cgroup per zone lru vector
 * @lru: index of lru list the page is sitting on
 * @nr_pages: positive when adding or negative when removing
1284
 *
1285 1286
 * This function must be called when a page is added to or removed from an
 * lru list.
1287
 */
1288 1289
void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
				int nr_pages)
1290 1291
{
	struct mem_cgroup_per_zone *mz;
1292
	unsigned long *lru_size;
1293 1294 1295 1296

	if (mem_cgroup_disabled())
		return;

1297 1298 1299 1300
	mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
	lru_size = mz->lru_size + lru;
	*lru_size += nr_pages;
	VM_BUG_ON((long)(*lru_size) < 0);
K
KAMEZAWA Hiroyuki 已提交
1301
}
1302

1303
/*
1304
 * Checks whether given mem is same or in the root_mem_cgroup's
1305 1306
 * hierarchy subtree
 */
1307 1308
bool __mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg,
				  struct mem_cgroup *memcg)
1309
{
1310 1311
	if (root_memcg == memcg)
		return true;
1312
	if (!root_memcg->use_hierarchy || !memcg)
1313
		return false;
1314 1315 1316 1317 1318 1319 1320 1321
	return css_is_ancestor(&memcg->css, &root_memcg->css);
}

static bool mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg,
				       struct mem_cgroup *memcg)
{
	bool ret;

1322
	rcu_read_lock();
1323
	ret = __mem_cgroup_same_or_subtree(root_memcg, memcg);
1324 1325
	rcu_read_unlock();
	return ret;
1326 1327
}

1328
int task_in_mem_cgroup(struct task_struct *task, const struct mem_cgroup *memcg)
1329 1330
{
	int ret;
1331
	struct mem_cgroup *curr = NULL;
1332
	struct task_struct *p;
1333

1334
	p = find_lock_task_mm(task);
1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349
	if (p) {
		curr = try_get_mem_cgroup_from_mm(p->mm);
		task_unlock(p);
	} else {
		/*
		 * All threads may have already detached their mm's, but the oom
		 * killer still needs to detect if they have already been oom
		 * killed to prevent needlessly killing additional tasks.
		 */
		task_lock(task);
		curr = mem_cgroup_from_task(task);
		if (curr)
			css_get(&curr->css);
		task_unlock(task);
	}
1350 1351
	if (!curr)
		return 0;
1352
	/*
1353
	 * We should check use_hierarchy of "memcg" not "curr". Because checking
1354
	 * use_hierarchy of "curr" here make this function true if hierarchy is
1355 1356
	 * enabled in "curr" and "curr" is a child of "memcg" in *cgroup*
	 * hierarchy(even if use_hierarchy is disabled in "memcg").
1357
	 */
1358
	ret = mem_cgroup_same_or_subtree(memcg, curr);
1359
	css_put(&curr->css);
1360 1361 1362
	return ret;
}

1363
int mem_cgroup_inactive_anon_is_low(struct lruvec *lruvec)
1364
{
1365
	unsigned long inactive_ratio;
1366
	unsigned long inactive;
1367
	unsigned long active;
1368
	unsigned long gb;
1369

1370 1371
	inactive = mem_cgroup_get_lru_size(lruvec, LRU_INACTIVE_ANON);
	active = mem_cgroup_get_lru_size(lruvec, LRU_ACTIVE_ANON);
1372

1373 1374 1375 1376 1377 1378
	gb = (inactive + active) >> (30 - PAGE_SHIFT);
	if (gb)
		inactive_ratio = int_sqrt(10 * gb);
	else
		inactive_ratio = 1;

1379
	return inactive * inactive_ratio < active;
1380 1381
}

1382
int mem_cgroup_inactive_file_is_low(struct lruvec *lruvec)
1383 1384 1385 1386
{
	unsigned long active;
	unsigned long inactive;

1387 1388
	inactive = mem_cgroup_get_lru_size(lruvec, LRU_INACTIVE_FILE);
	active = mem_cgroup_get_lru_size(lruvec, LRU_ACTIVE_FILE);
1389 1390 1391 1392

	return (active > inactive);
}

1393 1394 1395
#define mem_cgroup_from_res_counter(counter, member)	\
	container_of(counter, struct mem_cgroup, member)

1396
/**
1397
 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
W
Wanpeng Li 已提交
1398
 * @memcg: the memory cgroup
1399
 *
1400
 * Returns the maximum amount of memory @mem can be charged with, in
1401
 * pages.
1402
 */
1403
static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1404
{
1405 1406
	unsigned long long margin;

1407
	margin = res_counter_margin(&memcg->res);
1408
	if (do_swap_account)
1409
		margin = min(margin, res_counter_margin(&memcg->memsw));
1410
	return margin >> PAGE_SHIFT;
1411 1412
}

1413
int mem_cgroup_swappiness(struct mem_cgroup *memcg)
K
KOSAKI Motohiro 已提交
1414 1415 1416 1417 1418 1419 1420
{
	struct cgroup *cgrp = memcg->css.cgroup;

	/* root ? */
	if (cgrp->parent == NULL)
		return vm_swappiness;

1421
	return memcg->swappiness;
K
KOSAKI Motohiro 已提交
1422 1423
}

1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437
/*
 * memcg->moving_account is used for checking possibility that some thread is
 * calling move_account(). When a thread on CPU-A starts moving pages under
 * a memcg, other threads should check memcg->moving_account under
 * rcu_read_lock(), like this:
 *
 *         CPU-A                                    CPU-B
 *                                              rcu_read_lock()
 *         memcg->moving_account+1              if (memcg->mocing_account)
 *                                                   take heavy locks.
 *         synchronize_rcu()                    update something.
 *                                              rcu_read_unlock()
 *         start move here.
 */
1438 1439 1440 1441

/* for quick checking without looking up memcg */
atomic_t memcg_moving __read_mostly;

1442
static void mem_cgroup_start_move(struct mem_cgroup *memcg)
1443
{
1444
	atomic_inc(&memcg_moving);
1445
	atomic_inc(&memcg->moving_account);
1446 1447 1448
	synchronize_rcu();
}

1449
static void mem_cgroup_end_move(struct mem_cgroup *memcg)
1450
{
1451 1452 1453 1454
	/*
	 * Now, mem_cgroup_clear_mc() may call this function with NULL.
	 * We check NULL in callee rather than caller.
	 */
1455 1456
	if (memcg) {
		atomic_dec(&memcg_moving);
1457
		atomic_dec(&memcg->moving_account);
1458
	}
1459
}
1460

1461 1462 1463
/*
 * 2 routines for checking "mem" is under move_account() or not.
 *
1464 1465
 * mem_cgroup_stolen() -  checking whether a cgroup is mc.from or not. This
 *			  is used for avoiding races in accounting.  If true,
1466 1467 1468 1469 1470 1471 1472
 *			  pc->mem_cgroup may be overwritten.
 *
 * mem_cgroup_under_move() - checking a cgroup is mc.from or mc.to or
 *			  under hierarchy of moving cgroups. This is for
 *			  waiting at hith-memory prressure caused by "move".
 */

1473
static bool mem_cgroup_stolen(struct mem_cgroup *memcg)
1474 1475
{
	VM_BUG_ON(!rcu_read_lock_held());
1476
	return atomic_read(&memcg->moving_account) > 0;
1477
}
1478

1479
static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
1480
{
1481 1482
	struct mem_cgroup *from;
	struct mem_cgroup *to;
1483
	bool ret = false;
1484 1485 1486 1487 1488 1489 1490 1491 1492
	/*
	 * Unlike task_move routines, we access mc.to, mc.from not under
	 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
	 */
	spin_lock(&mc.lock);
	from = mc.from;
	to = mc.to;
	if (!from)
		goto unlock;
1493

1494 1495
	ret = mem_cgroup_same_or_subtree(memcg, from)
		|| mem_cgroup_same_or_subtree(memcg, to);
1496 1497
unlock:
	spin_unlock(&mc.lock);
1498 1499 1500
	return ret;
}

1501
static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1502 1503
{
	if (mc.moving_task && current != mc.moving_task) {
1504
		if (mem_cgroup_under_move(memcg)) {
1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516
			DEFINE_WAIT(wait);
			prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
			/* moving charge context might have finished. */
			if (mc.moving_task)
				schedule();
			finish_wait(&mc.waitq, &wait);
			return true;
		}
	}
	return false;
}

1517 1518 1519 1520
/*
 * Take this lock when
 * - a code tries to modify page's memcg while it's USED.
 * - a code tries to modify page state accounting in a memcg.
1521
 * see mem_cgroup_stolen(), too.
1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534
 */
static void move_lock_mem_cgroup(struct mem_cgroup *memcg,
				  unsigned long *flags)
{
	spin_lock_irqsave(&memcg->move_lock, *flags);
}

static void move_unlock_mem_cgroup(struct mem_cgroup *memcg,
				unsigned long *flags)
{
	spin_unlock_irqrestore(&memcg->move_lock, *flags);
}

1535
#define K(x) ((x) << (PAGE_SHIFT-10))
1536
/**
1537
 * mem_cgroup_print_oom_info: Print OOM information relevant to memory controller.
1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554
 * @memcg: The memory cgroup that went over limit
 * @p: Task that is going to be killed
 *
 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
 * enabled
 */
void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
{
	struct cgroup *task_cgrp;
	struct cgroup *mem_cgrp;
	/*
	 * Need a buffer in BSS, can't rely on allocations. The code relies
	 * on the assumption that OOM is serialized for memory controller.
	 * If this assumption is broken, revisit this code.
	 */
	static char memcg_name[PATH_MAX];
	int ret;
1555 1556
	struct mem_cgroup *iter;
	unsigned int i;
1557

1558
	if (!p)
1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576
		return;

	rcu_read_lock();

	mem_cgrp = memcg->css.cgroup;
	task_cgrp = task_cgroup(p, mem_cgroup_subsys_id);

	ret = cgroup_path(task_cgrp, memcg_name, PATH_MAX);
	if (ret < 0) {
		/*
		 * Unfortunately, we are unable to convert to a useful name
		 * But we'll still print out the usage information
		 */
		rcu_read_unlock();
		goto done;
	}
	rcu_read_unlock();

1577
	pr_info("Task in %s killed", memcg_name);
1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589

	rcu_read_lock();
	ret = cgroup_path(mem_cgrp, memcg_name, PATH_MAX);
	if (ret < 0) {
		rcu_read_unlock();
		goto done;
	}
	rcu_read_unlock();

	/*
	 * Continues from above, so we don't need an KERN_ level
	 */
1590
	pr_cont(" as a result of limit of %s\n", memcg_name);
1591 1592
done:

1593
	pr_info("memory: usage %llukB, limit %llukB, failcnt %llu\n",
1594 1595 1596
		res_counter_read_u64(&memcg->res, RES_USAGE) >> 10,
		res_counter_read_u64(&memcg->res, RES_LIMIT) >> 10,
		res_counter_read_u64(&memcg->res, RES_FAILCNT));
1597
	pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %llu\n",
1598 1599 1600
		res_counter_read_u64(&memcg->memsw, RES_USAGE) >> 10,
		res_counter_read_u64(&memcg->memsw, RES_LIMIT) >> 10,
		res_counter_read_u64(&memcg->memsw, RES_FAILCNT));
1601
	pr_info("kmem: usage %llukB, limit %llukB, failcnt %llu\n",
1602 1603 1604
		res_counter_read_u64(&memcg->kmem, RES_USAGE) >> 10,
		res_counter_read_u64(&memcg->kmem, RES_LIMIT) >> 10,
		res_counter_read_u64(&memcg->kmem, RES_FAILCNT));
1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628

	for_each_mem_cgroup_tree(iter, memcg) {
		pr_info("Memory cgroup stats");

		rcu_read_lock();
		ret = cgroup_path(iter->css.cgroup, memcg_name, PATH_MAX);
		if (!ret)
			pr_cont(" for %s", memcg_name);
		rcu_read_unlock();
		pr_cont(":");

		for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
			if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
				continue;
			pr_cont(" %s:%ldKB", mem_cgroup_stat_names[i],
				K(mem_cgroup_read_stat(iter, i)));
		}

		for (i = 0; i < NR_LRU_LISTS; i++)
			pr_cont(" %s:%luKB", mem_cgroup_lru_names[i],
				K(mem_cgroup_nr_lru_pages(iter, BIT(i))));

		pr_cont("\n");
	}
1629 1630
}

1631 1632 1633 1634
/*
 * This function returns the number of memcg under hierarchy tree. Returns
 * 1(self count) if no children.
 */
1635
static int mem_cgroup_count_children(struct mem_cgroup *memcg)
1636 1637
{
	int num = 0;
K
KAMEZAWA Hiroyuki 已提交
1638 1639
	struct mem_cgroup *iter;

1640
	for_each_mem_cgroup_tree(iter, memcg)
K
KAMEZAWA Hiroyuki 已提交
1641
		num++;
1642 1643 1644
	return num;
}

D
David Rientjes 已提交
1645 1646 1647
/*
 * Return the memory (and swap, if configured) limit for a memcg.
 */
1648
static u64 mem_cgroup_get_limit(struct mem_cgroup *memcg)
D
David Rientjes 已提交
1649 1650 1651
{
	u64 limit;

1652 1653
	limit = res_counter_read_u64(&memcg->res, RES_LIMIT);

D
David Rientjes 已提交
1654
	/*
1655
	 * Do not consider swap space if we cannot swap due to swappiness
D
David Rientjes 已提交
1656
	 */
1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670
	if (mem_cgroup_swappiness(memcg)) {
		u64 memsw;

		limit += total_swap_pages << PAGE_SHIFT;
		memsw = res_counter_read_u64(&memcg->memsw, RES_LIMIT);

		/*
		 * If memsw is finite and limits the amount of swap space
		 * available to this memcg, return that limit.
		 */
		limit = min(limit, memsw);
	}

	return limit;
D
David Rientjes 已提交
1671 1672
}

1673 1674
static void mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
				     int order)
1675 1676 1677 1678 1679 1680 1681
{
	struct mem_cgroup *iter;
	unsigned long chosen_points = 0;
	unsigned long totalpages;
	unsigned int points = 0;
	struct task_struct *chosen = NULL;

1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692
	/*
	 * If current has a pending SIGKILL, then automatically select it.  The
	 * goal is to allow it to allocate so that it may quickly exit and free
	 * its memory.
	 */
	if (fatal_signal_pending(current)) {
		set_thread_flag(TIF_MEMDIE);
		return;
	}

	check_panic_on_oom(CONSTRAINT_MEMCG, gfp_mask, order, NULL);
1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739
	totalpages = mem_cgroup_get_limit(memcg) >> PAGE_SHIFT ? : 1;
	for_each_mem_cgroup_tree(iter, memcg) {
		struct cgroup *cgroup = iter->css.cgroup;
		struct cgroup_iter it;
		struct task_struct *task;

		cgroup_iter_start(cgroup, &it);
		while ((task = cgroup_iter_next(cgroup, &it))) {
			switch (oom_scan_process_thread(task, totalpages, NULL,
							false)) {
			case OOM_SCAN_SELECT:
				if (chosen)
					put_task_struct(chosen);
				chosen = task;
				chosen_points = ULONG_MAX;
				get_task_struct(chosen);
				/* fall through */
			case OOM_SCAN_CONTINUE:
				continue;
			case OOM_SCAN_ABORT:
				cgroup_iter_end(cgroup, &it);
				mem_cgroup_iter_break(memcg, iter);
				if (chosen)
					put_task_struct(chosen);
				return;
			case OOM_SCAN_OK:
				break;
			};
			points = oom_badness(task, memcg, NULL, totalpages);
			if (points > chosen_points) {
				if (chosen)
					put_task_struct(chosen);
				chosen = task;
				chosen_points = points;
				get_task_struct(chosen);
			}
		}
		cgroup_iter_end(cgroup, &it);
	}

	if (!chosen)
		return;
	points = chosen_points * 1000 / totalpages;
	oom_kill_process(chosen, gfp_mask, order, points, totalpages, memcg,
			 NULL, "Memory cgroup out of memory");
}

1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775
static unsigned long mem_cgroup_reclaim(struct mem_cgroup *memcg,
					gfp_t gfp_mask,
					unsigned long flags)
{
	unsigned long total = 0;
	bool noswap = false;
	int loop;

	if (flags & MEM_CGROUP_RECLAIM_NOSWAP)
		noswap = true;
	if (!(flags & MEM_CGROUP_RECLAIM_SHRINK) && memcg->memsw_is_minimum)
		noswap = true;

	for (loop = 0; loop < MEM_CGROUP_MAX_RECLAIM_LOOPS; loop++) {
		if (loop)
			drain_all_stock_async(memcg);
		total += try_to_free_mem_cgroup_pages(memcg, gfp_mask, noswap);
		/*
		 * Allow limit shrinkers, which are triggered directly
		 * by userspace, to catch signals and stop reclaim
		 * after minimal progress, regardless of the margin.
		 */
		if (total && (flags & MEM_CGROUP_RECLAIM_SHRINK))
			break;
		if (mem_cgroup_margin(memcg))
			break;
		/*
		 * If nothing was reclaimed after two attempts, there
		 * may be no reclaimable pages in this hierarchy.
		 */
		if (loop && !total)
			break;
	}
	return total;
}

1776 1777
/**
 * test_mem_cgroup_node_reclaimable
W
Wanpeng Li 已提交
1778
 * @memcg: the target memcg
1779 1780 1781 1782 1783 1784 1785
 * @nid: the node ID to be checked.
 * @noswap : specify true here if the user wants flle only information.
 *
 * This function returns whether the specified memcg contains any
 * reclaimable pages on a node. Returns true if there are any reclaimable
 * pages in the node.
 */
1786
static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
1787 1788
		int nid, bool noswap)
{
1789
	if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE))
1790 1791 1792
		return true;
	if (noswap || !total_swap_pages)
		return false;
1793
	if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON))
1794 1795 1796 1797
		return true;
	return false;

}
1798 1799 1800 1801 1802 1803 1804 1805
#if MAX_NUMNODES > 1

/*
 * Always updating the nodemask is not very good - even if we have an empty
 * list or the wrong list here, we can start from some node and traverse all
 * nodes based on the zonelist. So update the list loosely once per 10 secs.
 *
 */
1806
static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
1807 1808
{
	int nid;
1809 1810 1811 1812
	/*
	 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
	 * pagein/pageout changes since the last update.
	 */
1813
	if (!atomic_read(&memcg->numainfo_events))
1814
		return;
1815
	if (atomic_inc_return(&memcg->numainfo_updating) > 1)
1816 1817 1818
		return;

	/* make a nodemask where this memcg uses memory from */
1819
	memcg->scan_nodes = node_states[N_MEMORY];
1820

1821
	for_each_node_mask(nid, node_states[N_MEMORY]) {
1822

1823 1824
		if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
			node_clear(nid, memcg->scan_nodes);
1825
	}
1826

1827 1828
	atomic_set(&memcg->numainfo_events, 0);
	atomic_set(&memcg->numainfo_updating, 0);
1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842
}

/*
 * Selecting a node where we start reclaim from. Because what we need is just
 * reducing usage counter, start from anywhere is O,K. Considering
 * memory reclaim from current node, there are pros. and cons.
 *
 * Freeing memory from current node means freeing memory from a node which
 * we'll use or we've used. So, it may make LRU bad. And if several threads
 * hit limits, it will see a contention on a node. But freeing from remote
 * node means more costs for memory reclaim because of memory latency.
 *
 * Now, we use round-robin. Better algorithm is welcomed.
 */
1843
int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1844 1845 1846
{
	int node;

1847 1848
	mem_cgroup_may_update_nodemask(memcg);
	node = memcg->last_scanned_node;
1849

1850
	node = next_node(node, memcg->scan_nodes);
1851
	if (node == MAX_NUMNODES)
1852
		node = first_node(memcg->scan_nodes);
1853 1854 1855 1856 1857 1858 1859 1860 1861
	/*
	 * We call this when we hit limit, not when pages are added to LRU.
	 * No LRU may hold pages because all pages are UNEVICTABLE or
	 * memcg is too small and all pages are not on LRU. In that case,
	 * we use curret node.
	 */
	if (unlikely(node == MAX_NUMNODES))
		node = numa_node_id();

1862
	memcg->last_scanned_node = node;
1863 1864 1865
	return node;
}

1866 1867 1868 1869 1870 1871
/*
 * Check all nodes whether it contains reclaimable pages or not.
 * For quick scan, we make use of scan_nodes. This will allow us to skip
 * unused nodes. But scan_nodes is lazily updated and may not cotain
 * enough new information. We need to do double check.
 */
1872
static bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap)
1873 1874 1875 1876 1877 1878 1879
{
	int nid;

	/*
	 * quick check...making use of scan_node.
	 * We can skip unused nodes.
	 */
1880 1881
	if (!nodes_empty(memcg->scan_nodes)) {
		for (nid = first_node(memcg->scan_nodes);
1882
		     nid < MAX_NUMNODES;
1883
		     nid = next_node(nid, memcg->scan_nodes)) {
1884

1885
			if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap))
1886 1887 1888 1889 1890 1891
				return true;
		}
	}
	/*
	 * Check rest of nodes.
	 */
1892
	for_each_node_state(nid, N_MEMORY) {
1893
		if (node_isset(nid, memcg->scan_nodes))
1894
			continue;
1895
		if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap))
1896 1897 1898 1899 1900
			return true;
	}
	return false;
}

1901
#else
1902
int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1903 1904 1905
{
	return 0;
}
1906

1907
static bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap)
1908
{
1909
	return test_mem_cgroup_node_reclaimable(memcg, 0, noswap);
1910
}
1911 1912
#endif

1913 1914 1915 1916
static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
				   struct zone *zone,
				   gfp_t gfp_mask,
				   unsigned long *total_scanned)
1917
{
1918
	struct mem_cgroup *victim = NULL;
1919
	int total = 0;
K
KAMEZAWA Hiroyuki 已提交
1920
	int loop = 0;
1921
	unsigned long excess;
1922
	unsigned long nr_scanned;
1923 1924 1925 1926
	struct mem_cgroup_reclaim_cookie reclaim = {
		.zone = zone,
		.priority = 0,
	};
1927

1928
	excess = res_counter_soft_limit_excess(&root_memcg->res) >> PAGE_SHIFT;
K
KAMEZAWA Hiroyuki 已提交
1929

1930
	while (1) {
1931
		victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
1932
		if (!victim) {
K
KAMEZAWA Hiroyuki 已提交
1933
			loop++;
1934 1935 1936 1937 1938 1939
			if (loop >= 2) {
				/*
				 * If we have not been able to reclaim
				 * anything, it might because there are
				 * no reclaimable pages under this hierarchy
				 */
1940
				if (!total)
1941 1942
					break;
				/*
L
Lucas De Marchi 已提交
1943
				 * We want to do more targeted reclaim.
1944 1945 1946 1947 1948
				 * excess >> 2 is not to excessive so as to
				 * reclaim too much, nor too less that we keep
				 * coming back to reclaim from this cgroup
				 */
				if (total >= (excess >> 2) ||
1949
					(loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
1950 1951
					break;
			}
1952
			continue;
1953
		}
1954
		if (!mem_cgroup_reclaimable(victim, false))
1955
			continue;
1956 1957 1958 1959
		total += mem_cgroup_shrink_node_zone(victim, gfp_mask, false,
						     zone, &nr_scanned);
		*total_scanned += nr_scanned;
		if (!res_counter_soft_limit_excess(&root_memcg->res))
1960
			break;
1961
	}
1962
	mem_cgroup_iter_break(root_memcg, victim);
K
KAMEZAWA Hiroyuki 已提交
1963
	return total;
1964 1965
}

K
KAMEZAWA Hiroyuki 已提交
1966 1967 1968
/*
 * Check OOM-Killer is already running under our hierarchy.
 * If someone is running, return false.
1969
 * Has to be called with memcg_oom_lock
K
KAMEZAWA Hiroyuki 已提交
1970
 */
1971
static bool mem_cgroup_oom_lock(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
1972
{
1973
	struct mem_cgroup *iter, *failed = NULL;
1974

1975
	for_each_mem_cgroup_tree(iter, memcg) {
1976
		if (iter->oom_lock) {
1977 1978 1979 1980 1981
			/*
			 * this subtree of our hierarchy is already locked
			 * so we cannot give a lock.
			 */
			failed = iter;
1982 1983
			mem_cgroup_iter_break(memcg, iter);
			break;
1984 1985
		} else
			iter->oom_lock = true;
K
KAMEZAWA Hiroyuki 已提交
1986
	}
K
KAMEZAWA Hiroyuki 已提交
1987

1988
	if (!failed)
1989
		return true;
1990 1991 1992 1993 1994

	/*
	 * OK, we failed to lock the whole subtree so we have to clean up
	 * what we set up to the failing subtree
	 */
1995
	for_each_mem_cgroup_tree(iter, memcg) {
1996
		if (iter == failed) {
1997 1998
			mem_cgroup_iter_break(memcg, iter);
			break;
1999 2000 2001
		}
		iter->oom_lock = false;
	}
2002
	return false;
2003
}
2004

2005
/*
2006
 * Has to be called with memcg_oom_lock
2007
 */
2008
static int mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
2009
{
K
KAMEZAWA Hiroyuki 已提交
2010 2011
	struct mem_cgroup *iter;

2012
	for_each_mem_cgroup_tree(iter, memcg)
2013 2014 2015 2016
		iter->oom_lock = false;
	return 0;
}

2017
static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
2018 2019 2020
{
	struct mem_cgroup *iter;

2021
	for_each_mem_cgroup_tree(iter, memcg)
2022 2023 2024
		atomic_inc(&iter->under_oom);
}

2025
static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
2026 2027 2028
{
	struct mem_cgroup *iter;

K
KAMEZAWA Hiroyuki 已提交
2029 2030 2031 2032 2033
	/*
	 * When a new child is created while the hierarchy is under oom,
	 * mem_cgroup_oom_lock() may not be called. We have to use
	 * atomic_add_unless() here.
	 */
2034
	for_each_mem_cgroup_tree(iter, memcg)
2035
		atomic_add_unless(&iter->under_oom, -1, 0);
2036 2037
}

2038
static DEFINE_SPINLOCK(memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
2039 2040
static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);

K
KAMEZAWA Hiroyuki 已提交
2041
struct oom_wait_info {
2042
	struct mem_cgroup *memcg;
K
KAMEZAWA Hiroyuki 已提交
2043 2044 2045 2046 2047 2048
	wait_queue_t	wait;
};

static int memcg_oom_wake_function(wait_queue_t *wait,
	unsigned mode, int sync, void *arg)
{
2049 2050
	struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
	struct mem_cgroup *oom_wait_memcg;
K
KAMEZAWA Hiroyuki 已提交
2051 2052 2053
	struct oom_wait_info *oom_wait_info;

	oom_wait_info = container_of(wait, struct oom_wait_info, wait);
2054
	oom_wait_memcg = oom_wait_info->memcg;
K
KAMEZAWA Hiroyuki 已提交
2055 2056

	/*
2057
	 * Both of oom_wait_info->memcg and wake_memcg are stable under us.
K
KAMEZAWA Hiroyuki 已提交
2058 2059
	 * Then we can use css_is_ancestor without taking care of RCU.
	 */
2060 2061
	if (!mem_cgroup_same_or_subtree(oom_wait_memcg, wake_memcg)
		&& !mem_cgroup_same_or_subtree(wake_memcg, oom_wait_memcg))
K
KAMEZAWA Hiroyuki 已提交
2062 2063 2064 2065
		return 0;
	return autoremove_wake_function(wait, mode, sync, arg);
}

2066
static void memcg_wakeup_oom(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
2067
{
2068 2069
	/* for filtering, pass "memcg" as argument. */
	__wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
K
KAMEZAWA Hiroyuki 已提交
2070 2071
}

2072
static void memcg_oom_recover(struct mem_cgroup *memcg)
2073
{
2074 2075
	if (memcg && atomic_read(&memcg->under_oom))
		memcg_wakeup_oom(memcg);
2076 2077
}

K
KAMEZAWA Hiroyuki 已提交
2078 2079 2080
/*
 * try to call OOM killer. returns false if we should exit memory-reclaim loop.
 */
2081 2082
static bool mem_cgroup_handle_oom(struct mem_cgroup *memcg, gfp_t mask,
				  int order)
2083
{
K
KAMEZAWA Hiroyuki 已提交
2084
	struct oom_wait_info owait;
2085
	bool locked, need_to_kill;
K
KAMEZAWA Hiroyuki 已提交
2086

2087
	owait.memcg = memcg;
K
KAMEZAWA Hiroyuki 已提交
2088 2089 2090 2091
	owait.wait.flags = 0;
	owait.wait.func = memcg_oom_wake_function;
	owait.wait.private = current;
	INIT_LIST_HEAD(&owait.wait.task_list);
2092
	need_to_kill = true;
2093
	mem_cgroup_mark_under_oom(memcg);
2094

2095
	/* At first, try to OOM lock hierarchy under memcg.*/
2096
	spin_lock(&memcg_oom_lock);
2097
	locked = mem_cgroup_oom_lock(memcg);
K
KAMEZAWA Hiroyuki 已提交
2098 2099 2100 2101 2102
	/*
	 * Even if signal_pending(), we can't quit charge() loop without
	 * accounting. So, UNINTERRUPTIBLE is appropriate. But SIGKILL
	 * under OOM is always welcomed, use TASK_KILLABLE here.
	 */
2103
	prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
2104
	if (!locked || memcg->oom_kill_disable)
2105 2106
		need_to_kill = false;
	if (locked)
2107
		mem_cgroup_oom_notify(memcg);
2108
	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
2109

2110 2111
	if (need_to_kill) {
		finish_wait(&memcg_oom_waitq, &owait.wait);
2112
		mem_cgroup_out_of_memory(memcg, mask, order);
2113
	} else {
K
KAMEZAWA Hiroyuki 已提交
2114
		schedule();
K
KAMEZAWA Hiroyuki 已提交
2115
		finish_wait(&memcg_oom_waitq, &owait.wait);
K
KAMEZAWA Hiroyuki 已提交
2116
	}
2117
	spin_lock(&memcg_oom_lock);
2118
	if (locked)
2119 2120
		mem_cgroup_oom_unlock(memcg);
	memcg_wakeup_oom(memcg);
2121
	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
2122

2123
	mem_cgroup_unmark_under_oom(memcg);
2124

K
KAMEZAWA Hiroyuki 已提交
2125 2126 2127
	if (test_thread_flag(TIF_MEMDIE) || fatal_signal_pending(current))
		return false;
	/* Give chance to dying process */
2128
	schedule_timeout_uninterruptible(1);
K
KAMEZAWA Hiroyuki 已提交
2129
	return true;
2130 2131
}

2132 2133 2134
/*
 * Currently used to update mapped file statistics, but the routine can be
 * generalized to update other statistics as well.
2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151
 *
 * Notes: Race condition
 *
 * We usually use page_cgroup_lock() for accessing page_cgroup member but
 * it tends to be costly. But considering some conditions, we doesn't need
 * to do so _always_.
 *
 * Considering "charge", lock_page_cgroup() is not required because all
 * file-stat operations happen after a page is attached to radix-tree. There
 * are no race with "charge".
 *
 * Considering "uncharge", we know that memcg doesn't clear pc->mem_cgroup
 * at "uncharge" intentionally. So, we always see valid pc->mem_cgroup even
 * if there are race with "uncharge". Statistics itself is properly handled
 * by flags.
 *
 * Considering "move", this is an only case we see a race. To make the race
2152 2153
 * small, we check mm->moving_account and detect there are possibility of race
 * If there is, we take a lock.
2154
 */
2155

2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168
void __mem_cgroup_begin_update_page_stat(struct page *page,
				bool *locked, unsigned long *flags)
{
	struct mem_cgroup *memcg;
	struct page_cgroup *pc;

	pc = lookup_page_cgroup(page);
again:
	memcg = pc->mem_cgroup;
	if (unlikely(!memcg || !PageCgroupUsed(pc)))
		return;
	/*
	 * If this memory cgroup is not under account moving, we don't
2169
	 * need to take move_lock_mem_cgroup(). Because we already hold
2170
	 * rcu_read_lock(), any calls to move_account will be delayed until
2171
	 * rcu_read_unlock() if mem_cgroup_stolen() == true.
2172
	 */
2173
	if (!mem_cgroup_stolen(memcg))
2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190
		return;

	move_lock_mem_cgroup(memcg, flags);
	if (memcg != pc->mem_cgroup || !PageCgroupUsed(pc)) {
		move_unlock_mem_cgroup(memcg, flags);
		goto again;
	}
	*locked = true;
}

void __mem_cgroup_end_update_page_stat(struct page *page, unsigned long *flags)
{
	struct page_cgroup *pc = lookup_page_cgroup(page);

	/*
	 * It's guaranteed that pc->mem_cgroup never changes while
	 * lock is held because a routine modifies pc->mem_cgroup
2191
	 * should take move_lock_mem_cgroup().
2192 2193 2194 2195
	 */
	move_unlock_mem_cgroup(pc->mem_cgroup, flags);
}

2196 2197
void mem_cgroup_update_page_stat(struct page *page,
				 enum mem_cgroup_page_stat_item idx, int val)
2198
{
2199
	struct mem_cgroup *memcg;
2200
	struct page_cgroup *pc = lookup_page_cgroup(page);
2201
	unsigned long uninitialized_var(flags);
2202

2203
	if (mem_cgroup_disabled())
2204
		return;
2205

2206 2207
	memcg = pc->mem_cgroup;
	if (unlikely(!memcg || !PageCgroupUsed(pc)))
2208
		return;
2209 2210

	switch (idx) {
2211 2212
	case MEMCG_NR_FILE_MAPPED:
		idx = MEM_CGROUP_STAT_FILE_MAPPED;
2213 2214 2215
		break;
	default:
		BUG();
2216
	}
2217

2218
	this_cpu_add(memcg->stat->count[idx], val);
2219
}
2220

2221 2222 2223 2224
/*
 * size of first charge trial. "32" comes from vmscan.c's magic value.
 * TODO: maybe necessary to use big numbers in big irons.
 */
2225
#define CHARGE_BATCH	32U
2226 2227
struct memcg_stock_pcp {
	struct mem_cgroup *cached; /* this never be root cgroup */
2228
	unsigned int nr_pages;
2229
	struct work_struct work;
2230
	unsigned long flags;
2231
#define FLUSHING_CACHED_CHARGE	0
2232 2233
};
static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
2234
static DEFINE_MUTEX(percpu_charge_mutex);
2235

2236 2237 2238 2239 2240 2241 2242 2243 2244 2245
/**
 * consume_stock: Try to consume stocked charge on this cpu.
 * @memcg: memcg to consume from.
 * @nr_pages: how many pages to charge.
 *
 * The charges will only happen if @memcg matches the current cpu's memcg
 * stock, and at least @nr_pages are available in that stock.  Failure to
 * service an allocation will refill the stock.
 *
 * returns true if successful, false otherwise.
2246
 */
2247
static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2248 2249 2250 2251
{
	struct memcg_stock_pcp *stock;
	bool ret = true;

2252 2253 2254
	if (nr_pages > CHARGE_BATCH)
		return false;

2255
	stock = &get_cpu_var(memcg_stock);
2256 2257
	if (memcg == stock->cached && stock->nr_pages >= nr_pages)
		stock->nr_pages -= nr_pages;
2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270
	else /* need to call res_counter_charge */
		ret = false;
	put_cpu_var(memcg_stock);
	return ret;
}

/*
 * Returns stocks cached in percpu to res_counter and reset cached information.
 */
static void drain_stock(struct memcg_stock_pcp *stock)
{
	struct mem_cgroup *old = stock->cached;

2271 2272 2273 2274
	if (stock->nr_pages) {
		unsigned long bytes = stock->nr_pages * PAGE_SIZE;

		res_counter_uncharge(&old->res, bytes);
2275
		if (do_swap_account)
2276 2277
			res_counter_uncharge(&old->memsw, bytes);
		stock->nr_pages = 0;
2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289
	}
	stock->cached = NULL;
}

/*
 * This must be called under preempt disabled or must be called by
 * a thread which is pinned to local cpu.
 */
static void drain_local_stock(struct work_struct *dummy)
{
	struct memcg_stock_pcp *stock = &__get_cpu_var(memcg_stock);
	drain_stock(stock);
2290
	clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
2291 2292 2293 2294
}

/*
 * Cache charges(val) which is from res_counter, to local per_cpu area.
2295
 * This will be consumed by consume_stock() function, later.
2296
 */
2297
static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2298 2299 2300
{
	struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);

2301
	if (stock->cached != memcg) { /* reset if necessary */
2302
		drain_stock(stock);
2303
		stock->cached = memcg;
2304
	}
2305
	stock->nr_pages += nr_pages;
2306 2307 2308 2309
	put_cpu_var(memcg_stock);
}

/*
2310
 * Drains all per-CPU charge caches for given root_memcg resp. subtree
2311 2312
 * of the hierarchy under it. sync flag says whether we should block
 * until the work is done.
2313
 */
2314
static void drain_all_stock(struct mem_cgroup *root_memcg, bool sync)
2315
{
2316
	int cpu, curcpu;
2317

2318 2319
	/* Notify other cpus that system-wide "drain" is running */
	get_online_cpus();
2320
	curcpu = get_cpu();
2321 2322
	for_each_online_cpu(cpu) {
		struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2323
		struct mem_cgroup *memcg;
2324

2325 2326
		memcg = stock->cached;
		if (!memcg || !stock->nr_pages)
2327
			continue;
2328
		if (!mem_cgroup_same_or_subtree(root_memcg, memcg))
2329
			continue;
2330 2331 2332 2333 2334 2335
		if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
			if (cpu == curcpu)
				drain_local_stock(&stock->work);
			else
				schedule_work_on(cpu, &stock->work);
		}
2336
	}
2337
	put_cpu();
2338 2339 2340 2341 2342 2343

	if (!sync)
		goto out;

	for_each_online_cpu(cpu) {
		struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2344
		if (test_bit(FLUSHING_CACHED_CHARGE, &stock->flags))
2345 2346 2347
			flush_work(&stock->work);
	}
out:
2348
 	put_online_cpus();
2349 2350 2351 2352 2353 2354 2355 2356
}

/*
 * Tries to drain stocked charges in other cpus. This function is asynchronous
 * and just put a work per cpu for draining localy on each cpu. Caller can
 * expects some charges will be back to res_counter later but cannot wait for
 * it.
 */
2357
static void drain_all_stock_async(struct mem_cgroup *root_memcg)
2358
{
2359 2360 2361 2362 2363
	/*
	 * If someone calls draining, avoid adding more kworker runs.
	 */
	if (!mutex_trylock(&percpu_charge_mutex))
		return;
2364
	drain_all_stock(root_memcg, false);
2365
	mutex_unlock(&percpu_charge_mutex);
2366 2367 2368
}

/* This is a synchronous drain interface. */
2369
static void drain_all_stock_sync(struct mem_cgroup *root_memcg)
2370 2371
{
	/* called when force_empty is called */
2372
	mutex_lock(&percpu_charge_mutex);
2373
	drain_all_stock(root_memcg, true);
2374
	mutex_unlock(&percpu_charge_mutex);
2375 2376
}

2377 2378 2379 2380
/*
 * This function drains percpu counter value from DEAD cpu and
 * move it to local cpu. Note that this function can be preempted.
 */
2381
static void mem_cgroup_drain_pcp_counter(struct mem_cgroup *memcg, int cpu)
2382 2383 2384
{
	int i;

2385
	spin_lock(&memcg->pcp_counter_lock);
2386
	for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
2387
		long x = per_cpu(memcg->stat->count[i], cpu);
2388

2389 2390
		per_cpu(memcg->stat->count[i], cpu) = 0;
		memcg->nocpu_base.count[i] += x;
2391
	}
2392
	for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
2393
		unsigned long x = per_cpu(memcg->stat->events[i], cpu);
2394

2395 2396
		per_cpu(memcg->stat->events[i], cpu) = 0;
		memcg->nocpu_base.events[i] += x;
2397
	}
2398
	spin_unlock(&memcg->pcp_counter_lock);
2399 2400 2401
}

static int __cpuinit memcg_cpu_hotplug_callback(struct notifier_block *nb,
2402 2403 2404 2405 2406
					unsigned long action,
					void *hcpu)
{
	int cpu = (unsigned long)hcpu;
	struct memcg_stock_pcp *stock;
2407
	struct mem_cgroup *iter;
2408

2409
	if (action == CPU_ONLINE)
2410 2411
		return NOTIFY_OK;

2412
	if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
2413
		return NOTIFY_OK;
2414

2415
	for_each_mem_cgroup(iter)
2416 2417
		mem_cgroup_drain_pcp_counter(iter, cpu);

2418 2419 2420 2421 2422
	stock = &per_cpu(memcg_stock, cpu);
	drain_stock(stock);
	return NOTIFY_OK;
}

2423 2424 2425 2426 2427 2428 2429 2430 2431 2432

/* See __mem_cgroup_try_charge() for details */
enum {
	CHARGE_OK,		/* success */
	CHARGE_RETRY,		/* need to retry but retry is not bad */
	CHARGE_NOMEM,		/* we can't do more. return -ENOMEM */
	CHARGE_WOULDBLOCK,	/* GFP_WAIT wasn't set and no enough res. */
	CHARGE_OOM_DIE,		/* the current is killed because of OOM */
};

2433
static int mem_cgroup_do_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
2434 2435
				unsigned int nr_pages, unsigned int min_pages,
				bool oom_check)
2436
{
2437
	unsigned long csize = nr_pages * PAGE_SIZE;
2438 2439 2440 2441 2442
	struct mem_cgroup *mem_over_limit;
	struct res_counter *fail_res;
	unsigned long flags = 0;
	int ret;

2443
	ret = res_counter_charge(&memcg->res, csize, &fail_res);
2444 2445 2446 2447

	if (likely(!ret)) {
		if (!do_swap_account)
			return CHARGE_OK;
2448
		ret = res_counter_charge(&memcg->memsw, csize, &fail_res);
2449 2450 2451
		if (likely(!ret))
			return CHARGE_OK;

2452
		res_counter_uncharge(&memcg->res, csize);
2453 2454 2455 2456
		mem_over_limit = mem_cgroup_from_res_counter(fail_res, memsw);
		flags |= MEM_CGROUP_RECLAIM_NOSWAP;
	} else
		mem_over_limit = mem_cgroup_from_res_counter(fail_res, res);
2457 2458 2459 2460
	/*
	 * Never reclaim on behalf of optional batching, retry with a
	 * single page instead.
	 */
2461
	if (nr_pages > min_pages)
2462 2463 2464 2465 2466
		return CHARGE_RETRY;

	if (!(gfp_mask & __GFP_WAIT))
		return CHARGE_WOULDBLOCK;

2467 2468 2469
	if (gfp_mask & __GFP_NORETRY)
		return CHARGE_NOMEM;

2470
	ret = mem_cgroup_reclaim(mem_over_limit, gfp_mask, flags);
2471
	if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
2472
		return CHARGE_RETRY;
2473
	/*
2474 2475 2476 2477 2478 2479 2480
	 * Even though the limit is exceeded at this point, reclaim
	 * may have been able to free some pages.  Retry the charge
	 * before killing the task.
	 *
	 * Only for regular pages, though: huge pages are rather
	 * unlikely to succeed so close to the limit, and we fall back
	 * to regular pages anyway in case of failure.
2481
	 */
2482
	if (nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER) && ret)
2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495
		return CHARGE_RETRY;

	/*
	 * At task move, charge accounts can be doubly counted. So, it's
	 * better to wait until the end of task_move if something is going on.
	 */
	if (mem_cgroup_wait_acct_move(mem_over_limit))
		return CHARGE_RETRY;

	/* If we don't need to call oom-killer at el, return immediately */
	if (!oom_check)
		return CHARGE_NOMEM;
	/* check OOM */
2496
	if (!mem_cgroup_handle_oom(mem_over_limit, gfp_mask, get_order(csize)))
2497 2498 2499 2500 2501
		return CHARGE_OOM_DIE;

	return CHARGE_RETRY;
}

2502
/*
2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521
 * __mem_cgroup_try_charge() does
 * 1. detect memcg to be charged against from passed *mm and *ptr,
 * 2. update res_counter
 * 3. call memory reclaim if necessary.
 *
 * In some special case, if the task is fatal, fatal_signal_pending() or
 * has TIF_MEMDIE, this function returns -EINTR while writing root_mem_cgroup
 * to *ptr. There are two reasons for this. 1: fatal threads should quit as soon
 * as possible without any hazards. 2: all pages should have a valid
 * pc->mem_cgroup. If mm is NULL and the caller doesn't pass a valid memcg
 * pointer, that is treated as a charge to root_mem_cgroup.
 *
 * So __mem_cgroup_try_charge() will return
 *  0       ...  on success, filling *ptr with a valid memcg pointer.
 *  -ENOMEM ...  charge failure because of resource limits.
 *  -EINTR  ...  if thread is fatal. *ptr is filled with root_mem_cgroup.
 *
 * Unlike the exported interface, an "oom" parameter is added. if oom==true,
 * the oom-killer can be invoked.
2522
 */
2523
static int __mem_cgroup_try_charge(struct mm_struct *mm,
A
Andrea Arcangeli 已提交
2524
				   gfp_t gfp_mask,
2525
				   unsigned int nr_pages,
2526
				   struct mem_cgroup **ptr,
2527
				   bool oom)
2528
{
2529
	unsigned int batch = max(CHARGE_BATCH, nr_pages);
2530
	int nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
2531
	struct mem_cgroup *memcg = NULL;
2532
	int ret;
2533

K
KAMEZAWA Hiroyuki 已提交
2534 2535 2536 2537 2538 2539 2540 2541
	/*
	 * Unlike gloval-vm's OOM-kill, we're not in memory shortage
	 * in system level. So, allow to go ahead dying process in addition to
	 * MEMDIE process.
	 */
	if (unlikely(test_thread_flag(TIF_MEMDIE)
		     || fatal_signal_pending(current)))
		goto bypass;
2542

2543
	/*
2544 2545
	 * We always charge the cgroup the mm_struct belongs to.
	 * The mm_struct's mem_cgroup changes on task migration if the
2546
	 * thread group leader migrates. It's possible that mm is not
2547
	 * set, if so charge the root memcg (happens for pagecache usage).
2548
	 */
2549
	if (!*ptr && !mm)
2550
		*ptr = root_mem_cgroup;
K
KAMEZAWA Hiroyuki 已提交
2551
again:
2552 2553 2554
	if (*ptr) { /* css should be a valid one */
		memcg = *ptr;
		if (mem_cgroup_is_root(memcg))
K
KAMEZAWA Hiroyuki 已提交
2555
			goto done;
2556
		if (consume_stock(memcg, nr_pages))
K
KAMEZAWA Hiroyuki 已提交
2557
			goto done;
2558
		css_get(&memcg->css);
2559
	} else {
K
KAMEZAWA Hiroyuki 已提交
2560
		struct task_struct *p;
2561

K
KAMEZAWA Hiroyuki 已提交
2562 2563 2564
		rcu_read_lock();
		p = rcu_dereference(mm->owner);
		/*
2565
		 * Because we don't have task_lock(), "p" can exit.
2566
		 * In that case, "memcg" can point to root or p can be NULL with
2567 2568 2569 2570 2571 2572
		 * race with swapoff. Then, we have small risk of mis-accouning.
		 * But such kind of mis-account by race always happens because
		 * we don't have cgroup_mutex(). It's overkill and we allo that
		 * small race, here.
		 * (*) swapoff at el will charge against mm-struct not against
		 * task-struct. So, mm->owner can be NULL.
K
KAMEZAWA Hiroyuki 已提交
2573
		 */
2574
		memcg = mem_cgroup_from_task(p);
2575 2576 2577
		if (!memcg)
			memcg = root_mem_cgroup;
		if (mem_cgroup_is_root(memcg)) {
K
KAMEZAWA Hiroyuki 已提交
2578 2579 2580
			rcu_read_unlock();
			goto done;
		}
2581
		if (consume_stock(memcg, nr_pages)) {
K
KAMEZAWA Hiroyuki 已提交
2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593
			/*
			 * It seems dagerous to access memcg without css_get().
			 * But considering how consume_stok works, it's not
			 * necessary. If consume_stock success, some charges
			 * from this memcg are cached on this cpu. So, we
			 * don't need to call css_get()/css_tryget() before
			 * calling consume_stock().
			 */
			rcu_read_unlock();
			goto done;
		}
		/* after here, we may be blocked. we need to get refcnt */
2594
		if (!css_tryget(&memcg->css)) {
K
KAMEZAWA Hiroyuki 已提交
2595 2596 2597 2598 2599
			rcu_read_unlock();
			goto again;
		}
		rcu_read_unlock();
	}
2600

2601 2602
	do {
		bool oom_check;
2603

2604
		/* If killed, bypass charge */
K
KAMEZAWA Hiroyuki 已提交
2605
		if (fatal_signal_pending(current)) {
2606
			css_put(&memcg->css);
2607
			goto bypass;
K
KAMEZAWA Hiroyuki 已提交
2608
		}
2609

2610 2611 2612 2613
		oom_check = false;
		if (oom && !nr_oom_retries) {
			oom_check = true;
			nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
2614
		}
2615

2616 2617
		ret = mem_cgroup_do_charge(memcg, gfp_mask, batch, nr_pages,
		    oom_check);
2618 2619 2620 2621
		switch (ret) {
		case CHARGE_OK:
			break;
		case CHARGE_RETRY: /* not in OOM situation but retry */
2622
			batch = nr_pages;
2623 2624
			css_put(&memcg->css);
			memcg = NULL;
K
KAMEZAWA Hiroyuki 已提交
2625
			goto again;
2626
		case CHARGE_WOULDBLOCK: /* !__GFP_WAIT */
2627
			css_put(&memcg->css);
2628 2629
			goto nomem;
		case CHARGE_NOMEM: /* OOM routine works */
K
KAMEZAWA Hiroyuki 已提交
2630
			if (!oom) {
2631
				css_put(&memcg->css);
K
KAMEZAWA Hiroyuki 已提交
2632
				goto nomem;
K
KAMEZAWA Hiroyuki 已提交
2633
			}
2634 2635 2636 2637
			/* If oom, we never return -ENOMEM */
			nr_oom_retries--;
			break;
		case CHARGE_OOM_DIE: /* Killed by OOM Killer */
2638
			css_put(&memcg->css);
K
KAMEZAWA Hiroyuki 已提交
2639
			goto bypass;
2640
		}
2641 2642
	} while (ret != CHARGE_OK);

2643
	if (batch > nr_pages)
2644 2645
		refill_stock(memcg, batch - nr_pages);
	css_put(&memcg->css);
2646
done:
2647
	*ptr = memcg;
2648 2649
	return 0;
nomem:
2650
	*ptr = NULL;
2651
	return -ENOMEM;
K
KAMEZAWA Hiroyuki 已提交
2652
bypass:
2653 2654
	*ptr = root_mem_cgroup;
	return -EINTR;
2655
}
2656

2657 2658 2659 2660 2661
/*
 * Somemtimes we have to undo a charge we got by try_charge().
 * This function is for that and do uncharge, put css's refcnt.
 * gotten by try_charge().
 */
2662
static void __mem_cgroup_cancel_charge(struct mem_cgroup *memcg,
2663
				       unsigned int nr_pages)
2664
{
2665
	if (!mem_cgroup_is_root(memcg)) {
2666 2667
		unsigned long bytes = nr_pages * PAGE_SIZE;

2668
		res_counter_uncharge(&memcg->res, bytes);
2669
		if (do_swap_account)
2670
			res_counter_uncharge(&memcg->memsw, bytes);
2671
	}
2672 2673
}

2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691
/*
 * Cancel chrages in this cgroup....doesn't propagate to parent cgroup.
 * This is useful when moving usage to parent cgroup.
 */
static void __mem_cgroup_cancel_local_charge(struct mem_cgroup *memcg,
					unsigned int nr_pages)
{
	unsigned long bytes = nr_pages * PAGE_SIZE;

	if (mem_cgroup_is_root(memcg))
		return;

	res_counter_uncharge_until(&memcg->res, memcg->res.parent, bytes);
	if (do_swap_account)
		res_counter_uncharge_until(&memcg->memsw,
						memcg->memsw.parent, bytes);
}

2692 2693
/*
 * A helper function to get mem_cgroup from ID. must be called under
T
Tejun Heo 已提交
2694 2695 2696
 * rcu_read_lock().  The caller is responsible for calling css_tryget if
 * the mem_cgroup is used for charging. (dropping refcnt from swap can be
 * called against removed memcg.)
2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707
 */
static struct mem_cgroup *mem_cgroup_lookup(unsigned short id)
{
	struct cgroup_subsys_state *css;

	/* ID 0 is unused ID */
	if (!id)
		return NULL;
	css = css_lookup(&mem_cgroup_subsys, id);
	if (!css)
		return NULL;
2708
	return mem_cgroup_from_css(css);
2709 2710
}

2711
struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page)
2712
{
2713
	struct mem_cgroup *memcg = NULL;
2714
	struct page_cgroup *pc;
2715
	unsigned short id;
2716 2717
	swp_entry_t ent;

2718 2719 2720
	VM_BUG_ON(!PageLocked(page));

	pc = lookup_page_cgroup(page);
2721
	lock_page_cgroup(pc);
2722
	if (PageCgroupUsed(pc)) {
2723 2724 2725
		memcg = pc->mem_cgroup;
		if (memcg && !css_tryget(&memcg->css))
			memcg = NULL;
2726
	} else if (PageSwapCache(page)) {
2727
		ent.val = page_private(page);
2728
		id = lookup_swap_cgroup_id(ent);
2729
		rcu_read_lock();
2730 2731 2732
		memcg = mem_cgroup_lookup(id);
		if (memcg && !css_tryget(&memcg->css))
			memcg = NULL;
2733
		rcu_read_unlock();
2734
	}
2735
	unlock_page_cgroup(pc);
2736
	return memcg;
2737 2738
}

2739
static void __mem_cgroup_commit_charge(struct mem_cgroup *memcg,
2740
				       struct page *page,
2741
				       unsigned int nr_pages,
2742 2743
				       enum charge_type ctype,
				       bool lrucare)
2744
{
2745
	struct page_cgroup *pc = lookup_page_cgroup(page);
2746
	struct zone *uninitialized_var(zone);
2747
	struct lruvec *lruvec;
2748
	bool was_on_lru = false;
2749
	bool anon;
2750

2751
	lock_page_cgroup(pc);
2752
	VM_BUG_ON(PageCgroupUsed(pc));
2753 2754 2755 2756
	/*
	 * we don't need page_cgroup_lock about tail pages, becase they are not
	 * accessed by any other context at this point.
	 */
2757 2758 2759 2760 2761 2762 2763 2764 2765

	/*
	 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
	 * may already be on some other mem_cgroup's LRU.  Take care of it.
	 */
	if (lrucare) {
		zone = page_zone(page);
		spin_lock_irq(&zone->lru_lock);
		if (PageLRU(page)) {
2766
			lruvec = mem_cgroup_zone_lruvec(zone, pc->mem_cgroup);
2767
			ClearPageLRU(page);
2768
			del_page_from_lru_list(page, lruvec, page_lru(page));
2769 2770 2771 2772
			was_on_lru = true;
		}
	}

2773
	pc->mem_cgroup = memcg;
2774 2775 2776 2777 2778 2779 2780
	/*
	 * We access a page_cgroup asynchronously without lock_page_cgroup().
	 * Especially when a page_cgroup is taken from a page, pc->mem_cgroup
	 * is accessed after testing USED bit. To make pc->mem_cgroup visible
	 * before USED bit, we need memory barrier here.
	 * See mem_cgroup_add_lru_list(), etc.
 	 */
K
KAMEZAWA Hiroyuki 已提交
2781
	smp_wmb();
2782
	SetPageCgroupUsed(pc);
2783

2784 2785
	if (lrucare) {
		if (was_on_lru) {
2786
			lruvec = mem_cgroup_zone_lruvec(zone, pc->mem_cgroup);
2787 2788
			VM_BUG_ON(PageLRU(page));
			SetPageLRU(page);
2789
			add_page_to_lru_list(page, lruvec, page_lru(page));
2790 2791 2792 2793
		}
		spin_unlock_irq(&zone->lru_lock);
	}

2794
	if (ctype == MEM_CGROUP_CHARGE_TYPE_ANON)
2795 2796 2797 2798 2799
		anon = true;
	else
		anon = false;

	mem_cgroup_charge_statistics(memcg, anon, nr_pages);
2800
	unlock_page_cgroup(pc);
2801

2802 2803 2804 2805 2806
	/*
	 * "charge_statistics" updated event counter. Then, check it.
	 * Insert ancestor (and ancestor's ancestors), to softlimit RB-tree.
	 * if they exceeds softlimit.
	 */
2807
	memcg_check_events(memcg, page);
2808
}
2809

2810 2811
static DEFINE_MUTEX(set_limit_mutex);

2812 2813 2814 2815 2816 2817 2818
#ifdef CONFIG_MEMCG_KMEM
static inline bool memcg_can_account_kmem(struct mem_cgroup *memcg)
{
	return !mem_cgroup_disabled() && !mem_cgroup_is_root(memcg) &&
		(memcg->kmem_account_flags & KMEM_ACCOUNTED_MASK);
}

G
Glauber Costa 已提交
2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831
/*
 * This is a bit cumbersome, but it is rarely used and avoids a backpointer
 * in the memcg_cache_params struct.
 */
static struct kmem_cache *memcg_params_to_cache(struct memcg_cache_params *p)
{
	struct kmem_cache *cachep;

	VM_BUG_ON(p->is_root_cache);
	cachep = p->root_cache;
	return cachep->memcg_params->memcg_caches[memcg_cache_id(p->memcg)];
}

2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852
#ifdef CONFIG_SLABINFO
static int mem_cgroup_slabinfo_read(struct cgroup *cont, struct cftype *cft,
					struct seq_file *m)
{
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
	struct memcg_cache_params *params;

	if (!memcg_can_account_kmem(memcg))
		return -EIO;

	print_slabinfo_header(m);

	mutex_lock(&memcg->slab_caches_mutex);
	list_for_each_entry(params, &memcg->memcg_slab_caches, list)
		cache_show(memcg_params_to_cache(params), m);
	mutex_unlock(&memcg->slab_caches_mutex);

	return 0;
}
#endif

2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905
static int memcg_charge_kmem(struct mem_cgroup *memcg, gfp_t gfp, u64 size)
{
	struct res_counter *fail_res;
	struct mem_cgroup *_memcg;
	int ret = 0;
	bool may_oom;

	ret = res_counter_charge(&memcg->kmem, size, &fail_res);
	if (ret)
		return ret;

	/*
	 * Conditions under which we can wait for the oom_killer. Those are
	 * the same conditions tested by the core page allocator
	 */
	may_oom = (gfp & __GFP_FS) && !(gfp & __GFP_NORETRY);

	_memcg = memcg;
	ret = __mem_cgroup_try_charge(NULL, gfp, size >> PAGE_SHIFT,
				      &_memcg, may_oom);

	if (ret == -EINTR)  {
		/*
		 * __mem_cgroup_try_charge() chosed to bypass to root due to
		 * OOM kill or fatal signal.  Since our only options are to
		 * either fail the allocation or charge it to this cgroup, do
		 * it as a temporary condition. But we can't fail. From a
		 * kmem/slab perspective, the cache has already been selected,
		 * by mem_cgroup_kmem_get_cache(), so it is too late to change
		 * our minds.
		 *
		 * This condition will only trigger if the task entered
		 * memcg_charge_kmem in a sane state, but was OOM-killed during
		 * __mem_cgroup_try_charge() above. Tasks that were already
		 * dying when the allocation triggers should have been already
		 * directed to the root cgroup in memcontrol.h
		 */
		res_counter_charge_nofail(&memcg->res, size, &fail_res);
		if (do_swap_account)
			res_counter_charge_nofail(&memcg->memsw, size,
						  &fail_res);
		ret = 0;
	} else if (ret)
		res_counter_uncharge(&memcg->kmem, size);

	return ret;
}

static void memcg_uncharge_kmem(struct mem_cgroup *memcg, u64 size)
{
	res_counter_uncharge(&memcg->res, size);
	if (do_swap_account)
		res_counter_uncharge(&memcg->memsw, size);
2906 2907 2908 2909 2910 2911 2912

	/* Not down to 0 */
	if (res_counter_uncharge(&memcg->kmem, size))
		return;

	if (memcg_kmem_test_and_clear_dead(memcg))
		mem_cgroup_put(memcg);
2913 2914
}

2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934
void memcg_cache_list_add(struct mem_cgroup *memcg, struct kmem_cache *cachep)
{
	if (!memcg)
		return;

	mutex_lock(&memcg->slab_caches_mutex);
	list_add(&cachep->memcg_params->list, &memcg->memcg_slab_caches);
	mutex_unlock(&memcg->slab_caches_mutex);
}

/*
 * helper for acessing a memcg's index. It will be used as an index in the
 * child cache array in kmem_cache, and also to derive its name. This function
 * will return -1 when this is not a kmem-limited memcg.
 */
int memcg_cache_id(struct mem_cgroup *memcg)
{
	return memcg ? memcg->kmemcg_id : -1;
}

2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048
/*
 * This ends up being protected by the set_limit mutex, during normal
 * operation, because that is its main call site.
 *
 * But when we create a new cache, we can call this as well if its parent
 * is kmem-limited. That will have to hold set_limit_mutex as well.
 */
int memcg_update_cache_sizes(struct mem_cgroup *memcg)
{
	int num, ret;

	num = ida_simple_get(&kmem_limited_groups,
				0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
	if (num < 0)
		return num;
	/*
	 * After this point, kmem_accounted (that we test atomically in
	 * the beginning of this conditional), is no longer 0. This
	 * guarantees only one process will set the following boolean
	 * to true. We don't need test_and_set because we're protected
	 * by the set_limit_mutex anyway.
	 */
	memcg_kmem_set_activated(memcg);

	ret = memcg_update_all_caches(num+1);
	if (ret) {
		ida_simple_remove(&kmem_limited_groups, num);
		memcg_kmem_clear_activated(memcg);
		return ret;
	}

	memcg->kmemcg_id = num;
	INIT_LIST_HEAD(&memcg->memcg_slab_caches);
	mutex_init(&memcg->slab_caches_mutex);
	return 0;
}

static size_t memcg_caches_array_size(int num_groups)
{
	ssize_t size;
	if (num_groups <= 0)
		return 0;

	size = 2 * num_groups;
	if (size < MEMCG_CACHES_MIN_SIZE)
		size = MEMCG_CACHES_MIN_SIZE;
	else if (size > MEMCG_CACHES_MAX_SIZE)
		size = MEMCG_CACHES_MAX_SIZE;

	return size;
}

/*
 * We should update the current array size iff all caches updates succeed. This
 * can only be done from the slab side. The slab mutex needs to be held when
 * calling this.
 */
void memcg_update_array_size(int num)
{
	if (num > memcg_limited_groups_array_size)
		memcg_limited_groups_array_size = memcg_caches_array_size(num);
}

int memcg_update_cache_size(struct kmem_cache *s, int num_groups)
{
	struct memcg_cache_params *cur_params = s->memcg_params;

	VM_BUG_ON(s->memcg_params && !s->memcg_params->is_root_cache);

	if (num_groups > memcg_limited_groups_array_size) {
		int i;
		ssize_t size = memcg_caches_array_size(num_groups);

		size *= sizeof(void *);
		size += sizeof(struct memcg_cache_params);

		s->memcg_params = kzalloc(size, GFP_KERNEL);
		if (!s->memcg_params) {
			s->memcg_params = cur_params;
			return -ENOMEM;
		}

		s->memcg_params->is_root_cache = true;

		/*
		 * There is the chance it will be bigger than
		 * memcg_limited_groups_array_size, if we failed an allocation
		 * in a cache, in which case all caches updated before it, will
		 * have a bigger array.
		 *
		 * But if that is the case, the data after
		 * memcg_limited_groups_array_size is certainly unused
		 */
		for (i = 0; i < memcg_limited_groups_array_size; i++) {
			if (!cur_params->memcg_caches[i])
				continue;
			s->memcg_params->memcg_caches[i] =
						cur_params->memcg_caches[i];
		}

		/*
		 * Ideally, we would wait until all caches succeed, and only
		 * then free the old one. But this is not worth the extra
		 * pointer per-cache we'd have to have for this.
		 *
		 * It is not a big deal if some caches are left with a size
		 * bigger than the others. And all updates will reset this
		 * anyway.
		 */
		kfree(cur_params);
	}
	return 0;
}

G
Glauber Costa 已提交
3049 3050
int memcg_register_cache(struct mem_cgroup *memcg, struct kmem_cache *s,
			 struct kmem_cache *root_cache)
3051 3052 3053 3054 3055 3056
{
	size_t size = sizeof(struct memcg_cache_params);

	if (!memcg_kmem_enabled())
		return 0;

3057 3058 3059
	if (!memcg)
		size += memcg_limited_groups_array_size * sizeof(void *);

3060 3061 3062 3063
	s->memcg_params = kzalloc(size, GFP_KERNEL);
	if (!s->memcg_params)
		return -ENOMEM;

G
Glauber Costa 已提交
3064
	if (memcg) {
3065
		s->memcg_params->memcg = memcg;
G
Glauber Costa 已提交
3066
		s->memcg_params->root_cache = root_cache;
3067 3068 3069
	} else
		s->memcg_params->is_root_cache = true;

3070 3071 3072 3073 3074
	return 0;
}

void memcg_release_cache(struct kmem_cache *s)
{
3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100
	struct kmem_cache *root;
	struct mem_cgroup *memcg;
	int id;

	/*
	 * This happens, for instance, when a root cache goes away before we
	 * add any memcg.
	 */
	if (!s->memcg_params)
		return;

	if (s->memcg_params->is_root_cache)
		goto out;

	memcg = s->memcg_params->memcg;
	id  = memcg_cache_id(memcg);

	root = s->memcg_params->root_cache;
	root->memcg_params->memcg_caches[id] = NULL;
	mem_cgroup_put(memcg);

	mutex_lock(&memcg->slab_caches_mutex);
	list_del(&s->memcg_params->list);
	mutex_unlock(&memcg->slab_caches_mutex);

out:
3101 3102 3103
	kfree(s->memcg_params);
}

3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134
/*
 * During the creation a new cache, we need to disable our accounting mechanism
 * altogether. This is true even if we are not creating, but rather just
 * enqueing new caches to be created.
 *
 * This is because that process will trigger allocations; some visible, like
 * explicit kmallocs to auxiliary data structures, name strings and internal
 * cache structures; some well concealed, like INIT_WORK() that can allocate
 * objects during debug.
 *
 * If any allocation happens during memcg_kmem_get_cache, we will recurse back
 * to it. This may not be a bounded recursion: since the first cache creation
 * failed to complete (waiting on the allocation), we'll just try to create the
 * cache again, failing at the same point.
 *
 * memcg_kmem_get_cache is prepared to abort after seeing a positive count of
 * memcg_kmem_skip_account. So we enclose anything that might allocate memory
 * inside the following two functions.
 */
static inline void memcg_stop_kmem_account(void)
{
	VM_BUG_ON(!current->mm);
	current->memcg_kmem_skip_account++;
}

static inline void memcg_resume_kmem_account(void)
{
	VM_BUG_ON(!current->mm);
	current->memcg_kmem_skip_account--;
}

G
Glauber Costa 已提交
3135 3136 3137 3138 3139 3140 3141 3142 3143
static void kmem_cache_destroy_work_func(struct work_struct *w)
{
	struct kmem_cache *cachep;
	struct memcg_cache_params *p;

	p = container_of(w, struct memcg_cache_params, destroy);

	cachep = memcg_params_to_cache(p);

G
Glauber Costa 已提交
3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164
	/*
	 * If we get down to 0 after shrink, we could delete right away.
	 * However, memcg_release_pages() already puts us back in the workqueue
	 * in that case. If we proceed deleting, we'll get a dangling
	 * reference, and removing the object from the workqueue in that case
	 * is unnecessary complication. We are not a fast path.
	 *
	 * Note that this case is fundamentally different from racing with
	 * shrink_slab(): if memcg_cgroup_destroy_cache() is called in
	 * kmem_cache_shrink, not only we would be reinserting a dead cache
	 * into the queue, but doing so from inside the worker racing to
	 * destroy it.
	 *
	 * So if we aren't down to zero, we'll just schedule a worker and try
	 * again
	 */
	if (atomic_read(&cachep->memcg_params->nr_pages) != 0) {
		kmem_cache_shrink(cachep);
		if (atomic_read(&cachep->memcg_params->nr_pages) == 0)
			return;
	} else
G
Glauber Costa 已提交
3165 3166 3167 3168 3169 3170 3171 3172
		kmem_cache_destroy(cachep);
}

void mem_cgroup_destroy_cache(struct kmem_cache *cachep)
{
	if (!cachep->memcg_params->dead)
		return;

G
Glauber Costa 已提交
3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192
	/*
	 * There are many ways in which we can get here.
	 *
	 * We can get to a memory-pressure situation while the delayed work is
	 * still pending to run. The vmscan shrinkers can then release all
	 * cache memory and get us to destruction. If this is the case, we'll
	 * be executed twice, which is a bug (the second time will execute over
	 * bogus data). In this case, cancelling the work should be fine.
	 *
	 * But we can also get here from the worker itself, if
	 * kmem_cache_shrink is enough to shake all the remaining objects and
	 * get the page count to 0. In this case, we'll deadlock if we try to
	 * cancel the work (the worker runs with an internal lock held, which
	 * is the same lock we would hold for cancel_work_sync().)
	 *
	 * Since we can't possibly know who got us here, just refrain from
	 * running if there is already work pending
	 */
	if (work_pending(&cachep->memcg_params->destroy))
		return;
G
Glauber Costa 已提交
3193 3194 3195 3196 3197 3198 3199
	/*
	 * We have to defer the actual destroying to a workqueue, because
	 * we might currently be in a context that cannot sleep.
	 */
	schedule_work(&cachep->memcg_params->destroy);
}

3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227
static char *memcg_cache_name(struct mem_cgroup *memcg, struct kmem_cache *s)
{
	char *name;
	struct dentry *dentry;

	rcu_read_lock();
	dentry = rcu_dereference(memcg->css.cgroup->dentry);
	rcu_read_unlock();

	BUG_ON(dentry == NULL);

	name = kasprintf(GFP_KERNEL, "%s(%d:%s)", s->name,
			 memcg_cache_id(memcg), dentry->d_name.name);

	return name;
}

static struct kmem_cache *kmem_cache_dup(struct mem_cgroup *memcg,
					 struct kmem_cache *s)
{
	char *name;
	struct kmem_cache *new;

	name = memcg_cache_name(memcg, s);
	if (!name)
		return NULL;

	new = kmem_cache_create_memcg(memcg, name, s->object_size, s->align,
G
Glauber Costa 已提交
3228
				      (s->flags & ~SLAB_PANIC), s->ctor, s);
3229

3230 3231 3232
	if (new)
		new->allocflags |= __GFP_KMEMCG;

3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267
	kfree(name);
	return new;
}

/*
 * This lock protects updaters, not readers. We want readers to be as fast as
 * they can, and they will either see NULL or a valid cache value. Our model
 * allow them to see NULL, in which case the root memcg will be selected.
 *
 * We need this lock because multiple allocations to the same cache from a non
 * will span more than one worker. Only one of them can create the cache.
 */
static DEFINE_MUTEX(memcg_cache_mutex);
static struct kmem_cache *memcg_create_kmem_cache(struct mem_cgroup *memcg,
						  struct kmem_cache *cachep)
{
	struct kmem_cache *new_cachep;
	int idx;

	BUG_ON(!memcg_can_account_kmem(memcg));

	idx = memcg_cache_id(memcg);

	mutex_lock(&memcg_cache_mutex);
	new_cachep = cachep->memcg_params->memcg_caches[idx];
	if (new_cachep)
		goto out;

	new_cachep = kmem_cache_dup(memcg, cachep);
	if (new_cachep == NULL) {
		new_cachep = cachep;
		goto out;
	}

	mem_cgroup_get(memcg);
G
Glauber Costa 已提交
3268
	atomic_set(&new_cachep->memcg_params->nr_pages , 0);
3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280

	cachep->memcg_params->memcg_caches[idx] = new_cachep;
	/*
	 * the readers won't lock, make sure everybody sees the updated value,
	 * so they won't put stuff in the queue again for no reason
	 */
	wmb();
out:
	mutex_unlock(&memcg_cache_mutex);
	return new_cachep;
}

3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319
void kmem_cache_destroy_memcg_children(struct kmem_cache *s)
{
	struct kmem_cache *c;
	int i;

	if (!s->memcg_params)
		return;
	if (!s->memcg_params->is_root_cache)
		return;

	/*
	 * If the cache is being destroyed, we trust that there is no one else
	 * requesting objects from it. Even if there are, the sanity checks in
	 * kmem_cache_destroy should caught this ill-case.
	 *
	 * Still, we don't want anyone else freeing memcg_caches under our
	 * noses, which can happen if a new memcg comes to life. As usual,
	 * we'll take the set_limit_mutex to protect ourselves against this.
	 */
	mutex_lock(&set_limit_mutex);
	for (i = 0; i < memcg_limited_groups_array_size; i++) {
		c = s->memcg_params->memcg_caches[i];
		if (!c)
			continue;

		/*
		 * We will now manually delete the caches, so to avoid races
		 * we need to cancel all pending destruction workers and
		 * proceed with destruction ourselves.
		 *
		 * kmem_cache_destroy() will call kmem_cache_shrink internally,
		 * and that could spawn the workers again: it is likely that
		 * the cache still have active pages until this very moment.
		 * This would lead us back to mem_cgroup_destroy_cache.
		 *
		 * But that will not execute at all if the "dead" flag is not
		 * set, so flip it down to guarantee we are in control.
		 */
		c->memcg_params->dead = false;
G
Glauber Costa 已提交
3320
		cancel_work_sync(&c->memcg_params->destroy);
3321 3322 3323 3324 3325
		kmem_cache_destroy(c);
	}
	mutex_unlock(&set_limit_mutex);
}

3326 3327 3328 3329 3330 3331
struct create_work {
	struct mem_cgroup *memcg;
	struct kmem_cache *cachep;
	struct work_struct work;
};

G
Glauber Costa 已提交
3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344
static void mem_cgroup_destroy_all_caches(struct mem_cgroup *memcg)
{
	struct kmem_cache *cachep;
	struct memcg_cache_params *params;

	if (!memcg_kmem_is_active(memcg))
		return;

	mutex_lock(&memcg->slab_caches_mutex);
	list_for_each_entry(params, &memcg->memcg_slab_caches, list) {
		cachep = memcg_params_to_cache(params);
		cachep->memcg_params->dead = true;
		INIT_WORK(&cachep->memcg_params->destroy,
G
Glauber Costa 已提交
3345
				  kmem_cache_destroy_work_func);
G
Glauber Costa 已提交
3346 3347 3348 3349 3350
		schedule_work(&cachep->memcg_params->destroy);
	}
	mutex_unlock(&memcg->slab_caches_mutex);
}

3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365
static void memcg_create_cache_work_func(struct work_struct *w)
{
	struct create_work *cw;

	cw = container_of(w, struct create_work, work);
	memcg_create_kmem_cache(cw->memcg, cw->cachep);
	/* Drop the reference gotten when we enqueued. */
	css_put(&cw->memcg->css);
	kfree(cw);
}

/*
 * Enqueue the creation of a per-memcg kmem_cache.
 * Called with rcu_read_lock.
 */
3366 3367
static void __memcg_create_cache_enqueue(struct mem_cgroup *memcg,
					 struct kmem_cache *cachep)
3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387
{
	struct create_work *cw;

	cw = kmalloc(sizeof(struct create_work), GFP_NOWAIT);
	if (cw == NULL)
		return;

	/* The corresponding put will be done in the workqueue. */
	if (!css_tryget(&memcg->css)) {
		kfree(cw);
		return;
	}

	cw->memcg = memcg;
	cw->cachep = cachep;

	INIT_WORK(&cw->work, memcg_create_cache_work_func);
	schedule_work(&cw->work);
}

3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405
static void memcg_create_cache_enqueue(struct mem_cgroup *memcg,
				       struct kmem_cache *cachep)
{
	/*
	 * We need to stop accounting when we kmalloc, because if the
	 * corresponding kmalloc cache is not yet created, the first allocation
	 * in __memcg_create_cache_enqueue will recurse.
	 *
	 * However, it is better to enclose the whole function. Depending on
	 * the debugging options enabled, INIT_WORK(), for instance, can
	 * trigger an allocation. This too, will make us recurse. Because at
	 * this point we can't allow ourselves back into memcg_kmem_get_cache,
	 * the safest choice is to do it like this, wrapping the whole function.
	 */
	memcg_stop_kmem_account();
	__memcg_create_cache_enqueue(memcg, cachep);
	memcg_resume_kmem_account();
}
3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427
/*
 * Return the kmem_cache we're supposed to use for a slab allocation.
 * We try to use the current memcg's version of the cache.
 *
 * If the cache does not exist yet, if we are the first user of it,
 * we either create it immediately, if possible, or create it asynchronously
 * in a workqueue.
 * In the latter case, we will let the current allocation go through with
 * the original cache.
 *
 * Can't be called in interrupt context or from kernel threads.
 * This function needs to be called with rcu_read_lock() held.
 */
struct kmem_cache *__memcg_kmem_get_cache(struct kmem_cache *cachep,
					  gfp_t gfp)
{
	struct mem_cgroup *memcg;
	int idx;

	VM_BUG_ON(!cachep->memcg_params);
	VM_BUG_ON(!cachep->memcg_params->is_root_cache);

3428 3429 3430
	if (!current->mm || current->memcg_kmem_skip_account)
		return cachep;

3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470
	rcu_read_lock();
	memcg = mem_cgroup_from_task(rcu_dereference(current->mm->owner));
	rcu_read_unlock();

	if (!memcg_can_account_kmem(memcg))
		return cachep;

	idx = memcg_cache_id(memcg);

	/*
	 * barrier to mare sure we're always seeing the up to date value.  The
	 * code updating memcg_caches will issue a write barrier to match this.
	 */
	read_barrier_depends();
	if (unlikely(cachep->memcg_params->memcg_caches[idx] == NULL)) {
		/*
		 * If we are in a safe context (can wait, and not in interrupt
		 * context), we could be be predictable and return right away.
		 * This would guarantee that the allocation being performed
		 * already belongs in the new cache.
		 *
		 * However, there are some clashes that can arrive from locking.
		 * For instance, because we acquire the slab_mutex while doing
		 * kmem_cache_dup, this means no further allocation could happen
		 * with the slab_mutex held.
		 *
		 * Also, because cache creation issue get_online_cpus(), this
		 * creates a lock chain: memcg_slab_mutex -> cpu_hotplug_mutex,
		 * that ends up reversed during cpu hotplug. (cpuset allocates
		 * a bunch of GFP_KERNEL memory during cpuup). Due to all that,
		 * better to defer everything.
		 */
		memcg_create_cache_enqueue(memcg, cachep);
		return cachep;
	}

	return cachep->memcg_params->memcg_caches[idx];
}
EXPORT_SYMBOL(__memcg_kmem_get_cache);

3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565
/*
 * We need to verify if the allocation against current->mm->owner's memcg is
 * possible for the given order. But the page is not allocated yet, so we'll
 * need a further commit step to do the final arrangements.
 *
 * It is possible for the task to switch cgroups in this mean time, so at
 * commit time, we can't rely on task conversion any longer.  We'll then use
 * the handle argument to return to the caller which cgroup we should commit
 * against. We could also return the memcg directly and avoid the pointer
 * passing, but a boolean return value gives better semantics considering
 * the compiled-out case as well.
 *
 * Returning true means the allocation is possible.
 */
bool
__memcg_kmem_newpage_charge(gfp_t gfp, struct mem_cgroup **_memcg, int order)
{
	struct mem_cgroup *memcg;
	int ret;

	*_memcg = NULL;
	memcg = try_get_mem_cgroup_from_mm(current->mm);

	/*
	 * very rare case described in mem_cgroup_from_task. Unfortunately there
	 * isn't much we can do without complicating this too much, and it would
	 * be gfp-dependent anyway. Just let it go
	 */
	if (unlikely(!memcg))
		return true;

	if (!memcg_can_account_kmem(memcg)) {
		css_put(&memcg->css);
		return true;
	}

	ret = memcg_charge_kmem(memcg, gfp, PAGE_SIZE << order);
	if (!ret)
		*_memcg = memcg;

	css_put(&memcg->css);
	return (ret == 0);
}

void __memcg_kmem_commit_charge(struct page *page, struct mem_cgroup *memcg,
			      int order)
{
	struct page_cgroup *pc;

	VM_BUG_ON(mem_cgroup_is_root(memcg));

	/* The page allocation failed. Revert */
	if (!page) {
		memcg_uncharge_kmem(memcg, PAGE_SIZE << order);
		return;
	}

	pc = lookup_page_cgroup(page);
	lock_page_cgroup(pc);
	pc->mem_cgroup = memcg;
	SetPageCgroupUsed(pc);
	unlock_page_cgroup(pc);
}

void __memcg_kmem_uncharge_pages(struct page *page, int order)
{
	struct mem_cgroup *memcg = NULL;
	struct page_cgroup *pc;


	pc = lookup_page_cgroup(page);
	/*
	 * Fast unlocked return. Theoretically might have changed, have to
	 * check again after locking.
	 */
	if (!PageCgroupUsed(pc))
		return;

	lock_page_cgroup(pc);
	if (PageCgroupUsed(pc)) {
		memcg = pc->mem_cgroup;
		ClearPageCgroupUsed(pc);
	}
	unlock_page_cgroup(pc);

	/*
	 * We trust that only if there is a memcg associated with the page, it
	 * is a valid allocation
	 */
	if (!memcg)
		return;

	VM_BUG_ON(mem_cgroup_is_root(memcg));
	memcg_uncharge_kmem(memcg, PAGE_SIZE << order);
}
G
Glauber Costa 已提交
3566 3567 3568 3569
#else
static inline void mem_cgroup_destroy_all_caches(struct mem_cgroup *memcg)
{
}
3570 3571
#endif /* CONFIG_MEMCG_KMEM */

3572 3573
#ifdef CONFIG_TRANSPARENT_HUGEPAGE

3574
#define PCGF_NOCOPY_AT_SPLIT (1 << PCG_LOCK | 1 << PCG_MIGRATION)
3575 3576
/*
 * Because tail pages are not marked as "used", set it. We're under
3577 3578 3579
 * zone->lru_lock, 'splitting on pmd' and compound_lock.
 * charge/uncharge will be never happen and move_account() is done under
 * compound_lock(), so we don't have to take care of races.
3580
 */
3581
void mem_cgroup_split_huge_fixup(struct page *head)
3582 3583
{
	struct page_cgroup *head_pc = lookup_page_cgroup(head);
3584 3585
	struct page_cgroup *pc;
	int i;
3586

3587 3588
	if (mem_cgroup_disabled())
		return;
3589 3590 3591 3592 3593 3594
	for (i = 1; i < HPAGE_PMD_NR; i++) {
		pc = head_pc + i;
		pc->mem_cgroup = head_pc->mem_cgroup;
		smp_wmb();/* see __commit_charge() */
		pc->flags = head_pc->flags & ~PCGF_NOCOPY_AT_SPLIT;
	}
3595
}
3596
#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
3597

3598
/**
3599
 * mem_cgroup_move_account - move account of the page
3600
 * @page: the page
3601
 * @nr_pages: number of regular pages (>1 for huge pages)
3602 3603 3604 3605 3606
 * @pc:	page_cgroup of the page.
 * @from: mem_cgroup which the page is moved from.
 * @to:	mem_cgroup which the page is moved to. @from != @to.
 *
 * The caller must confirm following.
K
KAMEZAWA Hiroyuki 已提交
3607
 * - page is not on LRU (isolate_page() is useful.)
3608
 * - compound_lock is held when nr_pages > 1
3609
 *
3610 3611
 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
 * from old cgroup.
3612
 */
3613 3614 3615 3616
static int mem_cgroup_move_account(struct page *page,
				   unsigned int nr_pages,
				   struct page_cgroup *pc,
				   struct mem_cgroup *from,
3617
				   struct mem_cgroup *to)
3618
{
3619 3620
	unsigned long flags;
	int ret;
3621
	bool anon = PageAnon(page);
3622

3623
	VM_BUG_ON(from == to);
3624
	VM_BUG_ON(PageLRU(page));
3625 3626 3627 3628 3629 3630 3631
	/*
	 * The page is isolated from LRU. So, collapse function
	 * will not handle this page. But page splitting can happen.
	 * Do this check under compound_page_lock(). The caller should
	 * hold it.
	 */
	ret = -EBUSY;
3632
	if (nr_pages > 1 && !PageTransHuge(page))
3633 3634 3635 3636 3637 3638 3639 3640
		goto out;

	lock_page_cgroup(pc);

	ret = -EINVAL;
	if (!PageCgroupUsed(pc) || pc->mem_cgroup != from)
		goto unlock;

3641
	move_lock_mem_cgroup(from, &flags);
3642

3643
	if (!anon && page_mapped(page)) {
3644 3645 3646 3647 3648
		/* Update mapped_file data for mem_cgroup */
		preempt_disable();
		__this_cpu_dec(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
		__this_cpu_inc(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
		preempt_enable();
3649
	}
3650
	mem_cgroup_charge_statistics(from, anon, -nr_pages);
3651

3652
	/* caller should have done css_get */
K
KAMEZAWA Hiroyuki 已提交
3653
	pc->mem_cgroup = to;
3654
	mem_cgroup_charge_statistics(to, anon, nr_pages);
3655
	move_unlock_mem_cgroup(from, &flags);
3656 3657
	ret = 0;
unlock:
3658
	unlock_page_cgroup(pc);
3659 3660 3661
	/*
	 * check events
	 */
3662 3663
	memcg_check_events(to, page);
	memcg_check_events(from, page);
3664
out:
3665 3666 3667
	return ret;
}

3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687
/**
 * mem_cgroup_move_parent - moves page to the parent group
 * @page: the page to move
 * @pc: page_cgroup of the page
 * @child: page's cgroup
 *
 * move charges to its parent or the root cgroup if the group has no
 * parent (aka use_hierarchy==0).
 * Although this might fail (get_page_unless_zero, isolate_lru_page or
 * mem_cgroup_move_account fails) the failure is always temporary and
 * it signals a race with a page removal/uncharge or migration. In the
 * first case the page is on the way out and it will vanish from the LRU
 * on the next attempt and the call should be retried later.
 * Isolation from the LRU fails only if page has been isolated from
 * the LRU since we looked at it and that usually means either global
 * reclaim or migration going on. The page will either get back to the
 * LRU or vanish.
 * Finaly mem_cgroup_move_account fails only if the page got uncharged
 * (!PageCgroupUsed) or moved to a different group. The page will
 * disappear in the next attempt.
3688
 */
3689 3690
static int mem_cgroup_move_parent(struct page *page,
				  struct page_cgroup *pc,
3691
				  struct mem_cgroup *child)
3692 3693
{
	struct mem_cgroup *parent;
3694
	unsigned int nr_pages;
3695
	unsigned long uninitialized_var(flags);
3696 3697
	int ret;

3698
	VM_BUG_ON(mem_cgroup_is_root(child));
3699

3700 3701 3702 3703 3704
	ret = -EBUSY;
	if (!get_page_unless_zero(page))
		goto out;
	if (isolate_lru_page(page))
		goto put;
3705

3706
	nr_pages = hpage_nr_pages(page);
K
KAMEZAWA Hiroyuki 已提交
3707

3708 3709 3710 3711 3712 3713
	parent = parent_mem_cgroup(child);
	/*
	 * If no parent, move charges to root cgroup.
	 */
	if (!parent)
		parent = root_mem_cgroup;
3714

3715 3716
	if (nr_pages > 1) {
		VM_BUG_ON(!PageTransHuge(page));
3717
		flags = compound_lock_irqsave(page);
3718
	}
3719

3720
	ret = mem_cgroup_move_account(page, nr_pages,
3721
				pc, child, parent);
3722 3723
	if (!ret)
		__mem_cgroup_cancel_local_charge(child, nr_pages);
3724

3725
	if (nr_pages > 1)
3726
		compound_unlock_irqrestore(page, flags);
K
KAMEZAWA Hiroyuki 已提交
3727
	putback_lru_page(page);
3728
put:
3729
	put_page(page);
3730
out:
3731 3732 3733
	return ret;
}

3734 3735 3736 3737 3738 3739 3740
/*
 * Charge the memory controller for page usage.
 * Return
 * 0 if the charge was successful
 * < 0 if the cgroup is over its limit
 */
static int mem_cgroup_charge_common(struct page *page, struct mm_struct *mm,
3741
				gfp_t gfp_mask, enum charge_type ctype)
3742
{
3743
	struct mem_cgroup *memcg = NULL;
3744
	unsigned int nr_pages = 1;
3745
	bool oom = true;
3746
	int ret;
A
Andrea Arcangeli 已提交
3747

A
Andrea Arcangeli 已提交
3748
	if (PageTransHuge(page)) {
3749
		nr_pages <<= compound_order(page);
A
Andrea Arcangeli 已提交
3750
		VM_BUG_ON(!PageTransHuge(page));
3751 3752 3753 3754 3755
		/*
		 * Never OOM-kill a process for a huge page.  The
		 * fault handler will fall back to regular pages.
		 */
		oom = false;
A
Andrea Arcangeli 已提交
3756
	}
3757

3758
	ret = __mem_cgroup_try_charge(mm, gfp_mask, nr_pages, &memcg, oom);
3759
	if (ret == -ENOMEM)
3760
		return ret;
3761
	__mem_cgroup_commit_charge(memcg, page, nr_pages, ctype, false);
3762 3763 3764
	return 0;
}

3765 3766
int mem_cgroup_newpage_charge(struct page *page,
			      struct mm_struct *mm, gfp_t gfp_mask)
3767
{
3768
	if (mem_cgroup_disabled())
3769
		return 0;
3770 3771 3772
	VM_BUG_ON(page_mapped(page));
	VM_BUG_ON(page->mapping && !PageAnon(page));
	VM_BUG_ON(!mm);
3773
	return mem_cgroup_charge_common(page, mm, gfp_mask,
3774
					MEM_CGROUP_CHARGE_TYPE_ANON);
3775 3776
}

3777 3778 3779
/*
 * While swap-in, try_charge -> commit or cancel, the page is locked.
 * And when try_charge() successfully returns, one refcnt to memcg without
3780
 * struct page_cgroup is acquired. This refcnt will be consumed by
3781 3782
 * "commit()" or removed by "cancel()"
 */
3783 3784 3785 3786
static int __mem_cgroup_try_charge_swapin(struct mm_struct *mm,
					  struct page *page,
					  gfp_t mask,
					  struct mem_cgroup **memcgp)
3787
{
3788
	struct mem_cgroup *memcg;
3789
	struct page_cgroup *pc;
3790
	int ret;
3791

3792 3793 3794 3795 3796 3797 3798 3799 3800 3801
	pc = lookup_page_cgroup(page);
	/*
	 * Every swap fault against a single page tries to charge the
	 * page, bail as early as possible.  shmem_unuse() encounters
	 * already charged pages, too.  The USED bit is protected by
	 * the page lock, which serializes swap cache removal, which
	 * in turn serializes uncharging.
	 */
	if (PageCgroupUsed(pc))
		return 0;
3802 3803
	if (!do_swap_account)
		goto charge_cur_mm;
3804 3805
	memcg = try_get_mem_cgroup_from_page(page);
	if (!memcg)
3806
		goto charge_cur_mm;
3807 3808
	*memcgp = memcg;
	ret = __mem_cgroup_try_charge(NULL, mask, 1, memcgp, true);
3809
	css_put(&memcg->css);
3810 3811
	if (ret == -EINTR)
		ret = 0;
3812
	return ret;
3813
charge_cur_mm:
3814 3815 3816 3817
	ret = __mem_cgroup_try_charge(mm, mask, 1, memcgp, true);
	if (ret == -EINTR)
		ret = 0;
	return ret;
3818 3819
}

3820 3821 3822 3823 3824 3825
int mem_cgroup_try_charge_swapin(struct mm_struct *mm, struct page *page,
				 gfp_t gfp_mask, struct mem_cgroup **memcgp)
{
	*memcgp = NULL;
	if (mem_cgroup_disabled())
		return 0;
3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839
	/*
	 * A racing thread's fault, or swapoff, may have already
	 * updated the pte, and even removed page from swap cache: in
	 * those cases unuse_pte()'s pte_same() test will fail; but
	 * there's also a KSM case which does need to charge the page.
	 */
	if (!PageSwapCache(page)) {
		int ret;

		ret = __mem_cgroup_try_charge(mm, gfp_mask, 1, memcgp, true);
		if (ret == -EINTR)
			ret = 0;
		return ret;
	}
3840 3841 3842
	return __mem_cgroup_try_charge_swapin(mm, page, gfp_mask, memcgp);
}

3843 3844 3845 3846 3847 3848 3849 3850 3851
void mem_cgroup_cancel_charge_swapin(struct mem_cgroup *memcg)
{
	if (mem_cgroup_disabled())
		return;
	if (!memcg)
		return;
	__mem_cgroup_cancel_charge(memcg, 1);
}

D
Daisuke Nishimura 已提交
3852
static void
3853
__mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *memcg,
D
Daisuke Nishimura 已提交
3854
					enum charge_type ctype)
3855
{
3856
	if (mem_cgroup_disabled())
3857
		return;
3858
	if (!memcg)
3859
		return;
3860

3861
	__mem_cgroup_commit_charge(memcg, page, 1, ctype, true);
3862 3863 3864
	/*
	 * Now swap is on-memory. This means this page may be
	 * counted both as mem and swap....double count.
3865 3866 3867
	 * Fix it by uncharging from memsw. Basically, this SwapCache is stable
	 * under lock_page(). But in do_swap_page()::memory.c, reuse_swap_page()
	 * may call delete_from_swap_cache() before reach here.
3868
	 */
3869
	if (do_swap_account && PageSwapCache(page)) {
3870
		swp_entry_t ent = {.val = page_private(page)};
3871
		mem_cgroup_uncharge_swap(ent);
3872
	}
3873 3874
}

3875 3876
void mem_cgroup_commit_charge_swapin(struct page *page,
				     struct mem_cgroup *memcg)
D
Daisuke Nishimura 已提交
3877
{
3878
	__mem_cgroup_commit_charge_swapin(page, memcg,
3879
					  MEM_CGROUP_CHARGE_TYPE_ANON);
D
Daisuke Nishimura 已提交
3880 3881
}

3882 3883
int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm,
				gfp_t gfp_mask)
3884
{
3885 3886 3887 3888
	struct mem_cgroup *memcg = NULL;
	enum charge_type type = MEM_CGROUP_CHARGE_TYPE_CACHE;
	int ret;

3889
	if (mem_cgroup_disabled())
3890 3891 3892 3893 3894 3895 3896
		return 0;
	if (PageCompound(page))
		return 0;

	if (!PageSwapCache(page))
		ret = mem_cgroup_charge_common(page, mm, gfp_mask, type);
	else { /* page is swapcache/shmem */
3897 3898
		ret = __mem_cgroup_try_charge_swapin(mm, page,
						     gfp_mask, &memcg);
3899 3900 3901 3902
		if (!ret)
			__mem_cgroup_commit_charge_swapin(page, memcg, type);
	}
	return ret;
3903 3904
}

3905
static void mem_cgroup_do_uncharge(struct mem_cgroup *memcg,
3906 3907
				   unsigned int nr_pages,
				   const enum charge_type ctype)
3908 3909 3910
{
	struct memcg_batch_info *batch = NULL;
	bool uncharge_memsw = true;
3911

3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922
	/* If swapout, usage of swap doesn't decrease */
	if (!do_swap_account || ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT)
		uncharge_memsw = false;

	batch = &current->memcg_batch;
	/*
	 * In usual, we do css_get() when we remember memcg pointer.
	 * But in this case, we keep res->usage until end of a series of
	 * uncharges. Then, it's ok to ignore memcg's refcnt.
	 */
	if (!batch->memcg)
3923
		batch->memcg = memcg;
3924 3925
	/*
	 * do_batch > 0 when unmapping pages or inode invalidate/truncate.
L
Lucas De Marchi 已提交
3926
	 * In those cases, all pages freed continuously can be expected to be in
3927 3928 3929 3930 3931 3932 3933 3934
	 * the same cgroup and we have chance to coalesce uncharges.
	 * But we do uncharge one by one if this is killed by OOM(TIF_MEMDIE)
	 * because we want to do uncharge as soon as possible.
	 */

	if (!batch->do_batch || test_thread_flag(TIF_MEMDIE))
		goto direct_uncharge;

3935
	if (nr_pages > 1)
A
Andrea Arcangeli 已提交
3936 3937
		goto direct_uncharge;

3938 3939 3940 3941 3942
	/*
	 * In typical case, batch->memcg == mem. This means we can
	 * merge a series of uncharges to an uncharge of res_counter.
	 * If not, we uncharge res_counter ony by one.
	 */
3943
	if (batch->memcg != memcg)
3944 3945
		goto direct_uncharge;
	/* remember freed charge and uncharge it later */
3946
	batch->nr_pages++;
3947
	if (uncharge_memsw)
3948
		batch->memsw_nr_pages++;
3949 3950
	return;
direct_uncharge:
3951
	res_counter_uncharge(&memcg->res, nr_pages * PAGE_SIZE);
3952
	if (uncharge_memsw)
3953 3954 3955
		res_counter_uncharge(&memcg->memsw, nr_pages * PAGE_SIZE);
	if (unlikely(batch->memcg != memcg))
		memcg_oom_recover(memcg);
3956
}
3957

3958
/*
3959
 * uncharge if !page_mapped(page)
3960
 */
3961
static struct mem_cgroup *
3962 3963
__mem_cgroup_uncharge_common(struct page *page, enum charge_type ctype,
			     bool end_migration)
3964
{
3965
	struct mem_cgroup *memcg = NULL;
3966 3967
	unsigned int nr_pages = 1;
	struct page_cgroup *pc;
3968
	bool anon;
3969

3970
	if (mem_cgroup_disabled())
3971
		return NULL;
3972

3973
	VM_BUG_ON(PageSwapCache(page));
K
KAMEZAWA Hiroyuki 已提交
3974

A
Andrea Arcangeli 已提交
3975
	if (PageTransHuge(page)) {
3976
		nr_pages <<= compound_order(page);
A
Andrea Arcangeli 已提交
3977 3978
		VM_BUG_ON(!PageTransHuge(page));
	}
3979
	/*
3980
	 * Check if our page_cgroup is valid
3981
	 */
3982
	pc = lookup_page_cgroup(page);
3983
	if (unlikely(!PageCgroupUsed(pc)))
3984
		return NULL;
3985

3986
	lock_page_cgroup(pc);
K
KAMEZAWA Hiroyuki 已提交
3987

3988
	memcg = pc->mem_cgroup;
3989

K
KAMEZAWA Hiroyuki 已提交
3990 3991 3992
	if (!PageCgroupUsed(pc))
		goto unlock_out;

3993 3994
	anon = PageAnon(page);

K
KAMEZAWA Hiroyuki 已提交
3995
	switch (ctype) {
3996
	case MEM_CGROUP_CHARGE_TYPE_ANON:
3997 3998 3999 4000 4001
		/*
		 * Generally PageAnon tells if it's the anon statistics to be
		 * updated; but sometimes e.g. mem_cgroup_uncharge_page() is
		 * used before page reached the stage of being marked PageAnon.
		 */
4002 4003
		anon = true;
		/* fallthrough */
K
KAMEZAWA Hiroyuki 已提交
4004
	case MEM_CGROUP_CHARGE_TYPE_DROP:
4005
		/* See mem_cgroup_prepare_migration() */
4006 4007 4008 4009 4010 4011 4012 4013 4014 4015
		if (page_mapped(page))
			goto unlock_out;
		/*
		 * Pages under migration may not be uncharged.  But
		 * end_migration() /must/ be the one uncharging the
		 * unused post-migration page and so it has to call
		 * here with the migration bit still set.  See the
		 * res_counter handling below.
		 */
		if (!end_migration && PageCgroupMigration(pc))
K
KAMEZAWA Hiroyuki 已提交
4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026
			goto unlock_out;
		break;
	case MEM_CGROUP_CHARGE_TYPE_SWAPOUT:
		if (!PageAnon(page)) {	/* Shared memory */
			if (page->mapping && !page_is_file_cache(page))
				goto unlock_out;
		} else if (page_mapped(page)) /* Anon */
				goto unlock_out;
		break;
	default:
		break;
4027
	}
K
KAMEZAWA Hiroyuki 已提交
4028

4029
	mem_cgroup_charge_statistics(memcg, anon, -nr_pages);
K
KAMEZAWA Hiroyuki 已提交
4030

4031
	ClearPageCgroupUsed(pc);
4032 4033 4034 4035 4036 4037
	/*
	 * pc->mem_cgroup is not cleared here. It will be accessed when it's
	 * freed from LRU. This is safe because uncharged page is expected not
	 * to be reused (freed soon). Exception is SwapCache, it's handled by
	 * special functions.
	 */
4038

4039
	unlock_page_cgroup(pc);
K
KAMEZAWA Hiroyuki 已提交
4040
	/*
4041
	 * even after unlock, we have memcg->res.usage here and this memcg
K
KAMEZAWA Hiroyuki 已提交
4042 4043
	 * will never be freed.
	 */
4044
	memcg_check_events(memcg, page);
K
KAMEZAWA Hiroyuki 已提交
4045
	if (do_swap_account && ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT) {
4046 4047
		mem_cgroup_swap_statistics(memcg, true);
		mem_cgroup_get(memcg);
K
KAMEZAWA Hiroyuki 已提交
4048
	}
4049 4050 4051 4052 4053 4054
	/*
	 * Migration does not charge the res_counter for the
	 * replacement page, so leave it alone when phasing out the
	 * page that is unused after the migration.
	 */
	if (!end_migration && !mem_cgroup_is_root(memcg))
4055
		mem_cgroup_do_uncharge(memcg, nr_pages, ctype);
4056

4057
	return memcg;
K
KAMEZAWA Hiroyuki 已提交
4058 4059 4060

unlock_out:
	unlock_page_cgroup(pc);
4061
	return NULL;
4062 4063
}

4064 4065
void mem_cgroup_uncharge_page(struct page *page)
{
4066 4067 4068
	/* early check. */
	if (page_mapped(page))
		return;
4069
	VM_BUG_ON(page->mapping && !PageAnon(page));
4070 4071
	if (PageSwapCache(page))
		return;
4072
	__mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_ANON, false);
4073 4074 4075 4076 4077
}

void mem_cgroup_uncharge_cache_page(struct page *page)
{
	VM_BUG_ON(page_mapped(page));
4078
	VM_BUG_ON(page->mapping);
4079
	__mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_CACHE, false);
4080 4081
}

4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095
/*
 * Batch_start/batch_end is called in unmap_page_range/invlidate/trucate.
 * In that cases, pages are freed continuously and we can expect pages
 * are in the same memcg. All these calls itself limits the number of
 * pages freed at once, then uncharge_start/end() is called properly.
 * This may be called prural(2) times in a context,
 */

void mem_cgroup_uncharge_start(void)
{
	current->memcg_batch.do_batch++;
	/* We can do nest. */
	if (current->memcg_batch.do_batch == 1) {
		current->memcg_batch.memcg = NULL;
4096 4097
		current->memcg_batch.nr_pages = 0;
		current->memcg_batch.memsw_nr_pages = 0;
4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117
	}
}

void mem_cgroup_uncharge_end(void)
{
	struct memcg_batch_info *batch = &current->memcg_batch;

	if (!batch->do_batch)
		return;

	batch->do_batch--;
	if (batch->do_batch) /* If stacked, do nothing. */
		return;

	if (!batch->memcg)
		return;
	/*
	 * This "batch->memcg" is valid without any css_get/put etc...
	 * bacause we hide charges behind us.
	 */
4118 4119 4120 4121 4122 4123
	if (batch->nr_pages)
		res_counter_uncharge(&batch->memcg->res,
				     batch->nr_pages * PAGE_SIZE);
	if (batch->memsw_nr_pages)
		res_counter_uncharge(&batch->memcg->memsw,
				     batch->memsw_nr_pages * PAGE_SIZE);
4124
	memcg_oom_recover(batch->memcg);
4125 4126 4127 4128
	/* forget this pointer (for sanity check) */
	batch->memcg = NULL;
}

4129
#ifdef CONFIG_SWAP
4130
/*
4131
 * called after __delete_from_swap_cache() and drop "page" account.
4132 4133
 * memcg information is recorded to swap_cgroup of "ent"
 */
K
KAMEZAWA Hiroyuki 已提交
4134 4135
void
mem_cgroup_uncharge_swapcache(struct page *page, swp_entry_t ent, bool swapout)
4136 4137
{
	struct mem_cgroup *memcg;
K
KAMEZAWA Hiroyuki 已提交
4138 4139 4140 4141 4142
	int ctype = MEM_CGROUP_CHARGE_TYPE_SWAPOUT;

	if (!swapout) /* this was a swap cache but the swap is unused ! */
		ctype = MEM_CGROUP_CHARGE_TYPE_DROP;

4143
	memcg = __mem_cgroup_uncharge_common(page, ctype, false);
4144

K
KAMEZAWA Hiroyuki 已提交
4145 4146 4147 4148 4149
	/*
	 * record memcg information,  if swapout && memcg != NULL,
	 * mem_cgroup_get() was called in uncharge().
	 */
	if (do_swap_account && swapout && memcg)
4150
		swap_cgroup_record(ent, css_id(&memcg->css));
4151
}
4152
#endif
4153

A
Andrew Morton 已提交
4154
#ifdef CONFIG_MEMCG_SWAP
4155 4156 4157 4158 4159
/*
 * called from swap_entry_free(). remove record in swap_cgroup and
 * uncharge "memsw" account.
 */
void mem_cgroup_uncharge_swap(swp_entry_t ent)
K
KAMEZAWA Hiroyuki 已提交
4160
{
4161
	struct mem_cgroup *memcg;
4162
	unsigned short id;
4163 4164 4165 4166

	if (!do_swap_account)
		return;

4167 4168 4169
	id = swap_cgroup_record(ent, 0);
	rcu_read_lock();
	memcg = mem_cgroup_lookup(id);
4170
	if (memcg) {
4171 4172 4173 4174
		/*
		 * We uncharge this because swap is freed.
		 * This memcg can be obsolete one. We avoid calling css_tryget
		 */
4175
		if (!mem_cgroup_is_root(memcg))
4176
			res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
4177
		mem_cgroup_swap_statistics(memcg, false);
4178 4179
		mem_cgroup_put(memcg);
	}
4180
	rcu_read_unlock();
K
KAMEZAWA Hiroyuki 已提交
4181
}
4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197

/**
 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
 * @entry: swap entry to be moved
 * @from:  mem_cgroup which the entry is moved from
 * @to:  mem_cgroup which the entry is moved to
 *
 * It succeeds only when the swap_cgroup's record for this entry is the same
 * as the mem_cgroup's id of @from.
 *
 * Returns 0 on success, -EINVAL on failure.
 *
 * The caller must have charged to @to, IOW, called res_counter_charge() about
 * both res and memsw, and called css_get().
 */
static int mem_cgroup_move_swap_account(swp_entry_t entry,
4198
				struct mem_cgroup *from, struct mem_cgroup *to)
4199 4200 4201 4202 4203 4204 4205 4206
{
	unsigned short old_id, new_id;

	old_id = css_id(&from->css);
	new_id = css_id(&to->css);

	if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
		mem_cgroup_swap_statistics(from, false);
4207
		mem_cgroup_swap_statistics(to, true);
4208
		/*
4209 4210 4211 4212 4213 4214
		 * This function is only called from task migration context now.
		 * It postpones res_counter and refcount handling till the end
		 * of task migration(mem_cgroup_clear_mc()) for performance
		 * improvement. But we cannot postpone mem_cgroup_get(to)
		 * because if the process that has been moved to @to does
		 * swap-in, the refcount of @to might be decreased to 0.
4215 4216 4217 4218 4219 4220 4221 4222
		 */
		mem_cgroup_get(to);
		return 0;
	}
	return -EINVAL;
}
#else
static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
4223
				struct mem_cgroup *from, struct mem_cgroup *to)
4224 4225 4226
{
	return -EINVAL;
}
4227
#endif
K
KAMEZAWA Hiroyuki 已提交
4228

4229
/*
4230 4231
 * Before starting migration, account PAGE_SIZE to mem_cgroup that the old
 * page belongs to.
4232
 */
4233 4234
void mem_cgroup_prepare_migration(struct page *page, struct page *newpage,
				  struct mem_cgroup **memcgp)
4235
{
4236
	struct mem_cgroup *memcg = NULL;
4237
	unsigned int nr_pages = 1;
4238
	struct page_cgroup *pc;
4239
	enum charge_type ctype;
4240

4241
	*memcgp = NULL;
4242

4243
	if (mem_cgroup_disabled())
4244
		return;
4245

4246 4247 4248
	if (PageTransHuge(page))
		nr_pages <<= compound_order(page);

4249 4250 4251
	pc = lookup_page_cgroup(page);
	lock_page_cgroup(pc);
	if (PageCgroupUsed(pc)) {
4252 4253
		memcg = pc->mem_cgroup;
		css_get(&memcg->css);
4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284
		/*
		 * At migrating an anonymous page, its mapcount goes down
		 * to 0 and uncharge() will be called. But, even if it's fully
		 * unmapped, migration may fail and this page has to be
		 * charged again. We set MIGRATION flag here and delay uncharge
		 * until end_migration() is called
		 *
		 * Corner Case Thinking
		 * A)
		 * When the old page was mapped as Anon and it's unmap-and-freed
		 * while migration was ongoing.
		 * If unmap finds the old page, uncharge() of it will be delayed
		 * until end_migration(). If unmap finds a new page, it's
		 * uncharged when it make mapcount to be 1->0. If unmap code
		 * finds swap_migration_entry, the new page will not be mapped
		 * and end_migration() will find it(mapcount==0).
		 *
		 * B)
		 * When the old page was mapped but migraion fails, the kernel
		 * remaps it. A charge for it is kept by MIGRATION flag even
		 * if mapcount goes down to 0. We can do remap successfully
		 * without charging it again.
		 *
		 * C)
		 * The "old" page is under lock_page() until the end of
		 * migration, so, the old page itself will not be swapped-out.
		 * If the new page is swapped out before end_migraton, our
		 * hook to usual swap-out path will catch the event.
		 */
		if (PageAnon(page))
			SetPageCgroupMigration(pc);
4285
	}
4286
	unlock_page_cgroup(pc);
4287 4288 4289 4290
	/*
	 * If the page is not charged at this point,
	 * we return here.
	 */
4291
	if (!memcg)
4292
		return;
4293

4294
	*memcgp = memcg;
4295 4296 4297 4298 4299 4300 4301
	/*
	 * We charge new page before it's used/mapped. So, even if unlock_page()
	 * is called before end_migration, we can catch all events on this new
	 * page. In the case new page is migrated but not remapped, new page's
	 * mapcount will be finally 0 and we call uncharge in end_migration().
	 */
	if (PageAnon(page))
4302
		ctype = MEM_CGROUP_CHARGE_TYPE_ANON;
4303
	else
4304
		ctype = MEM_CGROUP_CHARGE_TYPE_CACHE;
4305 4306 4307 4308 4309
	/*
	 * The page is committed to the memcg, but it's not actually
	 * charged to the res_counter since we plan on replacing the
	 * old one and only one page is going to be left afterwards.
	 */
4310
	__mem_cgroup_commit_charge(memcg, newpage, nr_pages, ctype, false);
4311
}
4312

4313
/* remove redundant charge if migration failed*/
4314
void mem_cgroup_end_migration(struct mem_cgroup *memcg,
4315
	struct page *oldpage, struct page *newpage, bool migration_ok)
4316
{
4317
	struct page *used, *unused;
4318
	struct page_cgroup *pc;
4319
	bool anon;
4320

4321
	if (!memcg)
4322
		return;
4323

4324
	if (!migration_ok) {
4325 4326
		used = oldpage;
		unused = newpage;
4327
	} else {
4328
		used = newpage;
4329 4330
		unused = oldpage;
	}
4331
	anon = PageAnon(used);
4332 4333 4334 4335
	__mem_cgroup_uncharge_common(unused,
				     anon ? MEM_CGROUP_CHARGE_TYPE_ANON
				     : MEM_CGROUP_CHARGE_TYPE_CACHE,
				     true);
4336
	css_put(&memcg->css);
4337
	/*
4338 4339 4340
	 * We disallowed uncharge of pages under migration because mapcount
	 * of the page goes down to zero, temporarly.
	 * Clear the flag and check the page should be charged.
4341
	 */
4342 4343 4344 4345 4346
	pc = lookup_page_cgroup(oldpage);
	lock_page_cgroup(pc);
	ClearPageCgroupMigration(pc);
	unlock_page_cgroup(pc);

4347
	/*
4348 4349 4350 4351 4352 4353
	 * If a page is a file cache, radix-tree replacement is very atomic
	 * and we can skip this check. When it was an Anon page, its mapcount
	 * goes down to 0. But because we added MIGRATION flage, it's not
	 * uncharged yet. There are several case but page->mapcount check
	 * and USED bit check in mem_cgroup_uncharge_page() will do enough
	 * check. (see prepare_charge() also)
4354
	 */
4355
	if (anon)
4356
		mem_cgroup_uncharge_page(used);
4357
}
4358

4359 4360 4361 4362 4363 4364 4365 4366
/*
 * At replace page cache, newpage is not under any memcg but it's on
 * LRU. So, this function doesn't touch res_counter but handles LRU
 * in correct way. Both pages are locked so we cannot race with uncharge.
 */
void mem_cgroup_replace_page_cache(struct page *oldpage,
				  struct page *newpage)
{
4367
	struct mem_cgroup *memcg = NULL;
4368 4369 4370 4371 4372 4373 4374 4375 4376
	struct page_cgroup *pc;
	enum charge_type type = MEM_CGROUP_CHARGE_TYPE_CACHE;

	if (mem_cgroup_disabled())
		return;

	pc = lookup_page_cgroup(oldpage);
	/* fix accounting on old pages */
	lock_page_cgroup(pc);
4377 4378 4379 4380 4381
	if (PageCgroupUsed(pc)) {
		memcg = pc->mem_cgroup;
		mem_cgroup_charge_statistics(memcg, false, -1);
		ClearPageCgroupUsed(pc);
	}
4382 4383
	unlock_page_cgroup(pc);

4384 4385 4386 4387 4388 4389
	/*
	 * When called from shmem_replace_page(), in some cases the
	 * oldpage has already been charged, and in some cases not.
	 */
	if (!memcg)
		return;
4390 4391 4392 4393 4394
	/*
	 * Even if newpage->mapping was NULL before starting replacement,
	 * the newpage may be on LRU(or pagevec for LRU) already. We lock
	 * LRU while we overwrite pc->mem_cgroup.
	 */
4395
	__mem_cgroup_commit_charge(memcg, newpage, 1, type, true);
4396 4397
}

4398 4399 4400 4401 4402 4403
#ifdef CONFIG_DEBUG_VM
static struct page_cgroup *lookup_page_cgroup_used(struct page *page)
{
	struct page_cgroup *pc;

	pc = lookup_page_cgroup(page);
4404 4405 4406 4407 4408
	/*
	 * Can be NULL while feeding pages into the page allocator for
	 * the first time, i.e. during boot or memory hotplug;
	 * or when mem_cgroup_disabled().
	 */
4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427
	if (likely(pc) && PageCgroupUsed(pc))
		return pc;
	return NULL;
}

bool mem_cgroup_bad_page_check(struct page *page)
{
	if (mem_cgroup_disabled())
		return false;

	return lookup_page_cgroup_used(page) != NULL;
}

void mem_cgroup_print_bad_page(struct page *page)
{
	struct page_cgroup *pc;

	pc = lookup_page_cgroup_used(page);
	if (pc) {
4428 4429
		pr_alert("pc:%p pc->flags:%lx pc->mem_cgroup:%p\n",
			 pc, pc->flags, pc->mem_cgroup);
4430 4431 4432 4433
	}
}
#endif

4434
static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
4435
				unsigned long long val)
4436
{
4437
	int retry_count;
4438
	u64 memswlimit, memlimit;
4439
	int ret = 0;
4440 4441
	int children = mem_cgroup_count_children(memcg);
	u64 curusage, oldusage;
4442
	int enlarge;
4443 4444 4445 4446 4447 4448 4449 4450 4451

	/*
	 * For keeping hierarchical_reclaim simple, how long we should retry
	 * is depends on callers. We set our retry-count to be function
	 * of # of children which we should visit in this loop.
	 */
	retry_count = MEM_CGROUP_RECLAIM_RETRIES * children;

	oldusage = res_counter_read_u64(&memcg->res, RES_USAGE);
4452

4453
	enlarge = 0;
4454
	while (retry_count) {
4455 4456 4457 4458
		if (signal_pending(current)) {
			ret = -EINTR;
			break;
		}
4459 4460 4461
		/*
		 * Rather than hide all in some function, I do this in
		 * open coded manner. You see what this really does.
4462
		 * We have to guarantee memcg->res.limit <= memcg->memsw.limit.
4463 4464 4465 4466 4467 4468
		 */
		mutex_lock(&set_limit_mutex);
		memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
		if (memswlimit < val) {
			ret = -EINVAL;
			mutex_unlock(&set_limit_mutex);
4469 4470
			break;
		}
4471 4472 4473 4474 4475

		memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
		if (memlimit < val)
			enlarge = 1;

4476
		ret = res_counter_set_limit(&memcg->res, val);
4477 4478 4479 4480 4481 4482
		if (!ret) {
			if (memswlimit == val)
				memcg->memsw_is_minimum = true;
			else
				memcg->memsw_is_minimum = false;
		}
4483 4484 4485 4486 4487
		mutex_unlock(&set_limit_mutex);

		if (!ret)
			break;

4488 4489
		mem_cgroup_reclaim(memcg, GFP_KERNEL,
				   MEM_CGROUP_RECLAIM_SHRINK);
4490 4491 4492 4493 4494 4495
		curusage = res_counter_read_u64(&memcg->res, RES_USAGE);
		/* Usage is reduced ? */
  		if (curusage >= oldusage)
			retry_count--;
		else
			oldusage = curusage;
4496
	}
4497 4498
	if (!ret && enlarge)
		memcg_oom_recover(memcg);
4499

4500 4501 4502
	return ret;
}

L
Li Zefan 已提交
4503 4504
static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
					unsigned long long val)
4505
{
4506
	int retry_count;
4507
	u64 memlimit, memswlimit, oldusage, curusage;
4508 4509
	int children = mem_cgroup_count_children(memcg);
	int ret = -EBUSY;
4510
	int enlarge = 0;
4511

4512 4513 4514
	/* see mem_cgroup_resize_res_limit */
 	retry_count = children * MEM_CGROUP_RECLAIM_RETRIES;
	oldusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
4515 4516 4517 4518 4519 4520 4521 4522
	while (retry_count) {
		if (signal_pending(current)) {
			ret = -EINTR;
			break;
		}
		/*
		 * Rather than hide all in some function, I do this in
		 * open coded manner. You see what this really does.
4523
		 * We have to guarantee memcg->res.limit <= memcg->memsw.limit.
4524 4525 4526 4527 4528 4529 4530 4531
		 */
		mutex_lock(&set_limit_mutex);
		memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
		if (memlimit > val) {
			ret = -EINVAL;
			mutex_unlock(&set_limit_mutex);
			break;
		}
4532 4533 4534
		memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
		if (memswlimit < val)
			enlarge = 1;
4535
		ret = res_counter_set_limit(&memcg->memsw, val);
4536 4537 4538 4539 4540 4541
		if (!ret) {
			if (memlimit == val)
				memcg->memsw_is_minimum = true;
			else
				memcg->memsw_is_minimum = false;
		}
4542 4543 4544 4545 4546
		mutex_unlock(&set_limit_mutex);

		if (!ret)
			break;

4547 4548 4549
		mem_cgroup_reclaim(memcg, GFP_KERNEL,
				   MEM_CGROUP_RECLAIM_NOSWAP |
				   MEM_CGROUP_RECLAIM_SHRINK);
4550
		curusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
4551
		/* Usage is reduced ? */
4552
		if (curusage >= oldusage)
4553
			retry_count--;
4554 4555
		else
			oldusage = curusage;
4556
	}
4557 4558
	if (!ret && enlarge)
		memcg_oom_recover(memcg);
4559 4560 4561
	return ret;
}

4562
unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
4563 4564
					    gfp_t gfp_mask,
					    unsigned long *total_scanned)
4565 4566 4567 4568 4569 4570
{
	unsigned long nr_reclaimed = 0;
	struct mem_cgroup_per_zone *mz, *next_mz = NULL;
	unsigned long reclaimed;
	int loop = 0;
	struct mem_cgroup_tree_per_zone *mctz;
4571
	unsigned long long excess;
4572
	unsigned long nr_scanned;
4573 4574 4575 4576

	if (order > 0)
		return 0;

4577
	mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone));
4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590
	/*
	 * This loop can run a while, specially if mem_cgroup's continuously
	 * keep exceeding their soft limit and putting the system under
	 * pressure
	 */
	do {
		if (next_mz)
			mz = next_mz;
		else
			mz = mem_cgroup_largest_soft_limit_node(mctz);
		if (!mz)
			break;

4591
		nr_scanned = 0;
4592
		reclaimed = mem_cgroup_soft_reclaim(mz->memcg, zone,
4593
						    gfp_mask, &nr_scanned);
4594
		nr_reclaimed += reclaimed;
4595
		*total_scanned += nr_scanned;
4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617
		spin_lock(&mctz->lock);

		/*
		 * If we failed to reclaim anything from this memory cgroup
		 * it is time to move on to the next cgroup
		 */
		next_mz = NULL;
		if (!reclaimed) {
			do {
				/*
				 * Loop until we find yet another one.
				 *
				 * By the time we get the soft_limit lock
				 * again, someone might have aded the
				 * group back on the RB tree. Iterate to
				 * make sure we get a different mem.
				 * mem_cgroup_largest_soft_limit_node returns
				 * NULL if no other cgroup is present on
				 * the tree
				 */
				next_mz =
				__mem_cgroup_largest_soft_limit_node(mctz);
4618
				if (next_mz == mz)
4619
					css_put(&next_mz->memcg->css);
4620
				else /* next_mz == NULL or other memcg */
4621 4622 4623
					break;
			} while (1);
		}
4624 4625
		__mem_cgroup_remove_exceeded(mz->memcg, mz, mctz);
		excess = res_counter_soft_limit_excess(&mz->memcg->res);
4626 4627 4628 4629 4630 4631 4632 4633
		/*
		 * One school of thought says that we should not add
		 * back the node to the tree if reclaim returns 0.
		 * But our reclaim could return 0, simply because due
		 * to priority we are exposing a smaller subset of
		 * memory to reclaim from. Consider this as a longer
		 * term TODO.
		 */
4634
		/* If excess == 0, no tree ops */
4635
		__mem_cgroup_insert_exceeded(mz->memcg, mz, mctz, excess);
4636
		spin_unlock(&mctz->lock);
4637
		css_put(&mz->memcg->css);
4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649
		loop++;
		/*
		 * Could not reclaim anything and there are no more
		 * mem cgroups to try or we seem to be looping without
		 * reclaiming anything.
		 */
		if (!nr_reclaimed &&
			(next_mz == NULL ||
			loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
			break;
	} while (!nr_reclaimed);
	if (next_mz)
4650
		css_put(&next_mz->memcg->css);
4651 4652 4653
	return nr_reclaimed;
}

4654 4655 4656 4657 4658 4659 4660
/**
 * mem_cgroup_force_empty_list - clears LRU of a group
 * @memcg: group to clear
 * @node: NUMA node
 * @zid: zone id
 * @lru: lru to to clear
 *
4661
 * Traverse a specified page_cgroup list and try to drop them all.  This doesn't
4662 4663
 * reclaim the pages page themselves - pages are moved to the parent (or root)
 * group.
4664
 */
4665
static void mem_cgroup_force_empty_list(struct mem_cgroup *memcg,
K
KAMEZAWA Hiroyuki 已提交
4666
				int node, int zid, enum lru_list lru)
4667
{
4668
	struct lruvec *lruvec;
4669
	unsigned long flags;
4670
	struct list_head *list;
4671 4672
	struct page *busy;
	struct zone *zone;
4673

K
KAMEZAWA Hiroyuki 已提交
4674
	zone = &NODE_DATA(node)->node_zones[zid];
4675 4676
	lruvec = mem_cgroup_zone_lruvec(zone, memcg);
	list = &lruvec->lists[lru];
4677

4678
	busy = NULL;
4679
	do {
4680
		struct page_cgroup *pc;
4681 4682
		struct page *page;

K
KAMEZAWA Hiroyuki 已提交
4683
		spin_lock_irqsave(&zone->lru_lock, flags);
4684
		if (list_empty(list)) {
K
KAMEZAWA Hiroyuki 已提交
4685
			spin_unlock_irqrestore(&zone->lru_lock, flags);
4686
			break;
4687
		}
4688 4689 4690
		page = list_entry(list->prev, struct page, lru);
		if (busy == page) {
			list_move(&page->lru, list);
4691
			busy = NULL;
K
KAMEZAWA Hiroyuki 已提交
4692
			spin_unlock_irqrestore(&zone->lru_lock, flags);
4693 4694
			continue;
		}
K
KAMEZAWA Hiroyuki 已提交
4695
		spin_unlock_irqrestore(&zone->lru_lock, flags);
4696

4697
		pc = lookup_page_cgroup(page);
4698

4699
		if (mem_cgroup_move_parent(page, pc, memcg)) {
4700
			/* found lock contention or "pc" is obsolete. */
4701
			busy = page;
4702 4703 4704
			cond_resched();
		} else
			busy = NULL;
4705
	} while (!list_empty(list));
4706 4707 4708
}

/*
4709 4710
 * make mem_cgroup's charge to be 0 if there is no task by moving
 * all the charges and pages to the parent.
4711
 * This enables deleting this mem_cgroup.
4712 4713
 *
 * Caller is responsible for holding css reference on the memcg.
4714
 */
4715
static void mem_cgroup_reparent_charges(struct mem_cgroup *memcg)
4716
{
4717
	int node, zid;
4718
	u64 usage;
4719

4720
	do {
4721 4722
		/* This is for making all *used* pages to be on LRU. */
		lru_add_drain_all();
4723 4724
		drain_all_stock_sync(memcg);
		mem_cgroup_start_move(memcg);
4725
		for_each_node_state(node, N_MEMORY) {
4726
			for (zid = 0; zid < MAX_NR_ZONES; zid++) {
H
Hugh Dickins 已提交
4727 4728
				enum lru_list lru;
				for_each_lru(lru) {
4729
					mem_cgroup_force_empty_list(memcg,
H
Hugh Dickins 已提交
4730
							node, zid, lru);
4731
				}
4732
			}
4733
		}
4734 4735
		mem_cgroup_end_move(memcg);
		memcg_oom_recover(memcg);
4736
		cond_resched();
4737

4738
		/*
4739 4740 4741 4742 4743
		 * Kernel memory may not necessarily be trackable to a specific
		 * process. So they are not migrated, and therefore we can't
		 * expect their value to drop to 0 here.
		 * Having res filled up with kmem only is enough.
		 *
4744 4745 4746 4747 4748 4749
		 * This is a safety check because mem_cgroup_force_empty_list
		 * could have raced with mem_cgroup_replace_page_cache callers
		 * so the lru seemed empty but the page could have been added
		 * right after the check. RES_USAGE should be safe as we always
		 * charge before adding to the LRU.
		 */
4750 4751 4752
		usage = res_counter_read_u64(&memcg->res, RES_USAGE) -
			res_counter_read_u64(&memcg->kmem, RES_USAGE);
	} while (usage > 0);
4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764
}

/*
 * Reclaims as many pages from the given memcg as possible and moves
 * the rest to the parent.
 *
 * Caller is responsible for holding css reference for memcg.
 */
static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
{
	int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
	struct cgroup *cgrp = memcg->css.cgroup;
4765

4766
	/* returns EBUSY if there is a task or if we come here twice. */
4767 4768 4769
	if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children))
		return -EBUSY;

4770 4771
	/* we call try-to-free pages for make this cgroup empty */
	lru_add_drain_all();
4772
	/* try to free all pages in this cgroup */
4773
	while (nr_retries && res_counter_read_u64(&memcg->res, RES_USAGE) > 0) {
4774
		int progress;
4775

4776 4777 4778
		if (signal_pending(current))
			return -EINTR;

4779
		progress = try_to_free_mem_cgroup_pages(memcg, GFP_KERNEL,
4780
						false);
4781
		if (!progress) {
4782
			nr_retries--;
4783
			/* maybe some writeback is necessary */
4784
			congestion_wait(BLK_RW_ASYNC, HZ/10);
4785
		}
4786 4787

	}
K
KAMEZAWA Hiroyuki 已提交
4788
	lru_add_drain();
4789 4790 4791
	mem_cgroup_reparent_charges(memcg);

	return 0;
4792 4793
}

4794
static int mem_cgroup_force_empty_write(struct cgroup *cont, unsigned int event)
4795
{
4796 4797 4798
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
	int ret;

4799 4800
	if (mem_cgroup_is_root(memcg))
		return -EINVAL;
4801 4802 4803 4804 4805
	css_get(&memcg->css);
	ret = mem_cgroup_force_empty(memcg);
	css_put(&memcg->css);

	return ret;
4806 4807 4808
}


4809 4810 4811 4812 4813 4814 4815 4816 4817
static u64 mem_cgroup_hierarchy_read(struct cgroup *cont, struct cftype *cft)
{
	return mem_cgroup_from_cont(cont)->use_hierarchy;
}

static int mem_cgroup_hierarchy_write(struct cgroup *cont, struct cftype *cft,
					u64 val)
{
	int retval = 0;
4818
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
4819
	struct cgroup *parent = cont->parent;
4820
	struct mem_cgroup *parent_memcg = NULL;
4821 4822

	if (parent)
4823
		parent_memcg = mem_cgroup_from_cont(parent);
4824 4825

	cgroup_lock();
4826 4827 4828 4829

	if (memcg->use_hierarchy == val)
		goto out;

4830
	/*
4831
	 * If parent's use_hierarchy is set, we can't make any modifications
4832 4833 4834 4835 4836 4837
	 * in the child subtrees. If it is unset, then the change can
	 * occur, provided the current cgroup has no children.
	 *
	 * For the root cgroup, parent_mem is NULL, we allow value to be
	 * set if there are no children.
	 */
4838
	if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
4839 4840
				(val == 1 || val == 0)) {
		if (list_empty(&cont->children))
4841
			memcg->use_hierarchy = val;
4842 4843 4844 4845
		else
			retval = -EBUSY;
	} else
		retval = -EINVAL;
4846 4847

out:
4848 4849 4850 4851 4852
	cgroup_unlock();

	return retval;
}

4853

4854
static unsigned long mem_cgroup_recursive_stat(struct mem_cgroup *memcg,
4855
					       enum mem_cgroup_stat_index idx)
4856
{
K
KAMEZAWA Hiroyuki 已提交
4857
	struct mem_cgroup *iter;
4858
	long val = 0;
4859

4860
	/* Per-cpu values can be negative, use a signed accumulator */
4861
	for_each_mem_cgroup_tree(iter, memcg)
K
KAMEZAWA Hiroyuki 已提交
4862 4863 4864 4865 4866
		val += mem_cgroup_read_stat(iter, idx);

	if (val < 0) /* race ? */
		val = 0;
	return val;
4867 4868
}

4869
static inline u64 mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
4870
{
K
KAMEZAWA Hiroyuki 已提交
4871
	u64 val;
4872

4873
	if (!mem_cgroup_is_root(memcg)) {
4874
		if (!swap)
4875
			return res_counter_read_u64(&memcg->res, RES_USAGE);
4876
		else
4877
			return res_counter_read_u64(&memcg->memsw, RES_USAGE);
4878 4879
	}

4880 4881
	val = mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_CACHE);
	val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_RSS);
4882

K
KAMEZAWA Hiroyuki 已提交
4883
	if (swap)
4884
		val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_SWAP);
4885 4886 4887 4888

	return val << PAGE_SHIFT;
}

4889 4890 4891
static ssize_t mem_cgroup_read(struct cgroup *cont, struct cftype *cft,
			       struct file *file, char __user *buf,
			       size_t nbytes, loff_t *ppos)
B
Balbir Singh 已提交
4892
{
4893
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
4894
	char str[64];
4895
	u64 val;
G
Glauber Costa 已提交
4896 4897
	int name, len;
	enum res_type type;
4898 4899 4900

	type = MEMFILE_TYPE(cft->private);
	name = MEMFILE_ATTR(cft->private);
4901 4902 4903 4904

	if (!do_swap_account && type == _MEMSWAP)
		return -EOPNOTSUPP;

4905 4906
	switch (type) {
	case _MEM:
4907
		if (name == RES_USAGE)
4908
			val = mem_cgroup_usage(memcg, false);
4909
		else
4910
			val = res_counter_read_u64(&memcg->res, name);
4911 4912
		break;
	case _MEMSWAP:
4913
		if (name == RES_USAGE)
4914
			val = mem_cgroup_usage(memcg, true);
4915
		else
4916
			val = res_counter_read_u64(&memcg->memsw, name);
4917
		break;
4918 4919 4920
	case _KMEM:
		val = res_counter_read_u64(&memcg->kmem, name);
		break;
4921 4922 4923
	default:
		BUG();
	}
4924 4925 4926

	len = scnprintf(str, sizeof(str), "%llu\n", (unsigned long long)val);
	return simple_read_from_buffer(buf, nbytes, ppos, str, len);
B
Balbir Singh 已提交
4927
}
4928 4929 4930 4931 4932

static int memcg_update_kmem_limit(struct cgroup *cont, u64 val)
{
	int ret = -EINVAL;
#ifdef CONFIG_MEMCG_KMEM
4933 4934
	bool must_inc_static_branch = false;

4935 4936 4937 4938 4939 4940 4941 4942 4943 4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957 4958 4959 4960 4961 4962 4963 4964
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
	/*
	 * For simplicity, we won't allow this to be disabled.  It also can't
	 * be changed if the cgroup has children already, or if tasks had
	 * already joined.
	 *
	 * If tasks join before we set the limit, a person looking at
	 * kmem.usage_in_bytes will have no way to determine when it took
	 * place, which makes the value quite meaningless.
	 *
	 * After it first became limited, changes in the value of the limit are
	 * of course permitted.
	 *
	 * Taking the cgroup_lock is really offensive, but it is so far the only
	 * way to guarantee that no children will appear. There are plenty of
	 * other offenders, and they should all go away. Fine grained locking
	 * is probably the way to go here. When we are fully hierarchical, we
	 * can also get rid of the use_hierarchy check.
	 */
	cgroup_lock();
	mutex_lock(&set_limit_mutex);
	if (!memcg->kmem_account_flags && val != RESOURCE_MAX) {
		if (cgroup_task_count(cont) || (memcg->use_hierarchy &&
						!list_empty(&cont->children))) {
			ret = -EBUSY;
			goto out;
		}
		ret = res_counter_set_limit(&memcg->kmem, val);
		VM_BUG_ON(ret);

4965 4966 4967 4968 4969
		ret = memcg_update_cache_sizes(memcg);
		if (ret) {
			res_counter_set_limit(&memcg->kmem, RESOURCE_MAX);
			goto out;
		}
4970
		must_inc_static_branch = true;
4971 4972 4973 4974 4975 4976 4977
		/*
		 * kmem charges can outlive the cgroup. In the case of slab
		 * pages, for instance, a page contain objects from various
		 * processes, so it is unfeasible to migrate them away. We
		 * need to reference count the memcg because of that.
		 */
		mem_cgroup_get(memcg);
4978 4979 4980 4981 4982
	} else
		ret = res_counter_set_limit(&memcg->kmem, val);
out:
	mutex_unlock(&set_limit_mutex);
	cgroup_unlock();
4983 4984 4985 4986 4987 4988 4989 4990 4991 4992 4993 4994 4995 4996 4997 4998 4999 5000 5001 5002 5003

	/*
	 * We are by now familiar with the fact that we can't inc the static
	 * branch inside cgroup_lock. See disarm functions for details. A
	 * worker here is overkill, but also wrong: After the limit is set, we
	 * must start accounting right away. Since this operation can't fail,
	 * we can safely defer it to here - no rollback will be needed.
	 *
	 * The boolean used to control this is also safe, because
	 * KMEM_ACCOUNTED_ACTIVATED guarantees that only one process will be
	 * able to set it to true;
	 */
	if (must_inc_static_branch) {
		static_key_slow_inc(&memcg_kmem_enabled_key);
		/*
		 * setting the active bit after the inc will guarantee no one
		 * starts accounting before all call sites are patched
		 */
		memcg_kmem_set_active(memcg);
	}

5004 5005 5006 5007
#endif
	return ret;
}

5008
static int memcg_propagate_kmem(struct mem_cgroup *memcg)
5009
{
5010
	int ret = 0;
5011 5012
	struct mem_cgroup *parent = parent_mem_cgroup(memcg);
	if (!parent)
5013 5014
		goto out;

5015
	memcg->kmem_account_flags = parent->kmem_account_flags;
5016
#ifdef CONFIG_MEMCG_KMEM
5017 5018 5019 5020 5021 5022 5023 5024 5025 5026
	/*
	 * When that happen, we need to disable the static branch only on those
	 * memcgs that enabled it. To achieve this, we would be forced to
	 * complicate the code by keeping track of which memcgs were the ones
	 * that actually enabled limits, and which ones got it from its
	 * parents.
	 *
	 * It is a lot simpler just to do static_key_slow_inc() on every child
	 * that is accounted.
	 */
5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040 5041
	if (!memcg_kmem_is_active(memcg))
		goto out;

	/*
	 * destroy(), called if we fail, will issue static_key_slow_inc() and
	 * mem_cgroup_put() if kmem is enabled. We have to either call them
	 * unconditionally, or clear the KMEM_ACTIVE flag. I personally find
	 * this more consistent, since it always leads to the same destroy path
	 */
	mem_cgroup_get(memcg);
	static_key_slow_inc(&memcg_kmem_enabled_key);

	mutex_lock(&set_limit_mutex);
	ret = memcg_update_cache_sizes(memcg);
	mutex_unlock(&set_limit_mutex);
5042
#endif
5043 5044
out:
	return ret;
5045 5046
}

5047 5048 5049 5050
/*
 * The user of this function is...
 * RES_LIMIT.
 */
5051 5052
static int mem_cgroup_write(struct cgroup *cont, struct cftype *cft,
			    const char *buffer)
B
Balbir Singh 已提交
5053
{
5054
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
G
Glauber Costa 已提交
5055 5056
	enum res_type type;
	int name;
5057 5058 5059
	unsigned long long val;
	int ret;

5060 5061
	type = MEMFILE_TYPE(cft->private);
	name = MEMFILE_ATTR(cft->private);
5062 5063 5064 5065

	if (!do_swap_account && type == _MEMSWAP)
		return -EOPNOTSUPP;

5066
	switch (name) {
5067
	case RES_LIMIT:
5068 5069 5070 5071
		if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
			ret = -EINVAL;
			break;
		}
5072 5073
		/* This function does all necessary parse...reuse it */
		ret = res_counter_memparse_write_strategy(buffer, &val);
5074 5075 5076
		if (ret)
			break;
		if (type == _MEM)
5077
			ret = mem_cgroup_resize_limit(memcg, val);
5078
		else if (type == _MEMSWAP)
5079
			ret = mem_cgroup_resize_memsw_limit(memcg, val);
5080 5081 5082 5083
		else if (type == _KMEM)
			ret = memcg_update_kmem_limit(cont, val);
		else
			return -EINVAL;
5084
		break;
5085 5086 5087 5088 5089 5090 5091 5092 5093 5094 5095 5096 5097 5098
	case RES_SOFT_LIMIT:
		ret = res_counter_memparse_write_strategy(buffer, &val);
		if (ret)
			break;
		/*
		 * For memsw, soft limits are hard to implement in terms
		 * of semantics, for now, we support soft limits for
		 * control without swap
		 */
		if (type == _MEM)
			ret = res_counter_set_soft_limit(&memcg->res, val);
		else
			ret = -EINVAL;
		break;
5099 5100 5101 5102 5103
	default:
		ret = -EINVAL; /* should be BUG() ? */
		break;
	}
	return ret;
B
Balbir Singh 已提交
5104 5105
}

5106 5107 5108 5109 5110 5111 5112 5113 5114 5115 5116 5117 5118 5119 5120 5121 5122 5123 5124 5125 5126 5127 5128 5129 5130 5131 5132
static void memcg_get_hierarchical_limit(struct mem_cgroup *memcg,
		unsigned long long *mem_limit, unsigned long long *memsw_limit)
{
	struct cgroup *cgroup;
	unsigned long long min_limit, min_memsw_limit, tmp;

	min_limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
	min_memsw_limit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
	cgroup = memcg->css.cgroup;
	if (!memcg->use_hierarchy)
		goto out;

	while (cgroup->parent) {
		cgroup = cgroup->parent;
		memcg = mem_cgroup_from_cont(cgroup);
		if (!memcg->use_hierarchy)
			break;
		tmp = res_counter_read_u64(&memcg->res, RES_LIMIT);
		min_limit = min(min_limit, tmp);
		tmp = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
		min_memsw_limit = min(min_memsw_limit, tmp);
	}
out:
	*mem_limit = min_limit;
	*memsw_limit = min_memsw_limit;
}

5133
static int mem_cgroup_reset(struct cgroup *cont, unsigned int event)
5134
{
5135
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
G
Glauber Costa 已提交
5136 5137
	int name;
	enum res_type type;
5138

5139 5140
	type = MEMFILE_TYPE(event);
	name = MEMFILE_ATTR(event);
5141 5142 5143 5144

	if (!do_swap_account && type == _MEMSWAP)
		return -EOPNOTSUPP;

5145
	switch (name) {
5146
	case RES_MAX_USAGE:
5147
		if (type == _MEM)
5148
			res_counter_reset_max(&memcg->res);
5149
		else if (type == _MEMSWAP)
5150
			res_counter_reset_max(&memcg->memsw);
5151 5152 5153 5154
		else if (type == _KMEM)
			res_counter_reset_max(&memcg->kmem);
		else
			return -EINVAL;
5155 5156
		break;
	case RES_FAILCNT:
5157
		if (type == _MEM)
5158
			res_counter_reset_failcnt(&memcg->res);
5159
		else if (type == _MEMSWAP)
5160
			res_counter_reset_failcnt(&memcg->memsw);
5161 5162 5163 5164
		else if (type == _KMEM)
			res_counter_reset_failcnt(&memcg->kmem);
		else
			return -EINVAL;
5165 5166
		break;
	}
5167

5168
	return 0;
5169 5170
}

5171 5172 5173 5174 5175 5176
static u64 mem_cgroup_move_charge_read(struct cgroup *cgrp,
					struct cftype *cft)
{
	return mem_cgroup_from_cont(cgrp)->move_charge_at_immigrate;
}

5177
#ifdef CONFIG_MMU
5178 5179 5180
static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
					struct cftype *cft, u64 val)
{
5181
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
5182 5183 5184 5185 5186 5187 5188 5189 5190

	if (val >= (1 << NR_MOVE_TYPE))
		return -EINVAL;
	/*
	 * We check this value several times in both in can_attach() and
	 * attach(), so we need cgroup lock to prevent this value from being
	 * inconsistent.
	 */
	cgroup_lock();
5191
	memcg->move_charge_at_immigrate = val;
5192 5193 5194 5195
	cgroup_unlock();

	return 0;
}
5196 5197 5198 5199 5200 5201 5202
#else
static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
					struct cftype *cft, u64 val)
{
	return -ENOSYS;
}
#endif
5203

5204
#ifdef CONFIG_NUMA
5205
static int memcg_numa_stat_show(struct cgroup *cont, struct cftype *cft,
5206
				      struct seq_file *m)
5207 5208 5209 5210
{
	int nid;
	unsigned long total_nr, file_nr, anon_nr, unevictable_nr;
	unsigned long node_nr;
5211
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
5212

5213
	total_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL);
5214
	seq_printf(m, "total=%lu", total_nr);
5215
	for_each_node_state(nid, N_MEMORY) {
5216
		node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL);
5217 5218 5219 5220
		seq_printf(m, " N%d=%lu", nid, node_nr);
	}
	seq_putc(m, '\n');

5221
	file_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL_FILE);
5222
	seq_printf(m, "file=%lu", file_nr);
5223
	for_each_node_state(nid, N_MEMORY) {
5224
		node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
5225
				LRU_ALL_FILE);
5226 5227 5228 5229
		seq_printf(m, " N%d=%lu", nid, node_nr);
	}
	seq_putc(m, '\n');

5230
	anon_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL_ANON);
5231
	seq_printf(m, "anon=%lu", anon_nr);
5232
	for_each_node_state(nid, N_MEMORY) {
5233
		node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
5234
				LRU_ALL_ANON);
5235 5236 5237 5238
		seq_printf(m, " N%d=%lu", nid, node_nr);
	}
	seq_putc(m, '\n');

5239
	unevictable_nr = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_UNEVICTABLE));
5240
	seq_printf(m, "unevictable=%lu", unevictable_nr);
5241
	for_each_node_state(nid, N_MEMORY) {
5242
		node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
5243
				BIT(LRU_UNEVICTABLE));
5244 5245 5246 5247 5248 5249 5250
		seq_printf(m, " N%d=%lu", nid, node_nr);
	}
	seq_putc(m, '\n');
	return 0;
}
#endif /* CONFIG_NUMA */

5251 5252 5253 5254 5255
static inline void mem_cgroup_lru_names_not_uptodate(void)
{
	BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS);
}

5256
static int memcg_stat_show(struct cgroup *cont, struct cftype *cft,
5257
				 struct seq_file *m)
5258
{
5259
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
5260 5261
	struct mem_cgroup *mi;
	unsigned int i;
5262

5263
	for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
5264
		if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
5265
			continue;
5266 5267
		seq_printf(m, "%s %ld\n", mem_cgroup_stat_names[i],
			   mem_cgroup_read_stat(memcg, i) * PAGE_SIZE);
5268
	}
L
Lee Schermerhorn 已提交
5269

5270 5271 5272 5273 5274 5275 5276 5277
	for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++)
		seq_printf(m, "%s %lu\n", mem_cgroup_events_names[i],
			   mem_cgroup_read_events(memcg, i));

	for (i = 0; i < NR_LRU_LISTS; i++)
		seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i],
			   mem_cgroup_nr_lru_pages(memcg, BIT(i)) * PAGE_SIZE);

K
KAMEZAWA Hiroyuki 已提交
5278
	/* Hierarchical information */
5279 5280
	{
		unsigned long long limit, memsw_limit;
5281
		memcg_get_hierarchical_limit(memcg, &limit, &memsw_limit);
5282
		seq_printf(m, "hierarchical_memory_limit %llu\n", limit);
5283
		if (do_swap_account)
5284 5285
			seq_printf(m, "hierarchical_memsw_limit %llu\n",
				   memsw_limit);
5286
	}
K
KOSAKI Motohiro 已提交
5287

5288 5289 5290
	for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
		long long val = 0;

5291
		if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
5292
			continue;
5293 5294 5295 5296 5297 5298 5299 5300 5301 5302 5303 5304 5305 5306 5307 5308 5309 5310 5311 5312
		for_each_mem_cgroup_tree(mi, memcg)
			val += mem_cgroup_read_stat(mi, i) * PAGE_SIZE;
		seq_printf(m, "total_%s %lld\n", mem_cgroup_stat_names[i], val);
	}

	for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
		unsigned long long val = 0;

		for_each_mem_cgroup_tree(mi, memcg)
			val += mem_cgroup_read_events(mi, i);
		seq_printf(m, "total_%s %llu\n",
			   mem_cgroup_events_names[i], val);
	}

	for (i = 0; i < NR_LRU_LISTS; i++) {
		unsigned long long val = 0;

		for_each_mem_cgroup_tree(mi, memcg)
			val += mem_cgroup_nr_lru_pages(mi, BIT(i)) * PAGE_SIZE;
		seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i], val);
5313
	}
K
KAMEZAWA Hiroyuki 已提交
5314

K
KOSAKI Motohiro 已提交
5315 5316 5317 5318
#ifdef CONFIG_DEBUG_VM
	{
		int nid, zid;
		struct mem_cgroup_per_zone *mz;
5319
		struct zone_reclaim_stat *rstat;
K
KOSAKI Motohiro 已提交
5320 5321 5322 5323 5324
		unsigned long recent_rotated[2] = {0, 0};
		unsigned long recent_scanned[2] = {0, 0};

		for_each_online_node(nid)
			for (zid = 0; zid < MAX_NR_ZONES; zid++) {
5325
				mz = mem_cgroup_zoneinfo(memcg, nid, zid);
5326
				rstat = &mz->lruvec.reclaim_stat;
K
KOSAKI Motohiro 已提交
5327

5328 5329 5330 5331
				recent_rotated[0] += rstat->recent_rotated[0];
				recent_rotated[1] += rstat->recent_rotated[1];
				recent_scanned[0] += rstat->recent_scanned[0];
				recent_scanned[1] += rstat->recent_scanned[1];
K
KOSAKI Motohiro 已提交
5332
			}
5333 5334 5335 5336
		seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]);
		seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]);
		seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]);
		seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]);
K
KOSAKI Motohiro 已提交
5337 5338 5339
	}
#endif

5340 5341 5342
	return 0;
}

K
KOSAKI Motohiro 已提交
5343 5344 5345 5346
static u64 mem_cgroup_swappiness_read(struct cgroup *cgrp, struct cftype *cft)
{
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);

5347
	return mem_cgroup_swappiness(memcg);
K
KOSAKI Motohiro 已提交
5348 5349 5350 5351 5352 5353 5354
}

static int mem_cgroup_swappiness_write(struct cgroup *cgrp, struct cftype *cft,
				       u64 val)
{
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
	struct mem_cgroup *parent;
5355

K
KOSAKI Motohiro 已提交
5356 5357 5358 5359 5360 5361 5362
	if (val > 100)
		return -EINVAL;

	if (cgrp->parent == NULL)
		return -EINVAL;

	parent = mem_cgroup_from_cont(cgrp->parent);
5363 5364 5365

	cgroup_lock();

K
KOSAKI Motohiro 已提交
5366 5367
	/* If under hierarchy, only empty-root can set this value */
	if ((parent->use_hierarchy) ||
5368 5369
	    (memcg->use_hierarchy && !list_empty(&cgrp->children))) {
		cgroup_unlock();
K
KOSAKI Motohiro 已提交
5370
		return -EINVAL;
5371
	}
K
KOSAKI Motohiro 已提交
5372 5373 5374

	memcg->swappiness = val;

5375 5376
	cgroup_unlock();

K
KOSAKI Motohiro 已提交
5377 5378 5379
	return 0;
}

5380 5381 5382 5383 5384 5385 5386 5387
static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
{
	struct mem_cgroup_threshold_ary *t;
	u64 usage;
	int i;

	rcu_read_lock();
	if (!swap)
5388
		t = rcu_dereference(memcg->thresholds.primary);
5389
	else
5390
		t = rcu_dereference(memcg->memsw_thresholds.primary);
5391 5392 5393 5394 5395 5396 5397

	if (!t)
		goto unlock;

	usage = mem_cgroup_usage(memcg, swap);

	/*
5398
	 * current_threshold points to threshold just below or equal to usage.
5399 5400 5401
	 * If it's not true, a threshold was crossed after last
	 * call of __mem_cgroup_threshold().
	 */
5402
	i = t->current_threshold;
5403 5404 5405 5406 5407 5408 5409 5410 5411 5412 5413 5414 5415 5416 5417 5418 5419 5420 5421 5422 5423 5424 5425

	/*
	 * Iterate backward over array of thresholds starting from
	 * current_threshold and check if a threshold is crossed.
	 * If none of thresholds below usage is crossed, we read
	 * only one element of the array here.
	 */
	for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
		eventfd_signal(t->entries[i].eventfd, 1);

	/* i = current_threshold + 1 */
	i++;

	/*
	 * Iterate forward over array of thresholds starting from
	 * current_threshold+1 and check if a threshold is crossed.
	 * If none of thresholds above usage is crossed, we read
	 * only one element of the array here.
	 */
	for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
		eventfd_signal(t->entries[i].eventfd, 1);

	/* Update current_threshold */
5426
	t->current_threshold = i - 1;
5427 5428 5429 5430 5431 5432
unlock:
	rcu_read_unlock();
}

static void mem_cgroup_threshold(struct mem_cgroup *memcg)
{
5433 5434 5435 5436 5437 5438 5439
	while (memcg) {
		__mem_cgroup_threshold(memcg, false);
		if (do_swap_account)
			__mem_cgroup_threshold(memcg, true);

		memcg = parent_mem_cgroup(memcg);
	}
5440 5441 5442 5443 5444 5445 5446 5447 5448 5449
}

static int compare_thresholds(const void *a, const void *b)
{
	const struct mem_cgroup_threshold *_a = a;
	const struct mem_cgroup_threshold *_b = b;

	return _a->threshold - _b->threshold;
}

5450
static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
5451 5452 5453
{
	struct mem_cgroup_eventfd_list *ev;

5454
	list_for_each_entry(ev, &memcg->oom_notify, list)
K
KAMEZAWA Hiroyuki 已提交
5455 5456 5457 5458
		eventfd_signal(ev->eventfd, 1);
	return 0;
}

5459
static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
5460
{
K
KAMEZAWA Hiroyuki 已提交
5461 5462
	struct mem_cgroup *iter;

5463
	for_each_mem_cgroup_tree(iter, memcg)
K
KAMEZAWA Hiroyuki 已提交
5464
		mem_cgroup_oom_notify_cb(iter);
K
KAMEZAWA Hiroyuki 已提交
5465 5466 5467 5468
}

static int mem_cgroup_usage_register_event(struct cgroup *cgrp,
	struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
5469 5470
{
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
5471 5472
	struct mem_cgroup_thresholds *thresholds;
	struct mem_cgroup_threshold_ary *new;
G
Glauber Costa 已提交
5473
	enum res_type type = MEMFILE_TYPE(cft->private);
5474
	u64 threshold, usage;
5475
	int i, size, ret;
5476 5477 5478 5479 5480 5481

	ret = res_counter_memparse_write_strategy(args, &threshold);
	if (ret)
		return ret;

	mutex_lock(&memcg->thresholds_lock);
5482

5483
	if (type == _MEM)
5484
		thresholds = &memcg->thresholds;
5485
	else if (type == _MEMSWAP)
5486
		thresholds = &memcg->memsw_thresholds;
5487 5488 5489 5490 5491 5492
	else
		BUG();

	usage = mem_cgroup_usage(memcg, type == _MEMSWAP);

	/* Check if a threshold crossed before adding a new one */
5493
	if (thresholds->primary)
5494 5495
		__mem_cgroup_threshold(memcg, type == _MEMSWAP);

5496
	size = thresholds->primary ? thresholds->primary->size + 1 : 1;
5497 5498

	/* Allocate memory for new array of thresholds */
5499
	new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
5500
			GFP_KERNEL);
5501
	if (!new) {
5502 5503 5504
		ret = -ENOMEM;
		goto unlock;
	}
5505
	new->size = size;
5506 5507

	/* Copy thresholds (if any) to new array */
5508 5509
	if (thresholds->primary) {
		memcpy(new->entries, thresholds->primary->entries, (size - 1) *
5510
				sizeof(struct mem_cgroup_threshold));
5511 5512
	}

5513
	/* Add new threshold */
5514 5515
	new->entries[size - 1].eventfd = eventfd;
	new->entries[size - 1].threshold = threshold;
5516 5517

	/* Sort thresholds. Registering of new threshold isn't time-critical */
5518
	sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
5519 5520 5521
			compare_thresholds, NULL);

	/* Find current threshold */
5522
	new->current_threshold = -1;
5523
	for (i = 0; i < size; i++) {
5524
		if (new->entries[i].threshold <= usage) {
5525
			/*
5526 5527
			 * new->current_threshold will not be used until
			 * rcu_assign_pointer(), so it's safe to increment
5528 5529
			 * it here.
			 */
5530
			++new->current_threshold;
5531 5532
		} else
			break;
5533 5534
	}

5535 5536 5537 5538 5539
	/* Free old spare buffer and save old primary buffer as spare */
	kfree(thresholds->spare);
	thresholds->spare = thresholds->primary;

	rcu_assign_pointer(thresholds->primary, new);
5540

5541
	/* To be sure that nobody uses thresholds */
5542 5543 5544 5545 5546 5547 5548 5549
	synchronize_rcu();

unlock:
	mutex_unlock(&memcg->thresholds_lock);

	return ret;
}

5550
static void mem_cgroup_usage_unregister_event(struct cgroup *cgrp,
K
KAMEZAWA Hiroyuki 已提交
5551
	struct cftype *cft, struct eventfd_ctx *eventfd)
5552 5553
{
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
5554 5555
	struct mem_cgroup_thresholds *thresholds;
	struct mem_cgroup_threshold_ary *new;
G
Glauber Costa 已提交
5556
	enum res_type type = MEMFILE_TYPE(cft->private);
5557
	u64 usage;
5558
	int i, j, size;
5559 5560 5561

	mutex_lock(&memcg->thresholds_lock);
	if (type == _MEM)
5562
		thresholds = &memcg->thresholds;
5563
	else if (type == _MEMSWAP)
5564
		thresholds = &memcg->memsw_thresholds;
5565 5566 5567
	else
		BUG();

5568 5569 5570
	if (!thresholds->primary)
		goto unlock;

5571 5572 5573 5574 5575 5576
	usage = mem_cgroup_usage(memcg, type == _MEMSWAP);

	/* Check if a threshold crossed before removing */
	__mem_cgroup_threshold(memcg, type == _MEMSWAP);

	/* Calculate new number of threshold */
5577 5578 5579
	size = 0;
	for (i = 0; i < thresholds->primary->size; i++) {
		if (thresholds->primary->entries[i].eventfd != eventfd)
5580 5581 5582
			size++;
	}

5583
	new = thresholds->spare;
5584

5585 5586
	/* Set thresholds array to NULL if we don't have thresholds */
	if (!size) {
5587 5588
		kfree(new);
		new = NULL;
5589
		goto swap_buffers;
5590 5591
	}

5592
	new->size = size;
5593 5594

	/* Copy thresholds and find current threshold */
5595 5596 5597
	new->current_threshold = -1;
	for (i = 0, j = 0; i < thresholds->primary->size; i++) {
		if (thresholds->primary->entries[i].eventfd == eventfd)
5598 5599
			continue;

5600
		new->entries[j] = thresholds->primary->entries[i];
5601
		if (new->entries[j].threshold <= usage) {
5602
			/*
5603
			 * new->current_threshold will not be used
5604 5605 5606
			 * until rcu_assign_pointer(), so it's safe to increment
			 * it here.
			 */
5607
			++new->current_threshold;
5608 5609 5610 5611
		}
		j++;
	}

5612
swap_buffers:
5613 5614
	/* Swap primary and spare array */
	thresholds->spare = thresholds->primary;
5615 5616 5617 5618 5619 5620
	/* If all events are unregistered, free the spare array */
	if (!new) {
		kfree(thresholds->spare);
		thresholds->spare = NULL;
	}

5621
	rcu_assign_pointer(thresholds->primary, new);
5622

5623
	/* To be sure that nobody uses thresholds */
5624
	synchronize_rcu();
5625
unlock:
5626 5627
	mutex_unlock(&memcg->thresholds_lock);
}
5628

K
KAMEZAWA Hiroyuki 已提交
5629 5630 5631 5632 5633
static int mem_cgroup_oom_register_event(struct cgroup *cgrp,
	struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
{
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
	struct mem_cgroup_eventfd_list *event;
G
Glauber Costa 已提交
5634
	enum res_type type = MEMFILE_TYPE(cft->private);
K
KAMEZAWA Hiroyuki 已提交
5635 5636 5637 5638 5639 5640

	BUG_ON(type != _OOM_TYPE);
	event = kmalloc(sizeof(*event),	GFP_KERNEL);
	if (!event)
		return -ENOMEM;

5641
	spin_lock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
5642 5643 5644 5645 5646

	event->eventfd = eventfd;
	list_add(&event->list, &memcg->oom_notify);

	/* already in OOM ? */
5647
	if (atomic_read(&memcg->under_oom))
K
KAMEZAWA Hiroyuki 已提交
5648
		eventfd_signal(eventfd, 1);
5649
	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
5650 5651 5652 5653

	return 0;
}

5654
static void mem_cgroup_oom_unregister_event(struct cgroup *cgrp,
K
KAMEZAWA Hiroyuki 已提交
5655 5656
	struct cftype *cft, struct eventfd_ctx *eventfd)
{
5657
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
K
KAMEZAWA Hiroyuki 已提交
5658
	struct mem_cgroup_eventfd_list *ev, *tmp;
G
Glauber Costa 已提交
5659
	enum res_type type = MEMFILE_TYPE(cft->private);
K
KAMEZAWA Hiroyuki 已提交
5660 5661 5662

	BUG_ON(type != _OOM_TYPE);

5663
	spin_lock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
5664

5665
	list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
K
KAMEZAWA Hiroyuki 已提交
5666 5667 5668 5669 5670 5671
		if (ev->eventfd == eventfd) {
			list_del(&ev->list);
			kfree(ev);
		}
	}

5672
	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
5673 5674
}

5675 5676 5677
static int mem_cgroup_oom_control_read(struct cgroup *cgrp,
	struct cftype *cft,  struct cgroup_map_cb *cb)
{
5678
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
5679

5680
	cb->fill(cb, "oom_kill_disable", memcg->oom_kill_disable);
5681

5682
	if (atomic_read(&memcg->under_oom))
5683 5684 5685 5686 5687 5688 5689 5690 5691
		cb->fill(cb, "under_oom", 1);
	else
		cb->fill(cb, "under_oom", 0);
	return 0;
}

static int mem_cgroup_oom_control_write(struct cgroup *cgrp,
	struct cftype *cft, u64 val)
{
5692
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
5693 5694 5695 5696 5697 5698 5699 5700 5701 5702 5703
	struct mem_cgroup *parent;

	/* cannot set to root cgroup and only 0 and 1 are allowed */
	if (!cgrp->parent || !((val == 0) || (val == 1)))
		return -EINVAL;

	parent = mem_cgroup_from_cont(cgrp->parent);

	cgroup_lock();
	/* oom-kill-disable is a flag for subhierarchy. */
	if ((parent->use_hierarchy) ||
5704
	    (memcg->use_hierarchy && !list_empty(&cgrp->children))) {
5705 5706 5707
		cgroup_unlock();
		return -EINVAL;
	}
5708
	memcg->oom_kill_disable = val;
5709
	if (!val)
5710
		memcg_oom_recover(memcg);
5711 5712 5713 5714
	cgroup_unlock();
	return 0;
}

A
Andrew Morton 已提交
5715
#ifdef CONFIG_MEMCG_KMEM
5716
static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
5717
{
5718 5719
	int ret;

5720
	memcg->kmemcg_id = -1;
5721 5722 5723
	ret = memcg_propagate_kmem(memcg);
	if (ret)
		return ret;
5724

5725
	return mem_cgroup_sockets_init(memcg, ss);
5726 5727
};

5728
static void kmem_cgroup_destroy(struct mem_cgroup *memcg)
G
Glauber Costa 已提交
5729
{
5730
	mem_cgroup_sockets_destroy(memcg);
5731 5732 5733 5734 5735 5736 5737 5738 5739 5740 5741 5742 5743 5744

	memcg_kmem_mark_dead(memcg);

	if (res_counter_read_u64(&memcg->kmem, RES_USAGE) != 0)
		return;

	/*
	 * Charges already down to 0, undo mem_cgroup_get() done in the charge
	 * path here, being careful not to race with memcg_uncharge_kmem: it is
	 * possible that the charges went down to 0 between mark_dead and the
	 * res_counter read, so in that case, we don't need the put
	 */
	if (memcg_kmem_test_and_clear_dead(memcg))
		mem_cgroup_put(memcg);
G
Glauber Costa 已提交
5745
}
5746
#else
5747
static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
5748 5749 5750
{
	return 0;
}
G
Glauber Costa 已提交
5751

5752
static void kmem_cgroup_destroy(struct mem_cgroup *memcg)
G
Glauber Costa 已提交
5753 5754
{
}
5755 5756
#endif

B
Balbir Singh 已提交
5757 5758
static struct cftype mem_cgroup_files[] = {
	{
5759
		.name = "usage_in_bytes",
5760
		.private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
5761
		.read = mem_cgroup_read,
K
KAMEZAWA Hiroyuki 已提交
5762 5763
		.register_event = mem_cgroup_usage_register_event,
		.unregister_event = mem_cgroup_usage_unregister_event,
B
Balbir Singh 已提交
5764
	},
5765 5766
	{
		.name = "max_usage_in_bytes",
5767
		.private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
5768
		.trigger = mem_cgroup_reset,
5769
		.read = mem_cgroup_read,
5770
	},
B
Balbir Singh 已提交
5771
	{
5772
		.name = "limit_in_bytes",
5773
		.private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
5774
		.write_string = mem_cgroup_write,
5775
		.read = mem_cgroup_read,
B
Balbir Singh 已提交
5776
	},
5777 5778 5779 5780
	{
		.name = "soft_limit_in_bytes",
		.private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
		.write_string = mem_cgroup_write,
5781
		.read = mem_cgroup_read,
5782
	},
B
Balbir Singh 已提交
5783 5784
	{
		.name = "failcnt",
5785
		.private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
5786
		.trigger = mem_cgroup_reset,
5787
		.read = mem_cgroup_read,
B
Balbir Singh 已提交
5788
	},
5789 5790
	{
		.name = "stat",
5791
		.read_seq_string = memcg_stat_show,
5792
	},
5793 5794 5795 5796
	{
		.name = "force_empty",
		.trigger = mem_cgroup_force_empty_write,
	},
5797 5798 5799 5800 5801
	{
		.name = "use_hierarchy",
		.write_u64 = mem_cgroup_hierarchy_write,
		.read_u64 = mem_cgroup_hierarchy_read,
	},
K
KOSAKI Motohiro 已提交
5802 5803 5804 5805 5806
	{
		.name = "swappiness",
		.read_u64 = mem_cgroup_swappiness_read,
		.write_u64 = mem_cgroup_swappiness_write,
	},
5807 5808 5809 5810 5811
	{
		.name = "move_charge_at_immigrate",
		.read_u64 = mem_cgroup_move_charge_read,
		.write_u64 = mem_cgroup_move_charge_write,
	},
K
KAMEZAWA Hiroyuki 已提交
5812 5813
	{
		.name = "oom_control",
5814 5815
		.read_map = mem_cgroup_oom_control_read,
		.write_u64 = mem_cgroup_oom_control_write,
K
KAMEZAWA Hiroyuki 已提交
5816 5817 5818 5819
		.register_event = mem_cgroup_oom_register_event,
		.unregister_event = mem_cgroup_oom_unregister_event,
		.private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
	},
5820 5821 5822
#ifdef CONFIG_NUMA
	{
		.name = "numa_stat",
5823
		.read_seq_string = memcg_numa_stat_show,
5824 5825
	},
#endif
A
Andrew Morton 已提交
5826
#ifdef CONFIG_MEMCG_SWAP
5827 5828 5829
	{
		.name = "memsw.usage_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
5830
		.read = mem_cgroup_read,
K
KAMEZAWA Hiroyuki 已提交
5831 5832
		.register_event = mem_cgroup_usage_register_event,
		.unregister_event = mem_cgroup_usage_unregister_event,
5833 5834 5835 5836 5837
	},
	{
		.name = "memsw.max_usage_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
		.trigger = mem_cgroup_reset,
5838
		.read = mem_cgroup_read,
5839 5840 5841 5842 5843
	},
	{
		.name = "memsw.limit_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
		.write_string = mem_cgroup_write,
5844
		.read = mem_cgroup_read,
5845 5846 5847 5848 5849
	},
	{
		.name = "memsw.failcnt",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
		.trigger = mem_cgroup_reset,
5850
		.read = mem_cgroup_read,
5851
	},
5852 5853 5854 5855 5856 5857 5858 5859 5860 5861 5862 5863 5864 5865 5866 5867 5868 5869 5870 5871 5872 5873 5874 5875 5876
#endif
#ifdef CONFIG_MEMCG_KMEM
	{
		.name = "kmem.limit_in_bytes",
		.private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
		.write_string = mem_cgroup_write,
		.read = mem_cgroup_read,
	},
	{
		.name = "kmem.usage_in_bytes",
		.private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
		.read = mem_cgroup_read,
	},
	{
		.name = "kmem.failcnt",
		.private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
		.trigger = mem_cgroup_reset,
		.read = mem_cgroup_read,
	},
	{
		.name = "kmem.max_usage_in_bytes",
		.private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
		.trigger = mem_cgroup_reset,
		.read = mem_cgroup_read,
	},
5877 5878 5879 5880 5881 5882
#ifdef CONFIG_SLABINFO
	{
		.name = "kmem.slabinfo",
		.read_seq_string = mem_cgroup_slabinfo_read,
	},
#endif
5883
#endif
5884
	{ },	/* terminate */
5885
};
5886

5887
static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
5888 5889
{
	struct mem_cgroup_per_node *pn;
5890
	struct mem_cgroup_per_zone *mz;
5891
	int zone, tmp = node;
5892 5893 5894 5895 5896 5897 5898 5899
	/*
	 * This routine is called against possible nodes.
	 * But it's BUG to call kmalloc() against offline node.
	 *
	 * TODO: this routine can waste much memory for nodes which will
	 *       never be onlined. It's better to use memory hotplug callback
	 *       function.
	 */
5900 5901
	if (!node_state(node, N_NORMAL_MEMORY))
		tmp = -1;
5902
	pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
5903 5904
	if (!pn)
		return 1;
5905 5906 5907

	for (zone = 0; zone < MAX_NR_ZONES; zone++) {
		mz = &pn->zoneinfo[zone];
5908
		lruvec_init(&mz->lruvec);
5909
		mz->usage_in_excess = 0;
5910
		mz->on_tree = false;
5911
		mz->memcg = memcg;
5912
	}
5913
	memcg->info.nodeinfo[node] = pn;
5914 5915 5916
	return 0;
}

5917
static void free_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
5918
{
5919
	kfree(memcg->info.nodeinfo[node]);
5920 5921
}

5922 5923
static struct mem_cgroup *mem_cgroup_alloc(void)
{
5924
	struct mem_cgroup *memcg;
5925
	int size = sizeof(struct mem_cgroup);
5926

5927
	/* Can be very big if MAX_NUMNODES is very big */
5928
	if (size < PAGE_SIZE)
5929
		memcg = kzalloc(size, GFP_KERNEL);
5930
	else
5931
		memcg = vzalloc(size);
5932

5933
	if (!memcg)
5934 5935
		return NULL;

5936 5937
	memcg->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
	if (!memcg->stat)
5938
		goto out_free;
5939 5940
	spin_lock_init(&memcg->pcp_counter_lock);
	return memcg;
5941 5942 5943

out_free:
	if (size < PAGE_SIZE)
5944
		kfree(memcg);
5945
	else
5946
		vfree(memcg);
5947
	return NULL;
5948 5949
}

5950
/*
5951 5952 5953 5954 5955 5956 5957 5958
 * At destroying mem_cgroup, references from swap_cgroup can remain.
 * (scanning all at force_empty is too costly...)
 *
 * Instead of clearing all references at force_empty, we remember
 * the number of reference from swap_cgroup and free mem_cgroup when
 * it goes down to 0.
 *
 * Removal of cgroup itself succeeds regardless of refs from swap.
5959
 */
5960 5961

static void __mem_cgroup_free(struct mem_cgroup *memcg)
5962
{
5963
	int node;
5964
	int size = sizeof(struct mem_cgroup);
5965

5966 5967 5968 5969 5970 5971 5972 5973
	mem_cgroup_remove_from_trees(memcg);
	free_css_id(&mem_cgroup_subsys, &memcg->css);

	for_each_node(node)
		free_mem_cgroup_per_zone_info(memcg, node);

	free_percpu(memcg->stat);

5974 5975 5976 5977 5978 5979 5980 5981 5982 5983 5984
	/*
	 * We need to make sure that (at least for now), the jump label
	 * destruction code runs outside of the cgroup lock. This is because
	 * get_online_cpus(), which is called from the static_branch update,
	 * can't be called inside the cgroup_lock. cpusets are the ones
	 * enforcing this dependency, so if they ever change, we might as well.
	 *
	 * schedule_work() will guarantee this happens. Be careful if you need
	 * to move this code around, and make sure it is outside
	 * the cgroup_lock.
	 */
5985
	disarm_static_keys(memcg);
5986 5987 5988 5989
	if (size < PAGE_SIZE)
		kfree(memcg);
	else
		vfree(memcg);
5990
}
5991

5992

5993
/*
5994 5995 5996
 * Helpers for freeing a kmalloc()ed/vzalloc()ed mem_cgroup by RCU,
 * but in process context.  The work_freeing structure is overlaid
 * on the rcu_freeing structure, which itself is overlaid on memsw.
5997
 */
5998
static void free_work(struct work_struct *work)
5999
{
6000
	struct mem_cgroup *memcg;
K
KAMEZAWA Hiroyuki 已提交
6001

6002 6003 6004
	memcg = container_of(work, struct mem_cgroup, work_freeing);
	__mem_cgroup_free(memcg);
}
K
KAMEZAWA Hiroyuki 已提交
6005

6006 6007 6008
static void free_rcu(struct rcu_head *rcu_head)
{
	struct mem_cgroup *memcg;
K
KAMEZAWA Hiroyuki 已提交
6009

6010 6011 6012
	memcg = container_of(rcu_head, struct mem_cgroup, rcu_freeing);
	INIT_WORK(&memcg->work_freeing, free_work);
	schedule_work(&memcg->work_freeing);
6013 6014
}

6015
static void mem_cgroup_get(struct mem_cgroup *memcg)
6016
{
6017
	atomic_inc(&memcg->refcnt);
6018 6019
}

6020
static void __mem_cgroup_put(struct mem_cgroup *memcg, int count)
6021
{
6022 6023
	if (atomic_sub_and_test(count, &memcg->refcnt)) {
		struct mem_cgroup *parent = parent_mem_cgroup(memcg);
6024
		call_rcu(&memcg->rcu_freeing, free_rcu);
6025 6026 6027
		if (parent)
			mem_cgroup_put(parent);
	}
6028 6029
}

6030
static void mem_cgroup_put(struct mem_cgroup *memcg)
6031
{
6032
	__mem_cgroup_put(memcg, 1);
6033 6034
}

6035 6036 6037
/*
 * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
 */
G
Glauber Costa 已提交
6038
struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg)
6039
{
6040
	if (!memcg->res.parent)
6041
		return NULL;
6042
	return mem_cgroup_from_res_counter(memcg->res.parent, res);
6043
}
G
Glauber Costa 已提交
6044
EXPORT_SYMBOL(parent_mem_cgroup);
6045

A
Andrew Morton 已提交
6046
#ifdef CONFIG_MEMCG_SWAP
6047 6048
static void __init enable_swap_cgroup(void)
{
6049
	if (!mem_cgroup_disabled() && really_do_swap_account)
6050 6051 6052 6053 6054 6055 6056 6057
		do_swap_account = 1;
}
#else
static void __init enable_swap_cgroup(void)
{
}
#endif

6058 6059 6060 6061 6062 6063
static int mem_cgroup_soft_limit_tree_init(void)
{
	struct mem_cgroup_tree_per_node *rtpn;
	struct mem_cgroup_tree_per_zone *rtpz;
	int tmp, node, zone;

B
Bob Liu 已提交
6064
	for_each_node(node) {
6065 6066 6067 6068 6069
		tmp = node;
		if (!node_state(node, N_NORMAL_MEMORY))
			tmp = -1;
		rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, tmp);
		if (!rtpn)
6070
			goto err_cleanup;
6071 6072 6073 6074 6075 6076 6077 6078 6079 6080

		soft_limit_tree.rb_tree_per_node[node] = rtpn;

		for (zone = 0; zone < MAX_NR_ZONES; zone++) {
			rtpz = &rtpn->rb_tree_per_zone[zone];
			rtpz->rb_root = RB_ROOT;
			spin_lock_init(&rtpz->lock);
		}
	}
	return 0;
6081 6082

err_cleanup:
B
Bob Liu 已提交
6083
	for_each_node(node) {
6084 6085 6086 6087 6088 6089 6090
		if (!soft_limit_tree.rb_tree_per_node[node])
			break;
		kfree(soft_limit_tree.rb_tree_per_node[node]);
		soft_limit_tree.rb_tree_per_node[node] = NULL;
	}
	return 1;

6091 6092
}

L
Li Zefan 已提交
6093
static struct cgroup_subsys_state * __ref
6094
mem_cgroup_css_alloc(struct cgroup *cont)
B
Balbir Singh 已提交
6095
{
6096
	struct mem_cgroup *memcg, *parent;
K
KAMEZAWA Hiroyuki 已提交
6097
	long error = -ENOMEM;
6098
	int node;
B
Balbir Singh 已提交
6099

6100 6101
	memcg = mem_cgroup_alloc();
	if (!memcg)
K
KAMEZAWA Hiroyuki 已提交
6102
		return ERR_PTR(error);
6103

B
Bob Liu 已提交
6104
	for_each_node(node)
6105
		if (alloc_mem_cgroup_per_zone_info(memcg, node))
6106
			goto free_out;
6107

6108
	/* root ? */
6109
	if (cont->parent == NULL) {
6110
		int cpu;
6111
		enable_swap_cgroup();
6112
		parent = NULL;
6113 6114
		if (mem_cgroup_soft_limit_tree_init())
			goto free_out;
6115
		root_mem_cgroup = memcg;
6116 6117 6118 6119 6120
		for_each_possible_cpu(cpu) {
			struct memcg_stock_pcp *stock =
						&per_cpu(memcg_stock, cpu);
			INIT_WORK(&stock->work, drain_local_stock);
		}
6121
	} else {
6122
		parent = mem_cgroup_from_cont(cont->parent);
6123 6124
		memcg->use_hierarchy = parent->use_hierarchy;
		memcg->oom_kill_disable = parent->oom_kill_disable;
6125
	}
6126

6127
	if (parent && parent->use_hierarchy) {
6128 6129
		res_counter_init(&memcg->res, &parent->res);
		res_counter_init(&memcg->memsw, &parent->memsw);
6130
		res_counter_init(&memcg->kmem, &parent->kmem);
6131

6132 6133 6134 6135 6136 6137 6138
		/*
		 * We increment refcnt of the parent to ensure that we can
		 * safely access it on res_counter_charge/uncharge.
		 * This refcnt will be decremented when freeing this
		 * mem_cgroup(see mem_cgroup_put).
		 */
		mem_cgroup_get(parent);
6139
	} else {
6140 6141
		res_counter_init(&memcg->res, NULL);
		res_counter_init(&memcg->memsw, NULL);
6142
		res_counter_init(&memcg->kmem, NULL);
6143 6144 6145 6146 6147 6148 6149
		/*
		 * Deeper hierachy with use_hierarchy == false doesn't make
		 * much sense so let cgroup subsystem know about this
		 * unfortunate state in our controller.
		 */
		if (parent && parent != root_mem_cgroup)
			mem_cgroup_subsys.broken_hierarchy = true;
6150
	}
6151 6152
	memcg->last_scanned_node = MAX_NUMNODES;
	INIT_LIST_HEAD(&memcg->oom_notify);
6153

K
KOSAKI Motohiro 已提交
6154
	if (parent)
6155 6156 6157 6158
		memcg->swappiness = mem_cgroup_swappiness(parent);
	atomic_set(&memcg->refcnt, 1);
	memcg->move_charge_at_immigrate = 0;
	mutex_init(&memcg->thresholds_lock);
6159
	spin_lock_init(&memcg->move_lock);
6160 6161 6162 6163 6164 6165 6166 6167 6168 6169 6170

	error = memcg_init_kmem(memcg, &mem_cgroup_subsys);
	if (error) {
		/*
		 * We call put now because our (and parent's) refcnts
		 * are already in place. mem_cgroup_put() will internally
		 * call __mem_cgroup_free, so return directly
		 */
		mem_cgroup_put(memcg);
		return ERR_PTR(error);
	}
6171
	return &memcg->css;
6172
free_out:
6173
	__mem_cgroup_free(memcg);
K
KAMEZAWA Hiroyuki 已提交
6174
	return ERR_PTR(error);
B
Balbir Singh 已提交
6175 6176
}

6177
static void mem_cgroup_css_offline(struct cgroup *cont)
6178
{
6179
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
6180

6181
	mem_cgroup_reparent_charges(memcg);
G
Glauber Costa 已提交
6182
	mem_cgroup_destroy_all_caches(memcg);
6183 6184
}

6185
static void mem_cgroup_css_free(struct cgroup *cont)
B
Balbir Singh 已提交
6186
{
6187
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
6188

6189
	kmem_cgroup_destroy(memcg);
G
Glauber Costa 已提交
6190

6191
	mem_cgroup_put(memcg);
B
Balbir Singh 已提交
6192 6193
}

6194
#ifdef CONFIG_MMU
6195
/* Handlers for move charge at task migration. */
6196 6197
#define PRECHARGE_COUNT_AT_ONCE	256
static int mem_cgroup_do_precharge(unsigned long count)
6198
{
6199 6200
	int ret = 0;
	int batch_count = PRECHARGE_COUNT_AT_ONCE;
6201
	struct mem_cgroup *memcg = mc.to;
6202

6203
	if (mem_cgroup_is_root(memcg)) {
6204 6205 6206 6207 6208 6209 6210 6211
		mc.precharge += count;
		/* we don't need css_get for root */
		return ret;
	}
	/* try to charge at once */
	if (count > 1) {
		struct res_counter *dummy;
		/*
6212
		 * "memcg" cannot be under rmdir() because we've already checked
6213 6214 6215 6216
		 * by cgroup_lock_live_cgroup() that it is not removed and we
		 * are still under the same cgroup_mutex. So we can postpone
		 * css_get().
		 */
6217
		if (res_counter_charge(&memcg->res, PAGE_SIZE * count, &dummy))
6218
			goto one_by_one;
6219
		if (do_swap_account && res_counter_charge(&memcg->memsw,
6220
						PAGE_SIZE * count, &dummy)) {
6221
			res_counter_uncharge(&memcg->res, PAGE_SIZE * count);
6222 6223 6224 6225 6226 6227 6228 6229 6230 6231 6232 6233 6234 6235 6236 6237
			goto one_by_one;
		}
		mc.precharge += count;
		return ret;
	}
one_by_one:
	/* fall back to one by one charge */
	while (count--) {
		if (signal_pending(current)) {
			ret = -EINTR;
			break;
		}
		if (!batch_count--) {
			batch_count = PRECHARGE_COUNT_AT_ONCE;
			cond_resched();
		}
6238 6239
		ret = __mem_cgroup_try_charge(NULL,
					GFP_KERNEL, 1, &memcg, false);
6240
		if (ret)
6241
			/* mem_cgroup_clear_mc() will do uncharge later */
6242
			return ret;
6243 6244
		mc.precharge++;
	}
6245 6246 6247 6248
	return ret;
}

/**
6249
 * get_mctgt_type - get target type of moving charge
6250 6251 6252
 * @vma: the vma the pte to be checked belongs
 * @addr: the address corresponding to the pte to be checked
 * @ptent: the pte to be checked
6253
 * @target: the pointer the target page or swap ent will be stored(can be NULL)
6254 6255 6256 6257 6258 6259
 *
 * Returns
 *   0(MC_TARGET_NONE): if the pte is not a target for move charge.
 *   1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
 *     move charge. if @target is not NULL, the page is stored in target->page
 *     with extra refcnt got(Callers should handle it).
6260 6261 6262
 *   2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
 *     target for charge migration. if @target is not NULL, the entry is stored
 *     in target->ent.
6263 6264 6265 6266 6267
 *
 * Called with pte lock held.
 */
union mc_target {
	struct page	*page;
6268
	swp_entry_t	ent;
6269 6270 6271
};

enum mc_target_type {
6272
	MC_TARGET_NONE = 0,
6273
	MC_TARGET_PAGE,
6274
	MC_TARGET_SWAP,
6275 6276
};

D
Daisuke Nishimura 已提交
6277 6278
static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
						unsigned long addr, pte_t ptent)
6279
{
D
Daisuke Nishimura 已提交
6280
	struct page *page = vm_normal_page(vma, addr, ptent);
6281

D
Daisuke Nishimura 已提交
6282 6283 6284 6285
	if (!page || !page_mapped(page))
		return NULL;
	if (PageAnon(page)) {
		/* we don't move shared anon */
6286
		if (!move_anon())
D
Daisuke Nishimura 已提交
6287
			return NULL;
6288 6289
	} else if (!move_file())
		/* we ignore mapcount for file pages */
D
Daisuke Nishimura 已提交
6290 6291 6292 6293 6294 6295 6296
		return NULL;
	if (!get_page_unless_zero(page))
		return NULL;

	return page;
}

6297
#ifdef CONFIG_SWAP
D
Daisuke Nishimura 已提交
6298 6299 6300 6301 6302 6303 6304 6305
static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
			unsigned long addr, pte_t ptent, swp_entry_t *entry)
{
	struct page *page = NULL;
	swp_entry_t ent = pte_to_swp_entry(ptent);

	if (!move_anon() || non_swap_entry(ent))
		return NULL;
6306 6307 6308 6309
	/*
	 * Because lookup_swap_cache() updates some statistics counter,
	 * we call find_get_page() with swapper_space directly.
	 */
6310
	page = find_get_page(swap_address_space(ent), ent.val);
D
Daisuke Nishimura 已提交
6311 6312 6313 6314 6315
	if (do_swap_account)
		entry->val = ent.val;

	return page;
}
6316 6317 6318 6319 6320 6321 6322
#else
static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
			unsigned long addr, pte_t ptent, swp_entry_t *entry)
{
	return NULL;
}
#endif
D
Daisuke Nishimura 已提交
6323

6324 6325 6326 6327 6328 6329 6330 6331 6332 6333 6334 6335 6336 6337 6338 6339 6340 6341 6342
static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
			unsigned long addr, pte_t ptent, swp_entry_t *entry)
{
	struct page *page = NULL;
	struct address_space *mapping;
	pgoff_t pgoff;

	if (!vma->vm_file) /* anonymous vma */
		return NULL;
	if (!move_file())
		return NULL;

	mapping = vma->vm_file->f_mapping;
	if (pte_none(ptent))
		pgoff = linear_page_index(vma, addr);
	else /* pte_file(ptent) is true */
		pgoff = pte_to_pgoff(ptent);

	/* page is moved even if it's not RSS of this task(page-faulted). */
6343 6344 6345 6346 6347 6348
	page = find_get_page(mapping, pgoff);

#ifdef CONFIG_SWAP
	/* shmem/tmpfs may report page out on swap: account for that too. */
	if (radix_tree_exceptional_entry(page)) {
		swp_entry_t swap = radix_to_swp_entry(page);
6349
		if (do_swap_account)
6350
			*entry = swap;
6351
		page = find_get_page(swap_address_space(swap), swap.val);
6352
	}
6353
#endif
6354 6355 6356
	return page;
}

6357
static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
D
Daisuke Nishimura 已提交
6358 6359 6360 6361
		unsigned long addr, pte_t ptent, union mc_target *target)
{
	struct page *page = NULL;
	struct page_cgroup *pc;
6362
	enum mc_target_type ret = MC_TARGET_NONE;
D
Daisuke Nishimura 已提交
6363 6364 6365 6366 6367 6368
	swp_entry_t ent = { .val = 0 };

	if (pte_present(ptent))
		page = mc_handle_present_pte(vma, addr, ptent);
	else if (is_swap_pte(ptent))
		page = mc_handle_swap_pte(vma, addr, ptent, &ent);
6369 6370
	else if (pte_none(ptent) || pte_file(ptent))
		page = mc_handle_file_pte(vma, addr, ptent, &ent);
D
Daisuke Nishimura 已提交
6371 6372

	if (!page && !ent.val)
6373
		return ret;
6374 6375 6376 6377 6378 6379 6380 6381 6382 6383 6384 6385 6386 6387 6388
	if (page) {
		pc = lookup_page_cgroup(page);
		/*
		 * Do only loose check w/o page_cgroup lock.
		 * mem_cgroup_move_account() checks the pc is valid or not under
		 * the lock.
		 */
		if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
			ret = MC_TARGET_PAGE;
			if (target)
				target->page = page;
		}
		if (!ret || !target)
			put_page(page);
	}
D
Daisuke Nishimura 已提交
6389 6390
	/* There is a swap entry and a page doesn't exist or isn't charged */
	if (ent.val && !ret &&
6391
			css_id(&mc.from->css) == lookup_swap_cgroup_id(ent)) {
6392 6393 6394
		ret = MC_TARGET_SWAP;
		if (target)
			target->ent = ent;
6395 6396 6397 6398
	}
	return ret;
}

6399 6400 6401 6402 6403 6404 6405 6406 6407 6408 6409 6410 6411 6412 6413 6414 6415 6416 6417 6418 6419 6420 6421 6422 6423 6424 6425 6426 6427 6428 6429 6430 6431 6432 6433
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
/*
 * We don't consider swapping or file mapped pages because THP does not
 * support them for now.
 * Caller should make sure that pmd_trans_huge(pmd) is true.
 */
static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
		unsigned long addr, pmd_t pmd, union mc_target *target)
{
	struct page *page = NULL;
	struct page_cgroup *pc;
	enum mc_target_type ret = MC_TARGET_NONE;

	page = pmd_page(pmd);
	VM_BUG_ON(!page || !PageHead(page));
	if (!move_anon())
		return ret;
	pc = lookup_page_cgroup(page);
	if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
		ret = MC_TARGET_PAGE;
		if (target) {
			get_page(page);
			target->page = page;
		}
	}
	return ret;
}
#else
static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
		unsigned long addr, pmd_t pmd, union mc_target *target)
{
	return MC_TARGET_NONE;
}
#endif

6434 6435 6436 6437 6438 6439 6440 6441
static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
					unsigned long addr, unsigned long end,
					struct mm_walk *walk)
{
	struct vm_area_struct *vma = walk->private;
	pte_t *pte;
	spinlock_t *ptl;

6442 6443 6444 6445
	if (pmd_trans_huge_lock(pmd, vma) == 1) {
		if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
			mc.precharge += HPAGE_PMD_NR;
		spin_unlock(&vma->vm_mm->page_table_lock);
6446
		return 0;
6447
	}
6448

6449 6450
	if (pmd_trans_unstable(pmd))
		return 0;
6451 6452
	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
	for (; addr != end; pte++, addr += PAGE_SIZE)
6453
		if (get_mctgt_type(vma, addr, *pte, NULL))
6454 6455 6456 6457
			mc.precharge++;	/* increment precharge temporarily */
	pte_unmap_unlock(pte - 1, ptl);
	cond_resched();

6458 6459 6460
	return 0;
}

6461 6462 6463 6464 6465
static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
{
	unsigned long precharge;
	struct vm_area_struct *vma;

6466
	down_read(&mm->mmap_sem);
6467 6468 6469 6470 6471 6472 6473 6474 6475 6476 6477
	for (vma = mm->mmap; vma; vma = vma->vm_next) {
		struct mm_walk mem_cgroup_count_precharge_walk = {
			.pmd_entry = mem_cgroup_count_precharge_pte_range,
			.mm = mm,
			.private = vma,
		};
		if (is_vm_hugetlb_page(vma))
			continue;
		walk_page_range(vma->vm_start, vma->vm_end,
					&mem_cgroup_count_precharge_walk);
	}
6478
	up_read(&mm->mmap_sem);
6479 6480 6481 6482 6483 6484 6485 6486 6487

	precharge = mc.precharge;
	mc.precharge = 0;

	return precharge;
}

static int mem_cgroup_precharge_mc(struct mm_struct *mm)
{
6488 6489 6490 6491 6492
	unsigned long precharge = mem_cgroup_count_precharge(mm);

	VM_BUG_ON(mc.moving_task);
	mc.moving_task = current;
	return mem_cgroup_do_precharge(precharge);
6493 6494
}

6495 6496
/* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
static void __mem_cgroup_clear_mc(void)
6497
{
6498 6499 6500
	struct mem_cgroup *from = mc.from;
	struct mem_cgroup *to = mc.to;

6501
	/* we must uncharge all the leftover precharges from mc.to */
6502 6503 6504 6505 6506 6507 6508 6509 6510 6511 6512
	if (mc.precharge) {
		__mem_cgroup_cancel_charge(mc.to, mc.precharge);
		mc.precharge = 0;
	}
	/*
	 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
	 * we must uncharge here.
	 */
	if (mc.moved_charge) {
		__mem_cgroup_cancel_charge(mc.from, mc.moved_charge);
		mc.moved_charge = 0;
6513
	}
6514 6515 6516 6517 6518 6519 6520 6521 6522 6523 6524 6525 6526 6527 6528 6529 6530 6531 6532
	/* we must fixup refcnts and charges */
	if (mc.moved_swap) {
		/* uncharge swap account from the old cgroup */
		if (!mem_cgroup_is_root(mc.from))
			res_counter_uncharge(&mc.from->memsw,
						PAGE_SIZE * mc.moved_swap);
		__mem_cgroup_put(mc.from, mc.moved_swap);

		if (!mem_cgroup_is_root(mc.to)) {
			/*
			 * we charged both to->res and to->memsw, so we should
			 * uncharge to->res.
			 */
			res_counter_uncharge(&mc.to->res,
						PAGE_SIZE * mc.moved_swap);
		}
		/* we've already done mem_cgroup_get(mc.to) */
		mc.moved_swap = 0;
	}
6533 6534 6535 6536 6537 6538 6539 6540 6541 6542 6543 6544 6545 6546 6547
	memcg_oom_recover(from);
	memcg_oom_recover(to);
	wake_up_all(&mc.waitq);
}

static void mem_cgroup_clear_mc(void)
{
	struct mem_cgroup *from = mc.from;

	/*
	 * we must clear moving_task before waking up waiters at the end of
	 * task migration.
	 */
	mc.moving_task = NULL;
	__mem_cgroup_clear_mc();
6548
	spin_lock(&mc.lock);
6549 6550
	mc.from = NULL;
	mc.to = NULL;
6551
	spin_unlock(&mc.lock);
6552
	mem_cgroup_end_move(from);
6553 6554
}

6555 6556
static int mem_cgroup_can_attach(struct cgroup *cgroup,
				 struct cgroup_taskset *tset)
6557
{
6558
	struct task_struct *p = cgroup_taskset_first(tset);
6559
	int ret = 0;
6560
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgroup);
6561

6562
	if (memcg->move_charge_at_immigrate) {
6563 6564 6565
		struct mm_struct *mm;
		struct mem_cgroup *from = mem_cgroup_from_task(p);

6566
		VM_BUG_ON(from == memcg);
6567 6568 6569 6570 6571

		mm = get_task_mm(p);
		if (!mm)
			return 0;
		/* We move charges only when we move a owner of the mm */
6572 6573 6574 6575
		if (mm->owner == p) {
			VM_BUG_ON(mc.from);
			VM_BUG_ON(mc.to);
			VM_BUG_ON(mc.precharge);
6576
			VM_BUG_ON(mc.moved_charge);
6577
			VM_BUG_ON(mc.moved_swap);
6578
			mem_cgroup_start_move(from);
6579
			spin_lock(&mc.lock);
6580
			mc.from = from;
6581
			mc.to = memcg;
6582
			spin_unlock(&mc.lock);
6583
			/* We set mc.moving_task later */
6584 6585 6586 6587

			ret = mem_cgroup_precharge_mc(mm);
			if (ret)
				mem_cgroup_clear_mc();
6588 6589
		}
		mmput(mm);
6590 6591 6592 6593
	}
	return ret;
}

6594 6595
static void mem_cgroup_cancel_attach(struct cgroup *cgroup,
				     struct cgroup_taskset *tset)
6596
{
6597
	mem_cgroup_clear_mc();
6598 6599
}

6600 6601 6602
static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
				unsigned long addr, unsigned long end,
				struct mm_walk *walk)
6603
{
6604 6605 6606 6607
	int ret = 0;
	struct vm_area_struct *vma = walk->private;
	pte_t *pte;
	spinlock_t *ptl;
6608 6609 6610 6611
	enum mc_target_type target_type;
	union mc_target target;
	struct page *page;
	struct page_cgroup *pc;
6612

6613 6614 6615 6616 6617 6618 6619 6620 6621 6622 6623
	/*
	 * We don't take compound_lock() here but no race with splitting thp
	 * happens because:
	 *  - if pmd_trans_huge_lock() returns 1, the relevant thp is not
	 *    under splitting, which means there's no concurrent thp split,
	 *  - if another thread runs into split_huge_page() just after we
	 *    entered this if-block, the thread must wait for page table lock
	 *    to be unlocked in __split_huge_page_splitting(), where the main
	 *    part of thp split is not executed yet.
	 */
	if (pmd_trans_huge_lock(pmd, vma) == 1) {
6624
		if (mc.precharge < HPAGE_PMD_NR) {
6625 6626 6627 6628 6629 6630 6631 6632 6633
			spin_unlock(&vma->vm_mm->page_table_lock);
			return 0;
		}
		target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
		if (target_type == MC_TARGET_PAGE) {
			page = target.page;
			if (!isolate_lru_page(page)) {
				pc = lookup_page_cgroup(page);
				if (!mem_cgroup_move_account(page, HPAGE_PMD_NR,
6634
							pc, mc.from, mc.to)) {
6635 6636 6637 6638 6639 6640 6641 6642
					mc.precharge -= HPAGE_PMD_NR;
					mc.moved_charge += HPAGE_PMD_NR;
				}
				putback_lru_page(page);
			}
			put_page(page);
		}
		spin_unlock(&vma->vm_mm->page_table_lock);
6643
		return 0;
6644 6645
	}

6646 6647
	if (pmd_trans_unstable(pmd))
		return 0;
6648 6649 6650 6651
retry:
	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
	for (; addr != end; addr += PAGE_SIZE) {
		pte_t ptent = *(pte++);
6652
		swp_entry_t ent;
6653 6654 6655 6656

		if (!mc.precharge)
			break;

6657
		switch (get_mctgt_type(vma, addr, ptent, &target)) {
6658 6659 6660 6661 6662
		case MC_TARGET_PAGE:
			page = target.page;
			if (isolate_lru_page(page))
				goto put;
			pc = lookup_page_cgroup(page);
6663
			if (!mem_cgroup_move_account(page, 1, pc,
6664
						     mc.from, mc.to)) {
6665
				mc.precharge--;
6666 6667
				/* we uncharge from mc.from later. */
				mc.moved_charge++;
6668 6669
			}
			putback_lru_page(page);
6670
put:			/* get_mctgt_type() gets the page */
6671 6672
			put_page(page);
			break;
6673 6674
		case MC_TARGET_SWAP:
			ent = target.ent;
6675
			if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
6676
				mc.precharge--;
6677 6678 6679
				/* we fixup refcnts and charges later. */
				mc.moved_swap++;
			}
6680
			break;
6681 6682 6683 6684 6685 6686 6687 6688 6689 6690 6691 6692 6693 6694
		default:
			break;
		}
	}
	pte_unmap_unlock(pte - 1, ptl);
	cond_resched();

	if (addr != end) {
		/*
		 * We have consumed all precharges we got in can_attach().
		 * We try charge one by one, but don't do any additional
		 * charges to mc.to if we have failed in charge once in attach()
		 * phase.
		 */
6695
		ret = mem_cgroup_do_precharge(1);
6696 6697 6698 6699 6700 6701 6702 6703 6704 6705 6706 6707
		if (!ret)
			goto retry;
	}

	return ret;
}

static void mem_cgroup_move_charge(struct mm_struct *mm)
{
	struct vm_area_struct *vma;

	lru_add_drain_all();
6708 6709 6710 6711 6712 6713 6714 6715 6716 6717 6718 6719 6720
retry:
	if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
		/*
		 * Someone who are holding the mmap_sem might be waiting in
		 * waitq. So we cancel all extra charges, wake up all waiters,
		 * and retry. Because we cancel precharges, we might not be able
		 * to move enough charges, but moving charge is a best-effort
		 * feature anyway, so it wouldn't be a big problem.
		 */
		__mem_cgroup_clear_mc();
		cond_resched();
		goto retry;
	}
6721 6722 6723 6724 6725 6726 6727 6728 6729 6730 6731 6732 6733 6734 6735 6736 6737 6738
	for (vma = mm->mmap; vma; vma = vma->vm_next) {
		int ret;
		struct mm_walk mem_cgroup_move_charge_walk = {
			.pmd_entry = mem_cgroup_move_charge_pte_range,
			.mm = mm,
			.private = vma,
		};
		if (is_vm_hugetlb_page(vma))
			continue;
		ret = walk_page_range(vma->vm_start, vma->vm_end,
						&mem_cgroup_move_charge_walk);
		if (ret)
			/*
			 * means we have consumed all precharges and failed in
			 * doing additional charge. Just abandon here.
			 */
			break;
	}
6739
	up_read(&mm->mmap_sem);
6740 6741
}

6742 6743
static void mem_cgroup_move_task(struct cgroup *cont,
				 struct cgroup_taskset *tset)
B
Balbir Singh 已提交
6744
{
6745
	struct task_struct *p = cgroup_taskset_first(tset);
6746
	struct mm_struct *mm = get_task_mm(p);
6747 6748

	if (mm) {
6749 6750
		if (mc.to)
			mem_cgroup_move_charge(mm);
6751 6752
		mmput(mm);
	}
6753 6754
	if (mc.to)
		mem_cgroup_clear_mc();
B
Balbir Singh 已提交
6755
}
6756
#else	/* !CONFIG_MMU */
6757 6758
static int mem_cgroup_can_attach(struct cgroup *cgroup,
				 struct cgroup_taskset *tset)
6759 6760 6761
{
	return 0;
}
6762 6763
static void mem_cgroup_cancel_attach(struct cgroup *cgroup,
				     struct cgroup_taskset *tset)
6764 6765
{
}
6766 6767
static void mem_cgroup_move_task(struct cgroup *cont,
				 struct cgroup_taskset *tset)
6768 6769 6770
{
}
#endif
B
Balbir Singh 已提交
6771

B
Balbir Singh 已提交
6772 6773 6774
struct cgroup_subsys mem_cgroup_subsys = {
	.name = "memory",
	.subsys_id = mem_cgroup_subsys_id,
6775 6776 6777
	.css_alloc = mem_cgroup_css_alloc,
	.css_offline = mem_cgroup_css_offline,
	.css_free = mem_cgroup_css_free,
6778 6779
	.can_attach = mem_cgroup_can_attach,
	.cancel_attach = mem_cgroup_cancel_attach,
B
Balbir Singh 已提交
6780
	.attach = mem_cgroup_move_task,
6781
	.base_cftypes = mem_cgroup_files,
6782
	.early_init = 0,
K
KAMEZAWA Hiroyuki 已提交
6783
	.use_id = 1,
B
Balbir Singh 已提交
6784
};
6785

6786 6787 6788 6789 6790 6791 6792 6793 6794 6795 6796 6797 6798
/*
 * The rest of init is performed during ->css_alloc() for root css which
 * happens before initcalls.  hotcpu_notifier() can't be done together as
 * it would introduce circular locking by adding cgroup_lock -> cpu hotplug
 * dependency.  Do it from a subsys_initcall().
 */
static int __init mem_cgroup_init(void)
{
	hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
	return 0;
}
subsys_initcall(mem_cgroup_init);

A
Andrew Morton 已提交
6799
#ifdef CONFIG_MEMCG_SWAP
6800 6801 6802
static int __init enable_swap_account(char *s)
{
	/* consider enabled if no parameter or 1 is given */
6803
	if (!strcmp(s, "1"))
6804
		really_do_swap_account = 1;
6805
	else if (!strcmp(s, "0"))
6806 6807 6808
		really_do_swap_account = 0;
	return 1;
}
6809
__setup("swapaccount=", enable_swap_account);
6810 6811

#endif