memcontrol.c 175.9 KB
Newer Older
B
Balbir Singh 已提交
1 2 3 4 5
/* memcontrol.c - Memory Controller
 *
 * Copyright IBM Corporation, 2007
 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
 *
6 7 8
 * Copyright 2007 OpenVZ SWsoft Inc
 * Author: Pavel Emelianov <xemul@openvz.org>
 *
9 10 11 12
 * Memory thresholds
 * Copyright (C) 2009 Nokia Corporation
 * Author: Kirill A. Shutemov
 *
13 14 15 16
 * Kernel Memory Controller
 * Copyright (C) 2012 Parallels Inc. and Google Inc.
 * Authors: Glauber Costa and Suleiman Souhlal
 *
B
Balbir Singh 已提交
17 18 19 20 21 22 23 24 25 26 27 28 29 30
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 */

#include <linux/res_counter.h>
#include <linux/memcontrol.h>
#include <linux/cgroup.h>
31
#include <linux/mm.h>
32
#include <linux/hugetlb.h>
K
KAMEZAWA Hiroyuki 已提交
33
#include <linux/pagemap.h>
34
#include <linux/smp.h>
35
#include <linux/page-flags.h>
36
#include <linux/backing-dev.h>
37 38
#include <linux/bit_spinlock.h>
#include <linux/rcupdate.h>
39
#include <linux/limits.h>
40
#include <linux/export.h>
41
#include <linux/mutex.h>
42
#include <linux/rbtree.h>
43
#include <linux/slab.h>
44
#include <linux/swap.h>
45
#include <linux/swapops.h>
46
#include <linux/spinlock.h>
47 48
#include <linux/eventfd.h>
#include <linux/sort.h>
49
#include <linux/fs.h>
50
#include <linux/seq_file.h>
51
#include <linux/vmalloc.h>
52
#include <linux/mm_inline.h>
53
#include <linux/page_cgroup.h>
54
#include <linux/cpu.h>
55
#include <linux/oom.h>
K
KAMEZAWA Hiroyuki 已提交
56
#include "internal.h"
G
Glauber Costa 已提交
57
#include <net/sock.h>
M
Michal Hocko 已提交
58
#include <net/ip.h>
G
Glauber Costa 已提交
59
#include <net/tcp_memcontrol.h>
B
Balbir Singh 已提交
60

61 62
#include <asm/uaccess.h>

63 64
#include <trace/events/vmscan.h>

65
struct cgroup_subsys mem_cgroup_subsys __read_mostly;
66 67
EXPORT_SYMBOL(mem_cgroup_subsys);

68
#define MEM_CGROUP_RECLAIM_RETRIES	5
69
static struct mem_cgroup *root_mem_cgroup __read_mostly;
B
Balbir Singh 已提交
70

A
Andrew Morton 已提交
71
#ifdef CONFIG_MEMCG_SWAP
L
Li Zefan 已提交
72
/* Turned on only when memory cgroup is enabled && really_do_swap_account = 1 */
73
int do_swap_account __read_mostly;
74 75

/* for remember boot option*/
A
Andrew Morton 已提交
76
#ifdef CONFIG_MEMCG_SWAP_ENABLED
77 78 79 80 81
static int really_do_swap_account __initdata = 1;
#else
static int really_do_swap_account __initdata = 0;
#endif

82
#else
83
#define do_swap_account		0
84 85 86
#endif


87 88 89 90 91 92 93 94
/*
 * Statistics for memory cgroup.
 */
enum mem_cgroup_stat_index {
	/*
	 * For MEM_CONTAINER_TYPE_ALL, usage = pagecache + rss.
	 */
	MEM_CGROUP_STAT_CACHE, 	   /* # of pages charged as cache */
95
	MEM_CGROUP_STAT_RSS,	   /* # of pages charged as anon rss */
96
	MEM_CGROUP_STAT_FILE_MAPPED,  /* # of pages charged as file rss */
97
	MEM_CGROUP_STAT_SWAP, /* # of pages, swapped out */
98 99 100
	MEM_CGROUP_STAT_NSTATS,
};

101 102 103 104 105 106 107
static const char * const mem_cgroup_stat_names[] = {
	"cache",
	"rss",
	"mapped_file",
	"swap",
};

108 109 110
enum mem_cgroup_events_index {
	MEM_CGROUP_EVENTS_PGPGIN,	/* # of pages paged in */
	MEM_CGROUP_EVENTS_PGPGOUT,	/* # of pages paged out */
111 112
	MEM_CGROUP_EVENTS_PGFAULT,	/* # of page-faults */
	MEM_CGROUP_EVENTS_PGMAJFAULT,	/* # of major page-faults */
113 114
	MEM_CGROUP_EVENTS_NSTATS,
};
115 116 117 118 119 120 121 122

static const char * const mem_cgroup_events_names[] = {
	"pgpgin",
	"pgpgout",
	"pgfault",
	"pgmajfault",
};

123 124 125 126 127 128 129 130 131
/*
 * Per memcg event counter is incremented at every pagein/pageout. With THP,
 * it will be incremated by the number of pages. This counter is used for
 * for trigger some periodic events. This is straightforward and better
 * than using jiffies etc. to handle periodic memcg event.
 */
enum mem_cgroup_events_target {
	MEM_CGROUP_TARGET_THRESH,
	MEM_CGROUP_TARGET_SOFTLIMIT,
132
	MEM_CGROUP_TARGET_NUMAINFO,
133 134
	MEM_CGROUP_NTARGETS,
};
135 136 137
#define THRESHOLDS_EVENTS_TARGET 128
#define SOFTLIMIT_EVENTS_TARGET 1024
#define NUMAINFO_EVENTS_TARGET	1024
138

139
struct mem_cgroup_stat_cpu {
140
	long count[MEM_CGROUP_STAT_NSTATS];
141
	unsigned long events[MEM_CGROUP_EVENTS_NSTATS];
142
	unsigned long nr_page_events;
143
	unsigned long targets[MEM_CGROUP_NTARGETS];
144 145
};

146 147 148 149 150 151 152
struct mem_cgroup_reclaim_iter {
	/* css_id of the last scanned hierarchy member */
	int position;
	/* scan generation, increased every round-trip */
	unsigned int generation;
};

153 154 155 156
/*
 * per-zone information in memory controller.
 */
struct mem_cgroup_per_zone {
157
	struct lruvec		lruvec;
158
	unsigned long		lru_size[NR_LRU_LISTS];
K
KOSAKI Motohiro 已提交
159

160 161
	struct mem_cgroup_reclaim_iter reclaim_iter[DEF_PRIORITY + 1];

162 163 164 165
	struct rb_node		tree_node;	/* RB tree node */
	unsigned long long	usage_in_excess;/* Set to the value by which */
						/* the soft limit is exceeded*/
	bool			on_tree;
166
	struct mem_cgroup	*memcg;		/* Back pointer, we cannot */
167
						/* use container_of	   */
168 169 170 171 172 173 174 175 176 177
};

struct mem_cgroup_per_node {
	struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
};

struct mem_cgroup_lru_info {
	struct mem_cgroup_per_node *nodeinfo[MAX_NUMNODES];
};

178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197
/*
 * Cgroups above their limits are maintained in a RB-Tree, independent of
 * their hierarchy representation
 */

struct mem_cgroup_tree_per_zone {
	struct rb_root rb_root;
	spinlock_t lock;
};

struct mem_cgroup_tree_per_node {
	struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
};

struct mem_cgroup_tree {
	struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
};

static struct mem_cgroup_tree soft_limit_tree __read_mostly;

198 199 200 201 202
struct mem_cgroup_threshold {
	struct eventfd_ctx *eventfd;
	u64 threshold;
};

K
KAMEZAWA Hiroyuki 已提交
203
/* For threshold */
204
struct mem_cgroup_threshold_ary {
205
	/* An array index points to threshold just below or equal to usage. */
206
	int current_threshold;
207 208 209 210 211
	/* Size of entries[] */
	unsigned int size;
	/* Array of thresholds */
	struct mem_cgroup_threshold entries[0];
};
212 213 214 215 216 217 218 219 220 221 222 223

struct mem_cgroup_thresholds {
	/* Primary thresholds array */
	struct mem_cgroup_threshold_ary *primary;
	/*
	 * Spare threshold array.
	 * This is needed to make mem_cgroup_unregister_event() "never fail".
	 * It must be able to store at least primary->size - 1 entries.
	 */
	struct mem_cgroup_threshold_ary *spare;
};

K
KAMEZAWA Hiroyuki 已提交
224 225 226 227 228
/* for OOM */
struct mem_cgroup_eventfd_list {
	struct list_head list;
	struct eventfd_ctx *eventfd;
};
229

230 231
static void mem_cgroup_threshold(struct mem_cgroup *memcg);
static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
232

B
Balbir Singh 已提交
233 234 235 236 237 238 239
/*
 * The memory controller data structure. The memory controller controls both
 * page cache and RSS per cgroup. We would eventually like to provide
 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
 * to help the administrator determine what knobs to tune.
 *
 * TODO: Add a water mark for the memory controller. Reclaim will begin when
240 241 242
 * we hit the water mark. May be even add a low water mark, such that
 * no reclaim occurs from a cgroup at it's low water mark, this is
 * a feature that will be implemented much later in the future.
B
Balbir Singh 已提交
243 244 245 246 247 248 249
 */
struct mem_cgroup {
	struct cgroup_subsys_state css;
	/*
	 * the counter to account for memory usage
	 */
	struct res_counter res;
250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267

	union {
		/*
		 * the counter to account for mem+swap usage.
		 */
		struct res_counter memsw;

		/*
		 * rcu_freeing is used only when freeing struct mem_cgroup,
		 * so put it into a union to avoid wasting more memory.
		 * It must be disjoint from the css field.  It could be
		 * in a union with the res field, but res plays a much
		 * larger part in mem_cgroup life than memsw, and might
		 * be of interest, even at time of free, when debugging.
		 * So share rcu_head with the less interesting memsw.
		 */
		struct rcu_head rcu_freeing;
		/*
268 269
		 * We also need some space for a worker in deferred freeing.
		 * By the time we call it, rcu_freeing is no longer in use.
270 271 272 273
		 */
		struct work_struct work_freeing;
	};

274 275 276 277
	/*
	 * the counter to account for kernel memory usage.
	 */
	struct res_counter kmem;
278 279 280 281
	/*
	 * Per cgroup active and inactive list, similar to the
	 * per zone LRU lists.
	 */
282
	struct mem_cgroup_lru_info info;
283 284 285
	int last_scanned_node;
#if MAX_NUMNODES > 1
	nodemask_t	scan_nodes;
286 287
	atomic_t	numainfo_events;
	atomic_t	numainfo_updating;
288
#endif
289 290 291 292
	/*
	 * Should the accounting and control be hierarchical, per subtree?
	 */
	bool use_hierarchy;
293
	unsigned long kmem_account_flags; /* See KMEM_ACCOUNTED_*, below */
294 295 296 297

	bool		oom_lock;
	atomic_t	under_oom;

298
	atomic_t	refcnt;
299

300
	int	swappiness;
301 302
	/* OOM-Killer disable */
	int		oom_kill_disable;
K
KOSAKI Motohiro 已提交
303

304 305 306
	/* set when res.limit == memsw.limit */
	bool		memsw_is_minimum;

307 308 309 310
	/* protect arrays of thresholds */
	struct mutex thresholds_lock;

	/* thresholds for memory usage. RCU-protected */
311
	struct mem_cgroup_thresholds thresholds;
312

313
	/* thresholds for mem+swap usage. RCU-protected */
314
	struct mem_cgroup_thresholds memsw_thresholds;
315

K
KAMEZAWA Hiroyuki 已提交
316 317
	/* For oom notifier event fd */
	struct list_head oom_notify;
318

319 320 321 322 323
	/*
	 * Should we move charges of a task when a task is moved into this
	 * mem_cgroup ? And what type of charges should we move ?
	 */
	unsigned long 	move_charge_at_immigrate;
324 325 326 327
	/*
	 * set > 0 if pages under this cgroup are moving to other cgroup.
	 */
	atomic_t	moving_account;
328 329
	/* taken only while moving_account > 0 */
	spinlock_t	move_lock;
330
	/*
331
	 * percpu counter.
332
	 */
333
	struct mem_cgroup_stat_cpu __percpu *stat;
334 335 336 337 338 339
	/*
	 * used when a cpu is offlined or other synchronizations
	 * See mem_cgroup_read_stat().
	 */
	struct mem_cgroup_stat_cpu nocpu_base;
	spinlock_t pcp_counter_lock;
G
Glauber Costa 已提交
340

M
Michal Hocko 已提交
341
#if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_INET)
G
Glauber Costa 已提交
342 343
	struct tcp_memcontrol tcp_mem;
#endif
344 345 346 347 348 349 350 351
#if defined(CONFIG_MEMCG_KMEM)
	/* analogous to slab_common's slab_caches list. per-memcg */
	struct list_head memcg_slab_caches;
	/* Not a spinlock, we can take a lot of time walking the list */
	struct mutex slab_caches_mutex;
        /* Index in the kmem_cache->memcg_params->memcg_caches array */
	int kmemcg_id;
#endif
B
Balbir Singh 已提交
352 353
};

354 355 356
/* internal only representation about the status of kmem accounting. */
enum {
	KMEM_ACCOUNTED_ACTIVE = 0, /* accounted by this cgroup itself */
357
	KMEM_ACCOUNTED_ACTIVATED, /* static key enabled. */
358
	KMEM_ACCOUNTED_DEAD, /* dead memcg with pending kmem charges */
359 360
};

361 362 363
/* We account when limit is on, but only after call sites are patched */
#define KMEM_ACCOUNTED_MASK \
		((1 << KMEM_ACCOUNTED_ACTIVE) | (1 << KMEM_ACCOUNTED_ACTIVATED))
364 365 366 367 368 369

#ifdef CONFIG_MEMCG_KMEM
static inline void memcg_kmem_set_active(struct mem_cgroup *memcg)
{
	set_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags);
}
370 371 372 373 374 375

static bool memcg_kmem_is_active(struct mem_cgroup *memcg)
{
	return test_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags);
}

376 377 378 379 380
static void memcg_kmem_set_activated(struct mem_cgroup *memcg)
{
	set_bit(KMEM_ACCOUNTED_ACTIVATED, &memcg->kmem_account_flags);
}

381 382 383 384 385
static void memcg_kmem_clear_activated(struct mem_cgroup *memcg)
{
	clear_bit(KMEM_ACCOUNTED_ACTIVATED, &memcg->kmem_account_flags);
}

386 387 388 389 390 391 392 393 394 395 396
static void memcg_kmem_mark_dead(struct mem_cgroup *memcg)
{
	if (test_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags))
		set_bit(KMEM_ACCOUNTED_DEAD, &memcg->kmem_account_flags);
}

static bool memcg_kmem_test_and_clear_dead(struct mem_cgroup *memcg)
{
	return test_and_clear_bit(KMEM_ACCOUNTED_DEAD,
				  &memcg->kmem_account_flags);
}
397 398
#endif

399 400 401 402 403 404
/* Stuffs for move charges at task migration. */
/*
 * Types of charges to be moved. "move_charge_at_immitgrate" is treated as a
 * left-shifted bitmap of these types.
 */
enum move_type {
405
	MOVE_CHARGE_TYPE_ANON,	/* private anonymous page and swap of it */
406
	MOVE_CHARGE_TYPE_FILE,	/* file page(including tmpfs) and swap of it */
407 408 409
	NR_MOVE_TYPE,
};

410 411
/* "mc" and its members are protected by cgroup_mutex */
static struct move_charge_struct {
412
	spinlock_t	  lock; /* for from, to */
413 414 415
	struct mem_cgroup *from;
	struct mem_cgroup *to;
	unsigned long precharge;
416
	unsigned long moved_charge;
417
	unsigned long moved_swap;
418 419 420
	struct task_struct *moving_task;	/* a task moving charges */
	wait_queue_head_t waitq;		/* a waitq for other context */
} mc = {
421
	.lock = __SPIN_LOCK_UNLOCKED(mc.lock),
422 423
	.waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
};
424

D
Daisuke Nishimura 已提交
425 426 427 428 429 430
static bool move_anon(void)
{
	return test_bit(MOVE_CHARGE_TYPE_ANON,
					&mc.to->move_charge_at_immigrate);
}

431 432 433 434 435 436
static bool move_file(void)
{
	return test_bit(MOVE_CHARGE_TYPE_FILE,
					&mc.to->move_charge_at_immigrate);
}

437 438 439 440
/*
 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
 * limit reclaim to prevent infinite loops, if they ever occur.
 */
441 442
#define	MEM_CGROUP_MAX_RECLAIM_LOOPS		100
#define	MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS	2
443

444 445
enum charge_type {
	MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
446
	MEM_CGROUP_CHARGE_TYPE_ANON,
K
KAMEZAWA Hiroyuki 已提交
447
	MEM_CGROUP_CHARGE_TYPE_SWAPOUT,	/* for accounting swapcache */
K
KAMEZAWA Hiroyuki 已提交
448
	MEM_CGROUP_CHARGE_TYPE_DROP,	/* a page was unused swap cache */
449 450 451
	NR_CHARGE_TYPE,
};

452
/* for encoding cft->private value on file */
G
Glauber Costa 已提交
453 454 455 456
enum res_type {
	_MEM,
	_MEMSWAP,
	_OOM_TYPE,
457
	_KMEM,
G
Glauber Costa 已提交
458 459
};

460 461
#define MEMFILE_PRIVATE(x, val)	((x) << 16 | (val))
#define MEMFILE_TYPE(val)	((val) >> 16 & 0xffff)
462
#define MEMFILE_ATTR(val)	((val) & 0xffff)
K
KAMEZAWA Hiroyuki 已提交
463 464
/* Used for OOM nofiier */
#define OOM_CONTROL		(0)
465

466 467 468 469 470 471 472 473
/*
 * Reclaim flags for mem_cgroup_hierarchical_reclaim
 */
#define MEM_CGROUP_RECLAIM_NOSWAP_BIT	0x0
#define MEM_CGROUP_RECLAIM_NOSWAP	(1 << MEM_CGROUP_RECLAIM_NOSWAP_BIT)
#define MEM_CGROUP_RECLAIM_SHRINK_BIT	0x1
#define MEM_CGROUP_RECLAIM_SHRINK	(1 << MEM_CGROUP_RECLAIM_SHRINK_BIT)

474 475
static void mem_cgroup_get(struct mem_cgroup *memcg);
static void mem_cgroup_put(struct mem_cgroup *memcg);
G
Glauber Costa 已提交
476

477 478 479 480 481 482
static inline
struct mem_cgroup *mem_cgroup_from_css(struct cgroup_subsys_state *s)
{
	return container_of(s, struct mem_cgroup, css);
}

483 484 485 486 487
static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
{
	return (memcg == root_mem_cgroup);
}

G
Glauber Costa 已提交
488
/* Writing them here to avoid exposing memcg's inner layout */
M
Michal Hocko 已提交
489
#if defined(CONFIG_INET) && defined(CONFIG_MEMCG_KMEM)
G
Glauber Costa 已提交
490 491 492

void sock_update_memcg(struct sock *sk)
{
493
	if (mem_cgroup_sockets_enabled) {
G
Glauber Costa 已提交
494
		struct mem_cgroup *memcg;
495
		struct cg_proto *cg_proto;
G
Glauber Costa 已提交
496 497 498

		BUG_ON(!sk->sk_prot->proto_cgroup);

499 500 501 502 503 504 505 506 507 508 509 510 511 512
		/* Socket cloning can throw us here with sk_cgrp already
		 * filled. It won't however, necessarily happen from
		 * process context. So the test for root memcg given
		 * the current task's memcg won't help us in this case.
		 *
		 * Respecting the original socket's memcg is a better
		 * decision in this case.
		 */
		if (sk->sk_cgrp) {
			BUG_ON(mem_cgroup_is_root(sk->sk_cgrp->memcg));
			mem_cgroup_get(sk->sk_cgrp->memcg);
			return;
		}

G
Glauber Costa 已提交
513 514
		rcu_read_lock();
		memcg = mem_cgroup_from_task(current);
515 516
		cg_proto = sk->sk_prot->proto_cgroup(memcg);
		if (!mem_cgroup_is_root(memcg) && memcg_proto_active(cg_proto)) {
G
Glauber Costa 已提交
517
			mem_cgroup_get(memcg);
518
			sk->sk_cgrp = cg_proto;
G
Glauber Costa 已提交
519 520 521 522 523 524 525 526
		}
		rcu_read_unlock();
	}
}
EXPORT_SYMBOL(sock_update_memcg);

void sock_release_memcg(struct sock *sk)
{
527
	if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
G
Glauber Costa 已提交
528 529 530 531 532 533
		struct mem_cgroup *memcg;
		WARN_ON(!sk->sk_cgrp->memcg);
		memcg = sk->sk_cgrp->memcg;
		mem_cgroup_put(memcg);
	}
}
G
Glauber Costa 已提交
534 535 536 537 538 539 540 541 542

struct cg_proto *tcp_proto_cgroup(struct mem_cgroup *memcg)
{
	if (!memcg || mem_cgroup_is_root(memcg))
		return NULL;

	return &memcg->tcp_mem.cg_proto;
}
EXPORT_SYMBOL(tcp_proto_cgroup);
G
Glauber Costa 已提交
543

544 545 546 547 548 549 550 551 552 553 554 555
static void disarm_sock_keys(struct mem_cgroup *memcg)
{
	if (!memcg_proto_activated(&memcg->tcp_mem.cg_proto))
		return;
	static_key_slow_dec(&memcg_socket_limit_enabled);
}
#else
static void disarm_sock_keys(struct mem_cgroup *memcg)
{
}
#endif

556
#ifdef CONFIG_MEMCG_KMEM
557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590
/*
 * This will be the memcg's index in each cache's ->memcg_params->memcg_caches.
 * There are two main reasons for not using the css_id for this:
 *  1) this works better in sparse environments, where we have a lot of memcgs,
 *     but only a few kmem-limited. Or also, if we have, for instance, 200
 *     memcgs, and none but the 200th is kmem-limited, we'd have to have a
 *     200 entry array for that.
 *
 *  2) In order not to violate the cgroup API, we would like to do all memory
 *     allocation in ->create(). At that point, we haven't yet allocated the
 *     css_id. Having a separate index prevents us from messing with the cgroup
 *     core for this
 *
 * The current size of the caches array is stored in
 * memcg_limited_groups_array_size.  It will double each time we have to
 * increase it.
 */
static DEFINE_IDA(kmem_limited_groups);
static int memcg_limited_groups_array_size;
/*
 * MIN_SIZE is different than 1, because we would like to avoid going through
 * the alloc/free process all the time. In a small machine, 4 kmem-limited
 * cgroups is a reasonable guess. In the future, it could be a parameter or
 * tunable, but that is strictly not necessary.
 *
 * MAX_SIZE should be as large as the number of css_ids. Ideally, we could get
 * this constant directly from cgroup, but it is understandable that this is
 * better kept as an internal representation in cgroup.c. In any case, the
 * css_id space is not getting any smaller, and we don't have to necessarily
 * increase ours as well if it increases.
 */
#define MEMCG_CACHES_MIN_SIZE 4
#define MEMCG_CACHES_MAX_SIZE 65535

591 592 593 594 595 596
/*
 * A lot of the calls to the cache allocation functions are expected to be
 * inlined by the compiler. Since the calls to memcg_kmem_get_cache are
 * conditional to this static branch, we'll have to allow modules that does
 * kmem_cache_alloc and the such to see this symbol as well
 */
597
struct static_key memcg_kmem_enabled_key;
598
EXPORT_SYMBOL(memcg_kmem_enabled_key);
599 600 601

static void disarm_kmem_keys(struct mem_cgroup *memcg)
{
602
	if (memcg_kmem_is_active(memcg)) {
603
		static_key_slow_dec(&memcg_kmem_enabled_key);
604 605
		ida_simple_remove(&kmem_limited_groups, memcg->kmemcg_id);
	}
606 607 608 609 610
	/*
	 * This check can't live in kmem destruction function,
	 * since the charges will outlive the cgroup
	 */
	WARN_ON(res_counter_read_u64(&memcg->kmem, RES_USAGE) != 0);
611 612 613 614 615 616 617 618 619 620 621 622 623
}
#else
static void disarm_kmem_keys(struct mem_cgroup *memcg)
{
}
#endif /* CONFIG_MEMCG_KMEM */

static void disarm_static_keys(struct mem_cgroup *memcg)
{
	disarm_sock_keys(memcg);
	disarm_kmem_keys(memcg);
}

624
static void drain_all_stock_async(struct mem_cgroup *memcg);
625

626
static struct mem_cgroup_per_zone *
627
mem_cgroup_zoneinfo(struct mem_cgroup *memcg, int nid, int zid)
628
{
629
	return &memcg->info.nodeinfo[nid]->zoneinfo[zid];
630 631
}

632
struct cgroup_subsys_state *mem_cgroup_css(struct mem_cgroup *memcg)
633
{
634
	return &memcg->css;
635 636
}

637
static struct mem_cgroup_per_zone *
638
page_cgroup_zoneinfo(struct mem_cgroup *memcg, struct page *page)
639
{
640 641
	int nid = page_to_nid(page);
	int zid = page_zonenum(page);
642

643
	return mem_cgroup_zoneinfo(memcg, nid, zid);
644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661
}

static struct mem_cgroup_tree_per_zone *
soft_limit_tree_node_zone(int nid, int zid)
{
	return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
}

static struct mem_cgroup_tree_per_zone *
soft_limit_tree_from_page(struct page *page)
{
	int nid = page_to_nid(page);
	int zid = page_zonenum(page);

	return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
}

static void
662
__mem_cgroup_insert_exceeded(struct mem_cgroup *memcg,
663
				struct mem_cgroup_per_zone *mz,
664 665
				struct mem_cgroup_tree_per_zone *mctz,
				unsigned long long new_usage_in_excess)
666 667 668 669 670 671 672 673
{
	struct rb_node **p = &mctz->rb_root.rb_node;
	struct rb_node *parent = NULL;
	struct mem_cgroup_per_zone *mz_node;

	if (mz->on_tree)
		return;

674 675 676
	mz->usage_in_excess = new_usage_in_excess;
	if (!mz->usage_in_excess)
		return;
677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692
	while (*p) {
		parent = *p;
		mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
					tree_node);
		if (mz->usage_in_excess < mz_node->usage_in_excess)
			p = &(*p)->rb_left;
		/*
		 * We can't avoid mem cgroups that are over their soft
		 * limit by the same amount
		 */
		else if (mz->usage_in_excess >= mz_node->usage_in_excess)
			p = &(*p)->rb_right;
	}
	rb_link_node(&mz->tree_node, parent, p);
	rb_insert_color(&mz->tree_node, &mctz->rb_root);
	mz->on_tree = true;
693 694 695
}

static void
696
__mem_cgroup_remove_exceeded(struct mem_cgroup *memcg,
697 698 699 700 701 702 703 704 705
				struct mem_cgroup_per_zone *mz,
				struct mem_cgroup_tree_per_zone *mctz)
{
	if (!mz->on_tree)
		return;
	rb_erase(&mz->tree_node, &mctz->rb_root);
	mz->on_tree = false;
}

706
static void
707
mem_cgroup_remove_exceeded(struct mem_cgroup *memcg,
708 709 710 711
				struct mem_cgroup_per_zone *mz,
				struct mem_cgroup_tree_per_zone *mctz)
{
	spin_lock(&mctz->lock);
712
	__mem_cgroup_remove_exceeded(memcg, mz, mctz);
713 714 715 716
	spin_unlock(&mctz->lock);
}


717
static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
718
{
719
	unsigned long long excess;
720 721
	struct mem_cgroup_per_zone *mz;
	struct mem_cgroup_tree_per_zone *mctz;
722 723
	int nid = page_to_nid(page);
	int zid = page_zonenum(page);
724 725 726
	mctz = soft_limit_tree_from_page(page);

	/*
727 728
	 * Necessary to update all ancestors when hierarchy is used.
	 * because their event counter is not touched.
729
	 */
730 731 732
	for (; memcg; memcg = parent_mem_cgroup(memcg)) {
		mz = mem_cgroup_zoneinfo(memcg, nid, zid);
		excess = res_counter_soft_limit_excess(&memcg->res);
733 734 735 736
		/*
		 * We have to update the tree if mz is on RB-tree or
		 * mem is over its softlimit.
		 */
737
		if (excess || mz->on_tree) {
738 739 740
			spin_lock(&mctz->lock);
			/* if on-tree, remove it */
			if (mz->on_tree)
741
				__mem_cgroup_remove_exceeded(memcg, mz, mctz);
742
			/*
743 744
			 * Insert again. mz->usage_in_excess will be updated.
			 * If excess is 0, no tree ops.
745
			 */
746
			__mem_cgroup_insert_exceeded(memcg, mz, mctz, excess);
747 748
			spin_unlock(&mctz->lock);
		}
749 750 751
	}
}

752
static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
753 754 755 756 757
{
	int node, zone;
	struct mem_cgroup_per_zone *mz;
	struct mem_cgroup_tree_per_zone *mctz;

B
Bob Liu 已提交
758
	for_each_node(node) {
759
		for (zone = 0; zone < MAX_NR_ZONES; zone++) {
760
			mz = mem_cgroup_zoneinfo(memcg, node, zone);
761
			mctz = soft_limit_tree_node_zone(node, zone);
762
			mem_cgroup_remove_exceeded(memcg, mz, mctz);
763 764 765 766
		}
	}
}

767 768 769 770
static struct mem_cgroup_per_zone *
__mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
{
	struct rb_node *rightmost = NULL;
771
	struct mem_cgroup_per_zone *mz;
772 773

retry:
774
	mz = NULL;
775 776 777 778 779 780 781 782 783 784
	rightmost = rb_last(&mctz->rb_root);
	if (!rightmost)
		goto done;		/* Nothing to reclaim from */

	mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
	/*
	 * Remove the node now but someone else can add it back,
	 * we will to add it back at the end of reclaim to its correct
	 * position in the tree.
	 */
785 786 787
	__mem_cgroup_remove_exceeded(mz->memcg, mz, mctz);
	if (!res_counter_soft_limit_excess(&mz->memcg->res) ||
		!css_tryget(&mz->memcg->css))
788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803
		goto retry;
done:
	return mz;
}

static struct mem_cgroup_per_zone *
mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
{
	struct mem_cgroup_per_zone *mz;

	spin_lock(&mctz->lock);
	mz = __mem_cgroup_largest_soft_limit_node(mctz);
	spin_unlock(&mctz->lock);
	return mz;
}

804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822
/*
 * Implementation Note: reading percpu statistics for memcg.
 *
 * Both of vmstat[] and percpu_counter has threshold and do periodic
 * synchronization to implement "quick" read. There are trade-off between
 * reading cost and precision of value. Then, we may have a chance to implement
 * a periodic synchronizion of counter in memcg's counter.
 *
 * But this _read() function is used for user interface now. The user accounts
 * memory usage by memory cgroup and he _always_ requires exact value because
 * he accounts memory. Even if we provide quick-and-fuzzy read, we always
 * have to visit all online cpus and make sum. So, for now, unnecessary
 * synchronization is not implemented. (just implemented for cpu hotplug)
 *
 * If there are kernel internal actions which can make use of some not-exact
 * value, and reading all cpu value can be performance bottleneck in some
 * common workload, threashold and synchonization as vmstat[] should be
 * implemented.
 */
823
static long mem_cgroup_read_stat(struct mem_cgroup *memcg,
824
				 enum mem_cgroup_stat_index idx)
825
{
826
	long val = 0;
827 828
	int cpu;

829 830
	get_online_cpus();
	for_each_online_cpu(cpu)
831
		val += per_cpu(memcg->stat->count[idx], cpu);
832
#ifdef CONFIG_HOTPLUG_CPU
833 834 835
	spin_lock(&memcg->pcp_counter_lock);
	val += memcg->nocpu_base.count[idx];
	spin_unlock(&memcg->pcp_counter_lock);
836 837
#endif
	put_online_cpus();
838 839 840
	return val;
}

841
static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg,
842 843 844
					 bool charge)
{
	int val = (charge) ? 1 : -1;
845
	this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_SWAP], val);
846 847
}

848
static unsigned long mem_cgroup_read_events(struct mem_cgroup *memcg,
849 850 851 852 853 854
					    enum mem_cgroup_events_index idx)
{
	unsigned long val = 0;
	int cpu;

	for_each_online_cpu(cpu)
855
		val += per_cpu(memcg->stat->events[idx], cpu);
856
#ifdef CONFIG_HOTPLUG_CPU
857 858 859
	spin_lock(&memcg->pcp_counter_lock);
	val += memcg->nocpu_base.events[idx];
	spin_unlock(&memcg->pcp_counter_lock);
860 861 862 863
#endif
	return val;
}

864
static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
865
					 bool anon, int nr_pages)
866
{
867 868
	preempt_disable();

869 870 871 872 873 874
	/*
	 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
	 * counted as CACHE even if it's on ANON LRU.
	 */
	if (anon)
		__this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS],
875
				nr_pages);
876
	else
877
		__this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_CACHE],
878
				nr_pages);
879

880 881
	/* pagein of a big page is an event. So, ignore page size */
	if (nr_pages > 0)
882
		__this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGIN]);
883
	else {
884
		__this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]);
885 886
		nr_pages = -nr_pages; /* for event */
	}
887

888
	__this_cpu_add(memcg->stat->nr_page_events, nr_pages);
889

890
	preempt_enable();
891 892
}

893
unsigned long
894
mem_cgroup_get_lru_size(struct lruvec *lruvec, enum lru_list lru)
895 896 897 898 899 900 901 902
{
	struct mem_cgroup_per_zone *mz;

	mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
	return mz->lru_size[lru];
}

static unsigned long
903
mem_cgroup_zone_nr_lru_pages(struct mem_cgroup *memcg, int nid, int zid,
904
			unsigned int lru_mask)
905 906
{
	struct mem_cgroup_per_zone *mz;
H
Hugh Dickins 已提交
907
	enum lru_list lru;
908 909
	unsigned long ret = 0;

910
	mz = mem_cgroup_zoneinfo(memcg, nid, zid);
911

H
Hugh Dickins 已提交
912 913 914
	for_each_lru(lru) {
		if (BIT(lru) & lru_mask)
			ret += mz->lru_size[lru];
915 916 917 918 919
	}
	return ret;
}

static unsigned long
920
mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
921 922
			int nid, unsigned int lru_mask)
{
923 924 925
	u64 total = 0;
	int zid;

926
	for (zid = 0; zid < MAX_NR_ZONES; zid++)
927 928
		total += mem_cgroup_zone_nr_lru_pages(memcg,
						nid, zid, lru_mask);
929

930 931
	return total;
}
932

933
static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
934
			unsigned int lru_mask)
935
{
936
	int nid;
937 938
	u64 total = 0;

939
	for_each_node_state(nid, N_MEMORY)
940
		total += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask);
941
	return total;
942 943
}

944 945
static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
				       enum mem_cgroup_events_target target)
946 947 948
{
	unsigned long val, next;

949
	val = __this_cpu_read(memcg->stat->nr_page_events);
950
	next = __this_cpu_read(memcg->stat->targets[target]);
951
	/* from time_after() in jiffies.h */
952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967
	if ((long)next - (long)val < 0) {
		switch (target) {
		case MEM_CGROUP_TARGET_THRESH:
			next = val + THRESHOLDS_EVENTS_TARGET;
			break;
		case MEM_CGROUP_TARGET_SOFTLIMIT:
			next = val + SOFTLIMIT_EVENTS_TARGET;
			break;
		case MEM_CGROUP_TARGET_NUMAINFO:
			next = val + NUMAINFO_EVENTS_TARGET;
			break;
		default:
			break;
		}
		__this_cpu_write(memcg->stat->targets[target], next);
		return true;
968
	}
969
	return false;
970 971 972 973 974 975
}

/*
 * Check events in order.
 *
 */
976
static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
977
{
978
	preempt_disable();
979
	/* threshold event is triggered in finer grain than soft limit */
980 981
	if (unlikely(mem_cgroup_event_ratelimit(memcg,
						MEM_CGROUP_TARGET_THRESH))) {
982 983
		bool do_softlimit;
		bool do_numainfo __maybe_unused;
984 985 986 987 988 989 990 991 992

		do_softlimit = mem_cgroup_event_ratelimit(memcg,
						MEM_CGROUP_TARGET_SOFTLIMIT);
#if MAX_NUMNODES > 1
		do_numainfo = mem_cgroup_event_ratelimit(memcg,
						MEM_CGROUP_TARGET_NUMAINFO);
#endif
		preempt_enable();

993
		mem_cgroup_threshold(memcg);
994
		if (unlikely(do_softlimit))
995
			mem_cgroup_update_tree(memcg, page);
996
#if MAX_NUMNODES > 1
997
		if (unlikely(do_numainfo))
998
			atomic_inc(&memcg->numainfo_events);
999
#endif
1000 1001
	} else
		preempt_enable();
1002 1003
}

G
Glauber Costa 已提交
1004
struct mem_cgroup *mem_cgroup_from_cont(struct cgroup *cont)
B
Balbir Singh 已提交
1005
{
1006 1007
	return mem_cgroup_from_css(
		cgroup_subsys_state(cont, mem_cgroup_subsys_id));
B
Balbir Singh 已提交
1008 1009
}

1010
struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
1011
{
1012 1013 1014 1015 1016 1017 1018 1019
	/*
	 * mm_update_next_owner() may clear mm->owner to NULL
	 * if it races with swapoff, page migration, etc.
	 * So this can be called with p == NULL.
	 */
	if (unlikely(!p))
		return NULL;

1020
	return mem_cgroup_from_css(task_subsys_state(p, mem_cgroup_subsys_id));
1021 1022
}

1023
struct mem_cgroup *try_get_mem_cgroup_from_mm(struct mm_struct *mm)
1024
{
1025
	struct mem_cgroup *memcg = NULL;
1026 1027 1028

	if (!mm)
		return NULL;
1029 1030 1031 1032 1033 1034 1035
	/*
	 * Because we have no locks, mm->owner's may be being moved to other
	 * cgroup. We use css_tryget() here even if this looks
	 * pessimistic (rather than adding locks here).
	 */
	rcu_read_lock();
	do {
1036 1037
		memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
		if (unlikely(!memcg))
1038
			break;
1039
	} while (!css_tryget(&memcg->css));
1040
	rcu_read_unlock();
1041
	return memcg;
1042 1043
}

1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063
/**
 * mem_cgroup_iter - iterate over memory cgroup hierarchy
 * @root: hierarchy root
 * @prev: previously returned memcg, NULL on first invocation
 * @reclaim: cookie for shared reclaim walks, NULL for full walks
 *
 * Returns references to children of the hierarchy below @root, or
 * @root itself, or %NULL after a full round-trip.
 *
 * Caller must pass the return value in @prev on subsequent
 * invocations for reference counting, or use mem_cgroup_iter_break()
 * to cancel a hierarchy walk before the round-trip is complete.
 *
 * Reclaimers can specify a zone and a priority level in @reclaim to
 * divide up the memcgs in the hierarchy among all concurrent
 * reclaimers operating on the same zone and priority.
 */
struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
				   struct mem_cgroup *prev,
				   struct mem_cgroup_reclaim_cookie *reclaim)
K
KAMEZAWA Hiroyuki 已提交
1064
{
1065 1066
	struct mem_cgroup *memcg = NULL;
	int id = 0;
1067

1068 1069 1070
	if (mem_cgroup_disabled())
		return NULL;

1071 1072
	if (!root)
		root = root_mem_cgroup;
K
KAMEZAWA Hiroyuki 已提交
1073

1074 1075
	if (prev && !reclaim)
		id = css_id(&prev->css);
K
KAMEZAWA Hiroyuki 已提交
1076

1077 1078
	if (prev && prev != root)
		css_put(&prev->css);
K
KAMEZAWA Hiroyuki 已提交
1079

1080 1081 1082 1083 1084
	if (!root->use_hierarchy && root != root_mem_cgroup) {
		if (prev)
			return NULL;
		return root;
	}
K
KAMEZAWA Hiroyuki 已提交
1085

1086
	while (!memcg) {
1087
		struct mem_cgroup_reclaim_iter *uninitialized_var(iter);
1088
		struct cgroup_subsys_state *css;
1089

1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100
		if (reclaim) {
			int nid = zone_to_nid(reclaim->zone);
			int zid = zone_idx(reclaim->zone);
			struct mem_cgroup_per_zone *mz;

			mz = mem_cgroup_zoneinfo(root, nid, zid);
			iter = &mz->reclaim_iter[reclaim->priority];
			if (prev && reclaim->generation != iter->generation)
				return NULL;
			id = iter->position;
		}
K
KAMEZAWA Hiroyuki 已提交
1101

1102 1103 1104 1105
		rcu_read_lock();
		css = css_get_next(&mem_cgroup_subsys, id + 1, &root->css, &id);
		if (css) {
			if (css == &root->css || css_tryget(css))
1106
				memcg = mem_cgroup_from_css(css);
1107 1108
		} else
			id = 0;
K
KAMEZAWA Hiroyuki 已提交
1109 1110
		rcu_read_unlock();

1111 1112 1113 1114 1115 1116 1117
		if (reclaim) {
			iter->position = id;
			if (!css)
				iter->generation++;
			else if (!prev && memcg)
				reclaim->generation = iter->generation;
		}
1118 1119 1120 1121 1122

		if (prev && !css)
			return NULL;
	}
	return memcg;
K
KAMEZAWA Hiroyuki 已提交
1123
}
K
KAMEZAWA Hiroyuki 已提交
1124

1125 1126 1127 1128 1129 1130 1131
/**
 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
 * @root: hierarchy root
 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
 */
void mem_cgroup_iter_break(struct mem_cgroup *root,
			   struct mem_cgroup *prev)
1132 1133 1134 1135 1136 1137
{
	if (!root)
		root = root_mem_cgroup;
	if (prev && prev != root)
		css_put(&prev->css);
}
K
KAMEZAWA Hiroyuki 已提交
1138

1139 1140 1141 1142 1143 1144
/*
 * Iteration constructs for visiting all cgroups (under a tree).  If
 * loops are exited prematurely (break), mem_cgroup_iter_break() must
 * be used for reference counting.
 */
#define for_each_mem_cgroup_tree(iter, root)		\
1145
	for (iter = mem_cgroup_iter(root, NULL, NULL);	\
1146
	     iter != NULL;				\
1147
	     iter = mem_cgroup_iter(root, iter, NULL))
1148

1149
#define for_each_mem_cgroup(iter)			\
1150
	for (iter = mem_cgroup_iter(NULL, NULL, NULL);	\
1151
	     iter != NULL;				\
1152
	     iter = mem_cgroup_iter(NULL, iter, NULL))
K
KAMEZAWA Hiroyuki 已提交
1153

1154
void __mem_cgroup_count_vm_event(struct mm_struct *mm, enum vm_event_item idx)
1155
{
1156
	struct mem_cgroup *memcg;
1157 1158

	rcu_read_lock();
1159 1160
	memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
	if (unlikely(!memcg))
1161 1162 1163 1164
		goto out;

	switch (idx) {
	case PGFAULT:
1165 1166 1167 1168
		this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGFAULT]);
		break;
	case PGMAJFAULT:
		this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGMAJFAULT]);
1169 1170 1171 1172 1173 1174 1175
		break;
	default:
		BUG();
	}
out:
	rcu_read_unlock();
}
1176
EXPORT_SYMBOL(__mem_cgroup_count_vm_event);
1177

1178 1179 1180
/**
 * mem_cgroup_zone_lruvec - get the lru list vector for a zone and memcg
 * @zone: zone of the wanted lruvec
1181
 * @memcg: memcg of the wanted lruvec
1182 1183 1184 1185 1186 1187 1188 1189 1190
 *
 * Returns the lru list vector holding pages for the given @zone and
 * @mem.  This can be the global zone lruvec, if the memory controller
 * is disabled.
 */
struct lruvec *mem_cgroup_zone_lruvec(struct zone *zone,
				      struct mem_cgroup *memcg)
{
	struct mem_cgroup_per_zone *mz;
1191
	struct lruvec *lruvec;
1192

1193 1194 1195 1196
	if (mem_cgroup_disabled()) {
		lruvec = &zone->lruvec;
		goto out;
	}
1197 1198

	mz = mem_cgroup_zoneinfo(memcg, zone_to_nid(zone), zone_idx(zone));
1199 1200 1201 1202 1203 1204 1205 1206 1207 1208
	lruvec = &mz->lruvec;
out:
	/*
	 * Since a node can be onlined after the mem_cgroup was created,
	 * we have to be prepared to initialize lruvec->zone here;
	 * and if offlined then reonlined, we need to reinitialize it.
	 */
	if (unlikely(lruvec->zone != zone))
		lruvec->zone = zone;
	return lruvec;
1209 1210
}

K
KAMEZAWA Hiroyuki 已提交
1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223
/*
 * Following LRU functions are allowed to be used without PCG_LOCK.
 * Operations are called by routine of global LRU independently from memcg.
 * What we have to take care of here is validness of pc->mem_cgroup.
 *
 * Changes to pc->mem_cgroup happens when
 * 1. charge
 * 2. moving account
 * In typical case, "charge" is done before add-to-lru. Exception is SwapCache.
 * It is added to LRU before charge.
 * If PCG_USED bit is not set, page_cgroup is not added to this private LRU.
 * When moving account, the page is not on LRU. It's isolated.
 */
1224

1225
/**
1226
 * mem_cgroup_page_lruvec - return lruvec for adding an lru page
1227
 * @page: the page
1228
 * @zone: zone of the page
1229
 */
1230
struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct zone *zone)
K
KAMEZAWA Hiroyuki 已提交
1231 1232
{
	struct mem_cgroup_per_zone *mz;
1233 1234
	struct mem_cgroup *memcg;
	struct page_cgroup *pc;
1235
	struct lruvec *lruvec;
1236

1237 1238 1239 1240
	if (mem_cgroup_disabled()) {
		lruvec = &zone->lruvec;
		goto out;
	}
1241

K
KAMEZAWA Hiroyuki 已提交
1242
	pc = lookup_page_cgroup(page);
1243
	memcg = pc->mem_cgroup;
1244 1245

	/*
1246
	 * Surreptitiously switch any uncharged offlist page to root:
1247 1248 1249 1250 1251 1252 1253
	 * an uncharged page off lru does nothing to secure
	 * its former mem_cgroup from sudden removal.
	 *
	 * Our caller holds lru_lock, and PageCgroupUsed is updated
	 * under page_cgroup lock: between them, they make all uses
	 * of pc->mem_cgroup safe.
	 */
1254
	if (!PageLRU(page) && !PageCgroupUsed(pc) && memcg != root_mem_cgroup)
1255 1256
		pc->mem_cgroup = memcg = root_mem_cgroup;

1257
	mz = page_cgroup_zoneinfo(memcg, page);
1258 1259 1260 1261 1262 1263 1264 1265 1266 1267
	lruvec = &mz->lruvec;
out:
	/*
	 * Since a node can be onlined after the mem_cgroup was created,
	 * we have to be prepared to initialize lruvec->zone here;
	 * and if offlined then reonlined, we need to reinitialize it.
	 */
	if (unlikely(lruvec->zone != zone))
		lruvec->zone = zone;
	return lruvec;
K
KAMEZAWA Hiroyuki 已提交
1268
}
1269

1270
/**
1271 1272 1273 1274
 * mem_cgroup_update_lru_size - account for adding or removing an lru page
 * @lruvec: mem_cgroup per zone lru vector
 * @lru: index of lru list the page is sitting on
 * @nr_pages: positive when adding or negative when removing
1275
 *
1276 1277
 * This function must be called when a page is added to or removed from an
 * lru list.
1278
 */
1279 1280
void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
				int nr_pages)
1281 1282
{
	struct mem_cgroup_per_zone *mz;
1283
	unsigned long *lru_size;
1284 1285 1286 1287

	if (mem_cgroup_disabled())
		return;

1288 1289 1290 1291
	mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
	lru_size = mz->lru_size + lru;
	*lru_size += nr_pages;
	VM_BUG_ON((long)(*lru_size) < 0);
K
KAMEZAWA Hiroyuki 已提交
1292
}
1293

1294
/*
1295
 * Checks whether given mem is same or in the root_mem_cgroup's
1296 1297
 * hierarchy subtree
 */
1298 1299
bool __mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg,
				  struct mem_cgroup *memcg)
1300
{
1301 1302
	if (root_memcg == memcg)
		return true;
1303
	if (!root_memcg->use_hierarchy || !memcg)
1304
		return false;
1305 1306 1307 1308 1309 1310 1311 1312
	return css_is_ancestor(&memcg->css, &root_memcg->css);
}

static bool mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg,
				       struct mem_cgroup *memcg)
{
	bool ret;

1313
	rcu_read_lock();
1314
	ret = __mem_cgroup_same_or_subtree(root_memcg, memcg);
1315 1316
	rcu_read_unlock();
	return ret;
1317 1318
}

1319
int task_in_mem_cgroup(struct task_struct *task, const struct mem_cgroup *memcg)
1320 1321
{
	int ret;
1322
	struct mem_cgroup *curr = NULL;
1323
	struct task_struct *p;
1324

1325
	p = find_lock_task_mm(task);
1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340
	if (p) {
		curr = try_get_mem_cgroup_from_mm(p->mm);
		task_unlock(p);
	} else {
		/*
		 * All threads may have already detached their mm's, but the oom
		 * killer still needs to detect if they have already been oom
		 * killed to prevent needlessly killing additional tasks.
		 */
		task_lock(task);
		curr = mem_cgroup_from_task(task);
		if (curr)
			css_get(&curr->css);
		task_unlock(task);
	}
1341 1342
	if (!curr)
		return 0;
1343
	/*
1344
	 * We should check use_hierarchy of "memcg" not "curr". Because checking
1345
	 * use_hierarchy of "curr" here make this function true if hierarchy is
1346 1347
	 * enabled in "curr" and "curr" is a child of "memcg" in *cgroup*
	 * hierarchy(even if use_hierarchy is disabled in "memcg").
1348
	 */
1349
	ret = mem_cgroup_same_or_subtree(memcg, curr);
1350
	css_put(&curr->css);
1351 1352 1353
	return ret;
}

1354
int mem_cgroup_inactive_anon_is_low(struct lruvec *lruvec)
1355
{
1356
	unsigned long inactive_ratio;
1357
	unsigned long inactive;
1358
	unsigned long active;
1359
	unsigned long gb;
1360

1361 1362
	inactive = mem_cgroup_get_lru_size(lruvec, LRU_INACTIVE_ANON);
	active = mem_cgroup_get_lru_size(lruvec, LRU_ACTIVE_ANON);
1363

1364 1365 1366 1367 1368 1369
	gb = (inactive + active) >> (30 - PAGE_SHIFT);
	if (gb)
		inactive_ratio = int_sqrt(10 * gb);
	else
		inactive_ratio = 1;

1370
	return inactive * inactive_ratio < active;
1371 1372
}

1373
int mem_cgroup_inactive_file_is_low(struct lruvec *lruvec)
1374 1375 1376 1377
{
	unsigned long active;
	unsigned long inactive;

1378 1379
	inactive = mem_cgroup_get_lru_size(lruvec, LRU_INACTIVE_FILE);
	active = mem_cgroup_get_lru_size(lruvec, LRU_ACTIVE_FILE);
1380 1381 1382 1383

	return (active > inactive);
}

1384 1385 1386
#define mem_cgroup_from_res_counter(counter, member)	\
	container_of(counter, struct mem_cgroup, member)

1387
/**
1388
 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
W
Wanpeng Li 已提交
1389
 * @memcg: the memory cgroup
1390
 *
1391
 * Returns the maximum amount of memory @mem can be charged with, in
1392
 * pages.
1393
 */
1394
static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1395
{
1396 1397
	unsigned long long margin;

1398
	margin = res_counter_margin(&memcg->res);
1399
	if (do_swap_account)
1400
		margin = min(margin, res_counter_margin(&memcg->memsw));
1401
	return margin >> PAGE_SHIFT;
1402 1403
}

1404
int mem_cgroup_swappiness(struct mem_cgroup *memcg)
K
KOSAKI Motohiro 已提交
1405 1406 1407 1408 1409 1410 1411
{
	struct cgroup *cgrp = memcg->css.cgroup;

	/* root ? */
	if (cgrp->parent == NULL)
		return vm_swappiness;

1412
	return memcg->swappiness;
K
KOSAKI Motohiro 已提交
1413 1414
}

1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428
/*
 * memcg->moving_account is used for checking possibility that some thread is
 * calling move_account(). When a thread on CPU-A starts moving pages under
 * a memcg, other threads should check memcg->moving_account under
 * rcu_read_lock(), like this:
 *
 *         CPU-A                                    CPU-B
 *                                              rcu_read_lock()
 *         memcg->moving_account+1              if (memcg->mocing_account)
 *                                                   take heavy locks.
 *         synchronize_rcu()                    update something.
 *                                              rcu_read_unlock()
 *         start move here.
 */
1429 1430 1431 1432

/* for quick checking without looking up memcg */
atomic_t memcg_moving __read_mostly;

1433
static void mem_cgroup_start_move(struct mem_cgroup *memcg)
1434
{
1435
	atomic_inc(&memcg_moving);
1436
	atomic_inc(&memcg->moving_account);
1437 1438 1439
	synchronize_rcu();
}

1440
static void mem_cgroup_end_move(struct mem_cgroup *memcg)
1441
{
1442 1443 1444 1445
	/*
	 * Now, mem_cgroup_clear_mc() may call this function with NULL.
	 * We check NULL in callee rather than caller.
	 */
1446 1447
	if (memcg) {
		atomic_dec(&memcg_moving);
1448
		atomic_dec(&memcg->moving_account);
1449
	}
1450
}
1451

1452 1453 1454
/*
 * 2 routines for checking "mem" is under move_account() or not.
 *
1455 1456
 * mem_cgroup_stolen() -  checking whether a cgroup is mc.from or not. This
 *			  is used for avoiding races in accounting.  If true,
1457 1458 1459 1460 1461 1462 1463
 *			  pc->mem_cgroup may be overwritten.
 *
 * mem_cgroup_under_move() - checking a cgroup is mc.from or mc.to or
 *			  under hierarchy of moving cgroups. This is for
 *			  waiting at hith-memory prressure caused by "move".
 */

1464
static bool mem_cgroup_stolen(struct mem_cgroup *memcg)
1465 1466
{
	VM_BUG_ON(!rcu_read_lock_held());
1467
	return atomic_read(&memcg->moving_account) > 0;
1468
}
1469

1470
static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
1471
{
1472 1473
	struct mem_cgroup *from;
	struct mem_cgroup *to;
1474
	bool ret = false;
1475 1476 1477 1478 1479 1480 1481 1482 1483
	/*
	 * Unlike task_move routines, we access mc.to, mc.from not under
	 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
	 */
	spin_lock(&mc.lock);
	from = mc.from;
	to = mc.to;
	if (!from)
		goto unlock;
1484

1485 1486
	ret = mem_cgroup_same_or_subtree(memcg, from)
		|| mem_cgroup_same_or_subtree(memcg, to);
1487 1488
unlock:
	spin_unlock(&mc.lock);
1489 1490 1491
	return ret;
}

1492
static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1493 1494
{
	if (mc.moving_task && current != mc.moving_task) {
1495
		if (mem_cgroup_under_move(memcg)) {
1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507
			DEFINE_WAIT(wait);
			prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
			/* moving charge context might have finished. */
			if (mc.moving_task)
				schedule();
			finish_wait(&mc.waitq, &wait);
			return true;
		}
	}
	return false;
}

1508 1509 1510 1511
/*
 * Take this lock when
 * - a code tries to modify page's memcg while it's USED.
 * - a code tries to modify page state accounting in a memcg.
1512
 * see mem_cgroup_stolen(), too.
1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525
 */
static void move_lock_mem_cgroup(struct mem_cgroup *memcg,
				  unsigned long *flags)
{
	spin_lock_irqsave(&memcg->move_lock, *flags);
}

static void move_unlock_mem_cgroup(struct mem_cgroup *memcg,
				unsigned long *flags)
{
	spin_unlock_irqrestore(&memcg->move_lock, *flags);
}

1526
/**
1527
 * mem_cgroup_print_oom_info: Called from OOM with tasklist_lock held in read mode.
1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545
 * @memcg: The memory cgroup that went over limit
 * @p: Task that is going to be killed
 *
 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
 * enabled
 */
void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
{
	struct cgroup *task_cgrp;
	struct cgroup *mem_cgrp;
	/*
	 * Need a buffer in BSS, can't rely on allocations. The code relies
	 * on the assumption that OOM is serialized for memory controller.
	 * If this assumption is broken, revisit this code.
	 */
	static char memcg_name[PATH_MAX];
	int ret;

1546
	if (!memcg || !p)
1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589
		return;

	rcu_read_lock();

	mem_cgrp = memcg->css.cgroup;
	task_cgrp = task_cgroup(p, mem_cgroup_subsys_id);

	ret = cgroup_path(task_cgrp, memcg_name, PATH_MAX);
	if (ret < 0) {
		/*
		 * Unfortunately, we are unable to convert to a useful name
		 * But we'll still print out the usage information
		 */
		rcu_read_unlock();
		goto done;
	}
	rcu_read_unlock();

	printk(KERN_INFO "Task in %s killed", memcg_name);

	rcu_read_lock();
	ret = cgroup_path(mem_cgrp, memcg_name, PATH_MAX);
	if (ret < 0) {
		rcu_read_unlock();
		goto done;
	}
	rcu_read_unlock();

	/*
	 * Continues from above, so we don't need an KERN_ level
	 */
	printk(KERN_CONT " as a result of limit of %s\n", memcg_name);
done:

	printk(KERN_INFO "memory: usage %llukB, limit %llukB, failcnt %llu\n",
		res_counter_read_u64(&memcg->res, RES_USAGE) >> 10,
		res_counter_read_u64(&memcg->res, RES_LIMIT) >> 10,
		res_counter_read_u64(&memcg->res, RES_FAILCNT));
	printk(KERN_INFO "memory+swap: usage %llukB, limit %llukB, "
		"failcnt %llu\n",
		res_counter_read_u64(&memcg->memsw, RES_USAGE) >> 10,
		res_counter_read_u64(&memcg->memsw, RES_LIMIT) >> 10,
		res_counter_read_u64(&memcg->memsw, RES_FAILCNT));
1590 1591 1592 1593
	printk(KERN_INFO "kmem: usage %llukB, limit %llukB, failcnt %llu\n",
		res_counter_read_u64(&memcg->kmem, RES_USAGE) >> 10,
		res_counter_read_u64(&memcg->kmem, RES_LIMIT) >> 10,
		res_counter_read_u64(&memcg->kmem, RES_FAILCNT));
1594 1595
}

1596 1597 1598 1599
/*
 * This function returns the number of memcg under hierarchy tree. Returns
 * 1(self count) if no children.
 */
1600
static int mem_cgroup_count_children(struct mem_cgroup *memcg)
1601 1602
{
	int num = 0;
K
KAMEZAWA Hiroyuki 已提交
1603 1604
	struct mem_cgroup *iter;

1605
	for_each_mem_cgroup_tree(iter, memcg)
K
KAMEZAWA Hiroyuki 已提交
1606
		num++;
1607 1608 1609
	return num;
}

D
David Rientjes 已提交
1610 1611 1612
/*
 * Return the memory (and swap, if configured) limit for a memcg.
 */
1613
static u64 mem_cgroup_get_limit(struct mem_cgroup *memcg)
D
David Rientjes 已提交
1614 1615 1616
{
	u64 limit;

1617 1618
	limit = res_counter_read_u64(&memcg->res, RES_LIMIT);

D
David Rientjes 已提交
1619
	/*
1620
	 * Do not consider swap space if we cannot swap due to swappiness
D
David Rientjes 已提交
1621
	 */
1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635
	if (mem_cgroup_swappiness(memcg)) {
		u64 memsw;

		limit += total_swap_pages << PAGE_SHIFT;
		memsw = res_counter_read_u64(&memcg->memsw, RES_LIMIT);

		/*
		 * If memsw is finite and limits the amount of swap space
		 * available to this memcg, return that limit.
		 */
		limit = min(limit, memsw);
	}

	return limit;
D
David Rientjes 已提交
1636 1637
}

1638 1639
static void mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
				     int order)
1640 1641 1642 1643 1644 1645 1646
{
	struct mem_cgroup *iter;
	unsigned long chosen_points = 0;
	unsigned long totalpages;
	unsigned int points = 0;
	struct task_struct *chosen = NULL;

1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657
	/*
	 * If current has a pending SIGKILL, then automatically select it.  The
	 * goal is to allow it to allocate so that it may quickly exit and free
	 * its memory.
	 */
	if (fatal_signal_pending(current)) {
		set_thread_flag(TIF_MEMDIE);
		return;
	}

	check_panic_on_oom(CONSTRAINT_MEMCG, gfp_mask, order, NULL);
1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704
	totalpages = mem_cgroup_get_limit(memcg) >> PAGE_SHIFT ? : 1;
	for_each_mem_cgroup_tree(iter, memcg) {
		struct cgroup *cgroup = iter->css.cgroup;
		struct cgroup_iter it;
		struct task_struct *task;

		cgroup_iter_start(cgroup, &it);
		while ((task = cgroup_iter_next(cgroup, &it))) {
			switch (oom_scan_process_thread(task, totalpages, NULL,
							false)) {
			case OOM_SCAN_SELECT:
				if (chosen)
					put_task_struct(chosen);
				chosen = task;
				chosen_points = ULONG_MAX;
				get_task_struct(chosen);
				/* fall through */
			case OOM_SCAN_CONTINUE:
				continue;
			case OOM_SCAN_ABORT:
				cgroup_iter_end(cgroup, &it);
				mem_cgroup_iter_break(memcg, iter);
				if (chosen)
					put_task_struct(chosen);
				return;
			case OOM_SCAN_OK:
				break;
			};
			points = oom_badness(task, memcg, NULL, totalpages);
			if (points > chosen_points) {
				if (chosen)
					put_task_struct(chosen);
				chosen = task;
				chosen_points = points;
				get_task_struct(chosen);
			}
		}
		cgroup_iter_end(cgroup, &it);
	}

	if (!chosen)
		return;
	points = chosen_points * 1000 / totalpages;
	oom_kill_process(chosen, gfp_mask, order, points, totalpages, memcg,
			 NULL, "Memory cgroup out of memory");
}

1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740
static unsigned long mem_cgroup_reclaim(struct mem_cgroup *memcg,
					gfp_t gfp_mask,
					unsigned long flags)
{
	unsigned long total = 0;
	bool noswap = false;
	int loop;

	if (flags & MEM_CGROUP_RECLAIM_NOSWAP)
		noswap = true;
	if (!(flags & MEM_CGROUP_RECLAIM_SHRINK) && memcg->memsw_is_minimum)
		noswap = true;

	for (loop = 0; loop < MEM_CGROUP_MAX_RECLAIM_LOOPS; loop++) {
		if (loop)
			drain_all_stock_async(memcg);
		total += try_to_free_mem_cgroup_pages(memcg, gfp_mask, noswap);
		/*
		 * Allow limit shrinkers, which are triggered directly
		 * by userspace, to catch signals and stop reclaim
		 * after minimal progress, regardless of the margin.
		 */
		if (total && (flags & MEM_CGROUP_RECLAIM_SHRINK))
			break;
		if (mem_cgroup_margin(memcg))
			break;
		/*
		 * If nothing was reclaimed after two attempts, there
		 * may be no reclaimable pages in this hierarchy.
		 */
		if (loop && !total)
			break;
	}
	return total;
}

1741 1742
/**
 * test_mem_cgroup_node_reclaimable
W
Wanpeng Li 已提交
1743
 * @memcg: the target memcg
1744 1745 1746 1747 1748 1749 1750
 * @nid: the node ID to be checked.
 * @noswap : specify true here if the user wants flle only information.
 *
 * This function returns whether the specified memcg contains any
 * reclaimable pages on a node. Returns true if there are any reclaimable
 * pages in the node.
 */
1751
static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
1752 1753
		int nid, bool noswap)
{
1754
	if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE))
1755 1756 1757
		return true;
	if (noswap || !total_swap_pages)
		return false;
1758
	if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON))
1759 1760 1761 1762
		return true;
	return false;

}
1763 1764 1765 1766 1767 1768 1769 1770
#if MAX_NUMNODES > 1

/*
 * Always updating the nodemask is not very good - even if we have an empty
 * list or the wrong list here, we can start from some node and traverse all
 * nodes based on the zonelist. So update the list loosely once per 10 secs.
 *
 */
1771
static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
1772 1773
{
	int nid;
1774 1775 1776 1777
	/*
	 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
	 * pagein/pageout changes since the last update.
	 */
1778
	if (!atomic_read(&memcg->numainfo_events))
1779
		return;
1780
	if (atomic_inc_return(&memcg->numainfo_updating) > 1)
1781 1782 1783
		return;

	/* make a nodemask where this memcg uses memory from */
1784
	memcg->scan_nodes = node_states[N_MEMORY];
1785

1786
	for_each_node_mask(nid, node_states[N_MEMORY]) {
1787

1788 1789
		if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
			node_clear(nid, memcg->scan_nodes);
1790
	}
1791

1792 1793
	atomic_set(&memcg->numainfo_events, 0);
	atomic_set(&memcg->numainfo_updating, 0);
1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807
}

/*
 * Selecting a node where we start reclaim from. Because what we need is just
 * reducing usage counter, start from anywhere is O,K. Considering
 * memory reclaim from current node, there are pros. and cons.
 *
 * Freeing memory from current node means freeing memory from a node which
 * we'll use or we've used. So, it may make LRU bad. And if several threads
 * hit limits, it will see a contention on a node. But freeing from remote
 * node means more costs for memory reclaim because of memory latency.
 *
 * Now, we use round-robin. Better algorithm is welcomed.
 */
1808
int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1809 1810 1811
{
	int node;

1812 1813
	mem_cgroup_may_update_nodemask(memcg);
	node = memcg->last_scanned_node;
1814

1815
	node = next_node(node, memcg->scan_nodes);
1816
	if (node == MAX_NUMNODES)
1817
		node = first_node(memcg->scan_nodes);
1818 1819 1820 1821 1822 1823 1824 1825 1826
	/*
	 * We call this when we hit limit, not when pages are added to LRU.
	 * No LRU may hold pages because all pages are UNEVICTABLE or
	 * memcg is too small and all pages are not on LRU. In that case,
	 * we use curret node.
	 */
	if (unlikely(node == MAX_NUMNODES))
		node = numa_node_id();

1827
	memcg->last_scanned_node = node;
1828 1829 1830
	return node;
}

1831 1832 1833 1834 1835 1836
/*
 * Check all nodes whether it contains reclaimable pages or not.
 * For quick scan, we make use of scan_nodes. This will allow us to skip
 * unused nodes. But scan_nodes is lazily updated and may not cotain
 * enough new information. We need to do double check.
 */
1837
static bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap)
1838 1839 1840 1841 1842 1843 1844
{
	int nid;

	/*
	 * quick check...making use of scan_node.
	 * We can skip unused nodes.
	 */
1845 1846
	if (!nodes_empty(memcg->scan_nodes)) {
		for (nid = first_node(memcg->scan_nodes);
1847
		     nid < MAX_NUMNODES;
1848
		     nid = next_node(nid, memcg->scan_nodes)) {
1849

1850
			if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap))
1851 1852 1853 1854 1855 1856
				return true;
		}
	}
	/*
	 * Check rest of nodes.
	 */
1857
	for_each_node_state(nid, N_MEMORY) {
1858
		if (node_isset(nid, memcg->scan_nodes))
1859
			continue;
1860
		if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap))
1861 1862 1863 1864 1865
			return true;
	}
	return false;
}

1866
#else
1867
int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1868 1869 1870
{
	return 0;
}
1871

1872
static bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap)
1873
{
1874
	return test_mem_cgroup_node_reclaimable(memcg, 0, noswap);
1875
}
1876 1877
#endif

1878 1879 1880 1881
static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
				   struct zone *zone,
				   gfp_t gfp_mask,
				   unsigned long *total_scanned)
1882
{
1883
	struct mem_cgroup *victim = NULL;
1884
	int total = 0;
K
KAMEZAWA Hiroyuki 已提交
1885
	int loop = 0;
1886
	unsigned long excess;
1887
	unsigned long nr_scanned;
1888 1889 1890 1891
	struct mem_cgroup_reclaim_cookie reclaim = {
		.zone = zone,
		.priority = 0,
	};
1892

1893
	excess = res_counter_soft_limit_excess(&root_memcg->res) >> PAGE_SHIFT;
K
KAMEZAWA Hiroyuki 已提交
1894

1895
	while (1) {
1896
		victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
1897
		if (!victim) {
K
KAMEZAWA Hiroyuki 已提交
1898
			loop++;
1899 1900 1901 1902 1903 1904
			if (loop >= 2) {
				/*
				 * If we have not been able to reclaim
				 * anything, it might because there are
				 * no reclaimable pages under this hierarchy
				 */
1905
				if (!total)
1906 1907
					break;
				/*
L
Lucas De Marchi 已提交
1908
				 * We want to do more targeted reclaim.
1909 1910 1911 1912 1913
				 * excess >> 2 is not to excessive so as to
				 * reclaim too much, nor too less that we keep
				 * coming back to reclaim from this cgroup
				 */
				if (total >= (excess >> 2) ||
1914
					(loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
1915 1916
					break;
			}
1917
			continue;
1918
		}
1919
		if (!mem_cgroup_reclaimable(victim, false))
1920
			continue;
1921 1922 1923 1924
		total += mem_cgroup_shrink_node_zone(victim, gfp_mask, false,
						     zone, &nr_scanned);
		*total_scanned += nr_scanned;
		if (!res_counter_soft_limit_excess(&root_memcg->res))
1925
			break;
1926
	}
1927
	mem_cgroup_iter_break(root_memcg, victim);
K
KAMEZAWA Hiroyuki 已提交
1928
	return total;
1929 1930
}

K
KAMEZAWA Hiroyuki 已提交
1931 1932 1933
/*
 * Check OOM-Killer is already running under our hierarchy.
 * If someone is running, return false.
1934
 * Has to be called with memcg_oom_lock
K
KAMEZAWA Hiroyuki 已提交
1935
 */
1936
static bool mem_cgroup_oom_lock(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
1937
{
1938
	struct mem_cgroup *iter, *failed = NULL;
1939

1940
	for_each_mem_cgroup_tree(iter, memcg) {
1941
		if (iter->oom_lock) {
1942 1943 1944 1945 1946
			/*
			 * this subtree of our hierarchy is already locked
			 * so we cannot give a lock.
			 */
			failed = iter;
1947 1948
			mem_cgroup_iter_break(memcg, iter);
			break;
1949 1950
		} else
			iter->oom_lock = true;
K
KAMEZAWA Hiroyuki 已提交
1951
	}
K
KAMEZAWA Hiroyuki 已提交
1952

1953
	if (!failed)
1954
		return true;
1955 1956 1957 1958 1959

	/*
	 * OK, we failed to lock the whole subtree so we have to clean up
	 * what we set up to the failing subtree
	 */
1960
	for_each_mem_cgroup_tree(iter, memcg) {
1961
		if (iter == failed) {
1962 1963
			mem_cgroup_iter_break(memcg, iter);
			break;
1964 1965 1966
		}
		iter->oom_lock = false;
	}
1967
	return false;
1968
}
1969

1970
/*
1971
 * Has to be called with memcg_oom_lock
1972
 */
1973
static int mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
1974
{
K
KAMEZAWA Hiroyuki 已提交
1975 1976
	struct mem_cgroup *iter;

1977
	for_each_mem_cgroup_tree(iter, memcg)
1978 1979 1980 1981
		iter->oom_lock = false;
	return 0;
}

1982
static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
1983 1984 1985
{
	struct mem_cgroup *iter;

1986
	for_each_mem_cgroup_tree(iter, memcg)
1987 1988 1989
		atomic_inc(&iter->under_oom);
}

1990
static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
1991 1992 1993
{
	struct mem_cgroup *iter;

K
KAMEZAWA Hiroyuki 已提交
1994 1995 1996 1997 1998
	/*
	 * When a new child is created while the hierarchy is under oom,
	 * mem_cgroup_oom_lock() may not be called. We have to use
	 * atomic_add_unless() here.
	 */
1999
	for_each_mem_cgroup_tree(iter, memcg)
2000
		atomic_add_unless(&iter->under_oom, -1, 0);
2001 2002
}

2003
static DEFINE_SPINLOCK(memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
2004 2005
static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);

K
KAMEZAWA Hiroyuki 已提交
2006
struct oom_wait_info {
2007
	struct mem_cgroup *memcg;
K
KAMEZAWA Hiroyuki 已提交
2008 2009 2010 2011 2012 2013
	wait_queue_t	wait;
};

static int memcg_oom_wake_function(wait_queue_t *wait,
	unsigned mode, int sync, void *arg)
{
2014 2015
	struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
	struct mem_cgroup *oom_wait_memcg;
K
KAMEZAWA Hiroyuki 已提交
2016 2017 2018
	struct oom_wait_info *oom_wait_info;

	oom_wait_info = container_of(wait, struct oom_wait_info, wait);
2019
	oom_wait_memcg = oom_wait_info->memcg;
K
KAMEZAWA Hiroyuki 已提交
2020 2021

	/*
2022
	 * Both of oom_wait_info->memcg and wake_memcg are stable under us.
K
KAMEZAWA Hiroyuki 已提交
2023 2024
	 * Then we can use css_is_ancestor without taking care of RCU.
	 */
2025 2026
	if (!mem_cgroup_same_or_subtree(oom_wait_memcg, wake_memcg)
		&& !mem_cgroup_same_or_subtree(wake_memcg, oom_wait_memcg))
K
KAMEZAWA Hiroyuki 已提交
2027 2028 2029 2030
		return 0;
	return autoremove_wake_function(wait, mode, sync, arg);
}

2031
static void memcg_wakeup_oom(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
2032
{
2033 2034
	/* for filtering, pass "memcg" as argument. */
	__wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
K
KAMEZAWA Hiroyuki 已提交
2035 2036
}

2037
static void memcg_oom_recover(struct mem_cgroup *memcg)
2038
{
2039 2040
	if (memcg && atomic_read(&memcg->under_oom))
		memcg_wakeup_oom(memcg);
2041 2042
}

K
KAMEZAWA Hiroyuki 已提交
2043 2044 2045
/*
 * try to call OOM killer. returns false if we should exit memory-reclaim loop.
 */
2046 2047
static bool mem_cgroup_handle_oom(struct mem_cgroup *memcg, gfp_t mask,
				  int order)
2048
{
K
KAMEZAWA Hiroyuki 已提交
2049
	struct oom_wait_info owait;
2050
	bool locked, need_to_kill;
K
KAMEZAWA Hiroyuki 已提交
2051

2052
	owait.memcg = memcg;
K
KAMEZAWA Hiroyuki 已提交
2053 2054 2055 2056
	owait.wait.flags = 0;
	owait.wait.func = memcg_oom_wake_function;
	owait.wait.private = current;
	INIT_LIST_HEAD(&owait.wait.task_list);
2057
	need_to_kill = true;
2058
	mem_cgroup_mark_under_oom(memcg);
2059

2060
	/* At first, try to OOM lock hierarchy under memcg.*/
2061
	spin_lock(&memcg_oom_lock);
2062
	locked = mem_cgroup_oom_lock(memcg);
K
KAMEZAWA Hiroyuki 已提交
2063 2064 2065 2066 2067
	/*
	 * Even if signal_pending(), we can't quit charge() loop without
	 * accounting. So, UNINTERRUPTIBLE is appropriate. But SIGKILL
	 * under OOM is always welcomed, use TASK_KILLABLE here.
	 */
2068
	prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
2069
	if (!locked || memcg->oom_kill_disable)
2070 2071
		need_to_kill = false;
	if (locked)
2072
		mem_cgroup_oom_notify(memcg);
2073
	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
2074

2075 2076
	if (need_to_kill) {
		finish_wait(&memcg_oom_waitq, &owait.wait);
2077
		mem_cgroup_out_of_memory(memcg, mask, order);
2078
	} else {
K
KAMEZAWA Hiroyuki 已提交
2079
		schedule();
K
KAMEZAWA Hiroyuki 已提交
2080
		finish_wait(&memcg_oom_waitq, &owait.wait);
K
KAMEZAWA Hiroyuki 已提交
2081
	}
2082
	spin_lock(&memcg_oom_lock);
2083
	if (locked)
2084 2085
		mem_cgroup_oom_unlock(memcg);
	memcg_wakeup_oom(memcg);
2086
	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
2087

2088
	mem_cgroup_unmark_under_oom(memcg);
2089

K
KAMEZAWA Hiroyuki 已提交
2090 2091 2092
	if (test_thread_flag(TIF_MEMDIE) || fatal_signal_pending(current))
		return false;
	/* Give chance to dying process */
2093
	schedule_timeout_uninterruptible(1);
K
KAMEZAWA Hiroyuki 已提交
2094
	return true;
2095 2096
}

2097 2098 2099
/*
 * Currently used to update mapped file statistics, but the routine can be
 * generalized to update other statistics as well.
2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116
 *
 * Notes: Race condition
 *
 * We usually use page_cgroup_lock() for accessing page_cgroup member but
 * it tends to be costly. But considering some conditions, we doesn't need
 * to do so _always_.
 *
 * Considering "charge", lock_page_cgroup() is not required because all
 * file-stat operations happen after a page is attached to radix-tree. There
 * are no race with "charge".
 *
 * Considering "uncharge", we know that memcg doesn't clear pc->mem_cgroup
 * at "uncharge" intentionally. So, we always see valid pc->mem_cgroup even
 * if there are race with "uncharge". Statistics itself is properly handled
 * by flags.
 *
 * Considering "move", this is an only case we see a race. To make the race
2117 2118
 * small, we check mm->moving_account and detect there are possibility of race
 * If there is, we take a lock.
2119
 */
2120

2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133
void __mem_cgroup_begin_update_page_stat(struct page *page,
				bool *locked, unsigned long *flags)
{
	struct mem_cgroup *memcg;
	struct page_cgroup *pc;

	pc = lookup_page_cgroup(page);
again:
	memcg = pc->mem_cgroup;
	if (unlikely(!memcg || !PageCgroupUsed(pc)))
		return;
	/*
	 * If this memory cgroup is not under account moving, we don't
2134
	 * need to take move_lock_mem_cgroup(). Because we already hold
2135
	 * rcu_read_lock(), any calls to move_account will be delayed until
2136
	 * rcu_read_unlock() if mem_cgroup_stolen() == true.
2137
	 */
2138
	if (!mem_cgroup_stolen(memcg))
2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155
		return;

	move_lock_mem_cgroup(memcg, flags);
	if (memcg != pc->mem_cgroup || !PageCgroupUsed(pc)) {
		move_unlock_mem_cgroup(memcg, flags);
		goto again;
	}
	*locked = true;
}

void __mem_cgroup_end_update_page_stat(struct page *page, unsigned long *flags)
{
	struct page_cgroup *pc = lookup_page_cgroup(page);

	/*
	 * It's guaranteed that pc->mem_cgroup never changes while
	 * lock is held because a routine modifies pc->mem_cgroup
2156
	 * should take move_lock_mem_cgroup().
2157 2158 2159 2160
	 */
	move_unlock_mem_cgroup(pc->mem_cgroup, flags);
}

2161 2162
void mem_cgroup_update_page_stat(struct page *page,
				 enum mem_cgroup_page_stat_item idx, int val)
2163
{
2164
	struct mem_cgroup *memcg;
2165
	struct page_cgroup *pc = lookup_page_cgroup(page);
2166
	unsigned long uninitialized_var(flags);
2167

2168
	if (mem_cgroup_disabled())
2169
		return;
2170

2171 2172
	memcg = pc->mem_cgroup;
	if (unlikely(!memcg || !PageCgroupUsed(pc)))
2173
		return;
2174 2175

	switch (idx) {
2176 2177
	case MEMCG_NR_FILE_MAPPED:
		idx = MEM_CGROUP_STAT_FILE_MAPPED;
2178 2179 2180
		break;
	default:
		BUG();
2181
	}
2182

2183
	this_cpu_add(memcg->stat->count[idx], val);
2184
}
2185

2186 2187 2188 2189
/*
 * size of first charge trial. "32" comes from vmscan.c's magic value.
 * TODO: maybe necessary to use big numbers in big irons.
 */
2190
#define CHARGE_BATCH	32U
2191 2192
struct memcg_stock_pcp {
	struct mem_cgroup *cached; /* this never be root cgroup */
2193
	unsigned int nr_pages;
2194
	struct work_struct work;
2195
	unsigned long flags;
2196
#define FLUSHING_CACHED_CHARGE	0
2197 2198
};
static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
2199
static DEFINE_MUTEX(percpu_charge_mutex);
2200

2201 2202 2203 2204 2205 2206 2207 2208 2209 2210
/**
 * consume_stock: Try to consume stocked charge on this cpu.
 * @memcg: memcg to consume from.
 * @nr_pages: how many pages to charge.
 *
 * The charges will only happen if @memcg matches the current cpu's memcg
 * stock, and at least @nr_pages are available in that stock.  Failure to
 * service an allocation will refill the stock.
 *
 * returns true if successful, false otherwise.
2211
 */
2212
static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2213 2214 2215 2216
{
	struct memcg_stock_pcp *stock;
	bool ret = true;

2217 2218 2219
	if (nr_pages > CHARGE_BATCH)
		return false;

2220
	stock = &get_cpu_var(memcg_stock);
2221 2222
	if (memcg == stock->cached && stock->nr_pages >= nr_pages)
		stock->nr_pages -= nr_pages;
2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235
	else /* need to call res_counter_charge */
		ret = false;
	put_cpu_var(memcg_stock);
	return ret;
}

/*
 * Returns stocks cached in percpu to res_counter and reset cached information.
 */
static void drain_stock(struct memcg_stock_pcp *stock)
{
	struct mem_cgroup *old = stock->cached;

2236 2237 2238 2239
	if (stock->nr_pages) {
		unsigned long bytes = stock->nr_pages * PAGE_SIZE;

		res_counter_uncharge(&old->res, bytes);
2240
		if (do_swap_account)
2241 2242
			res_counter_uncharge(&old->memsw, bytes);
		stock->nr_pages = 0;
2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254
	}
	stock->cached = NULL;
}

/*
 * This must be called under preempt disabled or must be called by
 * a thread which is pinned to local cpu.
 */
static void drain_local_stock(struct work_struct *dummy)
{
	struct memcg_stock_pcp *stock = &__get_cpu_var(memcg_stock);
	drain_stock(stock);
2255
	clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
2256 2257 2258 2259
}

/*
 * Cache charges(val) which is from res_counter, to local per_cpu area.
2260
 * This will be consumed by consume_stock() function, later.
2261
 */
2262
static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2263 2264 2265
{
	struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);

2266
	if (stock->cached != memcg) { /* reset if necessary */
2267
		drain_stock(stock);
2268
		stock->cached = memcg;
2269
	}
2270
	stock->nr_pages += nr_pages;
2271 2272 2273 2274
	put_cpu_var(memcg_stock);
}

/*
2275
 * Drains all per-CPU charge caches for given root_memcg resp. subtree
2276 2277
 * of the hierarchy under it. sync flag says whether we should block
 * until the work is done.
2278
 */
2279
static void drain_all_stock(struct mem_cgroup *root_memcg, bool sync)
2280
{
2281
	int cpu, curcpu;
2282

2283 2284
	/* Notify other cpus that system-wide "drain" is running */
	get_online_cpus();
2285
	curcpu = get_cpu();
2286 2287
	for_each_online_cpu(cpu) {
		struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2288
		struct mem_cgroup *memcg;
2289

2290 2291
		memcg = stock->cached;
		if (!memcg || !stock->nr_pages)
2292
			continue;
2293
		if (!mem_cgroup_same_or_subtree(root_memcg, memcg))
2294
			continue;
2295 2296 2297 2298 2299 2300
		if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
			if (cpu == curcpu)
				drain_local_stock(&stock->work);
			else
				schedule_work_on(cpu, &stock->work);
		}
2301
	}
2302
	put_cpu();
2303 2304 2305 2306 2307 2308

	if (!sync)
		goto out;

	for_each_online_cpu(cpu) {
		struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2309
		if (test_bit(FLUSHING_CACHED_CHARGE, &stock->flags))
2310 2311 2312
			flush_work(&stock->work);
	}
out:
2313
 	put_online_cpus();
2314 2315 2316 2317 2318 2319 2320 2321
}

/*
 * Tries to drain stocked charges in other cpus. This function is asynchronous
 * and just put a work per cpu for draining localy on each cpu. Caller can
 * expects some charges will be back to res_counter later but cannot wait for
 * it.
 */
2322
static void drain_all_stock_async(struct mem_cgroup *root_memcg)
2323
{
2324 2325 2326 2327 2328
	/*
	 * If someone calls draining, avoid adding more kworker runs.
	 */
	if (!mutex_trylock(&percpu_charge_mutex))
		return;
2329
	drain_all_stock(root_memcg, false);
2330
	mutex_unlock(&percpu_charge_mutex);
2331 2332 2333
}

/* This is a synchronous drain interface. */
2334
static void drain_all_stock_sync(struct mem_cgroup *root_memcg)
2335 2336
{
	/* called when force_empty is called */
2337
	mutex_lock(&percpu_charge_mutex);
2338
	drain_all_stock(root_memcg, true);
2339
	mutex_unlock(&percpu_charge_mutex);
2340 2341
}

2342 2343 2344 2345
/*
 * This function drains percpu counter value from DEAD cpu and
 * move it to local cpu. Note that this function can be preempted.
 */
2346
static void mem_cgroup_drain_pcp_counter(struct mem_cgroup *memcg, int cpu)
2347 2348 2349
{
	int i;

2350
	spin_lock(&memcg->pcp_counter_lock);
2351
	for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
2352
		long x = per_cpu(memcg->stat->count[i], cpu);
2353

2354 2355
		per_cpu(memcg->stat->count[i], cpu) = 0;
		memcg->nocpu_base.count[i] += x;
2356
	}
2357
	for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
2358
		unsigned long x = per_cpu(memcg->stat->events[i], cpu);
2359

2360 2361
		per_cpu(memcg->stat->events[i], cpu) = 0;
		memcg->nocpu_base.events[i] += x;
2362
	}
2363
	spin_unlock(&memcg->pcp_counter_lock);
2364 2365 2366
}

static int __cpuinit memcg_cpu_hotplug_callback(struct notifier_block *nb,
2367 2368 2369 2370 2371
					unsigned long action,
					void *hcpu)
{
	int cpu = (unsigned long)hcpu;
	struct memcg_stock_pcp *stock;
2372
	struct mem_cgroup *iter;
2373

2374
	if (action == CPU_ONLINE)
2375 2376
		return NOTIFY_OK;

2377
	if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
2378
		return NOTIFY_OK;
2379

2380
	for_each_mem_cgroup(iter)
2381 2382
		mem_cgroup_drain_pcp_counter(iter, cpu);

2383 2384 2385 2386 2387
	stock = &per_cpu(memcg_stock, cpu);
	drain_stock(stock);
	return NOTIFY_OK;
}

2388 2389 2390 2391 2392 2393 2394 2395 2396 2397

/* See __mem_cgroup_try_charge() for details */
enum {
	CHARGE_OK,		/* success */
	CHARGE_RETRY,		/* need to retry but retry is not bad */
	CHARGE_NOMEM,		/* we can't do more. return -ENOMEM */
	CHARGE_WOULDBLOCK,	/* GFP_WAIT wasn't set and no enough res. */
	CHARGE_OOM_DIE,		/* the current is killed because of OOM */
};

2398
static int mem_cgroup_do_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
2399 2400
				unsigned int nr_pages, unsigned int min_pages,
				bool oom_check)
2401
{
2402
	unsigned long csize = nr_pages * PAGE_SIZE;
2403 2404 2405 2406 2407
	struct mem_cgroup *mem_over_limit;
	struct res_counter *fail_res;
	unsigned long flags = 0;
	int ret;

2408
	ret = res_counter_charge(&memcg->res, csize, &fail_res);
2409 2410 2411 2412

	if (likely(!ret)) {
		if (!do_swap_account)
			return CHARGE_OK;
2413
		ret = res_counter_charge(&memcg->memsw, csize, &fail_res);
2414 2415 2416
		if (likely(!ret))
			return CHARGE_OK;

2417
		res_counter_uncharge(&memcg->res, csize);
2418 2419 2420 2421
		mem_over_limit = mem_cgroup_from_res_counter(fail_res, memsw);
		flags |= MEM_CGROUP_RECLAIM_NOSWAP;
	} else
		mem_over_limit = mem_cgroup_from_res_counter(fail_res, res);
2422 2423 2424 2425
	/*
	 * Never reclaim on behalf of optional batching, retry with a
	 * single page instead.
	 */
2426
	if (nr_pages > min_pages)
2427 2428 2429 2430 2431
		return CHARGE_RETRY;

	if (!(gfp_mask & __GFP_WAIT))
		return CHARGE_WOULDBLOCK;

2432 2433 2434
	if (gfp_mask & __GFP_NORETRY)
		return CHARGE_NOMEM;

2435
	ret = mem_cgroup_reclaim(mem_over_limit, gfp_mask, flags);
2436
	if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
2437
		return CHARGE_RETRY;
2438
	/*
2439 2440 2441 2442 2443 2444 2445
	 * Even though the limit is exceeded at this point, reclaim
	 * may have been able to free some pages.  Retry the charge
	 * before killing the task.
	 *
	 * Only for regular pages, though: huge pages are rather
	 * unlikely to succeed so close to the limit, and we fall back
	 * to regular pages anyway in case of failure.
2446
	 */
2447
	if (nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER) && ret)
2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460
		return CHARGE_RETRY;

	/*
	 * At task move, charge accounts can be doubly counted. So, it's
	 * better to wait until the end of task_move if something is going on.
	 */
	if (mem_cgroup_wait_acct_move(mem_over_limit))
		return CHARGE_RETRY;

	/* If we don't need to call oom-killer at el, return immediately */
	if (!oom_check)
		return CHARGE_NOMEM;
	/* check OOM */
2461
	if (!mem_cgroup_handle_oom(mem_over_limit, gfp_mask, get_order(csize)))
2462 2463 2464 2465 2466
		return CHARGE_OOM_DIE;

	return CHARGE_RETRY;
}

2467
/*
2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486
 * __mem_cgroup_try_charge() does
 * 1. detect memcg to be charged against from passed *mm and *ptr,
 * 2. update res_counter
 * 3. call memory reclaim if necessary.
 *
 * In some special case, if the task is fatal, fatal_signal_pending() or
 * has TIF_MEMDIE, this function returns -EINTR while writing root_mem_cgroup
 * to *ptr. There are two reasons for this. 1: fatal threads should quit as soon
 * as possible without any hazards. 2: all pages should have a valid
 * pc->mem_cgroup. If mm is NULL and the caller doesn't pass a valid memcg
 * pointer, that is treated as a charge to root_mem_cgroup.
 *
 * So __mem_cgroup_try_charge() will return
 *  0       ...  on success, filling *ptr with a valid memcg pointer.
 *  -ENOMEM ...  charge failure because of resource limits.
 *  -EINTR  ...  if thread is fatal. *ptr is filled with root_mem_cgroup.
 *
 * Unlike the exported interface, an "oom" parameter is added. if oom==true,
 * the oom-killer can be invoked.
2487
 */
2488
static int __mem_cgroup_try_charge(struct mm_struct *mm,
A
Andrea Arcangeli 已提交
2489
				   gfp_t gfp_mask,
2490
				   unsigned int nr_pages,
2491
				   struct mem_cgroup **ptr,
2492
				   bool oom)
2493
{
2494
	unsigned int batch = max(CHARGE_BATCH, nr_pages);
2495
	int nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
2496
	struct mem_cgroup *memcg = NULL;
2497
	int ret;
2498

K
KAMEZAWA Hiroyuki 已提交
2499 2500 2501 2502 2503 2504 2505 2506
	/*
	 * Unlike gloval-vm's OOM-kill, we're not in memory shortage
	 * in system level. So, allow to go ahead dying process in addition to
	 * MEMDIE process.
	 */
	if (unlikely(test_thread_flag(TIF_MEMDIE)
		     || fatal_signal_pending(current)))
		goto bypass;
2507

2508
	/*
2509 2510
	 * We always charge the cgroup the mm_struct belongs to.
	 * The mm_struct's mem_cgroup changes on task migration if the
2511
	 * thread group leader migrates. It's possible that mm is not
2512
	 * set, if so charge the root memcg (happens for pagecache usage).
2513
	 */
2514
	if (!*ptr && !mm)
2515
		*ptr = root_mem_cgroup;
K
KAMEZAWA Hiroyuki 已提交
2516
again:
2517 2518 2519
	if (*ptr) { /* css should be a valid one */
		memcg = *ptr;
		if (mem_cgroup_is_root(memcg))
K
KAMEZAWA Hiroyuki 已提交
2520
			goto done;
2521
		if (consume_stock(memcg, nr_pages))
K
KAMEZAWA Hiroyuki 已提交
2522
			goto done;
2523
		css_get(&memcg->css);
2524
	} else {
K
KAMEZAWA Hiroyuki 已提交
2525
		struct task_struct *p;
2526

K
KAMEZAWA Hiroyuki 已提交
2527 2528 2529
		rcu_read_lock();
		p = rcu_dereference(mm->owner);
		/*
2530
		 * Because we don't have task_lock(), "p" can exit.
2531
		 * In that case, "memcg" can point to root or p can be NULL with
2532 2533 2534 2535 2536 2537
		 * race with swapoff. Then, we have small risk of mis-accouning.
		 * But such kind of mis-account by race always happens because
		 * we don't have cgroup_mutex(). It's overkill and we allo that
		 * small race, here.
		 * (*) swapoff at el will charge against mm-struct not against
		 * task-struct. So, mm->owner can be NULL.
K
KAMEZAWA Hiroyuki 已提交
2538
		 */
2539
		memcg = mem_cgroup_from_task(p);
2540 2541 2542
		if (!memcg)
			memcg = root_mem_cgroup;
		if (mem_cgroup_is_root(memcg)) {
K
KAMEZAWA Hiroyuki 已提交
2543 2544 2545
			rcu_read_unlock();
			goto done;
		}
2546
		if (consume_stock(memcg, nr_pages)) {
K
KAMEZAWA Hiroyuki 已提交
2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558
			/*
			 * It seems dagerous to access memcg without css_get().
			 * But considering how consume_stok works, it's not
			 * necessary. If consume_stock success, some charges
			 * from this memcg are cached on this cpu. So, we
			 * don't need to call css_get()/css_tryget() before
			 * calling consume_stock().
			 */
			rcu_read_unlock();
			goto done;
		}
		/* after here, we may be blocked. we need to get refcnt */
2559
		if (!css_tryget(&memcg->css)) {
K
KAMEZAWA Hiroyuki 已提交
2560 2561 2562 2563 2564
			rcu_read_unlock();
			goto again;
		}
		rcu_read_unlock();
	}
2565

2566 2567
	do {
		bool oom_check;
2568

2569
		/* If killed, bypass charge */
K
KAMEZAWA Hiroyuki 已提交
2570
		if (fatal_signal_pending(current)) {
2571
			css_put(&memcg->css);
2572
			goto bypass;
K
KAMEZAWA Hiroyuki 已提交
2573
		}
2574

2575 2576 2577 2578
		oom_check = false;
		if (oom && !nr_oom_retries) {
			oom_check = true;
			nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
2579
		}
2580

2581 2582
		ret = mem_cgroup_do_charge(memcg, gfp_mask, batch, nr_pages,
		    oom_check);
2583 2584 2585 2586
		switch (ret) {
		case CHARGE_OK:
			break;
		case CHARGE_RETRY: /* not in OOM situation but retry */
2587
			batch = nr_pages;
2588 2589
			css_put(&memcg->css);
			memcg = NULL;
K
KAMEZAWA Hiroyuki 已提交
2590
			goto again;
2591
		case CHARGE_WOULDBLOCK: /* !__GFP_WAIT */
2592
			css_put(&memcg->css);
2593 2594
			goto nomem;
		case CHARGE_NOMEM: /* OOM routine works */
K
KAMEZAWA Hiroyuki 已提交
2595
			if (!oom) {
2596
				css_put(&memcg->css);
K
KAMEZAWA Hiroyuki 已提交
2597
				goto nomem;
K
KAMEZAWA Hiroyuki 已提交
2598
			}
2599 2600 2601 2602
			/* If oom, we never return -ENOMEM */
			nr_oom_retries--;
			break;
		case CHARGE_OOM_DIE: /* Killed by OOM Killer */
2603
			css_put(&memcg->css);
K
KAMEZAWA Hiroyuki 已提交
2604
			goto bypass;
2605
		}
2606 2607
	} while (ret != CHARGE_OK);

2608
	if (batch > nr_pages)
2609 2610
		refill_stock(memcg, batch - nr_pages);
	css_put(&memcg->css);
2611
done:
2612
	*ptr = memcg;
2613 2614
	return 0;
nomem:
2615
	*ptr = NULL;
2616
	return -ENOMEM;
K
KAMEZAWA Hiroyuki 已提交
2617
bypass:
2618 2619
	*ptr = root_mem_cgroup;
	return -EINTR;
2620
}
2621

2622 2623 2624 2625 2626
/*
 * Somemtimes we have to undo a charge we got by try_charge().
 * This function is for that and do uncharge, put css's refcnt.
 * gotten by try_charge().
 */
2627
static void __mem_cgroup_cancel_charge(struct mem_cgroup *memcg,
2628
				       unsigned int nr_pages)
2629
{
2630
	if (!mem_cgroup_is_root(memcg)) {
2631 2632
		unsigned long bytes = nr_pages * PAGE_SIZE;

2633
		res_counter_uncharge(&memcg->res, bytes);
2634
		if (do_swap_account)
2635
			res_counter_uncharge(&memcg->memsw, bytes);
2636
	}
2637 2638
}

2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656
/*
 * Cancel chrages in this cgroup....doesn't propagate to parent cgroup.
 * This is useful when moving usage to parent cgroup.
 */
static void __mem_cgroup_cancel_local_charge(struct mem_cgroup *memcg,
					unsigned int nr_pages)
{
	unsigned long bytes = nr_pages * PAGE_SIZE;

	if (mem_cgroup_is_root(memcg))
		return;

	res_counter_uncharge_until(&memcg->res, memcg->res.parent, bytes);
	if (do_swap_account)
		res_counter_uncharge_until(&memcg->memsw,
						memcg->memsw.parent, bytes);
}

2657 2658
/*
 * A helper function to get mem_cgroup from ID. must be called under
T
Tejun Heo 已提交
2659 2660 2661
 * rcu_read_lock().  The caller is responsible for calling css_tryget if
 * the mem_cgroup is used for charging. (dropping refcnt from swap can be
 * called against removed memcg.)
2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672
 */
static struct mem_cgroup *mem_cgroup_lookup(unsigned short id)
{
	struct cgroup_subsys_state *css;

	/* ID 0 is unused ID */
	if (!id)
		return NULL;
	css = css_lookup(&mem_cgroup_subsys, id);
	if (!css)
		return NULL;
2673
	return mem_cgroup_from_css(css);
2674 2675
}

2676
struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page)
2677
{
2678
	struct mem_cgroup *memcg = NULL;
2679
	struct page_cgroup *pc;
2680
	unsigned short id;
2681 2682
	swp_entry_t ent;

2683 2684 2685
	VM_BUG_ON(!PageLocked(page));

	pc = lookup_page_cgroup(page);
2686
	lock_page_cgroup(pc);
2687
	if (PageCgroupUsed(pc)) {
2688 2689 2690
		memcg = pc->mem_cgroup;
		if (memcg && !css_tryget(&memcg->css))
			memcg = NULL;
2691
	} else if (PageSwapCache(page)) {
2692
		ent.val = page_private(page);
2693
		id = lookup_swap_cgroup_id(ent);
2694
		rcu_read_lock();
2695 2696 2697
		memcg = mem_cgroup_lookup(id);
		if (memcg && !css_tryget(&memcg->css))
			memcg = NULL;
2698
		rcu_read_unlock();
2699
	}
2700
	unlock_page_cgroup(pc);
2701
	return memcg;
2702 2703
}

2704
static void __mem_cgroup_commit_charge(struct mem_cgroup *memcg,
2705
				       struct page *page,
2706
				       unsigned int nr_pages,
2707 2708
				       enum charge_type ctype,
				       bool lrucare)
2709
{
2710
	struct page_cgroup *pc = lookup_page_cgroup(page);
2711
	struct zone *uninitialized_var(zone);
2712
	struct lruvec *lruvec;
2713
	bool was_on_lru = false;
2714
	bool anon;
2715

2716
	lock_page_cgroup(pc);
2717
	VM_BUG_ON(PageCgroupUsed(pc));
2718 2719 2720 2721
	/*
	 * we don't need page_cgroup_lock about tail pages, becase they are not
	 * accessed by any other context at this point.
	 */
2722 2723 2724 2725 2726 2727 2728 2729 2730

	/*
	 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
	 * may already be on some other mem_cgroup's LRU.  Take care of it.
	 */
	if (lrucare) {
		zone = page_zone(page);
		spin_lock_irq(&zone->lru_lock);
		if (PageLRU(page)) {
2731
			lruvec = mem_cgroup_zone_lruvec(zone, pc->mem_cgroup);
2732
			ClearPageLRU(page);
2733
			del_page_from_lru_list(page, lruvec, page_lru(page));
2734 2735 2736 2737
			was_on_lru = true;
		}
	}

2738
	pc->mem_cgroup = memcg;
2739 2740 2741 2742 2743 2744 2745
	/*
	 * We access a page_cgroup asynchronously without lock_page_cgroup().
	 * Especially when a page_cgroup is taken from a page, pc->mem_cgroup
	 * is accessed after testing USED bit. To make pc->mem_cgroup visible
	 * before USED bit, we need memory barrier here.
	 * See mem_cgroup_add_lru_list(), etc.
 	 */
K
KAMEZAWA Hiroyuki 已提交
2746
	smp_wmb();
2747
	SetPageCgroupUsed(pc);
2748

2749 2750
	if (lrucare) {
		if (was_on_lru) {
2751
			lruvec = mem_cgroup_zone_lruvec(zone, pc->mem_cgroup);
2752 2753
			VM_BUG_ON(PageLRU(page));
			SetPageLRU(page);
2754
			add_page_to_lru_list(page, lruvec, page_lru(page));
2755 2756 2757 2758
		}
		spin_unlock_irq(&zone->lru_lock);
	}

2759
	if (ctype == MEM_CGROUP_CHARGE_TYPE_ANON)
2760 2761 2762 2763 2764
		anon = true;
	else
		anon = false;

	mem_cgroup_charge_statistics(memcg, anon, nr_pages);
2765
	unlock_page_cgroup(pc);
2766

2767 2768 2769 2770 2771
	/*
	 * "charge_statistics" updated event counter. Then, check it.
	 * Insert ancestor (and ancestor's ancestors), to softlimit RB-tree.
	 * if they exceeds softlimit.
	 */
2772
	memcg_check_events(memcg, page);
2773
}
2774

2775 2776
static DEFINE_MUTEX(set_limit_mutex);

2777 2778 2779 2780 2781 2782 2783
#ifdef CONFIG_MEMCG_KMEM
static inline bool memcg_can_account_kmem(struct mem_cgroup *memcg)
{
	return !mem_cgroup_disabled() && !mem_cgroup_is_root(memcg) &&
		(memcg->kmem_account_flags & KMEM_ACCOUNTED_MASK);
}

G
Glauber Costa 已提交
2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796
/*
 * This is a bit cumbersome, but it is rarely used and avoids a backpointer
 * in the memcg_cache_params struct.
 */
static struct kmem_cache *memcg_params_to_cache(struct memcg_cache_params *p)
{
	struct kmem_cache *cachep;

	VM_BUG_ON(p->is_root_cache);
	cachep = p->root_cache;
	return cachep->memcg_params->memcg_caches[memcg_cache_id(p->memcg)];
}

2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849
static int memcg_charge_kmem(struct mem_cgroup *memcg, gfp_t gfp, u64 size)
{
	struct res_counter *fail_res;
	struct mem_cgroup *_memcg;
	int ret = 0;
	bool may_oom;

	ret = res_counter_charge(&memcg->kmem, size, &fail_res);
	if (ret)
		return ret;

	/*
	 * Conditions under which we can wait for the oom_killer. Those are
	 * the same conditions tested by the core page allocator
	 */
	may_oom = (gfp & __GFP_FS) && !(gfp & __GFP_NORETRY);

	_memcg = memcg;
	ret = __mem_cgroup_try_charge(NULL, gfp, size >> PAGE_SHIFT,
				      &_memcg, may_oom);

	if (ret == -EINTR)  {
		/*
		 * __mem_cgroup_try_charge() chosed to bypass to root due to
		 * OOM kill or fatal signal.  Since our only options are to
		 * either fail the allocation or charge it to this cgroup, do
		 * it as a temporary condition. But we can't fail. From a
		 * kmem/slab perspective, the cache has already been selected,
		 * by mem_cgroup_kmem_get_cache(), so it is too late to change
		 * our minds.
		 *
		 * This condition will only trigger if the task entered
		 * memcg_charge_kmem in a sane state, but was OOM-killed during
		 * __mem_cgroup_try_charge() above. Tasks that were already
		 * dying when the allocation triggers should have been already
		 * directed to the root cgroup in memcontrol.h
		 */
		res_counter_charge_nofail(&memcg->res, size, &fail_res);
		if (do_swap_account)
			res_counter_charge_nofail(&memcg->memsw, size,
						  &fail_res);
		ret = 0;
	} else if (ret)
		res_counter_uncharge(&memcg->kmem, size);

	return ret;
}

static void memcg_uncharge_kmem(struct mem_cgroup *memcg, u64 size)
{
	res_counter_uncharge(&memcg->res, size);
	if (do_swap_account)
		res_counter_uncharge(&memcg->memsw, size);
2850 2851 2852 2853 2854 2855 2856

	/* Not down to 0 */
	if (res_counter_uncharge(&memcg->kmem, size))
		return;

	if (memcg_kmem_test_and_clear_dead(memcg))
		mem_cgroup_put(memcg);
2857 2858
}

2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878
void memcg_cache_list_add(struct mem_cgroup *memcg, struct kmem_cache *cachep)
{
	if (!memcg)
		return;

	mutex_lock(&memcg->slab_caches_mutex);
	list_add(&cachep->memcg_params->list, &memcg->memcg_slab_caches);
	mutex_unlock(&memcg->slab_caches_mutex);
}

/*
 * helper for acessing a memcg's index. It will be used as an index in the
 * child cache array in kmem_cache, and also to derive its name. This function
 * will return -1 when this is not a kmem-limited memcg.
 */
int memcg_cache_id(struct mem_cgroup *memcg)
{
	return memcg ? memcg->kmemcg_id : -1;
}

2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992
/*
 * This ends up being protected by the set_limit mutex, during normal
 * operation, because that is its main call site.
 *
 * But when we create a new cache, we can call this as well if its parent
 * is kmem-limited. That will have to hold set_limit_mutex as well.
 */
int memcg_update_cache_sizes(struct mem_cgroup *memcg)
{
	int num, ret;

	num = ida_simple_get(&kmem_limited_groups,
				0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
	if (num < 0)
		return num;
	/*
	 * After this point, kmem_accounted (that we test atomically in
	 * the beginning of this conditional), is no longer 0. This
	 * guarantees only one process will set the following boolean
	 * to true. We don't need test_and_set because we're protected
	 * by the set_limit_mutex anyway.
	 */
	memcg_kmem_set_activated(memcg);

	ret = memcg_update_all_caches(num+1);
	if (ret) {
		ida_simple_remove(&kmem_limited_groups, num);
		memcg_kmem_clear_activated(memcg);
		return ret;
	}

	memcg->kmemcg_id = num;
	INIT_LIST_HEAD(&memcg->memcg_slab_caches);
	mutex_init(&memcg->slab_caches_mutex);
	return 0;
}

static size_t memcg_caches_array_size(int num_groups)
{
	ssize_t size;
	if (num_groups <= 0)
		return 0;

	size = 2 * num_groups;
	if (size < MEMCG_CACHES_MIN_SIZE)
		size = MEMCG_CACHES_MIN_SIZE;
	else if (size > MEMCG_CACHES_MAX_SIZE)
		size = MEMCG_CACHES_MAX_SIZE;

	return size;
}

/*
 * We should update the current array size iff all caches updates succeed. This
 * can only be done from the slab side. The slab mutex needs to be held when
 * calling this.
 */
void memcg_update_array_size(int num)
{
	if (num > memcg_limited_groups_array_size)
		memcg_limited_groups_array_size = memcg_caches_array_size(num);
}

int memcg_update_cache_size(struct kmem_cache *s, int num_groups)
{
	struct memcg_cache_params *cur_params = s->memcg_params;

	VM_BUG_ON(s->memcg_params && !s->memcg_params->is_root_cache);

	if (num_groups > memcg_limited_groups_array_size) {
		int i;
		ssize_t size = memcg_caches_array_size(num_groups);

		size *= sizeof(void *);
		size += sizeof(struct memcg_cache_params);

		s->memcg_params = kzalloc(size, GFP_KERNEL);
		if (!s->memcg_params) {
			s->memcg_params = cur_params;
			return -ENOMEM;
		}

		s->memcg_params->is_root_cache = true;

		/*
		 * There is the chance it will be bigger than
		 * memcg_limited_groups_array_size, if we failed an allocation
		 * in a cache, in which case all caches updated before it, will
		 * have a bigger array.
		 *
		 * But if that is the case, the data after
		 * memcg_limited_groups_array_size is certainly unused
		 */
		for (i = 0; i < memcg_limited_groups_array_size; i++) {
			if (!cur_params->memcg_caches[i])
				continue;
			s->memcg_params->memcg_caches[i] =
						cur_params->memcg_caches[i];
		}

		/*
		 * Ideally, we would wait until all caches succeed, and only
		 * then free the old one. But this is not worth the extra
		 * pointer per-cache we'd have to have for this.
		 *
		 * It is not a big deal if some caches are left with a size
		 * bigger than the others. And all updates will reset this
		 * anyway.
		 */
		kfree(cur_params);
	}
	return 0;
}

2993 2994 2995 2996 2997 2998 2999
int memcg_register_cache(struct mem_cgroup *memcg, struct kmem_cache *s)
{
	size_t size = sizeof(struct memcg_cache_params);

	if (!memcg_kmem_enabled())
		return 0;

3000 3001 3002
	if (!memcg)
		size += memcg_limited_groups_array_size * sizeof(void *);

3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013
	s->memcg_params = kzalloc(size, GFP_KERNEL);
	if (!s->memcg_params)
		return -ENOMEM;

	if (memcg)
		s->memcg_params->memcg = memcg;
	return 0;
}

void memcg_release_cache(struct kmem_cache *s)
{
3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039
	struct kmem_cache *root;
	struct mem_cgroup *memcg;
	int id;

	/*
	 * This happens, for instance, when a root cache goes away before we
	 * add any memcg.
	 */
	if (!s->memcg_params)
		return;

	if (s->memcg_params->is_root_cache)
		goto out;

	memcg = s->memcg_params->memcg;
	id  = memcg_cache_id(memcg);

	root = s->memcg_params->root_cache;
	root->memcg_params->memcg_caches[id] = NULL;
	mem_cgroup_put(memcg);

	mutex_lock(&memcg->slab_caches_mutex);
	list_del(&s->memcg_params->list);
	mutex_unlock(&memcg->slab_caches_mutex);

out:
3040 3041 3042
	kfree(s->memcg_params);
}

3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073
/*
 * During the creation a new cache, we need to disable our accounting mechanism
 * altogether. This is true even if we are not creating, but rather just
 * enqueing new caches to be created.
 *
 * This is because that process will trigger allocations; some visible, like
 * explicit kmallocs to auxiliary data structures, name strings and internal
 * cache structures; some well concealed, like INIT_WORK() that can allocate
 * objects during debug.
 *
 * If any allocation happens during memcg_kmem_get_cache, we will recurse back
 * to it. This may not be a bounded recursion: since the first cache creation
 * failed to complete (waiting on the allocation), we'll just try to create the
 * cache again, failing at the same point.
 *
 * memcg_kmem_get_cache is prepared to abort after seeing a positive count of
 * memcg_kmem_skip_account. So we enclose anything that might allocate memory
 * inside the following two functions.
 */
static inline void memcg_stop_kmem_account(void)
{
	VM_BUG_ON(!current->mm);
	current->memcg_kmem_skip_account++;
}

static inline void memcg_resume_kmem_account(void)
{
	VM_BUG_ON(!current->mm);
	current->memcg_kmem_skip_account--;
}

G
Glauber Costa 已提交
3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098
static void kmem_cache_destroy_work_func(struct work_struct *w)
{
	struct kmem_cache *cachep;
	struct memcg_cache_params *p;

	p = container_of(w, struct memcg_cache_params, destroy);

	cachep = memcg_params_to_cache(p);

	if (!atomic_read(&cachep->memcg_params->nr_pages))
		kmem_cache_destroy(cachep);
}

void mem_cgroup_destroy_cache(struct kmem_cache *cachep)
{
	if (!cachep->memcg_params->dead)
		return;

	/*
	 * We have to defer the actual destroying to a workqueue, because
	 * we might currently be in a context that cannot sleep.
	 */
	schedule_work(&cachep->memcg_params->destroy);
}

3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128
static char *memcg_cache_name(struct mem_cgroup *memcg, struct kmem_cache *s)
{
	char *name;
	struct dentry *dentry;

	rcu_read_lock();
	dentry = rcu_dereference(memcg->css.cgroup->dentry);
	rcu_read_unlock();

	BUG_ON(dentry == NULL);

	name = kasprintf(GFP_KERNEL, "%s(%d:%s)", s->name,
			 memcg_cache_id(memcg), dentry->d_name.name);

	return name;
}

static struct kmem_cache *kmem_cache_dup(struct mem_cgroup *memcg,
					 struct kmem_cache *s)
{
	char *name;
	struct kmem_cache *new;

	name = memcg_cache_name(memcg, s);
	if (!name)
		return NULL;

	new = kmem_cache_create_memcg(memcg, name, s->object_size, s->align,
				      (s->flags & ~SLAB_PANIC), s->ctor);

3129 3130 3131
	if (new)
		new->allocflags |= __GFP_KMEMCG;

3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167
	kfree(name);
	return new;
}

/*
 * This lock protects updaters, not readers. We want readers to be as fast as
 * they can, and they will either see NULL or a valid cache value. Our model
 * allow them to see NULL, in which case the root memcg will be selected.
 *
 * We need this lock because multiple allocations to the same cache from a non
 * will span more than one worker. Only one of them can create the cache.
 */
static DEFINE_MUTEX(memcg_cache_mutex);
static struct kmem_cache *memcg_create_kmem_cache(struct mem_cgroup *memcg,
						  struct kmem_cache *cachep)
{
	struct kmem_cache *new_cachep;
	int idx;

	BUG_ON(!memcg_can_account_kmem(memcg));

	idx = memcg_cache_id(memcg);

	mutex_lock(&memcg_cache_mutex);
	new_cachep = cachep->memcg_params->memcg_caches[idx];
	if (new_cachep)
		goto out;

	new_cachep = kmem_cache_dup(memcg, cachep);
	if (new_cachep == NULL) {
		new_cachep = cachep;
		goto out;
	}

	mem_cgroup_get(memcg);
	new_cachep->memcg_params->root_cache = cachep;
G
Glauber Costa 已提交
3168
	atomic_set(&new_cachep->memcg_params->nr_pages , 0);
3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180

	cachep->memcg_params->memcg_caches[idx] = new_cachep;
	/*
	 * the readers won't lock, make sure everybody sees the updated value,
	 * so they won't put stuff in the queue again for no reason
	 */
	wmb();
out:
	mutex_unlock(&memcg_cache_mutex);
	return new_cachep;
}

3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225
void kmem_cache_destroy_memcg_children(struct kmem_cache *s)
{
	struct kmem_cache *c;
	int i;

	if (!s->memcg_params)
		return;
	if (!s->memcg_params->is_root_cache)
		return;

	/*
	 * If the cache is being destroyed, we trust that there is no one else
	 * requesting objects from it. Even if there are, the sanity checks in
	 * kmem_cache_destroy should caught this ill-case.
	 *
	 * Still, we don't want anyone else freeing memcg_caches under our
	 * noses, which can happen if a new memcg comes to life. As usual,
	 * we'll take the set_limit_mutex to protect ourselves against this.
	 */
	mutex_lock(&set_limit_mutex);
	for (i = 0; i < memcg_limited_groups_array_size; i++) {
		c = s->memcg_params->memcg_caches[i];
		if (!c)
			continue;

		/*
		 * We will now manually delete the caches, so to avoid races
		 * we need to cancel all pending destruction workers and
		 * proceed with destruction ourselves.
		 *
		 * kmem_cache_destroy() will call kmem_cache_shrink internally,
		 * and that could spawn the workers again: it is likely that
		 * the cache still have active pages until this very moment.
		 * This would lead us back to mem_cgroup_destroy_cache.
		 *
		 * But that will not execute at all if the "dead" flag is not
		 * set, so flip it down to guarantee we are in control.
		 */
		c->memcg_params->dead = false;
		cancel_delayed_work_sync(&c->memcg_params->destroy);
		kmem_cache_destroy(c);
	}
	mutex_unlock(&set_limit_mutex);
}

3226 3227 3228 3229 3230 3231
struct create_work {
	struct mem_cgroup *memcg;
	struct kmem_cache *cachep;
	struct work_struct work;
};

G
Glauber Costa 已提交
3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250
static void mem_cgroup_destroy_all_caches(struct mem_cgroup *memcg)
{
	struct kmem_cache *cachep;
	struct memcg_cache_params *params;

	if (!memcg_kmem_is_active(memcg))
		return;

	mutex_lock(&memcg->slab_caches_mutex);
	list_for_each_entry(params, &memcg->memcg_slab_caches, list) {
		cachep = memcg_params_to_cache(params);
		cachep->memcg_params->dead = true;
		INIT_WORK(&cachep->memcg_params->destroy,
			  kmem_cache_destroy_work_func);
		schedule_work(&cachep->memcg_params->destroy);
	}
	mutex_unlock(&memcg->slab_caches_mutex);
}

3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265
static void memcg_create_cache_work_func(struct work_struct *w)
{
	struct create_work *cw;

	cw = container_of(w, struct create_work, work);
	memcg_create_kmem_cache(cw->memcg, cw->cachep);
	/* Drop the reference gotten when we enqueued. */
	css_put(&cw->memcg->css);
	kfree(cw);
}

/*
 * Enqueue the creation of a per-memcg kmem_cache.
 * Called with rcu_read_lock.
 */
3266 3267
static void __memcg_create_cache_enqueue(struct mem_cgroup *memcg,
					 struct kmem_cache *cachep)
3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287
{
	struct create_work *cw;

	cw = kmalloc(sizeof(struct create_work), GFP_NOWAIT);
	if (cw == NULL)
		return;

	/* The corresponding put will be done in the workqueue. */
	if (!css_tryget(&memcg->css)) {
		kfree(cw);
		return;
	}

	cw->memcg = memcg;
	cw->cachep = cachep;

	INIT_WORK(&cw->work, memcg_create_cache_work_func);
	schedule_work(&cw->work);
}

3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305
static void memcg_create_cache_enqueue(struct mem_cgroup *memcg,
				       struct kmem_cache *cachep)
{
	/*
	 * We need to stop accounting when we kmalloc, because if the
	 * corresponding kmalloc cache is not yet created, the first allocation
	 * in __memcg_create_cache_enqueue will recurse.
	 *
	 * However, it is better to enclose the whole function. Depending on
	 * the debugging options enabled, INIT_WORK(), for instance, can
	 * trigger an allocation. This too, will make us recurse. Because at
	 * this point we can't allow ourselves back into memcg_kmem_get_cache,
	 * the safest choice is to do it like this, wrapping the whole function.
	 */
	memcg_stop_kmem_account();
	__memcg_create_cache_enqueue(memcg, cachep);
	memcg_resume_kmem_account();
}
3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327
/*
 * Return the kmem_cache we're supposed to use for a slab allocation.
 * We try to use the current memcg's version of the cache.
 *
 * If the cache does not exist yet, if we are the first user of it,
 * we either create it immediately, if possible, or create it asynchronously
 * in a workqueue.
 * In the latter case, we will let the current allocation go through with
 * the original cache.
 *
 * Can't be called in interrupt context or from kernel threads.
 * This function needs to be called with rcu_read_lock() held.
 */
struct kmem_cache *__memcg_kmem_get_cache(struct kmem_cache *cachep,
					  gfp_t gfp)
{
	struct mem_cgroup *memcg;
	int idx;

	VM_BUG_ON(!cachep->memcg_params);
	VM_BUG_ON(!cachep->memcg_params->is_root_cache);

3328 3329 3330
	if (!current->mm || current->memcg_kmem_skip_account)
		return cachep;

3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370
	rcu_read_lock();
	memcg = mem_cgroup_from_task(rcu_dereference(current->mm->owner));
	rcu_read_unlock();

	if (!memcg_can_account_kmem(memcg))
		return cachep;

	idx = memcg_cache_id(memcg);

	/*
	 * barrier to mare sure we're always seeing the up to date value.  The
	 * code updating memcg_caches will issue a write barrier to match this.
	 */
	read_barrier_depends();
	if (unlikely(cachep->memcg_params->memcg_caches[idx] == NULL)) {
		/*
		 * If we are in a safe context (can wait, and not in interrupt
		 * context), we could be be predictable and return right away.
		 * This would guarantee that the allocation being performed
		 * already belongs in the new cache.
		 *
		 * However, there are some clashes that can arrive from locking.
		 * For instance, because we acquire the slab_mutex while doing
		 * kmem_cache_dup, this means no further allocation could happen
		 * with the slab_mutex held.
		 *
		 * Also, because cache creation issue get_online_cpus(), this
		 * creates a lock chain: memcg_slab_mutex -> cpu_hotplug_mutex,
		 * that ends up reversed during cpu hotplug. (cpuset allocates
		 * a bunch of GFP_KERNEL memory during cpuup). Due to all that,
		 * better to defer everything.
		 */
		memcg_create_cache_enqueue(memcg, cachep);
		return cachep;
	}

	return cachep->memcg_params->memcg_caches[idx];
}
EXPORT_SYMBOL(__memcg_kmem_get_cache);

3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465
/*
 * We need to verify if the allocation against current->mm->owner's memcg is
 * possible for the given order. But the page is not allocated yet, so we'll
 * need a further commit step to do the final arrangements.
 *
 * It is possible for the task to switch cgroups in this mean time, so at
 * commit time, we can't rely on task conversion any longer.  We'll then use
 * the handle argument to return to the caller which cgroup we should commit
 * against. We could also return the memcg directly and avoid the pointer
 * passing, but a boolean return value gives better semantics considering
 * the compiled-out case as well.
 *
 * Returning true means the allocation is possible.
 */
bool
__memcg_kmem_newpage_charge(gfp_t gfp, struct mem_cgroup **_memcg, int order)
{
	struct mem_cgroup *memcg;
	int ret;

	*_memcg = NULL;
	memcg = try_get_mem_cgroup_from_mm(current->mm);

	/*
	 * very rare case described in mem_cgroup_from_task. Unfortunately there
	 * isn't much we can do without complicating this too much, and it would
	 * be gfp-dependent anyway. Just let it go
	 */
	if (unlikely(!memcg))
		return true;

	if (!memcg_can_account_kmem(memcg)) {
		css_put(&memcg->css);
		return true;
	}

	ret = memcg_charge_kmem(memcg, gfp, PAGE_SIZE << order);
	if (!ret)
		*_memcg = memcg;

	css_put(&memcg->css);
	return (ret == 0);
}

void __memcg_kmem_commit_charge(struct page *page, struct mem_cgroup *memcg,
			      int order)
{
	struct page_cgroup *pc;

	VM_BUG_ON(mem_cgroup_is_root(memcg));

	/* The page allocation failed. Revert */
	if (!page) {
		memcg_uncharge_kmem(memcg, PAGE_SIZE << order);
		return;
	}

	pc = lookup_page_cgroup(page);
	lock_page_cgroup(pc);
	pc->mem_cgroup = memcg;
	SetPageCgroupUsed(pc);
	unlock_page_cgroup(pc);
}

void __memcg_kmem_uncharge_pages(struct page *page, int order)
{
	struct mem_cgroup *memcg = NULL;
	struct page_cgroup *pc;


	pc = lookup_page_cgroup(page);
	/*
	 * Fast unlocked return. Theoretically might have changed, have to
	 * check again after locking.
	 */
	if (!PageCgroupUsed(pc))
		return;

	lock_page_cgroup(pc);
	if (PageCgroupUsed(pc)) {
		memcg = pc->mem_cgroup;
		ClearPageCgroupUsed(pc);
	}
	unlock_page_cgroup(pc);

	/*
	 * We trust that only if there is a memcg associated with the page, it
	 * is a valid allocation
	 */
	if (!memcg)
		return;

	VM_BUG_ON(mem_cgroup_is_root(memcg));
	memcg_uncharge_kmem(memcg, PAGE_SIZE << order);
}
G
Glauber Costa 已提交
3466 3467 3468 3469
#else
static inline void mem_cgroup_destroy_all_caches(struct mem_cgroup *memcg)
{
}
3470 3471
#endif /* CONFIG_MEMCG_KMEM */

3472 3473
#ifdef CONFIG_TRANSPARENT_HUGEPAGE

3474
#define PCGF_NOCOPY_AT_SPLIT (1 << PCG_LOCK | 1 << PCG_MIGRATION)
3475 3476
/*
 * Because tail pages are not marked as "used", set it. We're under
3477 3478 3479
 * zone->lru_lock, 'splitting on pmd' and compound_lock.
 * charge/uncharge will be never happen and move_account() is done under
 * compound_lock(), so we don't have to take care of races.
3480
 */
3481
void mem_cgroup_split_huge_fixup(struct page *head)
3482 3483
{
	struct page_cgroup *head_pc = lookup_page_cgroup(head);
3484 3485
	struct page_cgroup *pc;
	int i;
3486

3487 3488
	if (mem_cgroup_disabled())
		return;
3489 3490 3491 3492 3493 3494
	for (i = 1; i < HPAGE_PMD_NR; i++) {
		pc = head_pc + i;
		pc->mem_cgroup = head_pc->mem_cgroup;
		smp_wmb();/* see __commit_charge() */
		pc->flags = head_pc->flags & ~PCGF_NOCOPY_AT_SPLIT;
	}
3495
}
3496
#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
3497

3498
/**
3499
 * mem_cgroup_move_account - move account of the page
3500
 * @page: the page
3501
 * @nr_pages: number of regular pages (>1 for huge pages)
3502 3503 3504 3505 3506
 * @pc:	page_cgroup of the page.
 * @from: mem_cgroup which the page is moved from.
 * @to:	mem_cgroup which the page is moved to. @from != @to.
 *
 * The caller must confirm following.
K
KAMEZAWA Hiroyuki 已提交
3507
 * - page is not on LRU (isolate_page() is useful.)
3508
 * - compound_lock is held when nr_pages > 1
3509
 *
3510 3511
 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
 * from old cgroup.
3512
 */
3513 3514 3515 3516
static int mem_cgroup_move_account(struct page *page,
				   unsigned int nr_pages,
				   struct page_cgroup *pc,
				   struct mem_cgroup *from,
3517
				   struct mem_cgroup *to)
3518
{
3519 3520
	unsigned long flags;
	int ret;
3521
	bool anon = PageAnon(page);
3522

3523
	VM_BUG_ON(from == to);
3524
	VM_BUG_ON(PageLRU(page));
3525 3526 3527 3528 3529 3530 3531
	/*
	 * The page is isolated from LRU. So, collapse function
	 * will not handle this page. But page splitting can happen.
	 * Do this check under compound_page_lock(). The caller should
	 * hold it.
	 */
	ret = -EBUSY;
3532
	if (nr_pages > 1 && !PageTransHuge(page))
3533 3534 3535 3536 3537 3538 3539 3540
		goto out;

	lock_page_cgroup(pc);

	ret = -EINVAL;
	if (!PageCgroupUsed(pc) || pc->mem_cgroup != from)
		goto unlock;

3541
	move_lock_mem_cgroup(from, &flags);
3542

3543
	if (!anon && page_mapped(page)) {
3544 3545 3546 3547 3548
		/* Update mapped_file data for mem_cgroup */
		preempt_disable();
		__this_cpu_dec(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
		__this_cpu_inc(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
		preempt_enable();
3549
	}
3550
	mem_cgroup_charge_statistics(from, anon, -nr_pages);
3551

3552
	/* caller should have done css_get */
K
KAMEZAWA Hiroyuki 已提交
3553
	pc->mem_cgroup = to;
3554
	mem_cgroup_charge_statistics(to, anon, nr_pages);
3555
	move_unlock_mem_cgroup(from, &flags);
3556 3557
	ret = 0;
unlock:
3558
	unlock_page_cgroup(pc);
3559 3560 3561
	/*
	 * check events
	 */
3562 3563
	memcg_check_events(to, page);
	memcg_check_events(from, page);
3564
out:
3565 3566 3567
	return ret;
}

3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587
/**
 * mem_cgroup_move_parent - moves page to the parent group
 * @page: the page to move
 * @pc: page_cgroup of the page
 * @child: page's cgroup
 *
 * move charges to its parent or the root cgroup if the group has no
 * parent (aka use_hierarchy==0).
 * Although this might fail (get_page_unless_zero, isolate_lru_page or
 * mem_cgroup_move_account fails) the failure is always temporary and
 * it signals a race with a page removal/uncharge or migration. In the
 * first case the page is on the way out and it will vanish from the LRU
 * on the next attempt and the call should be retried later.
 * Isolation from the LRU fails only if page has been isolated from
 * the LRU since we looked at it and that usually means either global
 * reclaim or migration going on. The page will either get back to the
 * LRU or vanish.
 * Finaly mem_cgroup_move_account fails only if the page got uncharged
 * (!PageCgroupUsed) or moved to a different group. The page will
 * disappear in the next attempt.
3588
 */
3589 3590
static int mem_cgroup_move_parent(struct page *page,
				  struct page_cgroup *pc,
3591
				  struct mem_cgroup *child)
3592 3593
{
	struct mem_cgroup *parent;
3594
	unsigned int nr_pages;
3595
	unsigned long uninitialized_var(flags);
3596 3597
	int ret;

3598
	VM_BUG_ON(mem_cgroup_is_root(child));
3599

3600 3601 3602 3603 3604
	ret = -EBUSY;
	if (!get_page_unless_zero(page))
		goto out;
	if (isolate_lru_page(page))
		goto put;
3605

3606
	nr_pages = hpage_nr_pages(page);
K
KAMEZAWA Hiroyuki 已提交
3607

3608 3609 3610 3611 3612 3613
	parent = parent_mem_cgroup(child);
	/*
	 * If no parent, move charges to root cgroup.
	 */
	if (!parent)
		parent = root_mem_cgroup;
3614

3615 3616
	if (nr_pages > 1) {
		VM_BUG_ON(!PageTransHuge(page));
3617
		flags = compound_lock_irqsave(page);
3618
	}
3619

3620
	ret = mem_cgroup_move_account(page, nr_pages,
3621
				pc, child, parent);
3622 3623
	if (!ret)
		__mem_cgroup_cancel_local_charge(child, nr_pages);
3624

3625
	if (nr_pages > 1)
3626
		compound_unlock_irqrestore(page, flags);
K
KAMEZAWA Hiroyuki 已提交
3627
	putback_lru_page(page);
3628
put:
3629
	put_page(page);
3630
out:
3631 3632 3633
	return ret;
}

3634 3635 3636 3637 3638 3639 3640
/*
 * Charge the memory controller for page usage.
 * Return
 * 0 if the charge was successful
 * < 0 if the cgroup is over its limit
 */
static int mem_cgroup_charge_common(struct page *page, struct mm_struct *mm,
3641
				gfp_t gfp_mask, enum charge_type ctype)
3642
{
3643
	struct mem_cgroup *memcg = NULL;
3644
	unsigned int nr_pages = 1;
3645
	bool oom = true;
3646
	int ret;
A
Andrea Arcangeli 已提交
3647

A
Andrea Arcangeli 已提交
3648
	if (PageTransHuge(page)) {
3649
		nr_pages <<= compound_order(page);
A
Andrea Arcangeli 已提交
3650
		VM_BUG_ON(!PageTransHuge(page));
3651 3652 3653 3654 3655
		/*
		 * Never OOM-kill a process for a huge page.  The
		 * fault handler will fall back to regular pages.
		 */
		oom = false;
A
Andrea Arcangeli 已提交
3656
	}
3657

3658
	ret = __mem_cgroup_try_charge(mm, gfp_mask, nr_pages, &memcg, oom);
3659
	if (ret == -ENOMEM)
3660
		return ret;
3661
	__mem_cgroup_commit_charge(memcg, page, nr_pages, ctype, false);
3662 3663 3664
	return 0;
}

3665 3666
int mem_cgroup_newpage_charge(struct page *page,
			      struct mm_struct *mm, gfp_t gfp_mask)
3667
{
3668
	if (mem_cgroup_disabled())
3669
		return 0;
3670 3671 3672
	VM_BUG_ON(page_mapped(page));
	VM_BUG_ON(page->mapping && !PageAnon(page));
	VM_BUG_ON(!mm);
3673
	return mem_cgroup_charge_common(page, mm, gfp_mask,
3674
					MEM_CGROUP_CHARGE_TYPE_ANON);
3675 3676
}

3677 3678 3679
/*
 * While swap-in, try_charge -> commit or cancel, the page is locked.
 * And when try_charge() successfully returns, one refcnt to memcg without
3680
 * struct page_cgroup is acquired. This refcnt will be consumed by
3681 3682
 * "commit()" or removed by "cancel()"
 */
3683 3684 3685 3686
static int __mem_cgroup_try_charge_swapin(struct mm_struct *mm,
					  struct page *page,
					  gfp_t mask,
					  struct mem_cgroup **memcgp)
3687
{
3688
	struct mem_cgroup *memcg;
3689
	struct page_cgroup *pc;
3690
	int ret;
3691

3692 3693 3694 3695 3696 3697 3698 3699 3700 3701
	pc = lookup_page_cgroup(page);
	/*
	 * Every swap fault against a single page tries to charge the
	 * page, bail as early as possible.  shmem_unuse() encounters
	 * already charged pages, too.  The USED bit is protected by
	 * the page lock, which serializes swap cache removal, which
	 * in turn serializes uncharging.
	 */
	if (PageCgroupUsed(pc))
		return 0;
3702 3703
	if (!do_swap_account)
		goto charge_cur_mm;
3704 3705
	memcg = try_get_mem_cgroup_from_page(page);
	if (!memcg)
3706
		goto charge_cur_mm;
3707 3708
	*memcgp = memcg;
	ret = __mem_cgroup_try_charge(NULL, mask, 1, memcgp, true);
3709
	css_put(&memcg->css);
3710 3711
	if (ret == -EINTR)
		ret = 0;
3712
	return ret;
3713
charge_cur_mm:
3714 3715 3716 3717
	ret = __mem_cgroup_try_charge(mm, mask, 1, memcgp, true);
	if (ret == -EINTR)
		ret = 0;
	return ret;
3718 3719
}

3720 3721 3722 3723 3724 3725
int mem_cgroup_try_charge_swapin(struct mm_struct *mm, struct page *page,
				 gfp_t gfp_mask, struct mem_cgroup **memcgp)
{
	*memcgp = NULL;
	if (mem_cgroup_disabled())
		return 0;
3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739
	/*
	 * A racing thread's fault, or swapoff, may have already
	 * updated the pte, and even removed page from swap cache: in
	 * those cases unuse_pte()'s pte_same() test will fail; but
	 * there's also a KSM case which does need to charge the page.
	 */
	if (!PageSwapCache(page)) {
		int ret;

		ret = __mem_cgroup_try_charge(mm, gfp_mask, 1, memcgp, true);
		if (ret == -EINTR)
			ret = 0;
		return ret;
	}
3740 3741 3742
	return __mem_cgroup_try_charge_swapin(mm, page, gfp_mask, memcgp);
}

3743 3744 3745 3746 3747 3748 3749 3750 3751
void mem_cgroup_cancel_charge_swapin(struct mem_cgroup *memcg)
{
	if (mem_cgroup_disabled())
		return;
	if (!memcg)
		return;
	__mem_cgroup_cancel_charge(memcg, 1);
}

D
Daisuke Nishimura 已提交
3752
static void
3753
__mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *memcg,
D
Daisuke Nishimura 已提交
3754
					enum charge_type ctype)
3755
{
3756
	if (mem_cgroup_disabled())
3757
		return;
3758
	if (!memcg)
3759
		return;
3760

3761
	__mem_cgroup_commit_charge(memcg, page, 1, ctype, true);
3762 3763 3764
	/*
	 * Now swap is on-memory. This means this page may be
	 * counted both as mem and swap....double count.
3765 3766 3767
	 * Fix it by uncharging from memsw. Basically, this SwapCache is stable
	 * under lock_page(). But in do_swap_page()::memory.c, reuse_swap_page()
	 * may call delete_from_swap_cache() before reach here.
3768
	 */
3769
	if (do_swap_account && PageSwapCache(page)) {
3770
		swp_entry_t ent = {.val = page_private(page)};
3771
		mem_cgroup_uncharge_swap(ent);
3772
	}
3773 3774
}

3775 3776
void mem_cgroup_commit_charge_swapin(struct page *page,
				     struct mem_cgroup *memcg)
D
Daisuke Nishimura 已提交
3777
{
3778
	__mem_cgroup_commit_charge_swapin(page, memcg,
3779
					  MEM_CGROUP_CHARGE_TYPE_ANON);
D
Daisuke Nishimura 已提交
3780 3781
}

3782 3783
int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm,
				gfp_t gfp_mask)
3784
{
3785 3786 3787 3788
	struct mem_cgroup *memcg = NULL;
	enum charge_type type = MEM_CGROUP_CHARGE_TYPE_CACHE;
	int ret;

3789
	if (mem_cgroup_disabled())
3790 3791 3792 3793 3794 3795 3796
		return 0;
	if (PageCompound(page))
		return 0;

	if (!PageSwapCache(page))
		ret = mem_cgroup_charge_common(page, mm, gfp_mask, type);
	else { /* page is swapcache/shmem */
3797 3798
		ret = __mem_cgroup_try_charge_swapin(mm, page,
						     gfp_mask, &memcg);
3799 3800 3801 3802
		if (!ret)
			__mem_cgroup_commit_charge_swapin(page, memcg, type);
	}
	return ret;
3803 3804
}

3805
static void mem_cgroup_do_uncharge(struct mem_cgroup *memcg,
3806 3807
				   unsigned int nr_pages,
				   const enum charge_type ctype)
3808 3809 3810
{
	struct memcg_batch_info *batch = NULL;
	bool uncharge_memsw = true;
3811

3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822
	/* If swapout, usage of swap doesn't decrease */
	if (!do_swap_account || ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT)
		uncharge_memsw = false;

	batch = &current->memcg_batch;
	/*
	 * In usual, we do css_get() when we remember memcg pointer.
	 * But in this case, we keep res->usage until end of a series of
	 * uncharges. Then, it's ok to ignore memcg's refcnt.
	 */
	if (!batch->memcg)
3823
		batch->memcg = memcg;
3824 3825
	/*
	 * do_batch > 0 when unmapping pages or inode invalidate/truncate.
L
Lucas De Marchi 已提交
3826
	 * In those cases, all pages freed continuously can be expected to be in
3827 3828 3829 3830 3831 3832 3833 3834
	 * the same cgroup and we have chance to coalesce uncharges.
	 * But we do uncharge one by one if this is killed by OOM(TIF_MEMDIE)
	 * because we want to do uncharge as soon as possible.
	 */

	if (!batch->do_batch || test_thread_flag(TIF_MEMDIE))
		goto direct_uncharge;

3835
	if (nr_pages > 1)
A
Andrea Arcangeli 已提交
3836 3837
		goto direct_uncharge;

3838 3839 3840 3841 3842
	/*
	 * In typical case, batch->memcg == mem. This means we can
	 * merge a series of uncharges to an uncharge of res_counter.
	 * If not, we uncharge res_counter ony by one.
	 */
3843
	if (batch->memcg != memcg)
3844 3845
		goto direct_uncharge;
	/* remember freed charge and uncharge it later */
3846
	batch->nr_pages++;
3847
	if (uncharge_memsw)
3848
		batch->memsw_nr_pages++;
3849 3850
	return;
direct_uncharge:
3851
	res_counter_uncharge(&memcg->res, nr_pages * PAGE_SIZE);
3852
	if (uncharge_memsw)
3853 3854 3855
		res_counter_uncharge(&memcg->memsw, nr_pages * PAGE_SIZE);
	if (unlikely(batch->memcg != memcg))
		memcg_oom_recover(memcg);
3856
}
3857

3858
/*
3859
 * uncharge if !page_mapped(page)
3860
 */
3861
static struct mem_cgroup *
3862 3863
__mem_cgroup_uncharge_common(struct page *page, enum charge_type ctype,
			     bool end_migration)
3864
{
3865
	struct mem_cgroup *memcg = NULL;
3866 3867
	unsigned int nr_pages = 1;
	struct page_cgroup *pc;
3868
	bool anon;
3869

3870
	if (mem_cgroup_disabled())
3871
		return NULL;
3872

3873
	VM_BUG_ON(PageSwapCache(page));
K
KAMEZAWA Hiroyuki 已提交
3874

A
Andrea Arcangeli 已提交
3875
	if (PageTransHuge(page)) {
3876
		nr_pages <<= compound_order(page);
A
Andrea Arcangeli 已提交
3877 3878
		VM_BUG_ON(!PageTransHuge(page));
	}
3879
	/*
3880
	 * Check if our page_cgroup is valid
3881
	 */
3882
	pc = lookup_page_cgroup(page);
3883
	if (unlikely(!PageCgroupUsed(pc)))
3884
		return NULL;
3885

3886
	lock_page_cgroup(pc);
K
KAMEZAWA Hiroyuki 已提交
3887

3888
	memcg = pc->mem_cgroup;
3889

K
KAMEZAWA Hiroyuki 已提交
3890 3891 3892
	if (!PageCgroupUsed(pc))
		goto unlock_out;

3893 3894
	anon = PageAnon(page);

K
KAMEZAWA Hiroyuki 已提交
3895
	switch (ctype) {
3896
	case MEM_CGROUP_CHARGE_TYPE_ANON:
3897 3898 3899 3900 3901
		/*
		 * Generally PageAnon tells if it's the anon statistics to be
		 * updated; but sometimes e.g. mem_cgroup_uncharge_page() is
		 * used before page reached the stage of being marked PageAnon.
		 */
3902 3903
		anon = true;
		/* fallthrough */
K
KAMEZAWA Hiroyuki 已提交
3904
	case MEM_CGROUP_CHARGE_TYPE_DROP:
3905
		/* See mem_cgroup_prepare_migration() */
3906 3907 3908 3909 3910 3911 3912 3913 3914 3915
		if (page_mapped(page))
			goto unlock_out;
		/*
		 * Pages under migration may not be uncharged.  But
		 * end_migration() /must/ be the one uncharging the
		 * unused post-migration page and so it has to call
		 * here with the migration bit still set.  See the
		 * res_counter handling below.
		 */
		if (!end_migration && PageCgroupMigration(pc))
K
KAMEZAWA Hiroyuki 已提交
3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926
			goto unlock_out;
		break;
	case MEM_CGROUP_CHARGE_TYPE_SWAPOUT:
		if (!PageAnon(page)) {	/* Shared memory */
			if (page->mapping && !page_is_file_cache(page))
				goto unlock_out;
		} else if (page_mapped(page)) /* Anon */
				goto unlock_out;
		break;
	default:
		break;
3927
	}
K
KAMEZAWA Hiroyuki 已提交
3928

3929
	mem_cgroup_charge_statistics(memcg, anon, -nr_pages);
K
KAMEZAWA Hiroyuki 已提交
3930

3931
	ClearPageCgroupUsed(pc);
3932 3933 3934 3935 3936 3937
	/*
	 * pc->mem_cgroup is not cleared here. It will be accessed when it's
	 * freed from LRU. This is safe because uncharged page is expected not
	 * to be reused (freed soon). Exception is SwapCache, it's handled by
	 * special functions.
	 */
3938

3939
	unlock_page_cgroup(pc);
K
KAMEZAWA Hiroyuki 已提交
3940
	/*
3941
	 * even after unlock, we have memcg->res.usage here and this memcg
K
KAMEZAWA Hiroyuki 已提交
3942 3943
	 * will never be freed.
	 */
3944
	memcg_check_events(memcg, page);
K
KAMEZAWA Hiroyuki 已提交
3945
	if (do_swap_account && ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT) {
3946 3947
		mem_cgroup_swap_statistics(memcg, true);
		mem_cgroup_get(memcg);
K
KAMEZAWA Hiroyuki 已提交
3948
	}
3949 3950 3951 3952 3953 3954
	/*
	 * Migration does not charge the res_counter for the
	 * replacement page, so leave it alone when phasing out the
	 * page that is unused after the migration.
	 */
	if (!end_migration && !mem_cgroup_is_root(memcg))
3955
		mem_cgroup_do_uncharge(memcg, nr_pages, ctype);
3956

3957
	return memcg;
K
KAMEZAWA Hiroyuki 已提交
3958 3959 3960

unlock_out:
	unlock_page_cgroup(pc);
3961
	return NULL;
3962 3963
}

3964 3965
void mem_cgroup_uncharge_page(struct page *page)
{
3966 3967 3968
	/* early check. */
	if (page_mapped(page))
		return;
3969
	VM_BUG_ON(page->mapping && !PageAnon(page));
3970 3971
	if (PageSwapCache(page))
		return;
3972
	__mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_ANON, false);
3973 3974 3975 3976 3977
}

void mem_cgroup_uncharge_cache_page(struct page *page)
{
	VM_BUG_ON(page_mapped(page));
3978
	VM_BUG_ON(page->mapping);
3979
	__mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_CACHE, false);
3980 3981
}

3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995
/*
 * Batch_start/batch_end is called in unmap_page_range/invlidate/trucate.
 * In that cases, pages are freed continuously and we can expect pages
 * are in the same memcg. All these calls itself limits the number of
 * pages freed at once, then uncharge_start/end() is called properly.
 * This may be called prural(2) times in a context,
 */

void mem_cgroup_uncharge_start(void)
{
	current->memcg_batch.do_batch++;
	/* We can do nest. */
	if (current->memcg_batch.do_batch == 1) {
		current->memcg_batch.memcg = NULL;
3996 3997
		current->memcg_batch.nr_pages = 0;
		current->memcg_batch.memsw_nr_pages = 0;
3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017
	}
}

void mem_cgroup_uncharge_end(void)
{
	struct memcg_batch_info *batch = &current->memcg_batch;

	if (!batch->do_batch)
		return;

	batch->do_batch--;
	if (batch->do_batch) /* If stacked, do nothing. */
		return;

	if (!batch->memcg)
		return;
	/*
	 * This "batch->memcg" is valid without any css_get/put etc...
	 * bacause we hide charges behind us.
	 */
4018 4019 4020 4021 4022 4023
	if (batch->nr_pages)
		res_counter_uncharge(&batch->memcg->res,
				     batch->nr_pages * PAGE_SIZE);
	if (batch->memsw_nr_pages)
		res_counter_uncharge(&batch->memcg->memsw,
				     batch->memsw_nr_pages * PAGE_SIZE);
4024
	memcg_oom_recover(batch->memcg);
4025 4026 4027 4028
	/* forget this pointer (for sanity check) */
	batch->memcg = NULL;
}

4029
#ifdef CONFIG_SWAP
4030
/*
4031
 * called after __delete_from_swap_cache() and drop "page" account.
4032 4033
 * memcg information is recorded to swap_cgroup of "ent"
 */
K
KAMEZAWA Hiroyuki 已提交
4034 4035
void
mem_cgroup_uncharge_swapcache(struct page *page, swp_entry_t ent, bool swapout)
4036 4037
{
	struct mem_cgroup *memcg;
K
KAMEZAWA Hiroyuki 已提交
4038 4039 4040 4041 4042
	int ctype = MEM_CGROUP_CHARGE_TYPE_SWAPOUT;

	if (!swapout) /* this was a swap cache but the swap is unused ! */
		ctype = MEM_CGROUP_CHARGE_TYPE_DROP;

4043
	memcg = __mem_cgroup_uncharge_common(page, ctype, false);
4044

K
KAMEZAWA Hiroyuki 已提交
4045 4046 4047 4048 4049
	/*
	 * record memcg information,  if swapout && memcg != NULL,
	 * mem_cgroup_get() was called in uncharge().
	 */
	if (do_swap_account && swapout && memcg)
4050
		swap_cgroup_record(ent, css_id(&memcg->css));
4051
}
4052
#endif
4053

A
Andrew Morton 已提交
4054
#ifdef CONFIG_MEMCG_SWAP
4055 4056 4057 4058 4059
/*
 * called from swap_entry_free(). remove record in swap_cgroup and
 * uncharge "memsw" account.
 */
void mem_cgroup_uncharge_swap(swp_entry_t ent)
K
KAMEZAWA Hiroyuki 已提交
4060
{
4061
	struct mem_cgroup *memcg;
4062
	unsigned short id;
4063 4064 4065 4066

	if (!do_swap_account)
		return;

4067 4068 4069
	id = swap_cgroup_record(ent, 0);
	rcu_read_lock();
	memcg = mem_cgroup_lookup(id);
4070
	if (memcg) {
4071 4072 4073 4074
		/*
		 * We uncharge this because swap is freed.
		 * This memcg can be obsolete one. We avoid calling css_tryget
		 */
4075
		if (!mem_cgroup_is_root(memcg))
4076
			res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
4077
		mem_cgroup_swap_statistics(memcg, false);
4078 4079
		mem_cgroup_put(memcg);
	}
4080
	rcu_read_unlock();
K
KAMEZAWA Hiroyuki 已提交
4081
}
4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097

/**
 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
 * @entry: swap entry to be moved
 * @from:  mem_cgroup which the entry is moved from
 * @to:  mem_cgroup which the entry is moved to
 *
 * It succeeds only when the swap_cgroup's record for this entry is the same
 * as the mem_cgroup's id of @from.
 *
 * Returns 0 on success, -EINVAL on failure.
 *
 * The caller must have charged to @to, IOW, called res_counter_charge() about
 * both res and memsw, and called css_get().
 */
static int mem_cgroup_move_swap_account(swp_entry_t entry,
4098
				struct mem_cgroup *from, struct mem_cgroup *to)
4099 4100 4101 4102 4103 4104 4105 4106
{
	unsigned short old_id, new_id;

	old_id = css_id(&from->css);
	new_id = css_id(&to->css);

	if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
		mem_cgroup_swap_statistics(from, false);
4107
		mem_cgroup_swap_statistics(to, true);
4108
		/*
4109 4110 4111 4112 4113 4114
		 * This function is only called from task migration context now.
		 * It postpones res_counter and refcount handling till the end
		 * of task migration(mem_cgroup_clear_mc()) for performance
		 * improvement. But we cannot postpone mem_cgroup_get(to)
		 * because if the process that has been moved to @to does
		 * swap-in, the refcount of @to might be decreased to 0.
4115 4116 4117 4118 4119 4120 4121 4122
		 */
		mem_cgroup_get(to);
		return 0;
	}
	return -EINVAL;
}
#else
static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
4123
				struct mem_cgroup *from, struct mem_cgroup *to)
4124 4125 4126
{
	return -EINVAL;
}
4127
#endif
K
KAMEZAWA Hiroyuki 已提交
4128

4129
/*
4130 4131
 * Before starting migration, account PAGE_SIZE to mem_cgroup that the old
 * page belongs to.
4132
 */
4133 4134
void mem_cgroup_prepare_migration(struct page *page, struct page *newpage,
				  struct mem_cgroup **memcgp)
4135
{
4136
	struct mem_cgroup *memcg = NULL;
4137
	unsigned int nr_pages = 1;
4138
	struct page_cgroup *pc;
4139
	enum charge_type ctype;
4140

4141
	*memcgp = NULL;
4142

4143
	if (mem_cgroup_disabled())
4144
		return;
4145

4146 4147 4148
	if (PageTransHuge(page))
		nr_pages <<= compound_order(page);

4149 4150 4151
	pc = lookup_page_cgroup(page);
	lock_page_cgroup(pc);
	if (PageCgroupUsed(pc)) {
4152 4153
		memcg = pc->mem_cgroup;
		css_get(&memcg->css);
4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184
		/*
		 * At migrating an anonymous page, its mapcount goes down
		 * to 0 and uncharge() will be called. But, even if it's fully
		 * unmapped, migration may fail and this page has to be
		 * charged again. We set MIGRATION flag here and delay uncharge
		 * until end_migration() is called
		 *
		 * Corner Case Thinking
		 * A)
		 * When the old page was mapped as Anon and it's unmap-and-freed
		 * while migration was ongoing.
		 * If unmap finds the old page, uncharge() of it will be delayed
		 * until end_migration(). If unmap finds a new page, it's
		 * uncharged when it make mapcount to be 1->0. If unmap code
		 * finds swap_migration_entry, the new page will not be mapped
		 * and end_migration() will find it(mapcount==0).
		 *
		 * B)
		 * When the old page was mapped but migraion fails, the kernel
		 * remaps it. A charge for it is kept by MIGRATION flag even
		 * if mapcount goes down to 0. We can do remap successfully
		 * without charging it again.
		 *
		 * C)
		 * The "old" page is under lock_page() until the end of
		 * migration, so, the old page itself will not be swapped-out.
		 * If the new page is swapped out before end_migraton, our
		 * hook to usual swap-out path will catch the event.
		 */
		if (PageAnon(page))
			SetPageCgroupMigration(pc);
4185
	}
4186
	unlock_page_cgroup(pc);
4187 4188 4189 4190
	/*
	 * If the page is not charged at this point,
	 * we return here.
	 */
4191
	if (!memcg)
4192
		return;
4193

4194
	*memcgp = memcg;
4195 4196 4197 4198 4199 4200 4201
	/*
	 * We charge new page before it's used/mapped. So, even if unlock_page()
	 * is called before end_migration, we can catch all events on this new
	 * page. In the case new page is migrated but not remapped, new page's
	 * mapcount will be finally 0 and we call uncharge in end_migration().
	 */
	if (PageAnon(page))
4202
		ctype = MEM_CGROUP_CHARGE_TYPE_ANON;
4203
	else
4204
		ctype = MEM_CGROUP_CHARGE_TYPE_CACHE;
4205 4206 4207 4208 4209
	/*
	 * The page is committed to the memcg, but it's not actually
	 * charged to the res_counter since we plan on replacing the
	 * old one and only one page is going to be left afterwards.
	 */
4210
	__mem_cgroup_commit_charge(memcg, newpage, nr_pages, ctype, false);
4211
}
4212

4213
/* remove redundant charge if migration failed*/
4214
void mem_cgroup_end_migration(struct mem_cgroup *memcg,
4215
	struct page *oldpage, struct page *newpage, bool migration_ok)
4216
{
4217
	struct page *used, *unused;
4218
	struct page_cgroup *pc;
4219
	bool anon;
4220

4221
	if (!memcg)
4222
		return;
4223

4224
	if (!migration_ok) {
4225 4226
		used = oldpage;
		unused = newpage;
4227
	} else {
4228
		used = newpage;
4229 4230
		unused = oldpage;
	}
4231
	anon = PageAnon(used);
4232 4233 4234 4235
	__mem_cgroup_uncharge_common(unused,
				     anon ? MEM_CGROUP_CHARGE_TYPE_ANON
				     : MEM_CGROUP_CHARGE_TYPE_CACHE,
				     true);
4236
	css_put(&memcg->css);
4237
	/*
4238 4239 4240
	 * We disallowed uncharge of pages under migration because mapcount
	 * of the page goes down to zero, temporarly.
	 * Clear the flag and check the page should be charged.
4241
	 */
4242 4243 4244 4245 4246
	pc = lookup_page_cgroup(oldpage);
	lock_page_cgroup(pc);
	ClearPageCgroupMigration(pc);
	unlock_page_cgroup(pc);

4247
	/*
4248 4249 4250 4251 4252 4253
	 * If a page is a file cache, radix-tree replacement is very atomic
	 * and we can skip this check. When it was an Anon page, its mapcount
	 * goes down to 0. But because we added MIGRATION flage, it's not
	 * uncharged yet. There are several case but page->mapcount check
	 * and USED bit check in mem_cgroup_uncharge_page() will do enough
	 * check. (see prepare_charge() also)
4254
	 */
4255
	if (anon)
4256
		mem_cgroup_uncharge_page(used);
4257
}
4258

4259 4260 4261 4262 4263 4264 4265 4266
/*
 * At replace page cache, newpage is not under any memcg but it's on
 * LRU. So, this function doesn't touch res_counter but handles LRU
 * in correct way. Both pages are locked so we cannot race with uncharge.
 */
void mem_cgroup_replace_page_cache(struct page *oldpage,
				  struct page *newpage)
{
4267
	struct mem_cgroup *memcg = NULL;
4268 4269 4270 4271 4272 4273 4274 4275 4276
	struct page_cgroup *pc;
	enum charge_type type = MEM_CGROUP_CHARGE_TYPE_CACHE;

	if (mem_cgroup_disabled())
		return;

	pc = lookup_page_cgroup(oldpage);
	/* fix accounting on old pages */
	lock_page_cgroup(pc);
4277 4278 4279 4280 4281
	if (PageCgroupUsed(pc)) {
		memcg = pc->mem_cgroup;
		mem_cgroup_charge_statistics(memcg, false, -1);
		ClearPageCgroupUsed(pc);
	}
4282 4283
	unlock_page_cgroup(pc);

4284 4285 4286 4287 4288 4289
	/*
	 * When called from shmem_replace_page(), in some cases the
	 * oldpage has already been charged, and in some cases not.
	 */
	if (!memcg)
		return;
4290 4291 4292 4293 4294
	/*
	 * Even if newpage->mapping was NULL before starting replacement,
	 * the newpage may be on LRU(or pagevec for LRU) already. We lock
	 * LRU while we overwrite pc->mem_cgroup.
	 */
4295
	__mem_cgroup_commit_charge(memcg, newpage, 1, type, true);
4296 4297
}

4298 4299 4300 4301 4302 4303
#ifdef CONFIG_DEBUG_VM
static struct page_cgroup *lookup_page_cgroup_used(struct page *page)
{
	struct page_cgroup *pc;

	pc = lookup_page_cgroup(page);
4304 4305 4306 4307 4308
	/*
	 * Can be NULL while feeding pages into the page allocator for
	 * the first time, i.e. during boot or memory hotplug;
	 * or when mem_cgroup_disabled().
	 */
4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327
	if (likely(pc) && PageCgroupUsed(pc))
		return pc;
	return NULL;
}

bool mem_cgroup_bad_page_check(struct page *page)
{
	if (mem_cgroup_disabled())
		return false;

	return lookup_page_cgroup_used(page) != NULL;
}

void mem_cgroup_print_bad_page(struct page *page)
{
	struct page_cgroup *pc;

	pc = lookup_page_cgroup_used(page);
	if (pc) {
4328
		printk(KERN_ALERT "pc:%p pc->flags:%lx pc->mem_cgroup:%p\n",
4329 4330 4331 4332 4333
		       pc, pc->flags, pc->mem_cgroup);
	}
}
#endif

4334
static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
4335
				unsigned long long val)
4336
{
4337
	int retry_count;
4338
	u64 memswlimit, memlimit;
4339
	int ret = 0;
4340 4341
	int children = mem_cgroup_count_children(memcg);
	u64 curusage, oldusage;
4342
	int enlarge;
4343 4344 4345 4346 4347 4348 4349 4350 4351

	/*
	 * For keeping hierarchical_reclaim simple, how long we should retry
	 * is depends on callers. We set our retry-count to be function
	 * of # of children which we should visit in this loop.
	 */
	retry_count = MEM_CGROUP_RECLAIM_RETRIES * children;

	oldusage = res_counter_read_u64(&memcg->res, RES_USAGE);
4352

4353
	enlarge = 0;
4354
	while (retry_count) {
4355 4356 4357 4358
		if (signal_pending(current)) {
			ret = -EINTR;
			break;
		}
4359 4360 4361
		/*
		 * Rather than hide all in some function, I do this in
		 * open coded manner. You see what this really does.
4362
		 * We have to guarantee memcg->res.limit <= memcg->memsw.limit.
4363 4364 4365 4366 4367 4368
		 */
		mutex_lock(&set_limit_mutex);
		memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
		if (memswlimit < val) {
			ret = -EINVAL;
			mutex_unlock(&set_limit_mutex);
4369 4370
			break;
		}
4371 4372 4373 4374 4375

		memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
		if (memlimit < val)
			enlarge = 1;

4376
		ret = res_counter_set_limit(&memcg->res, val);
4377 4378 4379 4380 4381 4382
		if (!ret) {
			if (memswlimit == val)
				memcg->memsw_is_minimum = true;
			else
				memcg->memsw_is_minimum = false;
		}
4383 4384 4385 4386 4387
		mutex_unlock(&set_limit_mutex);

		if (!ret)
			break;

4388 4389
		mem_cgroup_reclaim(memcg, GFP_KERNEL,
				   MEM_CGROUP_RECLAIM_SHRINK);
4390 4391 4392 4393 4394 4395
		curusage = res_counter_read_u64(&memcg->res, RES_USAGE);
		/* Usage is reduced ? */
  		if (curusage >= oldusage)
			retry_count--;
		else
			oldusage = curusage;
4396
	}
4397 4398
	if (!ret && enlarge)
		memcg_oom_recover(memcg);
4399

4400 4401 4402
	return ret;
}

L
Li Zefan 已提交
4403 4404
static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
					unsigned long long val)
4405
{
4406
	int retry_count;
4407
	u64 memlimit, memswlimit, oldusage, curusage;
4408 4409
	int children = mem_cgroup_count_children(memcg);
	int ret = -EBUSY;
4410
	int enlarge = 0;
4411

4412 4413 4414
	/* see mem_cgroup_resize_res_limit */
 	retry_count = children * MEM_CGROUP_RECLAIM_RETRIES;
	oldusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
4415 4416 4417 4418 4419 4420 4421 4422
	while (retry_count) {
		if (signal_pending(current)) {
			ret = -EINTR;
			break;
		}
		/*
		 * Rather than hide all in some function, I do this in
		 * open coded manner. You see what this really does.
4423
		 * We have to guarantee memcg->res.limit <= memcg->memsw.limit.
4424 4425 4426 4427 4428 4429 4430 4431
		 */
		mutex_lock(&set_limit_mutex);
		memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
		if (memlimit > val) {
			ret = -EINVAL;
			mutex_unlock(&set_limit_mutex);
			break;
		}
4432 4433 4434
		memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
		if (memswlimit < val)
			enlarge = 1;
4435
		ret = res_counter_set_limit(&memcg->memsw, val);
4436 4437 4438 4439 4440 4441
		if (!ret) {
			if (memlimit == val)
				memcg->memsw_is_minimum = true;
			else
				memcg->memsw_is_minimum = false;
		}
4442 4443 4444 4445 4446
		mutex_unlock(&set_limit_mutex);

		if (!ret)
			break;

4447 4448 4449
		mem_cgroup_reclaim(memcg, GFP_KERNEL,
				   MEM_CGROUP_RECLAIM_NOSWAP |
				   MEM_CGROUP_RECLAIM_SHRINK);
4450
		curusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
4451
		/* Usage is reduced ? */
4452
		if (curusage >= oldusage)
4453
			retry_count--;
4454 4455
		else
			oldusage = curusage;
4456
	}
4457 4458
	if (!ret && enlarge)
		memcg_oom_recover(memcg);
4459 4460 4461
	return ret;
}

4462
unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
4463 4464
					    gfp_t gfp_mask,
					    unsigned long *total_scanned)
4465 4466 4467 4468 4469 4470
{
	unsigned long nr_reclaimed = 0;
	struct mem_cgroup_per_zone *mz, *next_mz = NULL;
	unsigned long reclaimed;
	int loop = 0;
	struct mem_cgroup_tree_per_zone *mctz;
4471
	unsigned long long excess;
4472
	unsigned long nr_scanned;
4473 4474 4475 4476

	if (order > 0)
		return 0;

4477
	mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone));
4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490
	/*
	 * This loop can run a while, specially if mem_cgroup's continuously
	 * keep exceeding their soft limit and putting the system under
	 * pressure
	 */
	do {
		if (next_mz)
			mz = next_mz;
		else
			mz = mem_cgroup_largest_soft_limit_node(mctz);
		if (!mz)
			break;

4491
		nr_scanned = 0;
4492
		reclaimed = mem_cgroup_soft_reclaim(mz->memcg, zone,
4493
						    gfp_mask, &nr_scanned);
4494
		nr_reclaimed += reclaimed;
4495
		*total_scanned += nr_scanned;
4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517
		spin_lock(&mctz->lock);

		/*
		 * If we failed to reclaim anything from this memory cgroup
		 * it is time to move on to the next cgroup
		 */
		next_mz = NULL;
		if (!reclaimed) {
			do {
				/*
				 * Loop until we find yet another one.
				 *
				 * By the time we get the soft_limit lock
				 * again, someone might have aded the
				 * group back on the RB tree. Iterate to
				 * make sure we get a different mem.
				 * mem_cgroup_largest_soft_limit_node returns
				 * NULL if no other cgroup is present on
				 * the tree
				 */
				next_mz =
				__mem_cgroup_largest_soft_limit_node(mctz);
4518
				if (next_mz == mz)
4519
					css_put(&next_mz->memcg->css);
4520
				else /* next_mz == NULL or other memcg */
4521 4522 4523
					break;
			} while (1);
		}
4524 4525
		__mem_cgroup_remove_exceeded(mz->memcg, mz, mctz);
		excess = res_counter_soft_limit_excess(&mz->memcg->res);
4526 4527 4528 4529 4530 4531 4532 4533
		/*
		 * One school of thought says that we should not add
		 * back the node to the tree if reclaim returns 0.
		 * But our reclaim could return 0, simply because due
		 * to priority we are exposing a smaller subset of
		 * memory to reclaim from. Consider this as a longer
		 * term TODO.
		 */
4534
		/* If excess == 0, no tree ops */
4535
		__mem_cgroup_insert_exceeded(mz->memcg, mz, mctz, excess);
4536
		spin_unlock(&mctz->lock);
4537
		css_put(&mz->memcg->css);
4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549
		loop++;
		/*
		 * Could not reclaim anything and there are no more
		 * mem cgroups to try or we seem to be looping without
		 * reclaiming anything.
		 */
		if (!nr_reclaimed &&
			(next_mz == NULL ||
			loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
			break;
	} while (!nr_reclaimed);
	if (next_mz)
4550
		css_put(&next_mz->memcg->css);
4551 4552 4553
	return nr_reclaimed;
}

4554 4555 4556 4557 4558 4559 4560
/**
 * mem_cgroup_force_empty_list - clears LRU of a group
 * @memcg: group to clear
 * @node: NUMA node
 * @zid: zone id
 * @lru: lru to to clear
 *
4561
 * Traverse a specified page_cgroup list and try to drop them all.  This doesn't
4562 4563
 * reclaim the pages page themselves - pages are moved to the parent (or root)
 * group.
4564
 */
4565
static void mem_cgroup_force_empty_list(struct mem_cgroup *memcg,
K
KAMEZAWA Hiroyuki 已提交
4566
				int node, int zid, enum lru_list lru)
4567
{
4568
	struct lruvec *lruvec;
4569
	unsigned long flags;
4570
	struct list_head *list;
4571 4572
	struct page *busy;
	struct zone *zone;
4573

K
KAMEZAWA Hiroyuki 已提交
4574
	zone = &NODE_DATA(node)->node_zones[zid];
4575 4576
	lruvec = mem_cgroup_zone_lruvec(zone, memcg);
	list = &lruvec->lists[lru];
4577

4578
	busy = NULL;
4579
	do {
4580
		struct page_cgroup *pc;
4581 4582
		struct page *page;

K
KAMEZAWA Hiroyuki 已提交
4583
		spin_lock_irqsave(&zone->lru_lock, flags);
4584
		if (list_empty(list)) {
K
KAMEZAWA Hiroyuki 已提交
4585
			spin_unlock_irqrestore(&zone->lru_lock, flags);
4586
			break;
4587
		}
4588 4589 4590
		page = list_entry(list->prev, struct page, lru);
		if (busy == page) {
			list_move(&page->lru, list);
4591
			busy = NULL;
K
KAMEZAWA Hiroyuki 已提交
4592
			spin_unlock_irqrestore(&zone->lru_lock, flags);
4593 4594
			continue;
		}
K
KAMEZAWA Hiroyuki 已提交
4595
		spin_unlock_irqrestore(&zone->lru_lock, flags);
4596

4597
		pc = lookup_page_cgroup(page);
4598

4599
		if (mem_cgroup_move_parent(page, pc, memcg)) {
4600
			/* found lock contention or "pc" is obsolete. */
4601
			busy = page;
4602 4603 4604
			cond_resched();
		} else
			busy = NULL;
4605
	} while (!list_empty(list));
4606 4607 4608
}

/*
4609 4610
 * make mem_cgroup's charge to be 0 if there is no task by moving
 * all the charges and pages to the parent.
4611
 * This enables deleting this mem_cgroup.
4612 4613
 *
 * Caller is responsible for holding css reference on the memcg.
4614
 */
4615
static void mem_cgroup_reparent_charges(struct mem_cgroup *memcg)
4616
{
4617
	int node, zid;
4618
	u64 usage;
4619

4620
	do {
4621 4622
		/* This is for making all *used* pages to be on LRU. */
		lru_add_drain_all();
4623 4624
		drain_all_stock_sync(memcg);
		mem_cgroup_start_move(memcg);
4625
		for_each_node_state(node, N_MEMORY) {
4626
			for (zid = 0; zid < MAX_NR_ZONES; zid++) {
H
Hugh Dickins 已提交
4627 4628
				enum lru_list lru;
				for_each_lru(lru) {
4629
					mem_cgroup_force_empty_list(memcg,
H
Hugh Dickins 已提交
4630
							node, zid, lru);
4631
				}
4632
			}
4633
		}
4634 4635
		mem_cgroup_end_move(memcg);
		memcg_oom_recover(memcg);
4636
		cond_resched();
4637

4638
		/*
4639 4640 4641 4642 4643
		 * Kernel memory may not necessarily be trackable to a specific
		 * process. So they are not migrated, and therefore we can't
		 * expect their value to drop to 0 here.
		 * Having res filled up with kmem only is enough.
		 *
4644 4645 4646 4647 4648 4649
		 * This is a safety check because mem_cgroup_force_empty_list
		 * could have raced with mem_cgroup_replace_page_cache callers
		 * so the lru seemed empty but the page could have been added
		 * right after the check. RES_USAGE should be safe as we always
		 * charge before adding to the LRU.
		 */
4650 4651 4652
		usage = res_counter_read_u64(&memcg->res, RES_USAGE) -
			res_counter_read_u64(&memcg->kmem, RES_USAGE);
	} while (usage > 0);
4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664
}

/*
 * Reclaims as many pages from the given memcg as possible and moves
 * the rest to the parent.
 *
 * Caller is responsible for holding css reference for memcg.
 */
static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
{
	int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
	struct cgroup *cgrp = memcg->css.cgroup;
4665

4666
	/* returns EBUSY if there is a task or if we come here twice. */
4667 4668 4669
	if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children))
		return -EBUSY;

4670 4671
	/* we call try-to-free pages for make this cgroup empty */
	lru_add_drain_all();
4672
	/* try to free all pages in this cgroup */
4673
	while (nr_retries && res_counter_read_u64(&memcg->res, RES_USAGE) > 0) {
4674
		int progress;
4675

4676 4677 4678
		if (signal_pending(current))
			return -EINTR;

4679
		progress = try_to_free_mem_cgroup_pages(memcg, GFP_KERNEL,
4680
						false);
4681
		if (!progress) {
4682
			nr_retries--;
4683
			/* maybe some writeback is necessary */
4684
			congestion_wait(BLK_RW_ASYNC, HZ/10);
4685
		}
4686 4687

	}
K
KAMEZAWA Hiroyuki 已提交
4688
	lru_add_drain();
4689 4690 4691
	mem_cgroup_reparent_charges(memcg);

	return 0;
4692 4693
}

4694
static int mem_cgroup_force_empty_write(struct cgroup *cont, unsigned int event)
4695
{
4696 4697 4698
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
	int ret;

4699 4700
	if (mem_cgroup_is_root(memcg))
		return -EINVAL;
4701 4702 4703 4704 4705
	css_get(&memcg->css);
	ret = mem_cgroup_force_empty(memcg);
	css_put(&memcg->css);

	return ret;
4706 4707 4708
}


4709 4710 4711 4712 4713 4714 4715 4716 4717
static u64 mem_cgroup_hierarchy_read(struct cgroup *cont, struct cftype *cft)
{
	return mem_cgroup_from_cont(cont)->use_hierarchy;
}

static int mem_cgroup_hierarchy_write(struct cgroup *cont, struct cftype *cft,
					u64 val)
{
	int retval = 0;
4718
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
4719
	struct cgroup *parent = cont->parent;
4720
	struct mem_cgroup *parent_memcg = NULL;
4721 4722

	if (parent)
4723
		parent_memcg = mem_cgroup_from_cont(parent);
4724 4725

	cgroup_lock();
4726 4727 4728 4729

	if (memcg->use_hierarchy == val)
		goto out;

4730
	/*
4731
	 * If parent's use_hierarchy is set, we can't make any modifications
4732 4733 4734 4735 4736 4737
	 * in the child subtrees. If it is unset, then the change can
	 * occur, provided the current cgroup has no children.
	 *
	 * For the root cgroup, parent_mem is NULL, we allow value to be
	 * set if there are no children.
	 */
4738
	if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
4739 4740
				(val == 1 || val == 0)) {
		if (list_empty(&cont->children))
4741
			memcg->use_hierarchy = val;
4742 4743 4744 4745
		else
			retval = -EBUSY;
	} else
		retval = -EINVAL;
4746 4747

out:
4748 4749 4750 4751 4752
	cgroup_unlock();

	return retval;
}

4753

4754
static unsigned long mem_cgroup_recursive_stat(struct mem_cgroup *memcg,
4755
					       enum mem_cgroup_stat_index idx)
4756
{
K
KAMEZAWA Hiroyuki 已提交
4757
	struct mem_cgroup *iter;
4758
	long val = 0;
4759

4760
	/* Per-cpu values can be negative, use a signed accumulator */
4761
	for_each_mem_cgroup_tree(iter, memcg)
K
KAMEZAWA Hiroyuki 已提交
4762 4763 4764 4765 4766
		val += mem_cgroup_read_stat(iter, idx);

	if (val < 0) /* race ? */
		val = 0;
	return val;
4767 4768
}

4769
static inline u64 mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
4770
{
K
KAMEZAWA Hiroyuki 已提交
4771
	u64 val;
4772

4773
	if (!mem_cgroup_is_root(memcg)) {
4774
		if (!swap)
4775
			return res_counter_read_u64(&memcg->res, RES_USAGE);
4776
		else
4777
			return res_counter_read_u64(&memcg->memsw, RES_USAGE);
4778 4779
	}

4780 4781
	val = mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_CACHE);
	val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_RSS);
4782

K
KAMEZAWA Hiroyuki 已提交
4783
	if (swap)
4784
		val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_SWAP);
4785 4786 4787 4788

	return val << PAGE_SHIFT;
}

4789 4790 4791
static ssize_t mem_cgroup_read(struct cgroup *cont, struct cftype *cft,
			       struct file *file, char __user *buf,
			       size_t nbytes, loff_t *ppos)
B
Balbir Singh 已提交
4792
{
4793
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
4794
	char str[64];
4795
	u64 val;
G
Glauber Costa 已提交
4796 4797
	int name, len;
	enum res_type type;
4798 4799 4800

	type = MEMFILE_TYPE(cft->private);
	name = MEMFILE_ATTR(cft->private);
4801 4802 4803 4804

	if (!do_swap_account && type == _MEMSWAP)
		return -EOPNOTSUPP;

4805 4806
	switch (type) {
	case _MEM:
4807
		if (name == RES_USAGE)
4808
			val = mem_cgroup_usage(memcg, false);
4809
		else
4810
			val = res_counter_read_u64(&memcg->res, name);
4811 4812
		break;
	case _MEMSWAP:
4813
		if (name == RES_USAGE)
4814
			val = mem_cgroup_usage(memcg, true);
4815
		else
4816
			val = res_counter_read_u64(&memcg->memsw, name);
4817
		break;
4818 4819 4820
	case _KMEM:
		val = res_counter_read_u64(&memcg->kmem, name);
		break;
4821 4822 4823
	default:
		BUG();
	}
4824 4825 4826

	len = scnprintf(str, sizeof(str), "%llu\n", (unsigned long long)val);
	return simple_read_from_buffer(buf, nbytes, ppos, str, len);
B
Balbir Singh 已提交
4827
}
4828 4829 4830 4831 4832

static int memcg_update_kmem_limit(struct cgroup *cont, u64 val)
{
	int ret = -EINVAL;
#ifdef CONFIG_MEMCG_KMEM
4833 4834
	bool must_inc_static_branch = false;

4835 4836 4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863 4864
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
	/*
	 * For simplicity, we won't allow this to be disabled.  It also can't
	 * be changed if the cgroup has children already, or if tasks had
	 * already joined.
	 *
	 * If tasks join before we set the limit, a person looking at
	 * kmem.usage_in_bytes will have no way to determine when it took
	 * place, which makes the value quite meaningless.
	 *
	 * After it first became limited, changes in the value of the limit are
	 * of course permitted.
	 *
	 * Taking the cgroup_lock is really offensive, but it is so far the only
	 * way to guarantee that no children will appear. There are plenty of
	 * other offenders, and they should all go away. Fine grained locking
	 * is probably the way to go here. When we are fully hierarchical, we
	 * can also get rid of the use_hierarchy check.
	 */
	cgroup_lock();
	mutex_lock(&set_limit_mutex);
	if (!memcg->kmem_account_flags && val != RESOURCE_MAX) {
		if (cgroup_task_count(cont) || (memcg->use_hierarchy &&
						!list_empty(&cont->children))) {
			ret = -EBUSY;
			goto out;
		}
		ret = res_counter_set_limit(&memcg->kmem, val);
		VM_BUG_ON(ret);

4865 4866 4867 4868 4869
		ret = memcg_update_cache_sizes(memcg);
		if (ret) {
			res_counter_set_limit(&memcg->kmem, RESOURCE_MAX);
			goto out;
		}
4870
		must_inc_static_branch = true;
4871 4872 4873 4874 4875 4876 4877
		/*
		 * kmem charges can outlive the cgroup. In the case of slab
		 * pages, for instance, a page contain objects from various
		 * processes, so it is unfeasible to migrate them away. We
		 * need to reference count the memcg because of that.
		 */
		mem_cgroup_get(memcg);
4878 4879 4880 4881 4882
	} else
		ret = res_counter_set_limit(&memcg->kmem, val);
out:
	mutex_unlock(&set_limit_mutex);
	cgroup_unlock();
4883 4884 4885 4886 4887 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899 4900 4901 4902 4903

	/*
	 * We are by now familiar with the fact that we can't inc the static
	 * branch inside cgroup_lock. See disarm functions for details. A
	 * worker here is overkill, but also wrong: After the limit is set, we
	 * must start accounting right away. Since this operation can't fail,
	 * we can safely defer it to here - no rollback will be needed.
	 *
	 * The boolean used to control this is also safe, because
	 * KMEM_ACCOUNTED_ACTIVATED guarantees that only one process will be
	 * able to set it to true;
	 */
	if (must_inc_static_branch) {
		static_key_slow_inc(&memcg_kmem_enabled_key);
		/*
		 * setting the active bit after the inc will guarantee no one
		 * starts accounting before all call sites are patched
		 */
		memcg_kmem_set_active(memcg);
	}

4904 4905 4906 4907
#endif
	return ret;
}

4908
static int memcg_propagate_kmem(struct mem_cgroup *memcg)
4909
{
4910
	int ret = 0;
4911 4912
	struct mem_cgroup *parent = parent_mem_cgroup(memcg);
	if (!parent)
4913 4914
		goto out;

4915
	memcg->kmem_account_flags = parent->kmem_account_flags;
4916
#ifdef CONFIG_MEMCG_KMEM
4917 4918 4919 4920 4921 4922 4923 4924 4925 4926
	/*
	 * When that happen, we need to disable the static branch only on those
	 * memcgs that enabled it. To achieve this, we would be forced to
	 * complicate the code by keeping track of which memcgs were the ones
	 * that actually enabled limits, and which ones got it from its
	 * parents.
	 *
	 * It is a lot simpler just to do static_key_slow_inc() on every child
	 * that is accounted.
	 */
4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940 4941
	if (!memcg_kmem_is_active(memcg))
		goto out;

	/*
	 * destroy(), called if we fail, will issue static_key_slow_inc() and
	 * mem_cgroup_put() if kmem is enabled. We have to either call them
	 * unconditionally, or clear the KMEM_ACTIVE flag. I personally find
	 * this more consistent, since it always leads to the same destroy path
	 */
	mem_cgroup_get(memcg);
	static_key_slow_inc(&memcg_kmem_enabled_key);

	mutex_lock(&set_limit_mutex);
	ret = memcg_update_cache_sizes(memcg);
	mutex_unlock(&set_limit_mutex);
4942
#endif
4943 4944
out:
	return ret;
4945 4946
}

4947 4948 4949 4950
/*
 * The user of this function is...
 * RES_LIMIT.
 */
4951 4952
static int mem_cgroup_write(struct cgroup *cont, struct cftype *cft,
			    const char *buffer)
B
Balbir Singh 已提交
4953
{
4954
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
G
Glauber Costa 已提交
4955 4956
	enum res_type type;
	int name;
4957 4958 4959
	unsigned long long val;
	int ret;

4960 4961
	type = MEMFILE_TYPE(cft->private);
	name = MEMFILE_ATTR(cft->private);
4962 4963 4964 4965

	if (!do_swap_account && type == _MEMSWAP)
		return -EOPNOTSUPP;

4966
	switch (name) {
4967
	case RES_LIMIT:
4968 4969 4970 4971
		if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
			ret = -EINVAL;
			break;
		}
4972 4973
		/* This function does all necessary parse...reuse it */
		ret = res_counter_memparse_write_strategy(buffer, &val);
4974 4975 4976
		if (ret)
			break;
		if (type == _MEM)
4977
			ret = mem_cgroup_resize_limit(memcg, val);
4978
		else if (type == _MEMSWAP)
4979
			ret = mem_cgroup_resize_memsw_limit(memcg, val);
4980 4981 4982 4983
		else if (type == _KMEM)
			ret = memcg_update_kmem_limit(cont, val);
		else
			return -EINVAL;
4984
		break;
4985 4986 4987 4988 4989 4990 4991 4992 4993 4994 4995 4996 4997 4998
	case RES_SOFT_LIMIT:
		ret = res_counter_memparse_write_strategy(buffer, &val);
		if (ret)
			break;
		/*
		 * For memsw, soft limits are hard to implement in terms
		 * of semantics, for now, we support soft limits for
		 * control without swap
		 */
		if (type == _MEM)
			ret = res_counter_set_soft_limit(&memcg->res, val);
		else
			ret = -EINVAL;
		break;
4999 5000 5001 5002 5003
	default:
		ret = -EINVAL; /* should be BUG() ? */
		break;
	}
	return ret;
B
Balbir Singh 已提交
5004 5005
}

5006 5007 5008 5009 5010 5011 5012 5013 5014 5015 5016 5017 5018 5019 5020 5021 5022 5023 5024 5025 5026 5027 5028 5029 5030 5031 5032
static void memcg_get_hierarchical_limit(struct mem_cgroup *memcg,
		unsigned long long *mem_limit, unsigned long long *memsw_limit)
{
	struct cgroup *cgroup;
	unsigned long long min_limit, min_memsw_limit, tmp;

	min_limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
	min_memsw_limit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
	cgroup = memcg->css.cgroup;
	if (!memcg->use_hierarchy)
		goto out;

	while (cgroup->parent) {
		cgroup = cgroup->parent;
		memcg = mem_cgroup_from_cont(cgroup);
		if (!memcg->use_hierarchy)
			break;
		tmp = res_counter_read_u64(&memcg->res, RES_LIMIT);
		min_limit = min(min_limit, tmp);
		tmp = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
		min_memsw_limit = min(min_memsw_limit, tmp);
	}
out:
	*mem_limit = min_limit;
	*memsw_limit = min_memsw_limit;
}

5033
static int mem_cgroup_reset(struct cgroup *cont, unsigned int event)
5034
{
5035
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
G
Glauber Costa 已提交
5036 5037
	int name;
	enum res_type type;
5038

5039 5040
	type = MEMFILE_TYPE(event);
	name = MEMFILE_ATTR(event);
5041 5042 5043 5044

	if (!do_swap_account && type == _MEMSWAP)
		return -EOPNOTSUPP;

5045
	switch (name) {
5046
	case RES_MAX_USAGE:
5047
		if (type == _MEM)
5048
			res_counter_reset_max(&memcg->res);
5049
		else if (type == _MEMSWAP)
5050
			res_counter_reset_max(&memcg->memsw);
5051 5052 5053 5054
		else if (type == _KMEM)
			res_counter_reset_max(&memcg->kmem);
		else
			return -EINVAL;
5055 5056
		break;
	case RES_FAILCNT:
5057
		if (type == _MEM)
5058
			res_counter_reset_failcnt(&memcg->res);
5059
		else if (type == _MEMSWAP)
5060
			res_counter_reset_failcnt(&memcg->memsw);
5061 5062 5063 5064
		else if (type == _KMEM)
			res_counter_reset_failcnt(&memcg->kmem);
		else
			return -EINVAL;
5065 5066
		break;
	}
5067

5068
	return 0;
5069 5070
}

5071 5072 5073 5074 5075 5076
static u64 mem_cgroup_move_charge_read(struct cgroup *cgrp,
					struct cftype *cft)
{
	return mem_cgroup_from_cont(cgrp)->move_charge_at_immigrate;
}

5077
#ifdef CONFIG_MMU
5078 5079 5080
static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
					struct cftype *cft, u64 val)
{
5081
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
5082 5083 5084 5085 5086 5087 5088 5089 5090

	if (val >= (1 << NR_MOVE_TYPE))
		return -EINVAL;
	/*
	 * We check this value several times in both in can_attach() and
	 * attach(), so we need cgroup lock to prevent this value from being
	 * inconsistent.
	 */
	cgroup_lock();
5091
	memcg->move_charge_at_immigrate = val;
5092 5093 5094 5095
	cgroup_unlock();

	return 0;
}
5096 5097 5098 5099 5100 5101 5102
#else
static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
					struct cftype *cft, u64 val)
{
	return -ENOSYS;
}
#endif
5103

5104
#ifdef CONFIG_NUMA
5105
static int memcg_numa_stat_show(struct cgroup *cont, struct cftype *cft,
5106
				      struct seq_file *m)
5107 5108 5109 5110
{
	int nid;
	unsigned long total_nr, file_nr, anon_nr, unevictable_nr;
	unsigned long node_nr;
5111
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
5112

5113
	total_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL);
5114
	seq_printf(m, "total=%lu", total_nr);
5115
	for_each_node_state(nid, N_MEMORY) {
5116
		node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL);
5117 5118 5119 5120
		seq_printf(m, " N%d=%lu", nid, node_nr);
	}
	seq_putc(m, '\n');

5121
	file_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL_FILE);
5122
	seq_printf(m, "file=%lu", file_nr);
5123
	for_each_node_state(nid, N_MEMORY) {
5124
		node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
5125
				LRU_ALL_FILE);
5126 5127 5128 5129
		seq_printf(m, " N%d=%lu", nid, node_nr);
	}
	seq_putc(m, '\n');

5130
	anon_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL_ANON);
5131
	seq_printf(m, "anon=%lu", anon_nr);
5132
	for_each_node_state(nid, N_MEMORY) {
5133
		node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
5134
				LRU_ALL_ANON);
5135 5136 5137 5138
		seq_printf(m, " N%d=%lu", nid, node_nr);
	}
	seq_putc(m, '\n');

5139
	unevictable_nr = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_UNEVICTABLE));
5140
	seq_printf(m, "unevictable=%lu", unevictable_nr);
5141
	for_each_node_state(nid, N_MEMORY) {
5142
		node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
5143
				BIT(LRU_UNEVICTABLE));
5144 5145 5146 5147 5148 5149 5150
		seq_printf(m, " N%d=%lu", nid, node_nr);
	}
	seq_putc(m, '\n');
	return 0;
}
#endif /* CONFIG_NUMA */

5151 5152 5153 5154 5155 5156 5157 5158 5159 5160 5161 5162 5163
static const char * const mem_cgroup_lru_names[] = {
	"inactive_anon",
	"active_anon",
	"inactive_file",
	"active_file",
	"unevictable",
};

static inline void mem_cgroup_lru_names_not_uptodate(void)
{
	BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS);
}

5164
static int memcg_stat_show(struct cgroup *cont, struct cftype *cft,
5165
				 struct seq_file *m)
5166
{
5167
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
5168 5169
	struct mem_cgroup *mi;
	unsigned int i;
5170

5171
	for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
5172
		if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
5173
			continue;
5174 5175
		seq_printf(m, "%s %ld\n", mem_cgroup_stat_names[i],
			   mem_cgroup_read_stat(memcg, i) * PAGE_SIZE);
5176
	}
L
Lee Schermerhorn 已提交
5177

5178 5179 5180 5181 5182 5183 5184 5185
	for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++)
		seq_printf(m, "%s %lu\n", mem_cgroup_events_names[i],
			   mem_cgroup_read_events(memcg, i));

	for (i = 0; i < NR_LRU_LISTS; i++)
		seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i],
			   mem_cgroup_nr_lru_pages(memcg, BIT(i)) * PAGE_SIZE);

K
KAMEZAWA Hiroyuki 已提交
5186
	/* Hierarchical information */
5187 5188
	{
		unsigned long long limit, memsw_limit;
5189
		memcg_get_hierarchical_limit(memcg, &limit, &memsw_limit);
5190
		seq_printf(m, "hierarchical_memory_limit %llu\n", limit);
5191
		if (do_swap_account)
5192 5193
			seq_printf(m, "hierarchical_memsw_limit %llu\n",
				   memsw_limit);
5194
	}
K
KOSAKI Motohiro 已提交
5195

5196 5197 5198
	for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
		long long val = 0;

5199
		if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
5200
			continue;
5201 5202 5203 5204 5205 5206 5207 5208 5209 5210 5211 5212 5213 5214 5215 5216 5217 5218 5219 5220
		for_each_mem_cgroup_tree(mi, memcg)
			val += mem_cgroup_read_stat(mi, i) * PAGE_SIZE;
		seq_printf(m, "total_%s %lld\n", mem_cgroup_stat_names[i], val);
	}

	for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
		unsigned long long val = 0;

		for_each_mem_cgroup_tree(mi, memcg)
			val += mem_cgroup_read_events(mi, i);
		seq_printf(m, "total_%s %llu\n",
			   mem_cgroup_events_names[i], val);
	}

	for (i = 0; i < NR_LRU_LISTS; i++) {
		unsigned long long val = 0;

		for_each_mem_cgroup_tree(mi, memcg)
			val += mem_cgroup_nr_lru_pages(mi, BIT(i)) * PAGE_SIZE;
		seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i], val);
5221
	}
K
KAMEZAWA Hiroyuki 已提交
5222

K
KOSAKI Motohiro 已提交
5223 5224 5225 5226
#ifdef CONFIG_DEBUG_VM
	{
		int nid, zid;
		struct mem_cgroup_per_zone *mz;
5227
		struct zone_reclaim_stat *rstat;
K
KOSAKI Motohiro 已提交
5228 5229 5230 5231 5232
		unsigned long recent_rotated[2] = {0, 0};
		unsigned long recent_scanned[2] = {0, 0};

		for_each_online_node(nid)
			for (zid = 0; zid < MAX_NR_ZONES; zid++) {
5233
				mz = mem_cgroup_zoneinfo(memcg, nid, zid);
5234
				rstat = &mz->lruvec.reclaim_stat;
K
KOSAKI Motohiro 已提交
5235

5236 5237 5238 5239
				recent_rotated[0] += rstat->recent_rotated[0];
				recent_rotated[1] += rstat->recent_rotated[1];
				recent_scanned[0] += rstat->recent_scanned[0];
				recent_scanned[1] += rstat->recent_scanned[1];
K
KOSAKI Motohiro 已提交
5240
			}
5241 5242 5243 5244
		seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]);
		seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]);
		seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]);
		seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]);
K
KOSAKI Motohiro 已提交
5245 5246 5247
	}
#endif

5248 5249 5250
	return 0;
}

K
KOSAKI Motohiro 已提交
5251 5252 5253 5254
static u64 mem_cgroup_swappiness_read(struct cgroup *cgrp, struct cftype *cft)
{
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);

5255
	return mem_cgroup_swappiness(memcg);
K
KOSAKI Motohiro 已提交
5256 5257 5258 5259 5260 5261 5262
}

static int mem_cgroup_swappiness_write(struct cgroup *cgrp, struct cftype *cft,
				       u64 val)
{
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
	struct mem_cgroup *parent;
5263

K
KOSAKI Motohiro 已提交
5264 5265 5266 5267 5268 5269 5270
	if (val > 100)
		return -EINVAL;

	if (cgrp->parent == NULL)
		return -EINVAL;

	parent = mem_cgroup_from_cont(cgrp->parent);
5271 5272 5273

	cgroup_lock();

K
KOSAKI Motohiro 已提交
5274 5275
	/* If under hierarchy, only empty-root can set this value */
	if ((parent->use_hierarchy) ||
5276 5277
	    (memcg->use_hierarchy && !list_empty(&cgrp->children))) {
		cgroup_unlock();
K
KOSAKI Motohiro 已提交
5278
		return -EINVAL;
5279
	}
K
KOSAKI Motohiro 已提交
5280 5281 5282

	memcg->swappiness = val;

5283 5284
	cgroup_unlock();

K
KOSAKI Motohiro 已提交
5285 5286 5287
	return 0;
}

5288 5289 5290 5291 5292 5293 5294 5295
static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
{
	struct mem_cgroup_threshold_ary *t;
	u64 usage;
	int i;

	rcu_read_lock();
	if (!swap)
5296
		t = rcu_dereference(memcg->thresholds.primary);
5297
	else
5298
		t = rcu_dereference(memcg->memsw_thresholds.primary);
5299 5300 5301 5302 5303 5304 5305

	if (!t)
		goto unlock;

	usage = mem_cgroup_usage(memcg, swap);

	/*
5306
	 * current_threshold points to threshold just below or equal to usage.
5307 5308 5309
	 * If it's not true, a threshold was crossed after last
	 * call of __mem_cgroup_threshold().
	 */
5310
	i = t->current_threshold;
5311 5312 5313 5314 5315 5316 5317 5318 5319 5320 5321 5322 5323 5324 5325 5326 5327 5328 5329 5330 5331 5332 5333

	/*
	 * Iterate backward over array of thresholds starting from
	 * current_threshold and check if a threshold is crossed.
	 * If none of thresholds below usage is crossed, we read
	 * only one element of the array here.
	 */
	for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
		eventfd_signal(t->entries[i].eventfd, 1);

	/* i = current_threshold + 1 */
	i++;

	/*
	 * Iterate forward over array of thresholds starting from
	 * current_threshold+1 and check if a threshold is crossed.
	 * If none of thresholds above usage is crossed, we read
	 * only one element of the array here.
	 */
	for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
		eventfd_signal(t->entries[i].eventfd, 1);

	/* Update current_threshold */
5334
	t->current_threshold = i - 1;
5335 5336 5337 5338 5339 5340
unlock:
	rcu_read_unlock();
}

static void mem_cgroup_threshold(struct mem_cgroup *memcg)
{
5341 5342 5343 5344 5345 5346 5347
	while (memcg) {
		__mem_cgroup_threshold(memcg, false);
		if (do_swap_account)
			__mem_cgroup_threshold(memcg, true);

		memcg = parent_mem_cgroup(memcg);
	}
5348 5349 5350 5351 5352 5353 5354 5355 5356 5357
}

static int compare_thresholds(const void *a, const void *b)
{
	const struct mem_cgroup_threshold *_a = a;
	const struct mem_cgroup_threshold *_b = b;

	return _a->threshold - _b->threshold;
}

5358
static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
5359 5360 5361
{
	struct mem_cgroup_eventfd_list *ev;

5362
	list_for_each_entry(ev, &memcg->oom_notify, list)
K
KAMEZAWA Hiroyuki 已提交
5363 5364 5365 5366
		eventfd_signal(ev->eventfd, 1);
	return 0;
}

5367
static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
5368
{
K
KAMEZAWA Hiroyuki 已提交
5369 5370
	struct mem_cgroup *iter;

5371
	for_each_mem_cgroup_tree(iter, memcg)
K
KAMEZAWA Hiroyuki 已提交
5372
		mem_cgroup_oom_notify_cb(iter);
K
KAMEZAWA Hiroyuki 已提交
5373 5374 5375 5376
}

static int mem_cgroup_usage_register_event(struct cgroup *cgrp,
	struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
5377 5378
{
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
5379 5380
	struct mem_cgroup_thresholds *thresholds;
	struct mem_cgroup_threshold_ary *new;
G
Glauber Costa 已提交
5381
	enum res_type type = MEMFILE_TYPE(cft->private);
5382
	u64 threshold, usage;
5383
	int i, size, ret;
5384 5385 5386 5387 5388 5389

	ret = res_counter_memparse_write_strategy(args, &threshold);
	if (ret)
		return ret;

	mutex_lock(&memcg->thresholds_lock);
5390

5391
	if (type == _MEM)
5392
		thresholds = &memcg->thresholds;
5393
	else if (type == _MEMSWAP)
5394
		thresholds = &memcg->memsw_thresholds;
5395 5396 5397 5398 5399 5400
	else
		BUG();

	usage = mem_cgroup_usage(memcg, type == _MEMSWAP);

	/* Check if a threshold crossed before adding a new one */
5401
	if (thresholds->primary)
5402 5403
		__mem_cgroup_threshold(memcg, type == _MEMSWAP);

5404
	size = thresholds->primary ? thresholds->primary->size + 1 : 1;
5405 5406

	/* Allocate memory for new array of thresholds */
5407
	new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
5408
			GFP_KERNEL);
5409
	if (!new) {
5410 5411 5412
		ret = -ENOMEM;
		goto unlock;
	}
5413
	new->size = size;
5414 5415

	/* Copy thresholds (if any) to new array */
5416 5417
	if (thresholds->primary) {
		memcpy(new->entries, thresholds->primary->entries, (size - 1) *
5418
				sizeof(struct mem_cgroup_threshold));
5419 5420
	}

5421
	/* Add new threshold */
5422 5423
	new->entries[size - 1].eventfd = eventfd;
	new->entries[size - 1].threshold = threshold;
5424 5425

	/* Sort thresholds. Registering of new threshold isn't time-critical */
5426
	sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
5427 5428 5429
			compare_thresholds, NULL);

	/* Find current threshold */
5430
	new->current_threshold = -1;
5431
	for (i = 0; i < size; i++) {
5432
		if (new->entries[i].threshold <= usage) {
5433
			/*
5434 5435
			 * new->current_threshold will not be used until
			 * rcu_assign_pointer(), so it's safe to increment
5436 5437
			 * it here.
			 */
5438
			++new->current_threshold;
5439 5440
		} else
			break;
5441 5442
	}

5443 5444 5445 5446 5447
	/* Free old spare buffer and save old primary buffer as spare */
	kfree(thresholds->spare);
	thresholds->spare = thresholds->primary;

	rcu_assign_pointer(thresholds->primary, new);
5448

5449
	/* To be sure that nobody uses thresholds */
5450 5451 5452 5453 5454 5455 5456 5457
	synchronize_rcu();

unlock:
	mutex_unlock(&memcg->thresholds_lock);

	return ret;
}

5458
static void mem_cgroup_usage_unregister_event(struct cgroup *cgrp,
K
KAMEZAWA Hiroyuki 已提交
5459
	struct cftype *cft, struct eventfd_ctx *eventfd)
5460 5461
{
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
5462 5463
	struct mem_cgroup_thresholds *thresholds;
	struct mem_cgroup_threshold_ary *new;
G
Glauber Costa 已提交
5464
	enum res_type type = MEMFILE_TYPE(cft->private);
5465
	u64 usage;
5466
	int i, j, size;
5467 5468 5469

	mutex_lock(&memcg->thresholds_lock);
	if (type == _MEM)
5470
		thresholds = &memcg->thresholds;
5471
	else if (type == _MEMSWAP)
5472
		thresholds = &memcg->memsw_thresholds;
5473 5474 5475
	else
		BUG();

5476 5477 5478
	if (!thresholds->primary)
		goto unlock;

5479 5480 5481 5482 5483 5484
	usage = mem_cgroup_usage(memcg, type == _MEMSWAP);

	/* Check if a threshold crossed before removing */
	__mem_cgroup_threshold(memcg, type == _MEMSWAP);

	/* Calculate new number of threshold */
5485 5486 5487
	size = 0;
	for (i = 0; i < thresholds->primary->size; i++) {
		if (thresholds->primary->entries[i].eventfd != eventfd)
5488 5489 5490
			size++;
	}

5491
	new = thresholds->spare;
5492

5493 5494
	/* Set thresholds array to NULL if we don't have thresholds */
	if (!size) {
5495 5496
		kfree(new);
		new = NULL;
5497
		goto swap_buffers;
5498 5499
	}

5500
	new->size = size;
5501 5502

	/* Copy thresholds and find current threshold */
5503 5504 5505
	new->current_threshold = -1;
	for (i = 0, j = 0; i < thresholds->primary->size; i++) {
		if (thresholds->primary->entries[i].eventfd == eventfd)
5506 5507
			continue;

5508
		new->entries[j] = thresholds->primary->entries[i];
5509
		if (new->entries[j].threshold <= usage) {
5510
			/*
5511
			 * new->current_threshold will not be used
5512 5513 5514
			 * until rcu_assign_pointer(), so it's safe to increment
			 * it here.
			 */
5515
			++new->current_threshold;
5516 5517 5518 5519
		}
		j++;
	}

5520
swap_buffers:
5521 5522
	/* Swap primary and spare array */
	thresholds->spare = thresholds->primary;
5523 5524 5525 5526 5527 5528
	/* If all events are unregistered, free the spare array */
	if (!new) {
		kfree(thresholds->spare);
		thresholds->spare = NULL;
	}

5529
	rcu_assign_pointer(thresholds->primary, new);
5530

5531
	/* To be sure that nobody uses thresholds */
5532
	synchronize_rcu();
5533
unlock:
5534 5535
	mutex_unlock(&memcg->thresholds_lock);
}
5536

K
KAMEZAWA Hiroyuki 已提交
5537 5538 5539 5540 5541
static int mem_cgroup_oom_register_event(struct cgroup *cgrp,
	struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
{
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
	struct mem_cgroup_eventfd_list *event;
G
Glauber Costa 已提交
5542
	enum res_type type = MEMFILE_TYPE(cft->private);
K
KAMEZAWA Hiroyuki 已提交
5543 5544 5545 5546 5547 5548

	BUG_ON(type != _OOM_TYPE);
	event = kmalloc(sizeof(*event),	GFP_KERNEL);
	if (!event)
		return -ENOMEM;

5549
	spin_lock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
5550 5551 5552 5553 5554

	event->eventfd = eventfd;
	list_add(&event->list, &memcg->oom_notify);

	/* already in OOM ? */
5555
	if (atomic_read(&memcg->under_oom))
K
KAMEZAWA Hiroyuki 已提交
5556
		eventfd_signal(eventfd, 1);
5557
	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
5558 5559 5560 5561

	return 0;
}

5562
static void mem_cgroup_oom_unregister_event(struct cgroup *cgrp,
K
KAMEZAWA Hiroyuki 已提交
5563 5564
	struct cftype *cft, struct eventfd_ctx *eventfd)
{
5565
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
K
KAMEZAWA Hiroyuki 已提交
5566
	struct mem_cgroup_eventfd_list *ev, *tmp;
G
Glauber Costa 已提交
5567
	enum res_type type = MEMFILE_TYPE(cft->private);
K
KAMEZAWA Hiroyuki 已提交
5568 5569 5570

	BUG_ON(type != _OOM_TYPE);

5571
	spin_lock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
5572

5573
	list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
K
KAMEZAWA Hiroyuki 已提交
5574 5575 5576 5577 5578 5579
		if (ev->eventfd == eventfd) {
			list_del(&ev->list);
			kfree(ev);
		}
	}

5580
	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
5581 5582
}

5583 5584 5585
static int mem_cgroup_oom_control_read(struct cgroup *cgrp,
	struct cftype *cft,  struct cgroup_map_cb *cb)
{
5586
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
5587

5588
	cb->fill(cb, "oom_kill_disable", memcg->oom_kill_disable);
5589

5590
	if (atomic_read(&memcg->under_oom))
5591 5592 5593 5594 5595 5596 5597 5598 5599
		cb->fill(cb, "under_oom", 1);
	else
		cb->fill(cb, "under_oom", 0);
	return 0;
}

static int mem_cgroup_oom_control_write(struct cgroup *cgrp,
	struct cftype *cft, u64 val)
{
5600
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
5601 5602 5603 5604 5605 5606 5607 5608 5609 5610 5611
	struct mem_cgroup *parent;

	/* cannot set to root cgroup and only 0 and 1 are allowed */
	if (!cgrp->parent || !((val == 0) || (val == 1)))
		return -EINVAL;

	parent = mem_cgroup_from_cont(cgrp->parent);

	cgroup_lock();
	/* oom-kill-disable is a flag for subhierarchy. */
	if ((parent->use_hierarchy) ||
5612
	    (memcg->use_hierarchy && !list_empty(&cgrp->children))) {
5613 5614 5615
		cgroup_unlock();
		return -EINVAL;
	}
5616
	memcg->oom_kill_disable = val;
5617
	if (!val)
5618
		memcg_oom_recover(memcg);
5619 5620 5621 5622
	cgroup_unlock();
	return 0;
}

A
Andrew Morton 已提交
5623
#ifdef CONFIG_MEMCG_KMEM
5624
static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
5625
{
5626 5627
	int ret;

5628
	memcg->kmemcg_id = -1;
5629 5630 5631
	ret = memcg_propagate_kmem(memcg);
	if (ret)
		return ret;
5632

5633
	return mem_cgroup_sockets_init(memcg, ss);
5634 5635
};

5636
static void kmem_cgroup_destroy(struct mem_cgroup *memcg)
G
Glauber Costa 已提交
5637
{
5638
	mem_cgroup_sockets_destroy(memcg);
5639 5640 5641 5642 5643 5644 5645 5646 5647 5648 5649 5650 5651 5652

	memcg_kmem_mark_dead(memcg);

	if (res_counter_read_u64(&memcg->kmem, RES_USAGE) != 0)
		return;

	/*
	 * Charges already down to 0, undo mem_cgroup_get() done in the charge
	 * path here, being careful not to race with memcg_uncharge_kmem: it is
	 * possible that the charges went down to 0 between mark_dead and the
	 * res_counter read, so in that case, we don't need the put
	 */
	if (memcg_kmem_test_and_clear_dead(memcg))
		mem_cgroup_put(memcg);
G
Glauber Costa 已提交
5653
}
5654
#else
5655
static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
5656 5657 5658
{
	return 0;
}
G
Glauber Costa 已提交
5659

5660
static void kmem_cgroup_destroy(struct mem_cgroup *memcg)
G
Glauber Costa 已提交
5661 5662
{
}
5663 5664
#endif

B
Balbir Singh 已提交
5665 5666
static struct cftype mem_cgroup_files[] = {
	{
5667
		.name = "usage_in_bytes",
5668
		.private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
5669
		.read = mem_cgroup_read,
K
KAMEZAWA Hiroyuki 已提交
5670 5671
		.register_event = mem_cgroup_usage_register_event,
		.unregister_event = mem_cgroup_usage_unregister_event,
B
Balbir Singh 已提交
5672
	},
5673 5674
	{
		.name = "max_usage_in_bytes",
5675
		.private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
5676
		.trigger = mem_cgroup_reset,
5677
		.read = mem_cgroup_read,
5678
	},
B
Balbir Singh 已提交
5679
	{
5680
		.name = "limit_in_bytes",
5681
		.private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
5682
		.write_string = mem_cgroup_write,
5683
		.read = mem_cgroup_read,
B
Balbir Singh 已提交
5684
	},
5685 5686 5687 5688
	{
		.name = "soft_limit_in_bytes",
		.private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
		.write_string = mem_cgroup_write,
5689
		.read = mem_cgroup_read,
5690
	},
B
Balbir Singh 已提交
5691 5692
	{
		.name = "failcnt",
5693
		.private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
5694
		.trigger = mem_cgroup_reset,
5695
		.read = mem_cgroup_read,
B
Balbir Singh 已提交
5696
	},
5697 5698
	{
		.name = "stat",
5699
		.read_seq_string = memcg_stat_show,
5700
	},
5701 5702 5703 5704
	{
		.name = "force_empty",
		.trigger = mem_cgroup_force_empty_write,
	},
5705 5706 5707 5708 5709
	{
		.name = "use_hierarchy",
		.write_u64 = mem_cgroup_hierarchy_write,
		.read_u64 = mem_cgroup_hierarchy_read,
	},
K
KOSAKI Motohiro 已提交
5710 5711 5712 5713 5714
	{
		.name = "swappiness",
		.read_u64 = mem_cgroup_swappiness_read,
		.write_u64 = mem_cgroup_swappiness_write,
	},
5715 5716 5717 5718 5719
	{
		.name = "move_charge_at_immigrate",
		.read_u64 = mem_cgroup_move_charge_read,
		.write_u64 = mem_cgroup_move_charge_write,
	},
K
KAMEZAWA Hiroyuki 已提交
5720 5721
	{
		.name = "oom_control",
5722 5723
		.read_map = mem_cgroup_oom_control_read,
		.write_u64 = mem_cgroup_oom_control_write,
K
KAMEZAWA Hiroyuki 已提交
5724 5725 5726 5727
		.register_event = mem_cgroup_oom_register_event,
		.unregister_event = mem_cgroup_oom_unregister_event,
		.private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
	},
5728 5729 5730
#ifdef CONFIG_NUMA
	{
		.name = "numa_stat",
5731
		.read_seq_string = memcg_numa_stat_show,
5732 5733
	},
#endif
A
Andrew Morton 已提交
5734
#ifdef CONFIG_MEMCG_SWAP
5735 5736 5737
	{
		.name = "memsw.usage_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
5738
		.read = mem_cgroup_read,
K
KAMEZAWA Hiroyuki 已提交
5739 5740
		.register_event = mem_cgroup_usage_register_event,
		.unregister_event = mem_cgroup_usage_unregister_event,
5741 5742 5743 5744 5745
	},
	{
		.name = "memsw.max_usage_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
		.trigger = mem_cgroup_reset,
5746
		.read = mem_cgroup_read,
5747 5748 5749 5750 5751
	},
	{
		.name = "memsw.limit_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
		.write_string = mem_cgroup_write,
5752
		.read = mem_cgroup_read,
5753 5754 5755 5756 5757
	},
	{
		.name = "memsw.failcnt",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
		.trigger = mem_cgroup_reset,
5758
		.read = mem_cgroup_read,
5759
	},
5760 5761 5762 5763 5764 5765 5766 5767 5768 5769 5770 5771 5772 5773 5774 5775 5776 5777 5778 5779 5780 5781 5782 5783 5784
#endif
#ifdef CONFIG_MEMCG_KMEM
	{
		.name = "kmem.limit_in_bytes",
		.private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
		.write_string = mem_cgroup_write,
		.read = mem_cgroup_read,
	},
	{
		.name = "kmem.usage_in_bytes",
		.private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
		.read = mem_cgroup_read,
	},
	{
		.name = "kmem.failcnt",
		.private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
		.trigger = mem_cgroup_reset,
		.read = mem_cgroup_read,
	},
	{
		.name = "kmem.max_usage_in_bytes",
		.private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
		.trigger = mem_cgroup_reset,
		.read = mem_cgroup_read,
	},
5785
#endif
5786
	{ },	/* terminate */
5787
};
5788

5789
static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
5790 5791
{
	struct mem_cgroup_per_node *pn;
5792
	struct mem_cgroup_per_zone *mz;
5793
	int zone, tmp = node;
5794 5795 5796 5797 5798 5799 5800 5801
	/*
	 * This routine is called against possible nodes.
	 * But it's BUG to call kmalloc() against offline node.
	 *
	 * TODO: this routine can waste much memory for nodes which will
	 *       never be onlined. It's better to use memory hotplug callback
	 *       function.
	 */
5802 5803
	if (!node_state(node, N_NORMAL_MEMORY))
		tmp = -1;
5804
	pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
5805 5806
	if (!pn)
		return 1;
5807 5808 5809

	for (zone = 0; zone < MAX_NR_ZONES; zone++) {
		mz = &pn->zoneinfo[zone];
5810
		lruvec_init(&mz->lruvec);
5811
		mz->usage_in_excess = 0;
5812
		mz->on_tree = false;
5813
		mz->memcg = memcg;
5814
	}
5815
	memcg->info.nodeinfo[node] = pn;
5816 5817 5818
	return 0;
}

5819
static void free_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
5820
{
5821
	kfree(memcg->info.nodeinfo[node]);
5822 5823
}

5824 5825
static struct mem_cgroup *mem_cgroup_alloc(void)
{
5826
	struct mem_cgroup *memcg;
5827
	int size = sizeof(struct mem_cgroup);
5828

5829
	/* Can be very big if MAX_NUMNODES is very big */
5830
	if (size < PAGE_SIZE)
5831
		memcg = kzalloc(size, GFP_KERNEL);
5832
	else
5833
		memcg = vzalloc(size);
5834

5835
	if (!memcg)
5836 5837
		return NULL;

5838 5839
	memcg->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
	if (!memcg->stat)
5840
		goto out_free;
5841 5842
	spin_lock_init(&memcg->pcp_counter_lock);
	return memcg;
5843 5844 5845

out_free:
	if (size < PAGE_SIZE)
5846
		kfree(memcg);
5847
	else
5848
		vfree(memcg);
5849
	return NULL;
5850 5851
}

5852
/*
5853 5854 5855 5856 5857 5858 5859 5860
 * At destroying mem_cgroup, references from swap_cgroup can remain.
 * (scanning all at force_empty is too costly...)
 *
 * Instead of clearing all references at force_empty, we remember
 * the number of reference from swap_cgroup and free mem_cgroup when
 * it goes down to 0.
 *
 * Removal of cgroup itself succeeds regardless of refs from swap.
5861
 */
5862 5863

static void __mem_cgroup_free(struct mem_cgroup *memcg)
5864
{
5865
	int node;
5866
	int size = sizeof(struct mem_cgroup);
5867

5868 5869 5870 5871 5872 5873 5874 5875
	mem_cgroup_remove_from_trees(memcg);
	free_css_id(&mem_cgroup_subsys, &memcg->css);

	for_each_node(node)
		free_mem_cgroup_per_zone_info(memcg, node);

	free_percpu(memcg->stat);

5876 5877 5878 5879 5880 5881 5882 5883 5884 5885 5886
	/*
	 * We need to make sure that (at least for now), the jump label
	 * destruction code runs outside of the cgroup lock. This is because
	 * get_online_cpus(), which is called from the static_branch update,
	 * can't be called inside the cgroup_lock. cpusets are the ones
	 * enforcing this dependency, so if they ever change, we might as well.
	 *
	 * schedule_work() will guarantee this happens. Be careful if you need
	 * to move this code around, and make sure it is outside
	 * the cgroup_lock.
	 */
5887
	disarm_static_keys(memcg);
5888 5889 5890 5891
	if (size < PAGE_SIZE)
		kfree(memcg);
	else
		vfree(memcg);
5892
}
5893

5894

5895
/*
5896 5897 5898
 * Helpers for freeing a kmalloc()ed/vzalloc()ed mem_cgroup by RCU,
 * but in process context.  The work_freeing structure is overlaid
 * on the rcu_freeing structure, which itself is overlaid on memsw.
5899
 */
5900
static void free_work(struct work_struct *work)
5901
{
5902
	struct mem_cgroup *memcg;
K
KAMEZAWA Hiroyuki 已提交
5903

5904 5905 5906
	memcg = container_of(work, struct mem_cgroup, work_freeing);
	__mem_cgroup_free(memcg);
}
K
KAMEZAWA Hiroyuki 已提交
5907

5908 5909 5910
static void free_rcu(struct rcu_head *rcu_head)
{
	struct mem_cgroup *memcg;
K
KAMEZAWA Hiroyuki 已提交
5911

5912 5913 5914
	memcg = container_of(rcu_head, struct mem_cgroup, rcu_freeing);
	INIT_WORK(&memcg->work_freeing, free_work);
	schedule_work(&memcg->work_freeing);
5915 5916
}

5917
static void mem_cgroup_get(struct mem_cgroup *memcg)
5918
{
5919
	atomic_inc(&memcg->refcnt);
5920 5921
}

5922
static void __mem_cgroup_put(struct mem_cgroup *memcg, int count)
5923
{
5924 5925
	if (atomic_sub_and_test(count, &memcg->refcnt)) {
		struct mem_cgroup *parent = parent_mem_cgroup(memcg);
5926
		call_rcu(&memcg->rcu_freeing, free_rcu);
5927 5928 5929
		if (parent)
			mem_cgroup_put(parent);
	}
5930 5931
}

5932
static void mem_cgroup_put(struct mem_cgroup *memcg)
5933
{
5934
	__mem_cgroup_put(memcg, 1);
5935 5936
}

5937 5938 5939
/*
 * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
 */
G
Glauber Costa 已提交
5940
struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg)
5941
{
5942
	if (!memcg->res.parent)
5943
		return NULL;
5944
	return mem_cgroup_from_res_counter(memcg->res.parent, res);
5945
}
G
Glauber Costa 已提交
5946
EXPORT_SYMBOL(parent_mem_cgroup);
5947

A
Andrew Morton 已提交
5948
#ifdef CONFIG_MEMCG_SWAP
5949 5950
static void __init enable_swap_cgroup(void)
{
5951
	if (!mem_cgroup_disabled() && really_do_swap_account)
5952 5953 5954 5955 5956 5957 5958 5959
		do_swap_account = 1;
}
#else
static void __init enable_swap_cgroup(void)
{
}
#endif

5960 5961 5962 5963 5964 5965
static int mem_cgroup_soft_limit_tree_init(void)
{
	struct mem_cgroup_tree_per_node *rtpn;
	struct mem_cgroup_tree_per_zone *rtpz;
	int tmp, node, zone;

B
Bob Liu 已提交
5966
	for_each_node(node) {
5967 5968 5969 5970 5971
		tmp = node;
		if (!node_state(node, N_NORMAL_MEMORY))
			tmp = -1;
		rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, tmp);
		if (!rtpn)
5972
			goto err_cleanup;
5973 5974 5975 5976 5977 5978 5979 5980 5981 5982

		soft_limit_tree.rb_tree_per_node[node] = rtpn;

		for (zone = 0; zone < MAX_NR_ZONES; zone++) {
			rtpz = &rtpn->rb_tree_per_zone[zone];
			rtpz->rb_root = RB_ROOT;
			spin_lock_init(&rtpz->lock);
		}
	}
	return 0;
5983 5984

err_cleanup:
B
Bob Liu 已提交
5985
	for_each_node(node) {
5986 5987 5988 5989 5990 5991 5992
		if (!soft_limit_tree.rb_tree_per_node[node])
			break;
		kfree(soft_limit_tree.rb_tree_per_node[node]);
		soft_limit_tree.rb_tree_per_node[node] = NULL;
	}
	return 1;

5993 5994
}

L
Li Zefan 已提交
5995
static struct cgroup_subsys_state * __ref
5996
mem_cgroup_css_alloc(struct cgroup *cont)
B
Balbir Singh 已提交
5997
{
5998
	struct mem_cgroup *memcg, *parent;
K
KAMEZAWA Hiroyuki 已提交
5999
	long error = -ENOMEM;
6000
	int node;
B
Balbir Singh 已提交
6001

6002 6003
	memcg = mem_cgroup_alloc();
	if (!memcg)
K
KAMEZAWA Hiroyuki 已提交
6004
		return ERR_PTR(error);
6005

B
Bob Liu 已提交
6006
	for_each_node(node)
6007
		if (alloc_mem_cgroup_per_zone_info(memcg, node))
6008
			goto free_out;
6009

6010
	/* root ? */
6011
	if (cont->parent == NULL) {
6012
		int cpu;
6013
		enable_swap_cgroup();
6014
		parent = NULL;
6015 6016
		if (mem_cgroup_soft_limit_tree_init())
			goto free_out;
6017
		root_mem_cgroup = memcg;
6018 6019 6020 6021 6022
		for_each_possible_cpu(cpu) {
			struct memcg_stock_pcp *stock =
						&per_cpu(memcg_stock, cpu);
			INIT_WORK(&stock->work, drain_local_stock);
		}
6023
		hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
6024
	} else {
6025
		parent = mem_cgroup_from_cont(cont->parent);
6026 6027
		memcg->use_hierarchy = parent->use_hierarchy;
		memcg->oom_kill_disable = parent->oom_kill_disable;
6028
	}
6029

6030
	if (parent && parent->use_hierarchy) {
6031 6032
		res_counter_init(&memcg->res, &parent->res);
		res_counter_init(&memcg->memsw, &parent->memsw);
6033
		res_counter_init(&memcg->kmem, &parent->kmem);
6034

6035 6036 6037 6038 6039 6040 6041
		/*
		 * We increment refcnt of the parent to ensure that we can
		 * safely access it on res_counter_charge/uncharge.
		 * This refcnt will be decremented when freeing this
		 * mem_cgroup(see mem_cgroup_put).
		 */
		mem_cgroup_get(parent);
6042
	} else {
6043 6044
		res_counter_init(&memcg->res, NULL);
		res_counter_init(&memcg->memsw, NULL);
6045
		res_counter_init(&memcg->kmem, NULL);
6046 6047 6048 6049 6050 6051 6052
		/*
		 * Deeper hierachy with use_hierarchy == false doesn't make
		 * much sense so let cgroup subsystem know about this
		 * unfortunate state in our controller.
		 */
		if (parent && parent != root_mem_cgroup)
			mem_cgroup_subsys.broken_hierarchy = true;
6053
	}
6054 6055
	memcg->last_scanned_node = MAX_NUMNODES;
	INIT_LIST_HEAD(&memcg->oom_notify);
6056

K
KOSAKI Motohiro 已提交
6057
	if (parent)
6058 6059 6060 6061
		memcg->swappiness = mem_cgroup_swappiness(parent);
	atomic_set(&memcg->refcnt, 1);
	memcg->move_charge_at_immigrate = 0;
	mutex_init(&memcg->thresholds_lock);
6062
	spin_lock_init(&memcg->move_lock);
6063 6064 6065 6066 6067 6068 6069 6070 6071 6072 6073

	error = memcg_init_kmem(memcg, &mem_cgroup_subsys);
	if (error) {
		/*
		 * We call put now because our (and parent's) refcnts
		 * are already in place. mem_cgroup_put() will internally
		 * call __mem_cgroup_free, so return directly
		 */
		mem_cgroup_put(memcg);
		return ERR_PTR(error);
	}
6074
	return &memcg->css;
6075
free_out:
6076
	__mem_cgroup_free(memcg);
K
KAMEZAWA Hiroyuki 已提交
6077
	return ERR_PTR(error);
B
Balbir Singh 已提交
6078 6079
}

6080
static void mem_cgroup_css_offline(struct cgroup *cont)
6081
{
6082
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
6083

6084
	mem_cgroup_reparent_charges(memcg);
G
Glauber Costa 已提交
6085
	mem_cgroup_destroy_all_caches(memcg);
6086 6087
}

6088
static void mem_cgroup_css_free(struct cgroup *cont)
B
Balbir Singh 已提交
6089
{
6090
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
6091

6092
	kmem_cgroup_destroy(memcg);
G
Glauber Costa 已提交
6093

6094
	mem_cgroup_put(memcg);
B
Balbir Singh 已提交
6095 6096
}

6097
#ifdef CONFIG_MMU
6098
/* Handlers for move charge at task migration. */
6099 6100
#define PRECHARGE_COUNT_AT_ONCE	256
static int mem_cgroup_do_precharge(unsigned long count)
6101
{
6102 6103
	int ret = 0;
	int batch_count = PRECHARGE_COUNT_AT_ONCE;
6104
	struct mem_cgroup *memcg = mc.to;
6105

6106
	if (mem_cgroup_is_root(memcg)) {
6107 6108 6109 6110 6111 6112 6113 6114
		mc.precharge += count;
		/* we don't need css_get for root */
		return ret;
	}
	/* try to charge at once */
	if (count > 1) {
		struct res_counter *dummy;
		/*
6115
		 * "memcg" cannot be under rmdir() because we've already checked
6116 6117 6118 6119
		 * by cgroup_lock_live_cgroup() that it is not removed and we
		 * are still under the same cgroup_mutex. So we can postpone
		 * css_get().
		 */
6120
		if (res_counter_charge(&memcg->res, PAGE_SIZE * count, &dummy))
6121
			goto one_by_one;
6122
		if (do_swap_account && res_counter_charge(&memcg->memsw,
6123
						PAGE_SIZE * count, &dummy)) {
6124
			res_counter_uncharge(&memcg->res, PAGE_SIZE * count);
6125 6126 6127 6128 6129 6130 6131 6132 6133 6134 6135 6136 6137 6138 6139 6140
			goto one_by_one;
		}
		mc.precharge += count;
		return ret;
	}
one_by_one:
	/* fall back to one by one charge */
	while (count--) {
		if (signal_pending(current)) {
			ret = -EINTR;
			break;
		}
		if (!batch_count--) {
			batch_count = PRECHARGE_COUNT_AT_ONCE;
			cond_resched();
		}
6141 6142
		ret = __mem_cgroup_try_charge(NULL,
					GFP_KERNEL, 1, &memcg, false);
6143
		if (ret)
6144
			/* mem_cgroup_clear_mc() will do uncharge later */
6145
			return ret;
6146 6147
		mc.precharge++;
	}
6148 6149 6150 6151
	return ret;
}

/**
6152
 * get_mctgt_type - get target type of moving charge
6153 6154 6155
 * @vma: the vma the pte to be checked belongs
 * @addr: the address corresponding to the pte to be checked
 * @ptent: the pte to be checked
6156
 * @target: the pointer the target page or swap ent will be stored(can be NULL)
6157 6158 6159 6160 6161 6162
 *
 * Returns
 *   0(MC_TARGET_NONE): if the pte is not a target for move charge.
 *   1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
 *     move charge. if @target is not NULL, the page is stored in target->page
 *     with extra refcnt got(Callers should handle it).
6163 6164 6165
 *   2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
 *     target for charge migration. if @target is not NULL, the entry is stored
 *     in target->ent.
6166 6167 6168 6169 6170
 *
 * Called with pte lock held.
 */
union mc_target {
	struct page	*page;
6171
	swp_entry_t	ent;
6172 6173 6174
};

enum mc_target_type {
6175
	MC_TARGET_NONE = 0,
6176
	MC_TARGET_PAGE,
6177
	MC_TARGET_SWAP,
6178 6179
};

D
Daisuke Nishimura 已提交
6180 6181
static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
						unsigned long addr, pte_t ptent)
6182
{
D
Daisuke Nishimura 已提交
6183
	struct page *page = vm_normal_page(vma, addr, ptent);
6184

D
Daisuke Nishimura 已提交
6185 6186 6187 6188
	if (!page || !page_mapped(page))
		return NULL;
	if (PageAnon(page)) {
		/* we don't move shared anon */
6189
		if (!move_anon())
D
Daisuke Nishimura 已提交
6190
			return NULL;
6191 6192
	} else if (!move_file())
		/* we ignore mapcount for file pages */
D
Daisuke Nishimura 已提交
6193 6194 6195 6196 6197 6198 6199
		return NULL;
	if (!get_page_unless_zero(page))
		return NULL;

	return page;
}

6200
#ifdef CONFIG_SWAP
D
Daisuke Nishimura 已提交
6201 6202 6203 6204 6205 6206 6207 6208
static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
			unsigned long addr, pte_t ptent, swp_entry_t *entry)
{
	struct page *page = NULL;
	swp_entry_t ent = pte_to_swp_entry(ptent);

	if (!move_anon() || non_swap_entry(ent))
		return NULL;
6209 6210 6211 6212 6213
	/*
	 * Because lookup_swap_cache() updates some statistics counter,
	 * we call find_get_page() with swapper_space directly.
	 */
	page = find_get_page(&swapper_space, ent.val);
D
Daisuke Nishimura 已提交
6214 6215 6216 6217 6218
	if (do_swap_account)
		entry->val = ent.val;

	return page;
}
6219 6220 6221 6222 6223 6224 6225
#else
static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
			unsigned long addr, pte_t ptent, swp_entry_t *entry)
{
	return NULL;
}
#endif
D
Daisuke Nishimura 已提交
6226

6227 6228 6229 6230 6231 6232 6233 6234 6235 6236 6237 6238 6239 6240 6241 6242 6243 6244 6245
static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
			unsigned long addr, pte_t ptent, swp_entry_t *entry)
{
	struct page *page = NULL;
	struct address_space *mapping;
	pgoff_t pgoff;

	if (!vma->vm_file) /* anonymous vma */
		return NULL;
	if (!move_file())
		return NULL;

	mapping = vma->vm_file->f_mapping;
	if (pte_none(ptent))
		pgoff = linear_page_index(vma, addr);
	else /* pte_file(ptent) is true */
		pgoff = pte_to_pgoff(ptent);

	/* page is moved even if it's not RSS of this task(page-faulted). */
6246 6247 6248 6249 6250 6251
	page = find_get_page(mapping, pgoff);

#ifdef CONFIG_SWAP
	/* shmem/tmpfs may report page out on swap: account for that too. */
	if (radix_tree_exceptional_entry(page)) {
		swp_entry_t swap = radix_to_swp_entry(page);
6252
		if (do_swap_account)
6253 6254
			*entry = swap;
		page = find_get_page(&swapper_space, swap.val);
6255
	}
6256
#endif
6257 6258 6259
	return page;
}

6260
static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
D
Daisuke Nishimura 已提交
6261 6262 6263 6264
		unsigned long addr, pte_t ptent, union mc_target *target)
{
	struct page *page = NULL;
	struct page_cgroup *pc;
6265
	enum mc_target_type ret = MC_TARGET_NONE;
D
Daisuke Nishimura 已提交
6266 6267 6268 6269 6270 6271
	swp_entry_t ent = { .val = 0 };

	if (pte_present(ptent))
		page = mc_handle_present_pte(vma, addr, ptent);
	else if (is_swap_pte(ptent))
		page = mc_handle_swap_pte(vma, addr, ptent, &ent);
6272 6273
	else if (pte_none(ptent) || pte_file(ptent))
		page = mc_handle_file_pte(vma, addr, ptent, &ent);
D
Daisuke Nishimura 已提交
6274 6275

	if (!page && !ent.val)
6276
		return ret;
6277 6278 6279 6280 6281 6282 6283 6284 6285 6286 6287 6288 6289 6290 6291
	if (page) {
		pc = lookup_page_cgroup(page);
		/*
		 * Do only loose check w/o page_cgroup lock.
		 * mem_cgroup_move_account() checks the pc is valid or not under
		 * the lock.
		 */
		if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
			ret = MC_TARGET_PAGE;
			if (target)
				target->page = page;
		}
		if (!ret || !target)
			put_page(page);
	}
D
Daisuke Nishimura 已提交
6292 6293
	/* There is a swap entry and a page doesn't exist or isn't charged */
	if (ent.val && !ret &&
6294
			css_id(&mc.from->css) == lookup_swap_cgroup_id(ent)) {
6295 6296 6297
		ret = MC_TARGET_SWAP;
		if (target)
			target->ent = ent;
6298 6299 6300 6301
	}
	return ret;
}

6302 6303 6304 6305 6306 6307 6308 6309 6310 6311 6312 6313 6314 6315 6316 6317 6318 6319 6320 6321 6322 6323 6324 6325 6326 6327 6328 6329 6330 6331 6332 6333 6334 6335 6336
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
/*
 * We don't consider swapping or file mapped pages because THP does not
 * support them for now.
 * Caller should make sure that pmd_trans_huge(pmd) is true.
 */
static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
		unsigned long addr, pmd_t pmd, union mc_target *target)
{
	struct page *page = NULL;
	struct page_cgroup *pc;
	enum mc_target_type ret = MC_TARGET_NONE;

	page = pmd_page(pmd);
	VM_BUG_ON(!page || !PageHead(page));
	if (!move_anon())
		return ret;
	pc = lookup_page_cgroup(page);
	if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
		ret = MC_TARGET_PAGE;
		if (target) {
			get_page(page);
			target->page = page;
		}
	}
	return ret;
}
#else
static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
		unsigned long addr, pmd_t pmd, union mc_target *target)
{
	return MC_TARGET_NONE;
}
#endif

6337 6338 6339 6340 6341 6342 6343 6344
static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
					unsigned long addr, unsigned long end,
					struct mm_walk *walk)
{
	struct vm_area_struct *vma = walk->private;
	pte_t *pte;
	spinlock_t *ptl;

6345 6346 6347 6348
	if (pmd_trans_huge_lock(pmd, vma) == 1) {
		if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
			mc.precharge += HPAGE_PMD_NR;
		spin_unlock(&vma->vm_mm->page_table_lock);
6349
		return 0;
6350
	}
6351

6352 6353
	if (pmd_trans_unstable(pmd))
		return 0;
6354 6355
	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
	for (; addr != end; pte++, addr += PAGE_SIZE)
6356
		if (get_mctgt_type(vma, addr, *pte, NULL))
6357 6358 6359 6360
			mc.precharge++;	/* increment precharge temporarily */
	pte_unmap_unlock(pte - 1, ptl);
	cond_resched();

6361 6362 6363
	return 0;
}

6364 6365 6366 6367 6368
static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
{
	unsigned long precharge;
	struct vm_area_struct *vma;

6369
	down_read(&mm->mmap_sem);
6370 6371 6372 6373 6374 6375 6376 6377 6378 6379 6380
	for (vma = mm->mmap; vma; vma = vma->vm_next) {
		struct mm_walk mem_cgroup_count_precharge_walk = {
			.pmd_entry = mem_cgroup_count_precharge_pte_range,
			.mm = mm,
			.private = vma,
		};
		if (is_vm_hugetlb_page(vma))
			continue;
		walk_page_range(vma->vm_start, vma->vm_end,
					&mem_cgroup_count_precharge_walk);
	}
6381
	up_read(&mm->mmap_sem);
6382 6383 6384 6385 6386 6387 6388 6389 6390

	precharge = mc.precharge;
	mc.precharge = 0;

	return precharge;
}

static int mem_cgroup_precharge_mc(struct mm_struct *mm)
{
6391 6392 6393 6394 6395
	unsigned long precharge = mem_cgroup_count_precharge(mm);

	VM_BUG_ON(mc.moving_task);
	mc.moving_task = current;
	return mem_cgroup_do_precharge(precharge);
6396 6397
}

6398 6399
/* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
static void __mem_cgroup_clear_mc(void)
6400
{
6401 6402 6403
	struct mem_cgroup *from = mc.from;
	struct mem_cgroup *to = mc.to;

6404
	/* we must uncharge all the leftover precharges from mc.to */
6405 6406 6407 6408 6409 6410 6411 6412 6413 6414 6415
	if (mc.precharge) {
		__mem_cgroup_cancel_charge(mc.to, mc.precharge);
		mc.precharge = 0;
	}
	/*
	 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
	 * we must uncharge here.
	 */
	if (mc.moved_charge) {
		__mem_cgroup_cancel_charge(mc.from, mc.moved_charge);
		mc.moved_charge = 0;
6416
	}
6417 6418 6419 6420 6421 6422 6423 6424 6425 6426 6427 6428 6429 6430 6431 6432 6433 6434 6435
	/* we must fixup refcnts and charges */
	if (mc.moved_swap) {
		/* uncharge swap account from the old cgroup */
		if (!mem_cgroup_is_root(mc.from))
			res_counter_uncharge(&mc.from->memsw,
						PAGE_SIZE * mc.moved_swap);
		__mem_cgroup_put(mc.from, mc.moved_swap);

		if (!mem_cgroup_is_root(mc.to)) {
			/*
			 * we charged both to->res and to->memsw, so we should
			 * uncharge to->res.
			 */
			res_counter_uncharge(&mc.to->res,
						PAGE_SIZE * mc.moved_swap);
		}
		/* we've already done mem_cgroup_get(mc.to) */
		mc.moved_swap = 0;
	}
6436 6437 6438 6439 6440 6441 6442 6443 6444 6445 6446 6447 6448 6449 6450
	memcg_oom_recover(from);
	memcg_oom_recover(to);
	wake_up_all(&mc.waitq);
}

static void mem_cgroup_clear_mc(void)
{
	struct mem_cgroup *from = mc.from;

	/*
	 * we must clear moving_task before waking up waiters at the end of
	 * task migration.
	 */
	mc.moving_task = NULL;
	__mem_cgroup_clear_mc();
6451
	spin_lock(&mc.lock);
6452 6453
	mc.from = NULL;
	mc.to = NULL;
6454
	spin_unlock(&mc.lock);
6455
	mem_cgroup_end_move(from);
6456 6457
}

6458 6459
static int mem_cgroup_can_attach(struct cgroup *cgroup,
				 struct cgroup_taskset *tset)
6460
{
6461
	struct task_struct *p = cgroup_taskset_first(tset);
6462
	int ret = 0;
6463
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgroup);
6464

6465
	if (memcg->move_charge_at_immigrate) {
6466 6467 6468
		struct mm_struct *mm;
		struct mem_cgroup *from = mem_cgroup_from_task(p);

6469
		VM_BUG_ON(from == memcg);
6470 6471 6472 6473 6474

		mm = get_task_mm(p);
		if (!mm)
			return 0;
		/* We move charges only when we move a owner of the mm */
6475 6476 6477 6478
		if (mm->owner == p) {
			VM_BUG_ON(mc.from);
			VM_BUG_ON(mc.to);
			VM_BUG_ON(mc.precharge);
6479
			VM_BUG_ON(mc.moved_charge);
6480
			VM_BUG_ON(mc.moved_swap);
6481
			mem_cgroup_start_move(from);
6482
			spin_lock(&mc.lock);
6483
			mc.from = from;
6484
			mc.to = memcg;
6485
			spin_unlock(&mc.lock);
6486
			/* We set mc.moving_task later */
6487 6488 6489 6490

			ret = mem_cgroup_precharge_mc(mm);
			if (ret)
				mem_cgroup_clear_mc();
6491 6492
		}
		mmput(mm);
6493 6494 6495 6496
	}
	return ret;
}

6497 6498
static void mem_cgroup_cancel_attach(struct cgroup *cgroup,
				     struct cgroup_taskset *tset)
6499
{
6500
	mem_cgroup_clear_mc();
6501 6502
}

6503 6504 6505
static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
				unsigned long addr, unsigned long end,
				struct mm_walk *walk)
6506
{
6507 6508 6509 6510
	int ret = 0;
	struct vm_area_struct *vma = walk->private;
	pte_t *pte;
	spinlock_t *ptl;
6511 6512 6513 6514
	enum mc_target_type target_type;
	union mc_target target;
	struct page *page;
	struct page_cgroup *pc;
6515

6516 6517 6518 6519 6520 6521 6522 6523 6524 6525 6526
	/*
	 * We don't take compound_lock() here but no race with splitting thp
	 * happens because:
	 *  - if pmd_trans_huge_lock() returns 1, the relevant thp is not
	 *    under splitting, which means there's no concurrent thp split,
	 *  - if another thread runs into split_huge_page() just after we
	 *    entered this if-block, the thread must wait for page table lock
	 *    to be unlocked in __split_huge_page_splitting(), where the main
	 *    part of thp split is not executed yet.
	 */
	if (pmd_trans_huge_lock(pmd, vma) == 1) {
6527
		if (mc.precharge < HPAGE_PMD_NR) {
6528 6529 6530 6531 6532 6533 6534 6535 6536
			spin_unlock(&vma->vm_mm->page_table_lock);
			return 0;
		}
		target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
		if (target_type == MC_TARGET_PAGE) {
			page = target.page;
			if (!isolate_lru_page(page)) {
				pc = lookup_page_cgroup(page);
				if (!mem_cgroup_move_account(page, HPAGE_PMD_NR,
6537
							pc, mc.from, mc.to)) {
6538 6539 6540 6541 6542 6543 6544 6545
					mc.precharge -= HPAGE_PMD_NR;
					mc.moved_charge += HPAGE_PMD_NR;
				}
				putback_lru_page(page);
			}
			put_page(page);
		}
		spin_unlock(&vma->vm_mm->page_table_lock);
6546
		return 0;
6547 6548
	}

6549 6550
	if (pmd_trans_unstable(pmd))
		return 0;
6551 6552 6553 6554
retry:
	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
	for (; addr != end; addr += PAGE_SIZE) {
		pte_t ptent = *(pte++);
6555
		swp_entry_t ent;
6556 6557 6558 6559

		if (!mc.precharge)
			break;

6560
		switch (get_mctgt_type(vma, addr, ptent, &target)) {
6561 6562 6563 6564 6565
		case MC_TARGET_PAGE:
			page = target.page;
			if (isolate_lru_page(page))
				goto put;
			pc = lookup_page_cgroup(page);
6566
			if (!mem_cgroup_move_account(page, 1, pc,
6567
						     mc.from, mc.to)) {
6568
				mc.precharge--;
6569 6570
				/* we uncharge from mc.from later. */
				mc.moved_charge++;
6571 6572
			}
			putback_lru_page(page);
6573
put:			/* get_mctgt_type() gets the page */
6574 6575
			put_page(page);
			break;
6576 6577
		case MC_TARGET_SWAP:
			ent = target.ent;
6578
			if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
6579
				mc.precharge--;
6580 6581 6582
				/* we fixup refcnts and charges later. */
				mc.moved_swap++;
			}
6583
			break;
6584 6585 6586 6587 6588 6589 6590 6591 6592 6593 6594 6595 6596 6597
		default:
			break;
		}
	}
	pte_unmap_unlock(pte - 1, ptl);
	cond_resched();

	if (addr != end) {
		/*
		 * We have consumed all precharges we got in can_attach().
		 * We try charge one by one, but don't do any additional
		 * charges to mc.to if we have failed in charge once in attach()
		 * phase.
		 */
6598
		ret = mem_cgroup_do_precharge(1);
6599 6600 6601 6602 6603 6604 6605 6606 6607 6608 6609 6610
		if (!ret)
			goto retry;
	}

	return ret;
}

static void mem_cgroup_move_charge(struct mm_struct *mm)
{
	struct vm_area_struct *vma;

	lru_add_drain_all();
6611 6612 6613 6614 6615 6616 6617 6618 6619 6620 6621 6622 6623
retry:
	if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
		/*
		 * Someone who are holding the mmap_sem might be waiting in
		 * waitq. So we cancel all extra charges, wake up all waiters,
		 * and retry. Because we cancel precharges, we might not be able
		 * to move enough charges, but moving charge is a best-effort
		 * feature anyway, so it wouldn't be a big problem.
		 */
		__mem_cgroup_clear_mc();
		cond_resched();
		goto retry;
	}
6624 6625 6626 6627 6628 6629 6630 6631 6632 6633 6634 6635 6636 6637 6638 6639 6640 6641
	for (vma = mm->mmap; vma; vma = vma->vm_next) {
		int ret;
		struct mm_walk mem_cgroup_move_charge_walk = {
			.pmd_entry = mem_cgroup_move_charge_pte_range,
			.mm = mm,
			.private = vma,
		};
		if (is_vm_hugetlb_page(vma))
			continue;
		ret = walk_page_range(vma->vm_start, vma->vm_end,
						&mem_cgroup_move_charge_walk);
		if (ret)
			/*
			 * means we have consumed all precharges and failed in
			 * doing additional charge. Just abandon here.
			 */
			break;
	}
6642
	up_read(&mm->mmap_sem);
6643 6644
}

6645 6646
static void mem_cgroup_move_task(struct cgroup *cont,
				 struct cgroup_taskset *tset)
B
Balbir Singh 已提交
6647
{
6648
	struct task_struct *p = cgroup_taskset_first(tset);
6649
	struct mm_struct *mm = get_task_mm(p);
6650 6651

	if (mm) {
6652 6653
		if (mc.to)
			mem_cgroup_move_charge(mm);
6654 6655
		mmput(mm);
	}
6656 6657
	if (mc.to)
		mem_cgroup_clear_mc();
B
Balbir Singh 已提交
6658
}
6659
#else	/* !CONFIG_MMU */
6660 6661
static int mem_cgroup_can_attach(struct cgroup *cgroup,
				 struct cgroup_taskset *tset)
6662 6663 6664
{
	return 0;
}
6665 6666
static void mem_cgroup_cancel_attach(struct cgroup *cgroup,
				     struct cgroup_taskset *tset)
6667 6668
{
}
6669 6670
static void mem_cgroup_move_task(struct cgroup *cont,
				 struct cgroup_taskset *tset)
6671 6672 6673
{
}
#endif
B
Balbir Singh 已提交
6674

B
Balbir Singh 已提交
6675 6676 6677
struct cgroup_subsys mem_cgroup_subsys = {
	.name = "memory",
	.subsys_id = mem_cgroup_subsys_id,
6678 6679 6680
	.css_alloc = mem_cgroup_css_alloc,
	.css_offline = mem_cgroup_css_offline,
	.css_free = mem_cgroup_css_free,
6681 6682
	.can_attach = mem_cgroup_can_attach,
	.cancel_attach = mem_cgroup_cancel_attach,
B
Balbir Singh 已提交
6683
	.attach = mem_cgroup_move_task,
6684
	.base_cftypes = mem_cgroup_files,
6685
	.early_init = 0,
K
KAMEZAWA Hiroyuki 已提交
6686
	.use_id = 1,
B
Balbir Singh 已提交
6687
};
6688

A
Andrew Morton 已提交
6689
#ifdef CONFIG_MEMCG_SWAP
6690 6691 6692
static int __init enable_swap_account(char *s)
{
	/* consider enabled if no parameter or 1 is given */
6693
	if (!strcmp(s, "1"))
6694
		really_do_swap_account = 1;
6695
	else if (!strcmp(s, "0"))
6696 6697 6698
		really_do_swap_account = 0;
	return 1;
}
6699
__setup("swapaccount=", enable_swap_account);
6700 6701

#endif