memcontrol.c 130.3 KB
Newer Older
B
Balbir Singh 已提交
1 2 3 4 5
/* memcontrol.c - Memory Controller
 *
 * Copyright IBM Corporation, 2007
 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
 *
6 7 8
 * Copyright 2007 OpenVZ SWsoft Inc
 * Author: Pavel Emelianov <xemul@openvz.org>
 *
9 10 11 12
 * Memory thresholds
 * Copyright (C) 2009 Nokia Corporation
 * Author: Kirill A. Shutemov
 *
B
Balbir Singh 已提交
13 14 15 16 17 18 19 20 21 22 23 24 25 26
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 */

#include <linux/res_counter.h>
#include <linux/memcontrol.h>
#include <linux/cgroup.h>
27
#include <linux/mm.h>
28
#include <linux/hugetlb.h>
K
KAMEZAWA Hiroyuki 已提交
29
#include <linux/pagemap.h>
30
#include <linux/smp.h>
31
#include <linux/page-flags.h>
32
#include <linux/backing-dev.h>
33 34
#include <linux/bit_spinlock.h>
#include <linux/rcupdate.h>
35
#include <linux/limits.h>
36
#include <linux/mutex.h>
37
#include <linux/rbtree.h>
38
#include <linux/slab.h>
39
#include <linux/swap.h>
40
#include <linux/swapops.h>
41
#include <linux/spinlock.h>
42 43
#include <linux/eventfd.h>
#include <linux/sort.h>
44
#include <linux/fs.h>
45
#include <linux/seq_file.h>
46
#include <linux/vmalloc.h>
47
#include <linux/mm_inline.h>
48
#include <linux/page_cgroup.h>
49
#include <linux/cpu.h>
50
#include <linux/oom.h>
K
KAMEZAWA Hiroyuki 已提交
51
#include "internal.h"
B
Balbir Singh 已提交
52

53 54
#include <asm/uaccess.h>

55 56
#include <trace/events/vmscan.h>

57 58
struct cgroup_subsys mem_cgroup_subsys __read_mostly;
#define MEM_CGROUP_RECLAIM_RETRIES	5
59
struct mem_cgroup *root_mem_cgroup __read_mostly;
B
Balbir Singh 已提交
60

61
#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
L
Li Zefan 已提交
62
/* Turned on only when memory cgroup is enabled && really_do_swap_account = 1 */
63
int do_swap_account __read_mostly;
64 65 66 67 68 69 70 71

/* for remember boot option*/
#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP_ENABLED
static int really_do_swap_account __initdata = 1;
#else
static int really_do_swap_account __initdata = 0;
#endif

72 73 74 75
#else
#define do_swap_account		(0)
#endif

76 77 78 79 80 81 82 83 84
/*
 * Per memcg event counter is incremented at every pagein/pageout. This counter
 * is used for trigger some periodic events. This is straightforward and better
 * than using jiffies etc. to handle periodic memcg event.
 *
 * These values will be used as !((event) & ((1 <<(thresh)) - 1))
 */
#define THRESHOLDS_EVENTS_THRESH (7) /* once in 128 */
#define SOFTLIMIT_EVENTS_THRESH (10) /* once in 1024 */
85

86 87 88 89 90 91 92 93
/*
 * Statistics for memory cgroup.
 */
enum mem_cgroup_stat_index {
	/*
	 * For MEM_CONTAINER_TYPE_ALL, usage = pagecache + rss.
	 */
	MEM_CGROUP_STAT_CACHE, 	   /* # of pages charged as cache */
94
	MEM_CGROUP_STAT_RSS,	   /* # of pages charged as anon rss */
95
	MEM_CGROUP_STAT_FILE_MAPPED,  /* # of pages charged as file rss */
96 97
	MEM_CGROUP_STAT_PGPGIN_COUNT,	/* # of pages paged in */
	MEM_CGROUP_STAT_PGPGOUT_COUNT,	/* # of pages paged out */
98
	MEM_CGROUP_STAT_SWAPOUT, /* # of pages, swapped out */
99 100 101
	MEM_CGROUP_STAT_DATA, /* end of data requires synchronization */
	/* incremented at every  pagein/pageout */
	MEM_CGROUP_EVENTS = MEM_CGROUP_STAT_DATA,
102
	MEM_CGROUP_ON_MOVE,	/* someone is moving account between groups */
103 104 105 106 107 108 109 110

	MEM_CGROUP_STAT_NSTATS,
};

struct mem_cgroup_stat_cpu {
	s64 count[MEM_CGROUP_STAT_NSTATS];
};

111 112 113 114
/*
 * per-zone information in memory controller.
 */
struct mem_cgroup_per_zone {
115 116 117
	/*
	 * spin_lock to protect the per cgroup LRU
	 */
118 119
	struct list_head	lists[NR_LRU_LISTS];
	unsigned long		count[NR_LRU_LISTS];
K
KOSAKI Motohiro 已提交
120 121

	struct zone_reclaim_stat reclaim_stat;
122 123 124 125
	struct rb_node		tree_node;	/* RB tree node */
	unsigned long long	usage_in_excess;/* Set to the value by which */
						/* the soft limit is exceeded*/
	bool			on_tree;
126 127
	struct mem_cgroup	*mem;		/* Back pointer, we cannot */
						/* use container_of	   */
128 129 130 131 132 133 134 135 136 137 138 139
};
/* Macro for accessing counter */
#define MEM_CGROUP_ZSTAT(mz, idx)	((mz)->count[(idx)])

struct mem_cgroup_per_node {
	struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
};

struct mem_cgroup_lru_info {
	struct mem_cgroup_per_node *nodeinfo[MAX_NUMNODES];
};

140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159
/*
 * Cgroups above their limits are maintained in a RB-Tree, independent of
 * their hierarchy representation
 */

struct mem_cgroup_tree_per_zone {
	struct rb_root rb_root;
	spinlock_t lock;
};

struct mem_cgroup_tree_per_node {
	struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
};

struct mem_cgroup_tree {
	struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
};

static struct mem_cgroup_tree soft_limit_tree __read_mostly;

160 161 162 163 164
struct mem_cgroup_threshold {
	struct eventfd_ctx *eventfd;
	u64 threshold;
};

K
KAMEZAWA Hiroyuki 已提交
165
/* For threshold */
166 167
struct mem_cgroup_threshold_ary {
	/* An array index points to threshold just below usage. */
168
	int current_threshold;
169 170 171 172 173
	/* Size of entries[] */
	unsigned int size;
	/* Array of thresholds */
	struct mem_cgroup_threshold entries[0];
};
174 175 176 177 178 179 180 181 182 183 184 185

struct mem_cgroup_thresholds {
	/* Primary thresholds array */
	struct mem_cgroup_threshold_ary *primary;
	/*
	 * Spare threshold array.
	 * This is needed to make mem_cgroup_unregister_event() "never fail".
	 * It must be able to store at least primary->size - 1 entries.
	 */
	struct mem_cgroup_threshold_ary *spare;
};

K
KAMEZAWA Hiroyuki 已提交
186 187 188 189 190
/* for OOM */
struct mem_cgroup_eventfd_list {
	struct list_head list;
	struct eventfd_ctx *eventfd;
};
191 192

static void mem_cgroup_threshold(struct mem_cgroup *mem);
K
KAMEZAWA Hiroyuki 已提交
193
static void mem_cgroup_oom_notify(struct mem_cgroup *mem);
194

B
Balbir Singh 已提交
195 196 197 198 199 200 201
/*
 * The memory controller data structure. The memory controller controls both
 * page cache and RSS per cgroup. We would eventually like to provide
 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
 * to help the administrator determine what knobs to tune.
 *
 * TODO: Add a water mark for the memory controller. Reclaim will begin when
202 203 204
 * we hit the water mark. May be even add a low water mark, such that
 * no reclaim occurs from a cgroup at it's low water mark, this is
 * a feature that will be implemented much later in the future.
B
Balbir Singh 已提交
205 206 207 208 209 210 211
 */
struct mem_cgroup {
	struct cgroup_subsys_state css;
	/*
	 * the counter to account for memory usage
	 */
	struct res_counter res;
212 213 214 215
	/*
	 * the counter to account for mem+swap usage.
	 */
	struct res_counter memsw;
216 217 218 219
	/*
	 * Per cgroup active and inactive list, similar to the
	 * per zone LRU lists.
	 */
220
	struct mem_cgroup_lru_info info;
221

K
KOSAKI Motohiro 已提交
222 223 224 225 226
	/*
	  protect against reclaim related member.
	*/
	spinlock_t reclaim_param_lock;

227
	/*
228
	 * While reclaiming in a hierarchy, we cache the last child we
K
KAMEZAWA Hiroyuki 已提交
229
	 * reclaimed from.
230
	 */
K
KAMEZAWA Hiroyuki 已提交
231
	int last_scanned_child;
232 233 234 235
	/*
	 * Should the accounting and control be hierarchical, per subtree?
	 */
	bool use_hierarchy;
K
KAMEZAWA Hiroyuki 已提交
236
	atomic_t	oom_lock;
237
	atomic_t	refcnt;
238

K
KOSAKI Motohiro 已提交
239
	unsigned int	swappiness;
240 241
	/* OOM-Killer disable */
	int		oom_kill_disable;
K
KOSAKI Motohiro 已提交
242

243 244 245
	/* set when res.limit == memsw.limit */
	bool		memsw_is_minimum;

246 247 248 249
	/* protect arrays of thresholds */
	struct mutex thresholds_lock;

	/* thresholds for memory usage. RCU-protected */
250
	struct mem_cgroup_thresholds thresholds;
251

252
	/* thresholds for mem+swap usage. RCU-protected */
253
	struct mem_cgroup_thresholds memsw_thresholds;
254

K
KAMEZAWA Hiroyuki 已提交
255 256 257
	/* For oom notifier event fd */
	struct list_head oom_notify;

258 259 260 261 262
	/*
	 * Should we move charges of a task when a task is moved into this
	 * mem_cgroup ? And what type of charges should we move ?
	 */
	unsigned long 	move_charge_at_immigrate;
263
	/*
264
	 * percpu counter.
265
	 */
266
	struct mem_cgroup_stat_cpu *stat;
267 268 269 270 271 272
	/*
	 * used when a cpu is offlined or other synchronizations
	 * See mem_cgroup_read_stat().
	 */
	struct mem_cgroup_stat_cpu nocpu_base;
	spinlock_t pcp_counter_lock;
B
Balbir Singh 已提交
273 274
};

275 276 277 278 279 280
/* Stuffs for move charges at task migration. */
/*
 * Types of charges to be moved. "move_charge_at_immitgrate" is treated as a
 * left-shifted bitmap of these types.
 */
enum move_type {
281
	MOVE_CHARGE_TYPE_ANON,	/* private anonymous page and swap of it */
282
	MOVE_CHARGE_TYPE_FILE,	/* file page(including tmpfs) and swap of it */
283 284 285
	NR_MOVE_TYPE,
};

286 287
/* "mc" and its members are protected by cgroup_mutex */
static struct move_charge_struct {
288
	spinlock_t	  lock; /* for from, to */
289 290 291
	struct mem_cgroup *from;
	struct mem_cgroup *to;
	unsigned long precharge;
292
	unsigned long moved_charge;
293
	unsigned long moved_swap;
294 295 296
	struct task_struct *moving_task;	/* a task moving charges */
	wait_queue_head_t waitq;		/* a waitq for other context */
} mc = {
297
	.lock = __SPIN_LOCK_UNLOCKED(mc.lock),
298 299
	.waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
};
300

D
Daisuke Nishimura 已提交
301 302 303 304 305 306
static bool move_anon(void)
{
	return test_bit(MOVE_CHARGE_TYPE_ANON,
					&mc.to->move_charge_at_immigrate);
}

307 308 309 310 311 312
static bool move_file(void)
{
	return test_bit(MOVE_CHARGE_TYPE_FILE,
					&mc.to->move_charge_at_immigrate);
}

313 314 315 316 317 318 319
/*
 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
 * limit reclaim to prevent infinite loops, if they ever occur.
 */
#define	MEM_CGROUP_MAX_RECLAIM_LOOPS		(100)
#define	MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS	(2)

320 321 322
enum charge_type {
	MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
	MEM_CGROUP_CHARGE_TYPE_MAPPED,
323
	MEM_CGROUP_CHARGE_TYPE_SHMEM,	/* used by page migration of shmem */
324
	MEM_CGROUP_CHARGE_TYPE_FORCE,	/* used by force_empty */
K
KAMEZAWA Hiroyuki 已提交
325
	MEM_CGROUP_CHARGE_TYPE_SWAPOUT,	/* for accounting swapcache */
K
KAMEZAWA Hiroyuki 已提交
326
	MEM_CGROUP_CHARGE_TYPE_DROP,	/* a page was unused swap cache */
327 328 329
	NR_CHARGE_TYPE,
};

330 331 332 333
/* only for here (for easy reading.) */
#define PCGF_CACHE	(1UL << PCG_CACHE)
#define PCGF_USED	(1UL << PCG_USED)
#define PCGF_LOCK	(1UL << PCG_LOCK)
334 335
/* Not used, but added here for completeness */
#define PCGF_ACCT	(1UL << PCG_ACCT)
336

337 338 339
/* for encoding cft->private value on file */
#define _MEM			(0)
#define _MEMSWAP		(1)
K
KAMEZAWA Hiroyuki 已提交
340
#define _OOM_TYPE		(2)
341 342 343
#define MEMFILE_PRIVATE(x, val)	(((x) << 16) | (val))
#define MEMFILE_TYPE(val)	(((val) >> 16) & 0xffff)
#define MEMFILE_ATTR(val)	((val) & 0xffff)
K
KAMEZAWA Hiroyuki 已提交
344 345
/* Used for OOM nofiier */
#define OOM_CONTROL		(0)
346

347 348 349 350 351 352 353
/*
 * Reclaim flags for mem_cgroup_hierarchical_reclaim
 */
#define MEM_CGROUP_RECLAIM_NOSWAP_BIT	0x0
#define MEM_CGROUP_RECLAIM_NOSWAP	(1 << MEM_CGROUP_RECLAIM_NOSWAP_BIT)
#define MEM_CGROUP_RECLAIM_SHRINK_BIT	0x1
#define MEM_CGROUP_RECLAIM_SHRINK	(1 << MEM_CGROUP_RECLAIM_SHRINK_BIT)
354 355
#define MEM_CGROUP_RECLAIM_SOFT_BIT	0x2
#define MEM_CGROUP_RECLAIM_SOFT		(1 << MEM_CGROUP_RECLAIM_SOFT_BIT)
356

357 358
static void mem_cgroup_get(struct mem_cgroup *mem);
static void mem_cgroup_put(struct mem_cgroup *mem);
359
static struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *mem);
360
static void drain_all_stock_async(void);
361

362 363 364 365 366 367
static struct mem_cgroup_per_zone *
mem_cgroup_zoneinfo(struct mem_cgroup *mem, int nid, int zid)
{
	return &mem->info.nodeinfo[nid]->zoneinfo[zid];
}

368 369 370 371 372
struct cgroup_subsys_state *mem_cgroup_css(struct mem_cgroup *mem)
{
	return &mem->css;
}

373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401
static struct mem_cgroup_per_zone *
page_cgroup_zoneinfo(struct page_cgroup *pc)
{
	struct mem_cgroup *mem = pc->mem_cgroup;
	int nid = page_cgroup_nid(pc);
	int zid = page_cgroup_zid(pc);

	if (!mem)
		return NULL;

	return mem_cgroup_zoneinfo(mem, nid, zid);
}

static struct mem_cgroup_tree_per_zone *
soft_limit_tree_node_zone(int nid, int zid)
{
	return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
}

static struct mem_cgroup_tree_per_zone *
soft_limit_tree_from_page(struct page *page)
{
	int nid = page_to_nid(page);
	int zid = page_zonenum(page);

	return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
}

static void
402
__mem_cgroup_insert_exceeded(struct mem_cgroup *mem,
403
				struct mem_cgroup_per_zone *mz,
404 405
				struct mem_cgroup_tree_per_zone *mctz,
				unsigned long long new_usage_in_excess)
406 407 408 409 410 411 412 413
{
	struct rb_node **p = &mctz->rb_root.rb_node;
	struct rb_node *parent = NULL;
	struct mem_cgroup_per_zone *mz_node;

	if (mz->on_tree)
		return;

414 415 416
	mz->usage_in_excess = new_usage_in_excess;
	if (!mz->usage_in_excess)
		return;
417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432
	while (*p) {
		parent = *p;
		mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
					tree_node);
		if (mz->usage_in_excess < mz_node->usage_in_excess)
			p = &(*p)->rb_left;
		/*
		 * We can't avoid mem cgroups that are over their soft
		 * limit by the same amount
		 */
		else if (mz->usage_in_excess >= mz_node->usage_in_excess)
			p = &(*p)->rb_right;
	}
	rb_link_node(&mz->tree_node, parent, p);
	rb_insert_color(&mz->tree_node, &mctz->rb_root);
	mz->on_tree = true;
433 434 435 436 437 438 439 440 441 442 443 444 445
}

static void
__mem_cgroup_remove_exceeded(struct mem_cgroup *mem,
				struct mem_cgroup_per_zone *mz,
				struct mem_cgroup_tree_per_zone *mctz)
{
	if (!mz->on_tree)
		return;
	rb_erase(&mz->tree_node, &mctz->rb_root);
	mz->on_tree = false;
}

446 447 448 449 450 451
static void
mem_cgroup_remove_exceeded(struct mem_cgroup *mem,
				struct mem_cgroup_per_zone *mz,
				struct mem_cgroup_tree_per_zone *mctz)
{
	spin_lock(&mctz->lock);
452
	__mem_cgroup_remove_exceeded(mem, mz, mctz);
453 454 455 456 457 458
	spin_unlock(&mctz->lock);
}


static void mem_cgroup_update_tree(struct mem_cgroup *mem, struct page *page)
{
459
	unsigned long long excess;
460 461
	struct mem_cgroup_per_zone *mz;
	struct mem_cgroup_tree_per_zone *mctz;
462 463
	int nid = page_to_nid(page);
	int zid = page_zonenum(page);
464 465 466
	mctz = soft_limit_tree_from_page(page);

	/*
467 468
	 * Necessary to update all ancestors when hierarchy is used.
	 * because their event counter is not touched.
469
	 */
470 471
	for (; mem; mem = parent_mem_cgroup(mem)) {
		mz = mem_cgroup_zoneinfo(mem, nid, zid);
472
		excess = res_counter_soft_limit_excess(&mem->res);
473 474 475 476
		/*
		 * We have to update the tree if mz is on RB-tree or
		 * mem is over its softlimit.
		 */
477
		if (excess || mz->on_tree) {
478 479 480 481 482
			spin_lock(&mctz->lock);
			/* if on-tree, remove it */
			if (mz->on_tree)
				__mem_cgroup_remove_exceeded(mem, mz, mctz);
			/*
483 484
			 * Insert again. mz->usage_in_excess will be updated.
			 * If excess is 0, no tree ops.
485
			 */
486
			__mem_cgroup_insert_exceeded(mem, mz, mctz, excess);
487 488
			spin_unlock(&mctz->lock);
		}
489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506
	}
}

static void mem_cgroup_remove_from_trees(struct mem_cgroup *mem)
{
	int node, zone;
	struct mem_cgroup_per_zone *mz;
	struct mem_cgroup_tree_per_zone *mctz;

	for_each_node_state(node, N_POSSIBLE) {
		for (zone = 0; zone < MAX_NR_ZONES; zone++) {
			mz = mem_cgroup_zoneinfo(mem, node, zone);
			mctz = soft_limit_tree_node_zone(node, zone);
			mem_cgroup_remove_exceeded(mem, mz, mctz);
		}
	}
}

507 508 509 510 511 512 513 514 515
static inline unsigned long mem_cgroup_get_excess(struct mem_cgroup *mem)
{
	return res_counter_soft_limit_excess(&mem->res) >> PAGE_SHIFT;
}

static struct mem_cgroup_per_zone *
__mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
{
	struct rb_node *rightmost = NULL;
516
	struct mem_cgroup_per_zone *mz;
517 518

retry:
519
	mz = NULL;
520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548
	rightmost = rb_last(&mctz->rb_root);
	if (!rightmost)
		goto done;		/* Nothing to reclaim from */

	mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
	/*
	 * Remove the node now but someone else can add it back,
	 * we will to add it back at the end of reclaim to its correct
	 * position in the tree.
	 */
	__mem_cgroup_remove_exceeded(mz->mem, mz, mctz);
	if (!res_counter_soft_limit_excess(&mz->mem->res) ||
		!css_tryget(&mz->mem->css))
		goto retry;
done:
	return mz;
}

static struct mem_cgroup_per_zone *
mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
{
	struct mem_cgroup_per_zone *mz;

	spin_lock(&mctz->lock);
	mz = __mem_cgroup_largest_soft_limit_node(mctz);
	spin_unlock(&mctz->lock);
	return mz;
}

549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567
/*
 * Implementation Note: reading percpu statistics for memcg.
 *
 * Both of vmstat[] and percpu_counter has threshold and do periodic
 * synchronization to implement "quick" read. There are trade-off between
 * reading cost and precision of value. Then, we may have a chance to implement
 * a periodic synchronizion of counter in memcg's counter.
 *
 * But this _read() function is used for user interface now. The user accounts
 * memory usage by memory cgroup and he _always_ requires exact value because
 * he accounts memory. Even if we provide quick-and-fuzzy read, we always
 * have to visit all online cpus and make sum. So, for now, unnecessary
 * synchronization is not implemented. (just implemented for cpu hotplug)
 *
 * If there are kernel internal actions which can make use of some not-exact
 * value, and reading all cpu value can be performance bottleneck in some
 * common workload, threashold and synchonization as vmstat[] should be
 * implemented.
 */
568 569 570 571 572 573
static s64 mem_cgroup_read_stat(struct mem_cgroup *mem,
		enum mem_cgroup_stat_index idx)
{
	int cpu;
	s64 val = 0;

574 575
	get_online_cpus();
	for_each_online_cpu(cpu)
576
		val += per_cpu(mem->stat->count[idx], cpu);
577 578 579 580 581 582
#ifdef CONFIG_HOTPLUG_CPU
	spin_lock(&mem->pcp_counter_lock);
	val += mem->nocpu_base.count[idx];
	spin_unlock(&mem->pcp_counter_lock);
#endif
	put_online_cpus();
583 584 585 586 587 588 589 590 591 592 593 594
	return val;
}

static s64 mem_cgroup_local_usage(struct mem_cgroup *mem)
{
	s64 ret;

	ret = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_RSS);
	ret += mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_CACHE);
	return ret;
}

595 596 597 598
static void mem_cgroup_swap_statistics(struct mem_cgroup *mem,
					 bool charge)
{
	int val = (charge) ? 1 : -1;
599
	this_cpu_add(mem->stat->count[MEM_CGROUP_STAT_SWAPOUT], val);
600 601
}

602
static void mem_cgroup_charge_statistics(struct mem_cgroup *mem,
603
					 bool file, int nr_pages)
604
{
605 606
	preempt_disable();

607 608
	if (file)
		__this_cpu_add(mem->stat->count[MEM_CGROUP_STAT_CACHE], nr_pages);
609
	else
610
		__this_cpu_add(mem->stat->count[MEM_CGROUP_STAT_RSS], nr_pages);
611

612 613
	/* pagein of a big page is an event. So, ignore page size */
	if (nr_pages > 0)
614
		__this_cpu_inc(mem->stat->count[MEM_CGROUP_STAT_PGPGIN_COUNT]);
615
	else
616
		__this_cpu_inc(mem->stat->count[MEM_CGROUP_STAT_PGPGOUT_COUNT]);
617 618

	__this_cpu_add(mem->stat->count[MEM_CGROUP_EVENTS], nr_pages);
619

620
	preempt_enable();
621 622
}

K
KAMEZAWA Hiroyuki 已提交
623
static unsigned long mem_cgroup_get_local_zonestat(struct mem_cgroup *mem,
624
					enum lru_list idx)
625 626 627 628 629 630 631 632 633 634 635
{
	int nid, zid;
	struct mem_cgroup_per_zone *mz;
	u64 total = 0;

	for_each_online_node(nid)
		for (zid = 0; zid < MAX_NR_ZONES; zid++) {
			mz = mem_cgroup_zoneinfo(mem, nid, zid);
			total += MEM_CGROUP_ZSTAT(mz, idx);
		}
	return total;
636 637
}

638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660
static bool __memcg_event_check(struct mem_cgroup *mem, int event_mask_shift)
{
	s64 val;

	val = this_cpu_read(mem->stat->count[MEM_CGROUP_EVENTS]);

	return !(val & ((1 << event_mask_shift) - 1));
}

/*
 * Check events in order.
 *
 */
static void memcg_check_events(struct mem_cgroup *mem, struct page *page)
{
	/* threshold event is triggered in finer grain than soft limit */
	if (unlikely(__memcg_event_check(mem, THRESHOLDS_EVENTS_THRESH))) {
		mem_cgroup_threshold(mem);
		if (unlikely(__memcg_event_check(mem, SOFTLIMIT_EVENTS_THRESH)))
			mem_cgroup_update_tree(mem, page);
	}
}

661
static struct mem_cgroup *mem_cgroup_from_cont(struct cgroup *cont)
B
Balbir Singh 已提交
662 663 664 665 666 667
{
	return container_of(cgroup_subsys_state(cont,
				mem_cgroup_subsys_id), struct mem_cgroup,
				css);
}

668
struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
669
{
670 671 672 673 674 675 676 677
	/*
	 * mm_update_next_owner() may clear mm->owner to NULL
	 * if it races with swapoff, page migration, etc.
	 * So this can be called with p == NULL.
	 */
	if (unlikely(!p))
		return NULL;

678 679 680 681
	return container_of(task_subsys_state(p, mem_cgroup_subsys_id),
				struct mem_cgroup, css);
}

682 683 684
static struct mem_cgroup *try_get_mem_cgroup_from_mm(struct mm_struct *mm)
{
	struct mem_cgroup *mem = NULL;
685 686 687

	if (!mm)
		return NULL;
688 689 690 691 692 693 694 695 696 697 698 699 700 701 702
	/*
	 * Because we have no locks, mm->owner's may be being moved to other
	 * cgroup. We use css_tryget() here even if this looks
	 * pessimistic (rather than adding locks here).
	 */
	rcu_read_lock();
	do {
		mem = mem_cgroup_from_task(rcu_dereference(mm->owner));
		if (unlikely(!mem))
			break;
	} while (!css_tryget(&mem->css));
	rcu_read_unlock();
	return mem;
}

K
KAMEZAWA Hiroyuki 已提交
703 704
/* The caller has to guarantee "mem" exists before calling this */
static struct mem_cgroup *mem_cgroup_start_loop(struct mem_cgroup *mem)
K
KAMEZAWA Hiroyuki 已提交
705
{
706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727
	struct cgroup_subsys_state *css;
	int found;

	if (!mem) /* ROOT cgroup has the smallest ID */
		return root_mem_cgroup; /*css_put/get against root is ignored*/
	if (!mem->use_hierarchy) {
		if (css_tryget(&mem->css))
			return mem;
		return NULL;
	}
	rcu_read_lock();
	/*
	 * searching a memory cgroup which has the smallest ID under given
	 * ROOT cgroup. (ID >= 1)
	 */
	css = css_get_next(&mem_cgroup_subsys, 1, &mem->css, &found);
	if (css && css_tryget(css))
		mem = container_of(css, struct mem_cgroup, css);
	else
		mem = NULL;
	rcu_read_unlock();
	return mem;
K
KAMEZAWA Hiroyuki 已提交
728 729 730 731 732 733 734 735 736
}

static struct mem_cgroup *mem_cgroup_get_next(struct mem_cgroup *iter,
					struct mem_cgroup *root,
					bool cond)
{
	int nextid = css_id(&iter->css) + 1;
	int found;
	int hierarchy_used;
K
KAMEZAWA Hiroyuki 已提交
737 738
	struct cgroup_subsys_state *css;

K
KAMEZAWA Hiroyuki 已提交
739
	hierarchy_used = iter->use_hierarchy;
K
KAMEZAWA Hiroyuki 已提交
740

K
KAMEZAWA Hiroyuki 已提交
741
	css_put(&iter->css);
742 743
	/* If no ROOT, walk all, ignore hierarchy */
	if (!cond || (root && !hierarchy_used))
K
KAMEZAWA Hiroyuki 已提交
744
		return NULL;
K
KAMEZAWA Hiroyuki 已提交
745

746 747 748
	if (!root)
		root = root_mem_cgroup;

K
KAMEZAWA Hiroyuki 已提交
749 750
	do {
		iter = NULL;
K
KAMEZAWA Hiroyuki 已提交
751
		rcu_read_lock();
K
KAMEZAWA Hiroyuki 已提交
752 753 754

		css = css_get_next(&mem_cgroup_subsys, nextid,
				&root->css, &found);
K
KAMEZAWA Hiroyuki 已提交
755
		if (css && css_tryget(css))
K
KAMEZAWA Hiroyuki 已提交
756
			iter = container_of(css, struct mem_cgroup, css);
K
KAMEZAWA Hiroyuki 已提交
757
		rcu_read_unlock();
K
KAMEZAWA Hiroyuki 已提交
758
		/* If css is NULL, no more cgroups will be found */
K
KAMEZAWA Hiroyuki 已提交
759
		nextid = found + 1;
K
KAMEZAWA Hiroyuki 已提交
760
	} while (css && !iter);
K
KAMEZAWA Hiroyuki 已提交
761

K
KAMEZAWA Hiroyuki 已提交
762
	return iter;
K
KAMEZAWA Hiroyuki 已提交
763
}
K
KAMEZAWA Hiroyuki 已提交
764 765 766 767 768 769 770 771 772 773 774 775 776
/*
 * for_eacn_mem_cgroup_tree() for visiting all cgroup under tree. Please
 * be careful that "break" loop is not allowed. We have reference count.
 * Instead of that modify "cond" to be false and "continue" to exit the loop.
 */
#define for_each_mem_cgroup_tree_cond(iter, root, cond)	\
	for (iter = mem_cgroup_start_loop(root);\
	     iter != NULL;\
	     iter = mem_cgroup_get_next(iter, root, cond))

#define for_each_mem_cgroup_tree(iter, root) \
	for_each_mem_cgroup_tree_cond(iter, root, true)

777 778 779
#define for_each_mem_cgroup_all(iter) \
	for_each_mem_cgroup_tree_cond(iter, NULL, true)

K
KAMEZAWA Hiroyuki 已提交
780

781 782 783 784 785
static inline bool mem_cgroup_is_root(struct mem_cgroup *mem)
{
	return (mem == root_mem_cgroup);
}

K
KAMEZAWA Hiroyuki 已提交
786 787 788 789 790 791 792 793 794 795 796 797 798
/*
 * Following LRU functions are allowed to be used without PCG_LOCK.
 * Operations are called by routine of global LRU independently from memcg.
 * What we have to take care of here is validness of pc->mem_cgroup.
 *
 * Changes to pc->mem_cgroup happens when
 * 1. charge
 * 2. moving account
 * In typical case, "charge" is done before add-to-lru. Exception is SwapCache.
 * It is added to LRU before charge.
 * If PCG_USED bit is not set, page_cgroup is not added to this private LRU.
 * When moving account, the page is not on LRU. It's isolated.
 */
799

K
KAMEZAWA Hiroyuki 已提交
800 801 802 803
void mem_cgroup_del_lru_list(struct page *page, enum lru_list lru)
{
	struct page_cgroup *pc;
	struct mem_cgroup_per_zone *mz;
804

805
	if (mem_cgroup_disabled())
K
KAMEZAWA Hiroyuki 已提交
806 807 808
		return;
	pc = lookup_page_cgroup(page);
	/* can happen while we handle swapcache. */
809
	if (!TestClearPageCgroupAcctLRU(pc))
K
KAMEZAWA Hiroyuki 已提交
810
		return;
811
	VM_BUG_ON(!pc->mem_cgroup);
812 813 814 815
	/*
	 * We don't check PCG_USED bit. It's cleared when the "page" is finally
	 * removed from global LRU.
	 */
K
KAMEZAWA Hiroyuki 已提交
816
	mz = page_cgroup_zoneinfo(pc);
817 818
	/* huge page split is done under lru_lock. so, we have no races. */
	MEM_CGROUP_ZSTAT(mz, lru) -= 1 << compound_order(page);
819 820 821
	if (mem_cgroup_is_root(pc->mem_cgroup))
		return;
	VM_BUG_ON(list_empty(&pc->lru));
K
KAMEZAWA Hiroyuki 已提交
822
	list_del_init(&pc->lru);
823 824
}

K
KAMEZAWA Hiroyuki 已提交
825
void mem_cgroup_del_lru(struct page *page)
826
{
K
KAMEZAWA Hiroyuki 已提交
827 828
	mem_cgroup_del_lru_list(page, page_lru(page));
}
829

K
KAMEZAWA Hiroyuki 已提交
830 831 832 833
void mem_cgroup_rotate_lru_list(struct page *page, enum lru_list lru)
{
	struct mem_cgroup_per_zone *mz;
	struct page_cgroup *pc;
834

835
	if (mem_cgroup_disabled())
K
KAMEZAWA Hiroyuki 已提交
836
		return;
837

K
KAMEZAWA Hiroyuki 已提交
838
	pc = lookup_page_cgroup(page);
839
	/* unused or root page is not rotated. */
840 841 842 843 844
	if (!PageCgroupUsed(pc))
		return;
	/* Ensure pc->mem_cgroup is visible after reading PCG_USED. */
	smp_rmb();
	if (mem_cgroup_is_root(pc->mem_cgroup))
K
KAMEZAWA Hiroyuki 已提交
845 846 847
		return;
	mz = page_cgroup_zoneinfo(pc);
	list_move(&pc->lru, &mz->lists[lru]);
848 849
}

K
KAMEZAWA Hiroyuki 已提交
850
void mem_cgroup_add_lru_list(struct page *page, enum lru_list lru)
851
{
K
KAMEZAWA Hiroyuki 已提交
852 853
	struct page_cgroup *pc;
	struct mem_cgroup_per_zone *mz;
854

855
	if (mem_cgroup_disabled())
K
KAMEZAWA Hiroyuki 已提交
856 857
		return;
	pc = lookup_page_cgroup(page);
858
	VM_BUG_ON(PageCgroupAcctLRU(pc));
K
KAMEZAWA Hiroyuki 已提交
859
	if (!PageCgroupUsed(pc))
L
Lee Schermerhorn 已提交
860
		return;
861 862
	/* Ensure pc->mem_cgroup is visible after reading PCG_USED. */
	smp_rmb();
K
KAMEZAWA Hiroyuki 已提交
863
	mz = page_cgroup_zoneinfo(pc);
864 865
	/* huge page split is done under lru_lock. so, we have no races. */
	MEM_CGROUP_ZSTAT(mz, lru) += 1 << compound_order(page);
866 867 868
	SetPageCgroupAcctLRU(pc);
	if (mem_cgroup_is_root(pc->mem_cgroup))
		return;
K
KAMEZAWA Hiroyuki 已提交
869 870
	list_add(&pc->lru, &mz->lists[lru]);
}
871

K
KAMEZAWA Hiroyuki 已提交
872
/*
873 874 875 876 877
 * At handling SwapCache, pc->mem_cgroup may be changed while it's linked to
 * lru because the page may.be reused after it's fully uncharged (because of
 * SwapCache behavior).To handle that, unlink page_cgroup from LRU when charge
 * it again. This function is only used to charge SwapCache. It's done under
 * lock_page and expected that zone->lru_lock is never held.
K
KAMEZAWA Hiroyuki 已提交
878
 */
879
static void mem_cgroup_lru_del_before_commit_swapcache(struct page *page)
K
KAMEZAWA Hiroyuki 已提交
880
{
881 882 883 884 885 886 887 888 889 890 891 892
	unsigned long flags;
	struct zone *zone = page_zone(page);
	struct page_cgroup *pc = lookup_page_cgroup(page);

	spin_lock_irqsave(&zone->lru_lock, flags);
	/*
	 * Forget old LRU when this page_cgroup is *not* used. This Used bit
	 * is guarded by lock_page() because the page is SwapCache.
	 */
	if (!PageCgroupUsed(pc))
		mem_cgroup_del_lru_list(page, page_lru(page));
	spin_unlock_irqrestore(&zone->lru_lock, flags);
K
KAMEZAWA Hiroyuki 已提交
893 894
}

895 896 897 898 899 900 901 902
static void mem_cgroup_lru_add_after_commit_swapcache(struct page *page)
{
	unsigned long flags;
	struct zone *zone = page_zone(page);
	struct page_cgroup *pc = lookup_page_cgroup(page);

	spin_lock_irqsave(&zone->lru_lock, flags);
	/* link when the page is linked to LRU but page_cgroup isn't */
903
	if (PageLRU(page) && !PageCgroupAcctLRU(pc))
904 905 906 907 908
		mem_cgroup_add_lru_list(page, page_lru(page));
	spin_unlock_irqrestore(&zone->lru_lock, flags);
}


K
KAMEZAWA Hiroyuki 已提交
909 910 911
void mem_cgroup_move_lists(struct page *page,
			   enum lru_list from, enum lru_list to)
{
912
	if (mem_cgroup_disabled())
K
KAMEZAWA Hiroyuki 已提交
913 914 915
		return;
	mem_cgroup_del_lru_list(page, from);
	mem_cgroup_add_lru_list(page, to);
916 917
}

918 919 920
int task_in_mem_cgroup(struct task_struct *task, const struct mem_cgroup *mem)
{
	int ret;
921
	struct mem_cgroup *curr = NULL;
922
	struct task_struct *p;
923

924 925 926 927 928
	p = find_lock_task_mm(task);
	if (!p)
		return 0;
	curr = try_get_mem_cgroup_from_mm(p->mm);
	task_unlock(p);
929 930
	if (!curr)
		return 0;
931 932 933 934 935 936 937
	/*
	 * We should check use_hierarchy of "mem" not "curr". Because checking
	 * use_hierarchy of "curr" here make this function true if hierarchy is
	 * enabled in "curr" and "curr" is a child of "mem" in *cgroup*
	 * hierarchy(even if use_hierarchy is disabled in "mem").
	 */
	if (mem->use_hierarchy)
938 939 940 941
		ret = css_is_ancestor(&curr->css, &mem->css);
	else
		ret = (curr == mem);
	css_put(&curr->css);
942 943 944
	return ret;
}

945
static int calc_inactive_ratio(struct mem_cgroup *memcg, unsigned long *present_pages)
946 947 948
{
	unsigned long active;
	unsigned long inactive;
949 950
	unsigned long gb;
	unsigned long inactive_ratio;
951

K
KAMEZAWA Hiroyuki 已提交
952 953
	inactive = mem_cgroup_get_local_zonestat(memcg, LRU_INACTIVE_ANON);
	active = mem_cgroup_get_local_zonestat(memcg, LRU_ACTIVE_ANON);
954

955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981
	gb = (inactive + active) >> (30 - PAGE_SHIFT);
	if (gb)
		inactive_ratio = int_sqrt(10 * gb);
	else
		inactive_ratio = 1;

	if (present_pages) {
		present_pages[0] = inactive;
		present_pages[1] = active;
	}

	return inactive_ratio;
}

int mem_cgroup_inactive_anon_is_low(struct mem_cgroup *memcg)
{
	unsigned long active;
	unsigned long inactive;
	unsigned long present_pages[2];
	unsigned long inactive_ratio;

	inactive_ratio = calc_inactive_ratio(memcg, present_pages);

	inactive = present_pages[0];
	active = present_pages[1];

	if (inactive * inactive_ratio < active)
982 983 984 985 986
		return 1;

	return 0;
}

987 988 989 990 991 992 993 994 995 996 997
int mem_cgroup_inactive_file_is_low(struct mem_cgroup *memcg)
{
	unsigned long active;
	unsigned long inactive;

	inactive = mem_cgroup_get_local_zonestat(memcg, LRU_INACTIVE_FILE);
	active = mem_cgroup_get_local_zonestat(memcg, LRU_ACTIVE_FILE);

	return (active > inactive);
}

998 999 1000 1001
unsigned long mem_cgroup_zone_nr_pages(struct mem_cgroup *memcg,
				       struct zone *zone,
				       enum lru_list lru)
{
1002
	int nid = zone_to_nid(zone);
1003 1004 1005 1006 1007 1008
	int zid = zone_idx(zone);
	struct mem_cgroup_per_zone *mz = mem_cgroup_zoneinfo(memcg, nid, zid);

	return MEM_CGROUP_ZSTAT(mz, lru);
}

K
KOSAKI Motohiro 已提交
1009 1010 1011
struct zone_reclaim_stat *mem_cgroup_get_reclaim_stat(struct mem_cgroup *memcg,
						      struct zone *zone)
{
1012
	int nid = zone_to_nid(zone);
K
KOSAKI Motohiro 已提交
1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028
	int zid = zone_idx(zone);
	struct mem_cgroup_per_zone *mz = mem_cgroup_zoneinfo(memcg, nid, zid);

	return &mz->reclaim_stat;
}

struct zone_reclaim_stat *
mem_cgroup_get_reclaim_stat_from_page(struct page *page)
{
	struct page_cgroup *pc;
	struct mem_cgroup_per_zone *mz;

	if (mem_cgroup_disabled())
		return NULL;

	pc = lookup_page_cgroup(page);
1029 1030
	if (!PageCgroupUsed(pc))
		return NULL;
1031 1032
	/* Ensure pc->mem_cgroup is visible after reading PCG_USED. */
	smp_rmb();
K
KOSAKI Motohiro 已提交
1033 1034 1035 1036 1037 1038 1039
	mz = page_cgroup_zoneinfo(pc);
	if (!mz)
		return NULL;

	return &mz->reclaim_stat;
}

1040 1041 1042 1043 1044
unsigned long mem_cgroup_isolate_pages(unsigned long nr_to_scan,
					struct list_head *dst,
					unsigned long *scanned, int order,
					int mode, struct zone *z,
					struct mem_cgroup *mem_cont,
1045
					int active, int file)
1046 1047 1048 1049 1050 1051
{
	unsigned long nr_taken = 0;
	struct page *page;
	unsigned long scan;
	LIST_HEAD(pc_list);
	struct list_head *src;
1052
	struct page_cgroup *pc, *tmp;
1053
	int nid = zone_to_nid(z);
1054 1055
	int zid = zone_idx(z);
	struct mem_cgroup_per_zone *mz;
1056
	int lru = LRU_FILE * file + active;
1057
	int ret;
1058

1059
	BUG_ON(!mem_cont);
1060
	mz = mem_cgroup_zoneinfo(mem_cont, nid, zid);
1061
	src = &mz->lists[lru];
1062

1063 1064
	scan = 0;
	list_for_each_entry_safe_reverse(pc, tmp, src, lru) {
H
Hugh Dickins 已提交
1065
		if (scan >= nr_to_scan)
1066
			break;
K
KAMEZAWA Hiroyuki 已提交
1067 1068

		page = pc->page;
1069 1070
		if (unlikely(!PageCgroupUsed(pc)))
			continue;
H
Hugh Dickins 已提交
1071
		if (unlikely(!PageLRU(page)))
1072 1073
			continue;

H
Hugh Dickins 已提交
1074
		scan++;
1075 1076 1077
		ret = __isolate_lru_page(page, mode, file);
		switch (ret) {
		case 0:
1078
			list_move(&page->lru, dst);
1079
			mem_cgroup_del_lru(page);
1080
			nr_taken += hpage_nr_pages(page);
1081 1082 1083 1084 1085 1086 1087
			break;
		case -EBUSY:
			/* we don't affect global LRU but rotate in our LRU */
			mem_cgroup_rotate_lru_list(page, page_lru(page));
			break;
		default:
			break;
1088 1089 1090 1091
		}
	}

	*scanned = scan;
1092 1093 1094 1095

	trace_mm_vmscan_memcg_isolate(0, nr_to_scan, scan, nr_taken,
				      0, 0, 0, mode);

1096 1097 1098
	return nr_taken;
}

1099 1100 1101
#define mem_cgroup_from_res_counter(counter, member)	\
	container_of(counter, struct mem_cgroup, member)

1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113
static bool mem_cgroup_check_under_limit(struct mem_cgroup *mem)
{
	if (do_swap_account) {
		if (res_counter_check_under_limit(&mem->res) &&
			res_counter_check_under_limit(&mem->memsw))
			return true;
	} else
		if (res_counter_check_under_limit(&mem->res))
			return true;
	return false;
}

K
KOSAKI Motohiro 已提交
1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129
static unsigned int get_swappiness(struct mem_cgroup *memcg)
{
	struct cgroup *cgrp = memcg->css.cgroup;
	unsigned int swappiness;

	/* root ? */
	if (cgrp->parent == NULL)
		return vm_swappiness;

	spin_lock(&memcg->reclaim_param_lock);
	swappiness = memcg->swappiness;
	spin_unlock(&memcg->reclaim_param_lock);

	return swappiness;
}

1130 1131 1132
static void mem_cgroup_start_move(struct mem_cgroup *mem)
{
	int cpu;
1133 1134 1135 1136

	get_online_cpus();
	spin_lock(&mem->pcp_counter_lock);
	for_each_online_cpu(cpu)
1137
		per_cpu(mem->stat->count[MEM_CGROUP_ON_MOVE], cpu) += 1;
1138 1139 1140
	mem->nocpu_base.count[MEM_CGROUP_ON_MOVE] += 1;
	spin_unlock(&mem->pcp_counter_lock);
	put_online_cpus();
1141 1142 1143 1144 1145 1146 1147 1148 1149 1150

	synchronize_rcu();
}

static void mem_cgroup_end_move(struct mem_cgroup *mem)
{
	int cpu;

	if (!mem)
		return;
1151 1152 1153
	get_online_cpus();
	spin_lock(&mem->pcp_counter_lock);
	for_each_online_cpu(cpu)
1154
		per_cpu(mem->stat->count[MEM_CGROUP_ON_MOVE], cpu) -= 1;
1155 1156 1157
	mem->nocpu_base.count[MEM_CGROUP_ON_MOVE] -= 1;
	spin_unlock(&mem->pcp_counter_lock);
	put_online_cpus();
1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175
}
/*
 * 2 routines for checking "mem" is under move_account() or not.
 *
 * mem_cgroup_stealed() - checking a cgroup is mc.from or not. This is used
 *			  for avoiding race in accounting. If true,
 *			  pc->mem_cgroup may be overwritten.
 *
 * mem_cgroup_under_move() - checking a cgroup is mc.from or mc.to or
 *			  under hierarchy of moving cgroups. This is for
 *			  waiting at hith-memory prressure caused by "move".
 */

static bool mem_cgroup_stealed(struct mem_cgroup *mem)
{
	VM_BUG_ON(!rcu_read_lock_held());
	return this_cpu_read(mem->stat->count[MEM_CGROUP_ON_MOVE]) > 0;
}
1176 1177 1178

static bool mem_cgroup_under_move(struct mem_cgroup *mem)
{
1179 1180
	struct mem_cgroup *from;
	struct mem_cgroup *to;
1181
	bool ret = false;
1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196
	/*
	 * Unlike task_move routines, we access mc.to, mc.from not under
	 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
	 */
	spin_lock(&mc.lock);
	from = mc.from;
	to = mc.to;
	if (!from)
		goto unlock;
	if (from == mem || to == mem
	    || (mem->use_hierarchy && css_is_ancestor(&from->css, &mem->css))
	    || (mem->use_hierarchy && css_is_ancestor(&to->css,	&mem->css)))
		ret = true;
unlock:
	spin_unlock(&mc.lock);
1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215
	return ret;
}

static bool mem_cgroup_wait_acct_move(struct mem_cgroup *mem)
{
	if (mc.moving_task && current != mc.moving_task) {
		if (mem_cgroup_under_move(mem)) {
			DEFINE_WAIT(wait);
			prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
			/* moving charge context might have finished. */
			if (mc.moving_task)
				schedule();
			finish_wait(&mc.waitq, &wait);
			return true;
		}
	}
	return false;
}

1216
/**
1217
 * mem_cgroup_print_oom_info: Called from OOM with tasklist_lock held in read mode.
1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235
 * @memcg: The memory cgroup that went over limit
 * @p: Task that is going to be killed
 *
 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
 * enabled
 */
void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
{
	struct cgroup *task_cgrp;
	struct cgroup *mem_cgrp;
	/*
	 * Need a buffer in BSS, can't rely on allocations. The code relies
	 * on the assumption that OOM is serialized for memory controller.
	 * If this assumption is broken, revisit this code.
	 */
	static char memcg_name[PATH_MAX];
	int ret;

1236
	if (!memcg || !p)
1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282
		return;


	rcu_read_lock();

	mem_cgrp = memcg->css.cgroup;
	task_cgrp = task_cgroup(p, mem_cgroup_subsys_id);

	ret = cgroup_path(task_cgrp, memcg_name, PATH_MAX);
	if (ret < 0) {
		/*
		 * Unfortunately, we are unable to convert to a useful name
		 * But we'll still print out the usage information
		 */
		rcu_read_unlock();
		goto done;
	}
	rcu_read_unlock();

	printk(KERN_INFO "Task in %s killed", memcg_name);

	rcu_read_lock();
	ret = cgroup_path(mem_cgrp, memcg_name, PATH_MAX);
	if (ret < 0) {
		rcu_read_unlock();
		goto done;
	}
	rcu_read_unlock();

	/*
	 * Continues from above, so we don't need an KERN_ level
	 */
	printk(KERN_CONT " as a result of limit of %s\n", memcg_name);
done:

	printk(KERN_INFO "memory: usage %llukB, limit %llukB, failcnt %llu\n",
		res_counter_read_u64(&memcg->res, RES_USAGE) >> 10,
		res_counter_read_u64(&memcg->res, RES_LIMIT) >> 10,
		res_counter_read_u64(&memcg->res, RES_FAILCNT));
	printk(KERN_INFO "memory+swap: usage %llukB, limit %llukB, "
		"failcnt %llu\n",
		res_counter_read_u64(&memcg->memsw, RES_USAGE) >> 10,
		res_counter_read_u64(&memcg->memsw, RES_LIMIT) >> 10,
		res_counter_read_u64(&memcg->memsw, RES_FAILCNT));
}

1283 1284 1285 1286 1287 1288 1289
/*
 * This function returns the number of memcg under hierarchy tree. Returns
 * 1(self count) if no children.
 */
static int mem_cgroup_count_children(struct mem_cgroup *mem)
{
	int num = 0;
K
KAMEZAWA Hiroyuki 已提交
1290 1291 1292 1293
	struct mem_cgroup *iter;

	for_each_mem_cgroup_tree(iter, mem)
		num++;
1294 1295 1296
	return num;
}

D
David Rientjes 已提交
1297 1298 1299 1300 1301 1302 1303 1304
/*
 * Return the memory (and swap, if configured) limit for a memcg.
 */
u64 mem_cgroup_get_limit(struct mem_cgroup *memcg)
{
	u64 limit;
	u64 memsw;

1305 1306 1307
	limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
	limit += total_swap_pages << PAGE_SHIFT;

D
David Rientjes 已提交
1308 1309 1310 1311 1312 1313 1314 1315
	memsw = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
	/*
	 * If memsw is finite and limits the amount of swap space available
	 * to this memcg, return that limit.
	 */
	return min(limit, memsw);
}

1316
/*
K
KAMEZAWA Hiroyuki 已提交
1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358
 * Visit the first child (need not be the first child as per the ordering
 * of the cgroup list, since we track last_scanned_child) of @mem and use
 * that to reclaim free pages from.
 */
static struct mem_cgroup *
mem_cgroup_select_victim(struct mem_cgroup *root_mem)
{
	struct mem_cgroup *ret = NULL;
	struct cgroup_subsys_state *css;
	int nextid, found;

	if (!root_mem->use_hierarchy) {
		css_get(&root_mem->css);
		ret = root_mem;
	}

	while (!ret) {
		rcu_read_lock();
		nextid = root_mem->last_scanned_child + 1;
		css = css_get_next(&mem_cgroup_subsys, nextid, &root_mem->css,
				   &found);
		if (css && css_tryget(css))
			ret = container_of(css, struct mem_cgroup, css);

		rcu_read_unlock();
		/* Updates scanning parameter */
		spin_lock(&root_mem->reclaim_param_lock);
		if (!css) {
			/* this means start scan from ID:1 */
			root_mem->last_scanned_child = 0;
		} else
			root_mem->last_scanned_child = found;
		spin_unlock(&root_mem->reclaim_param_lock);
	}

	return ret;
}

/*
 * Scan the hierarchy if needed to reclaim memory. We remember the last child
 * we reclaimed from, so that we don't end up penalizing one child extensively
 * based on its position in the children list.
1359 1360
 *
 * root_mem is the original ancestor that we've been reclaim from.
K
KAMEZAWA Hiroyuki 已提交
1361 1362 1363
 *
 * We give up and return to the caller when we visit root_mem twice.
 * (other groups can be removed while we're walking....)
1364 1365
 *
 * If shrink==true, for avoiding to free too much, this returns immedieately.
1366 1367
 */
static int mem_cgroup_hierarchical_reclaim(struct mem_cgroup *root_mem,
1368
						struct zone *zone,
1369 1370
						gfp_t gfp_mask,
						unsigned long reclaim_options)
1371
{
K
KAMEZAWA Hiroyuki 已提交
1372 1373 1374
	struct mem_cgroup *victim;
	int ret, total = 0;
	int loop = 0;
1375 1376
	bool noswap = reclaim_options & MEM_CGROUP_RECLAIM_NOSWAP;
	bool shrink = reclaim_options & MEM_CGROUP_RECLAIM_SHRINK;
1377 1378
	bool check_soft = reclaim_options & MEM_CGROUP_RECLAIM_SOFT;
	unsigned long excess = mem_cgroup_get_excess(root_mem);
K
KAMEZAWA Hiroyuki 已提交
1379

1380 1381 1382 1383
	/* If memsw_is_minimum==1, swap-out is of-no-use. */
	if (root_mem->memsw_is_minimum)
		noswap = true;

1384
	while (1) {
K
KAMEZAWA Hiroyuki 已提交
1385
		victim = mem_cgroup_select_victim(root_mem);
1386
		if (victim == root_mem) {
K
KAMEZAWA Hiroyuki 已提交
1387
			loop++;
1388 1389
			if (loop >= 1)
				drain_all_stock_async();
1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412
			if (loop >= 2) {
				/*
				 * If we have not been able to reclaim
				 * anything, it might because there are
				 * no reclaimable pages under this hierarchy
				 */
				if (!check_soft || !total) {
					css_put(&victim->css);
					break;
				}
				/*
				 * We want to do more targetted reclaim.
				 * excess >> 2 is not to excessive so as to
				 * reclaim too much, nor too less that we keep
				 * coming back to reclaim from this cgroup
				 */
				if (total >= (excess >> 2) ||
					(loop > MEM_CGROUP_MAX_RECLAIM_LOOPS)) {
					css_put(&victim->css);
					break;
				}
			}
		}
1413
		if (!mem_cgroup_local_usage(victim)) {
K
KAMEZAWA Hiroyuki 已提交
1414 1415
			/* this cgroup's local usage == 0 */
			css_put(&victim->css);
1416 1417
			continue;
		}
K
KAMEZAWA Hiroyuki 已提交
1418
		/* we use swappiness of local cgroup */
1419 1420
		if (check_soft)
			ret = mem_cgroup_shrink_node_zone(victim, gfp_mask,
1421
				noswap, get_swappiness(victim), zone);
1422 1423 1424
		else
			ret = try_to_free_mem_cgroup_pages(victim, gfp_mask,
						noswap, get_swappiness(victim));
K
KAMEZAWA Hiroyuki 已提交
1425
		css_put(&victim->css);
1426 1427 1428 1429 1430 1431 1432
		/*
		 * At shrinking usage, we can't check we should stop here or
		 * reclaim more. It's depends on callers. last_scanned_child
		 * will work enough for keeping fairness under tree.
		 */
		if (shrink)
			return ret;
K
KAMEZAWA Hiroyuki 已提交
1433
		total += ret;
1434 1435 1436 1437
		if (check_soft) {
			if (res_counter_check_under_soft_limit(&root_mem->res))
				return total;
		} else if (mem_cgroup_check_under_limit(root_mem))
K
KAMEZAWA Hiroyuki 已提交
1438
			return 1 + total;
1439
	}
K
KAMEZAWA Hiroyuki 已提交
1440
	return total;
1441 1442
}

K
KAMEZAWA Hiroyuki 已提交
1443 1444 1445 1446 1447 1448
/*
 * Check OOM-Killer is already running under our hierarchy.
 * If someone is running, return false.
 */
static bool mem_cgroup_oom_lock(struct mem_cgroup *mem)
{
K
KAMEZAWA Hiroyuki 已提交
1449 1450
	int x, lock_count = 0;
	struct mem_cgroup *iter;
1451

K
KAMEZAWA Hiroyuki 已提交
1452 1453 1454 1455
	for_each_mem_cgroup_tree(iter, mem) {
		x = atomic_inc_return(&iter->oom_lock);
		lock_count = max(x, lock_count);
	}
K
KAMEZAWA Hiroyuki 已提交
1456 1457 1458 1459

	if (lock_count == 1)
		return true;
	return false;
1460
}
1461

K
KAMEZAWA Hiroyuki 已提交
1462
static int mem_cgroup_oom_unlock(struct mem_cgroup *mem)
1463
{
K
KAMEZAWA Hiroyuki 已提交
1464 1465
	struct mem_cgroup *iter;

K
KAMEZAWA Hiroyuki 已提交
1466 1467 1468 1469 1470
	/*
	 * When a new child is created while the hierarchy is under oom,
	 * mem_cgroup_oom_lock() may not be called. We have to use
	 * atomic_add_unless() here.
	 */
K
KAMEZAWA Hiroyuki 已提交
1471 1472
	for_each_mem_cgroup_tree(iter, mem)
		atomic_add_unless(&iter->oom_lock, -1, 0);
1473 1474 1475
	return 0;
}

K
KAMEZAWA Hiroyuki 已提交
1476 1477 1478 1479

static DEFINE_MUTEX(memcg_oom_mutex);
static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);

K
KAMEZAWA Hiroyuki 已提交
1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515
struct oom_wait_info {
	struct mem_cgroup *mem;
	wait_queue_t	wait;
};

static int memcg_oom_wake_function(wait_queue_t *wait,
	unsigned mode, int sync, void *arg)
{
	struct mem_cgroup *wake_mem = (struct mem_cgroup *)arg;
	struct oom_wait_info *oom_wait_info;

	oom_wait_info = container_of(wait, struct oom_wait_info, wait);

	if (oom_wait_info->mem == wake_mem)
		goto wakeup;
	/* if no hierarchy, no match */
	if (!oom_wait_info->mem->use_hierarchy || !wake_mem->use_hierarchy)
		return 0;
	/*
	 * Both of oom_wait_info->mem and wake_mem are stable under us.
	 * Then we can use css_is_ancestor without taking care of RCU.
	 */
	if (!css_is_ancestor(&oom_wait_info->mem->css, &wake_mem->css) &&
	    !css_is_ancestor(&wake_mem->css, &oom_wait_info->mem->css))
		return 0;

wakeup:
	return autoremove_wake_function(wait, mode, sync, arg);
}

static void memcg_wakeup_oom(struct mem_cgroup *mem)
{
	/* for filtering, pass "mem" as argument. */
	__wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, mem);
}

1516 1517
static void memcg_oom_recover(struct mem_cgroup *mem)
{
1518
	if (mem && atomic_read(&mem->oom_lock))
1519 1520 1521
		memcg_wakeup_oom(mem);
}

K
KAMEZAWA Hiroyuki 已提交
1522 1523 1524 1525
/*
 * try to call OOM killer. returns false if we should exit memory-reclaim loop.
 */
bool mem_cgroup_handle_oom(struct mem_cgroup *mem, gfp_t mask)
1526
{
K
KAMEZAWA Hiroyuki 已提交
1527
	struct oom_wait_info owait;
1528
	bool locked, need_to_kill;
K
KAMEZAWA Hiroyuki 已提交
1529

K
KAMEZAWA Hiroyuki 已提交
1530 1531 1532 1533 1534
	owait.mem = mem;
	owait.wait.flags = 0;
	owait.wait.func = memcg_oom_wake_function;
	owait.wait.private = current;
	INIT_LIST_HEAD(&owait.wait.task_list);
1535
	need_to_kill = true;
K
KAMEZAWA Hiroyuki 已提交
1536 1537 1538 1539 1540 1541 1542 1543
	/* At first, try to OOM lock hierarchy under mem.*/
	mutex_lock(&memcg_oom_mutex);
	locked = mem_cgroup_oom_lock(mem);
	/*
	 * Even if signal_pending(), we can't quit charge() loop without
	 * accounting. So, UNINTERRUPTIBLE is appropriate. But SIGKILL
	 * under OOM is always welcomed, use TASK_KILLABLE here.
	 */
1544 1545 1546 1547
	prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
	if (!locked || mem->oom_kill_disable)
		need_to_kill = false;
	if (locked)
K
KAMEZAWA Hiroyuki 已提交
1548
		mem_cgroup_oom_notify(mem);
K
KAMEZAWA Hiroyuki 已提交
1549 1550
	mutex_unlock(&memcg_oom_mutex);

1551 1552
	if (need_to_kill) {
		finish_wait(&memcg_oom_waitq, &owait.wait);
K
KAMEZAWA Hiroyuki 已提交
1553
		mem_cgroup_out_of_memory(mem, mask);
1554
	} else {
K
KAMEZAWA Hiroyuki 已提交
1555
		schedule();
K
KAMEZAWA Hiroyuki 已提交
1556
		finish_wait(&memcg_oom_waitq, &owait.wait);
K
KAMEZAWA Hiroyuki 已提交
1557 1558 1559
	}
	mutex_lock(&memcg_oom_mutex);
	mem_cgroup_oom_unlock(mem);
K
KAMEZAWA Hiroyuki 已提交
1560
	memcg_wakeup_oom(mem);
K
KAMEZAWA Hiroyuki 已提交
1561 1562 1563 1564 1565 1566 1567
	mutex_unlock(&memcg_oom_mutex);

	if (test_thread_flag(TIF_MEMDIE) || fatal_signal_pending(current))
		return false;
	/* Give chance to dying process */
	schedule_timeout(1);
	return true;
1568 1569
}

1570 1571 1572
/*
 * Currently used to update mapped file statistics, but the routine can be
 * generalized to update other statistics as well.
1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591
 *
 * Notes: Race condition
 *
 * We usually use page_cgroup_lock() for accessing page_cgroup member but
 * it tends to be costly. But considering some conditions, we doesn't need
 * to do so _always_.
 *
 * Considering "charge", lock_page_cgroup() is not required because all
 * file-stat operations happen after a page is attached to radix-tree. There
 * are no race with "charge".
 *
 * Considering "uncharge", we know that memcg doesn't clear pc->mem_cgroup
 * at "uncharge" intentionally. So, we always see valid pc->mem_cgroup even
 * if there are race with "uncharge". Statistics itself is properly handled
 * by flags.
 *
 * Considering "move", this is an only case we see a race. To make the race
 * small, we check MEM_CGROUP_ON_MOVE percpu value and detect there are
 * possibility of race condition. If there is, we take a lock.
1592
 */
1593

1594 1595
void mem_cgroup_update_page_stat(struct page *page,
				 enum mem_cgroup_page_stat_item idx, int val)
1596 1597
{
	struct mem_cgroup *mem;
1598 1599
	struct page_cgroup *pc = lookup_page_cgroup(page);
	bool need_unlock = false;
1600
	unsigned long uninitialized_var(flags);
1601 1602 1603 1604

	if (unlikely(!pc))
		return;

1605
	rcu_read_lock();
1606
	mem = pc->mem_cgroup;
1607 1608 1609
	if (unlikely(!mem || !PageCgroupUsed(pc)))
		goto out;
	/* pc->mem_cgroup is unstable ? */
1610
	if (unlikely(mem_cgroup_stealed(mem)) || PageTransHuge(page)) {
1611
		/* take a lock against to access pc->mem_cgroup */
1612
		move_lock_page_cgroup(pc, &flags);
1613 1614 1615 1616 1617
		need_unlock = true;
		mem = pc->mem_cgroup;
		if (!mem || !PageCgroupUsed(pc))
			goto out;
	}
1618 1619

	switch (idx) {
1620
	case MEMCG_NR_FILE_MAPPED:
1621 1622 1623
		if (val > 0)
			SetPageCgroupFileMapped(pc);
		else if (!page_mapped(page))
1624
			ClearPageCgroupFileMapped(pc);
1625
		idx = MEM_CGROUP_STAT_FILE_MAPPED;
1626 1627 1628
		break;
	default:
		BUG();
1629
	}
1630

1631 1632
	this_cpu_add(mem->stat->count[idx], val);

1633 1634
out:
	if (unlikely(need_unlock))
1635
		move_unlock_page_cgroup(pc, &flags);
1636 1637
	rcu_read_unlock();
	return;
1638
}
1639
EXPORT_SYMBOL(mem_cgroup_update_page_stat);
1640

1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701
/*
 * size of first charge trial. "32" comes from vmscan.c's magic value.
 * TODO: maybe necessary to use big numbers in big irons.
 */
#define CHARGE_SIZE	(32 * PAGE_SIZE)
struct memcg_stock_pcp {
	struct mem_cgroup *cached; /* this never be root cgroup */
	int charge;
	struct work_struct work;
};
static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
static atomic_t memcg_drain_count;

/*
 * Try to consume stocked charge on this cpu. If success, PAGE_SIZE is consumed
 * from local stock and true is returned. If the stock is 0 or charges from a
 * cgroup which is not current target, returns false. This stock will be
 * refilled.
 */
static bool consume_stock(struct mem_cgroup *mem)
{
	struct memcg_stock_pcp *stock;
	bool ret = true;

	stock = &get_cpu_var(memcg_stock);
	if (mem == stock->cached && stock->charge)
		stock->charge -= PAGE_SIZE;
	else /* need to call res_counter_charge */
		ret = false;
	put_cpu_var(memcg_stock);
	return ret;
}

/*
 * Returns stocks cached in percpu to res_counter and reset cached information.
 */
static void drain_stock(struct memcg_stock_pcp *stock)
{
	struct mem_cgroup *old = stock->cached;

	if (stock->charge) {
		res_counter_uncharge(&old->res, stock->charge);
		if (do_swap_account)
			res_counter_uncharge(&old->memsw, stock->charge);
	}
	stock->cached = NULL;
	stock->charge = 0;
}

/*
 * This must be called under preempt disabled or must be called by
 * a thread which is pinned to local cpu.
 */
static void drain_local_stock(struct work_struct *dummy)
{
	struct memcg_stock_pcp *stock = &__get_cpu_var(memcg_stock);
	drain_stock(stock);
}

/*
 * Cache charges(val) which is from res_counter, to local per_cpu area.
1702
 * This will be consumed by consume_stock() function, later.
1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753
 */
static void refill_stock(struct mem_cgroup *mem, int val)
{
	struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);

	if (stock->cached != mem) { /* reset if necessary */
		drain_stock(stock);
		stock->cached = mem;
	}
	stock->charge += val;
	put_cpu_var(memcg_stock);
}

/*
 * Tries to drain stocked charges in other cpus. This function is asynchronous
 * and just put a work per cpu for draining localy on each cpu. Caller can
 * expects some charges will be back to res_counter later but cannot wait for
 * it.
 */
static void drain_all_stock_async(void)
{
	int cpu;
	/* This function is for scheduling "drain" in asynchronous way.
	 * The result of "drain" is not directly handled by callers. Then,
	 * if someone is calling drain, we don't have to call drain more.
	 * Anyway, WORK_STRUCT_PENDING check in queue_work_on() will catch if
	 * there is a race. We just do loose check here.
	 */
	if (atomic_read(&memcg_drain_count))
		return;
	/* Notify other cpus that system-wide "drain" is running */
	atomic_inc(&memcg_drain_count);
	get_online_cpus();
	for_each_online_cpu(cpu) {
		struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
		schedule_work_on(cpu, &stock->work);
	}
 	put_online_cpus();
	atomic_dec(&memcg_drain_count);
	/* We don't wait for flush_work */
}

/* This is a synchronous drain interface. */
static void drain_all_stock_sync(void)
{
	/* called when force_empty is called */
	atomic_inc(&memcg_drain_count);
	schedule_on_each_cpu(drain_local_stock);
	atomic_dec(&memcg_drain_count);
}

1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768
/*
 * This function drains percpu counter value from DEAD cpu and
 * move it to local cpu. Note that this function can be preempted.
 */
static void mem_cgroup_drain_pcp_counter(struct mem_cgroup *mem, int cpu)
{
	int i;

	spin_lock(&mem->pcp_counter_lock);
	for (i = 0; i < MEM_CGROUP_STAT_DATA; i++) {
		s64 x = per_cpu(mem->stat->count[i], cpu);

		per_cpu(mem->stat->count[i], cpu) = 0;
		mem->nocpu_base.count[i] += x;
	}
1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779
	/* need to clear ON_MOVE value, works as a kind of lock. */
	per_cpu(mem->stat->count[MEM_CGROUP_ON_MOVE], cpu) = 0;
	spin_unlock(&mem->pcp_counter_lock);
}

static void synchronize_mem_cgroup_on_move(struct mem_cgroup *mem, int cpu)
{
	int idx = MEM_CGROUP_ON_MOVE;

	spin_lock(&mem->pcp_counter_lock);
	per_cpu(mem->stat->count[idx], cpu) = mem->nocpu_base.count[idx];
1780 1781 1782 1783
	spin_unlock(&mem->pcp_counter_lock);
}

static int __cpuinit memcg_cpu_hotplug_callback(struct notifier_block *nb,
1784 1785 1786 1787 1788
					unsigned long action,
					void *hcpu)
{
	int cpu = (unsigned long)hcpu;
	struct memcg_stock_pcp *stock;
1789
	struct mem_cgroup *iter;
1790

1791 1792 1793 1794 1795 1796
	if ((action == CPU_ONLINE)) {
		for_each_mem_cgroup_all(iter)
			synchronize_mem_cgroup_on_move(iter, cpu);
		return NOTIFY_OK;
	}

1797
	if ((action != CPU_DEAD) || action != CPU_DEAD_FROZEN)
1798
		return NOTIFY_OK;
1799 1800 1801 1802

	for_each_mem_cgroup_all(iter)
		mem_cgroup_drain_pcp_counter(iter, cpu);

1803 1804 1805 1806 1807
	stock = &per_cpu(memcg_stock, cpu);
	drain_stock(stock);
	return NOTIFY_OK;
}

1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834

/* See __mem_cgroup_try_charge() for details */
enum {
	CHARGE_OK,		/* success */
	CHARGE_RETRY,		/* need to retry but retry is not bad */
	CHARGE_NOMEM,		/* we can't do more. return -ENOMEM */
	CHARGE_WOULDBLOCK,	/* GFP_WAIT wasn't set and no enough res. */
	CHARGE_OOM_DIE,		/* the current is killed because of OOM */
};

static int __mem_cgroup_do_charge(struct mem_cgroup *mem, gfp_t gfp_mask,
				int csize, bool oom_check)
{
	struct mem_cgroup *mem_over_limit;
	struct res_counter *fail_res;
	unsigned long flags = 0;
	int ret;

	ret = res_counter_charge(&mem->res, csize, &fail_res);

	if (likely(!ret)) {
		if (!do_swap_account)
			return CHARGE_OK;
		ret = res_counter_charge(&mem->memsw, csize, &fail_res);
		if (likely(!ret))
			return CHARGE_OK;

1835
		res_counter_uncharge(&mem->res, csize);
1836 1837 1838 1839
		mem_over_limit = mem_cgroup_from_res_counter(fail_res, memsw);
		flags |= MEM_CGROUP_RECLAIM_NOSWAP;
	} else
		mem_over_limit = mem_cgroup_from_res_counter(fail_res, res);
1840 1841 1842 1843 1844 1845 1846 1847 1848
	/*
	 * csize can be either a huge page (HPAGE_SIZE), a batch of
	 * regular pages (CHARGE_SIZE), or a single regular page
	 * (PAGE_SIZE).
	 *
	 * Never reclaim on behalf of optional batching, retry with a
	 * single page instead.
	 */
	if (csize == CHARGE_SIZE)
1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882
		return CHARGE_RETRY;

	if (!(gfp_mask & __GFP_WAIT))
		return CHARGE_WOULDBLOCK;

	ret = mem_cgroup_hierarchical_reclaim(mem_over_limit, NULL,
					gfp_mask, flags);
	/*
	 * try_to_free_mem_cgroup_pages() might not give us a full
	 * picture of reclaim. Some pages are reclaimed and might be
	 * moved to swap cache or just unmapped from the cgroup.
	 * Check the limit again to see if the reclaim reduced the
	 * current usage of the cgroup before giving up
	 */
	if (ret || mem_cgroup_check_under_limit(mem_over_limit))
		return CHARGE_RETRY;

	/*
	 * At task move, charge accounts can be doubly counted. So, it's
	 * better to wait until the end of task_move if something is going on.
	 */
	if (mem_cgroup_wait_acct_move(mem_over_limit))
		return CHARGE_RETRY;

	/* If we don't need to call oom-killer at el, return immediately */
	if (!oom_check)
		return CHARGE_NOMEM;
	/* check OOM */
	if (!mem_cgroup_handle_oom(mem_over_limit, gfp_mask))
		return CHARGE_OOM_DIE;

	return CHARGE_RETRY;
}

1883 1884 1885
/*
 * Unlike exported interface, "oom" parameter is added. if oom==true,
 * oom-killer can be invoked.
1886
 */
1887
static int __mem_cgroup_try_charge(struct mm_struct *mm,
A
Andrea Arcangeli 已提交
1888 1889 1890
				   gfp_t gfp_mask,
				   struct mem_cgroup **memcg, bool oom,
				   int page_size)
1891
{
1892 1893 1894
	int nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
	struct mem_cgroup *mem = NULL;
	int ret;
A
Andrea Arcangeli 已提交
1895
	int csize = max(CHARGE_SIZE, (unsigned long) page_size);
1896

K
KAMEZAWA Hiroyuki 已提交
1897 1898 1899 1900 1901 1902 1903 1904
	/*
	 * Unlike gloval-vm's OOM-kill, we're not in memory shortage
	 * in system level. So, allow to go ahead dying process in addition to
	 * MEMDIE process.
	 */
	if (unlikely(test_thread_flag(TIF_MEMDIE)
		     || fatal_signal_pending(current)))
		goto bypass;
1905

1906
	/*
1907 1908
	 * We always charge the cgroup the mm_struct belongs to.
	 * The mm_struct's mem_cgroup changes on task migration if the
1909 1910 1911
	 * thread group leader migrates. It's possible that mm is not
	 * set, if so charge the init_mm (happens for pagecache usage).
	 */
K
KAMEZAWA Hiroyuki 已提交
1912 1913 1914 1915
	if (!*memcg && !mm)
		goto bypass;
again:
	if (*memcg) { /* css should be a valid one */
1916
		mem = *memcg;
K
KAMEZAWA Hiroyuki 已提交
1917 1918 1919
		VM_BUG_ON(css_is_removed(&mem->css));
		if (mem_cgroup_is_root(mem))
			goto done;
A
Andrea Arcangeli 已提交
1920
		if (page_size == PAGE_SIZE && consume_stock(mem))
K
KAMEZAWA Hiroyuki 已提交
1921
			goto done;
1922 1923
		css_get(&mem->css);
	} else {
K
KAMEZAWA Hiroyuki 已提交
1924
		struct task_struct *p;
1925

K
KAMEZAWA Hiroyuki 已提交
1926 1927 1928
		rcu_read_lock();
		p = rcu_dereference(mm->owner);
		/*
1929 1930 1931 1932 1933 1934 1935 1936
		 * Because we don't have task_lock(), "p" can exit.
		 * In that case, "mem" can point to root or p can be NULL with
		 * race with swapoff. Then, we have small risk of mis-accouning.
		 * But such kind of mis-account by race always happens because
		 * we don't have cgroup_mutex(). It's overkill and we allo that
		 * small race, here.
		 * (*) swapoff at el will charge against mm-struct not against
		 * task-struct. So, mm->owner can be NULL.
K
KAMEZAWA Hiroyuki 已提交
1937 1938
		 */
		mem = mem_cgroup_from_task(p);
1939
		if (!mem || mem_cgroup_is_root(mem)) {
K
KAMEZAWA Hiroyuki 已提交
1940 1941 1942
			rcu_read_unlock();
			goto done;
		}
A
Andrea Arcangeli 已提交
1943
		if (page_size == PAGE_SIZE && consume_stock(mem)) {
K
KAMEZAWA Hiroyuki 已提交
1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961
			/*
			 * It seems dagerous to access memcg without css_get().
			 * But considering how consume_stok works, it's not
			 * necessary. If consume_stock success, some charges
			 * from this memcg are cached on this cpu. So, we
			 * don't need to call css_get()/css_tryget() before
			 * calling consume_stock().
			 */
			rcu_read_unlock();
			goto done;
		}
		/* after here, we may be blocked. we need to get refcnt */
		if (!css_tryget(&mem->css)) {
			rcu_read_unlock();
			goto again;
		}
		rcu_read_unlock();
	}
1962

1963 1964
	do {
		bool oom_check;
1965

1966
		/* If killed, bypass charge */
K
KAMEZAWA Hiroyuki 已提交
1967 1968
		if (fatal_signal_pending(current)) {
			css_put(&mem->css);
1969
			goto bypass;
K
KAMEZAWA Hiroyuki 已提交
1970
		}
1971

1972 1973 1974 1975
		oom_check = false;
		if (oom && !nr_oom_retries) {
			oom_check = true;
			nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
1976
		}
1977

1978
		ret = __mem_cgroup_do_charge(mem, gfp_mask, csize, oom_check);
1979

1980 1981 1982 1983
		switch (ret) {
		case CHARGE_OK:
			break;
		case CHARGE_RETRY: /* not in OOM situation but retry */
A
Andrea Arcangeli 已提交
1984
			csize = page_size;
K
KAMEZAWA Hiroyuki 已提交
1985 1986 1987
			css_put(&mem->css);
			mem = NULL;
			goto again;
1988
		case CHARGE_WOULDBLOCK: /* !__GFP_WAIT */
K
KAMEZAWA Hiroyuki 已提交
1989
			css_put(&mem->css);
1990 1991
			goto nomem;
		case CHARGE_NOMEM: /* OOM routine works */
K
KAMEZAWA Hiroyuki 已提交
1992 1993
			if (!oom) {
				css_put(&mem->css);
K
KAMEZAWA Hiroyuki 已提交
1994
				goto nomem;
K
KAMEZAWA Hiroyuki 已提交
1995
			}
1996 1997 1998 1999
			/* If oom, we never return -ENOMEM */
			nr_oom_retries--;
			break;
		case CHARGE_OOM_DIE: /* Killed by OOM Killer */
K
KAMEZAWA Hiroyuki 已提交
2000
			css_put(&mem->css);
K
KAMEZAWA Hiroyuki 已提交
2001
			goto bypass;
2002
		}
2003 2004
	} while (ret != CHARGE_OK);

A
Andrea Arcangeli 已提交
2005 2006
	if (csize > page_size)
		refill_stock(mem, csize - page_size);
K
KAMEZAWA Hiroyuki 已提交
2007
	css_put(&mem->css);
2008
done:
K
KAMEZAWA Hiroyuki 已提交
2009
	*memcg = mem;
2010 2011
	return 0;
nomem:
K
KAMEZAWA Hiroyuki 已提交
2012
	*memcg = NULL;
2013
	return -ENOMEM;
K
KAMEZAWA Hiroyuki 已提交
2014 2015 2016
bypass:
	*memcg = NULL;
	return 0;
2017
}
2018

2019 2020 2021 2022 2023
/*
 * Somemtimes we have to undo a charge we got by try_charge().
 * This function is for that and do uncharge, put css's refcnt.
 * gotten by try_charge().
 */
2024 2025
static void __mem_cgroup_cancel_charge(struct mem_cgroup *mem,
							unsigned long count)
2026 2027
{
	if (!mem_cgroup_is_root(mem)) {
2028
		res_counter_uncharge(&mem->res, PAGE_SIZE * count);
2029
		if (do_swap_account)
2030
			res_counter_uncharge(&mem->memsw, PAGE_SIZE * count);
2031
	}
2032 2033
}

A
Andrea Arcangeli 已提交
2034 2035
static void mem_cgroup_cancel_charge(struct mem_cgroup *mem,
				     int page_size)
2036
{
A
Andrea Arcangeli 已提交
2037
	__mem_cgroup_cancel_charge(mem, page_size >> PAGE_SHIFT);
2038 2039
}

2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058
/*
 * A helper function to get mem_cgroup from ID. must be called under
 * rcu_read_lock(). The caller must check css_is_removed() or some if
 * it's concern. (dropping refcnt from swap can be called against removed
 * memcg.)
 */
static struct mem_cgroup *mem_cgroup_lookup(unsigned short id)
{
	struct cgroup_subsys_state *css;

	/* ID 0 is unused ID */
	if (!id)
		return NULL;
	css = css_lookup(&mem_cgroup_subsys, id);
	if (!css)
		return NULL;
	return container_of(css, struct mem_cgroup, css);
}

2059
struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page)
2060
{
2061
	struct mem_cgroup *mem = NULL;
2062
	struct page_cgroup *pc;
2063
	unsigned short id;
2064 2065
	swp_entry_t ent;

2066 2067 2068
	VM_BUG_ON(!PageLocked(page));

	pc = lookup_page_cgroup(page);
2069
	lock_page_cgroup(pc);
2070
	if (PageCgroupUsed(pc)) {
2071
		mem = pc->mem_cgroup;
2072 2073
		if (mem && !css_tryget(&mem->css))
			mem = NULL;
2074
	} else if (PageSwapCache(page)) {
2075
		ent.val = page_private(page);
2076 2077 2078 2079 2080 2081
		id = lookup_swap_cgroup(ent);
		rcu_read_lock();
		mem = mem_cgroup_lookup(id);
		if (mem && !css_tryget(&mem->css))
			mem = NULL;
		rcu_read_unlock();
2082
	}
2083
	unlock_page_cgroup(pc);
2084 2085 2086
	return mem;
}

2087 2088 2089 2090
static void __mem_cgroup_commit_charge(struct mem_cgroup *mem,
				       struct page_cgroup *pc,
				       enum charge_type ctype,
				       int page_size)
2091
{
2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107
	int nr_pages = page_size >> PAGE_SHIFT;

	/* try_charge() can return NULL to *memcg, taking care of it. */
	if (!mem)
		return;

	lock_page_cgroup(pc);
	if (unlikely(PageCgroupUsed(pc))) {
		unlock_page_cgroup(pc);
		mem_cgroup_cancel_charge(mem, page_size);
		return;
	}
	/*
	 * we don't need page_cgroup_lock about tail pages, becase they are not
	 * accessed by any other context at this point.
	 */
2108
	pc->mem_cgroup = mem;
2109 2110 2111 2112 2113 2114 2115
	/*
	 * We access a page_cgroup asynchronously without lock_page_cgroup().
	 * Especially when a page_cgroup is taken from a page, pc->mem_cgroup
	 * is accessed after testing USED bit. To make pc->mem_cgroup visible
	 * before USED bit, we need memory barrier here.
	 * See mem_cgroup_add_lru_list(), etc.
 	 */
K
KAMEZAWA Hiroyuki 已提交
2116
	smp_wmb();
2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129
	switch (ctype) {
	case MEM_CGROUP_CHARGE_TYPE_CACHE:
	case MEM_CGROUP_CHARGE_TYPE_SHMEM:
		SetPageCgroupCache(pc);
		SetPageCgroupUsed(pc);
		break;
	case MEM_CGROUP_CHARGE_TYPE_MAPPED:
		ClearPageCgroupCache(pc);
		SetPageCgroupUsed(pc);
		break;
	default:
		break;
	}
2130

2131
	mem_cgroup_charge_statistics(mem, PageCgroupCache(pc), nr_pages);
2132
	unlock_page_cgroup(pc);
2133 2134 2135 2136 2137
	/*
	 * "charge_statistics" updated event counter. Then, check it.
	 * Insert ancestor (and ancestor's ancestors), to softlimit RB-tree.
	 * if they exceeds softlimit.
	 */
2138
	memcg_check_events(mem, pc->page);
2139
}
2140

2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154
#ifdef CONFIG_TRANSPARENT_HUGEPAGE

#define PCGF_NOCOPY_AT_SPLIT ((1 << PCG_LOCK) | (1 << PCG_MOVE_LOCK) |\
			(1 << PCG_ACCT_LRU) | (1 << PCG_MIGRATION))
/*
 * Because tail pages are not marked as "used", set it. We're under
 * zone->lru_lock, 'splitting on pmd' and compund_lock.
 */
void mem_cgroup_split_huge_fixup(struct page *head, struct page *tail)
{
	struct page_cgroup *head_pc = lookup_page_cgroup(head);
	struct page_cgroup *tail_pc = lookup_page_cgroup(tail);
	unsigned long flags;

2155 2156
	if (mem_cgroup_disabled())
		return;
2157
	/*
2158
	 * We have no races with charge/uncharge but will have races with
2159 2160 2161 2162 2163 2164
	 * page state accounting.
	 */
	move_lock_page_cgroup(head_pc, &flags);

	tail_pc->mem_cgroup = head_pc->mem_cgroup;
	smp_wmb(); /* see __commit_charge() */
2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177
	if (PageCgroupAcctLRU(head_pc)) {
		enum lru_list lru;
		struct mem_cgroup_per_zone *mz;

		/*
		 * LRU flags cannot be copied because we need to add tail
		 *.page to LRU by generic call and our hook will be called.
		 * We hold lru_lock, then, reduce counter directly.
		 */
		lru = page_lru(head);
		mz = page_cgroup_zoneinfo(head_pc);
		MEM_CGROUP_ZSTAT(mz, lru) -= 1;
	}
2178 2179 2180 2181 2182
	tail_pc->flags = head_pc->flags & ~PCGF_NOCOPY_AT_SPLIT;
	move_unlock_page_cgroup(head_pc, &flags);
}
#endif

2183
/**
2184
 * __mem_cgroup_move_account - move account of the page
2185 2186 2187
 * @pc:	page_cgroup of the page.
 * @from: mem_cgroup which the page is moved from.
 * @to:	mem_cgroup which the page is moved to. @from != @to.
2188
 * @uncharge: whether we should call uncharge and css_put against @from.
2189 2190
 *
 * The caller must confirm following.
K
KAMEZAWA Hiroyuki 已提交
2191
 * - page is not on LRU (isolate_page() is useful.)
2192
 * - the pc is locked, used, and ->mem_cgroup points to @from.
2193
 *
2194 2195 2196 2197
 * This function doesn't do "charge" nor css_get to new cgroup. It should be
 * done by a caller(__mem_cgroup_try_charge would be usefull). If @uncharge is
 * true, this function does "uncharge" from old cgroup, but it doesn't if
 * @uncharge is false, so a caller should do "uncharge".
2198 2199
 */

2200
static void __mem_cgroup_move_account(struct page_cgroup *pc,
2201 2202
	struct mem_cgroup *from, struct mem_cgroup *to, bool uncharge,
	int charge_size)
2203
{
2204 2205
	int nr_pages = charge_size >> PAGE_SHIFT;

2206
	VM_BUG_ON(from == to);
K
KAMEZAWA Hiroyuki 已提交
2207
	VM_BUG_ON(PageLRU(pc->page));
2208
	VM_BUG_ON(!page_is_cgroup_locked(pc));
2209 2210
	VM_BUG_ON(!PageCgroupUsed(pc));
	VM_BUG_ON(pc->mem_cgroup != from);
2211

2212
	if (PageCgroupFileMapped(pc)) {
2213 2214 2215 2216 2217
		/* Update mapped_file data for mem_cgroup */
		preempt_disable();
		__this_cpu_dec(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
		__this_cpu_inc(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
		preempt_enable();
2218
	}
2219
	mem_cgroup_charge_statistics(from, PageCgroupCache(pc), -nr_pages);
2220 2221
	if (uncharge)
		/* This is not "cancel", but cancel_charge does all we need. */
2222
		mem_cgroup_cancel_charge(from, charge_size);
2223

2224
	/* caller should have done css_get */
K
KAMEZAWA Hiroyuki 已提交
2225
	pc->mem_cgroup = to;
2226
	mem_cgroup_charge_statistics(to, PageCgroupCache(pc), nr_pages);
2227 2228 2229
	/*
	 * We charges against "to" which may not have any tasks. Then, "to"
	 * can be under rmdir(). But in current implementation, caller of
2230 2231 2232
	 * this function is just force_empty() and move charge, so it's
	 * garanteed that "to" is never removed. So, we don't check rmdir
	 * status here.
2233
	 */
2234 2235 2236 2237 2238 2239 2240
}

/*
 * check whether the @pc is valid for moving account and call
 * __mem_cgroup_move_account()
 */
static int mem_cgroup_move_account(struct page_cgroup *pc,
2241 2242
		struct mem_cgroup *from, struct mem_cgroup *to,
		bool uncharge, int charge_size)
2243 2244
{
	int ret = -EINVAL;
2245
	unsigned long flags;
2246 2247 2248 2249 2250 2251
	/*
	 * The page is isolated from LRU. So, collapse function
	 * will not handle this page. But page splitting can happen.
	 * Do this check under compound_page_lock(). The caller should
	 * hold it.
	 */
2252 2253 2254
	if ((charge_size > PAGE_SIZE) && !PageTransHuge(pc->page))
		return -EBUSY;

2255 2256
	lock_page_cgroup(pc);
	if (PageCgroupUsed(pc) && pc->mem_cgroup == from) {
2257
		move_lock_page_cgroup(pc, &flags);
2258
		__mem_cgroup_move_account(pc, from, to, uncharge, charge_size);
2259
		move_unlock_page_cgroup(pc, &flags);
2260 2261 2262
		ret = 0;
	}
	unlock_page_cgroup(pc);
2263 2264 2265 2266 2267
	/*
	 * check events
	 */
	memcg_check_events(to, pc->page);
	memcg_check_events(from, pc->page);
2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278
	return ret;
}

/*
 * move charges to its parent.
 */

static int mem_cgroup_move_parent(struct page_cgroup *pc,
				  struct mem_cgroup *child,
				  gfp_t gfp_mask)
{
K
KAMEZAWA Hiroyuki 已提交
2279
	struct page *page = pc->page;
2280 2281 2282
	struct cgroup *cg = child->css.cgroup;
	struct cgroup *pcg = cg->parent;
	struct mem_cgroup *parent;
2283
	int page_size = PAGE_SIZE;
2284
	unsigned long flags;
2285 2286 2287 2288 2289 2290
	int ret;

	/* Is ROOT ? */
	if (!pcg)
		return -EINVAL;

2291 2292 2293 2294 2295
	ret = -EBUSY;
	if (!get_page_unless_zero(page))
		goto out;
	if (isolate_lru_page(page))
		goto put;
2296 2297 2298

	if (PageTransHuge(page))
		page_size = HPAGE_SIZE;
K
KAMEZAWA Hiroyuki 已提交
2299

2300
	parent = mem_cgroup_from_cont(pcg);
2301 2302
	ret = __mem_cgroup_try_charge(NULL, gfp_mask,
				&parent, false, page_size);
2303
	if (ret || !parent)
2304
		goto put_back;
2305

2306
	if (page_size > PAGE_SIZE)
2307 2308
		flags = compound_lock_irqsave(page);

2309
	ret = mem_cgroup_move_account(pc, child, parent, true, page_size);
2310
	if (ret)
2311
		mem_cgroup_cancel_charge(parent, page_size);
2312

2313
	if (page_size > PAGE_SIZE)
2314
		compound_unlock_irqrestore(page, flags);
2315
put_back:
K
KAMEZAWA Hiroyuki 已提交
2316
	putback_lru_page(page);
2317
put:
2318
	put_page(page);
2319
out:
2320 2321 2322
	return ret;
}

2323 2324 2325 2326 2327 2328 2329
/*
 * Charge the memory controller for page usage.
 * Return
 * 0 if the charge was successful
 * < 0 if the cgroup is over its limit
 */
static int mem_cgroup_charge_common(struct page *page, struct mm_struct *mm,
2330
				gfp_t gfp_mask, enum charge_type ctype)
2331
{
2332
	struct mem_cgroup *mem = NULL;
2333 2334
	struct page_cgroup *pc;
	int ret;
A
Andrea Arcangeli 已提交
2335 2336
	int page_size = PAGE_SIZE;

A
Andrea Arcangeli 已提交
2337
	if (PageTransHuge(page)) {
A
Andrea Arcangeli 已提交
2338
		page_size <<= compound_order(page);
A
Andrea Arcangeli 已提交
2339 2340
		VM_BUG_ON(!PageTransHuge(page));
	}
2341 2342 2343 2344 2345 2346 2347

	pc = lookup_page_cgroup(page);
	/* can happen at boot */
	if (unlikely(!pc))
		return 0;
	prefetchw(pc);

A
Andrea Arcangeli 已提交
2348
	ret = __mem_cgroup_try_charge(mm, gfp_mask, &mem, true, page_size);
2349
	if (ret || !mem)
2350 2351
		return ret;

A
Andrea Arcangeli 已提交
2352
	__mem_cgroup_commit_charge(mem, pc, ctype, page_size);
2353 2354 2355
	return 0;
}

2356 2357
int mem_cgroup_newpage_charge(struct page *page,
			      struct mm_struct *mm, gfp_t gfp_mask)
2358
{
2359
	if (mem_cgroup_disabled())
2360
		return 0;
2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371
	/*
	 * If already mapped, we don't have to account.
	 * If page cache, page->mapping has address_space.
	 * But page->mapping may have out-of-use anon_vma pointer,
	 * detecit it by PageAnon() check. newly-mapped-anon's page->mapping
	 * is NULL.
  	 */
	if (page_mapped(page) || (page->mapping && !PageAnon(page)))
		return 0;
	if (unlikely(!mm))
		mm = &init_mm;
2372
	return mem_cgroup_charge_common(page, mm, gfp_mask,
2373
				MEM_CGROUP_CHARGE_TYPE_MAPPED);
2374 2375
}

D
Daisuke Nishimura 已提交
2376 2377 2378 2379
static void
__mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr,
					enum charge_type ctype);

2380 2381
int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm,
				gfp_t gfp_mask)
2382
{
2383 2384
	int ret;

2385
	if (mem_cgroup_disabled())
2386
		return 0;
2387 2388
	if (PageCompound(page))
		return 0;
2389 2390 2391 2392 2393 2394 2395 2396
	/*
	 * Corner case handling. This is called from add_to_page_cache()
	 * in usual. But some FS (shmem) precharges this page before calling it
	 * and call add_to_page_cache() with GFP_NOWAIT.
	 *
	 * For GFP_NOWAIT case, the page may be pre-charged before calling
	 * add_to_page_cache(). (See shmem.c) check it here and avoid to call
	 * charge twice. (It works but has to pay a bit larger cost.)
2397 2398
	 * And when the page is SwapCache, it should take swap information
	 * into account. This is under lock_page() now.
2399 2400 2401 2402
	 */
	if (!(gfp_mask & __GFP_WAIT)) {
		struct page_cgroup *pc;

2403 2404 2405 2406 2407 2408
		pc = lookup_page_cgroup(page);
		if (!pc)
			return 0;
		lock_page_cgroup(pc);
		if (PageCgroupUsed(pc)) {
			unlock_page_cgroup(pc);
2409 2410
			return 0;
		}
2411
		unlock_page_cgroup(pc);
2412 2413
	}

2414
	if (unlikely(!mm))
2415
		mm = &init_mm;
2416

2417 2418
	if (page_is_file_cache(page))
		return mem_cgroup_charge_common(page, mm, gfp_mask,
2419
				MEM_CGROUP_CHARGE_TYPE_CACHE);
2420

D
Daisuke Nishimura 已提交
2421 2422
	/* shmem */
	if (PageSwapCache(page)) {
2423 2424
		struct mem_cgroup *mem = NULL;

D
Daisuke Nishimura 已提交
2425 2426 2427 2428 2429 2430
		ret = mem_cgroup_try_charge_swapin(mm, page, gfp_mask, &mem);
		if (!ret)
			__mem_cgroup_commit_charge_swapin(page, mem,
					MEM_CGROUP_CHARGE_TYPE_SHMEM);
	} else
		ret = mem_cgroup_charge_common(page, mm, gfp_mask,
2431
					MEM_CGROUP_CHARGE_TYPE_SHMEM);
2432 2433

	return ret;
2434 2435
}

2436 2437 2438
/*
 * While swap-in, try_charge -> commit or cancel, the page is locked.
 * And when try_charge() successfully returns, one refcnt to memcg without
2439
 * struct page_cgroup is acquired. This refcnt will be consumed by
2440 2441
 * "commit()" or removed by "cancel()"
 */
2442 2443 2444 2445 2446
int mem_cgroup_try_charge_swapin(struct mm_struct *mm,
				 struct page *page,
				 gfp_t mask, struct mem_cgroup **ptr)
{
	struct mem_cgroup *mem;
2447
	int ret;
2448

2449
	if (mem_cgroup_disabled())
2450 2451 2452 2453 2454 2455
		return 0;

	if (!do_swap_account)
		goto charge_cur_mm;
	/*
	 * A racing thread's fault, or swapoff, may have already updated
H
Hugh Dickins 已提交
2456 2457 2458
	 * the pte, and even removed page from swap cache: in those cases
	 * do_swap_page()'s pte_same() test will fail; but there's also a
	 * KSM case which does need to charge the page.
2459 2460
	 */
	if (!PageSwapCache(page))
H
Hugh Dickins 已提交
2461
		goto charge_cur_mm;
2462
	mem = try_get_mem_cgroup_from_page(page);
2463 2464
	if (!mem)
		goto charge_cur_mm;
2465
	*ptr = mem;
A
Andrea Arcangeli 已提交
2466
	ret = __mem_cgroup_try_charge(NULL, mask, ptr, true, PAGE_SIZE);
2467 2468
	css_put(&mem->css);
	return ret;
2469 2470 2471
charge_cur_mm:
	if (unlikely(!mm))
		mm = &init_mm;
A
Andrea Arcangeli 已提交
2472
	return __mem_cgroup_try_charge(mm, mask, ptr, true, PAGE_SIZE);
2473 2474
}

D
Daisuke Nishimura 已提交
2475 2476 2477
static void
__mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr,
					enum charge_type ctype)
2478 2479 2480
{
	struct page_cgroup *pc;

2481
	if (mem_cgroup_disabled())
2482 2483 2484
		return;
	if (!ptr)
		return;
2485
	cgroup_exclude_rmdir(&ptr->css);
2486
	pc = lookup_page_cgroup(page);
2487
	mem_cgroup_lru_del_before_commit_swapcache(page);
A
Andrea Arcangeli 已提交
2488
	__mem_cgroup_commit_charge(ptr, pc, ctype, PAGE_SIZE);
2489
	mem_cgroup_lru_add_after_commit_swapcache(page);
2490 2491 2492
	/*
	 * Now swap is on-memory. This means this page may be
	 * counted both as mem and swap....double count.
2493 2494 2495
	 * Fix it by uncharging from memsw. Basically, this SwapCache is stable
	 * under lock_page(). But in do_swap_page()::memory.c, reuse_swap_page()
	 * may call delete_from_swap_cache() before reach here.
2496
	 */
2497
	if (do_swap_account && PageSwapCache(page)) {
2498
		swp_entry_t ent = {.val = page_private(page)};
2499
		unsigned short id;
2500
		struct mem_cgroup *memcg;
2501 2502 2503 2504

		id = swap_cgroup_record(ent, 0);
		rcu_read_lock();
		memcg = mem_cgroup_lookup(id);
2505
		if (memcg) {
2506 2507 2508 2509
			/*
			 * This recorded memcg can be obsolete one. So, avoid
			 * calling css_tryget
			 */
2510
			if (!mem_cgroup_is_root(memcg))
2511
				res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
2512
			mem_cgroup_swap_statistics(memcg, false);
2513 2514
			mem_cgroup_put(memcg);
		}
2515
		rcu_read_unlock();
2516
	}
2517 2518 2519 2520 2521 2522
	/*
	 * At swapin, we may charge account against cgroup which has no tasks.
	 * So, rmdir()->pre_destroy() can be called while we do this charge.
	 * In that case, we need to call pre_destroy() again. check it here.
	 */
	cgroup_release_and_wakeup_rmdir(&ptr->css);
2523 2524
}

D
Daisuke Nishimura 已提交
2525 2526 2527 2528 2529 2530
void mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr)
{
	__mem_cgroup_commit_charge_swapin(page, ptr,
					MEM_CGROUP_CHARGE_TYPE_MAPPED);
}

2531 2532
void mem_cgroup_cancel_charge_swapin(struct mem_cgroup *mem)
{
2533
	if (mem_cgroup_disabled())
2534 2535 2536
		return;
	if (!mem)
		return;
A
Andrea Arcangeli 已提交
2537
	mem_cgroup_cancel_charge(mem, PAGE_SIZE);
2538 2539
}

2540
static void
A
Andrea Arcangeli 已提交
2541 2542
__do_uncharge(struct mem_cgroup *mem, const enum charge_type ctype,
	      int page_size)
2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557
{
	struct memcg_batch_info *batch = NULL;
	bool uncharge_memsw = true;
	/* If swapout, usage of swap doesn't decrease */
	if (!do_swap_account || ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT)
		uncharge_memsw = false;

	batch = &current->memcg_batch;
	/*
	 * In usual, we do css_get() when we remember memcg pointer.
	 * But in this case, we keep res->usage until end of a series of
	 * uncharges. Then, it's ok to ignore memcg's refcnt.
	 */
	if (!batch->memcg)
		batch->memcg = mem;
2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568
	/*
	 * do_batch > 0 when unmapping pages or inode invalidate/truncate.
	 * In those cases, all pages freed continously can be expected to be in
	 * the same cgroup and we have chance to coalesce uncharges.
	 * But we do uncharge one by one if this is killed by OOM(TIF_MEMDIE)
	 * because we want to do uncharge as soon as possible.
	 */

	if (!batch->do_batch || test_thread_flag(TIF_MEMDIE))
		goto direct_uncharge;

A
Andrea Arcangeli 已提交
2569 2570 2571
	if (page_size != PAGE_SIZE)
		goto direct_uncharge;

2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584
	/*
	 * In typical case, batch->memcg == mem. This means we can
	 * merge a series of uncharges to an uncharge of res_counter.
	 * If not, we uncharge res_counter ony by one.
	 */
	if (batch->memcg != mem)
		goto direct_uncharge;
	/* remember freed charge and uncharge it later */
	batch->bytes += PAGE_SIZE;
	if (uncharge_memsw)
		batch->memsw_bytes += PAGE_SIZE;
	return;
direct_uncharge:
A
Andrea Arcangeli 已提交
2585
	res_counter_uncharge(&mem->res, page_size);
2586
	if (uncharge_memsw)
A
Andrea Arcangeli 已提交
2587
		res_counter_uncharge(&mem->memsw, page_size);
2588 2589
	if (unlikely(batch->memcg != mem))
		memcg_oom_recover(mem);
2590 2591
	return;
}
2592

2593
/*
2594
 * uncharge if !page_mapped(page)
2595
 */
2596
static struct mem_cgroup *
2597
__mem_cgroup_uncharge_common(struct page *page, enum charge_type ctype)
2598
{
2599
	int count;
H
Hugh Dickins 已提交
2600
	struct page_cgroup *pc;
2601
	struct mem_cgroup *mem = NULL;
A
Andrea Arcangeli 已提交
2602
	int page_size = PAGE_SIZE;
2603

2604
	if (mem_cgroup_disabled())
2605
		return NULL;
2606

K
KAMEZAWA Hiroyuki 已提交
2607
	if (PageSwapCache(page))
2608
		return NULL;
K
KAMEZAWA Hiroyuki 已提交
2609

A
Andrea Arcangeli 已提交
2610
	if (PageTransHuge(page)) {
A
Andrea Arcangeli 已提交
2611
		page_size <<= compound_order(page);
A
Andrea Arcangeli 已提交
2612 2613
		VM_BUG_ON(!PageTransHuge(page));
	}
A
Andrea Arcangeli 已提交
2614

2615
	count = page_size >> PAGE_SHIFT;
2616
	/*
2617
	 * Check if our page_cgroup is valid
2618
	 */
2619 2620
	pc = lookup_page_cgroup(page);
	if (unlikely(!pc || !PageCgroupUsed(pc)))
2621
		return NULL;
2622

2623
	lock_page_cgroup(pc);
K
KAMEZAWA Hiroyuki 已提交
2624

2625 2626
	mem = pc->mem_cgroup;

K
KAMEZAWA Hiroyuki 已提交
2627 2628 2629 2630 2631
	if (!PageCgroupUsed(pc))
		goto unlock_out;

	switch (ctype) {
	case MEM_CGROUP_CHARGE_TYPE_MAPPED:
K
KAMEZAWA Hiroyuki 已提交
2632
	case MEM_CGROUP_CHARGE_TYPE_DROP:
2633 2634
		/* See mem_cgroup_prepare_migration() */
		if (page_mapped(page) || PageCgroupMigration(pc))
K
KAMEZAWA Hiroyuki 已提交
2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645
			goto unlock_out;
		break;
	case MEM_CGROUP_CHARGE_TYPE_SWAPOUT:
		if (!PageAnon(page)) {	/* Shared memory */
			if (page->mapping && !page_is_file_cache(page))
				goto unlock_out;
		} else if (page_mapped(page)) /* Anon */
				goto unlock_out;
		break;
	default:
		break;
2646
	}
K
KAMEZAWA Hiroyuki 已提交
2647

2648
	mem_cgroup_charge_statistics(mem, PageCgroupCache(pc), -count);
K
KAMEZAWA Hiroyuki 已提交
2649

2650
	ClearPageCgroupUsed(pc);
2651 2652 2653 2654 2655 2656
	/*
	 * pc->mem_cgroup is not cleared here. It will be accessed when it's
	 * freed from LRU. This is safe because uncharged page is expected not
	 * to be reused (freed soon). Exception is SwapCache, it's handled by
	 * special functions.
	 */
2657

2658
	unlock_page_cgroup(pc);
K
KAMEZAWA Hiroyuki 已提交
2659 2660 2661 2662
	/*
	 * even after unlock, we have mem->res.usage here and this memcg
	 * will never be freed.
	 */
2663
	memcg_check_events(mem, page);
K
KAMEZAWA Hiroyuki 已提交
2664 2665 2666 2667 2668
	if (do_swap_account && ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT) {
		mem_cgroup_swap_statistics(mem, true);
		mem_cgroup_get(mem);
	}
	if (!mem_cgroup_is_root(mem))
A
Andrea Arcangeli 已提交
2669
		__do_uncharge(mem, ctype, page_size);
2670

2671
	return mem;
K
KAMEZAWA Hiroyuki 已提交
2672 2673 2674

unlock_out:
	unlock_page_cgroup(pc);
2675
	return NULL;
2676 2677
}

2678 2679
void mem_cgroup_uncharge_page(struct page *page)
{
2680 2681 2682 2683 2684
	/* early check. */
	if (page_mapped(page))
		return;
	if (page->mapping && !PageAnon(page))
		return;
2685 2686 2687 2688 2689 2690
	__mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_MAPPED);
}

void mem_cgroup_uncharge_cache_page(struct page *page)
{
	VM_BUG_ON(page_mapped(page));
2691
	VM_BUG_ON(page->mapping);
2692 2693 2694
	__mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_CACHE);
}

2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734
/*
 * Batch_start/batch_end is called in unmap_page_range/invlidate/trucate.
 * In that cases, pages are freed continuously and we can expect pages
 * are in the same memcg. All these calls itself limits the number of
 * pages freed at once, then uncharge_start/end() is called properly.
 * This may be called prural(2) times in a context,
 */

void mem_cgroup_uncharge_start(void)
{
	current->memcg_batch.do_batch++;
	/* We can do nest. */
	if (current->memcg_batch.do_batch == 1) {
		current->memcg_batch.memcg = NULL;
		current->memcg_batch.bytes = 0;
		current->memcg_batch.memsw_bytes = 0;
	}
}

void mem_cgroup_uncharge_end(void)
{
	struct memcg_batch_info *batch = &current->memcg_batch;

	if (!batch->do_batch)
		return;

	batch->do_batch--;
	if (batch->do_batch) /* If stacked, do nothing. */
		return;

	if (!batch->memcg)
		return;
	/*
	 * This "batch->memcg" is valid without any css_get/put etc...
	 * bacause we hide charges behind us.
	 */
	if (batch->bytes)
		res_counter_uncharge(&batch->memcg->res, batch->bytes);
	if (batch->memsw_bytes)
		res_counter_uncharge(&batch->memcg->memsw, batch->memsw_bytes);
2735
	memcg_oom_recover(batch->memcg);
2736 2737 2738 2739
	/* forget this pointer (for sanity check) */
	batch->memcg = NULL;
}

2740
#ifdef CONFIG_SWAP
2741
/*
2742
 * called after __delete_from_swap_cache() and drop "page" account.
2743 2744
 * memcg information is recorded to swap_cgroup of "ent"
 */
K
KAMEZAWA Hiroyuki 已提交
2745 2746
void
mem_cgroup_uncharge_swapcache(struct page *page, swp_entry_t ent, bool swapout)
2747 2748
{
	struct mem_cgroup *memcg;
K
KAMEZAWA Hiroyuki 已提交
2749 2750 2751 2752 2753 2754
	int ctype = MEM_CGROUP_CHARGE_TYPE_SWAPOUT;

	if (!swapout) /* this was a swap cache but the swap is unused ! */
		ctype = MEM_CGROUP_CHARGE_TYPE_DROP;

	memcg = __mem_cgroup_uncharge_common(page, ctype);
2755

K
KAMEZAWA Hiroyuki 已提交
2756 2757 2758 2759 2760
	/*
	 * record memcg information,  if swapout && memcg != NULL,
	 * mem_cgroup_get() was called in uncharge().
	 */
	if (do_swap_account && swapout && memcg)
2761
		swap_cgroup_record(ent, css_id(&memcg->css));
2762
}
2763
#endif
2764 2765 2766 2767 2768 2769 2770

#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
/*
 * called from swap_entry_free(). remove record in swap_cgroup and
 * uncharge "memsw" account.
 */
void mem_cgroup_uncharge_swap(swp_entry_t ent)
K
KAMEZAWA Hiroyuki 已提交
2771
{
2772
	struct mem_cgroup *memcg;
2773
	unsigned short id;
2774 2775 2776 2777

	if (!do_swap_account)
		return;

2778 2779 2780
	id = swap_cgroup_record(ent, 0);
	rcu_read_lock();
	memcg = mem_cgroup_lookup(id);
2781
	if (memcg) {
2782 2783 2784 2785
		/*
		 * We uncharge this because swap is freed.
		 * This memcg can be obsolete one. We avoid calling css_tryget
		 */
2786
		if (!mem_cgroup_is_root(memcg))
2787
			res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
2788
		mem_cgroup_swap_statistics(memcg, false);
2789 2790
		mem_cgroup_put(memcg);
	}
2791
	rcu_read_unlock();
K
KAMEZAWA Hiroyuki 已提交
2792
}
2793 2794 2795 2796 2797 2798

/**
 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
 * @entry: swap entry to be moved
 * @from:  mem_cgroup which the entry is moved from
 * @to:  mem_cgroup which the entry is moved to
2799
 * @need_fixup: whether we should fixup res_counters and refcounts.
2800 2801 2802 2803 2804 2805 2806 2807 2808 2809
 *
 * It succeeds only when the swap_cgroup's record for this entry is the same
 * as the mem_cgroup's id of @from.
 *
 * Returns 0 on success, -EINVAL on failure.
 *
 * The caller must have charged to @to, IOW, called res_counter_charge() about
 * both res and memsw, and called css_get().
 */
static int mem_cgroup_move_swap_account(swp_entry_t entry,
2810
		struct mem_cgroup *from, struct mem_cgroup *to, bool need_fixup)
2811 2812 2813 2814 2815 2816 2817 2818
{
	unsigned short old_id, new_id;

	old_id = css_id(&from->css);
	new_id = css_id(&to->css);

	if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
		mem_cgroup_swap_statistics(from, false);
2819
		mem_cgroup_swap_statistics(to, true);
2820
		/*
2821 2822 2823 2824 2825 2826
		 * This function is only called from task migration context now.
		 * It postpones res_counter and refcount handling till the end
		 * of task migration(mem_cgroup_clear_mc()) for performance
		 * improvement. But we cannot postpone mem_cgroup_get(to)
		 * because if the process that has been moved to @to does
		 * swap-in, the refcount of @to might be decreased to 0.
2827 2828
		 */
		mem_cgroup_get(to);
2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839
		if (need_fixup) {
			if (!mem_cgroup_is_root(from))
				res_counter_uncharge(&from->memsw, PAGE_SIZE);
			mem_cgroup_put(from);
			/*
			 * we charged both to->res and to->memsw, so we should
			 * uncharge to->res.
			 */
			if (!mem_cgroup_is_root(to))
				res_counter_uncharge(&to->res, PAGE_SIZE);
		}
2840 2841 2842 2843 2844 2845
		return 0;
	}
	return -EINVAL;
}
#else
static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
2846
		struct mem_cgroup *from, struct mem_cgroup *to, bool need_fixup)
2847 2848 2849
{
	return -EINVAL;
}
2850
#endif
K
KAMEZAWA Hiroyuki 已提交
2851

2852
/*
2853 2854
 * Before starting migration, account PAGE_SIZE to mem_cgroup that the old
 * page belongs to.
2855
 */
2856 2857
int mem_cgroup_prepare_migration(struct page *page,
	struct page *newpage, struct mem_cgroup **ptr)
2858 2859
{
	struct page_cgroup *pc;
2860
	struct mem_cgroup *mem = NULL;
2861
	enum charge_type ctype;
2862
	int ret = 0;
2863

A
Andrea Arcangeli 已提交
2864
	VM_BUG_ON(PageTransHuge(page));
2865
	if (mem_cgroup_disabled())
2866 2867
		return 0;

2868 2869 2870
	pc = lookup_page_cgroup(page);
	lock_page_cgroup(pc);
	if (PageCgroupUsed(pc)) {
2871 2872
		mem = pc->mem_cgroup;
		css_get(&mem->css);
2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903
		/*
		 * At migrating an anonymous page, its mapcount goes down
		 * to 0 and uncharge() will be called. But, even if it's fully
		 * unmapped, migration may fail and this page has to be
		 * charged again. We set MIGRATION flag here and delay uncharge
		 * until end_migration() is called
		 *
		 * Corner Case Thinking
		 * A)
		 * When the old page was mapped as Anon and it's unmap-and-freed
		 * while migration was ongoing.
		 * If unmap finds the old page, uncharge() of it will be delayed
		 * until end_migration(). If unmap finds a new page, it's
		 * uncharged when it make mapcount to be 1->0. If unmap code
		 * finds swap_migration_entry, the new page will not be mapped
		 * and end_migration() will find it(mapcount==0).
		 *
		 * B)
		 * When the old page was mapped but migraion fails, the kernel
		 * remaps it. A charge for it is kept by MIGRATION flag even
		 * if mapcount goes down to 0. We can do remap successfully
		 * without charging it again.
		 *
		 * C)
		 * The "old" page is under lock_page() until the end of
		 * migration, so, the old page itself will not be swapped-out.
		 * If the new page is swapped out before end_migraton, our
		 * hook to usual swap-out path will catch the event.
		 */
		if (PageAnon(page))
			SetPageCgroupMigration(pc);
2904
	}
2905
	unlock_page_cgroup(pc);
2906 2907 2908 2909 2910 2911
	/*
	 * If the page is not charged at this point,
	 * we return here.
	 */
	if (!mem)
		return 0;
2912

A
Andrea Arcangeli 已提交
2913
	*ptr = mem;
A
Andrea Arcangeli 已提交
2914
	ret = __mem_cgroup_try_charge(NULL, GFP_KERNEL, ptr, false, PAGE_SIZE);
2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926
	css_put(&mem->css);/* drop extra refcnt */
	if (ret || *ptr == NULL) {
		if (PageAnon(page)) {
			lock_page_cgroup(pc);
			ClearPageCgroupMigration(pc);
			unlock_page_cgroup(pc);
			/*
			 * The old page may be fully unmapped while we kept it.
			 */
			mem_cgroup_uncharge_page(page);
		}
		return -ENOMEM;
2927
	}
2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940
	/*
	 * We charge new page before it's used/mapped. So, even if unlock_page()
	 * is called before end_migration, we can catch all events on this new
	 * page. In the case new page is migrated but not remapped, new page's
	 * mapcount will be finally 0 and we call uncharge in end_migration().
	 */
	pc = lookup_page_cgroup(newpage);
	if (PageAnon(page))
		ctype = MEM_CGROUP_CHARGE_TYPE_MAPPED;
	else if (page_is_file_cache(page))
		ctype = MEM_CGROUP_CHARGE_TYPE_CACHE;
	else
		ctype = MEM_CGROUP_CHARGE_TYPE_SHMEM;
A
Andrea Arcangeli 已提交
2941
	__mem_cgroup_commit_charge(mem, pc, ctype, PAGE_SIZE);
2942
	return ret;
2943
}
2944

2945
/* remove redundant charge if migration failed*/
2946
void mem_cgroup_end_migration(struct mem_cgroup *mem,
2947
	struct page *oldpage, struct page *newpage, bool migration_ok)
2948
{
2949
	struct page *used, *unused;
2950 2951 2952 2953
	struct page_cgroup *pc;

	if (!mem)
		return;
2954
	/* blocks rmdir() */
2955
	cgroup_exclude_rmdir(&mem->css);
2956
	if (!migration_ok) {
2957 2958
		used = oldpage;
		unused = newpage;
2959
	} else {
2960
		used = newpage;
2961 2962
		unused = oldpage;
	}
2963
	/*
2964 2965 2966
	 * We disallowed uncharge of pages under migration because mapcount
	 * of the page goes down to zero, temporarly.
	 * Clear the flag and check the page should be charged.
2967
	 */
2968 2969 2970 2971
	pc = lookup_page_cgroup(oldpage);
	lock_page_cgroup(pc);
	ClearPageCgroupMigration(pc);
	unlock_page_cgroup(pc);
2972

2973 2974
	__mem_cgroup_uncharge_common(unused, MEM_CGROUP_CHARGE_TYPE_FORCE);

2975
	/*
2976 2977 2978 2979 2980 2981
	 * If a page is a file cache, radix-tree replacement is very atomic
	 * and we can skip this check. When it was an Anon page, its mapcount
	 * goes down to 0. But because we added MIGRATION flage, it's not
	 * uncharged yet. There are several case but page->mapcount check
	 * and USED bit check in mem_cgroup_uncharge_page() will do enough
	 * check. (see prepare_charge() also)
2982
	 */
2983 2984
	if (PageAnon(used))
		mem_cgroup_uncharge_page(used);
2985
	/*
2986 2987
	 * At migration, we may charge account against cgroup which has no
	 * tasks.
2988 2989 2990 2991
	 * So, rmdir()->pre_destroy() can be called while we do this charge.
	 * In that case, we need to call pre_destroy() again. check it here.
	 */
	cgroup_release_and_wakeup_rmdir(&mem->css);
2992
}
2993

2994
/*
2995 2996 2997 2998 2999 3000
 * A call to try to shrink memory usage on charge failure at shmem's swapin.
 * Calling hierarchical_reclaim is not enough because we should update
 * last_oom_jiffies to prevent pagefault_out_of_memory from invoking global OOM.
 * Moreover considering hierarchy, we should reclaim from the mem_over_limit,
 * not from the memcg which this page would be charged to.
 * try_charge_swapin does all of these works properly.
3001
 */
3002
int mem_cgroup_shmem_charge_fallback(struct page *page,
3003 3004
			    struct mm_struct *mm,
			    gfp_t gfp_mask)
3005
{
3006
	struct mem_cgroup *mem = NULL;
3007
	int ret;
3008

3009
	if (mem_cgroup_disabled())
3010
		return 0;
3011

3012 3013 3014
	ret = mem_cgroup_try_charge_swapin(mm, page, gfp_mask, &mem);
	if (!ret)
		mem_cgroup_cancel_charge_swapin(mem); /* it does !mem check */
3015

3016
	return ret;
3017 3018
}

3019 3020
static DEFINE_MUTEX(set_limit_mutex);

3021
static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
3022
				unsigned long long val)
3023
{
3024
	int retry_count;
3025
	u64 memswlimit, memlimit;
3026
	int ret = 0;
3027 3028
	int children = mem_cgroup_count_children(memcg);
	u64 curusage, oldusage;
3029
	int enlarge;
3030 3031 3032 3033 3034 3035 3036 3037 3038

	/*
	 * For keeping hierarchical_reclaim simple, how long we should retry
	 * is depends on callers. We set our retry-count to be function
	 * of # of children which we should visit in this loop.
	 */
	retry_count = MEM_CGROUP_RECLAIM_RETRIES * children;

	oldusage = res_counter_read_u64(&memcg->res, RES_USAGE);
3039

3040
	enlarge = 0;
3041
	while (retry_count) {
3042 3043 3044 3045
		if (signal_pending(current)) {
			ret = -EINTR;
			break;
		}
3046 3047 3048 3049 3050 3051 3052 3053 3054 3055
		/*
		 * Rather than hide all in some function, I do this in
		 * open coded manner. You see what this really does.
		 * We have to guarantee mem->res.limit < mem->memsw.limit.
		 */
		mutex_lock(&set_limit_mutex);
		memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
		if (memswlimit < val) {
			ret = -EINVAL;
			mutex_unlock(&set_limit_mutex);
3056 3057
			break;
		}
3058 3059 3060 3061 3062

		memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
		if (memlimit < val)
			enlarge = 1;

3063
		ret = res_counter_set_limit(&memcg->res, val);
3064 3065 3066 3067 3068 3069
		if (!ret) {
			if (memswlimit == val)
				memcg->memsw_is_minimum = true;
			else
				memcg->memsw_is_minimum = false;
		}
3070 3071 3072 3073 3074
		mutex_unlock(&set_limit_mutex);

		if (!ret)
			break;

3075
		mem_cgroup_hierarchical_reclaim(memcg, NULL, GFP_KERNEL,
3076
						MEM_CGROUP_RECLAIM_SHRINK);
3077 3078 3079 3080 3081 3082
		curusage = res_counter_read_u64(&memcg->res, RES_USAGE);
		/* Usage is reduced ? */
  		if (curusage >= oldusage)
			retry_count--;
		else
			oldusage = curusage;
3083
	}
3084 3085
	if (!ret && enlarge)
		memcg_oom_recover(memcg);
3086

3087 3088 3089
	return ret;
}

L
Li Zefan 已提交
3090 3091
static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
					unsigned long long val)
3092
{
3093
	int retry_count;
3094
	u64 memlimit, memswlimit, oldusage, curusage;
3095 3096
	int children = mem_cgroup_count_children(memcg);
	int ret = -EBUSY;
3097
	int enlarge = 0;
3098

3099 3100 3101
	/* see mem_cgroup_resize_res_limit */
 	retry_count = children * MEM_CGROUP_RECLAIM_RETRIES;
	oldusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118
	while (retry_count) {
		if (signal_pending(current)) {
			ret = -EINTR;
			break;
		}
		/*
		 * Rather than hide all in some function, I do this in
		 * open coded manner. You see what this really does.
		 * We have to guarantee mem->res.limit < mem->memsw.limit.
		 */
		mutex_lock(&set_limit_mutex);
		memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
		if (memlimit > val) {
			ret = -EINVAL;
			mutex_unlock(&set_limit_mutex);
			break;
		}
3119 3120 3121
		memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
		if (memswlimit < val)
			enlarge = 1;
3122
		ret = res_counter_set_limit(&memcg->memsw, val);
3123 3124 3125 3126 3127 3128
		if (!ret) {
			if (memlimit == val)
				memcg->memsw_is_minimum = true;
			else
				memcg->memsw_is_minimum = false;
		}
3129 3130 3131 3132 3133
		mutex_unlock(&set_limit_mutex);

		if (!ret)
			break;

3134
		mem_cgroup_hierarchical_reclaim(memcg, NULL, GFP_KERNEL,
3135 3136
						MEM_CGROUP_RECLAIM_NOSWAP |
						MEM_CGROUP_RECLAIM_SHRINK);
3137
		curusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
3138
		/* Usage is reduced ? */
3139
		if (curusage >= oldusage)
3140
			retry_count--;
3141 3142
		else
			oldusage = curusage;
3143
	}
3144 3145
	if (!ret && enlarge)
		memcg_oom_recover(memcg);
3146 3147 3148
	return ret;
}

3149
unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
3150
					    gfp_t gfp_mask)
3151 3152 3153 3154 3155 3156
{
	unsigned long nr_reclaimed = 0;
	struct mem_cgroup_per_zone *mz, *next_mz = NULL;
	unsigned long reclaimed;
	int loop = 0;
	struct mem_cgroup_tree_per_zone *mctz;
3157
	unsigned long long excess;
3158 3159 3160 3161

	if (order > 0)
		return 0;

3162
	mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone));
3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209
	/*
	 * This loop can run a while, specially if mem_cgroup's continuously
	 * keep exceeding their soft limit and putting the system under
	 * pressure
	 */
	do {
		if (next_mz)
			mz = next_mz;
		else
			mz = mem_cgroup_largest_soft_limit_node(mctz);
		if (!mz)
			break;

		reclaimed = mem_cgroup_hierarchical_reclaim(mz->mem, zone,
						gfp_mask,
						MEM_CGROUP_RECLAIM_SOFT);
		nr_reclaimed += reclaimed;
		spin_lock(&mctz->lock);

		/*
		 * If we failed to reclaim anything from this memory cgroup
		 * it is time to move on to the next cgroup
		 */
		next_mz = NULL;
		if (!reclaimed) {
			do {
				/*
				 * Loop until we find yet another one.
				 *
				 * By the time we get the soft_limit lock
				 * again, someone might have aded the
				 * group back on the RB tree. Iterate to
				 * make sure we get a different mem.
				 * mem_cgroup_largest_soft_limit_node returns
				 * NULL if no other cgroup is present on
				 * the tree
				 */
				next_mz =
				__mem_cgroup_largest_soft_limit_node(mctz);
				if (next_mz == mz) {
					css_put(&next_mz->mem->css);
					next_mz = NULL;
				} else /* next_mz == NULL or other memcg */
					break;
			} while (1);
		}
		__mem_cgroup_remove_exceeded(mz->mem, mz, mctz);
3210
		excess = res_counter_soft_limit_excess(&mz->mem->res);
3211 3212 3213 3214 3215 3216 3217 3218
		/*
		 * One school of thought says that we should not add
		 * back the node to the tree if reclaim returns 0.
		 * But our reclaim could return 0, simply because due
		 * to priority we are exposing a smaller subset of
		 * memory to reclaim from. Consider this as a longer
		 * term TODO.
		 */
3219 3220
		/* If excess == 0, no tree ops */
		__mem_cgroup_insert_exceeded(mz->mem, mz, mctz, excess);
3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238
		spin_unlock(&mctz->lock);
		css_put(&mz->mem->css);
		loop++;
		/*
		 * Could not reclaim anything and there are no more
		 * mem cgroups to try or we seem to be looping without
		 * reclaiming anything.
		 */
		if (!nr_reclaimed &&
			(next_mz == NULL ||
			loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
			break;
	} while (!nr_reclaimed);
	if (next_mz)
		css_put(&next_mz->mem->css);
	return nr_reclaimed;
}

3239 3240 3241 3242
/*
 * This routine traverse page_cgroup in given list and drop them all.
 * *And* this routine doesn't reclaim page itself, just removes page_cgroup.
 */
3243
static int mem_cgroup_force_empty_list(struct mem_cgroup *mem,
K
KAMEZAWA Hiroyuki 已提交
3244
				int node, int zid, enum lru_list lru)
3245
{
K
KAMEZAWA Hiroyuki 已提交
3246 3247
	struct zone *zone;
	struct mem_cgroup_per_zone *mz;
3248
	struct page_cgroup *pc, *busy;
K
KAMEZAWA Hiroyuki 已提交
3249
	unsigned long flags, loop;
3250
	struct list_head *list;
3251
	int ret = 0;
3252

K
KAMEZAWA Hiroyuki 已提交
3253 3254
	zone = &NODE_DATA(node)->node_zones[zid];
	mz = mem_cgroup_zoneinfo(mem, node, zid);
3255
	list = &mz->lists[lru];
3256

3257 3258 3259 3260 3261 3262
	loop = MEM_CGROUP_ZSTAT(mz, lru);
	/* give some margin against EBUSY etc...*/
	loop += 256;
	busy = NULL;
	while (loop--) {
		ret = 0;
K
KAMEZAWA Hiroyuki 已提交
3263
		spin_lock_irqsave(&zone->lru_lock, flags);
3264
		if (list_empty(list)) {
K
KAMEZAWA Hiroyuki 已提交
3265
			spin_unlock_irqrestore(&zone->lru_lock, flags);
3266
			break;
3267 3268 3269 3270
		}
		pc = list_entry(list->prev, struct page_cgroup, lru);
		if (busy == pc) {
			list_move(&pc->lru, list);
3271
			busy = NULL;
K
KAMEZAWA Hiroyuki 已提交
3272
			spin_unlock_irqrestore(&zone->lru_lock, flags);
3273 3274
			continue;
		}
K
KAMEZAWA Hiroyuki 已提交
3275
		spin_unlock_irqrestore(&zone->lru_lock, flags);
3276

K
KAMEZAWA Hiroyuki 已提交
3277
		ret = mem_cgroup_move_parent(pc, mem, GFP_KERNEL);
3278
		if (ret == -ENOMEM)
3279
			break;
3280 3281 3282 3283 3284 3285 3286

		if (ret == -EBUSY || ret == -EINVAL) {
			/* found lock contention or "pc" is obsolete. */
			busy = pc;
			cond_resched();
		} else
			busy = NULL;
3287
	}
K
KAMEZAWA Hiroyuki 已提交
3288

3289 3290 3291
	if (!ret && !list_empty(list))
		return -EBUSY;
	return ret;
3292 3293 3294 3295 3296 3297
}

/*
 * make mem_cgroup's charge to be 0 if there is no task.
 * This enables deleting this mem_cgroup.
 */
3298
static int mem_cgroup_force_empty(struct mem_cgroup *mem, bool free_all)
3299
{
3300 3301 3302
	int ret;
	int node, zid, shrink;
	int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
3303
	struct cgroup *cgrp = mem->css.cgroup;
3304

3305
	css_get(&mem->css);
3306 3307

	shrink = 0;
3308 3309 3310
	/* should free all ? */
	if (free_all)
		goto try_to_free;
3311
move_account:
3312
	do {
3313
		ret = -EBUSY;
3314 3315 3316 3317
		if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children))
			goto out;
		ret = -EINTR;
		if (signal_pending(current))
3318
			goto out;
3319 3320
		/* This is for making all *used* pages to be on LRU. */
		lru_add_drain_all();
3321
		drain_all_stock_sync();
3322
		ret = 0;
3323
		mem_cgroup_start_move(mem);
3324
		for_each_node_state(node, N_HIGH_MEMORY) {
3325
			for (zid = 0; !ret && zid < MAX_NR_ZONES; zid++) {
3326
				enum lru_list l;
3327 3328
				for_each_lru(l) {
					ret = mem_cgroup_force_empty_list(mem,
K
KAMEZAWA Hiroyuki 已提交
3329
							node, zid, l);
3330 3331 3332
					if (ret)
						break;
				}
3333
			}
3334 3335 3336
			if (ret)
				break;
		}
3337
		mem_cgroup_end_move(mem);
3338
		memcg_oom_recover(mem);
3339 3340 3341
		/* it seems parent cgroup doesn't have enough mem */
		if (ret == -ENOMEM)
			goto try_to_free;
3342
		cond_resched();
3343 3344
	/* "ret" should also be checked to ensure all lists are empty. */
	} while (mem->res.usage > 0 || ret);
3345 3346 3347
out:
	css_put(&mem->css);
	return ret;
3348 3349

try_to_free:
3350 3351
	/* returns EBUSY if there is a task or if we come here twice. */
	if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children) || shrink) {
3352 3353 3354
		ret = -EBUSY;
		goto out;
	}
3355 3356
	/* we call try-to-free pages for make this cgroup empty */
	lru_add_drain_all();
3357 3358 3359 3360
	/* try to free all pages in this cgroup */
	shrink = 1;
	while (nr_retries && mem->res.usage > 0) {
		int progress;
3361 3362 3363 3364 3365

		if (signal_pending(current)) {
			ret = -EINTR;
			goto out;
		}
K
KOSAKI Motohiro 已提交
3366 3367
		progress = try_to_free_mem_cgroup_pages(mem, GFP_KERNEL,
						false, get_swappiness(mem));
3368
		if (!progress) {
3369
			nr_retries--;
3370
			/* maybe some writeback is necessary */
3371
			congestion_wait(BLK_RW_ASYNC, HZ/10);
3372
		}
3373 3374

	}
K
KAMEZAWA Hiroyuki 已提交
3375
	lru_add_drain();
3376
	/* try move_account...there may be some *locked* pages. */
3377
	goto move_account;
3378 3379
}

3380 3381 3382 3383 3384 3385
int mem_cgroup_force_empty_write(struct cgroup *cont, unsigned int event)
{
	return mem_cgroup_force_empty(mem_cgroup_from_cont(cont), true);
}


3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403
static u64 mem_cgroup_hierarchy_read(struct cgroup *cont, struct cftype *cft)
{
	return mem_cgroup_from_cont(cont)->use_hierarchy;
}

static int mem_cgroup_hierarchy_write(struct cgroup *cont, struct cftype *cft,
					u64 val)
{
	int retval = 0;
	struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
	struct cgroup *parent = cont->parent;
	struct mem_cgroup *parent_mem = NULL;

	if (parent)
		parent_mem = mem_cgroup_from_cont(parent);

	cgroup_lock();
	/*
3404
	 * If parent's use_hierarchy is set, we can't make any modifications
3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423
	 * in the child subtrees. If it is unset, then the change can
	 * occur, provided the current cgroup has no children.
	 *
	 * For the root cgroup, parent_mem is NULL, we allow value to be
	 * set if there are no children.
	 */
	if ((!parent_mem || !parent_mem->use_hierarchy) &&
				(val == 1 || val == 0)) {
		if (list_empty(&cont->children))
			mem->use_hierarchy = val;
		else
			retval = -EBUSY;
	} else
		retval = -EINVAL;
	cgroup_unlock();

	return retval;
}

3424

K
KAMEZAWA Hiroyuki 已提交
3425 3426
static u64 mem_cgroup_get_recursive_idx_stat(struct mem_cgroup *mem,
				enum mem_cgroup_stat_index idx)
3427
{
K
KAMEZAWA Hiroyuki 已提交
3428 3429
	struct mem_cgroup *iter;
	s64 val = 0;
3430

K
KAMEZAWA Hiroyuki 已提交
3431 3432 3433 3434 3435 3436 3437
	/* each per cpu's value can be minus.Then, use s64 */
	for_each_mem_cgroup_tree(iter, mem)
		val += mem_cgroup_read_stat(iter, idx);

	if (val < 0) /* race ? */
		val = 0;
	return val;
3438 3439
}

3440 3441
static inline u64 mem_cgroup_usage(struct mem_cgroup *mem, bool swap)
{
K
KAMEZAWA Hiroyuki 已提交
3442
	u64 val;
3443 3444 3445 3446 3447 3448 3449 3450

	if (!mem_cgroup_is_root(mem)) {
		if (!swap)
			return res_counter_read_u64(&mem->res, RES_USAGE);
		else
			return res_counter_read_u64(&mem->memsw, RES_USAGE);
	}

K
KAMEZAWA Hiroyuki 已提交
3451 3452
	val = mem_cgroup_get_recursive_idx_stat(mem, MEM_CGROUP_STAT_CACHE);
	val += mem_cgroup_get_recursive_idx_stat(mem, MEM_CGROUP_STAT_RSS);
3453

K
KAMEZAWA Hiroyuki 已提交
3454 3455 3456
	if (swap)
		val += mem_cgroup_get_recursive_idx_stat(mem,
				MEM_CGROUP_STAT_SWAPOUT);
3457 3458 3459 3460

	return val << PAGE_SHIFT;
}

3461
static u64 mem_cgroup_read(struct cgroup *cont, struct cftype *cft)
B
Balbir Singh 已提交
3462
{
3463
	struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
3464
	u64 val;
3465 3466 3467 3468 3469 3470
	int type, name;

	type = MEMFILE_TYPE(cft->private);
	name = MEMFILE_ATTR(cft->private);
	switch (type) {
	case _MEM:
3471 3472 3473
		if (name == RES_USAGE)
			val = mem_cgroup_usage(mem, false);
		else
3474
			val = res_counter_read_u64(&mem->res, name);
3475 3476
		break;
	case _MEMSWAP:
3477 3478 3479
		if (name == RES_USAGE)
			val = mem_cgroup_usage(mem, true);
		else
3480
			val = res_counter_read_u64(&mem->memsw, name);
3481 3482 3483 3484 3485 3486
		break;
	default:
		BUG();
		break;
	}
	return val;
B
Balbir Singh 已提交
3487
}
3488 3489 3490 3491
/*
 * The user of this function is...
 * RES_LIMIT.
 */
3492 3493
static int mem_cgroup_write(struct cgroup *cont, struct cftype *cft,
			    const char *buffer)
B
Balbir Singh 已提交
3494
{
3495
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
3496
	int type, name;
3497 3498 3499
	unsigned long long val;
	int ret;

3500 3501 3502
	type = MEMFILE_TYPE(cft->private);
	name = MEMFILE_ATTR(cft->private);
	switch (name) {
3503
	case RES_LIMIT:
3504 3505 3506 3507
		if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
			ret = -EINVAL;
			break;
		}
3508 3509
		/* This function does all necessary parse...reuse it */
		ret = res_counter_memparse_write_strategy(buffer, &val);
3510 3511 3512
		if (ret)
			break;
		if (type == _MEM)
3513
			ret = mem_cgroup_resize_limit(memcg, val);
3514 3515
		else
			ret = mem_cgroup_resize_memsw_limit(memcg, val);
3516
		break;
3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530
	case RES_SOFT_LIMIT:
		ret = res_counter_memparse_write_strategy(buffer, &val);
		if (ret)
			break;
		/*
		 * For memsw, soft limits are hard to implement in terms
		 * of semantics, for now, we support soft limits for
		 * control without swap
		 */
		if (type == _MEM)
			ret = res_counter_set_soft_limit(&memcg->res, val);
		else
			ret = -EINVAL;
		break;
3531 3532 3533 3534 3535
	default:
		ret = -EINVAL; /* should be BUG() ? */
		break;
	}
	return ret;
B
Balbir Singh 已提交
3536 3537
}

3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565
static void memcg_get_hierarchical_limit(struct mem_cgroup *memcg,
		unsigned long long *mem_limit, unsigned long long *memsw_limit)
{
	struct cgroup *cgroup;
	unsigned long long min_limit, min_memsw_limit, tmp;

	min_limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
	min_memsw_limit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
	cgroup = memcg->css.cgroup;
	if (!memcg->use_hierarchy)
		goto out;

	while (cgroup->parent) {
		cgroup = cgroup->parent;
		memcg = mem_cgroup_from_cont(cgroup);
		if (!memcg->use_hierarchy)
			break;
		tmp = res_counter_read_u64(&memcg->res, RES_LIMIT);
		min_limit = min(min_limit, tmp);
		tmp = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
		min_memsw_limit = min(min_memsw_limit, tmp);
	}
out:
	*mem_limit = min_limit;
	*memsw_limit = min_memsw_limit;
	return;
}

3566
static int mem_cgroup_reset(struct cgroup *cont, unsigned int event)
3567 3568
{
	struct mem_cgroup *mem;
3569
	int type, name;
3570 3571

	mem = mem_cgroup_from_cont(cont);
3572 3573 3574
	type = MEMFILE_TYPE(event);
	name = MEMFILE_ATTR(event);
	switch (name) {
3575
	case RES_MAX_USAGE:
3576 3577 3578 3579
		if (type == _MEM)
			res_counter_reset_max(&mem->res);
		else
			res_counter_reset_max(&mem->memsw);
3580 3581
		break;
	case RES_FAILCNT:
3582 3583 3584 3585
		if (type == _MEM)
			res_counter_reset_failcnt(&mem->res);
		else
			res_counter_reset_failcnt(&mem->memsw);
3586 3587
		break;
	}
3588

3589
	return 0;
3590 3591
}

3592 3593 3594 3595 3596 3597
static u64 mem_cgroup_move_charge_read(struct cgroup *cgrp,
					struct cftype *cft)
{
	return mem_cgroup_from_cont(cgrp)->move_charge_at_immigrate;
}

3598
#ifdef CONFIG_MMU
3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616
static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
					struct cftype *cft, u64 val)
{
	struct mem_cgroup *mem = mem_cgroup_from_cont(cgrp);

	if (val >= (1 << NR_MOVE_TYPE))
		return -EINVAL;
	/*
	 * We check this value several times in both in can_attach() and
	 * attach(), so we need cgroup lock to prevent this value from being
	 * inconsistent.
	 */
	cgroup_lock();
	mem->move_charge_at_immigrate = val;
	cgroup_unlock();

	return 0;
}
3617 3618 3619 3620 3621 3622 3623
#else
static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
					struct cftype *cft, u64 val)
{
	return -ENOSYS;
}
#endif
3624

K
KAMEZAWA Hiroyuki 已提交
3625 3626 3627 3628 3629

/* For read statistics */
enum {
	MCS_CACHE,
	MCS_RSS,
3630
	MCS_FILE_MAPPED,
K
KAMEZAWA Hiroyuki 已提交
3631 3632
	MCS_PGPGIN,
	MCS_PGPGOUT,
3633
	MCS_SWAP,
K
KAMEZAWA Hiroyuki 已提交
3634 3635 3636 3637 3638 3639 3640 3641 3642 3643
	MCS_INACTIVE_ANON,
	MCS_ACTIVE_ANON,
	MCS_INACTIVE_FILE,
	MCS_ACTIVE_FILE,
	MCS_UNEVICTABLE,
	NR_MCS_STAT,
};

struct mcs_total_stat {
	s64 stat[NR_MCS_STAT];
3644 3645
};

K
KAMEZAWA Hiroyuki 已提交
3646 3647 3648 3649 3650 3651
struct {
	char *local_name;
	char *total_name;
} memcg_stat_strings[NR_MCS_STAT] = {
	{"cache", "total_cache"},
	{"rss", "total_rss"},
3652
	{"mapped_file", "total_mapped_file"},
K
KAMEZAWA Hiroyuki 已提交
3653 3654
	{"pgpgin", "total_pgpgin"},
	{"pgpgout", "total_pgpgout"},
3655
	{"swap", "total_swap"},
K
KAMEZAWA Hiroyuki 已提交
3656 3657 3658 3659 3660 3661 3662 3663
	{"inactive_anon", "total_inactive_anon"},
	{"active_anon", "total_active_anon"},
	{"inactive_file", "total_inactive_file"},
	{"active_file", "total_active_file"},
	{"unevictable", "total_unevictable"}
};


K
KAMEZAWA Hiroyuki 已提交
3664 3665
static void
mem_cgroup_get_local_stat(struct mem_cgroup *mem, struct mcs_total_stat *s)
K
KAMEZAWA Hiroyuki 已提交
3666 3667 3668 3669
{
	s64 val;

	/* per cpu stat */
3670
	val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_CACHE);
K
KAMEZAWA Hiroyuki 已提交
3671
	s->stat[MCS_CACHE] += val * PAGE_SIZE;
3672
	val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_RSS);
K
KAMEZAWA Hiroyuki 已提交
3673
	s->stat[MCS_RSS] += val * PAGE_SIZE;
3674
	val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_FILE_MAPPED);
3675
	s->stat[MCS_FILE_MAPPED] += val * PAGE_SIZE;
3676
	val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_PGPGIN_COUNT);
K
KAMEZAWA Hiroyuki 已提交
3677
	s->stat[MCS_PGPGIN] += val;
3678
	val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_PGPGOUT_COUNT);
K
KAMEZAWA Hiroyuki 已提交
3679
	s->stat[MCS_PGPGOUT] += val;
3680
	if (do_swap_account) {
3681
		val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_SWAPOUT);
3682 3683
		s->stat[MCS_SWAP] += val * PAGE_SIZE;
	}
K
KAMEZAWA Hiroyuki 已提交
3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700

	/* per zone stat */
	val = mem_cgroup_get_local_zonestat(mem, LRU_INACTIVE_ANON);
	s->stat[MCS_INACTIVE_ANON] += val * PAGE_SIZE;
	val = mem_cgroup_get_local_zonestat(mem, LRU_ACTIVE_ANON);
	s->stat[MCS_ACTIVE_ANON] += val * PAGE_SIZE;
	val = mem_cgroup_get_local_zonestat(mem, LRU_INACTIVE_FILE);
	s->stat[MCS_INACTIVE_FILE] += val * PAGE_SIZE;
	val = mem_cgroup_get_local_zonestat(mem, LRU_ACTIVE_FILE);
	s->stat[MCS_ACTIVE_FILE] += val * PAGE_SIZE;
	val = mem_cgroup_get_local_zonestat(mem, LRU_UNEVICTABLE);
	s->stat[MCS_UNEVICTABLE] += val * PAGE_SIZE;
}

static void
mem_cgroup_get_total_stat(struct mem_cgroup *mem, struct mcs_total_stat *s)
{
K
KAMEZAWA Hiroyuki 已提交
3701 3702 3703 3704
	struct mem_cgroup *iter;

	for_each_mem_cgroup_tree(iter, mem)
		mem_cgroup_get_local_stat(iter, s);
K
KAMEZAWA Hiroyuki 已提交
3705 3706
}

3707 3708
static int mem_control_stat_show(struct cgroup *cont, struct cftype *cft,
				 struct cgroup_map_cb *cb)
3709 3710
{
	struct mem_cgroup *mem_cont = mem_cgroup_from_cont(cont);
K
KAMEZAWA Hiroyuki 已提交
3711
	struct mcs_total_stat mystat;
3712 3713
	int i;

K
KAMEZAWA Hiroyuki 已提交
3714 3715
	memset(&mystat, 0, sizeof(mystat));
	mem_cgroup_get_local_stat(mem_cont, &mystat);
3716

3717 3718 3719
	for (i = 0; i < NR_MCS_STAT; i++) {
		if (i == MCS_SWAP && !do_swap_account)
			continue;
K
KAMEZAWA Hiroyuki 已提交
3720
		cb->fill(cb, memcg_stat_strings[i].local_name, mystat.stat[i]);
3721
	}
L
Lee Schermerhorn 已提交
3722

K
KAMEZAWA Hiroyuki 已提交
3723
	/* Hierarchical information */
3724 3725 3726 3727 3728 3729 3730
	{
		unsigned long long limit, memsw_limit;
		memcg_get_hierarchical_limit(mem_cont, &limit, &memsw_limit);
		cb->fill(cb, "hierarchical_memory_limit", limit);
		if (do_swap_account)
			cb->fill(cb, "hierarchical_memsw_limit", memsw_limit);
	}
K
KOSAKI Motohiro 已提交
3731

K
KAMEZAWA Hiroyuki 已提交
3732 3733
	memset(&mystat, 0, sizeof(mystat));
	mem_cgroup_get_total_stat(mem_cont, &mystat);
3734 3735 3736
	for (i = 0; i < NR_MCS_STAT; i++) {
		if (i == MCS_SWAP && !do_swap_account)
			continue;
K
KAMEZAWA Hiroyuki 已提交
3737
		cb->fill(cb, memcg_stat_strings[i].total_name, mystat.stat[i]);
3738
	}
K
KAMEZAWA Hiroyuki 已提交
3739

K
KOSAKI Motohiro 已提交
3740
#ifdef CONFIG_DEBUG_VM
3741
	cb->fill(cb, "inactive_ratio", calc_inactive_ratio(mem_cont, NULL));
K
KOSAKI Motohiro 已提交
3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768

	{
		int nid, zid;
		struct mem_cgroup_per_zone *mz;
		unsigned long recent_rotated[2] = {0, 0};
		unsigned long recent_scanned[2] = {0, 0};

		for_each_online_node(nid)
			for (zid = 0; zid < MAX_NR_ZONES; zid++) {
				mz = mem_cgroup_zoneinfo(mem_cont, nid, zid);

				recent_rotated[0] +=
					mz->reclaim_stat.recent_rotated[0];
				recent_rotated[1] +=
					mz->reclaim_stat.recent_rotated[1];
				recent_scanned[0] +=
					mz->reclaim_stat.recent_scanned[0];
				recent_scanned[1] +=
					mz->reclaim_stat.recent_scanned[1];
			}
		cb->fill(cb, "recent_rotated_anon", recent_rotated[0]);
		cb->fill(cb, "recent_rotated_file", recent_rotated[1]);
		cb->fill(cb, "recent_scanned_anon", recent_scanned[0]);
		cb->fill(cb, "recent_scanned_file", recent_scanned[1]);
	}
#endif

3769 3770 3771
	return 0;
}

K
KOSAKI Motohiro 已提交
3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783
static u64 mem_cgroup_swappiness_read(struct cgroup *cgrp, struct cftype *cft)
{
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);

	return get_swappiness(memcg);
}

static int mem_cgroup_swappiness_write(struct cgroup *cgrp, struct cftype *cft,
				       u64 val)
{
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
	struct mem_cgroup *parent;
3784

K
KOSAKI Motohiro 已提交
3785 3786 3787 3788 3789 3790 3791
	if (val > 100)
		return -EINVAL;

	if (cgrp->parent == NULL)
		return -EINVAL;

	parent = mem_cgroup_from_cont(cgrp->parent);
3792 3793 3794

	cgroup_lock();

K
KOSAKI Motohiro 已提交
3795 3796
	/* If under hierarchy, only empty-root can set this value */
	if ((parent->use_hierarchy) ||
3797 3798
	    (memcg->use_hierarchy && !list_empty(&cgrp->children))) {
		cgroup_unlock();
K
KOSAKI Motohiro 已提交
3799
		return -EINVAL;
3800
	}
K
KOSAKI Motohiro 已提交
3801 3802 3803 3804 3805

	spin_lock(&memcg->reclaim_param_lock);
	memcg->swappiness = val;
	spin_unlock(&memcg->reclaim_param_lock);

3806 3807
	cgroup_unlock();

K
KOSAKI Motohiro 已提交
3808 3809 3810
	return 0;
}

3811 3812 3813 3814 3815 3816 3817 3818
static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
{
	struct mem_cgroup_threshold_ary *t;
	u64 usage;
	int i;

	rcu_read_lock();
	if (!swap)
3819
		t = rcu_dereference(memcg->thresholds.primary);
3820
	else
3821
		t = rcu_dereference(memcg->memsw_thresholds.primary);
3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832

	if (!t)
		goto unlock;

	usage = mem_cgroup_usage(memcg, swap);

	/*
	 * current_threshold points to threshold just below usage.
	 * If it's not true, a threshold was crossed after last
	 * call of __mem_cgroup_threshold().
	 */
3833
	i = t->current_threshold;
3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856

	/*
	 * Iterate backward over array of thresholds starting from
	 * current_threshold and check if a threshold is crossed.
	 * If none of thresholds below usage is crossed, we read
	 * only one element of the array here.
	 */
	for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
		eventfd_signal(t->entries[i].eventfd, 1);

	/* i = current_threshold + 1 */
	i++;

	/*
	 * Iterate forward over array of thresholds starting from
	 * current_threshold+1 and check if a threshold is crossed.
	 * If none of thresholds above usage is crossed, we read
	 * only one element of the array here.
	 */
	for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
		eventfd_signal(t->entries[i].eventfd, 1);

	/* Update current_threshold */
3857
	t->current_threshold = i - 1;
3858 3859 3860 3861 3862 3863
unlock:
	rcu_read_unlock();
}

static void mem_cgroup_threshold(struct mem_cgroup *memcg)
{
3864 3865 3866 3867 3868 3869 3870
	while (memcg) {
		__mem_cgroup_threshold(memcg, false);
		if (do_swap_account)
			__mem_cgroup_threshold(memcg, true);

		memcg = parent_mem_cgroup(memcg);
	}
3871 3872 3873 3874 3875 3876 3877 3878 3879 3880
}

static int compare_thresholds(const void *a, const void *b)
{
	const struct mem_cgroup_threshold *_a = a;
	const struct mem_cgroup_threshold *_b = b;

	return _a->threshold - _b->threshold;
}

K
KAMEZAWA Hiroyuki 已提交
3881
static int mem_cgroup_oom_notify_cb(struct mem_cgroup *mem)
K
KAMEZAWA Hiroyuki 已提交
3882 3883 3884 3885 3886 3887 3888 3889 3890 3891
{
	struct mem_cgroup_eventfd_list *ev;

	list_for_each_entry(ev, &mem->oom_notify, list)
		eventfd_signal(ev->eventfd, 1);
	return 0;
}

static void mem_cgroup_oom_notify(struct mem_cgroup *mem)
{
K
KAMEZAWA Hiroyuki 已提交
3892 3893 3894 3895
	struct mem_cgroup *iter;

	for_each_mem_cgroup_tree(iter, mem)
		mem_cgroup_oom_notify_cb(iter);
K
KAMEZAWA Hiroyuki 已提交
3896 3897 3898 3899
}

static int mem_cgroup_usage_register_event(struct cgroup *cgrp,
	struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
3900 3901
{
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
3902 3903
	struct mem_cgroup_thresholds *thresholds;
	struct mem_cgroup_threshold_ary *new;
3904 3905
	int type = MEMFILE_TYPE(cft->private);
	u64 threshold, usage;
3906
	int i, size, ret;
3907 3908 3909 3910 3911 3912

	ret = res_counter_memparse_write_strategy(args, &threshold);
	if (ret)
		return ret;

	mutex_lock(&memcg->thresholds_lock);
3913

3914
	if (type == _MEM)
3915
		thresholds = &memcg->thresholds;
3916
	else if (type == _MEMSWAP)
3917
		thresholds = &memcg->memsw_thresholds;
3918 3919 3920 3921 3922 3923
	else
		BUG();

	usage = mem_cgroup_usage(memcg, type == _MEMSWAP);

	/* Check if a threshold crossed before adding a new one */
3924
	if (thresholds->primary)
3925 3926
		__mem_cgroup_threshold(memcg, type == _MEMSWAP);

3927
	size = thresholds->primary ? thresholds->primary->size + 1 : 1;
3928 3929

	/* Allocate memory for new array of thresholds */
3930
	new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
3931
			GFP_KERNEL);
3932
	if (!new) {
3933 3934 3935
		ret = -ENOMEM;
		goto unlock;
	}
3936
	new->size = size;
3937 3938

	/* Copy thresholds (if any) to new array */
3939 3940
	if (thresholds->primary) {
		memcpy(new->entries, thresholds->primary->entries, (size - 1) *
3941
				sizeof(struct mem_cgroup_threshold));
3942 3943
	}

3944
	/* Add new threshold */
3945 3946
	new->entries[size - 1].eventfd = eventfd;
	new->entries[size - 1].threshold = threshold;
3947 3948

	/* Sort thresholds. Registering of new threshold isn't time-critical */
3949
	sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
3950 3951 3952
			compare_thresholds, NULL);

	/* Find current threshold */
3953
	new->current_threshold = -1;
3954
	for (i = 0; i < size; i++) {
3955
		if (new->entries[i].threshold < usage) {
3956
			/*
3957 3958
			 * new->current_threshold will not be used until
			 * rcu_assign_pointer(), so it's safe to increment
3959 3960
			 * it here.
			 */
3961
			++new->current_threshold;
3962 3963 3964
		}
	}

3965 3966 3967 3968 3969
	/* Free old spare buffer and save old primary buffer as spare */
	kfree(thresholds->spare);
	thresholds->spare = thresholds->primary;

	rcu_assign_pointer(thresholds->primary, new);
3970

3971
	/* To be sure that nobody uses thresholds */
3972 3973 3974 3975 3976 3977 3978 3979
	synchronize_rcu();

unlock:
	mutex_unlock(&memcg->thresholds_lock);

	return ret;
}

3980
static void mem_cgroup_usage_unregister_event(struct cgroup *cgrp,
K
KAMEZAWA Hiroyuki 已提交
3981
	struct cftype *cft, struct eventfd_ctx *eventfd)
3982 3983
{
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
3984 3985
	struct mem_cgroup_thresholds *thresholds;
	struct mem_cgroup_threshold_ary *new;
3986 3987
	int type = MEMFILE_TYPE(cft->private);
	u64 usage;
3988
	int i, j, size;
3989 3990 3991

	mutex_lock(&memcg->thresholds_lock);
	if (type == _MEM)
3992
		thresholds = &memcg->thresholds;
3993
	else if (type == _MEMSWAP)
3994
		thresholds = &memcg->memsw_thresholds;
3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009
	else
		BUG();

	/*
	 * Something went wrong if we trying to unregister a threshold
	 * if we don't have thresholds
	 */
	BUG_ON(!thresholds);

	usage = mem_cgroup_usage(memcg, type == _MEMSWAP);

	/* Check if a threshold crossed before removing */
	__mem_cgroup_threshold(memcg, type == _MEMSWAP);

	/* Calculate new number of threshold */
4010 4011 4012
	size = 0;
	for (i = 0; i < thresholds->primary->size; i++) {
		if (thresholds->primary->entries[i].eventfd != eventfd)
4013 4014 4015
			size++;
	}

4016
	new = thresholds->spare;
4017

4018 4019
	/* Set thresholds array to NULL if we don't have thresholds */
	if (!size) {
4020 4021
		kfree(new);
		new = NULL;
4022
		goto swap_buffers;
4023 4024
	}

4025
	new->size = size;
4026 4027

	/* Copy thresholds and find current threshold */
4028 4029 4030
	new->current_threshold = -1;
	for (i = 0, j = 0; i < thresholds->primary->size; i++) {
		if (thresholds->primary->entries[i].eventfd == eventfd)
4031 4032
			continue;

4033 4034
		new->entries[j] = thresholds->primary->entries[i];
		if (new->entries[j].threshold < usage) {
4035
			/*
4036
			 * new->current_threshold will not be used
4037 4038 4039
			 * until rcu_assign_pointer(), so it's safe to increment
			 * it here.
			 */
4040
			++new->current_threshold;
4041 4042 4043 4044
		}
		j++;
	}

4045
swap_buffers:
4046 4047 4048
	/* Swap primary and spare array */
	thresholds->spare = thresholds->primary;
	rcu_assign_pointer(thresholds->primary, new);
4049

4050
	/* To be sure that nobody uses thresholds */
4051 4052 4053 4054
	synchronize_rcu();

	mutex_unlock(&memcg->thresholds_lock);
}
4055

K
KAMEZAWA Hiroyuki 已提交
4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080
static int mem_cgroup_oom_register_event(struct cgroup *cgrp,
	struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
{
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
	struct mem_cgroup_eventfd_list *event;
	int type = MEMFILE_TYPE(cft->private);

	BUG_ON(type != _OOM_TYPE);
	event = kmalloc(sizeof(*event),	GFP_KERNEL);
	if (!event)
		return -ENOMEM;

	mutex_lock(&memcg_oom_mutex);

	event->eventfd = eventfd;
	list_add(&event->list, &memcg->oom_notify);

	/* already in OOM ? */
	if (atomic_read(&memcg->oom_lock))
		eventfd_signal(eventfd, 1);
	mutex_unlock(&memcg_oom_mutex);

	return 0;
}

4081
static void mem_cgroup_oom_unregister_event(struct cgroup *cgrp,
K
KAMEZAWA Hiroyuki 已提交
4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101
	struct cftype *cft, struct eventfd_ctx *eventfd)
{
	struct mem_cgroup *mem = mem_cgroup_from_cont(cgrp);
	struct mem_cgroup_eventfd_list *ev, *tmp;
	int type = MEMFILE_TYPE(cft->private);

	BUG_ON(type != _OOM_TYPE);

	mutex_lock(&memcg_oom_mutex);

	list_for_each_entry_safe(ev, tmp, &mem->oom_notify, list) {
		if (ev->eventfd == eventfd) {
			list_del(&ev->list);
			kfree(ev);
		}
	}

	mutex_unlock(&memcg_oom_mutex);
}

4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135
static int mem_cgroup_oom_control_read(struct cgroup *cgrp,
	struct cftype *cft,  struct cgroup_map_cb *cb)
{
	struct mem_cgroup *mem = mem_cgroup_from_cont(cgrp);

	cb->fill(cb, "oom_kill_disable", mem->oom_kill_disable);

	if (atomic_read(&mem->oom_lock))
		cb->fill(cb, "under_oom", 1);
	else
		cb->fill(cb, "under_oom", 0);
	return 0;
}

static int mem_cgroup_oom_control_write(struct cgroup *cgrp,
	struct cftype *cft, u64 val)
{
	struct mem_cgroup *mem = mem_cgroup_from_cont(cgrp);
	struct mem_cgroup *parent;

	/* cannot set to root cgroup and only 0 and 1 are allowed */
	if (!cgrp->parent || !((val == 0) || (val == 1)))
		return -EINVAL;

	parent = mem_cgroup_from_cont(cgrp->parent);

	cgroup_lock();
	/* oom-kill-disable is a flag for subhierarchy. */
	if ((parent->use_hierarchy) ||
	    (mem->use_hierarchy && !list_empty(&cgrp->children))) {
		cgroup_unlock();
		return -EINVAL;
	}
	mem->oom_kill_disable = val;
4136 4137
	if (!val)
		memcg_oom_recover(mem);
4138 4139 4140 4141
	cgroup_unlock();
	return 0;
}

B
Balbir Singh 已提交
4142 4143
static struct cftype mem_cgroup_files[] = {
	{
4144
		.name = "usage_in_bytes",
4145
		.private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
4146
		.read_u64 = mem_cgroup_read,
K
KAMEZAWA Hiroyuki 已提交
4147 4148
		.register_event = mem_cgroup_usage_register_event,
		.unregister_event = mem_cgroup_usage_unregister_event,
B
Balbir Singh 已提交
4149
	},
4150 4151
	{
		.name = "max_usage_in_bytes",
4152
		.private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
4153
		.trigger = mem_cgroup_reset,
4154 4155
		.read_u64 = mem_cgroup_read,
	},
B
Balbir Singh 已提交
4156
	{
4157
		.name = "limit_in_bytes",
4158
		.private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
4159
		.write_string = mem_cgroup_write,
4160
		.read_u64 = mem_cgroup_read,
B
Balbir Singh 已提交
4161
	},
4162 4163 4164 4165 4166 4167
	{
		.name = "soft_limit_in_bytes",
		.private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
		.write_string = mem_cgroup_write,
		.read_u64 = mem_cgroup_read,
	},
B
Balbir Singh 已提交
4168 4169
	{
		.name = "failcnt",
4170
		.private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
4171
		.trigger = mem_cgroup_reset,
4172
		.read_u64 = mem_cgroup_read,
B
Balbir Singh 已提交
4173
	},
4174 4175
	{
		.name = "stat",
4176
		.read_map = mem_control_stat_show,
4177
	},
4178 4179 4180 4181
	{
		.name = "force_empty",
		.trigger = mem_cgroup_force_empty_write,
	},
4182 4183 4184 4185 4186
	{
		.name = "use_hierarchy",
		.write_u64 = mem_cgroup_hierarchy_write,
		.read_u64 = mem_cgroup_hierarchy_read,
	},
K
KOSAKI Motohiro 已提交
4187 4188 4189 4190 4191
	{
		.name = "swappiness",
		.read_u64 = mem_cgroup_swappiness_read,
		.write_u64 = mem_cgroup_swappiness_write,
	},
4192 4193 4194 4195 4196
	{
		.name = "move_charge_at_immigrate",
		.read_u64 = mem_cgroup_move_charge_read,
		.write_u64 = mem_cgroup_move_charge_write,
	},
K
KAMEZAWA Hiroyuki 已提交
4197 4198
	{
		.name = "oom_control",
4199 4200
		.read_map = mem_cgroup_oom_control_read,
		.write_u64 = mem_cgroup_oom_control_write,
K
KAMEZAWA Hiroyuki 已提交
4201 4202 4203 4204
		.register_event = mem_cgroup_oom_register_event,
		.unregister_event = mem_cgroup_oom_unregister_event,
		.private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
	},
B
Balbir Singh 已提交
4205 4206
};

4207 4208 4209 4210 4211 4212
#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
static struct cftype memsw_cgroup_files[] = {
	{
		.name = "memsw.usage_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
		.read_u64 = mem_cgroup_read,
K
KAMEZAWA Hiroyuki 已提交
4213 4214
		.register_event = mem_cgroup_usage_register_event,
		.unregister_event = mem_cgroup_usage_unregister_event,
4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249
	},
	{
		.name = "memsw.max_usage_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
		.trigger = mem_cgroup_reset,
		.read_u64 = mem_cgroup_read,
	},
	{
		.name = "memsw.limit_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
		.write_string = mem_cgroup_write,
		.read_u64 = mem_cgroup_read,
	},
	{
		.name = "memsw.failcnt",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
		.trigger = mem_cgroup_reset,
		.read_u64 = mem_cgroup_read,
	},
};

static int register_memsw_files(struct cgroup *cont, struct cgroup_subsys *ss)
{
	if (!do_swap_account)
		return 0;
	return cgroup_add_files(cont, ss, memsw_cgroup_files,
				ARRAY_SIZE(memsw_cgroup_files));
};
#else
static int register_memsw_files(struct cgroup *cont, struct cgroup_subsys *ss)
{
	return 0;
}
#endif

4250 4251 4252
static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *mem, int node)
{
	struct mem_cgroup_per_node *pn;
4253
	struct mem_cgroup_per_zone *mz;
4254
	enum lru_list l;
4255
	int zone, tmp = node;
4256 4257 4258 4259 4260 4261 4262 4263
	/*
	 * This routine is called against possible nodes.
	 * But it's BUG to call kmalloc() against offline node.
	 *
	 * TODO: this routine can waste much memory for nodes which will
	 *       never be onlined. It's better to use memory hotplug callback
	 *       function.
	 */
4264 4265
	if (!node_state(node, N_NORMAL_MEMORY))
		tmp = -1;
4266
	pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
4267 4268
	if (!pn)
		return 1;
4269

4270
	mem->info.nodeinfo[node] = pn;
4271 4272
	for (zone = 0; zone < MAX_NR_ZONES; zone++) {
		mz = &pn->zoneinfo[zone];
4273 4274
		for_each_lru(l)
			INIT_LIST_HEAD(&mz->lists[l]);
4275
		mz->usage_in_excess = 0;
4276 4277
		mz->on_tree = false;
		mz->mem = mem;
4278
	}
4279 4280 4281
	return 0;
}

4282 4283 4284 4285 4286
static void free_mem_cgroup_per_zone_info(struct mem_cgroup *mem, int node)
{
	kfree(mem->info.nodeinfo[node]);
}

4287 4288 4289
static struct mem_cgroup *mem_cgroup_alloc(void)
{
	struct mem_cgroup *mem;
4290
	int size = sizeof(struct mem_cgroup);
4291

4292
	/* Can be very big if MAX_NUMNODES is very big */
4293
	if (size < PAGE_SIZE)
4294
		mem = kzalloc(size, GFP_KERNEL);
4295
	else
4296
		mem = vzalloc(size);
4297

4298 4299 4300
	if (!mem)
		return NULL;

4301
	mem->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
4302 4303
	if (!mem->stat)
		goto out_free;
4304
	spin_lock_init(&mem->pcp_counter_lock);
4305
	return mem;
4306 4307 4308 4309 4310 4311 4312

out_free:
	if (size < PAGE_SIZE)
		kfree(mem);
	else
		vfree(mem);
	return NULL;
4313 4314
}

4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325
/*
 * At destroying mem_cgroup, references from swap_cgroup can remain.
 * (scanning all at force_empty is too costly...)
 *
 * Instead of clearing all references at force_empty, we remember
 * the number of reference from swap_cgroup and free mem_cgroup when
 * it goes down to 0.
 *
 * Removal of cgroup itself succeeds regardless of refs from swap.
 */

4326
static void __mem_cgroup_free(struct mem_cgroup *mem)
4327
{
K
KAMEZAWA Hiroyuki 已提交
4328 4329
	int node;

4330
	mem_cgroup_remove_from_trees(mem);
K
KAMEZAWA Hiroyuki 已提交
4331 4332
	free_css_id(&mem_cgroup_subsys, &mem->css);

K
KAMEZAWA Hiroyuki 已提交
4333 4334 4335
	for_each_node_state(node, N_POSSIBLE)
		free_mem_cgroup_per_zone_info(mem, node);

4336 4337
	free_percpu(mem->stat);
	if (sizeof(struct mem_cgroup) < PAGE_SIZE)
4338 4339 4340 4341 4342
		kfree(mem);
	else
		vfree(mem);
}

4343 4344 4345 4346 4347
static void mem_cgroup_get(struct mem_cgroup *mem)
{
	atomic_inc(&mem->refcnt);
}

4348
static void __mem_cgroup_put(struct mem_cgroup *mem, int count)
4349
{
4350
	if (atomic_sub_and_test(count, &mem->refcnt)) {
4351
		struct mem_cgroup *parent = parent_mem_cgroup(mem);
4352
		__mem_cgroup_free(mem);
4353 4354 4355
		if (parent)
			mem_cgroup_put(parent);
	}
4356 4357
}

4358 4359 4360 4361 4362
static void mem_cgroup_put(struct mem_cgroup *mem)
{
	__mem_cgroup_put(mem, 1);
}

4363 4364 4365 4366 4367 4368 4369 4370 4371
/*
 * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
 */
static struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *mem)
{
	if (!mem->res.parent)
		return NULL;
	return mem_cgroup_from_res_counter(mem->res.parent, res);
}
4372

4373 4374 4375
#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
static void __init enable_swap_cgroup(void)
{
4376
	if (!mem_cgroup_disabled() && really_do_swap_account)
4377 4378 4379 4380 4381 4382 4383 4384
		do_swap_account = 1;
}
#else
static void __init enable_swap_cgroup(void)
{
}
#endif

4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409
static int mem_cgroup_soft_limit_tree_init(void)
{
	struct mem_cgroup_tree_per_node *rtpn;
	struct mem_cgroup_tree_per_zone *rtpz;
	int tmp, node, zone;

	for_each_node_state(node, N_POSSIBLE) {
		tmp = node;
		if (!node_state(node, N_NORMAL_MEMORY))
			tmp = -1;
		rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, tmp);
		if (!rtpn)
			return 1;

		soft_limit_tree.rb_tree_per_node[node] = rtpn;

		for (zone = 0; zone < MAX_NR_ZONES; zone++) {
			rtpz = &rtpn->rb_tree_per_zone[zone];
			rtpz->rb_root = RB_ROOT;
			spin_lock_init(&rtpz->lock);
		}
	}
	return 0;
}

L
Li Zefan 已提交
4410
static struct cgroup_subsys_state * __ref
B
Balbir Singh 已提交
4411 4412
mem_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cont)
{
4413
	struct mem_cgroup *mem, *parent;
K
KAMEZAWA Hiroyuki 已提交
4414
	long error = -ENOMEM;
4415
	int node;
B
Balbir Singh 已提交
4416

4417 4418
	mem = mem_cgroup_alloc();
	if (!mem)
K
KAMEZAWA Hiroyuki 已提交
4419
		return ERR_PTR(error);
4420

4421 4422 4423
	for_each_node_state(node, N_POSSIBLE)
		if (alloc_mem_cgroup_per_zone_info(mem, node))
			goto free_out;
4424

4425
	/* root ? */
4426
	if (cont->parent == NULL) {
4427
		int cpu;
4428
		enable_swap_cgroup();
4429
		parent = NULL;
4430
		root_mem_cgroup = mem;
4431 4432
		if (mem_cgroup_soft_limit_tree_init())
			goto free_out;
4433 4434 4435 4436 4437
		for_each_possible_cpu(cpu) {
			struct memcg_stock_pcp *stock =
						&per_cpu(memcg_stock, cpu);
			INIT_WORK(&stock->work, drain_local_stock);
		}
4438
		hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
4439
	} else {
4440
		parent = mem_cgroup_from_cont(cont->parent);
4441
		mem->use_hierarchy = parent->use_hierarchy;
4442
		mem->oom_kill_disable = parent->oom_kill_disable;
4443
	}
4444

4445 4446 4447
	if (parent && parent->use_hierarchy) {
		res_counter_init(&mem->res, &parent->res);
		res_counter_init(&mem->memsw, &parent->memsw);
4448 4449 4450 4451 4452 4453 4454
		/*
		 * We increment refcnt of the parent to ensure that we can
		 * safely access it on res_counter_charge/uncharge.
		 * This refcnt will be decremented when freeing this
		 * mem_cgroup(see mem_cgroup_put).
		 */
		mem_cgroup_get(parent);
4455 4456 4457 4458
	} else {
		res_counter_init(&mem->res, NULL);
		res_counter_init(&mem->memsw, NULL);
	}
K
KAMEZAWA Hiroyuki 已提交
4459
	mem->last_scanned_child = 0;
K
KOSAKI Motohiro 已提交
4460
	spin_lock_init(&mem->reclaim_param_lock);
K
KAMEZAWA Hiroyuki 已提交
4461
	INIT_LIST_HEAD(&mem->oom_notify);
4462

K
KOSAKI Motohiro 已提交
4463 4464
	if (parent)
		mem->swappiness = get_swappiness(parent);
4465
	atomic_set(&mem->refcnt, 1);
4466
	mem->move_charge_at_immigrate = 0;
4467
	mutex_init(&mem->thresholds_lock);
B
Balbir Singh 已提交
4468
	return &mem->css;
4469
free_out:
4470
	__mem_cgroup_free(mem);
4471
	root_mem_cgroup = NULL;
K
KAMEZAWA Hiroyuki 已提交
4472
	return ERR_PTR(error);
B
Balbir Singh 已提交
4473 4474
}

4475
static int mem_cgroup_pre_destroy(struct cgroup_subsys *ss,
4476 4477 4478
					struct cgroup *cont)
{
	struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
4479 4480

	return mem_cgroup_force_empty(mem, false);
4481 4482
}

B
Balbir Singh 已提交
4483 4484 4485
static void mem_cgroup_destroy(struct cgroup_subsys *ss,
				struct cgroup *cont)
{
4486 4487 4488
	struct mem_cgroup *mem = mem_cgroup_from_cont(cont);

	mem_cgroup_put(mem);
B
Balbir Singh 已提交
4489 4490 4491 4492 4493
}

static int mem_cgroup_populate(struct cgroup_subsys *ss,
				struct cgroup *cont)
{
4494 4495 4496 4497 4498 4499 4500 4501
	int ret;

	ret = cgroup_add_files(cont, ss, mem_cgroup_files,
				ARRAY_SIZE(mem_cgroup_files));

	if (!ret)
		ret = register_memsw_files(cont, ss);
	return ret;
B
Balbir Singh 已提交
4502 4503
}

4504
#ifdef CONFIG_MMU
4505
/* Handlers for move charge at task migration. */
4506 4507
#define PRECHARGE_COUNT_AT_ONCE	256
static int mem_cgroup_do_precharge(unsigned long count)
4508
{
4509 4510
	int ret = 0;
	int batch_count = PRECHARGE_COUNT_AT_ONCE;
4511 4512
	struct mem_cgroup *mem = mc.to;

4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547
	if (mem_cgroup_is_root(mem)) {
		mc.precharge += count;
		/* we don't need css_get for root */
		return ret;
	}
	/* try to charge at once */
	if (count > 1) {
		struct res_counter *dummy;
		/*
		 * "mem" cannot be under rmdir() because we've already checked
		 * by cgroup_lock_live_cgroup() that it is not removed and we
		 * are still under the same cgroup_mutex. So we can postpone
		 * css_get().
		 */
		if (res_counter_charge(&mem->res, PAGE_SIZE * count, &dummy))
			goto one_by_one;
		if (do_swap_account && res_counter_charge(&mem->memsw,
						PAGE_SIZE * count, &dummy)) {
			res_counter_uncharge(&mem->res, PAGE_SIZE * count);
			goto one_by_one;
		}
		mc.precharge += count;
		return ret;
	}
one_by_one:
	/* fall back to one by one charge */
	while (count--) {
		if (signal_pending(current)) {
			ret = -EINTR;
			break;
		}
		if (!batch_count--) {
			batch_count = PRECHARGE_COUNT_AT_ONCE;
			cond_resched();
		}
A
Andrea Arcangeli 已提交
4548 4549
		ret = __mem_cgroup_try_charge(NULL, GFP_KERNEL, &mem, false,
					      PAGE_SIZE);
4550 4551 4552 4553 4554
		if (ret || !mem)
			/* mem_cgroup_clear_mc() will do uncharge later */
			return -ENOMEM;
		mc.precharge++;
	}
4555 4556 4557 4558 4559 4560 4561 4562
	return ret;
}

/**
 * is_target_pte_for_mc - check a pte whether it is valid for move charge
 * @vma: the vma the pte to be checked belongs
 * @addr: the address corresponding to the pte to be checked
 * @ptent: the pte to be checked
4563
 * @target: the pointer the target page or swap ent will be stored(can be NULL)
4564 4565 4566 4567 4568 4569
 *
 * Returns
 *   0(MC_TARGET_NONE): if the pte is not a target for move charge.
 *   1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
 *     move charge. if @target is not NULL, the page is stored in target->page
 *     with extra refcnt got(Callers should handle it).
4570 4571 4572
 *   2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
 *     target for charge migration. if @target is not NULL, the entry is stored
 *     in target->ent.
4573 4574 4575 4576 4577
 *
 * Called with pte lock held.
 */
union mc_target {
	struct page	*page;
4578
	swp_entry_t	ent;
4579 4580 4581 4582 4583
};

enum mc_target_type {
	MC_TARGET_NONE,	/* not used */
	MC_TARGET_PAGE,
4584
	MC_TARGET_SWAP,
4585 4586
};

D
Daisuke Nishimura 已提交
4587 4588
static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
						unsigned long addr, pte_t ptent)
4589
{
D
Daisuke Nishimura 已提交
4590
	struct page *page = vm_normal_page(vma, addr, ptent);
4591

D
Daisuke Nishimura 已提交
4592 4593 4594 4595 4596 4597
	if (!page || !page_mapped(page))
		return NULL;
	if (PageAnon(page)) {
		/* we don't move shared anon */
		if (!move_anon() || page_mapcount(page) > 2)
			return NULL;
4598 4599
	} else if (!move_file())
		/* we ignore mapcount for file pages */
D
Daisuke Nishimura 已提交
4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617
		return NULL;
	if (!get_page_unless_zero(page))
		return NULL;

	return page;
}

static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
			unsigned long addr, pte_t ptent, swp_entry_t *entry)
{
	int usage_count;
	struct page *page = NULL;
	swp_entry_t ent = pte_to_swp_entry(ptent);

	if (!move_anon() || non_swap_entry(ent))
		return NULL;
	usage_count = mem_cgroup_count_swap_user(ent, &page);
	if (usage_count > 1) { /* we don't move shared anon */
4618 4619
		if (page)
			put_page(page);
D
Daisuke Nishimura 已提交
4620
		return NULL;
4621
	}
D
Daisuke Nishimura 已提交
4622 4623 4624 4625 4626 4627
	if (do_swap_account)
		entry->val = ent.val;

	return page;
}

4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660
static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
			unsigned long addr, pte_t ptent, swp_entry_t *entry)
{
	struct page *page = NULL;
	struct inode *inode;
	struct address_space *mapping;
	pgoff_t pgoff;

	if (!vma->vm_file) /* anonymous vma */
		return NULL;
	if (!move_file())
		return NULL;

	inode = vma->vm_file->f_path.dentry->d_inode;
	mapping = vma->vm_file->f_mapping;
	if (pte_none(ptent))
		pgoff = linear_page_index(vma, addr);
	else /* pte_file(ptent) is true */
		pgoff = pte_to_pgoff(ptent);

	/* page is moved even if it's not RSS of this task(page-faulted). */
	if (!mapping_cap_swap_backed(mapping)) { /* normal file */
		page = find_get_page(mapping, pgoff);
	} else { /* shmem/tmpfs file. we should take account of swap too. */
		swp_entry_t ent;
		mem_cgroup_get_shmem_target(inode, pgoff, &page, &ent);
		if (do_swap_account)
			entry->val = ent.val;
	}

	return page;
}

D
Daisuke Nishimura 已提交
4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672
static int is_target_pte_for_mc(struct vm_area_struct *vma,
		unsigned long addr, pte_t ptent, union mc_target *target)
{
	struct page *page = NULL;
	struct page_cgroup *pc;
	int ret = 0;
	swp_entry_t ent = { .val = 0 };

	if (pte_present(ptent))
		page = mc_handle_present_pte(vma, addr, ptent);
	else if (is_swap_pte(ptent))
		page = mc_handle_swap_pte(vma, addr, ptent, &ent);
4673 4674
	else if (pte_none(ptent) || pte_file(ptent))
		page = mc_handle_file_pte(vma, addr, ptent, &ent);
D
Daisuke Nishimura 已提交
4675 4676 4677

	if (!page && !ent.val)
		return 0;
4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692
	if (page) {
		pc = lookup_page_cgroup(page);
		/*
		 * Do only loose check w/o page_cgroup lock.
		 * mem_cgroup_move_account() checks the pc is valid or not under
		 * the lock.
		 */
		if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
			ret = MC_TARGET_PAGE;
			if (target)
				target->page = page;
		}
		if (!ret || !target)
			put_page(page);
	}
D
Daisuke Nishimura 已提交
4693 4694
	/* There is a swap entry and a page doesn't exist or isn't charged */
	if (ent.val && !ret &&
4695 4696 4697 4698
			css_id(&mc.from->css) == lookup_swap_cgroup(ent)) {
		ret = MC_TARGET_SWAP;
		if (target)
			target->ent = ent;
4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710
	}
	return ret;
}

static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
					unsigned long addr, unsigned long end,
					struct mm_walk *walk)
{
	struct vm_area_struct *vma = walk->private;
	pte_t *pte;
	spinlock_t *ptl;

A
Andrea Arcangeli 已提交
4711
	VM_BUG_ON(pmd_trans_huge(*pmd));
4712 4713 4714 4715 4716 4717 4718
	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
	for (; addr != end; pte++, addr += PAGE_SIZE)
		if (is_target_pte_for_mc(vma, addr, *pte, NULL))
			mc.precharge++;	/* increment precharge temporarily */
	pte_unmap_unlock(pte - 1, ptl);
	cond_resched();

4719 4720 4721
	return 0;
}

4722 4723 4724 4725 4726
static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
{
	unsigned long precharge;
	struct vm_area_struct *vma;

4727
	down_read(&mm->mmap_sem);
4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738
	for (vma = mm->mmap; vma; vma = vma->vm_next) {
		struct mm_walk mem_cgroup_count_precharge_walk = {
			.pmd_entry = mem_cgroup_count_precharge_pte_range,
			.mm = mm,
			.private = vma,
		};
		if (is_vm_hugetlb_page(vma))
			continue;
		walk_page_range(vma->vm_start, vma->vm_end,
					&mem_cgroup_count_precharge_walk);
	}
4739
	up_read(&mm->mmap_sem);
4740 4741 4742 4743 4744 4745 4746 4747 4748

	precharge = mc.precharge;
	mc.precharge = 0;

	return precharge;
}

static int mem_cgroup_precharge_mc(struct mm_struct *mm)
{
4749 4750 4751 4752 4753
	unsigned long precharge = mem_cgroup_count_precharge(mm);

	VM_BUG_ON(mc.moving_task);
	mc.moving_task = current;
	return mem_cgroup_do_precharge(precharge);
4754 4755
}

4756 4757
/* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
static void __mem_cgroup_clear_mc(void)
4758
{
4759 4760 4761
	struct mem_cgroup *from = mc.from;
	struct mem_cgroup *to = mc.to;

4762
	/* we must uncharge all the leftover precharges from mc.to */
4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773
	if (mc.precharge) {
		__mem_cgroup_cancel_charge(mc.to, mc.precharge);
		mc.precharge = 0;
	}
	/*
	 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
	 * we must uncharge here.
	 */
	if (mc.moved_charge) {
		__mem_cgroup_cancel_charge(mc.from, mc.moved_charge);
		mc.moved_charge = 0;
4774
	}
4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793
	/* we must fixup refcnts and charges */
	if (mc.moved_swap) {
		/* uncharge swap account from the old cgroup */
		if (!mem_cgroup_is_root(mc.from))
			res_counter_uncharge(&mc.from->memsw,
						PAGE_SIZE * mc.moved_swap);
		__mem_cgroup_put(mc.from, mc.moved_swap);

		if (!mem_cgroup_is_root(mc.to)) {
			/*
			 * we charged both to->res and to->memsw, so we should
			 * uncharge to->res.
			 */
			res_counter_uncharge(&mc.to->res,
						PAGE_SIZE * mc.moved_swap);
		}
		/* we've already done mem_cgroup_get(mc.to) */
		mc.moved_swap = 0;
	}
4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808
	memcg_oom_recover(from);
	memcg_oom_recover(to);
	wake_up_all(&mc.waitq);
}

static void mem_cgroup_clear_mc(void)
{
	struct mem_cgroup *from = mc.from;

	/*
	 * we must clear moving_task before waking up waiters at the end of
	 * task migration.
	 */
	mc.moving_task = NULL;
	__mem_cgroup_clear_mc();
4809
	spin_lock(&mc.lock);
4810 4811
	mc.from = NULL;
	mc.to = NULL;
4812
	spin_unlock(&mc.lock);
4813
	mem_cgroup_end_move(from);
4814 4815
}

4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833
static int mem_cgroup_can_attach(struct cgroup_subsys *ss,
				struct cgroup *cgroup,
				struct task_struct *p,
				bool threadgroup)
{
	int ret = 0;
	struct mem_cgroup *mem = mem_cgroup_from_cont(cgroup);

	if (mem->move_charge_at_immigrate) {
		struct mm_struct *mm;
		struct mem_cgroup *from = mem_cgroup_from_task(p);

		VM_BUG_ON(from == mem);

		mm = get_task_mm(p);
		if (!mm)
			return 0;
		/* We move charges only when we move a owner of the mm */
4834 4835 4836 4837
		if (mm->owner == p) {
			VM_BUG_ON(mc.from);
			VM_BUG_ON(mc.to);
			VM_BUG_ON(mc.precharge);
4838
			VM_BUG_ON(mc.moved_charge);
4839
			VM_BUG_ON(mc.moved_swap);
4840
			mem_cgroup_start_move(from);
4841
			spin_lock(&mc.lock);
4842 4843
			mc.from = from;
			mc.to = mem;
4844
			spin_unlock(&mc.lock);
4845
			/* We set mc.moving_task later */
4846 4847 4848 4849

			ret = mem_cgroup_precharge_mc(mm);
			if (ret)
				mem_cgroup_clear_mc();
4850 4851
		}
		mmput(mm);
4852 4853 4854 4855 4856 4857 4858 4859 4860
	}
	return ret;
}

static void mem_cgroup_cancel_attach(struct cgroup_subsys *ss,
				struct cgroup *cgroup,
				struct task_struct *p,
				bool threadgroup)
{
4861
	mem_cgroup_clear_mc();
4862 4863
}

4864 4865 4866
static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
				unsigned long addr, unsigned long end,
				struct mm_walk *walk)
4867
{
4868 4869 4870 4871 4872 4873
	int ret = 0;
	struct vm_area_struct *vma = walk->private;
	pte_t *pte;
	spinlock_t *ptl;

retry:
A
Andrea Arcangeli 已提交
4874
	VM_BUG_ON(pmd_trans_huge(*pmd));
4875 4876 4877 4878 4879 4880 4881
	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
	for (; addr != end; addr += PAGE_SIZE) {
		pte_t ptent = *(pte++);
		union mc_target target;
		int type;
		struct page *page;
		struct page_cgroup *pc;
4882
		swp_entry_t ent;
4883 4884 4885 4886 4887 4888 4889 4890 4891 4892 4893

		if (!mc.precharge)
			break;

		type = is_target_pte_for_mc(vma, addr, ptent, &target);
		switch (type) {
		case MC_TARGET_PAGE:
			page = target.page;
			if (isolate_lru_page(page))
				goto put;
			pc = lookup_page_cgroup(page);
4894
			if (!mem_cgroup_move_account(pc,
4895
					mc.from, mc.to, false, PAGE_SIZE)) {
4896
				mc.precharge--;
4897 4898
				/* we uncharge from mc.from later. */
				mc.moved_charge++;
4899 4900 4901 4902 4903
			}
			putback_lru_page(page);
put:			/* is_target_pte_for_mc() gets the page */
			put_page(page);
			break;
4904 4905
		case MC_TARGET_SWAP:
			ent = target.ent;
4906 4907
			if (!mem_cgroup_move_swap_account(ent,
						mc.from, mc.to, false)) {
4908
				mc.precharge--;
4909 4910 4911
				/* we fixup refcnts and charges later. */
				mc.moved_swap++;
			}
4912
			break;
4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923 4924 4925 4926
		default:
			break;
		}
	}
	pte_unmap_unlock(pte - 1, ptl);
	cond_resched();

	if (addr != end) {
		/*
		 * We have consumed all precharges we got in can_attach().
		 * We try charge one by one, but don't do any additional
		 * charges to mc.to if we have failed in charge once in attach()
		 * phase.
		 */
4927
		ret = mem_cgroup_do_precharge(1);
4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939
		if (!ret)
			goto retry;
	}

	return ret;
}

static void mem_cgroup_move_charge(struct mm_struct *mm)
{
	struct vm_area_struct *vma;

	lru_add_drain_all();
4940 4941 4942 4943 4944 4945 4946 4947 4948 4949 4950 4951 4952
retry:
	if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
		/*
		 * Someone who are holding the mmap_sem might be waiting in
		 * waitq. So we cancel all extra charges, wake up all waiters,
		 * and retry. Because we cancel precharges, we might not be able
		 * to move enough charges, but moving charge is a best-effort
		 * feature anyway, so it wouldn't be a big problem.
		 */
		__mem_cgroup_clear_mc();
		cond_resched();
		goto retry;
	}
4953 4954 4955 4956 4957 4958 4959 4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970
	for (vma = mm->mmap; vma; vma = vma->vm_next) {
		int ret;
		struct mm_walk mem_cgroup_move_charge_walk = {
			.pmd_entry = mem_cgroup_move_charge_pte_range,
			.mm = mm,
			.private = vma,
		};
		if (is_vm_hugetlb_page(vma))
			continue;
		ret = walk_page_range(vma->vm_start, vma->vm_end,
						&mem_cgroup_move_charge_walk);
		if (ret)
			/*
			 * means we have consumed all precharges and failed in
			 * doing additional charge. Just abandon here.
			 */
			break;
	}
4971
	up_read(&mm->mmap_sem);
4972 4973
}

B
Balbir Singh 已提交
4974 4975 4976
static void mem_cgroup_move_task(struct cgroup_subsys *ss,
				struct cgroup *cont,
				struct cgroup *old_cont,
4977 4978
				struct task_struct *p,
				bool threadgroup)
B
Balbir Singh 已提交
4979
{
4980 4981 4982
	struct mm_struct *mm;

	if (!mc.to)
4983 4984 4985
		/* no need to move charge */
		return;

4986 4987 4988 4989 4990
	mm = get_task_mm(p);
	if (mm) {
		mem_cgroup_move_charge(mm);
		mmput(mm);
	}
4991
	mem_cgroup_clear_mc();
B
Balbir Singh 已提交
4992
}
4993 4994 4995 4996 4997 4998 4999 5000 5001 5002 5003 5004 5005 5006 5007 5008 5009 5010 5011 5012 5013 5014
#else	/* !CONFIG_MMU */
static int mem_cgroup_can_attach(struct cgroup_subsys *ss,
				struct cgroup *cgroup,
				struct task_struct *p,
				bool threadgroup)
{
	return 0;
}
static void mem_cgroup_cancel_attach(struct cgroup_subsys *ss,
				struct cgroup *cgroup,
				struct task_struct *p,
				bool threadgroup)
{
}
static void mem_cgroup_move_task(struct cgroup_subsys *ss,
				struct cgroup *cont,
				struct cgroup *old_cont,
				struct task_struct *p,
				bool threadgroup)
{
}
#endif
B
Balbir Singh 已提交
5015

B
Balbir Singh 已提交
5016 5017 5018 5019
struct cgroup_subsys mem_cgroup_subsys = {
	.name = "memory",
	.subsys_id = mem_cgroup_subsys_id,
	.create = mem_cgroup_create,
5020
	.pre_destroy = mem_cgroup_pre_destroy,
B
Balbir Singh 已提交
5021 5022
	.destroy = mem_cgroup_destroy,
	.populate = mem_cgroup_populate,
5023 5024
	.can_attach = mem_cgroup_can_attach,
	.cancel_attach = mem_cgroup_cancel_attach,
B
Balbir Singh 已提交
5025
	.attach = mem_cgroup_move_task,
5026
	.early_init = 0,
K
KAMEZAWA Hiroyuki 已提交
5027
	.use_id = 1,
B
Balbir Singh 已提交
5028
};
5029 5030

#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
5031 5032 5033
static int __init enable_swap_account(char *s)
{
	/* consider enabled if no parameter or 1 is given */
5034
	if (!(*s) || !strcmp(s, "=1"))
5035
		really_do_swap_account = 1;
5036
	else if (!strcmp(s, "=0"))
5037 5038 5039 5040
		really_do_swap_account = 0;
	return 1;
}
__setup("swapaccount", enable_swap_account);
5041 5042 5043

static int __init disable_swap_account(char *s)
{
5044
	printk_once("noswapaccount is deprecated and will be removed in 2.6.40. Use swapaccount=0 instead\n");
5045
	enable_swap_account("=0");
5046 5047 5048 5049
	return 1;
}
__setup("noswapaccount", disable_swap_account);
#endif