memcontrol.c 145.6 KB
Newer Older
B
Balbir Singh 已提交
1 2 3 4 5
/* memcontrol.c - Memory Controller
 *
 * Copyright IBM Corporation, 2007
 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
 *
6 7 8
 * Copyright 2007 OpenVZ SWsoft Inc
 * Author: Pavel Emelianov <xemul@openvz.org>
 *
9 10 11 12
 * Memory thresholds
 * Copyright (C) 2009 Nokia Corporation
 * Author: Kirill A. Shutemov
 *
B
Balbir Singh 已提交
13 14 15 16 17 18 19 20 21 22 23 24 25 26
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 */

#include <linux/res_counter.h>
#include <linux/memcontrol.h>
#include <linux/cgroup.h>
27
#include <linux/mm.h>
28
#include <linux/hugetlb.h>
K
KAMEZAWA Hiroyuki 已提交
29
#include <linux/pagemap.h>
30
#include <linux/smp.h>
31
#include <linux/page-flags.h>
32
#include <linux/backing-dev.h>
33 34
#include <linux/bit_spinlock.h>
#include <linux/rcupdate.h>
35
#include <linux/limits.h>
36
#include <linux/export.h>
37
#include <linux/mutex.h>
38
#include <linux/rbtree.h>
39
#include <linux/slab.h>
40
#include <linux/swap.h>
41
#include <linux/swapops.h>
42
#include <linux/spinlock.h>
43 44
#include <linux/eventfd.h>
#include <linux/sort.h>
45
#include <linux/fs.h>
46
#include <linux/seq_file.h>
47
#include <linux/vmalloc.h>
48
#include <linux/mm_inline.h>
49
#include <linux/page_cgroup.h>
50
#include <linux/cpu.h>
51
#include <linux/oom.h>
K
KAMEZAWA Hiroyuki 已提交
52
#include "internal.h"
G
Glauber Costa 已提交
53 54
#include <net/sock.h>
#include <net/tcp_memcontrol.h>
B
Balbir Singh 已提交
55

56 57
#include <asm/uaccess.h>

58 59
#include <trace/events/vmscan.h>

60 61
struct cgroup_subsys mem_cgroup_subsys __read_mostly;
#define MEM_CGROUP_RECLAIM_RETRIES	5
62
static struct mem_cgroup *root_mem_cgroup __read_mostly;
B
Balbir Singh 已提交
63

64
#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
L
Li Zefan 已提交
65
/* Turned on only when memory cgroup is enabled && really_do_swap_account = 1 */
66
int do_swap_account __read_mostly;
67 68 69 70 71 72 73 74

/* for remember boot option*/
#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP_ENABLED
static int really_do_swap_account __initdata = 1;
#else
static int really_do_swap_account __initdata = 0;
#endif

75
#else
76
#define do_swap_account		0
77 78 79
#endif


80 81 82 83 84 85 86 87
/*
 * Statistics for memory cgroup.
 */
enum mem_cgroup_stat_index {
	/*
	 * For MEM_CONTAINER_TYPE_ALL, usage = pagecache + rss.
	 */
	MEM_CGROUP_STAT_CACHE, 	   /* # of pages charged as cache */
88
	MEM_CGROUP_STAT_RSS,	   /* # of pages charged as anon rss */
89
	MEM_CGROUP_STAT_FILE_MAPPED,  /* # of pages charged as file rss */
90
	MEM_CGROUP_STAT_SWAPOUT, /* # of pages, swapped out */
91
	MEM_CGROUP_STAT_DATA, /* end of data requires synchronization */
92 93 94
	MEM_CGROUP_STAT_NSTATS,
};

95 96 97 98
enum mem_cgroup_events_index {
	MEM_CGROUP_EVENTS_PGPGIN,	/* # of pages paged in */
	MEM_CGROUP_EVENTS_PGPGOUT,	/* # of pages paged out */
	MEM_CGROUP_EVENTS_COUNT,	/* # of pages paged in/out */
99 100
	MEM_CGROUP_EVENTS_PGFAULT,	/* # of page-faults */
	MEM_CGROUP_EVENTS_PGMAJFAULT,	/* # of major page-faults */
101 102
	MEM_CGROUP_EVENTS_NSTATS,
};
103 104 105 106 107 108 109 110 111
/*
 * Per memcg event counter is incremented at every pagein/pageout. With THP,
 * it will be incremated by the number of pages. This counter is used for
 * for trigger some periodic events. This is straightforward and better
 * than using jiffies etc. to handle periodic memcg event.
 */
enum mem_cgroup_events_target {
	MEM_CGROUP_TARGET_THRESH,
	MEM_CGROUP_TARGET_SOFTLIMIT,
112
	MEM_CGROUP_TARGET_NUMAINFO,
113 114
	MEM_CGROUP_NTARGETS,
};
115 116 117
#define THRESHOLDS_EVENTS_TARGET 128
#define SOFTLIMIT_EVENTS_TARGET 1024
#define NUMAINFO_EVENTS_TARGET	1024
118

119
struct mem_cgroup_stat_cpu {
120
	long count[MEM_CGROUP_STAT_NSTATS];
121
	unsigned long events[MEM_CGROUP_EVENTS_NSTATS];
122
	unsigned long targets[MEM_CGROUP_NTARGETS];
123 124
};

125 126 127 128 129 130 131
struct mem_cgroup_reclaim_iter {
	/* css_id of the last scanned hierarchy member */
	int position;
	/* scan generation, increased every round-trip */
	unsigned int generation;
};

132 133 134 135
/*
 * per-zone information in memory controller.
 */
struct mem_cgroup_per_zone {
136
	struct lruvec		lruvec;
137
	unsigned long		lru_size[NR_LRU_LISTS];
K
KOSAKI Motohiro 已提交
138

139 140
	struct mem_cgroup_reclaim_iter reclaim_iter[DEF_PRIORITY + 1];

141 142 143 144
	struct rb_node		tree_node;	/* RB tree node */
	unsigned long long	usage_in_excess;/* Set to the value by which */
						/* the soft limit is exceeded*/
	bool			on_tree;
145
	struct mem_cgroup	*memcg;		/* Back pointer, we cannot */
146
						/* use container_of	   */
147 148 149 150 151 152 153 154 155 156
};

struct mem_cgroup_per_node {
	struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
};

struct mem_cgroup_lru_info {
	struct mem_cgroup_per_node *nodeinfo[MAX_NUMNODES];
};

157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176
/*
 * Cgroups above their limits are maintained in a RB-Tree, independent of
 * their hierarchy representation
 */

struct mem_cgroup_tree_per_zone {
	struct rb_root rb_root;
	spinlock_t lock;
};

struct mem_cgroup_tree_per_node {
	struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
};

struct mem_cgroup_tree {
	struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
};

static struct mem_cgroup_tree soft_limit_tree __read_mostly;

177 178 179 180 181
struct mem_cgroup_threshold {
	struct eventfd_ctx *eventfd;
	u64 threshold;
};

K
KAMEZAWA Hiroyuki 已提交
182
/* For threshold */
183
struct mem_cgroup_threshold_ary {
184
	/* An array index points to threshold just below or equal to usage. */
185
	int current_threshold;
186 187 188 189 190
	/* Size of entries[] */
	unsigned int size;
	/* Array of thresholds */
	struct mem_cgroup_threshold entries[0];
};
191 192 193 194 195 196 197 198 199 200 201 202

struct mem_cgroup_thresholds {
	/* Primary thresholds array */
	struct mem_cgroup_threshold_ary *primary;
	/*
	 * Spare threshold array.
	 * This is needed to make mem_cgroup_unregister_event() "never fail".
	 * It must be able to store at least primary->size - 1 entries.
	 */
	struct mem_cgroup_threshold_ary *spare;
};

K
KAMEZAWA Hiroyuki 已提交
203 204 205 206 207
/* for OOM */
struct mem_cgroup_eventfd_list {
	struct list_head list;
	struct eventfd_ctx *eventfd;
};
208

209 210
static void mem_cgroup_threshold(struct mem_cgroup *memcg);
static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
211

B
Balbir Singh 已提交
212 213 214 215 216 217 218
/*
 * The memory controller data structure. The memory controller controls both
 * page cache and RSS per cgroup. We would eventually like to provide
 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
 * to help the administrator determine what knobs to tune.
 *
 * TODO: Add a water mark for the memory controller. Reclaim will begin when
219 220 221
 * we hit the water mark. May be even add a low water mark, such that
 * no reclaim occurs from a cgroup at it's low water mark, this is
 * a feature that will be implemented much later in the future.
B
Balbir Singh 已提交
222 223 224 225 226 227 228
 */
struct mem_cgroup {
	struct cgroup_subsys_state css;
	/*
	 * the counter to account for memory usage
	 */
	struct res_counter res;
229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252

	union {
		/*
		 * the counter to account for mem+swap usage.
		 */
		struct res_counter memsw;

		/*
		 * rcu_freeing is used only when freeing struct mem_cgroup,
		 * so put it into a union to avoid wasting more memory.
		 * It must be disjoint from the css field.  It could be
		 * in a union with the res field, but res plays a much
		 * larger part in mem_cgroup life than memsw, and might
		 * be of interest, even at time of free, when debugging.
		 * So share rcu_head with the less interesting memsw.
		 */
		struct rcu_head rcu_freeing;
		/*
		 * But when using vfree(), that cannot be done at
		 * interrupt time, so we must then queue the work.
		 */
		struct work_struct work_freeing;
	};

253 254 255 256
	/*
	 * Per cgroup active and inactive list, similar to the
	 * per zone LRU lists.
	 */
257
	struct mem_cgroup_lru_info info;
258 259 260
	int last_scanned_node;
#if MAX_NUMNODES > 1
	nodemask_t	scan_nodes;
261 262
	atomic_t	numainfo_events;
	atomic_t	numainfo_updating;
263
#endif
264 265 266 267
	/*
	 * Should the accounting and control be hierarchical, per subtree?
	 */
	bool use_hierarchy;
268 269 270 271

	bool		oom_lock;
	atomic_t	under_oom;

272
	atomic_t	refcnt;
273

274
	int	swappiness;
275 276
	/* OOM-Killer disable */
	int		oom_kill_disable;
K
KOSAKI Motohiro 已提交
277

278 279 280
	/* set when res.limit == memsw.limit */
	bool		memsw_is_minimum;

281 282 283 284
	/* protect arrays of thresholds */
	struct mutex thresholds_lock;

	/* thresholds for memory usage. RCU-protected */
285
	struct mem_cgroup_thresholds thresholds;
286

287
	/* thresholds for mem+swap usage. RCU-protected */
288
	struct mem_cgroup_thresholds memsw_thresholds;
289

K
KAMEZAWA Hiroyuki 已提交
290 291
	/* For oom notifier event fd */
	struct list_head oom_notify;
292

293 294 295 296 297
	/*
	 * Should we move charges of a task when a task is moved into this
	 * mem_cgroup ? And what type of charges should we move ?
	 */
	unsigned long 	move_charge_at_immigrate;
298 299 300 301
	/*
	 * set > 0 if pages under this cgroup are moving to other cgroup.
	 */
	atomic_t	moving_account;
302 303
	/* taken only while moving_account > 0 */
	spinlock_t	move_lock;
304
	/*
305
	 * percpu counter.
306
	 */
307
	struct mem_cgroup_stat_cpu __percpu *stat;
308 309 310 311 312 313
	/*
	 * used when a cpu is offlined or other synchronizations
	 * See mem_cgroup_read_stat().
	 */
	struct mem_cgroup_stat_cpu nocpu_base;
	spinlock_t pcp_counter_lock;
G
Glauber Costa 已提交
314 315 316 317

#ifdef CONFIG_INET
	struct tcp_memcontrol tcp_mem;
#endif
B
Balbir Singh 已提交
318 319
};

320 321 322 323 324 325
/* Stuffs for move charges at task migration. */
/*
 * Types of charges to be moved. "move_charge_at_immitgrate" is treated as a
 * left-shifted bitmap of these types.
 */
enum move_type {
326
	MOVE_CHARGE_TYPE_ANON,	/* private anonymous page and swap of it */
327
	MOVE_CHARGE_TYPE_FILE,	/* file page(including tmpfs) and swap of it */
328 329 330
	NR_MOVE_TYPE,
};

331 332
/* "mc" and its members are protected by cgroup_mutex */
static struct move_charge_struct {
333
	spinlock_t	  lock; /* for from, to */
334 335 336
	struct mem_cgroup *from;
	struct mem_cgroup *to;
	unsigned long precharge;
337
	unsigned long moved_charge;
338
	unsigned long moved_swap;
339 340 341
	struct task_struct *moving_task;	/* a task moving charges */
	wait_queue_head_t waitq;		/* a waitq for other context */
} mc = {
342
	.lock = __SPIN_LOCK_UNLOCKED(mc.lock),
343 344
	.waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
};
345

D
Daisuke Nishimura 已提交
346 347 348 349 350 351
static bool move_anon(void)
{
	return test_bit(MOVE_CHARGE_TYPE_ANON,
					&mc.to->move_charge_at_immigrate);
}

352 353 354 355 356 357
static bool move_file(void)
{
	return test_bit(MOVE_CHARGE_TYPE_FILE,
					&mc.to->move_charge_at_immigrate);
}

358 359 360 361
/*
 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
 * limit reclaim to prevent infinite loops, if they ever occur.
 */
362 363
#define	MEM_CGROUP_MAX_RECLAIM_LOOPS		100
#define	MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS	2
364

365 366 367
enum charge_type {
	MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
	MEM_CGROUP_CHARGE_TYPE_MAPPED,
368
	MEM_CGROUP_CHARGE_TYPE_SHMEM,	/* used by page migration of shmem */
369
	MEM_CGROUP_CHARGE_TYPE_FORCE,	/* used by force_empty */
K
KAMEZAWA Hiroyuki 已提交
370
	MEM_CGROUP_CHARGE_TYPE_SWAPOUT,	/* for accounting swapcache */
K
KAMEZAWA Hiroyuki 已提交
371
	MEM_CGROUP_CHARGE_TYPE_DROP,	/* a page was unused swap cache */
372 373 374
	NR_CHARGE_TYPE,
};

375
/* for encoding cft->private value on file */
376 377 378
#define _MEM			(0)
#define _MEMSWAP		(1)
#define _OOM_TYPE		(2)
379 380
#define MEMFILE_PRIVATE(x, val)	((x) << 16 | (val))
#define MEMFILE_TYPE(val)	((val) >> 16 & 0xffff)
381
#define MEMFILE_ATTR(val)	((val) & 0xffff)
K
KAMEZAWA Hiroyuki 已提交
382 383
/* Used for OOM nofiier */
#define OOM_CONTROL		(0)
384

385 386 387 388 389 390 391 392
/*
 * Reclaim flags for mem_cgroup_hierarchical_reclaim
 */
#define MEM_CGROUP_RECLAIM_NOSWAP_BIT	0x0
#define MEM_CGROUP_RECLAIM_NOSWAP	(1 << MEM_CGROUP_RECLAIM_NOSWAP_BIT)
#define MEM_CGROUP_RECLAIM_SHRINK_BIT	0x1
#define MEM_CGROUP_RECLAIM_SHRINK	(1 << MEM_CGROUP_RECLAIM_SHRINK_BIT)

393 394
static void mem_cgroup_get(struct mem_cgroup *memcg);
static void mem_cgroup_put(struct mem_cgroup *memcg);
G
Glauber Costa 已提交
395 396 397 398

/* Writing them here to avoid exposing memcg's inner layout */
#ifdef CONFIG_CGROUP_MEM_RES_CTLR_KMEM
#include <net/sock.h>
G
Glauber Costa 已提交
399
#include <net/ip.h>
G
Glauber Costa 已提交
400 401 402 403

static bool mem_cgroup_is_root(struct mem_cgroup *memcg);
void sock_update_memcg(struct sock *sk)
{
404
	if (mem_cgroup_sockets_enabled) {
G
Glauber Costa 已提交
405 406 407 408
		struct mem_cgroup *memcg;

		BUG_ON(!sk->sk_prot->proto_cgroup);

409 410 411 412 413 414 415 416 417 418 419 420 421 422
		/* Socket cloning can throw us here with sk_cgrp already
		 * filled. It won't however, necessarily happen from
		 * process context. So the test for root memcg given
		 * the current task's memcg won't help us in this case.
		 *
		 * Respecting the original socket's memcg is a better
		 * decision in this case.
		 */
		if (sk->sk_cgrp) {
			BUG_ON(mem_cgroup_is_root(sk->sk_cgrp->memcg));
			mem_cgroup_get(sk->sk_cgrp->memcg);
			return;
		}

G
Glauber Costa 已提交
423 424 425 426 427 428 429 430 431 432 433 434 435
		rcu_read_lock();
		memcg = mem_cgroup_from_task(current);
		if (!mem_cgroup_is_root(memcg)) {
			mem_cgroup_get(memcg);
			sk->sk_cgrp = sk->sk_prot->proto_cgroup(memcg);
		}
		rcu_read_unlock();
	}
}
EXPORT_SYMBOL(sock_update_memcg);

void sock_release_memcg(struct sock *sk)
{
436
	if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
G
Glauber Costa 已提交
437 438 439 440 441 442
		struct mem_cgroup *memcg;
		WARN_ON(!sk->sk_cgrp->memcg);
		memcg = sk->sk_cgrp->memcg;
		mem_cgroup_put(memcg);
	}
}
G
Glauber Costa 已提交
443

444
#ifdef CONFIG_INET
G
Glauber Costa 已提交
445 446 447 448 449 450 451 452
struct cg_proto *tcp_proto_cgroup(struct mem_cgroup *memcg)
{
	if (!memcg || mem_cgroup_is_root(memcg))
		return NULL;

	return &memcg->tcp_mem.cg_proto;
}
EXPORT_SYMBOL(tcp_proto_cgroup);
G
Glauber Costa 已提交
453 454 455
#endif /* CONFIG_INET */
#endif /* CONFIG_CGROUP_MEM_RES_CTLR_KMEM */

456
static void drain_all_stock_async(struct mem_cgroup *memcg);
457

458
static struct mem_cgroup_per_zone *
459
mem_cgroup_zoneinfo(struct mem_cgroup *memcg, int nid, int zid)
460
{
461
	return &memcg->info.nodeinfo[nid]->zoneinfo[zid];
462 463
}

464
struct cgroup_subsys_state *mem_cgroup_css(struct mem_cgroup *memcg)
465
{
466
	return &memcg->css;
467 468
}

469
static struct mem_cgroup_per_zone *
470
page_cgroup_zoneinfo(struct mem_cgroup *memcg, struct page *page)
471
{
472 473
	int nid = page_to_nid(page);
	int zid = page_zonenum(page);
474

475
	return mem_cgroup_zoneinfo(memcg, nid, zid);
476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493
}

static struct mem_cgroup_tree_per_zone *
soft_limit_tree_node_zone(int nid, int zid)
{
	return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
}

static struct mem_cgroup_tree_per_zone *
soft_limit_tree_from_page(struct page *page)
{
	int nid = page_to_nid(page);
	int zid = page_zonenum(page);

	return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
}

static void
494
__mem_cgroup_insert_exceeded(struct mem_cgroup *memcg,
495
				struct mem_cgroup_per_zone *mz,
496 497
				struct mem_cgroup_tree_per_zone *mctz,
				unsigned long long new_usage_in_excess)
498 499 500 501 502 503 504 505
{
	struct rb_node **p = &mctz->rb_root.rb_node;
	struct rb_node *parent = NULL;
	struct mem_cgroup_per_zone *mz_node;

	if (mz->on_tree)
		return;

506 507 508
	mz->usage_in_excess = new_usage_in_excess;
	if (!mz->usage_in_excess)
		return;
509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524
	while (*p) {
		parent = *p;
		mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
					tree_node);
		if (mz->usage_in_excess < mz_node->usage_in_excess)
			p = &(*p)->rb_left;
		/*
		 * We can't avoid mem cgroups that are over their soft
		 * limit by the same amount
		 */
		else if (mz->usage_in_excess >= mz_node->usage_in_excess)
			p = &(*p)->rb_right;
	}
	rb_link_node(&mz->tree_node, parent, p);
	rb_insert_color(&mz->tree_node, &mctz->rb_root);
	mz->on_tree = true;
525 526 527
}

static void
528
__mem_cgroup_remove_exceeded(struct mem_cgroup *memcg,
529 530 531 532 533 534 535 536 537
				struct mem_cgroup_per_zone *mz,
				struct mem_cgroup_tree_per_zone *mctz)
{
	if (!mz->on_tree)
		return;
	rb_erase(&mz->tree_node, &mctz->rb_root);
	mz->on_tree = false;
}

538
static void
539
mem_cgroup_remove_exceeded(struct mem_cgroup *memcg,
540 541 542 543
				struct mem_cgroup_per_zone *mz,
				struct mem_cgroup_tree_per_zone *mctz)
{
	spin_lock(&mctz->lock);
544
	__mem_cgroup_remove_exceeded(memcg, mz, mctz);
545 546 547 548
	spin_unlock(&mctz->lock);
}


549
static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
550
{
551
	unsigned long long excess;
552 553
	struct mem_cgroup_per_zone *mz;
	struct mem_cgroup_tree_per_zone *mctz;
554 555
	int nid = page_to_nid(page);
	int zid = page_zonenum(page);
556 557 558
	mctz = soft_limit_tree_from_page(page);

	/*
559 560
	 * Necessary to update all ancestors when hierarchy is used.
	 * because their event counter is not touched.
561
	 */
562 563 564
	for (; memcg; memcg = parent_mem_cgroup(memcg)) {
		mz = mem_cgroup_zoneinfo(memcg, nid, zid);
		excess = res_counter_soft_limit_excess(&memcg->res);
565 566 567 568
		/*
		 * We have to update the tree if mz is on RB-tree or
		 * mem is over its softlimit.
		 */
569
		if (excess || mz->on_tree) {
570 571 572
			spin_lock(&mctz->lock);
			/* if on-tree, remove it */
			if (mz->on_tree)
573
				__mem_cgroup_remove_exceeded(memcg, mz, mctz);
574
			/*
575 576
			 * Insert again. mz->usage_in_excess will be updated.
			 * If excess is 0, no tree ops.
577
			 */
578
			__mem_cgroup_insert_exceeded(memcg, mz, mctz, excess);
579 580
			spin_unlock(&mctz->lock);
		}
581 582 583
	}
}

584
static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
585 586 587 588 589
{
	int node, zone;
	struct mem_cgroup_per_zone *mz;
	struct mem_cgroup_tree_per_zone *mctz;

B
Bob Liu 已提交
590
	for_each_node(node) {
591
		for (zone = 0; zone < MAX_NR_ZONES; zone++) {
592
			mz = mem_cgroup_zoneinfo(memcg, node, zone);
593
			mctz = soft_limit_tree_node_zone(node, zone);
594
			mem_cgroup_remove_exceeded(memcg, mz, mctz);
595 596 597 598
		}
	}
}

599 600 601 602
static struct mem_cgroup_per_zone *
__mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
{
	struct rb_node *rightmost = NULL;
603
	struct mem_cgroup_per_zone *mz;
604 605

retry:
606
	mz = NULL;
607 608 609 610 611 612 613 614 615 616
	rightmost = rb_last(&mctz->rb_root);
	if (!rightmost)
		goto done;		/* Nothing to reclaim from */

	mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
	/*
	 * Remove the node now but someone else can add it back,
	 * we will to add it back at the end of reclaim to its correct
	 * position in the tree.
	 */
617 618 619
	__mem_cgroup_remove_exceeded(mz->memcg, mz, mctz);
	if (!res_counter_soft_limit_excess(&mz->memcg->res) ||
		!css_tryget(&mz->memcg->css))
620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635
		goto retry;
done:
	return mz;
}

static struct mem_cgroup_per_zone *
mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
{
	struct mem_cgroup_per_zone *mz;

	spin_lock(&mctz->lock);
	mz = __mem_cgroup_largest_soft_limit_node(mctz);
	spin_unlock(&mctz->lock);
	return mz;
}

636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654
/*
 * Implementation Note: reading percpu statistics for memcg.
 *
 * Both of vmstat[] and percpu_counter has threshold and do periodic
 * synchronization to implement "quick" read. There are trade-off between
 * reading cost and precision of value. Then, we may have a chance to implement
 * a periodic synchronizion of counter in memcg's counter.
 *
 * But this _read() function is used for user interface now. The user accounts
 * memory usage by memory cgroup and he _always_ requires exact value because
 * he accounts memory. Even if we provide quick-and-fuzzy read, we always
 * have to visit all online cpus and make sum. So, for now, unnecessary
 * synchronization is not implemented. (just implemented for cpu hotplug)
 *
 * If there are kernel internal actions which can make use of some not-exact
 * value, and reading all cpu value can be performance bottleneck in some
 * common workload, threashold and synchonization as vmstat[] should be
 * implemented.
 */
655
static long mem_cgroup_read_stat(struct mem_cgroup *memcg,
656
				 enum mem_cgroup_stat_index idx)
657
{
658
	long val = 0;
659 660
	int cpu;

661 662
	get_online_cpus();
	for_each_online_cpu(cpu)
663
		val += per_cpu(memcg->stat->count[idx], cpu);
664
#ifdef CONFIG_HOTPLUG_CPU
665 666 667
	spin_lock(&memcg->pcp_counter_lock);
	val += memcg->nocpu_base.count[idx];
	spin_unlock(&memcg->pcp_counter_lock);
668 669
#endif
	put_online_cpus();
670 671 672
	return val;
}

673
static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg,
674 675 676
					 bool charge)
{
	int val = (charge) ? 1 : -1;
677
	this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_SWAPOUT], val);
678 679
}

680
static unsigned long mem_cgroup_read_events(struct mem_cgroup *memcg,
681 682 683 684 685 686
					    enum mem_cgroup_events_index idx)
{
	unsigned long val = 0;
	int cpu;

	for_each_online_cpu(cpu)
687
		val += per_cpu(memcg->stat->events[idx], cpu);
688
#ifdef CONFIG_HOTPLUG_CPU
689 690 691
	spin_lock(&memcg->pcp_counter_lock);
	val += memcg->nocpu_base.events[idx];
	spin_unlock(&memcg->pcp_counter_lock);
692 693 694 695
#endif
	return val;
}

696
static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
697
					 bool anon, int nr_pages)
698
{
699 700
	preempt_disable();

701 702 703 704 705 706
	/*
	 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
	 * counted as CACHE even if it's on ANON LRU.
	 */
	if (anon)
		__this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS],
707
				nr_pages);
708
	else
709
		__this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_CACHE],
710
				nr_pages);
711

712 713
	/* pagein of a big page is an event. So, ignore page size */
	if (nr_pages > 0)
714
		__this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGIN]);
715
	else {
716
		__this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]);
717 718
		nr_pages = -nr_pages; /* for event */
	}
719

720
	__this_cpu_add(memcg->stat->events[MEM_CGROUP_EVENTS_COUNT], nr_pages);
721

722
	preempt_enable();
723 724
}

725
unsigned long
726 727 728 729 730 731 732 733 734
mem_cgroup_get_lruvec_size(struct lruvec *lruvec, enum lru_list lru)
{
	struct mem_cgroup_per_zone *mz;

	mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
	return mz->lru_size[lru];
}

static unsigned long
735
mem_cgroup_zone_nr_lru_pages(struct mem_cgroup *memcg, int nid, int zid,
736
			unsigned int lru_mask)
737 738
{
	struct mem_cgroup_per_zone *mz;
H
Hugh Dickins 已提交
739
	enum lru_list lru;
740 741
	unsigned long ret = 0;

742
	mz = mem_cgroup_zoneinfo(memcg, nid, zid);
743

H
Hugh Dickins 已提交
744 745 746
	for_each_lru(lru) {
		if (BIT(lru) & lru_mask)
			ret += mz->lru_size[lru];
747 748 749 750 751
	}
	return ret;
}

static unsigned long
752
mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
753 754
			int nid, unsigned int lru_mask)
{
755 756 757
	u64 total = 0;
	int zid;

758
	for (zid = 0; zid < MAX_NR_ZONES; zid++)
759 760
		total += mem_cgroup_zone_nr_lru_pages(memcg,
						nid, zid, lru_mask);
761

762 763
	return total;
}
764

765
static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
766
			unsigned int lru_mask)
767
{
768
	int nid;
769 770
	u64 total = 0;

771
	for_each_node_state(nid, N_HIGH_MEMORY)
772
		total += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask);
773
	return total;
774 775
}

776 777
static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
				       enum mem_cgroup_events_target target)
778 779 780
{
	unsigned long val, next;

781 782
	val = __this_cpu_read(memcg->stat->events[MEM_CGROUP_EVENTS_COUNT]);
	next = __this_cpu_read(memcg->stat->targets[target]);
783
	/* from time_after() in jiffies.h */
784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799
	if ((long)next - (long)val < 0) {
		switch (target) {
		case MEM_CGROUP_TARGET_THRESH:
			next = val + THRESHOLDS_EVENTS_TARGET;
			break;
		case MEM_CGROUP_TARGET_SOFTLIMIT:
			next = val + SOFTLIMIT_EVENTS_TARGET;
			break;
		case MEM_CGROUP_TARGET_NUMAINFO:
			next = val + NUMAINFO_EVENTS_TARGET;
			break;
		default:
			break;
		}
		__this_cpu_write(memcg->stat->targets[target], next);
		return true;
800
	}
801
	return false;
802 803 804 805 806 807
}

/*
 * Check events in order.
 *
 */
808
static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
809
{
810
	preempt_disable();
811
	/* threshold event is triggered in finer grain than soft limit */
812 813
	if (unlikely(mem_cgroup_event_ratelimit(memcg,
						MEM_CGROUP_TARGET_THRESH))) {
814 815
		bool do_softlimit;
		bool do_numainfo __maybe_unused;
816 817 818 819 820 821 822 823 824

		do_softlimit = mem_cgroup_event_ratelimit(memcg,
						MEM_CGROUP_TARGET_SOFTLIMIT);
#if MAX_NUMNODES > 1
		do_numainfo = mem_cgroup_event_ratelimit(memcg,
						MEM_CGROUP_TARGET_NUMAINFO);
#endif
		preempt_enable();

825
		mem_cgroup_threshold(memcg);
826
		if (unlikely(do_softlimit))
827
			mem_cgroup_update_tree(memcg, page);
828
#if MAX_NUMNODES > 1
829
		if (unlikely(do_numainfo))
830
			atomic_inc(&memcg->numainfo_events);
831
#endif
832 833
	} else
		preempt_enable();
834 835
}

G
Glauber Costa 已提交
836
struct mem_cgroup *mem_cgroup_from_cont(struct cgroup *cont)
B
Balbir Singh 已提交
837 838 839 840 841 842
{
	return container_of(cgroup_subsys_state(cont,
				mem_cgroup_subsys_id), struct mem_cgroup,
				css);
}

843
struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
844
{
845 846 847 848 849 850 851 852
	/*
	 * mm_update_next_owner() may clear mm->owner to NULL
	 * if it races with swapoff, page migration, etc.
	 * So this can be called with p == NULL.
	 */
	if (unlikely(!p))
		return NULL;

853 854 855 856
	return container_of(task_subsys_state(p, mem_cgroup_subsys_id),
				struct mem_cgroup, css);
}

857
struct mem_cgroup *try_get_mem_cgroup_from_mm(struct mm_struct *mm)
858
{
859
	struct mem_cgroup *memcg = NULL;
860 861 862

	if (!mm)
		return NULL;
863 864 865 866 867 868 869
	/*
	 * Because we have no locks, mm->owner's may be being moved to other
	 * cgroup. We use css_tryget() here even if this looks
	 * pessimistic (rather than adding locks here).
	 */
	rcu_read_lock();
	do {
870 871
		memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
		if (unlikely(!memcg))
872
			break;
873
	} while (!css_tryget(&memcg->css));
874
	rcu_read_unlock();
875
	return memcg;
876 877
}

878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897
/**
 * mem_cgroup_iter - iterate over memory cgroup hierarchy
 * @root: hierarchy root
 * @prev: previously returned memcg, NULL on first invocation
 * @reclaim: cookie for shared reclaim walks, NULL for full walks
 *
 * Returns references to children of the hierarchy below @root, or
 * @root itself, or %NULL after a full round-trip.
 *
 * Caller must pass the return value in @prev on subsequent
 * invocations for reference counting, or use mem_cgroup_iter_break()
 * to cancel a hierarchy walk before the round-trip is complete.
 *
 * Reclaimers can specify a zone and a priority level in @reclaim to
 * divide up the memcgs in the hierarchy among all concurrent
 * reclaimers operating on the same zone and priority.
 */
struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
				   struct mem_cgroup *prev,
				   struct mem_cgroup_reclaim_cookie *reclaim)
K
KAMEZAWA Hiroyuki 已提交
898
{
899 900
	struct mem_cgroup *memcg = NULL;
	int id = 0;
901

902 903 904
	if (mem_cgroup_disabled())
		return NULL;

905 906
	if (!root)
		root = root_mem_cgroup;
K
KAMEZAWA Hiroyuki 已提交
907

908 909
	if (prev && !reclaim)
		id = css_id(&prev->css);
K
KAMEZAWA Hiroyuki 已提交
910

911 912
	if (prev && prev != root)
		css_put(&prev->css);
K
KAMEZAWA Hiroyuki 已提交
913

914 915 916 917 918
	if (!root->use_hierarchy && root != root_mem_cgroup) {
		if (prev)
			return NULL;
		return root;
	}
K
KAMEZAWA Hiroyuki 已提交
919

920
	while (!memcg) {
921
		struct mem_cgroup_reclaim_iter *uninitialized_var(iter);
922
		struct cgroup_subsys_state *css;
923

924 925 926 927 928 929 930 931 932 933 934
		if (reclaim) {
			int nid = zone_to_nid(reclaim->zone);
			int zid = zone_idx(reclaim->zone);
			struct mem_cgroup_per_zone *mz;

			mz = mem_cgroup_zoneinfo(root, nid, zid);
			iter = &mz->reclaim_iter[reclaim->priority];
			if (prev && reclaim->generation != iter->generation)
				return NULL;
			id = iter->position;
		}
K
KAMEZAWA Hiroyuki 已提交
935

936 937 938 939 940 941 942 943
		rcu_read_lock();
		css = css_get_next(&mem_cgroup_subsys, id + 1, &root->css, &id);
		if (css) {
			if (css == &root->css || css_tryget(css))
				memcg = container_of(css,
						     struct mem_cgroup, css);
		} else
			id = 0;
K
KAMEZAWA Hiroyuki 已提交
944 945
		rcu_read_unlock();

946 947 948 949 950 951 952
		if (reclaim) {
			iter->position = id;
			if (!css)
				iter->generation++;
			else if (!prev && memcg)
				reclaim->generation = iter->generation;
		}
953 954 955 956 957

		if (prev && !css)
			return NULL;
	}
	return memcg;
K
KAMEZAWA Hiroyuki 已提交
958
}
K
KAMEZAWA Hiroyuki 已提交
959

960 961 962 963 964 965 966
/**
 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
 * @root: hierarchy root
 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
 */
void mem_cgroup_iter_break(struct mem_cgroup *root,
			   struct mem_cgroup *prev)
967 968 969 970 971 972
{
	if (!root)
		root = root_mem_cgroup;
	if (prev && prev != root)
		css_put(&prev->css);
}
K
KAMEZAWA Hiroyuki 已提交
973

974 975 976 977 978 979
/*
 * Iteration constructs for visiting all cgroups (under a tree).  If
 * loops are exited prematurely (break), mem_cgroup_iter_break() must
 * be used for reference counting.
 */
#define for_each_mem_cgroup_tree(iter, root)		\
980
	for (iter = mem_cgroup_iter(root, NULL, NULL);	\
981
	     iter != NULL;				\
982
	     iter = mem_cgroup_iter(root, iter, NULL))
983

984
#define for_each_mem_cgroup(iter)			\
985
	for (iter = mem_cgroup_iter(NULL, NULL, NULL);	\
986
	     iter != NULL;				\
987
	     iter = mem_cgroup_iter(NULL, iter, NULL))
K
KAMEZAWA Hiroyuki 已提交
988

989
static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
990
{
991
	return (memcg == root_mem_cgroup);
992 993
}

994 995
void mem_cgroup_count_vm_event(struct mm_struct *mm, enum vm_event_item idx)
{
996
	struct mem_cgroup *memcg;
997 998 999 1000 1001

	if (!mm)
		return;

	rcu_read_lock();
1002 1003
	memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
	if (unlikely(!memcg))
1004 1005 1006 1007
		goto out;

	switch (idx) {
	case PGFAULT:
1008 1009 1010 1011
		this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGFAULT]);
		break;
	case PGMAJFAULT:
		this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGMAJFAULT]);
1012 1013 1014 1015 1016 1017 1018 1019 1020
		break;
	default:
		BUG();
	}
out:
	rcu_read_unlock();
}
EXPORT_SYMBOL(mem_cgroup_count_vm_event);

1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041
/**
 * mem_cgroup_zone_lruvec - get the lru list vector for a zone and memcg
 * @zone: zone of the wanted lruvec
 * @mem: memcg of the wanted lruvec
 *
 * Returns the lru list vector holding pages for the given @zone and
 * @mem.  This can be the global zone lruvec, if the memory controller
 * is disabled.
 */
struct lruvec *mem_cgroup_zone_lruvec(struct zone *zone,
				      struct mem_cgroup *memcg)
{
	struct mem_cgroup_per_zone *mz;

	if (mem_cgroup_disabled())
		return &zone->lruvec;

	mz = mem_cgroup_zoneinfo(memcg, zone_to_nid(zone), zone_idx(zone));
	return &mz->lruvec;
}

K
KAMEZAWA Hiroyuki 已提交
1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054
/*
 * Following LRU functions are allowed to be used without PCG_LOCK.
 * Operations are called by routine of global LRU independently from memcg.
 * What we have to take care of here is validness of pc->mem_cgroup.
 *
 * Changes to pc->mem_cgroup happens when
 * 1. charge
 * 2. moving account
 * In typical case, "charge" is done before add-to-lru. Exception is SwapCache.
 * It is added to LRU before charge.
 * If PCG_USED bit is not set, page_cgroup is not added to this private LRU.
 * When moving account, the page is not on LRU. It's isolated.
 */
1055

1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069
/**
 * mem_cgroup_lru_add_list - account for adding an lru page and return lruvec
 * @zone: zone of the page
 * @page: the page
 * @lru: current lru
 *
 * This function accounts for @page being added to @lru, and returns
 * the lruvec for the given @zone and the memcg @page is charged to.
 *
 * The callsite is then responsible for physically linking the page to
 * the returned lruvec->lists[@lru].
 */
struct lruvec *mem_cgroup_lru_add_list(struct zone *zone, struct page *page,
				       enum lru_list lru)
K
KAMEZAWA Hiroyuki 已提交
1070 1071
{
	struct mem_cgroup_per_zone *mz;
1072 1073
	struct mem_cgroup *memcg;
	struct page_cgroup *pc;
1074

1075
	if (mem_cgroup_disabled())
1076 1077
		return &zone->lruvec;

K
KAMEZAWA Hiroyuki 已提交
1078
	pc = lookup_page_cgroup(page);
1079
	memcg = pc->mem_cgroup;
1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092

	/*
	 * Surreptitiously switch any uncharged page to root:
	 * an uncharged page off lru does nothing to secure
	 * its former mem_cgroup from sudden removal.
	 *
	 * Our caller holds lru_lock, and PageCgroupUsed is updated
	 * under page_cgroup lock: between them, they make all uses
	 * of pc->mem_cgroup safe.
	 */
	if (!PageCgroupUsed(pc) && memcg != root_mem_cgroup)
		pc->mem_cgroup = memcg = root_mem_cgroup;

1093 1094
	mz = page_cgroup_zoneinfo(memcg, page);
	/* compound_order() is stabilized through lru_lock */
1095
	mz->lru_size[lru] += 1 << compound_order(page);
1096
	return &mz->lruvec;
K
KAMEZAWA Hiroyuki 已提交
1097
}
1098

1099 1100 1101 1102 1103 1104 1105 1106 1107
/**
 * mem_cgroup_lru_del_list - account for removing an lru page
 * @page: the page
 * @lru: target lru
 *
 * This function accounts for @page being removed from @lru.
 *
 * The callsite is then responsible for physically unlinking
 * @page->lru.
1108
 */
1109
void mem_cgroup_lru_del_list(struct page *page, enum lru_list lru)
1110 1111
{
	struct mem_cgroup_per_zone *mz;
1112
	struct mem_cgroup *memcg;
1113 1114 1115 1116 1117 1118
	struct page_cgroup *pc;

	if (mem_cgroup_disabled())
		return;

	pc = lookup_page_cgroup(page);
1119 1120
	memcg = pc->mem_cgroup;
	VM_BUG_ON(!memcg);
1121 1122
	mz = page_cgroup_zoneinfo(memcg, page);
	/* huge page split is done under lru_lock. so, we have no races. */
1123 1124
	VM_BUG_ON(mz->lru_size[lru] < (1 << compound_order(page)));
	mz->lru_size[lru] -= 1 << compound_order(page);
1125 1126
}

1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144
/**
 * mem_cgroup_lru_move_lists - account for moving a page between lrus
 * @zone: zone of the page
 * @page: the page
 * @from: current lru
 * @to: target lru
 *
 * This function accounts for @page being moved between the lrus @from
 * and @to, and returns the lruvec for the given @zone and the memcg
 * @page is charged to.
 *
 * The callsite is then responsible for physically relinking
 * @page->lru to the returned lruvec->lists[@to].
 */
struct lruvec *mem_cgroup_lru_move_lists(struct zone *zone,
					 struct page *page,
					 enum lru_list from,
					 enum lru_list to)
1145
{
1146 1147 1148
	/* XXX: Optimize this, especially for @from == @to */
	mem_cgroup_lru_del_list(page, from);
	return mem_cgroup_lru_add_list(zone, page, to);
K
KAMEZAWA Hiroyuki 已提交
1149
}
1150

1151
/*
1152
 * Checks whether given mem is same or in the root_mem_cgroup's
1153 1154
 * hierarchy subtree
 */
1155 1156
bool __mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg,
				  struct mem_cgroup *memcg)
1157
{
1158 1159 1160 1161
	if (root_memcg == memcg)
		return true;
	if (!root_memcg->use_hierarchy)
		return false;
1162 1163 1164 1165 1166 1167 1168 1169
	return css_is_ancestor(&memcg->css, &root_memcg->css);
}

static bool mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg,
				       struct mem_cgroup *memcg)
{
	bool ret;

1170
	rcu_read_lock();
1171
	ret = __mem_cgroup_same_or_subtree(root_memcg, memcg);
1172 1173
	rcu_read_unlock();
	return ret;
1174 1175
}

1176
int task_in_mem_cgroup(struct task_struct *task, const struct mem_cgroup *memcg)
1177 1178
{
	int ret;
1179
	struct mem_cgroup *curr = NULL;
1180
	struct task_struct *p;
1181

1182
	p = find_lock_task_mm(task);
1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197
	if (p) {
		curr = try_get_mem_cgroup_from_mm(p->mm);
		task_unlock(p);
	} else {
		/*
		 * All threads may have already detached their mm's, but the oom
		 * killer still needs to detect if they have already been oom
		 * killed to prevent needlessly killing additional tasks.
		 */
		task_lock(task);
		curr = mem_cgroup_from_task(task);
		if (curr)
			css_get(&curr->css);
		task_unlock(task);
	}
1198 1199
	if (!curr)
		return 0;
1200
	/*
1201
	 * We should check use_hierarchy of "memcg" not "curr". Because checking
1202
	 * use_hierarchy of "curr" here make this function true if hierarchy is
1203 1204
	 * enabled in "curr" and "curr" is a child of "memcg" in *cgroup*
	 * hierarchy(even if use_hierarchy is disabled in "memcg").
1205
	 */
1206
	ret = mem_cgroup_same_or_subtree(memcg, curr);
1207
	css_put(&curr->css);
1208 1209 1210
	return ret;
}

1211
int mem_cgroup_inactive_anon_is_low(struct lruvec *lruvec)
1212
{
1213
	unsigned long inactive_ratio;
1214
	unsigned long inactive;
1215
	unsigned long active;
1216
	unsigned long gb;
1217

1218 1219
	inactive = mem_cgroup_get_lruvec_size(lruvec, LRU_INACTIVE_ANON);
	active = mem_cgroup_get_lruvec_size(lruvec, LRU_ACTIVE_ANON);
1220

1221 1222 1223 1224 1225 1226
	gb = (inactive + active) >> (30 - PAGE_SHIFT);
	if (gb)
		inactive_ratio = int_sqrt(10 * gb);
	else
		inactive_ratio = 1;

1227
	return inactive * inactive_ratio < active;
1228 1229
}

1230
int mem_cgroup_inactive_file_is_low(struct lruvec *lruvec)
1231 1232 1233 1234
{
	unsigned long active;
	unsigned long inactive;

1235 1236
	inactive = mem_cgroup_get_lruvec_size(lruvec, LRU_INACTIVE_FILE);
	active = mem_cgroup_get_lruvec_size(lruvec, LRU_ACTIVE_FILE);
1237 1238 1239 1240

	return (active > inactive);
}

K
KOSAKI Motohiro 已提交
1241 1242 1243 1244 1245 1246 1247 1248 1249 1250
struct zone_reclaim_stat *
mem_cgroup_get_reclaim_stat_from_page(struct page *page)
{
	struct page_cgroup *pc;
	struct mem_cgroup_per_zone *mz;

	if (mem_cgroup_disabled())
		return NULL;

	pc = lookup_page_cgroup(page);
1251 1252
	if (!PageCgroupUsed(pc))
		return NULL;
1253 1254
	/* Ensure pc->mem_cgroup is visible after reading PCG_USED. */
	smp_rmb();
1255
	mz = page_cgroup_zoneinfo(pc->mem_cgroup, page);
1256
	return &mz->lruvec.reclaim_stat;
K
KOSAKI Motohiro 已提交
1257 1258
}

1259 1260 1261
#define mem_cgroup_from_res_counter(counter, member)	\
	container_of(counter, struct mem_cgroup, member)

1262
/**
1263 1264
 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
 * @mem: the memory cgroup
1265
 *
1266
 * Returns the maximum amount of memory @mem can be charged with, in
1267
 * pages.
1268
 */
1269
static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1270
{
1271 1272
	unsigned long long margin;

1273
	margin = res_counter_margin(&memcg->res);
1274
	if (do_swap_account)
1275
		margin = min(margin, res_counter_margin(&memcg->memsw));
1276
	return margin >> PAGE_SHIFT;
1277 1278
}

1279
int mem_cgroup_swappiness(struct mem_cgroup *memcg)
K
KOSAKI Motohiro 已提交
1280 1281 1282 1283 1284 1285 1286
{
	struct cgroup *cgrp = memcg->css.cgroup;

	/* root ? */
	if (cgrp->parent == NULL)
		return vm_swappiness;

1287
	return memcg->swappiness;
K
KOSAKI Motohiro 已提交
1288 1289
}

1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303
/*
 * memcg->moving_account is used for checking possibility that some thread is
 * calling move_account(). When a thread on CPU-A starts moving pages under
 * a memcg, other threads should check memcg->moving_account under
 * rcu_read_lock(), like this:
 *
 *         CPU-A                                    CPU-B
 *                                              rcu_read_lock()
 *         memcg->moving_account+1              if (memcg->mocing_account)
 *                                                   take heavy locks.
 *         synchronize_rcu()                    update something.
 *                                              rcu_read_unlock()
 *         start move here.
 */
1304 1305 1306 1307

/* for quick checking without looking up memcg */
atomic_t memcg_moving __read_mostly;

1308
static void mem_cgroup_start_move(struct mem_cgroup *memcg)
1309
{
1310
	atomic_inc(&memcg_moving);
1311
	atomic_inc(&memcg->moving_account);
1312 1313 1314
	synchronize_rcu();
}

1315
static void mem_cgroup_end_move(struct mem_cgroup *memcg)
1316
{
1317 1318 1319 1320
	/*
	 * Now, mem_cgroup_clear_mc() may call this function with NULL.
	 * We check NULL in callee rather than caller.
	 */
1321 1322
	if (memcg) {
		atomic_dec(&memcg_moving);
1323
		atomic_dec(&memcg->moving_account);
1324
	}
1325
}
1326

1327 1328 1329
/*
 * 2 routines for checking "mem" is under move_account() or not.
 *
1330 1331
 * mem_cgroup_stolen() -  checking whether a cgroup is mc.from or not. This
 *			  is used for avoiding races in accounting.  If true,
1332 1333 1334 1335 1336 1337 1338
 *			  pc->mem_cgroup may be overwritten.
 *
 * mem_cgroup_under_move() - checking a cgroup is mc.from or mc.to or
 *			  under hierarchy of moving cgroups. This is for
 *			  waiting at hith-memory prressure caused by "move".
 */

1339
static bool mem_cgroup_stolen(struct mem_cgroup *memcg)
1340 1341
{
	VM_BUG_ON(!rcu_read_lock_held());
1342
	return atomic_read(&memcg->moving_account) > 0;
1343
}
1344

1345
static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
1346
{
1347 1348
	struct mem_cgroup *from;
	struct mem_cgroup *to;
1349
	bool ret = false;
1350 1351 1352 1353 1354 1355 1356 1357 1358
	/*
	 * Unlike task_move routines, we access mc.to, mc.from not under
	 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
	 */
	spin_lock(&mc.lock);
	from = mc.from;
	to = mc.to;
	if (!from)
		goto unlock;
1359

1360 1361
	ret = mem_cgroup_same_or_subtree(memcg, from)
		|| mem_cgroup_same_or_subtree(memcg, to);
1362 1363
unlock:
	spin_unlock(&mc.lock);
1364 1365 1366
	return ret;
}

1367
static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1368 1369
{
	if (mc.moving_task && current != mc.moving_task) {
1370
		if (mem_cgroup_under_move(memcg)) {
1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382
			DEFINE_WAIT(wait);
			prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
			/* moving charge context might have finished. */
			if (mc.moving_task)
				schedule();
			finish_wait(&mc.waitq, &wait);
			return true;
		}
	}
	return false;
}

1383 1384 1385 1386
/*
 * Take this lock when
 * - a code tries to modify page's memcg while it's USED.
 * - a code tries to modify page state accounting in a memcg.
1387
 * see mem_cgroup_stolen(), too.
1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400
 */
static void move_lock_mem_cgroup(struct mem_cgroup *memcg,
				  unsigned long *flags)
{
	spin_lock_irqsave(&memcg->move_lock, *flags);
}

static void move_unlock_mem_cgroup(struct mem_cgroup *memcg,
				unsigned long *flags)
{
	spin_unlock_irqrestore(&memcg->move_lock, *flags);
}

1401
/**
1402
 * mem_cgroup_print_oom_info: Called from OOM with tasklist_lock held in read mode.
1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420
 * @memcg: The memory cgroup that went over limit
 * @p: Task that is going to be killed
 *
 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
 * enabled
 */
void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
{
	struct cgroup *task_cgrp;
	struct cgroup *mem_cgrp;
	/*
	 * Need a buffer in BSS, can't rely on allocations. The code relies
	 * on the assumption that OOM is serialized for memory controller.
	 * If this assumption is broken, revisit this code.
	 */
	static char memcg_name[PATH_MAX];
	int ret;

1421
	if (!memcg || !p)
1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466
		return;

	rcu_read_lock();

	mem_cgrp = memcg->css.cgroup;
	task_cgrp = task_cgroup(p, mem_cgroup_subsys_id);

	ret = cgroup_path(task_cgrp, memcg_name, PATH_MAX);
	if (ret < 0) {
		/*
		 * Unfortunately, we are unable to convert to a useful name
		 * But we'll still print out the usage information
		 */
		rcu_read_unlock();
		goto done;
	}
	rcu_read_unlock();

	printk(KERN_INFO "Task in %s killed", memcg_name);

	rcu_read_lock();
	ret = cgroup_path(mem_cgrp, memcg_name, PATH_MAX);
	if (ret < 0) {
		rcu_read_unlock();
		goto done;
	}
	rcu_read_unlock();

	/*
	 * Continues from above, so we don't need an KERN_ level
	 */
	printk(KERN_CONT " as a result of limit of %s\n", memcg_name);
done:

	printk(KERN_INFO "memory: usage %llukB, limit %llukB, failcnt %llu\n",
		res_counter_read_u64(&memcg->res, RES_USAGE) >> 10,
		res_counter_read_u64(&memcg->res, RES_LIMIT) >> 10,
		res_counter_read_u64(&memcg->res, RES_FAILCNT));
	printk(KERN_INFO "memory+swap: usage %llukB, limit %llukB, "
		"failcnt %llu\n",
		res_counter_read_u64(&memcg->memsw, RES_USAGE) >> 10,
		res_counter_read_u64(&memcg->memsw, RES_LIMIT) >> 10,
		res_counter_read_u64(&memcg->memsw, RES_FAILCNT));
}

1467 1468 1469 1470
/*
 * This function returns the number of memcg under hierarchy tree. Returns
 * 1(self count) if no children.
 */
1471
static int mem_cgroup_count_children(struct mem_cgroup *memcg)
1472 1473
{
	int num = 0;
K
KAMEZAWA Hiroyuki 已提交
1474 1475
	struct mem_cgroup *iter;

1476
	for_each_mem_cgroup_tree(iter, memcg)
K
KAMEZAWA Hiroyuki 已提交
1477
		num++;
1478 1479 1480
	return num;
}

D
David Rientjes 已提交
1481 1482 1483 1484 1485 1486 1487 1488
/*
 * Return the memory (and swap, if configured) limit for a memcg.
 */
u64 mem_cgroup_get_limit(struct mem_cgroup *memcg)
{
	u64 limit;
	u64 memsw;

1489 1490 1491
	limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
	limit += total_swap_pages << PAGE_SHIFT;

D
David Rientjes 已提交
1492 1493 1494 1495 1496 1497 1498 1499
	memsw = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
	/*
	 * If memsw is finite and limits the amount of swap space available
	 * to this memcg, return that limit.
	 */
	return min(limit, memsw);
}

1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535
static unsigned long mem_cgroup_reclaim(struct mem_cgroup *memcg,
					gfp_t gfp_mask,
					unsigned long flags)
{
	unsigned long total = 0;
	bool noswap = false;
	int loop;

	if (flags & MEM_CGROUP_RECLAIM_NOSWAP)
		noswap = true;
	if (!(flags & MEM_CGROUP_RECLAIM_SHRINK) && memcg->memsw_is_minimum)
		noswap = true;

	for (loop = 0; loop < MEM_CGROUP_MAX_RECLAIM_LOOPS; loop++) {
		if (loop)
			drain_all_stock_async(memcg);
		total += try_to_free_mem_cgroup_pages(memcg, gfp_mask, noswap);
		/*
		 * Allow limit shrinkers, which are triggered directly
		 * by userspace, to catch signals and stop reclaim
		 * after minimal progress, regardless of the margin.
		 */
		if (total && (flags & MEM_CGROUP_RECLAIM_SHRINK))
			break;
		if (mem_cgroup_margin(memcg))
			break;
		/*
		 * If nothing was reclaimed after two attempts, there
		 * may be no reclaimable pages in this hierarchy.
		 */
		if (loop && !total)
			break;
	}
	return total;
}

1536 1537 1538 1539 1540 1541 1542 1543 1544 1545
/**
 * test_mem_cgroup_node_reclaimable
 * @mem: the target memcg
 * @nid: the node ID to be checked.
 * @noswap : specify true here if the user wants flle only information.
 *
 * This function returns whether the specified memcg contains any
 * reclaimable pages on a node. Returns true if there are any reclaimable
 * pages in the node.
 */
1546
static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
1547 1548
		int nid, bool noswap)
{
1549
	if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE))
1550 1551 1552
		return true;
	if (noswap || !total_swap_pages)
		return false;
1553
	if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON))
1554 1555 1556 1557
		return true;
	return false;

}
1558 1559 1560 1561 1562 1563 1564 1565
#if MAX_NUMNODES > 1

/*
 * Always updating the nodemask is not very good - even if we have an empty
 * list or the wrong list here, we can start from some node and traverse all
 * nodes based on the zonelist. So update the list loosely once per 10 secs.
 *
 */
1566
static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
1567 1568
{
	int nid;
1569 1570 1571 1572
	/*
	 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
	 * pagein/pageout changes since the last update.
	 */
1573
	if (!atomic_read(&memcg->numainfo_events))
1574
		return;
1575
	if (atomic_inc_return(&memcg->numainfo_updating) > 1)
1576 1577 1578
		return;

	/* make a nodemask where this memcg uses memory from */
1579
	memcg->scan_nodes = node_states[N_HIGH_MEMORY];
1580 1581 1582

	for_each_node_mask(nid, node_states[N_HIGH_MEMORY]) {

1583 1584
		if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
			node_clear(nid, memcg->scan_nodes);
1585
	}
1586

1587 1588
	atomic_set(&memcg->numainfo_events, 0);
	atomic_set(&memcg->numainfo_updating, 0);
1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602
}

/*
 * Selecting a node where we start reclaim from. Because what we need is just
 * reducing usage counter, start from anywhere is O,K. Considering
 * memory reclaim from current node, there are pros. and cons.
 *
 * Freeing memory from current node means freeing memory from a node which
 * we'll use or we've used. So, it may make LRU bad. And if several threads
 * hit limits, it will see a contention on a node. But freeing from remote
 * node means more costs for memory reclaim because of memory latency.
 *
 * Now, we use round-robin. Better algorithm is welcomed.
 */
1603
int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1604 1605 1606
{
	int node;

1607 1608
	mem_cgroup_may_update_nodemask(memcg);
	node = memcg->last_scanned_node;
1609

1610
	node = next_node(node, memcg->scan_nodes);
1611
	if (node == MAX_NUMNODES)
1612
		node = first_node(memcg->scan_nodes);
1613 1614 1615 1616 1617 1618 1619 1620 1621
	/*
	 * We call this when we hit limit, not when pages are added to LRU.
	 * No LRU may hold pages because all pages are UNEVICTABLE or
	 * memcg is too small and all pages are not on LRU. In that case,
	 * we use curret node.
	 */
	if (unlikely(node == MAX_NUMNODES))
		node = numa_node_id();

1622
	memcg->last_scanned_node = node;
1623 1624 1625
	return node;
}

1626 1627 1628 1629 1630 1631
/*
 * Check all nodes whether it contains reclaimable pages or not.
 * For quick scan, we make use of scan_nodes. This will allow us to skip
 * unused nodes. But scan_nodes is lazily updated and may not cotain
 * enough new information. We need to do double check.
 */
1632
static bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap)
1633 1634 1635 1636 1637 1638 1639
{
	int nid;

	/*
	 * quick check...making use of scan_node.
	 * We can skip unused nodes.
	 */
1640 1641
	if (!nodes_empty(memcg->scan_nodes)) {
		for (nid = first_node(memcg->scan_nodes);
1642
		     nid < MAX_NUMNODES;
1643
		     nid = next_node(nid, memcg->scan_nodes)) {
1644

1645
			if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap))
1646 1647 1648 1649 1650 1651 1652
				return true;
		}
	}
	/*
	 * Check rest of nodes.
	 */
	for_each_node_state(nid, N_HIGH_MEMORY) {
1653
		if (node_isset(nid, memcg->scan_nodes))
1654
			continue;
1655
		if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap))
1656 1657 1658 1659 1660
			return true;
	}
	return false;
}

1661
#else
1662
int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1663 1664 1665
{
	return 0;
}
1666

1667
static bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap)
1668
{
1669
	return test_mem_cgroup_node_reclaimable(memcg, 0, noswap);
1670
}
1671 1672
#endif

1673 1674 1675 1676
static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
				   struct zone *zone,
				   gfp_t gfp_mask,
				   unsigned long *total_scanned)
1677
{
1678
	struct mem_cgroup *victim = NULL;
1679
	int total = 0;
K
KAMEZAWA Hiroyuki 已提交
1680
	int loop = 0;
1681
	unsigned long excess;
1682
	unsigned long nr_scanned;
1683 1684 1685 1686
	struct mem_cgroup_reclaim_cookie reclaim = {
		.zone = zone,
		.priority = 0,
	};
1687

1688
	excess = res_counter_soft_limit_excess(&root_memcg->res) >> PAGE_SHIFT;
K
KAMEZAWA Hiroyuki 已提交
1689

1690
	while (1) {
1691
		victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
1692
		if (!victim) {
K
KAMEZAWA Hiroyuki 已提交
1693
			loop++;
1694 1695 1696 1697 1698 1699
			if (loop >= 2) {
				/*
				 * If we have not been able to reclaim
				 * anything, it might because there are
				 * no reclaimable pages under this hierarchy
				 */
1700
				if (!total)
1701 1702
					break;
				/*
L
Lucas De Marchi 已提交
1703
				 * We want to do more targeted reclaim.
1704 1705 1706 1707 1708
				 * excess >> 2 is not to excessive so as to
				 * reclaim too much, nor too less that we keep
				 * coming back to reclaim from this cgroup
				 */
				if (total >= (excess >> 2) ||
1709
					(loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
1710 1711
					break;
			}
1712
			continue;
1713
		}
1714
		if (!mem_cgroup_reclaimable(victim, false))
1715
			continue;
1716 1717 1718 1719
		total += mem_cgroup_shrink_node_zone(victim, gfp_mask, false,
						     zone, &nr_scanned);
		*total_scanned += nr_scanned;
		if (!res_counter_soft_limit_excess(&root_memcg->res))
1720
			break;
1721
	}
1722
	mem_cgroup_iter_break(root_memcg, victim);
K
KAMEZAWA Hiroyuki 已提交
1723
	return total;
1724 1725
}

K
KAMEZAWA Hiroyuki 已提交
1726 1727 1728
/*
 * Check OOM-Killer is already running under our hierarchy.
 * If someone is running, return false.
1729
 * Has to be called with memcg_oom_lock
K
KAMEZAWA Hiroyuki 已提交
1730
 */
1731
static bool mem_cgroup_oom_lock(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
1732
{
1733
	struct mem_cgroup *iter, *failed = NULL;
1734

1735
	for_each_mem_cgroup_tree(iter, memcg) {
1736
		if (iter->oom_lock) {
1737 1738 1739 1740 1741
			/*
			 * this subtree of our hierarchy is already locked
			 * so we cannot give a lock.
			 */
			failed = iter;
1742 1743
			mem_cgroup_iter_break(memcg, iter);
			break;
1744 1745
		} else
			iter->oom_lock = true;
K
KAMEZAWA Hiroyuki 已提交
1746
	}
K
KAMEZAWA Hiroyuki 已提交
1747

1748
	if (!failed)
1749
		return true;
1750 1751 1752 1753 1754

	/*
	 * OK, we failed to lock the whole subtree so we have to clean up
	 * what we set up to the failing subtree
	 */
1755
	for_each_mem_cgroup_tree(iter, memcg) {
1756
		if (iter == failed) {
1757 1758
			mem_cgroup_iter_break(memcg, iter);
			break;
1759 1760 1761
		}
		iter->oom_lock = false;
	}
1762
	return false;
1763
}
1764

1765
/*
1766
 * Has to be called with memcg_oom_lock
1767
 */
1768
static int mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
1769
{
K
KAMEZAWA Hiroyuki 已提交
1770 1771
	struct mem_cgroup *iter;

1772
	for_each_mem_cgroup_tree(iter, memcg)
1773 1774 1775 1776
		iter->oom_lock = false;
	return 0;
}

1777
static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
1778 1779 1780
{
	struct mem_cgroup *iter;

1781
	for_each_mem_cgroup_tree(iter, memcg)
1782 1783 1784
		atomic_inc(&iter->under_oom);
}

1785
static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
1786 1787 1788
{
	struct mem_cgroup *iter;

K
KAMEZAWA Hiroyuki 已提交
1789 1790 1791 1792 1793
	/*
	 * When a new child is created while the hierarchy is under oom,
	 * mem_cgroup_oom_lock() may not be called. We have to use
	 * atomic_add_unless() here.
	 */
1794
	for_each_mem_cgroup_tree(iter, memcg)
1795
		atomic_add_unless(&iter->under_oom, -1, 0);
1796 1797
}

1798
static DEFINE_SPINLOCK(memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
1799 1800
static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);

K
KAMEZAWA Hiroyuki 已提交
1801
struct oom_wait_info {
1802
	struct mem_cgroup *memcg;
K
KAMEZAWA Hiroyuki 已提交
1803 1804 1805 1806 1807 1808
	wait_queue_t	wait;
};

static int memcg_oom_wake_function(wait_queue_t *wait,
	unsigned mode, int sync, void *arg)
{
1809 1810
	struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
	struct mem_cgroup *oom_wait_memcg;
K
KAMEZAWA Hiroyuki 已提交
1811 1812 1813
	struct oom_wait_info *oom_wait_info;

	oom_wait_info = container_of(wait, struct oom_wait_info, wait);
1814
	oom_wait_memcg = oom_wait_info->memcg;
K
KAMEZAWA Hiroyuki 已提交
1815 1816

	/*
1817
	 * Both of oom_wait_info->memcg and wake_memcg are stable under us.
K
KAMEZAWA Hiroyuki 已提交
1818 1819
	 * Then we can use css_is_ancestor without taking care of RCU.
	 */
1820 1821
	if (!mem_cgroup_same_or_subtree(oom_wait_memcg, wake_memcg)
		&& !mem_cgroup_same_or_subtree(wake_memcg, oom_wait_memcg))
K
KAMEZAWA Hiroyuki 已提交
1822 1823 1824 1825
		return 0;
	return autoremove_wake_function(wait, mode, sync, arg);
}

1826
static void memcg_wakeup_oom(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
1827
{
1828 1829
	/* for filtering, pass "memcg" as argument. */
	__wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
K
KAMEZAWA Hiroyuki 已提交
1830 1831
}

1832
static void memcg_oom_recover(struct mem_cgroup *memcg)
1833
{
1834 1835
	if (memcg && atomic_read(&memcg->under_oom))
		memcg_wakeup_oom(memcg);
1836 1837
}

K
KAMEZAWA Hiroyuki 已提交
1838 1839 1840
/*
 * try to call OOM killer. returns false if we should exit memory-reclaim loop.
 */
1841 1842
static bool mem_cgroup_handle_oom(struct mem_cgroup *memcg, gfp_t mask,
				  int order)
1843
{
K
KAMEZAWA Hiroyuki 已提交
1844
	struct oom_wait_info owait;
1845
	bool locked, need_to_kill;
K
KAMEZAWA Hiroyuki 已提交
1846

1847
	owait.memcg = memcg;
K
KAMEZAWA Hiroyuki 已提交
1848 1849 1850 1851
	owait.wait.flags = 0;
	owait.wait.func = memcg_oom_wake_function;
	owait.wait.private = current;
	INIT_LIST_HEAD(&owait.wait.task_list);
1852
	need_to_kill = true;
1853
	mem_cgroup_mark_under_oom(memcg);
1854

1855
	/* At first, try to OOM lock hierarchy under memcg.*/
1856
	spin_lock(&memcg_oom_lock);
1857
	locked = mem_cgroup_oom_lock(memcg);
K
KAMEZAWA Hiroyuki 已提交
1858 1859 1860 1861 1862
	/*
	 * Even if signal_pending(), we can't quit charge() loop without
	 * accounting. So, UNINTERRUPTIBLE is appropriate. But SIGKILL
	 * under OOM is always welcomed, use TASK_KILLABLE here.
	 */
1863
	prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
1864
	if (!locked || memcg->oom_kill_disable)
1865 1866
		need_to_kill = false;
	if (locked)
1867
		mem_cgroup_oom_notify(memcg);
1868
	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
1869

1870 1871
	if (need_to_kill) {
		finish_wait(&memcg_oom_waitq, &owait.wait);
1872
		mem_cgroup_out_of_memory(memcg, mask, order);
1873
	} else {
K
KAMEZAWA Hiroyuki 已提交
1874
		schedule();
K
KAMEZAWA Hiroyuki 已提交
1875
		finish_wait(&memcg_oom_waitq, &owait.wait);
K
KAMEZAWA Hiroyuki 已提交
1876
	}
1877
	spin_lock(&memcg_oom_lock);
1878
	if (locked)
1879 1880
		mem_cgroup_oom_unlock(memcg);
	memcg_wakeup_oom(memcg);
1881
	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
1882

1883
	mem_cgroup_unmark_under_oom(memcg);
1884

K
KAMEZAWA Hiroyuki 已提交
1885 1886 1887
	if (test_thread_flag(TIF_MEMDIE) || fatal_signal_pending(current))
		return false;
	/* Give chance to dying process */
1888
	schedule_timeout_uninterruptible(1);
K
KAMEZAWA Hiroyuki 已提交
1889
	return true;
1890 1891
}

1892 1893 1894
/*
 * Currently used to update mapped file statistics, but the routine can be
 * generalized to update other statistics as well.
1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911
 *
 * Notes: Race condition
 *
 * We usually use page_cgroup_lock() for accessing page_cgroup member but
 * it tends to be costly. But considering some conditions, we doesn't need
 * to do so _always_.
 *
 * Considering "charge", lock_page_cgroup() is not required because all
 * file-stat operations happen after a page is attached to radix-tree. There
 * are no race with "charge".
 *
 * Considering "uncharge", we know that memcg doesn't clear pc->mem_cgroup
 * at "uncharge" intentionally. So, we always see valid pc->mem_cgroup even
 * if there are race with "uncharge". Statistics itself is properly handled
 * by flags.
 *
 * Considering "move", this is an only case we see a race. To make the race
1912 1913
 * small, we check mm->moving_account and detect there are possibility of race
 * If there is, we take a lock.
1914
 */
1915

1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930
void __mem_cgroup_begin_update_page_stat(struct page *page,
				bool *locked, unsigned long *flags)
{
	struct mem_cgroup *memcg;
	struct page_cgroup *pc;

	pc = lookup_page_cgroup(page);
again:
	memcg = pc->mem_cgroup;
	if (unlikely(!memcg || !PageCgroupUsed(pc)))
		return;
	/*
	 * If this memory cgroup is not under account moving, we don't
	 * need to take move_lock_page_cgroup(). Because we already hold
	 * rcu_read_lock(), any calls to move_account will be delayed until
1931
	 * rcu_read_unlock() if mem_cgroup_stolen() == true.
1932
	 */
1933
	if (!mem_cgroup_stolen(memcg))
1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955
		return;

	move_lock_mem_cgroup(memcg, flags);
	if (memcg != pc->mem_cgroup || !PageCgroupUsed(pc)) {
		move_unlock_mem_cgroup(memcg, flags);
		goto again;
	}
	*locked = true;
}

void __mem_cgroup_end_update_page_stat(struct page *page, unsigned long *flags)
{
	struct page_cgroup *pc = lookup_page_cgroup(page);

	/*
	 * It's guaranteed that pc->mem_cgroup never changes while
	 * lock is held because a routine modifies pc->mem_cgroup
	 * should take move_lock_page_cgroup().
	 */
	move_unlock_mem_cgroup(pc->mem_cgroup, flags);
}

1956 1957
void mem_cgroup_update_page_stat(struct page *page,
				 enum mem_cgroup_page_stat_item idx, int val)
1958
{
1959
	struct mem_cgroup *memcg;
1960
	struct page_cgroup *pc = lookup_page_cgroup(page);
1961
	unsigned long uninitialized_var(flags);
1962

1963
	if (mem_cgroup_disabled())
1964
		return;
1965

1966 1967
	memcg = pc->mem_cgroup;
	if (unlikely(!memcg || !PageCgroupUsed(pc)))
1968
		return;
1969 1970

	switch (idx) {
1971 1972
	case MEMCG_NR_FILE_MAPPED:
		idx = MEM_CGROUP_STAT_FILE_MAPPED;
1973 1974 1975
		break;
	default:
		BUG();
1976
	}
1977

1978
	this_cpu_add(memcg->stat->count[idx], val);
1979
}
1980

1981 1982 1983 1984
/*
 * size of first charge trial. "32" comes from vmscan.c's magic value.
 * TODO: maybe necessary to use big numbers in big irons.
 */
1985
#define CHARGE_BATCH	32U
1986 1987
struct memcg_stock_pcp {
	struct mem_cgroup *cached; /* this never be root cgroup */
1988
	unsigned int nr_pages;
1989
	struct work_struct work;
1990
	unsigned long flags;
1991
#define FLUSHING_CACHED_CHARGE	0
1992 1993
};
static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
1994
static DEFINE_MUTEX(percpu_charge_mutex);
1995 1996

/*
1997
 * Try to consume stocked charge on this cpu. If success, one page is consumed
1998 1999 2000 2001
 * from local stock and true is returned. If the stock is 0 or charges from a
 * cgroup which is not current target, returns false. This stock will be
 * refilled.
 */
2002
static bool consume_stock(struct mem_cgroup *memcg)
2003 2004 2005 2006 2007
{
	struct memcg_stock_pcp *stock;
	bool ret = true;

	stock = &get_cpu_var(memcg_stock);
2008
	if (memcg == stock->cached && stock->nr_pages)
2009
		stock->nr_pages--;
2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022
	else /* need to call res_counter_charge */
		ret = false;
	put_cpu_var(memcg_stock);
	return ret;
}

/*
 * Returns stocks cached in percpu to res_counter and reset cached information.
 */
static void drain_stock(struct memcg_stock_pcp *stock)
{
	struct mem_cgroup *old = stock->cached;

2023 2024 2025 2026
	if (stock->nr_pages) {
		unsigned long bytes = stock->nr_pages * PAGE_SIZE;

		res_counter_uncharge(&old->res, bytes);
2027
		if (do_swap_account)
2028 2029
			res_counter_uncharge(&old->memsw, bytes);
		stock->nr_pages = 0;
2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041
	}
	stock->cached = NULL;
}

/*
 * This must be called under preempt disabled or must be called by
 * a thread which is pinned to local cpu.
 */
static void drain_local_stock(struct work_struct *dummy)
{
	struct memcg_stock_pcp *stock = &__get_cpu_var(memcg_stock);
	drain_stock(stock);
2042
	clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
2043 2044 2045 2046
}

/*
 * Cache charges(val) which is from res_counter, to local per_cpu area.
2047
 * This will be consumed by consume_stock() function, later.
2048
 */
2049
static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2050 2051 2052
{
	struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);

2053
	if (stock->cached != memcg) { /* reset if necessary */
2054
		drain_stock(stock);
2055
		stock->cached = memcg;
2056
	}
2057
	stock->nr_pages += nr_pages;
2058 2059 2060 2061
	put_cpu_var(memcg_stock);
}

/*
2062
 * Drains all per-CPU charge caches for given root_memcg resp. subtree
2063 2064
 * of the hierarchy under it. sync flag says whether we should block
 * until the work is done.
2065
 */
2066
static void drain_all_stock(struct mem_cgroup *root_memcg, bool sync)
2067
{
2068
	int cpu, curcpu;
2069

2070 2071
	/* Notify other cpus that system-wide "drain" is running */
	get_online_cpus();
2072
	curcpu = get_cpu();
2073 2074
	for_each_online_cpu(cpu) {
		struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2075
		struct mem_cgroup *memcg;
2076

2077 2078
		memcg = stock->cached;
		if (!memcg || !stock->nr_pages)
2079
			continue;
2080
		if (!mem_cgroup_same_or_subtree(root_memcg, memcg))
2081
			continue;
2082 2083 2084 2085 2086 2087
		if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
			if (cpu == curcpu)
				drain_local_stock(&stock->work);
			else
				schedule_work_on(cpu, &stock->work);
		}
2088
	}
2089
	put_cpu();
2090 2091 2092 2093 2094 2095

	if (!sync)
		goto out;

	for_each_online_cpu(cpu) {
		struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2096
		if (test_bit(FLUSHING_CACHED_CHARGE, &stock->flags))
2097 2098 2099
			flush_work(&stock->work);
	}
out:
2100
 	put_online_cpus();
2101 2102 2103 2104 2105 2106 2107 2108
}

/*
 * Tries to drain stocked charges in other cpus. This function is asynchronous
 * and just put a work per cpu for draining localy on each cpu. Caller can
 * expects some charges will be back to res_counter later but cannot wait for
 * it.
 */
2109
static void drain_all_stock_async(struct mem_cgroup *root_memcg)
2110
{
2111 2112 2113 2114 2115
	/*
	 * If someone calls draining, avoid adding more kworker runs.
	 */
	if (!mutex_trylock(&percpu_charge_mutex))
		return;
2116
	drain_all_stock(root_memcg, false);
2117
	mutex_unlock(&percpu_charge_mutex);
2118 2119 2120
}

/* This is a synchronous drain interface. */
2121
static void drain_all_stock_sync(struct mem_cgroup *root_memcg)
2122 2123
{
	/* called when force_empty is called */
2124
	mutex_lock(&percpu_charge_mutex);
2125
	drain_all_stock(root_memcg, true);
2126
	mutex_unlock(&percpu_charge_mutex);
2127 2128
}

2129 2130 2131 2132
/*
 * This function drains percpu counter value from DEAD cpu and
 * move it to local cpu. Note that this function can be preempted.
 */
2133
static void mem_cgroup_drain_pcp_counter(struct mem_cgroup *memcg, int cpu)
2134 2135 2136
{
	int i;

2137
	spin_lock(&memcg->pcp_counter_lock);
2138
	for (i = 0; i < MEM_CGROUP_STAT_DATA; i++) {
2139
		long x = per_cpu(memcg->stat->count[i], cpu);
2140

2141 2142
		per_cpu(memcg->stat->count[i], cpu) = 0;
		memcg->nocpu_base.count[i] += x;
2143
	}
2144
	for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
2145
		unsigned long x = per_cpu(memcg->stat->events[i], cpu);
2146

2147 2148
		per_cpu(memcg->stat->events[i], cpu) = 0;
		memcg->nocpu_base.events[i] += x;
2149
	}
2150
	spin_unlock(&memcg->pcp_counter_lock);
2151 2152 2153
}

static int __cpuinit memcg_cpu_hotplug_callback(struct notifier_block *nb,
2154 2155 2156 2157 2158
					unsigned long action,
					void *hcpu)
{
	int cpu = (unsigned long)hcpu;
	struct memcg_stock_pcp *stock;
2159
	struct mem_cgroup *iter;
2160

2161
	if (action == CPU_ONLINE)
2162 2163
		return NOTIFY_OK;

2164
	if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
2165
		return NOTIFY_OK;
2166

2167
	for_each_mem_cgroup(iter)
2168 2169
		mem_cgroup_drain_pcp_counter(iter, cpu);

2170 2171 2172 2173 2174
	stock = &per_cpu(memcg_stock, cpu);
	drain_stock(stock);
	return NOTIFY_OK;
}

2175 2176 2177 2178 2179 2180 2181 2182 2183 2184

/* See __mem_cgroup_try_charge() for details */
enum {
	CHARGE_OK,		/* success */
	CHARGE_RETRY,		/* need to retry but retry is not bad */
	CHARGE_NOMEM,		/* we can't do more. return -ENOMEM */
	CHARGE_WOULDBLOCK,	/* GFP_WAIT wasn't set and no enough res. */
	CHARGE_OOM_DIE,		/* the current is killed because of OOM */
};

2185
static int mem_cgroup_do_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
2186
				unsigned int nr_pages, bool oom_check)
2187
{
2188
	unsigned long csize = nr_pages * PAGE_SIZE;
2189 2190 2191 2192 2193
	struct mem_cgroup *mem_over_limit;
	struct res_counter *fail_res;
	unsigned long flags = 0;
	int ret;

2194
	ret = res_counter_charge(&memcg->res, csize, &fail_res);
2195 2196 2197 2198

	if (likely(!ret)) {
		if (!do_swap_account)
			return CHARGE_OK;
2199
		ret = res_counter_charge(&memcg->memsw, csize, &fail_res);
2200 2201 2202
		if (likely(!ret))
			return CHARGE_OK;

2203
		res_counter_uncharge(&memcg->res, csize);
2204 2205 2206 2207
		mem_over_limit = mem_cgroup_from_res_counter(fail_res, memsw);
		flags |= MEM_CGROUP_RECLAIM_NOSWAP;
	} else
		mem_over_limit = mem_cgroup_from_res_counter(fail_res, res);
2208
	/*
2209 2210
	 * nr_pages can be either a huge page (HPAGE_PMD_NR), a batch
	 * of regular pages (CHARGE_BATCH), or a single regular page (1).
2211 2212 2213 2214
	 *
	 * Never reclaim on behalf of optional batching, retry with a
	 * single page instead.
	 */
2215
	if (nr_pages == CHARGE_BATCH)
2216 2217 2218 2219 2220
		return CHARGE_RETRY;

	if (!(gfp_mask & __GFP_WAIT))
		return CHARGE_WOULDBLOCK;

2221
	ret = mem_cgroup_reclaim(mem_over_limit, gfp_mask, flags);
2222
	if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
2223
		return CHARGE_RETRY;
2224
	/*
2225 2226 2227 2228 2229 2230 2231
	 * Even though the limit is exceeded at this point, reclaim
	 * may have been able to free some pages.  Retry the charge
	 * before killing the task.
	 *
	 * Only for regular pages, though: huge pages are rather
	 * unlikely to succeed so close to the limit, and we fall back
	 * to regular pages anyway in case of failure.
2232
	 */
2233
	if (nr_pages == 1 && ret)
2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246
		return CHARGE_RETRY;

	/*
	 * At task move, charge accounts can be doubly counted. So, it's
	 * better to wait until the end of task_move if something is going on.
	 */
	if (mem_cgroup_wait_acct_move(mem_over_limit))
		return CHARGE_RETRY;

	/* If we don't need to call oom-killer at el, return immediately */
	if (!oom_check)
		return CHARGE_NOMEM;
	/* check OOM */
2247
	if (!mem_cgroup_handle_oom(mem_over_limit, gfp_mask, get_order(csize)))
2248 2249 2250 2251 2252
		return CHARGE_OOM_DIE;

	return CHARGE_RETRY;
}

2253
/*
2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272
 * __mem_cgroup_try_charge() does
 * 1. detect memcg to be charged against from passed *mm and *ptr,
 * 2. update res_counter
 * 3. call memory reclaim if necessary.
 *
 * In some special case, if the task is fatal, fatal_signal_pending() or
 * has TIF_MEMDIE, this function returns -EINTR while writing root_mem_cgroup
 * to *ptr. There are two reasons for this. 1: fatal threads should quit as soon
 * as possible without any hazards. 2: all pages should have a valid
 * pc->mem_cgroup. If mm is NULL and the caller doesn't pass a valid memcg
 * pointer, that is treated as a charge to root_mem_cgroup.
 *
 * So __mem_cgroup_try_charge() will return
 *  0       ...  on success, filling *ptr with a valid memcg pointer.
 *  -ENOMEM ...  charge failure because of resource limits.
 *  -EINTR  ...  if thread is fatal. *ptr is filled with root_mem_cgroup.
 *
 * Unlike the exported interface, an "oom" parameter is added. if oom==true,
 * the oom-killer can be invoked.
2273
 */
2274
static int __mem_cgroup_try_charge(struct mm_struct *mm,
A
Andrea Arcangeli 已提交
2275
				   gfp_t gfp_mask,
2276
				   unsigned int nr_pages,
2277
				   struct mem_cgroup **ptr,
2278
				   bool oom)
2279
{
2280
	unsigned int batch = max(CHARGE_BATCH, nr_pages);
2281
	int nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
2282
	struct mem_cgroup *memcg = NULL;
2283
	int ret;
2284

K
KAMEZAWA Hiroyuki 已提交
2285 2286 2287 2288 2289 2290 2291 2292
	/*
	 * Unlike gloval-vm's OOM-kill, we're not in memory shortage
	 * in system level. So, allow to go ahead dying process in addition to
	 * MEMDIE process.
	 */
	if (unlikely(test_thread_flag(TIF_MEMDIE)
		     || fatal_signal_pending(current)))
		goto bypass;
2293

2294
	/*
2295 2296
	 * We always charge the cgroup the mm_struct belongs to.
	 * The mm_struct's mem_cgroup changes on task migration if the
2297 2298 2299
	 * thread group leader migrates. It's possible that mm is not
	 * set, if so charge the init_mm (happens for pagecache usage).
	 */
2300
	if (!*ptr && !mm)
2301
		*ptr = root_mem_cgroup;
K
KAMEZAWA Hiroyuki 已提交
2302
again:
2303 2304 2305 2306
	if (*ptr) { /* css should be a valid one */
		memcg = *ptr;
		VM_BUG_ON(css_is_removed(&memcg->css));
		if (mem_cgroup_is_root(memcg))
K
KAMEZAWA Hiroyuki 已提交
2307
			goto done;
2308
		if (nr_pages == 1 && consume_stock(memcg))
K
KAMEZAWA Hiroyuki 已提交
2309
			goto done;
2310
		css_get(&memcg->css);
2311
	} else {
K
KAMEZAWA Hiroyuki 已提交
2312
		struct task_struct *p;
2313

K
KAMEZAWA Hiroyuki 已提交
2314 2315 2316
		rcu_read_lock();
		p = rcu_dereference(mm->owner);
		/*
2317
		 * Because we don't have task_lock(), "p" can exit.
2318
		 * In that case, "memcg" can point to root or p can be NULL with
2319 2320 2321 2322 2323 2324
		 * race with swapoff. Then, we have small risk of mis-accouning.
		 * But such kind of mis-account by race always happens because
		 * we don't have cgroup_mutex(). It's overkill and we allo that
		 * small race, here.
		 * (*) swapoff at el will charge against mm-struct not against
		 * task-struct. So, mm->owner can be NULL.
K
KAMEZAWA Hiroyuki 已提交
2325
		 */
2326
		memcg = mem_cgroup_from_task(p);
2327 2328 2329
		if (!memcg)
			memcg = root_mem_cgroup;
		if (mem_cgroup_is_root(memcg)) {
K
KAMEZAWA Hiroyuki 已提交
2330 2331 2332
			rcu_read_unlock();
			goto done;
		}
2333
		if (nr_pages == 1 && consume_stock(memcg)) {
K
KAMEZAWA Hiroyuki 已提交
2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345
			/*
			 * It seems dagerous to access memcg without css_get().
			 * But considering how consume_stok works, it's not
			 * necessary. If consume_stock success, some charges
			 * from this memcg are cached on this cpu. So, we
			 * don't need to call css_get()/css_tryget() before
			 * calling consume_stock().
			 */
			rcu_read_unlock();
			goto done;
		}
		/* after here, we may be blocked. we need to get refcnt */
2346
		if (!css_tryget(&memcg->css)) {
K
KAMEZAWA Hiroyuki 已提交
2347 2348 2349 2350 2351
			rcu_read_unlock();
			goto again;
		}
		rcu_read_unlock();
	}
2352

2353 2354
	do {
		bool oom_check;
2355

2356
		/* If killed, bypass charge */
K
KAMEZAWA Hiroyuki 已提交
2357
		if (fatal_signal_pending(current)) {
2358
			css_put(&memcg->css);
2359
			goto bypass;
K
KAMEZAWA Hiroyuki 已提交
2360
		}
2361

2362 2363 2364 2365
		oom_check = false;
		if (oom && !nr_oom_retries) {
			oom_check = true;
			nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
2366
		}
2367

2368
		ret = mem_cgroup_do_charge(memcg, gfp_mask, batch, oom_check);
2369 2370 2371 2372
		switch (ret) {
		case CHARGE_OK:
			break;
		case CHARGE_RETRY: /* not in OOM situation but retry */
2373
			batch = nr_pages;
2374 2375
			css_put(&memcg->css);
			memcg = NULL;
K
KAMEZAWA Hiroyuki 已提交
2376
			goto again;
2377
		case CHARGE_WOULDBLOCK: /* !__GFP_WAIT */
2378
			css_put(&memcg->css);
2379 2380
			goto nomem;
		case CHARGE_NOMEM: /* OOM routine works */
K
KAMEZAWA Hiroyuki 已提交
2381
			if (!oom) {
2382
				css_put(&memcg->css);
K
KAMEZAWA Hiroyuki 已提交
2383
				goto nomem;
K
KAMEZAWA Hiroyuki 已提交
2384
			}
2385 2386 2387 2388
			/* If oom, we never return -ENOMEM */
			nr_oom_retries--;
			break;
		case CHARGE_OOM_DIE: /* Killed by OOM Killer */
2389
			css_put(&memcg->css);
K
KAMEZAWA Hiroyuki 已提交
2390
			goto bypass;
2391
		}
2392 2393
	} while (ret != CHARGE_OK);

2394
	if (batch > nr_pages)
2395 2396
		refill_stock(memcg, batch - nr_pages);
	css_put(&memcg->css);
2397
done:
2398
	*ptr = memcg;
2399 2400
	return 0;
nomem:
2401
	*ptr = NULL;
2402
	return -ENOMEM;
K
KAMEZAWA Hiroyuki 已提交
2403
bypass:
2404 2405
	*ptr = root_mem_cgroup;
	return -EINTR;
2406
}
2407

2408 2409 2410 2411 2412
/*
 * Somemtimes we have to undo a charge we got by try_charge().
 * This function is for that and do uncharge, put css's refcnt.
 * gotten by try_charge().
 */
2413
static void __mem_cgroup_cancel_charge(struct mem_cgroup *memcg,
2414
				       unsigned int nr_pages)
2415
{
2416
	if (!mem_cgroup_is_root(memcg)) {
2417 2418
		unsigned long bytes = nr_pages * PAGE_SIZE;

2419
		res_counter_uncharge(&memcg->res, bytes);
2420
		if (do_swap_account)
2421
			res_counter_uncharge(&memcg->memsw, bytes);
2422
	}
2423 2424
}

2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442
/*
 * Cancel chrages in this cgroup....doesn't propagate to parent cgroup.
 * This is useful when moving usage to parent cgroup.
 */
static void __mem_cgroup_cancel_local_charge(struct mem_cgroup *memcg,
					unsigned int nr_pages)
{
	unsigned long bytes = nr_pages * PAGE_SIZE;

	if (mem_cgroup_is_root(memcg))
		return;

	res_counter_uncharge_until(&memcg->res, memcg->res.parent, bytes);
	if (do_swap_account)
		res_counter_uncharge_until(&memcg->memsw,
						memcg->memsw.parent, bytes);
}

2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461
/*
 * A helper function to get mem_cgroup from ID. must be called under
 * rcu_read_lock(). The caller must check css_is_removed() or some if
 * it's concern. (dropping refcnt from swap can be called against removed
 * memcg.)
 */
static struct mem_cgroup *mem_cgroup_lookup(unsigned short id)
{
	struct cgroup_subsys_state *css;

	/* ID 0 is unused ID */
	if (!id)
		return NULL;
	css = css_lookup(&mem_cgroup_subsys, id);
	if (!css)
		return NULL;
	return container_of(css, struct mem_cgroup, css);
}

2462
struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page)
2463
{
2464
	struct mem_cgroup *memcg = NULL;
2465
	struct page_cgroup *pc;
2466
	unsigned short id;
2467 2468
	swp_entry_t ent;

2469 2470 2471
	VM_BUG_ON(!PageLocked(page));

	pc = lookup_page_cgroup(page);
2472
	lock_page_cgroup(pc);
2473
	if (PageCgroupUsed(pc)) {
2474 2475 2476
		memcg = pc->mem_cgroup;
		if (memcg && !css_tryget(&memcg->css))
			memcg = NULL;
2477
	} else if (PageSwapCache(page)) {
2478
		ent.val = page_private(page);
2479
		id = lookup_swap_cgroup_id(ent);
2480
		rcu_read_lock();
2481 2482 2483
		memcg = mem_cgroup_lookup(id);
		if (memcg && !css_tryget(&memcg->css))
			memcg = NULL;
2484
		rcu_read_unlock();
2485
	}
2486
	unlock_page_cgroup(pc);
2487
	return memcg;
2488 2489
}

2490
static void __mem_cgroup_commit_charge(struct mem_cgroup *memcg,
2491
				       struct page *page,
2492
				       unsigned int nr_pages,
2493 2494
				       enum charge_type ctype,
				       bool lrucare)
2495
{
2496
	struct page_cgroup *pc = lookup_page_cgroup(page);
2497 2498
	struct zone *uninitialized_var(zone);
	bool was_on_lru = false;
2499
	bool anon;
2500

2501 2502 2503
	lock_page_cgroup(pc);
	if (unlikely(PageCgroupUsed(pc))) {
		unlock_page_cgroup(pc);
2504
		__mem_cgroup_cancel_charge(memcg, nr_pages);
2505 2506 2507 2508 2509 2510
		return;
	}
	/*
	 * we don't need page_cgroup_lock about tail pages, becase they are not
	 * accessed by any other context at this point.
	 */
2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525

	/*
	 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
	 * may already be on some other mem_cgroup's LRU.  Take care of it.
	 */
	if (lrucare) {
		zone = page_zone(page);
		spin_lock_irq(&zone->lru_lock);
		if (PageLRU(page)) {
			ClearPageLRU(page);
			del_page_from_lru_list(zone, page, page_lru(page));
			was_on_lru = true;
		}
	}

2526
	pc->mem_cgroup = memcg;
2527 2528 2529 2530 2531 2532 2533
	/*
	 * We access a page_cgroup asynchronously without lock_page_cgroup().
	 * Especially when a page_cgroup is taken from a page, pc->mem_cgroup
	 * is accessed after testing USED bit. To make pc->mem_cgroup visible
	 * before USED bit, we need memory barrier here.
	 * See mem_cgroup_add_lru_list(), etc.
 	 */
K
KAMEZAWA Hiroyuki 已提交
2534
	smp_wmb();
2535
	SetPageCgroupUsed(pc);
2536

2537 2538 2539 2540 2541 2542 2543 2544 2545
	if (lrucare) {
		if (was_on_lru) {
			VM_BUG_ON(PageLRU(page));
			SetPageLRU(page);
			add_page_to_lru_list(zone, page, page_lru(page));
		}
		spin_unlock_irq(&zone->lru_lock);
	}

2546 2547 2548 2549 2550 2551
	if (ctype == MEM_CGROUP_CHARGE_TYPE_MAPPED)
		anon = true;
	else
		anon = false;

	mem_cgroup_charge_statistics(memcg, anon, nr_pages);
2552
	unlock_page_cgroup(pc);
2553

2554 2555 2556 2557 2558
	/*
	 * "charge_statistics" updated event counter. Then, check it.
	 * Insert ancestor (and ancestor's ancestors), to softlimit RB-tree.
	 * if they exceeds softlimit.
	 */
2559
	memcg_check_events(memcg, page);
2560
}
2561

2562 2563
#ifdef CONFIG_TRANSPARENT_HUGEPAGE

2564
#define PCGF_NOCOPY_AT_SPLIT (1 << PCG_LOCK | 1 << PCG_MIGRATION)
2565 2566
/*
 * Because tail pages are not marked as "used", set it. We're under
2567 2568 2569
 * zone->lru_lock, 'splitting on pmd' and compound_lock.
 * charge/uncharge will be never happen and move_account() is done under
 * compound_lock(), so we don't have to take care of races.
2570
 */
2571
void mem_cgroup_split_huge_fixup(struct page *head)
2572 2573
{
	struct page_cgroup *head_pc = lookup_page_cgroup(head);
2574 2575
	struct page_cgroup *pc;
	int i;
2576

2577 2578
	if (mem_cgroup_disabled())
		return;
2579 2580 2581 2582 2583 2584
	for (i = 1; i < HPAGE_PMD_NR; i++) {
		pc = head_pc + i;
		pc->mem_cgroup = head_pc->mem_cgroup;
		smp_wmb();/* see __commit_charge() */
		pc->flags = head_pc->flags & ~PCGF_NOCOPY_AT_SPLIT;
	}
2585
}
2586
#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
2587

2588
/**
2589
 * mem_cgroup_move_account - move account of the page
2590
 * @page: the page
2591
 * @nr_pages: number of regular pages (>1 for huge pages)
2592 2593 2594 2595 2596
 * @pc:	page_cgroup of the page.
 * @from: mem_cgroup which the page is moved from.
 * @to:	mem_cgroup which the page is moved to. @from != @to.
 *
 * The caller must confirm following.
K
KAMEZAWA Hiroyuki 已提交
2597
 * - page is not on LRU (isolate_page() is useful.)
2598
 * - compound_lock is held when nr_pages > 1
2599
 *
2600 2601
 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
 * from old cgroup.
2602
 */
2603 2604 2605 2606
static int mem_cgroup_move_account(struct page *page,
				   unsigned int nr_pages,
				   struct page_cgroup *pc,
				   struct mem_cgroup *from,
2607
				   struct mem_cgroup *to)
2608
{
2609 2610
	unsigned long flags;
	int ret;
2611
	bool anon = PageAnon(page);
2612

2613
	VM_BUG_ON(from == to);
2614
	VM_BUG_ON(PageLRU(page));
2615 2616 2617 2618 2619 2620 2621
	/*
	 * The page is isolated from LRU. So, collapse function
	 * will not handle this page. But page splitting can happen.
	 * Do this check under compound_page_lock(). The caller should
	 * hold it.
	 */
	ret = -EBUSY;
2622
	if (nr_pages > 1 && !PageTransHuge(page))
2623 2624 2625 2626 2627 2628 2629 2630
		goto out;

	lock_page_cgroup(pc);

	ret = -EINVAL;
	if (!PageCgroupUsed(pc) || pc->mem_cgroup != from)
		goto unlock;

2631
	move_lock_mem_cgroup(from, &flags);
2632

2633
	if (!anon && page_mapped(page)) {
2634 2635 2636 2637 2638
		/* Update mapped_file data for mem_cgroup */
		preempt_disable();
		__this_cpu_dec(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
		__this_cpu_inc(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
		preempt_enable();
2639
	}
2640
	mem_cgroup_charge_statistics(from, anon, -nr_pages);
2641

2642
	/* caller should have done css_get */
K
KAMEZAWA Hiroyuki 已提交
2643
	pc->mem_cgroup = to;
2644
	mem_cgroup_charge_statistics(to, anon, nr_pages);
2645 2646 2647
	/*
	 * We charges against "to" which may not have any tasks. Then, "to"
	 * can be under rmdir(). But in current implementation, caller of
2648
	 * this function is just force_empty() and move charge, so it's
L
Lucas De Marchi 已提交
2649
	 * guaranteed that "to" is never removed. So, we don't check rmdir
2650
	 * status here.
2651
	 */
2652
	move_unlock_mem_cgroup(from, &flags);
2653 2654
	ret = 0;
unlock:
2655
	unlock_page_cgroup(pc);
2656 2657 2658
	/*
	 * check events
	 */
2659 2660
	memcg_check_events(to, page);
	memcg_check_events(from, page);
2661
out:
2662 2663 2664 2665 2666 2667 2668
	return ret;
}

/*
 * move charges to its parent.
 */

2669 2670
static int mem_cgroup_move_parent(struct page *page,
				  struct page_cgroup *pc,
2671 2672 2673 2674
				  struct mem_cgroup *child,
				  gfp_t gfp_mask)
{
	struct mem_cgroup *parent;
2675
	unsigned int nr_pages;
2676
	unsigned long uninitialized_var(flags);
2677 2678 2679
	int ret;

	/* Is ROOT ? */
2680
	if (mem_cgroup_is_root(child))
2681 2682
		return -EINVAL;

2683 2684 2685 2686 2687
	ret = -EBUSY;
	if (!get_page_unless_zero(page))
		goto out;
	if (isolate_lru_page(page))
		goto put;
2688

2689
	nr_pages = hpage_nr_pages(page);
K
KAMEZAWA Hiroyuki 已提交
2690

2691 2692 2693 2694 2695 2696
	parent = parent_mem_cgroup(child);
	/*
	 * If no parent, move charges to root cgroup.
	 */
	if (!parent)
		parent = root_mem_cgroup;
2697

2698
	if (nr_pages > 1)
2699 2700
		flags = compound_lock_irqsave(page);

2701
	ret = mem_cgroup_move_account(page, nr_pages,
2702
				pc, child, parent);
2703 2704
	if (!ret)
		__mem_cgroup_cancel_local_charge(child, nr_pages);
2705

2706
	if (nr_pages > 1)
2707
		compound_unlock_irqrestore(page, flags);
K
KAMEZAWA Hiroyuki 已提交
2708
	putback_lru_page(page);
2709
put:
2710
	put_page(page);
2711
out:
2712 2713 2714
	return ret;
}

2715 2716 2717 2718 2719 2720 2721
/*
 * Charge the memory controller for page usage.
 * Return
 * 0 if the charge was successful
 * < 0 if the cgroup is over its limit
 */
static int mem_cgroup_charge_common(struct page *page, struct mm_struct *mm,
2722
				gfp_t gfp_mask, enum charge_type ctype)
2723
{
2724
	struct mem_cgroup *memcg = NULL;
2725
	unsigned int nr_pages = 1;
2726
	bool oom = true;
2727
	int ret;
A
Andrea Arcangeli 已提交
2728

A
Andrea Arcangeli 已提交
2729
	if (PageTransHuge(page)) {
2730
		nr_pages <<= compound_order(page);
A
Andrea Arcangeli 已提交
2731
		VM_BUG_ON(!PageTransHuge(page));
2732 2733 2734 2735 2736
		/*
		 * Never OOM-kill a process for a huge page.  The
		 * fault handler will fall back to regular pages.
		 */
		oom = false;
A
Andrea Arcangeli 已提交
2737
	}
2738

2739
	ret = __mem_cgroup_try_charge(mm, gfp_mask, nr_pages, &memcg, oom);
2740
	if (ret == -ENOMEM)
2741
		return ret;
2742
	__mem_cgroup_commit_charge(memcg, page, nr_pages, ctype, false);
2743 2744 2745
	return 0;
}

2746 2747
int mem_cgroup_newpage_charge(struct page *page,
			      struct mm_struct *mm, gfp_t gfp_mask)
2748
{
2749
	if (mem_cgroup_disabled())
2750
		return 0;
2751 2752 2753
	VM_BUG_ON(page_mapped(page));
	VM_BUG_ON(page->mapping && !PageAnon(page));
	VM_BUG_ON(!mm);
2754
	return mem_cgroup_charge_common(page, mm, gfp_mask,
2755
					MEM_CGROUP_CHARGE_TYPE_MAPPED);
2756 2757
}

D
Daisuke Nishimura 已提交
2758 2759 2760 2761
static void
__mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr,
					enum charge_type ctype);

2762 2763
int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm,
				gfp_t gfp_mask)
2764
{
2765
	struct mem_cgroup *memcg = NULL;
2766
	enum charge_type type = MEM_CGROUP_CHARGE_TYPE_CACHE;
2767 2768
	int ret;

2769
	if (mem_cgroup_disabled())
2770
		return 0;
2771 2772
	if (PageCompound(page))
		return 0;
2773

2774
	if (unlikely(!mm))
2775
		mm = &init_mm;
2776 2777
	if (!page_is_file_cache(page))
		type = MEM_CGROUP_CHARGE_TYPE_SHMEM;
2778

2779
	if (!PageSwapCache(page))
2780
		ret = mem_cgroup_charge_common(page, mm, gfp_mask, type);
2781
	else { /* page is swapcache/shmem */
2782
		ret = mem_cgroup_try_charge_swapin(mm, page, gfp_mask, &memcg);
D
Daisuke Nishimura 已提交
2783
		if (!ret)
2784 2785
			__mem_cgroup_commit_charge_swapin(page, memcg, type);
	}
2786
	return ret;
2787 2788
}

2789 2790 2791
/*
 * While swap-in, try_charge -> commit or cancel, the page is locked.
 * And when try_charge() successfully returns, one refcnt to memcg without
2792
 * struct page_cgroup is acquired. This refcnt will be consumed by
2793 2794
 * "commit()" or removed by "cancel()"
 */
2795 2796
int mem_cgroup_try_charge_swapin(struct mm_struct *mm,
				 struct page *page,
2797
				 gfp_t mask, struct mem_cgroup **memcgp)
2798
{
2799
	struct mem_cgroup *memcg;
2800
	int ret;
2801

2802
	*memcgp = NULL;
2803

2804
	if (mem_cgroup_disabled())
2805 2806 2807 2808 2809 2810
		return 0;

	if (!do_swap_account)
		goto charge_cur_mm;
	/*
	 * A racing thread's fault, or swapoff, may have already updated
H
Hugh Dickins 已提交
2811 2812 2813
	 * the pte, and even removed page from swap cache: in those cases
	 * do_swap_page()'s pte_same() test will fail; but there's also a
	 * KSM case which does need to charge the page.
2814 2815
	 */
	if (!PageSwapCache(page))
H
Hugh Dickins 已提交
2816
		goto charge_cur_mm;
2817 2818
	memcg = try_get_mem_cgroup_from_page(page);
	if (!memcg)
2819
		goto charge_cur_mm;
2820 2821
	*memcgp = memcg;
	ret = __mem_cgroup_try_charge(NULL, mask, 1, memcgp, true);
2822
	css_put(&memcg->css);
2823 2824
	if (ret == -EINTR)
		ret = 0;
2825
	return ret;
2826 2827 2828
charge_cur_mm:
	if (unlikely(!mm))
		mm = &init_mm;
2829 2830 2831 2832
	ret = __mem_cgroup_try_charge(mm, mask, 1, memcgp, true);
	if (ret == -EINTR)
		ret = 0;
	return ret;
2833 2834
}

D
Daisuke Nishimura 已提交
2835
static void
2836
__mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *memcg,
D
Daisuke Nishimura 已提交
2837
					enum charge_type ctype)
2838
{
2839
	if (mem_cgroup_disabled())
2840
		return;
2841
	if (!memcg)
2842
		return;
2843
	cgroup_exclude_rmdir(&memcg->css);
2844

2845
	__mem_cgroup_commit_charge(memcg, page, 1, ctype, true);
2846 2847 2848
	/*
	 * Now swap is on-memory. This means this page may be
	 * counted both as mem and swap....double count.
2849 2850 2851
	 * Fix it by uncharging from memsw. Basically, this SwapCache is stable
	 * under lock_page(). But in do_swap_page()::memory.c, reuse_swap_page()
	 * may call delete_from_swap_cache() before reach here.
2852
	 */
2853
	if (do_swap_account && PageSwapCache(page)) {
2854
		swp_entry_t ent = {.val = page_private(page)};
2855
		mem_cgroup_uncharge_swap(ent);
2856
	}
2857 2858 2859 2860 2861
	/*
	 * At swapin, we may charge account against cgroup which has no tasks.
	 * So, rmdir()->pre_destroy() can be called while we do this charge.
	 * In that case, we need to call pre_destroy() again. check it here.
	 */
2862
	cgroup_release_and_wakeup_rmdir(&memcg->css);
2863 2864
}

2865 2866
void mem_cgroup_commit_charge_swapin(struct page *page,
				     struct mem_cgroup *memcg)
D
Daisuke Nishimura 已提交
2867
{
2868 2869
	__mem_cgroup_commit_charge_swapin(page, memcg,
					  MEM_CGROUP_CHARGE_TYPE_MAPPED);
D
Daisuke Nishimura 已提交
2870 2871
}

2872
void mem_cgroup_cancel_charge_swapin(struct mem_cgroup *memcg)
2873
{
2874
	if (mem_cgroup_disabled())
2875
		return;
2876
	if (!memcg)
2877
		return;
2878
	__mem_cgroup_cancel_charge(memcg, 1);
2879 2880
}

2881
static void mem_cgroup_do_uncharge(struct mem_cgroup *memcg,
2882 2883
				   unsigned int nr_pages,
				   const enum charge_type ctype)
2884 2885 2886
{
	struct memcg_batch_info *batch = NULL;
	bool uncharge_memsw = true;
2887

2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898
	/* If swapout, usage of swap doesn't decrease */
	if (!do_swap_account || ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT)
		uncharge_memsw = false;

	batch = &current->memcg_batch;
	/*
	 * In usual, we do css_get() when we remember memcg pointer.
	 * But in this case, we keep res->usage until end of a series of
	 * uncharges. Then, it's ok to ignore memcg's refcnt.
	 */
	if (!batch->memcg)
2899
		batch->memcg = memcg;
2900 2901
	/*
	 * do_batch > 0 when unmapping pages or inode invalidate/truncate.
L
Lucas De Marchi 已提交
2902
	 * In those cases, all pages freed continuously can be expected to be in
2903 2904 2905 2906 2907 2908 2909 2910
	 * the same cgroup and we have chance to coalesce uncharges.
	 * But we do uncharge one by one if this is killed by OOM(TIF_MEMDIE)
	 * because we want to do uncharge as soon as possible.
	 */

	if (!batch->do_batch || test_thread_flag(TIF_MEMDIE))
		goto direct_uncharge;

2911
	if (nr_pages > 1)
A
Andrea Arcangeli 已提交
2912 2913
		goto direct_uncharge;

2914 2915 2916 2917 2918
	/*
	 * In typical case, batch->memcg == mem. This means we can
	 * merge a series of uncharges to an uncharge of res_counter.
	 * If not, we uncharge res_counter ony by one.
	 */
2919
	if (batch->memcg != memcg)
2920 2921
		goto direct_uncharge;
	/* remember freed charge and uncharge it later */
2922
	batch->nr_pages++;
2923
	if (uncharge_memsw)
2924
		batch->memsw_nr_pages++;
2925 2926
	return;
direct_uncharge:
2927
	res_counter_uncharge(&memcg->res, nr_pages * PAGE_SIZE);
2928
	if (uncharge_memsw)
2929 2930 2931
		res_counter_uncharge(&memcg->memsw, nr_pages * PAGE_SIZE);
	if (unlikely(batch->memcg != memcg))
		memcg_oom_recover(memcg);
2932
}
2933

2934
/*
2935
 * uncharge if !page_mapped(page)
2936
 */
2937
static struct mem_cgroup *
2938
__mem_cgroup_uncharge_common(struct page *page, enum charge_type ctype)
2939
{
2940
	struct mem_cgroup *memcg = NULL;
2941 2942
	unsigned int nr_pages = 1;
	struct page_cgroup *pc;
2943
	bool anon;
2944

2945
	if (mem_cgroup_disabled())
2946
		return NULL;
2947

K
KAMEZAWA Hiroyuki 已提交
2948
	if (PageSwapCache(page))
2949
		return NULL;
K
KAMEZAWA Hiroyuki 已提交
2950

A
Andrea Arcangeli 已提交
2951
	if (PageTransHuge(page)) {
2952
		nr_pages <<= compound_order(page);
A
Andrea Arcangeli 已提交
2953 2954
		VM_BUG_ON(!PageTransHuge(page));
	}
2955
	/*
2956
	 * Check if our page_cgroup is valid
2957
	 */
2958
	pc = lookup_page_cgroup(page);
2959
	if (unlikely(!PageCgroupUsed(pc)))
2960
		return NULL;
2961

2962
	lock_page_cgroup(pc);
K
KAMEZAWA Hiroyuki 已提交
2963

2964
	memcg = pc->mem_cgroup;
2965

K
KAMEZAWA Hiroyuki 已提交
2966 2967 2968
	if (!PageCgroupUsed(pc))
		goto unlock_out;

2969 2970
	anon = PageAnon(page);

K
KAMEZAWA Hiroyuki 已提交
2971 2972
	switch (ctype) {
	case MEM_CGROUP_CHARGE_TYPE_MAPPED:
2973 2974 2975 2976 2977
		/*
		 * Generally PageAnon tells if it's the anon statistics to be
		 * updated; but sometimes e.g. mem_cgroup_uncharge_page() is
		 * used before page reached the stage of being marked PageAnon.
		 */
2978 2979
		anon = true;
		/* fallthrough */
K
KAMEZAWA Hiroyuki 已提交
2980
	case MEM_CGROUP_CHARGE_TYPE_DROP:
2981 2982
		/* See mem_cgroup_prepare_migration() */
		if (page_mapped(page) || PageCgroupMigration(pc))
K
KAMEZAWA Hiroyuki 已提交
2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993
			goto unlock_out;
		break;
	case MEM_CGROUP_CHARGE_TYPE_SWAPOUT:
		if (!PageAnon(page)) {	/* Shared memory */
			if (page->mapping && !page_is_file_cache(page))
				goto unlock_out;
		} else if (page_mapped(page)) /* Anon */
				goto unlock_out;
		break;
	default:
		break;
2994
	}
K
KAMEZAWA Hiroyuki 已提交
2995

2996
	mem_cgroup_charge_statistics(memcg, anon, -nr_pages);
K
KAMEZAWA Hiroyuki 已提交
2997

2998
	ClearPageCgroupUsed(pc);
2999 3000 3001 3002 3003 3004
	/*
	 * pc->mem_cgroup is not cleared here. It will be accessed when it's
	 * freed from LRU. This is safe because uncharged page is expected not
	 * to be reused (freed soon). Exception is SwapCache, it's handled by
	 * special functions.
	 */
3005

3006
	unlock_page_cgroup(pc);
K
KAMEZAWA Hiroyuki 已提交
3007
	/*
3008
	 * even after unlock, we have memcg->res.usage here and this memcg
K
KAMEZAWA Hiroyuki 已提交
3009 3010
	 * will never be freed.
	 */
3011
	memcg_check_events(memcg, page);
K
KAMEZAWA Hiroyuki 已提交
3012
	if (do_swap_account && ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT) {
3013 3014
		mem_cgroup_swap_statistics(memcg, true);
		mem_cgroup_get(memcg);
K
KAMEZAWA Hiroyuki 已提交
3015
	}
3016 3017
	if (!mem_cgroup_is_root(memcg))
		mem_cgroup_do_uncharge(memcg, nr_pages, ctype);
3018

3019
	return memcg;
K
KAMEZAWA Hiroyuki 已提交
3020 3021 3022

unlock_out:
	unlock_page_cgroup(pc);
3023
	return NULL;
3024 3025
}

3026 3027
void mem_cgroup_uncharge_page(struct page *page)
{
3028 3029 3030
	/* early check. */
	if (page_mapped(page))
		return;
3031
	VM_BUG_ON(page->mapping && !PageAnon(page));
3032 3033 3034 3035 3036 3037
	__mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_MAPPED);
}

void mem_cgroup_uncharge_cache_page(struct page *page)
{
	VM_BUG_ON(page_mapped(page));
3038
	VM_BUG_ON(page->mapping);
3039 3040 3041
	__mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_CACHE);
}

3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055
/*
 * Batch_start/batch_end is called in unmap_page_range/invlidate/trucate.
 * In that cases, pages are freed continuously and we can expect pages
 * are in the same memcg. All these calls itself limits the number of
 * pages freed at once, then uncharge_start/end() is called properly.
 * This may be called prural(2) times in a context,
 */

void mem_cgroup_uncharge_start(void)
{
	current->memcg_batch.do_batch++;
	/* We can do nest. */
	if (current->memcg_batch.do_batch == 1) {
		current->memcg_batch.memcg = NULL;
3056 3057
		current->memcg_batch.nr_pages = 0;
		current->memcg_batch.memsw_nr_pages = 0;
3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077
	}
}

void mem_cgroup_uncharge_end(void)
{
	struct memcg_batch_info *batch = &current->memcg_batch;

	if (!batch->do_batch)
		return;

	batch->do_batch--;
	if (batch->do_batch) /* If stacked, do nothing. */
		return;

	if (!batch->memcg)
		return;
	/*
	 * This "batch->memcg" is valid without any css_get/put etc...
	 * bacause we hide charges behind us.
	 */
3078 3079 3080 3081 3082 3083
	if (batch->nr_pages)
		res_counter_uncharge(&batch->memcg->res,
				     batch->nr_pages * PAGE_SIZE);
	if (batch->memsw_nr_pages)
		res_counter_uncharge(&batch->memcg->memsw,
				     batch->memsw_nr_pages * PAGE_SIZE);
3084
	memcg_oom_recover(batch->memcg);
3085 3086 3087 3088
	/* forget this pointer (for sanity check) */
	batch->memcg = NULL;
}

3089
#ifdef CONFIG_SWAP
3090
/*
3091
 * called after __delete_from_swap_cache() and drop "page" account.
3092 3093
 * memcg information is recorded to swap_cgroup of "ent"
 */
K
KAMEZAWA Hiroyuki 已提交
3094 3095
void
mem_cgroup_uncharge_swapcache(struct page *page, swp_entry_t ent, bool swapout)
3096 3097
{
	struct mem_cgroup *memcg;
K
KAMEZAWA Hiroyuki 已提交
3098 3099 3100 3101 3102 3103
	int ctype = MEM_CGROUP_CHARGE_TYPE_SWAPOUT;

	if (!swapout) /* this was a swap cache but the swap is unused ! */
		ctype = MEM_CGROUP_CHARGE_TYPE_DROP;

	memcg = __mem_cgroup_uncharge_common(page, ctype);
3104

K
KAMEZAWA Hiroyuki 已提交
3105 3106 3107 3108 3109
	/*
	 * record memcg information,  if swapout && memcg != NULL,
	 * mem_cgroup_get() was called in uncharge().
	 */
	if (do_swap_account && swapout && memcg)
3110
		swap_cgroup_record(ent, css_id(&memcg->css));
3111
}
3112
#endif
3113 3114 3115 3116 3117 3118 3119

#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
/*
 * called from swap_entry_free(). remove record in swap_cgroup and
 * uncharge "memsw" account.
 */
void mem_cgroup_uncharge_swap(swp_entry_t ent)
K
KAMEZAWA Hiroyuki 已提交
3120
{
3121
	struct mem_cgroup *memcg;
3122
	unsigned short id;
3123 3124 3125 3126

	if (!do_swap_account)
		return;

3127 3128 3129
	id = swap_cgroup_record(ent, 0);
	rcu_read_lock();
	memcg = mem_cgroup_lookup(id);
3130
	if (memcg) {
3131 3132 3133 3134
		/*
		 * We uncharge this because swap is freed.
		 * This memcg can be obsolete one. We avoid calling css_tryget
		 */
3135
		if (!mem_cgroup_is_root(memcg))
3136
			res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
3137
		mem_cgroup_swap_statistics(memcg, false);
3138 3139
		mem_cgroup_put(memcg);
	}
3140
	rcu_read_unlock();
K
KAMEZAWA Hiroyuki 已提交
3141
}
3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157

/**
 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
 * @entry: swap entry to be moved
 * @from:  mem_cgroup which the entry is moved from
 * @to:  mem_cgroup which the entry is moved to
 *
 * It succeeds only when the swap_cgroup's record for this entry is the same
 * as the mem_cgroup's id of @from.
 *
 * Returns 0 on success, -EINVAL on failure.
 *
 * The caller must have charged to @to, IOW, called res_counter_charge() about
 * both res and memsw, and called css_get().
 */
static int mem_cgroup_move_swap_account(swp_entry_t entry,
3158
				struct mem_cgroup *from, struct mem_cgroup *to)
3159 3160 3161 3162 3163 3164 3165 3166
{
	unsigned short old_id, new_id;

	old_id = css_id(&from->css);
	new_id = css_id(&to->css);

	if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
		mem_cgroup_swap_statistics(from, false);
3167
		mem_cgroup_swap_statistics(to, true);
3168
		/*
3169 3170 3171 3172 3173 3174
		 * This function is only called from task migration context now.
		 * It postpones res_counter and refcount handling till the end
		 * of task migration(mem_cgroup_clear_mc()) for performance
		 * improvement. But we cannot postpone mem_cgroup_get(to)
		 * because if the process that has been moved to @to does
		 * swap-in, the refcount of @to might be decreased to 0.
3175 3176 3177 3178 3179 3180 3181 3182
		 */
		mem_cgroup_get(to);
		return 0;
	}
	return -EINVAL;
}
#else
static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
3183
				struct mem_cgroup *from, struct mem_cgroup *to)
3184 3185 3186
{
	return -EINVAL;
}
3187
#endif
K
KAMEZAWA Hiroyuki 已提交
3188

3189
/*
3190 3191
 * Before starting migration, account PAGE_SIZE to mem_cgroup that the old
 * page belongs to.
3192
 */
3193
int mem_cgroup_prepare_migration(struct page *page,
3194
	struct page *newpage, struct mem_cgroup **memcgp, gfp_t gfp_mask)
3195
{
3196
	struct mem_cgroup *memcg = NULL;
3197
	struct page_cgroup *pc;
3198
	enum charge_type ctype;
3199
	int ret = 0;
3200

3201
	*memcgp = NULL;
3202

A
Andrea Arcangeli 已提交
3203
	VM_BUG_ON(PageTransHuge(page));
3204
	if (mem_cgroup_disabled())
3205 3206
		return 0;

3207 3208 3209
	pc = lookup_page_cgroup(page);
	lock_page_cgroup(pc);
	if (PageCgroupUsed(pc)) {
3210 3211
		memcg = pc->mem_cgroup;
		css_get(&memcg->css);
3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242
		/*
		 * At migrating an anonymous page, its mapcount goes down
		 * to 0 and uncharge() will be called. But, even if it's fully
		 * unmapped, migration may fail and this page has to be
		 * charged again. We set MIGRATION flag here and delay uncharge
		 * until end_migration() is called
		 *
		 * Corner Case Thinking
		 * A)
		 * When the old page was mapped as Anon and it's unmap-and-freed
		 * while migration was ongoing.
		 * If unmap finds the old page, uncharge() of it will be delayed
		 * until end_migration(). If unmap finds a new page, it's
		 * uncharged when it make mapcount to be 1->0. If unmap code
		 * finds swap_migration_entry, the new page will not be mapped
		 * and end_migration() will find it(mapcount==0).
		 *
		 * B)
		 * When the old page was mapped but migraion fails, the kernel
		 * remaps it. A charge for it is kept by MIGRATION flag even
		 * if mapcount goes down to 0. We can do remap successfully
		 * without charging it again.
		 *
		 * C)
		 * The "old" page is under lock_page() until the end of
		 * migration, so, the old page itself will not be swapped-out.
		 * If the new page is swapped out before end_migraton, our
		 * hook to usual swap-out path will catch the event.
		 */
		if (PageAnon(page))
			SetPageCgroupMigration(pc);
3243
	}
3244
	unlock_page_cgroup(pc);
3245 3246 3247 3248
	/*
	 * If the page is not charged at this point,
	 * we return here.
	 */
3249
	if (!memcg)
3250
		return 0;
3251

3252 3253
	*memcgp = memcg;
	ret = __mem_cgroup_try_charge(NULL, gfp_mask, 1, memcgp, false);
3254
	css_put(&memcg->css);/* drop extra refcnt */
3255
	if (ret) {
3256 3257 3258 3259 3260 3261 3262 3263 3264
		if (PageAnon(page)) {
			lock_page_cgroup(pc);
			ClearPageCgroupMigration(pc);
			unlock_page_cgroup(pc);
			/*
			 * The old page may be fully unmapped while we kept it.
			 */
			mem_cgroup_uncharge_page(page);
		}
3265
		/* we'll need to revisit this error code (we have -EINTR) */
3266
		return -ENOMEM;
3267
	}
3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279
	/*
	 * We charge new page before it's used/mapped. So, even if unlock_page()
	 * is called before end_migration, we can catch all events on this new
	 * page. In the case new page is migrated but not remapped, new page's
	 * mapcount will be finally 0 and we call uncharge in end_migration().
	 */
	if (PageAnon(page))
		ctype = MEM_CGROUP_CHARGE_TYPE_MAPPED;
	else if (page_is_file_cache(page))
		ctype = MEM_CGROUP_CHARGE_TYPE_CACHE;
	else
		ctype = MEM_CGROUP_CHARGE_TYPE_SHMEM;
3280
	__mem_cgroup_commit_charge(memcg, newpage, 1, ctype, false);
3281
	return ret;
3282
}
3283

3284
/* remove redundant charge if migration failed*/
3285
void mem_cgroup_end_migration(struct mem_cgroup *memcg,
3286
	struct page *oldpage, struct page *newpage, bool migration_ok)
3287
{
3288
	struct page *used, *unused;
3289
	struct page_cgroup *pc;
3290
	bool anon;
3291

3292
	if (!memcg)
3293
		return;
3294
	/* blocks rmdir() */
3295
	cgroup_exclude_rmdir(&memcg->css);
3296
	if (!migration_ok) {
3297 3298
		used = oldpage;
		unused = newpage;
3299
	} else {
3300
		used = newpage;
3301 3302
		unused = oldpage;
	}
3303
	/*
3304 3305 3306
	 * We disallowed uncharge of pages under migration because mapcount
	 * of the page goes down to zero, temporarly.
	 * Clear the flag and check the page should be charged.
3307
	 */
3308 3309 3310 3311
	pc = lookup_page_cgroup(oldpage);
	lock_page_cgroup(pc);
	ClearPageCgroupMigration(pc);
	unlock_page_cgroup(pc);
3312 3313 3314 3315
	anon = PageAnon(used);
	__mem_cgroup_uncharge_common(unused,
		anon ? MEM_CGROUP_CHARGE_TYPE_MAPPED
		     : MEM_CGROUP_CHARGE_TYPE_CACHE);
3316

3317
	/*
3318 3319 3320 3321 3322 3323
	 * If a page is a file cache, radix-tree replacement is very atomic
	 * and we can skip this check. When it was an Anon page, its mapcount
	 * goes down to 0. But because we added MIGRATION flage, it's not
	 * uncharged yet. There are several case but page->mapcount check
	 * and USED bit check in mem_cgroup_uncharge_page() will do enough
	 * check. (see prepare_charge() also)
3324
	 */
3325
	if (anon)
3326
		mem_cgroup_uncharge_page(used);
3327
	/*
3328 3329
	 * At migration, we may charge account against cgroup which has no
	 * tasks.
3330 3331 3332
	 * So, rmdir()->pre_destroy() can be called while we do this charge.
	 * In that case, we need to call pre_destroy() again. check it here.
	 */
3333
	cgroup_release_and_wakeup_rmdir(&memcg->css);
3334
}
3335

3336 3337 3338 3339 3340 3341 3342 3343
/*
 * At replace page cache, newpage is not under any memcg but it's on
 * LRU. So, this function doesn't touch res_counter but handles LRU
 * in correct way. Both pages are locked so we cannot race with uncharge.
 */
void mem_cgroup_replace_page_cache(struct page *oldpage,
				  struct page *newpage)
{
3344
	struct mem_cgroup *memcg = NULL;
3345 3346 3347 3348 3349 3350 3351 3352 3353
	struct page_cgroup *pc;
	enum charge_type type = MEM_CGROUP_CHARGE_TYPE_CACHE;

	if (mem_cgroup_disabled())
		return;

	pc = lookup_page_cgroup(oldpage);
	/* fix accounting on old pages */
	lock_page_cgroup(pc);
3354 3355 3356 3357 3358
	if (PageCgroupUsed(pc)) {
		memcg = pc->mem_cgroup;
		mem_cgroup_charge_statistics(memcg, false, -1);
		ClearPageCgroupUsed(pc);
	}
3359 3360
	unlock_page_cgroup(pc);

3361 3362 3363 3364 3365 3366 3367
	/*
	 * When called from shmem_replace_page(), in some cases the
	 * oldpage has already been charged, and in some cases not.
	 */
	if (!memcg)
		return;

3368 3369 3370 3371 3372 3373 3374 3375
	if (PageSwapBacked(oldpage))
		type = MEM_CGROUP_CHARGE_TYPE_SHMEM;

	/*
	 * Even if newpage->mapping was NULL before starting replacement,
	 * the newpage may be on LRU(or pagevec for LRU) already. We lock
	 * LRU while we overwrite pc->mem_cgroup.
	 */
3376
	__mem_cgroup_commit_charge(memcg, newpage, 1, type, true);
3377 3378
}

3379 3380 3381 3382 3383 3384
#ifdef CONFIG_DEBUG_VM
static struct page_cgroup *lookup_page_cgroup_used(struct page *page)
{
	struct page_cgroup *pc;

	pc = lookup_page_cgroup(page);
3385 3386 3387 3388 3389
	/*
	 * Can be NULL while feeding pages into the page allocator for
	 * the first time, i.e. during boot or memory hotplug;
	 * or when mem_cgroup_disabled().
	 */
3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408
	if (likely(pc) && PageCgroupUsed(pc))
		return pc;
	return NULL;
}

bool mem_cgroup_bad_page_check(struct page *page)
{
	if (mem_cgroup_disabled())
		return false;

	return lookup_page_cgroup_used(page) != NULL;
}

void mem_cgroup_print_bad_page(struct page *page)
{
	struct page_cgroup *pc;

	pc = lookup_page_cgroup_used(page);
	if (pc) {
3409
		printk(KERN_ALERT "pc:%p pc->flags:%lx pc->mem_cgroup:%p\n",
3410 3411 3412 3413 3414
		       pc, pc->flags, pc->mem_cgroup);
	}
}
#endif

3415 3416
static DEFINE_MUTEX(set_limit_mutex);

3417
static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
3418
				unsigned long long val)
3419
{
3420
	int retry_count;
3421
	u64 memswlimit, memlimit;
3422
	int ret = 0;
3423 3424
	int children = mem_cgroup_count_children(memcg);
	u64 curusage, oldusage;
3425
	int enlarge;
3426 3427 3428 3429 3430 3431 3432 3433 3434

	/*
	 * For keeping hierarchical_reclaim simple, how long we should retry
	 * is depends on callers. We set our retry-count to be function
	 * of # of children which we should visit in this loop.
	 */
	retry_count = MEM_CGROUP_RECLAIM_RETRIES * children;

	oldusage = res_counter_read_u64(&memcg->res, RES_USAGE);
3435

3436
	enlarge = 0;
3437
	while (retry_count) {
3438 3439 3440 3441
		if (signal_pending(current)) {
			ret = -EINTR;
			break;
		}
3442 3443 3444
		/*
		 * Rather than hide all in some function, I do this in
		 * open coded manner. You see what this really does.
3445
		 * We have to guarantee memcg->res.limit < memcg->memsw.limit.
3446 3447 3448 3449 3450 3451
		 */
		mutex_lock(&set_limit_mutex);
		memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
		if (memswlimit < val) {
			ret = -EINVAL;
			mutex_unlock(&set_limit_mutex);
3452 3453
			break;
		}
3454 3455 3456 3457 3458

		memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
		if (memlimit < val)
			enlarge = 1;

3459
		ret = res_counter_set_limit(&memcg->res, val);
3460 3461 3462 3463 3464 3465
		if (!ret) {
			if (memswlimit == val)
				memcg->memsw_is_minimum = true;
			else
				memcg->memsw_is_minimum = false;
		}
3466 3467 3468 3469 3470
		mutex_unlock(&set_limit_mutex);

		if (!ret)
			break;

3471 3472
		mem_cgroup_reclaim(memcg, GFP_KERNEL,
				   MEM_CGROUP_RECLAIM_SHRINK);
3473 3474 3475 3476 3477 3478
		curusage = res_counter_read_u64(&memcg->res, RES_USAGE);
		/* Usage is reduced ? */
  		if (curusage >= oldusage)
			retry_count--;
		else
			oldusage = curusage;
3479
	}
3480 3481
	if (!ret && enlarge)
		memcg_oom_recover(memcg);
3482

3483 3484 3485
	return ret;
}

L
Li Zefan 已提交
3486 3487
static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
					unsigned long long val)
3488
{
3489
	int retry_count;
3490
	u64 memlimit, memswlimit, oldusage, curusage;
3491 3492
	int children = mem_cgroup_count_children(memcg);
	int ret = -EBUSY;
3493
	int enlarge = 0;
3494

3495 3496 3497
	/* see mem_cgroup_resize_res_limit */
 	retry_count = children * MEM_CGROUP_RECLAIM_RETRIES;
	oldusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
3498 3499 3500 3501 3502 3503 3504 3505
	while (retry_count) {
		if (signal_pending(current)) {
			ret = -EINTR;
			break;
		}
		/*
		 * Rather than hide all in some function, I do this in
		 * open coded manner. You see what this really does.
3506
		 * We have to guarantee memcg->res.limit < memcg->memsw.limit.
3507 3508 3509 3510 3511 3512 3513 3514
		 */
		mutex_lock(&set_limit_mutex);
		memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
		if (memlimit > val) {
			ret = -EINVAL;
			mutex_unlock(&set_limit_mutex);
			break;
		}
3515 3516 3517
		memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
		if (memswlimit < val)
			enlarge = 1;
3518
		ret = res_counter_set_limit(&memcg->memsw, val);
3519 3520 3521 3522 3523 3524
		if (!ret) {
			if (memlimit == val)
				memcg->memsw_is_minimum = true;
			else
				memcg->memsw_is_minimum = false;
		}
3525 3526 3527 3528 3529
		mutex_unlock(&set_limit_mutex);

		if (!ret)
			break;

3530 3531 3532
		mem_cgroup_reclaim(memcg, GFP_KERNEL,
				   MEM_CGROUP_RECLAIM_NOSWAP |
				   MEM_CGROUP_RECLAIM_SHRINK);
3533
		curusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
3534
		/* Usage is reduced ? */
3535
		if (curusage >= oldusage)
3536
			retry_count--;
3537 3538
		else
			oldusage = curusage;
3539
	}
3540 3541
	if (!ret && enlarge)
		memcg_oom_recover(memcg);
3542 3543 3544
	return ret;
}

3545
unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
3546 3547
					    gfp_t gfp_mask,
					    unsigned long *total_scanned)
3548 3549 3550 3551 3552 3553
{
	unsigned long nr_reclaimed = 0;
	struct mem_cgroup_per_zone *mz, *next_mz = NULL;
	unsigned long reclaimed;
	int loop = 0;
	struct mem_cgroup_tree_per_zone *mctz;
3554
	unsigned long long excess;
3555
	unsigned long nr_scanned;
3556 3557 3558 3559

	if (order > 0)
		return 0;

3560
	mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone));
3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573
	/*
	 * This loop can run a while, specially if mem_cgroup's continuously
	 * keep exceeding their soft limit and putting the system under
	 * pressure
	 */
	do {
		if (next_mz)
			mz = next_mz;
		else
			mz = mem_cgroup_largest_soft_limit_node(mctz);
		if (!mz)
			break;

3574
		nr_scanned = 0;
3575
		reclaimed = mem_cgroup_soft_reclaim(mz->memcg, zone,
3576
						    gfp_mask, &nr_scanned);
3577
		nr_reclaimed += reclaimed;
3578
		*total_scanned += nr_scanned;
3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600
		spin_lock(&mctz->lock);

		/*
		 * If we failed to reclaim anything from this memory cgroup
		 * it is time to move on to the next cgroup
		 */
		next_mz = NULL;
		if (!reclaimed) {
			do {
				/*
				 * Loop until we find yet another one.
				 *
				 * By the time we get the soft_limit lock
				 * again, someone might have aded the
				 * group back on the RB tree. Iterate to
				 * make sure we get a different mem.
				 * mem_cgroup_largest_soft_limit_node returns
				 * NULL if no other cgroup is present on
				 * the tree
				 */
				next_mz =
				__mem_cgroup_largest_soft_limit_node(mctz);
3601
				if (next_mz == mz)
3602
					css_put(&next_mz->memcg->css);
3603
				else /* next_mz == NULL or other memcg */
3604 3605 3606
					break;
			} while (1);
		}
3607 3608
		__mem_cgroup_remove_exceeded(mz->memcg, mz, mctz);
		excess = res_counter_soft_limit_excess(&mz->memcg->res);
3609 3610 3611 3612 3613 3614 3615 3616
		/*
		 * One school of thought says that we should not add
		 * back the node to the tree if reclaim returns 0.
		 * But our reclaim could return 0, simply because due
		 * to priority we are exposing a smaller subset of
		 * memory to reclaim from. Consider this as a longer
		 * term TODO.
		 */
3617
		/* If excess == 0, no tree ops */
3618
		__mem_cgroup_insert_exceeded(mz->memcg, mz, mctz, excess);
3619
		spin_unlock(&mctz->lock);
3620
		css_put(&mz->memcg->css);
3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632
		loop++;
		/*
		 * Could not reclaim anything and there are no more
		 * mem cgroups to try or we seem to be looping without
		 * reclaiming anything.
		 */
		if (!nr_reclaimed &&
			(next_mz == NULL ||
			loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
			break;
	} while (!nr_reclaimed);
	if (next_mz)
3633
		css_put(&next_mz->memcg->css);
3634 3635 3636
	return nr_reclaimed;
}

3637 3638 3639 3640
/*
 * This routine traverse page_cgroup in given list and drop them all.
 * *And* this routine doesn't reclaim page itself, just removes page_cgroup.
 */
3641
static int mem_cgroup_force_empty_list(struct mem_cgroup *memcg,
K
KAMEZAWA Hiroyuki 已提交
3642
				int node, int zid, enum lru_list lru)
3643
{
K
KAMEZAWA Hiroyuki 已提交
3644 3645
	struct mem_cgroup_per_zone *mz;
	unsigned long flags, loop;
3646
	struct list_head *list;
3647 3648
	struct page *busy;
	struct zone *zone;
3649
	int ret = 0;
3650

K
KAMEZAWA Hiroyuki 已提交
3651
	zone = &NODE_DATA(node)->node_zones[zid];
3652
	mz = mem_cgroup_zoneinfo(memcg, node, zid);
3653
	list = &mz->lruvec.lists[lru];
3654

3655
	loop = mz->lru_size[lru];
3656 3657 3658 3659
	/* give some margin against EBUSY etc...*/
	loop += 256;
	busy = NULL;
	while (loop--) {
3660
		struct page_cgroup *pc;
3661 3662
		struct page *page;

3663
		ret = 0;
K
KAMEZAWA Hiroyuki 已提交
3664
		spin_lock_irqsave(&zone->lru_lock, flags);
3665
		if (list_empty(list)) {
K
KAMEZAWA Hiroyuki 已提交
3666
			spin_unlock_irqrestore(&zone->lru_lock, flags);
3667
			break;
3668
		}
3669 3670 3671
		page = list_entry(list->prev, struct page, lru);
		if (busy == page) {
			list_move(&page->lru, list);
3672
			busy = NULL;
K
KAMEZAWA Hiroyuki 已提交
3673
			spin_unlock_irqrestore(&zone->lru_lock, flags);
3674 3675
			continue;
		}
K
KAMEZAWA Hiroyuki 已提交
3676
		spin_unlock_irqrestore(&zone->lru_lock, flags);
3677

3678
		pc = lookup_page_cgroup(page);
3679

3680
		ret = mem_cgroup_move_parent(page, pc, memcg, GFP_KERNEL);
3681
		if (ret == -ENOMEM || ret == -EINTR)
3682
			break;
3683 3684 3685

		if (ret == -EBUSY || ret == -EINVAL) {
			/* found lock contention or "pc" is obsolete. */
3686
			busy = page;
3687 3688 3689
			cond_resched();
		} else
			busy = NULL;
3690
	}
K
KAMEZAWA Hiroyuki 已提交
3691

3692 3693 3694
	if (!ret && !list_empty(list))
		return -EBUSY;
	return ret;
3695 3696 3697 3698 3699 3700
}

/*
 * make mem_cgroup's charge to be 0 if there is no task.
 * This enables deleting this mem_cgroup.
 */
3701
static int mem_cgroup_force_empty(struct mem_cgroup *memcg, bool free_all)
3702
{
3703 3704 3705
	int ret;
	int node, zid, shrink;
	int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
3706
	struct cgroup *cgrp = memcg->css.cgroup;
3707

3708
	css_get(&memcg->css);
3709 3710

	shrink = 0;
3711 3712 3713
	/* should free all ? */
	if (free_all)
		goto try_to_free;
3714
move_account:
3715
	do {
3716
		ret = -EBUSY;
3717 3718 3719 3720
		if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children))
			goto out;
		ret = -EINTR;
		if (signal_pending(current))
3721
			goto out;
3722 3723
		/* This is for making all *used* pages to be on LRU. */
		lru_add_drain_all();
3724
		drain_all_stock_sync(memcg);
3725
		ret = 0;
3726
		mem_cgroup_start_move(memcg);
3727
		for_each_node_state(node, N_HIGH_MEMORY) {
3728
			for (zid = 0; !ret && zid < MAX_NR_ZONES; zid++) {
H
Hugh Dickins 已提交
3729 3730
				enum lru_list lru;
				for_each_lru(lru) {
3731
					ret = mem_cgroup_force_empty_list(memcg,
H
Hugh Dickins 已提交
3732
							node, zid, lru);
3733 3734 3735
					if (ret)
						break;
				}
3736
			}
3737 3738 3739
			if (ret)
				break;
		}
3740 3741
		mem_cgroup_end_move(memcg);
		memcg_oom_recover(memcg);
3742 3743 3744
		/* it seems parent cgroup doesn't have enough mem */
		if (ret == -ENOMEM)
			goto try_to_free;
3745
		cond_resched();
3746
	/* "ret" should also be checked to ensure all lists are empty. */
3747
	} while (res_counter_read_u64(&memcg->res, RES_USAGE) > 0 || ret);
3748
out:
3749
	css_put(&memcg->css);
3750
	return ret;
3751 3752

try_to_free:
3753 3754
	/* returns EBUSY if there is a task or if we come here twice. */
	if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children) || shrink) {
3755 3756 3757
		ret = -EBUSY;
		goto out;
	}
3758 3759
	/* we call try-to-free pages for make this cgroup empty */
	lru_add_drain_all();
3760 3761
	/* try to free all pages in this cgroup */
	shrink = 1;
3762
	while (nr_retries && res_counter_read_u64(&memcg->res, RES_USAGE) > 0) {
3763
		int progress;
3764 3765 3766 3767 3768

		if (signal_pending(current)) {
			ret = -EINTR;
			goto out;
		}
3769
		progress = try_to_free_mem_cgroup_pages(memcg, GFP_KERNEL,
3770
						false);
3771
		if (!progress) {
3772
			nr_retries--;
3773
			/* maybe some writeback is necessary */
3774
			congestion_wait(BLK_RW_ASYNC, HZ/10);
3775
		}
3776 3777

	}
K
KAMEZAWA Hiroyuki 已提交
3778
	lru_add_drain();
3779
	/* try move_account...there may be some *locked* pages. */
3780
	goto move_account;
3781 3782
}

3783
static int mem_cgroup_force_empty_write(struct cgroup *cont, unsigned int event)
3784 3785 3786 3787 3788
{
	return mem_cgroup_force_empty(mem_cgroup_from_cont(cont), true);
}


3789 3790 3791 3792 3793 3794 3795 3796 3797
static u64 mem_cgroup_hierarchy_read(struct cgroup *cont, struct cftype *cft)
{
	return mem_cgroup_from_cont(cont)->use_hierarchy;
}

static int mem_cgroup_hierarchy_write(struct cgroup *cont, struct cftype *cft,
					u64 val)
{
	int retval = 0;
3798
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
3799
	struct cgroup *parent = cont->parent;
3800
	struct mem_cgroup *parent_memcg = NULL;
3801 3802

	if (parent)
3803
		parent_memcg = mem_cgroup_from_cont(parent);
3804 3805 3806

	cgroup_lock();
	/*
3807
	 * If parent's use_hierarchy is set, we can't make any modifications
3808 3809 3810 3811 3812 3813
	 * in the child subtrees. If it is unset, then the change can
	 * occur, provided the current cgroup has no children.
	 *
	 * For the root cgroup, parent_mem is NULL, we allow value to be
	 * set if there are no children.
	 */
3814
	if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
3815 3816
				(val == 1 || val == 0)) {
		if (list_empty(&cont->children))
3817
			memcg->use_hierarchy = val;
3818 3819 3820 3821 3822 3823 3824 3825 3826
		else
			retval = -EBUSY;
	} else
		retval = -EINVAL;
	cgroup_unlock();

	return retval;
}

3827

3828
static unsigned long mem_cgroup_recursive_stat(struct mem_cgroup *memcg,
3829
					       enum mem_cgroup_stat_index idx)
3830
{
K
KAMEZAWA Hiroyuki 已提交
3831
	struct mem_cgroup *iter;
3832
	long val = 0;
3833

3834
	/* Per-cpu values can be negative, use a signed accumulator */
3835
	for_each_mem_cgroup_tree(iter, memcg)
K
KAMEZAWA Hiroyuki 已提交
3836 3837 3838 3839 3840
		val += mem_cgroup_read_stat(iter, idx);

	if (val < 0) /* race ? */
		val = 0;
	return val;
3841 3842
}

3843
static inline u64 mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
3844
{
K
KAMEZAWA Hiroyuki 已提交
3845
	u64 val;
3846

3847
	if (!mem_cgroup_is_root(memcg)) {
3848
		if (!swap)
3849
			return res_counter_read_u64(&memcg->res, RES_USAGE);
3850
		else
3851
			return res_counter_read_u64(&memcg->memsw, RES_USAGE);
3852 3853
	}

3854 3855
	val = mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_CACHE);
	val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_RSS);
3856

K
KAMEZAWA Hiroyuki 已提交
3857
	if (swap)
3858
		val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_SWAPOUT);
3859 3860 3861 3862

	return val << PAGE_SHIFT;
}

3863 3864 3865
static ssize_t mem_cgroup_read(struct cgroup *cont, struct cftype *cft,
			       struct file *file, char __user *buf,
			       size_t nbytes, loff_t *ppos)
B
Balbir Singh 已提交
3866
{
3867
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
3868
	char str[64];
3869
	u64 val;
3870
	int type, name, len;
3871 3872 3873

	type = MEMFILE_TYPE(cft->private);
	name = MEMFILE_ATTR(cft->private);
3874 3875 3876 3877

	if (!do_swap_account && type == _MEMSWAP)
		return -EOPNOTSUPP;

3878 3879
	switch (type) {
	case _MEM:
3880
		if (name == RES_USAGE)
3881
			val = mem_cgroup_usage(memcg, false);
3882
		else
3883
			val = res_counter_read_u64(&memcg->res, name);
3884 3885
		break;
	case _MEMSWAP:
3886
		if (name == RES_USAGE)
3887
			val = mem_cgroup_usage(memcg, true);
3888
		else
3889
			val = res_counter_read_u64(&memcg->memsw, name);
3890 3891 3892 3893
		break;
	default:
		BUG();
	}
3894 3895 3896

	len = scnprintf(str, sizeof(str), "%llu\n", (unsigned long long)val);
	return simple_read_from_buffer(buf, nbytes, ppos, str, len);
B
Balbir Singh 已提交
3897
}
3898 3899 3900 3901
/*
 * The user of this function is...
 * RES_LIMIT.
 */
3902 3903
static int mem_cgroup_write(struct cgroup *cont, struct cftype *cft,
			    const char *buffer)
B
Balbir Singh 已提交
3904
{
3905
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
3906
	int type, name;
3907 3908 3909
	unsigned long long val;
	int ret;

3910 3911
	type = MEMFILE_TYPE(cft->private);
	name = MEMFILE_ATTR(cft->private);
3912 3913 3914 3915

	if (!do_swap_account && type == _MEMSWAP)
		return -EOPNOTSUPP;

3916
	switch (name) {
3917
	case RES_LIMIT:
3918 3919 3920 3921
		if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
			ret = -EINVAL;
			break;
		}
3922 3923
		/* This function does all necessary parse...reuse it */
		ret = res_counter_memparse_write_strategy(buffer, &val);
3924 3925 3926
		if (ret)
			break;
		if (type == _MEM)
3927
			ret = mem_cgroup_resize_limit(memcg, val);
3928 3929
		else
			ret = mem_cgroup_resize_memsw_limit(memcg, val);
3930
		break;
3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944
	case RES_SOFT_LIMIT:
		ret = res_counter_memparse_write_strategy(buffer, &val);
		if (ret)
			break;
		/*
		 * For memsw, soft limits are hard to implement in terms
		 * of semantics, for now, we support soft limits for
		 * control without swap
		 */
		if (type == _MEM)
			ret = res_counter_set_soft_limit(&memcg->res, val);
		else
			ret = -EINVAL;
		break;
3945 3946 3947 3948 3949
	default:
		ret = -EINVAL; /* should be BUG() ? */
		break;
	}
	return ret;
B
Balbir Singh 已提交
3950 3951
}

3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978
static void memcg_get_hierarchical_limit(struct mem_cgroup *memcg,
		unsigned long long *mem_limit, unsigned long long *memsw_limit)
{
	struct cgroup *cgroup;
	unsigned long long min_limit, min_memsw_limit, tmp;

	min_limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
	min_memsw_limit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
	cgroup = memcg->css.cgroup;
	if (!memcg->use_hierarchy)
		goto out;

	while (cgroup->parent) {
		cgroup = cgroup->parent;
		memcg = mem_cgroup_from_cont(cgroup);
		if (!memcg->use_hierarchy)
			break;
		tmp = res_counter_read_u64(&memcg->res, RES_LIMIT);
		min_limit = min(min_limit, tmp);
		tmp = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
		min_memsw_limit = min(min_memsw_limit, tmp);
	}
out:
	*mem_limit = min_limit;
	*memsw_limit = min_memsw_limit;
}

3979
static int mem_cgroup_reset(struct cgroup *cont, unsigned int event)
3980
{
3981
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
3982
	int type, name;
3983

3984 3985
	type = MEMFILE_TYPE(event);
	name = MEMFILE_ATTR(event);
3986 3987 3988 3989

	if (!do_swap_account && type == _MEMSWAP)
		return -EOPNOTSUPP;

3990
	switch (name) {
3991
	case RES_MAX_USAGE:
3992
		if (type == _MEM)
3993
			res_counter_reset_max(&memcg->res);
3994
		else
3995
			res_counter_reset_max(&memcg->memsw);
3996 3997
		break;
	case RES_FAILCNT:
3998
		if (type == _MEM)
3999
			res_counter_reset_failcnt(&memcg->res);
4000
		else
4001
			res_counter_reset_failcnt(&memcg->memsw);
4002 4003
		break;
	}
4004

4005
	return 0;
4006 4007
}

4008 4009 4010 4011 4012 4013
static u64 mem_cgroup_move_charge_read(struct cgroup *cgrp,
					struct cftype *cft)
{
	return mem_cgroup_from_cont(cgrp)->move_charge_at_immigrate;
}

4014
#ifdef CONFIG_MMU
4015 4016 4017
static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
					struct cftype *cft, u64 val)
{
4018
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4019 4020 4021 4022 4023 4024 4025 4026 4027

	if (val >= (1 << NR_MOVE_TYPE))
		return -EINVAL;
	/*
	 * We check this value several times in both in can_attach() and
	 * attach(), so we need cgroup lock to prevent this value from being
	 * inconsistent.
	 */
	cgroup_lock();
4028
	memcg->move_charge_at_immigrate = val;
4029 4030 4031 4032
	cgroup_unlock();

	return 0;
}
4033 4034 4035 4036 4037 4038 4039
#else
static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
					struct cftype *cft, u64 val)
{
	return -ENOSYS;
}
#endif
4040

K
KAMEZAWA Hiroyuki 已提交
4041 4042 4043 4044 4045

/* For read statistics */
enum {
	MCS_CACHE,
	MCS_RSS,
4046
	MCS_FILE_MAPPED,
K
KAMEZAWA Hiroyuki 已提交
4047 4048
	MCS_PGPGIN,
	MCS_PGPGOUT,
4049
	MCS_SWAP,
4050 4051
	MCS_PGFAULT,
	MCS_PGMAJFAULT,
K
KAMEZAWA Hiroyuki 已提交
4052 4053 4054 4055 4056 4057 4058 4059 4060 4061
	MCS_INACTIVE_ANON,
	MCS_ACTIVE_ANON,
	MCS_INACTIVE_FILE,
	MCS_ACTIVE_FILE,
	MCS_UNEVICTABLE,
	NR_MCS_STAT,
};

struct mcs_total_stat {
	s64 stat[NR_MCS_STAT];
4062 4063
};

4064
static struct {
K
KAMEZAWA Hiroyuki 已提交
4065 4066 4067 4068 4069
	char *local_name;
	char *total_name;
} memcg_stat_strings[NR_MCS_STAT] = {
	{"cache", "total_cache"},
	{"rss", "total_rss"},
4070
	{"mapped_file", "total_mapped_file"},
K
KAMEZAWA Hiroyuki 已提交
4071 4072
	{"pgpgin", "total_pgpgin"},
	{"pgpgout", "total_pgpgout"},
4073
	{"swap", "total_swap"},
4074 4075
	{"pgfault", "total_pgfault"},
	{"pgmajfault", "total_pgmajfault"},
K
KAMEZAWA Hiroyuki 已提交
4076 4077 4078 4079 4080 4081 4082 4083
	{"inactive_anon", "total_inactive_anon"},
	{"active_anon", "total_active_anon"},
	{"inactive_file", "total_inactive_file"},
	{"active_file", "total_active_file"},
	{"unevictable", "total_unevictable"}
};


K
KAMEZAWA Hiroyuki 已提交
4084
static void
4085
mem_cgroup_get_local_stat(struct mem_cgroup *memcg, struct mcs_total_stat *s)
K
KAMEZAWA Hiroyuki 已提交
4086 4087 4088 4089
{
	s64 val;

	/* per cpu stat */
4090
	val = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_CACHE);
K
KAMEZAWA Hiroyuki 已提交
4091
	s->stat[MCS_CACHE] += val * PAGE_SIZE;
4092
	val = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_RSS);
K
KAMEZAWA Hiroyuki 已提交
4093
	s->stat[MCS_RSS] += val * PAGE_SIZE;
4094
	val = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_FILE_MAPPED);
4095
	s->stat[MCS_FILE_MAPPED] += val * PAGE_SIZE;
4096
	val = mem_cgroup_read_events(memcg, MEM_CGROUP_EVENTS_PGPGIN);
K
KAMEZAWA Hiroyuki 已提交
4097
	s->stat[MCS_PGPGIN] += val;
4098
	val = mem_cgroup_read_events(memcg, MEM_CGROUP_EVENTS_PGPGOUT);
K
KAMEZAWA Hiroyuki 已提交
4099
	s->stat[MCS_PGPGOUT] += val;
4100
	if (do_swap_account) {
4101
		val = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_SWAPOUT);
4102 4103
		s->stat[MCS_SWAP] += val * PAGE_SIZE;
	}
4104
	val = mem_cgroup_read_events(memcg, MEM_CGROUP_EVENTS_PGFAULT);
4105
	s->stat[MCS_PGFAULT] += val;
4106
	val = mem_cgroup_read_events(memcg, MEM_CGROUP_EVENTS_PGMAJFAULT);
4107
	s->stat[MCS_PGMAJFAULT] += val;
K
KAMEZAWA Hiroyuki 已提交
4108 4109

	/* per zone stat */
4110
	val = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_INACTIVE_ANON));
K
KAMEZAWA Hiroyuki 已提交
4111
	s->stat[MCS_INACTIVE_ANON] += val * PAGE_SIZE;
4112
	val = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_ACTIVE_ANON));
K
KAMEZAWA Hiroyuki 已提交
4113
	s->stat[MCS_ACTIVE_ANON] += val * PAGE_SIZE;
4114
	val = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_INACTIVE_FILE));
K
KAMEZAWA Hiroyuki 已提交
4115
	s->stat[MCS_INACTIVE_FILE] += val * PAGE_SIZE;
4116
	val = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_ACTIVE_FILE));
K
KAMEZAWA Hiroyuki 已提交
4117
	s->stat[MCS_ACTIVE_FILE] += val * PAGE_SIZE;
4118
	val = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_UNEVICTABLE));
K
KAMEZAWA Hiroyuki 已提交
4119 4120 4121 4122
	s->stat[MCS_UNEVICTABLE] += val * PAGE_SIZE;
}

static void
4123
mem_cgroup_get_total_stat(struct mem_cgroup *memcg, struct mcs_total_stat *s)
K
KAMEZAWA Hiroyuki 已提交
4124
{
K
KAMEZAWA Hiroyuki 已提交
4125 4126
	struct mem_cgroup *iter;

4127
	for_each_mem_cgroup_tree(iter, memcg)
K
KAMEZAWA Hiroyuki 已提交
4128
		mem_cgroup_get_local_stat(iter, s);
K
KAMEZAWA Hiroyuki 已提交
4129 4130
}

4131 4132 4133 4134 4135 4136 4137
#ifdef CONFIG_NUMA
static int mem_control_numa_stat_show(struct seq_file *m, void *arg)
{
	int nid;
	unsigned long total_nr, file_nr, anon_nr, unevictable_nr;
	unsigned long node_nr;
	struct cgroup *cont = m->private;
4138
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
4139

4140
	total_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL);
4141 4142
	seq_printf(m, "total=%lu", total_nr);
	for_each_node_state(nid, N_HIGH_MEMORY) {
4143
		node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL);
4144 4145 4146 4147
		seq_printf(m, " N%d=%lu", nid, node_nr);
	}
	seq_putc(m, '\n');

4148
	file_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL_FILE);
4149 4150
	seq_printf(m, "file=%lu", file_nr);
	for_each_node_state(nid, N_HIGH_MEMORY) {
4151
		node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
4152
				LRU_ALL_FILE);
4153 4154 4155 4156
		seq_printf(m, " N%d=%lu", nid, node_nr);
	}
	seq_putc(m, '\n');

4157
	anon_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL_ANON);
4158 4159
	seq_printf(m, "anon=%lu", anon_nr);
	for_each_node_state(nid, N_HIGH_MEMORY) {
4160
		node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
4161
				LRU_ALL_ANON);
4162 4163 4164 4165
		seq_printf(m, " N%d=%lu", nid, node_nr);
	}
	seq_putc(m, '\n');

4166
	unevictable_nr = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_UNEVICTABLE));
4167 4168
	seq_printf(m, "unevictable=%lu", unevictable_nr);
	for_each_node_state(nid, N_HIGH_MEMORY) {
4169
		node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
4170
				BIT(LRU_UNEVICTABLE));
4171 4172 4173 4174 4175 4176 4177
		seq_printf(m, " N%d=%lu", nid, node_nr);
	}
	seq_putc(m, '\n');
	return 0;
}
#endif /* CONFIG_NUMA */

4178 4179
static int mem_control_stat_show(struct cgroup *cont, struct cftype *cft,
				 struct cgroup_map_cb *cb)
4180
{
4181
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
K
KAMEZAWA Hiroyuki 已提交
4182
	struct mcs_total_stat mystat;
4183 4184
	int i;

K
KAMEZAWA Hiroyuki 已提交
4185
	memset(&mystat, 0, sizeof(mystat));
4186
	mem_cgroup_get_local_stat(memcg, &mystat);
4187

4188

4189 4190 4191
	for (i = 0; i < NR_MCS_STAT; i++) {
		if (i == MCS_SWAP && !do_swap_account)
			continue;
K
KAMEZAWA Hiroyuki 已提交
4192
		cb->fill(cb, memcg_stat_strings[i].local_name, mystat.stat[i]);
4193
	}
L
Lee Schermerhorn 已提交
4194

K
KAMEZAWA Hiroyuki 已提交
4195
	/* Hierarchical information */
4196 4197
	{
		unsigned long long limit, memsw_limit;
4198
		memcg_get_hierarchical_limit(memcg, &limit, &memsw_limit);
4199 4200 4201 4202
		cb->fill(cb, "hierarchical_memory_limit", limit);
		if (do_swap_account)
			cb->fill(cb, "hierarchical_memsw_limit", memsw_limit);
	}
K
KOSAKI Motohiro 已提交
4203

K
KAMEZAWA Hiroyuki 已提交
4204
	memset(&mystat, 0, sizeof(mystat));
4205
	mem_cgroup_get_total_stat(memcg, &mystat);
4206 4207 4208
	for (i = 0; i < NR_MCS_STAT; i++) {
		if (i == MCS_SWAP && !do_swap_account)
			continue;
K
KAMEZAWA Hiroyuki 已提交
4209
		cb->fill(cb, memcg_stat_strings[i].total_name, mystat.stat[i]);
4210
	}
K
KAMEZAWA Hiroyuki 已提交
4211

K
KOSAKI Motohiro 已提交
4212 4213 4214 4215
#ifdef CONFIG_DEBUG_VM
	{
		int nid, zid;
		struct mem_cgroup_per_zone *mz;
4216
		struct zone_reclaim_stat *rstat;
K
KOSAKI Motohiro 已提交
4217 4218 4219 4220 4221
		unsigned long recent_rotated[2] = {0, 0};
		unsigned long recent_scanned[2] = {0, 0};

		for_each_online_node(nid)
			for (zid = 0; zid < MAX_NR_ZONES; zid++) {
4222
				mz = mem_cgroup_zoneinfo(memcg, nid, zid);
4223
				rstat = &mz->lruvec.reclaim_stat;
K
KOSAKI Motohiro 已提交
4224

4225 4226 4227 4228
				recent_rotated[0] += rstat->recent_rotated[0];
				recent_rotated[1] += rstat->recent_rotated[1];
				recent_scanned[0] += rstat->recent_scanned[0];
				recent_scanned[1] += rstat->recent_scanned[1];
K
KOSAKI Motohiro 已提交
4229 4230 4231 4232 4233 4234 4235 4236
			}
		cb->fill(cb, "recent_rotated_anon", recent_rotated[0]);
		cb->fill(cb, "recent_rotated_file", recent_rotated[1]);
		cb->fill(cb, "recent_scanned_anon", recent_scanned[0]);
		cb->fill(cb, "recent_scanned_file", recent_scanned[1]);
	}
#endif

4237 4238 4239
	return 0;
}

K
KOSAKI Motohiro 已提交
4240 4241 4242 4243
static u64 mem_cgroup_swappiness_read(struct cgroup *cgrp, struct cftype *cft)
{
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);

4244
	return mem_cgroup_swappiness(memcg);
K
KOSAKI Motohiro 已提交
4245 4246 4247 4248 4249 4250 4251
}

static int mem_cgroup_swappiness_write(struct cgroup *cgrp, struct cftype *cft,
				       u64 val)
{
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
	struct mem_cgroup *parent;
4252

K
KOSAKI Motohiro 已提交
4253 4254 4255 4256 4257 4258 4259
	if (val > 100)
		return -EINVAL;

	if (cgrp->parent == NULL)
		return -EINVAL;

	parent = mem_cgroup_from_cont(cgrp->parent);
4260 4261 4262

	cgroup_lock();

K
KOSAKI Motohiro 已提交
4263 4264
	/* If under hierarchy, only empty-root can set this value */
	if ((parent->use_hierarchy) ||
4265 4266
	    (memcg->use_hierarchy && !list_empty(&cgrp->children))) {
		cgroup_unlock();
K
KOSAKI Motohiro 已提交
4267
		return -EINVAL;
4268
	}
K
KOSAKI Motohiro 已提交
4269 4270 4271

	memcg->swappiness = val;

4272 4273
	cgroup_unlock();

K
KOSAKI Motohiro 已提交
4274 4275 4276
	return 0;
}

4277 4278 4279 4280 4281 4282 4283 4284
static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
{
	struct mem_cgroup_threshold_ary *t;
	u64 usage;
	int i;

	rcu_read_lock();
	if (!swap)
4285
		t = rcu_dereference(memcg->thresholds.primary);
4286
	else
4287
		t = rcu_dereference(memcg->memsw_thresholds.primary);
4288 4289 4290 4291 4292 4293 4294

	if (!t)
		goto unlock;

	usage = mem_cgroup_usage(memcg, swap);

	/*
4295
	 * current_threshold points to threshold just below or equal to usage.
4296 4297 4298
	 * If it's not true, a threshold was crossed after last
	 * call of __mem_cgroup_threshold().
	 */
4299
	i = t->current_threshold;
4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322

	/*
	 * Iterate backward over array of thresholds starting from
	 * current_threshold and check if a threshold is crossed.
	 * If none of thresholds below usage is crossed, we read
	 * only one element of the array here.
	 */
	for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
		eventfd_signal(t->entries[i].eventfd, 1);

	/* i = current_threshold + 1 */
	i++;

	/*
	 * Iterate forward over array of thresholds starting from
	 * current_threshold+1 and check if a threshold is crossed.
	 * If none of thresholds above usage is crossed, we read
	 * only one element of the array here.
	 */
	for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
		eventfd_signal(t->entries[i].eventfd, 1);

	/* Update current_threshold */
4323
	t->current_threshold = i - 1;
4324 4325 4326 4327 4328 4329
unlock:
	rcu_read_unlock();
}

static void mem_cgroup_threshold(struct mem_cgroup *memcg)
{
4330 4331 4332 4333 4334 4335 4336
	while (memcg) {
		__mem_cgroup_threshold(memcg, false);
		if (do_swap_account)
			__mem_cgroup_threshold(memcg, true);

		memcg = parent_mem_cgroup(memcg);
	}
4337 4338 4339 4340 4341 4342 4343 4344 4345 4346
}

static int compare_thresholds(const void *a, const void *b)
{
	const struct mem_cgroup_threshold *_a = a;
	const struct mem_cgroup_threshold *_b = b;

	return _a->threshold - _b->threshold;
}

4347
static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
4348 4349 4350
{
	struct mem_cgroup_eventfd_list *ev;

4351
	list_for_each_entry(ev, &memcg->oom_notify, list)
K
KAMEZAWA Hiroyuki 已提交
4352 4353 4354 4355
		eventfd_signal(ev->eventfd, 1);
	return 0;
}

4356
static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
4357
{
K
KAMEZAWA Hiroyuki 已提交
4358 4359
	struct mem_cgroup *iter;

4360
	for_each_mem_cgroup_tree(iter, memcg)
K
KAMEZAWA Hiroyuki 已提交
4361
		mem_cgroup_oom_notify_cb(iter);
K
KAMEZAWA Hiroyuki 已提交
4362 4363 4364 4365
}

static int mem_cgroup_usage_register_event(struct cgroup *cgrp,
	struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
4366 4367
{
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4368 4369
	struct mem_cgroup_thresholds *thresholds;
	struct mem_cgroup_threshold_ary *new;
4370 4371
	int type = MEMFILE_TYPE(cft->private);
	u64 threshold, usage;
4372
	int i, size, ret;
4373 4374 4375 4376 4377 4378

	ret = res_counter_memparse_write_strategy(args, &threshold);
	if (ret)
		return ret;

	mutex_lock(&memcg->thresholds_lock);
4379

4380
	if (type == _MEM)
4381
		thresholds = &memcg->thresholds;
4382
	else if (type == _MEMSWAP)
4383
		thresholds = &memcg->memsw_thresholds;
4384 4385 4386 4387 4388 4389
	else
		BUG();

	usage = mem_cgroup_usage(memcg, type == _MEMSWAP);

	/* Check if a threshold crossed before adding a new one */
4390
	if (thresholds->primary)
4391 4392
		__mem_cgroup_threshold(memcg, type == _MEMSWAP);

4393
	size = thresholds->primary ? thresholds->primary->size + 1 : 1;
4394 4395

	/* Allocate memory for new array of thresholds */
4396
	new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
4397
			GFP_KERNEL);
4398
	if (!new) {
4399 4400 4401
		ret = -ENOMEM;
		goto unlock;
	}
4402
	new->size = size;
4403 4404

	/* Copy thresholds (if any) to new array */
4405 4406
	if (thresholds->primary) {
		memcpy(new->entries, thresholds->primary->entries, (size - 1) *
4407
				sizeof(struct mem_cgroup_threshold));
4408 4409
	}

4410
	/* Add new threshold */
4411 4412
	new->entries[size - 1].eventfd = eventfd;
	new->entries[size - 1].threshold = threshold;
4413 4414

	/* Sort thresholds. Registering of new threshold isn't time-critical */
4415
	sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
4416 4417 4418
			compare_thresholds, NULL);

	/* Find current threshold */
4419
	new->current_threshold = -1;
4420
	for (i = 0; i < size; i++) {
4421
		if (new->entries[i].threshold <= usage) {
4422
			/*
4423 4424
			 * new->current_threshold will not be used until
			 * rcu_assign_pointer(), so it's safe to increment
4425 4426
			 * it here.
			 */
4427
			++new->current_threshold;
4428 4429
		} else
			break;
4430 4431
	}

4432 4433 4434 4435 4436
	/* Free old spare buffer and save old primary buffer as spare */
	kfree(thresholds->spare);
	thresholds->spare = thresholds->primary;

	rcu_assign_pointer(thresholds->primary, new);
4437

4438
	/* To be sure that nobody uses thresholds */
4439 4440 4441 4442 4443 4444 4445 4446
	synchronize_rcu();

unlock:
	mutex_unlock(&memcg->thresholds_lock);

	return ret;
}

4447
static void mem_cgroup_usage_unregister_event(struct cgroup *cgrp,
K
KAMEZAWA Hiroyuki 已提交
4448
	struct cftype *cft, struct eventfd_ctx *eventfd)
4449 4450
{
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4451 4452
	struct mem_cgroup_thresholds *thresholds;
	struct mem_cgroup_threshold_ary *new;
4453 4454
	int type = MEMFILE_TYPE(cft->private);
	u64 usage;
4455
	int i, j, size;
4456 4457 4458

	mutex_lock(&memcg->thresholds_lock);
	if (type == _MEM)
4459
		thresholds = &memcg->thresholds;
4460
	else if (type == _MEMSWAP)
4461
		thresholds = &memcg->memsw_thresholds;
4462 4463 4464
	else
		BUG();

4465 4466 4467
	if (!thresholds->primary)
		goto unlock;

4468 4469 4470 4471 4472 4473
	usage = mem_cgroup_usage(memcg, type == _MEMSWAP);

	/* Check if a threshold crossed before removing */
	__mem_cgroup_threshold(memcg, type == _MEMSWAP);

	/* Calculate new number of threshold */
4474 4475 4476
	size = 0;
	for (i = 0; i < thresholds->primary->size; i++) {
		if (thresholds->primary->entries[i].eventfd != eventfd)
4477 4478 4479
			size++;
	}

4480
	new = thresholds->spare;
4481

4482 4483
	/* Set thresholds array to NULL if we don't have thresholds */
	if (!size) {
4484 4485
		kfree(new);
		new = NULL;
4486
		goto swap_buffers;
4487 4488
	}

4489
	new->size = size;
4490 4491

	/* Copy thresholds and find current threshold */
4492 4493 4494
	new->current_threshold = -1;
	for (i = 0, j = 0; i < thresholds->primary->size; i++) {
		if (thresholds->primary->entries[i].eventfd == eventfd)
4495 4496
			continue;

4497
		new->entries[j] = thresholds->primary->entries[i];
4498
		if (new->entries[j].threshold <= usage) {
4499
			/*
4500
			 * new->current_threshold will not be used
4501 4502 4503
			 * until rcu_assign_pointer(), so it's safe to increment
			 * it here.
			 */
4504
			++new->current_threshold;
4505 4506 4507 4508
		}
		j++;
	}

4509
swap_buffers:
4510 4511
	/* Swap primary and spare array */
	thresholds->spare = thresholds->primary;
4512 4513 4514 4515 4516 4517
	/* If all events are unregistered, free the spare array */
	if (!new) {
		kfree(thresholds->spare);
		thresholds->spare = NULL;
	}

4518
	rcu_assign_pointer(thresholds->primary, new);
4519

4520
	/* To be sure that nobody uses thresholds */
4521
	synchronize_rcu();
4522
unlock:
4523 4524
	mutex_unlock(&memcg->thresholds_lock);
}
4525

K
KAMEZAWA Hiroyuki 已提交
4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537
static int mem_cgroup_oom_register_event(struct cgroup *cgrp,
	struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
{
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
	struct mem_cgroup_eventfd_list *event;
	int type = MEMFILE_TYPE(cft->private);

	BUG_ON(type != _OOM_TYPE);
	event = kmalloc(sizeof(*event),	GFP_KERNEL);
	if (!event)
		return -ENOMEM;

4538
	spin_lock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
4539 4540 4541 4542 4543

	event->eventfd = eventfd;
	list_add(&event->list, &memcg->oom_notify);

	/* already in OOM ? */
4544
	if (atomic_read(&memcg->under_oom))
K
KAMEZAWA Hiroyuki 已提交
4545
		eventfd_signal(eventfd, 1);
4546
	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
4547 4548 4549 4550

	return 0;
}

4551
static void mem_cgroup_oom_unregister_event(struct cgroup *cgrp,
K
KAMEZAWA Hiroyuki 已提交
4552 4553
	struct cftype *cft, struct eventfd_ctx *eventfd)
{
4554
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
K
KAMEZAWA Hiroyuki 已提交
4555 4556 4557 4558 4559
	struct mem_cgroup_eventfd_list *ev, *tmp;
	int type = MEMFILE_TYPE(cft->private);

	BUG_ON(type != _OOM_TYPE);

4560
	spin_lock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
4561

4562
	list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
K
KAMEZAWA Hiroyuki 已提交
4563 4564 4565 4566 4567 4568
		if (ev->eventfd == eventfd) {
			list_del(&ev->list);
			kfree(ev);
		}
	}

4569
	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
4570 4571
}

4572 4573 4574
static int mem_cgroup_oom_control_read(struct cgroup *cgrp,
	struct cftype *cft,  struct cgroup_map_cb *cb)
{
4575
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4576

4577
	cb->fill(cb, "oom_kill_disable", memcg->oom_kill_disable);
4578

4579
	if (atomic_read(&memcg->under_oom))
4580 4581 4582 4583 4584 4585 4586 4587 4588
		cb->fill(cb, "under_oom", 1);
	else
		cb->fill(cb, "under_oom", 0);
	return 0;
}

static int mem_cgroup_oom_control_write(struct cgroup *cgrp,
	struct cftype *cft, u64 val)
{
4589
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600
	struct mem_cgroup *parent;

	/* cannot set to root cgroup and only 0 and 1 are allowed */
	if (!cgrp->parent || !((val == 0) || (val == 1)))
		return -EINVAL;

	parent = mem_cgroup_from_cont(cgrp->parent);

	cgroup_lock();
	/* oom-kill-disable is a flag for subhierarchy. */
	if ((parent->use_hierarchy) ||
4601
	    (memcg->use_hierarchy && !list_empty(&cgrp->children))) {
4602 4603 4604
		cgroup_unlock();
		return -EINVAL;
	}
4605
	memcg->oom_kill_disable = val;
4606
	if (!val)
4607
		memcg_oom_recover(memcg);
4608 4609 4610 4611
	cgroup_unlock();
	return 0;
}

4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627
#ifdef CONFIG_NUMA
static const struct file_operations mem_control_numa_stat_file_operations = {
	.read = seq_read,
	.llseek = seq_lseek,
	.release = single_release,
};

static int mem_control_numa_stat_open(struct inode *unused, struct file *file)
{
	struct cgroup *cont = file->f_dentry->d_parent->d_fsdata;

	file->f_op = &mem_control_numa_stat_file_operations;
	return single_open(file, mem_control_numa_stat_show, cont);
}
#endif /* CONFIG_NUMA */

4628
#ifdef CONFIG_CGROUP_MEM_RES_CTLR_KMEM
4629
static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
4630
{
4631
	return mem_cgroup_sockets_init(memcg, ss);
4632 4633
};

4634
static void kmem_cgroup_destroy(struct mem_cgroup *memcg)
G
Glauber Costa 已提交
4635
{
4636
	mem_cgroup_sockets_destroy(memcg);
G
Glauber Costa 已提交
4637
}
4638
#else
4639
static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
4640 4641 4642
{
	return 0;
}
G
Glauber Costa 已提交
4643

4644
static void kmem_cgroup_destroy(struct mem_cgroup *memcg)
G
Glauber Costa 已提交
4645 4646
{
}
4647 4648
#endif

B
Balbir Singh 已提交
4649 4650
static struct cftype mem_cgroup_files[] = {
	{
4651
		.name = "usage_in_bytes",
4652
		.private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
4653
		.read = mem_cgroup_read,
K
KAMEZAWA Hiroyuki 已提交
4654 4655
		.register_event = mem_cgroup_usage_register_event,
		.unregister_event = mem_cgroup_usage_unregister_event,
B
Balbir Singh 已提交
4656
	},
4657 4658
	{
		.name = "max_usage_in_bytes",
4659
		.private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
4660
		.trigger = mem_cgroup_reset,
4661
		.read = mem_cgroup_read,
4662
	},
B
Balbir Singh 已提交
4663
	{
4664
		.name = "limit_in_bytes",
4665
		.private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
4666
		.write_string = mem_cgroup_write,
4667
		.read = mem_cgroup_read,
B
Balbir Singh 已提交
4668
	},
4669 4670 4671 4672
	{
		.name = "soft_limit_in_bytes",
		.private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
		.write_string = mem_cgroup_write,
4673
		.read = mem_cgroup_read,
4674
	},
B
Balbir Singh 已提交
4675 4676
	{
		.name = "failcnt",
4677
		.private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
4678
		.trigger = mem_cgroup_reset,
4679
		.read = mem_cgroup_read,
B
Balbir Singh 已提交
4680
	},
4681 4682
	{
		.name = "stat",
4683
		.read_map = mem_control_stat_show,
4684
	},
4685 4686 4687 4688
	{
		.name = "force_empty",
		.trigger = mem_cgroup_force_empty_write,
	},
4689 4690 4691 4692 4693
	{
		.name = "use_hierarchy",
		.write_u64 = mem_cgroup_hierarchy_write,
		.read_u64 = mem_cgroup_hierarchy_read,
	},
K
KOSAKI Motohiro 已提交
4694 4695 4696 4697 4698
	{
		.name = "swappiness",
		.read_u64 = mem_cgroup_swappiness_read,
		.write_u64 = mem_cgroup_swappiness_write,
	},
4699 4700 4701 4702 4703
	{
		.name = "move_charge_at_immigrate",
		.read_u64 = mem_cgroup_move_charge_read,
		.write_u64 = mem_cgroup_move_charge_write,
	},
K
KAMEZAWA Hiroyuki 已提交
4704 4705
	{
		.name = "oom_control",
4706 4707
		.read_map = mem_cgroup_oom_control_read,
		.write_u64 = mem_cgroup_oom_control_write,
K
KAMEZAWA Hiroyuki 已提交
4708 4709 4710 4711
		.register_event = mem_cgroup_oom_register_event,
		.unregister_event = mem_cgroup_oom_unregister_event,
		.private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
	},
4712 4713 4714 4715
#ifdef CONFIG_NUMA
	{
		.name = "numa_stat",
		.open = mem_control_numa_stat_open,
4716
		.mode = S_IRUGO,
4717 4718
	},
#endif
4719 4720 4721 4722
#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
	{
		.name = "memsw.usage_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
4723
		.read = mem_cgroup_read,
K
KAMEZAWA Hiroyuki 已提交
4724 4725
		.register_event = mem_cgroup_usage_register_event,
		.unregister_event = mem_cgroup_usage_unregister_event,
4726 4727 4728 4729 4730
	},
	{
		.name = "memsw.max_usage_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
		.trigger = mem_cgroup_reset,
4731
		.read = mem_cgroup_read,
4732 4733 4734 4735 4736
	},
	{
		.name = "memsw.limit_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
		.write_string = mem_cgroup_write,
4737
		.read = mem_cgroup_read,
4738 4739 4740 4741 4742
	},
	{
		.name = "memsw.failcnt",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
		.trigger = mem_cgroup_reset,
4743
		.read = mem_cgroup_read,
4744 4745
	},
#endif
4746
	{ },	/* terminate */
4747
};
4748

4749
static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
4750 4751
{
	struct mem_cgroup_per_node *pn;
4752
	struct mem_cgroup_per_zone *mz;
4753
	int zone, tmp = node;
4754 4755 4756 4757 4758 4759 4760 4761
	/*
	 * This routine is called against possible nodes.
	 * But it's BUG to call kmalloc() against offline node.
	 *
	 * TODO: this routine can waste much memory for nodes which will
	 *       never be onlined. It's better to use memory hotplug callback
	 *       function.
	 */
4762 4763
	if (!node_state(node, N_NORMAL_MEMORY))
		tmp = -1;
4764
	pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
4765 4766
	if (!pn)
		return 1;
4767 4768 4769

	for (zone = 0; zone < MAX_NR_ZONES; zone++) {
		mz = &pn->zoneinfo[zone];
4770
		lruvec_init(&mz->lruvec, &NODE_DATA(node)->node_zones[zone]);
4771
		mz->usage_in_excess = 0;
4772
		mz->on_tree = false;
4773
		mz->memcg = memcg;
4774
	}
4775
	memcg->info.nodeinfo[node] = pn;
4776 4777 4778
	return 0;
}

4779
static void free_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
4780
{
4781
	kfree(memcg->info.nodeinfo[node]);
4782 4783
}

4784 4785
static struct mem_cgroup *mem_cgroup_alloc(void)
{
4786
	struct mem_cgroup *memcg;
4787
	int size = sizeof(struct mem_cgroup);
4788

4789
	/* Can be very big if MAX_NUMNODES is very big */
4790
	if (size < PAGE_SIZE)
4791
		memcg = kzalloc(size, GFP_KERNEL);
4792
	else
4793
		memcg = vzalloc(size);
4794

4795
	if (!memcg)
4796 4797
		return NULL;

4798 4799
	memcg->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
	if (!memcg->stat)
4800
		goto out_free;
4801 4802
	spin_lock_init(&memcg->pcp_counter_lock);
	return memcg;
4803 4804 4805

out_free:
	if (size < PAGE_SIZE)
4806
		kfree(memcg);
4807
	else
4808
		vfree(memcg);
4809
	return NULL;
4810 4811
}

4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832
/*
 * Helpers for freeing a vzalloc()ed mem_cgroup by RCU,
 * but in process context.  The work_freeing structure is overlaid
 * on the rcu_freeing structure, which itself is overlaid on memsw.
 */
static void vfree_work(struct work_struct *work)
{
	struct mem_cgroup *memcg;

	memcg = container_of(work, struct mem_cgroup, work_freeing);
	vfree(memcg);
}
static void vfree_rcu(struct rcu_head *rcu_head)
{
	struct mem_cgroup *memcg;

	memcg = container_of(rcu_head, struct mem_cgroup, rcu_freeing);
	INIT_WORK(&memcg->work_freeing, vfree_work);
	schedule_work(&memcg->work_freeing);
}

4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843
/*
 * At destroying mem_cgroup, references from swap_cgroup can remain.
 * (scanning all at force_empty is too costly...)
 *
 * Instead of clearing all references at force_empty, we remember
 * the number of reference from swap_cgroup and free mem_cgroup when
 * it goes down to 0.
 *
 * Removal of cgroup itself succeeds regardless of refs from swap.
 */

4844
static void __mem_cgroup_free(struct mem_cgroup *memcg)
4845
{
K
KAMEZAWA Hiroyuki 已提交
4846 4847
	int node;

4848 4849
	mem_cgroup_remove_from_trees(memcg);
	free_css_id(&mem_cgroup_subsys, &memcg->css);
K
KAMEZAWA Hiroyuki 已提交
4850

B
Bob Liu 已提交
4851
	for_each_node(node)
4852
		free_mem_cgroup_per_zone_info(memcg, node);
K
KAMEZAWA Hiroyuki 已提交
4853

4854
	free_percpu(memcg->stat);
4855
	if (sizeof(struct mem_cgroup) < PAGE_SIZE)
4856
		kfree_rcu(memcg, rcu_freeing);
4857
	else
4858
		call_rcu(&memcg->rcu_freeing, vfree_rcu);
4859 4860
}

4861
static void mem_cgroup_get(struct mem_cgroup *memcg)
4862
{
4863
	atomic_inc(&memcg->refcnt);
4864 4865
}

4866
static void __mem_cgroup_put(struct mem_cgroup *memcg, int count)
4867
{
4868 4869 4870
	if (atomic_sub_and_test(count, &memcg->refcnt)) {
		struct mem_cgroup *parent = parent_mem_cgroup(memcg);
		__mem_cgroup_free(memcg);
4871 4872 4873
		if (parent)
			mem_cgroup_put(parent);
	}
4874 4875
}

4876
static void mem_cgroup_put(struct mem_cgroup *memcg)
4877
{
4878
	__mem_cgroup_put(memcg, 1);
4879 4880
}

4881 4882 4883
/*
 * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
 */
G
Glauber Costa 已提交
4884
struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg)
4885
{
4886
	if (!memcg->res.parent)
4887
		return NULL;
4888
	return mem_cgroup_from_res_counter(memcg->res.parent, res);
4889
}
G
Glauber Costa 已提交
4890
EXPORT_SYMBOL(parent_mem_cgroup);
4891

4892 4893 4894
#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
static void __init enable_swap_cgroup(void)
{
4895
	if (!mem_cgroup_disabled() && really_do_swap_account)
4896 4897 4898 4899 4900 4901 4902 4903
		do_swap_account = 1;
}
#else
static void __init enable_swap_cgroup(void)
{
}
#endif

4904 4905 4906 4907 4908 4909
static int mem_cgroup_soft_limit_tree_init(void)
{
	struct mem_cgroup_tree_per_node *rtpn;
	struct mem_cgroup_tree_per_zone *rtpz;
	int tmp, node, zone;

B
Bob Liu 已提交
4910
	for_each_node(node) {
4911 4912 4913 4914 4915
		tmp = node;
		if (!node_state(node, N_NORMAL_MEMORY))
			tmp = -1;
		rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, tmp);
		if (!rtpn)
4916
			goto err_cleanup;
4917 4918 4919 4920 4921 4922 4923 4924 4925 4926

		soft_limit_tree.rb_tree_per_node[node] = rtpn;

		for (zone = 0; zone < MAX_NR_ZONES; zone++) {
			rtpz = &rtpn->rb_tree_per_zone[zone];
			rtpz->rb_root = RB_ROOT;
			spin_lock_init(&rtpz->lock);
		}
	}
	return 0;
4927 4928

err_cleanup:
B
Bob Liu 已提交
4929
	for_each_node(node) {
4930 4931 4932 4933 4934 4935 4936
		if (!soft_limit_tree.rb_tree_per_node[node])
			break;
		kfree(soft_limit_tree.rb_tree_per_node[node]);
		soft_limit_tree.rb_tree_per_node[node] = NULL;
	}
	return 1;

4937 4938
}

L
Li Zefan 已提交
4939
static struct cgroup_subsys_state * __ref
4940
mem_cgroup_create(struct cgroup *cont)
B
Balbir Singh 已提交
4941
{
4942
	struct mem_cgroup *memcg, *parent;
K
KAMEZAWA Hiroyuki 已提交
4943
	long error = -ENOMEM;
4944
	int node;
B
Balbir Singh 已提交
4945

4946 4947
	memcg = mem_cgroup_alloc();
	if (!memcg)
K
KAMEZAWA Hiroyuki 已提交
4948
		return ERR_PTR(error);
4949

B
Bob Liu 已提交
4950
	for_each_node(node)
4951
		if (alloc_mem_cgroup_per_zone_info(memcg, node))
4952
			goto free_out;
4953

4954
	/* root ? */
4955
	if (cont->parent == NULL) {
4956
		int cpu;
4957
		enable_swap_cgroup();
4958
		parent = NULL;
4959 4960
		if (mem_cgroup_soft_limit_tree_init())
			goto free_out;
4961
		root_mem_cgroup = memcg;
4962 4963 4964 4965 4966
		for_each_possible_cpu(cpu) {
			struct memcg_stock_pcp *stock =
						&per_cpu(memcg_stock, cpu);
			INIT_WORK(&stock->work, drain_local_stock);
		}
4967
		hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
4968
	} else {
4969
		parent = mem_cgroup_from_cont(cont->parent);
4970 4971
		memcg->use_hierarchy = parent->use_hierarchy;
		memcg->oom_kill_disable = parent->oom_kill_disable;
4972
	}
4973

4974
	if (parent && parent->use_hierarchy) {
4975 4976
		res_counter_init(&memcg->res, &parent->res);
		res_counter_init(&memcg->memsw, &parent->memsw);
4977 4978 4979 4980 4981 4982 4983
		/*
		 * We increment refcnt of the parent to ensure that we can
		 * safely access it on res_counter_charge/uncharge.
		 * This refcnt will be decremented when freeing this
		 * mem_cgroup(see mem_cgroup_put).
		 */
		mem_cgroup_get(parent);
4984
	} else {
4985 4986
		res_counter_init(&memcg->res, NULL);
		res_counter_init(&memcg->memsw, NULL);
4987
	}
4988 4989
	memcg->last_scanned_node = MAX_NUMNODES;
	INIT_LIST_HEAD(&memcg->oom_notify);
4990

K
KOSAKI Motohiro 已提交
4991
	if (parent)
4992 4993 4994 4995
		memcg->swappiness = mem_cgroup_swappiness(parent);
	atomic_set(&memcg->refcnt, 1);
	memcg->move_charge_at_immigrate = 0;
	mutex_init(&memcg->thresholds_lock);
4996
	spin_lock_init(&memcg->move_lock);
4997 4998 4999 5000 5001 5002 5003 5004 5005 5006 5007

	error = memcg_init_kmem(memcg, &mem_cgroup_subsys);
	if (error) {
		/*
		 * We call put now because our (and parent's) refcnts
		 * are already in place. mem_cgroup_put() will internally
		 * call __mem_cgroup_free, so return directly
		 */
		mem_cgroup_put(memcg);
		return ERR_PTR(error);
	}
5008
	return &memcg->css;
5009
free_out:
5010
	__mem_cgroup_free(memcg);
K
KAMEZAWA Hiroyuki 已提交
5011
	return ERR_PTR(error);
B
Balbir Singh 已提交
5012 5013
}

5014
static int mem_cgroup_pre_destroy(struct cgroup *cont)
5015
{
5016
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
5017

5018
	return mem_cgroup_force_empty(memcg, false);
5019 5020
}

5021
static void mem_cgroup_destroy(struct cgroup *cont)
B
Balbir Singh 已提交
5022
{
5023
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
5024

5025
	kmem_cgroup_destroy(memcg);
G
Glauber Costa 已提交
5026

5027
	mem_cgroup_put(memcg);
B
Balbir Singh 已提交
5028 5029
}

5030
#ifdef CONFIG_MMU
5031
/* Handlers for move charge at task migration. */
5032 5033
#define PRECHARGE_COUNT_AT_ONCE	256
static int mem_cgroup_do_precharge(unsigned long count)
5034
{
5035 5036
	int ret = 0;
	int batch_count = PRECHARGE_COUNT_AT_ONCE;
5037
	struct mem_cgroup *memcg = mc.to;
5038

5039
	if (mem_cgroup_is_root(memcg)) {
5040 5041 5042 5043 5044 5045 5046 5047
		mc.precharge += count;
		/* we don't need css_get for root */
		return ret;
	}
	/* try to charge at once */
	if (count > 1) {
		struct res_counter *dummy;
		/*
5048
		 * "memcg" cannot be under rmdir() because we've already checked
5049 5050 5051 5052
		 * by cgroup_lock_live_cgroup() that it is not removed and we
		 * are still under the same cgroup_mutex. So we can postpone
		 * css_get().
		 */
5053
		if (res_counter_charge(&memcg->res, PAGE_SIZE * count, &dummy))
5054
			goto one_by_one;
5055
		if (do_swap_account && res_counter_charge(&memcg->memsw,
5056
						PAGE_SIZE * count, &dummy)) {
5057
			res_counter_uncharge(&memcg->res, PAGE_SIZE * count);
5058 5059 5060 5061 5062 5063 5064 5065 5066 5067 5068 5069 5070 5071 5072 5073
			goto one_by_one;
		}
		mc.precharge += count;
		return ret;
	}
one_by_one:
	/* fall back to one by one charge */
	while (count--) {
		if (signal_pending(current)) {
			ret = -EINTR;
			break;
		}
		if (!batch_count--) {
			batch_count = PRECHARGE_COUNT_AT_ONCE;
			cond_resched();
		}
5074 5075
		ret = __mem_cgroup_try_charge(NULL,
					GFP_KERNEL, 1, &memcg, false);
5076
		if (ret)
5077
			/* mem_cgroup_clear_mc() will do uncharge later */
5078
			return ret;
5079 5080
		mc.precharge++;
	}
5081 5082 5083 5084
	return ret;
}

/**
5085
 * get_mctgt_type - get target type of moving charge
5086 5087 5088
 * @vma: the vma the pte to be checked belongs
 * @addr: the address corresponding to the pte to be checked
 * @ptent: the pte to be checked
5089
 * @target: the pointer the target page or swap ent will be stored(can be NULL)
5090 5091 5092 5093 5094 5095
 *
 * Returns
 *   0(MC_TARGET_NONE): if the pte is not a target for move charge.
 *   1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
 *     move charge. if @target is not NULL, the page is stored in target->page
 *     with extra refcnt got(Callers should handle it).
5096 5097 5098
 *   2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
 *     target for charge migration. if @target is not NULL, the entry is stored
 *     in target->ent.
5099 5100 5101 5102 5103
 *
 * Called with pte lock held.
 */
union mc_target {
	struct page	*page;
5104
	swp_entry_t	ent;
5105 5106 5107
};

enum mc_target_type {
5108
	MC_TARGET_NONE = 0,
5109
	MC_TARGET_PAGE,
5110
	MC_TARGET_SWAP,
5111 5112
};

D
Daisuke Nishimura 已提交
5113 5114
static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
						unsigned long addr, pte_t ptent)
5115
{
D
Daisuke Nishimura 已提交
5116
	struct page *page = vm_normal_page(vma, addr, ptent);
5117

D
Daisuke Nishimura 已提交
5118 5119 5120 5121
	if (!page || !page_mapped(page))
		return NULL;
	if (PageAnon(page)) {
		/* we don't move shared anon */
5122
		if (!move_anon())
D
Daisuke Nishimura 已提交
5123
			return NULL;
5124 5125
	} else if (!move_file())
		/* we ignore mapcount for file pages */
D
Daisuke Nishimura 已提交
5126 5127 5128 5129 5130 5131 5132
		return NULL;
	if (!get_page_unless_zero(page))
		return NULL;

	return page;
}

5133
#ifdef CONFIG_SWAP
D
Daisuke Nishimura 已提交
5134 5135 5136 5137 5138 5139 5140 5141
static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
			unsigned long addr, pte_t ptent, swp_entry_t *entry)
{
	struct page *page = NULL;
	swp_entry_t ent = pte_to_swp_entry(ptent);

	if (!move_anon() || non_swap_entry(ent))
		return NULL;
5142 5143 5144 5145 5146
	/*
	 * Because lookup_swap_cache() updates some statistics counter,
	 * we call find_get_page() with swapper_space directly.
	 */
	page = find_get_page(&swapper_space, ent.val);
D
Daisuke Nishimura 已提交
5147 5148 5149 5150 5151
	if (do_swap_account)
		entry->val = ent.val;

	return page;
}
5152 5153 5154 5155 5156 5157 5158
#else
static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
			unsigned long addr, pte_t ptent, swp_entry_t *entry)
{
	return NULL;
}
#endif
D
Daisuke Nishimura 已提交
5159

5160 5161 5162 5163 5164 5165 5166 5167 5168 5169 5170 5171 5172 5173 5174 5175 5176 5177 5178
static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
			unsigned long addr, pte_t ptent, swp_entry_t *entry)
{
	struct page *page = NULL;
	struct address_space *mapping;
	pgoff_t pgoff;

	if (!vma->vm_file) /* anonymous vma */
		return NULL;
	if (!move_file())
		return NULL;

	mapping = vma->vm_file->f_mapping;
	if (pte_none(ptent))
		pgoff = linear_page_index(vma, addr);
	else /* pte_file(ptent) is true */
		pgoff = pte_to_pgoff(ptent);

	/* page is moved even if it's not RSS of this task(page-faulted). */
5179 5180 5181 5182 5183 5184
	page = find_get_page(mapping, pgoff);

#ifdef CONFIG_SWAP
	/* shmem/tmpfs may report page out on swap: account for that too. */
	if (radix_tree_exceptional_entry(page)) {
		swp_entry_t swap = radix_to_swp_entry(page);
5185
		if (do_swap_account)
5186 5187
			*entry = swap;
		page = find_get_page(&swapper_space, swap.val);
5188
	}
5189
#endif
5190 5191 5192
	return page;
}

5193
static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
D
Daisuke Nishimura 已提交
5194 5195 5196 5197
		unsigned long addr, pte_t ptent, union mc_target *target)
{
	struct page *page = NULL;
	struct page_cgroup *pc;
5198
	enum mc_target_type ret = MC_TARGET_NONE;
D
Daisuke Nishimura 已提交
5199 5200 5201 5202 5203 5204
	swp_entry_t ent = { .val = 0 };

	if (pte_present(ptent))
		page = mc_handle_present_pte(vma, addr, ptent);
	else if (is_swap_pte(ptent))
		page = mc_handle_swap_pte(vma, addr, ptent, &ent);
5205 5206
	else if (pte_none(ptent) || pte_file(ptent))
		page = mc_handle_file_pte(vma, addr, ptent, &ent);
D
Daisuke Nishimura 已提交
5207 5208

	if (!page && !ent.val)
5209
		return ret;
5210 5211 5212 5213 5214 5215 5216 5217 5218 5219 5220 5221 5222 5223 5224
	if (page) {
		pc = lookup_page_cgroup(page);
		/*
		 * Do only loose check w/o page_cgroup lock.
		 * mem_cgroup_move_account() checks the pc is valid or not under
		 * the lock.
		 */
		if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
			ret = MC_TARGET_PAGE;
			if (target)
				target->page = page;
		}
		if (!ret || !target)
			put_page(page);
	}
D
Daisuke Nishimura 已提交
5225 5226
	/* There is a swap entry and a page doesn't exist or isn't charged */
	if (ent.val && !ret &&
5227
			css_id(&mc.from->css) == lookup_swap_cgroup_id(ent)) {
5228 5229 5230
		ret = MC_TARGET_SWAP;
		if (target)
			target->ent = ent;
5231 5232 5233 5234
	}
	return ret;
}

5235 5236 5237 5238 5239 5240 5241 5242 5243 5244 5245 5246 5247 5248 5249 5250 5251 5252 5253 5254 5255 5256 5257 5258 5259 5260 5261 5262 5263 5264 5265 5266 5267 5268 5269
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
/*
 * We don't consider swapping or file mapped pages because THP does not
 * support them for now.
 * Caller should make sure that pmd_trans_huge(pmd) is true.
 */
static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
		unsigned long addr, pmd_t pmd, union mc_target *target)
{
	struct page *page = NULL;
	struct page_cgroup *pc;
	enum mc_target_type ret = MC_TARGET_NONE;

	page = pmd_page(pmd);
	VM_BUG_ON(!page || !PageHead(page));
	if (!move_anon())
		return ret;
	pc = lookup_page_cgroup(page);
	if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
		ret = MC_TARGET_PAGE;
		if (target) {
			get_page(page);
			target->page = page;
		}
	}
	return ret;
}
#else
static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
		unsigned long addr, pmd_t pmd, union mc_target *target)
{
	return MC_TARGET_NONE;
}
#endif

5270 5271 5272 5273 5274 5275 5276 5277
static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
					unsigned long addr, unsigned long end,
					struct mm_walk *walk)
{
	struct vm_area_struct *vma = walk->private;
	pte_t *pte;
	spinlock_t *ptl;

5278 5279 5280 5281
	if (pmd_trans_huge_lock(pmd, vma) == 1) {
		if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
			mc.precharge += HPAGE_PMD_NR;
		spin_unlock(&vma->vm_mm->page_table_lock);
5282
		return 0;
5283
	}
5284

5285 5286
	if (pmd_trans_unstable(pmd))
		return 0;
5287 5288
	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
	for (; addr != end; pte++, addr += PAGE_SIZE)
5289
		if (get_mctgt_type(vma, addr, *pte, NULL))
5290 5291 5292 5293
			mc.precharge++;	/* increment precharge temporarily */
	pte_unmap_unlock(pte - 1, ptl);
	cond_resched();

5294 5295 5296
	return 0;
}

5297 5298 5299 5300 5301
static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
{
	unsigned long precharge;
	struct vm_area_struct *vma;

5302
	down_read(&mm->mmap_sem);
5303 5304 5305 5306 5307 5308 5309 5310 5311 5312 5313
	for (vma = mm->mmap; vma; vma = vma->vm_next) {
		struct mm_walk mem_cgroup_count_precharge_walk = {
			.pmd_entry = mem_cgroup_count_precharge_pte_range,
			.mm = mm,
			.private = vma,
		};
		if (is_vm_hugetlb_page(vma))
			continue;
		walk_page_range(vma->vm_start, vma->vm_end,
					&mem_cgroup_count_precharge_walk);
	}
5314
	up_read(&mm->mmap_sem);
5315 5316 5317 5318 5319 5320 5321 5322 5323

	precharge = mc.precharge;
	mc.precharge = 0;

	return precharge;
}

static int mem_cgroup_precharge_mc(struct mm_struct *mm)
{
5324 5325 5326 5327 5328
	unsigned long precharge = mem_cgroup_count_precharge(mm);

	VM_BUG_ON(mc.moving_task);
	mc.moving_task = current;
	return mem_cgroup_do_precharge(precharge);
5329 5330
}

5331 5332
/* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
static void __mem_cgroup_clear_mc(void)
5333
{
5334 5335 5336
	struct mem_cgroup *from = mc.from;
	struct mem_cgroup *to = mc.to;

5337
	/* we must uncharge all the leftover precharges from mc.to */
5338 5339 5340 5341 5342 5343 5344 5345 5346 5347 5348
	if (mc.precharge) {
		__mem_cgroup_cancel_charge(mc.to, mc.precharge);
		mc.precharge = 0;
	}
	/*
	 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
	 * we must uncharge here.
	 */
	if (mc.moved_charge) {
		__mem_cgroup_cancel_charge(mc.from, mc.moved_charge);
		mc.moved_charge = 0;
5349
	}
5350 5351 5352 5353 5354 5355 5356 5357 5358 5359 5360 5361 5362 5363 5364 5365 5366 5367 5368
	/* we must fixup refcnts and charges */
	if (mc.moved_swap) {
		/* uncharge swap account from the old cgroup */
		if (!mem_cgroup_is_root(mc.from))
			res_counter_uncharge(&mc.from->memsw,
						PAGE_SIZE * mc.moved_swap);
		__mem_cgroup_put(mc.from, mc.moved_swap);

		if (!mem_cgroup_is_root(mc.to)) {
			/*
			 * we charged both to->res and to->memsw, so we should
			 * uncharge to->res.
			 */
			res_counter_uncharge(&mc.to->res,
						PAGE_SIZE * mc.moved_swap);
		}
		/* we've already done mem_cgroup_get(mc.to) */
		mc.moved_swap = 0;
	}
5369 5370 5371 5372 5373 5374 5375 5376 5377 5378 5379 5380 5381 5382 5383
	memcg_oom_recover(from);
	memcg_oom_recover(to);
	wake_up_all(&mc.waitq);
}

static void mem_cgroup_clear_mc(void)
{
	struct mem_cgroup *from = mc.from;

	/*
	 * we must clear moving_task before waking up waiters at the end of
	 * task migration.
	 */
	mc.moving_task = NULL;
	__mem_cgroup_clear_mc();
5384
	spin_lock(&mc.lock);
5385 5386
	mc.from = NULL;
	mc.to = NULL;
5387
	spin_unlock(&mc.lock);
5388
	mem_cgroup_end_move(from);
5389 5390
}

5391 5392
static int mem_cgroup_can_attach(struct cgroup *cgroup,
				 struct cgroup_taskset *tset)
5393
{
5394
	struct task_struct *p = cgroup_taskset_first(tset);
5395
	int ret = 0;
5396
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgroup);
5397

5398
	if (memcg->move_charge_at_immigrate) {
5399 5400 5401
		struct mm_struct *mm;
		struct mem_cgroup *from = mem_cgroup_from_task(p);

5402
		VM_BUG_ON(from == memcg);
5403 5404 5405 5406 5407

		mm = get_task_mm(p);
		if (!mm)
			return 0;
		/* We move charges only when we move a owner of the mm */
5408 5409 5410 5411
		if (mm->owner == p) {
			VM_BUG_ON(mc.from);
			VM_BUG_ON(mc.to);
			VM_BUG_ON(mc.precharge);
5412
			VM_BUG_ON(mc.moved_charge);
5413
			VM_BUG_ON(mc.moved_swap);
5414
			mem_cgroup_start_move(from);
5415
			spin_lock(&mc.lock);
5416
			mc.from = from;
5417
			mc.to = memcg;
5418
			spin_unlock(&mc.lock);
5419
			/* We set mc.moving_task later */
5420 5421 5422 5423

			ret = mem_cgroup_precharge_mc(mm);
			if (ret)
				mem_cgroup_clear_mc();
5424 5425
		}
		mmput(mm);
5426 5427 5428 5429
	}
	return ret;
}

5430 5431
static void mem_cgroup_cancel_attach(struct cgroup *cgroup,
				     struct cgroup_taskset *tset)
5432
{
5433
	mem_cgroup_clear_mc();
5434 5435
}

5436 5437 5438
static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
				unsigned long addr, unsigned long end,
				struct mm_walk *walk)
5439
{
5440 5441 5442 5443
	int ret = 0;
	struct vm_area_struct *vma = walk->private;
	pte_t *pte;
	spinlock_t *ptl;
5444 5445 5446 5447
	enum mc_target_type target_type;
	union mc_target target;
	struct page *page;
	struct page_cgroup *pc;
5448

5449 5450 5451 5452 5453 5454 5455 5456 5457 5458 5459
	/*
	 * We don't take compound_lock() here but no race with splitting thp
	 * happens because:
	 *  - if pmd_trans_huge_lock() returns 1, the relevant thp is not
	 *    under splitting, which means there's no concurrent thp split,
	 *  - if another thread runs into split_huge_page() just after we
	 *    entered this if-block, the thread must wait for page table lock
	 *    to be unlocked in __split_huge_page_splitting(), where the main
	 *    part of thp split is not executed yet.
	 */
	if (pmd_trans_huge_lock(pmd, vma) == 1) {
5460
		if (mc.precharge < HPAGE_PMD_NR) {
5461 5462 5463 5464 5465 5466 5467 5468 5469
			spin_unlock(&vma->vm_mm->page_table_lock);
			return 0;
		}
		target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
		if (target_type == MC_TARGET_PAGE) {
			page = target.page;
			if (!isolate_lru_page(page)) {
				pc = lookup_page_cgroup(page);
				if (!mem_cgroup_move_account(page, HPAGE_PMD_NR,
5470
							pc, mc.from, mc.to)) {
5471 5472 5473 5474 5475 5476 5477 5478
					mc.precharge -= HPAGE_PMD_NR;
					mc.moved_charge += HPAGE_PMD_NR;
				}
				putback_lru_page(page);
			}
			put_page(page);
		}
		spin_unlock(&vma->vm_mm->page_table_lock);
5479
		return 0;
5480 5481
	}

5482 5483
	if (pmd_trans_unstable(pmd))
		return 0;
5484 5485 5486 5487
retry:
	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
	for (; addr != end; addr += PAGE_SIZE) {
		pte_t ptent = *(pte++);
5488
		swp_entry_t ent;
5489 5490 5491 5492

		if (!mc.precharge)
			break;

5493
		switch (get_mctgt_type(vma, addr, ptent, &target)) {
5494 5495 5496 5497 5498
		case MC_TARGET_PAGE:
			page = target.page;
			if (isolate_lru_page(page))
				goto put;
			pc = lookup_page_cgroup(page);
5499
			if (!mem_cgroup_move_account(page, 1, pc,
5500
						     mc.from, mc.to)) {
5501
				mc.precharge--;
5502 5503
				/* we uncharge from mc.from later. */
				mc.moved_charge++;
5504 5505
			}
			putback_lru_page(page);
5506
put:			/* get_mctgt_type() gets the page */
5507 5508
			put_page(page);
			break;
5509 5510
		case MC_TARGET_SWAP:
			ent = target.ent;
5511
			if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
5512
				mc.precharge--;
5513 5514 5515
				/* we fixup refcnts and charges later. */
				mc.moved_swap++;
			}
5516
			break;
5517 5518 5519 5520 5521 5522 5523 5524 5525 5526 5527 5528 5529 5530
		default:
			break;
		}
	}
	pte_unmap_unlock(pte - 1, ptl);
	cond_resched();

	if (addr != end) {
		/*
		 * We have consumed all precharges we got in can_attach().
		 * We try charge one by one, but don't do any additional
		 * charges to mc.to if we have failed in charge once in attach()
		 * phase.
		 */
5531
		ret = mem_cgroup_do_precharge(1);
5532 5533 5534 5535 5536 5537 5538 5539 5540 5541 5542 5543
		if (!ret)
			goto retry;
	}

	return ret;
}

static void mem_cgroup_move_charge(struct mm_struct *mm)
{
	struct vm_area_struct *vma;

	lru_add_drain_all();
5544 5545 5546 5547 5548 5549 5550 5551 5552 5553 5554 5555 5556
retry:
	if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
		/*
		 * Someone who are holding the mmap_sem might be waiting in
		 * waitq. So we cancel all extra charges, wake up all waiters,
		 * and retry. Because we cancel precharges, we might not be able
		 * to move enough charges, but moving charge is a best-effort
		 * feature anyway, so it wouldn't be a big problem.
		 */
		__mem_cgroup_clear_mc();
		cond_resched();
		goto retry;
	}
5557 5558 5559 5560 5561 5562 5563 5564 5565 5566 5567 5568 5569 5570 5571 5572 5573 5574
	for (vma = mm->mmap; vma; vma = vma->vm_next) {
		int ret;
		struct mm_walk mem_cgroup_move_charge_walk = {
			.pmd_entry = mem_cgroup_move_charge_pte_range,
			.mm = mm,
			.private = vma,
		};
		if (is_vm_hugetlb_page(vma))
			continue;
		ret = walk_page_range(vma->vm_start, vma->vm_end,
						&mem_cgroup_move_charge_walk);
		if (ret)
			/*
			 * means we have consumed all precharges and failed in
			 * doing additional charge. Just abandon here.
			 */
			break;
	}
5575
	up_read(&mm->mmap_sem);
5576 5577
}

5578 5579
static void mem_cgroup_move_task(struct cgroup *cont,
				 struct cgroup_taskset *tset)
B
Balbir Singh 已提交
5580
{
5581
	struct task_struct *p = cgroup_taskset_first(tset);
5582
	struct mm_struct *mm = get_task_mm(p);
5583 5584

	if (mm) {
5585 5586
		if (mc.to)
			mem_cgroup_move_charge(mm);
5587 5588
		mmput(mm);
	}
5589 5590
	if (mc.to)
		mem_cgroup_clear_mc();
B
Balbir Singh 已提交
5591
}
5592
#else	/* !CONFIG_MMU */
5593 5594
static int mem_cgroup_can_attach(struct cgroup *cgroup,
				 struct cgroup_taskset *tset)
5595 5596 5597
{
	return 0;
}
5598 5599
static void mem_cgroup_cancel_attach(struct cgroup *cgroup,
				     struct cgroup_taskset *tset)
5600 5601
{
}
5602 5603
static void mem_cgroup_move_task(struct cgroup *cont,
				 struct cgroup_taskset *tset)
5604 5605 5606
{
}
#endif
B
Balbir Singh 已提交
5607

B
Balbir Singh 已提交
5608 5609 5610 5611
struct cgroup_subsys mem_cgroup_subsys = {
	.name = "memory",
	.subsys_id = mem_cgroup_subsys_id,
	.create = mem_cgroup_create,
5612
	.pre_destroy = mem_cgroup_pre_destroy,
B
Balbir Singh 已提交
5613
	.destroy = mem_cgroup_destroy,
5614 5615
	.can_attach = mem_cgroup_can_attach,
	.cancel_attach = mem_cgroup_cancel_attach,
B
Balbir Singh 已提交
5616
	.attach = mem_cgroup_move_task,
5617
	.base_cftypes = mem_cgroup_files,
5618
	.early_init = 0,
K
KAMEZAWA Hiroyuki 已提交
5619
	.use_id = 1,
5620
	.__DEPRECATED_clear_css_refs = true,
B
Balbir Singh 已提交
5621
};
5622 5623

#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
5624 5625 5626
static int __init enable_swap_account(char *s)
{
	/* consider enabled if no parameter or 1 is given */
5627
	if (!strcmp(s, "1"))
5628
		really_do_swap_account = 1;
5629
	else if (!strcmp(s, "0"))
5630 5631 5632
		really_do_swap_account = 0;
	return 1;
}
5633
__setup("swapaccount=", enable_swap_account);
5634 5635

#endif