memcontrol.c 147.0 KB
Newer Older
B
Balbir Singh 已提交
1 2 3 4 5
/* memcontrol.c - Memory Controller
 *
 * Copyright IBM Corporation, 2007
 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
 *
6 7 8
 * Copyright 2007 OpenVZ SWsoft Inc
 * Author: Pavel Emelianov <xemul@openvz.org>
 *
9 10 11 12
 * Memory thresholds
 * Copyright (C) 2009 Nokia Corporation
 * Author: Kirill A. Shutemov
 *
B
Balbir Singh 已提交
13 14 15 16 17 18 19 20 21 22 23 24 25 26
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 */

#include <linux/res_counter.h>
#include <linux/memcontrol.h>
#include <linux/cgroup.h>
27
#include <linux/mm.h>
28
#include <linux/hugetlb.h>
K
KAMEZAWA Hiroyuki 已提交
29
#include <linux/pagemap.h>
30
#include <linux/smp.h>
31
#include <linux/page-flags.h>
32
#include <linux/backing-dev.h>
33 34
#include <linux/bit_spinlock.h>
#include <linux/rcupdate.h>
35
#include <linux/limits.h>
36
#include <linux/mutex.h>
37
#include <linux/rbtree.h>
38
#include <linux/shmem_fs.h>
39
#include <linux/slab.h>
40
#include <linux/swap.h>
41
#include <linux/swapops.h>
42
#include <linux/spinlock.h>
43 44
#include <linux/eventfd.h>
#include <linux/sort.h>
45
#include <linux/fs.h>
46
#include <linux/seq_file.h>
47
#include <linux/vmalloc.h>
48
#include <linux/mm_inline.h>
49
#include <linux/page_cgroup.h>
50
#include <linux/cpu.h>
51
#include <linux/oom.h>
K
KAMEZAWA Hiroyuki 已提交
52
#include "internal.h"
B
Balbir Singh 已提交
53

54 55
#include <asm/uaccess.h>

56 57
#include <trace/events/vmscan.h>

58 59
struct cgroup_subsys mem_cgroup_subsys __read_mostly;
#define MEM_CGROUP_RECLAIM_RETRIES	5
60
struct mem_cgroup *root_mem_cgroup __read_mostly;
B
Balbir Singh 已提交
61

62
#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
L
Li Zefan 已提交
63
/* Turned on only when memory cgroup is enabled && really_do_swap_account = 1 */
64
int do_swap_account __read_mostly;
65 66 67 68 69 70 71 72

/* for remember boot option*/
#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP_ENABLED
static int really_do_swap_account __initdata = 1;
#else
static int really_do_swap_account __initdata = 0;
#endif

73 74 75 76 77
#else
#define do_swap_account		(0)
#endif


78 79 80 81 82 83 84 85
/*
 * Statistics for memory cgroup.
 */
enum mem_cgroup_stat_index {
	/*
	 * For MEM_CONTAINER_TYPE_ALL, usage = pagecache + rss.
	 */
	MEM_CGROUP_STAT_CACHE, 	   /* # of pages charged as cache */
86
	MEM_CGROUP_STAT_RSS,	   /* # of pages charged as anon rss */
87
	MEM_CGROUP_STAT_FILE_MAPPED,  /* # of pages charged as file rss */
88
	MEM_CGROUP_STAT_SWAPOUT, /* # of pages, swapped out */
89
	MEM_CGROUP_STAT_DATA, /* end of data requires synchronization */
90
	MEM_CGROUP_ON_MOVE,	/* someone is moving account between groups */
91 92 93
	MEM_CGROUP_STAT_NSTATS,
};

94 95 96 97
enum mem_cgroup_events_index {
	MEM_CGROUP_EVENTS_PGPGIN,	/* # of pages paged in */
	MEM_CGROUP_EVENTS_PGPGOUT,	/* # of pages paged out */
	MEM_CGROUP_EVENTS_COUNT,	/* # of pages paged in/out */
98 99
	MEM_CGROUP_EVENTS_PGFAULT,	/* # of page-faults */
	MEM_CGROUP_EVENTS_PGMAJFAULT,	/* # of major page-faults */
100 101
	MEM_CGROUP_EVENTS_NSTATS,
};
102 103 104 105 106 107 108 109 110
/*
 * Per memcg event counter is incremented at every pagein/pageout. With THP,
 * it will be incremated by the number of pages. This counter is used for
 * for trigger some periodic events. This is straightforward and better
 * than using jiffies etc. to handle periodic memcg event.
 */
enum mem_cgroup_events_target {
	MEM_CGROUP_TARGET_THRESH,
	MEM_CGROUP_TARGET_SOFTLIMIT,
111
	MEM_CGROUP_TARGET_NUMAINFO,
112 113 114 115
	MEM_CGROUP_NTARGETS,
};
#define THRESHOLDS_EVENTS_TARGET (128)
#define SOFTLIMIT_EVENTS_TARGET (1024)
116
#define NUMAINFO_EVENTS_TARGET	(1024)
117

118
struct mem_cgroup_stat_cpu {
119
	long count[MEM_CGROUP_STAT_NSTATS];
120
	unsigned long events[MEM_CGROUP_EVENTS_NSTATS];
121
	unsigned long targets[MEM_CGROUP_NTARGETS];
122 123
};

124 125 126 127
/*
 * per-zone information in memory controller.
 */
struct mem_cgroup_per_zone {
128 129 130
	/*
	 * spin_lock to protect the per cgroup LRU
	 */
131 132
	struct list_head	lists[NR_LRU_LISTS];
	unsigned long		count[NR_LRU_LISTS];
K
KOSAKI Motohiro 已提交
133 134

	struct zone_reclaim_stat reclaim_stat;
135 136 137 138
	struct rb_node		tree_node;	/* RB tree node */
	unsigned long long	usage_in_excess;/* Set to the value by which */
						/* the soft limit is exceeded*/
	bool			on_tree;
139 140
	struct mem_cgroup	*mem;		/* Back pointer, we cannot */
						/* use container_of	   */
141 142 143 144 145 146 147 148 149 150 151 152
};
/* Macro for accessing counter */
#define MEM_CGROUP_ZSTAT(mz, idx)	((mz)->count[(idx)])

struct mem_cgroup_per_node {
	struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
};

struct mem_cgroup_lru_info {
	struct mem_cgroup_per_node *nodeinfo[MAX_NUMNODES];
};

153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172
/*
 * Cgroups above their limits are maintained in a RB-Tree, independent of
 * their hierarchy representation
 */

struct mem_cgroup_tree_per_zone {
	struct rb_root rb_root;
	spinlock_t lock;
};

struct mem_cgroup_tree_per_node {
	struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
};

struct mem_cgroup_tree {
	struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
};

static struct mem_cgroup_tree soft_limit_tree __read_mostly;

173 174 175 176 177
struct mem_cgroup_threshold {
	struct eventfd_ctx *eventfd;
	u64 threshold;
};

K
KAMEZAWA Hiroyuki 已提交
178
/* For threshold */
179 180
struct mem_cgroup_threshold_ary {
	/* An array index points to threshold just below usage. */
181
	int current_threshold;
182 183 184 185 186
	/* Size of entries[] */
	unsigned int size;
	/* Array of thresholds */
	struct mem_cgroup_threshold entries[0];
};
187 188 189 190 191 192 193 194 195 196 197 198

struct mem_cgroup_thresholds {
	/* Primary thresholds array */
	struct mem_cgroup_threshold_ary *primary;
	/*
	 * Spare threshold array.
	 * This is needed to make mem_cgroup_unregister_event() "never fail".
	 * It must be able to store at least primary->size - 1 entries.
	 */
	struct mem_cgroup_threshold_ary *spare;
};

K
KAMEZAWA Hiroyuki 已提交
199 200 201 202 203
/* for OOM */
struct mem_cgroup_eventfd_list {
	struct list_head list;
	struct eventfd_ctx *eventfd;
};
204 205

static void mem_cgroup_threshold(struct mem_cgroup *mem);
K
KAMEZAWA Hiroyuki 已提交
206
static void mem_cgroup_oom_notify(struct mem_cgroup *mem);
207

208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251
enum {
	SCAN_BY_LIMIT,
	SCAN_BY_SYSTEM,
	NR_SCAN_CONTEXT,
	SCAN_BY_SHRINK,	/* not recorded now */
};

enum {
	SCAN,
	SCAN_ANON,
	SCAN_FILE,
	ROTATE,
	ROTATE_ANON,
	ROTATE_FILE,
	FREED,
	FREED_ANON,
	FREED_FILE,
	ELAPSED,
	NR_SCANSTATS,
};

struct scanstat {
	spinlock_t	lock;
	unsigned long	stats[NR_SCAN_CONTEXT][NR_SCANSTATS];
	unsigned long	rootstats[NR_SCAN_CONTEXT][NR_SCANSTATS];
};

const char *scanstat_string[NR_SCANSTATS] = {
	"scanned_pages",
	"scanned_anon_pages",
	"scanned_file_pages",
	"rotated_pages",
	"rotated_anon_pages",
	"rotated_file_pages",
	"freed_pages",
	"freed_anon_pages",
	"freed_file_pages",
	"elapsed_ns",
};
#define SCANSTAT_WORD_LIMIT	"_by_limit"
#define SCANSTAT_WORD_SYSTEM	"_by_system"
#define SCANSTAT_WORD_HIERARCHY	"_under_hierarchy"


B
Balbir Singh 已提交
252 253 254 255 256 257 258
/*
 * The memory controller data structure. The memory controller controls both
 * page cache and RSS per cgroup. We would eventually like to provide
 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
 * to help the administrator determine what knobs to tune.
 *
 * TODO: Add a water mark for the memory controller. Reclaim will begin when
259 260 261
 * we hit the water mark. May be even add a low water mark, such that
 * no reclaim occurs from a cgroup at it's low water mark, this is
 * a feature that will be implemented much later in the future.
B
Balbir Singh 已提交
262 263 264 265 266 267 268
 */
struct mem_cgroup {
	struct cgroup_subsys_state css;
	/*
	 * the counter to account for memory usage
	 */
	struct res_counter res;
269 270 271 272
	/*
	 * the counter to account for mem+swap usage.
	 */
	struct res_counter memsw;
273 274 275 276
	/*
	 * Per cgroup active and inactive list, similar to the
	 * per zone LRU lists.
	 */
277
	struct mem_cgroup_lru_info info;
278
	/*
279
	 * While reclaiming in a hierarchy, we cache the last child we
K
KAMEZAWA Hiroyuki 已提交
280
	 * reclaimed from.
281
	 */
K
KAMEZAWA Hiroyuki 已提交
282
	int last_scanned_child;
283 284 285
	int last_scanned_node;
#if MAX_NUMNODES > 1
	nodemask_t	scan_nodes;
286 287
	atomic_t	numainfo_events;
	atomic_t	numainfo_updating;
288
#endif
289 290 291 292
	/*
	 * Should the accounting and control be hierarchical, per subtree?
	 */
	bool use_hierarchy;
293 294 295 296

	bool		oom_lock;
	atomic_t	under_oom;

297
	atomic_t	refcnt;
298

299
	int	swappiness;
300 301
	/* OOM-Killer disable */
	int		oom_kill_disable;
K
KOSAKI Motohiro 已提交
302

303 304 305
	/* set when res.limit == memsw.limit */
	bool		memsw_is_minimum;

306 307 308 309
	/* protect arrays of thresholds */
	struct mutex thresholds_lock;

	/* thresholds for memory usage. RCU-protected */
310
	struct mem_cgroup_thresholds thresholds;
311

312
	/* thresholds for mem+swap usage. RCU-protected */
313
	struct mem_cgroup_thresholds memsw_thresholds;
314

K
KAMEZAWA Hiroyuki 已提交
315 316
	/* For oom notifier event fd */
	struct list_head oom_notify;
317 318
	/* For recording LRU-scan statistics */
	struct scanstat scanstat;
319 320 321 322 323
	/*
	 * Should we move charges of a task when a task is moved into this
	 * mem_cgroup ? And what type of charges should we move ?
	 */
	unsigned long 	move_charge_at_immigrate;
324
	/*
325
	 * percpu counter.
326
	 */
327
	struct mem_cgroup_stat_cpu *stat;
328 329 330 331 332 333
	/*
	 * used when a cpu is offlined or other synchronizations
	 * See mem_cgroup_read_stat().
	 */
	struct mem_cgroup_stat_cpu nocpu_base;
	spinlock_t pcp_counter_lock;
B
Balbir Singh 已提交
334 335
};

336 337 338 339 340 341
/* Stuffs for move charges at task migration. */
/*
 * Types of charges to be moved. "move_charge_at_immitgrate" is treated as a
 * left-shifted bitmap of these types.
 */
enum move_type {
342
	MOVE_CHARGE_TYPE_ANON,	/* private anonymous page and swap of it */
343
	MOVE_CHARGE_TYPE_FILE,	/* file page(including tmpfs) and swap of it */
344 345 346
	NR_MOVE_TYPE,
};

347 348
/* "mc" and its members are protected by cgroup_mutex */
static struct move_charge_struct {
349
	spinlock_t	  lock; /* for from, to */
350 351 352
	struct mem_cgroup *from;
	struct mem_cgroup *to;
	unsigned long precharge;
353
	unsigned long moved_charge;
354
	unsigned long moved_swap;
355 356 357
	struct task_struct *moving_task;	/* a task moving charges */
	wait_queue_head_t waitq;		/* a waitq for other context */
} mc = {
358
	.lock = __SPIN_LOCK_UNLOCKED(mc.lock),
359 360
	.waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
};
361

D
Daisuke Nishimura 已提交
362 363 364 365 366 367
static bool move_anon(void)
{
	return test_bit(MOVE_CHARGE_TYPE_ANON,
					&mc.to->move_charge_at_immigrate);
}

368 369 370 371 372 373
static bool move_file(void)
{
	return test_bit(MOVE_CHARGE_TYPE_FILE,
					&mc.to->move_charge_at_immigrate);
}

374 375 376 377 378 379 380
/*
 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
 * limit reclaim to prevent infinite loops, if they ever occur.
 */
#define	MEM_CGROUP_MAX_RECLAIM_LOOPS		(100)
#define	MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS	(2)

381 382 383
enum charge_type {
	MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
	MEM_CGROUP_CHARGE_TYPE_MAPPED,
384
	MEM_CGROUP_CHARGE_TYPE_SHMEM,	/* used by page migration of shmem */
385
	MEM_CGROUP_CHARGE_TYPE_FORCE,	/* used by force_empty */
K
KAMEZAWA Hiroyuki 已提交
386
	MEM_CGROUP_CHARGE_TYPE_SWAPOUT,	/* for accounting swapcache */
K
KAMEZAWA Hiroyuki 已提交
387
	MEM_CGROUP_CHARGE_TYPE_DROP,	/* a page was unused swap cache */
388 389 390
	NR_CHARGE_TYPE,
};

391 392 393
/* for encoding cft->private value on file */
#define _MEM			(0)
#define _MEMSWAP		(1)
K
KAMEZAWA Hiroyuki 已提交
394
#define _OOM_TYPE		(2)
395 396 397
#define MEMFILE_PRIVATE(x, val)	(((x) << 16) | (val))
#define MEMFILE_TYPE(val)	(((val) >> 16) & 0xffff)
#define MEMFILE_ATTR(val)	((val) & 0xffff)
K
KAMEZAWA Hiroyuki 已提交
398 399
/* Used for OOM nofiier */
#define OOM_CONTROL		(0)
400

401 402 403 404 405 406 407
/*
 * Reclaim flags for mem_cgroup_hierarchical_reclaim
 */
#define MEM_CGROUP_RECLAIM_NOSWAP_BIT	0x0
#define MEM_CGROUP_RECLAIM_NOSWAP	(1 << MEM_CGROUP_RECLAIM_NOSWAP_BIT)
#define MEM_CGROUP_RECLAIM_SHRINK_BIT	0x1
#define MEM_CGROUP_RECLAIM_SHRINK	(1 << MEM_CGROUP_RECLAIM_SHRINK_BIT)
408 409
#define MEM_CGROUP_RECLAIM_SOFT_BIT	0x2
#define MEM_CGROUP_RECLAIM_SOFT		(1 << MEM_CGROUP_RECLAIM_SOFT_BIT)
410

411 412
static void mem_cgroup_get(struct mem_cgroup *mem);
static void mem_cgroup_put(struct mem_cgroup *mem);
413
static struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *mem);
414
static void drain_all_stock_async(struct mem_cgroup *mem);
415

416 417 418 419 420 421
static struct mem_cgroup_per_zone *
mem_cgroup_zoneinfo(struct mem_cgroup *mem, int nid, int zid)
{
	return &mem->info.nodeinfo[nid]->zoneinfo[zid];
}

422 423 424 425 426
struct cgroup_subsys_state *mem_cgroup_css(struct mem_cgroup *mem)
{
	return &mem->css;
}

427
static struct mem_cgroup_per_zone *
428
page_cgroup_zoneinfo(struct mem_cgroup *mem, struct page *page)
429
{
430 431
	int nid = page_to_nid(page);
	int zid = page_zonenum(page);
432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451

	return mem_cgroup_zoneinfo(mem, nid, zid);
}

static struct mem_cgroup_tree_per_zone *
soft_limit_tree_node_zone(int nid, int zid)
{
	return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
}

static struct mem_cgroup_tree_per_zone *
soft_limit_tree_from_page(struct page *page)
{
	int nid = page_to_nid(page);
	int zid = page_zonenum(page);

	return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
}

static void
452
__mem_cgroup_insert_exceeded(struct mem_cgroup *mem,
453
				struct mem_cgroup_per_zone *mz,
454 455
				struct mem_cgroup_tree_per_zone *mctz,
				unsigned long long new_usage_in_excess)
456 457 458 459 460 461 462 463
{
	struct rb_node **p = &mctz->rb_root.rb_node;
	struct rb_node *parent = NULL;
	struct mem_cgroup_per_zone *mz_node;

	if (mz->on_tree)
		return;

464 465 466
	mz->usage_in_excess = new_usage_in_excess;
	if (!mz->usage_in_excess)
		return;
467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482
	while (*p) {
		parent = *p;
		mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
					tree_node);
		if (mz->usage_in_excess < mz_node->usage_in_excess)
			p = &(*p)->rb_left;
		/*
		 * We can't avoid mem cgroups that are over their soft
		 * limit by the same amount
		 */
		else if (mz->usage_in_excess >= mz_node->usage_in_excess)
			p = &(*p)->rb_right;
	}
	rb_link_node(&mz->tree_node, parent, p);
	rb_insert_color(&mz->tree_node, &mctz->rb_root);
	mz->on_tree = true;
483 484 485 486 487 488 489 490 491 492 493 494 495
}

static void
__mem_cgroup_remove_exceeded(struct mem_cgroup *mem,
				struct mem_cgroup_per_zone *mz,
				struct mem_cgroup_tree_per_zone *mctz)
{
	if (!mz->on_tree)
		return;
	rb_erase(&mz->tree_node, &mctz->rb_root);
	mz->on_tree = false;
}

496 497 498 499 500 501
static void
mem_cgroup_remove_exceeded(struct mem_cgroup *mem,
				struct mem_cgroup_per_zone *mz,
				struct mem_cgroup_tree_per_zone *mctz)
{
	spin_lock(&mctz->lock);
502
	__mem_cgroup_remove_exceeded(mem, mz, mctz);
503 504 505 506 507 508
	spin_unlock(&mctz->lock);
}


static void mem_cgroup_update_tree(struct mem_cgroup *mem, struct page *page)
{
509
	unsigned long long excess;
510 511
	struct mem_cgroup_per_zone *mz;
	struct mem_cgroup_tree_per_zone *mctz;
512 513
	int nid = page_to_nid(page);
	int zid = page_zonenum(page);
514 515 516
	mctz = soft_limit_tree_from_page(page);

	/*
517 518
	 * Necessary to update all ancestors when hierarchy is used.
	 * because their event counter is not touched.
519
	 */
520 521
	for (; mem; mem = parent_mem_cgroup(mem)) {
		mz = mem_cgroup_zoneinfo(mem, nid, zid);
522
		excess = res_counter_soft_limit_excess(&mem->res);
523 524 525 526
		/*
		 * We have to update the tree if mz is on RB-tree or
		 * mem is over its softlimit.
		 */
527
		if (excess || mz->on_tree) {
528 529 530 531 532
			spin_lock(&mctz->lock);
			/* if on-tree, remove it */
			if (mz->on_tree)
				__mem_cgroup_remove_exceeded(mem, mz, mctz);
			/*
533 534
			 * Insert again. mz->usage_in_excess will be updated.
			 * If excess is 0, no tree ops.
535
			 */
536
			__mem_cgroup_insert_exceeded(mem, mz, mctz, excess);
537 538
			spin_unlock(&mctz->lock);
		}
539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556
	}
}

static void mem_cgroup_remove_from_trees(struct mem_cgroup *mem)
{
	int node, zone;
	struct mem_cgroup_per_zone *mz;
	struct mem_cgroup_tree_per_zone *mctz;

	for_each_node_state(node, N_POSSIBLE) {
		for (zone = 0; zone < MAX_NR_ZONES; zone++) {
			mz = mem_cgroup_zoneinfo(mem, node, zone);
			mctz = soft_limit_tree_node_zone(node, zone);
			mem_cgroup_remove_exceeded(mem, mz, mctz);
		}
	}
}

557 558 559 560
static struct mem_cgroup_per_zone *
__mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
{
	struct rb_node *rightmost = NULL;
561
	struct mem_cgroup_per_zone *mz;
562 563

retry:
564
	mz = NULL;
565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593
	rightmost = rb_last(&mctz->rb_root);
	if (!rightmost)
		goto done;		/* Nothing to reclaim from */

	mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
	/*
	 * Remove the node now but someone else can add it back,
	 * we will to add it back at the end of reclaim to its correct
	 * position in the tree.
	 */
	__mem_cgroup_remove_exceeded(mz->mem, mz, mctz);
	if (!res_counter_soft_limit_excess(&mz->mem->res) ||
		!css_tryget(&mz->mem->css))
		goto retry;
done:
	return mz;
}

static struct mem_cgroup_per_zone *
mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
{
	struct mem_cgroup_per_zone *mz;

	spin_lock(&mctz->lock);
	mz = __mem_cgroup_largest_soft_limit_node(mctz);
	spin_unlock(&mctz->lock);
	return mz;
}

594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612
/*
 * Implementation Note: reading percpu statistics for memcg.
 *
 * Both of vmstat[] and percpu_counter has threshold and do periodic
 * synchronization to implement "quick" read. There are trade-off between
 * reading cost and precision of value. Then, we may have a chance to implement
 * a periodic synchronizion of counter in memcg's counter.
 *
 * But this _read() function is used for user interface now. The user accounts
 * memory usage by memory cgroup and he _always_ requires exact value because
 * he accounts memory. Even if we provide quick-and-fuzzy read, we always
 * have to visit all online cpus and make sum. So, for now, unnecessary
 * synchronization is not implemented. (just implemented for cpu hotplug)
 *
 * If there are kernel internal actions which can make use of some not-exact
 * value, and reading all cpu value can be performance bottleneck in some
 * common workload, threashold and synchonization as vmstat[] should be
 * implemented.
 */
613 614
static long mem_cgroup_read_stat(struct mem_cgroup *mem,
				 enum mem_cgroup_stat_index idx)
615
{
616
	long val = 0;
617 618
	int cpu;

619 620
	get_online_cpus();
	for_each_online_cpu(cpu)
621
		val += per_cpu(mem->stat->count[idx], cpu);
622 623 624 625 626 627
#ifdef CONFIG_HOTPLUG_CPU
	spin_lock(&mem->pcp_counter_lock);
	val += mem->nocpu_base.count[idx];
	spin_unlock(&mem->pcp_counter_lock);
#endif
	put_online_cpus();
628 629 630
	return val;
}

631 632 633 634
static void mem_cgroup_swap_statistics(struct mem_cgroup *mem,
					 bool charge)
{
	int val = (charge) ? 1 : -1;
635
	this_cpu_add(mem->stat->count[MEM_CGROUP_STAT_SWAPOUT], val);
636 637
}

638 639 640 641 642 643 644 645 646 647
void mem_cgroup_pgfault(struct mem_cgroup *mem, int val)
{
	this_cpu_add(mem->stat->events[MEM_CGROUP_EVENTS_PGFAULT], val);
}

void mem_cgroup_pgmajfault(struct mem_cgroup *mem, int val)
{
	this_cpu_add(mem->stat->events[MEM_CGROUP_EVENTS_PGMAJFAULT], val);
}

648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663
static unsigned long mem_cgroup_read_events(struct mem_cgroup *mem,
					    enum mem_cgroup_events_index idx)
{
	unsigned long val = 0;
	int cpu;

	for_each_online_cpu(cpu)
		val += per_cpu(mem->stat->events[idx], cpu);
#ifdef CONFIG_HOTPLUG_CPU
	spin_lock(&mem->pcp_counter_lock);
	val += mem->nocpu_base.events[idx];
	spin_unlock(&mem->pcp_counter_lock);
#endif
	return val;
}

664
static void mem_cgroup_charge_statistics(struct mem_cgroup *mem,
665
					 bool file, int nr_pages)
666
{
667 668
	preempt_disable();

669 670
	if (file)
		__this_cpu_add(mem->stat->count[MEM_CGROUP_STAT_CACHE], nr_pages);
671
	else
672
		__this_cpu_add(mem->stat->count[MEM_CGROUP_STAT_RSS], nr_pages);
673

674 675
	/* pagein of a big page is an event. So, ignore page size */
	if (nr_pages > 0)
676
		__this_cpu_inc(mem->stat->events[MEM_CGROUP_EVENTS_PGPGIN]);
677
	else {
678
		__this_cpu_inc(mem->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]);
679 680
		nr_pages = -nr_pages; /* for event */
	}
681

682
	__this_cpu_add(mem->stat->events[MEM_CGROUP_EVENTS_COUNT], nr_pages);
683

684
	preempt_enable();
685 686
}

687 688 689
unsigned long
mem_cgroup_zone_nr_lru_pages(struct mem_cgroup *mem, int nid, int zid,
			unsigned int lru_mask)
690 691
{
	struct mem_cgroup_per_zone *mz;
692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707
	enum lru_list l;
	unsigned long ret = 0;

	mz = mem_cgroup_zoneinfo(mem, nid, zid);

	for_each_lru(l) {
		if (BIT(l) & lru_mask)
			ret += MEM_CGROUP_ZSTAT(mz, l);
	}
	return ret;
}

static unsigned long
mem_cgroup_node_nr_lru_pages(struct mem_cgroup *mem,
			int nid, unsigned int lru_mask)
{
708 709 710
	u64 total = 0;
	int zid;

711 712 713
	for (zid = 0; zid < MAX_NR_ZONES; zid++)
		total += mem_cgroup_zone_nr_lru_pages(mem, nid, zid, lru_mask);

714 715
	return total;
}
716 717 718

static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *mem,
			unsigned int lru_mask)
719
{
720
	int nid;
721 722
	u64 total = 0;

723 724
	for_each_node_state(nid, N_HIGH_MEMORY)
		total += mem_cgroup_node_nr_lru_pages(mem, nid, lru_mask);
725
	return total;
726 727
}

728 729 730 731 732 733 734 735 736 737 738
static bool __memcg_event_check(struct mem_cgroup *mem, int target)
{
	unsigned long val, next;

	val = this_cpu_read(mem->stat->events[MEM_CGROUP_EVENTS_COUNT]);
	next = this_cpu_read(mem->stat->targets[target]);
	/* from time_after() in jiffies.h */
	return ((long)next - (long)val < 0);
}

static void __mem_cgroup_target_update(struct mem_cgroup *mem, int target)
739
{
740
	unsigned long val, next;
741

742
	val = this_cpu_read(mem->stat->events[MEM_CGROUP_EVENTS_COUNT]);
743

744 745 746 747 748 749 750
	switch (target) {
	case MEM_CGROUP_TARGET_THRESH:
		next = val + THRESHOLDS_EVENTS_TARGET;
		break;
	case MEM_CGROUP_TARGET_SOFTLIMIT:
		next = val + SOFTLIMIT_EVENTS_TARGET;
		break;
751 752 753
	case MEM_CGROUP_TARGET_NUMAINFO:
		next = val + NUMAINFO_EVENTS_TARGET;
		break;
754 755 756 757 758
	default:
		return;
	}

	this_cpu_write(mem->stat->targets[target], next);
759 760 761 762 763 764 765 766 767
}

/*
 * Check events in order.
 *
 */
static void memcg_check_events(struct mem_cgroup *mem, struct page *page)
{
	/* threshold event is triggered in finer grain than soft limit */
768
	if (unlikely(__memcg_event_check(mem, MEM_CGROUP_TARGET_THRESH))) {
769
		mem_cgroup_threshold(mem);
770 771
		__mem_cgroup_target_update(mem, MEM_CGROUP_TARGET_THRESH);
		if (unlikely(__memcg_event_check(mem,
772
			     MEM_CGROUP_TARGET_SOFTLIMIT))) {
773
			mem_cgroup_update_tree(mem, page);
774
			__mem_cgroup_target_update(mem,
775 776 777 778 779 780 781 782
						   MEM_CGROUP_TARGET_SOFTLIMIT);
		}
#if MAX_NUMNODES > 1
		if (unlikely(__memcg_event_check(mem,
			MEM_CGROUP_TARGET_NUMAINFO))) {
			atomic_inc(&mem->numainfo_events);
			__mem_cgroup_target_update(mem,
				MEM_CGROUP_TARGET_NUMAINFO);
783
		}
784
#endif
785 786 787
	}
}

788
static struct mem_cgroup *mem_cgroup_from_cont(struct cgroup *cont)
B
Balbir Singh 已提交
789 790 791 792 793 794
{
	return container_of(cgroup_subsys_state(cont,
				mem_cgroup_subsys_id), struct mem_cgroup,
				css);
}

795
struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
796
{
797 798 799 800 801 802 803 804
	/*
	 * mm_update_next_owner() may clear mm->owner to NULL
	 * if it races with swapoff, page migration, etc.
	 * So this can be called with p == NULL.
	 */
	if (unlikely(!p))
		return NULL;

805 806 807 808
	return container_of(task_subsys_state(p, mem_cgroup_subsys_id),
				struct mem_cgroup, css);
}

809
struct mem_cgroup *try_get_mem_cgroup_from_mm(struct mm_struct *mm)
810 811
{
	struct mem_cgroup *mem = NULL;
812 813 814

	if (!mm)
		return NULL;
815 816 817 818 819 820 821 822 823 824 825 826 827 828 829
	/*
	 * Because we have no locks, mm->owner's may be being moved to other
	 * cgroup. We use css_tryget() here even if this looks
	 * pessimistic (rather than adding locks here).
	 */
	rcu_read_lock();
	do {
		mem = mem_cgroup_from_task(rcu_dereference(mm->owner));
		if (unlikely(!mem))
			break;
	} while (!css_tryget(&mem->css));
	rcu_read_unlock();
	return mem;
}

K
KAMEZAWA Hiroyuki 已提交
830 831
/* The caller has to guarantee "mem" exists before calling this */
static struct mem_cgroup *mem_cgroup_start_loop(struct mem_cgroup *mem)
K
KAMEZAWA Hiroyuki 已提交
832
{
833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854
	struct cgroup_subsys_state *css;
	int found;

	if (!mem) /* ROOT cgroup has the smallest ID */
		return root_mem_cgroup; /*css_put/get against root is ignored*/
	if (!mem->use_hierarchy) {
		if (css_tryget(&mem->css))
			return mem;
		return NULL;
	}
	rcu_read_lock();
	/*
	 * searching a memory cgroup which has the smallest ID under given
	 * ROOT cgroup. (ID >= 1)
	 */
	css = css_get_next(&mem_cgroup_subsys, 1, &mem->css, &found);
	if (css && css_tryget(css))
		mem = container_of(css, struct mem_cgroup, css);
	else
		mem = NULL;
	rcu_read_unlock();
	return mem;
K
KAMEZAWA Hiroyuki 已提交
855 856 857 858 859 860 861 862 863
}

static struct mem_cgroup *mem_cgroup_get_next(struct mem_cgroup *iter,
					struct mem_cgroup *root,
					bool cond)
{
	int nextid = css_id(&iter->css) + 1;
	int found;
	int hierarchy_used;
K
KAMEZAWA Hiroyuki 已提交
864 865
	struct cgroup_subsys_state *css;

K
KAMEZAWA Hiroyuki 已提交
866
	hierarchy_used = iter->use_hierarchy;
K
KAMEZAWA Hiroyuki 已提交
867

K
KAMEZAWA Hiroyuki 已提交
868
	css_put(&iter->css);
869 870
	/* If no ROOT, walk all, ignore hierarchy */
	if (!cond || (root && !hierarchy_used))
K
KAMEZAWA Hiroyuki 已提交
871
		return NULL;
K
KAMEZAWA Hiroyuki 已提交
872

873 874 875
	if (!root)
		root = root_mem_cgroup;

K
KAMEZAWA Hiroyuki 已提交
876 877
	do {
		iter = NULL;
K
KAMEZAWA Hiroyuki 已提交
878
		rcu_read_lock();
K
KAMEZAWA Hiroyuki 已提交
879 880 881

		css = css_get_next(&mem_cgroup_subsys, nextid,
				&root->css, &found);
K
KAMEZAWA Hiroyuki 已提交
882
		if (css && css_tryget(css))
K
KAMEZAWA Hiroyuki 已提交
883
			iter = container_of(css, struct mem_cgroup, css);
K
KAMEZAWA Hiroyuki 已提交
884
		rcu_read_unlock();
K
KAMEZAWA Hiroyuki 已提交
885
		/* If css is NULL, no more cgroups will be found */
K
KAMEZAWA Hiroyuki 已提交
886
		nextid = found + 1;
K
KAMEZAWA Hiroyuki 已提交
887
	} while (css && !iter);
K
KAMEZAWA Hiroyuki 已提交
888

K
KAMEZAWA Hiroyuki 已提交
889
	return iter;
K
KAMEZAWA Hiroyuki 已提交
890
}
K
KAMEZAWA Hiroyuki 已提交
891 892 893 894 895 896 897 898 899 900 901 902 903
/*
 * for_eacn_mem_cgroup_tree() for visiting all cgroup under tree. Please
 * be careful that "break" loop is not allowed. We have reference count.
 * Instead of that modify "cond" to be false and "continue" to exit the loop.
 */
#define for_each_mem_cgroup_tree_cond(iter, root, cond)	\
	for (iter = mem_cgroup_start_loop(root);\
	     iter != NULL;\
	     iter = mem_cgroup_get_next(iter, root, cond))

#define for_each_mem_cgroup_tree(iter, root) \
	for_each_mem_cgroup_tree_cond(iter, root, true)

904 905 906
#define for_each_mem_cgroup_all(iter) \
	for_each_mem_cgroup_tree_cond(iter, NULL, true)

K
KAMEZAWA Hiroyuki 已提交
907

908 909 910 911 912
static inline bool mem_cgroup_is_root(struct mem_cgroup *mem)
{
	return (mem == root_mem_cgroup);
}

913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939
void mem_cgroup_count_vm_event(struct mm_struct *mm, enum vm_event_item idx)
{
	struct mem_cgroup *mem;

	if (!mm)
		return;

	rcu_read_lock();
	mem = mem_cgroup_from_task(rcu_dereference(mm->owner));
	if (unlikely(!mem))
		goto out;

	switch (idx) {
	case PGMAJFAULT:
		mem_cgroup_pgmajfault(mem, 1);
		break;
	case PGFAULT:
		mem_cgroup_pgfault(mem, 1);
		break;
	default:
		BUG();
	}
out:
	rcu_read_unlock();
}
EXPORT_SYMBOL(mem_cgroup_count_vm_event);

K
KAMEZAWA Hiroyuki 已提交
940 941 942 943 944 945 946 947 948 949 950 951 952
/*
 * Following LRU functions are allowed to be used without PCG_LOCK.
 * Operations are called by routine of global LRU independently from memcg.
 * What we have to take care of here is validness of pc->mem_cgroup.
 *
 * Changes to pc->mem_cgroup happens when
 * 1. charge
 * 2. moving account
 * In typical case, "charge" is done before add-to-lru. Exception is SwapCache.
 * It is added to LRU before charge.
 * If PCG_USED bit is not set, page_cgroup is not added to this private LRU.
 * When moving account, the page is not on LRU. It's isolated.
 */
953

K
KAMEZAWA Hiroyuki 已提交
954 955 956 957
void mem_cgroup_del_lru_list(struct page *page, enum lru_list lru)
{
	struct page_cgroup *pc;
	struct mem_cgroup_per_zone *mz;
958

959
	if (mem_cgroup_disabled())
K
KAMEZAWA Hiroyuki 已提交
960 961 962
		return;
	pc = lookup_page_cgroup(page);
	/* can happen while we handle swapcache. */
963
	if (!TestClearPageCgroupAcctLRU(pc))
K
KAMEZAWA Hiroyuki 已提交
964
		return;
965
	VM_BUG_ON(!pc->mem_cgroup);
966 967 968 969
	/*
	 * We don't check PCG_USED bit. It's cleared when the "page" is finally
	 * removed from global LRU.
	 */
970
	mz = page_cgroup_zoneinfo(pc->mem_cgroup, page);
971 972
	/* huge page split is done under lru_lock. so, we have no races. */
	MEM_CGROUP_ZSTAT(mz, lru) -= 1 << compound_order(page);
973 974 975
	if (mem_cgroup_is_root(pc->mem_cgroup))
		return;
	VM_BUG_ON(list_empty(&pc->lru));
K
KAMEZAWA Hiroyuki 已提交
976
	list_del_init(&pc->lru);
977 978
}

K
KAMEZAWA Hiroyuki 已提交
979
void mem_cgroup_del_lru(struct page *page)
980
{
K
KAMEZAWA Hiroyuki 已提交
981 982
	mem_cgroup_del_lru_list(page, page_lru(page));
}
983

984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005
/*
 * Writeback is about to end against a page which has been marked for immediate
 * reclaim.  If it still appears to be reclaimable, move it to the tail of the
 * inactive list.
 */
void mem_cgroup_rotate_reclaimable_page(struct page *page)
{
	struct mem_cgroup_per_zone *mz;
	struct page_cgroup *pc;
	enum lru_list lru = page_lru(page);

	if (mem_cgroup_disabled())
		return;

	pc = lookup_page_cgroup(page);
	/* unused or root page is not rotated. */
	if (!PageCgroupUsed(pc))
		return;
	/* Ensure pc->mem_cgroup is visible after reading PCG_USED. */
	smp_rmb();
	if (mem_cgroup_is_root(pc->mem_cgroup))
		return;
1006
	mz = page_cgroup_zoneinfo(pc->mem_cgroup, page);
1007 1008 1009
	list_move_tail(&pc->lru, &mz->lists[lru]);
}

K
KAMEZAWA Hiroyuki 已提交
1010 1011 1012 1013
void mem_cgroup_rotate_lru_list(struct page *page, enum lru_list lru)
{
	struct mem_cgroup_per_zone *mz;
	struct page_cgroup *pc;
1014

1015
	if (mem_cgroup_disabled())
K
KAMEZAWA Hiroyuki 已提交
1016
		return;
1017

K
KAMEZAWA Hiroyuki 已提交
1018
	pc = lookup_page_cgroup(page);
1019
	/* unused or root page is not rotated. */
1020 1021 1022 1023 1024
	if (!PageCgroupUsed(pc))
		return;
	/* Ensure pc->mem_cgroup is visible after reading PCG_USED. */
	smp_rmb();
	if (mem_cgroup_is_root(pc->mem_cgroup))
K
KAMEZAWA Hiroyuki 已提交
1025
		return;
1026
	mz = page_cgroup_zoneinfo(pc->mem_cgroup, page);
K
KAMEZAWA Hiroyuki 已提交
1027
	list_move(&pc->lru, &mz->lists[lru]);
1028 1029
}

K
KAMEZAWA Hiroyuki 已提交
1030
void mem_cgroup_add_lru_list(struct page *page, enum lru_list lru)
1031
{
K
KAMEZAWA Hiroyuki 已提交
1032 1033
	struct page_cgroup *pc;
	struct mem_cgroup_per_zone *mz;
1034

1035
	if (mem_cgroup_disabled())
K
KAMEZAWA Hiroyuki 已提交
1036 1037
		return;
	pc = lookup_page_cgroup(page);
1038
	VM_BUG_ON(PageCgroupAcctLRU(pc));
K
KAMEZAWA Hiroyuki 已提交
1039
	if (!PageCgroupUsed(pc))
L
Lee Schermerhorn 已提交
1040
		return;
1041 1042
	/* Ensure pc->mem_cgroup is visible after reading PCG_USED. */
	smp_rmb();
1043
	mz = page_cgroup_zoneinfo(pc->mem_cgroup, page);
1044 1045
	/* huge page split is done under lru_lock. so, we have no races. */
	MEM_CGROUP_ZSTAT(mz, lru) += 1 << compound_order(page);
1046 1047 1048
	SetPageCgroupAcctLRU(pc);
	if (mem_cgroup_is_root(pc->mem_cgroup))
		return;
K
KAMEZAWA Hiroyuki 已提交
1049 1050
	list_add(&pc->lru, &mz->lists[lru]);
}
1051

K
KAMEZAWA Hiroyuki 已提交
1052
/*
1053 1054 1055 1056
 * At handling SwapCache and other FUSE stuff, pc->mem_cgroup may be changed
 * while it's linked to lru because the page may be reused after it's fully
 * uncharged. To handle that, unlink page_cgroup from LRU when charge it again.
 * It's done under lock_page and expected that zone->lru_lock isnever held.
K
KAMEZAWA Hiroyuki 已提交
1057
 */
1058
static void mem_cgroup_lru_del_before_commit(struct page *page)
K
KAMEZAWA Hiroyuki 已提交
1059
{
1060 1061 1062 1063
	unsigned long flags;
	struct zone *zone = page_zone(page);
	struct page_cgroup *pc = lookup_page_cgroup(page);

1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074
	/*
	 * Doing this check without taking ->lru_lock seems wrong but this
	 * is safe. Because if page_cgroup's USED bit is unset, the page
	 * will not be added to any memcg's LRU. If page_cgroup's USED bit is
	 * set, the commit after this will fail, anyway.
	 * This all charge/uncharge is done under some mutual execustion.
	 * So, we don't need to taking care of changes in USED bit.
	 */
	if (likely(!PageLRU(page)))
		return;

1075 1076 1077 1078 1079 1080 1081 1082
	spin_lock_irqsave(&zone->lru_lock, flags);
	/*
	 * Forget old LRU when this page_cgroup is *not* used. This Used bit
	 * is guarded by lock_page() because the page is SwapCache.
	 */
	if (!PageCgroupUsed(pc))
		mem_cgroup_del_lru_list(page, page_lru(page));
	spin_unlock_irqrestore(&zone->lru_lock, flags);
K
KAMEZAWA Hiroyuki 已提交
1083 1084
}

1085
static void mem_cgroup_lru_add_after_commit(struct page *page)
1086 1087 1088 1089 1090
{
	unsigned long flags;
	struct zone *zone = page_zone(page);
	struct page_cgroup *pc = lookup_page_cgroup(page);

1091 1092 1093
	/* taking care of that the page is added to LRU while we commit it */
	if (likely(!PageLRU(page)))
		return;
1094 1095
	spin_lock_irqsave(&zone->lru_lock, flags);
	/* link when the page is linked to LRU but page_cgroup isn't */
1096
	if (PageLRU(page) && !PageCgroupAcctLRU(pc))
1097 1098 1099 1100 1101
		mem_cgroup_add_lru_list(page, page_lru(page));
	spin_unlock_irqrestore(&zone->lru_lock, flags);
}


K
KAMEZAWA Hiroyuki 已提交
1102 1103 1104
void mem_cgroup_move_lists(struct page *page,
			   enum lru_list from, enum lru_list to)
{
1105
	if (mem_cgroup_disabled())
K
KAMEZAWA Hiroyuki 已提交
1106 1107 1108
		return;
	mem_cgroup_del_lru_list(page, from);
	mem_cgroup_add_lru_list(page, to);
1109 1110
}

1111 1112 1113
int task_in_mem_cgroup(struct task_struct *task, const struct mem_cgroup *mem)
{
	int ret;
1114
	struct mem_cgroup *curr = NULL;
1115
	struct task_struct *p;
1116

1117 1118 1119 1120 1121
	p = find_lock_task_mm(task);
	if (!p)
		return 0;
	curr = try_get_mem_cgroup_from_mm(p->mm);
	task_unlock(p);
1122 1123
	if (!curr)
		return 0;
1124 1125 1126 1127 1128 1129 1130
	/*
	 * We should check use_hierarchy of "mem" not "curr". Because checking
	 * use_hierarchy of "curr" here make this function true if hierarchy is
	 * enabled in "curr" and "curr" is a child of "mem" in *cgroup*
	 * hierarchy(even if use_hierarchy is disabled in "mem").
	 */
	if (mem->use_hierarchy)
1131 1132 1133 1134
		ret = css_is_ancestor(&curr->css, &mem->css);
	else
		ret = (curr == mem);
	css_put(&curr->css);
1135 1136 1137
	return ret;
}

1138
static int calc_inactive_ratio(struct mem_cgroup *memcg, unsigned long *present_pages)
1139 1140 1141
{
	unsigned long active;
	unsigned long inactive;
1142 1143
	unsigned long gb;
	unsigned long inactive_ratio;
1144

1145 1146
	inactive = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_INACTIVE_ANON));
	active = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_ACTIVE_ANON));
1147

1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174
	gb = (inactive + active) >> (30 - PAGE_SHIFT);
	if (gb)
		inactive_ratio = int_sqrt(10 * gb);
	else
		inactive_ratio = 1;

	if (present_pages) {
		present_pages[0] = inactive;
		present_pages[1] = active;
	}

	return inactive_ratio;
}

int mem_cgroup_inactive_anon_is_low(struct mem_cgroup *memcg)
{
	unsigned long active;
	unsigned long inactive;
	unsigned long present_pages[2];
	unsigned long inactive_ratio;

	inactive_ratio = calc_inactive_ratio(memcg, present_pages);

	inactive = present_pages[0];
	active = present_pages[1];

	if (inactive * inactive_ratio < active)
1175 1176 1177 1178 1179
		return 1;

	return 0;
}

1180 1181 1182 1183 1184
int mem_cgroup_inactive_file_is_low(struct mem_cgroup *memcg)
{
	unsigned long active;
	unsigned long inactive;

1185 1186
	inactive = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_INACTIVE_FILE));
	active = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_ACTIVE_FILE));
1187 1188 1189 1190

	return (active > inactive);
}

K
KOSAKI Motohiro 已提交
1191 1192 1193
struct zone_reclaim_stat *mem_cgroup_get_reclaim_stat(struct mem_cgroup *memcg,
						      struct zone *zone)
{
1194
	int nid = zone_to_nid(zone);
K
KOSAKI Motohiro 已提交
1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210
	int zid = zone_idx(zone);
	struct mem_cgroup_per_zone *mz = mem_cgroup_zoneinfo(memcg, nid, zid);

	return &mz->reclaim_stat;
}

struct zone_reclaim_stat *
mem_cgroup_get_reclaim_stat_from_page(struct page *page)
{
	struct page_cgroup *pc;
	struct mem_cgroup_per_zone *mz;

	if (mem_cgroup_disabled())
		return NULL;

	pc = lookup_page_cgroup(page);
1211 1212
	if (!PageCgroupUsed(pc))
		return NULL;
1213 1214
	/* Ensure pc->mem_cgroup is visible after reading PCG_USED. */
	smp_rmb();
1215
	mz = page_cgroup_zoneinfo(pc->mem_cgroup, page);
K
KOSAKI Motohiro 已提交
1216 1217 1218
	return &mz->reclaim_stat;
}

1219 1220 1221 1222 1223
unsigned long mem_cgroup_isolate_pages(unsigned long nr_to_scan,
					struct list_head *dst,
					unsigned long *scanned, int order,
					int mode, struct zone *z,
					struct mem_cgroup *mem_cont,
1224
					int active, int file)
1225 1226 1227 1228 1229 1230
{
	unsigned long nr_taken = 0;
	struct page *page;
	unsigned long scan;
	LIST_HEAD(pc_list);
	struct list_head *src;
1231
	struct page_cgroup *pc, *tmp;
1232
	int nid = zone_to_nid(z);
1233 1234
	int zid = zone_idx(z);
	struct mem_cgroup_per_zone *mz;
1235
	int lru = LRU_FILE * file + active;
1236
	int ret;
1237

1238
	BUG_ON(!mem_cont);
1239
	mz = mem_cgroup_zoneinfo(mem_cont, nid, zid);
1240
	src = &mz->lists[lru];
1241

1242 1243
	scan = 0;
	list_for_each_entry_safe_reverse(pc, tmp, src, lru) {
H
Hugh Dickins 已提交
1244
		if (scan >= nr_to_scan)
1245
			break;
K
KAMEZAWA Hiroyuki 已提交
1246

1247 1248
		if (unlikely(!PageCgroupUsed(pc)))
			continue;
1249

1250
		page = lookup_cgroup_page(pc);
1251

H
Hugh Dickins 已提交
1252
		if (unlikely(!PageLRU(page)))
1253 1254
			continue;

H
Hugh Dickins 已提交
1255
		scan++;
1256 1257 1258
		ret = __isolate_lru_page(page, mode, file);
		switch (ret) {
		case 0:
1259
			list_move(&page->lru, dst);
1260
			mem_cgroup_del_lru(page);
1261
			nr_taken += hpage_nr_pages(page);
1262 1263 1264 1265 1266 1267 1268
			break;
		case -EBUSY:
			/* we don't affect global LRU but rotate in our LRU */
			mem_cgroup_rotate_lru_list(page, page_lru(page));
			break;
		default:
			break;
1269 1270 1271 1272
		}
	}

	*scanned = scan;
1273 1274 1275 1276

	trace_mm_vmscan_memcg_isolate(0, nr_to_scan, scan, nr_taken,
				      0, 0, 0, mode);

1277 1278 1279
	return nr_taken;
}

1280 1281 1282
#define mem_cgroup_from_res_counter(counter, member)	\
	container_of(counter, struct mem_cgroup, member)

1283
/**
1284 1285
 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
 * @mem: the memory cgroup
1286
 *
1287
 * Returns the maximum amount of memory @mem can be charged with, in
1288
 * pages.
1289
 */
1290
static unsigned long mem_cgroup_margin(struct mem_cgroup *mem)
1291
{
1292 1293 1294 1295 1296
	unsigned long long margin;

	margin = res_counter_margin(&mem->res);
	if (do_swap_account)
		margin = min(margin, res_counter_margin(&mem->memsw));
1297
	return margin >> PAGE_SHIFT;
1298 1299
}

1300
int mem_cgroup_swappiness(struct mem_cgroup *memcg)
K
KOSAKI Motohiro 已提交
1301 1302 1303 1304 1305 1306 1307
{
	struct cgroup *cgrp = memcg->css.cgroup;

	/* root ? */
	if (cgrp->parent == NULL)
		return vm_swappiness;

1308
	return memcg->swappiness;
K
KOSAKI Motohiro 已提交
1309 1310
}

1311 1312 1313
static void mem_cgroup_start_move(struct mem_cgroup *mem)
{
	int cpu;
1314 1315 1316 1317

	get_online_cpus();
	spin_lock(&mem->pcp_counter_lock);
	for_each_online_cpu(cpu)
1318
		per_cpu(mem->stat->count[MEM_CGROUP_ON_MOVE], cpu) += 1;
1319 1320 1321
	mem->nocpu_base.count[MEM_CGROUP_ON_MOVE] += 1;
	spin_unlock(&mem->pcp_counter_lock);
	put_online_cpus();
1322 1323 1324 1325 1326 1327 1328 1329 1330 1331

	synchronize_rcu();
}

static void mem_cgroup_end_move(struct mem_cgroup *mem)
{
	int cpu;

	if (!mem)
		return;
1332 1333 1334
	get_online_cpus();
	spin_lock(&mem->pcp_counter_lock);
	for_each_online_cpu(cpu)
1335
		per_cpu(mem->stat->count[MEM_CGROUP_ON_MOVE], cpu) -= 1;
1336 1337 1338
	mem->nocpu_base.count[MEM_CGROUP_ON_MOVE] -= 1;
	spin_unlock(&mem->pcp_counter_lock);
	put_online_cpus();
1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356
}
/*
 * 2 routines for checking "mem" is under move_account() or not.
 *
 * mem_cgroup_stealed() - checking a cgroup is mc.from or not. This is used
 *			  for avoiding race in accounting. If true,
 *			  pc->mem_cgroup may be overwritten.
 *
 * mem_cgroup_under_move() - checking a cgroup is mc.from or mc.to or
 *			  under hierarchy of moving cgroups. This is for
 *			  waiting at hith-memory prressure caused by "move".
 */

static bool mem_cgroup_stealed(struct mem_cgroup *mem)
{
	VM_BUG_ON(!rcu_read_lock_held());
	return this_cpu_read(mem->stat->count[MEM_CGROUP_ON_MOVE]) > 0;
}
1357 1358 1359

static bool mem_cgroup_under_move(struct mem_cgroup *mem)
{
1360 1361
	struct mem_cgroup *from;
	struct mem_cgroup *to;
1362
	bool ret = false;
1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377
	/*
	 * Unlike task_move routines, we access mc.to, mc.from not under
	 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
	 */
	spin_lock(&mc.lock);
	from = mc.from;
	to = mc.to;
	if (!from)
		goto unlock;
	if (from == mem || to == mem
	    || (mem->use_hierarchy && css_is_ancestor(&from->css, &mem->css))
	    || (mem->use_hierarchy && css_is_ancestor(&to->css,	&mem->css)))
		ret = true;
unlock:
	spin_unlock(&mc.lock);
1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396
	return ret;
}

static bool mem_cgroup_wait_acct_move(struct mem_cgroup *mem)
{
	if (mc.moving_task && current != mc.moving_task) {
		if (mem_cgroup_under_move(mem)) {
			DEFINE_WAIT(wait);
			prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
			/* moving charge context might have finished. */
			if (mc.moving_task)
				schedule();
			finish_wait(&mc.waitq, &wait);
			return true;
		}
	}
	return false;
}

1397
/**
1398
 * mem_cgroup_print_oom_info: Called from OOM with tasklist_lock held in read mode.
1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416
 * @memcg: The memory cgroup that went over limit
 * @p: Task that is going to be killed
 *
 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
 * enabled
 */
void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
{
	struct cgroup *task_cgrp;
	struct cgroup *mem_cgrp;
	/*
	 * Need a buffer in BSS, can't rely on allocations. The code relies
	 * on the assumption that OOM is serialized for memory controller.
	 * If this assumption is broken, revisit this code.
	 */
	static char memcg_name[PATH_MAX];
	int ret;

1417
	if (!memcg || !p)
1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463
		return;


	rcu_read_lock();

	mem_cgrp = memcg->css.cgroup;
	task_cgrp = task_cgroup(p, mem_cgroup_subsys_id);

	ret = cgroup_path(task_cgrp, memcg_name, PATH_MAX);
	if (ret < 0) {
		/*
		 * Unfortunately, we are unable to convert to a useful name
		 * But we'll still print out the usage information
		 */
		rcu_read_unlock();
		goto done;
	}
	rcu_read_unlock();

	printk(KERN_INFO "Task in %s killed", memcg_name);

	rcu_read_lock();
	ret = cgroup_path(mem_cgrp, memcg_name, PATH_MAX);
	if (ret < 0) {
		rcu_read_unlock();
		goto done;
	}
	rcu_read_unlock();

	/*
	 * Continues from above, so we don't need an KERN_ level
	 */
	printk(KERN_CONT " as a result of limit of %s\n", memcg_name);
done:

	printk(KERN_INFO "memory: usage %llukB, limit %llukB, failcnt %llu\n",
		res_counter_read_u64(&memcg->res, RES_USAGE) >> 10,
		res_counter_read_u64(&memcg->res, RES_LIMIT) >> 10,
		res_counter_read_u64(&memcg->res, RES_FAILCNT));
	printk(KERN_INFO "memory+swap: usage %llukB, limit %llukB, "
		"failcnt %llu\n",
		res_counter_read_u64(&memcg->memsw, RES_USAGE) >> 10,
		res_counter_read_u64(&memcg->memsw, RES_LIMIT) >> 10,
		res_counter_read_u64(&memcg->memsw, RES_FAILCNT));
}

1464 1465 1466 1467 1468 1469 1470
/*
 * This function returns the number of memcg under hierarchy tree. Returns
 * 1(self count) if no children.
 */
static int mem_cgroup_count_children(struct mem_cgroup *mem)
{
	int num = 0;
K
KAMEZAWA Hiroyuki 已提交
1471 1472 1473 1474
	struct mem_cgroup *iter;

	for_each_mem_cgroup_tree(iter, mem)
		num++;
1475 1476 1477
	return num;
}

D
David Rientjes 已提交
1478 1479 1480 1481 1482 1483 1484 1485
/*
 * Return the memory (and swap, if configured) limit for a memcg.
 */
u64 mem_cgroup_get_limit(struct mem_cgroup *memcg)
{
	u64 limit;
	u64 memsw;

1486 1487 1488
	limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
	limit += total_swap_pages << PAGE_SHIFT;

D
David Rientjes 已提交
1489 1490 1491 1492 1493 1494 1495 1496
	memsw = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
	/*
	 * If memsw is finite and limits the amount of swap space available
	 * to this memcg, return that limit.
	 */
	return min(limit, memsw);
}

1497
/*
K
KAMEZAWA Hiroyuki 已提交
1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533
 * Visit the first child (need not be the first child as per the ordering
 * of the cgroup list, since we track last_scanned_child) of @mem and use
 * that to reclaim free pages from.
 */
static struct mem_cgroup *
mem_cgroup_select_victim(struct mem_cgroup *root_mem)
{
	struct mem_cgroup *ret = NULL;
	struct cgroup_subsys_state *css;
	int nextid, found;

	if (!root_mem->use_hierarchy) {
		css_get(&root_mem->css);
		ret = root_mem;
	}

	while (!ret) {
		rcu_read_lock();
		nextid = root_mem->last_scanned_child + 1;
		css = css_get_next(&mem_cgroup_subsys, nextid, &root_mem->css,
				   &found);
		if (css && css_tryget(css))
			ret = container_of(css, struct mem_cgroup, css);

		rcu_read_unlock();
		/* Updates scanning parameter */
		if (!css) {
			/* this means start scan from ID:1 */
			root_mem->last_scanned_child = 0;
		} else
			root_mem->last_scanned_child = found;
	}

	return ret;
}

1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546
/**
 * test_mem_cgroup_node_reclaimable
 * @mem: the target memcg
 * @nid: the node ID to be checked.
 * @noswap : specify true here if the user wants flle only information.
 *
 * This function returns whether the specified memcg contains any
 * reclaimable pages on a node. Returns true if there are any reclaimable
 * pages in the node.
 */
static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *mem,
		int nid, bool noswap)
{
1547
	if (mem_cgroup_node_nr_lru_pages(mem, nid, LRU_ALL_FILE))
1548 1549 1550
		return true;
	if (noswap || !total_swap_pages)
		return false;
1551
	if (mem_cgroup_node_nr_lru_pages(mem, nid, LRU_ALL_ANON))
1552 1553 1554 1555
		return true;
	return false;

}
1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566
#if MAX_NUMNODES > 1

/*
 * Always updating the nodemask is not very good - even if we have an empty
 * list or the wrong list here, we can start from some node and traverse all
 * nodes based on the zonelist. So update the list loosely once per 10 secs.
 *
 */
static void mem_cgroup_may_update_nodemask(struct mem_cgroup *mem)
{
	int nid;
1567 1568 1569 1570 1571 1572 1573
	/*
	 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
	 * pagein/pageout changes since the last update.
	 */
	if (!atomic_read(&mem->numainfo_events))
		return;
	if (atomic_inc_return(&mem->numainfo_updating) > 1)
1574 1575 1576 1577 1578 1579 1580
		return;

	/* make a nodemask where this memcg uses memory from */
	mem->scan_nodes = node_states[N_HIGH_MEMORY];

	for_each_node_mask(nid, node_states[N_HIGH_MEMORY]) {

1581 1582
		if (!test_mem_cgroup_node_reclaimable(mem, nid, false))
			node_clear(nid, mem->scan_nodes);
1583
	}
1584 1585 1586

	atomic_set(&mem->numainfo_events, 0);
	atomic_set(&mem->numainfo_updating, 0);
1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623
}

/*
 * Selecting a node where we start reclaim from. Because what we need is just
 * reducing usage counter, start from anywhere is O,K. Considering
 * memory reclaim from current node, there are pros. and cons.
 *
 * Freeing memory from current node means freeing memory from a node which
 * we'll use or we've used. So, it may make LRU bad. And if several threads
 * hit limits, it will see a contention on a node. But freeing from remote
 * node means more costs for memory reclaim because of memory latency.
 *
 * Now, we use round-robin. Better algorithm is welcomed.
 */
int mem_cgroup_select_victim_node(struct mem_cgroup *mem)
{
	int node;

	mem_cgroup_may_update_nodemask(mem);
	node = mem->last_scanned_node;

	node = next_node(node, mem->scan_nodes);
	if (node == MAX_NUMNODES)
		node = first_node(mem->scan_nodes);
	/*
	 * We call this when we hit limit, not when pages are added to LRU.
	 * No LRU may hold pages because all pages are UNEVICTABLE or
	 * memcg is too small and all pages are not on LRU. In that case,
	 * we use curret node.
	 */
	if (unlikely(node == MAX_NUMNODES))
		node = numa_node_id();

	mem->last_scanned_node = node;
	return node;
}

1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658
/*
 * Check all nodes whether it contains reclaimable pages or not.
 * For quick scan, we make use of scan_nodes. This will allow us to skip
 * unused nodes. But scan_nodes is lazily updated and may not cotain
 * enough new information. We need to do double check.
 */
bool mem_cgroup_reclaimable(struct mem_cgroup *mem, bool noswap)
{
	int nid;

	/*
	 * quick check...making use of scan_node.
	 * We can skip unused nodes.
	 */
	if (!nodes_empty(mem->scan_nodes)) {
		for (nid = first_node(mem->scan_nodes);
		     nid < MAX_NUMNODES;
		     nid = next_node(nid, mem->scan_nodes)) {

			if (test_mem_cgroup_node_reclaimable(mem, nid, noswap))
				return true;
		}
	}
	/*
	 * Check rest of nodes.
	 */
	for_each_node_state(nid, N_HIGH_MEMORY) {
		if (node_isset(nid, mem->scan_nodes))
			continue;
		if (test_mem_cgroup_node_reclaimable(mem, nid, noswap))
			return true;
	}
	return false;
}

1659 1660 1661 1662 1663
#else
int mem_cgroup_select_victim_node(struct mem_cgroup *mem)
{
	return 0;
}
1664 1665 1666 1667 1668

bool mem_cgroup_reclaimable(struct mem_cgroup *mem, bool noswap)
{
	return test_mem_cgroup_node_reclaimable(mem, 0, noswap);
}
1669 1670
#endif

1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708
static void __mem_cgroup_record_scanstat(unsigned long *stats,
			   struct memcg_scanrecord *rec)
{

	stats[SCAN] += rec->nr_scanned[0] + rec->nr_scanned[1];
	stats[SCAN_ANON] += rec->nr_scanned[0];
	stats[SCAN_FILE] += rec->nr_scanned[1];

	stats[ROTATE] += rec->nr_rotated[0] + rec->nr_rotated[1];
	stats[ROTATE_ANON] += rec->nr_rotated[0];
	stats[ROTATE_FILE] += rec->nr_rotated[1];

	stats[FREED] += rec->nr_freed[0] + rec->nr_freed[1];
	stats[FREED_ANON] += rec->nr_freed[0];
	stats[FREED_FILE] += rec->nr_freed[1];

	stats[ELAPSED] += rec->elapsed;
}

static void mem_cgroup_record_scanstat(struct memcg_scanrecord *rec)
{
	struct mem_cgroup *mem;
	int context = rec->context;

	if (context >= NR_SCAN_CONTEXT)
		return;

	mem = rec->mem;
	spin_lock(&mem->scanstat.lock);
	__mem_cgroup_record_scanstat(mem->scanstat.stats[context], rec);
	spin_unlock(&mem->scanstat.lock);

	mem = rec->root;
	spin_lock(&mem->scanstat.lock);
	__mem_cgroup_record_scanstat(mem->scanstat.rootstats[context], rec);
	spin_unlock(&mem->scanstat.lock);
}

K
KAMEZAWA Hiroyuki 已提交
1709 1710 1711 1712
/*
 * Scan the hierarchy if needed to reclaim memory. We remember the last child
 * we reclaimed from, so that we don't end up penalizing one child extensively
 * based on its position in the children list.
1713 1714
 *
 * root_mem is the original ancestor that we've been reclaim from.
K
KAMEZAWA Hiroyuki 已提交
1715 1716 1717
 *
 * We give up and return to the caller when we visit root_mem twice.
 * (other groups can be removed while we're walking....)
1718 1719
 *
 * If shrink==true, for avoiding to free too much, this returns immedieately.
1720 1721
 */
static int mem_cgroup_hierarchical_reclaim(struct mem_cgroup *root_mem,
1722
						struct zone *zone,
1723
						gfp_t gfp_mask,
1724 1725
						unsigned long reclaim_options,
						unsigned long *total_scanned)
1726
{
K
KAMEZAWA Hiroyuki 已提交
1727 1728 1729
	struct mem_cgroup *victim;
	int ret, total = 0;
	int loop = 0;
1730 1731
	bool noswap = reclaim_options & MEM_CGROUP_RECLAIM_NOSWAP;
	bool shrink = reclaim_options & MEM_CGROUP_RECLAIM_SHRINK;
1732
	bool check_soft = reclaim_options & MEM_CGROUP_RECLAIM_SOFT;
1733
	struct memcg_scanrecord rec;
1734
	unsigned long excess;
1735
	unsigned long scanned;
1736 1737

	excess = res_counter_soft_limit_excess(&root_mem->res) >> PAGE_SHIFT;
K
KAMEZAWA Hiroyuki 已提交
1738

1739
	/* If memsw_is_minimum==1, swap-out is of-no-use. */
1740
	if (!check_soft && !shrink && root_mem->memsw_is_minimum)
1741 1742
		noswap = true;

1743 1744 1745 1746 1747 1748 1749 1750 1751
	if (shrink)
		rec.context = SCAN_BY_SHRINK;
	else if (check_soft)
		rec.context = SCAN_BY_SYSTEM;
	else
		rec.context = SCAN_BY_LIMIT;

	rec.root = root_mem;

1752
	while (1) {
K
KAMEZAWA Hiroyuki 已提交
1753
		victim = mem_cgroup_select_victim(root_mem);
1754
		if (victim == root_mem) {
K
KAMEZAWA Hiroyuki 已提交
1755
			loop++;
1756 1757 1758 1759 1760 1761 1762
			/*
			 * We are not draining per cpu cached charges during
			 * soft limit reclaim  because global reclaim doesn't
			 * care about charges. It tries to free some memory and
			 * charges will not give any.
			 */
			if (!check_soft && loop >= 1)
1763
				drain_all_stock_async(root_mem);
1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774
			if (loop >= 2) {
				/*
				 * If we have not been able to reclaim
				 * anything, it might because there are
				 * no reclaimable pages under this hierarchy
				 */
				if (!check_soft || !total) {
					css_put(&victim->css);
					break;
				}
				/*
L
Lucas De Marchi 已提交
1775
				 * We want to do more targeted reclaim.
1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786
				 * excess >> 2 is not to excessive so as to
				 * reclaim too much, nor too less that we keep
				 * coming back to reclaim from this cgroup
				 */
				if (total >= (excess >> 2) ||
					(loop > MEM_CGROUP_MAX_RECLAIM_LOOPS)) {
					css_put(&victim->css);
					break;
				}
			}
		}
1787
		if (!mem_cgroup_reclaimable(victim, noswap)) {
K
KAMEZAWA Hiroyuki 已提交
1788 1789
			/* this cgroup's local usage == 0 */
			css_put(&victim->css);
1790 1791
			continue;
		}
1792 1793 1794 1795 1796 1797 1798 1799
		rec.mem = victim;
		rec.nr_scanned[0] = 0;
		rec.nr_scanned[1] = 0;
		rec.nr_rotated[0] = 0;
		rec.nr_rotated[1] = 0;
		rec.nr_freed[0] = 0;
		rec.nr_freed[1] = 0;
		rec.elapsed = 0;
K
KAMEZAWA Hiroyuki 已提交
1800
		/* we use swappiness of local cgroup */
1801
		if (check_soft) {
1802
			ret = mem_cgroup_shrink_node_zone(victim, gfp_mask,
1803 1804
				noswap, zone, &rec, &scanned);
			*total_scanned += scanned;
1805
		} else
1806
			ret = try_to_free_mem_cgroup_pages(victim, gfp_mask,
1807 1808
						noswap, &rec);
		mem_cgroup_record_scanstat(&rec);
K
KAMEZAWA Hiroyuki 已提交
1809
		css_put(&victim->css);
1810 1811 1812 1813 1814 1815 1816
		/*
		 * At shrinking usage, we can't check we should stop here or
		 * reclaim more. It's depends on callers. last_scanned_child
		 * will work enough for keeping fairness under tree.
		 */
		if (shrink)
			return ret;
K
KAMEZAWA Hiroyuki 已提交
1817
		total += ret;
1818
		if (check_soft) {
1819
			if (!res_counter_soft_limit_excess(&root_mem->res))
1820
				return total;
1821
		} else if (mem_cgroup_margin(root_mem))
1822
			return total;
1823
	}
K
KAMEZAWA Hiroyuki 已提交
1824
	return total;
1825 1826
}

K
KAMEZAWA Hiroyuki 已提交
1827 1828 1829
/*
 * Check OOM-Killer is already running under our hierarchy.
 * If someone is running, return false.
1830
 * Has to be called with memcg_oom_lock
K
KAMEZAWA Hiroyuki 已提交
1831 1832 1833
 */
static bool mem_cgroup_oom_lock(struct mem_cgroup *mem)
{
1834 1835 1836
	int lock_count = -1;
	struct mem_cgroup *iter, *failed = NULL;
	bool cond = true;
1837

1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852
	for_each_mem_cgroup_tree_cond(iter, mem, cond) {
		bool locked = iter->oom_lock;

		iter->oom_lock = true;
		if (lock_count == -1)
			lock_count = iter->oom_lock;
		else if (lock_count != locked) {
			/*
			 * this subtree of our hierarchy is already locked
			 * so we cannot give a lock.
			 */
			lock_count = 0;
			failed = iter;
			cond = false;
		}
K
KAMEZAWA Hiroyuki 已提交
1853
	}
K
KAMEZAWA Hiroyuki 已提交
1854

1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871
	if (!failed)
		goto done;

	/*
	 * OK, we failed to lock the whole subtree so we have to clean up
	 * what we set up to the failing subtree
	 */
	cond = true;
	for_each_mem_cgroup_tree_cond(iter, mem, cond) {
		if (iter == failed) {
			cond = false;
			continue;
		}
		iter->oom_lock = false;
	}
done:
	return lock_count;
1872
}
1873

1874
/*
1875
 * Has to be called with memcg_oom_lock
1876
 */
K
KAMEZAWA Hiroyuki 已提交
1877
static int mem_cgroup_oom_unlock(struct mem_cgroup *mem)
1878
{
K
KAMEZAWA Hiroyuki 已提交
1879 1880
	struct mem_cgroup *iter;

1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897
	for_each_mem_cgroup_tree(iter, mem)
		iter->oom_lock = false;
	return 0;
}

static void mem_cgroup_mark_under_oom(struct mem_cgroup *mem)
{
	struct mem_cgroup *iter;

	for_each_mem_cgroup_tree(iter, mem)
		atomic_inc(&iter->under_oom);
}

static void mem_cgroup_unmark_under_oom(struct mem_cgroup *mem)
{
	struct mem_cgroup *iter;

K
KAMEZAWA Hiroyuki 已提交
1898 1899 1900 1901 1902
	/*
	 * When a new child is created while the hierarchy is under oom,
	 * mem_cgroup_oom_lock() may not be called. We have to use
	 * atomic_add_unless() here.
	 */
K
KAMEZAWA Hiroyuki 已提交
1903
	for_each_mem_cgroup_tree(iter, mem)
1904
		atomic_add_unless(&iter->under_oom, -1, 0);
1905 1906
}

1907
static DEFINE_SPINLOCK(memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
1908 1909
static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);

K
KAMEZAWA Hiroyuki 已提交
1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945
struct oom_wait_info {
	struct mem_cgroup *mem;
	wait_queue_t	wait;
};

static int memcg_oom_wake_function(wait_queue_t *wait,
	unsigned mode, int sync, void *arg)
{
	struct mem_cgroup *wake_mem = (struct mem_cgroup *)arg;
	struct oom_wait_info *oom_wait_info;

	oom_wait_info = container_of(wait, struct oom_wait_info, wait);

	if (oom_wait_info->mem == wake_mem)
		goto wakeup;
	/* if no hierarchy, no match */
	if (!oom_wait_info->mem->use_hierarchy || !wake_mem->use_hierarchy)
		return 0;
	/*
	 * Both of oom_wait_info->mem and wake_mem are stable under us.
	 * Then we can use css_is_ancestor without taking care of RCU.
	 */
	if (!css_is_ancestor(&oom_wait_info->mem->css, &wake_mem->css) &&
	    !css_is_ancestor(&wake_mem->css, &oom_wait_info->mem->css))
		return 0;

wakeup:
	return autoremove_wake_function(wait, mode, sync, arg);
}

static void memcg_wakeup_oom(struct mem_cgroup *mem)
{
	/* for filtering, pass "mem" as argument. */
	__wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, mem);
}

1946 1947
static void memcg_oom_recover(struct mem_cgroup *mem)
{
1948
	if (mem && atomic_read(&mem->under_oom))
1949 1950 1951
		memcg_wakeup_oom(mem);
}

K
KAMEZAWA Hiroyuki 已提交
1952 1953 1954 1955
/*
 * try to call OOM killer. returns false if we should exit memory-reclaim loop.
 */
bool mem_cgroup_handle_oom(struct mem_cgroup *mem, gfp_t mask)
1956
{
K
KAMEZAWA Hiroyuki 已提交
1957
	struct oom_wait_info owait;
1958
	bool locked, need_to_kill;
K
KAMEZAWA Hiroyuki 已提交
1959

K
KAMEZAWA Hiroyuki 已提交
1960 1961 1962 1963 1964
	owait.mem = mem;
	owait.wait.flags = 0;
	owait.wait.func = memcg_oom_wake_function;
	owait.wait.private = current;
	INIT_LIST_HEAD(&owait.wait.task_list);
1965
	need_to_kill = true;
1966 1967
	mem_cgroup_mark_under_oom(mem);

K
KAMEZAWA Hiroyuki 已提交
1968
	/* At first, try to OOM lock hierarchy under mem.*/
1969
	spin_lock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
1970 1971 1972 1973 1974 1975
	locked = mem_cgroup_oom_lock(mem);
	/*
	 * Even if signal_pending(), we can't quit charge() loop without
	 * accounting. So, UNINTERRUPTIBLE is appropriate. But SIGKILL
	 * under OOM is always welcomed, use TASK_KILLABLE here.
	 */
1976 1977 1978 1979
	prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
	if (!locked || mem->oom_kill_disable)
		need_to_kill = false;
	if (locked)
K
KAMEZAWA Hiroyuki 已提交
1980
		mem_cgroup_oom_notify(mem);
1981
	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
1982

1983 1984
	if (need_to_kill) {
		finish_wait(&memcg_oom_waitq, &owait.wait);
K
KAMEZAWA Hiroyuki 已提交
1985
		mem_cgroup_out_of_memory(mem, mask);
1986
	} else {
K
KAMEZAWA Hiroyuki 已提交
1987
		schedule();
K
KAMEZAWA Hiroyuki 已提交
1988
		finish_wait(&memcg_oom_waitq, &owait.wait);
K
KAMEZAWA Hiroyuki 已提交
1989
	}
1990
	spin_lock(&memcg_oom_lock);
1991 1992
	if (locked)
		mem_cgroup_oom_unlock(mem);
K
KAMEZAWA Hiroyuki 已提交
1993
	memcg_wakeup_oom(mem);
1994
	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
1995

1996 1997
	mem_cgroup_unmark_under_oom(mem);

K
KAMEZAWA Hiroyuki 已提交
1998 1999 2000 2001 2002
	if (test_thread_flag(TIF_MEMDIE) || fatal_signal_pending(current))
		return false;
	/* Give chance to dying process */
	schedule_timeout(1);
	return true;
2003 2004
}

2005 2006 2007
/*
 * Currently used to update mapped file statistics, but the routine can be
 * generalized to update other statistics as well.
2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026
 *
 * Notes: Race condition
 *
 * We usually use page_cgroup_lock() for accessing page_cgroup member but
 * it tends to be costly. But considering some conditions, we doesn't need
 * to do so _always_.
 *
 * Considering "charge", lock_page_cgroup() is not required because all
 * file-stat operations happen after a page is attached to radix-tree. There
 * are no race with "charge".
 *
 * Considering "uncharge", we know that memcg doesn't clear pc->mem_cgroup
 * at "uncharge" intentionally. So, we always see valid pc->mem_cgroup even
 * if there are race with "uncharge". Statistics itself is properly handled
 * by flags.
 *
 * Considering "move", this is an only case we see a race. To make the race
 * small, we check MEM_CGROUP_ON_MOVE percpu value and detect there are
 * possibility of race condition. If there is, we take a lock.
2027
 */
2028

2029 2030
void mem_cgroup_update_page_stat(struct page *page,
				 enum mem_cgroup_page_stat_item idx, int val)
2031 2032
{
	struct mem_cgroup *mem;
2033 2034
	struct page_cgroup *pc = lookup_page_cgroup(page);
	bool need_unlock = false;
2035
	unsigned long uninitialized_var(flags);
2036 2037 2038 2039

	if (unlikely(!pc))
		return;

2040
	rcu_read_lock();
2041
	mem = pc->mem_cgroup;
2042 2043 2044
	if (unlikely(!mem || !PageCgroupUsed(pc)))
		goto out;
	/* pc->mem_cgroup is unstable ? */
2045
	if (unlikely(mem_cgroup_stealed(mem)) || PageTransHuge(page)) {
2046
		/* take a lock against to access pc->mem_cgroup */
2047
		move_lock_page_cgroup(pc, &flags);
2048 2049 2050 2051 2052
		need_unlock = true;
		mem = pc->mem_cgroup;
		if (!mem || !PageCgroupUsed(pc))
			goto out;
	}
2053 2054

	switch (idx) {
2055
	case MEMCG_NR_FILE_MAPPED:
2056 2057 2058
		if (val > 0)
			SetPageCgroupFileMapped(pc);
		else if (!page_mapped(page))
2059
			ClearPageCgroupFileMapped(pc);
2060
		idx = MEM_CGROUP_STAT_FILE_MAPPED;
2061 2062 2063
		break;
	default:
		BUG();
2064
	}
2065

2066 2067
	this_cpu_add(mem->stat->count[idx], val);

2068 2069
out:
	if (unlikely(need_unlock))
2070
		move_unlock_page_cgroup(pc, &flags);
2071 2072
	rcu_read_unlock();
	return;
2073
}
2074
EXPORT_SYMBOL(mem_cgroup_update_page_stat);
2075

2076 2077 2078 2079
/*
 * size of first charge trial. "32" comes from vmscan.c's magic value.
 * TODO: maybe necessary to use big numbers in big irons.
 */
2080
#define CHARGE_BATCH	32U
2081 2082
struct memcg_stock_pcp {
	struct mem_cgroup *cached; /* this never be root cgroup */
2083
	unsigned int nr_pages;
2084
	struct work_struct work;
2085 2086
	unsigned long flags;
#define FLUSHING_CACHED_CHARGE	(0)
2087 2088
};
static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
2089
static DEFINE_MUTEX(percpu_charge_mutex);
2090 2091

/*
2092
 * Try to consume stocked charge on this cpu. If success, one page is consumed
2093 2094 2095 2096 2097 2098 2099 2100 2101 2102
 * from local stock and true is returned. If the stock is 0 or charges from a
 * cgroup which is not current target, returns false. This stock will be
 * refilled.
 */
static bool consume_stock(struct mem_cgroup *mem)
{
	struct memcg_stock_pcp *stock;
	bool ret = true;

	stock = &get_cpu_var(memcg_stock);
2103 2104
	if (mem == stock->cached && stock->nr_pages)
		stock->nr_pages--;
2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117
	else /* need to call res_counter_charge */
		ret = false;
	put_cpu_var(memcg_stock);
	return ret;
}

/*
 * Returns stocks cached in percpu to res_counter and reset cached information.
 */
static void drain_stock(struct memcg_stock_pcp *stock)
{
	struct mem_cgroup *old = stock->cached;

2118 2119 2120 2121
	if (stock->nr_pages) {
		unsigned long bytes = stock->nr_pages * PAGE_SIZE;

		res_counter_uncharge(&old->res, bytes);
2122
		if (do_swap_account)
2123 2124
			res_counter_uncharge(&old->memsw, bytes);
		stock->nr_pages = 0;
2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136
	}
	stock->cached = NULL;
}

/*
 * This must be called under preempt disabled or must be called by
 * a thread which is pinned to local cpu.
 */
static void drain_local_stock(struct work_struct *dummy)
{
	struct memcg_stock_pcp *stock = &__get_cpu_var(memcg_stock);
	drain_stock(stock);
2137
	clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
2138 2139 2140 2141
}

/*
 * Cache charges(val) which is from res_counter, to local per_cpu area.
2142
 * This will be consumed by consume_stock() function, later.
2143
 */
2144
static void refill_stock(struct mem_cgroup *mem, unsigned int nr_pages)
2145 2146 2147 2148 2149 2150 2151
{
	struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);

	if (stock->cached != mem) { /* reset if necessary */
		drain_stock(stock);
		stock->cached = mem;
	}
2152
	stock->nr_pages += nr_pages;
2153 2154 2155 2156
	put_cpu_var(memcg_stock);
}

/*
2157 2158 2159
 * Drains all per-CPU charge caches for given root_mem resp. subtree
 * of the hierarchy under it. sync flag says whether we should block
 * until the work is done.
2160
 */
2161
static void drain_all_stock(struct mem_cgroup *root_mem, bool sync)
2162
{
2163
	int cpu, curcpu;
2164

2165 2166
	/* Notify other cpus that system-wide "drain" is running */
	get_online_cpus();
2167 2168 2169 2170 2171 2172 2173
	/*
	 * Get a hint for avoiding draining charges on the current cpu,
	 * which must be exhausted by our charging.  It is not required that
	 * this be a precise check, so we use raw_smp_processor_id() instead of
	 * getcpu()/putcpu().
	 */
	curcpu = raw_smp_processor_id();
2174 2175
	for_each_online_cpu(cpu) {
		struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2176 2177 2178
		struct mem_cgroup *mem;

		mem = stock->cached;
2179
		if (!mem || !stock->nr_pages)
2180 2181 2182 2183 2184 2185 2186 2187
			continue;
		if (mem != root_mem) {
			if (!root_mem->use_hierarchy)
				continue;
			/* check whether "mem" is under tree of "root_mem" */
			if (!css_is_ancestor(&mem->css, &root_mem->css))
				continue;
		}
2188 2189 2190 2191 2192 2193
		if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
			if (cpu == curcpu)
				drain_local_stock(&stock->work);
			else
				schedule_work_on(cpu, &stock->work);
		}
2194
	}
2195 2196 2197 2198 2199 2200 2201 2202 2203 2204

	if (!sync)
		goto out;

	for_each_online_cpu(cpu) {
		struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
		if (test_bit(FLUSHING_CACHED_CHARGE, &stock->flags))
			flush_work(&stock->work);
	}
out:
2205
 	put_online_cpus();
2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221
}

/*
 * Tries to drain stocked charges in other cpus. This function is asynchronous
 * and just put a work per cpu for draining localy on each cpu. Caller can
 * expects some charges will be back to res_counter later but cannot wait for
 * it.
 */
static void drain_all_stock_async(struct mem_cgroup *root_mem)
{
	/*
	 * If someone calls draining, avoid adding more kworker runs.
	 */
	if (!mutex_trylock(&percpu_charge_mutex))
		return;
	drain_all_stock(root_mem, false);
2222
	mutex_unlock(&percpu_charge_mutex);
2223 2224 2225
}

/* This is a synchronous drain interface. */
2226
static void drain_all_stock_sync(struct mem_cgroup *root_mem)
2227 2228
{
	/* called when force_empty is called */
2229
	mutex_lock(&percpu_charge_mutex);
2230
	drain_all_stock(root_mem, true);
2231
	mutex_unlock(&percpu_charge_mutex);
2232 2233
}

2234 2235 2236 2237 2238 2239 2240 2241 2242 2243
/*
 * This function drains percpu counter value from DEAD cpu and
 * move it to local cpu. Note that this function can be preempted.
 */
static void mem_cgroup_drain_pcp_counter(struct mem_cgroup *mem, int cpu)
{
	int i;

	spin_lock(&mem->pcp_counter_lock);
	for (i = 0; i < MEM_CGROUP_STAT_DATA; i++) {
2244
		long x = per_cpu(mem->stat->count[i], cpu);
2245 2246 2247 2248

		per_cpu(mem->stat->count[i], cpu) = 0;
		mem->nocpu_base.count[i] += x;
	}
2249 2250 2251 2252 2253 2254
	for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
		unsigned long x = per_cpu(mem->stat->events[i], cpu);

		per_cpu(mem->stat->events[i], cpu) = 0;
		mem->nocpu_base.events[i] += x;
	}
2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265
	/* need to clear ON_MOVE value, works as a kind of lock. */
	per_cpu(mem->stat->count[MEM_CGROUP_ON_MOVE], cpu) = 0;
	spin_unlock(&mem->pcp_counter_lock);
}

static void synchronize_mem_cgroup_on_move(struct mem_cgroup *mem, int cpu)
{
	int idx = MEM_CGROUP_ON_MOVE;

	spin_lock(&mem->pcp_counter_lock);
	per_cpu(mem->stat->count[idx], cpu) = mem->nocpu_base.count[idx];
2266 2267 2268 2269
	spin_unlock(&mem->pcp_counter_lock);
}

static int __cpuinit memcg_cpu_hotplug_callback(struct notifier_block *nb,
2270 2271 2272 2273 2274
					unsigned long action,
					void *hcpu)
{
	int cpu = (unsigned long)hcpu;
	struct memcg_stock_pcp *stock;
2275
	struct mem_cgroup *iter;
2276

2277 2278 2279 2280 2281 2282
	if ((action == CPU_ONLINE)) {
		for_each_mem_cgroup_all(iter)
			synchronize_mem_cgroup_on_move(iter, cpu);
		return NOTIFY_OK;
	}

2283
	if ((action != CPU_DEAD) || action != CPU_DEAD_FROZEN)
2284
		return NOTIFY_OK;
2285 2286 2287 2288

	for_each_mem_cgroup_all(iter)
		mem_cgroup_drain_pcp_counter(iter, cpu);

2289 2290 2291 2292 2293
	stock = &per_cpu(memcg_stock, cpu);
	drain_stock(stock);
	return NOTIFY_OK;
}

2294 2295 2296 2297 2298 2299 2300 2301 2302 2303

/* See __mem_cgroup_try_charge() for details */
enum {
	CHARGE_OK,		/* success */
	CHARGE_RETRY,		/* need to retry but retry is not bad */
	CHARGE_NOMEM,		/* we can't do more. return -ENOMEM */
	CHARGE_WOULDBLOCK,	/* GFP_WAIT wasn't set and no enough res. */
	CHARGE_OOM_DIE,		/* the current is killed because of OOM */
};

2304 2305
static int mem_cgroup_do_charge(struct mem_cgroup *mem, gfp_t gfp_mask,
				unsigned int nr_pages, bool oom_check)
2306
{
2307
	unsigned long csize = nr_pages * PAGE_SIZE;
2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321
	struct mem_cgroup *mem_over_limit;
	struct res_counter *fail_res;
	unsigned long flags = 0;
	int ret;

	ret = res_counter_charge(&mem->res, csize, &fail_res);

	if (likely(!ret)) {
		if (!do_swap_account)
			return CHARGE_OK;
		ret = res_counter_charge(&mem->memsw, csize, &fail_res);
		if (likely(!ret))
			return CHARGE_OK;

2322
		res_counter_uncharge(&mem->res, csize);
2323 2324 2325 2326
		mem_over_limit = mem_cgroup_from_res_counter(fail_res, memsw);
		flags |= MEM_CGROUP_RECLAIM_NOSWAP;
	} else
		mem_over_limit = mem_cgroup_from_res_counter(fail_res, res);
2327
	/*
2328 2329
	 * nr_pages can be either a huge page (HPAGE_PMD_NR), a batch
	 * of regular pages (CHARGE_BATCH), or a single regular page (1).
2330 2331 2332 2333
	 *
	 * Never reclaim on behalf of optional batching, retry with a
	 * single page instead.
	 */
2334
	if (nr_pages == CHARGE_BATCH)
2335 2336 2337 2338 2339 2340
		return CHARGE_RETRY;

	if (!(gfp_mask & __GFP_WAIT))
		return CHARGE_WOULDBLOCK;

	ret = mem_cgroup_hierarchical_reclaim(mem_over_limit, NULL,
2341
					      gfp_mask, flags, NULL);
2342
	if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
2343
		return CHARGE_RETRY;
2344
	/*
2345 2346 2347 2348 2349 2350 2351
	 * Even though the limit is exceeded at this point, reclaim
	 * may have been able to free some pages.  Retry the charge
	 * before killing the task.
	 *
	 * Only for regular pages, though: huge pages are rather
	 * unlikely to succeed so close to the limit, and we fall back
	 * to regular pages anyway in case of failure.
2352
	 */
2353
	if (nr_pages == 1 && ret)
2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372
		return CHARGE_RETRY;

	/*
	 * At task move, charge accounts can be doubly counted. So, it's
	 * better to wait until the end of task_move if something is going on.
	 */
	if (mem_cgroup_wait_acct_move(mem_over_limit))
		return CHARGE_RETRY;

	/* If we don't need to call oom-killer at el, return immediately */
	if (!oom_check)
		return CHARGE_NOMEM;
	/* check OOM */
	if (!mem_cgroup_handle_oom(mem_over_limit, gfp_mask))
		return CHARGE_OOM_DIE;

	return CHARGE_RETRY;
}

2373 2374 2375
/*
 * Unlike exported interface, "oom" parameter is added. if oom==true,
 * oom-killer can be invoked.
2376
 */
2377
static int __mem_cgroup_try_charge(struct mm_struct *mm,
A
Andrea Arcangeli 已提交
2378
				   gfp_t gfp_mask,
2379 2380 2381
				   unsigned int nr_pages,
				   struct mem_cgroup **memcg,
				   bool oom)
2382
{
2383
	unsigned int batch = max(CHARGE_BATCH, nr_pages);
2384 2385 2386
	int nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
	struct mem_cgroup *mem = NULL;
	int ret;
2387

K
KAMEZAWA Hiroyuki 已提交
2388 2389 2390 2391 2392 2393 2394 2395
	/*
	 * Unlike gloval-vm's OOM-kill, we're not in memory shortage
	 * in system level. So, allow to go ahead dying process in addition to
	 * MEMDIE process.
	 */
	if (unlikely(test_thread_flag(TIF_MEMDIE)
		     || fatal_signal_pending(current)))
		goto bypass;
2396

2397
	/*
2398 2399
	 * We always charge the cgroup the mm_struct belongs to.
	 * The mm_struct's mem_cgroup changes on task migration if the
2400 2401 2402
	 * thread group leader migrates. It's possible that mm is not
	 * set, if so charge the init_mm (happens for pagecache usage).
	 */
K
KAMEZAWA Hiroyuki 已提交
2403 2404 2405 2406
	if (!*memcg && !mm)
		goto bypass;
again:
	if (*memcg) { /* css should be a valid one */
2407
		mem = *memcg;
K
KAMEZAWA Hiroyuki 已提交
2408 2409 2410
		VM_BUG_ON(css_is_removed(&mem->css));
		if (mem_cgroup_is_root(mem))
			goto done;
2411
		if (nr_pages == 1 && consume_stock(mem))
K
KAMEZAWA Hiroyuki 已提交
2412
			goto done;
2413 2414
		css_get(&mem->css);
	} else {
K
KAMEZAWA Hiroyuki 已提交
2415
		struct task_struct *p;
2416

K
KAMEZAWA Hiroyuki 已提交
2417 2418 2419
		rcu_read_lock();
		p = rcu_dereference(mm->owner);
		/*
2420 2421 2422 2423 2424 2425 2426 2427
		 * Because we don't have task_lock(), "p" can exit.
		 * In that case, "mem" can point to root or p can be NULL with
		 * race with swapoff. Then, we have small risk of mis-accouning.
		 * But such kind of mis-account by race always happens because
		 * we don't have cgroup_mutex(). It's overkill and we allo that
		 * small race, here.
		 * (*) swapoff at el will charge against mm-struct not against
		 * task-struct. So, mm->owner can be NULL.
K
KAMEZAWA Hiroyuki 已提交
2428 2429
		 */
		mem = mem_cgroup_from_task(p);
2430
		if (!mem || mem_cgroup_is_root(mem)) {
K
KAMEZAWA Hiroyuki 已提交
2431 2432 2433
			rcu_read_unlock();
			goto done;
		}
2434
		if (nr_pages == 1 && consume_stock(mem)) {
K
KAMEZAWA Hiroyuki 已提交
2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452
			/*
			 * It seems dagerous to access memcg without css_get().
			 * But considering how consume_stok works, it's not
			 * necessary. If consume_stock success, some charges
			 * from this memcg are cached on this cpu. So, we
			 * don't need to call css_get()/css_tryget() before
			 * calling consume_stock().
			 */
			rcu_read_unlock();
			goto done;
		}
		/* after here, we may be blocked. we need to get refcnt */
		if (!css_tryget(&mem->css)) {
			rcu_read_unlock();
			goto again;
		}
		rcu_read_unlock();
	}
2453

2454 2455
	do {
		bool oom_check;
2456

2457
		/* If killed, bypass charge */
K
KAMEZAWA Hiroyuki 已提交
2458 2459
		if (fatal_signal_pending(current)) {
			css_put(&mem->css);
2460
			goto bypass;
K
KAMEZAWA Hiroyuki 已提交
2461
		}
2462

2463 2464 2465 2466
		oom_check = false;
		if (oom && !nr_oom_retries) {
			oom_check = true;
			nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
2467
		}
2468

2469
		ret = mem_cgroup_do_charge(mem, gfp_mask, batch, oom_check);
2470 2471 2472 2473
		switch (ret) {
		case CHARGE_OK:
			break;
		case CHARGE_RETRY: /* not in OOM situation but retry */
2474
			batch = nr_pages;
K
KAMEZAWA Hiroyuki 已提交
2475 2476 2477
			css_put(&mem->css);
			mem = NULL;
			goto again;
2478
		case CHARGE_WOULDBLOCK: /* !__GFP_WAIT */
K
KAMEZAWA Hiroyuki 已提交
2479
			css_put(&mem->css);
2480 2481
			goto nomem;
		case CHARGE_NOMEM: /* OOM routine works */
K
KAMEZAWA Hiroyuki 已提交
2482 2483
			if (!oom) {
				css_put(&mem->css);
K
KAMEZAWA Hiroyuki 已提交
2484
				goto nomem;
K
KAMEZAWA Hiroyuki 已提交
2485
			}
2486 2487 2488 2489
			/* If oom, we never return -ENOMEM */
			nr_oom_retries--;
			break;
		case CHARGE_OOM_DIE: /* Killed by OOM Killer */
K
KAMEZAWA Hiroyuki 已提交
2490
			css_put(&mem->css);
K
KAMEZAWA Hiroyuki 已提交
2491
			goto bypass;
2492
		}
2493 2494
	} while (ret != CHARGE_OK);

2495 2496
	if (batch > nr_pages)
		refill_stock(mem, batch - nr_pages);
K
KAMEZAWA Hiroyuki 已提交
2497
	css_put(&mem->css);
2498
done:
K
KAMEZAWA Hiroyuki 已提交
2499
	*memcg = mem;
2500 2501
	return 0;
nomem:
K
KAMEZAWA Hiroyuki 已提交
2502
	*memcg = NULL;
2503
	return -ENOMEM;
K
KAMEZAWA Hiroyuki 已提交
2504 2505 2506
bypass:
	*memcg = NULL;
	return 0;
2507
}
2508

2509 2510 2511 2512 2513
/*
 * Somemtimes we have to undo a charge we got by try_charge().
 * This function is for that and do uncharge, put css's refcnt.
 * gotten by try_charge().
 */
2514
static void __mem_cgroup_cancel_charge(struct mem_cgroup *mem,
2515
				       unsigned int nr_pages)
2516 2517
{
	if (!mem_cgroup_is_root(mem)) {
2518 2519 2520
		unsigned long bytes = nr_pages * PAGE_SIZE;

		res_counter_uncharge(&mem->res, bytes);
2521
		if (do_swap_account)
2522
			res_counter_uncharge(&mem->memsw, bytes);
2523
	}
2524 2525
}

2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544
/*
 * A helper function to get mem_cgroup from ID. must be called under
 * rcu_read_lock(). The caller must check css_is_removed() or some if
 * it's concern. (dropping refcnt from swap can be called against removed
 * memcg.)
 */
static struct mem_cgroup *mem_cgroup_lookup(unsigned short id)
{
	struct cgroup_subsys_state *css;

	/* ID 0 is unused ID */
	if (!id)
		return NULL;
	css = css_lookup(&mem_cgroup_subsys, id);
	if (!css)
		return NULL;
	return container_of(css, struct mem_cgroup, css);
}

2545
struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page)
2546
{
2547
	struct mem_cgroup *mem = NULL;
2548
	struct page_cgroup *pc;
2549
	unsigned short id;
2550 2551
	swp_entry_t ent;

2552 2553 2554
	VM_BUG_ON(!PageLocked(page));

	pc = lookup_page_cgroup(page);
2555
	lock_page_cgroup(pc);
2556
	if (PageCgroupUsed(pc)) {
2557
		mem = pc->mem_cgroup;
2558 2559
		if (mem && !css_tryget(&mem->css))
			mem = NULL;
2560
	} else if (PageSwapCache(page)) {
2561
		ent.val = page_private(page);
2562 2563 2564 2565 2566 2567
		id = lookup_swap_cgroup(ent);
		rcu_read_lock();
		mem = mem_cgroup_lookup(id);
		if (mem && !css_tryget(&mem->css))
			mem = NULL;
		rcu_read_unlock();
2568
	}
2569
	unlock_page_cgroup(pc);
2570 2571 2572
	return mem;
}

2573
static void __mem_cgroup_commit_charge(struct mem_cgroup *mem,
2574
				       struct page *page,
2575
				       unsigned int nr_pages,
2576
				       struct page_cgroup *pc,
2577
				       enum charge_type ctype)
2578
{
2579 2580 2581
	lock_page_cgroup(pc);
	if (unlikely(PageCgroupUsed(pc))) {
		unlock_page_cgroup(pc);
2582
		__mem_cgroup_cancel_charge(mem, nr_pages);
2583 2584 2585 2586 2587 2588
		return;
	}
	/*
	 * we don't need page_cgroup_lock about tail pages, becase they are not
	 * accessed by any other context at this point.
	 */
2589
	pc->mem_cgroup = mem;
2590 2591 2592 2593 2594 2595 2596
	/*
	 * We access a page_cgroup asynchronously without lock_page_cgroup().
	 * Especially when a page_cgroup is taken from a page, pc->mem_cgroup
	 * is accessed after testing USED bit. To make pc->mem_cgroup visible
	 * before USED bit, we need memory barrier here.
	 * See mem_cgroup_add_lru_list(), etc.
 	 */
K
KAMEZAWA Hiroyuki 已提交
2597
	smp_wmb();
2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610
	switch (ctype) {
	case MEM_CGROUP_CHARGE_TYPE_CACHE:
	case MEM_CGROUP_CHARGE_TYPE_SHMEM:
		SetPageCgroupCache(pc);
		SetPageCgroupUsed(pc);
		break;
	case MEM_CGROUP_CHARGE_TYPE_MAPPED:
		ClearPageCgroupCache(pc);
		SetPageCgroupUsed(pc);
		break;
	default:
		break;
	}
2611

2612
	mem_cgroup_charge_statistics(mem, PageCgroupCache(pc), nr_pages);
2613
	unlock_page_cgroup(pc);
2614 2615 2616 2617 2618
	/*
	 * "charge_statistics" updated event counter. Then, check it.
	 * Insert ancestor (and ancestor's ancestors), to softlimit RB-tree.
	 * if they exceeds softlimit.
	 */
2619
	memcg_check_events(mem, page);
2620
}
2621

2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635
#ifdef CONFIG_TRANSPARENT_HUGEPAGE

#define PCGF_NOCOPY_AT_SPLIT ((1 << PCG_LOCK) | (1 << PCG_MOVE_LOCK) |\
			(1 << PCG_ACCT_LRU) | (1 << PCG_MIGRATION))
/*
 * Because tail pages are not marked as "used", set it. We're under
 * zone->lru_lock, 'splitting on pmd' and compund_lock.
 */
void mem_cgroup_split_huge_fixup(struct page *head, struct page *tail)
{
	struct page_cgroup *head_pc = lookup_page_cgroup(head);
	struct page_cgroup *tail_pc = lookup_page_cgroup(tail);
	unsigned long flags;

2636 2637
	if (mem_cgroup_disabled())
		return;
2638
	/*
2639
	 * We have no races with charge/uncharge but will have races with
2640 2641 2642 2643 2644 2645
	 * page state accounting.
	 */
	move_lock_page_cgroup(head_pc, &flags);

	tail_pc->mem_cgroup = head_pc->mem_cgroup;
	smp_wmb(); /* see __commit_charge() */
2646 2647 2648 2649 2650 2651 2652 2653 2654 2655
	if (PageCgroupAcctLRU(head_pc)) {
		enum lru_list lru;
		struct mem_cgroup_per_zone *mz;

		/*
		 * LRU flags cannot be copied because we need to add tail
		 *.page to LRU by generic call and our hook will be called.
		 * We hold lru_lock, then, reduce counter directly.
		 */
		lru = page_lru(head);
2656
		mz = page_cgroup_zoneinfo(head_pc->mem_cgroup, head);
2657 2658
		MEM_CGROUP_ZSTAT(mz, lru) -= 1;
	}
2659 2660 2661 2662 2663
	tail_pc->flags = head_pc->flags & ~PCGF_NOCOPY_AT_SPLIT;
	move_unlock_page_cgroup(head_pc, &flags);
}
#endif

2664
/**
2665
 * mem_cgroup_move_account - move account of the page
2666
 * @page: the page
2667
 * @nr_pages: number of regular pages (>1 for huge pages)
2668 2669 2670
 * @pc:	page_cgroup of the page.
 * @from: mem_cgroup which the page is moved from.
 * @to:	mem_cgroup which the page is moved to. @from != @to.
2671
 * @uncharge: whether we should call uncharge and css_put against @from.
2672 2673
 *
 * The caller must confirm following.
K
KAMEZAWA Hiroyuki 已提交
2674
 * - page is not on LRU (isolate_page() is useful.)
2675
 * - compound_lock is held when nr_pages > 1
2676
 *
2677
 * This function doesn't do "charge" nor css_get to new cgroup. It should be
L
Lucas De Marchi 已提交
2678
 * done by a caller(__mem_cgroup_try_charge would be useful). If @uncharge is
2679 2680
 * true, this function does "uncharge" from old cgroup, but it doesn't if
 * @uncharge is false, so a caller should do "uncharge".
2681
 */
2682 2683 2684 2685 2686 2687
static int mem_cgroup_move_account(struct page *page,
				   unsigned int nr_pages,
				   struct page_cgroup *pc,
				   struct mem_cgroup *from,
				   struct mem_cgroup *to,
				   bool uncharge)
2688
{
2689 2690
	unsigned long flags;
	int ret;
2691

2692
	VM_BUG_ON(from == to);
2693
	VM_BUG_ON(PageLRU(page));
2694 2695 2696 2697 2698 2699 2700
	/*
	 * The page is isolated from LRU. So, collapse function
	 * will not handle this page. But page splitting can happen.
	 * Do this check under compound_page_lock(). The caller should
	 * hold it.
	 */
	ret = -EBUSY;
2701
	if (nr_pages > 1 && !PageTransHuge(page))
2702 2703 2704 2705 2706 2707 2708 2709 2710
		goto out;

	lock_page_cgroup(pc);

	ret = -EINVAL;
	if (!PageCgroupUsed(pc) || pc->mem_cgroup != from)
		goto unlock;

	move_lock_page_cgroup(pc, &flags);
2711

2712
	if (PageCgroupFileMapped(pc)) {
2713 2714 2715 2716 2717
		/* Update mapped_file data for mem_cgroup */
		preempt_disable();
		__this_cpu_dec(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
		__this_cpu_inc(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
		preempt_enable();
2718
	}
2719
	mem_cgroup_charge_statistics(from, PageCgroupCache(pc), -nr_pages);
2720 2721
	if (uncharge)
		/* This is not "cancel", but cancel_charge does all we need. */
2722
		__mem_cgroup_cancel_charge(from, nr_pages);
2723

2724
	/* caller should have done css_get */
K
KAMEZAWA Hiroyuki 已提交
2725
	pc->mem_cgroup = to;
2726
	mem_cgroup_charge_statistics(to, PageCgroupCache(pc), nr_pages);
2727 2728 2729
	/*
	 * We charges against "to" which may not have any tasks. Then, "to"
	 * can be under rmdir(). But in current implementation, caller of
2730
	 * this function is just force_empty() and move charge, so it's
L
Lucas De Marchi 已提交
2731
	 * guaranteed that "to" is never removed. So, we don't check rmdir
2732
	 * status here.
2733
	 */
2734 2735 2736
	move_unlock_page_cgroup(pc, &flags);
	ret = 0;
unlock:
2737
	unlock_page_cgroup(pc);
2738 2739 2740
	/*
	 * check events
	 */
2741 2742
	memcg_check_events(to, page);
	memcg_check_events(from, page);
2743
out:
2744 2745 2746 2747 2748 2749 2750
	return ret;
}

/*
 * move charges to its parent.
 */

2751 2752
static int mem_cgroup_move_parent(struct page *page,
				  struct page_cgroup *pc,
2753 2754 2755 2756 2757 2758
				  struct mem_cgroup *child,
				  gfp_t gfp_mask)
{
	struct cgroup *cg = child->css.cgroup;
	struct cgroup *pcg = cg->parent;
	struct mem_cgroup *parent;
2759
	unsigned int nr_pages;
2760
	unsigned long uninitialized_var(flags);
2761 2762 2763 2764 2765 2766
	int ret;

	/* Is ROOT ? */
	if (!pcg)
		return -EINVAL;

2767 2768 2769 2770 2771
	ret = -EBUSY;
	if (!get_page_unless_zero(page))
		goto out;
	if (isolate_lru_page(page))
		goto put;
2772

2773
	nr_pages = hpage_nr_pages(page);
K
KAMEZAWA Hiroyuki 已提交
2774

2775
	parent = mem_cgroup_from_cont(pcg);
2776
	ret = __mem_cgroup_try_charge(NULL, gfp_mask, nr_pages, &parent, false);
2777
	if (ret || !parent)
2778
		goto put_back;
2779

2780
	if (nr_pages > 1)
2781 2782
		flags = compound_lock_irqsave(page);

2783
	ret = mem_cgroup_move_account(page, nr_pages, pc, child, parent, true);
2784
	if (ret)
2785
		__mem_cgroup_cancel_charge(parent, nr_pages);
2786

2787
	if (nr_pages > 1)
2788
		compound_unlock_irqrestore(page, flags);
2789
put_back:
K
KAMEZAWA Hiroyuki 已提交
2790
	putback_lru_page(page);
2791
put:
2792
	put_page(page);
2793
out:
2794 2795 2796
	return ret;
}

2797 2798 2799 2800 2801 2802 2803
/*
 * Charge the memory controller for page usage.
 * Return
 * 0 if the charge was successful
 * < 0 if the cgroup is over its limit
 */
static int mem_cgroup_charge_common(struct page *page, struct mm_struct *mm,
2804
				gfp_t gfp_mask, enum charge_type ctype)
2805
{
2806
	struct mem_cgroup *mem = NULL;
2807
	unsigned int nr_pages = 1;
2808
	struct page_cgroup *pc;
2809
	bool oom = true;
2810
	int ret;
A
Andrea Arcangeli 已提交
2811

A
Andrea Arcangeli 已提交
2812
	if (PageTransHuge(page)) {
2813
		nr_pages <<= compound_order(page);
A
Andrea Arcangeli 已提交
2814
		VM_BUG_ON(!PageTransHuge(page));
2815 2816 2817 2818 2819
		/*
		 * Never OOM-kill a process for a huge page.  The
		 * fault handler will fall back to regular pages.
		 */
		oom = false;
A
Andrea Arcangeli 已提交
2820
	}
2821 2822

	pc = lookup_page_cgroup(page);
2823
	BUG_ON(!pc); /* XXX: remove this and move pc lookup into commit */
2824

2825
	ret = __mem_cgroup_try_charge(mm, gfp_mask, nr_pages, &mem, oom);
2826
	if (ret || !mem)
2827 2828
		return ret;

2829
	__mem_cgroup_commit_charge(mem, page, nr_pages, pc, ctype);
2830 2831 2832
	return 0;
}

2833 2834
int mem_cgroup_newpage_charge(struct page *page,
			      struct mm_struct *mm, gfp_t gfp_mask)
2835
{
2836
	if (mem_cgroup_disabled())
2837
		return 0;
2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848
	/*
	 * If already mapped, we don't have to account.
	 * If page cache, page->mapping has address_space.
	 * But page->mapping may have out-of-use anon_vma pointer,
	 * detecit it by PageAnon() check. newly-mapped-anon's page->mapping
	 * is NULL.
  	 */
	if (page_mapped(page) || (page->mapping && !PageAnon(page)))
		return 0;
	if (unlikely(!mm))
		mm = &init_mm;
2849
	return mem_cgroup_charge_common(page, mm, gfp_mask,
2850
				MEM_CGROUP_CHARGE_TYPE_MAPPED);
2851 2852
}

D
Daisuke Nishimura 已提交
2853 2854 2855 2856
static void
__mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr,
					enum charge_type ctype);

2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872
static void
__mem_cgroup_commit_charge_lrucare(struct page *page, struct mem_cgroup *mem,
					enum charge_type ctype)
{
	struct page_cgroup *pc = lookup_page_cgroup(page);
	/*
	 * In some case, SwapCache, FUSE(splice_buf->radixtree), the page
	 * is already on LRU. It means the page may on some other page_cgroup's
	 * LRU. Take care of it.
	 */
	mem_cgroup_lru_del_before_commit(page);
	__mem_cgroup_commit_charge(mem, page, 1, pc, ctype);
	mem_cgroup_lru_add_after_commit(page);
	return;
}

2873 2874
int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm,
				gfp_t gfp_mask)
2875
{
2876
	struct mem_cgroup *mem = NULL;
2877 2878
	int ret;

2879
	if (mem_cgroup_disabled())
2880
		return 0;
2881 2882
	if (PageCompound(page))
		return 0;
2883 2884 2885 2886 2887 2888 2889 2890
	/*
	 * Corner case handling. This is called from add_to_page_cache()
	 * in usual. But some FS (shmem) precharges this page before calling it
	 * and call add_to_page_cache() with GFP_NOWAIT.
	 *
	 * For GFP_NOWAIT case, the page may be pre-charged before calling
	 * add_to_page_cache(). (See shmem.c) check it here and avoid to call
	 * charge twice. (It works but has to pay a bit larger cost.)
2891 2892
	 * And when the page is SwapCache, it should take swap information
	 * into account. This is under lock_page() now.
2893 2894 2895 2896
	 */
	if (!(gfp_mask & __GFP_WAIT)) {
		struct page_cgroup *pc;

2897 2898 2899 2900 2901 2902
		pc = lookup_page_cgroup(page);
		if (!pc)
			return 0;
		lock_page_cgroup(pc);
		if (PageCgroupUsed(pc)) {
			unlock_page_cgroup(pc);
2903 2904
			return 0;
		}
2905
		unlock_page_cgroup(pc);
2906 2907
	}

2908
	if (unlikely(!mm))
2909
		mm = &init_mm;
2910

2911 2912 2913 2914
	if (page_is_file_cache(page)) {
		ret = __mem_cgroup_try_charge(mm, gfp_mask, 1, &mem, true);
		if (ret || !mem)
			return ret;
2915

2916 2917 2918 2919 2920 2921 2922 2923 2924
		/*
		 * FUSE reuses pages without going through the final
		 * put that would remove them from the LRU list, make
		 * sure that they get relinked properly.
		 */
		__mem_cgroup_commit_charge_lrucare(page, mem,
					MEM_CGROUP_CHARGE_TYPE_CACHE);
		return ret;
	}
D
Daisuke Nishimura 已提交
2925 2926 2927 2928 2929 2930 2931 2932
	/* shmem */
	if (PageSwapCache(page)) {
		ret = mem_cgroup_try_charge_swapin(mm, page, gfp_mask, &mem);
		if (!ret)
			__mem_cgroup_commit_charge_swapin(page, mem,
					MEM_CGROUP_CHARGE_TYPE_SHMEM);
	} else
		ret = mem_cgroup_charge_common(page, mm, gfp_mask,
2933
					MEM_CGROUP_CHARGE_TYPE_SHMEM);
2934 2935

	return ret;
2936 2937
}

2938 2939 2940
/*
 * While swap-in, try_charge -> commit or cancel, the page is locked.
 * And when try_charge() successfully returns, one refcnt to memcg without
2941
 * struct page_cgroup is acquired. This refcnt will be consumed by
2942 2943
 * "commit()" or removed by "cancel()"
 */
2944 2945 2946 2947 2948
int mem_cgroup_try_charge_swapin(struct mm_struct *mm,
				 struct page *page,
				 gfp_t mask, struct mem_cgroup **ptr)
{
	struct mem_cgroup *mem;
2949
	int ret;
2950

2951 2952
	*ptr = NULL;

2953
	if (mem_cgroup_disabled())
2954 2955 2956 2957 2958 2959
		return 0;

	if (!do_swap_account)
		goto charge_cur_mm;
	/*
	 * A racing thread's fault, or swapoff, may have already updated
H
Hugh Dickins 已提交
2960 2961 2962
	 * the pte, and even removed page from swap cache: in those cases
	 * do_swap_page()'s pte_same() test will fail; but there's also a
	 * KSM case which does need to charge the page.
2963 2964
	 */
	if (!PageSwapCache(page))
H
Hugh Dickins 已提交
2965
		goto charge_cur_mm;
2966
	mem = try_get_mem_cgroup_from_page(page);
2967 2968
	if (!mem)
		goto charge_cur_mm;
2969
	*ptr = mem;
2970
	ret = __mem_cgroup_try_charge(NULL, mask, 1, ptr, true);
2971 2972
	css_put(&mem->css);
	return ret;
2973 2974 2975
charge_cur_mm:
	if (unlikely(!mm))
		mm = &init_mm;
2976
	return __mem_cgroup_try_charge(mm, mask, 1, ptr, true);
2977 2978
}

D
Daisuke Nishimura 已提交
2979 2980 2981
static void
__mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr,
					enum charge_type ctype)
2982
{
2983
	if (mem_cgroup_disabled())
2984 2985 2986
		return;
	if (!ptr)
		return;
2987
	cgroup_exclude_rmdir(&ptr->css);
2988 2989

	__mem_cgroup_commit_charge_lrucare(page, ptr, ctype);
2990 2991 2992
	/*
	 * Now swap is on-memory. This means this page may be
	 * counted both as mem and swap....double count.
2993 2994 2995
	 * Fix it by uncharging from memsw. Basically, this SwapCache is stable
	 * under lock_page(). But in do_swap_page()::memory.c, reuse_swap_page()
	 * may call delete_from_swap_cache() before reach here.
2996
	 */
2997
	if (do_swap_account && PageSwapCache(page)) {
2998
		swp_entry_t ent = {.val = page_private(page)};
2999
		unsigned short id;
3000
		struct mem_cgroup *memcg;
3001 3002 3003 3004

		id = swap_cgroup_record(ent, 0);
		rcu_read_lock();
		memcg = mem_cgroup_lookup(id);
3005
		if (memcg) {
3006 3007 3008 3009
			/*
			 * This recorded memcg can be obsolete one. So, avoid
			 * calling css_tryget
			 */
3010
			if (!mem_cgroup_is_root(memcg))
3011
				res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
3012
			mem_cgroup_swap_statistics(memcg, false);
3013 3014
			mem_cgroup_put(memcg);
		}
3015
		rcu_read_unlock();
3016
	}
3017 3018 3019 3020 3021 3022
	/*
	 * At swapin, we may charge account against cgroup which has no tasks.
	 * So, rmdir()->pre_destroy() can be called while we do this charge.
	 * In that case, we need to call pre_destroy() again. check it here.
	 */
	cgroup_release_and_wakeup_rmdir(&ptr->css);
3023 3024
}

D
Daisuke Nishimura 已提交
3025 3026 3027 3028 3029 3030
void mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr)
{
	__mem_cgroup_commit_charge_swapin(page, ptr,
					MEM_CGROUP_CHARGE_TYPE_MAPPED);
}

3031 3032
void mem_cgroup_cancel_charge_swapin(struct mem_cgroup *mem)
{
3033
	if (mem_cgroup_disabled())
3034 3035 3036
		return;
	if (!mem)
		return;
3037
	__mem_cgroup_cancel_charge(mem, 1);
3038 3039
}

3040 3041 3042
static void mem_cgroup_do_uncharge(struct mem_cgroup *mem,
				   unsigned int nr_pages,
				   const enum charge_type ctype)
3043 3044 3045
{
	struct memcg_batch_info *batch = NULL;
	bool uncharge_memsw = true;
3046

3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058
	/* If swapout, usage of swap doesn't decrease */
	if (!do_swap_account || ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT)
		uncharge_memsw = false;

	batch = &current->memcg_batch;
	/*
	 * In usual, we do css_get() when we remember memcg pointer.
	 * But in this case, we keep res->usage until end of a series of
	 * uncharges. Then, it's ok to ignore memcg's refcnt.
	 */
	if (!batch->memcg)
		batch->memcg = mem;
3059 3060
	/*
	 * do_batch > 0 when unmapping pages or inode invalidate/truncate.
L
Lucas De Marchi 已提交
3061
	 * In those cases, all pages freed continuously can be expected to be in
3062 3063 3064 3065 3066 3067 3068 3069
	 * the same cgroup and we have chance to coalesce uncharges.
	 * But we do uncharge one by one if this is killed by OOM(TIF_MEMDIE)
	 * because we want to do uncharge as soon as possible.
	 */

	if (!batch->do_batch || test_thread_flag(TIF_MEMDIE))
		goto direct_uncharge;

3070
	if (nr_pages > 1)
A
Andrea Arcangeli 已提交
3071 3072
		goto direct_uncharge;

3073 3074 3075 3076 3077 3078 3079 3080
	/*
	 * In typical case, batch->memcg == mem. This means we can
	 * merge a series of uncharges to an uncharge of res_counter.
	 * If not, we uncharge res_counter ony by one.
	 */
	if (batch->memcg != mem)
		goto direct_uncharge;
	/* remember freed charge and uncharge it later */
3081
	batch->nr_pages++;
3082
	if (uncharge_memsw)
3083
		batch->memsw_nr_pages++;
3084 3085
	return;
direct_uncharge:
3086
	res_counter_uncharge(&mem->res, nr_pages * PAGE_SIZE);
3087
	if (uncharge_memsw)
3088
		res_counter_uncharge(&mem->memsw, nr_pages * PAGE_SIZE);
3089 3090
	if (unlikely(batch->memcg != mem))
		memcg_oom_recover(mem);
3091 3092
	return;
}
3093

3094
/*
3095
 * uncharge if !page_mapped(page)
3096
 */
3097
static struct mem_cgroup *
3098
__mem_cgroup_uncharge_common(struct page *page, enum charge_type ctype)
3099
{
3100
	struct mem_cgroup *mem = NULL;
3101 3102
	unsigned int nr_pages = 1;
	struct page_cgroup *pc;
3103

3104
	if (mem_cgroup_disabled())
3105
		return NULL;
3106

K
KAMEZAWA Hiroyuki 已提交
3107
	if (PageSwapCache(page))
3108
		return NULL;
K
KAMEZAWA Hiroyuki 已提交
3109

A
Andrea Arcangeli 已提交
3110
	if (PageTransHuge(page)) {
3111
		nr_pages <<= compound_order(page);
A
Andrea Arcangeli 已提交
3112 3113
		VM_BUG_ON(!PageTransHuge(page));
	}
3114
	/*
3115
	 * Check if our page_cgroup is valid
3116
	 */
3117 3118
	pc = lookup_page_cgroup(page);
	if (unlikely(!pc || !PageCgroupUsed(pc)))
3119
		return NULL;
3120

3121
	lock_page_cgroup(pc);
K
KAMEZAWA Hiroyuki 已提交
3122

3123 3124
	mem = pc->mem_cgroup;

K
KAMEZAWA Hiroyuki 已提交
3125 3126 3127 3128 3129
	if (!PageCgroupUsed(pc))
		goto unlock_out;

	switch (ctype) {
	case MEM_CGROUP_CHARGE_TYPE_MAPPED:
K
KAMEZAWA Hiroyuki 已提交
3130
	case MEM_CGROUP_CHARGE_TYPE_DROP:
3131 3132
		/* See mem_cgroup_prepare_migration() */
		if (page_mapped(page) || PageCgroupMigration(pc))
K
KAMEZAWA Hiroyuki 已提交
3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143
			goto unlock_out;
		break;
	case MEM_CGROUP_CHARGE_TYPE_SWAPOUT:
		if (!PageAnon(page)) {	/* Shared memory */
			if (page->mapping && !page_is_file_cache(page))
				goto unlock_out;
		} else if (page_mapped(page)) /* Anon */
				goto unlock_out;
		break;
	default:
		break;
3144
	}
K
KAMEZAWA Hiroyuki 已提交
3145

3146
	mem_cgroup_charge_statistics(mem, PageCgroupCache(pc), -nr_pages);
K
KAMEZAWA Hiroyuki 已提交
3147

3148
	ClearPageCgroupUsed(pc);
3149 3150 3151 3152 3153 3154
	/*
	 * pc->mem_cgroup is not cleared here. It will be accessed when it's
	 * freed from LRU. This is safe because uncharged page is expected not
	 * to be reused (freed soon). Exception is SwapCache, it's handled by
	 * special functions.
	 */
3155

3156
	unlock_page_cgroup(pc);
K
KAMEZAWA Hiroyuki 已提交
3157 3158 3159 3160
	/*
	 * even after unlock, we have mem->res.usage here and this memcg
	 * will never be freed.
	 */
3161
	memcg_check_events(mem, page);
K
KAMEZAWA Hiroyuki 已提交
3162 3163 3164 3165 3166
	if (do_swap_account && ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT) {
		mem_cgroup_swap_statistics(mem, true);
		mem_cgroup_get(mem);
	}
	if (!mem_cgroup_is_root(mem))
3167
		mem_cgroup_do_uncharge(mem, nr_pages, ctype);
3168

3169
	return mem;
K
KAMEZAWA Hiroyuki 已提交
3170 3171 3172

unlock_out:
	unlock_page_cgroup(pc);
3173
	return NULL;
3174 3175
}

3176 3177
void mem_cgroup_uncharge_page(struct page *page)
{
3178 3179 3180 3181 3182
	/* early check. */
	if (page_mapped(page))
		return;
	if (page->mapping && !PageAnon(page))
		return;
3183 3184 3185 3186 3187 3188
	__mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_MAPPED);
}

void mem_cgroup_uncharge_cache_page(struct page *page)
{
	VM_BUG_ON(page_mapped(page));
3189
	VM_BUG_ON(page->mapping);
3190 3191 3192
	__mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_CACHE);
}

3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206
/*
 * Batch_start/batch_end is called in unmap_page_range/invlidate/trucate.
 * In that cases, pages are freed continuously and we can expect pages
 * are in the same memcg. All these calls itself limits the number of
 * pages freed at once, then uncharge_start/end() is called properly.
 * This may be called prural(2) times in a context,
 */

void mem_cgroup_uncharge_start(void)
{
	current->memcg_batch.do_batch++;
	/* We can do nest. */
	if (current->memcg_batch.do_batch == 1) {
		current->memcg_batch.memcg = NULL;
3207 3208
		current->memcg_batch.nr_pages = 0;
		current->memcg_batch.memsw_nr_pages = 0;
3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228
	}
}

void mem_cgroup_uncharge_end(void)
{
	struct memcg_batch_info *batch = &current->memcg_batch;

	if (!batch->do_batch)
		return;

	batch->do_batch--;
	if (batch->do_batch) /* If stacked, do nothing. */
		return;

	if (!batch->memcg)
		return;
	/*
	 * This "batch->memcg" is valid without any css_get/put etc...
	 * bacause we hide charges behind us.
	 */
3229 3230 3231 3232 3233 3234
	if (batch->nr_pages)
		res_counter_uncharge(&batch->memcg->res,
				     batch->nr_pages * PAGE_SIZE);
	if (batch->memsw_nr_pages)
		res_counter_uncharge(&batch->memcg->memsw,
				     batch->memsw_nr_pages * PAGE_SIZE);
3235
	memcg_oom_recover(batch->memcg);
3236 3237 3238 3239
	/* forget this pointer (for sanity check) */
	batch->memcg = NULL;
}

3240
#ifdef CONFIG_SWAP
3241
/*
3242
 * called after __delete_from_swap_cache() and drop "page" account.
3243 3244
 * memcg information is recorded to swap_cgroup of "ent"
 */
K
KAMEZAWA Hiroyuki 已提交
3245 3246
void
mem_cgroup_uncharge_swapcache(struct page *page, swp_entry_t ent, bool swapout)
3247 3248
{
	struct mem_cgroup *memcg;
K
KAMEZAWA Hiroyuki 已提交
3249 3250 3251 3252 3253 3254
	int ctype = MEM_CGROUP_CHARGE_TYPE_SWAPOUT;

	if (!swapout) /* this was a swap cache but the swap is unused ! */
		ctype = MEM_CGROUP_CHARGE_TYPE_DROP;

	memcg = __mem_cgroup_uncharge_common(page, ctype);
3255

K
KAMEZAWA Hiroyuki 已提交
3256 3257 3258 3259 3260
	/*
	 * record memcg information,  if swapout && memcg != NULL,
	 * mem_cgroup_get() was called in uncharge().
	 */
	if (do_swap_account && swapout && memcg)
3261
		swap_cgroup_record(ent, css_id(&memcg->css));
3262
}
3263
#endif
3264 3265 3266 3267 3268 3269 3270

#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
/*
 * called from swap_entry_free(). remove record in swap_cgroup and
 * uncharge "memsw" account.
 */
void mem_cgroup_uncharge_swap(swp_entry_t ent)
K
KAMEZAWA Hiroyuki 已提交
3271
{
3272
	struct mem_cgroup *memcg;
3273
	unsigned short id;
3274 3275 3276 3277

	if (!do_swap_account)
		return;

3278 3279 3280
	id = swap_cgroup_record(ent, 0);
	rcu_read_lock();
	memcg = mem_cgroup_lookup(id);
3281
	if (memcg) {
3282 3283 3284 3285
		/*
		 * We uncharge this because swap is freed.
		 * This memcg can be obsolete one. We avoid calling css_tryget
		 */
3286
		if (!mem_cgroup_is_root(memcg))
3287
			res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
3288
		mem_cgroup_swap_statistics(memcg, false);
3289 3290
		mem_cgroup_put(memcg);
	}
3291
	rcu_read_unlock();
K
KAMEZAWA Hiroyuki 已提交
3292
}
3293 3294 3295 3296 3297 3298

/**
 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
 * @entry: swap entry to be moved
 * @from:  mem_cgroup which the entry is moved from
 * @to:  mem_cgroup which the entry is moved to
3299
 * @need_fixup: whether we should fixup res_counters and refcounts.
3300 3301 3302 3303 3304 3305 3306 3307 3308 3309
 *
 * It succeeds only when the swap_cgroup's record for this entry is the same
 * as the mem_cgroup's id of @from.
 *
 * Returns 0 on success, -EINVAL on failure.
 *
 * The caller must have charged to @to, IOW, called res_counter_charge() about
 * both res and memsw, and called css_get().
 */
static int mem_cgroup_move_swap_account(swp_entry_t entry,
3310
		struct mem_cgroup *from, struct mem_cgroup *to, bool need_fixup)
3311 3312 3313 3314 3315 3316 3317 3318
{
	unsigned short old_id, new_id;

	old_id = css_id(&from->css);
	new_id = css_id(&to->css);

	if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
		mem_cgroup_swap_statistics(from, false);
3319
		mem_cgroup_swap_statistics(to, true);
3320
		/*
3321 3322 3323 3324 3325 3326
		 * This function is only called from task migration context now.
		 * It postpones res_counter and refcount handling till the end
		 * of task migration(mem_cgroup_clear_mc()) for performance
		 * improvement. But we cannot postpone mem_cgroup_get(to)
		 * because if the process that has been moved to @to does
		 * swap-in, the refcount of @to might be decreased to 0.
3327 3328
		 */
		mem_cgroup_get(to);
3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339
		if (need_fixup) {
			if (!mem_cgroup_is_root(from))
				res_counter_uncharge(&from->memsw, PAGE_SIZE);
			mem_cgroup_put(from);
			/*
			 * we charged both to->res and to->memsw, so we should
			 * uncharge to->res.
			 */
			if (!mem_cgroup_is_root(to))
				res_counter_uncharge(&to->res, PAGE_SIZE);
		}
3340 3341 3342 3343 3344 3345
		return 0;
	}
	return -EINVAL;
}
#else
static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
3346
		struct mem_cgroup *from, struct mem_cgroup *to, bool need_fixup)
3347 3348 3349
{
	return -EINVAL;
}
3350
#endif
K
KAMEZAWA Hiroyuki 已提交
3351

3352
/*
3353 3354
 * Before starting migration, account PAGE_SIZE to mem_cgroup that the old
 * page belongs to.
3355
 */
3356
int mem_cgroup_prepare_migration(struct page *page,
3357
	struct page *newpage, struct mem_cgroup **ptr, gfp_t gfp_mask)
3358
{
3359
	struct mem_cgroup *mem = NULL;
3360
	struct page_cgroup *pc;
3361
	enum charge_type ctype;
3362
	int ret = 0;
3363

3364 3365
	*ptr = NULL;

A
Andrea Arcangeli 已提交
3366
	VM_BUG_ON(PageTransHuge(page));
3367
	if (mem_cgroup_disabled())
3368 3369
		return 0;

3370 3371 3372
	pc = lookup_page_cgroup(page);
	lock_page_cgroup(pc);
	if (PageCgroupUsed(pc)) {
3373 3374
		mem = pc->mem_cgroup;
		css_get(&mem->css);
3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405
		/*
		 * At migrating an anonymous page, its mapcount goes down
		 * to 0 and uncharge() will be called. But, even if it's fully
		 * unmapped, migration may fail and this page has to be
		 * charged again. We set MIGRATION flag here and delay uncharge
		 * until end_migration() is called
		 *
		 * Corner Case Thinking
		 * A)
		 * When the old page was mapped as Anon and it's unmap-and-freed
		 * while migration was ongoing.
		 * If unmap finds the old page, uncharge() of it will be delayed
		 * until end_migration(). If unmap finds a new page, it's
		 * uncharged when it make mapcount to be 1->0. If unmap code
		 * finds swap_migration_entry, the new page will not be mapped
		 * and end_migration() will find it(mapcount==0).
		 *
		 * B)
		 * When the old page was mapped but migraion fails, the kernel
		 * remaps it. A charge for it is kept by MIGRATION flag even
		 * if mapcount goes down to 0. We can do remap successfully
		 * without charging it again.
		 *
		 * C)
		 * The "old" page is under lock_page() until the end of
		 * migration, so, the old page itself will not be swapped-out.
		 * If the new page is swapped out before end_migraton, our
		 * hook to usual swap-out path will catch the event.
		 */
		if (PageAnon(page))
			SetPageCgroupMigration(pc);
3406
	}
3407
	unlock_page_cgroup(pc);
3408 3409 3410 3411 3412 3413
	/*
	 * If the page is not charged at this point,
	 * we return here.
	 */
	if (!mem)
		return 0;
3414

A
Andrea Arcangeli 已提交
3415
	*ptr = mem;
3416
	ret = __mem_cgroup_try_charge(NULL, gfp_mask, 1, ptr, false);
3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428
	css_put(&mem->css);/* drop extra refcnt */
	if (ret || *ptr == NULL) {
		if (PageAnon(page)) {
			lock_page_cgroup(pc);
			ClearPageCgroupMigration(pc);
			unlock_page_cgroup(pc);
			/*
			 * The old page may be fully unmapped while we kept it.
			 */
			mem_cgroup_uncharge_page(page);
		}
		return -ENOMEM;
3429
	}
3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442
	/*
	 * We charge new page before it's used/mapped. So, even if unlock_page()
	 * is called before end_migration, we can catch all events on this new
	 * page. In the case new page is migrated but not remapped, new page's
	 * mapcount will be finally 0 and we call uncharge in end_migration().
	 */
	pc = lookup_page_cgroup(newpage);
	if (PageAnon(page))
		ctype = MEM_CGROUP_CHARGE_TYPE_MAPPED;
	else if (page_is_file_cache(page))
		ctype = MEM_CGROUP_CHARGE_TYPE_CACHE;
	else
		ctype = MEM_CGROUP_CHARGE_TYPE_SHMEM;
3443
	__mem_cgroup_commit_charge(mem, page, 1, pc, ctype);
3444
	return ret;
3445
}
3446

3447
/* remove redundant charge if migration failed*/
3448
void mem_cgroup_end_migration(struct mem_cgroup *mem,
3449
	struct page *oldpage, struct page *newpage, bool migration_ok)
3450
{
3451
	struct page *used, *unused;
3452 3453 3454 3455
	struct page_cgroup *pc;

	if (!mem)
		return;
3456
	/* blocks rmdir() */
3457
	cgroup_exclude_rmdir(&mem->css);
3458
	if (!migration_ok) {
3459 3460
		used = oldpage;
		unused = newpage;
3461
	} else {
3462
		used = newpage;
3463 3464
		unused = oldpage;
	}
3465
	/*
3466 3467 3468
	 * We disallowed uncharge of pages under migration because mapcount
	 * of the page goes down to zero, temporarly.
	 * Clear the flag and check the page should be charged.
3469
	 */
3470 3471 3472 3473
	pc = lookup_page_cgroup(oldpage);
	lock_page_cgroup(pc);
	ClearPageCgroupMigration(pc);
	unlock_page_cgroup(pc);
3474

3475 3476
	__mem_cgroup_uncharge_common(unused, MEM_CGROUP_CHARGE_TYPE_FORCE);

3477
	/*
3478 3479 3480 3481 3482 3483
	 * If a page is a file cache, radix-tree replacement is very atomic
	 * and we can skip this check. When it was an Anon page, its mapcount
	 * goes down to 0. But because we added MIGRATION flage, it's not
	 * uncharged yet. There are several case but page->mapcount check
	 * and USED bit check in mem_cgroup_uncharge_page() will do enough
	 * check. (see prepare_charge() also)
3484
	 */
3485 3486
	if (PageAnon(used))
		mem_cgroup_uncharge_page(used);
3487
	/*
3488 3489
	 * At migration, we may charge account against cgroup which has no
	 * tasks.
3490 3491 3492 3493
	 * So, rmdir()->pre_destroy() can be called while we do this charge.
	 * In that case, we need to call pre_destroy() again. check it here.
	 */
	cgroup_release_and_wakeup_rmdir(&mem->css);
3494
}
3495

3496
/*
3497 3498 3499 3500 3501 3502
 * A call to try to shrink memory usage on charge failure at shmem's swapin.
 * Calling hierarchical_reclaim is not enough because we should update
 * last_oom_jiffies to prevent pagefault_out_of_memory from invoking global OOM.
 * Moreover considering hierarchy, we should reclaim from the mem_over_limit,
 * not from the memcg which this page would be charged to.
 * try_charge_swapin does all of these works properly.
3503
 */
3504
int mem_cgroup_shmem_charge_fallback(struct page *page,
3505 3506
			    struct mm_struct *mm,
			    gfp_t gfp_mask)
3507
{
3508
	struct mem_cgroup *mem;
3509
	int ret;
3510

3511
	if (mem_cgroup_disabled())
3512
		return 0;
3513

3514 3515 3516
	ret = mem_cgroup_try_charge_swapin(mm, page, gfp_mask, &mem);
	if (!ret)
		mem_cgroup_cancel_charge_swapin(mem); /* it does !mem check */
3517

3518
	return ret;
3519 3520
}

3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566
#ifdef CONFIG_DEBUG_VM
static struct page_cgroup *lookup_page_cgroup_used(struct page *page)
{
	struct page_cgroup *pc;

	pc = lookup_page_cgroup(page);
	if (likely(pc) && PageCgroupUsed(pc))
		return pc;
	return NULL;
}

bool mem_cgroup_bad_page_check(struct page *page)
{
	if (mem_cgroup_disabled())
		return false;

	return lookup_page_cgroup_used(page) != NULL;
}

void mem_cgroup_print_bad_page(struct page *page)
{
	struct page_cgroup *pc;

	pc = lookup_page_cgroup_used(page);
	if (pc) {
		int ret = -1;
		char *path;

		printk(KERN_ALERT "pc:%p pc->flags:%lx pc->mem_cgroup:%p",
		       pc, pc->flags, pc->mem_cgroup);

		path = kmalloc(PATH_MAX, GFP_KERNEL);
		if (path) {
			rcu_read_lock();
			ret = cgroup_path(pc->mem_cgroup->css.cgroup,
							path, PATH_MAX);
			rcu_read_unlock();
		}

		printk(KERN_CONT "(%s)\n",
				(ret < 0) ? "cannot get the path" : path);
		kfree(path);
	}
}
#endif

3567 3568
static DEFINE_MUTEX(set_limit_mutex);

3569
static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
3570
				unsigned long long val)
3571
{
3572
	int retry_count;
3573
	u64 memswlimit, memlimit;
3574
	int ret = 0;
3575 3576
	int children = mem_cgroup_count_children(memcg);
	u64 curusage, oldusage;
3577
	int enlarge;
3578 3579 3580 3581 3582 3583 3584 3585 3586

	/*
	 * For keeping hierarchical_reclaim simple, how long we should retry
	 * is depends on callers. We set our retry-count to be function
	 * of # of children which we should visit in this loop.
	 */
	retry_count = MEM_CGROUP_RECLAIM_RETRIES * children;

	oldusage = res_counter_read_u64(&memcg->res, RES_USAGE);
3587

3588
	enlarge = 0;
3589
	while (retry_count) {
3590 3591 3592 3593
		if (signal_pending(current)) {
			ret = -EINTR;
			break;
		}
3594 3595 3596 3597 3598 3599 3600 3601 3602 3603
		/*
		 * Rather than hide all in some function, I do this in
		 * open coded manner. You see what this really does.
		 * We have to guarantee mem->res.limit < mem->memsw.limit.
		 */
		mutex_lock(&set_limit_mutex);
		memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
		if (memswlimit < val) {
			ret = -EINVAL;
			mutex_unlock(&set_limit_mutex);
3604 3605
			break;
		}
3606 3607 3608 3609 3610

		memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
		if (memlimit < val)
			enlarge = 1;

3611
		ret = res_counter_set_limit(&memcg->res, val);
3612 3613 3614 3615 3616 3617
		if (!ret) {
			if (memswlimit == val)
				memcg->memsw_is_minimum = true;
			else
				memcg->memsw_is_minimum = false;
		}
3618 3619 3620 3621 3622
		mutex_unlock(&set_limit_mutex);

		if (!ret)
			break;

3623
		mem_cgroup_hierarchical_reclaim(memcg, NULL, GFP_KERNEL,
3624 3625
						MEM_CGROUP_RECLAIM_SHRINK,
						NULL);
3626 3627 3628 3629 3630 3631
		curusage = res_counter_read_u64(&memcg->res, RES_USAGE);
		/* Usage is reduced ? */
  		if (curusage >= oldusage)
			retry_count--;
		else
			oldusage = curusage;
3632
	}
3633 3634
	if (!ret && enlarge)
		memcg_oom_recover(memcg);
3635

3636 3637 3638
	return ret;
}

L
Li Zefan 已提交
3639 3640
static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
					unsigned long long val)
3641
{
3642
	int retry_count;
3643
	u64 memlimit, memswlimit, oldusage, curusage;
3644 3645
	int children = mem_cgroup_count_children(memcg);
	int ret = -EBUSY;
3646
	int enlarge = 0;
3647

3648 3649 3650
	/* see mem_cgroup_resize_res_limit */
 	retry_count = children * MEM_CGROUP_RECLAIM_RETRIES;
	oldusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667
	while (retry_count) {
		if (signal_pending(current)) {
			ret = -EINTR;
			break;
		}
		/*
		 * Rather than hide all in some function, I do this in
		 * open coded manner. You see what this really does.
		 * We have to guarantee mem->res.limit < mem->memsw.limit.
		 */
		mutex_lock(&set_limit_mutex);
		memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
		if (memlimit > val) {
			ret = -EINVAL;
			mutex_unlock(&set_limit_mutex);
			break;
		}
3668 3669 3670
		memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
		if (memswlimit < val)
			enlarge = 1;
3671
		ret = res_counter_set_limit(&memcg->memsw, val);
3672 3673 3674 3675 3676 3677
		if (!ret) {
			if (memlimit == val)
				memcg->memsw_is_minimum = true;
			else
				memcg->memsw_is_minimum = false;
		}
3678 3679 3680 3681 3682
		mutex_unlock(&set_limit_mutex);

		if (!ret)
			break;

3683
		mem_cgroup_hierarchical_reclaim(memcg, NULL, GFP_KERNEL,
3684
						MEM_CGROUP_RECLAIM_NOSWAP |
3685 3686
						MEM_CGROUP_RECLAIM_SHRINK,
						NULL);
3687
		curusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
3688
		/* Usage is reduced ? */
3689
		if (curusage >= oldusage)
3690
			retry_count--;
3691 3692
		else
			oldusage = curusage;
3693
	}
3694 3695
	if (!ret && enlarge)
		memcg_oom_recover(memcg);
3696 3697 3698
	return ret;
}

3699
unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
3700 3701
					    gfp_t gfp_mask,
					    unsigned long *total_scanned)
3702 3703 3704 3705 3706 3707
{
	unsigned long nr_reclaimed = 0;
	struct mem_cgroup_per_zone *mz, *next_mz = NULL;
	unsigned long reclaimed;
	int loop = 0;
	struct mem_cgroup_tree_per_zone *mctz;
3708
	unsigned long long excess;
3709
	unsigned long nr_scanned;
3710 3711 3712 3713

	if (order > 0)
		return 0;

3714
	mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone));
3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727
	/*
	 * This loop can run a while, specially if mem_cgroup's continuously
	 * keep exceeding their soft limit and putting the system under
	 * pressure
	 */
	do {
		if (next_mz)
			mz = next_mz;
		else
			mz = mem_cgroup_largest_soft_limit_node(mctz);
		if (!mz)
			break;

3728
		nr_scanned = 0;
3729 3730
		reclaimed = mem_cgroup_hierarchical_reclaim(mz->mem, zone,
						gfp_mask,
3731 3732
						MEM_CGROUP_RECLAIM_SOFT,
						&nr_scanned);
3733
		nr_reclaimed += reclaimed;
3734
		*total_scanned += nr_scanned;
3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756
		spin_lock(&mctz->lock);

		/*
		 * If we failed to reclaim anything from this memory cgroup
		 * it is time to move on to the next cgroup
		 */
		next_mz = NULL;
		if (!reclaimed) {
			do {
				/*
				 * Loop until we find yet another one.
				 *
				 * By the time we get the soft_limit lock
				 * again, someone might have aded the
				 * group back on the RB tree. Iterate to
				 * make sure we get a different mem.
				 * mem_cgroup_largest_soft_limit_node returns
				 * NULL if no other cgroup is present on
				 * the tree
				 */
				next_mz =
				__mem_cgroup_largest_soft_limit_node(mctz);
3757
				if (next_mz == mz)
3758
					css_put(&next_mz->mem->css);
3759
				else /* next_mz == NULL or other memcg */
3760 3761 3762 3763
					break;
			} while (1);
		}
		__mem_cgroup_remove_exceeded(mz->mem, mz, mctz);
3764
		excess = res_counter_soft_limit_excess(&mz->mem->res);
3765 3766 3767 3768 3769 3770 3771 3772
		/*
		 * One school of thought says that we should not add
		 * back the node to the tree if reclaim returns 0.
		 * But our reclaim could return 0, simply because due
		 * to priority we are exposing a smaller subset of
		 * memory to reclaim from. Consider this as a longer
		 * term TODO.
		 */
3773 3774
		/* If excess == 0, no tree ops */
		__mem_cgroup_insert_exceeded(mz->mem, mz, mctz, excess);
3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792
		spin_unlock(&mctz->lock);
		css_put(&mz->mem->css);
		loop++;
		/*
		 * Could not reclaim anything and there are no more
		 * mem cgroups to try or we seem to be looping without
		 * reclaiming anything.
		 */
		if (!nr_reclaimed &&
			(next_mz == NULL ||
			loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
			break;
	} while (!nr_reclaimed);
	if (next_mz)
		css_put(&next_mz->mem->css);
	return nr_reclaimed;
}

3793 3794 3795 3796
/*
 * This routine traverse page_cgroup in given list and drop them all.
 * *And* this routine doesn't reclaim page itself, just removes page_cgroup.
 */
3797
static int mem_cgroup_force_empty_list(struct mem_cgroup *mem,
K
KAMEZAWA Hiroyuki 已提交
3798
				int node, int zid, enum lru_list lru)
3799
{
K
KAMEZAWA Hiroyuki 已提交
3800 3801
	struct zone *zone;
	struct mem_cgroup_per_zone *mz;
3802
	struct page_cgroup *pc, *busy;
K
KAMEZAWA Hiroyuki 已提交
3803
	unsigned long flags, loop;
3804
	struct list_head *list;
3805
	int ret = 0;
3806

K
KAMEZAWA Hiroyuki 已提交
3807 3808
	zone = &NODE_DATA(node)->node_zones[zid];
	mz = mem_cgroup_zoneinfo(mem, node, zid);
3809
	list = &mz->lists[lru];
3810

3811 3812 3813 3814 3815
	loop = MEM_CGROUP_ZSTAT(mz, lru);
	/* give some margin against EBUSY etc...*/
	loop += 256;
	busy = NULL;
	while (loop--) {
3816 3817
		struct page *page;

3818
		ret = 0;
K
KAMEZAWA Hiroyuki 已提交
3819
		spin_lock_irqsave(&zone->lru_lock, flags);
3820
		if (list_empty(list)) {
K
KAMEZAWA Hiroyuki 已提交
3821
			spin_unlock_irqrestore(&zone->lru_lock, flags);
3822
			break;
3823 3824 3825 3826
		}
		pc = list_entry(list->prev, struct page_cgroup, lru);
		if (busy == pc) {
			list_move(&pc->lru, list);
3827
			busy = NULL;
K
KAMEZAWA Hiroyuki 已提交
3828
			spin_unlock_irqrestore(&zone->lru_lock, flags);
3829 3830
			continue;
		}
K
KAMEZAWA Hiroyuki 已提交
3831
		spin_unlock_irqrestore(&zone->lru_lock, flags);
3832

3833
		page = lookup_cgroup_page(pc);
3834 3835

		ret = mem_cgroup_move_parent(page, pc, mem, GFP_KERNEL);
3836
		if (ret == -ENOMEM)
3837
			break;
3838 3839 3840 3841 3842 3843 3844

		if (ret == -EBUSY || ret == -EINVAL) {
			/* found lock contention or "pc" is obsolete. */
			busy = pc;
			cond_resched();
		} else
			busy = NULL;
3845
	}
K
KAMEZAWA Hiroyuki 已提交
3846

3847 3848 3849
	if (!ret && !list_empty(list))
		return -EBUSY;
	return ret;
3850 3851 3852 3853 3854 3855
}

/*
 * make mem_cgroup's charge to be 0 if there is no task.
 * This enables deleting this mem_cgroup.
 */
3856
static int mem_cgroup_force_empty(struct mem_cgroup *mem, bool free_all)
3857
{
3858 3859 3860
	int ret;
	int node, zid, shrink;
	int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
3861
	struct cgroup *cgrp = mem->css.cgroup;
3862

3863
	css_get(&mem->css);
3864 3865

	shrink = 0;
3866 3867 3868
	/* should free all ? */
	if (free_all)
		goto try_to_free;
3869
move_account:
3870
	do {
3871
		ret = -EBUSY;
3872 3873 3874 3875
		if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children))
			goto out;
		ret = -EINTR;
		if (signal_pending(current))
3876
			goto out;
3877 3878
		/* This is for making all *used* pages to be on LRU. */
		lru_add_drain_all();
3879
		drain_all_stock_sync(mem);
3880
		ret = 0;
3881
		mem_cgroup_start_move(mem);
3882
		for_each_node_state(node, N_HIGH_MEMORY) {
3883
			for (zid = 0; !ret && zid < MAX_NR_ZONES; zid++) {
3884
				enum lru_list l;
3885 3886
				for_each_lru(l) {
					ret = mem_cgroup_force_empty_list(mem,
K
KAMEZAWA Hiroyuki 已提交
3887
							node, zid, l);
3888 3889 3890
					if (ret)
						break;
				}
3891
			}
3892 3893 3894
			if (ret)
				break;
		}
3895
		mem_cgroup_end_move(mem);
3896
		memcg_oom_recover(mem);
3897 3898 3899
		/* it seems parent cgroup doesn't have enough mem */
		if (ret == -ENOMEM)
			goto try_to_free;
3900
		cond_resched();
3901 3902
	/* "ret" should also be checked to ensure all lists are empty. */
	} while (mem->res.usage > 0 || ret);
3903 3904 3905
out:
	css_put(&mem->css);
	return ret;
3906 3907

try_to_free:
3908 3909
	/* returns EBUSY if there is a task or if we come here twice. */
	if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children) || shrink) {
3910 3911 3912
		ret = -EBUSY;
		goto out;
	}
3913 3914
	/* we call try-to-free pages for make this cgroup empty */
	lru_add_drain_all();
3915 3916 3917
	/* try to free all pages in this cgroup */
	shrink = 1;
	while (nr_retries && mem->res.usage > 0) {
3918
		struct memcg_scanrecord rec;
3919
		int progress;
3920 3921 3922 3923 3924

		if (signal_pending(current)) {
			ret = -EINTR;
			goto out;
		}
3925 3926 3927
		rec.context = SCAN_BY_SHRINK;
		rec.mem = mem;
		rec.root = mem;
K
KOSAKI Motohiro 已提交
3928
		progress = try_to_free_mem_cgroup_pages(mem, GFP_KERNEL,
3929
						false, &rec);
3930
		if (!progress) {
3931
			nr_retries--;
3932
			/* maybe some writeback is necessary */
3933
			congestion_wait(BLK_RW_ASYNC, HZ/10);
3934
		}
3935 3936

	}
K
KAMEZAWA Hiroyuki 已提交
3937
	lru_add_drain();
3938
	/* try move_account...there may be some *locked* pages. */
3939
	goto move_account;
3940 3941
}

3942 3943 3944 3945 3946 3947
int mem_cgroup_force_empty_write(struct cgroup *cont, unsigned int event)
{
	return mem_cgroup_force_empty(mem_cgroup_from_cont(cont), true);
}


3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965
static u64 mem_cgroup_hierarchy_read(struct cgroup *cont, struct cftype *cft)
{
	return mem_cgroup_from_cont(cont)->use_hierarchy;
}

static int mem_cgroup_hierarchy_write(struct cgroup *cont, struct cftype *cft,
					u64 val)
{
	int retval = 0;
	struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
	struct cgroup *parent = cont->parent;
	struct mem_cgroup *parent_mem = NULL;

	if (parent)
		parent_mem = mem_cgroup_from_cont(parent);

	cgroup_lock();
	/*
3966
	 * If parent's use_hierarchy is set, we can't make any modifications
3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985
	 * in the child subtrees. If it is unset, then the change can
	 * occur, provided the current cgroup has no children.
	 *
	 * For the root cgroup, parent_mem is NULL, we allow value to be
	 * set if there are no children.
	 */
	if ((!parent_mem || !parent_mem->use_hierarchy) &&
				(val == 1 || val == 0)) {
		if (list_empty(&cont->children))
			mem->use_hierarchy = val;
		else
			retval = -EBUSY;
	} else
		retval = -EINVAL;
	cgroup_unlock();

	return retval;
}

3986

3987 3988
static unsigned long mem_cgroup_recursive_stat(struct mem_cgroup *mem,
					       enum mem_cgroup_stat_index idx)
3989
{
K
KAMEZAWA Hiroyuki 已提交
3990
	struct mem_cgroup *iter;
3991
	long val = 0;
3992

3993
	/* Per-cpu values can be negative, use a signed accumulator */
K
KAMEZAWA Hiroyuki 已提交
3994 3995 3996 3997 3998 3999
	for_each_mem_cgroup_tree(iter, mem)
		val += mem_cgroup_read_stat(iter, idx);

	if (val < 0) /* race ? */
		val = 0;
	return val;
4000 4001
}

4002 4003
static inline u64 mem_cgroup_usage(struct mem_cgroup *mem, bool swap)
{
K
KAMEZAWA Hiroyuki 已提交
4004
	u64 val;
4005 4006 4007 4008 4009 4010 4011 4012

	if (!mem_cgroup_is_root(mem)) {
		if (!swap)
			return res_counter_read_u64(&mem->res, RES_USAGE);
		else
			return res_counter_read_u64(&mem->memsw, RES_USAGE);
	}

4013 4014
	val = mem_cgroup_recursive_stat(mem, MEM_CGROUP_STAT_CACHE);
	val += mem_cgroup_recursive_stat(mem, MEM_CGROUP_STAT_RSS);
4015

K
KAMEZAWA Hiroyuki 已提交
4016
	if (swap)
4017
		val += mem_cgroup_recursive_stat(mem, MEM_CGROUP_STAT_SWAPOUT);
4018 4019 4020 4021

	return val << PAGE_SHIFT;
}

4022
static u64 mem_cgroup_read(struct cgroup *cont, struct cftype *cft)
B
Balbir Singh 已提交
4023
{
4024
	struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
4025
	u64 val;
4026 4027 4028 4029 4030 4031
	int type, name;

	type = MEMFILE_TYPE(cft->private);
	name = MEMFILE_ATTR(cft->private);
	switch (type) {
	case _MEM:
4032 4033 4034
		if (name == RES_USAGE)
			val = mem_cgroup_usage(mem, false);
		else
4035
			val = res_counter_read_u64(&mem->res, name);
4036 4037
		break;
	case _MEMSWAP:
4038 4039 4040
		if (name == RES_USAGE)
			val = mem_cgroup_usage(mem, true);
		else
4041
			val = res_counter_read_u64(&mem->memsw, name);
4042 4043 4044 4045 4046 4047
		break;
	default:
		BUG();
		break;
	}
	return val;
B
Balbir Singh 已提交
4048
}
4049 4050 4051 4052
/*
 * The user of this function is...
 * RES_LIMIT.
 */
4053 4054
static int mem_cgroup_write(struct cgroup *cont, struct cftype *cft,
			    const char *buffer)
B
Balbir Singh 已提交
4055
{
4056
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
4057
	int type, name;
4058 4059 4060
	unsigned long long val;
	int ret;

4061 4062 4063
	type = MEMFILE_TYPE(cft->private);
	name = MEMFILE_ATTR(cft->private);
	switch (name) {
4064
	case RES_LIMIT:
4065 4066 4067 4068
		if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
			ret = -EINVAL;
			break;
		}
4069 4070
		/* This function does all necessary parse...reuse it */
		ret = res_counter_memparse_write_strategy(buffer, &val);
4071 4072 4073
		if (ret)
			break;
		if (type == _MEM)
4074
			ret = mem_cgroup_resize_limit(memcg, val);
4075 4076
		else
			ret = mem_cgroup_resize_memsw_limit(memcg, val);
4077
		break;
4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091
	case RES_SOFT_LIMIT:
		ret = res_counter_memparse_write_strategy(buffer, &val);
		if (ret)
			break;
		/*
		 * For memsw, soft limits are hard to implement in terms
		 * of semantics, for now, we support soft limits for
		 * control without swap
		 */
		if (type == _MEM)
			ret = res_counter_set_soft_limit(&memcg->res, val);
		else
			ret = -EINVAL;
		break;
4092 4093 4094 4095 4096
	default:
		ret = -EINVAL; /* should be BUG() ? */
		break;
	}
	return ret;
B
Balbir Singh 已提交
4097 4098
}

4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126
static void memcg_get_hierarchical_limit(struct mem_cgroup *memcg,
		unsigned long long *mem_limit, unsigned long long *memsw_limit)
{
	struct cgroup *cgroup;
	unsigned long long min_limit, min_memsw_limit, tmp;

	min_limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
	min_memsw_limit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
	cgroup = memcg->css.cgroup;
	if (!memcg->use_hierarchy)
		goto out;

	while (cgroup->parent) {
		cgroup = cgroup->parent;
		memcg = mem_cgroup_from_cont(cgroup);
		if (!memcg->use_hierarchy)
			break;
		tmp = res_counter_read_u64(&memcg->res, RES_LIMIT);
		min_limit = min(min_limit, tmp);
		tmp = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
		min_memsw_limit = min(min_memsw_limit, tmp);
	}
out:
	*mem_limit = min_limit;
	*memsw_limit = min_memsw_limit;
	return;
}

4127
static int mem_cgroup_reset(struct cgroup *cont, unsigned int event)
4128 4129
{
	struct mem_cgroup *mem;
4130
	int type, name;
4131 4132

	mem = mem_cgroup_from_cont(cont);
4133 4134 4135
	type = MEMFILE_TYPE(event);
	name = MEMFILE_ATTR(event);
	switch (name) {
4136
	case RES_MAX_USAGE:
4137 4138 4139 4140
		if (type == _MEM)
			res_counter_reset_max(&mem->res);
		else
			res_counter_reset_max(&mem->memsw);
4141 4142
		break;
	case RES_FAILCNT:
4143 4144 4145 4146
		if (type == _MEM)
			res_counter_reset_failcnt(&mem->res);
		else
			res_counter_reset_failcnt(&mem->memsw);
4147 4148
		break;
	}
4149

4150
	return 0;
4151 4152
}

4153 4154 4155 4156 4157 4158
static u64 mem_cgroup_move_charge_read(struct cgroup *cgrp,
					struct cftype *cft)
{
	return mem_cgroup_from_cont(cgrp)->move_charge_at_immigrate;
}

4159
#ifdef CONFIG_MMU
4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177
static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
					struct cftype *cft, u64 val)
{
	struct mem_cgroup *mem = mem_cgroup_from_cont(cgrp);

	if (val >= (1 << NR_MOVE_TYPE))
		return -EINVAL;
	/*
	 * We check this value several times in both in can_attach() and
	 * attach(), so we need cgroup lock to prevent this value from being
	 * inconsistent.
	 */
	cgroup_lock();
	mem->move_charge_at_immigrate = val;
	cgroup_unlock();

	return 0;
}
4178 4179 4180 4181 4182 4183 4184
#else
static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
					struct cftype *cft, u64 val)
{
	return -ENOSYS;
}
#endif
4185

K
KAMEZAWA Hiroyuki 已提交
4186 4187 4188 4189 4190

/* For read statistics */
enum {
	MCS_CACHE,
	MCS_RSS,
4191
	MCS_FILE_MAPPED,
K
KAMEZAWA Hiroyuki 已提交
4192 4193
	MCS_PGPGIN,
	MCS_PGPGOUT,
4194
	MCS_SWAP,
4195 4196
	MCS_PGFAULT,
	MCS_PGMAJFAULT,
K
KAMEZAWA Hiroyuki 已提交
4197 4198 4199 4200 4201 4202 4203 4204 4205 4206
	MCS_INACTIVE_ANON,
	MCS_ACTIVE_ANON,
	MCS_INACTIVE_FILE,
	MCS_ACTIVE_FILE,
	MCS_UNEVICTABLE,
	NR_MCS_STAT,
};

struct mcs_total_stat {
	s64 stat[NR_MCS_STAT];
4207 4208
};

K
KAMEZAWA Hiroyuki 已提交
4209 4210 4211 4212 4213 4214
struct {
	char *local_name;
	char *total_name;
} memcg_stat_strings[NR_MCS_STAT] = {
	{"cache", "total_cache"},
	{"rss", "total_rss"},
4215
	{"mapped_file", "total_mapped_file"},
K
KAMEZAWA Hiroyuki 已提交
4216 4217
	{"pgpgin", "total_pgpgin"},
	{"pgpgout", "total_pgpgout"},
4218
	{"swap", "total_swap"},
4219 4220
	{"pgfault", "total_pgfault"},
	{"pgmajfault", "total_pgmajfault"},
K
KAMEZAWA Hiroyuki 已提交
4221 4222 4223 4224 4225 4226 4227 4228
	{"inactive_anon", "total_inactive_anon"},
	{"active_anon", "total_active_anon"},
	{"inactive_file", "total_inactive_file"},
	{"active_file", "total_active_file"},
	{"unevictable", "total_unevictable"}
};


K
KAMEZAWA Hiroyuki 已提交
4229 4230
static void
mem_cgroup_get_local_stat(struct mem_cgroup *mem, struct mcs_total_stat *s)
K
KAMEZAWA Hiroyuki 已提交
4231 4232 4233 4234
{
	s64 val;

	/* per cpu stat */
4235
	val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_CACHE);
K
KAMEZAWA Hiroyuki 已提交
4236
	s->stat[MCS_CACHE] += val * PAGE_SIZE;
4237
	val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_RSS);
K
KAMEZAWA Hiroyuki 已提交
4238
	s->stat[MCS_RSS] += val * PAGE_SIZE;
4239
	val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_FILE_MAPPED);
4240
	s->stat[MCS_FILE_MAPPED] += val * PAGE_SIZE;
4241
	val = mem_cgroup_read_events(mem, MEM_CGROUP_EVENTS_PGPGIN);
K
KAMEZAWA Hiroyuki 已提交
4242
	s->stat[MCS_PGPGIN] += val;
4243
	val = mem_cgroup_read_events(mem, MEM_CGROUP_EVENTS_PGPGOUT);
K
KAMEZAWA Hiroyuki 已提交
4244
	s->stat[MCS_PGPGOUT] += val;
4245
	if (do_swap_account) {
4246
		val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_SWAPOUT);
4247 4248
		s->stat[MCS_SWAP] += val * PAGE_SIZE;
	}
4249 4250 4251 4252
	val = mem_cgroup_read_events(mem, MEM_CGROUP_EVENTS_PGFAULT);
	s->stat[MCS_PGFAULT] += val;
	val = mem_cgroup_read_events(mem, MEM_CGROUP_EVENTS_PGMAJFAULT);
	s->stat[MCS_PGMAJFAULT] += val;
K
KAMEZAWA Hiroyuki 已提交
4253 4254

	/* per zone stat */
4255
	val = mem_cgroup_nr_lru_pages(mem, BIT(LRU_INACTIVE_ANON));
K
KAMEZAWA Hiroyuki 已提交
4256
	s->stat[MCS_INACTIVE_ANON] += val * PAGE_SIZE;
4257
	val = mem_cgroup_nr_lru_pages(mem, BIT(LRU_ACTIVE_ANON));
K
KAMEZAWA Hiroyuki 已提交
4258
	s->stat[MCS_ACTIVE_ANON] += val * PAGE_SIZE;
4259
	val = mem_cgroup_nr_lru_pages(mem, BIT(LRU_INACTIVE_FILE));
K
KAMEZAWA Hiroyuki 已提交
4260
	s->stat[MCS_INACTIVE_FILE] += val * PAGE_SIZE;
4261
	val = mem_cgroup_nr_lru_pages(mem, BIT(LRU_ACTIVE_FILE));
K
KAMEZAWA Hiroyuki 已提交
4262
	s->stat[MCS_ACTIVE_FILE] += val * PAGE_SIZE;
4263
	val = mem_cgroup_nr_lru_pages(mem, BIT(LRU_UNEVICTABLE));
K
KAMEZAWA Hiroyuki 已提交
4264 4265 4266 4267 4268 4269
	s->stat[MCS_UNEVICTABLE] += val * PAGE_SIZE;
}

static void
mem_cgroup_get_total_stat(struct mem_cgroup *mem, struct mcs_total_stat *s)
{
K
KAMEZAWA Hiroyuki 已提交
4270 4271 4272 4273
	struct mem_cgroup *iter;

	for_each_mem_cgroup_tree(iter, mem)
		mem_cgroup_get_local_stat(iter, s);
K
KAMEZAWA Hiroyuki 已提交
4274 4275
}

4276 4277 4278 4279 4280 4281 4282 4283 4284
#ifdef CONFIG_NUMA
static int mem_control_numa_stat_show(struct seq_file *m, void *arg)
{
	int nid;
	unsigned long total_nr, file_nr, anon_nr, unevictable_nr;
	unsigned long node_nr;
	struct cgroup *cont = m->private;
	struct mem_cgroup *mem_cont = mem_cgroup_from_cont(cont);

4285
	total_nr = mem_cgroup_nr_lru_pages(mem_cont, LRU_ALL);
4286 4287
	seq_printf(m, "total=%lu", total_nr);
	for_each_node_state(nid, N_HIGH_MEMORY) {
4288
		node_nr = mem_cgroup_node_nr_lru_pages(mem_cont, nid, LRU_ALL);
4289 4290 4291 4292
		seq_printf(m, " N%d=%lu", nid, node_nr);
	}
	seq_putc(m, '\n');

4293
	file_nr = mem_cgroup_nr_lru_pages(mem_cont, LRU_ALL_FILE);
4294 4295
	seq_printf(m, "file=%lu", file_nr);
	for_each_node_state(nid, N_HIGH_MEMORY) {
4296 4297
		node_nr = mem_cgroup_node_nr_lru_pages(mem_cont, nid,
				LRU_ALL_FILE);
4298 4299 4300 4301
		seq_printf(m, " N%d=%lu", nid, node_nr);
	}
	seq_putc(m, '\n');

4302
	anon_nr = mem_cgroup_nr_lru_pages(mem_cont, LRU_ALL_ANON);
4303 4304
	seq_printf(m, "anon=%lu", anon_nr);
	for_each_node_state(nid, N_HIGH_MEMORY) {
4305 4306
		node_nr = mem_cgroup_node_nr_lru_pages(mem_cont, nid,
				LRU_ALL_ANON);
4307 4308 4309 4310
		seq_printf(m, " N%d=%lu", nid, node_nr);
	}
	seq_putc(m, '\n');

4311
	unevictable_nr = mem_cgroup_nr_lru_pages(mem_cont, BIT(LRU_UNEVICTABLE));
4312 4313
	seq_printf(m, "unevictable=%lu", unevictable_nr);
	for_each_node_state(nid, N_HIGH_MEMORY) {
4314 4315
		node_nr = mem_cgroup_node_nr_lru_pages(mem_cont, nid,
				BIT(LRU_UNEVICTABLE));
4316 4317 4318 4319 4320 4321 4322
		seq_printf(m, " N%d=%lu", nid, node_nr);
	}
	seq_putc(m, '\n');
	return 0;
}
#endif /* CONFIG_NUMA */

4323 4324
static int mem_control_stat_show(struct cgroup *cont, struct cftype *cft,
				 struct cgroup_map_cb *cb)
4325 4326
{
	struct mem_cgroup *mem_cont = mem_cgroup_from_cont(cont);
K
KAMEZAWA Hiroyuki 已提交
4327
	struct mcs_total_stat mystat;
4328 4329
	int i;

K
KAMEZAWA Hiroyuki 已提交
4330 4331
	memset(&mystat, 0, sizeof(mystat));
	mem_cgroup_get_local_stat(mem_cont, &mystat);
4332

4333

4334 4335 4336
	for (i = 0; i < NR_MCS_STAT; i++) {
		if (i == MCS_SWAP && !do_swap_account)
			continue;
K
KAMEZAWA Hiroyuki 已提交
4337
		cb->fill(cb, memcg_stat_strings[i].local_name, mystat.stat[i]);
4338
	}
L
Lee Schermerhorn 已提交
4339

K
KAMEZAWA Hiroyuki 已提交
4340
	/* Hierarchical information */
4341 4342 4343 4344 4345 4346 4347
	{
		unsigned long long limit, memsw_limit;
		memcg_get_hierarchical_limit(mem_cont, &limit, &memsw_limit);
		cb->fill(cb, "hierarchical_memory_limit", limit);
		if (do_swap_account)
			cb->fill(cb, "hierarchical_memsw_limit", memsw_limit);
	}
K
KOSAKI Motohiro 已提交
4348

K
KAMEZAWA Hiroyuki 已提交
4349 4350
	memset(&mystat, 0, sizeof(mystat));
	mem_cgroup_get_total_stat(mem_cont, &mystat);
4351 4352 4353
	for (i = 0; i < NR_MCS_STAT; i++) {
		if (i == MCS_SWAP && !do_swap_account)
			continue;
K
KAMEZAWA Hiroyuki 已提交
4354
		cb->fill(cb, memcg_stat_strings[i].total_name, mystat.stat[i]);
4355
	}
K
KAMEZAWA Hiroyuki 已提交
4356

K
KOSAKI Motohiro 已提交
4357
#ifdef CONFIG_DEBUG_VM
4358
	cb->fill(cb, "inactive_ratio", calc_inactive_ratio(mem_cont, NULL));
K
KOSAKI Motohiro 已提交
4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385

	{
		int nid, zid;
		struct mem_cgroup_per_zone *mz;
		unsigned long recent_rotated[2] = {0, 0};
		unsigned long recent_scanned[2] = {0, 0};

		for_each_online_node(nid)
			for (zid = 0; zid < MAX_NR_ZONES; zid++) {
				mz = mem_cgroup_zoneinfo(mem_cont, nid, zid);

				recent_rotated[0] +=
					mz->reclaim_stat.recent_rotated[0];
				recent_rotated[1] +=
					mz->reclaim_stat.recent_rotated[1];
				recent_scanned[0] +=
					mz->reclaim_stat.recent_scanned[0];
				recent_scanned[1] +=
					mz->reclaim_stat.recent_scanned[1];
			}
		cb->fill(cb, "recent_rotated_anon", recent_rotated[0]);
		cb->fill(cb, "recent_rotated_file", recent_rotated[1]);
		cb->fill(cb, "recent_scanned_anon", recent_scanned[0]);
		cb->fill(cb, "recent_scanned_file", recent_scanned[1]);
	}
#endif

4386 4387 4388
	return 0;
}

K
KOSAKI Motohiro 已提交
4389 4390 4391 4392
static u64 mem_cgroup_swappiness_read(struct cgroup *cgrp, struct cftype *cft)
{
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);

4393
	return mem_cgroup_swappiness(memcg);
K
KOSAKI Motohiro 已提交
4394 4395 4396 4397 4398 4399 4400
}

static int mem_cgroup_swappiness_write(struct cgroup *cgrp, struct cftype *cft,
				       u64 val)
{
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
	struct mem_cgroup *parent;
4401

K
KOSAKI Motohiro 已提交
4402 4403 4404 4405 4406 4407 4408
	if (val > 100)
		return -EINVAL;

	if (cgrp->parent == NULL)
		return -EINVAL;

	parent = mem_cgroup_from_cont(cgrp->parent);
4409 4410 4411

	cgroup_lock();

K
KOSAKI Motohiro 已提交
4412 4413
	/* If under hierarchy, only empty-root can set this value */
	if ((parent->use_hierarchy) ||
4414 4415
	    (memcg->use_hierarchy && !list_empty(&cgrp->children))) {
		cgroup_unlock();
K
KOSAKI Motohiro 已提交
4416
		return -EINVAL;
4417
	}
K
KOSAKI Motohiro 已提交
4418 4419 4420

	memcg->swappiness = val;

4421 4422
	cgroup_unlock();

K
KOSAKI Motohiro 已提交
4423 4424 4425
	return 0;
}

4426 4427 4428 4429 4430 4431 4432 4433
static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
{
	struct mem_cgroup_threshold_ary *t;
	u64 usage;
	int i;

	rcu_read_lock();
	if (!swap)
4434
		t = rcu_dereference(memcg->thresholds.primary);
4435
	else
4436
		t = rcu_dereference(memcg->memsw_thresholds.primary);
4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447

	if (!t)
		goto unlock;

	usage = mem_cgroup_usage(memcg, swap);

	/*
	 * current_threshold points to threshold just below usage.
	 * If it's not true, a threshold was crossed after last
	 * call of __mem_cgroup_threshold().
	 */
4448
	i = t->current_threshold;
4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471

	/*
	 * Iterate backward over array of thresholds starting from
	 * current_threshold and check if a threshold is crossed.
	 * If none of thresholds below usage is crossed, we read
	 * only one element of the array here.
	 */
	for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
		eventfd_signal(t->entries[i].eventfd, 1);

	/* i = current_threshold + 1 */
	i++;

	/*
	 * Iterate forward over array of thresholds starting from
	 * current_threshold+1 and check if a threshold is crossed.
	 * If none of thresholds above usage is crossed, we read
	 * only one element of the array here.
	 */
	for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
		eventfd_signal(t->entries[i].eventfd, 1);

	/* Update current_threshold */
4472
	t->current_threshold = i - 1;
4473 4474 4475 4476 4477 4478
unlock:
	rcu_read_unlock();
}

static void mem_cgroup_threshold(struct mem_cgroup *memcg)
{
4479 4480 4481 4482 4483 4484 4485
	while (memcg) {
		__mem_cgroup_threshold(memcg, false);
		if (do_swap_account)
			__mem_cgroup_threshold(memcg, true);

		memcg = parent_mem_cgroup(memcg);
	}
4486 4487 4488 4489 4490 4491 4492 4493 4494 4495
}

static int compare_thresholds(const void *a, const void *b)
{
	const struct mem_cgroup_threshold *_a = a;
	const struct mem_cgroup_threshold *_b = b;

	return _a->threshold - _b->threshold;
}

K
KAMEZAWA Hiroyuki 已提交
4496
static int mem_cgroup_oom_notify_cb(struct mem_cgroup *mem)
K
KAMEZAWA Hiroyuki 已提交
4497 4498 4499 4500 4501 4502 4503 4504 4505 4506
{
	struct mem_cgroup_eventfd_list *ev;

	list_for_each_entry(ev, &mem->oom_notify, list)
		eventfd_signal(ev->eventfd, 1);
	return 0;
}

static void mem_cgroup_oom_notify(struct mem_cgroup *mem)
{
K
KAMEZAWA Hiroyuki 已提交
4507 4508 4509 4510
	struct mem_cgroup *iter;

	for_each_mem_cgroup_tree(iter, mem)
		mem_cgroup_oom_notify_cb(iter);
K
KAMEZAWA Hiroyuki 已提交
4511 4512 4513 4514
}

static int mem_cgroup_usage_register_event(struct cgroup *cgrp,
	struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
4515 4516
{
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4517 4518
	struct mem_cgroup_thresholds *thresholds;
	struct mem_cgroup_threshold_ary *new;
4519 4520
	int type = MEMFILE_TYPE(cft->private);
	u64 threshold, usage;
4521
	int i, size, ret;
4522 4523 4524 4525 4526 4527

	ret = res_counter_memparse_write_strategy(args, &threshold);
	if (ret)
		return ret;

	mutex_lock(&memcg->thresholds_lock);
4528

4529
	if (type == _MEM)
4530
		thresholds = &memcg->thresholds;
4531
	else if (type == _MEMSWAP)
4532
		thresholds = &memcg->memsw_thresholds;
4533 4534 4535 4536 4537 4538
	else
		BUG();

	usage = mem_cgroup_usage(memcg, type == _MEMSWAP);

	/* Check if a threshold crossed before adding a new one */
4539
	if (thresholds->primary)
4540 4541
		__mem_cgroup_threshold(memcg, type == _MEMSWAP);

4542
	size = thresholds->primary ? thresholds->primary->size + 1 : 1;
4543 4544

	/* Allocate memory for new array of thresholds */
4545
	new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
4546
			GFP_KERNEL);
4547
	if (!new) {
4548 4549 4550
		ret = -ENOMEM;
		goto unlock;
	}
4551
	new->size = size;
4552 4553

	/* Copy thresholds (if any) to new array */
4554 4555
	if (thresholds->primary) {
		memcpy(new->entries, thresholds->primary->entries, (size - 1) *
4556
				sizeof(struct mem_cgroup_threshold));
4557 4558
	}

4559
	/* Add new threshold */
4560 4561
	new->entries[size - 1].eventfd = eventfd;
	new->entries[size - 1].threshold = threshold;
4562 4563

	/* Sort thresholds. Registering of new threshold isn't time-critical */
4564
	sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
4565 4566 4567
			compare_thresholds, NULL);

	/* Find current threshold */
4568
	new->current_threshold = -1;
4569
	for (i = 0; i < size; i++) {
4570
		if (new->entries[i].threshold < usage) {
4571
			/*
4572 4573
			 * new->current_threshold will not be used until
			 * rcu_assign_pointer(), so it's safe to increment
4574 4575
			 * it here.
			 */
4576
			++new->current_threshold;
4577 4578 4579
		}
	}

4580 4581 4582 4583 4584
	/* Free old spare buffer and save old primary buffer as spare */
	kfree(thresholds->spare);
	thresholds->spare = thresholds->primary;

	rcu_assign_pointer(thresholds->primary, new);
4585

4586
	/* To be sure that nobody uses thresholds */
4587 4588 4589 4590 4591 4592 4593 4594
	synchronize_rcu();

unlock:
	mutex_unlock(&memcg->thresholds_lock);

	return ret;
}

4595
static void mem_cgroup_usage_unregister_event(struct cgroup *cgrp,
K
KAMEZAWA Hiroyuki 已提交
4596
	struct cftype *cft, struct eventfd_ctx *eventfd)
4597 4598
{
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4599 4600
	struct mem_cgroup_thresholds *thresholds;
	struct mem_cgroup_threshold_ary *new;
4601 4602
	int type = MEMFILE_TYPE(cft->private);
	u64 usage;
4603
	int i, j, size;
4604 4605 4606

	mutex_lock(&memcg->thresholds_lock);
	if (type == _MEM)
4607
		thresholds = &memcg->thresholds;
4608
	else if (type == _MEMSWAP)
4609
		thresholds = &memcg->memsw_thresholds;
4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624
	else
		BUG();

	/*
	 * Something went wrong if we trying to unregister a threshold
	 * if we don't have thresholds
	 */
	BUG_ON(!thresholds);

	usage = mem_cgroup_usage(memcg, type == _MEMSWAP);

	/* Check if a threshold crossed before removing */
	__mem_cgroup_threshold(memcg, type == _MEMSWAP);

	/* Calculate new number of threshold */
4625 4626 4627
	size = 0;
	for (i = 0; i < thresholds->primary->size; i++) {
		if (thresholds->primary->entries[i].eventfd != eventfd)
4628 4629 4630
			size++;
	}

4631
	new = thresholds->spare;
4632

4633 4634
	/* Set thresholds array to NULL if we don't have thresholds */
	if (!size) {
4635 4636
		kfree(new);
		new = NULL;
4637
		goto swap_buffers;
4638 4639
	}

4640
	new->size = size;
4641 4642

	/* Copy thresholds and find current threshold */
4643 4644 4645
	new->current_threshold = -1;
	for (i = 0, j = 0; i < thresholds->primary->size; i++) {
		if (thresholds->primary->entries[i].eventfd == eventfd)
4646 4647
			continue;

4648 4649
		new->entries[j] = thresholds->primary->entries[i];
		if (new->entries[j].threshold < usage) {
4650
			/*
4651
			 * new->current_threshold will not be used
4652 4653 4654
			 * until rcu_assign_pointer(), so it's safe to increment
			 * it here.
			 */
4655
			++new->current_threshold;
4656 4657 4658 4659
		}
		j++;
	}

4660
swap_buffers:
4661 4662 4663
	/* Swap primary and spare array */
	thresholds->spare = thresholds->primary;
	rcu_assign_pointer(thresholds->primary, new);
4664

4665
	/* To be sure that nobody uses thresholds */
4666 4667 4668 4669
	synchronize_rcu();

	mutex_unlock(&memcg->thresholds_lock);
}
4670

K
KAMEZAWA Hiroyuki 已提交
4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682
static int mem_cgroup_oom_register_event(struct cgroup *cgrp,
	struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
{
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
	struct mem_cgroup_eventfd_list *event;
	int type = MEMFILE_TYPE(cft->private);

	BUG_ON(type != _OOM_TYPE);
	event = kmalloc(sizeof(*event),	GFP_KERNEL);
	if (!event)
		return -ENOMEM;

4683
	spin_lock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
4684 4685 4686 4687 4688

	event->eventfd = eventfd;
	list_add(&event->list, &memcg->oom_notify);

	/* already in OOM ? */
4689
	if (atomic_read(&memcg->under_oom))
K
KAMEZAWA Hiroyuki 已提交
4690
		eventfd_signal(eventfd, 1);
4691
	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
4692 4693 4694 4695

	return 0;
}

4696
static void mem_cgroup_oom_unregister_event(struct cgroup *cgrp,
K
KAMEZAWA Hiroyuki 已提交
4697 4698 4699 4700 4701 4702 4703 4704
	struct cftype *cft, struct eventfd_ctx *eventfd)
{
	struct mem_cgroup *mem = mem_cgroup_from_cont(cgrp);
	struct mem_cgroup_eventfd_list *ev, *tmp;
	int type = MEMFILE_TYPE(cft->private);

	BUG_ON(type != _OOM_TYPE);

4705
	spin_lock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
4706 4707 4708 4709 4710 4711 4712 4713

	list_for_each_entry_safe(ev, tmp, &mem->oom_notify, list) {
		if (ev->eventfd == eventfd) {
			list_del(&ev->list);
			kfree(ev);
		}
	}

4714
	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
4715 4716
}

4717 4718 4719 4720 4721 4722 4723
static int mem_cgroup_oom_control_read(struct cgroup *cgrp,
	struct cftype *cft,  struct cgroup_map_cb *cb)
{
	struct mem_cgroup *mem = mem_cgroup_from_cont(cgrp);

	cb->fill(cb, "oom_kill_disable", mem->oom_kill_disable);

4724
	if (atomic_read(&mem->under_oom))
4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750
		cb->fill(cb, "under_oom", 1);
	else
		cb->fill(cb, "under_oom", 0);
	return 0;
}

static int mem_cgroup_oom_control_write(struct cgroup *cgrp,
	struct cftype *cft, u64 val)
{
	struct mem_cgroup *mem = mem_cgroup_from_cont(cgrp);
	struct mem_cgroup *parent;

	/* cannot set to root cgroup and only 0 and 1 are allowed */
	if (!cgrp->parent || !((val == 0) || (val == 1)))
		return -EINVAL;

	parent = mem_cgroup_from_cont(cgrp->parent);

	cgroup_lock();
	/* oom-kill-disable is a flag for subhierarchy. */
	if ((parent->use_hierarchy) ||
	    (mem->use_hierarchy && !list_empty(&cgrp->children))) {
		cgroup_unlock();
		return -EINVAL;
	}
	mem->oom_kill_disable = val;
4751 4752
	if (!val)
		memcg_oom_recover(mem);
4753 4754 4755 4756
	cgroup_unlock();
	return 0;
}

4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772
#ifdef CONFIG_NUMA
static const struct file_operations mem_control_numa_stat_file_operations = {
	.read = seq_read,
	.llseek = seq_lseek,
	.release = single_release,
};

static int mem_control_numa_stat_open(struct inode *unused, struct file *file)
{
	struct cgroup *cont = file->f_dentry->d_parent->d_fsdata;

	file->f_op = &mem_control_numa_stat_file_operations;
	return single_open(file, mem_control_numa_stat_show, cont);
}
#endif /* CONFIG_NUMA */

4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820
static int mem_cgroup_vmscan_stat_read(struct cgroup *cgrp,
				struct cftype *cft,
				struct cgroup_map_cb *cb)
{
	struct mem_cgroup *mem = mem_cgroup_from_cont(cgrp);
	char string[64];
	int i;

	for (i = 0; i < NR_SCANSTATS; i++) {
		strcpy(string, scanstat_string[i]);
		strcat(string, SCANSTAT_WORD_LIMIT);
		cb->fill(cb, string,  mem->scanstat.stats[SCAN_BY_LIMIT][i]);
	}

	for (i = 0; i < NR_SCANSTATS; i++) {
		strcpy(string, scanstat_string[i]);
		strcat(string, SCANSTAT_WORD_SYSTEM);
		cb->fill(cb, string,  mem->scanstat.stats[SCAN_BY_SYSTEM][i]);
	}

	for (i = 0; i < NR_SCANSTATS; i++) {
		strcpy(string, scanstat_string[i]);
		strcat(string, SCANSTAT_WORD_LIMIT);
		strcat(string, SCANSTAT_WORD_HIERARCHY);
		cb->fill(cb, string,  mem->scanstat.rootstats[SCAN_BY_LIMIT][i]);
	}
	for (i = 0; i < NR_SCANSTATS; i++) {
		strcpy(string, scanstat_string[i]);
		strcat(string, SCANSTAT_WORD_SYSTEM);
		strcat(string, SCANSTAT_WORD_HIERARCHY);
		cb->fill(cb, string,  mem->scanstat.rootstats[SCAN_BY_SYSTEM][i]);
	}
	return 0;
}

static int mem_cgroup_reset_vmscan_stat(struct cgroup *cgrp,
				unsigned int event)
{
	struct mem_cgroup *mem = mem_cgroup_from_cont(cgrp);

	spin_lock(&mem->scanstat.lock);
	memset(&mem->scanstat.stats, 0, sizeof(mem->scanstat.stats));
	memset(&mem->scanstat.rootstats, 0, sizeof(mem->scanstat.rootstats));
	spin_unlock(&mem->scanstat.lock);
	return 0;
}


B
Balbir Singh 已提交
4821 4822
static struct cftype mem_cgroup_files[] = {
	{
4823
		.name = "usage_in_bytes",
4824
		.private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
4825
		.read_u64 = mem_cgroup_read,
K
KAMEZAWA Hiroyuki 已提交
4826 4827
		.register_event = mem_cgroup_usage_register_event,
		.unregister_event = mem_cgroup_usage_unregister_event,
B
Balbir Singh 已提交
4828
	},
4829 4830
	{
		.name = "max_usage_in_bytes",
4831
		.private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
4832
		.trigger = mem_cgroup_reset,
4833 4834
		.read_u64 = mem_cgroup_read,
	},
B
Balbir Singh 已提交
4835
	{
4836
		.name = "limit_in_bytes",
4837
		.private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
4838
		.write_string = mem_cgroup_write,
4839
		.read_u64 = mem_cgroup_read,
B
Balbir Singh 已提交
4840
	},
4841 4842 4843 4844 4845 4846
	{
		.name = "soft_limit_in_bytes",
		.private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
		.write_string = mem_cgroup_write,
		.read_u64 = mem_cgroup_read,
	},
B
Balbir Singh 已提交
4847 4848
	{
		.name = "failcnt",
4849
		.private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
4850
		.trigger = mem_cgroup_reset,
4851
		.read_u64 = mem_cgroup_read,
B
Balbir Singh 已提交
4852
	},
4853 4854
	{
		.name = "stat",
4855
		.read_map = mem_control_stat_show,
4856
	},
4857 4858 4859 4860
	{
		.name = "force_empty",
		.trigger = mem_cgroup_force_empty_write,
	},
4861 4862 4863 4864 4865
	{
		.name = "use_hierarchy",
		.write_u64 = mem_cgroup_hierarchy_write,
		.read_u64 = mem_cgroup_hierarchy_read,
	},
K
KOSAKI Motohiro 已提交
4866 4867 4868 4869 4870
	{
		.name = "swappiness",
		.read_u64 = mem_cgroup_swappiness_read,
		.write_u64 = mem_cgroup_swappiness_write,
	},
4871 4872 4873 4874 4875
	{
		.name = "move_charge_at_immigrate",
		.read_u64 = mem_cgroup_move_charge_read,
		.write_u64 = mem_cgroup_move_charge_write,
	},
K
KAMEZAWA Hiroyuki 已提交
4876 4877
	{
		.name = "oom_control",
4878 4879
		.read_map = mem_cgroup_oom_control_read,
		.write_u64 = mem_cgroup_oom_control_write,
K
KAMEZAWA Hiroyuki 已提交
4880 4881 4882 4883
		.register_event = mem_cgroup_oom_register_event,
		.unregister_event = mem_cgroup_oom_unregister_event,
		.private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
	},
4884 4885 4886 4887
#ifdef CONFIG_NUMA
	{
		.name = "numa_stat",
		.open = mem_control_numa_stat_open,
4888
		.mode = S_IRUGO,
4889 4890
	},
#endif
4891 4892 4893 4894 4895
	{
		.name = "vmscan_stat",
		.read_map = mem_cgroup_vmscan_stat_read,
		.trigger = mem_cgroup_reset_vmscan_stat,
	},
B
Balbir Singh 已提交
4896 4897
};

4898 4899 4900 4901 4902 4903
#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
static struct cftype memsw_cgroup_files[] = {
	{
		.name = "memsw.usage_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
		.read_u64 = mem_cgroup_read,
K
KAMEZAWA Hiroyuki 已提交
4904 4905
		.register_event = mem_cgroup_usage_register_event,
		.unregister_event = mem_cgroup_usage_unregister_event,
4906 4907 4908 4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940
	},
	{
		.name = "memsw.max_usage_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
		.trigger = mem_cgroup_reset,
		.read_u64 = mem_cgroup_read,
	},
	{
		.name = "memsw.limit_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
		.write_string = mem_cgroup_write,
		.read_u64 = mem_cgroup_read,
	},
	{
		.name = "memsw.failcnt",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
		.trigger = mem_cgroup_reset,
		.read_u64 = mem_cgroup_read,
	},
};

static int register_memsw_files(struct cgroup *cont, struct cgroup_subsys *ss)
{
	if (!do_swap_account)
		return 0;
	return cgroup_add_files(cont, ss, memsw_cgroup_files,
				ARRAY_SIZE(memsw_cgroup_files));
};
#else
static int register_memsw_files(struct cgroup *cont, struct cgroup_subsys *ss)
{
	return 0;
}
#endif

4941 4942 4943
static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *mem, int node)
{
	struct mem_cgroup_per_node *pn;
4944
	struct mem_cgroup_per_zone *mz;
4945
	enum lru_list l;
4946
	int zone, tmp = node;
4947 4948 4949 4950 4951 4952 4953 4954
	/*
	 * This routine is called against possible nodes.
	 * But it's BUG to call kmalloc() against offline node.
	 *
	 * TODO: this routine can waste much memory for nodes which will
	 *       never be onlined. It's better to use memory hotplug callback
	 *       function.
	 */
4955 4956
	if (!node_state(node, N_NORMAL_MEMORY))
		tmp = -1;
4957
	pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
4958 4959
	if (!pn)
		return 1;
4960

4961
	mem->info.nodeinfo[node] = pn;
4962 4963
	for (zone = 0; zone < MAX_NR_ZONES; zone++) {
		mz = &pn->zoneinfo[zone];
4964 4965
		for_each_lru(l)
			INIT_LIST_HEAD(&mz->lists[l]);
4966
		mz->usage_in_excess = 0;
4967 4968
		mz->on_tree = false;
		mz->mem = mem;
4969
	}
4970 4971 4972
	return 0;
}

4973 4974 4975 4976 4977
static void free_mem_cgroup_per_zone_info(struct mem_cgroup *mem, int node)
{
	kfree(mem->info.nodeinfo[node]);
}

4978 4979 4980
static struct mem_cgroup *mem_cgroup_alloc(void)
{
	struct mem_cgroup *mem;
4981
	int size = sizeof(struct mem_cgroup);
4982

4983
	/* Can be very big if MAX_NUMNODES is very big */
4984
	if (size < PAGE_SIZE)
4985
		mem = kzalloc(size, GFP_KERNEL);
4986
	else
4987
		mem = vzalloc(size);
4988

4989 4990 4991
	if (!mem)
		return NULL;

4992
	mem->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
4993 4994
	if (!mem->stat)
		goto out_free;
4995
	spin_lock_init(&mem->pcp_counter_lock);
4996
	return mem;
4997 4998 4999 5000 5001 5002 5003

out_free:
	if (size < PAGE_SIZE)
		kfree(mem);
	else
		vfree(mem);
	return NULL;
5004 5005
}

5006 5007 5008 5009 5010 5011 5012 5013 5014 5015 5016
/*
 * At destroying mem_cgroup, references from swap_cgroup can remain.
 * (scanning all at force_empty is too costly...)
 *
 * Instead of clearing all references at force_empty, we remember
 * the number of reference from swap_cgroup and free mem_cgroup when
 * it goes down to 0.
 *
 * Removal of cgroup itself succeeds regardless of refs from swap.
 */

5017
static void __mem_cgroup_free(struct mem_cgroup *mem)
5018
{
K
KAMEZAWA Hiroyuki 已提交
5019 5020
	int node;

5021
	mem_cgroup_remove_from_trees(mem);
K
KAMEZAWA Hiroyuki 已提交
5022 5023
	free_css_id(&mem_cgroup_subsys, &mem->css);

K
KAMEZAWA Hiroyuki 已提交
5024 5025 5026
	for_each_node_state(node, N_POSSIBLE)
		free_mem_cgroup_per_zone_info(mem, node);

5027 5028
	free_percpu(mem->stat);
	if (sizeof(struct mem_cgroup) < PAGE_SIZE)
5029 5030 5031 5032 5033
		kfree(mem);
	else
		vfree(mem);
}

5034 5035 5036 5037 5038
static void mem_cgroup_get(struct mem_cgroup *mem)
{
	atomic_inc(&mem->refcnt);
}

5039
static void __mem_cgroup_put(struct mem_cgroup *mem, int count)
5040
{
5041
	if (atomic_sub_and_test(count, &mem->refcnt)) {
5042
		struct mem_cgroup *parent = parent_mem_cgroup(mem);
5043
		__mem_cgroup_free(mem);
5044 5045 5046
		if (parent)
			mem_cgroup_put(parent);
	}
5047 5048
}

5049 5050 5051 5052 5053
static void mem_cgroup_put(struct mem_cgroup *mem)
{
	__mem_cgroup_put(mem, 1);
}

5054 5055 5056 5057 5058 5059 5060 5061 5062
/*
 * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
 */
static struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *mem)
{
	if (!mem->res.parent)
		return NULL;
	return mem_cgroup_from_res_counter(mem->res.parent, res);
}
5063

5064 5065 5066
#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
static void __init enable_swap_cgroup(void)
{
5067
	if (!mem_cgroup_disabled() && really_do_swap_account)
5068 5069 5070 5071 5072 5073 5074 5075
		do_swap_account = 1;
}
#else
static void __init enable_swap_cgroup(void)
{
}
#endif

5076 5077 5078 5079 5080 5081 5082 5083 5084 5085 5086 5087 5088 5089 5090 5091 5092 5093 5094 5095 5096 5097 5098 5099 5100
static int mem_cgroup_soft_limit_tree_init(void)
{
	struct mem_cgroup_tree_per_node *rtpn;
	struct mem_cgroup_tree_per_zone *rtpz;
	int tmp, node, zone;

	for_each_node_state(node, N_POSSIBLE) {
		tmp = node;
		if (!node_state(node, N_NORMAL_MEMORY))
			tmp = -1;
		rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, tmp);
		if (!rtpn)
			return 1;

		soft_limit_tree.rb_tree_per_node[node] = rtpn;

		for (zone = 0; zone < MAX_NR_ZONES; zone++) {
			rtpz = &rtpn->rb_tree_per_zone[zone];
			rtpz->rb_root = RB_ROOT;
			spin_lock_init(&rtpz->lock);
		}
	}
	return 0;
}

L
Li Zefan 已提交
5101
static struct cgroup_subsys_state * __ref
B
Balbir Singh 已提交
5102 5103
mem_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cont)
{
5104
	struct mem_cgroup *mem, *parent;
K
KAMEZAWA Hiroyuki 已提交
5105
	long error = -ENOMEM;
5106
	int node;
B
Balbir Singh 已提交
5107

5108 5109
	mem = mem_cgroup_alloc();
	if (!mem)
K
KAMEZAWA Hiroyuki 已提交
5110
		return ERR_PTR(error);
5111

5112 5113 5114
	for_each_node_state(node, N_POSSIBLE)
		if (alloc_mem_cgroup_per_zone_info(mem, node))
			goto free_out;
5115

5116
	/* root ? */
5117
	if (cont->parent == NULL) {
5118
		int cpu;
5119
		enable_swap_cgroup();
5120
		parent = NULL;
5121
		root_mem_cgroup = mem;
5122 5123
		if (mem_cgroup_soft_limit_tree_init())
			goto free_out;
5124 5125 5126 5127 5128
		for_each_possible_cpu(cpu) {
			struct memcg_stock_pcp *stock =
						&per_cpu(memcg_stock, cpu);
			INIT_WORK(&stock->work, drain_local_stock);
		}
5129
		hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
5130
	} else {
5131
		parent = mem_cgroup_from_cont(cont->parent);
5132
		mem->use_hierarchy = parent->use_hierarchy;
5133
		mem->oom_kill_disable = parent->oom_kill_disable;
5134
	}
5135

5136 5137 5138
	if (parent && parent->use_hierarchy) {
		res_counter_init(&mem->res, &parent->res);
		res_counter_init(&mem->memsw, &parent->memsw);
5139 5140 5141 5142 5143 5144 5145
		/*
		 * We increment refcnt of the parent to ensure that we can
		 * safely access it on res_counter_charge/uncharge.
		 * This refcnt will be decremented when freeing this
		 * mem_cgroup(see mem_cgroup_put).
		 */
		mem_cgroup_get(parent);
5146 5147 5148 5149
	} else {
		res_counter_init(&mem->res, NULL);
		res_counter_init(&mem->memsw, NULL);
	}
K
KAMEZAWA Hiroyuki 已提交
5150
	mem->last_scanned_child = 0;
5151
	mem->last_scanned_node = MAX_NUMNODES;
K
KAMEZAWA Hiroyuki 已提交
5152
	INIT_LIST_HEAD(&mem->oom_notify);
5153

K
KOSAKI Motohiro 已提交
5154
	if (parent)
5155
		mem->swappiness = mem_cgroup_swappiness(parent);
5156
	atomic_set(&mem->refcnt, 1);
5157
	mem->move_charge_at_immigrate = 0;
5158
	mutex_init(&mem->thresholds_lock);
5159
	spin_lock_init(&mem->scanstat.lock);
B
Balbir Singh 已提交
5160
	return &mem->css;
5161
free_out:
5162
	__mem_cgroup_free(mem);
5163
	root_mem_cgroup = NULL;
K
KAMEZAWA Hiroyuki 已提交
5164
	return ERR_PTR(error);
B
Balbir Singh 已提交
5165 5166
}

5167
static int mem_cgroup_pre_destroy(struct cgroup_subsys *ss,
5168 5169 5170
					struct cgroup *cont)
{
	struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
5171 5172

	return mem_cgroup_force_empty(mem, false);
5173 5174
}

B
Balbir Singh 已提交
5175 5176 5177
static void mem_cgroup_destroy(struct cgroup_subsys *ss,
				struct cgroup *cont)
{
5178 5179 5180
	struct mem_cgroup *mem = mem_cgroup_from_cont(cont);

	mem_cgroup_put(mem);
B
Balbir Singh 已提交
5181 5182 5183 5184 5185
}

static int mem_cgroup_populate(struct cgroup_subsys *ss,
				struct cgroup *cont)
{
5186 5187 5188 5189 5190 5191 5192 5193
	int ret;

	ret = cgroup_add_files(cont, ss, mem_cgroup_files,
				ARRAY_SIZE(mem_cgroup_files));

	if (!ret)
		ret = register_memsw_files(cont, ss);
	return ret;
B
Balbir Singh 已提交
5194 5195
}

5196
#ifdef CONFIG_MMU
5197
/* Handlers for move charge at task migration. */
5198 5199
#define PRECHARGE_COUNT_AT_ONCE	256
static int mem_cgroup_do_precharge(unsigned long count)
5200
{
5201 5202
	int ret = 0;
	int batch_count = PRECHARGE_COUNT_AT_ONCE;
5203 5204
	struct mem_cgroup *mem = mc.to;

5205 5206 5207 5208 5209 5210 5211 5212 5213 5214 5215 5216 5217 5218 5219 5220 5221 5222 5223 5224 5225 5226 5227 5228 5229 5230 5231 5232 5233 5234 5235 5236 5237 5238 5239
	if (mem_cgroup_is_root(mem)) {
		mc.precharge += count;
		/* we don't need css_get for root */
		return ret;
	}
	/* try to charge at once */
	if (count > 1) {
		struct res_counter *dummy;
		/*
		 * "mem" cannot be under rmdir() because we've already checked
		 * by cgroup_lock_live_cgroup() that it is not removed and we
		 * are still under the same cgroup_mutex. So we can postpone
		 * css_get().
		 */
		if (res_counter_charge(&mem->res, PAGE_SIZE * count, &dummy))
			goto one_by_one;
		if (do_swap_account && res_counter_charge(&mem->memsw,
						PAGE_SIZE * count, &dummy)) {
			res_counter_uncharge(&mem->res, PAGE_SIZE * count);
			goto one_by_one;
		}
		mc.precharge += count;
		return ret;
	}
one_by_one:
	/* fall back to one by one charge */
	while (count--) {
		if (signal_pending(current)) {
			ret = -EINTR;
			break;
		}
		if (!batch_count--) {
			batch_count = PRECHARGE_COUNT_AT_ONCE;
			cond_resched();
		}
5240
		ret = __mem_cgroup_try_charge(NULL, GFP_KERNEL, 1, &mem, false);
5241 5242 5243 5244 5245
		if (ret || !mem)
			/* mem_cgroup_clear_mc() will do uncharge later */
			return -ENOMEM;
		mc.precharge++;
	}
5246 5247 5248 5249 5250 5251 5252 5253
	return ret;
}

/**
 * is_target_pte_for_mc - check a pte whether it is valid for move charge
 * @vma: the vma the pte to be checked belongs
 * @addr: the address corresponding to the pte to be checked
 * @ptent: the pte to be checked
5254
 * @target: the pointer the target page or swap ent will be stored(can be NULL)
5255 5256 5257 5258 5259 5260
 *
 * Returns
 *   0(MC_TARGET_NONE): if the pte is not a target for move charge.
 *   1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
 *     move charge. if @target is not NULL, the page is stored in target->page
 *     with extra refcnt got(Callers should handle it).
5261 5262 5263
 *   2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
 *     target for charge migration. if @target is not NULL, the entry is stored
 *     in target->ent.
5264 5265 5266 5267 5268
 *
 * Called with pte lock held.
 */
union mc_target {
	struct page	*page;
5269
	swp_entry_t	ent;
5270 5271 5272 5273 5274
};

enum mc_target_type {
	MC_TARGET_NONE,	/* not used */
	MC_TARGET_PAGE,
5275
	MC_TARGET_SWAP,
5276 5277
};

D
Daisuke Nishimura 已提交
5278 5279
static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
						unsigned long addr, pte_t ptent)
5280
{
D
Daisuke Nishimura 已提交
5281
	struct page *page = vm_normal_page(vma, addr, ptent);
5282

D
Daisuke Nishimura 已提交
5283 5284 5285 5286 5287 5288
	if (!page || !page_mapped(page))
		return NULL;
	if (PageAnon(page)) {
		/* we don't move shared anon */
		if (!move_anon() || page_mapcount(page) > 2)
			return NULL;
5289 5290
	} else if (!move_file())
		/* we ignore mapcount for file pages */
D
Daisuke Nishimura 已提交
5291 5292 5293 5294 5295 5296 5297 5298 5299 5300 5301 5302 5303 5304 5305 5306 5307 5308
		return NULL;
	if (!get_page_unless_zero(page))
		return NULL;

	return page;
}

static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
			unsigned long addr, pte_t ptent, swp_entry_t *entry)
{
	int usage_count;
	struct page *page = NULL;
	swp_entry_t ent = pte_to_swp_entry(ptent);

	if (!move_anon() || non_swap_entry(ent))
		return NULL;
	usage_count = mem_cgroup_count_swap_user(ent, &page);
	if (usage_count > 1) { /* we don't move shared anon */
5309 5310
		if (page)
			put_page(page);
D
Daisuke Nishimura 已提交
5311
		return NULL;
5312
	}
D
Daisuke Nishimura 已提交
5313 5314 5315 5316 5317 5318
	if (do_swap_account)
		entry->val = ent.val;

	return page;
}

5319 5320 5321 5322 5323 5324 5325 5326 5327 5328 5329 5330 5331 5332 5333 5334 5335 5336 5337 5338 5339 5340 5341 5342 5343 5344 5345 5346 5347 5348 5349 5350 5351
static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
			unsigned long addr, pte_t ptent, swp_entry_t *entry)
{
	struct page *page = NULL;
	struct inode *inode;
	struct address_space *mapping;
	pgoff_t pgoff;

	if (!vma->vm_file) /* anonymous vma */
		return NULL;
	if (!move_file())
		return NULL;

	inode = vma->vm_file->f_path.dentry->d_inode;
	mapping = vma->vm_file->f_mapping;
	if (pte_none(ptent))
		pgoff = linear_page_index(vma, addr);
	else /* pte_file(ptent) is true */
		pgoff = pte_to_pgoff(ptent);

	/* page is moved even if it's not RSS of this task(page-faulted). */
	if (!mapping_cap_swap_backed(mapping)) { /* normal file */
		page = find_get_page(mapping, pgoff);
	} else { /* shmem/tmpfs file. we should take account of swap too. */
		swp_entry_t ent;
		mem_cgroup_get_shmem_target(inode, pgoff, &page, &ent);
		if (do_swap_account)
			entry->val = ent.val;
	}

	return page;
}

D
Daisuke Nishimura 已提交
5352 5353 5354 5355 5356 5357 5358 5359 5360 5361 5362 5363
static int is_target_pte_for_mc(struct vm_area_struct *vma,
		unsigned long addr, pte_t ptent, union mc_target *target)
{
	struct page *page = NULL;
	struct page_cgroup *pc;
	int ret = 0;
	swp_entry_t ent = { .val = 0 };

	if (pte_present(ptent))
		page = mc_handle_present_pte(vma, addr, ptent);
	else if (is_swap_pte(ptent))
		page = mc_handle_swap_pte(vma, addr, ptent, &ent);
5364 5365
	else if (pte_none(ptent) || pte_file(ptent))
		page = mc_handle_file_pte(vma, addr, ptent, &ent);
D
Daisuke Nishimura 已提交
5366 5367 5368

	if (!page && !ent.val)
		return 0;
5369 5370 5371 5372 5373 5374 5375 5376 5377 5378 5379 5380 5381 5382 5383
	if (page) {
		pc = lookup_page_cgroup(page);
		/*
		 * Do only loose check w/o page_cgroup lock.
		 * mem_cgroup_move_account() checks the pc is valid or not under
		 * the lock.
		 */
		if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
			ret = MC_TARGET_PAGE;
			if (target)
				target->page = page;
		}
		if (!ret || !target)
			put_page(page);
	}
D
Daisuke Nishimura 已提交
5384 5385
	/* There is a swap entry and a page doesn't exist or isn't charged */
	if (ent.val && !ret &&
5386 5387 5388 5389
			css_id(&mc.from->css) == lookup_swap_cgroup(ent)) {
		ret = MC_TARGET_SWAP;
		if (target)
			target->ent = ent;
5390 5391 5392 5393 5394 5395 5396 5397 5398 5399 5400 5401
	}
	return ret;
}

static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
					unsigned long addr, unsigned long end,
					struct mm_walk *walk)
{
	struct vm_area_struct *vma = walk->private;
	pte_t *pte;
	spinlock_t *ptl;

5402 5403
	split_huge_page_pmd(walk->mm, pmd);

5404 5405 5406 5407 5408 5409 5410
	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
	for (; addr != end; pte++, addr += PAGE_SIZE)
		if (is_target_pte_for_mc(vma, addr, *pte, NULL))
			mc.precharge++;	/* increment precharge temporarily */
	pte_unmap_unlock(pte - 1, ptl);
	cond_resched();

5411 5412 5413
	return 0;
}

5414 5415 5416 5417 5418
static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
{
	unsigned long precharge;
	struct vm_area_struct *vma;

5419
	down_read(&mm->mmap_sem);
5420 5421 5422 5423 5424 5425 5426 5427 5428 5429 5430
	for (vma = mm->mmap; vma; vma = vma->vm_next) {
		struct mm_walk mem_cgroup_count_precharge_walk = {
			.pmd_entry = mem_cgroup_count_precharge_pte_range,
			.mm = mm,
			.private = vma,
		};
		if (is_vm_hugetlb_page(vma))
			continue;
		walk_page_range(vma->vm_start, vma->vm_end,
					&mem_cgroup_count_precharge_walk);
	}
5431
	up_read(&mm->mmap_sem);
5432 5433 5434 5435 5436 5437 5438 5439 5440

	precharge = mc.precharge;
	mc.precharge = 0;

	return precharge;
}

static int mem_cgroup_precharge_mc(struct mm_struct *mm)
{
5441 5442 5443 5444 5445
	unsigned long precharge = mem_cgroup_count_precharge(mm);

	VM_BUG_ON(mc.moving_task);
	mc.moving_task = current;
	return mem_cgroup_do_precharge(precharge);
5446 5447
}

5448 5449
/* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
static void __mem_cgroup_clear_mc(void)
5450
{
5451 5452 5453
	struct mem_cgroup *from = mc.from;
	struct mem_cgroup *to = mc.to;

5454
	/* we must uncharge all the leftover precharges from mc.to */
5455 5456 5457 5458 5459 5460 5461 5462 5463 5464 5465
	if (mc.precharge) {
		__mem_cgroup_cancel_charge(mc.to, mc.precharge);
		mc.precharge = 0;
	}
	/*
	 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
	 * we must uncharge here.
	 */
	if (mc.moved_charge) {
		__mem_cgroup_cancel_charge(mc.from, mc.moved_charge);
		mc.moved_charge = 0;
5466
	}
5467 5468 5469 5470 5471 5472 5473 5474 5475 5476 5477 5478 5479 5480 5481 5482 5483 5484 5485
	/* we must fixup refcnts and charges */
	if (mc.moved_swap) {
		/* uncharge swap account from the old cgroup */
		if (!mem_cgroup_is_root(mc.from))
			res_counter_uncharge(&mc.from->memsw,
						PAGE_SIZE * mc.moved_swap);
		__mem_cgroup_put(mc.from, mc.moved_swap);

		if (!mem_cgroup_is_root(mc.to)) {
			/*
			 * we charged both to->res and to->memsw, so we should
			 * uncharge to->res.
			 */
			res_counter_uncharge(&mc.to->res,
						PAGE_SIZE * mc.moved_swap);
		}
		/* we've already done mem_cgroup_get(mc.to) */
		mc.moved_swap = 0;
	}
5486 5487 5488 5489 5490 5491 5492 5493 5494 5495 5496 5497 5498 5499 5500
	memcg_oom_recover(from);
	memcg_oom_recover(to);
	wake_up_all(&mc.waitq);
}

static void mem_cgroup_clear_mc(void)
{
	struct mem_cgroup *from = mc.from;

	/*
	 * we must clear moving_task before waking up waiters at the end of
	 * task migration.
	 */
	mc.moving_task = NULL;
	__mem_cgroup_clear_mc();
5501
	spin_lock(&mc.lock);
5502 5503
	mc.from = NULL;
	mc.to = NULL;
5504
	spin_unlock(&mc.lock);
5505
	mem_cgroup_end_move(from);
5506 5507
}

5508 5509
static int mem_cgroup_can_attach(struct cgroup_subsys *ss,
				struct cgroup *cgroup,
5510
				struct task_struct *p)
5511 5512 5513 5514 5515 5516 5517 5518 5519 5520 5521 5522 5523 5524
{
	int ret = 0;
	struct mem_cgroup *mem = mem_cgroup_from_cont(cgroup);

	if (mem->move_charge_at_immigrate) {
		struct mm_struct *mm;
		struct mem_cgroup *from = mem_cgroup_from_task(p);

		VM_BUG_ON(from == mem);

		mm = get_task_mm(p);
		if (!mm)
			return 0;
		/* We move charges only when we move a owner of the mm */
5525 5526 5527 5528
		if (mm->owner == p) {
			VM_BUG_ON(mc.from);
			VM_BUG_ON(mc.to);
			VM_BUG_ON(mc.precharge);
5529
			VM_BUG_ON(mc.moved_charge);
5530
			VM_BUG_ON(mc.moved_swap);
5531
			mem_cgroup_start_move(from);
5532
			spin_lock(&mc.lock);
5533 5534
			mc.from = from;
			mc.to = mem;
5535
			spin_unlock(&mc.lock);
5536
			/* We set mc.moving_task later */
5537 5538 5539 5540

			ret = mem_cgroup_precharge_mc(mm);
			if (ret)
				mem_cgroup_clear_mc();
5541 5542
		}
		mmput(mm);
5543 5544 5545 5546 5547 5548
	}
	return ret;
}

static void mem_cgroup_cancel_attach(struct cgroup_subsys *ss,
				struct cgroup *cgroup,
5549
				struct task_struct *p)
5550
{
5551
	mem_cgroup_clear_mc();
5552 5553
}

5554 5555 5556
static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
				unsigned long addr, unsigned long end,
				struct mm_walk *walk)
5557
{
5558 5559 5560 5561 5562
	int ret = 0;
	struct vm_area_struct *vma = walk->private;
	pte_t *pte;
	spinlock_t *ptl;

5563
	split_huge_page_pmd(walk->mm, pmd);
5564 5565 5566 5567 5568 5569 5570 5571
retry:
	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
	for (; addr != end; addr += PAGE_SIZE) {
		pte_t ptent = *(pte++);
		union mc_target target;
		int type;
		struct page *page;
		struct page_cgroup *pc;
5572
		swp_entry_t ent;
5573 5574 5575 5576 5577 5578 5579 5580 5581 5582 5583

		if (!mc.precharge)
			break;

		type = is_target_pte_for_mc(vma, addr, ptent, &target);
		switch (type) {
		case MC_TARGET_PAGE:
			page = target.page;
			if (isolate_lru_page(page))
				goto put;
			pc = lookup_page_cgroup(page);
5584 5585
			if (!mem_cgroup_move_account(page, 1, pc,
						     mc.from, mc.to, false)) {
5586
				mc.precharge--;
5587 5588
				/* we uncharge from mc.from later. */
				mc.moved_charge++;
5589 5590 5591 5592 5593
			}
			putback_lru_page(page);
put:			/* is_target_pte_for_mc() gets the page */
			put_page(page);
			break;
5594 5595
		case MC_TARGET_SWAP:
			ent = target.ent;
5596 5597
			if (!mem_cgroup_move_swap_account(ent,
						mc.from, mc.to, false)) {
5598
				mc.precharge--;
5599 5600 5601
				/* we fixup refcnts and charges later. */
				mc.moved_swap++;
			}
5602
			break;
5603 5604 5605 5606 5607 5608 5609 5610 5611 5612 5613 5614 5615 5616
		default:
			break;
		}
	}
	pte_unmap_unlock(pte - 1, ptl);
	cond_resched();

	if (addr != end) {
		/*
		 * We have consumed all precharges we got in can_attach().
		 * We try charge one by one, but don't do any additional
		 * charges to mc.to if we have failed in charge once in attach()
		 * phase.
		 */
5617
		ret = mem_cgroup_do_precharge(1);
5618 5619 5620 5621 5622 5623 5624 5625 5626 5627 5628 5629
		if (!ret)
			goto retry;
	}

	return ret;
}

static void mem_cgroup_move_charge(struct mm_struct *mm)
{
	struct vm_area_struct *vma;

	lru_add_drain_all();
5630 5631 5632 5633 5634 5635 5636 5637 5638 5639 5640 5641 5642
retry:
	if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
		/*
		 * Someone who are holding the mmap_sem might be waiting in
		 * waitq. So we cancel all extra charges, wake up all waiters,
		 * and retry. Because we cancel precharges, we might not be able
		 * to move enough charges, but moving charge is a best-effort
		 * feature anyway, so it wouldn't be a big problem.
		 */
		__mem_cgroup_clear_mc();
		cond_resched();
		goto retry;
	}
5643 5644 5645 5646 5647 5648 5649 5650 5651 5652 5653 5654 5655 5656 5657 5658 5659 5660
	for (vma = mm->mmap; vma; vma = vma->vm_next) {
		int ret;
		struct mm_walk mem_cgroup_move_charge_walk = {
			.pmd_entry = mem_cgroup_move_charge_pte_range,
			.mm = mm,
			.private = vma,
		};
		if (is_vm_hugetlb_page(vma))
			continue;
		ret = walk_page_range(vma->vm_start, vma->vm_end,
						&mem_cgroup_move_charge_walk);
		if (ret)
			/*
			 * means we have consumed all precharges and failed in
			 * doing additional charge. Just abandon here.
			 */
			break;
	}
5661
	up_read(&mm->mmap_sem);
5662 5663
}

B
Balbir Singh 已提交
5664 5665 5666
static void mem_cgroup_move_task(struct cgroup_subsys *ss,
				struct cgroup *cont,
				struct cgroup *old_cont,
5667
				struct task_struct *p)
B
Balbir Singh 已提交
5668
{
5669
	struct mm_struct *mm = get_task_mm(p);
5670 5671

	if (mm) {
5672 5673 5674
		if (mc.to)
			mem_cgroup_move_charge(mm);
		put_swap_token(mm);
5675 5676
		mmput(mm);
	}
5677 5678
	if (mc.to)
		mem_cgroup_clear_mc();
B
Balbir Singh 已提交
5679
}
5680 5681 5682
#else	/* !CONFIG_MMU */
static int mem_cgroup_can_attach(struct cgroup_subsys *ss,
				struct cgroup *cgroup,
5683
				struct task_struct *p)
5684 5685 5686 5687 5688
{
	return 0;
}
static void mem_cgroup_cancel_attach(struct cgroup_subsys *ss,
				struct cgroup *cgroup,
5689
				struct task_struct *p)
5690 5691 5692 5693 5694
{
}
static void mem_cgroup_move_task(struct cgroup_subsys *ss,
				struct cgroup *cont,
				struct cgroup *old_cont,
5695
				struct task_struct *p)
5696 5697 5698
{
}
#endif
B
Balbir Singh 已提交
5699

B
Balbir Singh 已提交
5700 5701 5702 5703
struct cgroup_subsys mem_cgroup_subsys = {
	.name = "memory",
	.subsys_id = mem_cgroup_subsys_id,
	.create = mem_cgroup_create,
5704
	.pre_destroy = mem_cgroup_pre_destroy,
B
Balbir Singh 已提交
5705 5706
	.destroy = mem_cgroup_destroy,
	.populate = mem_cgroup_populate,
5707 5708
	.can_attach = mem_cgroup_can_attach,
	.cancel_attach = mem_cgroup_cancel_attach,
B
Balbir Singh 已提交
5709
	.attach = mem_cgroup_move_task,
5710
	.early_init = 0,
K
KAMEZAWA Hiroyuki 已提交
5711
	.use_id = 1,
B
Balbir Singh 已提交
5712
};
5713 5714

#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
5715 5716 5717
static int __init enable_swap_account(char *s)
{
	/* consider enabled if no parameter or 1 is given */
5718
	if (!strcmp(s, "1"))
5719
		really_do_swap_account = 1;
5720
	else if (!strcmp(s, "0"))
5721 5722 5723
		really_do_swap_account = 0;
	return 1;
}
5724
__setup("swapaccount=", enable_swap_account);
5725 5726

#endif