memcontrol.c 172.8 KB
Newer Older
B
Balbir Singh 已提交
1 2 3 4 5
/* memcontrol.c - Memory Controller
 *
 * Copyright IBM Corporation, 2007
 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
 *
6 7 8
 * Copyright 2007 OpenVZ SWsoft Inc
 * Author: Pavel Emelianov <xemul@openvz.org>
 *
9 10 11 12
 * Memory thresholds
 * Copyright (C) 2009 Nokia Corporation
 * Author: Kirill A. Shutemov
 *
13 14 15 16
 * Kernel Memory Controller
 * Copyright (C) 2012 Parallels Inc. and Google Inc.
 * Authors: Glauber Costa and Suleiman Souhlal
 *
B
Balbir Singh 已提交
17 18 19 20 21 22 23 24 25 26 27 28 29 30
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 */

#include <linux/res_counter.h>
#include <linux/memcontrol.h>
#include <linux/cgroup.h>
31
#include <linux/mm.h>
32
#include <linux/hugetlb.h>
K
KAMEZAWA Hiroyuki 已提交
33
#include <linux/pagemap.h>
34
#include <linux/smp.h>
35
#include <linux/page-flags.h>
36
#include <linux/backing-dev.h>
37 38
#include <linux/bit_spinlock.h>
#include <linux/rcupdate.h>
39
#include <linux/limits.h>
40
#include <linux/export.h>
41
#include <linux/mutex.h>
42
#include <linux/rbtree.h>
43
#include <linux/slab.h>
44
#include <linux/swap.h>
45
#include <linux/swapops.h>
46
#include <linux/spinlock.h>
47 48
#include <linux/eventfd.h>
#include <linux/sort.h>
49
#include <linux/fs.h>
50
#include <linux/seq_file.h>
51
#include <linux/vmalloc.h>
52
#include <linux/mm_inline.h>
53
#include <linux/page_cgroup.h>
54
#include <linux/cpu.h>
55
#include <linux/oom.h>
K
KAMEZAWA Hiroyuki 已提交
56
#include "internal.h"
G
Glauber Costa 已提交
57
#include <net/sock.h>
M
Michal Hocko 已提交
58
#include <net/ip.h>
G
Glauber Costa 已提交
59
#include <net/tcp_memcontrol.h>
B
Balbir Singh 已提交
60

61 62
#include <asm/uaccess.h>

63 64
#include <trace/events/vmscan.h>

65
struct cgroup_subsys mem_cgroup_subsys __read_mostly;
66 67
EXPORT_SYMBOL(mem_cgroup_subsys);

68
#define MEM_CGROUP_RECLAIM_RETRIES	5
69
static struct mem_cgroup *root_mem_cgroup __read_mostly;
B
Balbir Singh 已提交
70

A
Andrew Morton 已提交
71
#ifdef CONFIG_MEMCG_SWAP
L
Li Zefan 已提交
72
/* Turned on only when memory cgroup is enabled && really_do_swap_account = 1 */
73
int do_swap_account __read_mostly;
74 75

/* for remember boot option*/
A
Andrew Morton 已提交
76
#ifdef CONFIG_MEMCG_SWAP_ENABLED
77 78 79 80 81
static int really_do_swap_account __initdata = 1;
#else
static int really_do_swap_account __initdata = 0;
#endif

82
#else
83
#define do_swap_account		0
84 85 86
#endif


87 88 89 90 91 92 93 94
/*
 * Statistics for memory cgroup.
 */
enum mem_cgroup_stat_index {
	/*
	 * For MEM_CONTAINER_TYPE_ALL, usage = pagecache + rss.
	 */
	MEM_CGROUP_STAT_CACHE, 	   /* # of pages charged as cache */
95
	MEM_CGROUP_STAT_RSS,	   /* # of pages charged as anon rss */
96
	MEM_CGROUP_STAT_FILE_MAPPED,  /* # of pages charged as file rss */
97
	MEM_CGROUP_STAT_SWAP, /* # of pages, swapped out */
98 99 100
	MEM_CGROUP_STAT_NSTATS,
};

101 102 103 104 105 106 107
static const char * const mem_cgroup_stat_names[] = {
	"cache",
	"rss",
	"mapped_file",
	"swap",
};

108 109 110
enum mem_cgroup_events_index {
	MEM_CGROUP_EVENTS_PGPGIN,	/* # of pages paged in */
	MEM_CGROUP_EVENTS_PGPGOUT,	/* # of pages paged out */
111 112
	MEM_CGROUP_EVENTS_PGFAULT,	/* # of page-faults */
	MEM_CGROUP_EVENTS_PGMAJFAULT,	/* # of major page-faults */
113 114
	MEM_CGROUP_EVENTS_NSTATS,
};
115 116 117 118 119 120 121 122

static const char * const mem_cgroup_events_names[] = {
	"pgpgin",
	"pgpgout",
	"pgfault",
	"pgmajfault",
};

123 124 125 126 127 128 129 130 131
/*
 * Per memcg event counter is incremented at every pagein/pageout. With THP,
 * it will be incremated by the number of pages. This counter is used for
 * for trigger some periodic events. This is straightforward and better
 * than using jiffies etc. to handle periodic memcg event.
 */
enum mem_cgroup_events_target {
	MEM_CGROUP_TARGET_THRESH,
	MEM_CGROUP_TARGET_SOFTLIMIT,
132
	MEM_CGROUP_TARGET_NUMAINFO,
133 134
	MEM_CGROUP_NTARGETS,
};
135 136 137
#define THRESHOLDS_EVENTS_TARGET 128
#define SOFTLIMIT_EVENTS_TARGET 1024
#define NUMAINFO_EVENTS_TARGET	1024
138

139
struct mem_cgroup_stat_cpu {
140
	long count[MEM_CGROUP_STAT_NSTATS];
141
	unsigned long events[MEM_CGROUP_EVENTS_NSTATS];
142
	unsigned long nr_page_events;
143
	unsigned long targets[MEM_CGROUP_NTARGETS];
144 145
};

146 147 148 149 150 151 152
struct mem_cgroup_reclaim_iter {
	/* css_id of the last scanned hierarchy member */
	int position;
	/* scan generation, increased every round-trip */
	unsigned int generation;
};

153 154 155 156
/*
 * per-zone information in memory controller.
 */
struct mem_cgroup_per_zone {
157
	struct lruvec		lruvec;
158
	unsigned long		lru_size[NR_LRU_LISTS];
K
KOSAKI Motohiro 已提交
159

160 161
	struct mem_cgroup_reclaim_iter reclaim_iter[DEF_PRIORITY + 1];

162 163 164 165
	struct rb_node		tree_node;	/* RB tree node */
	unsigned long long	usage_in_excess;/* Set to the value by which */
						/* the soft limit is exceeded*/
	bool			on_tree;
166
	struct mem_cgroup	*memcg;		/* Back pointer, we cannot */
167
						/* use container_of	   */
168 169 170 171 172 173 174 175 176 177
};

struct mem_cgroup_per_node {
	struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
};

struct mem_cgroup_lru_info {
	struct mem_cgroup_per_node *nodeinfo[MAX_NUMNODES];
};

178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197
/*
 * Cgroups above their limits are maintained in a RB-Tree, independent of
 * their hierarchy representation
 */

struct mem_cgroup_tree_per_zone {
	struct rb_root rb_root;
	spinlock_t lock;
};

struct mem_cgroup_tree_per_node {
	struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
};

struct mem_cgroup_tree {
	struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
};

static struct mem_cgroup_tree soft_limit_tree __read_mostly;

198 199 200 201 202
struct mem_cgroup_threshold {
	struct eventfd_ctx *eventfd;
	u64 threshold;
};

K
KAMEZAWA Hiroyuki 已提交
203
/* For threshold */
204
struct mem_cgroup_threshold_ary {
205
	/* An array index points to threshold just below or equal to usage. */
206
	int current_threshold;
207 208 209 210 211
	/* Size of entries[] */
	unsigned int size;
	/* Array of thresholds */
	struct mem_cgroup_threshold entries[0];
};
212 213 214 215 216 217 218 219 220 221 222 223

struct mem_cgroup_thresholds {
	/* Primary thresholds array */
	struct mem_cgroup_threshold_ary *primary;
	/*
	 * Spare threshold array.
	 * This is needed to make mem_cgroup_unregister_event() "never fail".
	 * It must be able to store at least primary->size - 1 entries.
	 */
	struct mem_cgroup_threshold_ary *spare;
};

K
KAMEZAWA Hiroyuki 已提交
224 225 226 227 228
/* for OOM */
struct mem_cgroup_eventfd_list {
	struct list_head list;
	struct eventfd_ctx *eventfd;
};
229

230 231
static void mem_cgroup_threshold(struct mem_cgroup *memcg);
static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
232

B
Balbir Singh 已提交
233 234 235 236 237 238 239
/*
 * The memory controller data structure. The memory controller controls both
 * page cache and RSS per cgroup. We would eventually like to provide
 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
 * to help the administrator determine what knobs to tune.
 *
 * TODO: Add a water mark for the memory controller. Reclaim will begin when
240 241 242
 * we hit the water mark. May be even add a low water mark, such that
 * no reclaim occurs from a cgroup at it's low water mark, this is
 * a feature that will be implemented much later in the future.
B
Balbir Singh 已提交
243 244 245 246 247 248 249
 */
struct mem_cgroup {
	struct cgroup_subsys_state css;
	/*
	 * the counter to account for memory usage
	 */
	struct res_counter res;
250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267

	union {
		/*
		 * the counter to account for mem+swap usage.
		 */
		struct res_counter memsw;

		/*
		 * rcu_freeing is used only when freeing struct mem_cgroup,
		 * so put it into a union to avoid wasting more memory.
		 * It must be disjoint from the css field.  It could be
		 * in a union with the res field, but res plays a much
		 * larger part in mem_cgroup life than memsw, and might
		 * be of interest, even at time of free, when debugging.
		 * So share rcu_head with the less interesting memsw.
		 */
		struct rcu_head rcu_freeing;
		/*
268 269
		 * We also need some space for a worker in deferred freeing.
		 * By the time we call it, rcu_freeing is no longer in use.
270 271 272 273
		 */
		struct work_struct work_freeing;
	};

274 275 276 277
	/*
	 * the counter to account for kernel memory usage.
	 */
	struct res_counter kmem;
278 279 280 281
	/*
	 * Per cgroup active and inactive list, similar to the
	 * per zone LRU lists.
	 */
282
	struct mem_cgroup_lru_info info;
283 284 285
	int last_scanned_node;
#if MAX_NUMNODES > 1
	nodemask_t	scan_nodes;
286 287
	atomic_t	numainfo_events;
	atomic_t	numainfo_updating;
288
#endif
289 290 291 292
	/*
	 * Should the accounting and control be hierarchical, per subtree?
	 */
	bool use_hierarchy;
293
	unsigned long kmem_account_flags; /* See KMEM_ACCOUNTED_*, below */
294 295 296 297

	bool		oom_lock;
	atomic_t	under_oom;

298
	atomic_t	refcnt;
299

300
	int	swappiness;
301 302
	/* OOM-Killer disable */
	int		oom_kill_disable;
K
KOSAKI Motohiro 已提交
303

304 305 306
	/* set when res.limit == memsw.limit */
	bool		memsw_is_minimum;

307 308 309 310
	/* protect arrays of thresholds */
	struct mutex thresholds_lock;

	/* thresholds for memory usage. RCU-protected */
311
	struct mem_cgroup_thresholds thresholds;
312

313
	/* thresholds for mem+swap usage. RCU-protected */
314
	struct mem_cgroup_thresholds memsw_thresholds;
315

K
KAMEZAWA Hiroyuki 已提交
316 317
	/* For oom notifier event fd */
	struct list_head oom_notify;
318

319 320 321 322 323
	/*
	 * Should we move charges of a task when a task is moved into this
	 * mem_cgroup ? And what type of charges should we move ?
	 */
	unsigned long 	move_charge_at_immigrate;
324 325 326 327
	/*
	 * set > 0 if pages under this cgroup are moving to other cgroup.
	 */
	atomic_t	moving_account;
328 329
	/* taken only while moving_account > 0 */
	spinlock_t	move_lock;
330
	/*
331
	 * percpu counter.
332
	 */
333
	struct mem_cgroup_stat_cpu __percpu *stat;
334 335 336 337 338 339
	/*
	 * used when a cpu is offlined or other synchronizations
	 * See mem_cgroup_read_stat().
	 */
	struct mem_cgroup_stat_cpu nocpu_base;
	spinlock_t pcp_counter_lock;
G
Glauber Costa 已提交
340

M
Michal Hocko 已提交
341
#if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_INET)
G
Glauber Costa 已提交
342 343
	struct tcp_memcontrol tcp_mem;
#endif
344 345 346 347 348 349 350 351
#if defined(CONFIG_MEMCG_KMEM)
	/* analogous to slab_common's slab_caches list. per-memcg */
	struct list_head memcg_slab_caches;
	/* Not a spinlock, we can take a lot of time walking the list */
	struct mutex slab_caches_mutex;
        /* Index in the kmem_cache->memcg_params->memcg_caches array */
	int kmemcg_id;
#endif
B
Balbir Singh 已提交
352 353
};

354 355 356
/* internal only representation about the status of kmem accounting. */
enum {
	KMEM_ACCOUNTED_ACTIVE = 0, /* accounted by this cgroup itself */
357
	KMEM_ACCOUNTED_ACTIVATED, /* static key enabled. */
358
	KMEM_ACCOUNTED_DEAD, /* dead memcg with pending kmem charges */
359 360
};

361 362 363
/* We account when limit is on, but only after call sites are patched */
#define KMEM_ACCOUNTED_MASK \
		((1 << KMEM_ACCOUNTED_ACTIVE) | (1 << KMEM_ACCOUNTED_ACTIVATED))
364 365 366 367 368 369

#ifdef CONFIG_MEMCG_KMEM
static inline void memcg_kmem_set_active(struct mem_cgroup *memcg)
{
	set_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags);
}
370 371 372 373 374 375

static bool memcg_kmem_is_active(struct mem_cgroup *memcg)
{
	return test_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags);
}

376 377 378 379 380
static void memcg_kmem_set_activated(struct mem_cgroup *memcg)
{
	set_bit(KMEM_ACCOUNTED_ACTIVATED, &memcg->kmem_account_flags);
}

381 382 383 384 385
static void memcg_kmem_clear_activated(struct mem_cgroup *memcg)
{
	clear_bit(KMEM_ACCOUNTED_ACTIVATED, &memcg->kmem_account_flags);
}

386 387 388 389 390 391 392 393 394 395 396
static void memcg_kmem_mark_dead(struct mem_cgroup *memcg)
{
	if (test_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags))
		set_bit(KMEM_ACCOUNTED_DEAD, &memcg->kmem_account_flags);
}

static bool memcg_kmem_test_and_clear_dead(struct mem_cgroup *memcg)
{
	return test_and_clear_bit(KMEM_ACCOUNTED_DEAD,
				  &memcg->kmem_account_flags);
}
397 398
#endif

399 400 401 402 403 404
/* Stuffs for move charges at task migration. */
/*
 * Types of charges to be moved. "move_charge_at_immitgrate" is treated as a
 * left-shifted bitmap of these types.
 */
enum move_type {
405
	MOVE_CHARGE_TYPE_ANON,	/* private anonymous page and swap of it */
406
	MOVE_CHARGE_TYPE_FILE,	/* file page(including tmpfs) and swap of it */
407 408 409
	NR_MOVE_TYPE,
};

410 411
/* "mc" and its members are protected by cgroup_mutex */
static struct move_charge_struct {
412
	spinlock_t	  lock; /* for from, to */
413 414 415
	struct mem_cgroup *from;
	struct mem_cgroup *to;
	unsigned long precharge;
416
	unsigned long moved_charge;
417
	unsigned long moved_swap;
418 419 420
	struct task_struct *moving_task;	/* a task moving charges */
	wait_queue_head_t waitq;		/* a waitq for other context */
} mc = {
421
	.lock = __SPIN_LOCK_UNLOCKED(mc.lock),
422 423
	.waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
};
424

D
Daisuke Nishimura 已提交
425 426 427 428 429 430
static bool move_anon(void)
{
	return test_bit(MOVE_CHARGE_TYPE_ANON,
					&mc.to->move_charge_at_immigrate);
}

431 432 433 434 435 436
static bool move_file(void)
{
	return test_bit(MOVE_CHARGE_TYPE_FILE,
					&mc.to->move_charge_at_immigrate);
}

437 438 439 440
/*
 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
 * limit reclaim to prevent infinite loops, if they ever occur.
 */
441 442
#define	MEM_CGROUP_MAX_RECLAIM_LOOPS		100
#define	MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS	2
443

444 445
enum charge_type {
	MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
446
	MEM_CGROUP_CHARGE_TYPE_ANON,
K
KAMEZAWA Hiroyuki 已提交
447
	MEM_CGROUP_CHARGE_TYPE_SWAPOUT,	/* for accounting swapcache */
K
KAMEZAWA Hiroyuki 已提交
448
	MEM_CGROUP_CHARGE_TYPE_DROP,	/* a page was unused swap cache */
449 450 451
	NR_CHARGE_TYPE,
};

452
/* for encoding cft->private value on file */
G
Glauber Costa 已提交
453 454 455 456
enum res_type {
	_MEM,
	_MEMSWAP,
	_OOM_TYPE,
457
	_KMEM,
G
Glauber Costa 已提交
458 459
};

460 461
#define MEMFILE_PRIVATE(x, val)	((x) << 16 | (val))
#define MEMFILE_TYPE(val)	((val) >> 16 & 0xffff)
462
#define MEMFILE_ATTR(val)	((val) & 0xffff)
K
KAMEZAWA Hiroyuki 已提交
463 464
/* Used for OOM nofiier */
#define OOM_CONTROL		(0)
465

466 467 468 469 470 471 472 473
/*
 * Reclaim flags for mem_cgroup_hierarchical_reclaim
 */
#define MEM_CGROUP_RECLAIM_NOSWAP_BIT	0x0
#define MEM_CGROUP_RECLAIM_NOSWAP	(1 << MEM_CGROUP_RECLAIM_NOSWAP_BIT)
#define MEM_CGROUP_RECLAIM_SHRINK_BIT	0x1
#define MEM_CGROUP_RECLAIM_SHRINK	(1 << MEM_CGROUP_RECLAIM_SHRINK_BIT)

474 475
static void mem_cgroup_get(struct mem_cgroup *memcg);
static void mem_cgroup_put(struct mem_cgroup *memcg);
G
Glauber Costa 已提交
476

477 478 479 480 481 482
static inline
struct mem_cgroup *mem_cgroup_from_css(struct cgroup_subsys_state *s)
{
	return container_of(s, struct mem_cgroup, css);
}

483 484 485 486 487
static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
{
	return (memcg == root_mem_cgroup);
}

G
Glauber Costa 已提交
488
/* Writing them here to avoid exposing memcg's inner layout */
M
Michal Hocko 已提交
489
#if defined(CONFIG_INET) && defined(CONFIG_MEMCG_KMEM)
G
Glauber Costa 已提交
490 491 492

void sock_update_memcg(struct sock *sk)
{
493
	if (mem_cgroup_sockets_enabled) {
G
Glauber Costa 已提交
494
		struct mem_cgroup *memcg;
495
		struct cg_proto *cg_proto;
G
Glauber Costa 已提交
496 497 498

		BUG_ON(!sk->sk_prot->proto_cgroup);

499 500 501 502 503 504 505 506 507 508 509 510 511 512
		/* Socket cloning can throw us here with sk_cgrp already
		 * filled. It won't however, necessarily happen from
		 * process context. So the test for root memcg given
		 * the current task's memcg won't help us in this case.
		 *
		 * Respecting the original socket's memcg is a better
		 * decision in this case.
		 */
		if (sk->sk_cgrp) {
			BUG_ON(mem_cgroup_is_root(sk->sk_cgrp->memcg));
			mem_cgroup_get(sk->sk_cgrp->memcg);
			return;
		}

G
Glauber Costa 已提交
513 514
		rcu_read_lock();
		memcg = mem_cgroup_from_task(current);
515 516
		cg_proto = sk->sk_prot->proto_cgroup(memcg);
		if (!mem_cgroup_is_root(memcg) && memcg_proto_active(cg_proto)) {
G
Glauber Costa 已提交
517
			mem_cgroup_get(memcg);
518
			sk->sk_cgrp = cg_proto;
G
Glauber Costa 已提交
519 520 521 522 523 524 525 526
		}
		rcu_read_unlock();
	}
}
EXPORT_SYMBOL(sock_update_memcg);

void sock_release_memcg(struct sock *sk)
{
527
	if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
G
Glauber Costa 已提交
528 529 530 531 532 533
		struct mem_cgroup *memcg;
		WARN_ON(!sk->sk_cgrp->memcg);
		memcg = sk->sk_cgrp->memcg;
		mem_cgroup_put(memcg);
	}
}
G
Glauber Costa 已提交
534 535 536 537 538 539 540 541 542

struct cg_proto *tcp_proto_cgroup(struct mem_cgroup *memcg)
{
	if (!memcg || mem_cgroup_is_root(memcg))
		return NULL;

	return &memcg->tcp_mem.cg_proto;
}
EXPORT_SYMBOL(tcp_proto_cgroup);
G
Glauber Costa 已提交
543

544 545 546 547 548 549 550 551 552 553 554 555
static void disarm_sock_keys(struct mem_cgroup *memcg)
{
	if (!memcg_proto_activated(&memcg->tcp_mem.cg_proto))
		return;
	static_key_slow_dec(&memcg_socket_limit_enabled);
}
#else
static void disarm_sock_keys(struct mem_cgroup *memcg)
{
}
#endif

556
#ifdef CONFIG_MEMCG_KMEM
557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590
/*
 * This will be the memcg's index in each cache's ->memcg_params->memcg_caches.
 * There are two main reasons for not using the css_id for this:
 *  1) this works better in sparse environments, where we have a lot of memcgs,
 *     but only a few kmem-limited. Or also, if we have, for instance, 200
 *     memcgs, and none but the 200th is kmem-limited, we'd have to have a
 *     200 entry array for that.
 *
 *  2) In order not to violate the cgroup API, we would like to do all memory
 *     allocation in ->create(). At that point, we haven't yet allocated the
 *     css_id. Having a separate index prevents us from messing with the cgroup
 *     core for this
 *
 * The current size of the caches array is stored in
 * memcg_limited_groups_array_size.  It will double each time we have to
 * increase it.
 */
static DEFINE_IDA(kmem_limited_groups);
static int memcg_limited_groups_array_size;
/*
 * MIN_SIZE is different than 1, because we would like to avoid going through
 * the alloc/free process all the time. In a small machine, 4 kmem-limited
 * cgroups is a reasonable guess. In the future, it could be a parameter or
 * tunable, but that is strictly not necessary.
 *
 * MAX_SIZE should be as large as the number of css_ids. Ideally, we could get
 * this constant directly from cgroup, but it is understandable that this is
 * better kept as an internal representation in cgroup.c. In any case, the
 * css_id space is not getting any smaller, and we don't have to necessarily
 * increase ours as well if it increases.
 */
#define MEMCG_CACHES_MIN_SIZE 4
#define MEMCG_CACHES_MAX_SIZE 65535

591 592 593 594 595 596
/*
 * A lot of the calls to the cache allocation functions are expected to be
 * inlined by the compiler. Since the calls to memcg_kmem_get_cache are
 * conditional to this static branch, we'll have to allow modules that does
 * kmem_cache_alloc and the such to see this symbol as well
 */
597
struct static_key memcg_kmem_enabled_key;
598
EXPORT_SYMBOL(memcg_kmem_enabled_key);
599 600 601

static void disarm_kmem_keys(struct mem_cgroup *memcg)
{
602
	if (memcg_kmem_is_active(memcg)) {
603
		static_key_slow_dec(&memcg_kmem_enabled_key);
604 605
		ida_simple_remove(&kmem_limited_groups, memcg->kmemcg_id);
	}
606 607 608 609 610
	/*
	 * This check can't live in kmem destruction function,
	 * since the charges will outlive the cgroup
	 */
	WARN_ON(res_counter_read_u64(&memcg->kmem, RES_USAGE) != 0);
611 612 613 614 615 616 617 618 619 620 621 622 623
}
#else
static void disarm_kmem_keys(struct mem_cgroup *memcg)
{
}
#endif /* CONFIG_MEMCG_KMEM */

static void disarm_static_keys(struct mem_cgroup *memcg)
{
	disarm_sock_keys(memcg);
	disarm_kmem_keys(memcg);
}

624
static void drain_all_stock_async(struct mem_cgroup *memcg);
625

626
static struct mem_cgroup_per_zone *
627
mem_cgroup_zoneinfo(struct mem_cgroup *memcg, int nid, int zid)
628
{
629
	return &memcg->info.nodeinfo[nid]->zoneinfo[zid];
630 631
}

632
struct cgroup_subsys_state *mem_cgroup_css(struct mem_cgroup *memcg)
633
{
634
	return &memcg->css;
635 636
}

637
static struct mem_cgroup_per_zone *
638
page_cgroup_zoneinfo(struct mem_cgroup *memcg, struct page *page)
639
{
640 641
	int nid = page_to_nid(page);
	int zid = page_zonenum(page);
642

643
	return mem_cgroup_zoneinfo(memcg, nid, zid);
644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661
}

static struct mem_cgroup_tree_per_zone *
soft_limit_tree_node_zone(int nid, int zid)
{
	return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
}

static struct mem_cgroup_tree_per_zone *
soft_limit_tree_from_page(struct page *page)
{
	int nid = page_to_nid(page);
	int zid = page_zonenum(page);

	return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
}

static void
662
__mem_cgroup_insert_exceeded(struct mem_cgroup *memcg,
663
				struct mem_cgroup_per_zone *mz,
664 665
				struct mem_cgroup_tree_per_zone *mctz,
				unsigned long long new_usage_in_excess)
666 667 668 669 670 671 672 673
{
	struct rb_node **p = &mctz->rb_root.rb_node;
	struct rb_node *parent = NULL;
	struct mem_cgroup_per_zone *mz_node;

	if (mz->on_tree)
		return;

674 675 676
	mz->usage_in_excess = new_usage_in_excess;
	if (!mz->usage_in_excess)
		return;
677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692
	while (*p) {
		parent = *p;
		mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
					tree_node);
		if (mz->usage_in_excess < mz_node->usage_in_excess)
			p = &(*p)->rb_left;
		/*
		 * We can't avoid mem cgroups that are over their soft
		 * limit by the same amount
		 */
		else if (mz->usage_in_excess >= mz_node->usage_in_excess)
			p = &(*p)->rb_right;
	}
	rb_link_node(&mz->tree_node, parent, p);
	rb_insert_color(&mz->tree_node, &mctz->rb_root);
	mz->on_tree = true;
693 694 695
}

static void
696
__mem_cgroup_remove_exceeded(struct mem_cgroup *memcg,
697 698 699 700 701 702 703 704 705
				struct mem_cgroup_per_zone *mz,
				struct mem_cgroup_tree_per_zone *mctz)
{
	if (!mz->on_tree)
		return;
	rb_erase(&mz->tree_node, &mctz->rb_root);
	mz->on_tree = false;
}

706
static void
707
mem_cgroup_remove_exceeded(struct mem_cgroup *memcg,
708 709 710 711
				struct mem_cgroup_per_zone *mz,
				struct mem_cgroup_tree_per_zone *mctz)
{
	spin_lock(&mctz->lock);
712
	__mem_cgroup_remove_exceeded(memcg, mz, mctz);
713 714 715 716
	spin_unlock(&mctz->lock);
}


717
static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
718
{
719
	unsigned long long excess;
720 721
	struct mem_cgroup_per_zone *mz;
	struct mem_cgroup_tree_per_zone *mctz;
722 723
	int nid = page_to_nid(page);
	int zid = page_zonenum(page);
724 725 726
	mctz = soft_limit_tree_from_page(page);

	/*
727 728
	 * Necessary to update all ancestors when hierarchy is used.
	 * because their event counter is not touched.
729
	 */
730 731 732
	for (; memcg; memcg = parent_mem_cgroup(memcg)) {
		mz = mem_cgroup_zoneinfo(memcg, nid, zid);
		excess = res_counter_soft_limit_excess(&memcg->res);
733 734 735 736
		/*
		 * We have to update the tree if mz is on RB-tree or
		 * mem is over its softlimit.
		 */
737
		if (excess || mz->on_tree) {
738 739 740
			spin_lock(&mctz->lock);
			/* if on-tree, remove it */
			if (mz->on_tree)
741
				__mem_cgroup_remove_exceeded(memcg, mz, mctz);
742
			/*
743 744
			 * Insert again. mz->usage_in_excess will be updated.
			 * If excess is 0, no tree ops.
745
			 */
746
			__mem_cgroup_insert_exceeded(memcg, mz, mctz, excess);
747 748
			spin_unlock(&mctz->lock);
		}
749 750 751
	}
}

752
static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
753 754 755 756 757
{
	int node, zone;
	struct mem_cgroup_per_zone *mz;
	struct mem_cgroup_tree_per_zone *mctz;

B
Bob Liu 已提交
758
	for_each_node(node) {
759
		for (zone = 0; zone < MAX_NR_ZONES; zone++) {
760
			mz = mem_cgroup_zoneinfo(memcg, node, zone);
761
			mctz = soft_limit_tree_node_zone(node, zone);
762
			mem_cgroup_remove_exceeded(memcg, mz, mctz);
763 764 765 766
		}
	}
}

767 768 769 770
static struct mem_cgroup_per_zone *
__mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
{
	struct rb_node *rightmost = NULL;
771
	struct mem_cgroup_per_zone *mz;
772 773

retry:
774
	mz = NULL;
775 776 777 778 779 780 781 782 783 784
	rightmost = rb_last(&mctz->rb_root);
	if (!rightmost)
		goto done;		/* Nothing to reclaim from */

	mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
	/*
	 * Remove the node now but someone else can add it back,
	 * we will to add it back at the end of reclaim to its correct
	 * position in the tree.
	 */
785 786 787
	__mem_cgroup_remove_exceeded(mz->memcg, mz, mctz);
	if (!res_counter_soft_limit_excess(&mz->memcg->res) ||
		!css_tryget(&mz->memcg->css))
788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803
		goto retry;
done:
	return mz;
}

static struct mem_cgroup_per_zone *
mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
{
	struct mem_cgroup_per_zone *mz;

	spin_lock(&mctz->lock);
	mz = __mem_cgroup_largest_soft_limit_node(mctz);
	spin_unlock(&mctz->lock);
	return mz;
}

804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822
/*
 * Implementation Note: reading percpu statistics for memcg.
 *
 * Both of vmstat[] and percpu_counter has threshold and do periodic
 * synchronization to implement "quick" read. There are trade-off between
 * reading cost and precision of value. Then, we may have a chance to implement
 * a periodic synchronizion of counter in memcg's counter.
 *
 * But this _read() function is used for user interface now. The user accounts
 * memory usage by memory cgroup and he _always_ requires exact value because
 * he accounts memory. Even if we provide quick-and-fuzzy read, we always
 * have to visit all online cpus and make sum. So, for now, unnecessary
 * synchronization is not implemented. (just implemented for cpu hotplug)
 *
 * If there are kernel internal actions which can make use of some not-exact
 * value, and reading all cpu value can be performance bottleneck in some
 * common workload, threashold and synchonization as vmstat[] should be
 * implemented.
 */
823
static long mem_cgroup_read_stat(struct mem_cgroup *memcg,
824
				 enum mem_cgroup_stat_index idx)
825
{
826
	long val = 0;
827 828
	int cpu;

829 830
	get_online_cpus();
	for_each_online_cpu(cpu)
831
		val += per_cpu(memcg->stat->count[idx], cpu);
832
#ifdef CONFIG_HOTPLUG_CPU
833 834 835
	spin_lock(&memcg->pcp_counter_lock);
	val += memcg->nocpu_base.count[idx];
	spin_unlock(&memcg->pcp_counter_lock);
836 837
#endif
	put_online_cpus();
838 839 840
	return val;
}

841
static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg,
842 843 844
					 bool charge)
{
	int val = (charge) ? 1 : -1;
845
	this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_SWAP], val);
846 847
}

848
static unsigned long mem_cgroup_read_events(struct mem_cgroup *memcg,
849 850 851 852 853 854
					    enum mem_cgroup_events_index idx)
{
	unsigned long val = 0;
	int cpu;

	for_each_online_cpu(cpu)
855
		val += per_cpu(memcg->stat->events[idx], cpu);
856
#ifdef CONFIG_HOTPLUG_CPU
857 858 859
	spin_lock(&memcg->pcp_counter_lock);
	val += memcg->nocpu_base.events[idx];
	spin_unlock(&memcg->pcp_counter_lock);
860 861 862 863
#endif
	return val;
}

864
static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
865
					 bool anon, int nr_pages)
866
{
867 868
	preempt_disable();

869 870 871 872 873 874
	/*
	 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
	 * counted as CACHE even if it's on ANON LRU.
	 */
	if (anon)
		__this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS],
875
				nr_pages);
876
	else
877
		__this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_CACHE],
878
				nr_pages);
879

880 881
	/* pagein of a big page is an event. So, ignore page size */
	if (nr_pages > 0)
882
		__this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGIN]);
883
	else {
884
		__this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]);
885 886
		nr_pages = -nr_pages; /* for event */
	}
887

888
	__this_cpu_add(memcg->stat->nr_page_events, nr_pages);
889

890
	preempt_enable();
891 892
}

893
unsigned long
894
mem_cgroup_get_lru_size(struct lruvec *lruvec, enum lru_list lru)
895 896 897 898 899 900 901 902
{
	struct mem_cgroup_per_zone *mz;

	mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
	return mz->lru_size[lru];
}

static unsigned long
903
mem_cgroup_zone_nr_lru_pages(struct mem_cgroup *memcg, int nid, int zid,
904
			unsigned int lru_mask)
905 906
{
	struct mem_cgroup_per_zone *mz;
H
Hugh Dickins 已提交
907
	enum lru_list lru;
908 909
	unsigned long ret = 0;

910
	mz = mem_cgroup_zoneinfo(memcg, nid, zid);
911

H
Hugh Dickins 已提交
912 913 914
	for_each_lru(lru) {
		if (BIT(lru) & lru_mask)
			ret += mz->lru_size[lru];
915 916 917 918 919
	}
	return ret;
}

static unsigned long
920
mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
921 922
			int nid, unsigned int lru_mask)
{
923 924 925
	u64 total = 0;
	int zid;

926
	for (zid = 0; zid < MAX_NR_ZONES; zid++)
927 928
		total += mem_cgroup_zone_nr_lru_pages(memcg,
						nid, zid, lru_mask);
929

930 931
	return total;
}
932

933
static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
934
			unsigned int lru_mask)
935
{
936
	int nid;
937 938
	u64 total = 0;

939
	for_each_node_state(nid, N_MEMORY)
940
		total += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask);
941
	return total;
942 943
}

944 945
static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
				       enum mem_cgroup_events_target target)
946 947 948
{
	unsigned long val, next;

949
	val = __this_cpu_read(memcg->stat->nr_page_events);
950
	next = __this_cpu_read(memcg->stat->targets[target]);
951
	/* from time_after() in jiffies.h */
952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967
	if ((long)next - (long)val < 0) {
		switch (target) {
		case MEM_CGROUP_TARGET_THRESH:
			next = val + THRESHOLDS_EVENTS_TARGET;
			break;
		case MEM_CGROUP_TARGET_SOFTLIMIT:
			next = val + SOFTLIMIT_EVENTS_TARGET;
			break;
		case MEM_CGROUP_TARGET_NUMAINFO:
			next = val + NUMAINFO_EVENTS_TARGET;
			break;
		default:
			break;
		}
		__this_cpu_write(memcg->stat->targets[target], next);
		return true;
968
	}
969
	return false;
970 971 972 973 974 975
}

/*
 * Check events in order.
 *
 */
976
static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
977
{
978
	preempt_disable();
979
	/* threshold event is triggered in finer grain than soft limit */
980 981
	if (unlikely(mem_cgroup_event_ratelimit(memcg,
						MEM_CGROUP_TARGET_THRESH))) {
982 983
		bool do_softlimit;
		bool do_numainfo __maybe_unused;
984 985 986 987 988 989 990 991 992

		do_softlimit = mem_cgroup_event_ratelimit(memcg,
						MEM_CGROUP_TARGET_SOFTLIMIT);
#if MAX_NUMNODES > 1
		do_numainfo = mem_cgroup_event_ratelimit(memcg,
						MEM_CGROUP_TARGET_NUMAINFO);
#endif
		preempt_enable();

993
		mem_cgroup_threshold(memcg);
994
		if (unlikely(do_softlimit))
995
			mem_cgroup_update_tree(memcg, page);
996
#if MAX_NUMNODES > 1
997
		if (unlikely(do_numainfo))
998
			atomic_inc(&memcg->numainfo_events);
999
#endif
1000 1001
	} else
		preempt_enable();
1002 1003
}

G
Glauber Costa 已提交
1004
struct mem_cgroup *mem_cgroup_from_cont(struct cgroup *cont)
B
Balbir Singh 已提交
1005
{
1006 1007
	return mem_cgroup_from_css(
		cgroup_subsys_state(cont, mem_cgroup_subsys_id));
B
Balbir Singh 已提交
1008 1009
}

1010
struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
1011
{
1012 1013 1014 1015 1016 1017 1018 1019
	/*
	 * mm_update_next_owner() may clear mm->owner to NULL
	 * if it races with swapoff, page migration, etc.
	 * So this can be called with p == NULL.
	 */
	if (unlikely(!p))
		return NULL;

1020
	return mem_cgroup_from_css(task_subsys_state(p, mem_cgroup_subsys_id));
1021 1022
}

1023
struct mem_cgroup *try_get_mem_cgroup_from_mm(struct mm_struct *mm)
1024
{
1025
	struct mem_cgroup *memcg = NULL;
1026 1027 1028

	if (!mm)
		return NULL;
1029 1030 1031 1032 1033 1034 1035
	/*
	 * Because we have no locks, mm->owner's may be being moved to other
	 * cgroup. We use css_tryget() here even if this looks
	 * pessimistic (rather than adding locks here).
	 */
	rcu_read_lock();
	do {
1036 1037
		memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
		if (unlikely(!memcg))
1038
			break;
1039
	} while (!css_tryget(&memcg->css));
1040
	rcu_read_unlock();
1041
	return memcg;
1042 1043
}

1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063
/**
 * mem_cgroup_iter - iterate over memory cgroup hierarchy
 * @root: hierarchy root
 * @prev: previously returned memcg, NULL on first invocation
 * @reclaim: cookie for shared reclaim walks, NULL for full walks
 *
 * Returns references to children of the hierarchy below @root, or
 * @root itself, or %NULL after a full round-trip.
 *
 * Caller must pass the return value in @prev on subsequent
 * invocations for reference counting, or use mem_cgroup_iter_break()
 * to cancel a hierarchy walk before the round-trip is complete.
 *
 * Reclaimers can specify a zone and a priority level in @reclaim to
 * divide up the memcgs in the hierarchy among all concurrent
 * reclaimers operating on the same zone and priority.
 */
struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
				   struct mem_cgroup *prev,
				   struct mem_cgroup_reclaim_cookie *reclaim)
K
KAMEZAWA Hiroyuki 已提交
1064
{
1065 1066
	struct mem_cgroup *memcg = NULL;
	int id = 0;
1067

1068 1069 1070
	if (mem_cgroup_disabled())
		return NULL;

1071 1072
	if (!root)
		root = root_mem_cgroup;
K
KAMEZAWA Hiroyuki 已提交
1073

1074 1075
	if (prev && !reclaim)
		id = css_id(&prev->css);
K
KAMEZAWA Hiroyuki 已提交
1076

1077 1078
	if (prev && prev != root)
		css_put(&prev->css);
K
KAMEZAWA Hiroyuki 已提交
1079

1080 1081 1082 1083 1084
	if (!root->use_hierarchy && root != root_mem_cgroup) {
		if (prev)
			return NULL;
		return root;
	}
K
KAMEZAWA Hiroyuki 已提交
1085

1086
	while (!memcg) {
1087
		struct mem_cgroup_reclaim_iter *uninitialized_var(iter);
1088
		struct cgroup_subsys_state *css;
1089

1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100
		if (reclaim) {
			int nid = zone_to_nid(reclaim->zone);
			int zid = zone_idx(reclaim->zone);
			struct mem_cgroup_per_zone *mz;

			mz = mem_cgroup_zoneinfo(root, nid, zid);
			iter = &mz->reclaim_iter[reclaim->priority];
			if (prev && reclaim->generation != iter->generation)
				return NULL;
			id = iter->position;
		}
K
KAMEZAWA Hiroyuki 已提交
1101

1102 1103 1104 1105
		rcu_read_lock();
		css = css_get_next(&mem_cgroup_subsys, id + 1, &root->css, &id);
		if (css) {
			if (css == &root->css || css_tryget(css))
1106
				memcg = mem_cgroup_from_css(css);
1107 1108
		} else
			id = 0;
K
KAMEZAWA Hiroyuki 已提交
1109 1110
		rcu_read_unlock();

1111 1112 1113 1114 1115 1116 1117
		if (reclaim) {
			iter->position = id;
			if (!css)
				iter->generation++;
			else if (!prev && memcg)
				reclaim->generation = iter->generation;
		}
1118 1119 1120 1121 1122

		if (prev && !css)
			return NULL;
	}
	return memcg;
K
KAMEZAWA Hiroyuki 已提交
1123
}
K
KAMEZAWA Hiroyuki 已提交
1124

1125 1126 1127 1128 1129 1130 1131
/**
 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
 * @root: hierarchy root
 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
 */
void mem_cgroup_iter_break(struct mem_cgroup *root,
			   struct mem_cgroup *prev)
1132 1133 1134 1135 1136 1137
{
	if (!root)
		root = root_mem_cgroup;
	if (prev && prev != root)
		css_put(&prev->css);
}
K
KAMEZAWA Hiroyuki 已提交
1138

1139 1140 1141 1142 1143 1144
/*
 * Iteration constructs for visiting all cgroups (under a tree).  If
 * loops are exited prematurely (break), mem_cgroup_iter_break() must
 * be used for reference counting.
 */
#define for_each_mem_cgroup_tree(iter, root)		\
1145
	for (iter = mem_cgroup_iter(root, NULL, NULL);	\
1146
	     iter != NULL;				\
1147
	     iter = mem_cgroup_iter(root, iter, NULL))
1148

1149
#define for_each_mem_cgroup(iter)			\
1150
	for (iter = mem_cgroup_iter(NULL, NULL, NULL);	\
1151
	     iter != NULL;				\
1152
	     iter = mem_cgroup_iter(NULL, iter, NULL))
K
KAMEZAWA Hiroyuki 已提交
1153

1154
void __mem_cgroup_count_vm_event(struct mm_struct *mm, enum vm_event_item idx)
1155
{
1156
	struct mem_cgroup *memcg;
1157 1158

	rcu_read_lock();
1159 1160
	memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
	if (unlikely(!memcg))
1161 1162 1163 1164
		goto out;

	switch (idx) {
	case PGFAULT:
1165 1166 1167 1168
		this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGFAULT]);
		break;
	case PGMAJFAULT:
		this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGMAJFAULT]);
1169 1170 1171 1172 1173 1174 1175
		break;
	default:
		BUG();
	}
out:
	rcu_read_unlock();
}
1176
EXPORT_SYMBOL(__mem_cgroup_count_vm_event);
1177

1178 1179 1180
/**
 * mem_cgroup_zone_lruvec - get the lru list vector for a zone and memcg
 * @zone: zone of the wanted lruvec
1181
 * @memcg: memcg of the wanted lruvec
1182 1183 1184 1185 1186 1187 1188 1189 1190
 *
 * Returns the lru list vector holding pages for the given @zone and
 * @mem.  This can be the global zone lruvec, if the memory controller
 * is disabled.
 */
struct lruvec *mem_cgroup_zone_lruvec(struct zone *zone,
				      struct mem_cgroup *memcg)
{
	struct mem_cgroup_per_zone *mz;
1191
	struct lruvec *lruvec;
1192

1193 1194 1195 1196
	if (mem_cgroup_disabled()) {
		lruvec = &zone->lruvec;
		goto out;
	}
1197 1198

	mz = mem_cgroup_zoneinfo(memcg, zone_to_nid(zone), zone_idx(zone));
1199 1200 1201 1202 1203 1204 1205 1206 1207 1208
	lruvec = &mz->lruvec;
out:
	/*
	 * Since a node can be onlined after the mem_cgroup was created,
	 * we have to be prepared to initialize lruvec->zone here;
	 * and if offlined then reonlined, we need to reinitialize it.
	 */
	if (unlikely(lruvec->zone != zone))
		lruvec->zone = zone;
	return lruvec;
1209 1210
}

K
KAMEZAWA Hiroyuki 已提交
1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223
/*
 * Following LRU functions are allowed to be used without PCG_LOCK.
 * Operations are called by routine of global LRU independently from memcg.
 * What we have to take care of here is validness of pc->mem_cgroup.
 *
 * Changes to pc->mem_cgroup happens when
 * 1. charge
 * 2. moving account
 * In typical case, "charge" is done before add-to-lru. Exception is SwapCache.
 * It is added to LRU before charge.
 * If PCG_USED bit is not set, page_cgroup is not added to this private LRU.
 * When moving account, the page is not on LRU. It's isolated.
 */
1224

1225
/**
1226
 * mem_cgroup_page_lruvec - return lruvec for adding an lru page
1227
 * @page: the page
1228
 * @zone: zone of the page
1229
 */
1230
struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct zone *zone)
K
KAMEZAWA Hiroyuki 已提交
1231 1232
{
	struct mem_cgroup_per_zone *mz;
1233 1234
	struct mem_cgroup *memcg;
	struct page_cgroup *pc;
1235
	struct lruvec *lruvec;
1236

1237 1238 1239 1240
	if (mem_cgroup_disabled()) {
		lruvec = &zone->lruvec;
		goto out;
	}
1241

K
KAMEZAWA Hiroyuki 已提交
1242
	pc = lookup_page_cgroup(page);
1243
	memcg = pc->mem_cgroup;
1244 1245

	/*
1246
	 * Surreptitiously switch any uncharged offlist page to root:
1247 1248 1249 1250 1251 1252 1253
	 * an uncharged page off lru does nothing to secure
	 * its former mem_cgroup from sudden removal.
	 *
	 * Our caller holds lru_lock, and PageCgroupUsed is updated
	 * under page_cgroup lock: between them, they make all uses
	 * of pc->mem_cgroup safe.
	 */
1254
	if (!PageLRU(page) && !PageCgroupUsed(pc) && memcg != root_mem_cgroup)
1255 1256
		pc->mem_cgroup = memcg = root_mem_cgroup;

1257
	mz = page_cgroup_zoneinfo(memcg, page);
1258 1259 1260 1261 1262 1263 1264 1265 1266 1267
	lruvec = &mz->lruvec;
out:
	/*
	 * Since a node can be onlined after the mem_cgroup was created,
	 * we have to be prepared to initialize lruvec->zone here;
	 * and if offlined then reonlined, we need to reinitialize it.
	 */
	if (unlikely(lruvec->zone != zone))
		lruvec->zone = zone;
	return lruvec;
K
KAMEZAWA Hiroyuki 已提交
1268
}
1269

1270
/**
1271 1272 1273 1274
 * mem_cgroup_update_lru_size - account for adding or removing an lru page
 * @lruvec: mem_cgroup per zone lru vector
 * @lru: index of lru list the page is sitting on
 * @nr_pages: positive when adding or negative when removing
1275
 *
1276 1277
 * This function must be called when a page is added to or removed from an
 * lru list.
1278
 */
1279 1280
void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
				int nr_pages)
1281 1282
{
	struct mem_cgroup_per_zone *mz;
1283
	unsigned long *lru_size;
1284 1285 1286 1287

	if (mem_cgroup_disabled())
		return;

1288 1289 1290 1291
	mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
	lru_size = mz->lru_size + lru;
	*lru_size += nr_pages;
	VM_BUG_ON((long)(*lru_size) < 0);
K
KAMEZAWA Hiroyuki 已提交
1292
}
1293

1294
/*
1295
 * Checks whether given mem is same or in the root_mem_cgroup's
1296 1297
 * hierarchy subtree
 */
1298 1299
bool __mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg,
				  struct mem_cgroup *memcg)
1300
{
1301 1302
	if (root_memcg == memcg)
		return true;
1303
	if (!root_memcg->use_hierarchy || !memcg)
1304
		return false;
1305 1306 1307 1308 1309 1310 1311 1312
	return css_is_ancestor(&memcg->css, &root_memcg->css);
}

static bool mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg,
				       struct mem_cgroup *memcg)
{
	bool ret;

1313
	rcu_read_lock();
1314
	ret = __mem_cgroup_same_or_subtree(root_memcg, memcg);
1315 1316
	rcu_read_unlock();
	return ret;
1317 1318
}

1319
int task_in_mem_cgroup(struct task_struct *task, const struct mem_cgroup *memcg)
1320 1321
{
	int ret;
1322
	struct mem_cgroup *curr = NULL;
1323
	struct task_struct *p;
1324

1325
	p = find_lock_task_mm(task);
1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340
	if (p) {
		curr = try_get_mem_cgroup_from_mm(p->mm);
		task_unlock(p);
	} else {
		/*
		 * All threads may have already detached their mm's, but the oom
		 * killer still needs to detect if they have already been oom
		 * killed to prevent needlessly killing additional tasks.
		 */
		task_lock(task);
		curr = mem_cgroup_from_task(task);
		if (curr)
			css_get(&curr->css);
		task_unlock(task);
	}
1341 1342
	if (!curr)
		return 0;
1343
	/*
1344
	 * We should check use_hierarchy of "memcg" not "curr". Because checking
1345
	 * use_hierarchy of "curr" here make this function true if hierarchy is
1346 1347
	 * enabled in "curr" and "curr" is a child of "memcg" in *cgroup*
	 * hierarchy(even if use_hierarchy is disabled in "memcg").
1348
	 */
1349
	ret = mem_cgroup_same_or_subtree(memcg, curr);
1350
	css_put(&curr->css);
1351 1352 1353
	return ret;
}

1354
int mem_cgroup_inactive_anon_is_low(struct lruvec *lruvec)
1355
{
1356
	unsigned long inactive_ratio;
1357
	unsigned long inactive;
1358
	unsigned long active;
1359
	unsigned long gb;
1360

1361 1362
	inactive = mem_cgroup_get_lru_size(lruvec, LRU_INACTIVE_ANON);
	active = mem_cgroup_get_lru_size(lruvec, LRU_ACTIVE_ANON);
1363

1364 1365 1366 1367 1368 1369
	gb = (inactive + active) >> (30 - PAGE_SHIFT);
	if (gb)
		inactive_ratio = int_sqrt(10 * gb);
	else
		inactive_ratio = 1;

1370
	return inactive * inactive_ratio < active;
1371 1372
}

1373
int mem_cgroup_inactive_file_is_low(struct lruvec *lruvec)
1374 1375 1376 1377
{
	unsigned long active;
	unsigned long inactive;

1378 1379
	inactive = mem_cgroup_get_lru_size(lruvec, LRU_INACTIVE_FILE);
	active = mem_cgroup_get_lru_size(lruvec, LRU_ACTIVE_FILE);
1380 1381 1382 1383

	return (active > inactive);
}

1384 1385 1386
#define mem_cgroup_from_res_counter(counter, member)	\
	container_of(counter, struct mem_cgroup, member)

1387
/**
1388
 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
W
Wanpeng Li 已提交
1389
 * @memcg: the memory cgroup
1390
 *
1391
 * Returns the maximum amount of memory @mem can be charged with, in
1392
 * pages.
1393
 */
1394
static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1395
{
1396 1397
	unsigned long long margin;

1398
	margin = res_counter_margin(&memcg->res);
1399
	if (do_swap_account)
1400
		margin = min(margin, res_counter_margin(&memcg->memsw));
1401
	return margin >> PAGE_SHIFT;
1402 1403
}

1404
int mem_cgroup_swappiness(struct mem_cgroup *memcg)
K
KOSAKI Motohiro 已提交
1405 1406 1407 1408 1409 1410 1411
{
	struct cgroup *cgrp = memcg->css.cgroup;

	/* root ? */
	if (cgrp->parent == NULL)
		return vm_swappiness;

1412
	return memcg->swappiness;
K
KOSAKI Motohiro 已提交
1413 1414
}

1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428
/*
 * memcg->moving_account is used for checking possibility that some thread is
 * calling move_account(). When a thread on CPU-A starts moving pages under
 * a memcg, other threads should check memcg->moving_account under
 * rcu_read_lock(), like this:
 *
 *         CPU-A                                    CPU-B
 *                                              rcu_read_lock()
 *         memcg->moving_account+1              if (memcg->mocing_account)
 *                                                   take heavy locks.
 *         synchronize_rcu()                    update something.
 *                                              rcu_read_unlock()
 *         start move here.
 */
1429 1430 1431 1432

/* for quick checking without looking up memcg */
atomic_t memcg_moving __read_mostly;

1433
static void mem_cgroup_start_move(struct mem_cgroup *memcg)
1434
{
1435
	atomic_inc(&memcg_moving);
1436
	atomic_inc(&memcg->moving_account);
1437 1438 1439
	synchronize_rcu();
}

1440
static void mem_cgroup_end_move(struct mem_cgroup *memcg)
1441
{
1442 1443 1444 1445
	/*
	 * Now, mem_cgroup_clear_mc() may call this function with NULL.
	 * We check NULL in callee rather than caller.
	 */
1446 1447
	if (memcg) {
		atomic_dec(&memcg_moving);
1448
		atomic_dec(&memcg->moving_account);
1449
	}
1450
}
1451

1452 1453 1454
/*
 * 2 routines for checking "mem" is under move_account() or not.
 *
1455 1456
 * mem_cgroup_stolen() -  checking whether a cgroup is mc.from or not. This
 *			  is used for avoiding races in accounting.  If true,
1457 1458 1459 1460 1461 1462 1463
 *			  pc->mem_cgroup may be overwritten.
 *
 * mem_cgroup_under_move() - checking a cgroup is mc.from or mc.to or
 *			  under hierarchy of moving cgroups. This is for
 *			  waiting at hith-memory prressure caused by "move".
 */

1464
static bool mem_cgroup_stolen(struct mem_cgroup *memcg)
1465 1466
{
	VM_BUG_ON(!rcu_read_lock_held());
1467
	return atomic_read(&memcg->moving_account) > 0;
1468
}
1469

1470
static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
1471
{
1472 1473
	struct mem_cgroup *from;
	struct mem_cgroup *to;
1474
	bool ret = false;
1475 1476 1477 1478 1479 1480 1481 1482 1483
	/*
	 * Unlike task_move routines, we access mc.to, mc.from not under
	 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
	 */
	spin_lock(&mc.lock);
	from = mc.from;
	to = mc.to;
	if (!from)
		goto unlock;
1484

1485 1486
	ret = mem_cgroup_same_or_subtree(memcg, from)
		|| mem_cgroup_same_or_subtree(memcg, to);
1487 1488
unlock:
	spin_unlock(&mc.lock);
1489 1490 1491
	return ret;
}

1492
static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1493 1494
{
	if (mc.moving_task && current != mc.moving_task) {
1495
		if (mem_cgroup_under_move(memcg)) {
1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507
			DEFINE_WAIT(wait);
			prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
			/* moving charge context might have finished. */
			if (mc.moving_task)
				schedule();
			finish_wait(&mc.waitq, &wait);
			return true;
		}
	}
	return false;
}

1508 1509 1510 1511
/*
 * Take this lock when
 * - a code tries to modify page's memcg while it's USED.
 * - a code tries to modify page state accounting in a memcg.
1512
 * see mem_cgroup_stolen(), too.
1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525
 */
static void move_lock_mem_cgroup(struct mem_cgroup *memcg,
				  unsigned long *flags)
{
	spin_lock_irqsave(&memcg->move_lock, *flags);
}

static void move_unlock_mem_cgroup(struct mem_cgroup *memcg,
				unsigned long *flags)
{
	spin_unlock_irqrestore(&memcg->move_lock, *flags);
}

1526
/**
1527
 * mem_cgroup_print_oom_info: Called from OOM with tasklist_lock held in read mode.
1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545
 * @memcg: The memory cgroup that went over limit
 * @p: Task that is going to be killed
 *
 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
 * enabled
 */
void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
{
	struct cgroup *task_cgrp;
	struct cgroup *mem_cgrp;
	/*
	 * Need a buffer in BSS, can't rely on allocations. The code relies
	 * on the assumption that OOM is serialized for memory controller.
	 * If this assumption is broken, revisit this code.
	 */
	static char memcg_name[PATH_MAX];
	int ret;

1546
	if (!memcg || !p)
1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589
		return;

	rcu_read_lock();

	mem_cgrp = memcg->css.cgroup;
	task_cgrp = task_cgroup(p, mem_cgroup_subsys_id);

	ret = cgroup_path(task_cgrp, memcg_name, PATH_MAX);
	if (ret < 0) {
		/*
		 * Unfortunately, we are unable to convert to a useful name
		 * But we'll still print out the usage information
		 */
		rcu_read_unlock();
		goto done;
	}
	rcu_read_unlock();

	printk(KERN_INFO "Task in %s killed", memcg_name);

	rcu_read_lock();
	ret = cgroup_path(mem_cgrp, memcg_name, PATH_MAX);
	if (ret < 0) {
		rcu_read_unlock();
		goto done;
	}
	rcu_read_unlock();

	/*
	 * Continues from above, so we don't need an KERN_ level
	 */
	printk(KERN_CONT " as a result of limit of %s\n", memcg_name);
done:

	printk(KERN_INFO "memory: usage %llukB, limit %llukB, failcnt %llu\n",
		res_counter_read_u64(&memcg->res, RES_USAGE) >> 10,
		res_counter_read_u64(&memcg->res, RES_LIMIT) >> 10,
		res_counter_read_u64(&memcg->res, RES_FAILCNT));
	printk(KERN_INFO "memory+swap: usage %llukB, limit %llukB, "
		"failcnt %llu\n",
		res_counter_read_u64(&memcg->memsw, RES_USAGE) >> 10,
		res_counter_read_u64(&memcg->memsw, RES_LIMIT) >> 10,
		res_counter_read_u64(&memcg->memsw, RES_FAILCNT));
1590 1591 1592 1593
	printk(KERN_INFO "kmem: usage %llukB, limit %llukB, failcnt %llu\n",
		res_counter_read_u64(&memcg->kmem, RES_USAGE) >> 10,
		res_counter_read_u64(&memcg->kmem, RES_LIMIT) >> 10,
		res_counter_read_u64(&memcg->kmem, RES_FAILCNT));
1594 1595
}

1596 1597 1598 1599
/*
 * This function returns the number of memcg under hierarchy tree. Returns
 * 1(self count) if no children.
 */
1600
static int mem_cgroup_count_children(struct mem_cgroup *memcg)
1601 1602
{
	int num = 0;
K
KAMEZAWA Hiroyuki 已提交
1603 1604
	struct mem_cgroup *iter;

1605
	for_each_mem_cgroup_tree(iter, memcg)
K
KAMEZAWA Hiroyuki 已提交
1606
		num++;
1607 1608 1609
	return num;
}

D
David Rientjes 已提交
1610 1611 1612
/*
 * Return the memory (and swap, if configured) limit for a memcg.
 */
1613
static u64 mem_cgroup_get_limit(struct mem_cgroup *memcg)
D
David Rientjes 已提交
1614 1615 1616
{
	u64 limit;

1617 1618
	limit = res_counter_read_u64(&memcg->res, RES_LIMIT);

D
David Rientjes 已提交
1619
	/*
1620
	 * Do not consider swap space if we cannot swap due to swappiness
D
David Rientjes 已提交
1621
	 */
1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635
	if (mem_cgroup_swappiness(memcg)) {
		u64 memsw;

		limit += total_swap_pages << PAGE_SHIFT;
		memsw = res_counter_read_u64(&memcg->memsw, RES_LIMIT);

		/*
		 * If memsw is finite and limits the amount of swap space
		 * available to this memcg, return that limit.
		 */
		limit = min(limit, memsw);
	}

	return limit;
D
David Rientjes 已提交
1636 1637
}

1638 1639
static void mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
				     int order)
1640 1641 1642 1643 1644 1645 1646
{
	struct mem_cgroup *iter;
	unsigned long chosen_points = 0;
	unsigned long totalpages;
	unsigned int points = 0;
	struct task_struct *chosen = NULL;

1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657
	/*
	 * If current has a pending SIGKILL, then automatically select it.  The
	 * goal is to allow it to allocate so that it may quickly exit and free
	 * its memory.
	 */
	if (fatal_signal_pending(current)) {
		set_thread_flag(TIF_MEMDIE);
		return;
	}

	check_panic_on_oom(CONSTRAINT_MEMCG, gfp_mask, order, NULL);
1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704
	totalpages = mem_cgroup_get_limit(memcg) >> PAGE_SHIFT ? : 1;
	for_each_mem_cgroup_tree(iter, memcg) {
		struct cgroup *cgroup = iter->css.cgroup;
		struct cgroup_iter it;
		struct task_struct *task;

		cgroup_iter_start(cgroup, &it);
		while ((task = cgroup_iter_next(cgroup, &it))) {
			switch (oom_scan_process_thread(task, totalpages, NULL,
							false)) {
			case OOM_SCAN_SELECT:
				if (chosen)
					put_task_struct(chosen);
				chosen = task;
				chosen_points = ULONG_MAX;
				get_task_struct(chosen);
				/* fall through */
			case OOM_SCAN_CONTINUE:
				continue;
			case OOM_SCAN_ABORT:
				cgroup_iter_end(cgroup, &it);
				mem_cgroup_iter_break(memcg, iter);
				if (chosen)
					put_task_struct(chosen);
				return;
			case OOM_SCAN_OK:
				break;
			};
			points = oom_badness(task, memcg, NULL, totalpages);
			if (points > chosen_points) {
				if (chosen)
					put_task_struct(chosen);
				chosen = task;
				chosen_points = points;
				get_task_struct(chosen);
			}
		}
		cgroup_iter_end(cgroup, &it);
	}

	if (!chosen)
		return;
	points = chosen_points * 1000 / totalpages;
	oom_kill_process(chosen, gfp_mask, order, points, totalpages, memcg,
			 NULL, "Memory cgroup out of memory");
}

1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740
static unsigned long mem_cgroup_reclaim(struct mem_cgroup *memcg,
					gfp_t gfp_mask,
					unsigned long flags)
{
	unsigned long total = 0;
	bool noswap = false;
	int loop;

	if (flags & MEM_CGROUP_RECLAIM_NOSWAP)
		noswap = true;
	if (!(flags & MEM_CGROUP_RECLAIM_SHRINK) && memcg->memsw_is_minimum)
		noswap = true;

	for (loop = 0; loop < MEM_CGROUP_MAX_RECLAIM_LOOPS; loop++) {
		if (loop)
			drain_all_stock_async(memcg);
		total += try_to_free_mem_cgroup_pages(memcg, gfp_mask, noswap);
		/*
		 * Allow limit shrinkers, which are triggered directly
		 * by userspace, to catch signals and stop reclaim
		 * after minimal progress, regardless of the margin.
		 */
		if (total && (flags & MEM_CGROUP_RECLAIM_SHRINK))
			break;
		if (mem_cgroup_margin(memcg))
			break;
		/*
		 * If nothing was reclaimed after two attempts, there
		 * may be no reclaimable pages in this hierarchy.
		 */
		if (loop && !total)
			break;
	}
	return total;
}

1741 1742
/**
 * test_mem_cgroup_node_reclaimable
W
Wanpeng Li 已提交
1743
 * @memcg: the target memcg
1744 1745 1746 1747 1748 1749 1750
 * @nid: the node ID to be checked.
 * @noswap : specify true here if the user wants flle only information.
 *
 * This function returns whether the specified memcg contains any
 * reclaimable pages on a node. Returns true if there are any reclaimable
 * pages in the node.
 */
1751
static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
1752 1753
		int nid, bool noswap)
{
1754
	if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE))
1755 1756 1757
		return true;
	if (noswap || !total_swap_pages)
		return false;
1758
	if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON))
1759 1760 1761 1762
		return true;
	return false;

}
1763 1764 1765 1766 1767 1768 1769 1770
#if MAX_NUMNODES > 1

/*
 * Always updating the nodemask is not very good - even if we have an empty
 * list or the wrong list here, we can start from some node and traverse all
 * nodes based on the zonelist. So update the list loosely once per 10 secs.
 *
 */
1771
static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
1772 1773
{
	int nid;
1774 1775 1776 1777
	/*
	 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
	 * pagein/pageout changes since the last update.
	 */
1778
	if (!atomic_read(&memcg->numainfo_events))
1779
		return;
1780
	if (atomic_inc_return(&memcg->numainfo_updating) > 1)
1781 1782 1783
		return;

	/* make a nodemask where this memcg uses memory from */
1784
	memcg->scan_nodes = node_states[N_MEMORY];
1785

1786
	for_each_node_mask(nid, node_states[N_MEMORY]) {
1787

1788 1789
		if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
			node_clear(nid, memcg->scan_nodes);
1790
	}
1791

1792 1793
	atomic_set(&memcg->numainfo_events, 0);
	atomic_set(&memcg->numainfo_updating, 0);
1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807
}

/*
 * Selecting a node where we start reclaim from. Because what we need is just
 * reducing usage counter, start from anywhere is O,K. Considering
 * memory reclaim from current node, there are pros. and cons.
 *
 * Freeing memory from current node means freeing memory from a node which
 * we'll use or we've used. So, it may make LRU bad. And if several threads
 * hit limits, it will see a contention on a node. But freeing from remote
 * node means more costs for memory reclaim because of memory latency.
 *
 * Now, we use round-robin. Better algorithm is welcomed.
 */
1808
int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1809 1810 1811
{
	int node;

1812 1813
	mem_cgroup_may_update_nodemask(memcg);
	node = memcg->last_scanned_node;
1814

1815
	node = next_node(node, memcg->scan_nodes);
1816
	if (node == MAX_NUMNODES)
1817
		node = first_node(memcg->scan_nodes);
1818 1819 1820 1821 1822 1823 1824 1825 1826
	/*
	 * We call this when we hit limit, not when pages are added to LRU.
	 * No LRU may hold pages because all pages are UNEVICTABLE or
	 * memcg is too small and all pages are not on LRU. In that case,
	 * we use curret node.
	 */
	if (unlikely(node == MAX_NUMNODES))
		node = numa_node_id();

1827
	memcg->last_scanned_node = node;
1828 1829 1830
	return node;
}

1831 1832 1833 1834 1835 1836
/*
 * Check all nodes whether it contains reclaimable pages or not.
 * For quick scan, we make use of scan_nodes. This will allow us to skip
 * unused nodes. But scan_nodes is lazily updated and may not cotain
 * enough new information. We need to do double check.
 */
1837
static bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap)
1838 1839 1840 1841 1842 1843 1844
{
	int nid;

	/*
	 * quick check...making use of scan_node.
	 * We can skip unused nodes.
	 */
1845 1846
	if (!nodes_empty(memcg->scan_nodes)) {
		for (nid = first_node(memcg->scan_nodes);
1847
		     nid < MAX_NUMNODES;
1848
		     nid = next_node(nid, memcg->scan_nodes)) {
1849

1850
			if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap))
1851 1852 1853 1854 1855 1856
				return true;
		}
	}
	/*
	 * Check rest of nodes.
	 */
1857
	for_each_node_state(nid, N_MEMORY) {
1858
		if (node_isset(nid, memcg->scan_nodes))
1859
			continue;
1860
		if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap))
1861 1862 1863 1864 1865
			return true;
	}
	return false;
}

1866
#else
1867
int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1868 1869 1870
{
	return 0;
}
1871

1872
static bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap)
1873
{
1874
	return test_mem_cgroup_node_reclaimable(memcg, 0, noswap);
1875
}
1876 1877
#endif

1878 1879 1880 1881
static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
				   struct zone *zone,
				   gfp_t gfp_mask,
				   unsigned long *total_scanned)
1882
{
1883
	struct mem_cgroup *victim = NULL;
1884
	int total = 0;
K
KAMEZAWA Hiroyuki 已提交
1885
	int loop = 0;
1886
	unsigned long excess;
1887
	unsigned long nr_scanned;
1888 1889 1890 1891
	struct mem_cgroup_reclaim_cookie reclaim = {
		.zone = zone,
		.priority = 0,
	};
1892

1893
	excess = res_counter_soft_limit_excess(&root_memcg->res) >> PAGE_SHIFT;
K
KAMEZAWA Hiroyuki 已提交
1894

1895
	while (1) {
1896
		victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
1897
		if (!victim) {
K
KAMEZAWA Hiroyuki 已提交
1898
			loop++;
1899 1900 1901 1902 1903 1904
			if (loop >= 2) {
				/*
				 * If we have not been able to reclaim
				 * anything, it might because there are
				 * no reclaimable pages under this hierarchy
				 */
1905
				if (!total)
1906 1907
					break;
				/*
L
Lucas De Marchi 已提交
1908
				 * We want to do more targeted reclaim.
1909 1910 1911 1912 1913
				 * excess >> 2 is not to excessive so as to
				 * reclaim too much, nor too less that we keep
				 * coming back to reclaim from this cgroup
				 */
				if (total >= (excess >> 2) ||
1914
					(loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
1915 1916
					break;
			}
1917
			continue;
1918
		}
1919
		if (!mem_cgroup_reclaimable(victim, false))
1920
			continue;
1921 1922 1923 1924
		total += mem_cgroup_shrink_node_zone(victim, gfp_mask, false,
						     zone, &nr_scanned);
		*total_scanned += nr_scanned;
		if (!res_counter_soft_limit_excess(&root_memcg->res))
1925
			break;
1926
	}
1927
	mem_cgroup_iter_break(root_memcg, victim);
K
KAMEZAWA Hiroyuki 已提交
1928
	return total;
1929 1930
}

K
KAMEZAWA Hiroyuki 已提交
1931 1932 1933
/*
 * Check OOM-Killer is already running under our hierarchy.
 * If someone is running, return false.
1934
 * Has to be called with memcg_oom_lock
K
KAMEZAWA Hiroyuki 已提交
1935
 */
1936
static bool mem_cgroup_oom_lock(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
1937
{
1938
	struct mem_cgroup *iter, *failed = NULL;
1939

1940
	for_each_mem_cgroup_tree(iter, memcg) {
1941
		if (iter->oom_lock) {
1942 1943 1944 1945 1946
			/*
			 * this subtree of our hierarchy is already locked
			 * so we cannot give a lock.
			 */
			failed = iter;
1947 1948
			mem_cgroup_iter_break(memcg, iter);
			break;
1949 1950
		} else
			iter->oom_lock = true;
K
KAMEZAWA Hiroyuki 已提交
1951
	}
K
KAMEZAWA Hiroyuki 已提交
1952

1953
	if (!failed)
1954
		return true;
1955 1956 1957 1958 1959

	/*
	 * OK, we failed to lock the whole subtree so we have to clean up
	 * what we set up to the failing subtree
	 */
1960
	for_each_mem_cgroup_tree(iter, memcg) {
1961
		if (iter == failed) {
1962 1963
			mem_cgroup_iter_break(memcg, iter);
			break;
1964 1965 1966
		}
		iter->oom_lock = false;
	}
1967
	return false;
1968
}
1969

1970
/*
1971
 * Has to be called with memcg_oom_lock
1972
 */
1973
static int mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
1974
{
K
KAMEZAWA Hiroyuki 已提交
1975 1976
	struct mem_cgroup *iter;

1977
	for_each_mem_cgroup_tree(iter, memcg)
1978 1979 1980 1981
		iter->oom_lock = false;
	return 0;
}

1982
static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
1983 1984 1985
{
	struct mem_cgroup *iter;

1986
	for_each_mem_cgroup_tree(iter, memcg)
1987 1988 1989
		atomic_inc(&iter->under_oom);
}

1990
static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
1991 1992 1993
{
	struct mem_cgroup *iter;

K
KAMEZAWA Hiroyuki 已提交
1994 1995 1996 1997 1998
	/*
	 * When a new child is created while the hierarchy is under oom,
	 * mem_cgroup_oom_lock() may not be called. We have to use
	 * atomic_add_unless() here.
	 */
1999
	for_each_mem_cgroup_tree(iter, memcg)
2000
		atomic_add_unless(&iter->under_oom, -1, 0);
2001 2002
}

2003
static DEFINE_SPINLOCK(memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
2004 2005
static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);

K
KAMEZAWA Hiroyuki 已提交
2006
struct oom_wait_info {
2007
	struct mem_cgroup *memcg;
K
KAMEZAWA Hiroyuki 已提交
2008 2009 2010 2011 2012 2013
	wait_queue_t	wait;
};

static int memcg_oom_wake_function(wait_queue_t *wait,
	unsigned mode, int sync, void *arg)
{
2014 2015
	struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
	struct mem_cgroup *oom_wait_memcg;
K
KAMEZAWA Hiroyuki 已提交
2016 2017 2018
	struct oom_wait_info *oom_wait_info;

	oom_wait_info = container_of(wait, struct oom_wait_info, wait);
2019
	oom_wait_memcg = oom_wait_info->memcg;
K
KAMEZAWA Hiroyuki 已提交
2020 2021

	/*
2022
	 * Both of oom_wait_info->memcg and wake_memcg are stable under us.
K
KAMEZAWA Hiroyuki 已提交
2023 2024
	 * Then we can use css_is_ancestor without taking care of RCU.
	 */
2025 2026
	if (!mem_cgroup_same_or_subtree(oom_wait_memcg, wake_memcg)
		&& !mem_cgroup_same_or_subtree(wake_memcg, oom_wait_memcg))
K
KAMEZAWA Hiroyuki 已提交
2027 2028 2029 2030
		return 0;
	return autoremove_wake_function(wait, mode, sync, arg);
}

2031
static void memcg_wakeup_oom(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
2032
{
2033 2034
	/* for filtering, pass "memcg" as argument. */
	__wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
K
KAMEZAWA Hiroyuki 已提交
2035 2036
}

2037
static void memcg_oom_recover(struct mem_cgroup *memcg)
2038
{
2039 2040
	if (memcg && atomic_read(&memcg->under_oom))
		memcg_wakeup_oom(memcg);
2041 2042
}

K
KAMEZAWA Hiroyuki 已提交
2043 2044 2045
/*
 * try to call OOM killer. returns false if we should exit memory-reclaim loop.
 */
2046 2047
static bool mem_cgroup_handle_oom(struct mem_cgroup *memcg, gfp_t mask,
				  int order)
2048
{
K
KAMEZAWA Hiroyuki 已提交
2049
	struct oom_wait_info owait;
2050
	bool locked, need_to_kill;
K
KAMEZAWA Hiroyuki 已提交
2051

2052
	owait.memcg = memcg;
K
KAMEZAWA Hiroyuki 已提交
2053 2054 2055 2056
	owait.wait.flags = 0;
	owait.wait.func = memcg_oom_wake_function;
	owait.wait.private = current;
	INIT_LIST_HEAD(&owait.wait.task_list);
2057
	need_to_kill = true;
2058
	mem_cgroup_mark_under_oom(memcg);
2059

2060
	/* At first, try to OOM lock hierarchy under memcg.*/
2061
	spin_lock(&memcg_oom_lock);
2062
	locked = mem_cgroup_oom_lock(memcg);
K
KAMEZAWA Hiroyuki 已提交
2063 2064 2065 2066 2067
	/*
	 * Even if signal_pending(), we can't quit charge() loop without
	 * accounting. So, UNINTERRUPTIBLE is appropriate. But SIGKILL
	 * under OOM is always welcomed, use TASK_KILLABLE here.
	 */
2068
	prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
2069
	if (!locked || memcg->oom_kill_disable)
2070 2071
		need_to_kill = false;
	if (locked)
2072
		mem_cgroup_oom_notify(memcg);
2073
	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
2074

2075 2076
	if (need_to_kill) {
		finish_wait(&memcg_oom_waitq, &owait.wait);
2077
		mem_cgroup_out_of_memory(memcg, mask, order);
2078
	} else {
K
KAMEZAWA Hiroyuki 已提交
2079
		schedule();
K
KAMEZAWA Hiroyuki 已提交
2080
		finish_wait(&memcg_oom_waitq, &owait.wait);
K
KAMEZAWA Hiroyuki 已提交
2081
	}
2082
	spin_lock(&memcg_oom_lock);
2083
	if (locked)
2084 2085
		mem_cgroup_oom_unlock(memcg);
	memcg_wakeup_oom(memcg);
2086
	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
2087

2088
	mem_cgroup_unmark_under_oom(memcg);
2089

K
KAMEZAWA Hiroyuki 已提交
2090 2091 2092
	if (test_thread_flag(TIF_MEMDIE) || fatal_signal_pending(current))
		return false;
	/* Give chance to dying process */
2093
	schedule_timeout_uninterruptible(1);
K
KAMEZAWA Hiroyuki 已提交
2094
	return true;
2095 2096
}

2097 2098 2099
/*
 * Currently used to update mapped file statistics, but the routine can be
 * generalized to update other statistics as well.
2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116
 *
 * Notes: Race condition
 *
 * We usually use page_cgroup_lock() for accessing page_cgroup member but
 * it tends to be costly. But considering some conditions, we doesn't need
 * to do so _always_.
 *
 * Considering "charge", lock_page_cgroup() is not required because all
 * file-stat operations happen after a page is attached to radix-tree. There
 * are no race with "charge".
 *
 * Considering "uncharge", we know that memcg doesn't clear pc->mem_cgroup
 * at "uncharge" intentionally. So, we always see valid pc->mem_cgroup even
 * if there are race with "uncharge". Statistics itself is properly handled
 * by flags.
 *
 * Considering "move", this is an only case we see a race. To make the race
2117 2118
 * small, we check mm->moving_account and detect there are possibility of race
 * If there is, we take a lock.
2119
 */
2120

2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133
void __mem_cgroup_begin_update_page_stat(struct page *page,
				bool *locked, unsigned long *flags)
{
	struct mem_cgroup *memcg;
	struct page_cgroup *pc;

	pc = lookup_page_cgroup(page);
again:
	memcg = pc->mem_cgroup;
	if (unlikely(!memcg || !PageCgroupUsed(pc)))
		return;
	/*
	 * If this memory cgroup is not under account moving, we don't
2134
	 * need to take move_lock_mem_cgroup(). Because we already hold
2135
	 * rcu_read_lock(), any calls to move_account will be delayed until
2136
	 * rcu_read_unlock() if mem_cgroup_stolen() == true.
2137
	 */
2138
	if (!mem_cgroup_stolen(memcg))
2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155
		return;

	move_lock_mem_cgroup(memcg, flags);
	if (memcg != pc->mem_cgroup || !PageCgroupUsed(pc)) {
		move_unlock_mem_cgroup(memcg, flags);
		goto again;
	}
	*locked = true;
}

void __mem_cgroup_end_update_page_stat(struct page *page, unsigned long *flags)
{
	struct page_cgroup *pc = lookup_page_cgroup(page);

	/*
	 * It's guaranteed that pc->mem_cgroup never changes while
	 * lock is held because a routine modifies pc->mem_cgroup
2156
	 * should take move_lock_mem_cgroup().
2157 2158 2159 2160
	 */
	move_unlock_mem_cgroup(pc->mem_cgroup, flags);
}

2161 2162
void mem_cgroup_update_page_stat(struct page *page,
				 enum mem_cgroup_page_stat_item idx, int val)
2163
{
2164
	struct mem_cgroup *memcg;
2165
	struct page_cgroup *pc = lookup_page_cgroup(page);
2166
	unsigned long uninitialized_var(flags);
2167

2168
	if (mem_cgroup_disabled())
2169
		return;
2170

2171 2172
	memcg = pc->mem_cgroup;
	if (unlikely(!memcg || !PageCgroupUsed(pc)))
2173
		return;
2174 2175

	switch (idx) {
2176 2177
	case MEMCG_NR_FILE_MAPPED:
		idx = MEM_CGROUP_STAT_FILE_MAPPED;
2178 2179 2180
		break;
	default:
		BUG();
2181
	}
2182

2183
	this_cpu_add(memcg->stat->count[idx], val);
2184
}
2185

2186 2187 2188 2189
/*
 * size of first charge trial. "32" comes from vmscan.c's magic value.
 * TODO: maybe necessary to use big numbers in big irons.
 */
2190
#define CHARGE_BATCH	32U
2191 2192
struct memcg_stock_pcp {
	struct mem_cgroup *cached; /* this never be root cgroup */
2193
	unsigned int nr_pages;
2194
	struct work_struct work;
2195
	unsigned long flags;
2196
#define FLUSHING_CACHED_CHARGE	0
2197 2198
};
static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
2199
static DEFINE_MUTEX(percpu_charge_mutex);
2200

2201 2202 2203 2204 2205 2206 2207 2208 2209 2210
/**
 * consume_stock: Try to consume stocked charge on this cpu.
 * @memcg: memcg to consume from.
 * @nr_pages: how many pages to charge.
 *
 * The charges will only happen if @memcg matches the current cpu's memcg
 * stock, and at least @nr_pages are available in that stock.  Failure to
 * service an allocation will refill the stock.
 *
 * returns true if successful, false otherwise.
2211
 */
2212
static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2213 2214 2215 2216
{
	struct memcg_stock_pcp *stock;
	bool ret = true;

2217 2218 2219
	if (nr_pages > CHARGE_BATCH)
		return false;

2220
	stock = &get_cpu_var(memcg_stock);
2221 2222
	if (memcg == stock->cached && stock->nr_pages >= nr_pages)
		stock->nr_pages -= nr_pages;
2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235
	else /* need to call res_counter_charge */
		ret = false;
	put_cpu_var(memcg_stock);
	return ret;
}

/*
 * Returns stocks cached in percpu to res_counter and reset cached information.
 */
static void drain_stock(struct memcg_stock_pcp *stock)
{
	struct mem_cgroup *old = stock->cached;

2236 2237 2238 2239
	if (stock->nr_pages) {
		unsigned long bytes = stock->nr_pages * PAGE_SIZE;

		res_counter_uncharge(&old->res, bytes);
2240
		if (do_swap_account)
2241 2242
			res_counter_uncharge(&old->memsw, bytes);
		stock->nr_pages = 0;
2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254
	}
	stock->cached = NULL;
}

/*
 * This must be called under preempt disabled or must be called by
 * a thread which is pinned to local cpu.
 */
static void drain_local_stock(struct work_struct *dummy)
{
	struct memcg_stock_pcp *stock = &__get_cpu_var(memcg_stock);
	drain_stock(stock);
2255
	clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
2256 2257 2258 2259
}

/*
 * Cache charges(val) which is from res_counter, to local per_cpu area.
2260
 * This will be consumed by consume_stock() function, later.
2261
 */
2262
static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2263 2264 2265
{
	struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);

2266
	if (stock->cached != memcg) { /* reset if necessary */
2267
		drain_stock(stock);
2268
		stock->cached = memcg;
2269
	}
2270
	stock->nr_pages += nr_pages;
2271 2272 2273 2274
	put_cpu_var(memcg_stock);
}

/*
2275
 * Drains all per-CPU charge caches for given root_memcg resp. subtree
2276 2277
 * of the hierarchy under it. sync flag says whether we should block
 * until the work is done.
2278
 */
2279
static void drain_all_stock(struct mem_cgroup *root_memcg, bool sync)
2280
{
2281
	int cpu, curcpu;
2282

2283 2284
	/* Notify other cpus that system-wide "drain" is running */
	get_online_cpus();
2285
	curcpu = get_cpu();
2286 2287
	for_each_online_cpu(cpu) {
		struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2288
		struct mem_cgroup *memcg;
2289

2290 2291
		memcg = stock->cached;
		if (!memcg || !stock->nr_pages)
2292
			continue;
2293
		if (!mem_cgroup_same_or_subtree(root_memcg, memcg))
2294
			continue;
2295 2296 2297 2298 2299 2300
		if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
			if (cpu == curcpu)
				drain_local_stock(&stock->work);
			else
				schedule_work_on(cpu, &stock->work);
		}
2301
	}
2302
	put_cpu();
2303 2304 2305 2306 2307 2308

	if (!sync)
		goto out;

	for_each_online_cpu(cpu) {
		struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2309
		if (test_bit(FLUSHING_CACHED_CHARGE, &stock->flags))
2310 2311 2312
			flush_work(&stock->work);
	}
out:
2313
 	put_online_cpus();
2314 2315 2316 2317 2318 2319 2320 2321
}

/*
 * Tries to drain stocked charges in other cpus. This function is asynchronous
 * and just put a work per cpu for draining localy on each cpu. Caller can
 * expects some charges will be back to res_counter later but cannot wait for
 * it.
 */
2322
static void drain_all_stock_async(struct mem_cgroup *root_memcg)
2323
{
2324 2325 2326 2327 2328
	/*
	 * If someone calls draining, avoid adding more kworker runs.
	 */
	if (!mutex_trylock(&percpu_charge_mutex))
		return;
2329
	drain_all_stock(root_memcg, false);
2330
	mutex_unlock(&percpu_charge_mutex);
2331 2332 2333
}

/* This is a synchronous drain interface. */
2334
static void drain_all_stock_sync(struct mem_cgroup *root_memcg)
2335 2336
{
	/* called when force_empty is called */
2337
	mutex_lock(&percpu_charge_mutex);
2338
	drain_all_stock(root_memcg, true);
2339
	mutex_unlock(&percpu_charge_mutex);
2340 2341
}

2342 2343 2344 2345
/*
 * This function drains percpu counter value from DEAD cpu and
 * move it to local cpu. Note that this function can be preempted.
 */
2346
static void mem_cgroup_drain_pcp_counter(struct mem_cgroup *memcg, int cpu)
2347 2348 2349
{
	int i;

2350
	spin_lock(&memcg->pcp_counter_lock);
2351
	for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
2352
		long x = per_cpu(memcg->stat->count[i], cpu);
2353

2354 2355
		per_cpu(memcg->stat->count[i], cpu) = 0;
		memcg->nocpu_base.count[i] += x;
2356
	}
2357
	for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
2358
		unsigned long x = per_cpu(memcg->stat->events[i], cpu);
2359

2360 2361
		per_cpu(memcg->stat->events[i], cpu) = 0;
		memcg->nocpu_base.events[i] += x;
2362
	}
2363
	spin_unlock(&memcg->pcp_counter_lock);
2364 2365 2366
}

static int __cpuinit memcg_cpu_hotplug_callback(struct notifier_block *nb,
2367 2368 2369 2370 2371
					unsigned long action,
					void *hcpu)
{
	int cpu = (unsigned long)hcpu;
	struct memcg_stock_pcp *stock;
2372
	struct mem_cgroup *iter;
2373

2374
	if (action == CPU_ONLINE)
2375 2376
		return NOTIFY_OK;

2377
	if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
2378
		return NOTIFY_OK;
2379

2380
	for_each_mem_cgroup(iter)
2381 2382
		mem_cgroup_drain_pcp_counter(iter, cpu);

2383 2384 2385 2386 2387
	stock = &per_cpu(memcg_stock, cpu);
	drain_stock(stock);
	return NOTIFY_OK;
}

2388 2389 2390 2391 2392 2393 2394 2395 2396 2397

/* See __mem_cgroup_try_charge() for details */
enum {
	CHARGE_OK,		/* success */
	CHARGE_RETRY,		/* need to retry but retry is not bad */
	CHARGE_NOMEM,		/* we can't do more. return -ENOMEM */
	CHARGE_WOULDBLOCK,	/* GFP_WAIT wasn't set and no enough res. */
	CHARGE_OOM_DIE,		/* the current is killed because of OOM */
};

2398
static int mem_cgroup_do_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
2399 2400
				unsigned int nr_pages, unsigned int min_pages,
				bool oom_check)
2401
{
2402
	unsigned long csize = nr_pages * PAGE_SIZE;
2403 2404 2405 2406 2407
	struct mem_cgroup *mem_over_limit;
	struct res_counter *fail_res;
	unsigned long flags = 0;
	int ret;

2408
	ret = res_counter_charge(&memcg->res, csize, &fail_res);
2409 2410 2411 2412

	if (likely(!ret)) {
		if (!do_swap_account)
			return CHARGE_OK;
2413
		ret = res_counter_charge(&memcg->memsw, csize, &fail_res);
2414 2415 2416
		if (likely(!ret))
			return CHARGE_OK;

2417
		res_counter_uncharge(&memcg->res, csize);
2418 2419 2420 2421
		mem_over_limit = mem_cgroup_from_res_counter(fail_res, memsw);
		flags |= MEM_CGROUP_RECLAIM_NOSWAP;
	} else
		mem_over_limit = mem_cgroup_from_res_counter(fail_res, res);
2422 2423 2424 2425
	/*
	 * Never reclaim on behalf of optional batching, retry with a
	 * single page instead.
	 */
2426
	if (nr_pages > min_pages)
2427 2428 2429 2430 2431
		return CHARGE_RETRY;

	if (!(gfp_mask & __GFP_WAIT))
		return CHARGE_WOULDBLOCK;

2432 2433 2434
	if (gfp_mask & __GFP_NORETRY)
		return CHARGE_NOMEM;

2435
	ret = mem_cgroup_reclaim(mem_over_limit, gfp_mask, flags);
2436
	if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
2437
		return CHARGE_RETRY;
2438
	/*
2439 2440 2441 2442 2443 2444 2445
	 * Even though the limit is exceeded at this point, reclaim
	 * may have been able to free some pages.  Retry the charge
	 * before killing the task.
	 *
	 * Only for regular pages, though: huge pages are rather
	 * unlikely to succeed so close to the limit, and we fall back
	 * to regular pages anyway in case of failure.
2446
	 */
2447
	if (nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER) && ret)
2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460
		return CHARGE_RETRY;

	/*
	 * At task move, charge accounts can be doubly counted. So, it's
	 * better to wait until the end of task_move if something is going on.
	 */
	if (mem_cgroup_wait_acct_move(mem_over_limit))
		return CHARGE_RETRY;

	/* If we don't need to call oom-killer at el, return immediately */
	if (!oom_check)
		return CHARGE_NOMEM;
	/* check OOM */
2461
	if (!mem_cgroup_handle_oom(mem_over_limit, gfp_mask, get_order(csize)))
2462 2463 2464 2465 2466
		return CHARGE_OOM_DIE;

	return CHARGE_RETRY;
}

2467
/*
2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486
 * __mem_cgroup_try_charge() does
 * 1. detect memcg to be charged against from passed *mm and *ptr,
 * 2. update res_counter
 * 3. call memory reclaim if necessary.
 *
 * In some special case, if the task is fatal, fatal_signal_pending() or
 * has TIF_MEMDIE, this function returns -EINTR while writing root_mem_cgroup
 * to *ptr. There are two reasons for this. 1: fatal threads should quit as soon
 * as possible without any hazards. 2: all pages should have a valid
 * pc->mem_cgroup. If mm is NULL and the caller doesn't pass a valid memcg
 * pointer, that is treated as a charge to root_mem_cgroup.
 *
 * So __mem_cgroup_try_charge() will return
 *  0       ...  on success, filling *ptr with a valid memcg pointer.
 *  -ENOMEM ...  charge failure because of resource limits.
 *  -EINTR  ...  if thread is fatal. *ptr is filled with root_mem_cgroup.
 *
 * Unlike the exported interface, an "oom" parameter is added. if oom==true,
 * the oom-killer can be invoked.
2487
 */
2488
static int __mem_cgroup_try_charge(struct mm_struct *mm,
A
Andrea Arcangeli 已提交
2489
				   gfp_t gfp_mask,
2490
				   unsigned int nr_pages,
2491
				   struct mem_cgroup **ptr,
2492
				   bool oom)
2493
{
2494
	unsigned int batch = max(CHARGE_BATCH, nr_pages);
2495
	int nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
2496
	struct mem_cgroup *memcg = NULL;
2497
	int ret;
2498

K
KAMEZAWA Hiroyuki 已提交
2499 2500 2501 2502 2503 2504 2505 2506
	/*
	 * Unlike gloval-vm's OOM-kill, we're not in memory shortage
	 * in system level. So, allow to go ahead dying process in addition to
	 * MEMDIE process.
	 */
	if (unlikely(test_thread_flag(TIF_MEMDIE)
		     || fatal_signal_pending(current)))
		goto bypass;
2507

2508
	/*
2509 2510
	 * We always charge the cgroup the mm_struct belongs to.
	 * The mm_struct's mem_cgroup changes on task migration if the
2511
	 * thread group leader migrates. It's possible that mm is not
2512
	 * set, if so charge the root memcg (happens for pagecache usage).
2513
	 */
2514
	if (!*ptr && !mm)
2515
		*ptr = root_mem_cgroup;
K
KAMEZAWA Hiroyuki 已提交
2516
again:
2517 2518 2519
	if (*ptr) { /* css should be a valid one */
		memcg = *ptr;
		if (mem_cgroup_is_root(memcg))
K
KAMEZAWA Hiroyuki 已提交
2520
			goto done;
2521
		if (consume_stock(memcg, nr_pages))
K
KAMEZAWA Hiroyuki 已提交
2522
			goto done;
2523
		css_get(&memcg->css);
2524
	} else {
K
KAMEZAWA Hiroyuki 已提交
2525
		struct task_struct *p;
2526

K
KAMEZAWA Hiroyuki 已提交
2527 2528 2529
		rcu_read_lock();
		p = rcu_dereference(mm->owner);
		/*
2530
		 * Because we don't have task_lock(), "p" can exit.
2531
		 * In that case, "memcg" can point to root or p can be NULL with
2532 2533 2534 2535 2536 2537
		 * race with swapoff. Then, we have small risk of mis-accouning.
		 * But such kind of mis-account by race always happens because
		 * we don't have cgroup_mutex(). It's overkill and we allo that
		 * small race, here.
		 * (*) swapoff at el will charge against mm-struct not against
		 * task-struct. So, mm->owner can be NULL.
K
KAMEZAWA Hiroyuki 已提交
2538
		 */
2539
		memcg = mem_cgroup_from_task(p);
2540 2541 2542
		if (!memcg)
			memcg = root_mem_cgroup;
		if (mem_cgroup_is_root(memcg)) {
K
KAMEZAWA Hiroyuki 已提交
2543 2544 2545
			rcu_read_unlock();
			goto done;
		}
2546
		if (consume_stock(memcg, nr_pages)) {
K
KAMEZAWA Hiroyuki 已提交
2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558
			/*
			 * It seems dagerous to access memcg without css_get().
			 * But considering how consume_stok works, it's not
			 * necessary. If consume_stock success, some charges
			 * from this memcg are cached on this cpu. So, we
			 * don't need to call css_get()/css_tryget() before
			 * calling consume_stock().
			 */
			rcu_read_unlock();
			goto done;
		}
		/* after here, we may be blocked. we need to get refcnt */
2559
		if (!css_tryget(&memcg->css)) {
K
KAMEZAWA Hiroyuki 已提交
2560 2561 2562 2563 2564
			rcu_read_unlock();
			goto again;
		}
		rcu_read_unlock();
	}
2565

2566 2567
	do {
		bool oom_check;
2568

2569
		/* If killed, bypass charge */
K
KAMEZAWA Hiroyuki 已提交
2570
		if (fatal_signal_pending(current)) {
2571
			css_put(&memcg->css);
2572
			goto bypass;
K
KAMEZAWA Hiroyuki 已提交
2573
		}
2574

2575 2576 2577 2578
		oom_check = false;
		if (oom && !nr_oom_retries) {
			oom_check = true;
			nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
2579
		}
2580

2581 2582
		ret = mem_cgroup_do_charge(memcg, gfp_mask, batch, nr_pages,
		    oom_check);
2583 2584 2585 2586
		switch (ret) {
		case CHARGE_OK:
			break;
		case CHARGE_RETRY: /* not in OOM situation but retry */
2587
			batch = nr_pages;
2588 2589
			css_put(&memcg->css);
			memcg = NULL;
K
KAMEZAWA Hiroyuki 已提交
2590
			goto again;
2591
		case CHARGE_WOULDBLOCK: /* !__GFP_WAIT */
2592
			css_put(&memcg->css);
2593 2594
			goto nomem;
		case CHARGE_NOMEM: /* OOM routine works */
K
KAMEZAWA Hiroyuki 已提交
2595
			if (!oom) {
2596
				css_put(&memcg->css);
K
KAMEZAWA Hiroyuki 已提交
2597
				goto nomem;
K
KAMEZAWA Hiroyuki 已提交
2598
			}
2599 2600 2601 2602
			/* If oom, we never return -ENOMEM */
			nr_oom_retries--;
			break;
		case CHARGE_OOM_DIE: /* Killed by OOM Killer */
2603
			css_put(&memcg->css);
K
KAMEZAWA Hiroyuki 已提交
2604
			goto bypass;
2605
		}
2606 2607
	} while (ret != CHARGE_OK);

2608
	if (batch > nr_pages)
2609 2610
		refill_stock(memcg, batch - nr_pages);
	css_put(&memcg->css);
2611
done:
2612
	*ptr = memcg;
2613 2614
	return 0;
nomem:
2615
	*ptr = NULL;
2616
	return -ENOMEM;
K
KAMEZAWA Hiroyuki 已提交
2617
bypass:
2618 2619
	*ptr = root_mem_cgroup;
	return -EINTR;
2620
}
2621

2622 2623 2624 2625 2626
/*
 * Somemtimes we have to undo a charge we got by try_charge().
 * This function is for that and do uncharge, put css's refcnt.
 * gotten by try_charge().
 */
2627
static void __mem_cgroup_cancel_charge(struct mem_cgroup *memcg,
2628
				       unsigned int nr_pages)
2629
{
2630
	if (!mem_cgroup_is_root(memcg)) {
2631 2632
		unsigned long bytes = nr_pages * PAGE_SIZE;

2633
		res_counter_uncharge(&memcg->res, bytes);
2634
		if (do_swap_account)
2635
			res_counter_uncharge(&memcg->memsw, bytes);
2636
	}
2637 2638
}

2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656
/*
 * Cancel chrages in this cgroup....doesn't propagate to parent cgroup.
 * This is useful when moving usage to parent cgroup.
 */
static void __mem_cgroup_cancel_local_charge(struct mem_cgroup *memcg,
					unsigned int nr_pages)
{
	unsigned long bytes = nr_pages * PAGE_SIZE;

	if (mem_cgroup_is_root(memcg))
		return;

	res_counter_uncharge_until(&memcg->res, memcg->res.parent, bytes);
	if (do_swap_account)
		res_counter_uncharge_until(&memcg->memsw,
						memcg->memsw.parent, bytes);
}

2657 2658
/*
 * A helper function to get mem_cgroup from ID. must be called under
T
Tejun Heo 已提交
2659 2660 2661
 * rcu_read_lock().  The caller is responsible for calling css_tryget if
 * the mem_cgroup is used for charging. (dropping refcnt from swap can be
 * called against removed memcg.)
2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672
 */
static struct mem_cgroup *mem_cgroup_lookup(unsigned short id)
{
	struct cgroup_subsys_state *css;

	/* ID 0 is unused ID */
	if (!id)
		return NULL;
	css = css_lookup(&mem_cgroup_subsys, id);
	if (!css)
		return NULL;
2673
	return mem_cgroup_from_css(css);
2674 2675
}

2676
struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page)
2677
{
2678
	struct mem_cgroup *memcg = NULL;
2679
	struct page_cgroup *pc;
2680
	unsigned short id;
2681 2682
	swp_entry_t ent;

2683 2684 2685
	VM_BUG_ON(!PageLocked(page));

	pc = lookup_page_cgroup(page);
2686
	lock_page_cgroup(pc);
2687
	if (PageCgroupUsed(pc)) {
2688 2689 2690
		memcg = pc->mem_cgroup;
		if (memcg && !css_tryget(&memcg->css))
			memcg = NULL;
2691
	} else if (PageSwapCache(page)) {
2692
		ent.val = page_private(page);
2693
		id = lookup_swap_cgroup_id(ent);
2694
		rcu_read_lock();
2695 2696 2697
		memcg = mem_cgroup_lookup(id);
		if (memcg && !css_tryget(&memcg->css))
			memcg = NULL;
2698
		rcu_read_unlock();
2699
	}
2700
	unlock_page_cgroup(pc);
2701
	return memcg;
2702 2703
}

2704
static void __mem_cgroup_commit_charge(struct mem_cgroup *memcg,
2705
				       struct page *page,
2706
				       unsigned int nr_pages,
2707 2708
				       enum charge_type ctype,
				       bool lrucare)
2709
{
2710
	struct page_cgroup *pc = lookup_page_cgroup(page);
2711
	struct zone *uninitialized_var(zone);
2712
	struct lruvec *lruvec;
2713
	bool was_on_lru = false;
2714
	bool anon;
2715

2716
	lock_page_cgroup(pc);
2717
	VM_BUG_ON(PageCgroupUsed(pc));
2718 2719 2720 2721
	/*
	 * we don't need page_cgroup_lock about tail pages, becase they are not
	 * accessed by any other context at this point.
	 */
2722 2723 2724 2725 2726 2727 2728 2729 2730

	/*
	 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
	 * may already be on some other mem_cgroup's LRU.  Take care of it.
	 */
	if (lrucare) {
		zone = page_zone(page);
		spin_lock_irq(&zone->lru_lock);
		if (PageLRU(page)) {
2731
			lruvec = mem_cgroup_zone_lruvec(zone, pc->mem_cgroup);
2732
			ClearPageLRU(page);
2733
			del_page_from_lru_list(page, lruvec, page_lru(page));
2734 2735 2736 2737
			was_on_lru = true;
		}
	}

2738
	pc->mem_cgroup = memcg;
2739 2740 2741 2742 2743 2744 2745
	/*
	 * We access a page_cgroup asynchronously without lock_page_cgroup().
	 * Especially when a page_cgroup is taken from a page, pc->mem_cgroup
	 * is accessed after testing USED bit. To make pc->mem_cgroup visible
	 * before USED bit, we need memory barrier here.
	 * See mem_cgroup_add_lru_list(), etc.
 	 */
K
KAMEZAWA Hiroyuki 已提交
2746
	smp_wmb();
2747
	SetPageCgroupUsed(pc);
2748

2749 2750
	if (lrucare) {
		if (was_on_lru) {
2751
			lruvec = mem_cgroup_zone_lruvec(zone, pc->mem_cgroup);
2752 2753
			VM_BUG_ON(PageLRU(page));
			SetPageLRU(page);
2754
			add_page_to_lru_list(page, lruvec, page_lru(page));
2755 2756 2757 2758
		}
		spin_unlock_irq(&zone->lru_lock);
	}

2759
	if (ctype == MEM_CGROUP_CHARGE_TYPE_ANON)
2760 2761 2762 2763 2764
		anon = true;
	else
		anon = false;

	mem_cgroup_charge_statistics(memcg, anon, nr_pages);
2765
	unlock_page_cgroup(pc);
2766

2767 2768 2769 2770 2771
	/*
	 * "charge_statistics" updated event counter. Then, check it.
	 * Insert ancestor (and ancestor's ancestors), to softlimit RB-tree.
	 * if they exceeds softlimit.
	 */
2772
	memcg_check_events(memcg, page);
2773
}
2774

2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834
#ifdef CONFIG_MEMCG_KMEM
static inline bool memcg_can_account_kmem(struct mem_cgroup *memcg)
{
	return !mem_cgroup_disabled() && !mem_cgroup_is_root(memcg) &&
		(memcg->kmem_account_flags & KMEM_ACCOUNTED_MASK);
}

static int memcg_charge_kmem(struct mem_cgroup *memcg, gfp_t gfp, u64 size)
{
	struct res_counter *fail_res;
	struct mem_cgroup *_memcg;
	int ret = 0;
	bool may_oom;

	ret = res_counter_charge(&memcg->kmem, size, &fail_res);
	if (ret)
		return ret;

	/*
	 * Conditions under which we can wait for the oom_killer. Those are
	 * the same conditions tested by the core page allocator
	 */
	may_oom = (gfp & __GFP_FS) && !(gfp & __GFP_NORETRY);

	_memcg = memcg;
	ret = __mem_cgroup_try_charge(NULL, gfp, size >> PAGE_SHIFT,
				      &_memcg, may_oom);

	if (ret == -EINTR)  {
		/*
		 * __mem_cgroup_try_charge() chosed to bypass to root due to
		 * OOM kill or fatal signal.  Since our only options are to
		 * either fail the allocation or charge it to this cgroup, do
		 * it as a temporary condition. But we can't fail. From a
		 * kmem/slab perspective, the cache has already been selected,
		 * by mem_cgroup_kmem_get_cache(), so it is too late to change
		 * our minds.
		 *
		 * This condition will only trigger if the task entered
		 * memcg_charge_kmem in a sane state, but was OOM-killed during
		 * __mem_cgroup_try_charge() above. Tasks that were already
		 * dying when the allocation triggers should have been already
		 * directed to the root cgroup in memcontrol.h
		 */
		res_counter_charge_nofail(&memcg->res, size, &fail_res);
		if (do_swap_account)
			res_counter_charge_nofail(&memcg->memsw, size,
						  &fail_res);
		ret = 0;
	} else if (ret)
		res_counter_uncharge(&memcg->kmem, size);

	return ret;
}

static void memcg_uncharge_kmem(struct mem_cgroup *memcg, u64 size)
{
	res_counter_uncharge(&memcg->res, size);
	if (do_swap_account)
		res_counter_uncharge(&memcg->memsw, size);
2835 2836 2837 2838 2839 2840 2841

	/* Not down to 0 */
	if (res_counter_uncharge(&memcg->kmem, size))
		return;

	if (memcg_kmem_test_and_clear_dead(memcg))
		mem_cgroup_put(memcg);
2842 2843
}

2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863
void memcg_cache_list_add(struct mem_cgroup *memcg, struct kmem_cache *cachep)
{
	if (!memcg)
		return;

	mutex_lock(&memcg->slab_caches_mutex);
	list_add(&cachep->memcg_params->list, &memcg->memcg_slab_caches);
	mutex_unlock(&memcg->slab_caches_mutex);
}

/*
 * helper for acessing a memcg's index. It will be used as an index in the
 * child cache array in kmem_cache, and also to derive its name. This function
 * will return -1 when this is not a kmem-limited memcg.
 */
int memcg_cache_id(struct mem_cgroup *memcg)
{
	return memcg ? memcg->kmemcg_id : -1;
}

2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977
/*
 * This ends up being protected by the set_limit mutex, during normal
 * operation, because that is its main call site.
 *
 * But when we create a new cache, we can call this as well if its parent
 * is kmem-limited. That will have to hold set_limit_mutex as well.
 */
int memcg_update_cache_sizes(struct mem_cgroup *memcg)
{
	int num, ret;

	num = ida_simple_get(&kmem_limited_groups,
				0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
	if (num < 0)
		return num;
	/*
	 * After this point, kmem_accounted (that we test atomically in
	 * the beginning of this conditional), is no longer 0. This
	 * guarantees only one process will set the following boolean
	 * to true. We don't need test_and_set because we're protected
	 * by the set_limit_mutex anyway.
	 */
	memcg_kmem_set_activated(memcg);

	ret = memcg_update_all_caches(num+1);
	if (ret) {
		ida_simple_remove(&kmem_limited_groups, num);
		memcg_kmem_clear_activated(memcg);
		return ret;
	}

	memcg->kmemcg_id = num;
	INIT_LIST_HEAD(&memcg->memcg_slab_caches);
	mutex_init(&memcg->slab_caches_mutex);
	return 0;
}

static size_t memcg_caches_array_size(int num_groups)
{
	ssize_t size;
	if (num_groups <= 0)
		return 0;

	size = 2 * num_groups;
	if (size < MEMCG_CACHES_MIN_SIZE)
		size = MEMCG_CACHES_MIN_SIZE;
	else if (size > MEMCG_CACHES_MAX_SIZE)
		size = MEMCG_CACHES_MAX_SIZE;

	return size;
}

/*
 * We should update the current array size iff all caches updates succeed. This
 * can only be done from the slab side. The slab mutex needs to be held when
 * calling this.
 */
void memcg_update_array_size(int num)
{
	if (num > memcg_limited_groups_array_size)
		memcg_limited_groups_array_size = memcg_caches_array_size(num);
}

int memcg_update_cache_size(struct kmem_cache *s, int num_groups)
{
	struct memcg_cache_params *cur_params = s->memcg_params;

	VM_BUG_ON(s->memcg_params && !s->memcg_params->is_root_cache);

	if (num_groups > memcg_limited_groups_array_size) {
		int i;
		ssize_t size = memcg_caches_array_size(num_groups);

		size *= sizeof(void *);
		size += sizeof(struct memcg_cache_params);

		s->memcg_params = kzalloc(size, GFP_KERNEL);
		if (!s->memcg_params) {
			s->memcg_params = cur_params;
			return -ENOMEM;
		}

		s->memcg_params->is_root_cache = true;

		/*
		 * There is the chance it will be bigger than
		 * memcg_limited_groups_array_size, if we failed an allocation
		 * in a cache, in which case all caches updated before it, will
		 * have a bigger array.
		 *
		 * But if that is the case, the data after
		 * memcg_limited_groups_array_size is certainly unused
		 */
		for (i = 0; i < memcg_limited_groups_array_size; i++) {
			if (!cur_params->memcg_caches[i])
				continue;
			s->memcg_params->memcg_caches[i] =
						cur_params->memcg_caches[i];
		}

		/*
		 * Ideally, we would wait until all caches succeed, and only
		 * then free the old one. But this is not worth the extra
		 * pointer per-cache we'd have to have for this.
		 *
		 * It is not a big deal if some caches are left with a size
		 * bigger than the others. And all updates will reset this
		 * anyway.
		 */
		kfree(cur_params);
	}
	return 0;
}

2978 2979 2980 2981 2982 2983 2984
int memcg_register_cache(struct mem_cgroup *memcg, struct kmem_cache *s)
{
	size_t size = sizeof(struct memcg_cache_params);

	if (!memcg_kmem_enabled())
		return 0;

2985 2986 2987
	if (!memcg)
		size += memcg_limited_groups_array_size * sizeof(void *);

2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998
	s->memcg_params = kzalloc(size, GFP_KERNEL);
	if (!s->memcg_params)
		return -ENOMEM;

	if (memcg)
		s->memcg_params->memcg = memcg;
	return 0;
}

void memcg_release_cache(struct kmem_cache *s)
{
2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024
	struct kmem_cache *root;
	struct mem_cgroup *memcg;
	int id;

	/*
	 * This happens, for instance, when a root cache goes away before we
	 * add any memcg.
	 */
	if (!s->memcg_params)
		return;

	if (s->memcg_params->is_root_cache)
		goto out;

	memcg = s->memcg_params->memcg;
	id  = memcg_cache_id(memcg);

	root = s->memcg_params->root_cache;
	root->memcg_params->memcg_caches[id] = NULL;
	mem_cgroup_put(memcg);

	mutex_lock(&memcg->slab_caches_mutex);
	list_del(&s->memcg_params->list);
	mutex_unlock(&memcg->slab_caches_mutex);

out:
3025 3026 3027
	kfree(s->memcg_params);
}

3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058
/*
 * During the creation a new cache, we need to disable our accounting mechanism
 * altogether. This is true even if we are not creating, but rather just
 * enqueing new caches to be created.
 *
 * This is because that process will trigger allocations; some visible, like
 * explicit kmallocs to auxiliary data structures, name strings and internal
 * cache structures; some well concealed, like INIT_WORK() that can allocate
 * objects during debug.
 *
 * If any allocation happens during memcg_kmem_get_cache, we will recurse back
 * to it. This may not be a bounded recursion: since the first cache creation
 * failed to complete (waiting on the allocation), we'll just try to create the
 * cache again, failing at the same point.
 *
 * memcg_kmem_get_cache is prepared to abort after seeing a positive count of
 * memcg_kmem_skip_account. So we enclose anything that might allocate memory
 * inside the following two functions.
 */
static inline void memcg_stop_kmem_account(void)
{
	VM_BUG_ON(!current->mm);
	current->memcg_kmem_skip_account++;
}

static inline void memcg_resume_kmem_account(void)
{
	VM_BUG_ON(!current->mm);
	current->memcg_kmem_skip_account--;
}

3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088
static char *memcg_cache_name(struct mem_cgroup *memcg, struct kmem_cache *s)
{
	char *name;
	struct dentry *dentry;

	rcu_read_lock();
	dentry = rcu_dereference(memcg->css.cgroup->dentry);
	rcu_read_unlock();

	BUG_ON(dentry == NULL);

	name = kasprintf(GFP_KERNEL, "%s(%d:%s)", s->name,
			 memcg_cache_id(memcg), dentry->d_name.name);

	return name;
}

static struct kmem_cache *kmem_cache_dup(struct mem_cgroup *memcg,
					 struct kmem_cache *s)
{
	char *name;
	struct kmem_cache *new;

	name = memcg_cache_name(memcg, s);
	if (!name)
		return NULL;

	new = kmem_cache_create_memcg(memcg, name, s->object_size, s->align,
				      (s->flags & ~SLAB_PANIC), s->ctor);

3089 3090 3091
	if (new)
		new->allocflags |= __GFP_KMEMCG;

3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160
	kfree(name);
	return new;
}

/*
 * This lock protects updaters, not readers. We want readers to be as fast as
 * they can, and they will either see NULL or a valid cache value. Our model
 * allow them to see NULL, in which case the root memcg will be selected.
 *
 * We need this lock because multiple allocations to the same cache from a non
 * will span more than one worker. Only one of them can create the cache.
 */
static DEFINE_MUTEX(memcg_cache_mutex);
static struct kmem_cache *memcg_create_kmem_cache(struct mem_cgroup *memcg,
						  struct kmem_cache *cachep)
{
	struct kmem_cache *new_cachep;
	int idx;

	BUG_ON(!memcg_can_account_kmem(memcg));

	idx = memcg_cache_id(memcg);

	mutex_lock(&memcg_cache_mutex);
	new_cachep = cachep->memcg_params->memcg_caches[idx];
	if (new_cachep)
		goto out;

	new_cachep = kmem_cache_dup(memcg, cachep);
	if (new_cachep == NULL) {
		new_cachep = cachep;
		goto out;
	}

	mem_cgroup_get(memcg);
	new_cachep->memcg_params->root_cache = cachep;

	cachep->memcg_params->memcg_caches[idx] = new_cachep;
	/*
	 * the readers won't lock, make sure everybody sees the updated value,
	 * so they won't put stuff in the queue again for no reason
	 */
	wmb();
out:
	mutex_unlock(&memcg_cache_mutex);
	return new_cachep;
}

struct create_work {
	struct mem_cgroup *memcg;
	struct kmem_cache *cachep;
	struct work_struct work;
};

static void memcg_create_cache_work_func(struct work_struct *w)
{
	struct create_work *cw;

	cw = container_of(w, struct create_work, work);
	memcg_create_kmem_cache(cw->memcg, cw->cachep);
	/* Drop the reference gotten when we enqueued. */
	css_put(&cw->memcg->css);
	kfree(cw);
}

/*
 * Enqueue the creation of a per-memcg kmem_cache.
 * Called with rcu_read_lock.
 */
3161 3162
static void __memcg_create_cache_enqueue(struct mem_cgroup *memcg,
					 struct kmem_cache *cachep)
3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182
{
	struct create_work *cw;

	cw = kmalloc(sizeof(struct create_work), GFP_NOWAIT);
	if (cw == NULL)
		return;

	/* The corresponding put will be done in the workqueue. */
	if (!css_tryget(&memcg->css)) {
		kfree(cw);
		return;
	}

	cw->memcg = memcg;
	cw->cachep = cachep;

	INIT_WORK(&cw->work, memcg_create_cache_work_func);
	schedule_work(&cw->work);
}

3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200
static void memcg_create_cache_enqueue(struct mem_cgroup *memcg,
				       struct kmem_cache *cachep)
{
	/*
	 * We need to stop accounting when we kmalloc, because if the
	 * corresponding kmalloc cache is not yet created, the first allocation
	 * in __memcg_create_cache_enqueue will recurse.
	 *
	 * However, it is better to enclose the whole function. Depending on
	 * the debugging options enabled, INIT_WORK(), for instance, can
	 * trigger an allocation. This too, will make us recurse. Because at
	 * this point we can't allow ourselves back into memcg_kmem_get_cache,
	 * the safest choice is to do it like this, wrapping the whole function.
	 */
	memcg_stop_kmem_account();
	__memcg_create_cache_enqueue(memcg, cachep);
	memcg_resume_kmem_account();
}
3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222
/*
 * Return the kmem_cache we're supposed to use for a slab allocation.
 * We try to use the current memcg's version of the cache.
 *
 * If the cache does not exist yet, if we are the first user of it,
 * we either create it immediately, if possible, or create it asynchronously
 * in a workqueue.
 * In the latter case, we will let the current allocation go through with
 * the original cache.
 *
 * Can't be called in interrupt context or from kernel threads.
 * This function needs to be called with rcu_read_lock() held.
 */
struct kmem_cache *__memcg_kmem_get_cache(struct kmem_cache *cachep,
					  gfp_t gfp)
{
	struct mem_cgroup *memcg;
	int idx;

	VM_BUG_ON(!cachep->memcg_params);
	VM_BUG_ON(!cachep->memcg_params->is_root_cache);

3223 3224 3225
	if (!current->mm || current->memcg_kmem_skip_account)
		return cachep;

3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265
	rcu_read_lock();
	memcg = mem_cgroup_from_task(rcu_dereference(current->mm->owner));
	rcu_read_unlock();

	if (!memcg_can_account_kmem(memcg))
		return cachep;

	idx = memcg_cache_id(memcg);

	/*
	 * barrier to mare sure we're always seeing the up to date value.  The
	 * code updating memcg_caches will issue a write barrier to match this.
	 */
	read_barrier_depends();
	if (unlikely(cachep->memcg_params->memcg_caches[idx] == NULL)) {
		/*
		 * If we are in a safe context (can wait, and not in interrupt
		 * context), we could be be predictable and return right away.
		 * This would guarantee that the allocation being performed
		 * already belongs in the new cache.
		 *
		 * However, there are some clashes that can arrive from locking.
		 * For instance, because we acquire the slab_mutex while doing
		 * kmem_cache_dup, this means no further allocation could happen
		 * with the slab_mutex held.
		 *
		 * Also, because cache creation issue get_online_cpus(), this
		 * creates a lock chain: memcg_slab_mutex -> cpu_hotplug_mutex,
		 * that ends up reversed during cpu hotplug. (cpuset allocates
		 * a bunch of GFP_KERNEL memory during cpuup). Due to all that,
		 * better to defer everything.
		 */
		memcg_create_cache_enqueue(memcg, cachep);
		return cachep;
	}

	return cachep->memcg_params->memcg_caches[idx];
}
EXPORT_SYMBOL(__memcg_kmem_get_cache);

3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362
/*
 * We need to verify if the allocation against current->mm->owner's memcg is
 * possible for the given order. But the page is not allocated yet, so we'll
 * need a further commit step to do the final arrangements.
 *
 * It is possible for the task to switch cgroups in this mean time, so at
 * commit time, we can't rely on task conversion any longer.  We'll then use
 * the handle argument to return to the caller which cgroup we should commit
 * against. We could also return the memcg directly and avoid the pointer
 * passing, but a boolean return value gives better semantics considering
 * the compiled-out case as well.
 *
 * Returning true means the allocation is possible.
 */
bool
__memcg_kmem_newpage_charge(gfp_t gfp, struct mem_cgroup **_memcg, int order)
{
	struct mem_cgroup *memcg;
	int ret;

	*_memcg = NULL;
	memcg = try_get_mem_cgroup_from_mm(current->mm);

	/*
	 * very rare case described in mem_cgroup_from_task. Unfortunately there
	 * isn't much we can do without complicating this too much, and it would
	 * be gfp-dependent anyway. Just let it go
	 */
	if (unlikely(!memcg))
		return true;

	if (!memcg_can_account_kmem(memcg)) {
		css_put(&memcg->css);
		return true;
	}

	ret = memcg_charge_kmem(memcg, gfp, PAGE_SIZE << order);
	if (!ret)
		*_memcg = memcg;

	css_put(&memcg->css);
	return (ret == 0);
}

void __memcg_kmem_commit_charge(struct page *page, struct mem_cgroup *memcg,
			      int order)
{
	struct page_cgroup *pc;

	VM_BUG_ON(mem_cgroup_is_root(memcg));

	/* The page allocation failed. Revert */
	if (!page) {
		memcg_uncharge_kmem(memcg, PAGE_SIZE << order);
		return;
	}

	pc = lookup_page_cgroup(page);
	lock_page_cgroup(pc);
	pc->mem_cgroup = memcg;
	SetPageCgroupUsed(pc);
	unlock_page_cgroup(pc);
}

void __memcg_kmem_uncharge_pages(struct page *page, int order)
{
	struct mem_cgroup *memcg = NULL;
	struct page_cgroup *pc;


	pc = lookup_page_cgroup(page);
	/*
	 * Fast unlocked return. Theoretically might have changed, have to
	 * check again after locking.
	 */
	if (!PageCgroupUsed(pc))
		return;

	lock_page_cgroup(pc);
	if (PageCgroupUsed(pc)) {
		memcg = pc->mem_cgroup;
		ClearPageCgroupUsed(pc);
	}
	unlock_page_cgroup(pc);

	/*
	 * We trust that only if there is a memcg associated with the page, it
	 * is a valid allocation
	 */
	if (!memcg)
		return;

	VM_BUG_ON(mem_cgroup_is_root(memcg));
	memcg_uncharge_kmem(memcg, PAGE_SIZE << order);
}
#endif /* CONFIG_MEMCG_KMEM */

3363 3364
#ifdef CONFIG_TRANSPARENT_HUGEPAGE

3365
#define PCGF_NOCOPY_AT_SPLIT (1 << PCG_LOCK | 1 << PCG_MIGRATION)
3366 3367
/*
 * Because tail pages are not marked as "used", set it. We're under
3368 3369 3370
 * zone->lru_lock, 'splitting on pmd' and compound_lock.
 * charge/uncharge will be never happen and move_account() is done under
 * compound_lock(), so we don't have to take care of races.
3371
 */
3372
void mem_cgroup_split_huge_fixup(struct page *head)
3373 3374
{
	struct page_cgroup *head_pc = lookup_page_cgroup(head);
3375 3376
	struct page_cgroup *pc;
	int i;
3377

3378 3379
	if (mem_cgroup_disabled())
		return;
3380 3381 3382 3383 3384 3385
	for (i = 1; i < HPAGE_PMD_NR; i++) {
		pc = head_pc + i;
		pc->mem_cgroup = head_pc->mem_cgroup;
		smp_wmb();/* see __commit_charge() */
		pc->flags = head_pc->flags & ~PCGF_NOCOPY_AT_SPLIT;
	}
3386
}
3387
#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
3388

3389
/**
3390
 * mem_cgroup_move_account - move account of the page
3391
 * @page: the page
3392
 * @nr_pages: number of regular pages (>1 for huge pages)
3393 3394 3395 3396 3397
 * @pc:	page_cgroup of the page.
 * @from: mem_cgroup which the page is moved from.
 * @to:	mem_cgroup which the page is moved to. @from != @to.
 *
 * The caller must confirm following.
K
KAMEZAWA Hiroyuki 已提交
3398
 * - page is not on LRU (isolate_page() is useful.)
3399
 * - compound_lock is held when nr_pages > 1
3400
 *
3401 3402
 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
 * from old cgroup.
3403
 */
3404 3405 3406 3407
static int mem_cgroup_move_account(struct page *page,
				   unsigned int nr_pages,
				   struct page_cgroup *pc,
				   struct mem_cgroup *from,
3408
				   struct mem_cgroup *to)
3409
{
3410 3411
	unsigned long flags;
	int ret;
3412
	bool anon = PageAnon(page);
3413

3414
	VM_BUG_ON(from == to);
3415
	VM_BUG_ON(PageLRU(page));
3416 3417 3418 3419 3420 3421 3422
	/*
	 * The page is isolated from LRU. So, collapse function
	 * will not handle this page. But page splitting can happen.
	 * Do this check under compound_page_lock(). The caller should
	 * hold it.
	 */
	ret = -EBUSY;
3423
	if (nr_pages > 1 && !PageTransHuge(page))
3424 3425 3426 3427 3428 3429 3430 3431
		goto out;

	lock_page_cgroup(pc);

	ret = -EINVAL;
	if (!PageCgroupUsed(pc) || pc->mem_cgroup != from)
		goto unlock;

3432
	move_lock_mem_cgroup(from, &flags);
3433

3434
	if (!anon && page_mapped(page)) {
3435 3436 3437 3438 3439
		/* Update mapped_file data for mem_cgroup */
		preempt_disable();
		__this_cpu_dec(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
		__this_cpu_inc(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
		preempt_enable();
3440
	}
3441
	mem_cgroup_charge_statistics(from, anon, -nr_pages);
3442

3443
	/* caller should have done css_get */
K
KAMEZAWA Hiroyuki 已提交
3444
	pc->mem_cgroup = to;
3445
	mem_cgroup_charge_statistics(to, anon, nr_pages);
3446
	move_unlock_mem_cgroup(from, &flags);
3447 3448
	ret = 0;
unlock:
3449
	unlock_page_cgroup(pc);
3450 3451 3452
	/*
	 * check events
	 */
3453 3454
	memcg_check_events(to, page);
	memcg_check_events(from, page);
3455
out:
3456 3457 3458
	return ret;
}

3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478
/**
 * mem_cgroup_move_parent - moves page to the parent group
 * @page: the page to move
 * @pc: page_cgroup of the page
 * @child: page's cgroup
 *
 * move charges to its parent or the root cgroup if the group has no
 * parent (aka use_hierarchy==0).
 * Although this might fail (get_page_unless_zero, isolate_lru_page or
 * mem_cgroup_move_account fails) the failure is always temporary and
 * it signals a race with a page removal/uncharge or migration. In the
 * first case the page is on the way out and it will vanish from the LRU
 * on the next attempt and the call should be retried later.
 * Isolation from the LRU fails only if page has been isolated from
 * the LRU since we looked at it and that usually means either global
 * reclaim or migration going on. The page will either get back to the
 * LRU or vanish.
 * Finaly mem_cgroup_move_account fails only if the page got uncharged
 * (!PageCgroupUsed) or moved to a different group. The page will
 * disappear in the next attempt.
3479
 */
3480 3481
static int mem_cgroup_move_parent(struct page *page,
				  struct page_cgroup *pc,
3482
				  struct mem_cgroup *child)
3483 3484
{
	struct mem_cgroup *parent;
3485
	unsigned int nr_pages;
3486
	unsigned long uninitialized_var(flags);
3487 3488
	int ret;

3489
	VM_BUG_ON(mem_cgroup_is_root(child));
3490

3491 3492 3493 3494 3495
	ret = -EBUSY;
	if (!get_page_unless_zero(page))
		goto out;
	if (isolate_lru_page(page))
		goto put;
3496

3497
	nr_pages = hpage_nr_pages(page);
K
KAMEZAWA Hiroyuki 已提交
3498

3499 3500 3501 3502 3503 3504
	parent = parent_mem_cgroup(child);
	/*
	 * If no parent, move charges to root cgroup.
	 */
	if (!parent)
		parent = root_mem_cgroup;
3505

3506 3507
	if (nr_pages > 1) {
		VM_BUG_ON(!PageTransHuge(page));
3508
		flags = compound_lock_irqsave(page);
3509
	}
3510

3511
	ret = mem_cgroup_move_account(page, nr_pages,
3512
				pc, child, parent);
3513 3514
	if (!ret)
		__mem_cgroup_cancel_local_charge(child, nr_pages);
3515

3516
	if (nr_pages > 1)
3517
		compound_unlock_irqrestore(page, flags);
K
KAMEZAWA Hiroyuki 已提交
3518
	putback_lru_page(page);
3519
put:
3520
	put_page(page);
3521
out:
3522 3523 3524
	return ret;
}

3525 3526 3527 3528 3529 3530 3531
/*
 * Charge the memory controller for page usage.
 * Return
 * 0 if the charge was successful
 * < 0 if the cgroup is over its limit
 */
static int mem_cgroup_charge_common(struct page *page, struct mm_struct *mm,
3532
				gfp_t gfp_mask, enum charge_type ctype)
3533
{
3534
	struct mem_cgroup *memcg = NULL;
3535
	unsigned int nr_pages = 1;
3536
	bool oom = true;
3537
	int ret;
A
Andrea Arcangeli 已提交
3538

A
Andrea Arcangeli 已提交
3539
	if (PageTransHuge(page)) {
3540
		nr_pages <<= compound_order(page);
A
Andrea Arcangeli 已提交
3541
		VM_BUG_ON(!PageTransHuge(page));
3542 3543 3544 3545 3546
		/*
		 * Never OOM-kill a process for a huge page.  The
		 * fault handler will fall back to regular pages.
		 */
		oom = false;
A
Andrea Arcangeli 已提交
3547
	}
3548

3549
	ret = __mem_cgroup_try_charge(mm, gfp_mask, nr_pages, &memcg, oom);
3550
	if (ret == -ENOMEM)
3551
		return ret;
3552
	__mem_cgroup_commit_charge(memcg, page, nr_pages, ctype, false);
3553 3554 3555
	return 0;
}

3556 3557
int mem_cgroup_newpage_charge(struct page *page,
			      struct mm_struct *mm, gfp_t gfp_mask)
3558
{
3559
	if (mem_cgroup_disabled())
3560
		return 0;
3561 3562 3563
	VM_BUG_ON(page_mapped(page));
	VM_BUG_ON(page->mapping && !PageAnon(page));
	VM_BUG_ON(!mm);
3564
	return mem_cgroup_charge_common(page, mm, gfp_mask,
3565
					MEM_CGROUP_CHARGE_TYPE_ANON);
3566 3567
}

3568 3569 3570
/*
 * While swap-in, try_charge -> commit or cancel, the page is locked.
 * And when try_charge() successfully returns, one refcnt to memcg without
3571
 * struct page_cgroup is acquired. This refcnt will be consumed by
3572 3573
 * "commit()" or removed by "cancel()"
 */
3574 3575 3576 3577
static int __mem_cgroup_try_charge_swapin(struct mm_struct *mm,
					  struct page *page,
					  gfp_t mask,
					  struct mem_cgroup **memcgp)
3578
{
3579
	struct mem_cgroup *memcg;
3580
	struct page_cgroup *pc;
3581
	int ret;
3582

3583 3584 3585 3586 3587 3588 3589 3590 3591 3592
	pc = lookup_page_cgroup(page);
	/*
	 * Every swap fault against a single page tries to charge the
	 * page, bail as early as possible.  shmem_unuse() encounters
	 * already charged pages, too.  The USED bit is protected by
	 * the page lock, which serializes swap cache removal, which
	 * in turn serializes uncharging.
	 */
	if (PageCgroupUsed(pc))
		return 0;
3593 3594
	if (!do_swap_account)
		goto charge_cur_mm;
3595 3596
	memcg = try_get_mem_cgroup_from_page(page);
	if (!memcg)
3597
		goto charge_cur_mm;
3598 3599
	*memcgp = memcg;
	ret = __mem_cgroup_try_charge(NULL, mask, 1, memcgp, true);
3600
	css_put(&memcg->css);
3601 3602
	if (ret == -EINTR)
		ret = 0;
3603
	return ret;
3604
charge_cur_mm:
3605 3606 3607 3608
	ret = __mem_cgroup_try_charge(mm, mask, 1, memcgp, true);
	if (ret == -EINTR)
		ret = 0;
	return ret;
3609 3610
}

3611 3612 3613 3614 3615 3616
int mem_cgroup_try_charge_swapin(struct mm_struct *mm, struct page *page,
				 gfp_t gfp_mask, struct mem_cgroup **memcgp)
{
	*memcgp = NULL;
	if (mem_cgroup_disabled())
		return 0;
3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630
	/*
	 * A racing thread's fault, or swapoff, may have already
	 * updated the pte, and even removed page from swap cache: in
	 * those cases unuse_pte()'s pte_same() test will fail; but
	 * there's also a KSM case which does need to charge the page.
	 */
	if (!PageSwapCache(page)) {
		int ret;

		ret = __mem_cgroup_try_charge(mm, gfp_mask, 1, memcgp, true);
		if (ret == -EINTR)
			ret = 0;
		return ret;
	}
3631 3632 3633
	return __mem_cgroup_try_charge_swapin(mm, page, gfp_mask, memcgp);
}

3634 3635 3636 3637 3638 3639 3640 3641 3642
void mem_cgroup_cancel_charge_swapin(struct mem_cgroup *memcg)
{
	if (mem_cgroup_disabled())
		return;
	if (!memcg)
		return;
	__mem_cgroup_cancel_charge(memcg, 1);
}

D
Daisuke Nishimura 已提交
3643
static void
3644
__mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *memcg,
D
Daisuke Nishimura 已提交
3645
					enum charge_type ctype)
3646
{
3647
	if (mem_cgroup_disabled())
3648
		return;
3649
	if (!memcg)
3650
		return;
3651

3652
	__mem_cgroup_commit_charge(memcg, page, 1, ctype, true);
3653 3654 3655
	/*
	 * Now swap is on-memory. This means this page may be
	 * counted both as mem and swap....double count.
3656 3657 3658
	 * Fix it by uncharging from memsw. Basically, this SwapCache is stable
	 * under lock_page(). But in do_swap_page()::memory.c, reuse_swap_page()
	 * may call delete_from_swap_cache() before reach here.
3659
	 */
3660
	if (do_swap_account && PageSwapCache(page)) {
3661
		swp_entry_t ent = {.val = page_private(page)};
3662
		mem_cgroup_uncharge_swap(ent);
3663
	}
3664 3665
}

3666 3667
void mem_cgroup_commit_charge_swapin(struct page *page,
				     struct mem_cgroup *memcg)
D
Daisuke Nishimura 已提交
3668
{
3669
	__mem_cgroup_commit_charge_swapin(page, memcg,
3670
					  MEM_CGROUP_CHARGE_TYPE_ANON);
D
Daisuke Nishimura 已提交
3671 3672
}

3673 3674
int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm,
				gfp_t gfp_mask)
3675
{
3676 3677 3678 3679
	struct mem_cgroup *memcg = NULL;
	enum charge_type type = MEM_CGROUP_CHARGE_TYPE_CACHE;
	int ret;

3680
	if (mem_cgroup_disabled())
3681 3682 3683 3684 3685 3686 3687
		return 0;
	if (PageCompound(page))
		return 0;

	if (!PageSwapCache(page))
		ret = mem_cgroup_charge_common(page, mm, gfp_mask, type);
	else { /* page is swapcache/shmem */
3688 3689
		ret = __mem_cgroup_try_charge_swapin(mm, page,
						     gfp_mask, &memcg);
3690 3691 3692 3693
		if (!ret)
			__mem_cgroup_commit_charge_swapin(page, memcg, type);
	}
	return ret;
3694 3695
}

3696
static void mem_cgroup_do_uncharge(struct mem_cgroup *memcg,
3697 3698
				   unsigned int nr_pages,
				   const enum charge_type ctype)
3699 3700 3701
{
	struct memcg_batch_info *batch = NULL;
	bool uncharge_memsw = true;
3702

3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713
	/* If swapout, usage of swap doesn't decrease */
	if (!do_swap_account || ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT)
		uncharge_memsw = false;

	batch = &current->memcg_batch;
	/*
	 * In usual, we do css_get() when we remember memcg pointer.
	 * But in this case, we keep res->usage until end of a series of
	 * uncharges. Then, it's ok to ignore memcg's refcnt.
	 */
	if (!batch->memcg)
3714
		batch->memcg = memcg;
3715 3716
	/*
	 * do_batch > 0 when unmapping pages or inode invalidate/truncate.
L
Lucas De Marchi 已提交
3717
	 * In those cases, all pages freed continuously can be expected to be in
3718 3719 3720 3721 3722 3723 3724 3725
	 * the same cgroup and we have chance to coalesce uncharges.
	 * But we do uncharge one by one if this is killed by OOM(TIF_MEMDIE)
	 * because we want to do uncharge as soon as possible.
	 */

	if (!batch->do_batch || test_thread_flag(TIF_MEMDIE))
		goto direct_uncharge;

3726
	if (nr_pages > 1)
A
Andrea Arcangeli 已提交
3727 3728
		goto direct_uncharge;

3729 3730 3731 3732 3733
	/*
	 * In typical case, batch->memcg == mem. This means we can
	 * merge a series of uncharges to an uncharge of res_counter.
	 * If not, we uncharge res_counter ony by one.
	 */
3734
	if (batch->memcg != memcg)
3735 3736
		goto direct_uncharge;
	/* remember freed charge and uncharge it later */
3737
	batch->nr_pages++;
3738
	if (uncharge_memsw)
3739
		batch->memsw_nr_pages++;
3740 3741
	return;
direct_uncharge:
3742
	res_counter_uncharge(&memcg->res, nr_pages * PAGE_SIZE);
3743
	if (uncharge_memsw)
3744 3745 3746
		res_counter_uncharge(&memcg->memsw, nr_pages * PAGE_SIZE);
	if (unlikely(batch->memcg != memcg))
		memcg_oom_recover(memcg);
3747
}
3748

3749
/*
3750
 * uncharge if !page_mapped(page)
3751
 */
3752
static struct mem_cgroup *
3753 3754
__mem_cgroup_uncharge_common(struct page *page, enum charge_type ctype,
			     bool end_migration)
3755
{
3756
	struct mem_cgroup *memcg = NULL;
3757 3758
	unsigned int nr_pages = 1;
	struct page_cgroup *pc;
3759
	bool anon;
3760

3761
	if (mem_cgroup_disabled())
3762
		return NULL;
3763

3764
	VM_BUG_ON(PageSwapCache(page));
K
KAMEZAWA Hiroyuki 已提交
3765

A
Andrea Arcangeli 已提交
3766
	if (PageTransHuge(page)) {
3767
		nr_pages <<= compound_order(page);
A
Andrea Arcangeli 已提交
3768 3769
		VM_BUG_ON(!PageTransHuge(page));
	}
3770
	/*
3771
	 * Check if our page_cgroup is valid
3772
	 */
3773
	pc = lookup_page_cgroup(page);
3774
	if (unlikely(!PageCgroupUsed(pc)))
3775
		return NULL;
3776

3777
	lock_page_cgroup(pc);
K
KAMEZAWA Hiroyuki 已提交
3778

3779
	memcg = pc->mem_cgroup;
3780

K
KAMEZAWA Hiroyuki 已提交
3781 3782 3783
	if (!PageCgroupUsed(pc))
		goto unlock_out;

3784 3785
	anon = PageAnon(page);

K
KAMEZAWA Hiroyuki 已提交
3786
	switch (ctype) {
3787
	case MEM_CGROUP_CHARGE_TYPE_ANON:
3788 3789 3790 3791 3792
		/*
		 * Generally PageAnon tells if it's the anon statistics to be
		 * updated; but sometimes e.g. mem_cgroup_uncharge_page() is
		 * used before page reached the stage of being marked PageAnon.
		 */
3793 3794
		anon = true;
		/* fallthrough */
K
KAMEZAWA Hiroyuki 已提交
3795
	case MEM_CGROUP_CHARGE_TYPE_DROP:
3796
		/* See mem_cgroup_prepare_migration() */
3797 3798 3799 3800 3801 3802 3803 3804 3805 3806
		if (page_mapped(page))
			goto unlock_out;
		/*
		 * Pages under migration may not be uncharged.  But
		 * end_migration() /must/ be the one uncharging the
		 * unused post-migration page and so it has to call
		 * here with the migration bit still set.  See the
		 * res_counter handling below.
		 */
		if (!end_migration && PageCgroupMigration(pc))
K
KAMEZAWA Hiroyuki 已提交
3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817
			goto unlock_out;
		break;
	case MEM_CGROUP_CHARGE_TYPE_SWAPOUT:
		if (!PageAnon(page)) {	/* Shared memory */
			if (page->mapping && !page_is_file_cache(page))
				goto unlock_out;
		} else if (page_mapped(page)) /* Anon */
				goto unlock_out;
		break;
	default:
		break;
3818
	}
K
KAMEZAWA Hiroyuki 已提交
3819

3820
	mem_cgroup_charge_statistics(memcg, anon, -nr_pages);
K
KAMEZAWA Hiroyuki 已提交
3821

3822
	ClearPageCgroupUsed(pc);
3823 3824 3825 3826 3827 3828
	/*
	 * pc->mem_cgroup is not cleared here. It will be accessed when it's
	 * freed from LRU. This is safe because uncharged page is expected not
	 * to be reused (freed soon). Exception is SwapCache, it's handled by
	 * special functions.
	 */
3829

3830
	unlock_page_cgroup(pc);
K
KAMEZAWA Hiroyuki 已提交
3831
	/*
3832
	 * even after unlock, we have memcg->res.usage here and this memcg
K
KAMEZAWA Hiroyuki 已提交
3833 3834
	 * will never be freed.
	 */
3835
	memcg_check_events(memcg, page);
K
KAMEZAWA Hiroyuki 已提交
3836
	if (do_swap_account && ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT) {
3837 3838
		mem_cgroup_swap_statistics(memcg, true);
		mem_cgroup_get(memcg);
K
KAMEZAWA Hiroyuki 已提交
3839
	}
3840 3841 3842 3843 3844 3845
	/*
	 * Migration does not charge the res_counter for the
	 * replacement page, so leave it alone when phasing out the
	 * page that is unused after the migration.
	 */
	if (!end_migration && !mem_cgroup_is_root(memcg))
3846
		mem_cgroup_do_uncharge(memcg, nr_pages, ctype);
3847

3848
	return memcg;
K
KAMEZAWA Hiroyuki 已提交
3849 3850 3851

unlock_out:
	unlock_page_cgroup(pc);
3852
	return NULL;
3853 3854
}

3855 3856
void mem_cgroup_uncharge_page(struct page *page)
{
3857 3858 3859
	/* early check. */
	if (page_mapped(page))
		return;
3860
	VM_BUG_ON(page->mapping && !PageAnon(page));
3861 3862
	if (PageSwapCache(page))
		return;
3863
	__mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_ANON, false);
3864 3865 3866 3867 3868
}

void mem_cgroup_uncharge_cache_page(struct page *page)
{
	VM_BUG_ON(page_mapped(page));
3869
	VM_BUG_ON(page->mapping);
3870
	__mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_CACHE, false);
3871 3872
}

3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886
/*
 * Batch_start/batch_end is called in unmap_page_range/invlidate/trucate.
 * In that cases, pages are freed continuously and we can expect pages
 * are in the same memcg. All these calls itself limits the number of
 * pages freed at once, then uncharge_start/end() is called properly.
 * This may be called prural(2) times in a context,
 */

void mem_cgroup_uncharge_start(void)
{
	current->memcg_batch.do_batch++;
	/* We can do nest. */
	if (current->memcg_batch.do_batch == 1) {
		current->memcg_batch.memcg = NULL;
3887 3888
		current->memcg_batch.nr_pages = 0;
		current->memcg_batch.memsw_nr_pages = 0;
3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908
	}
}

void mem_cgroup_uncharge_end(void)
{
	struct memcg_batch_info *batch = &current->memcg_batch;

	if (!batch->do_batch)
		return;

	batch->do_batch--;
	if (batch->do_batch) /* If stacked, do nothing. */
		return;

	if (!batch->memcg)
		return;
	/*
	 * This "batch->memcg" is valid without any css_get/put etc...
	 * bacause we hide charges behind us.
	 */
3909 3910 3911 3912 3913 3914
	if (batch->nr_pages)
		res_counter_uncharge(&batch->memcg->res,
				     batch->nr_pages * PAGE_SIZE);
	if (batch->memsw_nr_pages)
		res_counter_uncharge(&batch->memcg->memsw,
				     batch->memsw_nr_pages * PAGE_SIZE);
3915
	memcg_oom_recover(batch->memcg);
3916 3917 3918 3919
	/* forget this pointer (for sanity check) */
	batch->memcg = NULL;
}

3920
#ifdef CONFIG_SWAP
3921
/*
3922
 * called after __delete_from_swap_cache() and drop "page" account.
3923 3924
 * memcg information is recorded to swap_cgroup of "ent"
 */
K
KAMEZAWA Hiroyuki 已提交
3925 3926
void
mem_cgroup_uncharge_swapcache(struct page *page, swp_entry_t ent, bool swapout)
3927 3928
{
	struct mem_cgroup *memcg;
K
KAMEZAWA Hiroyuki 已提交
3929 3930 3931 3932 3933
	int ctype = MEM_CGROUP_CHARGE_TYPE_SWAPOUT;

	if (!swapout) /* this was a swap cache but the swap is unused ! */
		ctype = MEM_CGROUP_CHARGE_TYPE_DROP;

3934
	memcg = __mem_cgroup_uncharge_common(page, ctype, false);
3935

K
KAMEZAWA Hiroyuki 已提交
3936 3937 3938 3939 3940
	/*
	 * record memcg information,  if swapout && memcg != NULL,
	 * mem_cgroup_get() was called in uncharge().
	 */
	if (do_swap_account && swapout && memcg)
3941
		swap_cgroup_record(ent, css_id(&memcg->css));
3942
}
3943
#endif
3944

A
Andrew Morton 已提交
3945
#ifdef CONFIG_MEMCG_SWAP
3946 3947 3948 3949 3950
/*
 * called from swap_entry_free(). remove record in swap_cgroup and
 * uncharge "memsw" account.
 */
void mem_cgroup_uncharge_swap(swp_entry_t ent)
K
KAMEZAWA Hiroyuki 已提交
3951
{
3952
	struct mem_cgroup *memcg;
3953
	unsigned short id;
3954 3955 3956 3957

	if (!do_swap_account)
		return;

3958 3959 3960
	id = swap_cgroup_record(ent, 0);
	rcu_read_lock();
	memcg = mem_cgroup_lookup(id);
3961
	if (memcg) {
3962 3963 3964 3965
		/*
		 * We uncharge this because swap is freed.
		 * This memcg can be obsolete one. We avoid calling css_tryget
		 */
3966
		if (!mem_cgroup_is_root(memcg))
3967
			res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
3968
		mem_cgroup_swap_statistics(memcg, false);
3969 3970
		mem_cgroup_put(memcg);
	}
3971
	rcu_read_unlock();
K
KAMEZAWA Hiroyuki 已提交
3972
}
3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988

/**
 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
 * @entry: swap entry to be moved
 * @from:  mem_cgroup which the entry is moved from
 * @to:  mem_cgroup which the entry is moved to
 *
 * It succeeds only when the swap_cgroup's record for this entry is the same
 * as the mem_cgroup's id of @from.
 *
 * Returns 0 on success, -EINVAL on failure.
 *
 * The caller must have charged to @to, IOW, called res_counter_charge() about
 * both res and memsw, and called css_get().
 */
static int mem_cgroup_move_swap_account(swp_entry_t entry,
3989
				struct mem_cgroup *from, struct mem_cgroup *to)
3990 3991 3992 3993 3994 3995 3996 3997
{
	unsigned short old_id, new_id;

	old_id = css_id(&from->css);
	new_id = css_id(&to->css);

	if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
		mem_cgroup_swap_statistics(from, false);
3998
		mem_cgroup_swap_statistics(to, true);
3999
		/*
4000 4001 4002 4003 4004 4005
		 * This function is only called from task migration context now.
		 * It postpones res_counter and refcount handling till the end
		 * of task migration(mem_cgroup_clear_mc()) for performance
		 * improvement. But we cannot postpone mem_cgroup_get(to)
		 * because if the process that has been moved to @to does
		 * swap-in, the refcount of @to might be decreased to 0.
4006 4007 4008 4009 4010 4011 4012 4013
		 */
		mem_cgroup_get(to);
		return 0;
	}
	return -EINVAL;
}
#else
static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
4014
				struct mem_cgroup *from, struct mem_cgroup *to)
4015 4016 4017
{
	return -EINVAL;
}
4018
#endif
K
KAMEZAWA Hiroyuki 已提交
4019

4020
/*
4021 4022
 * Before starting migration, account PAGE_SIZE to mem_cgroup that the old
 * page belongs to.
4023
 */
4024 4025
void mem_cgroup_prepare_migration(struct page *page, struct page *newpage,
				  struct mem_cgroup **memcgp)
4026
{
4027
	struct mem_cgroup *memcg = NULL;
4028
	unsigned int nr_pages = 1;
4029
	struct page_cgroup *pc;
4030
	enum charge_type ctype;
4031

4032
	*memcgp = NULL;
4033

4034
	if (mem_cgroup_disabled())
4035
		return;
4036

4037 4038 4039
	if (PageTransHuge(page))
		nr_pages <<= compound_order(page);

4040 4041 4042
	pc = lookup_page_cgroup(page);
	lock_page_cgroup(pc);
	if (PageCgroupUsed(pc)) {
4043 4044
		memcg = pc->mem_cgroup;
		css_get(&memcg->css);
4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075
		/*
		 * At migrating an anonymous page, its mapcount goes down
		 * to 0 and uncharge() will be called. But, even if it's fully
		 * unmapped, migration may fail and this page has to be
		 * charged again. We set MIGRATION flag here and delay uncharge
		 * until end_migration() is called
		 *
		 * Corner Case Thinking
		 * A)
		 * When the old page was mapped as Anon and it's unmap-and-freed
		 * while migration was ongoing.
		 * If unmap finds the old page, uncharge() of it will be delayed
		 * until end_migration(). If unmap finds a new page, it's
		 * uncharged when it make mapcount to be 1->0. If unmap code
		 * finds swap_migration_entry, the new page will not be mapped
		 * and end_migration() will find it(mapcount==0).
		 *
		 * B)
		 * When the old page was mapped but migraion fails, the kernel
		 * remaps it. A charge for it is kept by MIGRATION flag even
		 * if mapcount goes down to 0. We can do remap successfully
		 * without charging it again.
		 *
		 * C)
		 * The "old" page is under lock_page() until the end of
		 * migration, so, the old page itself will not be swapped-out.
		 * If the new page is swapped out before end_migraton, our
		 * hook to usual swap-out path will catch the event.
		 */
		if (PageAnon(page))
			SetPageCgroupMigration(pc);
4076
	}
4077
	unlock_page_cgroup(pc);
4078 4079 4080 4081
	/*
	 * If the page is not charged at this point,
	 * we return here.
	 */
4082
	if (!memcg)
4083
		return;
4084

4085
	*memcgp = memcg;
4086 4087 4088 4089 4090 4091 4092
	/*
	 * We charge new page before it's used/mapped. So, even if unlock_page()
	 * is called before end_migration, we can catch all events on this new
	 * page. In the case new page is migrated but not remapped, new page's
	 * mapcount will be finally 0 and we call uncharge in end_migration().
	 */
	if (PageAnon(page))
4093
		ctype = MEM_CGROUP_CHARGE_TYPE_ANON;
4094
	else
4095
		ctype = MEM_CGROUP_CHARGE_TYPE_CACHE;
4096 4097 4098 4099 4100
	/*
	 * The page is committed to the memcg, but it's not actually
	 * charged to the res_counter since we plan on replacing the
	 * old one and only one page is going to be left afterwards.
	 */
4101
	__mem_cgroup_commit_charge(memcg, newpage, nr_pages, ctype, false);
4102
}
4103

4104
/* remove redundant charge if migration failed*/
4105
void mem_cgroup_end_migration(struct mem_cgroup *memcg,
4106
	struct page *oldpage, struct page *newpage, bool migration_ok)
4107
{
4108
	struct page *used, *unused;
4109
	struct page_cgroup *pc;
4110
	bool anon;
4111

4112
	if (!memcg)
4113
		return;
4114

4115
	if (!migration_ok) {
4116 4117
		used = oldpage;
		unused = newpage;
4118
	} else {
4119
		used = newpage;
4120 4121
		unused = oldpage;
	}
4122
	anon = PageAnon(used);
4123 4124 4125 4126
	__mem_cgroup_uncharge_common(unused,
				     anon ? MEM_CGROUP_CHARGE_TYPE_ANON
				     : MEM_CGROUP_CHARGE_TYPE_CACHE,
				     true);
4127
	css_put(&memcg->css);
4128
	/*
4129 4130 4131
	 * We disallowed uncharge of pages under migration because mapcount
	 * of the page goes down to zero, temporarly.
	 * Clear the flag and check the page should be charged.
4132
	 */
4133 4134 4135 4136 4137
	pc = lookup_page_cgroup(oldpage);
	lock_page_cgroup(pc);
	ClearPageCgroupMigration(pc);
	unlock_page_cgroup(pc);

4138
	/*
4139 4140 4141 4142 4143 4144
	 * If a page is a file cache, radix-tree replacement is very atomic
	 * and we can skip this check. When it was an Anon page, its mapcount
	 * goes down to 0. But because we added MIGRATION flage, it's not
	 * uncharged yet. There are several case but page->mapcount check
	 * and USED bit check in mem_cgroup_uncharge_page() will do enough
	 * check. (see prepare_charge() also)
4145
	 */
4146
	if (anon)
4147
		mem_cgroup_uncharge_page(used);
4148
}
4149

4150 4151 4152 4153 4154 4155 4156 4157
/*
 * At replace page cache, newpage is not under any memcg but it's on
 * LRU. So, this function doesn't touch res_counter but handles LRU
 * in correct way. Both pages are locked so we cannot race with uncharge.
 */
void mem_cgroup_replace_page_cache(struct page *oldpage,
				  struct page *newpage)
{
4158
	struct mem_cgroup *memcg = NULL;
4159 4160 4161 4162 4163 4164 4165 4166 4167
	struct page_cgroup *pc;
	enum charge_type type = MEM_CGROUP_CHARGE_TYPE_CACHE;

	if (mem_cgroup_disabled())
		return;

	pc = lookup_page_cgroup(oldpage);
	/* fix accounting on old pages */
	lock_page_cgroup(pc);
4168 4169 4170 4171 4172
	if (PageCgroupUsed(pc)) {
		memcg = pc->mem_cgroup;
		mem_cgroup_charge_statistics(memcg, false, -1);
		ClearPageCgroupUsed(pc);
	}
4173 4174
	unlock_page_cgroup(pc);

4175 4176 4177 4178 4179 4180
	/*
	 * When called from shmem_replace_page(), in some cases the
	 * oldpage has already been charged, and in some cases not.
	 */
	if (!memcg)
		return;
4181 4182 4183 4184 4185
	/*
	 * Even if newpage->mapping was NULL before starting replacement,
	 * the newpage may be on LRU(or pagevec for LRU) already. We lock
	 * LRU while we overwrite pc->mem_cgroup.
	 */
4186
	__mem_cgroup_commit_charge(memcg, newpage, 1, type, true);
4187 4188
}

4189 4190 4191 4192 4193 4194
#ifdef CONFIG_DEBUG_VM
static struct page_cgroup *lookup_page_cgroup_used(struct page *page)
{
	struct page_cgroup *pc;

	pc = lookup_page_cgroup(page);
4195 4196 4197 4198 4199
	/*
	 * Can be NULL while feeding pages into the page allocator for
	 * the first time, i.e. during boot or memory hotplug;
	 * or when mem_cgroup_disabled().
	 */
4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218
	if (likely(pc) && PageCgroupUsed(pc))
		return pc;
	return NULL;
}

bool mem_cgroup_bad_page_check(struct page *page)
{
	if (mem_cgroup_disabled())
		return false;

	return lookup_page_cgroup_used(page) != NULL;
}

void mem_cgroup_print_bad_page(struct page *page)
{
	struct page_cgroup *pc;

	pc = lookup_page_cgroup_used(page);
	if (pc) {
4219
		printk(KERN_ALERT "pc:%p pc->flags:%lx pc->mem_cgroup:%p\n",
4220 4221 4222 4223 4224
		       pc, pc->flags, pc->mem_cgroup);
	}
}
#endif

4225 4226
static DEFINE_MUTEX(set_limit_mutex);

4227
static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
4228
				unsigned long long val)
4229
{
4230
	int retry_count;
4231
	u64 memswlimit, memlimit;
4232
	int ret = 0;
4233 4234
	int children = mem_cgroup_count_children(memcg);
	u64 curusage, oldusage;
4235
	int enlarge;
4236 4237 4238 4239 4240 4241 4242 4243 4244

	/*
	 * For keeping hierarchical_reclaim simple, how long we should retry
	 * is depends on callers. We set our retry-count to be function
	 * of # of children which we should visit in this loop.
	 */
	retry_count = MEM_CGROUP_RECLAIM_RETRIES * children;

	oldusage = res_counter_read_u64(&memcg->res, RES_USAGE);
4245

4246
	enlarge = 0;
4247
	while (retry_count) {
4248 4249 4250 4251
		if (signal_pending(current)) {
			ret = -EINTR;
			break;
		}
4252 4253 4254
		/*
		 * Rather than hide all in some function, I do this in
		 * open coded manner. You see what this really does.
4255
		 * We have to guarantee memcg->res.limit <= memcg->memsw.limit.
4256 4257 4258 4259 4260 4261
		 */
		mutex_lock(&set_limit_mutex);
		memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
		if (memswlimit < val) {
			ret = -EINVAL;
			mutex_unlock(&set_limit_mutex);
4262 4263
			break;
		}
4264 4265 4266 4267 4268

		memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
		if (memlimit < val)
			enlarge = 1;

4269
		ret = res_counter_set_limit(&memcg->res, val);
4270 4271 4272 4273 4274 4275
		if (!ret) {
			if (memswlimit == val)
				memcg->memsw_is_minimum = true;
			else
				memcg->memsw_is_minimum = false;
		}
4276 4277 4278 4279 4280
		mutex_unlock(&set_limit_mutex);

		if (!ret)
			break;

4281 4282
		mem_cgroup_reclaim(memcg, GFP_KERNEL,
				   MEM_CGROUP_RECLAIM_SHRINK);
4283 4284 4285 4286 4287 4288
		curusage = res_counter_read_u64(&memcg->res, RES_USAGE);
		/* Usage is reduced ? */
  		if (curusage >= oldusage)
			retry_count--;
		else
			oldusage = curusage;
4289
	}
4290 4291
	if (!ret && enlarge)
		memcg_oom_recover(memcg);
4292

4293 4294 4295
	return ret;
}

L
Li Zefan 已提交
4296 4297
static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
					unsigned long long val)
4298
{
4299
	int retry_count;
4300
	u64 memlimit, memswlimit, oldusage, curusage;
4301 4302
	int children = mem_cgroup_count_children(memcg);
	int ret = -EBUSY;
4303
	int enlarge = 0;
4304

4305 4306 4307
	/* see mem_cgroup_resize_res_limit */
 	retry_count = children * MEM_CGROUP_RECLAIM_RETRIES;
	oldusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
4308 4309 4310 4311 4312 4313 4314 4315
	while (retry_count) {
		if (signal_pending(current)) {
			ret = -EINTR;
			break;
		}
		/*
		 * Rather than hide all in some function, I do this in
		 * open coded manner. You see what this really does.
4316
		 * We have to guarantee memcg->res.limit <= memcg->memsw.limit.
4317 4318 4319 4320 4321 4322 4323 4324
		 */
		mutex_lock(&set_limit_mutex);
		memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
		if (memlimit > val) {
			ret = -EINVAL;
			mutex_unlock(&set_limit_mutex);
			break;
		}
4325 4326 4327
		memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
		if (memswlimit < val)
			enlarge = 1;
4328
		ret = res_counter_set_limit(&memcg->memsw, val);
4329 4330 4331 4332 4333 4334
		if (!ret) {
			if (memlimit == val)
				memcg->memsw_is_minimum = true;
			else
				memcg->memsw_is_minimum = false;
		}
4335 4336 4337 4338 4339
		mutex_unlock(&set_limit_mutex);

		if (!ret)
			break;

4340 4341 4342
		mem_cgroup_reclaim(memcg, GFP_KERNEL,
				   MEM_CGROUP_RECLAIM_NOSWAP |
				   MEM_CGROUP_RECLAIM_SHRINK);
4343
		curusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
4344
		/* Usage is reduced ? */
4345
		if (curusage >= oldusage)
4346
			retry_count--;
4347 4348
		else
			oldusage = curusage;
4349
	}
4350 4351
	if (!ret && enlarge)
		memcg_oom_recover(memcg);
4352 4353 4354
	return ret;
}

4355
unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
4356 4357
					    gfp_t gfp_mask,
					    unsigned long *total_scanned)
4358 4359 4360 4361 4362 4363
{
	unsigned long nr_reclaimed = 0;
	struct mem_cgroup_per_zone *mz, *next_mz = NULL;
	unsigned long reclaimed;
	int loop = 0;
	struct mem_cgroup_tree_per_zone *mctz;
4364
	unsigned long long excess;
4365
	unsigned long nr_scanned;
4366 4367 4368 4369

	if (order > 0)
		return 0;

4370
	mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone));
4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383
	/*
	 * This loop can run a while, specially if mem_cgroup's continuously
	 * keep exceeding their soft limit and putting the system under
	 * pressure
	 */
	do {
		if (next_mz)
			mz = next_mz;
		else
			mz = mem_cgroup_largest_soft_limit_node(mctz);
		if (!mz)
			break;

4384
		nr_scanned = 0;
4385
		reclaimed = mem_cgroup_soft_reclaim(mz->memcg, zone,
4386
						    gfp_mask, &nr_scanned);
4387
		nr_reclaimed += reclaimed;
4388
		*total_scanned += nr_scanned;
4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410
		spin_lock(&mctz->lock);

		/*
		 * If we failed to reclaim anything from this memory cgroup
		 * it is time to move on to the next cgroup
		 */
		next_mz = NULL;
		if (!reclaimed) {
			do {
				/*
				 * Loop until we find yet another one.
				 *
				 * By the time we get the soft_limit lock
				 * again, someone might have aded the
				 * group back on the RB tree. Iterate to
				 * make sure we get a different mem.
				 * mem_cgroup_largest_soft_limit_node returns
				 * NULL if no other cgroup is present on
				 * the tree
				 */
				next_mz =
				__mem_cgroup_largest_soft_limit_node(mctz);
4411
				if (next_mz == mz)
4412
					css_put(&next_mz->memcg->css);
4413
				else /* next_mz == NULL or other memcg */
4414 4415 4416
					break;
			} while (1);
		}
4417 4418
		__mem_cgroup_remove_exceeded(mz->memcg, mz, mctz);
		excess = res_counter_soft_limit_excess(&mz->memcg->res);
4419 4420 4421 4422 4423 4424 4425 4426
		/*
		 * One school of thought says that we should not add
		 * back the node to the tree if reclaim returns 0.
		 * But our reclaim could return 0, simply because due
		 * to priority we are exposing a smaller subset of
		 * memory to reclaim from. Consider this as a longer
		 * term TODO.
		 */
4427
		/* If excess == 0, no tree ops */
4428
		__mem_cgroup_insert_exceeded(mz->memcg, mz, mctz, excess);
4429
		spin_unlock(&mctz->lock);
4430
		css_put(&mz->memcg->css);
4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442
		loop++;
		/*
		 * Could not reclaim anything and there are no more
		 * mem cgroups to try or we seem to be looping without
		 * reclaiming anything.
		 */
		if (!nr_reclaimed &&
			(next_mz == NULL ||
			loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
			break;
	} while (!nr_reclaimed);
	if (next_mz)
4443
		css_put(&next_mz->memcg->css);
4444 4445 4446
	return nr_reclaimed;
}

4447 4448 4449 4450 4451 4452 4453
/**
 * mem_cgroup_force_empty_list - clears LRU of a group
 * @memcg: group to clear
 * @node: NUMA node
 * @zid: zone id
 * @lru: lru to to clear
 *
4454
 * Traverse a specified page_cgroup list and try to drop them all.  This doesn't
4455 4456
 * reclaim the pages page themselves - pages are moved to the parent (or root)
 * group.
4457
 */
4458
static void mem_cgroup_force_empty_list(struct mem_cgroup *memcg,
K
KAMEZAWA Hiroyuki 已提交
4459
				int node, int zid, enum lru_list lru)
4460
{
4461
	struct lruvec *lruvec;
4462
	unsigned long flags;
4463
	struct list_head *list;
4464 4465
	struct page *busy;
	struct zone *zone;
4466

K
KAMEZAWA Hiroyuki 已提交
4467
	zone = &NODE_DATA(node)->node_zones[zid];
4468 4469
	lruvec = mem_cgroup_zone_lruvec(zone, memcg);
	list = &lruvec->lists[lru];
4470

4471
	busy = NULL;
4472
	do {
4473
		struct page_cgroup *pc;
4474 4475
		struct page *page;

K
KAMEZAWA Hiroyuki 已提交
4476
		spin_lock_irqsave(&zone->lru_lock, flags);
4477
		if (list_empty(list)) {
K
KAMEZAWA Hiroyuki 已提交
4478
			spin_unlock_irqrestore(&zone->lru_lock, flags);
4479
			break;
4480
		}
4481 4482 4483
		page = list_entry(list->prev, struct page, lru);
		if (busy == page) {
			list_move(&page->lru, list);
4484
			busy = NULL;
K
KAMEZAWA Hiroyuki 已提交
4485
			spin_unlock_irqrestore(&zone->lru_lock, flags);
4486 4487
			continue;
		}
K
KAMEZAWA Hiroyuki 已提交
4488
		spin_unlock_irqrestore(&zone->lru_lock, flags);
4489

4490
		pc = lookup_page_cgroup(page);
4491

4492
		if (mem_cgroup_move_parent(page, pc, memcg)) {
4493
			/* found lock contention or "pc" is obsolete. */
4494
			busy = page;
4495 4496 4497
			cond_resched();
		} else
			busy = NULL;
4498
	} while (!list_empty(list));
4499 4500 4501
}

/*
4502 4503
 * make mem_cgroup's charge to be 0 if there is no task by moving
 * all the charges and pages to the parent.
4504
 * This enables deleting this mem_cgroup.
4505 4506
 *
 * Caller is responsible for holding css reference on the memcg.
4507
 */
4508
static void mem_cgroup_reparent_charges(struct mem_cgroup *memcg)
4509
{
4510
	int node, zid;
4511
	u64 usage;
4512

4513
	do {
4514 4515
		/* This is for making all *used* pages to be on LRU. */
		lru_add_drain_all();
4516 4517
		drain_all_stock_sync(memcg);
		mem_cgroup_start_move(memcg);
4518
		for_each_node_state(node, N_MEMORY) {
4519
			for (zid = 0; zid < MAX_NR_ZONES; zid++) {
H
Hugh Dickins 已提交
4520 4521
				enum lru_list lru;
				for_each_lru(lru) {
4522
					mem_cgroup_force_empty_list(memcg,
H
Hugh Dickins 已提交
4523
							node, zid, lru);
4524
				}
4525
			}
4526
		}
4527 4528
		mem_cgroup_end_move(memcg);
		memcg_oom_recover(memcg);
4529
		cond_resched();
4530

4531
		/*
4532 4533 4534 4535 4536
		 * Kernel memory may not necessarily be trackable to a specific
		 * process. So they are not migrated, and therefore we can't
		 * expect their value to drop to 0 here.
		 * Having res filled up with kmem only is enough.
		 *
4537 4538 4539 4540 4541 4542
		 * This is a safety check because mem_cgroup_force_empty_list
		 * could have raced with mem_cgroup_replace_page_cache callers
		 * so the lru seemed empty but the page could have been added
		 * right after the check. RES_USAGE should be safe as we always
		 * charge before adding to the LRU.
		 */
4543 4544 4545
		usage = res_counter_read_u64(&memcg->res, RES_USAGE) -
			res_counter_read_u64(&memcg->kmem, RES_USAGE);
	} while (usage > 0);
4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557
}

/*
 * Reclaims as many pages from the given memcg as possible and moves
 * the rest to the parent.
 *
 * Caller is responsible for holding css reference for memcg.
 */
static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
{
	int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
	struct cgroup *cgrp = memcg->css.cgroup;
4558

4559
	/* returns EBUSY if there is a task or if we come here twice. */
4560 4561 4562
	if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children))
		return -EBUSY;

4563 4564
	/* we call try-to-free pages for make this cgroup empty */
	lru_add_drain_all();
4565
	/* try to free all pages in this cgroup */
4566
	while (nr_retries && res_counter_read_u64(&memcg->res, RES_USAGE) > 0) {
4567
		int progress;
4568

4569 4570 4571
		if (signal_pending(current))
			return -EINTR;

4572
		progress = try_to_free_mem_cgroup_pages(memcg, GFP_KERNEL,
4573
						false);
4574
		if (!progress) {
4575
			nr_retries--;
4576
			/* maybe some writeback is necessary */
4577
			congestion_wait(BLK_RW_ASYNC, HZ/10);
4578
		}
4579 4580

	}
K
KAMEZAWA Hiroyuki 已提交
4581
	lru_add_drain();
4582 4583 4584
	mem_cgroup_reparent_charges(memcg);

	return 0;
4585 4586
}

4587
static int mem_cgroup_force_empty_write(struct cgroup *cont, unsigned int event)
4588
{
4589 4590 4591
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
	int ret;

4592 4593
	if (mem_cgroup_is_root(memcg))
		return -EINVAL;
4594 4595 4596 4597 4598
	css_get(&memcg->css);
	ret = mem_cgroup_force_empty(memcg);
	css_put(&memcg->css);

	return ret;
4599 4600 4601
}


4602 4603 4604 4605 4606 4607 4608 4609 4610
static u64 mem_cgroup_hierarchy_read(struct cgroup *cont, struct cftype *cft)
{
	return mem_cgroup_from_cont(cont)->use_hierarchy;
}

static int mem_cgroup_hierarchy_write(struct cgroup *cont, struct cftype *cft,
					u64 val)
{
	int retval = 0;
4611
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
4612
	struct cgroup *parent = cont->parent;
4613
	struct mem_cgroup *parent_memcg = NULL;
4614 4615

	if (parent)
4616
		parent_memcg = mem_cgroup_from_cont(parent);
4617 4618

	cgroup_lock();
4619 4620 4621 4622

	if (memcg->use_hierarchy == val)
		goto out;

4623
	/*
4624
	 * If parent's use_hierarchy is set, we can't make any modifications
4625 4626 4627 4628 4629 4630
	 * in the child subtrees. If it is unset, then the change can
	 * occur, provided the current cgroup has no children.
	 *
	 * For the root cgroup, parent_mem is NULL, we allow value to be
	 * set if there are no children.
	 */
4631
	if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
4632 4633
				(val == 1 || val == 0)) {
		if (list_empty(&cont->children))
4634
			memcg->use_hierarchy = val;
4635 4636 4637 4638
		else
			retval = -EBUSY;
	} else
		retval = -EINVAL;
4639 4640

out:
4641 4642 4643 4644 4645
	cgroup_unlock();

	return retval;
}

4646

4647
static unsigned long mem_cgroup_recursive_stat(struct mem_cgroup *memcg,
4648
					       enum mem_cgroup_stat_index idx)
4649
{
K
KAMEZAWA Hiroyuki 已提交
4650
	struct mem_cgroup *iter;
4651
	long val = 0;
4652

4653
	/* Per-cpu values can be negative, use a signed accumulator */
4654
	for_each_mem_cgroup_tree(iter, memcg)
K
KAMEZAWA Hiroyuki 已提交
4655 4656 4657 4658 4659
		val += mem_cgroup_read_stat(iter, idx);

	if (val < 0) /* race ? */
		val = 0;
	return val;
4660 4661
}

4662
static inline u64 mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
4663
{
K
KAMEZAWA Hiroyuki 已提交
4664
	u64 val;
4665

4666
	if (!mem_cgroup_is_root(memcg)) {
4667
		if (!swap)
4668
			return res_counter_read_u64(&memcg->res, RES_USAGE);
4669
		else
4670
			return res_counter_read_u64(&memcg->memsw, RES_USAGE);
4671 4672
	}

4673 4674
	val = mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_CACHE);
	val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_RSS);
4675

K
KAMEZAWA Hiroyuki 已提交
4676
	if (swap)
4677
		val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_SWAP);
4678 4679 4680 4681

	return val << PAGE_SHIFT;
}

4682 4683 4684
static ssize_t mem_cgroup_read(struct cgroup *cont, struct cftype *cft,
			       struct file *file, char __user *buf,
			       size_t nbytes, loff_t *ppos)
B
Balbir Singh 已提交
4685
{
4686
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
4687
	char str[64];
4688
	u64 val;
G
Glauber Costa 已提交
4689 4690
	int name, len;
	enum res_type type;
4691 4692 4693

	type = MEMFILE_TYPE(cft->private);
	name = MEMFILE_ATTR(cft->private);
4694 4695 4696 4697

	if (!do_swap_account && type == _MEMSWAP)
		return -EOPNOTSUPP;

4698 4699
	switch (type) {
	case _MEM:
4700
		if (name == RES_USAGE)
4701
			val = mem_cgroup_usage(memcg, false);
4702
		else
4703
			val = res_counter_read_u64(&memcg->res, name);
4704 4705
		break;
	case _MEMSWAP:
4706
		if (name == RES_USAGE)
4707
			val = mem_cgroup_usage(memcg, true);
4708
		else
4709
			val = res_counter_read_u64(&memcg->memsw, name);
4710
		break;
4711 4712 4713
	case _KMEM:
		val = res_counter_read_u64(&memcg->kmem, name);
		break;
4714 4715 4716
	default:
		BUG();
	}
4717 4718 4719

	len = scnprintf(str, sizeof(str), "%llu\n", (unsigned long long)val);
	return simple_read_from_buffer(buf, nbytes, ppos, str, len);
B
Balbir Singh 已提交
4720
}
4721 4722 4723 4724 4725

static int memcg_update_kmem_limit(struct cgroup *cont, u64 val)
{
	int ret = -EINVAL;
#ifdef CONFIG_MEMCG_KMEM
4726 4727
	bool must_inc_static_branch = false;

4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
	/*
	 * For simplicity, we won't allow this to be disabled.  It also can't
	 * be changed if the cgroup has children already, or if tasks had
	 * already joined.
	 *
	 * If tasks join before we set the limit, a person looking at
	 * kmem.usage_in_bytes will have no way to determine when it took
	 * place, which makes the value quite meaningless.
	 *
	 * After it first became limited, changes in the value of the limit are
	 * of course permitted.
	 *
	 * Taking the cgroup_lock is really offensive, but it is so far the only
	 * way to guarantee that no children will appear. There are plenty of
	 * other offenders, and they should all go away. Fine grained locking
	 * is probably the way to go here. When we are fully hierarchical, we
	 * can also get rid of the use_hierarchy check.
	 */
	cgroup_lock();
	mutex_lock(&set_limit_mutex);
	if (!memcg->kmem_account_flags && val != RESOURCE_MAX) {
		if (cgroup_task_count(cont) || (memcg->use_hierarchy &&
						!list_empty(&cont->children))) {
			ret = -EBUSY;
			goto out;
		}
		ret = res_counter_set_limit(&memcg->kmem, val);
		VM_BUG_ON(ret);

4758 4759 4760 4761 4762
		ret = memcg_update_cache_sizes(memcg);
		if (ret) {
			res_counter_set_limit(&memcg->kmem, RESOURCE_MAX);
			goto out;
		}
4763
		must_inc_static_branch = true;
4764 4765 4766 4767 4768 4769 4770
		/*
		 * kmem charges can outlive the cgroup. In the case of slab
		 * pages, for instance, a page contain objects from various
		 * processes, so it is unfeasible to migrate them away. We
		 * need to reference count the memcg because of that.
		 */
		mem_cgroup_get(memcg);
4771 4772 4773 4774 4775
	} else
		ret = res_counter_set_limit(&memcg->kmem, val);
out:
	mutex_unlock(&set_limit_mutex);
	cgroup_unlock();
4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796

	/*
	 * We are by now familiar with the fact that we can't inc the static
	 * branch inside cgroup_lock. See disarm functions for details. A
	 * worker here is overkill, but also wrong: After the limit is set, we
	 * must start accounting right away. Since this operation can't fail,
	 * we can safely defer it to here - no rollback will be needed.
	 *
	 * The boolean used to control this is also safe, because
	 * KMEM_ACCOUNTED_ACTIVATED guarantees that only one process will be
	 * able to set it to true;
	 */
	if (must_inc_static_branch) {
		static_key_slow_inc(&memcg_kmem_enabled_key);
		/*
		 * setting the active bit after the inc will guarantee no one
		 * starts accounting before all call sites are patched
		 */
		memcg_kmem_set_active(memcg);
	}

4797 4798 4799 4800
#endif
	return ret;
}

4801
static int memcg_propagate_kmem(struct mem_cgroup *memcg)
4802
{
4803
	int ret = 0;
4804 4805
	struct mem_cgroup *parent = parent_mem_cgroup(memcg);
	if (!parent)
4806 4807
		goto out;

4808
	memcg->kmem_account_flags = parent->kmem_account_flags;
4809
#ifdef CONFIG_MEMCG_KMEM
4810 4811 4812 4813 4814 4815 4816 4817 4818 4819
	/*
	 * When that happen, we need to disable the static branch only on those
	 * memcgs that enabled it. To achieve this, we would be forced to
	 * complicate the code by keeping track of which memcgs were the ones
	 * that actually enabled limits, and which ones got it from its
	 * parents.
	 *
	 * It is a lot simpler just to do static_key_slow_inc() on every child
	 * that is accounted.
	 */
4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834
	if (!memcg_kmem_is_active(memcg))
		goto out;

	/*
	 * destroy(), called if we fail, will issue static_key_slow_inc() and
	 * mem_cgroup_put() if kmem is enabled. We have to either call them
	 * unconditionally, or clear the KMEM_ACTIVE flag. I personally find
	 * this more consistent, since it always leads to the same destroy path
	 */
	mem_cgroup_get(memcg);
	static_key_slow_inc(&memcg_kmem_enabled_key);

	mutex_lock(&set_limit_mutex);
	ret = memcg_update_cache_sizes(memcg);
	mutex_unlock(&set_limit_mutex);
4835
#endif
4836 4837
out:
	return ret;
4838 4839
}

4840 4841 4842 4843
/*
 * The user of this function is...
 * RES_LIMIT.
 */
4844 4845
static int mem_cgroup_write(struct cgroup *cont, struct cftype *cft,
			    const char *buffer)
B
Balbir Singh 已提交
4846
{
4847
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
G
Glauber Costa 已提交
4848 4849
	enum res_type type;
	int name;
4850 4851 4852
	unsigned long long val;
	int ret;

4853 4854
	type = MEMFILE_TYPE(cft->private);
	name = MEMFILE_ATTR(cft->private);
4855 4856 4857 4858

	if (!do_swap_account && type == _MEMSWAP)
		return -EOPNOTSUPP;

4859
	switch (name) {
4860
	case RES_LIMIT:
4861 4862 4863 4864
		if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
			ret = -EINVAL;
			break;
		}
4865 4866
		/* This function does all necessary parse...reuse it */
		ret = res_counter_memparse_write_strategy(buffer, &val);
4867 4868 4869
		if (ret)
			break;
		if (type == _MEM)
4870
			ret = mem_cgroup_resize_limit(memcg, val);
4871
		else if (type == _MEMSWAP)
4872
			ret = mem_cgroup_resize_memsw_limit(memcg, val);
4873 4874 4875 4876
		else if (type == _KMEM)
			ret = memcg_update_kmem_limit(cont, val);
		else
			return -EINVAL;
4877
		break;
4878 4879 4880 4881 4882 4883 4884 4885 4886 4887 4888 4889 4890 4891
	case RES_SOFT_LIMIT:
		ret = res_counter_memparse_write_strategy(buffer, &val);
		if (ret)
			break;
		/*
		 * For memsw, soft limits are hard to implement in terms
		 * of semantics, for now, we support soft limits for
		 * control without swap
		 */
		if (type == _MEM)
			ret = res_counter_set_soft_limit(&memcg->res, val);
		else
			ret = -EINVAL;
		break;
4892 4893 4894 4895 4896
	default:
		ret = -EINVAL; /* should be BUG() ? */
		break;
	}
	return ret;
B
Balbir Singh 已提交
4897 4898
}

4899 4900 4901 4902 4903 4904 4905 4906 4907 4908 4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923 4924 4925
static void memcg_get_hierarchical_limit(struct mem_cgroup *memcg,
		unsigned long long *mem_limit, unsigned long long *memsw_limit)
{
	struct cgroup *cgroup;
	unsigned long long min_limit, min_memsw_limit, tmp;

	min_limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
	min_memsw_limit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
	cgroup = memcg->css.cgroup;
	if (!memcg->use_hierarchy)
		goto out;

	while (cgroup->parent) {
		cgroup = cgroup->parent;
		memcg = mem_cgroup_from_cont(cgroup);
		if (!memcg->use_hierarchy)
			break;
		tmp = res_counter_read_u64(&memcg->res, RES_LIMIT);
		min_limit = min(min_limit, tmp);
		tmp = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
		min_memsw_limit = min(min_memsw_limit, tmp);
	}
out:
	*mem_limit = min_limit;
	*memsw_limit = min_memsw_limit;
}

4926
static int mem_cgroup_reset(struct cgroup *cont, unsigned int event)
4927
{
4928
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
G
Glauber Costa 已提交
4929 4930
	int name;
	enum res_type type;
4931

4932 4933
	type = MEMFILE_TYPE(event);
	name = MEMFILE_ATTR(event);
4934 4935 4936 4937

	if (!do_swap_account && type == _MEMSWAP)
		return -EOPNOTSUPP;

4938
	switch (name) {
4939
	case RES_MAX_USAGE:
4940
		if (type == _MEM)
4941
			res_counter_reset_max(&memcg->res);
4942
		else if (type == _MEMSWAP)
4943
			res_counter_reset_max(&memcg->memsw);
4944 4945 4946 4947
		else if (type == _KMEM)
			res_counter_reset_max(&memcg->kmem);
		else
			return -EINVAL;
4948 4949
		break;
	case RES_FAILCNT:
4950
		if (type == _MEM)
4951
			res_counter_reset_failcnt(&memcg->res);
4952
		else if (type == _MEMSWAP)
4953
			res_counter_reset_failcnt(&memcg->memsw);
4954 4955 4956 4957
		else if (type == _KMEM)
			res_counter_reset_failcnt(&memcg->kmem);
		else
			return -EINVAL;
4958 4959
		break;
	}
4960

4961
	return 0;
4962 4963
}

4964 4965 4966 4967 4968 4969
static u64 mem_cgroup_move_charge_read(struct cgroup *cgrp,
					struct cftype *cft)
{
	return mem_cgroup_from_cont(cgrp)->move_charge_at_immigrate;
}

4970
#ifdef CONFIG_MMU
4971 4972 4973
static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
					struct cftype *cft, u64 val)
{
4974
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4975 4976 4977 4978 4979 4980 4981 4982 4983

	if (val >= (1 << NR_MOVE_TYPE))
		return -EINVAL;
	/*
	 * We check this value several times in both in can_attach() and
	 * attach(), so we need cgroup lock to prevent this value from being
	 * inconsistent.
	 */
	cgroup_lock();
4984
	memcg->move_charge_at_immigrate = val;
4985 4986 4987 4988
	cgroup_unlock();

	return 0;
}
4989 4990 4991 4992 4993 4994 4995
#else
static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
					struct cftype *cft, u64 val)
{
	return -ENOSYS;
}
#endif
4996

4997
#ifdef CONFIG_NUMA
4998
static int memcg_numa_stat_show(struct cgroup *cont, struct cftype *cft,
4999
				      struct seq_file *m)
5000 5001 5002 5003
{
	int nid;
	unsigned long total_nr, file_nr, anon_nr, unevictable_nr;
	unsigned long node_nr;
5004
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
5005

5006
	total_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL);
5007
	seq_printf(m, "total=%lu", total_nr);
5008
	for_each_node_state(nid, N_MEMORY) {
5009
		node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL);
5010 5011 5012 5013
		seq_printf(m, " N%d=%lu", nid, node_nr);
	}
	seq_putc(m, '\n');

5014
	file_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL_FILE);
5015
	seq_printf(m, "file=%lu", file_nr);
5016
	for_each_node_state(nid, N_MEMORY) {
5017
		node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
5018
				LRU_ALL_FILE);
5019 5020 5021 5022
		seq_printf(m, " N%d=%lu", nid, node_nr);
	}
	seq_putc(m, '\n');

5023
	anon_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL_ANON);
5024
	seq_printf(m, "anon=%lu", anon_nr);
5025
	for_each_node_state(nid, N_MEMORY) {
5026
		node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
5027
				LRU_ALL_ANON);
5028 5029 5030 5031
		seq_printf(m, " N%d=%lu", nid, node_nr);
	}
	seq_putc(m, '\n');

5032
	unevictable_nr = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_UNEVICTABLE));
5033
	seq_printf(m, "unevictable=%lu", unevictable_nr);
5034
	for_each_node_state(nid, N_MEMORY) {
5035
		node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
5036
				BIT(LRU_UNEVICTABLE));
5037 5038 5039 5040 5041 5042 5043
		seq_printf(m, " N%d=%lu", nid, node_nr);
	}
	seq_putc(m, '\n');
	return 0;
}
#endif /* CONFIG_NUMA */

5044 5045 5046 5047 5048 5049 5050 5051 5052 5053 5054 5055 5056
static const char * const mem_cgroup_lru_names[] = {
	"inactive_anon",
	"active_anon",
	"inactive_file",
	"active_file",
	"unevictable",
};

static inline void mem_cgroup_lru_names_not_uptodate(void)
{
	BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS);
}

5057
static int memcg_stat_show(struct cgroup *cont, struct cftype *cft,
5058
				 struct seq_file *m)
5059
{
5060
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
5061 5062
	struct mem_cgroup *mi;
	unsigned int i;
5063

5064
	for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
5065
		if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
5066
			continue;
5067 5068
		seq_printf(m, "%s %ld\n", mem_cgroup_stat_names[i],
			   mem_cgroup_read_stat(memcg, i) * PAGE_SIZE);
5069
	}
L
Lee Schermerhorn 已提交
5070

5071 5072 5073 5074 5075 5076 5077 5078
	for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++)
		seq_printf(m, "%s %lu\n", mem_cgroup_events_names[i],
			   mem_cgroup_read_events(memcg, i));

	for (i = 0; i < NR_LRU_LISTS; i++)
		seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i],
			   mem_cgroup_nr_lru_pages(memcg, BIT(i)) * PAGE_SIZE);

K
KAMEZAWA Hiroyuki 已提交
5079
	/* Hierarchical information */
5080 5081
	{
		unsigned long long limit, memsw_limit;
5082
		memcg_get_hierarchical_limit(memcg, &limit, &memsw_limit);
5083
		seq_printf(m, "hierarchical_memory_limit %llu\n", limit);
5084
		if (do_swap_account)
5085 5086
			seq_printf(m, "hierarchical_memsw_limit %llu\n",
				   memsw_limit);
5087
	}
K
KOSAKI Motohiro 已提交
5088

5089 5090 5091
	for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
		long long val = 0;

5092
		if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
5093
			continue;
5094 5095 5096 5097 5098 5099 5100 5101 5102 5103 5104 5105 5106 5107 5108 5109 5110 5111 5112 5113
		for_each_mem_cgroup_tree(mi, memcg)
			val += mem_cgroup_read_stat(mi, i) * PAGE_SIZE;
		seq_printf(m, "total_%s %lld\n", mem_cgroup_stat_names[i], val);
	}

	for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
		unsigned long long val = 0;

		for_each_mem_cgroup_tree(mi, memcg)
			val += mem_cgroup_read_events(mi, i);
		seq_printf(m, "total_%s %llu\n",
			   mem_cgroup_events_names[i], val);
	}

	for (i = 0; i < NR_LRU_LISTS; i++) {
		unsigned long long val = 0;

		for_each_mem_cgroup_tree(mi, memcg)
			val += mem_cgroup_nr_lru_pages(mi, BIT(i)) * PAGE_SIZE;
		seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i], val);
5114
	}
K
KAMEZAWA Hiroyuki 已提交
5115

K
KOSAKI Motohiro 已提交
5116 5117 5118 5119
#ifdef CONFIG_DEBUG_VM
	{
		int nid, zid;
		struct mem_cgroup_per_zone *mz;
5120
		struct zone_reclaim_stat *rstat;
K
KOSAKI Motohiro 已提交
5121 5122 5123 5124 5125
		unsigned long recent_rotated[2] = {0, 0};
		unsigned long recent_scanned[2] = {0, 0};

		for_each_online_node(nid)
			for (zid = 0; zid < MAX_NR_ZONES; zid++) {
5126
				mz = mem_cgroup_zoneinfo(memcg, nid, zid);
5127
				rstat = &mz->lruvec.reclaim_stat;
K
KOSAKI Motohiro 已提交
5128

5129 5130 5131 5132
				recent_rotated[0] += rstat->recent_rotated[0];
				recent_rotated[1] += rstat->recent_rotated[1];
				recent_scanned[0] += rstat->recent_scanned[0];
				recent_scanned[1] += rstat->recent_scanned[1];
K
KOSAKI Motohiro 已提交
5133
			}
5134 5135 5136 5137
		seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]);
		seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]);
		seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]);
		seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]);
K
KOSAKI Motohiro 已提交
5138 5139 5140
	}
#endif

5141 5142 5143
	return 0;
}

K
KOSAKI Motohiro 已提交
5144 5145 5146 5147
static u64 mem_cgroup_swappiness_read(struct cgroup *cgrp, struct cftype *cft)
{
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);

5148
	return mem_cgroup_swappiness(memcg);
K
KOSAKI Motohiro 已提交
5149 5150 5151 5152 5153 5154 5155
}

static int mem_cgroup_swappiness_write(struct cgroup *cgrp, struct cftype *cft,
				       u64 val)
{
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
	struct mem_cgroup *parent;
5156

K
KOSAKI Motohiro 已提交
5157 5158 5159 5160 5161 5162 5163
	if (val > 100)
		return -EINVAL;

	if (cgrp->parent == NULL)
		return -EINVAL;

	parent = mem_cgroup_from_cont(cgrp->parent);
5164 5165 5166

	cgroup_lock();

K
KOSAKI Motohiro 已提交
5167 5168
	/* If under hierarchy, only empty-root can set this value */
	if ((parent->use_hierarchy) ||
5169 5170
	    (memcg->use_hierarchy && !list_empty(&cgrp->children))) {
		cgroup_unlock();
K
KOSAKI Motohiro 已提交
5171
		return -EINVAL;
5172
	}
K
KOSAKI Motohiro 已提交
5173 5174 5175

	memcg->swappiness = val;

5176 5177
	cgroup_unlock();

K
KOSAKI Motohiro 已提交
5178 5179 5180
	return 0;
}

5181 5182 5183 5184 5185 5186 5187 5188
static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
{
	struct mem_cgroup_threshold_ary *t;
	u64 usage;
	int i;

	rcu_read_lock();
	if (!swap)
5189
		t = rcu_dereference(memcg->thresholds.primary);
5190
	else
5191
		t = rcu_dereference(memcg->memsw_thresholds.primary);
5192 5193 5194 5195 5196 5197 5198

	if (!t)
		goto unlock;

	usage = mem_cgroup_usage(memcg, swap);

	/*
5199
	 * current_threshold points to threshold just below or equal to usage.
5200 5201 5202
	 * If it's not true, a threshold was crossed after last
	 * call of __mem_cgroup_threshold().
	 */
5203
	i = t->current_threshold;
5204 5205 5206 5207 5208 5209 5210 5211 5212 5213 5214 5215 5216 5217 5218 5219 5220 5221 5222 5223 5224 5225 5226

	/*
	 * Iterate backward over array of thresholds starting from
	 * current_threshold and check if a threshold is crossed.
	 * If none of thresholds below usage is crossed, we read
	 * only one element of the array here.
	 */
	for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
		eventfd_signal(t->entries[i].eventfd, 1);

	/* i = current_threshold + 1 */
	i++;

	/*
	 * Iterate forward over array of thresholds starting from
	 * current_threshold+1 and check if a threshold is crossed.
	 * If none of thresholds above usage is crossed, we read
	 * only one element of the array here.
	 */
	for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
		eventfd_signal(t->entries[i].eventfd, 1);

	/* Update current_threshold */
5227
	t->current_threshold = i - 1;
5228 5229 5230 5231 5232 5233
unlock:
	rcu_read_unlock();
}

static void mem_cgroup_threshold(struct mem_cgroup *memcg)
{
5234 5235 5236 5237 5238 5239 5240
	while (memcg) {
		__mem_cgroup_threshold(memcg, false);
		if (do_swap_account)
			__mem_cgroup_threshold(memcg, true);

		memcg = parent_mem_cgroup(memcg);
	}
5241 5242 5243 5244 5245 5246 5247 5248 5249 5250
}

static int compare_thresholds(const void *a, const void *b)
{
	const struct mem_cgroup_threshold *_a = a;
	const struct mem_cgroup_threshold *_b = b;

	return _a->threshold - _b->threshold;
}

5251
static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
5252 5253 5254
{
	struct mem_cgroup_eventfd_list *ev;

5255
	list_for_each_entry(ev, &memcg->oom_notify, list)
K
KAMEZAWA Hiroyuki 已提交
5256 5257 5258 5259
		eventfd_signal(ev->eventfd, 1);
	return 0;
}

5260
static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
5261
{
K
KAMEZAWA Hiroyuki 已提交
5262 5263
	struct mem_cgroup *iter;

5264
	for_each_mem_cgroup_tree(iter, memcg)
K
KAMEZAWA Hiroyuki 已提交
5265
		mem_cgroup_oom_notify_cb(iter);
K
KAMEZAWA Hiroyuki 已提交
5266 5267 5268 5269
}

static int mem_cgroup_usage_register_event(struct cgroup *cgrp,
	struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
5270 5271
{
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
5272 5273
	struct mem_cgroup_thresholds *thresholds;
	struct mem_cgroup_threshold_ary *new;
G
Glauber Costa 已提交
5274
	enum res_type type = MEMFILE_TYPE(cft->private);
5275
	u64 threshold, usage;
5276
	int i, size, ret;
5277 5278 5279 5280 5281 5282

	ret = res_counter_memparse_write_strategy(args, &threshold);
	if (ret)
		return ret;

	mutex_lock(&memcg->thresholds_lock);
5283

5284
	if (type == _MEM)
5285
		thresholds = &memcg->thresholds;
5286
	else if (type == _MEMSWAP)
5287
		thresholds = &memcg->memsw_thresholds;
5288 5289 5290 5291 5292 5293
	else
		BUG();

	usage = mem_cgroup_usage(memcg, type == _MEMSWAP);

	/* Check if a threshold crossed before adding a new one */
5294
	if (thresholds->primary)
5295 5296
		__mem_cgroup_threshold(memcg, type == _MEMSWAP);

5297
	size = thresholds->primary ? thresholds->primary->size + 1 : 1;
5298 5299

	/* Allocate memory for new array of thresholds */
5300
	new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
5301
			GFP_KERNEL);
5302
	if (!new) {
5303 5304 5305
		ret = -ENOMEM;
		goto unlock;
	}
5306
	new->size = size;
5307 5308

	/* Copy thresholds (if any) to new array */
5309 5310
	if (thresholds->primary) {
		memcpy(new->entries, thresholds->primary->entries, (size - 1) *
5311
				sizeof(struct mem_cgroup_threshold));
5312 5313
	}

5314
	/* Add new threshold */
5315 5316
	new->entries[size - 1].eventfd = eventfd;
	new->entries[size - 1].threshold = threshold;
5317 5318

	/* Sort thresholds. Registering of new threshold isn't time-critical */
5319
	sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
5320 5321 5322
			compare_thresholds, NULL);

	/* Find current threshold */
5323
	new->current_threshold = -1;
5324
	for (i = 0; i < size; i++) {
5325
		if (new->entries[i].threshold <= usage) {
5326
			/*
5327 5328
			 * new->current_threshold will not be used until
			 * rcu_assign_pointer(), so it's safe to increment
5329 5330
			 * it here.
			 */
5331
			++new->current_threshold;
5332 5333
		} else
			break;
5334 5335
	}

5336 5337 5338 5339 5340
	/* Free old spare buffer and save old primary buffer as spare */
	kfree(thresholds->spare);
	thresholds->spare = thresholds->primary;

	rcu_assign_pointer(thresholds->primary, new);
5341

5342
	/* To be sure that nobody uses thresholds */
5343 5344 5345 5346 5347 5348 5349 5350
	synchronize_rcu();

unlock:
	mutex_unlock(&memcg->thresholds_lock);

	return ret;
}

5351
static void mem_cgroup_usage_unregister_event(struct cgroup *cgrp,
K
KAMEZAWA Hiroyuki 已提交
5352
	struct cftype *cft, struct eventfd_ctx *eventfd)
5353 5354
{
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
5355 5356
	struct mem_cgroup_thresholds *thresholds;
	struct mem_cgroup_threshold_ary *new;
G
Glauber Costa 已提交
5357
	enum res_type type = MEMFILE_TYPE(cft->private);
5358
	u64 usage;
5359
	int i, j, size;
5360 5361 5362

	mutex_lock(&memcg->thresholds_lock);
	if (type == _MEM)
5363
		thresholds = &memcg->thresholds;
5364
	else if (type == _MEMSWAP)
5365
		thresholds = &memcg->memsw_thresholds;
5366 5367 5368
	else
		BUG();

5369 5370 5371
	if (!thresholds->primary)
		goto unlock;

5372 5373 5374 5375 5376 5377
	usage = mem_cgroup_usage(memcg, type == _MEMSWAP);

	/* Check if a threshold crossed before removing */
	__mem_cgroup_threshold(memcg, type == _MEMSWAP);

	/* Calculate new number of threshold */
5378 5379 5380
	size = 0;
	for (i = 0; i < thresholds->primary->size; i++) {
		if (thresholds->primary->entries[i].eventfd != eventfd)
5381 5382 5383
			size++;
	}

5384
	new = thresholds->spare;
5385

5386 5387
	/* Set thresholds array to NULL if we don't have thresholds */
	if (!size) {
5388 5389
		kfree(new);
		new = NULL;
5390
		goto swap_buffers;
5391 5392
	}

5393
	new->size = size;
5394 5395

	/* Copy thresholds and find current threshold */
5396 5397 5398
	new->current_threshold = -1;
	for (i = 0, j = 0; i < thresholds->primary->size; i++) {
		if (thresholds->primary->entries[i].eventfd == eventfd)
5399 5400
			continue;

5401
		new->entries[j] = thresholds->primary->entries[i];
5402
		if (new->entries[j].threshold <= usage) {
5403
			/*
5404
			 * new->current_threshold will not be used
5405 5406 5407
			 * until rcu_assign_pointer(), so it's safe to increment
			 * it here.
			 */
5408
			++new->current_threshold;
5409 5410 5411 5412
		}
		j++;
	}

5413
swap_buffers:
5414 5415
	/* Swap primary and spare array */
	thresholds->spare = thresholds->primary;
5416 5417 5418 5419 5420 5421
	/* If all events are unregistered, free the spare array */
	if (!new) {
		kfree(thresholds->spare);
		thresholds->spare = NULL;
	}

5422
	rcu_assign_pointer(thresholds->primary, new);
5423

5424
	/* To be sure that nobody uses thresholds */
5425
	synchronize_rcu();
5426
unlock:
5427 5428
	mutex_unlock(&memcg->thresholds_lock);
}
5429

K
KAMEZAWA Hiroyuki 已提交
5430 5431 5432 5433 5434
static int mem_cgroup_oom_register_event(struct cgroup *cgrp,
	struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
{
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
	struct mem_cgroup_eventfd_list *event;
G
Glauber Costa 已提交
5435
	enum res_type type = MEMFILE_TYPE(cft->private);
K
KAMEZAWA Hiroyuki 已提交
5436 5437 5438 5439 5440 5441

	BUG_ON(type != _OOM_TYPE);
	event = kmalloc(sizeof(*event),	GFP_KERNEL);
	if (!event)
		return -ENOMEM;

5442
	spin_lock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
5443 5444 5445 5446 5447

	event->eventfd = eventfd;
	list_add(&event->list, &memcg->oom_notify);

	/* already in OOM ? */
5448
	if (atomic_read(&memcg->under_oom))
K
KAMEZAWA Hiroyuki 已提交
5449
		eventfd_signal(eventfd, 1);
5450
	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
5451 5452 5453 5454

	return 0;
}

5455
static void mem_cgroup_oom_unregister_event(struct cgroup *cgrp,
K
KAMEZAWA Hiroyuki 已提交
5456 5457
	struct cftype *cft, struct eventfd_ctx *eventfd)
{
5458
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
K
KAMEZAWA Hiroyuki 已提交
5459
	struct mem_cgroup_eventfd_list *ev, *tmp;
G
Glauber Costa 已提交
5460
	enum res_type type = MEMFILE_TYPE(cft->private);
K
KAMEZAWA Hiroyuki 已提交
5461 5462 5463

	BUG_ON(type != _OOM_TYPE);

5464
	spin_lock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
5465

5466
	list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
K
KAMEZAWA Hiroyuki 已提交
5467 5468 5469 5470 5471 5472
		if (ev->eventfd == eventfd) {
			list_del(&ev->list);
			kfree(ev);
		}
	}

5473
	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
5474 5475
}

5476 5477 5478
static int mem_cgroup_oom_control_read(struct cgroup *cgrp,
	struct cftype *cft,  struct cgroup_map_cb *cb)
{
5479
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
5480

5481
	cb->fill(cb, "oom_kill_disable", memcg->oom_kill_disable);
5482

5483
	if (atomic_read(&memcg->under_oom))
5484 5485 5486 5487 5488 5489 5490 5491 5492
		cb->fill(cb, "under_oom", 1);
	else
		cb->fill(cb, "under_oom", 0);
	return 0;
}

static int mem_cgroup_oom_control_write(struct cgroup *cgrp,
	struct cftype *cft, u64 val)
{
5493
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
5494 5495 5496 5497 5498 5499 5500 5501 5502 5503 5504
	struct mem_cgroup *parent;

	/* cannot set to root cgroup and only 0 and 1 are allowed */
	if (!cgrp->parent || !((val == 0) || (val == 1)))
		return -EINVAL;

	parent = mem_cgroup_from_cont(cgrp->parent);

	cgroup_lock();
	/* oom-kill-disable is a flag for subhierarchy. */
	if ((parent->use_hierarchy) ||
5505
	    (memcg->use_hierarchy && !list_empty(&cgrp->children))) {
5506 5507 5508
		cgroup_unlock();
		return -EINVAL;
	}
5509
	memcg->oom_kill_disable = val;
5510
	if (!val)
5511
		memcg_oom_recover(memcg);
5512 5513 5514 5515
	cgroup_unlock();
	return 0;
}

A
Andrew Morton 已提交
5516
#ifdef CONFIG_MEMCG_KMEM
5517
static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
5518
{
5519 5520
	int ret;

5521
	memcg->kmemcg_id = -1;
5522 5523 5524
	ret = memcg_propagate_kmem(memcg);
	if (ret)
		return ret;
5525

5526
	return mem_cgroup_sockets_init(memcg, ss);
5527 5528
};

5529
static void kmem_cgroup_destroy(struct mem_cgroup *memcg)
G
Glauber Costa 已提交
5530
{
5531
	mem_cgroup_sockets_destroy(memcg);
5532 5533 5534 5535 5536 5537 5538 5539 5540 5541 5542 5543 5544 5545

	memcg_kmem_mark_dead(memcg);

	if (res_counter_read_u64(&memcg->kmem, RES_USAGE) != 0)
		return;

	/*
	 * Charges already down to 0, undo mem_cgroup_get() done in the charge
	 * path here, being careful not to race with memcg_uncharge_kmem: it is
	 * possible that the charges went down to 0 between mark_dead and the
	 * res_counter read, so in that case, we don't need the put
	 */
	if (memcg_kmem_test_and_clear_dead(memcg))
		mem_cgroup_put(memcg);
G
Glauber Costa 已提交
5546
}
5547
#else
5548
static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
5549 5550 5551
{
	return 0;
}
G
Glauber Costa 已提交
5552

5553
static void kmem_cgroup_destroy(struct mem_cgroup *memcg)
G
Glauber Costa 已提交
5554 5555
{
}
5556 5557
#endif

B
Balbir Singh 已提交
5558 5559
static struct cftype mem_cgroup_files[] = {
	{
5560
		.name = "usage_in_bytes",
5561
		.private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
5562
		.read = mem_cgroup_read,
K
KAMEZAWA Hiroyuki 已提交
5563 5564
		.register_event = mem_cgroup_usage_register_event,
		.unregister_event = mem_cgroup_usage_unregister_event,
B
Balbir Singh 已提交
5565
	},
5566 5567
	{
		.name = "max_usage_in_bytes",
5568
		.private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
5569
		.trigger = mem_cgroup_reset,
5570
		.read = mem_cgroup_read,
5571
	},
B
Balbir Singh 已提交
5572
	{
5573
		.name = "limit_in_bytes",
5574
		.private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
5575
		.write_string = mem_cgroup_write,
5576
		.read = mem_cgroup_read,
B
Balbir Singh 已提交
5577
	},
5578 5579 5580 5581
	{
		.name = "soft_limit_in_bytes",
		.private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
		.write_string = mem_cgroup_write,
5582
		.read = mem_cgroup_read,
5583
	},
B
Balbir Singh 已提交
5584 5585
	{
		.name = "failcnt",
5586
		.private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
5587
		.trigger = mem_cgroup_reset,
5588
		.read = mem_cgroup_read,
B
Balbir Singh 已提交
5589
	},
5590 5591
	{
		.name = "stat",
5592
		.read_seq_string = memcg_stat_show,
5593
	},
5594 5595 5596 5597
	{
		.name = "force_empty",
		.trigger = mem_cgroup_force_empty_write,
	},
5598 5599 5600 5601 5602
	{
		.name = "use_hierarchy",
		.write_u64 = mem_cgroup_hierarchy_write,
		.read_u64 = mem_cgroup_hierarchy_read,
	},
K
KOSAKI Motohiro 已提交
5603 5604 5605 5606 5607
	{
		.name = "swappiness",
		.read_u64 = mem_cgroup_swappiness_read,
		.write_u64 = mem_cgroup_swappiness_write,
	},
5608 5609 5610 5611 5612
	{
		.name = "move_charge_at_immigrate",
		.read_u64 = mem_cgroup_move_charge_read,
		.write_u64 = mem_cgroup_move_charge_write,
	},
K
KAMEZAWA Hiroyuki 已提交
5613 5614
	{
		.name = "oom_control",
5615 5616
		.read_map = mem_cgroup_oom_control_read,
		.write_u64 = mem_cgroup_oom_control_write,
K
KAMEZAWA Hiroyuki 已提交
5617 5618 5619 5620
		.register_event = mem_cgroup_oom_register_event,
		.unregister_event = mem_cgroup_oom_unregister_event,
		.private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
	},
5621 5622 5623
#ifdef CONFIG_NUMA
	{
		.name = "numa_stat",
5624
		.read_seq_string = memcg_numa_stat_show,
5625 5626
	},
#endif
A
Andrew Morton 已提交
5627
#ifdef CONFIG_MEMCG_SWAP
5628 5629 5630
	{
		.name = "memsw.usage_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
5631
		.read = mem_cgroup_read,
K
KAMEZAWA Hiroyuki 已提交
5632 5633
		.register_event = mem_cgroup_usage_register_event,
		.unregister_event = mem_cgroup_usage_unregister_event,
5634 5635 5636 5637 5638
	},
	{
		.name = "memsw.max_usage_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
		.trigger = mem_cgroup_reset,
5639
		.read = mem_cgroup_read,
5640 5641 5642 5643 5644
	},
	{
		.name = "memsw.limit_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
		.write_string = mem_cgroup_write,
5645
		.read = mem_cgroup_read,
5646 5647 5648 5649 5650
	},
	{
		.name = "memsw.failcnt",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
		.trigger = mem_cgroup_reset,
5651
		.read = mem_cgroup_read,
5652
	},
5653 5654 5655 5656 5657 5658 5659 5660 5661 5662 5663 5664 5665 5666 5667 5668 5669 5670 5671 5672 5673 5674 5675 5676 5677
#endif
#ifdef CONFIG_MEMCG_KMEM
	{
		.name = "kmem.limit_in_bytes",
		.private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
		.write_string = mem_cgroup_write,
		.read = mem_cgroup_read,
	},
	{
		.name = "kmem.usage_in_bytes",
		.private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
		.read = mem_cgroup_read,
	},
	{
		.name = "kmem.failcnt",
		.private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
		.trigger = mem_cgroup_reset,
		.read = mem_cgroup_read,
	},
	{
		.name = "kmem.max_usage_in_bytes",
		.private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
		.trigger = mem_cgroup_reset,
		.read = mem_cgroup_read,
	},
5678
#endif
5679
	{ },	/* terminate */
5680
};
5681

5682
static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
5683 5684
{
	struct mem_cgroup_per_node *pn;
5685
	struct mem_cgroup_per_zone *mz;
5686
	int zone, tmp = node;
5687 5688 5689 5690 5691 5692 5693 5694
	/*
	 * This routine is called against possible nodes.
	 * But it's BUG to call kmalloc() against offline node.
	 *
	 * TODO: this routine can waste much memory for nodes which will
	 *       never be onlined. It's better to use memory hotplug callback
	 *       function.
	 */
5695 5696
	if (!node_state(node, N_NORMAL_MEMORY))
		tmp = -1;
5697
	pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
5698 5699
	if (!pn)
		return 1;
5700 5701 5702

	for (zone = 0; zone < MAX_NR_ZONES; zone++) {
		mz = &pn->zoneinfo[zone];
5703
		lruvec_init(&mz->lruvec);
5704
		mz->usage_in_excess = 0;
5705
		mz->on_tree = false;
5706
		mz->memcg = memcg;
5707
	}
5708
	memcg->info.nodeinfo[node] = pn;
5709 5710 5711
	return 0;
}

5712
static void free_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
5713
{
5714
	kfree(memcg->info.nodeinfo[node]);
5715 5716
}

5717 5718
static struct mem_cgroup *mem_cgroup_alloc(void)
{
5719
	struct mem_cgroup *memcg;
5720
	int size = sizeof(struct mem_cgroup);
5721

5722
	/* Can be very big if MAX_NUMNODES is very big */
5723
	if (size < PAGE_SIZE)
5724
		memcg = kzalloc(size, GFP_KERNEL);
5725
	else
5726
		memcg = vzalloc(size);
5727

5728
	if (!memcg)
5729 5730
		return NULL;

5731 5732
	memcg->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
	if (!memcg->stat)
5733
		goto out_free;
5734 5735
	spin_lock_init(&memcg->pcp_counter_lock);
	return memcg;
5736 5737 5738

out_free:
	if (size < PAGE_SIZE)
5739
		kfree(memcg);
5740
	else
5741
		vfree(memcg);
5742
	return NULL;
5743 5744
}

5745
/*
5746 5747 5748 5749 5750 5751 5752 5753
 * At destroying mem_cgroup, references from swap_cgroup can remain.
 * (scanning all at force_empty is too costly...)
 *
 * Instead of clearing all references at force_empty, we remember
 * the number of reference from swap_cgroup and free mem_cgroup when
 * it goes down to 0.
 *
 * Removal of cgroup itself succeeds regardless of refs from swap.
5754
 */
5755 5756

static void __mem_cgroup_free(struct mem_cgroup *memcg)
5757
{
5758
	int node;
5759
	int size = sizeof(struct mem_cgroup);
5760

5761 5762 5763 5764 5765 5766 5767 5768
	mem_cgroup_remove_from_trees(memcg);
	free_css_id(&mem_cgroup_subsys, &memcg->css);

	for_each_node(node)
		free_mem_cgroup_per_zone_info(memcg, node);

	free_percpu(memcg->stat);

5769 5770 5771 5772 5773 5774 5775 5776 5777 5778 5779
	/*
	 * We need to make sure that (at least for now), the jump label
	 * destruction code runs outside of the cgroup lock. This is because
	 * get_online_cpus(), which is called from the static_branch update,
	 * can't be called inside the cgroup_lock. cpusets are the ones
	 * enforcing this dependency, so if they ever change, we might as well.
	 *
	 * schedule_work() will guarantee this happens. Be careful if you need
	 * to move this code around, and make sure it is outside
	 * the cgroup_lock.
	 */
5780
	disarm_static_keys(memcg);
5781 5782 5783 5784
	if (size < PAGE_SIZE)
		kfree(memcg);
	else
		vfree(memcg);
5785
}
5786

5787

5788
/*
5789 5790 5791
 * Helpers for freeing a kmalloc()ed/vzalloc()ed mem_cgroup by RCU,
 * but in process context.  The work_freeing structure is overlaid
 * on the rcu_freeing structure, which itself is overlaid on memsw.
5792
 */
5793
static void free_work(struct work_struct *work)
5794
{
5795
	struct mem_cgroup *memcg;
K
KAMEZAWA Hiroyuki 已提交
5796

5797 5798 5799
	memcg = container_of(work, struct mem_cgroup, work_freeing);
	__mem_cgroup_free(memcg);
}
K
KAMEZAWA Hiroyuki 已提交
5800

5801 5802 5803
static void free_rcu(struct rcu_head *rcu_head)
{
	struct mem_cgroup *memcg;
K
KAMEZAWA Hiroyuki 已提交
5804

5805 5806 5807
	memcg = container_of(rcu_head, struct mem_cgroup, rcu_freeing);
	INIT_WORK(&memcg->work_freeing, free_work);
	schedule_work(&memcg->work_freeing);
5808 5809
}

5810
static void mem_cgroup_get(struct mem_cgroup *memcg)
5811
{
5812
	atomic_inc(&memcg->refcnt);
5813 5814
}

5815
static void __mem_cgroup_put(struct mem_cgroup *memcg, int count)
5816
{
5817 5818
	if (atomic_sub_and_test(count, &memcg->refcnt)) {
		struct mem_cgroup *parent = parent_mem_cgroup(memcg);
5819
		call_rcu(&memcg->rcu_freeing, free_rcu);
5820 5821 5822
		if (parent)
			mem_cgroup_put(parent);
	}
5823 5824
}

5825
static void mem_cgroup_put(struct mem_cgroup *memcg)
5826
{
5827
	__mem_cgroup_put(memcg, 1);
5828 5829
}

5830 5831 5832
/*
 * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
 */
G
Glauber Costa 已提交
5833
struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg)
5834
{
5835
	if (!memcg->res.parent)
5836
		return NULL;
5837
	return mem_cgroup_from_res_counter(memcg->res.parent, res);
5838
}
G
Glauber Costa 已提交
5839
EXPORT_SYMBOL(parent_mem_cgroup);
5840

A
Andrew Morton 已提交
5841
#ifdef CONFIG_MEMCG_SWAP
5842 5843
static void __init enable_swap_cgroup(void)
{
5844
	if (!mem_cgroup_disabled() && really_do_swap_account)
5845 5846 5847 5848 5849 5850 5851 5852
		do_swap_account = 1;
}
#else
static void __init enable_swap_cgroup(void)
{
}
#endif

5853 5854 5855 5856 5857 5858
static int mem_cgroup_soft_limit_tree_init(void)
{
	struct mem_cgroup_tree_per_node *rtpn;
	struct mem_cgroup_tree_per_zone *rtpz;
	int tmp, node, zone;

B
Bob Liu 已提交
5859
	for_each_node(node) {
5860 5861 5862 5863 5864
		tmp = node;
		if (!node_state(node, N_NORMAL_MEMORY))
			tmp = -1;
		rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, tmp);
		if (!rtpn)
5865
			goto err_cleanup;
5866 5867 5868 5869 5870 5871 5872 5873 5874 5875

		soft_limit_tree.rb_tree_per_node[node] = rtpn;

		for (zone = 0; zone < MAX_NR_ZONES; zone++) {
			rtpz = &rtpn->rb_tree_per_zone[zone];
			rtpz->rb_root = RB_ROOT;
			spin_lock_init(&rtpz->lock);
		}
	}
	return 0;
5876 5877

err_cleanup:
B
Bob Liu 已提交
5878
	for_each_node(node) {
5879 5880 5881 5882 5883 5884 5885
		if (!soft_limit_tree.rb_tree_per_node[node])
			break;
		kfree(soft_limit_tree.rb_tree_per_node[node]);
		soft_limit_tree.rb_tree_per_node[node] = NULL;
	}
	return 1;

5886 5887
}

L
Li Zefan 已提交
5888
static struct cgroup_subsys_state * __ref
5889
mem_cgroup_css_alloc(struct cgroup *cont)
B
Balbir Singh 已提交
5890
{
5891
	struct mem_cgroup *memcg, *parent;
K
KAMEZAWA Hiroyuki 已提交
5892
	long error = -ENOMEM;
5893
	int node;
B
Balbir Singh 已提交
5894

5895 5896
	memcg = mem_cgroup_alloc();
	if (!memcg)
K
KAMEZAWA Hiroyuki 已提交
5897
		return ERR_PTR(error);
5898

B
Bob Liu 已提交
5899
	for_each_node(node)
5900
		if (alloc_mem_cgroup_per_zone_info(memcg, node))
5901
			goto free_out;
5902

5903
	/* root ? */
5904
	if (cont->parent == NULL) {
5905
		int cpu;
5906
		enable_swap_cgroup();
5907
		parent = NULL;
5908 5909
		if (mem_cgroup_soft_limit_tree_init())
			goto free_out;
5910
		root_mem_cgroup = memcg;
5911 5912 5913 5914 5915
		for_each_possible_cpu(cpu) {
			struct memcg_stock_pcp *stock =
						&per_cpu(memcg_stock, cpu);
			INIT_WORK(&stock->work, drain_local_stock);
		}
5916
		hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
5917
	} else {
5918
		parent = mem_cgroup_from_cont(cont->parent);
5919 5920
		memcg->use_hierarchy = parent->use_hierarchy;
		memcg->oom_kill_disable = parent->oom_kill_disable;
5921
	}
5922

5923
	if (parent && parent->use_hierarchy) {
5924 5925
		res_counter_init(&memcg->res, &parent->res);
		res_counter_init(&memcg->memsw, &parent->memsw);
5926
		res_counter_init(&memcg->kmem, &parent->kmem);
5927

5928 5929 5930 5931 5932 5933 5934
		/*
		 * We increment refcnt of the parent to ensure that we can
		 * safely access it on res_counter_charge/uncharge.
		 * This refcnt will be decremented when freeing this
		 * mem_cgroup(see mem_cgroup_put).
		 */
		mem_cgroup_get(parent);
5935
	} else {
5936 5937
		res_counter_init(&memcg->res, NULL);
		res_counter_init(&memcg->memsw, NULL);
5938
		res_counter_init(&memcg->kmem, NULL);
5939 5940 5941 5942 5943 5944 5945
		/*
		 * Deeper hierachy with use_hierarchy == false doesn't make
		 * much sense so let cgroup subsystem know about this
		 * unfortunate state in our controller.
		 */
		if (parent && parent != root_mem_cgroup)
			mem_cgroup_subsys.broken_hierarchy = true;
5946
	}
5947 5948
	memcg->last_scanned_node = MAX_NUMNODES;
	INIT_LIST_HEAD(&memcg->oom_notify);
5949

K
KOSAKI Motohiro 已提交
5950
	if (parent)
5951 5952 5953 5954
		memcg->swappiness = mem_cgroup_swappiness(parent);
	atomic_set(&memcg->refcnt, 1);
	memcg->move_charge_at_immigrate = 0;
	mutex_init(&memcg->thresholds_lock);
5955
	spin_lock_init(&memcg->move_lock);
5956 5957 5958 5959 5960 5961 5962 5963 5964 5965 5966

	error = memcg_init_kmem(memcg, &mem_cgroup_subsys);
	if (error) {
		/*
		 * We call put now because our (and parent's) refcnts
		 * are already in place. mem_cgroup_put() will internally
		 * call __mem_cgroup_free, so return directly
		 */
		mem_cgroup_put(memcg);
		return ERR_PTR(error);
	}
5967
	return &memcg->css;
5968
free_out:
5969
	__mem_cgroup_free(memcg);
K
KAMEZAWA Hiroyuki 已提交
5970
	return ERR_PTR(error);
B
Balbir Singh 已提交
5971 5972
}

5973
static void mem_cgroup_css_offline(struct cgroup *cont)
5974
{
5975
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
5976

5977
	mem_cgroup_reparent_charges(memcg);
5978 5979
}

5980
static void mem_cgroup_css_free(struct cgroup *cont)
B
Balbir Singh 已提交
5981
{
5982
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
5983

5984
	kmem_cgroup_destroy(memcg);
G
Glauber Costa 已提交
5985

5986
	mem_cgroup_put(memcg);
B
Balbir Singh 已提交
5987 5988
}

5989
#ifdef CONFIG_MMU
5990
/* Handlers for move charge at task migration. */
5991 5992
#define PRECHARGE_COUNT_AT_ONCE	256
static int mem_cgroup_do_precharge(unsigned long count)
5993
{
5994 5995
	int ret = 0;
	int batch_count = PRECHARGE_COUNT_AT_ONCE;
5996
	struct mem_cgroup *memcg = mc.to;
5997

5998
	if (mem_cgroup_is_root(memcg)) {
5999 6000 6001 6002 6003 6004 6005 6006
		mc.precharge += count;
		/* we don't need css_get for root */
		return ret;
	}
	/* try to charge at once */
	if (count > 1) {
		struct res_counter *dummy;
		/*
6007
		 * "memcg" cannot be under rmdir() because we've already checked
6008 6009 6010 6011
		 * by cgroup_lock_live_cgroup() that it is not removed and we
		 * are still under the same cgroup_mutex. So we can postpone
		 * css_get().
		 */
6012
		if (res_counter_charge(&memcg->res, PAGE_SIZE * count, &dummy))
6013
			goto one_by_one;
6014
		if (do_swap_account && res_counter_charge(&memcg->memsw,
6015
						PAGE_SIZE * count, &dummy)) {
6016
			res_counter_uncharge(&memcg->res, PAGE_SIZE * count);
6017 6018 6019 6020 6021 6022 6023 6024 6025 6026 6027 6028 6029 6030 6031 6032
			goto one_by_one;
		}
		mc.precharge += count;
		return ret;
	}
one_by_one:
	/* fall back to one by one charge */
	while (count--) {
		if (signal_pending(current)) {
			ret = -EINTR;
			break;
		}
		if (!batch_count--) {
			batch_count = PRECHARGE_COUNT_AT_ONCE;
			cond_resched();
		}
6033 6034
		ret = __mem_cgroup_try_charge(NULL,
					GFP_KERNEL, 1, &memcg, false);
6035
		if (ret)
6036
			/* mem_cgroup_clear_mc() will do uncharge later */
6037
			return ret;
6038 6039
		mc.precharge++;
	}
6040 6041 6042 6043
	return ret;
}

/**
6044
 * get_mctgt_type - get target type of moving charge
6045 6046 6047
 * @vma: the vma the pte to be checked belongs
 * @addr: the address corresponding to the pte to be checked
 * @ptent: the pte to be checked
6048
 * @target: the pointer the target page or swap ent will be stored(can be NULL)
6049 6050 6051 6052 6053 6054
 *
 * Returns
 *   0(MC_TARGET_NONE): if the pte is not a target for move charge.
 *   1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
 *     move charge. if @target is not NULL, the page is stored in target->page
 *     with extra refcnt got(Callers should handle it).
6055 6056 6057
 *   2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
 *     target for charge migration. if @target is not NULL, the entry is stored
 *     in target->ent.
6058 6059 6060 6061 6062
 *
 * Called with pte lock held.
 */
union mc_target {
	struct page	*page;
6063
	swp_entry_t	ent;
6064 6065 6066
};

enum mc_target_type {
6067
	MC_TARGET_NONE = 0,
6068
	MC_TARGET_PAGE,
6069
	MC_TARGET_SWAP,
6070 6071
};

D
Daisuke Nishimura 已提交
6072 6073
static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
						unsigned long addr, pte_t ptent)
6074
{
D
Daisuke Nishimura 已提交
6075
	struct page *page = vm_normal_page(vma, addr, ptent);
6076

D
Daisuke Nishimura 已提交
6077 6078 6079 6080
	if (!page || !page_mapped(page))
		return NULL;
	if (PageAnon(page)) {
		/* we don't move shared anon */
6081
		if (!move_anon())
D
Daisuke Nishimura 已提交
6082
			return NULL;
6083 6084
	} else if (!move_file())
		/* we ignore mapcount for file pages */
D
Daisuke Nishimura 已提交
6085 6086 6087 6088 6089 6090 6091
		return NULL;
	if (!get_page_unless_zero(page))
		return NULL;

	return page;
}

6092
#ifdef CONFIG_SWAP
D
Daisuke Nishimura 已提交
6093 6094 6095 6096 6097 6098 6099 6100
static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
			unsigned long addr, pte_t ptent, swp_entry_t *entry)
{
	struct page *page = NULL;
	swp_entry_t ent = pte_to_swp_entry(ptent);

	if (!move_anon() || non_swap_entry(ent))
		return NULL;
6101 6102 6103 6104 6105
	/*
	 * Because lookup_swap_cache() updates some statistics counter,
	 * we call find_get_page() with swapper_space directly.
	 */
	page = find_get_page(&swapper_space, ent.val);
D
Daisuke Nishimura 已提交
6106 6107 6108 6109 6110
	if (do_swap_account)
		entry->val = ent.val;

	return page;
}
6111 6112 6113 6114 6115 6116 6117
#else
static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
			unsigned long addr, pte_t ptent, swp_entry_t *entry)
{
	return NULL;
}
#endif
D
Daisuke Nishimura 已提交
6118

6119 6120 6121 6122 6123 6124 6125 6126 6127 6128 6129 6130 6131 6132 6133 6134 6135 6136 6137
static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
			unsigned long addr, pte_t ptent, swp_entry_t *entry)
{
	struct page *page = NULL;
	struct address_space *mapping;
	pgoff_t pgoff;

	if (!vma->vm_file) /* anonymous vma */
		return NULL;
	if (!move_file())
		return NULL;

	mapping = vma->vm_file->f_mapping;
	if (pte_none(ptent))
		pgoff = linear_page_index(vma, addr);
	else /* pte_file(ptent) is true */
		pgoff = pte_to_pgoff(ptent);

	/* page is moved even if it's not RSS of this task(page-faulted). */
6138 6139 6140 6141 6142 6143
	page = find_get_page(mapping, pgoff);

#ifdef CONFIG_SWAP
	/* shmem/tmpfs may report page out on swap: account for that too. */
	if (radix_tree_exceptional_entry(page)) {
		swp_entry_t swap = radix_to_swp_entry(page);
6144
		if (do_swap_account)
6145 6146
			*entry = swap;
		page = find_get_page(&swapper_space, swap.val);
6147
	}
6148
#endif
6149 6150 6151
	return page;
}

6152
static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
D
Daisuke Nishimura 已提交
6153 6154 6155 6156
		unsigned long addr, pte_t ptent, union mc_target *target)
{
	struct page *page = NULL;
	struct page_cgroup *pc;
6157
	enum mc_target_type ret = MC_TARGET_NONE;
D
Daisuke Nishimura 已提交
6158 6159 6160 6161 6162 6163
	swp_entry_t ent = { .val = 0 };

	if (pte_present(ptent))
		page = mc_handle_present_pte(vma, addr, ptent);
	else if (is_swap_pte(ptent))
		page = mc_handle_swap_pte(vma, addr, ptent, &ent);
6164 6165
	else if (pte_none(ptent) || pte_file(ptent))
		page = mc_handle_file_pte(vma, addr, ptent, &ent);
D
Daisuke Nishimura 已提交
6166 6167

	if (!page && !ent.val)
6168
		return ret;
6169 6170 6171 6172 6173 6174 6175 6176 6177 6178 6179 6180 6181 6182 6183
	if (page) {
		pc = lookup_page_cgroup(page);
		/*
		 * Do only loose check w/o page_cgroup lock.
		 * mem_cgroup_move_account() checks the pc is valid or not under
		 * the lock.
		 */
		if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
			ret = MC_TARGET_PAGE;
			if (target)
				target->page = page;
		}
		if (!ret || !target)
			put_page(page);
	}
D
Daisuke Nishimura 已提交
6184 6185
	/* There is a swap entry and a page doesn't exist or isn't charged */
	if (ent.val && !ret &&
6186
			css_id(&mc.from->css) == lookup_swap_cgroup_id(ent)) {
6187 6188 6189
		ret = MC_TARGET_SWAP;
		if (target)
			target->ent = ent;
6190 6191 6192 6193
	}
	return ret;
}

6194 6195 6196 6197 6198 6199 6200 6201 6202 6203 6204 6205 6206 6207 6208 6209 6210 6211 6212 6213 6214 6215 6216 6217 6218 6219 6220 6221 6222 6223 6224 6225 6226 6227 6228
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
/*
 * We don't consider swapping or file mapped pages because THP does not
 * support them for now.
 * Caller should make sure that pmd_trans_huge(pmd) is true.
 */
static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
		unsigned long addr, pmd_t pmd, union mc_target *target)
{
	struct page *page = NULL;
	struct page_cgroup *pc;
	enum mc_target_type ret = MC_TARGET_NONE;

	page = pmd_page(pmd);
	VM_BUG_ON(!page || !PageHead(page));
	if (!move_anon())
		return ret;
	pc = lookup_page_cgroup(page);
	if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
		ret = MC_TARGET_PAGE;
		if (target) {
			get_page(page);
			target->page = page;
		}
	}
	return ret;
}
#else
static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
		unsigned long addr, pmd_t pmd, union mc_target *target)
{
	return MC_TARGET_NONE;
}
#endif

6229 6230 6231 6232 6233 6234 6235 6236
static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
					unsigned long addr, unsigned long end,
					struct mm_walk *walk)
{
	struct vm_area_struct *vma = walk->private;
	pte_t *pte;
	spinlock_t *ptl;

6237 6238 6239 6240
	if (pmd_trans_huge_lock(pmd, vma) == 1) {
		if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
			mc.precharge += HPAGE_PMD_NR;
		spin_unlock(&vma->vm_mm->page_table_lock);
6241
		return 0;
6242
	}
6243

6244 6245
	if (pmd_trans_unstable(pmd))
		return 0;
6246 6247
	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
	for (; addr != end; pte++, addr += PAGE_SIZE)
6248
		if (get_mctgt_type(vma, addr, *pte, NULL))
6249 6250 6251 6252
			mc.precharge++;	/* increment precharge temporarily */
	pte_unmap_unlock(pte - 1, ptl);
	cond_resched();

6253 6254 6255
	return 0;
}

6256 6257 6258 6259 6260
static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
{
	unsigned long precharge;
	struct vm_area_struct *vma;

6261
	down_read(&mm->mmap_sem);
6262 6263 6264 6265 6266 6267 6268 6269 6270 6271 6272
	for (vma = mm->mmap; vma; vma = vma->vm_next) {
		struct mm_walk mem_cgroup_count_precharge_walk = {
			.pmd_entry = mem_cgroup_count_precharge_pte_range,
			.mm = mm,
			.private = vma,
		};
		if (is_vm_hugetlb_page(vma))
			continue;
		walk_page_range(vma->vm_start, vma->vm_end,
					&mem_cgroup_count_precharge_walk);
	}
6273
	up_read(&mm->mmap_sem);
6274 6275 6276 6277 6278 6279 6280 6281 6282

	precharge = mc.precharge;
	mc.precharge = 0;

	return precharge;
}

static int mem_cgroup_precharge_mc(struct mm_struct *mm)
{
6283 6284 6285 6286 6287
	unsigned long precharge = mem_cgroup_count_precharge(mm);

	VM_BUG_ON(mc.moving_task);
	mc.moving_task = current;
	return mem_cgroup_do_precharge(precharge);
6288 6289
}

6290 6291
/* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
static void __mem_cgroup_clear_mc(void)
6292
{
6293 6294 6295
	struct mem_cgroup *from = mc.from;
	struct mem_cgroup *to = mc.to;

6296
	/* we must uncharge all the leftover precharges from mc.to */
6297 6298 6299 6300 6301 6302 6303 6304 6305 6306 6307
	if (mc.precharge) {
		__mem_cgroup_cancel_charge(mc.to, mc.precharge);
		mc.precharge = 0;
	}
	/*
	 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
	 * we must uncharge here.
	 */
	if (mc.moved_charge) {
		__mem_cgroup_cancel_charge(mc.from, mc.moved_charge);
		mc.moved_charge = 0;
6308
	}
6309 6310 6311 6312 6313 6314 6315 6316 6317 6318 6319 6320 6321 6322 6323 6324 6325 6326 6327
	/* we must fixup refcnts and charges */
	if (mc.moved_swap) {
		/* uncharge swap account from the old cgroup */
		if (!mem_cgroup_is_root(mc.from))
			res_counter_uncharge(&mc.from->memsw,
						PAGE_SIZE * mc.moved_swap);
		__mem_cgroup_put(mc.from, mc.moved_swap);

		if (!mem_cgroup_is_root(mc.to)) {
			/*
			 * we charged both to->res and to->memsw, so we should
			 * uncharge to->res.
			 */
			res_counter_uncharge(&mc.to->res,
						PAGE_SIZE * mc.moved_swap);
		}
		/* we've already done mem_cgroup_get(mc.to) */
		mc.moved_swap = 0;
	}
6328 6329 6330 6331 6332 6333 6334 6335 6336 6337 6338 6339 6340 6341 6342
	memcg_oom_recover(from);
	memcg_oom_recover(to);
	wake_up_all(&mc.waitq);
}

static void mem_cgroup_clear_mc(void)
{
	struct mem_cgroup *from = mc.from;

	/*
	 * we must clear moving_task before waking up waiters at the end of
	 * task migration.
	 */
	mc.moving_task = NULL;
	__mem_cgroup_clear_mc();
6343
	spin_lock(&mc.lock);
6344 6345
	mc.from = NULL;
	mc.to = NULL;
6346
	spin_unlock(&mc.lock);
6347
	mem_cgroup_end_move(from);
6348 6349
}

6350 6351
static int mem_cgroup_can_attach(struct cgroup *cgroup,
				 struct cgroup_taskset *tset)
6352
{
6353
	struct task_struct *p = cgroup_taskset_first(tset);
6354
	int ret = 0;
6355
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgroup);
6356

6357
	if (memcg->move_charge_at_immigrate) {
6358 6359 6360
		struct mm_struct *mm;
		struct mem_cgroup *from = mem_cgroup_from_task(p);

6361
		VM_BUG_ON(from == memcg);
6362 6363 6364 6365 6366

		mm = get_task_mm(p);
		if (!mm)
			return 0;
		/* We move charges only when we move a owner of the mm */
6367 6368 6369 6370
		if (mm->owner == p) {
			VM_BUG_ON(mc.from);
			VM_BUG_ON(mc.to);
			VM_BUG_ON(mc.precharge);
6371
			VM_BUG_ON(mc.moved_charge);
6372
			VM_BUG_ON(mc.moved_swap);
6373
			mem_cgroup_start_move(from);
6374
			spin_lock(&mc.lock);
6375
			mc.from = from;
6376
			mc.to = memcg;
6377
			spin_unlock(&mc.lock);
6378
			/* We set mc.moving_task later */
6379 6380 6381 6382

			ret = mem_cgroup_precharge_mc(mm);
			if (ret)
				mem_cgroup_clear_mc();
6383 6384
		}
		mmput(mm);
6385 6386 6387 6388
	}
	return ret;
}

6389 6390
static void mem_cgroup_cancel_attach(struct cgroup *cgroup,
				     struct cgroup_taskset *tset)
6391
{
6392
	mem_cgroup_clear_mc();
6393 6394
}

6395 6396 6397
static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
				unsigned long addr, unsigned long end,
				struct mm_walk *walk)
6398
{
6399 6400 6401 6402
	int ret = 0;
	struct vm_area_struct *vma = walk->private;
	pte_t *pte;
	spinlock_t *ptl;
6403 6404 6405 6406
	enum mc_target_type target_type;
	union mc_target target;
	struct page *page;
	struct page_cgroup *pc;
6407

6408 6409 6410 6411 6412 6413 6414 6415 6416 6417 6418
	/*
	 * We don't take compound_lock() here but no race with splitting thp
	 * happens because:
	 *  - if pmd_trans_huge_lock() returns 1, the relevant thp is not
	 *    under splitting, which means there's no concurrent thp split,
	 *  - if another thread runs into split_huge_page() just after we
	 *    entered this if-block, the thread must wait for page table lock
	 *    to be unlocked in __split_huge_page_splitting(), where the main
	 *    part of thp split is not executed yet.
	 */
	if (pmd_trans_huge_lock(pmd, vma) == 1) {
6419
		if (mc.precharge < HPAGE_PMD_NR) {
6420 6421 6422 6423 6424 6425 6426 6427 6428
			spin_unlock(&vma->vm_mm->page_table_lock);
			return 0;
		}
		target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
		if (target_type == MC_TARGET_PAGE) {
			page = target.page;
			if (!isolate_lru_page(page)) {
				pc = lookup_page_cgroup(page);
				if (!mem_cgroup_move_account(page, HPAGE_PMD_NR,
6429
							pc, mc.from, mc.to)) {
6430 6431 6432 6433 6434 6435 6436 6437
					mc.precharge -= HPAGE_PMD_NR;
					mc.moved_charge += HPAGE_PMD_NR;
				}
				putback_lru_page(page);
			}
			put_page(page);
		}
		spin_unlock(&vma->vm_mm->page_table_lock);
6438
		return 0;
6439 6440
	}

6441 6442
	if (pmd_trans_unstable(pmd))
		return 0;
6443 6444 6445 6446
retry:
	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
	for (; addr != end; addr += PAGE_SIZE) {
		pte_t ptent = *(pte++);
6447
		swp_entry_t ent;
6448 6449 6450 6451

		if (!mc.precharge)
			break;

6452
		switch (get_mctgt_type(vma, addr, ptent, &target)) {
6453 6454 6455 6456 6457
		case MC_TARGET_PAGE:
			page = target.page;
			if (isolate_lru_page(page))
				goto put;
			pc = lookup_page_cgroup(page);
6458
			if (!mem_cgroup_move_account(page, 1, pc,
6459
						     mc.from, mc.to)) {
6460
				mc.precharge--;
6461 6462
				/* we uncharge from mc.from later. */
				mc.moved_charge++;
6463 6464
			}
			putback_lru_page(page);
6465
put:			/* get_mctgt_type() gets the page */
6466 6467
			put_page(page);
			break;
6468 6469
		case MC_TARGET_SWAP:
			ent = target.ent;
6470
			if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
6471
				mc.precharge--;
6472 6473 6474
				/* we fixup refcnts and charges later. */
				mc.moved_swap++;
			}
6475
			break;
6476 6477 6478 6479 6480 6481 6482 6483 6484 6485 6486 6487 6488 6489
		default:
			break;
		}
	}
	pte_unmap_unlock(pte - 1, ptl);
	cond_resched();

	if (addr != end) {
		/*
		 * We have consumed all precharges we got in can_attach().
		 * We try charge one by one, but don't do any additional
		 * charges to mc.to if we have failed in charge once in attach()
		 * phase.
		 */
6490
		ret = mem_cgroup_do_precharge(1);
6491 6492 6493 6494 6495 6496 6497 6498 6499 6500 6501 6502
		if (!ret)
			goto retry;
	}

	return ret;
}

static void mem_cgroup_move_charge(struct mm_struct *mm)
{
	struct vm_area_struct *vma;

	lru_add_drain_all();
6503 6504 6505 6506 6507 6508 6509 6510 6511 6512 6513 6514 6515
retry:
	if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
		/*
		 * Someone who are holding the mmap_sem might be waiting in
		 * waitq. So we cancel all extra charges, wake up all waiters,
		 * and retry. Because we cancel precharges, we might not be able
		 * to move enough charges, but moving charge is a best-effort
		 * feature anyway, so it wouldn't be a big problem.
		 */
		__mem_cgroup_clear_mc();
		cond_resched();
		goto retry;
	}
6516 6517 6518 6519 6520 6521 6522 6523 6524 6525 6526 6527 6528 6529 6530 6531 6532 6533
	for (vma = mm->mmap; vma; vma = vma->vm_next) {
		int ret;
		struct mm_walk mem_cgroup_move_charge_walk = {
			.pmd_entry = mem_cgroup_move_charge_pte_range,
			.mm = mm,
			.private = vma,
		};
		if (is_vm_hugetlb_page(vma))
			continue;
		ret = walk_page_range(vma->vm_start, vma->vm_end,
						&mem_cgroup_move_charge_walk);
		if (ret)
			/*
			 * means we have consumed all precharges and failed in
			 * doing additional charge. Just abandon here.
			 */
			break;
	}
6534
	up_read(&mm->mmap_sem);
6535 6536
}

6537 6538
static void mem_cgroup_move_task(struct cgroup *cont,
				 struct cgroup_taskset *tset)
B
Balbir Singh 已提交
6539
{
6540
	struct task_struct *p = cgroup_taskset_first(tset);
6541
	struct mm_struct *mm = get_task_mm(p);
6542 6543

	if (mm) {
6544 6545
		if (mc.to)
			mem_cgroup_move_charge(mm);
6546 6547
		mmput(mm);
	}
6548 6549
	if (mc.to)
		mem_cgroup_clear_mc();
B
Balbir Singh 已提交
6550
}
6551
#else	/* !CONFIG_MMU */
6552 6553
static int mem_cgroup_can_attach(struct cgroup *cgroup,
				 struct cgroup_taskset *tset)
6554 6555 6556
{
	return 0;
}
6557 6558
static void mem_cgroup_cancel_attach(struct cgroup *cgroup,
				     struct cgroup_taskset *tset)
6559 6560
{
}
6561 6562
static void mem_cgroup_move_task(struct cgroup *cont,
				 struct cgroup_taskset *tset)
6563 6564 6565
{
}
#endif
B
Balbir Singh 已提交
6566

B
Balbir Singh 已提交
6567 6568 6569
struct cgroup_subsys mem_cgroup_subsys = {
	.name = "memory",
	.subsys_id = mem_cgroup_subsys_id,
6570 6571 6572
	.css_alloc = mem_cgroup_css_alloc,
	.css_offline = mem_cgroup_css_offline,
	.css_free = mem_cgroup_css_free,
6573 6574
	.can_attach = mem_cgroup_can_attach,
	.cancel_attach = mem_cgroup_cancel_attach,
B
Balbir Singh 已提交
6575
	.attach = mem_cgroup_move_task,
6576
	.base_cftypes = mem_cgroup_files,
6577
	.early_init = 0,
K
KAMEZAWA Hiroyuki 已提交
6578
	.use_id = 1,
B
Balbir Singh 已提交
6579
};
6580

A
Andrew Morton 已提交
6581
#ifdef CONFIG_MEMCG_SWAP
6582 6583 6584
static int __init enable_swap_account(char *s)
{
	/* consider enabled if no parameter or 1 is given */
6585
	if (!strcmp(s, "1"))
6586
		really_do_swap_account = 1;
6587
	else if (!strcmp(s, "0"))
6588 6589 6590
		really_do_swap_account = 0;
	return 1;
}
6591
__setup("swapaccount=", enable_swap_account);
6592 6593

#endif