memcontrol.c 108.3 KB
Newer Older
B
Balbir Singh 已提交
1 2 3 4 5
/* memcontrol.c - Memory Controller
 *
 * Copyright IBM Corporation, 2007
 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
 *
6 7 8
 * Copyright 2007 OpenVZ SWsoft Inc
 * Author: Pavel Emelianov <xemul@openvz.org>
 *
9 10 11 12
 * Memory thresholds
 * Copyright (C) 2009 Nokia Corporation
 * Author: Kirill A. Shutemov
 *
B
Balbir Singh 已提交
13 14 15 16 17 18 19 20 21 22 23 24 25 26
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 */

#include <linux/res_counter.h>
#include <linux/memcontrol.h>
#include <linux/cgroup.h>
27
#include <linux/mm.h>
28
#include <linux/hugetlb.h>
K
KAMEZAWA Hiroyuki 已提交
29
#include <linux/pagemap.h>
30
#include <linux/smp.h>
31
#include <linux/page-flags.h>
32
#include <linux/backing-dev.h>
33 34
#include <linux/bit_spinlock.h>
#include <linux/rcupdate.h>
35
#include <linux/limits.h>
36
#include <linux/mutex.h>
37
#include <linux/rbtree.h>
38
#include <linux/slab.h>
39
#include <linux/swap.h>
40
#include <linux/swapops.h>
41
#include <linux/spinlock.h>
42 43
#include <linux/eventfd.h>
#include <linux/sort.h>
44
#include <linux/fs.h>
45
#include <linux/seq_file.h>
46
#include <linux/vmalloc.h>
47
#include <linux/mm_inline.h>
48
#include <linux/page_cgroup.h>
49
#include <linux/cpu.h>
K
KAMEZAWA Hiroyuki 已提交
50
#include "internal.h"
B
Balbir Singh 已提交
51

52 53
#include <asm/uaccess.h>

54 55
struct cgroup_subsys mem_cgroup_subsys __read_mostly;
#define MEM_CGROUP_RECLAIM_RETRIES	5
56
struct mem_cgroup *root_mem_cgroup __read_mostly;
B
Balbir Singh 已提交
57

58
#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
L
Li Zefan 已提交
59
/* Turned on only when memory cgroup is enabled && really_do_swap_account = 1 */
60 61 62 63 64 65
int do_swap_account __read_mostly;
static int really_do_swap_account __initdata = 1; /* for remember boot option*/
#else
#define do_swap_account		(0)
#endif

66
#define SOFTLIMIT_EVENTS_THRESH (1000)
67
#define THRESHOLDS_EVENTS_THRESH (100)
68

69 70 71 72 73 74 75 76
/*
 * Statistics for memory cgroup.
 */
enum mem_cgroup_stat_index {
	/*
	 * For MEM_CONTAINER_TYPE_ALL, usage = pagecache + rss.
	 */
	MEM_CGROUP_STAT_CACHE, 	   /* # of pages charged as cache */
77
	MEM_CGROUP_STAT_RSS,	   /* # of pages charged as anon rss */
78
	MEM_CGROUP_STAT_FILE_MAPPED,  /* # of pages charged as file rss */
79 80
	MEM_CGROUP_STAT_PGPGIN_COUNT,	/* # of pages paged in */
	MEM_CGROUP_STAT_PGPGOUT_COUNT,	/* # of pages paged out */
81
	MEM_CGROUP_STAT_SWAPOUT, /* # of pages, swapped out */
82 83
	MEM_CGROUP_STAT_SOFTLIMIT, /* decrements on each page in/out.
					used by soft limit implementation */
84 85
	MEM_CGROUP_STAT_THRESHOLDS, /* decrements on each page in/out.
					used by threshold implementation */
86 87 88 89 90 91 92 93

	MEM_CGROUP_STAT_NSTATS,
};

struct mem_cgroup_stat_cpu {
	s64 count[MEM_CGROUP_STAT_NSTATS];
};

94 95 96 97
/*
 * per-zone information in memory controller.
 */
struct mem_cgroup_per_zone {
98 99 100
	/*
	 * spin_lock to protect the per cgroup LRU
	 */
101 102
	struct list_head	lists[NR_LRU_LISTS];
	unsigned long		count[NR_LRU_LISTS];
K
KOSAKI Motohiro 已提交
103 104

	struct zone_reclaim_stat reclaim_stat;
105 106 107 108
	struct rb_node		tree_node;	/* RB tree node */
	unsigned long long	usage_in_excess;/* Set to the value by which */
						/* the soft limit is exceeded*/
	bool			on_tree;
109 110
	struct mem_cgroup	*mem;		/* Back pointer, we cannot */
						/* use container_of	   */
111 112 113 114 115 116 117 118 119 120 121 122
};
/* Macro for accessing counter */
#define MEM_CGROUP_ZSTAT(mz, idx)	((mz)->count[(idx)])

struct mem_cgroup_per_node {
	struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
};

struct mem_cgroup_lru_info {
	struct mem_cgroup_per_node *nodeinfo[MAX_NUMNODES];
};

123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142
/*
 * Cgroups above their limits are maintained in a RB-Tree, independent of
 * their hierarchy representation
 */

struct mem_cgroup_tree_per_zone {
	struct rb_root rb_root;
	spinlock_t lock;
};

struct mem_cgroup_tree_per_node {
	struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
};

struct mem_cgroup_tree {
	struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
};

static struct mem_cgroup_tree soft_limit_tree __read_mostly;

143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159
struct mem_cgroup_threshold {
	struct eventfd_ctx *eventfd;
	u64 threshold;
};

struct mem_cgroup_threshold_ary {
	/* An array index points to threshold just below usage. */
	atomic_t current_threshold;
	/* Size of entries[] */
	unsigned int size;
	/* Array of thresholds */
	struct mem_cgroup_threshold entries[0];
};

static bool mem_cgroup_threshold_check(struct mem_cgroup *mem);
static void mem_cgroup_threshold(struct mem_cgroup *mem);

B
Balbir Singh 已提交
160 161 162 163 164 165 166
/*
 * The memory controller data structure. The memory controller controls both
 * page cache and RSS per cgroup. We would eventually like to provide
 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
 * to help the administrator determine what knobs to tune.
 *
 * TODO: Add a water mark for the memory controller. Reclaim will begin when
167 168 169
 * we hit the water mark. May be even add a low water mark, such that
 * no reclaim occurs from a cgroup at it's low water mark, this is
 * a feature that will be implemented much later in the future.
B
Balbir Singh 已提交
170 171 172 173 174 175 176
 */
struct mem_cgroup {
	struct cgroup_subsys_state css;
	/*
	 * the counter to account for memory usage
	 */
	struct res_counter res;
177 178 179 180
	/*
	 * the counter to account for mem+swap usage.
	 */
	struct res_counter memsw;
181 182 183 184
	/*
	 * Per cgroup active and inactive list, similar to the
	 * per zone LRU lists.
	 */
185
	struct mem_cgroup_lru_info info;
186

K
KOSAKI Motohiro 已提交
187 188 189 190 191
	/*
	  protect against reclaim related member.
	*/
	spinlock_t reclaim_param_lock;

192
	int	prev_priority;	/* for recording reclaim priority */
193 194

	/*
195
	 * While reclaiming in a hierarchy, we cache the last child we
K
KAMEZAWA Hiroyuki 已提交
196
	 * reclaimed from.
197
	 */
K
KAMEZAWA Hiroyuki 已提交
198
	int last_scanned_child;
199 200 201 202
	/*
	 * Should the accounting and control be hierarchical, per subtree?
	 */
	bool use_hierarchy;
203
	unsigned long	last_oom_jiffies;
204
	atomic_t	refcnt;
205

K
KOSAKI Motohiro 已提交
206 207
	unsigned int	swappiness;

208 209 210
	/* set when res.limit == memsw.limit */
	bool		memsw_is_minimum;

211 212 213 214 215 216 217 218 219
	/* protect arrays of thresholds */
	struct mutex thresholds_lock;

	/* thresholds for memory usage. RCU-protected */
	struct mem_cgroup_threshold_ary *thresholds;

	/* thresholds for mem+swap usage. RCU-protected */
	struct mem_cgroup_threshold_ary *memsw_thresholds;

220 221 222 223 224 225
	/*
	 * Should we move charges of a task when a task is moved into this
	 * mem_cgroup ? And what type of charges should we move ?
	 */
	unsigned long 	move_charge_at_immigrate;

226
	/*
227
	 * percpu counter.
228
	 */
229
	struct mem_cgroup_stat_cpu *stat;
B
Balbir Singh 已提交
230 231
};

232 233 234 235 236 237
/* Stuffs for move charges at task migration. */
/*
 * Types of charges to be moved. "move_charge_at_immitgrate" is treated as a
 * left-shifted bitmap of these types.
 */
enum move_type {
238
	MOVE_CHARGE_TYPE_ANON,	/* private anonymous page and swap of it */
239 240 241
	NR_MOVE_TYPE,
};

242 243 244 245 246
/* "mc" and its members are protected by cgroup_mutex */
static struct move_charge_struct {
	struct mem_cgroup *from;
	struct mem_cgroup *to;
	unsigned long precharge;
247
	unsigned long moved_charge;
248
	unsigned long moved_swap;
249 250 251 252 253
	struct task_struct *moving_task;	/* a task moving charges */
	wait_queue_head_t waitq;		/* a waitq for other context */
} mc = {
	.waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
};
254

255 256 257 258 259 260 261
/*
 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
 * limit reclaim to prevent infinite loops, if they ever occur.
 */
#define	MEM_CGROUP_MAX_RECLAIM_LOOPS		(100)
#define	MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS	(2)

262 263 264
enum charge_type {
	MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
	MEM_CGROUP_CHARGE_TYPE_MAPPED,
265
	MEM_CGROUP_CHARGE_TYPE_SHMEM,	/* used by page migration of shmem */
266
	MEM_CGROUP_CHARGE_TYPE_FORCE,	/* used by force_empty */
K
KAMEZAWA Hiroyuki 已提交
267
	MEM_CGROUP_CHARGE_TYPE_SWAPOUT,	/* for accounting swapcache */
K
KAMEZAWA Hiroyuki 已提交
268
	MEM_CGROUP_CHARGE_TYPE_DROP,	/* a page was unused swap cache */
269 270 271
	NR_CHARGE_TYPE,
};

272 273 274 275
/* only for here (for easy reading.) */
#define PCGF_CACHE	(1UL << PCG_CACHE)
#define PCGF_USED	(1UL << PCG_USED)
#define PCGF_LOCK	(1UL << PCG_LOCK)
276 277
/* Not used, but added here for completeness */
#define PCGF_ACCT	(1UL << PCG_ACCT)
278

279 280 281 282 283 284 285
/* for encoding cft->private value on file */
#define _MEM			(0)
#define _MEMSWAP		(1)
#define MEMFILE_PRIVATE(x, val)	(((x) << 16) | (val))
#define MEMFILE_TYPE(val)	(((val) >> 16) & 0xffff)
#define MEMFILE_ATTR(val)	((val) & 0xffff)

286 287 288 289 290 291 292
/*
 * Reclaim flags for mem_cgroup_hierarchical_reclaim
 */
#define MEM_CGROUP_RECLAIM_NOSWAP_BIT	0x0
#define MEM_CGROUP_RECLAIM_NOSWAP	(1 << MEM_CGROUP_RECLAIM_NOSWAP_BIT)
#define MEM_CGROUP_RECLAIM_SHRINK_BIT	0x1
#define MEM_CGROUP_RECLAIM_SHRINK	(1 << MEM_CGROUP_RECLAIM_SHRINK_BIT)
293 294
#define MEM_CGROUP_RECLAIM_SOFT_BIT	0x2
#define MEM_CGROUP_RECLAIM_SOFT		(1 << MEM_CGROUP_RECLAIM_SOFT_BIT)
295

296 297
static void mem_cgroup_get(struct mem_cgroup *mem);
static void mem_cgroup_put(struct mem_cgroup *mem);
298
static struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *mem);
299
static void drain_all_stock_async(void);
300

301 302 303 304 305 306
static struct mem_cgroup_per_zone *
mem_cgroup_zoneinfo(struct mem_cgroup *mem, int nid, int zid)
{
	return &mem->info.nodeinfo[nid]->zoneinfo[zid];
}

307 308 309 310 311
struct cgroup_subsys_state *mem_cgroup_css(struct mem_cgroup *mem)
{
	return &mem->css;
}

312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340
static struct mem_cgroup_per_zone *
page_cgroup_zoneinfo(struct page_cgroup *pc)
{
	struct mem_cgroup *mem = pc->mem_cgroup;
	int nid = page_cgroup_nid(pc);
	int zid = page_cgroup_zid(pc);

	if (!mem)
		return NULL;

	return mem_cgroup_zoneinfo(mem, nid, zid);
}

static struct mem_cgroup_tree_per_zone *
soft_limit_tree_node_zone(int nid, int zid)
{
	return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
}

static struct mem_cgroup_tree_per_zone *
soft_limit_tree_from_page(struct page *page)
{
	int nid = page_to_nid(page);
	int zid = page_zonenum(page);

	return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
}

static void
341
__mem_cgroup_insert_exceeded(struct mem_cgroup *mem,
342
				struct mem_cgroup_per_zone *mz,
343 344
				struct mem_cgroup_tree_per_zone *mctz,
				unsigned long long new_usage_in_excess)
345 346 347 348 349 350 351 352
{
	struct rb_node **p = &mctz->rb_root.rb_node;
	struct rb_node *parent = NULL;
	struct mem_cgroup_per_zone *mz_node;

	if (mz->on_tree)
		return;

353 354 355
	mz->usage_in_excess = new_usage_in_excess;
	if (!mz->usage_in_excess)
		return;
356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371
	while (*p) {
		parent = *p;
		mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
					tree_node);
		if (mz->usage_in_excess < mz_node->usage_in_excess)
			p = &(*p)->rb_left;
		/*
		 * We can't avoid mem cgroups that are over their soft
		 * limit by the same amount
		 */
		else if (mz->usage_in_excess >= mz_node->usage_in_excess)
			p = &(*p)->rb_right;
	}
	rb_link_node(&mz->tree_node, parent, p);
	rb_insert_color(&mz->tree_node, &mctz->rb_root);
	mz->on_tree = true;
372 373 374 375 376 377 378 379 380 381 382 383 384
}

static void
__mem_cgroup_remove_exceeded(struct mem_cgroup *mem,
				struct mem_cgroup_per_zone *mz,
				struct mem_cgroup_tree_per_zone *mctz)
{
	if (!mz->on_tree)
		return;
	rb_erase(&mz->tree_node, &mctz->rb_root);
	mz->on_tree = false;
}

385 386 387 388 389 390
static void
mem_cgroup_remove_exceeded(struct mem_cgroup *mem,
				struct mem_cgroup_per_zone *mz,
				struct mem_cgroup_tree_per_zone *mctz)
{
	spin_lock(&mctz->lock);
391
	__mem_cgroup_remove_exceeded(mem, mz, mctz);
392 393 394 395 396 397 398 399
	spin_unlock(&mctz->lock);
}

static bool mem_cgroup_soft_limit_check(struct mem_cgroup *mem)
{
	bool ret = false;
	s64 val;

400
	val = this_cpu_read(mem->stat->count[MEM_CGROUP_STAT_SOFTLIMIT]);
401
	if (unlikely(val < 0)) {
402
		this_cpu_write(mem->stat->count[MEM_CGROUP_STAT_SOFTLIMIT],
403
				SOFTLIMIT_EVENTS_THRESH);
404 405 406 407 408 409 410
		ret = true;
	}
	return ret;
}

static void mem_cgroup_update_tree(struct mem_cgroup *mem, struct page *page)
{
411
	unsigned long long excess;
412 413
	struct mem_cgroup_per_zone *mz;
	struct mem_cgroup_tree_per_zone *mctz;
414 415
	int nid = page_to_nid(page);
	int zid = page_zonenum(page);
416 417 418
	mctz = soft_limit_tree_from_page(page);

	/*
419 420
	 * Necessary to update all ancestors when hierarchy is used.
	 * because their event counter is not touched.
421
	 */
422 423
	for (; mem; mem = parent_mem_cgroup(mem)) {
		mz = mem_cgroup_zoneinfo(mem, nid, zid);
424
		excess = res_counter_soft_limit_excess(&mem->res);
425 426 427 428
		/*
		 * We have to update the tree if mz is on RB-tree or
		 * mem is over its softlimit.
		 */
429
		if (excess || mz->on_tree) {
430 431 432 433 434
			spin_lock(&mctz->lock);
			/* if on-tree, remove it */
			if (mz->on_tree)
				__mem_cgroup_remove_exceeded(mem, mz, mctz);
			/*
435 436
			 * Insert again. mz->usage_in_excess will be updated.
			 * If excess is 0, no tree ops.
437
			 */
438
			__mem_cgroup_insert_exceeded(mem, mz, mctz, excess);
439 440
			spin_unlock(&mctz->lock);
		}
441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458
	}
}

static void mem_cgroup_remove_from_trees(struct mem_cgroup *mem)
{
	int node, zone;
	struct mem_cgroup_per_zone *mz;
	struct mem_cgroup_tree_per_zone *mctz;

	for_each_node_state(node, N_POSSIBLE) {
		for (zone = 0; zone < MAX_NR_ZONES; zone++) {
			mz = mem_cgroup_zoneinfo(mem, node, zone);
			mctz = soft_limit_tree_node_zone(node, zone);
			mem_cgroup_remove_exceeded(mem, mz, mctz);
		}
	}
}

459 460 461 462 463 464 465 466 467
static inline unsigned long mem_cgroup_get_excess(struct mem_cgroup *mem)
{
	return res_counter_soft_limit_excess(&mem->res) >> PAGE_SHIFT;
}

static struct mem_cgroup_per_zone *
__mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
{
	struct rb_node *rightmost = NULL;
468
	struct mem_cgroup_per_zone *mz;
469 470

retry:
471
	mz = NULL;
472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500
	rightmost = rb_last(&mctz->rb_root);
	if (!rightmost)
		goto done;		/* Nothing to reclaim from */

	mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
	/*
	 * Remove the node now but someone else can add it back,
	 * we will to add it back at the end of reclaim to its correct
	 * position in the tree.
	 */
	__mem_cgroup_remove_exceeded(mz->mem, mz, mctz);
	if (!res_counter_soft_limit_excess(&mz->mem->res) ||
		!css_tryget(&mz->mem->css))
		goto retry;
done:
	return mz;
}

static struct mem_cgroup_per_zone *
mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
{
	struct mem_cgroup_per_zone *mz;

	spin_lock(&mctz->lock);
	mz = __mem_cgroup_largest_soft_limit_node(mctz);
	spin_unlock(&mctz->lock);
	return mz;
}

501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520
static s64 mem_cgroup_read_stat(struct mem_cgroup *mem,
		enum mem_cgroup_stat_index idx)
{
	int cpu;
	s64 val = 0;

	for_each_possible_cpu(cpu)
		val += per_cpu(mem->stat->count[idx], cpu);
	return val;
}

static s64 mem_cgroup_local_usage(struct mem_cgroup *mem)
{
	s64 ret;

	ret = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_RSS);
	ret += mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_CACHE);
	return ret;
}

521 522 523 524
static void mem_cgroup_swap_statistics(struct mem_cgroup *mem,
					 bool charge)
{
	int val = (charge) ? 1 : -1;
525
	this_cpu_add(mem->stat->count[MEM_CGROUP_STAT_SWAPOUT], val);
526 527
}

528 529 530
static void mem_cgroup_charge_statistics(struct mem_cgroup *mem,
					 struct page_cgroup *pc,
					 bool charge)
531
{
532
	int val = (charge) ? 1 : -1;
533

534 535
	preempt_disable();

536
	if (PageCgroupCache(pc))
537
		__this_cpu_add(mem->stat->count[MEM_CGROUP_STAT_CACHE], val);
538
	else
539
		__this_cpu_add(mem->stat->count[MEM_CGROUP_STAT_RSS], val);
540 541

	if (charge)
542
		__this_cpu_inc(mem->stat->count[MEM_CGROUP_STAT_PGPGIN_COUNT]);
543
	else
544 545 546
		__this_cpu_inc(mem->stat->count[MEM_CGROUP_STAT_PGPGOUT_COUNT]);
	__this_cpu_dec(mem->stat->count[MEM_CGROUP_STAT_SOFTLIMIT]);
	__this_cpu_dec(mem->stat->count[MEM_CGROUP_STAT_THRESHOLDS]);
547

548
	preempt_enable();
549 550
}

K
KAMEZAWA Hiroyuki 已提交
551
static unsigned long mem_cgroup_get_local_zonestat(struct mem_cgroup *mem,
552
					enum lru_list idx)
553 554 555 556 557 558 559 560 561 562 563
{
	int nid, zid;
	struct mem_cgroup_per_zone *mz;
	u64 total = 0;

	for_each_online_node(nid)
		for (zid = 0; zid < MAX_NR_ZONES; zid++) {
			mz = mem_cgroup_zoneinfo(mem, nid, zid);
			total += MEM_CGROUP_ZSTAT(mz, idx);
		}
	return total;
564 565
}

566
static struct mem_cgroup *mem_cgroup_from_cont(struct cgroup *cont)
B
Balbir Singh 已提交
567 568 569 570 571 572
{
	return container_of(cgroup_subsys_state(cont,
				mem_cgroup_subsys_id), struct mem_cgroup,
				css);
}

573
struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
574
{
575 576 577 578 579 580 581 582
	/*
	 * mm_update_next_owner() may clear mm->owner to NULL
	 * if it races with swapoff, page migration, etc.
	 * So this can be called with p == NULL.
	 */
	if (unlikely(!p))
		return NULL;

583 584 585 586
	return container_of(task_subsys_state(p, mem_cgroup_subsys_id),
				struct mem_cgroup, css);
}

587 588 589
static struct mem_cgroup *try_get_mem_cgroup_from_mm(struct mm_struct *mm)
{
	struct mem_cgroup *mem = NULL;
590 591 592

	if (!mm)
		return NULL;
593 594 595 596 597 598 599 600 601 602 603 604 605 606 607
	/*
	 * Because we have no locks, mm->owner's may be being moved to other
	 * cgroup. We use css_tryget() here even if this looks
	 * pessimistic (rather than adding locks here).
	 */
	rcu_read_lock();
	do {
		mem = mem_cgroup_from_task(rcu_dereference(mm->owner));
		if (unlikely(!mem))
			break;
	} while (!css_tryget(&mem->css));
	rcu_read_unlock();
	return mem;
}

K
KAMEZAWA Hiroyuki 已提交
608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642
/*
 * Call callback function against all cgroup under hierarchy tree.
 */
static int mem_cgroup_walk_tree(struct mem_cgroup *root, void *data,
			  int (*func)(struct mem_cgroup *, void *))
{
	int found, ret, nextid;
	struct cgroup_subsys_state *css;
	struct mem_cgroup *mem;

	if (!root->use_hierarchy)
		return (*func)(root, data);

	nextid = 1;
	do {
		ret = 0;
		mem = NULL;

		rcu_read_lock();
		css = css_get_next(&mem_cgroup_subsys, nextid, &root->css,
				   &found);
		if (css && css_tryget(css))
			mem = container_of(css, struct mem_cgroup, css);
		rcu_read_unlock();

		if (mem) {
			ret = (*func)(mem, data);
			css_put(&mem->css);
		}
		nextid = found + 1;
	} while (!ret && css);

	return ret;
}

643 644 645 646 647
static inline bool mem_cgroup_is_root(struct mem_cgroup *mem)
{
	return (mem == root_mem_cgroup);
}

K
KAMEZAWA Hiroyuki 已提交
648 649 650 651 652 653 654 655 656 657 658 659 660
/*
 * Following LRU functions are allowed to be used without PCG_LOCK.
 * Operations are called by routine of global LRU independently from memcg.
 * What we have to take care of here is validness of pc->mem_cgroup.
 *
 * Changes to pc->mem_cgroup happens when
 * 1. charge
 * 2. moving account
 * In typical case, "charge" is done before add-to-lru. Exception is SwapCache.
 * It is added to LRU before charge.
 * If PCG_USED bit is not set, page_cgroup is not added to this private LRU.
 * When moving account, the page is not on LRU. It's isolated.
 */
661

K
KAMEZAWA Hiroyuki 已提交
662 663 664 665
void mem_cgroup_del_lru_list(struct page *page, enum lru_list lru)
{
	struct page_cgroup *pc;
	struct mem_cgroup_per_zone *mz;
666

667
	if (mem_cgroup_disabled())
K
KAMEZAWA Hiroyuki 已提交
668 669 670
		return;
	pc = lookup_page_cgroup(page);
	/* can happen while we handle swapcache. */
671
	if (!TestClearPageCgroupAcctLRU(pc))
K
KAMEZAWA Hiroyuki 已提交
672
		return;
673
	VM_BUG_ON(!pc->mem_cgroup);
674 675 676 677
	/*
	 * We don't check PCG_USED bit. It's cleared when the "page" is finally
	 * removed from global LRU.
	 */
K
KAMEZAWA Hiroyuki 已提交
678
	mz = page_cgroup_zoneinfo(pc);
679
	MEM_CGROUP_ZSTAT(mz, lru) -= 1;
680 681 682
	if (mem_cgroup_is_root(pc->mem_cgroup))
		return;
	VM_BUG_ON(list_empty(&pc->lru));
K
KAMEZAWA Hiroyuki 已提交
683 684
	list_del_init(&pc->lru);
	return;
685 686
}

K
KAMEZAWA Hiroyuki 已提交
687
void mem_cgroup_del_lru(struct page *page)
688
{
K
KAMEZAWA Hiroyuki 已提交
689 690
	mem_cgroup_del_lru_list(page, page_lru(page));
}
691

K
KAMEZAWA Hiroyuki 已提交
692 693 694 695
void mem_cgroup_rotate_lru_list(struct page *page, enum lru_list lru)
{
	struct mem_cgroup_per_zone *mz;
	struct page_cgroup *pc;
696

697
	if (mem_cgroup_disabled())
K
KAMEZAWA Hiroyuki 已提交
698
		return;
699

K
KAMEZAWA Hiroyuki 已提交
700
	pc = lookup_page_cgroup(page);
701 702 703 704
	/*
	 * Used bit is set without atomic ops but after smp_wmb().
	 * For making pc->mem_cgroup visible, insert smp_rmb() here.
	 */
K
KAMEZAWA Hiroyuki 已提交
705
	smp_rmb();
706 707
	/* unused or root page is not rotated. */
	if (!PageCgroupUsed(pc) || mem_cgroup_is_root(pc->mem_cgroup))
K
KAMEZAWA Hiroyuki 已提交
708 709 710
		return;
	mz = page_cgroup_zoneinfo(pc);
	list_move(&pc->lru, &mz->lists[lru]);
711 712
}

K
KAMEZAWA Hiroyuki 已提交
713
void mem_cgroup_add_lru_list(struct page *page, enum lru_list lru)
714
{
K
KAMEZAWA Hiroyuki 已提交
715 716
	struct page_cgroup *pc;
	struct mem_cgroup_per_zone *mz;
717

718
	if (mem_cgroup_disabled())
K
KAMEZAWA Hiroyuki 已提交
719 720
		return;
	pc = lookup_page_cgroup(page);
721
	VM_BUG_ON(PageCgroupAcctLRU(pc));
722 723 724 725
	/*
	 * Used bit is set without atomic ops but after smp_wmb().
	 * For making pc->mem_cgroup visible, insert smp_rmb() here.
	 */
K
KAMEZAWA Hiroyuki 已提交
726 727
	smp_rmb();
	if (!PageCgroupUsed(pc))
L
Lee Schermerhorn 已提交
728
		return;
729

K
KAMEZAWA Hiroyuki 已提交
730
	mz = page_cgroup_zoneinfo(pc);
731
	MEM_CGROUP_ZSTAT(mz, lru) += 1;
732 733 734
	SetPageCgroupAcctLRU(pc);
	if (mem_cgroup_is_root(pc->mem_cgroup))
		return;
K
KAMEZAWA Hiroyuki 已提交
735 736
	list_add(&pc->lru, &mz->lists[lru]);
}
737

K
KAMEZAWA Hiroyuki 已提交
738
/*
739 740 741 742 743
 * At handling SwapCache, pc->mem_cgroup may be changed while it's linked to
 * lru because the page may.be reused after it's fully uncharged (because of
 * SwapCache behavior).To handle that, unlink page_cgroup from LRU when charge
 * it again. This function is only used to charge SwapCache. It's done under
 * lock_page and expected that zone->lru_lock is never held.
K
KAMEZAWA Hiroyuki 已提交
744
 */
745
static void mem_cgroup_lru_del_before_commit_swapcache(struct page *page)
K
KAMEZAWA Hiroyuki 已提交
746
{
747 748 749 750 751 752 753 754 755 756 757 758
	unsigned long flags;
	struct zone *zone = page_zone(page);
	struct page_cgroup *pc = lookup_page_cgroup(page);

	spin_lock_irqsave(&zone->lru_lock, flags);
	/*
	 * Forget old LRU when this page_cgroup is *not* used. This Used bit
	 * is guarded by lock_page() because the page is SwapCache.
	 */
	if (!PageCgroupUsed(pc))
		mem_cgroup_del_lru_list(page, page_lru(page));
	spin_unlock_irqrestore(&zone->lru_lock, flags);
K
KAMEZAWA Hiroyuki 已提交
759 760
}

761 762 763 764 765 766 767 768
static void mem_cgroup_lru_add_after_commit_swapcache(struct page *page)
{
	unsigned long flags;
	struct zone *zone = page_zone(page);
	struct page_cgroup *pc = lookup_page_cgroup(page);

	spin_lock_irqsave(&zone->lru_lock, flags);
	/* link when the page is linked to LRU but page_cgroup isn't */
769
	if (PageLRU(page) && !PageCgroupAcctLRU(pc))
770 771 772 773 774
		mem_cgroup_add_lru_list(page, page_lru(page));
	spin_unlock_irqrestore(&zone->lru_lock, flags);
}


K
KAMEZAWA Hiroyuki 已提交
775 776 777
void mem_cgroup_move_lists(struct page *page,
			   enum lru_list from, enum lru_list to)
{
778
	if (mem_cgroup_disabled())
K
KAMEZAWA Hiroyuki 已提交
779 780 781
		return;
	mem_cgroup_del_lru_list(page, from);
	mem_cgroup_add_lru_list(page, to);
782 783
}

784 785 786
int task_in_mem_cgroup(struct task_struct *task, const struct mem_cgroup *mem)
{
	int ret;
787
	struct mem_cgroup *curr = NULL;
788 789

	task_lock(task);
790 791 792
	rcu_read_lock();
	curr = try_get_mem_cgroup_from_mm(task->mm);
	rcu_read_unlock();
793
	task_unlock(task);
794 795
	if (!curr)
		return 0;
796 797 798 799 800 801 802
	/*
	 * We should check use_hierarchy of "mem" not "curr". Because checking
	 * use_hierarchy of "curr" here make this function true if hierarchy is
	 * enabled in "curr" and "curr" is a child of "mem" in *cgroup*
	 * hierarchy(even if use_hierarchy is disabled in "mem").
	 */
	if (mem->use_hierarchy)
803 804 805 806
		ret = css_is_ancestor(&curr->css, &mem->css);
	else
		ret = (curr == mem);
	css_put(&curr->css);
807 808 809
	return ret;
}

810 811 812 813 814
/*
 * prev_priority control...this will be used in memory reclaim path.
 */
int mem_cgroup_get_reclaim_priority(struct mem_cgroup *mem)
{
K
KOSAKI Motohiro 已提交
815 816 817 818 819 820 821
	int prev_priority;

	spin_lock(&mem->reclaim_param_lock);
	prev_priority = mem->prev_priority;
	spin_unlock(&mem->reclaim_param_lock);

	return prev_priority;
822 823 824 825
}

void mem_cgroup_note_reclaim_priority(struct mem_cgroup *mem, int priority)
{
K
KOSAKI Motohiro 已提交
826
	spin_lock(&mem->reclaim_param_lock);
827 828
	if (priority < mem->prev_priority)
		mem->prev_priority = priority;
K
KOSAKI Motohiro 已提交
829
	spin_unlock(&mem->reclaim_param_lock);
830 831 832 833
}

void mem_cgroup_record_reclaim_priority(struct mem_cgroup *mem, int priority)
{
K
KOSAKI Motohiro 已提交
834
	spin_lock(&mem->reclaim_param_lock);
835
	mem->prev_priority = priority;
K
KOSAKI Motohiro 已提交
836
	spin_unlock(&mem->reclaim_param_lock);
837 838
}

839
static int calc_inactive_ratio(struct mem_cgroup *memcg, unsigned long *present_pages)
840 841 842
{
	unsigned long active;
	unsigned long inactive;
843 844
	unsigned long gb;
	unsigned long inactive_ratio;
845

K
KAMEZAWA Hiroyuki 已提交
846 847
	inactive = mem_cgroup_get_local_zonestat(memcg, LRU_INACTIVE_ANON);
	active = mem_cgroup_get_local_zonestat(memcg, LRU_ACTIVE_ANON);
848

849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875
	gb = (inactive + active) >> (30 - PAGE_SHIFT);
	if (gb)
		inactive_ratio = int_sqrt(10 * gb);
	else
		inactive_ratio = 1;

	if (present_pages) {
		present_pages[0] = inactive;
		present_pages[1] = active;
	}

	return inactive_ratio;
}

int mem_cgroup_inactive_anon_is_low(struct mem_cgroup *memcg)
{
	unsigned long active;
	unsigned long inactive;
	unsigned long present_pages[2];
	unsigned long inactive_ratio;

	inactive_ratio = calc_inactive_ratio(memcg, present_pages);

	inactive = present_pages[0];
	active = present_pages[1];

	if (inactive * inactive_ratio < active)
876 877 878 879 880
		return 1;

	return 0;
}

881 882 883 884 885 886 887 888 889 890 891
int mem_cgroup_inactive_file_is_low(struct mem_cgroup *memcg)
{
	unsigned long active;
	unsigned long inactive;

	inactive = mem_cgroup_get_local_zonestat(memcg, LRU_INACTIVE_FILE);
	active = mem_cgroup_get_local_zonestat(memcg, LRU_ACTIVE_FILE);

	return (active > inactive);
}

892 893 894 895 896 897 898 899 900 901 902
unsigned long mem_cgroup_zone_nr_pages(struct mem_cgroup *memcg,
				       struct zone *zone,
				       enum lru_list lru)
{
	int nid = zone->zone_pgdat->node_id;
	int zid = zone_idx(zone);
	struct mem_cgroup_per_zone *mz = mem_cgroup_zoneinfo(memcg, nid, zid);

	return MEM_CGROUP_ZSTAT(mz, lru);
}

K
KOSAKI Motohiro 已提交
903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922
struct zone_reclaim_stat *mem_cgroup_get_reclaim_stat(struct mem_cgroup *memcg,
						      struct zone *zone)
{
	int nid = zone->zone_pgdat->node_id;
	int zid = zone_idx(zone);
	struct mem_cgroup_per_zone *mz = mem_cgroup_zoneinfo(memcg, nid, zid);

	return &mz->reclaim_stat;
}

struct zone_reclaim_stat *
mem_cgroup_get_reclaim_stat_from_page(struct page *page)
{
	struct page_cgroup *pc;
	struct mem_cgroup_per_zone *mz;

	if (mem_cgroup_disabled())
		return NULL;

	pc = lookup_page_cgroup(page);
923 924 925 926 927 928 929 930
	/*
	 * Used bit is set without atomic ops but after smp_wmb().
	 * For making pc->mem_cgroup visible, insert smp_rmb() here.
	 */
	smp_rmb();
	if (!PageCgroupUsed(pc))
		return NULL;

K
KOSAKI Motohiro 已提交
931 932 933 934 935 936 937
	mz = page_cgroup_zoneinfo(pc);
	if (!mz)
		return NULL;

	return &mz->reclaim_stat;
}

938 939 940 941 942
unsigned long mem_cgroup_isolate_pages(unsigned long nr_to_scan,
					struct list_head *dst,
					unsigned long *scanned, int order,
					int mode, struct zone *z,
					struct mem_cgroup *mem_cont,
943
					int active, int file)
944 945 946 947 948 949
{
	unsigned long nr_taken = 0;
	struct page *page;
	unsigned long scan;
	LIST_HEAD(pc_list);
	struct list_head *src;
950
	struct page_cgroup *pc, *tmp;
951 952 953
	int nid = z->zone_pgdat->node_id;
	int zid = zone_idx(z);
	struct mem_cgroup_per_zone *mz;
954
	int lru = LRU_FILE * file + active;
955
	int ret;
956

957
	BUG_ON(!mem_cont);
958
	mz = mem_cgroup_zoneinfo(mem_cont, nid, zid);
959
	src = &mz->lists[lru];
960

961 962
	scan = 0;
	list_for_each_entry_safe_reverse(pc, tmp, src, lru) {
H
Hugh Dickins 已提交
963
		if (scan >= nr_to_scan)
964
			break;
K
KAMEZAWA Hiroyuki 已提交
965 966

		page = pc->page;
967 968
		if (unlikely(!PageCgroupUsed(pc)))
			continue;
H
Hugh Dickins 已提交
969
		if (unlikely(!PageLRU(page)))
970 971
			continue;

H
Hugh Dickins 已提交
972
		scan++;
973 974 975
		ret = __isolate_lru_page(page, mode, file);
		switch (ret) {
		case 0:
976
			list_move(&page->lru, dst);
977
			mem_cgroup_del_lru(page);
978
			nr_taken++;
979 980 981 982 983 984 985
			break;
		case -EBUSY:
			/* we don't affect global LRU but rotate in our LRU */
			mem_cgroup_rotate_lru_list(page, page_lru(page));
			break;
		default:
			break;
986 987 988 989 990 991 992
		}
	}

	*scanned = scan;
	return nr_taken;
}

993 994 995
#define mem_cgroup_from_res_counter(counter, member)	\
	container_of(counter, struct mem_cgroup, member)

996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007
static bool mem_cgroup_check_under_limit(struct mem_cgroup *mem)
{
	if (do_swap_account) {
		if (res_counter_check_under_limit(&mem->res) &&
			res_counter_check_under_limit(&mem->memsw))
			return true;
	} else
		if (res_counter_check_under_limit(&mem->res))
			return true;
	return false;
}

K
KOSAKI Motohiro 已提交
1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023
static unsigned int get_swappiness(struct mem_cgroup *memcg)
{
	struct cgroup *cgrp = memcg->css.cgroup;
	unsigned int swappiness;

	/* root ? */
	if (cgrp->parent == NULL)
		return vm_swappiness;

	spin_lock(&memcg->reclaim_param_lock);
	swappiness = memcg->swappiness;
	spin_unlock(&memcg->reclaim_param_lock);

	return swappiness;
}

1024 1025 1026 1027 1028 1029
static int mem_cgroup_count_children_cb(struct mem_cgroup *mem, void *data)
{
	int *val = data;
	(*val)++;
	return 0;
}
1030 1031

/**
1032
 * mem_cgroup_print_oom_info: Called from OOM with tasklist_lock held in read mode.
1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050
 * @memcg: The memory cgroup that went over limit
 * @p: Task that is going to be killed
 *
 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
 * enabled
 */
void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
{
	struct cgroup *task_cgrp;
	struct cgroup *mem_cgrp;
	/*
	 * Need a buffer in BSS, can't rely on allocations. The code relies
	 * on the assumption that OOM is serialized for memory controller.
	 * If this assumption is broken, revisit this code.
	 */
	static char memcg_name[PATH_MAX];
	int ret;

1051
	if (!memcg || !p)
1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097
		return;


	rcu_read_lock();

	mem_cgrp = memcg->css.cgroup;
	task_cgrp = task_cgroup(p, mem_cgroup_subsys_id);

	ret = cgroup_path(task_cgrp, memcg_name, PATH_MAX);
	if (ret < 0) {
		/*
		 * Unfortunately, we are unable to convert to a useful name
		 * But we'll still print out the usage information
		 */
		rcu_read_unlock();
		goto done;
	}
	rcu_read_unlock();

	printk(KERN_INFO "Task in %s killed", memcg_name);

	rcu_read_lock();
	ret = cgroup_path(mem_cgrp, memcg_name, PATH_MAX);
	if (ret < 0) {
		rcu_read_unlock();
		goto done;
	}
	rcu_read_unlock();

	/*
	 * Continues from above, so we don't need an KERN_ level
	 */
	printk(KERN_CONT " as a result of limit of %s\n", memcg_name);
done:

	printk(KERN_INFO "memory: usage %llukB, limit %llukB, failcnt %llu\n",
		res_counter_read_u64(&memcg->res, RES_USAGE) >> 10,
		res_counter_read_u64(&memcg->res, RES_LIMIT) >> 10,
		res_counter_read_u64(&memcg->res, RES_FAILCNT));
	printk(KERN_INFO "memory+swap: usage %llukB, limit %llukB, "
		"failcnt %llu\n",
		res_counter_read_u64(&memcg->memsw, RES_USAGE) >> 10,
		res_counter_read_u64(&memcg->memsw, RES_LIMIT) >> 10,
		res_counter_read_u64(&memcg->memsw, RES_FAILCNT));
}

1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108
/*
 * This function returns the number of memcg under hierarchy tree. Returns
 * 1(self count) if no children.
 */
static int mem_cgroup_count_children(struct mem_cgroup *mem)
{
	int num = 0;
 	mem_cgroup_walk_tree(mem, &num, mem_cgroup_count_children_cb);
	return num;
}

1109
/*
K
KAMEZAWA Hiroyuki 已提交
1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151
 * Visit the first child (need not be the first child as per the ordering
 * of the cgroup list, since we track last_scanned_child) of @mem and use
 * that to reclaim free pages from.
 */
static struct mem_cgroup *
mem_cgroup_select_victim(struct mem_cgroup *root_mem)
{
	struct mem_cgroup *ret = NULL;
	struct cgroup_subsys_state *css;
	int nextid, found;

	if (!root_mem->use_hierarchy) {
		css_get(&root_mem->css);
		ret = root_mem;
	}

	while (!ret) {
		rcu_read_lock();
		nextid = root_mem->last_scanned_child + 1;
		css = css_get_next(&mem_cgroup_subsys, nextid, &root_mem->css,
				   &found);
		if (css && css_tryget(css))
			ret = container_of(css, struct mem_cgroup, css);

		rcu_read_unlock();
		/* Updates scanning parameter */
		spin_lock(&root_mem->reclaim_param_lock);
		if (!css) {
			/* this means start scan from ID:1 */
			root_mem->last_scanned_child = 0;
		} else
			root_mem->last_scanned_child = found;
		spin_unlock(&root_mem->reclaim_param_lock);
	}

	return ret;
}

/*
 * Scan the hierarchy if needed to reclaim memory. We remember the last child
 * we reclaimed from, so that we don't end up penalizing one child extensively
 * based on its position in the children list.
1152 1153
 *
 * root_mem is the original ancestor that we've been reclaim from.
K
KAMEZAWA Hiroyuki 已提交
1154 1155 1156
 *
 * We give up and return to the caller when we visit root_mem twice.
 * (other groups can be removed while we're walking....)
1157 1158
 *
 * If shrink==true, for avoiding to free too much, this returns immedieately.
1159 1160
 */
static int mem_cgroup_hierarchical_reclaim(struct mem_cgroup *root_mem,
1161
						struct zone *zone,
1162 1163
						gfp_t gfp_mask,
						unsigned long reclaim_options)
1164
{
K
KAMEZAWA Hiroyuki 已提交
1165 1166 1167
	struct mem_cgroup *victim;
	int ret, total = 0;
	int loop = 0;
1168 1169
	bool noswap = reclaim_options & MEM_CGROUP_RECLAIM_NOSWAP;
	bool shrink = reclaim_options & MEM_CGROUP_RECLAIM_SHRINK;
1170 1171
	bool check_soft = reclaim_options & MEM_CGROUP_RECLAIM_SOFT;
	unsigned long excess = mem_cgroup_get_excess(root_mem);
K
KAMEZAWA Hiroyuki 已提交
1172

1173 1174 1175 1176
	/* If memsw_is_minimum==1, swap-out is of-no-use. */
	if (root_mem->memsw_is_minimum)
		noswap = true;

1177
	while (1) {
K
KAMEZAWA Hiroyuki 已提交
1178
		victim = mem_cgroup_select_victim(root_mem);
1179
		if (victim == root_mem) {
K
KAMEZAWA Hiroyuki 已提交
1180
			loop++;
1181 1182
			if (loop >= 1)
				drain_all_stock_async();
1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205
			if (loop >= 2) {
				/*
				 * If we have not been able to reclaim
				 * anything, it might because there are
				 * no reclaimable pages under this hierarchy
				 */
				if (!check_soft || !total) {
					css_put(&victim->css);
					break;
				}
				/*
				 * We want to do more targetted reclaim.
				 * excess >> 2 is not to excessive so as to
				 * reclaim too much, nor too less that we keep
				 * coming back to reclaim from this cgroup
				 */
				if (total >= (excess >> 2) ||
					(loop > MEM_CGROUP_MAX_RECLAIM_LOOPS)) {
					css_put(&victim->css);
					break;
				}
			}
		}
1206
		if (!mem_cgroup_local_usage(victim)) {
K
KAMEZAWA Hiroyuki 已提交
1207 1208
			/* this cgroup's local usage == 0 */
			css_put(&victim->css);
1209 1210
			continue;
		}
K
KAMEZAWA Hiroyuki 已提交
1211
		/* we use swappiness of local cgroup */
1212 1213 1214 1215 1216 1217 1218
		if (check_soft)
			ret = mem_cgroup_shrink_node_zone(victim, gfp_mask,
				noswap, get_swappiness(victim), zone,
				zone->zone_pgdat->node_id);
		else
			ret = try_to_free_mem_cgroup_pages(victim, gfp_mask,
						noswap, get_swappiness(victim));
K
KAMEZAWA Hiroyuki 已提交
1219
		css_put(&victim->css);
1220 1221 1222 1223 1224 1225 1226
		/*
		 * At shrinking usage, we can't check we should stop here or
		 * reclaim more. It's depends on callers. last_scanned_child
		 * will work enough for keeping fairness under tree.
		 */
		if (shrink)
			return ret;
K
KAMEZAWA Hiroyuki 已提交
1227
		total += ret;
1228 1229 1230 1231
		if (check_soft) {
			if (res_counter_check_under_soft_limit(&root_mem->res))
				return total;
		} else if (mem_cgroup_check_under_limit(root_mem))
K
KAMEZAWA Hiroyuki 已提交
1232
			return 1 + total;
1233
	}
K
KAMEZAWA Hiroyuki 已提交
1234
	return total;
1235 1236
}

1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252
bool mem_cgroup_oom_called(struct task_struct *task)
{
	bool ret = false;
	struct mem_cgroup *mem;
	struct mm_struct *mm;

	rcu_read_lock();
	mm = task->mm;
	if (!mm)
		mm = &init_mm;
	mem = mem_cgroup_from_task(rcu_dereference(mm->owner));
	if (mem && time_before(jiffies, mem->last_oom_jiffies + HZ/10))
		ret = true;
	rcu_read_unlock();
	return ret;
}
1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264

static int record_last_oom_cb(struct mem_cgroup *mem, void *data)
{
	mem->last_oom_jiffies = jiffies;
	return 0;
}

static void record_last_oom(struct mem_cgroup *mem)
{
	mem_cgroup_walk_tree(mem, NULL, record_last_oom_cb);
}

1265 1266 1267 1268
/*
 * Currently used to update mapped file statistics, but the routine can be
 * generalized to update other statistics as well.
 */
1269
void mem_cgroup_update_file_mapped(struct page *page, int val)
1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286
{
	struct mem_cgroup *mem;
	struct page_cgroup *pc;

	pc = lookup_page_cgroup(page);
	if (unlikely(!pc))
		return;

	lock_page_cgroup(pc);
	mem = pc->mem_cgroup;
	if (!mem)
		goto done;

	if (!PageCgroupUsed(pc))
		goto done;

	/*
1287
	 * Preemption is already disabled. We can use __this_cpu_xxx
1288
	 */
1289
	__this_cpu_add(mem->stat->count[MEM_CGROUP_STAT_FILE_MAPPED], val);
1290 1291 1292 1293

done:
	unlock_page_cgroup(pc);
}
1294

1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421
/*
 * size of first charge trial. "32" comes from vmscan.c's magic value.
 * TODO: maybe necessary to use big numbers in big irons.
 */
#define CHARGE_SIZE	(32 * PAGE_SIZE)
struct memcg_stock_pcp {
	struct mem_cgroup *cached; /* this never be root cgroup */
	int charge;
	struct work_struct work;
};
static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
static atomic_t memcg_drain_count;

/*
 * Try to consume stocked charge on this cpu. If success, PAGE_SIZE is consumed
 * from local stock and true is returned. If the stock is 0 or charges from a
 * cgroup which is not current target, returns false. This stock will be
 * refilled.
 */
static bool consume_stock(struct mem_cgroup *mem)
{
	struct memcg_stock_pcp *stock;
	bool ret = true;

	stock = &get_cpu_var(memcg_stock);
	if (mem == stock->cached && stock->charge)
		stock->charge -= PAGE_SIZE;
	else /* need to call res_counter_charge */
		ret = false;
	put_cpu_var(memcg_stock);
	return ret;
}

/*
 * Returns stocks cached in percpu to res_counter and reset cached information.
 */
static void drain_stock(struct memcg_stock_pcp *stock)
{
	struct mem_cgroup *old = stock->cached;

	if (stock->charge) {
		res_counter_uncharge(&old->res, stock->charge);
		if (do_swap_account)
			res_counter_uncharge(&old->memsw, stock->charge);
	}
	stock->cached = NULL;
	stock->charge = 0;
}

/*
 * This must be called under preempt disabled or must be called by
 * a thread which is pinned to local cpu.
 */
static void drain_local_stock(struct work_struct *dummy)
{
	struct memcg_stock_pcp *stock = &__get_cpu_var(memcg_stock);
	drain_stock(stock);
}

/*
 * Cache charges(val) which is from res_counter, to local per_cpu area.
 * This will be consumed by consumt_stock() function, later.
 */
static void refill_stock(struct mem_cgroup *mem, int val)
{
	struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);

	if (stock->cached != mem) { /* reset if necessary */
		drain_stock(stock);
		stock->cached = mem;
	}
	stock->charge += val;
	put_cpu_var(memcg_stock);
}

/*
 * Tries to drain stocked charges in other cpus. This function is asynchronous
 * and just put a work per cpu for draining localy on each cpu. Caller can
 * expects some charges will be back to res_counter later but cannot wait for
 * it.
 */
static void drain_all_stock_async(void)
{
	int cpu;
	/* This function is for scheduling "drain" in asynchronous way.
	 * The result of "drain" is not directly handled by callers. Then,
	 * if someone is calling drain, we don't have to call drain more.
	 * Anyway, WORK_STRUCT_PENDING check in queue_work_on() will catch if
	 * there is a race. We just do loose check here.
	 */
	if (atomic_read(&memcg_drain_count))
		return;
	/* Notify other cpus that system-wide "drain" is running */
	atomic_inc(&memcg_drain_count);
	get_online_cpus();
	for_each_online_cpu(cpu) {
		struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
		schedule_work_on(cpu, &stock->work);
	}
 	put_online_cpus();
	atomic_dec(&memcg_drain_count);
	/* We don't wait for flush_work */
}

/* This is a synchronous drain interface. */
static void drain_all_stock_sync(void)
{
	/* called when force_empty is called */
	atomic_inc(&memcg_drain_count);
	schedule_on_each_cpu(drain_local_stock);
	atomic_dec(&memcg_drain_count);
}

static int __cpuinit memcg_stock_cpu_callback(struct notifier_block *nb,
					unsigned long action,
					void *hcpu)
{
	int cpu = (unsigned long)hcpu;
	struct memcg_stock_pcp *stock;

	if (action != CPU_DEAD)
		return NOTIFY_OK;
	stock = &per_cpu(memcg_stock, cpu);
	drain_stock(stock);
	return NOTIFY_OK;
}

1422 1423 1424
/*
 * Unlike exported interface, "oom" parameter is added. if oom==true,
 * oom-killer can be invoked.
1425
 */
1426
static int __mem_cgroup_try_charge(struct mm_struct *mm,
1427
			gfp_t gfp_mask, struct mem_cgroup **memcg,
1428
			bool oom, struct page *page)
1429
{
1430
	struct mem_cgroup *mem, *mem_over_limit;
1431
	int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
1432
	struct res_counter *fail_res;
1433
	int csize = CHARGE_SIZE;
1434 1435 1436 1437 1438 1439 1440

	if (unlikely(test_thread_flag(TIF_MEMDIE))) {
		/* Don't account this! */
		*memcg = NULL;
		return 0;
	}

1441
	/*
1442 1443
	 * We always charge the cgroup the mm_struct belongs to.
	 * The mm_struct's mem_cgroup changes on task migration if the
1444 1445 1446
	 * thread group leader migrates. It's possible that mm is not
	 * set, if so charge the init_mm (happens for pagecache usage).
	 */
1447 1448 1449
	mem = *memcg;
	if (likely(!mem)) {
		mem = try_get_mem_cgroup_from_mm(mm);
1450
		*memcg = mem;
1451
	} else {
1452
		css_get(&mem->css);
1453
	}
1454 1455 1456
	if (unlikely(!mem))
		return 0;

1457
	VM_BUG_ON(css_is_removed(&mem->css));
1458 1459
	if (mem_cgroup_is_root(mem))
		goto done;
1460

1461
	while (1) {
1462
		int ret = 0;
1463
		unsigned long flags = 0;
1464

1465 1466 1467 1468
		if (consume_stock(mem))
			goto charged;

		ret = res_counter_charge(&mem->res, csize, &fail_res);
1469 1470 1471
		if (likely(!ret)) {
			if (!do_swap_account)
				break;
1472
			ret = res_counter_charge(&mem->memsw, csize, &fail_res);
1473 1474 1475
			if (likely(!ret))
				break;
			/* mem+swap counter fails */
1476
			res_counter_uncharge(&mem->res, csize);
1477
			flags |= MEM_CGROUP_RECLAIM_NOSWAP;
1478 1479 1480 1481 1482 1483 1484
			mem_over_limit = mem_cgroup_from_res_counter(fail_res,
									memsw);
		} else
			/* mem counter fails */
			mem_over_limit = mem_cgroup_from_res_counter(fail_res,
									res);

1485 1486 1487 1488 1489
		/* reduce request size and retry */
		if (csize > PAGE_SIZE) {
			csize = PAGE_SIZE;
			continue;
		}
1490
		if (!(gfp_mask & __GFP_WAIT))
1491
			goto nomem;
1492

1493 1494
		ret = mem_cgroup_hierarchical_reclaim(mem_over_limit, NULL,
						gfp_mask, flags);
1495 1496
		if (ret)
			continue;
1497 1498

		/*
1499 1500 1501 1502 1503
		 * try_to_free_mem_cgroup_pages() might not give us a full
		 * picture of reclaim. Some pages are reclaimed and might be
		 * moved to swap cache or just unmapped from the cgroup.
		 * Check the limit again to see if the reclaim reduced the
		 * current usage of the cgroup before giving up
1504
		 *
1505
		 */
1506 1507
		if (mem_cgroup_check_under_limit(mem_over_limit))
			continue;
1508

1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550
		/* try to avoid oom while someone is moving charge */
		if (mc.moving_task && current != mc.moving_task) {
			struct mem_cgroup *from, *to;
			bool do_continue = false;
			/*
			 * There is a small race that "from" or "to" can be
			 * freed by rmdir, so we use css_tryget().
			 */
			rcu_read_lock();
			from = mc.from;
			to = mc.to;
			if (from && css_tryget(&from->css)) {
				if (mem_over_limit->use_hierarchy)
					do_continue = css_is_ancestor(
							&from->css,
							&mem_over_limit->css);
				else
					do_continue = (from == mem_over_limit);
				css_put(&from->css);
			}
			if (!do_continue && to && css_tryget(&to->css)) {
				if (mem_over_limit->use_hierarchy)
					do_continue = css_is_ancestor(
							&to->css,
							&mem_over_limit->css);
				else
					do_continue = (to == mem_over_limit);
				css_put(&to->css);
			}
			rcu_read_unlock();
			if (do_continue) {
				DEFINE_WAIT(wait);
				prepare_to_wait(&mc.waitq, &wait,
							TASK_INTERRUPTIBLE);
				/* moving charge context might have finished. */
				if (mc.moving_task)
					schedule();
				finish_wait(&mc.waitq, &wait);
				continue;
			}
		}

1551
		if (!nr_retries--) {
1552
			if (oom) {
1553
				mem_cgroup_out_of_memory(mem_over_limit, gfp_mask);
1554
				record_last_oom(mem_over_limit);
1555
			}
1556
			goto nomem;
1557
		}
1558
	}
1559 1560 1561
	if (csize > PAGE_SIZE)
		refill_stock(mem, csize - PAGE_SIZE);
charged:
1562
	/*
1563 1564
	 * Insert ancestor (and ancestor's ancestors), to softlimit RB-tree.
	 * if they exceeds softlimit.
1565
	 */
1566
	if (page && mem_cgroup_soft_limit_check(mem))
1567
		mem_cgroup_update_tree(mem, page);
1568
done:
1569 1570
	if (mem_cgroup_threshold_check(mem))
		mem_cgroup_threshold(mem);
1571 1572 1573 1574 1575
	return 0;
nomem:
	css_put(&mem->css);
	return -ENOMEM;
}
1576

1577 1578 1579 1580 1581
/*
 * Somemtimes we have to undo a charge we got by try_charge().
 * This function is for that and do uncharge, put css's refcnt.
 * gotten by try_charge().
 */
1582 1583
static void __mem_cgroup_cancel_charge(struct mem_cgroup *mem,
							unsigned long count)
1584 1585
{
	if (!mem_cgroup_is_root(mem)) {
1586
		res_counter_uncharge(&mem->res, PAGE_SIZE * count);
1587
		if (do_swap_account)
1588 1589 1590 1591
			res_counter_uncharge(&mem->memsw, PAGE_SIZE * count);
		VM_BUG_ON(test_bit(CSS_ROOT, &mem->css.flags));
		WARN_ON_ONCE(count > INT_MAX);
		__css_put(&mem->css, (int)count);
1592
	}
1593 1594 1595 1596 1597 1598
	/* we don't need css_put for root */
}

static void mem_cgroup_cancel_charge(struct mem_cgroup *mem)
{
	__mem_cgroup_cancel_charge(mem, 1);
1599 1600
}

1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619
/*
 * A helper function to get mem_cgroup from ID. must be called under
 * rcu_read_lock(). The caller must check css_is_removed() or some if
 * it's concern. (dropping refcnt from swap can be called against removed
 * memcg.)
 */
static struct mem_cgroup *mem_cgroup_lookup(unsigned short id)
{
	struct cgroup_subsys_state *css;

	/* ID 0 is unused ID */
	if (!id)
		return NULL;
	css = css_lookup(&mem_cgroup_subsys, id);
	if (!css)
		return NULL;
	return container_of(css, struct mem_cgroup, css);
}

1620
struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page)
1621
{
1622
	struct mem_cgroup *mem = NULL;
1623
	struct page_cgroup *pc;
1624
	unsigned short id;
1625 1626
	swp_entry_t ent;

1627 1628 1629
	VM_BUG_ON(!PageLocked(page));

	pc = lookup_page_cgroup(page);
1630
	lock_page_cgroup(pc);
1631
	if (PageCgroupUsed(pc)) {
1632
		mem = pc->mem_cgroup;
1633 1634
		if (mem && !css_tryget(&mem->css))
			mem = NULL;
1635
	} else if (PageSwapCache(page)) {
1636
		ent.val = page_private(page);
1637 1638 1639 1640 1641 1642
		id = lookup_swap_cgroup(ent);
		rcu_read_lock();
		mem = mem_cgroup_lookup(id);
		if (mem && !css_tryget(&mem->css))
			mem = NULL;
		rcu_read_unlock();
1643
	}
1644
	unlock_page_cgroup(pc);
1645 1646 1647
	return mem;
}

1648
/*
1649
 * commit a charge got by __mem_cgroup_try_charge() and makes page_cgroup to be
1650 1651 1652 1653 1654 1655 1656 1657 1658 1659
 * USED state. If already USED, uncharge and return.
 */

static void __mem_cgroup_commit_charge(struct mem_cgroup *mem,
				     struct page_cgroup *pc,
				     enum charge_type ctype)
{
	/* try_charge() can return NULL to *memcg, taking care of it. */
	if (!mem)
		return;
1660 1661 1662 1663

	lock_page_cgroup(pc);
	if (unlikely(PageCgroupUsed(pc))) {
		unlock_page_cgroup(pc);
1664
		mem_cgroup_cancel_charge(mem);
1665
		return;
1666
	}
1667

1668
	pc->mem_cgroup = mem;
1669 1670 1671 1672 1673 1674 1675
	/*
	 * We access a page_cgroup asynchronously without lock_page_cgroup().
	 * Especially when a page_cgroup is taken from a page, pc->mem_cgroup
	 * is accessed after testing USED bit. To make pc->mem_cgroup visible
	 * before USED bit, we need memory barrier here.
	 * See mem_cgroup_add_lru_list(), etc.
 	 */
K
KAMEZAWA Hiroyuki 已提交
1676
	smp_wmb();
1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689
	switch (ctype) {
	case MEM_CGROUP_CHARGE_TYPE_CACHE:
	case MEM_CGROUP_CHARGE_TYPE_SHMEM:
		SetPageCgroupCache(pc);
		SetPageCgroupUsed(pc);
		break;
	case MEM_CGROUP_CHARGE_TYPE_MAPPED:
		ClearPageCgroupCache(pc);
		SetPageCgroupUsed(pc);
		break;
	default:
		break;
	}
1690

K
KAMEZAWA Hiroyuki 已提交
1691
	mem_cgroup_charge_statistics(mem, pc, true);
1692 1693

	unlock_page_cgroup(pc);
1694
}
1695

1696
/**
1697
 * __mem_cgroup_move_account - move account of the page
1698 1699 1700
 * @pc:	page_cgroup of the page.
 * @from: mem_cgroup which the page is moved from.
 * @to:	mem_cgroup which the page is moved to. @from != @to.
1701
 * @uncharge: whether we should call uncharge and css_put against @from.
1702 1703
 *
 * The caller must confirm following.
K
KAMEZAWA Hiroyuki 已提交
1704
 * - page is not on LRU (isolate_page() is useful.)
1705
 * - the pc is locked, used, and ->mem_cgroup points to @from.
1706
 *
1707 1708 1709 1710
 * This function doesn't do "charge" nor css_get to new cgroup. It should be
 * done by a caller(__mem_cgroup_try_charge would be usefull). If @uncharge is
 * true, this function does "uncharge" from old cgroup, but it doesn't if
 * @uncharge is false, so a caller should do "uncharge".
1711 1712
 */

1713
static void __mem_cgroup_move_account(struct page_cgroup *pc,
1714
	struct mem_cgroup *from, struct mem_cgroup *to, bool uncharge)
1715
{
1716
	struct page *page;
1717 1718

	VM_BUG_ON(from == to);
K
KAMEZAWA Hiroyuki 已提交
1719
	VM_BUG_ON(PageLRU(pc->page));
1720 1721 1722
	VM_BUG_ON(!PageCgroupLocked(pc));
	VM_BUG_ON(!PageCgroupUsed(pc));
	VM_BUG_ON(pc->mem_cgroup != from);
1723

1724
	page = pc->page;
1725
	if (page_mapped(page) && !PageAnon(page)) {
1726 1727 1728 1729 1730
		/* Update mapped_file data for mem_cgroup */
		preempt_disable();
		__this_cpu_dec(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
		__this_cpu_inc(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
		preempt_enable();
1731
	}
1732 1733 1734 1735
	mem_cgroup_charge_statistics(from, pc, false);
	if (uncharge)
		/* This is not "cancel", but cancel_charge does all we need. */
		mem_cgroup_cancel_charge(from);
1736

1737
	/* caller should have done css_get */
K
KAMEZAWA Hiroyuki 已提交
1738 1739
	pc->mem_cgroup = to;
	mem_cgroup_charge_statistics(to, pc, true);
1740 1741 1742
	/*
	 * We charges against "to" which may not have any tasks. Then, "to"
	 * can be under rmdir(). But in current implementation, caller of
1743 1744 1745
	 * this function is just force_empty() and move charge, so it's
	 * garanteed that "to" is never removed. So, we don't check rmdir
	 * status here.
1746
	 */
1747 1748 1749 1750 1751 1752 1753
}

/*
 * check whether the @pc is valid for moving account and call
 * __mem_cgroup_move_account()
 */
static int mem_cgroup_move_account(struct page_cgroup *pc,
1754
		struct mem_cgroup *from, struct mem_cgroup *to, bool uncharge)
1755 1756 1757 1758
{
	int ret = -EINVAL;
	lock_page_cgroup(pc);
	if (PageCgroupUsed(pc) && pc->mem_cgroup == from) {
1759
		__mem_cgroup_move_account(pc, from, to, uncharge);
1760 1761 1762
		ret = 0;
	}
	unlock_page_cgroup(pc);
1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773
	return ret;
}

/*
 * move charges to its parent.
 */

static int mem_cgroup_move_parent(struct page_cgroup *pc,
				  struct mem_cgroup *child,
				  gfp_t gfp_mask)
{
K
KAMEZAWA Hiroyuki 已提交
1774
	struct page *page = pc->page;
1775 1776 1777 1778 1779 1780 1781 1782 1783
	struct cgroup *cg = child->css.cgroup;
	struct cgroup *pcg = cg->parent;
	struct mem_cgroup *parent;
	int ret;

	/* Is ROOT ? */
	if (!pcg)
		return -EINVAL;

1784 1785 1786 1787 1788
	ret = -EBUSY;
	if (!get_page_unless_zero(page))
		goto out;
	if (isolate_lru_page(page))
		goto put;
K
KAMEZAWA Hiroyuki 已提交
1789

1790
	parent = mem_cgroup_from_cont(pcg);
1791
	ret = __mem_cgroup_try_charge(NULL, gfp_mask, &parent, false, page);
1792
	if (ret || !parent)
1793
		goto put_back;
1794

1795 1796 1797
	ret = mem_cgroup_move_account(pc, child, parent, true);
	if (ret)
		mem_cgroup_cancel_charge(parent);
1798
put_back:
K
KAMEZAWA Hiroyuki 已提交
1799
	putback_lru_page(page);
1800
put:
1801
	put_page(page);
1802
out:
1803 1804 1805
	return ret;
}

1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826
/*
 * Charge the memory controller for page usage.
 * Return
 * 0 if the charge was successful
 * < 0 if the cgroup is over its limit
 */
static int mem_cgroup_charge_common(struct page *page, struct mm_struct *mm,
				gfp_t gfp_mask, enum charge_type ctype,
				struct mem_cgroup *memcg)
{
	struct mem_cgroup *mem;
	struct page_cgroup *pc;
	int ret;

	pc = lookup_page_cgroup(page);
	/* can happen at boot */
	if (unlikely(!pc))
		return 0;
	prefetchw(pc);

	mem = memcg;
1827
	ret = __mem_cgroup_try_charge(mm, gfp_mask, &mem, true, page);
1828
	if (ret || !mem)
1829 1830 1831
		return ret;

	__mem_cgroup_commit_charge(mem, pc, ctype);
1832 1833 1834
	return 0;
}

1835 1836
int mem_cgroup_newpage_charge(struct page *page,
			      struct mm_struct *mm, gfp_t gfp_mask)
1837
{
1838
	if (mem_cgroup_disabled())
1839
		return 0;
1840 1841
	if (PageCompound(page))
		return 0;
1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852
	/*
	 * If already mapped, we don't have to account.
	 * If page cache, page->mapping has address_space.
	 * But page->mapping may have out-of-use anon_vma pointer,
	 * detecit it by PageAnon() check. newly-mapped-anon's page->mapping
	 * is NULL.
  	 */
	if (page_mapped(page) || (page->mapping && !PageAnon(page)))
		return 0;
	if (unlikely(!mm))
		mm = &init_mm;
1853
	return mem_cgroup_charge_common(page, mm, gfp_mask,
1854
				MEM_CGROUP_CHARGE_TYPE_MAPPED, NULL);
1855 1856
}

D
Daisuke Nishimura 已提交
1857 1858 1859 1860
static void
__mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr,
					enum charge_type ctype);

1861 1862
int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm,
				gfp_t gfp_mask)
1863
{
1864 1865 1866
	struct mem_cgroup *mem = NULL;
	int ret;

1867
	if (mem_cgroup_disabled())
1868
		return 0;
1869 1870
	if (PageCompound(page))
		return 0;
1871 1872 1873 1874 1875 1876 1877 1878
	/*
	 * Corner case handling. This is called from add_to_page_cache()
	 * in usual. But some FS (shmem) precharges this page before calling it
	 * and call add_to_page_cache() with GFP_NOWAIT.
	 *
	 * For GFP_NOWAIT case, the page may be pre-charged before calling
	 * add_to_page_cache(). (See shmem.c) check it here and avoid to call
	 * charge twice. (It works but has to pay a bit larger cost.)
1879 1880
	 * And when the page is SwapCache, it should take swap information
	 * into account. This is under lock_page() now.
1881 1882 1883 1884
	 */
	if (!(gfp_mask & __GFP_WAIT)) {
		struct page_cgroup *pc;

1885 1886 1887 1888 1889 1890 1891

		pc = lookup_page_cgroup(page);
		if (!pc)
			return 0;
		lock_page_cgroup(pc);
		if (PageCgroupUsed(pc)) {
			unlock_page_cgroup(pc);
1892 1893
			return 0;
		}
1894
		unlock_page_cgroup(pc);
1895 1896
	}

1897
	if (unlikely(!mm && !mem))
1898
		mm = &init_mm;
1899

1900 1901
	if (page_is_file_cache(page))
		return mem_cgroup_charge_common(page, mm, gfp_mask,
1902
				MEM_CGROUP_CHARGE_TYPE_CACHE, NULL);
1903

D
Daisuke Nishimura 已提交
1904 1905 1906 1907 1908 1909 1910 1911 1912
	/* shmem */
	if (PageSwapCache(page)) {
		ret = mem_cgroup_try_charge_swapin(mm, page, gfp_mask, &mem);
		if (!ret)
			__mem_cgroup_commit_charge_swapin(page, mem,
					MEM_CGROUP_CHARGE_TYPE_SHMEM);
	} else
		ret = mem_cgroup_charge_common(page, mm, gfp_mask,
					MEM_CGROUP_CHARGE_TYPE_SHMEM, mem);
1913 1914

	return ret;
1915 1916
}

1917 1918 1919
/*
 * While swap-in, try_charge -> commit or cancel, the page is locked.
 * And when try_charge() successfully returns, one refcnt to memcg without
1920
 * struct page_cgroup is acquired. This refcnt will be consumed by
1921 1922
 * "commit()" or removed by "cancel()"
 */
1923 1924 1925 1926 1927
int mem_cgroup_try_charge_swapin(struct mm_struct *mm,
				 struct page *page,
				 gfp_t mask, struct mem_cgroup **ptr)
{
	struct mem_cgroup *mem;
1928
	int ret;
1929

1930
	if (mem_cgroup_disabled())
1931 1932 1933 1934 1935 1936
		return 0;

	if (!do_swap_account)
		goto charge_cur_mm;
	/*
	 * A racing thread's fault, or swapoff, may have already updated
H
Hugh Dickins 已提交
1937 1938 1939
	 * the pte, and even removed page from swap cache: in those cases
	 * do_swap_page()'s pte_same() test will fail; but there's also a
	 * KSM case which does need to charge the page.
1940 1941
	 */
	if (!PageSwapCache(page))
H
Hugh Dickins 已提交
1942
		goto charge_cur_mm;
1943
	mem = try_get_mem_cgroup_from_page(page);
1944 1945
	if (!mem)
		goto charge_cur_mm;
1946
	*ptr = mem;
1947
	ret = __mem_cgroup_try_charge(NULL, mask, ptr, true, page);
1948 1949 1950
	/* drop extra refcnt from tryget */
	css_put(&mem->css);
	return ret;
1951 1952 1953
charge_cur_mm:
	if (unlikely(!mm))
		mm = &init_mm;
1954
	return __mem_cgroup_try_charge(mm, mask, ptr, true, page);
1955 1956
}

D
Daisuke Nishimura 已提交
1957 1958 1959
static void
__mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr,
					enum charge_type ctype)
1960 1961 1962
{
	struct page_cgroup *pc;

1963
	if (mem_cgroup_disabled())
1964 1965 1966
		return;
	if (!ptr)
		return;
1967
	cgroup_exclude_rmdir(&ptr->css);
1968
	pc = lookup_page_cgroup(page);
1969
	mem_cgroup_lru_del_before_commit_swapcache(page);
D
Daisuke Nishimura 已提交
1970
	__mem_cgroup_commit_charge(ptr, pc, ctype);
1971
	mem_cgroup_lru_add_after_commit_swapcache(page);
1972 1973 1974
	/*
	 * Now swap is on-memory. This means this page may be
	 * counted both as mem and swap....double count.
1975 1976 1977
	 * Fix it by uncharging from memsw. Basically, this SwapCache is stable
	 * under lock_page(). But in do_swap_page()::memory.c, reuse_swap_page()
	 * may call delete_from_swap_cache() before reach here.
1978
	 */
1979
	if (do_swap_account && PageSwapCache(page)) {
1980
		swp_entry_t ent = {.val = page_private(page)};
1981
		unsigned short id;
1982
		struct mem_cgroup *memcg;
1983 1984 1985 1986

		id = swap_cgroup_record(ent, 0);
		rcu_read_lock();
		memcg = mem_cgroup_lookup(id);
1987
		if (memcg) {
1988 1989 1990 1991
			/*
			 * This recorded memcg can be obsolete one. So, avoid
			 * calling css_tryget
			 */
1992
			if (!mem_cgroup_is_root(memcg))
1993
				res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
1994
			mem_cgroup_swap_statistics(memcg, false);
1995 1996
			mem_cgroup_put(memcg);
		}
1997
		rcu_read_unlock();
1998
	}
1999 2000 2001 2002 2003 2004
	/*
	 * At swapin, we may charge account against cgroup which has no tasks.
	 * So, rmdir()->pre_destroy() can be called while we do this charge.
	 * In that case, we need to call pre_destroy() again. check it here.
	 */
	cgroup_release_and_wakeup_rmdir(&ptr->css);
2005 2006
}

D
Daisuke Nishimura 已提交
2007 2008 2009 2010 2011 2012
void mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr)
{
	__mem_cgroup_commit_charge_swapin(page, ptr,
					MEM_CGROUP_CHARGE_TYPE_MAPPED);
}

2013 2014
void mem_cgroup_cancel_charge_swapin(struct mem_cgroup *mem)
{
2015
	if (mem_cgroup_disabled())
2016 2017 2018
		return;
	if (!mem)
		return;
2019
	mem_cgroup_cancel_charge(mem);
2020 2021
}

2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065
static void
__do_uncharge(struct mem_cgroup *mem, const enum charge_type ctype)
{
	struct memcg_batch_info *batch = NULL;
	bool uncharge_memsw = true;
	/* If swapout, usage of swap doesn't decrease */
	if (!do_swap_account || ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT)
		uncharge_memsw = false;
	/*
	 * do_batch > 0 when unmapping pages or inode invalidate/truncate.
	 * In those cases, all pages freed continously can be expected to be in
	 * the same cgroup and we have chance to coalesce uncharges.
	 * But we do uncharge one by one if this is killed by OOM(TIF_MEMDIE)
	 * because we want to do uncharge as soon as possible.
	 */
	if (!current->memcg_batch.do_batch || test_thread_flag(TIF_MEMDIE))
		goto direct_uncharge;

	batch = &current->memcg_batch;
	/*
	 * In usual, we do css_get() when we remember memcg pointer.
	 * But in this case, we keep res->usage until end of a series of
	 * uncharges. Then, it's ok to ignore memcg's refcnt.
	 */
	if (!batch->memcg)
		batch->memcg = mem;
	/*
	 * In typical case, batch->memcg == mem. This means we can
	 * merge a series of uncharges to an uncharge of res_counter.
	 * If not, we uncharge res_counter ony by one.
	 */
	if (batch->memcg != mem)
		goto direct_uncharge;
	/* remember freed charge and uncharge it later */
	batch->bytes += PAGE_SIZE;
	if (uncharge_memsw)
		batch->memsw_bytes += PAGE_SIZE;
	return;
direct_uncharge:
	res_counter_uncharge(&mem->res, PAGE_SIZE);
	if (uncharge_memsw)
		res_counter_uncharge(&mem->memsw, PAGE_SIZE);
	return;
}
2066

2067
/*
2068
 * uncharge if !page_mapped(page)
2069
 */
2070
static struct mem_cgroup *
2071
__mem_cgroup_uncharge_common(struct page *page, enum charge_type ctype)
2072
{
H
Hugh Dickins 已提交
2073
	struct page_cgroup *pc;
2074
	struct mem_cgroup *mem = NULL;
2075
	struct mem_cgroup_per_zone *mz;
2076

2077
	if (mem_cgroup_disabled())
2078
		return NULL;
2079

K
KAMEZAWA Hiroyuki 已提交
2080
	if (PageSwapCache(page))
2081
		return NULL;
K
KAMEZAWA Hiroyuki 已提交
2082

2083
	/*
2084
	 * Check if our page_cgroup is valid
2085
	 */
2086 2087
	pc = lookup_page_cgroup(page);
	if (unlikely(!pc || !PageCgroupUsed(pc)))
2088
		return NULL;
2089

2090
	lock_page_cgroup(pc);
K
KAMEZAWA Hiroyuki 已提交
2091

2092 2093
	mem = pc->mem_cgroup;

K
KAMEZAWA Hiroyuki 已提交
2094 2095 2096 2097 2098
	if (!PageCgroupUsed(pc))
		goto unlock_out;

	switch (ctype) {
	case MEM_CGROUP_CHARGE_TYPE_MAPPED:
K
KAMEZAWA Hiroyuki 已提交
2099
	case MEM_CGROUP_CHARGE_TYPE_DROP:
K
KAMEZAWA Hiroyuki 已提交
2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111
		if (page_mapped(page))
			goto unlock_out;
		break;
	case MEM_CGROUP_CHARGE_TYPE_SWAPOUT:
		if (!PageAnon(page)) {	/* Shared memory */
			if (page->mapping && !page_is_file_cache(page))
				goto unlock_out;
		} else if (page_mapped(page)) /* Anon */
				goto unlock_out;
		break;
	default:
		break;
2112
	}
K
KAMEZAWA Hiroyuki 已提交
2113

2114 2115
	if (!mem_cgroup_is_root(mem))
		__do_uncharge(mem, ctype);
2116 2117
	if (ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT)
		mem_cgroup_swap_statistics(mem, true);
K
KAMEZAWA Hiroyuki 已提交
2118
	mem_cgroup_charge_statistics(mem, pc, false);
K
KAMEZAWA Hiroyuki 已提交
2119

2120
	ClearPageCgroupUsed(pc);
2121 2122 2123 2124 2125 2126
	/*
	 * pc->mem_cgroup is not cleared here. It will be accessed when it's
	 * freed from LRU. This is safe because uncharged page is expected not
	 * to be reused (freed soon). Exception is SwapCache, it's handled by
	 * special functions.
	 */
2127

2128
	mz = page_cgroup_zoneinfo(pc);
2129
	unlock_page_cgroup(pc);
H
Hugh Dickins 已提交
2130

2131
	if (mem_cgroup_soft_limit_check(mem))
2132
		mem_cgroup_update_tree(mem, page);
2133 2134
	if (mem_cgroup_threshold_check(mem))
		mem_cgroup_threshold(mem);
K
KAMEZAWA Hiroyuki 已提交
2135 2136 2137
	/* at swapout, this memcg will be accessed to record to swap */
	if (ctype != MEM_CGROUP_CHARGE_TYPE_SWAPOUT)
		css_put(&mem->css);
2138

2139
	return mem;
K
KAMEZAWA Hiroyuki 已提交
2140 2141 2142

unlock_out:
	unlock_page_cgroup(pc);
2143
	return NULL;
2144 2145
}

2146 2147
void mem_cgroup_uncharge_page(struct page *page)
{
2148 2149 2150 2151 2152
	/* early check. */
	if (page_mapped(page))
		return;
	if (page->mapping && !PageAnon(page))
		return;
2153 2154 2155 2156 2157 2158
	__mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_MAPPED);
}

void mem_cgroup_uncharge_cache_page(struct page *page)
{
	VM_BUG_ON(page_mapped(page));
2159
	VM_BUG_ON(page->mapping);
2160 2161 2162
	__mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_CACHE);
}

2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206
/*
 * Batch_start/batch_end is called in unmap_page_range/invlidate/trucate.
 * In that cases, pages are freed continuously and we can expect pages
 * are in the same memcg. All these calls itself limits the number of
 * pages freed at once, then uncharge_start/end() is called properly.
 * This may be called prural(2) times in a context,
 */

void mem_cgroup_uncharge_start(void)
{
	current->memcg_batch.do_batch++;
	/* We can do nest. */
	if (current->memcg_batch.do_batch == 1) {
		current->memcg_batch.memcg = NULL;
		current->memcg_batch.bytes = 0;
		current->memcg_batch.memsw_bytes = 0;
	}
}

void mem_cgroup_uncharge_end(void)
{
	struct memcg_batch_info *batch = &current->memcg_batch;

	if (!batch->do_batch)
		return;

	batch->do_batch--;
	if (batch->do_batch) /* If stacked, do nothing. */
		return;

	if (!batch->memcg)
		return;
	/*
	 * This "batch->memcg" is valid without any css_get/put etc...
	 * bacause we hide charges behind us.
	 */
	if (batch->bytes)
		res_counter_uncharge(&batch->memcg->res, batch->bytes);
	if (batch->memsw_bytes)
		res_counter_uncharge(&batch->memcg->memsw, batch->memsw_bytes);
	/* forget this pointer (for sanity check) */
	batch->memcg = NULL;
}

2207
#ifdef CONFIG_SWAP
2208
/*
2209
 * called after __delete_from_swap_cache() and drop "page" account.
2210 2211
 * memcg information is recorded to swap_cgroup of "ent"
 */
K
KAMEZAWA Hiroyuki 已提交
2212 2213
void
mem_cgroup_uncharge_swapcache(struct page *page, swp_entry_t ent, bool swapout)
2214 2215
{
	struct mem_cgroup *memcg;
K
KAMEZAWA Hiroyuki 已提交
2216 2217 2218 2219 2220 2221
	int ctype = MEM_CGROUP_CHARGE_TYPE_SWAPOUT;

	if (!swapout) /* this was a swap cache but the swap is unused ! */
		ctype = MEM_CGROUP_CHARGE_TYPE_DROP;

	memcg = __mem_cgroup_uncharge_common(page, ctype);
2222 2223

	/* record memcg information */
K
KAMEZAWA Hiroyuki 已提交
2224
	if (do_swap_account && swapout && memcg) {
2225
		swap_cgroup_record(ent, css_id(&memcg->css));
2226 2227
		mem_cgroup_get(memcg);
	}
K
KAMEZAWA Hiroyuki 已提交
2228
	if (swapout && memcg)
K
KAMEZAWA Hiroyuki 已提交
2229
		css_put(&memcg->css);
2230
}
2231
#endif
2232 2233 2234 2235 2236 2237 2238

#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
/*
 * called from swap_entry_free(). remove record in swap_cgroup and
 * uncharge "memsw" account.
 */
void mem_cgroup_uncharge_swap(swp_entry_t ent)
K
KAMEZAWA Hiroyuki 已提交
2239
{
2240
	struct mem_cgroup *memcg;
2241
	unsigned short id;
2242 2243 2244 2245

	if (!do_swap_account)
		return;

2246 2247 2248
	id = swap_cgroup_record(ent, 0);
	rcu_read_lock();
	memcg = mem_cgroup_lookup(id);
2249
	if (memcg) {
2250 2251 2252 2253
		/*
		 * We uncharge this because swap is freed.
		 * This memcg can be obsolete one. We avoid calling css_tryget
		 */
2254
		if (!mem_cgroup_is_root(memcg))
2255
			res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
2256
		mem_cgroup_swap_statistics(memcg, false);
2257 2258
		mem_cgroup_put(memcg);
	}
2259
	rcu_read_unlock();
K
KAMEZAWA Hiroyuki 已提交
2260
}
2261 2262 2263 2264 2265 2266

/**
 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
 * @entry: swap entry to be moved
 * @from:  mem_cgroup which the entry is moved from
 * @to:  mem_cgroup which the entry is moved to
2267
 * @need_fixup: whether we should fixup res_counters and refcounts.
2268 2269 2270 2271 2272 2273 2274 2275 2276 2277
 *
 * It succeeds only when the swap_cgroup's record for this entry is the same
 * as the mem_cgroup's id of @from.
 *
 * Returns 0 on success, -EINVAL on failure.
 *
 * The caller must have charged to @to, IOW, called res_counter_charge() about
 * both res and memsw, and called css_get().
 */
static int mem_cgroup_move_swap_account(swp_entry_t entry,
2278
		struct mem_cgroup *from, struct mem_cgroup *to, bool need_fixup)
2279 2280 2281 2282 2283 2284 2285 2286
{
	unsigned short old_id, new_id;

	old_id = css_id(&from->css);
	new_id = css_id(&to->css);

	if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
		mem_cgroup_swap_statistics(from, false);
2287
		mem_cgroup_swap_statistics(to, true);
2288
		/*
2289 2290 2291 2292 2293 2294
		 * This function is only called from task migration context now.
		 * It postpones res_counter and refcount handling till the end
		 * of task migration(mem_cgroup_clear_mc()) for performance
		 * improvement. But we cannot postpone mem_cgroup_get(to)
		 * because if the process that has been moved to @to does
		 * swap-in, the refcount of @to might be decreased to 0.
2295 2296
		 */
		mem_cgroup_get(to);
2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308
		if (need_fixup) {
			if (!mem_cgroup_is_root(from))
				res_counter_uncharge(&from->memsw, PAGE_SIZE);
			mem_cgroup_put(from);
			/*
			 * we charged both to->res and to->memsw, so we should
			 * uncharge to->res.
			 */
			if (!mem_cgroup_is_root(to))
				res_counter_uncharge(&to->res, PAGE_SIZE);
			css_put(&to->css);
		}
2309 2310 2311 2312 2313 2314
		return 0;
	}
	return -EINVAL;
}
#else
static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
2315
		struct mem_cgroup *from, struct mem_cgroup *to, bool need_fixup)
2316 2317 2318
{
	return -EINVAL;
}
2319
#endif
K
KAMEZAWA Hiroyuki 已提交
2320

2321
/*
2322 2323
 * Before starting migration, account PAGE_SIZE to mem_cgroup that the old
 * page belongs to.
2324
 */
2325
int mem_cgroup_prepare_migration(struct page *page, struct mem_cgroup **ptr)
2326 2327
{
	struct page_cgroup *pc;
2328 2329
	struct mem_cgroup *mem = NULL;
	int ret = 0;
2330

2331
	if (mem_cgroup_disabled())
2332 2333
		return 0;

2334 2335 2336
	pc = lookup_page_cgroup(page);
	lock_page_cgroup(pc);
	if (PageCgroupUsed(pc)) {
2337 2338 2339
		mem = pc->mem_cgroup;
		css_get(&mem->css);
	}
2340
	unlock_page_cgroup(pc);
2341

2342
	if (mem) {
2343 2344
		ret = __mem_cgroup_try_charge(NULL, GFP_KERNEL, &mem, false,
						page);
2345 2346
		css_put(&mem->css);
	}
2347
	*ptr = mem;
2348
	return ret;
2349
}
2350

2351
/* remove redundant charge if migration failed*/
2352 2353
void mem_cgroup_end_migration(struct mem_cgroup *mem,
		struct page *oldpage, struct page *newpage)
2354
{
2355 2356 2357 2358 2359 2360
	struct page *target, *unused;
	struct page_cgroup *pc;
	enum charge_type ctype;

	if (!mem)
		return;
2361
	cgroup_exclude_rmdir(&mem->css);
2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378
	/* at migration success, oldpage->mapping is NULL. */
	if (oldpage->mapping) {
		target = oldpage;
		unused = NULL;
	} else {
		target = newpage;
		unused = oldpage;
	}

	if (PageAnon(target))
		ctype = MEM_CGROUP_CHARGE_TYPE_MAPPED;
	else if (page_is_file_cache(target))
		ctype = MEM_CGROUP_CHARGE_TYPE_CACHE;
	else
		ctype = MEM_CGROUP_CHARGE_TYPE_SHMEM;

	/* unused page is not on radix-tree now. */
K
KAMEZAWA Hiroyuki 已提交
2379
	if (unused)
2380 2381 2382
		__mem_cgroup_uncharge_common(unused, ctype);

	pc = lookup_page_cgroup(target);
2383
	/*
2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397
	 * __mem_cgroup_commit_charge() check PCG_USED bit of page_cgroup.
	 * So, double-counting is effectively avoided.
	 */
	__mem_cgroup_commit_charge(mem, pc, ctype);

	/*
	 * Both of oldpage and newpage are still under lock_page().
	 * Then, we don't have to care about race in radix-tree.
	 * But we have to be careful that this page is unmapped or not.
	 *
	 * There is a case for !page_mapped(). At the start of
	 * migration, oldpage was mapped. But now, it's zapped.
	 * But we know *target* page is not freed/reused under us.
	 * mem_cgroup_uncharge_page() does all necessary checks.
2398
	 */
2399 2400
	if (ctype == MEM_CGROUP_CHARGE_TYPE_MAPPED)
		mem_cgroup_uncharge_page(target);
2401 2402 2403 2404 2405 2406
	/*
	 * At migration, we may charge account against cgroup which has no tasks
	 * So, rmdir()->pre_destroy() can be called while we do this charge.
	 * In that case, we need to call pre_destroy() again. check it here.
	 */
	cgroup_release_and_wakeup_rmdir(&mem->css);
2407
}
2408

2409
/*
2410 2411 2412 2413 2414 2415
 * A call to try to shrink memory usage on charge failure at shmem's swapin.
 * Calling hierarchical_reclaim is not enough because we should update
 * last_oom_jiffies to prevent pagefault_out_of_memory from invoking global OOM.
 * Moreover considering hierarchy, we should reclaim from the mem_over_limit,
 * not from the memcg which this page would be charged to.
 * try_charge_swapin does all of these works properly.
2416
 */
2417
int mem_cgroup_shmem_charge_fallback(struct page *page,
2418 2419
			    struct mm_struct *mm,
			    gfp_t gfp_mask)
2420
{
2421
	struct mem_cgroup *mem = NULL;
2422
	int ret;
2423

2424
	if (mem_cgroup_disabled())
2425
		return 0;
2426

2427 2428 2429
	ret = mem_cgroup_try_charge_swapin(mm, page, gfp_mask, &mem);
	if (!ret)
		mem_cgroup_cancel_charge_swapin(mem); /* it does !mem check */
2430

2431
	return ret;
2432 2433
}

2434 2435
static DEFINE_MUTEX(set_limit_mutex);

2436
static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
2437
				unsigned long long val)
2438
{
2439
	int retry_count;
2440
	u64 memswlimit;
2441
	int ret = 0;
2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452
	int children = mem_cgroup_count_children(memcg);
	u64 curusage, oldusage;

	/*
	 * For keeping hierarchical_reclaim simple, how long we should retry
	 * is depends on callers. We set our retry-count to be function
	 * of # of children which we should visit in this loop.
	 */
	retry_count = MEM_CGROUP_RECLAIM_RETRIES * children;

	oldusage = res_counter_read_u64(&memcg->res, RES_USAGE);
2453

2454
	while (retry_count) {
2455 2456 2457 2458
		if (signal_pending(current)) {
			ret = -EINTR;
			break;
		}
2459 2460 2461 2462 2463 2464 2465 2466 2467 2468
		/*
		 * Rather than hide all in some function, I do this in
		 * open coded manner. You see what this really does.
		 * We have to guarantee mem->res.limit < mem->memsw.limit.
		 */
		mutex_lock(&set_limit_mutex);
		memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
		if (memswlimit < val) {
			ret = -EINVAL;
			mutex_unlock(&set_limit_mutex);
2469 2470
			break;
		}
2471
		ret = res_counter_set_limit(&memcg->res, val);
2472 2473 2474 2475 2476 2477
		if (!ret) {
			if (memswlimit == val)
				memcg->memsw_is_minimum = true;
			else
				memcg->memsw_is_minimum = false;
		}
2478 2479 2480 2481 2482
		mutex_unlock(&set_limit_mutex);

		if (!ret)
			break;

2483
		mem_cgroup_hierarchical_reclaim(memcg, NULL, GFP_KERNEL,
2484
						MEM_CGROUP_RECLAIM_SHRINK);
2485 2486 2487 2488 2489 2490
		curusage = res_counter_read_u64(&memcg->res, RES_USAGE);
		/* Usage is reduced ? */
  		if (curusage >= oldusage)
			retry_count--;
		else
			oldusage = curusage;
2491
	}
2492

2493 2494 2495
	return ret;
}

L
Li Zefan 已提交
2496 2497
static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
					unsigned long long val)
2498
{
2499
	int retry_count;
2500
	u64 memlimit, oldusage, curusage;
2501 2502
	int children = mem_cgroup_count_children(memcg);
	int ret = -EBUSY;
2503

2504 2505 2506
	/* see mem_cgroup_resize_res_limit */
 	retry_count = children * MEM_CGROUP_RECLAIM_RETRIES;
	oldusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524
	while (retry_count) {
		if (signal_pending(current)) {
			ret = -EINTR;
			break;
		}
		/*
		 * Rather than hide all in some function, I do this in
		 * open coded manner. You see what this really does.
		 * We have to guarantee mem->res.limit < mem->memsw.limit.
		 */
		mutex_lock(&set_limit_mutex);
		memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
		if (memlimit > val) {
			ret = -EINVAL;
			mutex_unlock(&set_limit_mutex);
			break;
		}
		ret = res_counter_set_limit(&memcg->memsw, val);
2525 2526 2527 2528 2529 2530
		if (!ret) {
			if (memlimit == val)
				memcg->memsw_is_minimum = true;
			else
				memcg->memsw_is_minimum = false;
		}
2531 2532 2533 2534 2535
		mutex_unlock(&set_limit_mutex);

		if (!ret)
			break;

2536
		mem_cgroup_hierarchical_reclaim(memcg, NULL, GFP_KERNEL,
2537 2538
						MEM_CGROUP_RECLAIM_NOSWAP |
						MEM_CGROUP_RECLAIM_SHRINK);
2539
		curusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
2540
		/* Usage is reduced ? */
2541
		if (curusage >= oldusage)
2542
			retry_count--;
2543 2544
		else
			oldusage = curusage;
2545 2546 2547 2548
	}
	return ret;
}

2549 2550 2551 2552 2553 2554 2555 2556 2557
unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
						gfp_t gfp_mask, int nid,
						int zid)
{
	unsigned long nr_reclaimed = 0;
	struct mem_cgroup_per_zone *mz, *next_mz = NULL;
	unsigned long reclaimed;
	int loop = 0;
	struct mem_cgroup_tree_per_zone *mctz;
2558
	unsigned long long excess;
2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610

	if (order > 0)
		return 0;

	mctz = soft_limit_tree_node_zone(nid, zid);
	/*
	 * This loop can run a while, specially if mem_cgroup's continuously
	 * keep exceeding their soft limit and putting the system under
	 * pressure
	 */
	do {
		if (next_mz)
			mz = next_mz;
		else
			mz = mem_cgroup_largest_soft_limit_node(mctz);
		if (!mz)
			break;

		reclaimed = mem_cgroup_hierarchical_reclaim(mz->mem, zone,
						gfp_mask,
						MEM_CGROUP_RECLAIM_SOFT);
		nr_reclaimed += reclaimed;
		spin_lock(&mctz->lock);

		/*
		 * If we failed to reclaim anything from this memory cgroup
		 * it is time to move on to the next cgroup
		 */
		next_mz = NULL;
		if (!reclaimed) {
			do {
				/*
				 * Loop until we find yet another one.
				 *
				 * By the time we get the soft_limit lock
				 * again, someone might have aded the
				 * group back on the RB tree. Iterate to
				 * make sure we get a different mem.
				 * mem_cgroup_largest_soft_limit_node returns
				 * NULL if no other cgroup is present on
				 * the tree
				 */
				next_mz =
				__mem_cgroup_largest_soft_limit_node(mctz);
				if (next_mz == mz) {
					css_put(&next_mz->mem->css);
					next_mz = NULL;
				} else /* next_mz == NULL or other memcg */
					break;
			} while (1);
		}
		__mem_cgroup_remove_exceeded(mz->mem, mz, mctz);
2611
		excess = res_counter_soft_limit_excess(&mz->mem->res);
2612 2613 2614 2615 2616 2617 2618 2619
		/*
		 * One school of thought says that we should not add
		 * back the node to the tree if reclaim returns 0.
		 * But our reclaim could return 0, simply because due
		 * to priority we are exposing a smaller subset of
		 * memory to reclaim from. Consider this as a longer
		 * term TODO.
		 */
2620 2621
		/* If excess == 0, no tree ops */
		__mem_cgroup_insert_exceeded(mz->mem, mz, mctz, excess);
2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639
		spin_unlock(&mctz->lock);
		css_put(&mz->mem->css);
		loop++;
		/*
		 * Could not reclaim anything and there are no more
		 * mem cgroups to try or we seem to be looping without
		 * reclaiming anything.
		 */
		if (!nr_reclaimed &&
			(next_mz == NULL ||
			loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
			break;
	} while (!nr_reclaimed);
	if (next_mz)
		css_put(&next_mz->mem->css);
	return nr_reclaimed;
}

2640 2641 2642 2643
/*
 * This routine traverse page_cgroup in given list and drop them all.
 * *And* this routine doesn't reclaim page itself, just removes page_cgroup.
 */
2644
static int mem_cgroup_force_empty_list(struct mem_cgroup *mem,
K
KAMEZAWA Hiroyuki 已提交
2645
				int node, int zid, enum lru_list lru)
2646
{
K
KAMEZAWA Hiroyuki 已提交
2647 2648
	struct zone *zone;
	struct mem_cgroup_per_zone *mz;
2649
	struct page_cgroup *pc, *busy;
K
KAMEZAWA Hiroyuki 已提交
2650
	unsigned long flags, loop;
2651
	struct list_head *list;
2652
	int ret = 0;
2653

K
KAMEZAWA Hiroyuki 已提交
2654 2655
	zone = &NODE_DATA(node)->node_zones[zid];
	mz = mem_cgroup_zoneinfo(mem, node, zid);
2656
	list = &mz->lists[lru];
2657

2658 2659 2660 2661 2662 2663
	loop = MEM_CGROUP_ZSTAT(mz, lru);
	/* give some margin against EBUSY etc...*/
	loop += 256;
	busy = NULL;
	while (loop--) {
		ret = 0;
K
KAMEZAWA Hiroyuki 已提交
2664
		spin_lock_irqsave(&zone->lru_lock, flags);
2665
		if (list_empty(list)) {
K
KAMEZAWA Hiroyuki 已提交
2666
			spin_unlock_irqrestore(&zone->lru_lock, flags);
2667
			break;
2668 2669 2670 2671
		}
		pc = list_entry(list->prev, struct page_cgroup, lru);
		if (busy == pc) {
			list_move(&pc->lru, list);
2672
			busy = NULL;
K
KAMEZAWA Hiroyuki 已提交
2673
			spin_unlock_irqrestore(&zone->lru_lock, flags);
2674 2675
			continue;
		}
K
KAMEZAWA Hiroyuki 已提交
2676
		spin_unlock_irqrestore(&zone->lru_lock, flags);
2677

K
KAMEZAWA Hiroyuki 已提交
2678
		ret = mem_cgroup_move_parent(pc, mem, GFP_KERNEL);
2679
		if (ret == -ENOMEM)
2680
			break;
2681 2682 2683 2684 2685 2686 2687

		if (ret == -EBUSY || ret == -EINVAL) {
			/* found lock contention or "pc" is obsolete. */
			busy = pc;
			cond_resched();
		} else
			busy = NULL;
2688
	}
K
KAMEZAWA Hiroyuki 已提交
2689

2690 2691 2692
	if (!ret && !list_empty(list))
		return -EBUSY;
	return ret;
2693 2694 2695 2696 2697 2698
}

/*
 * make mem_cgroup's charge to be 0 if there is no task.
 * This enables deleting this mem_cgroup.
 */
2699
static int mem_cgroup_force_empty(struct mem_cgroup *mem, bool free_all)
2700
{
2701 2702 2703
	int ret;
	int node, zid, shrink;
	int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
2704
	struct cgroup *cgrp = mem->css.cgroup;
2705

2706
	css_get(&mem->css);
2707 2708

	shrink = 0;
2709 2710 2711
	/* should free all ? */
	if (free_all)
		goto try_to_free;
2712
move_account:
2713
	do {
2714
		ret = -EBUSY;
2715 2716 2717 2718
		if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children))
			goto out;
		ret = -EINTR;
		if (signal_pending(current))
2719
			goto out;
2720 2721
		/* This is for making all *used* pages to be on LRU. */
		lru_add_drain_all();
2722
		drain_all_stock_sync();
2723
		ret = 0;
2724
		for_each_node_state(node, N_HIGH_MEMORY) {
2725
			for (zid = 0; !ret && zid < MAX_NR_ZONES; zid++) {
2726
				enum lru_list l;
2727 2728
				for_each_lru(l) {
					ret = mem_cgroup_force_empty_list(mem,
K
KAMEZAWA Hiroyuki 已提交
2729
							node, zid, l);
2730 2731 2732
					if (ret)
						break;
				}
2733
			}
2734 2735 2736 2737 2738 2739
			if (ret)
				break;
		}
		/* it seems parent cgroup doesn't have enough mem */
		if (ret == -ENOMEM)
			goto try_to_free;
2740
		cond_resched();
2741 2742
	/* "ret" should also be checked to ensure all lists are empty. */
	} while (mem->res.usage > 0 || ret);
2743 2744 2745
out:
	css_put(&mem->css);
	return ret;
2746 2747

try_to_free:
2748 2749
	/* returns EBUSY if there is a task or if we come here twice. */
	if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children) || shrink) {
2750 2751 2752
		ret = -EBUSY;
		goto out;
	}
2753 2754
	/* we call try-to-free pages for make this cgroup empty */
	lru_add_drain_all();
2755 2756 2757 2758
	/* try to free all pages in this cgroup */
	shrink = 1;
	while (nr_retries && mem->res.usage > 0) {
		int progress;
2759 2760 2761 2762 2763

		if (signal_pending(current)) {
			ret = -EINTR;
			goto out;
		}
K
KOSAKI Motohiro 已提交
2764 2765
		progress = try_to_free_mem_cgroup_pages(mem, GFP_KERNEL,
						false, get_swappiness(mem));
2766
		if (!progress) {
2767
			nr_retries--;
2768
			/* maybe some writeback is necessary */
2769
			congestion_wait(BLK_RW_ASYNC, HZ/10);
2770
		}
2771 2772

	}
K
KAMEZAWA Hiroyuki 已提交
2773
	lru_add_drain();
2774
	/* try move_account...there may be some *locked* pages. */
2775
	goto move_account;
2776 2777
}

2778 2779 2780 2781 2782 2783
int mem_cgroup_force_empty_write(struct cgroup *cont, unsigned int event)
{
	return mem_cgroup_force_empty(mem_cgroup_from_cont(cont), true);
}


2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801
static u64 mem_cgroup_hierarchy_read(struct cgroup *cont, struct cftype *cft)
{
	return mem_cgroup_from_cont(cont)->use_hierarchy;
}

static int mem_cgroup_hierarchy_write(struct cgroup *cont, struct cftype *cft,
					u64 val)
{
	int retval = 0;
	struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
	struct cgroup *parent = cont->parent;
	struct mem_cgroup *parent_mem = NULL;

	if (parent)
		parent_mem = mem_cgroup_from_cont(parent);

	cgroup_lock();
	/*
2802
	 * If parent's use_hierarchy is set, we can't make any modifications
2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821
	 * in the child subtrees. If it is unset, then the change can
	 * occur, provided the current cgroup has no children.
	 *
	 * For the root cgroup, parent_mem is NULL, we allow value to be
	 * set if there are no children.
	 */
	if ((!parent_mem || !parent_mem->use_hierarchy) &&
				(val == 1 || val == 0)) {
		if (list_empty(&cont->children))
			mem->use_hierarchy = val;
		else
			retval = -EBUSY;
	} else
		retval = -EINVAL;
	cgroup_unlock();

	return retval;
}

2822 2823 2824 2825 2826 2827 2828 2829 2830
struct mem_cgroup_idx_data {
	s64 val;
	enum mem_cgroup_stat_index idx;
};

static int
mem_cgroup_get_idx_stat(struct mem_cgroup *mem, void *data)
{
	struct mem_cgroup_idx_data *d = data;
2831
	d->val += mem_cgroup_read_stat(mem, d->idx);
2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845
	return 0;
}

static void
mem_cgroup_get_recursive_idx_stat(struct mem_cgroup *mem,
				enum mem_cgroup_stat_index idx, s64 *val)
{
	struct mem_cgroup_idx_data d;
	d.idx = idx;
	d.val = 0;
	mem_cgroup_walk_tree(mem, &d, mem_cgroup_get_idx_stat);
	*val = d.val;
}

2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870
static inline u64 mem_cgroup_usage(struct mem_cgroup *mem, bool swap)
{
	u64 idx_val, val;

	if (!mem_cgroup_is_root(mem)) {
		if (!swap)
			return res_counter_read_u64(&mem->res, RES_USAGE);
		else
			return res_counter_read_u64(&mem->memsw, RES_USAGE);
	}

	mem_cgroup_get_recursive_idx_stat(mem, MEM_CGROUP_STAT_CACHE, &idx_val);
	val = idx_val;
	mem_cgroup_get_recursive_idx_stat(mem, MEM_CGROUP_STAT_RSS, &idx_val);
	val += idx_val;

	if (swap) {
		mem_cgroup_get_recursive_idx_stat(mem,
				MEM_CGROUP_STAT_SWAPOUT, &idx_val);
		val += idx_val;
	}

	return val << PAGE_SHIFT;
}

2871
static u64 mem_cgroup_read(struct cgroup *cont, struct cftype *cft)
B
Balbir Singh 已提交
2872
{
2873
	struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
2874
	u64 val;
2875 2876 2877 2878 2879 2880
	int type, name;

	type = MEMFILE_TYPE(cft->private);
	name = MEMFILE_ATTR(cft->private);
	switch (type) {
	case _MEM:
2881 2882 2883
		if (name == RES_USAGE)
			val = mem_cgroup_usage(mem, false);
		else
2884
			val = res_counter_read_u64(&mem->res, name);
2885 2886
		break;
	case _MEMSWAP:
2887 2888 2889
		if (name == RES_USAGE)
			val = mem_cgroup_usage(mem, true);
		else
2890
			val = res_counter_read_u64(&mem->memsw, name);
2891 2892 2893 2894 2895 2896
		break;
	default:
		BUG();
		break;
	}
	return val;
B
Balbir Singh 已提交
2897
}
2898 2899 2900 2901
/*
 * The user of this function is...
 * RES_LIMIT.
 */
2902 2903
static int mem_cgroup_write(struct cgroup *cont, struct cftype *cft,
			    const char *buffer)
B
Balbir Singh 已提交
2904
{
2905
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
2906
	int type, name;
2907 2908 2909
	unsigned long long val;
	int ret;

2910 2911 2912
	type = MEMFILE_TYPE(cft->private);
	name = MEMFILE_ATTR(cft->private);
	switch (name) {
2913
	case RES_LIMIT:
2914 2915 2916 2917
		if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
			ret = -EINVAL;
			break;
		}
2918 2919
		/* This function does all necessary parse...reuse it */
		ret = res_counter_memparse_write_strategy(buffer, &val);
2920 2921 2922
		if (ret)
			break;
		if (type == _MEM)
2923
			ret = mem_cgroup_resize_limit(memcg, val);
2924 2925
		else
			ret = mem_cgroup_resize_memsw_limit(memcg, val);
2926
		break;
2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940
	case RES_SOFT_LIMIT:
		ret = res_counter_memparse_write_strategy(buffer, &val);
		if (ret)
			break;
		/*
		 * For memsw, soft limits are hard to implement in terms
		 * of semantics, for now, we support soft limits for
		 * control without swap
		 */
		if (type == _MEM)
			ret = res_counter_set_soft_limit(&memcg->res, val);
		else
			ret = -EINVAL;
		break;
2941 2942 2943 2944 2945
	default:
		ret = -EINVAL; /* should be BUG() ? */
		break;
	}
	return ret;
B
Balbir Singh 已提交
2946 2947
}

2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975
static void memcg_get_hierarchical_limit(struct mem_cgroup *memcg,
		unsigned long long *mem_limit, unsigned long long *memsw_limit)
{
	struct cgroup *cgroup;
	unsigned long long min_limit, min_memsw_limit, tmp;

	min_limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
	min_memsw_limit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
	cgroup = memcg->css.cgroup;
	if (!memcg->use_hierarchy)
		goto out;

	while (cgroup->parent) {
		cgroup = cgroup->parent;
		memcg = mem_cgroup_from_cont(cgroup);
		if (!memcg->use_hierarchy)
			break;
		tmp = res_counter_read_u64(&memcg->res, RES_LIMIT);
		min_limit = min(min_limit, tmp);
		tmp = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
		min_memsw_limit = min(min_memsw_limit, tmp);
	}
out:
	*mem_limit = min_limit;
	*memsw_limit = min_memsw_limit;
	return;
}

2976
static int mem_cgroup_reset(struct cgroup *cont, unsigned int event)
2977 2978
{
	struct mem_cgroup *mem;
2979
	int type, name;
2980 2981

	mem = mem_cgroup_from_cont(cont);
2982 2983 2984
	type = MEMFILE_TYPE(event);
	name = MEMFILE_ATTR(event);
	switch (name) {
2985
	case RES_MAX_USAGE:
2986 2987 2988 2989
		if (type == _MEM)
			res_counter_reset_max(&mem->res);
		else
			res_counter_reset_max(&mem->memsw);
2990 2991
		break;
	case RES_FAILCNT:
2992 2993 2994 2995
		if (type == _MEM)
			res_counter_reset_failcnt(&mem->res);
		else
			res_counter_reset_failcnt(&mem->memsw);
2996 2997
		break;
	}
2998

2999
	return 0;
3000 3001
}

3002 3003 3004 3005 3006 3007
static u64 mem_cgroup_move_charge_read(struct cgroup *cgrp,
					struct cftype *cft)
{
	return mem_cgroup_from_cont(cgrp)->move_charge_at_immigrate;
}

3008
#ifdef CONFIG_MMU
3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026
static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
					struct cftype *cft, u64 val)
{
	struct mem_cgroup *mem = mem_cgroup_from_cont(cgrp);

	if (val >= (1 << NR_MOVE_TYPE))
		return -EINVAL;
	/*
	 * We check this value several times in both in can_attach() and
	 * attach(), so we need cgroup lock to prevent this value from being
	 * inconsistent.
	 */
	cgroup_lock();
	mem->move_charge_at_immigrate = val;
	cgroup_unlock();

	return 0;
}
3027 3028 3029 3030 3031 3032 3033
#else
static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
					struct cftype *cft, u64 val)
{
	return -ENOSYS;
}
#endif
3034

K
KAMEZAWA Hiroyuki 已提交
3035 3036 3037 3038 3039

/* For read statistics */
enum {
	MCS_CACHE,
	MCS_RSS,
3040
	MCS_FILE_MAPPED,
K
KAMEZAWA Hiroyuki 已提交
3041 3042
	MCS_PGPGIN,
	MCS_PGPGOUT,
3043
	MCS_SWAP,
K
KAMEZAWA Hiroyuki 已提交
3044 3045 3046 3047 3048 3049 3050 3051 3052 3053
	MCS_INACTIVE_ANON,
	MCS_ACTIVE_ANON,
	MCS_INACTIVE_FILE,
	MCS_ACTIVE_FILE,
	MCS_UNEVICTABLE,
	NR_MCS_STAT,
};

struct mcs_total_stat {
	s64 stat[NR_MCS_STAT];
3054 3055
};

K
KAMEZAWA Hiroyuki 已提交
3056 3057 3058 3059 3060 3061
struct {
	char *local_name;
	char *total_name;
} memcg_stat_strings[NR_MCS_STAT] = {
	{"cache", "total_cache"},
	{"rss", "total_rss"},
3062
	{"mapped_file", "total_mapped_file"},
K
KAMEZAWA Hiroyuki 已提交
3063 3064
	{"pgpgin", "total_pgpgin"},
	{"pgpgout", "total_pgpgout"},
3065
	{"swap", "total_swap"},
K
KAMEZAWA Hiroyuki 已提交
3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079
	{"inactive_anon", "total_inactive_anon"},
	{"active_anon", "total_active_anon"},
	{"inactive_file", "total_inactive_file"},
	{"active_file", "total_active_file"},
	{"unevictable", "total_unevictable"}
};


static int mem_cgroup_get_local_stat(struct mem_cgroup *mem, void *data)
{
	struct mcs_total_stat *s = data;
	s64 val;

	/* per cpu stat */
3080
	val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_CACHE);
K
KAMEZAWA Hiroyuki 已提交
3081
	s->stat[MCS_CACHE] += val * PAGE_SIZE;
3082
	val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_RSS);
K
KAMEZAWA Hiroyuki 已提交
3083
	s->stat[MCS_RSS] += val * PAGE_SIZE;
3084
	val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_FILE_MAPPED);
3085
	s->stat[MCS_FILE_MAPPED] += val * PAGE_SIZE;
3086
	val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_PGPGIN_COUNT);
K
KAMEZAWA Hiroyuki 已提交
3087
	s->stat[MCS_PGPGIN] += val;
3088
	val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_PGPGOUT_COUNT);
K
KAMEZAWA Hiroyuki 已提交
3089
	s->stat[MCS_PGPGOUT] += val;
3090
	if (do_swap_account) {
3091
		val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_SWAPOUT);
3092 3093
		s->stat[MCS_SWAP] += val * PAGE_SIZE;
	}
K
KAMEZAWA Hiroyuki 已提交
3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114

	/* per zone stat */
	val = mem_cgroup_get_local_zonestat(mem, LRU_INACTIVE_ANON);
	s->stat[MCS_INACTIVE_ANON] += val * PAGE_SIZE;
	val = mem_cgroup_get_local_zonestat(mem, LRU_ACTIVE_ANON);
	s->stat[MCS_ACTIVE_ANON] += val * PAGE_SIZE;
	val = mem_cgroup_get_local_zonestat(mem, LRU_INACTIVE_FILE);
	s->stat[MCS_INACTIVE_FILE] += val * PAGE_SIZE;
	val = mem_cgroup_get_local_zonestat(mem, LRU_ACTIVE_FILE);
	s->stat[MCS_ACTIVE_FILE] += val * PAGE_SIZE;
	val = mem_cgroup_get_local_zonestat(mem, LRU_UNEVICTABLE);
	s->stat[MCS_UNEVICTABLE] += val * PAGE_SIZE;
	return 0;
}

static void
mem_cgroup_get_total_stat(struct mem_cgroup *mem, struct mcs_total_stat *s)
{
	mem_cgroup_walk_tree(mem, s, mem_cgroup_get_local_stat);
}

3115 3116
static int mem_control_stat_show(struct cgroup *cont, struct cftype *cft,
				 struct cgroup_map_cb *cb)
3117 3118
{
	struct mem_cgroup *mem_cont = mem_cgroup_from_cont(cont);
K
KAMEZAWA Hiroyuki 已提交
3119
	struct mcs_total_stat mystat;
3120 3121
	int i;

K
KAMEZAWA Hiroyuki 已提交
3122 3123
	memset(&mystat, 0, sizeof(mystat));
	mem_cgroup_get_local_stat(mem_cont, &mystat);
3124

3125 3126 3127
	for (i = 0; i < NR_MCS_STAT; i++) {
		if (i == MCS_SWAP && !do_swap_account)
			continue;
K
KAMEZAWA Hiroyuki 已提交
3128
		cb->fill(cb, memcg_stat_strings[i].local_name, mystat.stat[i]);
3129
	}
L
Lee Schermerhorn 已提交
3130

K
KAMEZAWA Hiroyuki 已提交
3131
	/* Hierarchical information */
3132 3133 3134 3135 3136 3137 3138
	{
		unsigned long long limit, memsw_limit;
		memcg_get_hierarchical_limit(mem_cont, &limit, &memsw_limit);
		cb->fill(cb, "hierarchical_memory_limit", limit);
		if (do_swap_account)
			cb->fill(cb, "hierarchical_memsw_limit", memsw_limit);
	}
K
KOSAKI Motohiro 已提交
3139

K
KAMEZAWA Hiroyuki 已提交
3140 3141
	memset(&mystat, 0, sizeof(mystat));
	mem_cgroup_get_total_stat(mem_cont, &mystat);
3142 3143 3144
	for (i = 0; i < NR_MCS_STAT; i++) {
		if (i == MCS_SWAP && !do_swap_account)
			continue;
K
KAMEZAWA Hiroyuki 已提交
3145
		cb->fill(cb, memcg_stat_strings[i].total_name, mystat.stat[i]);
3146
	}
K
KAMEZAWA Hiroyuki 已提交
3147

K
KOSAKI Motohiro 已提交
3148
#ifdef CONFIG_DEBUG_VM
3149
	cb->fill(cb, "inactive_ratio", calc_inactive_ratio(mem_cont, NULL));
K
KOSAKI Motohiro 已提交
3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176

	{
		int nid, zid;
		struct mem_cgroup_per_zone *mz;
		unsigned long recent_rotated[2] = {0, 0};
		unsigned long recent_scanned[2] = {0, 0};

		for_each_online_node(nid)
			for (zid = 0; zid < MAX_NR_ZONES; zid++) {
				mz = mem_cgroup_zoneinfo(mem_cont, nid, zid);

				recent_rotated[0] +=
					mz->reclaim_stat.recent_rotated[0];
				recent_rotated[1] +=
					mz->reclaim_stat.recent_rotated[1];
				recent_scanned[0] +=
					mz->reclaim_stat.recent_scanned[0];
				recent_scanned[1] +=
					mz->reclaim_stat.recent_scanned[1];
			}
		cb->fill(cb, "recent_rotated_anon", recent_rotated[0]);
		cb->fill(cb, "recent_rotated_file", recent_rotated[1]);
		cb->fill(cb, "recent_scanned_anon", recent_scanned[0]);
		cb->fill(cb, "recent_scanned_file", recent_scanned[1]);
	}
#endif

3177 3178 3179
	return 0;
}

K
KOSAKI Motohiro 已提交
3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191
static u64 mem_cgroup_swappiness_read(struct cgroup *cgrp, struct cftype *cft)
{
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);

	return get_swappiness(memcg);
}

static int mem_cgroup_swappiness_write(struct cgroup *cgrp, struct cftype *cft,
				       u64 val)
{
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
	struct mem_cgroup *parent;
3192

K
KOSAKI Motohiro 已提交
3193 3194 3195 3196 3197 3198 3199
	if (val > 100)
		return -EINVAL;

	if (cgrp->parent == NULL)
		return -EINVAL;

	parent = mem_cgroup_from_cont(cgrp->parent);
3200 3201 3202

	cgroup_lock();

K
KOSAKI Motohiro 已提交
3203 3204
	/* If under hierarchy, only empty-root can set this value */
	if ((parent->use_hierarchy) ||
3205 3206
	    (memcg->use_hierarchy && !list_empty(&cgrp->children))) {
		cgroup_unlock();
K
KOSAKI Motohiro 已提交
3207
		return -EINVAL;
3208
	}
K
KOSAKI Motohiro 已提交
3209 3210 3211 3212 3213

	spin_lock(&memcg->reclaim_param_lock);
	memcg->swappiness = val;
	spin_unlock(&memcg->reclaim_param_lock);

3214 3215
	cgroup_unlock();

K
KOSAKI Motohiro 已提交
3216 3217 3218
	return 0;
}

3219 3220 3221 3222 3223
static bool mem_cgroup_threshold_check(struct mem_cgroup *mem)
{
	bool ret = false;
	s64 val;

3224
	val = this_cpu_read(mem->stat->count[MEM_CGROUP_STAT_THRESHOLDS]);
3225
	if (unlikely(val < 0)) {
3226
		this_cpu_write(mem->stat->count[MEM_CGROUP_STAT_THRESHOLDS],
3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476
				THRESHOLDS_EVENTS_THRESH);
		ret = true;
	}
	return ret;
}

static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
{
	struct mem_cgroup_threshold_ary *t;
	u64 usage;
	int i;

	rcu_read_lock();
	if (!swap)
		t = rcu_dereference(memcg->thresholds);
	else
		t = rcu_dereference(memcg->memsw_thresholds);

	if (!t)
		goto unlock;

	usage = mem_cgroup_usage(memcg, swap);

	/*
	 * current_threshold points to threshold just below usage.
	 * If it's not true, a threshold was crossed after last
	 * call of __mem_cgroup_threshold().
	 */
	i = atomic_read(&t->current_threshold);

	/*
	 * Iterate backward over array of thresholds starting from
	 * current_threshold and check if a threshold is crossed.
	 * If none of thresholds below usage is crossed, we read
	 * only one element of the array here.
	 */
	for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
		eventfd_signal(t->entries[i].eventfd, 1);

	/* i = current_threshold + 1 */
	i++;

	/*
	 * Iterate forward over array of thresholds starting from
	 * current_threshold+1 and check if a threshold is crossed.
	 * If none of thresholds above usage is crossed, we read
	 * only one element of the array here.
	 */
	for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
		eventfd_signal(t->entries[i].eventfd, 1);

	/* Update current_threshold */
	atomic_set(&t->current_threshold, i - 1);
unlock:
	rcu_read_unlock();
}

static void mem_cgroup_threshold(struct mem_cgroup *memcg)
{
	__mem_cgroup_threshold(memcg, false);
	if (do_swap_account)
		__mem_cgroup_threshold(memcg, true);
}

static int compare_thresholds(const void *a, const void *b)
{
	const struct mem_cgroup_threshold *_a = a;
	const struct mem_cgroup_threshold *_b = b;

	return _a->threshold - _b->threshold;
}

static int mem_cgroup_register_event(struct cgroup *cgrp, struct cftype *cft,
		struct eventfd_ctx *eventfd, const char *args)
{
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
	struct mem_cgroup_threshold_ary *thresholds, *thresholds_new;
	int type = MEMFILE_TYPE(cft->private);
	u64 threshold, usage;
	int size;
	int i, ret;

	ret = res_counter_memparse_write_strategy(args, &threshold);
	if (ret)
		return ret;

	mutex_lock(&memcg->thresholds_lock);
	if (type == _MEM)
		thresholds = memcg->thresholds;
	else if (type == _MEMSWAP)
		thresholds = memcg->memsw_thresholds;
	else
		BUG();

	usage = mem_cgroup_usage(memcg, type == _MEMSWAP);

	/* Check if a threshold crossed before adding a new one */
	if (thresholds)
		__mem_cgroup_threshold(memcg, type == _MEMSWAP);

	if (thresholds)
		size = thresholds->size + 1;
	else
		size = 1;

	/* Allocate memory for new array of thresholds */
	thresholds_new = kmalloc(sizeof(*thresholds_new) +
			size * sizeof(struct mem_cgroup_threshold),
			GFP_KERNEL);
	if (!thresholds_new) {
		ret = -ENOMEM;
		goto unlock;
	}
	thresholds_new->size = size;

	/* Copy thresholds (if any) to new array */
	if (thresholds)
		memcpy(thresholds_new->entries, thresholds->entries,
				thresholds->size *
				sizeof(struct mem_cgroup_threshold));
	/* Add new threshold */
	thresholds_new->entries[size - 1].eventfd = eventfd;
	thresholds_new->entries[size - 1].threshold = threshold;

	/* Sort thresholds. Registering of new threshold isn't time-critical */
	sort(thresholds_new->entries, size,
			sizeof(struct mem_cgroup_threshold),
			compare_thresholds, NULL);

	/* Find current threshold */
	atomic_set(&thresholds_new->current_threshold, -1);
	for (i = 0; i < size; i++) {
		if (thresholds_new->entries[i].threshold < usage) {
			/*
			 * thresholds_new->current_threshold will not be used
			 * until rcu_assign_pointer(), so it's safe to increment
			 * it here.
			 */
			atomic_inc(&thresholds_new->current_threshold);
		}
	}

	/*
	 * We need to increment refcnt to be sure that all thresholds
	 * will be unregistered before calling __mem_cgroup_free()
	 */
	mem_cgroup_get(memcg);

	if (type == _MEM)
		rcu_assign_pointer(memcg->thresholds, thresholds_new);
	else
		rcu_assign_pointer(memcg->memsw_thresholds, thresholds_new);

	/* To be sure that nobody uses thresholds before freeing it */
	synchronize_rcu();

	kfree(thresholds);
unlock:
	mutex_unlock(&memcg->thresholds_lock);

	return ret;
}

static int mem_cgroup_unregister_event(struct cgroup *cgrp, struct cftype *cft,
		struct eventfd_ctx *eventfd)
{
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
	struct mem_cgroup_threshold_ary *thresholds, *thresholds_new;
	int type = MEMFILE_TYPE(cft->private);
	u64 usage;
	int size = 0;
	int i, j, ret;

	mutex_lock(&memcg->thresholds_lock);
	if (type == _MEM)
		thresholds = memcg->thresholds;
	else if (type == _MEMSWAP)
		thresholds = memcg->memsw_thresholds;
	else
		BUG();

	/*
	 * Something went wrong if we trying to unregister a threshold
	 * if we don't have thresholds
	 */
	BUG_ON(!thresholds);

	usage = mem_cgroup_usage(memcg, type == _MEMSWAP);

	/* Check if a threshold crossed before removing */
	__mem_cgroup_threshold(memcg, type == _MEMSWAP);

	/* Calculate new number of threshold */
	for (i = 0; i < thresholds->size; i++) {
		if (thresholds->entries[i].eventfd != eventfd)
			size++;
	}

	/* Set thresholds array to NULL if we don't have thresholds */
	if (!size) {
		thresholds_new = NULL;
		goto assign;
	}

	/* Allocate memory for new array of thresholds */
	thresholds_new = kmalloc(sizeof(*thresholds_new) +
			size * sizeof(struct mem_cgroup_threshold),
			GFP_KERNEL);
	if (!thresholds_new) {
		ret = -ENOMEM;
		goto unlock;
	}
	thresholds_new->size = size;

	/* Copy thresholds and find current threshold */
	atomic_set(&thresholds_new->current_threshold, -1);
	for (i = 0, j = 0; i < thresholds->size; i++) {
		if (thresholds->entries[i].eventfd == eventfd)
			continue;

		thresholds_new->entries[j] = thresholds->entries[i];
		if (thresholds_new->entries[j].threshold < usage) {
			/*
			 * thresholds_new->current_threshold will not be used
			 * until rcu_assign_pointer(), so it's safe to increment
			 * it here.
			 */
			atomic_inc(&thresholds_new->current_threshold);
		}
		j++;
	}

assign:
	if (type == _MEM)
		rcu_assign_pointer(memcg->thresholds, thresholds_new);
	else
		rcu_assign_pointer(memcg->memsw_thresholds, thresholds_new);

	/* To be sure that nobody uses thresholds before freeing it */
	synchronize_rcu();

	for (i = 0; i < thresholds->size - size; i++)
		mem_cgroup_put(memcg);

	kfree(thresholds);
unlock:
	mutex_unlock(&memcg->thresholds_lock);

	return ret;
}
3477

B
Balbir Singh 已提交
3478 3479
static struct cftype mem_cgroup_files[] = {
	{
3480
		.name = "usage_in_bytes",
3481
		.private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
3482
		.read_u64 = mem_cgroup_read,
3483 3484
		.register_event = mem_cgroup_register_event,
		.unregister_event = mem_cgroup_unregister_event,
B
Balbir Singh 已提交
3485
	},
3486 3487
	{
		.name = "max_usage_in_bytes",
3488
		.private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
3489
		.trigger = mem_cgroup_reset,
3490 3491
		.read_u64 = mem_cgroup_read,
	},
B
Balbir Singh 已提交
3492
	{
3493
		.name = "limit_in_bytes",
3494
		.private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
3495
		.write_string = mem_cgroup_write,
3496
		.read_u64 = mem_cgroup_read,
B
Balbir Singh 已提交
3497
	},
3498 3499 3500 3501 3502 3503
	{
		.name = "soft_limit_in_bytes",
		.private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
		.write_string = mem_cgroup_write,
		.read_u64 = mem_cgroup_read,
	},
B
Balbir Singh 已提交
3504 3505
	{
		.name = "failcnt",
3506
		.private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
3507
		.trigger = mem_cgroup_reset,
3508
		.read_u64 = mem_cgroup_read,
B
Balbir Singh 已提交
3509
	},
3510 3511
	{
		.name = "stat",
3512
		.read_map = mem_control_stat_show,
3513
	},
3514 3515 3516 3517
	{
		.name = "force_empty",
		.trigger = mem_cgroup_force_empty_write,
	},
3518 3519 3520 3521 3522
	{
		.name = "use_hierarchy",
		.write_u64 = mem_cgroup_hierarchy_write,
		.read_u64 = mem_cgroup_hierarchy_read,
	},
K
KOSAKI Motohiro 已提交
3523 3524 3525 3526 3527
	{
		.name = "swappiness",
		.read_u64 = mem_cgroup_swappiness_read,
		.write_u64 = mem_cgroup_swappiness_write,
	},
3528 3529 3530 3531 3532
	{
		.name = "move_charge_at_immigrate",
		.read_u64 = mem_cgroup_move_charge_read,
		.write_u64 = mem_cgroup_move_charge_write,
	},
B
Balbir Singh 已提交
3533 3534
};

3535 3536 3537 3538 3539 3540
#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
static struct cftype memsw_cgroup_files[] = {
	{
		.name = "memsw.usage_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
		.read_u64 = mem_cgroup_read,
3541 3542
		.register_event = mem_cgroup_register_event,
		.unregister_event = mem_cgroup_unregister_event,
3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577
	},
	{
		.name = "memsw.max_usage_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
		.trigger = mem_cgroup_reset,
		.read_u64 = mem_cgroup_read,
	},
	{
		.name = "memsw.limit_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
		.write_string = mem_cgroup_write,
		.read_u64 = mem_cgroup_read,
	},
	{
		.name = "memsw.failcnt",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
		.trigger = mem_cgroup_reset,
		.read_u64 = mem_cgroup_read,
	},
};

static int register_memsw_files(struct cgroup *cont, struct cgroup_subsys *ss)
{
	if (!do_swap_account)
		return 0;
	return cgroup_add_files(cont, ss, memsw_cgroup_files,
				ARRAY_SIZE(memsw_cgroup_files));
};
#else
static int register_memsw_files(struct cgroup *cont, struct cgroup_subsys *ss)
{
	return 0;
}
#endif

3578 3579 3580
static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *mem, int node)
{
	struct mem_cgroup_per_node *pn;
3581
	struct mem_cgroup_per_zone *mz;
3582
	enum lru_list l;
3583
	int zone, tmp = node;
3584 3585 3586 3587 3588 3589 3590 3591
	/*
	 * This routine is called against possible nodes.
	 * But it's BUG to call kmalloc() against offline node.
	 *
	 * TODO: this routine can waste much memory for nodes which will
	 *       never be onlined. It's better to use memory hotplug callback
	 *       function.
	 */
3592 3593 3594
	if (!node_state(node, N_NORMAL_MEMORY))
		tmp = -1;
	pn = kmalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
3595 3596
	if (!pn)
		return 1;
3597

3598 3599
	mem->info.nodeinfo[node] = pn;
	memset(pn, 0, sizeof(*pn));
3600 3601 3602

	for (zone = 0; zone < MAX_NR_ZONES; zone++) {
		mz = &pn->zoneinfo[zone];
3603 3604
		for_each_lru(l)
			INIT_LIST_HEAD(&mz->lists[l]);
3605
		mz->usage_in_excess = 0;
3606 3607
		mz->on_tree = false;
		mz->mem = mem;
3608
	}
3609 3610 3611
	return 0;
}

3612 3613 3614 3615 3616
static void free_mem_cgroup_per_zone_info(struct mem_cgroup *mem, int node)
{
	kfree(mem->info.nodeinfo[node]);
}

3617 3618 3619
static struct mem_cgroup *mem_cgroup_alloc(void)
{
	struct mem_cgroup *mem;
3620
	int size = sizeof(struct mem_cgroup);
3621

3622
	/* Can be very big if MAX_NUMNODES is very big */
3623 3624
	if (size < PAGE_SIZE)
		mem = kmalloc(size, GFP_KERNEL);
3625
	else
3626
		mem = vmalloc(size);
3627 3628

	if (mem)
3629
		memset(mem, 0, size);
3630 3631 3632 3633 3634 3635 3636 3637
	mem->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
	if (!mem->stat) {
		if (size < PAGE_SIZE)
			kfree(mem);
		else
			vfree(mem);
		mem = NULL;
	}
3638 3639 3640
	return mem;
}

3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651
/*
 * At destroying mem_cgroup, references from swap_cgroup can remain.
 * (scanning all at force_empty is too costly...)
 *
 * Instead of clearing all references at force_empty, we remember
 * the number of reference from swap_cgroup and free mem_cgroup when
 * it goes down to 0.
 *
 * Removal of cgroup itself succeeds regardless of refs from swap.
 */

3652
static void __mem_cgroup_free(struct mem_cgroup *mem)
3653
{
K
KAMEZAWA Hiroyuki 已提交
3654 3655
	int node;

3656
	mem_cgroup_remove_from_trees(mem);
K
KAMEZAWA Hiroyuki 已提交
3657 3658
	free_css_id(&mem_cgroup_subsys, &mem->css);

K
KAMEZAWA Hiroyuki 已提交
3659 3660 3661
	for_each_node_state(node, N_POSSIBLE)
		free_mem_cgroup_per_zone_info(mem, node);

3662 3663
	free_percpu(mem->stat);
	if (sizeof(struct mem_cgroup) < PAGE_SIZE)
3664 3665 3666 3667 3668
		kfree(mem);
	else
		vfree(mem);
}

3669 3670 3671 3672 3673
static void mem_cgroup_get(struct mem_cgroup *mem)
{
	atomic_inc(&mem->refcnt);
}

3674
static void __mem_cgroup_put(struct mem_cgroup *mem, int count)
3675
{
3676
	if (atomic_sub_and_test(count, &mem->refcnt)) {
3677
		struct mem_cgroup *parent = parent_mem_cgroup(mem);
3678
		__mem_cgroup_free(mem);
3679 3680 3681
		if (parent)
			mem_cgroup_put(parent);
	}
3682 3683
}

3684 3685 3686 3687 3688
static void mem_cgroup_put(struct mem_cgroup *mem)
{
	__mem_cgroup_put(mem, 1);
}

3689 3690 3691 3692 3693 3694 3695 3696 3697
/*
 * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
 */
static struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *mem)
{
	if (!mem->res.parent)
		return NULL;
	return mem_cgroup_from_res_counter(mem->res.parent, res);
}
3698

3699 3700 3701
#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
static void __init enable_swap_cgroup(void)
{
3702
	if (!mem_cgroup_disabled() && really_do_swap_account)
3703 3704 3705 3706 3707 3708 3709 3710
		do_swap_account = 1;
}
#else
static void __init enable_swap_cgroup(void)
{
}
#endif

3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735
static int mem_cgroup_soft_limit_tree_init(void)
{
	struct mem_cgroup_tree_per_node *rtpn;
	struct mem_cgroup_tree_per_zone *rtpz;
	int tmp, node, zone;

	for_each_node_state(node, N_POSSIBLE) {
		tmp = node;
		if (!node_state(node, N_NORMAL_MEMORY))
			tmp = -1;
		rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, tmp);
		if (!rtpn)
			return 1;

		soft_limit_tree.rb_tree_per_node[node] = rtpn;

		for (zone = 0; zone < MAX_NR_ZONES; zone++) {
			rtpz = &rtpn->rb_tree_per_zone[zone];
			rtpz->rb_root = RB_ROOT;
			spin_lock_init(&rtpz->lock);
		}
	}
	return 0;
}

L
Li Zefan 已提交
3736
static struct cgroup_subsys_state * __ref
B
Balbir Singh 已提交
3737 3738
mem_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cont)
{
3739
	struct mem_cgroup *mem, *parent;
K
KAMEZAWA Hiroyuki 已提交
3740
	long error = -ENOMEM;
3741
	int node;
B
Balbir Singh 已提交
3742

3743 3744
	mem = mem_cgroup_alloc();
	if (!mem)
K
KAMEZAWA Hiroyuki 已提交
3745
		return ERR_PTR(error);
3746

3747 3748 3749
	for_each_node_state(node, N_POSSIBLE)
		if (alloc_mem_cgroup_per_zone_info(mem, node))
			goto free_out;
3750

3751
	/* root ? */
3752
	if (cont->parent == NULL) {
3753
		int cpu;
3754
		enable_swap_cgroup();
3755
		parent = NULL;
3756
		root_mem_cgroup = mem;
3757 3758
		if (mem_cgroup_soft_limit_tree_init())
			goto free_out;
3759 3760 3761 3762 3763 3764
		for_each_possible_cpu(cpu) {
			struct memcg_stock_pcp *stock =
						&per_cpu(memcg_stock, cpu);
			INIT_WORK(&stock->work, drain_local_stock);
		}
		hotcpu_notifier(memcg_stock_cpu_callback, 0);
3765
	} else {
3766
		parent = mem_cgroup_from_cont(cont->parent);
3767 3768
		mem->use_hierarchy = parent->use_hierarchy;
	}
3769

3770 3771 3772
	if (parent && parent->use_hierarchy) {
		res_counter_init(&mem->res, &parent->res);
		res_counter_init(&mem->memsw, &parent->memsw);
3773 3774 3775 3776 3777 3778 3779
		/*
		 * We increment refcnt of the parent to ensure that we can
		 * safely access it on res_counter_charge/uncharge.
		 * This refcnt will be decremented when freeing this
		 * mem_cgroup(see mem_cgroup_put).
		 */
		mem_cgroup_get(parent);
3780 3781 3782 3783
	} else {
		res_counter_init(&mem->res, NULL);
		res_counter_init(&mem->memsw, NULL);
	}
K
KAMEZAWA Hiroyuki 已提交
3784
	mem->last_scanned_child = 0;
K
KOSAKI Motohiro 已提交
3785
	spin_lock_init(&mem->reclaim_param_lock);
3786

K
KOSAKI Motohiro 已提交
3787 3788
	if (parent)
		mem->swappiness = get_swappiness(parent);
3789
	atomic_set(&mem->refcnt, 1);
3790
	mem->move_charge_at_immigrate = 0;
3791
	mutex_init(&mem->thresholds_lock);
B
Balbir Singh 已提交
3792
	return &mem->css;
3793
free_out:
3794
	__mem_cgroup_free(mem);
3795
	root_mem_cgroup = NULL;
K
KAMEZAWA Hiroyuki 已提交
3796
	return ERR_PTR(error);
B
Balbir Singh 已提交
3797 3798
}

3799
static int mem_cgroup_pre_destroy(struct cgroup_subsys *ss,
3800 3801 3802
					struct cgroup *cont)
{
	struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
3803 3804

	return mem_cgroup_force_empty(mem, false);
3805 3806
}

B
Balbir Singh 已提交
3807 3808 3809
static void mem_cgroup_destroy(struct cgroup_subsys *ss,
				struct cgroup *cont)
{
3810 3811 3812
	struct mem_cgroup *mem = mem_cgroup_from_cont(cont);

	mem_cgroup_put(mem);
B
Balbir Singh 已提交
3813 3814 3815 3816 3817
}

static int mem_cgroup_populate(struct cgroup_subsys *ss,
				struct cgroup *cont)
{
3818 3819 3820 3821 3822 3823 3824 3825
	int ret;

	ret = cgroup_add_files(cont, ss, mem_cgroup_files,
				ARRAY_SIZE(mem_cgroup_files));

	if (!ret)
		ret = register_memsw_files(cont, ss);
	return ret;
B
Balbir Singh 已提交
3826 3827
}

3828
#ifdef CONFIG_MMU
3829
/* Handlers for move charge at task migration. */
3830 3831
#define PRECHARGE_COUNT_AT_ONCE	256
static int mem_cgroup_do_precharge(unsigned long count)
3832
{
3833 3834
	int ret = 0;
	int batch_count = PRECHARGE_COUNT_AT_ONCE;
3835 3836
	struct mem_cgroup *mem = mc.to;

3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881
	if (mem_cgroup_is_root(mem)) {
		mc.precharge += count;
		/* we don't need css_get for root */
		return ret;
	}
	/* try to charge at once */
	if (count > 1) {
		struct res_counter *dummy;
		/*
		 * "mem" cannot be under rmdir() because we've already checked
		 * by cgroup_lock_live_cgroup() that it is not removed and we
		 * are still under the same cgroup_mutex. So we can postpone
		 * css_get().
		 */
		if (res_counter_charge(&mem->res, PAGE_SIZE * count, &dummy))
			goto one_by_one;
		if (do_swap_account && res_counter_charge(&mem->memsw,
						PAGE_SIZE * count, &dummy)) {
			res_counter_uncharge(&mem->res, PAGE_SIZE * count);
			goto one_by_one;
		}
		mc.precharge += count;
		VM_BUG_ON(test_bit(CSS_ROOT, &mem->css.flags));
		WARN_ON_ONCE(count > INT_MAX);
		__css_get(&mem->css, (int)count);
		return ret;
	}
one_by_one:
	/* fall back to one by one charge */
	while (count--) {
		if (signal_pending(current)) {
			ret = -EINTR;
			break;
		}
		if (!batch_count--) {
			batch_count = PRECHARGE_COUNT_AT_ONCE;
			cond_resched();
		}
		ret = __mem_cgroup_try_charge(NULL, GFP_KERNEL, &mem,
								false, NULL);
		if (ret || !mem)
			/* mem_cgroup_clear_mc() will do uncharge later */
			return -ENOMEM;
		mc.precharge++;
	}
3882 3883
	return ret;
}
3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905
#else	/* !CONFIG_MMU */
static int mem_cgroup_can_attach(struct cgroup_subsys *ss,
				struct cgroup *cgroup,
				struct task_struct *p,
				bool threadgroup)
{
	return 0;
}
static void mem_cgroup_cancel_attach(struct cgroup_subsys *ss,
				struct cgroup *cgroup,
				struct task_struct *p,
				bool threadgroup)
{
}
static void mem_cgroup_move_task(struct cgroup_subsys *ss,
				struct cgroup *cont,
				struct cgroup *old_cont,
				struct task_struct *p,
				bool threadgroup)
{
}
#endif
3906 3907 3908 3909 3910 3911

/**
 * is_target_pte_for_mc - check a pte whether it is valid for move charge
 * @vma: the vma the pte to be checked belongs
 * @addr: the address corresponding to the pte to be checked
 * @ptent: the pte to be checked
3912
 * @target: the pointer the target page or swap ent will be stored(can be NULL)
3913 3914 3915 3916 3917 3918
 *
 * Returns
 *   0(MC_TARGET_NONE): if the pte is not a target for move charge.
 *   1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
 *     move charge. if @target is not NULL, the page is stored in target->page
 *     with extra refcnt got(Callers should handle it).
3919 3920 3921
 *   2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
 *     target for charge migration. if @target is not NULL, the entry is stored
 *     in target->ent.
3922 3923 3924 3925 3926
 *
 * Called with pte lock held.
 */
union mc_target {
	struct page	*page;
3927
	swp_entry_t	ent;
3928 3929 3930 3931 3932
};

enum mc_target_type {
	MC_TARGET_NONE,	/* not used */
	MC_TARGET_PAGE,
3933
	MC_TARGET_SWAP,
3934 3935 3936 3937 3938
};

static int is_target_pte_for_mc(struct vm_area_struct *vma,
		unsigned long addr, pte_t ptent, union mc_target *target)
{
3939
	struct page *page = NULL;
3940 3941
	struct page_cgroup *pc;
	int ret = 0;
3942 3943
	swp_entry_t ent = { .val = 0 };
	int usage_count = 0;
3944 3945 3946
	bool move_anon = test_bit(MOVE_CHARGE_TYPE_ANON,
					&mc.to->move_charge_at_immigrate);

3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977
	if (!pte_present(ptent)) {
		/* TODO: handle swap of shmes/tmpfs */
		if (pte_none(ptent) || pte_file(ptent))
			return 0;
		else if (is_swap_pte(ptent)) {
			ent = pte_to_swp_entry(ptent);
			if (!move_anon || non_swap_entry(ent))
				return 0;
			usage_count = mem_cgroup_count_swap_user(ent, &page);
		}
	} else {
		page = vm_normal_page(vma, addr, ptent);
		if (!page || !page_mapped(page))
			return 0;
		/*
		 * TODO: We don't move charges of file(including shmem/tmpfs)
		 * pages for now.
		 */
		if (!move_anon || !PageAnon(page))
			return 0;
		if (!get_page_unless_zero(page))
			return 0;
		usage_count = page_mapcount(page);
	}
	if (usage_count > 1) {
		/*
		 * TODO: We don't move charges of shared(used by multiple
		 * processes) pages for now.
		 */
		if (page)
			put_page(page);
3978
		return 0;
3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998
	}
	if (page) {
		pc = lookup_page_cgroup(page);
		/*
		 * Do only loose check w/o page_cgroup lock.
		 * mem_cgroup_move_account() checks the pc is valid or not under
		 * the lock.
		 */
		if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
			ret = MC_TARGET_PAGE;
			if (target)
				target->page = page;
		}
		if (!ret || !target)
			put_page(page);
	}
	/* throught */
	if (ent.val && do_swap_account && !ret &&
			css_id(&mc.from->css) == lookup_swap_cgroup(ent)) {
		ret = MC_TARGET_SWAP;
3999
		if (target)
4000
			target->ent = ent;
4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019
	}
	return ret;
}

static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
					unsigned long addr, unsigned long end,
					struct mm_walk *walk)
{
	struct vm_area_struct *vma = walk->private;
	pte_t *pte;
	spinlock_t *ptl;

	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
	for (; addr != end; pte++, addr += PAGE_SIZE)
		if (is_target_pte_for_mc(vma, addr, *pte, NULL))
			mc.precharge++;	/* increment precharge temporarily */
	pte_unmap_unlock(pte - 1, ptl);
	cond_resched();

4020 4021 4022
	return 0;
}

4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052
static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
{
	unsigned long precharge;
	struct vm_area_struct *vma;

	down_read(&mm->mmap_sem);
	for (vma = mm->mmap; vma; vma = vma->vm_next) {
		struct mm_walk mem_cgroup_count_precharge_walk = {
			.pmd_entry = mem_cgroup_count_precharge_pte_range,
			.mm = mm,
			.private = vma,
		};
		if (is_vm_hugetlb_page(vma))
			continue;
		/* TODO: We don't move charges of shmem/tmpfs pages for now. */
		if (vma->vm_flags & VM_SHARED)
			continue;
		walk_page_range(vma->vm_start, vma->vm_end,
					&mem_cgroup_count_precharge_walk);
	}
	up_read(&mm->mmap_sem);

	precharge = mc.precharge;
	mc.precharge = 0;

	return precharge;
}

static int mem_cgroup_precharge_mc(struct mm_struct *mm)
{
4053
	return mem_cgroup_do_precharge(mem_cgroup_count_precharge(mm));
4054 4055 4056 4057 4058
}

static void mem_cgroup_clear_mc(void)
{
	/* we must uncharge all the leftover precharges from mc.to */
4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069
	if (mc.precharge) {
		__mem_cgroup_cancel_charge(mc.to, mc.precharge);
		mc.precharge = 0;
	}
	/*
	 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
	 * we must uncharge here.
	 */
	if (mc.moved_charge) {
		__mem_cgroup_cancel_charge(mc.from, mc.moved_charge);
		mc.moved_charge = 0;
4070
	}
4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093
	/* we must fixup refcnts and charges */
	if (mc.moved_swap) {
		WARN_ON_ONCE(mc.moved_swap > INT_MAX);
		/* uncharge swap account from the old cgroup */
		if (!mem_cgroup_is_root(mc.from))
			res_counter_uncharge(&mc.from->memsw,
						PAGE_SIZE * mc.moved_swap);
		__mem_cgroup_put(mc.from, mc.moved_swap);

		if (!mem_cgroup_is_root(mc.to)) {
			/*
			 * we charged both to->res and to->memsw, so we should
			 * uncharge to->res.
			 */
			res_counter_uncharge(&mc.to->res,
						PAGE_SIZE * mc.moved_swap);
			VM_BUG_ON(test_bit(CSS_ROOT, &mc.to->css.flags));
			__css_put(&mc.to->css, mc.moved_swap);
		}
		/* we've already done mem_cgroup_get(mc.to) */

		mc.moved_swap = 0;
	}
4094 4095
	mc.from = NULL;
	mc.to = NULL;
4096 4097
	mc.moving_task = NULL;
	wake_up_all(&mc.waitq);
4098 4099
}

4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117
static int mem_cgroup_can_attach(struct cgroup_subsys *ss,
				struct cgroup *cgroup,
				struct task_struct *p,
				bool threadgroup)
{
	int ret = 0;
	struct mem_cgroup *mem = mem_cgroup_from_cont(cgroup);

	if (mem->move_charge_at_immigrate) {
		struct mm_struct *mm;
		struct mem_cgroup *from = mem_cgroup_from_task(p);

		VM_BUG_ON(from == mem);

		mm = get_task_mm(p);
		if (!mm)
			return 0;
		/* We move charges only when we move a owner of the mm */
4118 4119 4120 4121
		if (mm->owner == p) {
			VM_BUG_ON(mc.from);
			VM_BUG_ON(mc.to);
			VM_BUG_ON(mc.precharge);
4122
			VM_BUG_ON(mc.moved_charge);
4123
			VM_BUG_ON(mc.moved_swap);
4124
			VM_BUG_ON(mc.moving_task);
4125 4126 4127
			mc.from = from;
			mc.to = mem;
			mc.precharge = 0;
4128
			mc.moved_charge = 0;
4129
			mc.moved_swap = 0;
4130
			mc.moving_task = current;
4131 4132 4133 4134 4135

			ret = mem_cgroup_precharge_mc(mm);
			if (ret)
				mem_cgroup_clear_mc();
		}
4136 4137 4138 4139 4140 4141 4142 4143 4144 4145
		mmput(mm);
	}
	return ret;
}

static void mem_cgroup_cancel_attach(struct cgroup_subsys *ss,
				struct cgroup *cgroup,
				struct task_struct *p,
				bool threadgroup)
{
4146
	mem_cgroup_clear_mc();
4147 4148
}

4149 4150 4151
static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
				unsigned long addr, unsigned long end,
				struct mm_walk *walk)
4152
{
4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165
	int ret = 0;
	struct vm_area_struct *vma = walk->private;
	pte_t *pte;
	spinlock_t *ptl;

retry:
	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
	for (; addr != end; addr += PAGE_SIZE) {
		pte_t ptent = *(pte++);
		union mc_target target;
		int type;
		struct page *page;
		struct page_cgroup *pc;
4166
		swp_entry_t ent;
4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177

		if (!mc.precharge)
			break;

		type = is_target_pte_for_mc(vma, addr, ptent, &target);
		switch (type) {
		case MC_TARGET_PAGE:
			page = target.page;
			if (isolate_lru_page(page))
				goto put;
			pc = lookup_page_cgroup(page);
4178 4179
			if (!mem_cgroup_move_account(pc,
						mc.from, mc.to, false)) {
4180
				mc.precharge--;
4181 4182
				/* we uncharge from mc.from later. */
				mc.moved_charge++;
4183 4184 4185 4186 4187
			}
			putback_lru_page(page);
put:			/* is_target_pte_for_mc() gets the page */
			put_page(page);
			break;
4188 4189
		case MC_TARGET_SWAP:
			ent = target.ent;
4190 4191
			if (!mem_cgroup_move_swap_account(ent,
						mc.from, mc.to, false)) {
4192
				mc.precharge--;
4193 4194 4195
				/* we fixup refcnts and charges later. */
				mc.moved_swap++;
			}
4196
			break;
4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210
		default:
			break;
		}
	}
	pte_unmap_unlock(pte - 1, ptl);
	cond_resched();

	if (addr != end) {
		/*
		 * We have consumed all precharges we got in can_attach().
		 * We try charge one by one, but don't do any additional
		 * charges to mc.to if we have failed in charge once in attach()
		 * phase.
		 */
4211
		ret = mem_cgroup_do_precharge(1);
4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246
		if (!ret)
			goto retry;
	}

	return ret;
}

static void mem_cgroup_move_charge(struct mm_struct *mm)
{
	struct vm_area_struct *vma;

	lru_add_drain_all();
	down_read(&mm->mmap_sem);
	for (vma = mm->mmap; vma; vma = vma->vm_next) {
		int ret;
		struct mm_walk mem_cgroup_move_charge_walk = {
			.pmd_entry = mem_cgroup_move_charge_pte_range,
			.mm = mm,
			.private = vma,
		};
		if (is_vm_hugetlb_page(vma))
			continue;
		/* TODO: We don't move charges of shmem/tmpfs pages for now. */
		if (vma->vm_flags & VM_SHARED)
			continue;
		ret = walk_page_range(vma->vm_start, vma->vm_end,
						&mem_cgroup_move_charge_walk);
		if (ret)
			/*
			 * means we have consumed all precharges and failed in
			 * doing additional charge. Just abandon here.
			 */
			break;
	}
	up_read(&mm->mmap_sem);
4247 4248
}

B
Balbir Singh 已提交
4249 4250 4251
static void mem_cgroup_move_task(struct cgroup_subsys *ss,
				struct cgroup *cont,
				struct cgroup *old_cont,
4252 4253
				struct task_struct *p,
				bool threadgroup)
B
Balbir Singh 已提交
4254
{
4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266
	struct mm_struct *mm;

	if (!mc.to)
		/* no need to move charge */
		return;

	mm = get_task_mm(p);
	if (mm) {
		mem_cgroup_move_charge(mm);
		mmput(mm);
	}
	mem_cgroup_clear_mc();
B
Balbir Singh 已提交
4267 4268
}

B
Balbir Singh 已提交
4269 4270 4271 4272
struct cgroup_subsys mem_cgroup_subsys = {
	.name = "memory",
	.subsys_id = mem_cgroup_subsys_id,
	.create = mem_cgroup_create,
4273
	.pre_destroy = mem_cgroup_pre_destroy,
B
Balbir Singh 已提交
4274 4275
	.destroy = mem_cgroup_destroy,
	.populate = mem_cgroup_populate,
4276 4277
	.can_attach = mem_cgroup_can_attach,
	.cancel_attach = mem_cgroup_cancel_attach,
B
Balbir Singh 已提交
4278
	.attach = mem_cgroup_move_task,
4279
	.early_init = 0,
K
KAMEZAWA Hiroyuki 已提交
4280
	.use_id = 1,
B
Balbir Singh 已提交
4281
};
4282 4283 4284 4285 4286 4287 4288 4289 4290 4291

#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP

static int __init disable_swap_account(char *s)
{
	really_do_swap_account = 0;
	return 1;
}
__setup("noswapaccount", disable_swap_account);
#endif