memcontrol.c 120.3 KB
Newer Older
B
Balbir Singh 已提交
1 2 3 4 5
/* memcontrol.c - Memory Controller
 *
 * Copyright IBM Corporation, 2007
 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
 *
6 7 8
 * Copyright 2007 OpenVZ SWsoft Inc
 * Author: Pavel Emelianov <xemul@openvz.org>
 *
9 10 11 12
 * Memory thresholds
 * Copyright (C) 2009 Nokia Corporation
 * Author: Kirill A. Shutemov
 *
B
Balbir Singh 已提交
13 14 15 16 17 18 19 20 21 22 23 24 25 26
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 */

#include <linux/res_counter.h>
#include <linux/memcontrol.h>
#include <linux/cgroup.h>
27
#include <linux/mm.h>
28
#include <linux/hugetlb.h>
K
KAMEZAWA Hiroyuki 已提交
29
#include <linux/pagemap.h>
30
#include <linux/smp.h>
31
#include <linux/page-flags.h>
32
#include <linux/backing-dev.h>
33 34
#include <linux/bit_spinlock.h>
#include <linux/rcupdate.h>
35
#include <linux/limits.h>
36
#include <linux/mutex.h>
37
#include <linux/rbtree.h>
38
#include <linux/slab.h>
39
#include <linux/swap.h>
40
#include <linux/swapops.h>
41
#include <linux/spinlock.h>
42 43
#include <linux/eventfd.h>
#include <linux/sort.h>
44
#include <linux/fs.h>
45
#include <linux/seq_file.h>
46
#include <linux/vmalloc.h>
47
#include <linux/mm_inline.h>
48
#include <linux/page_cgroup.h>
49
#include <linux/cpu.h>
50
#include <linux/oom.h>
K
KAMEZAWA Hiroyuki 已提交
51
#include "internal.h"
B
Balbir Singh 已提交
52

53 54
#include <asm/uaccess.h>

55 56
#include <trace/events/vmscan.h>

57 58
struct cgroup_subsys mem_cgroup_subsys __read_mostly;
#define MEM_CGROUP_RECLAIM_RETRIES	5
59
struct mem_cgroup *root_mem_cgroup __read_mostly;
B
Balbir Singh 已提交
60

61
#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
L
Li Zefan 已提交
62
/* Turned on only when memory cgroup is enabled && really_do_swap_account = 1 */
63 64 65 66 67 68
int do_swap_account __read_mostly;
static int really_do_swap_account __initdata = 1; /* for remember boot option*/
#else
#define do_swap_account		(0)
#endif

69 70 71 72 73 74 75 76 77
/*
 * Per memcg event counter is incremented at every pagein/pageout. This counter
 * is used for trigger some periodic events. This is straightforward and better
 * than using jiffies etc. to handle periodic memcg event.
 *
 * These values will be used as !((event) & ((1 <<(thresh)) - 1))
 */
#define THRESHOLDS_EVENTS_THRESH (7) /* once in 128 */
#define SOFTLIMIT_EVENTS_THRESH (10) /* once in 1024 */
78

79 80 81 82 83 84 85 86
/*
 * Statistics for memory cgroup.
 */
enum mem_cgroup_stat_index {
	/*
	 * For MEM_CONTAINER_TYPE_ALL, usage = pagecache + rss.
	 */
	MEM_CGROUP_STAT_CACHE, 	   /* # of pages charged as cache */
87
	MEM_CGROUP_STAT_RSS,	   /* # of pages charged as anon rss */
88
	MEM_CGROUP_STAT_FILE_MAPPED,  /* # of pages charged as file rss */
89 90
	MEM_CGROUP_STAT_PGPGIN_COUNT,	/* # of pages paged in */
	MEM_CGROUP_STAT_PGPGOUT_COUNT,	/* # of pages paged out */
91
	MEM_CGROUP_STAT_SWAPOUT, /* # of pages, swapped out */
92
	MEM_CGROUP_EVENTS,	/* incremented at every  pagein/pageout */
93 94 95 96 97 98 99 100

	MEM_CGROUP_STAT_NSTATS,
};

struct mem_cgroup_stat_cpu {
	s64 count[MEM_CGROUP_STAT_NSTATS];
};

101 102 103 104
/*
 * per-zone information in memory controller.
 */
struct mem_cgroup_per_zone {
105 106 107
	/*
	 * spin_lock to protect the per cgroup LRU
	 */
108 109
	struct list_head	lists[NR_LRU_LISTS];
	unsigned long		count[NR_LRU_LISTS];
K
KOSAKI Motohiro 已提交
110 111

	struct zone_reclaim_stat reclaim_stat;
112 113 114 115
	struct rb_node		tree_node;	/* RB tree node */
	unsigned long long	usage_in_excess;/* Set to the value by which */
						/* the soft limit is exceeded*/
	bool			on_tree;
116 117
	struct mem_cgroup	*mem;		/* Back pointer, we cannot */
						/* use container_of	   */
118 119 120 121 122 123 124 125 126 127 128 129
};
/* Macro for accessing counter */
#define MEM_CGROUP_ZSTAT(mz, idx)	((mz)->count[(idx)])

struct mem_cgroup_per_node {
	struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
};

struct mem_cgroup_lru_info {
	struct mem_cgroup_per_node *nodeinfo[MAX_NUMNODES];
};

130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149
/*
 * Cgroups above their limits are maintained in a RB-Tree, independent of
 * their hierarchy representation
 */

struct mem_cgroup_tree_per_zone {
	struct rb_root rb_root;
	spinlock_t lock;
};

struct mem_cgroup_tree_per_node {
	struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
};

struct mem_cgroup_tree {
	struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
};

static struct mem_cgroup_tree soft_limit_tree __read_mostly;

150 151 152 153 154
struct mem_cgroup_threshold {
	struct eventfd_ctx *eventfd;
	u64 threshold;
};

K
KAMEZAWA Hiroyuki 已提交
155
/* For threshold */
156 157
struct mem_cgroup_threshold_ary {
	/* An array index points to threshold just below usage. */
158
	int current_threshold;
159 160 161 162 163
	/* Size of entries[] */
	unsigned int size;
	/* Array of thresholds */
	struct mem_cgroup_threshold entries[0];
};
164 165 166 167 168 169 170 171 172 173 174 175

struct mem_cgroup_thresholds {
	/* Primary thresholds array */
	struct mem_cgroup_threshold_ary *primary;
	/*
	 * Spare threshold array.
	 * This is needed to make mem_cgroup_unregister_event() "never fail".
	 * It must be able to store at least primary->size - 1 entries.
	 */
	struct mem_cgroup_threshold_ary *spare;
};

K
KAMEZAWA Hiroyuki 已提交
176 177 178 179 180
/* for OOM */
struct mem_cgroup_eventfd_list {
	struct list_head list;
	struct eventfd_ctx *eventfd;
};
181 182

static void mem_cgroup_threshold(struct mem_cgroup *mem);
K
KAMEZAWA Hiroyuki 已提交
183
static void mem_cgroup_oom_notify(struct mem_cgroup *mem);
184

B
Balbir Singh 已提交
185 186 187 188 189 190 191
/*
 * The memory controller data structure. The memory controller controls both
 * page cache and RSS per cgroup. We would eventually like to provide
 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
 * to help the administrator determine what knobs to tune.
 *
 * TODO: Add a water mark for the memory controller. Reclaim will begin when
192 193 194
 * we hit the water mark. May be even add a low water mark, such that
 * no reclaim occurs from a cgroup at it's low water mark, this is
 * a feature that will be implemented much later in the future.
B
Balbir Singh 已提交
195 196 197 198 199 200 201
 */
struct mem_cgroup {
	struct cgroup_subsys_state css;
	/*
	 * the counter to account for memory usage
	 */
	struct res_counter res;
202 203 204 205
	/*
	 * the counter to account for mem+swap usage.
	 */
	struct res_counter memsw;
206 207 208 209
	/*
	 * Per cgroup active and inactive list, similar to the
	 * per zone LRU lists.
	 */
210
	struct mem_cgroup_lru_info info;
211

K
KOSAKI Motohiro 已提交
212 213 214 215 216
	/*
	  protect against reclaim related member.
	*/
	spinlock_t reclaim_param_lock;

217
	/*
218
	 * While reclaiming in a hierarchy, we cache the last child we
K
KAMEZAWA Hiroyuki 已提交
219
	 * reclaimed from.
220
	 */
K
KAMEZAWA Hiroyuki 已提交
221
	int last_scanned_child;
222 223 224 225
	/*
	 * Should the accounting and control be hierarchical, per subtree?
	 */
	bool use_hierarchy;
K
KAMEZAWA Hiroyuki 已提交
226
	atomic_t	oom_lock;
227
	atomic_t	refcnt;
228

K
KOSAKI Motohiro 已提交
229
	unsigned int	swappiness;
230 231
	/* OOM-Killer disable */
	int		oom_kill_disable;
K
KOSAKI Motohiro 已提交
232

233 234 235
	/* set when res.limit == memsw.limit */
	bool		memsw_is_minimum;

236 237 238 239
	/* protect arrays of thresholds */
	struct mutex thresholds_lock;

	/* thresholds for memory usage. RCU-protected */
240
	struct mem_cgroup_thresholds thresholds;
241

242
	/* thresholds for mem+swap usage. RCU-protected */
243
	struct mem_cgroup_thresholds memsw_thresholds;
244

K
KAMEZAWA Hiroyuki 已提交
245 246 247
	/* For oom notifier event fd */
	struct list_head oom_notify;

248 249 250 251 252
	/*
	 * Should we move charges of a task when a task is moved into this
	 * mem_cgroup ? And what type of charges should we move ?
	 */
	unsigned long 	move_charge_at_immigrate;
253
	/*
254
	 * percpu counter.
255
	 */
256
	struct mem_cgroup_stat_cpu *stat;
B
Balbir Singh 已提交
257 258
};

259 260 261 262 263 264
/* Stuffs for move charges at task migration. */
/*
 * Types of charges to be moved. "move_charge_at_immitgrate" is treated as a
 * left-shifted bitmap of these types.
 */
enum move_type {
265
	MOVE_CHARGE_TYPE_ANON,	/* private anonymous page and swap of it */
266
	MOVE_CHARGE_TYPE_FILE,	/* file page(including tmpfs) and swap of it */
267 268 269
	NR_MOVE_TYPE,
};

270 271
/* "mc" and its members are protected by cgroup_mutex */
static struct move_charge_struct {
272
	spinlock_t	  lock; /* for from, to, moving_task */
273 274 275
	struct mem_cgroup *from;
	struct mem_cgroup *to;
	unsigned long precharge;
276
	unsigned long moved_charge;
277
	unsigned long moved_swap;
278 279 280
	struct task_struct *moving_task;	/* a task moving charges */
	wait_queue_head_t waitq;		/* a waitq for other context */
} mc = {
281
	.lock = __SPIN_LOCK_UNLOCKED(mc.lock),
282 283
	.waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
};
284

D
Daisuke Nishimura 已提交
285 286 287 288 289 290
static bool move_anon(void)
{
	return test_bit(MOVE_CHARGE_TYPE_ANON,
					&mc.to->move_charge_at_immigrate);
}

291 292 293 294 295 296
static bool move_file(void)
{
	return test_bit(MOVE_CHARGE_TYPE_FILE,
					&mc.to->move_charge_at_immigrate);
}

297 298 299 300 301 302 303
/*
 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
 * limit reclaim to prevent infinite loops, if they ever occur.
 */
#define	MEM_CGROUP_MAX_RECLAIM_LOOPS		(100)
#define	MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS	(2)

304 305 306
enum charge_type {
	MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
	MEM_CGROUP_CHARGE_TYPE_MAPPED,
307
	MEM_CGROUP_CHARGE_TYPE_SHMEM,	/* used by page migration of shmem */
308
	MEM_CGROUP_CHARGE_TYPE_FORCE,	/* used by force_empty */
K
KAMEZAWA Hiroyuki 已提交
309
	MEM_CGROUP_CHARGE_TYPE_SWAPOUT,	/* for accounting swapcache */
K
KAMEZAWA Hiroyuki 已提交
310
	MEM_CGROUP_CHARGE_TYPE_DROP,	/* a page was unused swap cache */
311 312 313
	NR_CHARGE_TYPE,
};

314 315 316 317
/* only for here (for easy reading.) */
#define PCGF_CACHE	(1UL << PCG_CACHE)
#define PCGF_USED	(1UL << PCG_USED)
#define PCGF_LOCK	(1UL << PCG_LOCK)
318 319
/* Not used, but added here for completeness */
#define PCGF_ACCT	(1UL << PCG_ACCT)
320

321 322 323
/* for encoding cft->private value on file */
#define _MEM			(0)
#define _MEMSWAP		(1)
K
KAMEZAWA Hiroyuki 已提交
324
#define _OOM_TYPE		(2)
325 326 327
#define MEMFILE_PRIVATE(x, val)	(((x) << 16) | (val))
#define MEMFILE_TYPE(val)	(((val) >> 16) & 0xffff)
#define MEMFILE_ATTR(val)	((val) & 0xffff)
K
KAMEZAWA Hiroyuki 已提交
328 329
/* Used for OOM nofiier */
#define OOM_CONTROL		(0)
330

331 332 333 334 335 336 337
/*
 * Reclaim flags for mem_cgroup_hierarchical_reclaim
 */
#define MEM_CGROUP_RECLAIM_NOSWAP_BIT	0x0
#define MEM_CGROUP_RECLAIM_NOSWAP	(1 << MEM_CGROUP_RECLAIM_NOSWAP_BIT)
#define MEM_CGROUP_RECLAIM_SHRINK_BIT	0x1
#define MEM_CGROUP_RECLAIM_SHRINK	(1 << MEM_CGROUP_RECLAIM_SHRINK_BIT)
338 339
#define MEM_CGROUP_RECLAIM_SOFT_BIT	0x2
#define MEM_CGROUP_RECLAIM_SOFT		(1 << MEM_CGROUP_RECLAIM_SOFT_BIT)
340

341 342
static void mem_cgroup_get(struct mem_cgroup *mem);
static void mem_cgroup_put(struct mem_cgroup *mem);
343
static struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *mem);
344
static void drain_all_stock_async(void);
345

346 347 348 349 350 351
static struct mem_cgroup_per_zone *
mem_cgroup_zoneinfo(struct mem_cgroup *mem, int nid, int zid)
{
	return &mem->info.nodeinfo[nid]->zoneinfo[zid];
}

352 353 354 355 356
struct cgroup_subsys_state *mem_cgroup_css(struct mem_cgroup *mem)
{
	return &mem->css;
}

357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385
static struct mem_cgroup_per_zone *
page_cgroup_zoneinfo(struct page_cgroup *pc)
{
	struct mem_cgroup *mem = pc->mem_cgroup;
	int nid = page_cgroup_nid(pc);
	int zid = page_cgroup_zid(pc);

	if (!mem)
		return NULL;

	return mem_cgroup_zoneinfo(mem, nid, zid);
}

static struct mem_cgroup_tree_per_zone *
soft_limit_tree_node_zone(int nid, int zid)
{
	return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
}

static struct mem_cgroup_tree_per_zone *
soft_limit_tree_from_page(struct page *page)
{
	int nid = page_to_nid(page);
	int zid = page_zonenum(page);

	return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
}

static void
386
__mem_cgroup_insert_exceeded(struct mem_cgroup *mem,
387
				struct mem_cgroup_per_zone *mz,
388 389
				struct mem_cgroup_tree_per_zone *mctz,
				unsigned long long new_usage_in_excess)
390 391 392 393 394 395 396 397
{
	struct rb_node **p = &mctz->rb_root.rb_node;
	struct rb_node *parent = NULL;
	struct mem_cgroup_per_zone *mz_node;

	if (mz->on_tree)
		return;

398 399 400
	mz->usage_in_excess = new_usage_in_excess;
	if (!mz->usage_in_excess)
		return;
401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416
	while (*p) {
		parent = *p;
		mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
					tree_node);
		if (mz->usage_in_excess < mz_node->usage_in_excess)
			p = &(*p)->rb_left;
		/*
		 * We can't avoid mem cgroups that are over their soft
		 * limit by the same amount
		 */
		else if (mz->usage_in_excess >= mz_node->usage_in_excess)
			p = &(*p)->rb_right;
	}
	rb_link_node(&mz->tree_node, parent, p);
	rb_insert_color(&mz->tree_node, &mctz->rb_root);
	mz->on_tree = true;
417 418 419 420 421 422 423 424 425 426 427 428 429
}

static void
__mem_cgroup_remove_exceeded(struct mem_cgroup *mem,
				struct mem_cgroup_per_zone *mz,
				struct mem_cgroup_tree_per_zone *mctz)
{
	if (!mz->on_tree)
		return;
	rb_erase(&mz->tree_node, &mctz->rb_root);
	mz->on_tree = false;
}

430 431 432 433 434 435
static void
mem_cgroup_remove_exceeded(struct mem_cgroup *mem,
				struct mem_cgroup_per_zone *mz,
				struct mem_cgroup_tree_per_zone *mctz)
{
	spin_lock(&mctz->lock);
436
	__mem_cgroup_remove_exceeded(mem, mz, mctz);
437 438 439 440 441 442
	spin_unlock(&mctz->lock);
}


static void mem_cgroup_update_tree(struct mem_cgroup *mem, struct page *page)
{
443
	unsigned long long excess;
444 445
	struct mem_cgroup_per_zone *mz;
	struct mem_cgroup_tree_per_zone *mctz;
446 447
	int nid = page_to_nid(page);
	int zid = page_zonenum(page);
448 449 450
	mctz = soft_limit_tree_from_page(page);

	/*
451 452
	 * Necessary to update all ancestors when hierarchy is used.
	 * because their event counter is not touched.
453
	 */
454 455
	for (; mem; mem = parent_mem_cgroup(mem)) {
		mz = mem_cgroup_zoneinfo(mem, nid, zid);
456
		excess = res_counter_soft_limit_excess(&mem->res);
457 458 459 460
		/*
		 * We have to update the tree if mz is on RB-tree or
		 * mem is over its softlimit.
		 */
461
		if (excess || mz->on_tree) {
462 463 464 465 466
			spin_lock(&mctz->lock);
			/* if on-tree, remove it */
			if (mz->on_tree)
				__mem_cgroup_remove_exceeded(mem, mz, mctz);
			/*
467 468
			 * Insert again. mz->usage_in_excess will be updated.
			 * If excess is 0, no tree ops.
469
			 */
470
			__mem_cgroup_insert_exceeded(mem, mz, mctz, excess);
471 472
			spin_unlock(&mctz->lock);
		}
473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490
	}
}

static void mem_cgroup_remove_from_trees(struct mem_cgroup *mem)
{
	int node, zone;
	struct mem_cgroup_per_zone *mz;
	struct mem_cgroup_tree_per_zone *mctz;

	for_each_node_state(node, N_POSSIBLE) {
		for (zone = 0; zone < MAX_NR_ZONES; zone++) {
			mz = mem_cgroup_zoneinfo(mem, node, zone);
			mctz = soft_limit_tree_node_zone(node, zone);
			mem_cgroup_remove_exceeded(mem, mz, mctz);
		}
	}
}

491 492 493 494 495 496 497 498 499
static inline unsigned long mem_cgroup_get_excess(struct mem_cgroup *mem)
{
	return res_counter_soft_limit_excess(&mem->res) >> PAGE_SHIFT;
}

static struct mem_cgroup_per_zone *
__mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
{
	struct rb_node *rightmost = NULL;
500
	struct mem_cgroup_per_zone *mz;
501 502

retry:
503
	mz = NULL;
504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532
	rightmost = rb_last(&mctz->rb_root);
	if (!rightmost)
		goto done;		/* Nothing to reclaim from */

	mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
	/*
	 * Remove the node now but someone else can add it back,
	 * we will to add it back at the end of reclaim to its correct
	 * position in the tree.
	 */
	__mem_cgroup_remove_exceeded(mz->mem, mz, mctz);
	if (!res_counter_soft_limit_excess(&mz->mem->res) ||
		!css_tryget(&mz->mem->css))
		goto retry;
done:
	return mz;
}

static struct mem_cgroup_per_zone *
mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
{
	struct mem_cgroup_per_zone *mz;

	spin_lock(&mctz->lock);
	mz = __mem_cgroup_largest_soft_limit_node(mctz);
	spin_unlock(&mctz->lock);
	return mz;
}

533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552
static s64 mem_cgroup_read_stat(struct mem_cgroup *mem,
		enum mem_cgroup_stat_index idx)
{
	int cpu;
	s64 val = 0;

	for_each_possible_cpu(cpu)
		val += per_cpu(mem->stat->count[idx], cpu);
	return val;
}

static s64 mem_cgroup_local_usage(struct mem_cgroup *mem)
{
	s64 ret;

	ret = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_RSS);
	ret += mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_CACHE);
	return ret;
}

553 554 555 556
static void mem_cgroup_swap_statistics(struct mem_cgroup *mem,
					 bool charge)
{
	int val = (charge) ? 1 : -1;
557
	this_cpu_add(mem->stat->count[MEM_CGROUP_STAT_SWAPOUT], val);
558 559
}

560 561 562
static void mem_cgroup_charge_statistics(struct mem_cgroup *mem,
					 struct page_cgroup *pc,
					 bool charge)
563
{
564
	int val = (charge) ? 1 : -1;
565

566 567
	preempt_disable();

568
	if (PageCgroupCache(pc))
569
		__this_cpu_add(mem->stat->count[MEM_CGROUP_STAT_CACHE], val);
570
	else
571
		__this_cpu_add(mem->stat->count[MEM_CGROUP_STAT_RSS], val);
572 573

	if (charge)
574
		__this_cpu_inc(mem->stat->count[MEM_CGROUP_STAT_PGPGIN_COUNT]);
575
	else
576
		__this_cpu_inc(mem->stat->count[MEM_CGROUP_STAT_PGPGOUT_COUNT]);
577
	__this_cpu_inc(mem->stat->count[MEM_CGROUP_EVENTS]);
578

579
	preempt_enable();
580 581
}

K
KAMEZAWA Hiroyuki 已提交
582
static unsigned long mem_cgroup_get_local_zonestat(struct mem_cgroup *mem,
583
					enum lru_list idx)
584 585 586 587 588 589 590 591 592 593 594
{
	int nid, zid;
	struct mem_cgroup_per_zone *mz;
	u64 total = 0;

	for_each_online_node(nid)
		for (zid = 0; zid < MAX_NR_ZONES; zid++) {
			mz = mem_cgroup_zoneinfo(mem, nid, zid);
			total += MEM_CGROUP_ZSTAT(mz, idx);
		}
	return total;
595 596
}

597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619
static bool __memcg_event_check(struct mem_cgroup *mem, int event_mask_shift)
{
	s64 val;

	val = this_cpu_read(mem->stat->count[MEM_CGROUP_EVENTS]);

	return !(val & ((1 << event_mask_shift) - 1));
}

/*
 * Check events in order.
 *
 */
static void memcg_check_events(struct mem_cgroup *mem, struct page *page)
{
	/* threshold event is triggered in finer grain than soft limit */
	if (unlikely(__memcg_event_check(mem, THRESHOLDS_EVENTS_THRESH))) {
		mem_cgroup_threshold(mem);
		if (unlikely(__memcg_event_check(mem, SOFTLIMIT_EVENTS_THRESH)))
			mem_cgroup_update_tree(mem, page);
	}
}

620
static struct mem_cgroup *mem_cgroup_from_cont(struct cgroup *cont)
B
Balbir Singh 已提交
621 622 623 624 625 626
{
	return container_of(cgroup_subsys_state(cont,
				mem_cgroup_subsys_id), struct mem_cgroup,
				css);
}

627
struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
628
{
629 630 631 632 633 634 635 636
	/*
	 * mm_update_next_owner() may clear mm->owner to NULL
	 * if it races with swapoff, page migration, etc.
	 * So this can be called with p == NULL.
	 */
	if (unlikely(!p))
		return NULL;

637 638 639 640
	return container_of(task_subsys_state(p, mem_cgroup_subsys_id),
				struct mem_cgroup, css);
}

641 642 643
static struct mem_cgroup *try_get_mem_cgroup_from_mm(struct mm_struct *mm)
{
	struct mem_cgroup *mem = NULL;
644 645 646

	if (!mm)
		return NULL;
647 648 649 650 651 652 653 654 655 656 657 658 659 660 661
	/*
	 * Because we have no locks, mm->owner's may be being moved to other
	 * cgroup. We use css_tryget() here even if this looks
	 * pessimistic (rather than adding locks here).
	 */
	rcu_read_lock();
	do {
		mem = mem_cgroup_from_task(rcu_dereference(mm->owner));
		if (unlikely(!mem))
			break;
	} while (!css_tryget(&mem->css));
	rcu_read_unlock();
	return mem;
}

K
KAMEZAWA Hiroyuki 已提交
662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696
/*
 * Call callback function against all cgroup under hierarchy tree.
 */
static int mem_cgroup_walk_tree(struct mem_cgroup *root, void *data,
			  int (*func)(struct mem_cgroup *, void *))
{
	int found, ret, nextid;
	struct cgroup_subsys_state *css;
	struct mem_cgroup *mem;

	if (!root->use_hierarchy)
		return (*func)(root, data);

	nextid = 1;
	do {
		ret = 0;
		mem = NULL;

		rcu_read_lock();
		css = css_get_next(&mem_cgroup_subsys, nextid, &root->css,
				   &found);
		if (css && css_tryget(css))
			mem = container_of(css, struct mem_cgroup, css);
		rcu_read_unlock();

		if (mem) {
			ret = (*func)(mem, data);
			css_put(&mem->css);
		}
		nextid = found + 1;
	} while (!ret && css);

	return ret;
}

697 698 699 700 701
static inline bool mem_cgroup_is_root(struct mem_cgroup *mem)
{
	return (mem == root_mem_cgroup);
}

K
KAMEZAWA Hiroyuki 已提交
702 703 704 705 706 707 708 709 710 711 712 713 714
/*
 * Following LRU functions are allowed to be used without PCG_LOCK.
 * Operations are called by routine of global LRU independently from memcg.
 * What we have to take care of here is validness of pc->mem_cgroup.
 *
 * Changes to pc->mem_cgroup happens when
 * 1. charge
 * 2. moving account
 * In typical case, "charge" is done before add-to-lru. Exception is SwapCache.
 * It is added to LRU before charge.
 * If PCG_USED bit is not set, page_cgroup is not added to this private LRU.
 * When moving account, the page is not on LRU. It's isolated.
 */
715

K
KAMEZAWA Hiroyuki 已提交
716 717 718 719
void mem_cgroup_del_lru_list(struct page *page, enum lru_list lru)
{
	struct page_cgroup *pc;
	struct mem_cgroup_per_zone *mz;
720

721
	if (mem_cgroup_disabled())
K
KAMEZAWA Hiroyuki 已提交
722 723 724
		return;
	pc = lookup_page_cgroup(page);
	/* can happen while we handle swapcache. */
725
	if (!TestClearPageCgroupAcctLRU(pc))
K
KAMEZAWA Hiroyuki 已提交
726
		return;
727
	VM_BUG_ON(!pc->mem_cgroup);
728 729 730 731
	/*
	 * We don't check PCG_USED bit. It's cleared when the "page" is finally
	 * removed from global LRU.
	 */
K
KAMEZAWA Hiroyuki 已提交
732
	mz = page_cgroup_zoneinfo(pc);
733
	MEM_CGROUP_ZSTAT(mz, lru) -= 1;
734 735 736
	if (mem_cgroup_is_root(pc->mem_cgroup))
		return;
	VM_BUG_ON(list_empty(&pc->lru));
K
KAMEZAWA Hiroyuki 已提交
737 738
	list_del_init(&pc->lru);
	return;
739 740
}

K
KAMEZAWA Hiroyuki 已提交
741
void mem_cgroup_del_lru(struct page *page)
742
{
K
KAMEZAWA Hiroyuki 已提交
743 744
	mem_cgroup_del_lru_list(page, page_lru(page));
}
745

K
KAMEZAWA Hiroyuki 已提交
746 747 748 749
void mem_cgroup_rotate_lru_list(struct page *page, enum lru_list lru)
{
	struct mem_cgroup_per_zone *mz;
	struct page_cgroup *pc;
750

751
	if (mem_cgroup_disabled())
K
KAMEZAWA Hiroyuki 已提交
752
		return;
753

K
KAMEZAWA Hiroyuki 已提交
754
	pc = lookup_page_cgroup(page);
755 756 757 758
	/*
	 * Used bit is set without atomic ops but after smp_wmb().
	 * For making pc->mem_cgroup visible, insert smp_rmb() here.
	 */
K
KAMEZAWA Hiroyuki 已提交
759
	smp_rmb();
760 761
	/* unused or root page is not rotated. */
	if (!PageCgroupUsed(pc) || mem_cgroup_is_root(pc->mem_cgroup))
K
KAMEZAWA Hiroyuki 已提交
762 763 764
		return;
	mz = page_cgroup_zoneinfo(pc);
	list_move(&pc->lru, &mz->lists[lru]);
765 766
}

K
KAMEZAWA Hiroyuki 已提交
767
void mem_cgroup_add_lru_list(struct page *page, enum lru_list lru)
768
{
K
KAMEZAWA Hiroyuki 已提交
769 770
	struct page_cgroup *pc;
	struct mem_cgroup_per_zone *mz;
771

772
	if (mem_cgroup_disabled())
K
KAMEZAWA Hiroyuki 已提交
773 774
		return;
	pc = lookup_page_cgroup(page);
775
	VM_BUG_ON(PageCgroupAcctLRU(pc));
776 777 778 779
	/*
	 * Used bit is set without atomic ops but after smp_wmb().
	 * For making pc->mem_cgroup visible, insert smp_rmb() here.
	 */
K
KAMEZAWA Hiroyuki 已提交
780 781
	smp_rmb();
	if (!PageCgroupUsed(pc))
L
Lee Schermerhorn 已提交
782
		return;
783

K
KAMEZAWA Hiroyuki 已提交
784
	mz = page_cgroup_zoneinfo(pc);
785
	MEM_CGROUP_ZSTAT(mz, lru) += 1;
786 787 788
	SetPageCgroupAcctLRU(pc);
	if (mem_cgroup_is_root(pc->mem_cgroup))
		return;
K
KAMEZAWA Hiroyuki 已提交
789 790
	list_add(&pc->lru, &mz->lists[lru]);
}
791

K
KAMEZAWA Hiroyuki 已提交
792
/*
793 794 795 796 797
 * At handling SwapCache, pc->mem_cgroup may be changed while it's linked to
 * lru because the page may.be reused after it's fully uncharged (because of
 * SwapCache behavior).To handle that, unlink page_cgroup from LRU when charge
 * it again. This function is only used to charge SwapCache. It's done under
 * lock_page and expected that zone->lru_lock is never held.
K
KAMEZAWA Hiroyuki 已提交
798
 */
799
static void mem_cgroup_lru_del_before_commit_swapcache(struct page *page)
K
KAMEZAWA Hiroyuki 已提交
800
{
801 802 803 804 805 806 807 808 809 810 811 812
	unsigned long flags;
	struct zone *zone = page_zone(page);
	struct page_cgroup *pc = lookup_page_cgroup(page);

	spin_lock_irqsave(&zone->lru_lock, flags);
	/*
	 * Forget old LRU when this page_cgroup is *not* used. This Used bit
	 * is guarded by lock_page() because the page is SwapCache.
	 */
	if (!PageCgroupUsed(pc))
		mem_cgroup_del_lru_list(page, page_lru(page));
	spin_unlock_irqrestore(&zone->lru_lock, flags);
K
KAMEZAWA Hiroyuki 已提交
813 814
}

815 816 817 818 819 820 821 822
static void mem_cgroup_lru_add_after_commit_swapcache(struct page *page)
{
	unsigned long flags;
	struct zone *zone = page_zone(page);
	struct page_cgroup *pc = lookup_page_cgroup(page);

	spin_lock_irqsave(&zone->lru_lock, flags);
	/* link when the page is linked to LRU but page_cgroup isn't */
823
	if (PageLRU(page) && !PageCgroupAcctLRU(pc))
824 825 826 827 828
		mem_cgroup_add_lru_list(page, page_lru(page));
	spin_unlock_irqrestore(&zone->lru_lock, flags);
}


K
KAMEZAWA Hiroyuki 已提交
829 830 831
void mem_cgroup_move_lists(struct page *page,
			   enum lru_list from, enum lru_list to)
{
832
	if (mem_cgroup_disabled())
K
KAMEZAWA Hiroyuki 已提交
833 834 835
		return;
	mem_cgroup_del_lru_list(page, from);
	mem_cgroup_add_lru_list(page, to);
836 837
}

838 839 840
int task_in_mem_cgroup(struct task_struct *task, const struct mem_cgroup *mem)
{
	int ret;
841
	struct mem_cgroup *curr = NULL;
842
	struct task_struct *p;
843

844 845 846 847 848
	p = find_lock_task_mm(task);
	if (!p)
		return 0;
	curr = try_get_mem_cgroup_from_mm(p->mm);
	task_unlock(p);
849 850
	if (!curr)
		return 0;
851 852 853 854 855 856 857
	/*
	 * We should check use_hierarchy of "mem" not "curr". Because checking
	 * use_hierarchy of "curr" here make this function true if hierarchy is
	 * enabled in "curr" and "curr" is a child of "mem" in *cgroup*
	 * hierarchy(even if use_hierarchy is disabled in "mem").
	 */
	if (mem->use_hierarchy)
858 859 860 861
		ret = css_is_ancestor(&curr->css, &mem->css);
	else
		ret = (curr == mem);
	css_put(&curr->css);
862 863 864
	return ret;
}

865
static int calc_inactive_ratio(struct mem_cgroup *memcg, unsigned long *present_pages)
866 867 868
{
	unsigned long active;
	unsigned long inactive;
869 870
	unsigned long gb;
	unsigned long inactive_ratio;
871

K
KAMEZAWA Hiroyuki 已提交
872 873
	inactive = mem_cgroup_get_local_zonestat(memcg, LRU_INACTIVE_ANON);
	active = mem_cgroup_get_local_zonestat(memcg, LRU_ACTIVE_ANON);
874

875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901
	gb = (inactive + active) >> (30 - PAGE_SHIFT);
	if (gb)
		inactive_ratio = int_sqrt(10 * gb);
	else
		inactive_ratio = 1;

	if (present_pages) {
		present_pages[0] = inactive;
		present_pages[1] = active;
	}

	return inactive_ratio;
}

int mem_cgroup_inactive_anon_is_low(struct mem_cgroup *memcg)
{
	unsigned long active;
	unsigned long inactive;
	unsigned long present_pages[2];
	unsigned long inactive_ratio;

	inactive_ratio = calc_inactive_ratio(memcg, present_pages);

	inactive = present_pages[0];
	active = present_pages[1];

	if (inactive * inactive_ratio < active)
902 903 904 905 906
		return 1;

	return 0;
}

907 908 909 910 911 912 913 914 915 916 917
int mem_cgroup_inactive_file_is_low(struct mem_cgroup *memcg)
{
	unsigned long active;
	unsigned long inactive;

	inactive = mem_cgroup_get_local_zonestat(memcg, LRU_INACTIVE_FILE);
	active = mem_cgroup_get_local_zonestat(memcg, LRU_ACTIVE_FILE);

	return (active > inactive);
}

918 919 920 921
unsigned long mem_cgroup_zone_nr_pages(struct mem_cgroup *memcg,
				       struct zone *zone,
				       enum lru_list lru)
{
922
	int nid = zone_to_nid(zone);
923 924 925 926 927 928
	int zid = zone_idx(zone);
	struct mem_cgroup_per_zone *mz = mem_cgroup_zoneinfo(memcg, nid, zid);

	return MEM_CGROUP_ZSTAT(mz, lru);
}

K
KOSAKI Motohiro 已提交
929 930 931
struct zone_reclaim_stat *mem_cgroup_get_reclaim_stat(struct mem_cgroup *memcg,
						      struct zone *zone)
{
932
	int nid = zone_to_nid(zone);
K
KOSAKI Motohiro 已提交
933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948
	int zid = zone_idx(zone);
	struct mem_cgroup_per_zone *mz = mem_cgroup_zoneinfo(memcg, nid, zid);

	return &mz->reclaim_stat;
}

struct zone_reclaim_stat *
mem_cgroup_get_reclaim_stat_from_page(struct page *page)
{
	struct page_cgroup *pc;
	struct mem_cgroup_per_zone *mz;

	if (mem_cgroup_disabled())
		return NULL;

	pc = lookup_page_cgroup(page);
949 950 951 952 953 954 955 956
	/*
	 * Used bit is set without atomic ops but after smp_wmb().
	 * For making pc->mem_cgroup visible, insert smp_rmb() here.
	 */
	smp_rmb();
	if (!PageCgroupUsed(pc))
		return NULL;

K
KOSAKI Motohiro 已提交
957 958 959 960 961 962 963
	mz = page_cgroup_zoneinfo(pc);
	if (!mz)
		return NULL;

	return &mz->reclaim_stat;
}

964 965 966 967 968
unsigned long mem_cgroup_isolate_pages(unsigned long nr_to_scan,
					struct list_head *dst,
					unsigned long *scanned, int order,
					int mode, struct zone *z,
					struct mem_cgroup *mem_cont,
969
					int active, int file)
970 971 972 973 974 975
{
	unsigned long nr_taken = 0;
	struct page *page;
	unsigned long scan;
	LIST_HEAD(pc_list);
	struct list_head *src;
976
	struct page_cgroup *pc, *tmp;
977
	int nid = zone_to_nid(z);
978 979
	int zid = zone_idx(z);
	struct mem_cgroup_per_zone *mz;
980
	int lru = LRU_FILE * file + active;
981
	int ret;
982

983
	BUG_ON(!mem_cont);
984
	mz = mem_cgroup_zoneinfo(mem_cont, nid, zid);
985
	src = &mz->lists[lru];
986

987 988
	scan = 0;
	list_for_each_entry_safe_reverse(pc, tmp, src, lru) {
H
Hugh Dickins 已提交
989
		if (scan >= nr_to_scan)
990
			break;
K
KAMEZAWA Hiroyuki 已提交
991 992

		page = pc->page;
993 994
		if (unlikely(!PageCgroupUsed(pc)))
			continue;
H
Hugh Dickins 已提交
995
		if (unlikely(!PageLRU(page)))
996 997
			continue;

H
Hugh Dickins 已提交
998
		scan++;
999 1000 1001
		ret = __isolate_lru_page(page, mode, file);
		switch (ret) {
		case 0:
1002
			list_move(&page->lru, dst);
1003
			mem_cgroup_del_lru(page);
1004
			nr_taken++;
1005 1006 1007 1008 1009 1010 1011
			break;
		case -EBUSY:
			/* we don't affect global LRU but rotate in our LRU */
			mem_cgroup_rotate_lru_list(page, page_lru(page));
			break;
		default:
			break;
1012 1013 1014 1015
		}
	}

	*scanned = scan;
1016 1017 1018 1019

	trace_mm_vmscan_memcg_isolate(0, nr_to_scan, scan, nr_taken,
				      0, 0, 0, mode);

1020 1021 1022
	return nr_taken;
}

1023 1024 1025
#define mem_cgroup_from_res_counter(counter, member)	\
	container_of(counter, struct mem_cgroup, member)

1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037
static bool mem_cgroup_check_under_limit(struct mem_cgroup *mem)
{
	if (do_swap_account) {
		if (res_counter_check_under_limit(&mem->res) &&
			res_counter_check_under_limit(&mem->memsw))
			return true;
	} else
		if (res_counter_check_under_limit(&mem->res))
			return true;
	return false;
}

K
KOSAKI Motohiro 已提交
1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053
static unsigned int get_swappiness(struct mem_cgroup *memcg)
{
	struct cgroup *cgrp = memcg->css.cgroup;
	unsigned int swappiness;

	/* root ? */
	if (cgrp->parent == NULL)
		return vm_swappiness;

	spin_lock(&memcg->reclaim_param_lock);
	swappiness = memcg->swappiness;
	spin_unlock(&memcg->reclaim_param_lock);

	return swappiness;
}

1054 1055 1056 1057
/* A routine for testing mem is not under move_account */

static bool mem_cgroup_under_move(struct mem_cgroup *mem)
{
1058 1059
	struct mem_cgroup *from;
	struct mem_cgroup *to;
1060
	bool ret = false;
1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075
	/*
	 * Unlike task_move routines, we access mc.to, mc.from not under
	 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
	 */
	spin_lock(&mc.lock);
	from = mc.from;
	to = mc.to;
	if (!from)
		goto unlock;
	if (from == mem || to == mem
	    || (mem->use_hierarchy && css_is_ancestor(&from->css, &mem->css))
	    || (mem->use_hierarchy && css_is_ancestor(&to->css,	&mem->css)))
		ret = true;
unlock:
	spin_unlock(&mc.lock);
1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094
	return ret;
}

static bool mem_cgroup_wait_acct_move(struct mem_cgroup *mem)
{
	if (mc.moving_task && current != mc.moving_task) {
		if (mem_cgroup_under_move(mem)) {
			DEFINE_WAIT(wait);
			prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
			/* moving charge context might have finished. */
			if (mc.moving_task)
				schedule();
			finish_wait(&mc.waitq, &wait);
			return true;
		}
	}
	return false;
}

1095 1096 1097 1098 1099 1100
static int mem_cgroup_count_children_cb(struct mem_cgroup *mem, void *data)
{
	int *val = data;
	(*val)++;
	return 0;
}
1101 1102

/**
1103
 * mem_cgroup_print_oom_info: Called from OOM with tasklist_lock held in read mode.
1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121
 * @memcg: The memory cgroup that went over limit
 * @p: Task that is going to be killed
 *
 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
 * enabled
 */
void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
{
	struct cgroup *task_cgrp;
	struct cgroup *mem_cgrp;
	/*
	 * Need a buffer in BSS, can't rely on allocations. The code relies
	 * on the assumption that OOM is serialized for memory controller.
	 * If this assumption is broken, revisit this code.
	 */
	static char memcg_name[PATH_MAX];
	int ret;

1122
	if (!memcg || !p)
1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168
		return;


	rcu_read_lock();

	mem_cgrp = memcg->css.cgroup;
	task_cgrp = task_cgroup(p, mem_cgroup_subsys_id);

	ret = cgroup_path(task_cgrp, memcg_name, PATH_MAX);
	if (ret < 0) {
		/*
		 * Unfortunately, we are unable to convert to a useful name
		 * But we'll still print out the usage information
		 */
		rcu_read_unlock();
		goto done;
	}
	rcu_read_unlock();

	printk(KERN_INFO "Task in %s killed", memcg_name);

	rcu_read_lock();
	ret = cgroup_path(mem_cgrp, memcg_name, PATH_MAX);
	if (ret < 0) {
		rcu_read_unlock();
		goto done;
	}
	rcu_read_unlock();

	/*
	 * Continues from above, so we don't need an KERN_ level
	 */
	printk(KERN_CONT " as a result of limit of %s\n", memcg_name);
done:

	printk(KERN_INFO "memory: usage %llukB, limit %llukB, failcnt %llu\n",
		res_counter_read_u64(&memcg->res, RES_USAGE) >> 10,
		res_counter_read_u64(&memcg->res, RES_LIMIT) >> 10,
		res_counter_read_u64(&memcg->res, RES_FAILCNT));
	printk(KERN_INFO "memory+swap: usage %llukB, limit %llukB, "
		"failcnt %llu\n",
		res_counter_read_u64(&memcg->memsw, RES_USAGE) >> 10,
		res_counter_read_u64(&memcg->memsw, RES_LIMIT) >> 10,
		res_counter_read_u64(&memcg->memsw, RES_FAILCNT));
}

1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179
/*
 * This function returns the number of memcg under hierarchy tree. Returns
 * 1(self count) if no children.
 */
static int mem_cgroup_count_children(struct mem_cgroup *mem)
{
	int num = 0;
 	mem_cgroup_walk_tree(mem, &num, mem_cgroup_count_children_cb);
	return num;
}

D
David Rientjes 已提交
1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197
/*
 * Return the memory (and swap, if configured) limit for a memcg.
 */
u64 mem_cgroup_get_limit(struct mem_cgroup *memcg)
{
	u64 limit;
	u64 memsw;

	limit = res_counter_read_u64(&memcg->res, RES_LIMIT) +
			total_swap_pages;
	memsw = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
	/*
	 * If memsw is finite and limits the amount of swap space available
	 * to this memcg, return that limit.
	 */
	return min(limit, memsw);
}

1198
/*
K
KAMEZAWA Hiroyuki 已提交
1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240
 * Visit the first child (need not be the first child as per the ordering
 * of the cgroup list, since we track last_scanned_child) of @mem and use
 * that to reclaim free pages from.
 */
static struct mem_cgroup *
mem_cgroup_select_victim(struct mem_cgroup *root_mem)
{
	struct mem_cgroup *ret = NULL;
	struct cgroup_subsys_state *css;
	int nextid, found;

	if (!root_mem->use_hierarchy) {
		css_get(&root_mem->css);
		ret = root_mem;
	}

	while (!ret) {
		rcu_read_lock();
		nextid = root_mem->last_scanned_child + 1;
		css = css_get_next(&mem_cgroup_subsys, nextid, &root_mem->css,
				   &found);
		if (css && css_tryget(css))
			ret = container_of(css, struct mem_cgroup, css);

		rcu_read_unlock();
		/* Updates scanning parameter */
		spin_lock(&root_mem->reclaim_param_lock);
		if (!css) {
			/* this means start scan from ID:1 */
			root_mem->last_scanned_child = 0;
		} else
			root_mem->last_scanned_child = found;
		spin_unlock(&root_mem->reclaim_param_lock);
	}

	return ret;
}

/*
 * Scan the hierarchy if needed to reclaim memory. We remember the last child
 * we reclaimed from, so that we don't end up penalizing one child extensively
 * based on its position in the children list.
1241 1242
 *
 * root_mem is the original ancestor that we've been reclaim from.
K
KAMEZAWA Hiroyuki 已提交
1243 1244 1245
 *
 * We give up and return to the caller when we visit root_mem twice.
 * (other groups can be removed while we're walking....)
1246 1247
 *
 * If shrink==true, for avoiding to free too much, this returns immedieately.
1248 1249
 */
static int mem_cgroup_hierarchical_reclaim(struct mem_cgroup *root_mem,
1250
						struct zone *zone,
1251 1252
						gfp_t gfp_mask,
						unsigned long reclaim_options)
1253
{
K
KAMEZAWA Hiroyuki 已提交
1254 1255 1256
	struct mem_cgroup *victim;
	int ret, total = 0;
	int loop = 0;
1257 1258
	bool noswap = reclaim_options & MEM_CGROUP_RECLAIM_NOSWAP;
	bool shrink = reclaim_options & MEM_CGROUP_RECLAIM_SHRINK;
1259 1260
	bool check_soft = reclaim_options & MEM_CGROUP_RECLAIM_SOFT;
	unsigned long excess = mem_cgroup_get_excess(root_mem);
K
KAMEZAWA Hiroyuki 已提交
1261

1262 1263 1264 1265
	/* If memsw_is_minimum==1, swap-out is of-no-use. */
	if (root_mem->memsw_is_minimum)
		noswap = true;

1266
	while (1) {
K
KAMEZAWA Hiroyuki 已提交
1267
		victim = mem_cgroup_select_victim(root_mem);
1268
		if (victim == root_mem) {
K
KAMEZAWA Hiroyuki 已提交
1269
			loop++;
1270 1271
			if (loop >= 1)
				drain_all_stock_async();
1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294
			if (loop >= 2) {
				/*
				 * If we have not been able to reclaim
				 * anything, it might because there are
				 * no reclaimable pages under this hierarchy
				 */
				if (!check_soft || !total) {
					css_put(&victim->css);
					break;
				}
				/*
				 * We want to do more targetted reclaim.
				 * excess >> 2 is not to excessive so as to
				 * reclaim too much, nor too less that we keep
				 * coming back to reclaim from this cgroup
				 */
				if (total >= (excess >> 2) ||
					(loop > MEM_CGROUP_MAX_RECLAIM_LOOPS)) {
					css_put(&victim->css);
					break;
				}
			}
		}
1295
		if (!mem_cgroup_local_usage(victim)) {
K
KAMEZAWA Hiroyuki 已提交
1296 1297
			/* this cgroup's local usage == 0 */
			css_put(&victim->css);
1298 1299
			continue;
		}
K
KAMEZAWA Hiroyuki 已提交
1300
		/* we use swappiness of local cgroup */
1301 1302
		if (check_soft)
			ret = mem_cgroup_shrink_node_zone(victim, gfp_mask,
1303
				noswap, get_swappiness(victim), zone);
1304 1305 1306
		else
			ret = try_to_free_mem_cgroup_pages(victim, gfp_mask,
						noswap, get_swappiness(victim));
K
KAMEZAWA Hiroyuki 已提交
1307
		css_put(&victim->css);
1308 1309 1310 1311 1312 1313 1314
		/*
		 * At shrinking usage, we can't check we should stop here or
		 * reclaim more. It's depends on callers. last_scanned_child
		 * will work enough for keeping fairness under tree.
		 */
		if (shrink)
			return ret;
K
KAMEZAWA Hiroyuki 已提交
1315
		total += ret;
1316 1317 1318 1319
		if (check_soft) {
			if (res_counter_check_under_soft_limit(&root_mem->res))
				return total;
		} else if (mem_cgroup_check_under_limit(root_mem))
K
KAMEZAWA Hiroyuki 已提交
1320
			return 1 + total;
1321
	}
K
KAMEZAWA Hiroyuki 已提交
1322
	return total;
1323 1324
}

K
KAMEZAWA Hiroyuki 已提交
1325
static int mem_cgroup_oom_lock_cb(struct mem_cgroup *mem, void *data)
1326
{
K
KAMEZAWA Hiroyuki 已提交
1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344
	int *val = (int *)data;
	int x;
	/*
	 * Logically, we can stop scanning immediately when we find
	 * a memcg is already locked. But condidering unlock ops and
	 * creation/removal of memcg, scan-all is simple operation.
	 */
	x = atomic_inc_return(&mem->oom_lock);
	*val = max(x, *val);
	return 0;
}
/*
 * Check OOM-Killer is already running under our hierarchy.
 * If someone is running, return false.
 */
static bool mem_cgroup_oom_lock(struct mem_cgroup *mem)
{
	int lock_count = 0;
1345

K
KAMEZAWA Hiroyuki 已提交
1346 1347 1348 1349 1350
	mem_cgroup_walk_tree(mem, &lock_count, mem_cgroup_oom_lock_cb);

	if (lock_count == 1)
		return true;
	return false;
1351
}
1352

K
KAMEZAWA Hiroyuki 已提交
1353
static int mem_cgroup_oom_unlock_cb(struct mem_cgroup *mem, void *data)
1354
{
K
KAMEZAWA Hiroyuki 已提交
1355 1356 1357 1358 1359 1360
	/*
	 * When a new child is created while the hierarchy is under oom,
	 * mem_cgroup_oom_lock() may not be called. We have to use
	 * atomic_add_unless() here.
	 */
	atomic_add_unless(&mem->oom_lock, -1, 0);
1361 1362 1363
	return 0;
}

K
KAMEZAWA Hiroyuki 已提交
1364 1365 1366 1367 1368 1369 1370 1371
static void mem_cgroup_oom_unlock(struct mem_cgroup *mem)
{
	mem_cgroup_walk_tree(mem, NULL,	mem_cgroup_oom_unlock_cb);
}

static DEFINE_MUTEX(memcg_oom_mutex);
static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);

K
KAMEZAWA Hiroyuki 已提交
1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407
struct oom_wait_info {
	struct mem_cgroup *mem;
	wait_queue_t	wait;
};

static int memcg_oom_wake_function(wait_queue_t *wait,
	unsigned mode, int sync, void *arg)
{
	struct mem_cgroup *wake_mem = (struct mem_cgroup *)arg;
	struct oom_wait_info *oom_wait_info;

	oom_wait_info = container_of(wait, struct oom_wait_info, wait);

	if (oom_wait_info->mem == wake_mem)
		goto wakeup;
	/* if no hierarchy, no match */
	if (!oom_wait_info->mem->use_hierarchy || !wake_mem->use_hierarchy)
		return 0;
	/*
	 * Both of oom_wait_info->mem and wake_mem are stable under us.
	 * Then we can use css_is_ancestor without taking care of RCU.
	 */
	if (!css_is_ancestor(&oom_wait_info->mem->css, &wake_mem->css) &&
	    !css_is_ancestor(&wake_mem->css, &oom_wait_info->mem->css))
		return 0;

wakeup:
	return autoremove_wake_function(wait, mode, sync, arg);
}

static void memcg_wakeup_oom(struct mem_cgroup *mem)
{
	/* for filtering, pass "mem" as argument. */
	__wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, mem);
}

1408 1409
static void memcg_oom_recover(struct mem_cgroup *mem)
{
1410
	if (mem && atomic_read(&mem->oom_lock))
1411 1412 1413
		memcg_wakeup_oom(mem);
}

K
KAMEZAWA Hiroyuki 已提交
1414 1415 1416 1417
/*
 * try to call OOM killer. returns false if we should exit memory-reclaim loop.
 */
bool mem_cgroup_handle_oom(struct mem_cgroup *mem, gfp_t mask)
1418
{
K
KAMEZAWA Hiroyuki 已提交
1419
	struct oom_wait_info owait;
1420
	bool locked, need_to_kill;
K
KAMEZAWA Hiroyuki 已提交
1421

K
KAMEZAWA Hiroyuki 已提交
1422 1423 1424 1425 1426
	owait.mem = mem;
	owait.wait.flags = 0;
	owait.wait.func = memcg_oom_wake_function;
	owait.wait.private = current;
	INIT_LIST_HEAD(&owait.wait.task_list);
1427
	need_to_kill = true;
K
KAMEZAWA Hiroyuki 已提交
1428 1429 1430 1431 1432 1433 1434 1435
	/* At first, try to OOM lock hierarchy under mem.*/
	mutex_lock(&memcg_oom_mutex);
	locked = mem_cgroup_oom_lock(mem);
	/*
	 * Even if signal_pending(), we can't quit charge() loop without
	 * accounting. So, UNINTERRUPTIBLE is appropriate. But SIGKILL
	 * under OOM is always welcomed, use TASK_KILLABLE here.
	 */
1436 1437 1438 1439
	prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
	if (!locked || mem->oom_kill_disable)
		need_to_kill = false;
	if (locked)
K
KAMEZAWA Hiroyuki 已提交
1440
		mem_cgroup_oom_notify(mem);
K
KAMEZAWA Hiroyuki 已提交
1441 1442
	mutex_unlock(&memcg_oom_mutex);

1443 1444
	if (need_to_kill) {
		finish_wait(&memcg_oom_waitq, &owait.wait);
K
KAMEZAWA Hiroyuki 已提交
1445
		mem_cgroup_out_of_memory(mem, mask);
1446
	} else {
K
KAMEZAWA Hiroyuki 已提交
1447
		schedule();
K
KAMEZAWA Hiroyuki 已提交
1448
		finish_wait(&memcg_oom_waitq, &owait.wait);
K
KAMEZAWA Hiroyuki 已提交
1449 1450 1451
	}
	mutex_lock(&memcg_oom_mutex);
	mem_cgroup_oom_unlock(mem);
K
KAMEZAWA Hiroyuki 已提交
1452
	memcg_wakeup_oom(mem);
K
KAMEZAWA Hiroyuki 已提交
1453 1454 1455 1456 1457 1458 1459
	mutex_unlock(&memcg_oom_mutex);

	if (test_thread_flag(TIF_MEMDIE) || fatal_signal_pending(current))
		return false;
	/* Give chance to dying process */
	schedule_timeout(1);
	return true;
1460 1461
}

1462 1463 1464 1465
/*
 * Currently used to update mapped file statistics, but the routine can be
 * generalized to update other statistics as well.
 */
1466
void mem_cgroup_update_file_mapped(struct page *page, int val)
1467 1468 1469 1470 1471 1472 1473 1474 1475 1476
{
	struct mem_cgroup *mem;
	struct page_cgroup *pc;

	pc = lookup_page_cgroup(page);
	if (unlikely(!pc))
		return;

	lock_page_cgroup(pc);
	mem = pc->mem_cgroup;
1477
	if (!mem || !PageCgroupUsed(pc))
1478 1479 1480
		goto done;

	/*
1481
	 * Preemption is already disabled. We can use __this_cpu_xxx
1482
	 */
1483 1484 1485 1486 1487
	if (val > 0) {
		__this_cpu_inc(mem->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
		SetPageCgroupFileMapped(pc);
	} else {
		__this_cpu_dec(mem->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
1488 1489
		if (!page_mapped(page)) /* for race between dec->inc counter */
			ClearPageCgroupFileMapped(pc);
1490
	}
1491 1492 1493 1494

done:
	unlock_page_cgroup(pc);
}
1495

1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556
/*
 * size of first charge trial. "32" comes from vmscan.c's magic value.
 * TODO: maybe necessary to use big numbers in big irons.
 */
#define CHARGE_SIZE	(32 * PAGE_SIZE)
struct memcg_stock_pcp {
	struct mem_cgroup *cached; /* this never be root cgroup */
	int charge;
	struct work_struct work;
};
static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
static atomic_t memcg_drain_count;

/*
 * Try to consume stocked charge on this cpu. If success, PAGE_SIZE is consumed
 * from local stock and true is returned. If the stock is 0 or charges from a
 * cgroup which is not current target, returns false. This stock will be
 * refilled.
 */
static bool consume_stock(struct mem_cgroup *mem)
{
	struct memcg_stock_pcp *stock;
	bool ret = true;

	stock = &get_cpu_var(memcg_stock);
	if (mem == stock->cached && stock->charge)
		stock->charge -= PAGE_SIZE;
	else /* need to call res_counter_charge */
		ret = false;
	put_cpu_var(memcg_stock);
	return ret;
}

/*
 * Returns stocks cached in percpu to res_counter and reset cached information.
 */
static void drain_stock(struct memcg_stock_pcp *stock)
{
	struct mem_cgroup *old = stock->cached;

	if (stock->charge) {
		res_counter_uncharge(&old->res, stock->charge);
		if (do_swap_account)
			res_counter_uncharge(&old->memsw, stock->charge);
	}
	stock->cached = NULL;
	stock->charge = 0;
}

/*
 * This must be called under preempt disabled or must be called by
 * a thread which is pinned to local cpu.
 */
static void drain_local_stock(struct work_struct *dummy)
{
	struct memcg_stock_pcp *stock = &__get_cpu_var(memcg_stock);
	drain_stock(stock);
}

/*
 * Cache charges(val) which is from res_counter, to local per_cpu area.
1557
 * This will be consumed by consume_stock() function, later.
1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622
 */
static void refill_stock(struct mem_cgroup *mem, int val)
{
	struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);

	if (stock->cached != mem) { /* reset if necessary */
		drain_stock(stock);
		stock->cached = mem;
	}
	stock->charge += val;
	put_cpu_var(memcg_stock);
}

/*
 * Tries to drain stocked charges in other cpus. This function is asynchronous
 * and just put a work per cpu for draining localy on each cpu. Caller can
 * expects some charges will be back to res_counter later but cannot wait for
 * it.
 */
static void drain_all_stock_async(void)
{
	int cpu;
	/* This function is for scheduling "drain" in asynchronous way.
	 * The result of "drain" is not directly handled by callers. Then,
	 * if someone is calling drain, we don't have to call drain more.
	 * Anyway, WORK_STRUCT_PENDING check in queue_work_on() will catch if
	 * there is a race. We just do loose check here.
	 */
	if (atomic_read(&memcg_drain_count))
		return;
	/* Notify other cpus that system-wide "drain" is running */
	atomic_inc(&memcg_drain_count);
	get_online_cpus();
	for_each_online_cpu(cpu) {
		struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
		schedule_work_on(cpu, &stock->work);
	}
 	put_online_cpus();
	atomic_dec(&memcg_drain_count);
	/* We don't wait for flush_work */
}

/* This is a synchronous drain interface. */
static void drain_all_stock_sync(void)
{
	/* called when force_empty is called */
	atomic_inc(&memcg_drain_count);
	schedule_on_each_cpu(drain_local_stock);
	atomic_dec(&memcg_drain_count);
}

static int __cpuinit memcg_stock_cpu_callback(struct notifier_block *nb,
					unsigned long action,
					void *hcpu)
{
	int cpu = (unsigned long)hcpu;
	struct memcg_stock_pcp *stock;

	if (action != CPU_DEAD)
		return NOTIFY_OK;
	stock = &per_cpu(memcg_stock, cpu);
	drain_stock(stock);
	return NOTIFY_OK;
}

1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689

/* See __mem_cgroup_try_charge() for details */
enum {
	CHARGE_OK,		/* success */
	CHARGE_RETRY,		/* need to retry but retry is not bad */
	CHARGE_NOMEM,		/* we can't do more. return -ENOMEM */
	CHARGE_WOULDBLOCK,	/* GFP_WAIT wasn't set and no enough res. */
	CHARGE_OOM_DIE,		/* the current is killed because of OOM */
};

static int __mem_cgroup_do_charge(struct mem_cgroup *mem, gfp_t gfp_mask,
				int csize, bool oom_check)
{
	struct mem_cgroup *mem_over_limit;
	struct res_counter *fail_res;
	unsigned long flags = 0;
	int ret;

	ret = res_counter_charge(&mem->res, csize, &fail_res);

	if (likely(!ret)) {
		if (!do_swap_account)
			return CHARGE_OK;
		ret = res_counter_charge(&mem->memsw, csize, &fail_res);
		if (likely(!ret))
			return CHARGE_OK;

		mem_over_limit = mem_cgroup_from_res_counter(fail_res, memsw);
		flags |= MEM_CGROUP_RECLAIM_NOSWAP;
	} else
		mem_over_limit = mem_cgroup_from_res_counter(fail_res, res);

	if (csize > PAGE_SIZE) /* change csize and retry */
		return CHARGE_RETRY;

	if (!(gfp_mask & __GFP_WAIT))
		return CHARGE_WOULDBLOCK;

	ret = mem_cgroup_hierarchical_reclaim(mem_over_limit, NULL,
					gfp_mask, flags);
	/*
	 * try_to_free_mem_cgroup_pages() might not give us a full
	 * picture of reclaim. Some pages are reclaimed and might be
	 * moved to swap cache or just unmapped from the cgroup.
	 * Check the limit again to see if the reclaim reduced the
	 * current usage of the cgroup before giving up
	 */
	if (ret || mem_cgroup_check_under_limit(mem_over_limit))
		return CHARGE_RETRY;

	/*
	 * At task move, charge accounts can be doubly counted. So, it's
	 * better to wait until the end of task_move if something is going on.
	 */
	if (mem_cgroup_wait_acct_move(mem_over_limit))
		return CHARGE_RETRY;

	/* If we don't need to call oom-killer at el, return immediately */
	if (!oom_check)
		return CHARGE_NOMEM;
	/* check OOM */
	if (!mem_cgroup_handle_oom(mem_over_limit, gfp_mask))
		return CHARGE_OOM_DIE;

	return CHARGE_RETRY;
}

1690 1691 1692
/*
 * Unlike exported interface, "oom" parameter is added. if oom==true,
 * oom-killer can be invoked.
1693
 */
1694
static int __mem_cgroup_try_charge(struct mm_struct *mm,
1695
		gfp_t gfp_mask, struct mem_cgroup **memcg, bool oom)
1696
{
1697 1698 1699
	int nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
	struct mem_cgroup *mem = NULL;
	int ret;
1700
	int csize = CHARGE_SIZE;
1701

K
KAMEZAWA Hiroyuki 已提交
1702 1703 1704 1705 1706 1707 1708 1709
	/*
	 * Unlike gloval-vm's OOM-kill, we're not in memory shortage
	 * in system level. So, allow to go ahead dying process in addition to
	 * MEMDIE process.
	 */
	if (unlikely(test_thread_flag(TIF_MEMDIE)
		     || fatal_signal_pending(current)))
		goto bypass;
1710

1711
	/*
1712 1713
	 * We always charge the cgroup the mm_struct belongs to.
	 * The mm_struct's mem_cgroup changes on task migration if the
1714 1715 1716
	 * thread group leader migrates. It's possible that mm is not
	 * set, if so charge the init_mm (happens for pagecache usage).
	 */
K
KAMEZAWA Hiroyuki 已提交
1717 1718 1719 1720
	if (!*memcg && !mm)
		goto bypass;
again:
	if (*memcg) { /* css should be a valid one */
1721
		mem = *memcg;
K
KAMEZAWA Hiroyuki 已提交
1722 1723 1724 1725 1726
		VM_BUG_ON(css_is_removed(&mem->css));
		if (mem_cgroup_is_root(mem))
			goto done;
		if (consume_stock(mem))
			goto done;
1727 1728
		css_get(&mem->css);
	} else {
K
KAMEZAWA Hiroyuki 已提交
1729
		struct task_struct *p;
1730

K
KAMEZAWA Hiroyuki 已提交
1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767
		rcu_read_lock();
		p = rcu_dereference(mm->owner);
		VM_BUG_ON(!p);
		/*
		 * because we don't have task_lock(), "p" can exit while
		 * we're here. In that case, "mem" can point to root
		 * cgroup but never be NULL. (and task_struct itself is freed
		 * by RCU, cgroup itself is RCU safe.) Then, we have small
		 * risk here to get wrong cgroup. But such kind of mis-account
		 * by race always happens because we don't have cgroup_mutex().
		 * It's overkill and we allow that small race, here.
		 */
		mem = mem_cgroup_from_task(p);
		VM_BUG_ON(!mem);
		if (mem_cgroup_is_root(mem)) {
			rcu_read_unlock();
			goto done;
		}
		if (consume_stock(mem)) {
			/*
			 * It seems dagerous to access memcg without css_get().
			 * But considering how consume_stok works, it's not
			 * necessary. If consume_stock success, some charges
			 * from this memcg are cached on this cpu. So, we
			 * don't need to call css_get()/css_tryget() before
			 * calling consume_stock().
			 */
			rcu_read_unlock();
			goto done;
		}
		/* after here, we may be blocked. we need to get refcnt */
		if (!css_tryget(&mem->css)) {
			rcu_read_unlock();
			goto again;
		}
		rcu_read_unlock();
	}
1768

1769 1770
	do {
		bool oom_check;
1771

1772
		/* If killed, bypass charge */
K
KAMEZAWA Hiroyuki 已提交
1773 1774
		if (fatal_signal_pending(current)) {
			css_put(&mem->css);
1775
			goto bypass;
K
KAMEZAWA Hiroyuki 已提交
1776
		}
1777

1778 1779 1780 1781
		oom_check = false;
		if (oom && !nr_oom_retries) {
			oom_check = true;
			nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
1782
		}
1783

1784
		ret = __mem_cgroup_do_charge(mem, gfp_mask, csize, oom_check);
1785

1786 1787 1788 1789 1790
		switch (ret) {
		case CHARGE_OK:
			break;
		case CHARGE_RETRY: /* not in OOM situation but retry */
			csize = PAGE_SIZE;
K
KAMEZAWA Hiroyuki 已提交
1791 1792 1793
			css_put(&mem->css);
			mem = NULL;
			goto again;
1794
		case CHARGE_WOULDBLOCK: /* !__GFP_WAIT */
K
KAMEZAWA Hiroyuki 已提交
1795
			css_put(&mem->css);
1796 1797
			goto nomem;
		case CHARGE_NOMEM: /* OOM routine works */
K
KAMEZAWA Hiroyuki 已提交
1798 1799
			if (!oom) {
				css_put(&mem->css);
K
KAMEZAWA Hiroyuki 已提交
1800
				goto nomem;
K
KAMEZAWA Hiroyuki 已提交
1801
			}
1802 1803 1804 1805
			/* If oom, we never return -ENOMEM */
			nr_oom_retries--;
			break;
		case CHARGE_OOM_DIE: /* Killed by OOM Killer */
K
KAMEZAWA Hiroyuki 已提交
1806
			css_put(&mem->css);
K
KAMEZAWA Hiroyuki 已提交
1807
			goto bypass;
1808
		}
1809 1810
	} while (ret != CHARGE_OK);

1811 1812
	if (csize > PAGE_SIZE)
		refill_stock(mem, csize - PAGE_SIZE);
K
KAMEZAWA Hiroyuki 已提交
1813
	css_put(&mem->css);
1814
done:
K
KAMEZAWA Hiroyuki 已提交
1815
	*memcg = mem;
1816 1817
	return 0;
nomem:
K
KAMEZAWA Hiroyuki 已提交
1818
	*memcg = NULL;
1819
	return -ENOMEM;
K
KAMEZAWA Hiroyuki 已提交
1820 1821 1822
bypass:
	*memcg = NULL;
	return 0;
1823
}
1824

1825 1826 1827 1828 1829
/*
 * Somemtimes we have to undo a charge we got by try_charge().
 * This function is for that and do uncharge, put css's refcnt.
 * gotten by try_charge().
 */
1830 1831
static void __mem_cgroup_cancel_charge(struct mem_cgroup *mem,
							unsigned long count)
1832 1833
{
	if (!mem_cgroup_is_root(mem)) {
1834
		res_counter_uncharge(&mem->res, PAGE_SIZE * count);
1835
		if (do_swap_account)
1836
			res_counter_uncharge(&mem->memsw, PAGE_SIZE * count);
1837
	}
1838 1839 1840 1841 1842
}

static void mem_cgroup_cancel_charge(struct mem_cgroup *mem)
{
	__mem_cgroup_cancel_charge(mem, 1);
1843 1844
}

1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863
/*
 * A helper function to get mem_cgroup from ID. must be called under
 * rcu_read_lock(). The caller must check css_is_removed() or some if
 * it's concern. (dropping refcnt from swap can be called against removed
 * memcg.)
 */
static struct mem_cgroup *mem_cgroup_lookup(unsigned short id)
{
	struct cgroup_subsys_state *css;

	/* ID 0 is unused ID */
	if (!id)
		return NULL;
	css = css_lookup(&mem_cgroup_subsys, id);
	if (!css)
		return NULL;
	return container_of(css, struct mem_cgroup, css);
}

1864
struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page)
1865
{
1866
	struct mem_cgroup *mem = NULL;
1867
	struct page_cgroup *pc;
1868
	unsigned short id;
1869 1870
	swp_entry_t ent;

1871 1872 1873
	VM_BUG_ON(!PageLocked(page));

	pc = lookup_page_cgroup(page);
1874
	lock_page_cgroup(pc);
1875
	if (PageCgroupUsed(pc)) {
1876
		mem = pc->mem_cgroup;
1877 1878
		if (mem && !css_tryget(&mem->css))
			mem = NULL;
1879
	} else if (PageSwapCache(page)) {
1880
		ent.val = page_private(page);
1881 1882 1883 1884 1885 1886
		id = lookup_swap_cgroup(ent);
		rcu_read_lock();
		mem = mem_cgroup_lookup(id);
		if (mem && !css_tryget(&mem->css))
			mem = NULL;
		rcu_read_unlock();
1887
	}
1888
	unlock_page_cgroup(pc);
1889 1890 1891
	return mem;
}

1892
/*
1893
 * commit a charge got by __mem_cgroup_try_charge() and makes page_cgroup to be
1894 1895 1896 1897 1898 1899 1900 1901 1902 1903
 * USED state. If already USED, uncharge and return.
 */

static void __mem_cgroup_commit_charge(struct mem_cgroup *mem,
				     struct page_cgroup *pc,
				     enum charge_type ctype)
{
	/* try_charge() can return NULL to *memcg, taking care of it. */
	if (!mem)
		return;
1904 1905 1906 1907

	lock_page_cgroup(pc);
	if (unlikely(PageCgroupUsed(pc))) {
		unlock_page_cgroup(pc);
1908
		mem_cgroup_cancel_charge(mem);
1909
		return;
1910
	}
1911

1912
	pc->mem_cgroup = mem;
1913 1914 1915 1916 1917 1918 1919
	/*
	 * We access a page_cgroup asynchronously without lock_page_cgroup().
	 * Especially when a page_cgroup is taken from a page, pc->mem_cgroup
	 * is accessed after testing USED bit. To make pc->mem_cgroup visible
	 * before USED bit, we need memory barrier here.
	 * See mem_cgroup_add_lru_list(), etc.
 	 */
K
KAMEZAWA Hiroyuki 已提交
1920
	smp_wmb();
1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933
	switch (ctype) {
	case MEM_CGROUP_CHARGE_TYPE_CACHE:
	case MEM_CGROUP_CHARGE_TYPE_SHMEM:
		SetPageCgroupCache(pc);
		SetPageCgroupUsed(pc);
		break;
	case MEM_CGROUP_CHARGE_TYPE_MAPPED:
		ClearPageCgroupCache(pc);
		SetPageCgroupUsed(pc);
		break;
	default:
		break;
	}
1934

K
KAMEZAWA Hiroyuki 已提交
1935
	mem_cgroup_charge_statistics(mem, pc, true);
1936 1937

	unlock_page_cgroup(pc);
1938 1939 1940 1941 1942
	/*
	 * "charge_statistics" updated event counter. Then, check it.
	 * Insert ancestor (and ancestor's ancestors), to softlimit RB-tree.
	 * if they exceeds softlimit.
	 */
1943
	memcg_check_events(mem, pc->page);
1944
}
1945

1946
/**
1947
 * __mem_cgroup_move_account - move account of the page
1948 1949 1950
 * @pc:	page_cgroup of the page.
 * @from: mem_cgroup which the page is moved from.
 * @to:	mem_cgroup which the page is moved to. @from != @to.
1951
 * @uncharge: whether we should call uncharge and css_put against @from.
1952 1953
 *
 * The caller must confirm following.
K
KAMEZAWA Hiroyuki 已提交
1954
 * - page is not on LRU (isolate_page() is useful.)
1955
 * - the pc is locked, used, and ->mem_cgroup points to @from.
1956
 *
1957 1958 1959 1960
 * This function doesn't do "charge" nor css_get to new cgroup. It should be
 * done by a caller(__mem_cgroup_try_charge would be usefull). If @uncharge is
 * true, this function does "uncharge" from old cgroup, but it doesn't if
 * @uncharge is false, so a caller should do "uncharge".
1961 1962
 */

1963
static void __mem_cgroup_move_account(struct page_cgroup *pc,
1964
	struct mem_cgroup *from, struct mem_cgroup *to, bool uncharge)
1965 1966
{
	VM_BUG_ON(from == to);
K
KAMEZAWA Hiroyuki 已提交
1967
	VM_BUG_ON(PageLRU(pc->page));
1968 1969 1970
	VM_BUG_ON(!PageCgroupLocked(pc));
	VM_BUG_ON(!PageCgroupUsed(pc));
	VM_BUG_ON(pc->mem_cgroup != from);
1971

1972
	if (PageCgroupFileMapped(pc)) {
1973 1974 1975 1976 1977
		/* Update mapped_file data for mem_cgroup */
		preempt_disable();
		__this_cpu_dec(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
		__this_cpu_inc(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
		preempt_enable();
1978
	}
1979 1980 1981 1982
	mem_cgroup_charge_statistics(from, pc, false);
	if (uncharge)
		/* This is not "cancel", but cancel_charge does all we need. */
		mem_cgroup_cancel_charge(from);
1983

1984
	/* caller should have done css_get */
K
KAMEZAWA Hiroyuki 已提交
1985 1986
	pc->mem_cgroup = to;
	mem_cgroup_charge_statistics(to, pc, true);
1987 1988 1989
	/*
	 * We charges against "to" which may not have any tasks. Then, "to"
	 * can be under rmdir(). But in current implementation, caller of
1990 1991 1992
	 * this function is just force_empty() and move charge, so it's
	 * garanteed that "to" is never removed. So, we don't check rmdir
	 * status here.
1993
	 */
1994 1995 1996 1997 1998 1999 2000
}

/*
 * check whether the @pc is valid for moving account and call
 * __mem_cgroup_move_account()
 */
static int mem_cgroup_move_account(struct page_cgroup *pc,
2001
		struct mem_cgroup *from, struct mem_cgroup *to, bool uncharge)
2002 2003 2004 2005
{
	int ret = -EINVAL;
	lock_page_cgroup(pc);
	if (PageCgroupUsed(pc) && pc->mem_cgroup == from) {
2006
		__mem_cgroup_move_account(pc, from, to, uncharge);
2007 2008 2009
		ret = 0;
	}
	unlock_page_cgroup(pc);
2010 2011 2012 2013 2014
	/*
	 * check events
	 */
	memcg_check_events(to, pc->page);
	memcg_check_events(from, pc->page);
2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025
	return ret;
}

/*
 * move charges to its parent.
 */

static int mem_cgroup_move_parent(struct page_cgroup *pc,
				  struct mem_cgroup *child,
				  gfp_t gfp_mask)
{
K
KAMEZAWA Hiroyuki 已提交
2026
	struct page *page = pc->page;
2027 2028 2029 2030 2031 2032 2033 2034 2035
	struct cgroup *cg = child->css.cgroup;
	struct cgroup *pcg = cg->parent;
	struct mem_cgroup *parent;
	int ret;

	/* Is ROOT ? */
	if (!pcg)
		return -EINVAL;

2036 2037 2038 2039 2040
	ret = -EBUSY;
	if (!get_page_unless_zero(page))
		goto out;
	if (isolate_lru_page(page))
		goto put;
K
KAMEZAWA Hiroyuki 已提交
2041

2042
	parent = mem_cgroup_from_cont(pcg);
2043
	ret = __mem_cgroup_try_charge(NULL, gfp_mask, &parent, false);
2044
	if (ret || !parent)
2045
		goto put_back;
2046

2047 2048 2049
	ret = mem_cgroup_move_account(pc, child, parent, true);
	if (ret)
		mem_cgroup_cancel_charge(parent);
2050
put_back:
K
KAMEZAWA Hiroyuki 已提交
2051
	putback_lru_page(page);
2052
put:
2053
	put_page(page);
2054
out:
2055 2056 2057
	return ret;
}

2058 2059 2060 2061 2062 2063 2064
/*
 * Charge the memory controller for page usage.
 * Return
 * 0 if the charge was successful
 * < 0 if the cgroup is over its limit
 */
static int mem_cgroup_charge_common(struct page *page, struct mm_struct *mm,
2065
				gfp_t gfp_mask, enum charge_type ctype)
2066
{
2067
	struct mem_cgroup *mem = NULL;
2068 2069 2070 2071 2072 2073 2074 2075 2076
	struct page_cgroup *pc;
	int ret;

	pc = lookup_page_cgroup(page);
	/* can happen at boot */
	if (unlikely(!pc))
		return 0;
	prefetchw(pc);

2077
	ret = __mem_cgroup_try_charge(mm, gfp_mask, &mem, true);
2078
	if (ret || !mem)
2079 2080 2081
		return ret;

	__mem_cgroup_commit_charge(mem, pc, ctype);
2082 2083 2084
	return 0;
}

2085 2086
int mem_cgroup_newpage_charge(struct page *page,
			      struct mm_struct *mm, gfp_t gfp_mask)
2087
{
2088
	if (mem_cgroup_disabled())
2089
		return 0;
2090 2091
	if (PageCompound(page))
		return 0;
2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102
	/*
	 * If already mapped, we don't have to account.
	 * If page cache, page->mapping has address_space.
	 * But page->mapping may have out-of-use anon_vma pointer,
	 * detecit it by PageAnon() check. newly-mapped-anon's page->mapping
	 * is NULL.
  	 */
	if (page_mapped(page) || (page->mapping && !PageAnon(page)))
		return 0;
	if (unlikely(!mm))
		mm = &init_mm;
2103
	return mem_cgroup_charge_common(page, mm, gfp_mask,
2104
				MEM_CGROUP_CHARGE_TYPE_MAPPED);
2105 2106
}

D
Daisuke Nishimura 已提交
2107 2108 2109 2110
static void
__mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr,
					enum charge_type ctype);

2111 2112
int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm,
				gfp_t gfp_mask)
2113
{
2114 2115
	int ret;

2116
	if (mem_cgroup_disabled())
2117
		return 0;
2118 2119
	if (PageCompound(page))
		return 0;
2120 2121 2122 2123 2124 2125 2126 2127
	/*
	 * Corner case handling. This is called from add_to_page_cache()
	 * in usual. But some FS (shmem) precharges this page before calling it
	 * and call add_to_page_cache() with GFP_NOWAIT.
	 *
	 * For GFP_NOWAIT case, the page may be pre-charged before calling
	 * add_to_page_cache(). (See shmem.c) check it here and avoid to call
	 * charge twice. (It works but has to pay a bit larger cost.)
2128 2129
	 * And when the page is SwapCache, it should take swap information
	 * into account. This is under lock_page() now.
2130 2131 2132 2133
	 */
	if (!(gfp_mask & __GFP_WAIT)) {
		struct page_cgroup *pc;

2134 2135 2136 2137 2138 2139
		pc = lookup_page_cgroup(page);
		if (!pc)
			return 0;
		lock_page_cgroup(pc);
		if (PageCgroupUsed(pc)) {
			unlock_page_cgroup(pc);
2140 2141
			return 0;
		}
2142
		unlock_page_cgroup(pc);
2143 2144
	}

2145
	if (unlikely(!mm))
2146
		mm = &init_mm;
2147

2148 2149
	if (page_is_file_cache(page))
		return mem_cgroup_charge_common(page, mm, gfp_mask,
2150
				MEM_CGROUP_CHARGE_TYPE_CACHE);
2151

D
Daisuke Nishimura 已提交
2152 2153
	/* shmem */
	if (PageSwapCache(page)) {
2154 2155
		struct mem_cgroup *mem = NULL;

D
Daisuke Nishimura 已提交
2156 2157 2158 2159 2160 2161
		ret = mem_cgroup_try_charge_swapin(mm, page, gfp_mask, &mem);
		if (!ret)
			__mem_cgroup_commit_charge_swapin(page, mem,
					MEM_CGROUP_CHARGE_TYPE_SHMEM);
	} else
		ret = mem_cgroup_charge_common(page, mm, gfp_mask,
2162
					MEM_CGROUP_CHARGE_TYPE_SHMEM);
2163 2164

	return ret;
2165 2166
}

2167 2168 2169
/*
 * While swap-in, try_charge -> commit or cancel, the page is locked.
 * And when try_charge() successfully returns, one refcnt to memcg without
2170
 * struct page_cgroup is acquired. This refcnt will be consumed by
2171 2172
 * "commit()" or removed by "cancel()"
 */
2173 2174 2175 2176 2177
int mem_cgroup_try_charge_swapin(struct mm_struct *mm,
				 struct page *page,
				 gfp_t mask, struct mem_cgroup **ptr)
{
	struct mem_cgroup *mem;
2178
	int ret;
2179

2180
	if (mem_cgroup_disabled())
2181 2182 2183 2184 2185 2186
		return 0;

	if (!do_swap_account)
		goto charge_cur_mm;
	/*
	 * A racing thread's fault, or swapoff, may have already updated
H
Hugh Dickins 已提交
2187 2188 2189
	 * the pte, and even removed page from swap cache: in those cases
	 * do_swap_page()'s pte_same() test will fail; but there's also a
	 * KSM case which does need to charge the page.
2190 2191
	 */
	if (!PageSwapCache(page))
H
Hugh Dickins 已提交
2192
		goto charge_cur_mm;
2193
	mem = try_get_mem_cgroup_from_page(page);
2194 2195
	if (!mem)
		goto charge_cur_mm;
2196
	*ptr = mem;
2197
	ret = __mem_cgroup_try_charge(NULL, mask, ptr, true);
2198 2199
	css_put(&mem->css);
	return ret;
2200 2201 2202
charge_cur_mm:
	if (unlikely(!mm))
		mm = &init_mm;
2203
	return __mem_cgroup_try_charge(mm, mask, ptr, true);
2204 2205
}

D
Daisuke Nishimura 已提交
2206 2207 2208
static void
__mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr,
					enum charge_type ctype)
2209 2210 2211
{
	struct page_cgroup *pc;

2212
	if (mem_cgroup_disabled())
2213 2214 2215
		return;
	if (!ptr)
		return;
2216
	cgroup_exclude_rmdir(&ptr->css);
2217
	pc = lookup_page_cgroup(page);
2218
	mem_cgroup_lru_del_before_commit_swapcache(page);
D
Daisuke Nishimura 已提交
2219
	__mem_cgroup_commit_charge(ptr, pc, ctype);
2220
	mem_cgroup_lru_add_after_commit_swapcache(page);
2221 2222 2223
	/*
	 * Now swap is on-memory. This means this page may be
	 * counted both as mem and swap....double count.
2224 2225 2226
	 * Fix it by uncharging from memsw. Basically, this SwapCache is stable
	 * under lock_page(). But in do_swap_page()::memory.c, reuse_swap_page()
	 * may call delete_from_swap_cache() before reach here.
2227
	 */
2228
	if (do_swap_account && PageSwapCache(page)) {
2229
		swp_entry_t ent = {.val = page_private(page)};
2230
		unsigned short id;
2231
		struct mem_cgroup *memcg;
2232 2233 2234 2235

		id = swap_cgroup_record(ent, 0);
		rcu_read_lock();
		memcg = mem_cgroup_lookup(id);
2236
		if (memcg) {
2237 2238 2239 2240
			/*
			 * This recorded memcg can be obsolete one. So, avoid
			 * calling css_tryget
			 */
2241
			if (!mem_cgroup_is_root(memcg))
2242
				res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
2243
			mem_cgroup_swap_statistics(memcg, false);
2244 2245
			mem_cgroup_put(memcg);
		}
2246
		rcu_read_unlock();
2247
	}
2248 2249 2250 2251 2252 2253
	/*
	 * At swapin, we may charge account against cgroup which has no tasks.
	 * So, rmdir()->pre_destroy() can be called while we do this charge.
	 * In that case, we need to call pre_destroy() again. check it here.
	 */
	cgroup_release_and_wakeup_rmdir(&ptr->css);
2254 2255
}

D
Daisuke Nishimura 已提交
2256 2257 2258 2259 2260 2261
void mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr)
{
	__mem_cgroup_commit_charge_swapin(page, ptr,
					MEM_CGROUP_CHARGE_TYPE_MAPPED);
}

2262 2263
void mem_cgroup_cancel_charge_swapin(struct mem_cgroup *mem)
{
2264
	if (mem_cgroup_disabled())
2265 2266 2267
		return;
	if (!mem)
		return;
2268
	mem_cgroup_cancel_charge(mem);
2269 2270
}

2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287
static void
__do_uncharge(struct mem_cgroup *mem, const enum charge_type ctype)
{
	struct memcg_batch_info *batch = NULL;
	bool uncharge_memsw = true;
	/* If swapout, usage of swap doesn't decrease */
	if (!do_swap_account || ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT)
		uncharge_memsw = false;

	batch = &current->memcg_batch;
	/*
	 * In usual, we do css_get() when we remember memcg pointer.
	 * But in this case, we keep res->usage until end of a series of
	 * uncharges. Then, it's ok to ignore memcg's refcnt.
	 */
	if (!batch->memcg)
		batch->memcg = mem;
2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298
	/*
	 * do_batch > 0 when unmapping pages or inode invalidate/truncate.
	 * In those cases, all pages freed continously can be expected to be in
	 * the same cgroup and we have chance to coalesce uncharges.
	 * But we do uncharge one by one if this is killed by OOM(TIF_MEMDIE)
	 * because we want to do uncharge as soon as possible.
	 */

	if (!batch->do_batch || test_thread_flag(TIF_MEMDIE))
		goto direct_uncharge;

2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314
	/*
	 * In typical case, batch->memcg == mem. This means we can
	 * merge a series of uncharges to an uncharge of res_counter.
	 * If not, we uncharge res_counter ony by one.
	 */
	if (batch->memcg != mem)
		goto direct_uncharge;
	/* remember freed charge and uncharge it later */
	batch->bytes += PAGE_SIZE;
	if (uncharge_memsw)
		batch->memsw_bytes += PAGE_SIZE;
	return;
direct_uncharge:
	res_counter_uncharge(&mem->res, PAGE_SIZE);
	if (uncharge_memsw)
		res_counter_uncharge(&mem->memsw, PAGE_SIZE);
2315 2316
	if (unlikely(batch->memcg != mem))
		memcg_oom_recover(mem);
2317 2318
	return;
}
2319

2320
/*
2321
 * uncharge if !page_mapped(page)
2322
 */
2323
static struct mem_cgroup *
2324
__mem_cgroup_uncharge_common(struct page *page, enum charge_type ctype)
2325
{
H
Hugh Dickins 已提交
2326
	struct page_cgroup *pc;
2327
	struct mem_cgroup *mem = NULL;
2328

2329
	if (mem_cgroup_disabled())
2330
		return NULL;
2331

K
KAMEZAWA Hiroyuki 已提交
2332
	if (PageSwapCache(page))
2333
		return NULL;
K
KAMEZAWA Hiroyuki 已提交
2334

2335
	/*
2336
	 * Check if our page_cgroup is valid
2337
	 */
2338 2339
	pc = lookup_page_cgroup(page);
	if (unlikely(!pc || !PageCgroupUsed(pc)))
2340
		return NULL;
2341

2342
	lock_page_cgroup(pc);
K
KAMEZAWA Hiroyuki 已提交
2343

2344 2345
	mem = pc->mem_cgroup;

K
KAMEZAWA Hiroyuki 已提交
2346 2347 2348 2349 2350
	if (!PageCgroupUsed(pc))
		goto unlock_out;

	switch (ctype) {
	case MEM_CGROUP_CHARGE_TYPE_MAPPED:
K
KAMEZAWA Hiroyuki 已提交
2351
	case MEM_CGROUP_CHARGE_TYPE_DROP:
2352 2353
		/* See mem_cgroup_prepare_migration() */
		if (page_mapped(page) || PageCgroupMigration(pc))
K
KAMEZAWA Hiroyuki 已提交
2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364
			goto unlock_out;
		break;
	case MEM_CGROUP_CHARGE_TYPE_SWAPOUT:
		if (!PageAnon(page)) {	/* Shared memory */
			if (page->mapping && !page_is_file_cache(page))
				goto unlock_out;
		} else if (page_mapped(page)) /* Anon */
				goto unlock_out;
		break;
	default:
		break;
2365
	}
K
KAMEZAWA Hiroyuki 已提交
2366

K
KAMEZAWA Hiroyuki 已提交
2367
	mem_cgroup_charge_statistics(mem, pc, false);
K
KAMEZAWA Hiroyuki 已提交
2368

2369
	ClearPageCgroupUsed(pc);
2370 2371 2372 2373 2374 2375
	/*
	 * pc->mem_cgroup is not cleared here. It will be accessed when it's
	 * freed from LRU. This is safe because uncharged page is expected not
	 * to be reused (freed soon). Exception is SwapCache, it's handled by
	 * special functions.
	 */
2376

2377
	unlock_page_cgroup(pc);
K
KAMEZAWA Hiroyuki 已提交
2378 2379 2380 2381
	/*
	 * even after unlock, we have mem->res.usage here and this memcg
	 * will never be freed.
	 */
2382
	memcg_check_events(mem, page);
K
KAMEZAWA Hiroyuki 已提交
2383 2384 2385 2386 2387 2388
	if (do_swap_account && ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT) {
		mem_cgroup_swap_statistics(mem, true);
		mem_cgroup_get(mem);
	}
	if (!mem_cgroup_is_root(mem))
		__do_uncharge(mem, ctype);
2389

2390
	return mem;
K
KAMEZAWA Hiroyuki 已提交
2391 2392 2393

unlock_out:
	unlock_page_cgroup(pc);
2394
	return NULL;
2395 2396
}

2397 2398
void mem_cgroup_uncharge_page(struct page *page)
{
2399 2400 2401 2402 2403
	/* early check. */
	if (page_mapped(page))
		return;
	if (page->mapping && !PageAnon(page))
		return;
2404 2405 2406 2407 2408 2409
	__mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_MAPPED);
}

void mem_cgroup_uncharge_cache_page(struct page *page)
{
	VM_BUG_ON(page_mapped(page));
2410
	VM_BUG_ON(page->mapping);
2411 2412 2413
	__mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_CACHE);
}

2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453
/*
 * Batch_start/batch_end is called in unmap_page_range/invlidate/trucate.
 * In that cases, pages are freed continuously and we can expect pages
 * are in the same memcg. All these calls itself limits the number of
 * pages freed at once, then uncharge_start/end() is called properly.
 * This may be called prural(2) times in a context,
 */

void mem_cgroup_uncharge_start(void)
{
	current->memcg_batch.do_batch++;
	/* We can do nest. */
	if (current->memcg_batch.do_batch == 1) {
		current->memcg_batch.memcg = NULL;
		current->memcg_batch.bytes = 0;
		current->memcg_batch.memsw_bytes = 0;
	}
}

void mem_cgroup_uncharge_end(void)
{
	struct memcg_batch_info *batch = &current->memcg_batch;

	if (!batch->do_batch)
		return;

	batch->do_batch--;
	if (batch->do_batch) /* If stacked, do nothing. */
		return;

	if (!batch->memcg)
		return;
	/*
	 * This "batch->memcg" is valid without any css_get/put etc...
	 * bacause we hide charges behind us.
	 */
	if (batch->bytes)
		res_counter_uncharge(&batch->memcg->res, batch->bytes);
	if (batch->memsw_bytes)
		res_counter_uncharge(&batch->memcg->memsw, batch->memsw_bytes);
2454
	memcg_oom_recover(batch->memcg);
2455 2456 2457 2458
	/* forget this pointer (for sanity check) */
	batch->memcg = NULL;
}

2459
#ifdef CONFIG_SWAP
2460
/*
2461
 * called after __delete_from_swap_cache() and drop "page" account.
2462 2463
 * memcg information is recorded to swap_cgroup of "ent"
 */
K
KAMEZAWA Hiroyuki 已提交
2464 2465
void
mem_cgroup_uncharge_swapcache(struct page *page, swp_entry_t ent, bool swapout)
2466 2467
{
	struct mem_cgroup *memcg;
K
KAMEZAWA Hiroyuki 已提交
2468 2469 2470 2471 2472 2473
	int ctype = MEM_CGROUP_CHARGE_TYPE_SWAPOUT;

	if (!swapout) /* this was a swap cache but the swap is unused ! */
		ctype = MEM_CGROUP_CHARGE_TYPE_DROP;

	memcg = __mem_cgroup_uncharge_common(page, ctype);
2474

K
KAMEZAWA Hiroyuki 已提交
2475 2476 2477 2478 2479
	/*
	 * record memcg information,  if swapout && memcg != NULL,
	 * mem_cgroup_get() was called in uncharge().
	 */
	if (do_swap_account && swapout && memcg)
2480
		swap_cgroup_record(ent, css_id(&memcg->css));
2481
}
2482
#endif
2483 2484 2485 2486 2487 2488 2489

#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
/*
 * called from swap_entry_free(). remove record in swap_cgroup and
 * uncharge "memsw" account.
 */
void mem_cgroup_uncharge_swap(swp_entry_t ent)
K
KAMEZAWA Hiroyuki 已提交
2490
{
2491
	struct mem_cgroup *memcg;
2492
	unsigned short id;
2493 2494 2495 2496

	if (!do_swap_account)
		return;

2497 2498 2499
	id = swap_cgroup_record(ent, 0);
	rcu_read_lock();
	memcg = mem_cgroup_lookup(id);
2500
	if (memcg) {
2501 2502 2503 2504
		/*
		 * We uncharge this because swap is freed.
		 * This memcg can be obsolete one. We avoid calling css_tryget
		 */
2505
		if (!mem_cgroup_is_root(memcg))
2506
			res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
2507
		mem_cgroup_swap_statistics(memcg, false);
2508 2509
		mem_cgroup_put(memcg);
	}
2510
	rcu_read_unlock();
K
KAMEZAWA Hiroyuki 已提交
2511
}
2512 2513 2514 2515 2516 2517

/**
 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
 * @entry: swap entry to be moved
 * @from:  mem_cgroup which the entry is moved from
 * @to:  mem_cgroup which the entry is moved to
2518
 * @need_fixup: whether we should fixup res_counters and refcounts.
2519 2520 2521 2522 2523 2524 2525 2526 2527 2528
 *
 * It succeeds only when the swap_cgroup's record for this entry is the same
 * as the mem_cgroup's id of @from.
 *
 * Returns 0 on success, -EINVAL on failure.
 *
 * The caller must have charged to @to, IOW, called res_counter_charge() about
 * both res and memsw, and called css_get().
 */
static int mem_cgroup_move_swap_account(swp_entry_t entry,
2529
		struct mem_cgroup *from, struct mem_cgroup *to, bool need_fixup)
2530 2531 2532 2533 2534 2535 2536 2537
{
	unsigned short old_id, new_id;

	old_id = css_id(&from->css);
	new_id = css_id(&to->css);

	if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
		mem_cgroup_swap_statistics(from, false);
2538
		mem_cgroup_swap_statistics(to, true);
2539
		/*
2540 2541 2542 2543 2544 2545
		 * This function is only called from task migration context now.
		 * It postpones res_counter and refcount handling till the end
		 * of task migration(mem_cgroup_clear_mc()) for performance
		 * improvement. But we cannot postpone mem_cgroup_get(to)
		 * because if the process that has been moved to @to does
		 * swap-in, the refcount of @to might be decreased to 0.
2546 2547
		 */
		mem_cgroup_get(to);
2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558
		if (need_fixup) {
			if (!mem_cgroup_is_root(from))
				res_counter_uncharge(&from->memsw, PAGE_SIZE);
			mem_cgroup_put(from);
			/*
			 * we charged both to->res and to->memsw, so we should
			 * uncharge to->res.
			 */
			if (!mem_cgroup_is_root(to))
				res_counter_uncharge(&to->res, PAGE_SIZE);
		}
2559 2560 2561 2562 2563 2564
		return 0;
	}
	return -EINVAL;
}
#else
static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
2565
		struct mem_cgroup *from, struct mem_cgroup *to, bool need_fixup)
2566 2567 2568
{
	return -EINVAL;
}
2569
#endif
K
KAMEZAWA Hiroyuki 已提交
2570

2571
/*
2572 2573
 * Before starting migration, account PAGE_SIZE to mem_cgroup that the old
 * page belongs to.
2574
 */
2575 2576
int mem_cgroup_prepare_migration(struct page *page,
	struct page *newpage, struct mem_cgroup **ptr)
2577 2578
{
	struct page_cgroup *pc;
2579
	struct mem_cgroup *mem = NULL;
2580
	enum charge_type ctype;
2581
	int ret = 0;
2582

2583
	if (mem_cgroup_disabled())
2584 2585
		return 0;

2586 2587 2588
	pc = lookup_page_cgroup(page);
	lock_page_cgroup(pc);
	if (PageCgroupUsed(pc)) {
2589 2590
		mem = pc->mem_cgroup;
		css_get(&mem->css);
2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621
		/*
		 * At migrating an anonymous page, its mapcount goes down
		 * to 0 and uncharge() will be called. But, even if it's fully
		 * unmapped, migration may fail and this page has to be
		 * charged again. We set MIGRATION flag here and delay uncharge
		 * until end_migration() is called
		 *
		 * Corner Case Thinking
		 * A)
		 * When the old page was mapped as Anon and it's unmap-and-freed
		 * while migration was ongoing.
		 * If unmap finds the old page, uncharge() of it will be delayed
		 * until end_migration(). If unmap finds a new page, it's
		 * uncharged when it make mapcount to be 1->0. If unmap code
		 * finds swap_migration_entry, the new page will not be mapped
		 * and end_migration() will find it(mapcount==0).
		 *
		 * B)
		 * When the old page was mapped but migraion fails, the kernel
		 * remaps it. A charge for it is kept by MIGRATION flag even
		 * if mapcount goes down to 0. We can do remap successfully
		 * without charging it again.
		 *
		 * C)
		 * The "old" page is under lock_page() until the end of
		 * migration, so, the old page itself will not be swapped-out.
		 * If the new page is swapped out before end_migraton, our
		 * hook to usual swap-out path will catch the event.
		 */
		if (PageAnon(page))
			SetPageCgroupMigration(pc);
2622
	}
2623
	unlock_page_cgroup(pc);
2624 2625 2626 2627 2628 2629
	/*
	 * If the page is not charged at this point,
	 * we return here.
	 */
	if (!mem)
		return 0;
2630

A
Andrea Arcangeli 已提交
2631
	*ptr = mem;
2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644
	ret = __mem_cgroup_try_charge(NULL, GFP_KERNEL, ptr, false);
	css_put(&mem->css);/* drop extra refcnt */
	if (ret || *ptr == NULL) {
		if (PageAnon(page)) {
			lock_page_cgroup(pc);
			ClearPageCgroupMigration(pc);
			unlock_page_cgroup(pc);
			/*
			 * The old page may be fully unmapped while we kept it.
			 */
			mem_cgroup_uncharge_page(page);
		}
		return -ENOMEM;
2645
	}
2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659
	/*
	 * We charge new page before it's used/mapped. So, even if unlock_page()
	 * is called before end_migration, we can catch all events on this new
	 * page. In the case new page is migrated but not remapped, new page's
	 * mapcount will be finally 0 and we call uncharge in end_migration().
	 */
	pc = lookup_page_cgroup(newpage);
	if (PageAnon(page))
		ctype = MEM_CGROUP_CHARGE_TYPE_MAPPED;
	else if (page_is_file_cache(page))
		ctype = MEM_CGROUP_CHARGE_TYPE_CACHE;
	else
		ctype = MEM_CGROUP_CHARGE_TYPE_SHMEM;
	__mem_cgroup_commit_charge(mem, pc, ctype);
2660
	return ret;
2661
}
2662

2663
/* remove redundant charge if migration failed*/
2664
void mem_cgroup_end_migration(struct mem_cgroup *mem,
2665
	struct page *oldpage, struct page *newpage)
2666
{
2667
	struct page *used, *unused;
2668 2669 2670 2671
	struct page_cgroup *pc;

	if (!mem)
		return;
2672
	/* blocks rmdir() */
2673
	cgroup_exclude_rmdir(&mem->css);
2674 2675
	/* at migration success, oldpage->mapping is NULL. */
	if (oldpage->mapping) {
2676 2677
		used = oldpage;
		unused = newpage;
2678
	} else {
2679
		used = newpage;
2680 2681
		unused = oldpage;
	}
2682
	/*
2683 2684 2685
	 * We disallowed uncharge of pages under migration because mapcount
	 * of the page goes down to zero, temporarly.
	 * Clear the flag and check the page should be charged.
2686
	 */
2687 2688 2689 2690
	pc = lookup_page_cgroup(oldpage);
	lock_page_cgroup(pc);
	ClearPageCgroupMigration(pc);
	unlock_page_cgroup(pc);
2691

2692 2693
	__mem_cgroup_uncharge_common(unused, MEM_CGROUP_CHARGE_TYPE_FORCE);

2694
	/*
2695 2696 2697 2698 2699 2700
	 * If a page is a file cache, radix-tree replacement is very atomic
	 * and we can skip this check. When it was an Anon page, its mapcount
	 * goes down to 0. But because we added MIGRATION flage, it's not
	 * uncharged yet. There are several case but page->mapcount check
	 * and USED bit check in mem_cgroup_uncharge_page() will do enough
	 * check. (see prepare_charge() also)
2701
	 */
2702 2703
	if (PageAnon(used))
		mem_cgroup_uncharge_page(used);
2704
	/*
2705 2706
	 * At migration, we may charge account against cgroup which has no
	 * tasks.
2707 2708 2709 2710
	 * So, rmdir()->pre_destroy() can be called while we do this charge.
	 * In that case, we need to call pre_destroy() again. check it here.
	 */
	cgroup_release_and_wakeup_rmdir(&mem->css);
2711
}
2712

2713
/*
2714 2715 2716 2717 2718 2719
 * A call to try to shrink memory usage on charge failure at shmem's swapin.
 * Calling hierarchical_reclaim is not enough because we should update
 * last_oom_jiffies to prevent pagefault_out_of_memory from invoking global OOM.
 * Moreover considering hierarchy, we should reclaim from the mem_over_limit,
 * not from the memcg which this page would be charged to.
 * try_charge_swapin does all of these works properly.
2720
 */
2721
int mem_cgroup_shmem_charge_fallback(struct page *page,
2722 2723
			    struct mm_struct *mm,
			    gfp_t gfp_mask)
2724
{
2725
	struct mem_cgroup *mem = NULL;
2726
	int ret;
2727

2728
	if (mem_cgroup_disabled())
2729
		return 0;
2730

2731 2732 2733
	ret = mem_cgroup_try_charge_swapin(mm, page, gfp_mask, &mem);
	if (!ret)
		mem_cgroup_cancel_charge_swapin(mem); /* it does !mem check */
2734

2735
	return ret;
2736 2737
}

2738 2739
static DEFINE_MUTEX(set_limit_mutex);

2740
static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
2741
				unsigned long long val)
2742
{
2743
	int retry_count;
2744
	u64 memswlimit, memlimit;
2745
	int ret = 0;
2746 2747
	int children = mem_cgroup_count_children(memcg);
	u64 curusage, oldusage;
2748
	int enlarge;
2749 2750 2751 2752 2753 2754 2755 2756 2757

	/*
	 * For keeping hierarchical_reclaim simple, how long we should retry
	 * is depends on callers. We set our retry-count to be function
	 * of # of children which we should visit in this loop.
	 */
	retry_count = MEM_CGROUP_RECLAIM_RETRIES * children;

	oldusage = res_counter_read_u64(&memcg->res, RES_USAGE);
2758

2759
	enlarge = 0;
2760
	while (retry_count) {
2761 2762 2763 2764
		if (signal_pending(current)) {
			ret = -EINTR;
			break;
		}
2765 2766 2767 2768 2769 2770 2771 2772 2773 2774
		/*
		 * Rather than hide all in some function, I do this in
		 * open coded manner. You see what this really does.
		 * We have to guarantee mem->res.limit < mem->memsw.limit.
		 */
		mutex_lock(&set_limit_mutex);
		memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
		if (memswlimit < val) {
			ret = -EINVAL;
			mutex_unlock(&set_limit_mutex);
2775 2776
			break;
		}
2777 2778 2779 2780 2781

		memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
		if (memlimit < val)
			enlarge = 1;

2782
		ret = res_counter_set_limit(&memcg->res, val);
2783 2784 2785 2786 2787 2788
		if (!ret) {
			if (memswlimit == val)
				memcg->memsw_is_minimum = true;
			else
				memcg->memsw_is_minimum = false;
		}
2789 2790 2791 2792 2793
		mutex_unlock(&set_limit_mutex);

		if (!ret)
			break;

2794
		mem_cgroup_hierarchical_reclaim(memcg, NULL, GFP_KERNEL,
2795
						MEM_CGROUP_RECLAIM_SHRINK);
2796 2797 2798 2799 2800 2801
		curusage = res_counter_read_u64(&memcg->res, RES_USAGE);
		/* Usage is reduced ? */
  		if (curusage >= oldusage)
			retry_count--;
		else
			oldusage = curusage;
2802
	}
2803 2804
	if (!ret && enlarge)
		memcg_oom_recover(memcg);
2805

2806 2807 2808
	return ret;
}

L
Li Zefan 已提交
2809 2810
static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
					unsigned long long val)
2811
{
2812
	int retry_count;
2813
	u64 memlimit, memswlimit, oldusage, curusage;
2814 2815
	int children = mem_cgroup_count_children(memcg);
	int ret = -EBUSY;
2816
	int enlarge = 0;
2817

2818 2819 2820
	/* see mem_cgroup_resize_res_limit */
 	retry_count = children * MEM_CGROUP_RECLAIM_RETRIES;
	oldusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837
	while (retry_count) {
		if (signal_pending(current)) {
			ret = -EINTR;
			break;
		}
		/*
		 * Rather than hide all in some function, I do this in
		 * open coded manner. You see what this really does.
		 * We have to guarantee mem->res.limit < mem->memsw.limit.
		 */
		mutex_lock(&set_limit_mutex);
		memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
		if (memlimit > val) {
			ret = -EINVAL;
			mutex_unlock(&set_limit_mutex);
			break;
		}
2838 2839 2840
		memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
		if (memswlimit < val)
			enlarge = 1;
2841
		ret = res_counter_set_limit(&memcg->memsw, val);
2842 2843 2844 2845 2846 2847
		if (!ret) {
			if (memlimit == val)
				memcg->memsw_is_minimum = true;
			else
				memcg->memsw_is_minimum = false;
		}
2848 2849 2850 2851 2852
		mutex_unlock(&set_limit_mutex);

		if (!ret)
			break;

2853
		mem_cgroup_hierarchical_reclaim(memcg, NULL, GFP_KERNEL,
2854 2855
						MEM_CGROUP_RECLAIM_NOSWAP |
						MEM_CGROUP_RECLAIM_SHRINK);
2856
		curusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
2857
		/* Usage is reduced ? */
2858
		if (curusage >= oldusage)
2859
			retry_count--;
2860 2861
		else
			oldusage = curusage;
2862
	}
2863 2864
	if (!ret && enlarge)
		memcg_oom_recover(memcg);
2865 2866 2867
	return ret;
}

2868
unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
2869
					    gfp_t gfp_mask)
2870 2871 2872 2873 2874 2875
{
	unsigned long nr_reclaimed = 0;
	struct mem_cgroup_per_zone *mz, *next_mz = NULL;
	unsigned long reclaimed;
	int loop = 0;
	struct mem_cgroup_tree_per_zone *mctz;
2876
	unsigned long long excess;
2877 2878 2879 2880

	if (order > 0)
		return 0;

2881
	mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone));
2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928
	/*
	 * This loop can run a while, specially if mem_cgroup's continuously
	 * keep exceeding their soft limit and putting the system under
	 * pressure
	 */
	do {
		if (next_mz)
			mz = next_mz;
		else
			mz = mem_cgroup_largest_soft_limit_node(mctz);
		if (!mz)
			break;

		reclaimed = mem_cgroup_hierarchical_reclaim(mz->mem, zone,
						gfp_mask,
						MEM_CGROUP_RECLAIM_SOFT);
		nr_reclaimed += reclaimed;
		spin_lock(&mctz->lock);

		/*
		 * If we failed to reclaim anything from this memory cgroup
		 * it is time to move on to the next cgroup
		 */
		next_mz = NULL;
		if (!reclaimed) {
			do {
				/*
				 * Loop until we find yet another one.
				 *
				 * By the time we get the soft_limit lock
				 * again, someone might have aded the
				 * group back on the RB tree. Iterate to
				 * make sure we get a different mem.
				 * mem_cgroup_largest_soft_limit_node returns
				 * NULL if no other cgroup is present on
				 * the tree
				 */
				next_mz =
				__mem_cgroup_largest_soft_limit_node(mctz);
				if (next_mz == mz) {
					css_put(&next_mz->mem->css);
					next_mz = NULL;
				} else /* next_mz == NULL or other memcg */
					break;
			} while (1);
		}
		__mem_cgroup_remove_exceeded(mz->mem, mz, mctz);
2929
		excess = res_counter_soft_limit_excess(&mz->mem->res);
2930 2931 2932 2933 2934 2935 2936 2937
		/*
		 * One school of thought says that we should not add
		 * back the node to the tree if reclaim returns 0.
		 * But our reclaim could return 0, simply because due
		 * to priority we are exposing a smaller subset of
		 * memory to reclaim from. Consider this as a longer
		 * term TODO.
		 */
2938 2939
		/* If excess == 0, no tree ops */
		__mem_cgroup_insert_exceeded(mz->mem, mz, mctz, excess);
2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957
		spin_unlock(&mctz->lock);
		css_put(&mz->mem->css);
		loop++;
		/*
		 * Could not reclaim anything and there are no more
		 * mem cgroups to try or we seem to be looping without
		 * reclaiming anything.
		 */
		if (!nr_reclaimed &&
			(next_mz == NULL ||
			loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
			break;
	} while (!nr_reclaimed);
	if (next_mz)
		css_put(&next_mz->mem->css);
	return nr_reclaimed;
}

2958 2959 2960 2961
/*
 * This routine traverse page_cgroup in given list and drop them all.
 * *And* this routine doesn't reclaim page itself, just removes page_cgroup.
 */
2962
static int mem_cgroup_force_empty_list(struct mem_cgroup *mem,
K
KAMEZAWA Hiroyuki 已提交
2963
				int node, int zid, enum lru_list lru)
2964
{
K
KAMEZAWA Hiroyuki 已提交
2965 2966
	struct zone *zone;
	struct mem_cgroup_per_zone *mz;
2967
	struct page_cgroup *pc, *busy;
K
KAMEZAWA Hiroyuki 已提交
2968
	unsigned long flags, loop;
2969
	struct list_head *list;
2970
	int ret = 0;
2971

K
KAMEZAWA Hiroyuki 已提交
2972 2973
	zone = &NODE_DATA(node)->node_zones[zid];
	mz = mem_cgroup_zoneinfo(mem, node, zid);
2974
	list = &mz->lists[lru];
2975

2976 2977 2978 2979 2980 2981
	loop = MEM_CGROUP_ZSTAT(mz, lru);
	/* give some margin against EBUSY etc...*/
	loop += 256;
	busy = NULL;
	while (loop--) {
		ret = 0;
K
KAMEZAWA Hiroyuki 已提交
2982
		spin_lock_irqsave(&zone->lru_lock, flags);
2983
		if (list_empty(list)) {
K
KAMEZAWA Hiroyuki 已提交
2984
			spin_unlock_irqrestore(&zone->lru_lock, flags);
2985
			break;
2986 2987 2988 2989
		}
		pc = list_entry(list->prev, struct page_cgroup, lru);
		if (busy == pc) {
			list_move(&pc->lru, list);
2990
			busy = NULL;
K
KAMEZAWA Hiroyuki 已提交
2991
			spin_unlock_irqrestore(&zone->lru_lock, flags);
2992 2993
			continue;
		}
K
KAMEZAWA Hiroyuki 已提交
2994
		spin_unlock_irqrestore(&zone->lru_lock, flags);
2995

K
KAMEZAWA Hiroyuki 已提交
2996
		ret = mem_cgroup_move_parent(pc, mem, GFP_KERNEL);
2997
		if (ret == -ENOMEM)
2998
			break;
2999 3000 3001 3002 3003 3004 3005

		if (ret == -EBUSY || ret == -EINVAL) {
			/* found lock contention or "pc" is obsolete. */
			busy = pc;
			cond_resched();
		} else
			busy = NULL;
3006
	}
K
KAMEZAWA Hiroyuki 已提交
3007

3008 3009 3010
	if (!ret && !list_empty(list))
		return -EBUSY;
	return ret;
3011 3012 3013 3014 3015 3016
}

/*
 * make mem_cgroup's charge to be 0 if there is no task.
 * This enables deleting this mem_cgroup.
 */
3017
static int mem_cgroup_force_empty(struct mem_cgroup *mem, bool free_all)
3018
{
3019 3020 3021
	int ret;
	int node, zid, shrink;
	int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
3022
	struct cgroup *cgrp = mem->css.cgroup;
3023

3024
	css_get(&mem->css);
3025 3026

	shrink = 0;
3027 3028 3029
	/* should free all ? */
	if (free_all)
		goto try_to_free;
3030
move_account:
3031
	do {
3032
		ret = -EBUSY;
3033 3034 3035 3036
		if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children))
			goto out;
		ret = -EINTR;
		if (signal_pending(current))
3037
			goto out;
3038 3039
		/* This is for making all *used* pages to be on LRU. */
		lru_add_drain_all();
3040
		drain_all_stock_sync();
3041
		ret = 0;
3042
		for_each_node_state(node, N_HIGH_MEMORY) {
3043
			for (zid = 0; !ret && zid < MAX_NR_ZONES; zid++) {
3044
				enum lru_list l;
3045 3046
				for_each_lru(l) {
					ret = mem_cgroup_force_empty_list(mem,
K
KAMEZAWA Hiroyuki 已提交
3047
							node, zid, l);
3048 3049 3050
					if (ret)
						break;
				}
3051
			}
3052 3053 3054
			if (ret)
				break;
		}
3055
		memcg_oom_recover(mem);
3056 3057 3058
		/* it seems parent cgroup doesn't have enough mem */
		if (ret == -ENOMEM)
			goto try_to_free;
3059
		cond_resched();
3060 3061
	/* "ret" should also be checked to ensure all lists are empty. */
	} while (mem->res.usage > 0 || ret);
3062 3063 3064
out:
	css_put(&mem->css);
	return ret;
3065 3066

try_to_free:
3067 3068
	/* returns EBUSY if there is a task or if we come here twice. */
	if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children) || shrink) {
3069 3070 3071
		ret = -EBUSY;
		goto out;
	}
3072 3073
	/* we call try-to-free pages for make this cgroup empty */
	lru_add_drain_all();
3074 3075 3076 3077
	/* try to free all pages in this cgroup */
	shrink = 1;
	while (nr_retries && mem->res.usage > 0) {
		int progress;
3078 3079 3080 3081 3082

		if (signal_pending(current)) {
			ret = -EINTR;
			goto out;
		}
K
KOSAKI Motohiro 已提交
3083 3084
		progress = try_to_free_mem_cgroup_pages(mem, GFP_KERNEL,
						false, get_swappiness(mem));
3085
		if (!progress) {
3086
			nr_retries--;
3087
			/* maybe some writeback is necessary */
3088
			congestion_wait(BLK_RW_ASYNC, HZ/10);
3089
		}
3090 3091

	}
K
KAMEZAWA Hiroyuki 已提交
3092
	lru_add_drain();
3093
	/* try move_account...there may be some *locked* pages. */
3094
	goto move_account;
3095 3096
}

3097 3098 3099 3100 3101 3102
int mem_cgroup_force_empty_write(struct cgroup *cont, unsigned int event)
{
	return mem_cgroup_force_empty(mem_cgroup_from_cont(cont), true);
}


3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120
static u64 mem_cgroup_hierarchy_read(struct cgroup *cont, struct cftype *cft)
{
	return mem_cgroup_from_cont(cont)->use_hierarchy;
}

static int mem_cgroup_hierarchy_write(struct cgroup *cont, struct cftype *cft,
					u64 val)
{
	int retval = 0;
	struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
	struct cgroup *parent = cont->parent;
	struct mem_cgroup *parent_mem = NULL;

	if (parent)
		parent_mem = mem_cgroup_from_cont(parent);

	cgroup_lock();
	/*
3121
	 * If parent's use_hierarchy is set, we can't make any modifications
3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140
	 * in the child subtrees. If it is unset, then the change can
	 * occur, provided the current cgroup has no children.
	 *
	 * For the root cgroup, parent_mem is NULL, we allow value to be
	 * set if there are no children.
	 */
	if ((!parent_mem || !parent_mem->use_hierarchy) &&
				(val == 1 || val == 0)) {
		if (list_empty(&cont->children))
			mem->use_hierarchy = val;
		else
			retval = -EBUSY;
	} else
		retval = -EINVAL;
	cgroup_unlock();

	return retval;
}

3141 3142 3143 3144 3145 3146 3147 3148 3149
struct mem_cgroup_idx_data {
	s64 val;
	enum mem_cgroup_stat_index idx;
};

static int
mem_cgroup_get_idx_stat(struct mem_cgroup *mem, void *data)
{
	struct mem_cgroup_idx_data *d = data;
3150
	d->val += mem_cgroup_read_stat(mem, d->idx);
3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164
	return 0;
}

static void
mem_cgroup_get_recursive_idx_stat(struct mem_cgroup *mem,
				enum mem_cgroup_stat_index idx, s64 *val)
{
	struct mem_cgroup_idx_data d;
	d.idx = idx;
	d.val = 0;
	mem_cgroup_walk_tree(mem, &d, mem_cgroup_get_idx_stat);
	*val = d.val;
}

3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189
static inline u64 mem_cgroup_usage(struct mem_cgroup *mem, bool swap)
{
	u64 idx_val, val;

	if (!mem_cgroup_is_root(mem)) {
		if (!swap)
			return res_counter_read_u64(&mem->res, RES_USAGE);
		else
			return res_counter_read_u64(&mem->memsw, RES_USAGE);
	}

	mem_cgroup_get_recursive_idx_stat(mem, MEM_CGROUP_STAT_CACHE, &idx_val);
	val = idx_val;
	mem_cgroup_get_recursive_idx_stat(mem, MEM_CGROUP_STAT_RSS, &idx_val);
	val += idx_val;

	if (swap) {
		mem_cgroup_get_recursive_idx_stat(mem,
				MEM_CGROUP_STAT_SWAPOUT, &idx_val);
		val += idx_val;
	}

	return val << PAGE_SHIFT;
}

3190
static u64 mem_cgroup_read(struct cgroup *cont, struct cftype *cft)
B
Balbir Singh 已提交
3191
{
3192
	struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
3193
	u64 val;
3194 3195 3196 3197 3198 3199
	int type, name;

	type = MEMFILE_TYPE(cft->private);
	name = MEMFILE_ATTR(cft->private);
	switch (type) {
	case _MEM:
3200 3201 3202
		if (name == RES_USAGE)
			val = mem_cgroup_usage(mem, false);
		else
3203
			val = res_counter_read_u64(&mem->res, name);
3204 3205
		break;
	case _MEMSWAP:
3206 3207 3208
		if (name == RES_USAGE)
			val = mem_cgroup_usage(mem, true);
		else
3209
			val = res_counter_read_u64(&mem->memsw, name);
3210 3211 3212 3213 3214 3215
		break;
	default:
		BUG();
		break;
	}
	return val;
B
Balbir Singh 已提交
3216
}
3217 3218 3219 3220
/*
 * The user of this function is...
 * RES_LIMIT.
 */
3221 3222
static int mem_cgroup_write(struct cgroup *cont, struct cftype *cft,
			    const char *buffer)
B
Balbir Singh 已提交
3223
{
3224
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
3225
	int type, name;
3226 3227 3228
	unsigned long long val;
	int ret;

3229 3230 3231
	type = MEMFILE_TYPE(cft->private);
	name = MEMFILE_ATTR(cft->private);
	switch (name) {
3232
	case RES_LIMIT:
3233 3234 3235 3236
		if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
			ret = -EINVAL;
			break;
		}
3237 3238
		/* This function does all necessary parse...reuse it */
		ret = res_counter_memparse_write_strategy(buffer, &val);
3239 3240 3241
		if (ret)
			break;
		if (type == _MEM)
3242
			ret = mem_cgroup_resize_limit(memcg, val);
3243 3244
		else
			ret = mem_cgroup_resize_memsw_limit(memcg, val);
3245
		break;
3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259
	case RES_SOFT_LIMIT:
		ret = res_counter_memparse_write_strategy(buffer, &val);
		if (ret)
			break;
		/*
		 * For memsw, soft limits are hard to implement in terms
		 * of semantics, for now, we support soft limits for
		 * control without swap
		 */
		if (type == _MEM)
			ret = res_counter_set_soft_limit(&memcg->res, val);
		else
			ret = -EINVAL;
		break;
3260 3261 3262 3263 3264
	default:
		ret = -EINVAL; /* should be BUG() ? */
		break;
	}
	return ret;
B
Balbir Singh 已提交
3265 3266
}

3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294
static void memcg_get_hierarchical_limit(struct mem_cgroup *memcg,
		unsigned long long *mem_limit, unsigned long long *memsw_limit)
{
	struct cgroup *cgroup;
	unsigned long long min_limit, min_memsw_limit, tmp;

	min_limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
	min_memsw_limit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
	cgroup = memcg->css.cgroup;
	if (!memcg->use_hierarchy)
		goto out;

	while (cgroup->parent) {
		cgroup = cgroup->parent;
		memcg = mem_cgroup_from_cont(cgroup);
		if (!memcg->use_hierarchy)
			break;
		tmp = res_counter_read_u64(&memcg->res, RES_LIMIT);
		min_limit = min(min_limit, tmp);
		tmp = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
		min_memsw_limit = min(min_memsw_limit, tmp);
	}
out:
	*mem_limit = min_limit;
	*memsw_limit = min_memsw_limit;
	return;
}

3295
static int mem_cgroup_reset(struct cgroup *cont, unsigned int event)
3296 3297
{
	struct mem_cgroup *mem;
3298
	int type, name;
3299 3300

	mem = mem_cgroup_from_cont(cont);
3301 3302 3303
	type = MEMFILE_TYPE(event);
	name = MEMFILE_ATTR(event);
	switch (name) {
3304
	case RES_MAX_USAGE:
3305 3306 3307 3308
		if (type == _MEM)
			res_counter_reset_max(&mem->res);
		else
			res_counter_reset_max(&mem->memsw);
3309 3310
		break;
	case RES_FAILCNT:
3311 3312 3313 3314
		if (type == _MEM)
			res_counter_reset_failcnt(&mem->res);
		else
			res_counter_reset_failcnt(&mem->memsw);
3315 3316
		break;
	}
3317

3318
	return 0;
3319 3320
}

3321 3322 3323 3324 3325 3326
static u64 mem_cgroup_move_charge_read(struct cgroup *cgrp,
					struct cftype *cft)
{
	return mem_cgroup_from_cont(cgrp)->move_charge_at_immigrate;
}

3327
#ifdef CONFIG_MMU
3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345
static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
					struct cftype *cft, u64 val)
{
	struct mem_cgroup *mem = mem_cgroup_from_cont(cgrp);

	if (val >= (1 << NR_MOVE_TYPE))
		return -EINVAL;
	/*
	 * We check this value several times in both in can_attach() and
	 * attach(), so we need cgroup lock to prevent this value from being
	 * inconsistent.
	 */
	cgroup_lock();
	mem->move_charge_at_immigrate = val;
	cgroup_unlock();

	return 0;
}
3346 3347 3348 3349 3350 3351 3352
#else
static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
					struct cftype *cft, u64 val)
{
	return -ENOSYS;
}
#endif
3353

K
KAMEZAWA Hiroyuki 已提交
3354 3355 3356 3357 3358

/* For read statistics */
enum {
	MCS_CACHE,
	MCS_RSS,
3359
	MCS_FILE_MAPPED,
K
KAMEZAWA Hiroyuki 已提交
3360 3361
	MCS_PGPGIN,
	MCS_PGPGOUT,
3362
	MCS_SWAP,
K
KAMEZAWA Hiroyuki 已提交
3363 3364 3365 3366 3367 3368 3369 3370 3371 3372
	MCS_INACTIVE_ANON,
	MCS_ACTIVE_ANON,
	MCS_INACTIVE_FILE,
	MCS_ACTIVE_FILE,
	MCS_UNEVICTABLE,
	NR_MCS_STAT,
};

struct mcs_total_stat {
	s64 stat[NR_MCS_STAT];
3373 3374
};

K
KAMEZAWA Hiroyuki 已提交
3375 3376 3377 3378 3379 3380
struct {
	char *local_name;
	char *total_name;
} memcg_stat_strings[NR_MCS_STAT] = {
	{"cache", "total_cache"},
	{"rss", "total_rss"},
3381
	{"mapped_file", "total_mapped_file"},
K
KAMEZAWA Hiroyuki 已提交
3382 3383
	{"pgpgin", "total_pgpgin"},
	{"pgpgout", "total_pgpgout"},
3384
	{"swap", "total_swap"},
K
KAMEZAWA Hiroyuki 已提交
3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398
	{"inactive_anon", "total_inactive_anon"},
	{"active_anon", "total_active_anon"},
	{"inactive_file", "total_inactive_file"},
	{"active_file", "total_active_file"},
	{"unevictable", "total_unevictable"}
};


static int mem_cgroup_get_local_stat(struct mem_cgroup *mem, void *data)
{
	struct mcs_total_stat *s = data;
	s64 val;

	/* per cpu stat */
3399
	val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_CACHE);
K
KAMEZAWA Hiroyuki 已提交
3400
	s->stat[MCS_CACHE] += val * PAGE_SIZE;
3401
	val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_RSS);
K
KAMEZAWA Hiroyuki 已提交
3402
	s->stat[MCS_RSS] += val * PAGE_SIZE;
3403
	val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_FILE_MAPPED);
3404
	s->stat[MCS_FILE_MAPPED] += val * PAGE_SIZE;
3405
	val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_PGPGIN_COUNT);
K
KAMEZAWA Hiroyuki 已提交
3406
	s->stat[MCS_PGPGIN] += val;
3407
	val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_PGPGOUT_COUNT);
K
KAMEZAWA Hiroyuki 已提交
3408
	s->stat[MCS_PGPGOUT] += val;
3409
	if (do_swap_account) {
3410
		val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_SWAPOUT);
3411 3412
		s->stat[MCS_SWAP] += val * PAGE_SIZE;
	}
K
KAMEZAWA Hiroyuki 已提交
3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433

	/* per zone stat */
	val = mem_cgroup_get_local_zonestat(mem, LRU_INACTIVE_ANON);
	s->stat[MCS_INACTIVE_ANON] += val * PAGE_SIZE;
	val = mem_cgroup_get_local_zonestat(mem, LRU_ACTIVE_ANON);
	s->stat[MCS_ACTIVE_ANON] += val * PAGE_SIZE;
	val = mem_cgroup_get_local_zonestat(mem, LRU_INACTIVE_FILE);
	s->stat[MCS_INACTIVE_FILE] += val * PAGE_SIZE;
	val = mem_cgroup_get_local_zonestat(mem, LRU_ACTIVE_FILE);
	s->stat[MCS_ACTIVE_FILE] += val * PAGE_SIZE;
	val = mem_cgroup_get_local_zonestat(mem, LRU_UNEVICTABLE);
	s->stat[MCS_UNEVICTABLE] += val * PAGE_SIZE;
	return 0;
}

static void
mem_cgroup_get_total_stat(struct mem_cgroup *mem, struct mcs_total_stat *s)
{
	mem_cgroup_walk_tree(mem, s, mem_cgroup_get_local_stat);
}

3434 3435
static int mem_control_stat_show(struct cgroup *cont, struct cftype *cft,
				 struct cgroup_map_cb *cb)
3436 3437
{
	struct mem_cgroup *mem_cont = mem_cgroup_from_cont(cont);
K
KAMEZAWA Hiroyuki 已提交
3438
	struct mcs_total_stat mystat;
3439 3440
	int i;

K
KAMEZAWA Hiroyuki 已提交
3441 3442
	memset(&mystat, 0, sizeof(mystat));
	mem_cgroup_get_local_stat(mem_cont, &mystat);
3443

3444 3445 3446
	for (i = 0; i < NR_MCS_STAT; i++) {
		if (i == MCS_SWAP && !do_swap_account)
			continue;
K
KAMEZAWA Hiroyuki 已提交
3447
		cb->fill(cb, memcg_stat_strings[i].local_name, mystat.stat[i]);
3448
	}
L
Lee Schermerhorn 已提交
3449

K
KAMEZAWA Hiroyuki 已提交
3450
	/* Hierarchical information */
3451 3452 3453 3454 3455 3456 3457
	{
		unsigned long long limit, memsw_limit;
		memcg_get_hierarchical_limit(mem_cont, &limit, &memsw_limit);
		cb->fill(cb, "hierarchical_memory_limit", limit);
		if (do_swap_account)
			cb->fill(cb, "hierarchical_memsw_limit", memsw_limit);
	}
K
KOSAKI Motohiro 已提交
3458

K
KAMEZAWA Hiroyuki 已提交
3459 3460
	memset(&mystat, 0, sizeof(mystat));
	mem_cgroup_get_total_stat(mem_cont, &mystat);
3461 3462 3463
	for (i = 0; i < NR_MCS_STAT; i++) {
		if (i == MCS_SWAP && !do_swap_account)
			continue;
K
KAMEZAWA Hiroyuki 已提交
3464
		cb->fill(cb, memcg_stat_strings[i].total_name, mystat.stat[i]);
3465
	}
K
KAMEZAWA Hiroyuki 已提交
3466

K
KOSAKI Motohiro 已提交
3467
#ifdef CONFIG_DEBUG_VM
3468
	cb->fill(cb, "inactive_ratio", calc_inactive_ratio(mem_cont, NULL));
K
KOSAKI Motohiro 已提交
3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495

	{
		int nid, zid;
		struct mem_cgroup_per_zone *mz;
		unsigned long recent_rotated[2] = {0, 0};
		unsigned long recent_scanned[2] = {0, 0};

		for_each_online_node(nid)
			for (zid = 0; zid < MAX_NR_ZONES; zid++) {
				mz = mem_cgroup_zoneinfo(mem_cont, nid, zid);

				recent_rotated[0] +=
					mz->reclaim_stat.recent_rotated[0];
				recent_rotated[1] +=
					mz->reclaim_stat.recent_rotated[1];
				recent_scanned[0] +=
					mz->reclaim_stat.recent_scanned[0];
				recent_scanned[1] +=
					mz->reclaim_stat.recent_scanned[1];
			}
		cb->fill(cb, "recent_rotated_anon", recent_rotated[0]);
		cb->fill(cb, "recent_rotated_file", recent_rotated[1]);
		cb->fill(cb, "recent_scanned_anon", recent_scanned[0]);
		cb->fill(cb, "recent_scanned_file", recent_scanned[1]);
	}
#endif

3496 3497 3498
	return 0;
}

K
KOSAKI Motohiro 已提交
3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510
static u64 mem_cgroup_swappiness_read(struct cgroup *cgrp, struct cftype *cft)
{
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);

	return get_swappiness(memcg);
}

static int mem_cgroup_swappiness_write(struct cgroup *cgrp, struct cftype *cft,
				       u64 val)
{
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
	struct mem_cgroup *parent;
3511

K
KOSAKI Motohiro 已提交
3512 3513 3514 3515 3516 3517 3518
	if (val > 100)
		return -EINVAL;

	if (cgrp->parent == NULL)
		return -EINVAL;

	parent = mem_cgroup_from_cont(cgrp->parent);
3519 3520 3521

	cgroup_lock();

K
KOSAKI Motohiro 已提交
3522 3523
	/* If under hierarchy, only empty-root can set this value */
	if ((parent->use_hierarchy) ||
3524 3525
	    (memcg->use_hierarchy && !list_empty(&cgrp->children))) {
		cgroup_unlock();
K
KOSAKI Motohiro 已提交
3526
		return -EINVAL;
3527
	}
K
KOSAKI Motohiro 已提交
3528 3529 3530 3531 3532

	spin_lock(&memcg->reclaim_param_lock);
	memcg->swappiness = val;
	spin_unlock(&memcg->reclaim_param_lock);

3533 3534
	cgroup_unlock();

K
KOSAKI Motohiro 已提交
3535 3536 3537
	return 0;
}

3538 3539 3540 3541 3542 3543 3544 3545
static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
{
	struct mem_cgroup_threshold_ary *t;
	u64 usage;
	int i;

	rcu_read_lock();
	if (!swap)
3546
		t = rcu_dereference(memcg->thresholds.primary);
3547
	else
3548
		t = rcu_dereference(memcg->memsw_thresholds.primary);
3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559

	if (!t)
		goto unlock;

	usage = mem_cgroup_usage(memcg, swap);

	/*
	 * current_threshold points to threshold just below usage.
	 * If it's not true, a threshold was crossed after last
	 * call of __mem_cgroup_threshold().
	 */
3560
	i = t->current_threshold;
3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583

	/*
	 * Iterate backward over array of thresholds starting from
	 * current_threshold and check if a threshold is crossed.
	 * If none of thresholds below usage is crossed, we read
	 * only one element of the array here.
	 */
	for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
		eventfd_signal(t->entries[i].eventfd, 1);

	/* i = current_threshold + 1 */
	i++;

	/*
	 * Iterate forward over array of thresholds starting from
	 * current_threshold+1 and check if a threshold is crossed.
	 * If none of thresholds above usage is crossed, we read
	 * only one element of the array here.
	 */
	for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
		eventfd_signal(t->entries[i].eventfd, 1);

	/* Update current_threshold */
3584
	t->current_threshold = i - 1;
3585 3586 3587 3588 3589 3590
unlock:
	rcu_read_unlock();
}

static void mem_cgroup_threshold(struct mem_cgroup *memcg)
{
3591 3592 3593 3594 3595 3596 3597
	while (memcg) {
		__mem_cgroup_threshold(memcg, false);
		if (do_swap_account)
			__mem_cgroup_threshold(memcg, true);

		memcg = parent_mem_cgroup(memcg);
	}
3598 3599 3600 3601 3602 3603 3604 3605 3606 3607
}

static int compare_thresholds(const void *a, const void *b)
{
	const struct mem_cgroup_threshold *_a = a;
	const struct mem_cgroup_threshold *_b = b;

	return _a->threshold - _b->threshold;
}

K
KAMEZAWA Hiroyuki 已提交
3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623
static int mem_cgroup_oom_notify_cb(struct mem_cgroup *mem, void *data)
{
	struct mem_cgroup_eventfd_list *ev;

	list_for_each_entry(ev, &mem->oom_notify, list)
		eventfd_signal(ev->eventfd, 1);
	return 0;
}

static void mem_cgroup_oom_notify(struct mem_cgroup *mem)
{
	mem_cgroup_walk_tree(mem, NULL, mem_cgroup_oom_notify_cb);
}

static int mem_cgroup_usage_register_event(struct cgroup *cgrp,
	struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
3624 3625
{
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
3626 3627
	struct mem_cgroup_thresholds *thresholds;
	struct mem_cgroup_threshold_ary *new;
3628 3629
	int type = MEMFILE_TYPE(cft->private);
	u64 threshold, usage;
3630
	int i, size, ret;
3631 3632 3633 3634 3635 3636

	ret = res_counter_memparse_write_strategy(args, &threshold);
	if (ret)
		return ret;

	mutex_lock(&memcg->thresholds_lock);
3637

3638
	if (type == _MEM)
3639
		thresholds = &memcg->thresholds;
3640
	else if (type == _MEMSWAP)
3641
		thresholds = &memcg->memsw_thresholds;
3642 3643 3644 3645 3646 3647
	else
		BUG();

	usage = mem_cgroup_usage(memcg, type == _MEMSWAP);

	/* Check if a threshold crossed before adding a new one */
3648
	if (thresholds->primary)
3649 3650
		__mem_cgroup_threshold(memcg, type == _MEMSWAP);

3651
	size = thresholds->primary ? thresholds->primary->size + 1 : 1;
3652 3653

	/* Allocate memory for new array of thresholds */
3654
	new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
3655
			GFP_KERNEL);
3656
	if (!new) {
3657 3658 3659
		ret = -ENOMEM;
		goto unlock;
	}
3660
	new->size = size;
3661 3662

	/* Copy thresholds (if any) to new array */
3663 3664
	if (thresholds->primary) {
		memcpy(new->entries, thresholds->primary->entries, (size - 1) *
3665
				sizeof(struct mem_cgroup_threshold));
3666 3667
	}

3668
	/* Add new threshold */
3669 3670
	new->entries[size - 1].eventfd = eventfd;
	new->entries[size - 1].threshold = threshold;
3671 3672

	/* Sort thresholds. Registering of new threshold isn't time-critical */
3673
	sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
3674 3675 3676
			compare_thresholds, NULL);

	/* Find current threshold */
3677
	new->current_threshold = -1;
3678
	for (i = 0; i < size; i++) {
3679
		if (new->entries[i].threshold < usage) {
3680
			/*
3681 3682
			 * new->current_threshold will not be used until
			 * rcu_assign_pointer(), so it's safe to increment
3683 3684
			 * it here.
			 */
3685
			++new->current_threshold;
3686 3687 3688
		}
	}

3689 3690 3691 3692 3693
	/* Free old spare buffer and save old primary buffer as spare */
	kfree(thresholds->spare);
	thresholds->spare = thresholds->primary;

	rcu_assign_pointer(thresholds->primary, new);
3694

3695
	/* To be sure that nobody uses thresholds */
3696 3697 3698 3699 3700 3701 3702 3703
	synchronize_rcu();

unlock:
	mutex_unlock(&memcg->thresholds_lock);

	return ret;
}

3704
static void mem_cgroup_usage_unregister_event(struct cgroup *cgrp,
K
KAMEZAWA Hiroyuki 已提交
3705
	struct cftype *cft, struct eventfd_ctx *eventfd)
3706 3707
{
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
3708 3709
	struct mem_cgroup_thresholds *thresholds;
	struct mem_cgroup_threshold_ary *new;
3710 3711
	int type = MEMFILE_TYPE(cft->private);
	u64 usage;
3712
	int i, j, size;
3713 3714 3715

	mutex_lock(&memcg->thresholds_lock);
	if (type == _MEM)
3716
		thresholds = &memcg->thresholds;
3717
	else if (type == _MEMSWAP)
3718
		thresholds = &memcg->memsw_thresholds;
3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733
	else
		BUG();

	/*
	 * Something went wrong if we trying to unregister a threshold
	 * if we don't have thresholds
	 */
	BUG_ON(!thresholds);

	usage = mem_cgroup_usage(memcg, type == _MEMSWAP);

	/* Check if a threshold crossed before removing */
	__mem_cgroup_threshold(memcg, type == _MEMSWAP);

	/* Calculate new number of threshold */
3734 3735 3736
	size = 0;
	for (i = 0; i < thresholds->primary->size; i++) {
		if (thresholds->primary->entries[i].eventfd != eventfd)
3737 3738 3739
			size++;
	}

3740
	new = thresholds->spare;
3741

3742 3743
	/* Set thresholds array to NULL if we don't have thresholds */
	if (!size) {
3744 3745
		kfree(new);
		new = NULL;
3746
		goto swap_buffers;
3747 3748
	}

3749
	new->size = size;
3750 3751

	/* Copy thresholds and find current threshold */
3752 3753 3754
	new->current_threshold = -1;
	for (i = 0, j = 0; i < thresholds->primary->size; i++) {
		if (thresholds->primary->entries[i].eventfd == eventfd)
3755 3756
			continue;

3757 3758
		new->entries[j] = thresholds->primary->entries[i];
		if (new->entries[j].threshold < usage) {
3759
			/*
3760
			 * new->current_threshold will not be used
3761 3762 3763
			 * until rcu_assign_pointer(), so it's safe to increment
			 * it here.
			 */
3764
			++new->current_threshold;
3765 3766 3767 3768
		}
		j++;
	}

3769
swap_buffers:
3770 3771 3772
	/* Swap primary and spare array */
	thresholds->spare = thresholds->primary;
	rcu_assign_pointer(thresholds->primary, new);
3773

3774
	/* To be sure that nobody uses thresholds */
3775 3776 3777 3778
	synchronize_rcu();

	mutex_unlock(&memcg->thresholds_lock);
}
3779

K
KAMEZAWA Hiroyuki 已提交
3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804
static int mem_cgroup_oom_register_event(struct cgroup *cgrp,
	struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
{
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
	struct mem_cgroup_eventfd_list *event;
	int type = MEMFILE_TYPE(cft->private);

	BUG_ON(type != _OOM_TYPE);
	event = kmalloc(sizeof(*event),	GFP_KERNEL);
	if (!event)
		return -ENOMEM;

	mutex_lock(&memcg_oom_mutex);

	event->eventfd = eventfd;
	list_add(&event->list, &memcg->oom_notify);

	/* already in OOM ? */
	if (atomic_read(&memcg->oom_lock))
		eventfd_signal(eventfd, 1);
	mutex_unlock(&memcg_oom_mutex);

	return 0;
}

3805
static void mem_cgroup_oom_unregister_event(struct cgroup *cgrp,
K
KAMEZAWA Hiroyuki 已提交
3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825
	struct cftype *cft, struct eventfd_ctx *eventfd)
{
	struct mem_cgroup *mem = mem_cgroup_from_cont(cgrp);
	struct mem_cgroup_eventfd_list *ev, *tmp;
	int type = MEMFILE_TYPE(cft->private);

	BUG_ON(type != _OOM_TYPE);

	mutex_lock(&memcg_oom_mutex);

	list_for_each_entry_safe(ev, tmp, &mem->oom_notify, list) {
		if (ev->eventfd == eventfd) {
			list_del(&ev->list);
			kfree(ev);
		}
	}

	mutex_unlock(&memcg_oom_mutex);
}

3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859
static int mem_cgroup_oom_control_read(struct cgroup *cgrp,
	struct cftype *cft,  struct cgroup_map_cb *cb)
{
	struct mem_cgroup *mem = mem_cgroup_from_cont(cgrp);

	cb->fill(cb, "oom_kill_disable", mem->oom_kill_disable);

	if (atomic_read(&mem->oom_lock))
		cb->fill(cb, "under_oom", 1);
	else
		cb->fill(cb, "under_oom", 0);
	return 0;
}

static int mem_cgroup_oom_control_write(struct cgroup *cgrp,
	struct cftype *cft, u64 val)
{
	struct mem_cgroup *mem = mem_cgroup_from_cont(cgrp);
	struct mem_cgroup *parent;

	/* cannot set to root cgroup and only 0 and 1 are allowed */
	if (!cgrp->parent || !((val == 0) || (val == 1)))
		return -EINVAL;

	parent = mem_cgroup_from_cont(cgrp->parent);

	cgroup_lock();
	/* oom-kill-disable is a flag for subhierarchy. */
	if ((parent->use_hierarchy) ||
	    (mem->use_hierarchy && !list_empty(&cgrp->children))) {
		cgroup_unlock();
		return -EINVAL;
	}
	mem->oom_kill_disable = val;
3860 3861
	if (!val)
		memcg_oom_recover(mem);
3862 3863 3864 3865
	cgroup_unlock();
	return 0;
}

B
Balbir Singh 已提交
3866 3867
static struct cftype mem_cgroup_files[] = {
	{
3868
		.name = "usage_in_bytes",
3869
		.private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
3870
		.read_u64 = mem_cgroup_read,
K
KAMEZAWA Hiroyuki 已提交
3871 3872
		.register_event = mem_cgroup_usage_register_event,
		.unregister_event = mem_cgroup_usage_unregister_event,
B
Balbir Singh 已提交
3873
	},
3874 3875
	{
		.name = "max_usage_in_bytes",
3876
		.private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
3877
		.trigger = mem_cgroup_reset,
3878 3879
		.read_u64 = mem_cgroup_read,
	},
B
Balbir Singh 已提交
3880
	{
3881
		.name = "limit_in_bytes",
3882
		.private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
3883
		.write_string = mem_cgroup_write,
3884
		.read_u64 = mem_cgroup_read,
B
Balbir Singh 已提交
3885
	},
3886 3887 3888 3889 3890 3891
	{
		.name = "soft_limit_in_bytes",
		.private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
		.write_string = mem_cgroup_write,
		.read_u64 = mem_cgroup_read,
	},
B
Balbir Singh 已提交
3892 3893
	{
		.name = "failcnt",
3894
		.private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
3895
		.trigger = mem_cgroup_reset,
3896
		.read_u64 = mem_cgroup_read,
B
Balbir Singh 已提交
3897
	},
3898 3899
	{
		.name = "stat",
3900
		.read_map = mem_control_stat_show,
3901
	},
3902 3903 3904 3905
	{
		.name = "force_empty",
		.trigger = mem_cgroup_force_empty_write,
	},
3906 3907 3908 3909 3910
	{
		.name = "use_hierarchy",
		.write_u64 = mem_cgroup_hierarchy_write,
		.read_u64 = mem_cgroup_hierarchy_read,
	},
K
KOSAKI Motohiro 已提交
3911 3912 3913 3914 3915
	{
		.name = "swappiness",
		.read_u64 = mem_cgroup_swappiness_read,
		.write_u64 = mem_cgroup_swappiness_write,
	},
3916 3917 3918 3919 3920
	{
		.name = "move_charge_at_immigrate",
		.read_u64 = mem_cgroup_move_charge_read,
		.write_u64 = mem_cgroup_move_charge_write,
	},
K
KAMEZAWA Hiroyuki 已提交
3921 3922
	{
		.name = "oom_control",
3923 3924
		.read_map = mem_cgroup_oom_control_read,
		.write_u64 = mem_cgroup_oom_control_write,
K
KAMEZAWA Hiroyuki 已提交
3925 3926 3927 3928
		.register_event = mem_cgroup_oom_register_event,
		.unregister_event = mem_cgroup_oom_unregister_event,
		.private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
	},
B
Balbir Singh 已提交
3929 3930
};

3931 3932 3933 3934 3935 3936
#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
static struct cftype memsw_cgroup_files[] = {
	{
		.name = "memsw.usage_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
		.read_u64 = mem_cgroup_read,
K
KAMEZAWA Hiroyuki 已提交
3937 3938
		.register_event = mem_cgroup_usage_register_event,
		.unregister_event = mem_cgroup_usage_unregister_event,
3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973
	},
	{
		.name = "memsw.max_usage_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
		.trigger = mem_cgroup_reset,
		.read_u64 = mem_cgroup_read,
	},
	{
		.name = "memsw.limit_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
		.write_string = mem_cgroup_write,
		.read_u64 = mem_cgroup_read,
	},
	{
		.name = "memsw.failcnt",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
		.trigger = mem_cgroup_reset,
		.read_u64 = mem_cgroup_read,
	},
};

static int register_memsw_files(struct cgroup *cont, struct cgroup_subsys *ss)
{
	if (!do_swap_account)
		return 0;
	return cgroup_add_files(cont, ss, memsw_cgroup_files,
				ARRAY_SIZE(memsw_cgroup_files));
};
#else
static int register_memsw_files(struct cgroup *cont, struct cgroup_subsys *ss)
{
	return 0;
}
#endif

3974 3975 3976
static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *mem, int node)
{
	struct mem_cgroup_per_node *pn;
3977
	struct mem_cgroup_per_zone *mz;
3978
	enum lru_list l;
3979
	int zone, tmp = node;
3980 3981 3982 3983 3984 3985 3986 3987
	/*
	 * This routine is called against possible nodes.
	 * But it's BUG to call kmalloc() against offline node.
	 *
	 * TODO: this routine can waste much memory for nodes which will
	 *       never be onlined. It's better to use memory hotplug callback
	 *       function.
	 */
3988 3989 3990
	if (!node_state(node, N_NORMAL_MEMORY))
		tmp = -1;
	pn = kmalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
3991 3992
	if (!pn)
		return 1;
3993

3994 3995
	mem->info.nodeinfo[node] = pn;
	memset(pn, 0, sizeof(*pn));
3996 3997 3998

	for (zone = 0; zone < MAX_NR_ZONES; zone++) {
		mz = &pn->zoneinfo[zone];
3999 4000
		for_each_lru(l)
			INIT_LIST_HEAD(&mz->lists[l]);
4001
		mz->usage_in_excess = 0;
4002 4003
		mz->on_tree = false;
		mz->mem = mem;
4004
	}
4005 4006 4007
	return 0;
}

4008 4009 4010 4011 4012
static void free_mem_cgroup_per_zone_info(struct mem_cgroup *mem, int node)
{
	kfree(mem->info.nodeinfo[node]);
}

4013 4014 4015
static struct mem_cgroup *mem_cgroup_alloc(void)
{
	struct mem_cgroup *mem;
4016
	int size = sizeof(struct mem_cgroup);
4017

4018
	/* Can be very big if MAX_NUMNODES is very big */
4019 4020
	if (size < PAGE_SIZE)
		mem = kmalloc(size, GFP_KERNEL);
4021
	else
4022
		mem = vmalloc(size);
4023

4024 4025 4026 4027
	if (!mem)
		return NULL;

	memset(mem, 0, size);
4028 4029 4030 4031 4032 4033 4034 4035
	mem->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
	if (!mem->stat) {
		if (size < PAGE_SIZE)
			kfree(mem);
		else
			vfree(mem);
		mem = NULL;
	}
4036 4037 4038
	return mem;
}

4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049
/*
 * At destroying mem_cgroup, references from swap_cgroup can remain.
 * (scanning all at force_empty is too costly...)
 *
 * Instead of clearing all references at force_empty, we remember
 * the number of reference from swap_cgroup and free mem_cgroup when
 * it goes down to 0.
 *
 * Removal of cgroup itself succeeds regardless of refs from swap.
 */

4050
static void __mem_cgroup_free(struct mem_cgroup *mem)
4051
{
K
KAMEZAWA Hiroyuki 已提交
4052 4053
	int node;

4054
	mem_cgroup_remove_from_trees(mem);
K
KAMEZAWA Hiroyuki 已提交
4055 4056
	free_css_id(&mem_cgroup_subsys, &mem->css);

K
KAMEZAWA Hiroyuki 已提交
4057 4058 4059
	for_each_node_state(node, N_POSSIBLE)
		free_mem_cgroup_per_zone_info(mem, node);

4060 4061
	free_percpu(mem->stat);
	if (sizeof(struct mem_cgroup) < PAGE_SIZE)
4062 4063 4064 4065 4066
		kfree(mem);
	else
		vfree(mem);
}

4067 4068 4069 4070 4071
static void mem_cgroup_get(struct mem_cgroup *mem)
{
	atomic_inc(&mem->refcnt);
}

4072
static void __mem_cgroup_put(struct mem_cgroup *mem, int count)
4073
{
4074
	if (atomic_sub_and_test(count, &mem->refcnt)) {
4075
		struct mem_cgroup *parent = parent_mem_cgroup(mem);
4076
		__mem_cgroup_free(mem);
4077 4078 4079
		if (parent)
			mem_cgroup_put(parent);
	}
4080 4081
}

4082 4083 4084 4085 4086
static void mem_cgroup_put(struct mem_cgroup *mem)
{
	__mem_cgroup_put(mem, 1);
}

4087 4088 4089 4090 4091 4092 4093 4094 4095
/*
 * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
 */
static struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *mem)
{
	if (!mem->res.parent)
		return NULL;
	return mem_cgroup_from_res_counter(mem->res.parent, res);
}
4096

4097 4098 4099
#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
static void __init enable_swap_cgroup(void)
{
4100
	if (!mem_cgroup_disabled() && really_do_swap_account)
4101 4102 4103 4104 4105 4106 4107 4108
		do_swap_account = 1;
}
#else
static void __init enable_swap_cgroup(void)
{
}
#endif

4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133
static int mem_cgroup_soft_limit_tree_init(void)
{
	struct mem_cgroup_tree_per_node *rtpn;
	struct mem_cgroup_tree_per_zone *rtpz;
	int tmp, node, zone;

	for_each_node_state(node, N_POSSIBLE) {
		tmp = node;
		if (!node_state(node, N_NORMAL_MEMORY))
			tmp = -1;
		rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, tmp);
		if (!rtpn)
			return 1;

		soft_limit_tree.rb_tree_per_node[node] = rtpn;

		for (zone = 0; zone < MAX_NR_ZONES; zone++) {
			rtpz = &rtpn->rb_tree_per_zone[zone];
			rtpz->rb_root = RB_ROOT;
			spin_lock_init(&rtpz->lock);
		}
	}
	return 0;
}

L
Li Zefan 已提交
4134
static struct cgroup_subsys_state * __ref
B
Balbir Singh 已提交
4135 4136
mem_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cont)
{
4137
	struct mem_cgroup *mem, *parent;
K
KAMEZAWA Hiroyuki 已提交
4138
	long error = -ENOMEM;
4139
	int node;
B
Balbir Singh 已提交
4140

4141 4142
	mem = mem_cgroup_alloc();
	if (!mem)
K
KAMEZAWA Hiroyuki 已提交
4143
		return ERR_PTR(error);
4144

4145 4146 4147
	for_each_node_state(node, N_POSSIBLE)
		if (alloc_mem_cgroup_per_zone_info(mem, node))
			goto free_out;
4148

4149
	/* root ? */
4150
	if (cont->parent == NULL) {
4151
		int cpu;
4152
		enable_swap_cgroup();
4153
		parent = NULL;
4154
		root_mem_cgroup = mem;
4155 4156
		if (mem_cgroup_soft_limit_tree_init())
			goto free_out;
4157 4158 4159 4160 4161 4162
		for_each_possible_cpu(cpu) {
			struct memcg_stock_pcp *stock =
						&per_cpu(memcg_stock, cpu);
			INIT_WORK(&stock->work, drain_local_stock);
		}
		hotcpu_notifier(memcg_stock_cpu_callback, 0);
4163
	} else {
4164
		parent = mem_cgroup_from_cont(cont->parent);
4165
		mem->use_hierarchy = parent->use_hierarchy;
4166
		mem->oom_kill_disable = parent->oom_kill_disable;
4167
	}
4168

4169 4170 4171
	if (parent && parent->use_hierarchy) {
		res_counter_init(&mem->res, &parent->res);
		res_counter_init(&mem->memsw, &parent->memsw);
4172 4173 4174 4175 4176 4177 4178
		/*
		 * We increment refcnt of the parent to ensure that we can
		 * safely access it on res_counter_charge/uncharge.
		 * This refcnt will be decremented when freeing this
		 * mem_cgroup(see mem_cgroup_put).
		 */
		mem_cgroup_get(parent);
4179 4180 4181 4182
	} else {
		res_counter_init(&mem->res, NULL);
		res_counter_init(&mem->memsw, NULL);
	}
K
KAMEZAWA Hiroyuki 已提交
4183
	mem->last_scanned_child = 0;
K
KOSAKI Motohiro 已提交
4184
	spin_lock_init(&mem->reclaim_param_lock);
K
KAMEZAWA Hiroyuki 已提交
4185
	INIT_LIST_HEAD(&mem->oom_notify);
4186

K
KOSAKI Motohiro 已提交
4187 4188
	if (parent)
		mem->swappiness = get_swappiness(parent);
4189
	atomic_set(&mem->refcnt, 1);
4190
	mem->move_charge_at_immigrate = 0;
4191
	mutex_init(&mem->thresholds_lock);
B
Balbir Singh 已提交
4192
	return &mem->css;
4193
free_out:
4194
	__mem_cgroup_free(mem);
4195
	root_mem_cgroup = NULL;
K
KAMEZAWA Hiroyuki 已提交
4196
	return ERR_PTR(error);
B
Balbir Singh 已提交
4197 4198
}

4199
static int mem_cgroup_pre_destroy(struct cgroup_subsys *ss,
4200 4201 4202
					struct cgroup *cont)
{
	struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
4203 4204

	return mem_cgroup_force_empty(mem, false);
4205 4206
}

B
Balbir Singh 已提交
4207 4208 4209
static void mem_cgroup_destroy(struct cgroup_subsys *ss,
				struct cgroup *cont)
{
4210 4211 4212
	struct mem_cgroup *mem = mem_cgroup_from_cont(cont);

	mem_cgroup_put(mem);
B
Balbir Singh 已提交
4213 4214 4215 4216 4217
}

static int mem_cgroup_populate(struct cgroup_subsys *ss,
				struct cgroup *cont)
{
4218 4219 4220 4221 4222 4223 4224 4225
	int ret;

	ret = cgroup_add_files(cont, ss, mem_cgroup_files,
				ARRAY_SIZE(mem_cgroup_files));

	if (!ret)
		ret = register_memsw_files(cont, ss);
	return ret;
B
Balbir Singh 已提交
4226 4227
}

4228
#ifdef CONFIG_MMU
4229
/* Handlers for move charge at task migration. */
4230 4231
#define PRECHARGE_COUNT_AT_ONCE	256
static int mem_cgroup_do_precharge(unsigned long count)
4232
{
4233 4234
	int ret = 0;
	int batch_count = PRECHARGE_COUNT_AT_ONCE;
4235 4236
	struct mem_cgroup *mem = mc.to;

4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271
	if (mem_cgroup_is_root(mem)) {
		mc.precharge += count;
		/* we don't need css_get for root */
		return ret;
	}
	/* try to charge at once */
	if (count > 1) {
		struct res_counter *dummy;
		/*
		 * "mem" cannot be under rmdir() because we've already checked
		 * by cgroup_lock_live_cgroup() that it is not removed and we
		 * are still under the same cgroup_mutex. So we can postpone
		 * css_get().
		 */
		if (res_counter_charge(&mem->res, PAGE_SIZE * count, &dummy))
			goto one_by_one;
		if (do_swap_account && res_counter_charge(&mem->memsw,
						PAGE_SIZE * count, &dummy)) {
			res_counter_uncharge(&mem->res, PAGE_SIZE * count);
			goto one_by_one;
		}
		mc.precharge += count;
		return ret;
	}
one_by_one:
	/* fall back to one by one charge */
	while (count--) {
		if (signal_pending(current)) {
			ret = -EINTR;
			break;
		}
		if (!batch_count--) {
			batch_count = PRECHARGE_COUNT_AT_ONCE;
			cond_resched();
		}
4272
		ret = __mem_cgroup_try_charge(NULL, GFP_KERNEL, &mem, false);
4273 4274 4275 4276 4277
		if (ret || !mem)
			/* mem_cgroup_clear_mc() will do uncharge later */
			return -ENOMEM;
		mc.precharge++;
	}
4278 4279 4280 4281 4282 4283 4284 4285
	return ret;
}

/**
 * is_target_pte_for_mc - check a pte whether it is valid for move charge
 * @vma: the vma the pte to be checked belongs
 * @addr: the address corresponding to the pte to be checked
 * @ptent: the pte to be checked
4286
 * @target: the pointer the target page or swap ent will be stored(can be NULL)
4287 4288 4289 4290 4291 4292
 *
 * Returns
 *   0(MC_TARGET_NONE): if the pte is not a target for move charge.
 *   1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
 *     move charge. if @target is not NULL, the page is stored in target->page
 *     with extra refcnt got(Callers should handle it).
4293 4294 4295
 *   2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
 *     target for charge migration. if @target is not NULL, the entry is stored
 *     in target->ent.
4296 4297 4298 4299 4300
 *
 * Called with pte lock held.
 */
union mc_target {
	struct page	*page;
4301
	swp_entry_t	ent;
4302 4303 4304 4305 4306
};

enum mc_target_type {
	MC_TARGET_NONE,	/* not used */
	MC_TARGET_PAGE,
4307
	MC_TARGET_SWAP,
4308 4309
};

D
Daisuke Nishimura 已提交
4310 4311
static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
						unsigned long addr, pte_t ptent)
4312
{
D
Daisuke Nishimura 已提交
4313
	struct page *page = vm_normal_page(vma, addr, ptent);
4314

D
Daisuke Nishimura 已提交
4315 4316 4317 4318 4319 4320
	if (!page || !page_mapped(page))
		return NULL;
	if (PageAnon(page)) {
		/* we don't move shared anon */
		if (!move_anon() || page_mapcount(page) > 2)
			return NULL;
4321 4322
	} else if (!move_file())
		/* we ignore mapcount for file pages */
D
Daisuke Nishimura 已提交
4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340
		return NULL;
	if (!get_page_unless_zero(page))
		return NULL;

	return page;
}

static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
			unsigned long addr, pte_t ptent, swp_entry_t *entry)
{
	int usage_count;
	struct page *page = NULL;
	swp_entry_t ent = pte_to_swp_entry(ptent);

	if (!move_anon() || non_swap_entry(ent))
		return NULL;
	usage_count = mem_cgroup_count_swap_user(ent, &page);
	if (usage_count > 1) { /* we don't move shared anon */
4341 4342
		if (page)
			put_page(page);
D
Daisuke Nishimura 已提交
4343
		return NULL;
4344
	}
D
Daisuke Nishimura 已提交
4345 4346 4347 4348 4349 4350
	if (do_swap_account)
		entry->val = ent.val;

	return page;
}

4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383
static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
			unsigned long addr, pte_t ptent, swp_entry_t *entry)
{
	struct page *page = NULL;
	struct inode *inode;
	struct address_space *mapping;
	pgoff_t pgoff;

	if (!vma->vm_file) /* anonymous vma */
		return NULL;
	if (!move_file())
		return NULL;

	inode = vma->vm_file->f_path.dentry->d_inode;
	mapping = vma->vm_file->f_mapping;
	if (pte_none(ptent))
		pgoff = linear_page_index(vma, addr);
	else /* pte_file(ptent) is true */
		pgoff = pte_to_pgoff(ptent);

	/* page is moved even if it's not RSS of this task(page-faulted). */
	if (!mapping_cap_swap_backed(mapping)) { /* normal file */
		page = find_get_page(mapping, pgoff);
	} else { /* shmem/tmpfs file. we should take account of swap too. */
		swp_entry_t ent;
		mem_cgroup_get_shmem_target(inode, pgoff, &page, &ent);
		if (do_swap_account)
			entry->val = ent.val;
	}

	return page;
}

D
Daisuke Nishimura 已提交
4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395
static int is_target_pte_for_mc(struct vm_area_struct *vma,
		unsigned long addr, pte_t ptent, union mc_target *target)
{
	struct page *page = NULL;
	struct page_cgroup *pc;
	int ret = 0;
	swp_entry_t ent = { .val = 0 };

	if (pte_present(ptent))
		page = mc_handle_present_pte(vma, addr, ptent);
	else if (is_swap_pte(ptent))
		page = mc_handle_swap_pte(vma, addr, ptent, &ent);
4396 4397
	else if (pte_none(ptent) || pte_file(ptent))
		page = mc_handle_file_pte(vma, addr, ptent, &ent);
D
Daisuke Nishimura 已提交
4398 4399 4400

	if (!page && !ent.val)
		return 0;
4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415
	if (page) {
		pc = lookup_page_cgroup(page);
		/*
		 * Do only loose check w/o page_cgroup lock.
		 * mem_cgroup_move_account() checks the pc is valid or not under
		 * the lock.
		 */
		if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
			ret = MC_TARGET_PAGE;
			if (target)
				target->page = page;
		}
		if (!ret || !target)
			put_page(page);
	}
D
Daisuke Nishimura 已提交
4416 4417
	/* There is a swap entry and a page doesn't exist or isn't charged */
	if (ent.val && !ret &&
4418 4419 4420 4421
			css_id(&mc.from->css) == lookup_swap_cgroup(ent)) {
		ret = MC_TARGET_SWAP;
		if (target)
			target->ent = ent;
4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440
	}
	return ret;
}

static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
					unsigned long addr, unsigned long end,
					struct mm_walk *walk)
{
	struct vm_area_struct *vma = walk->private;
	pte_t *pte;
	spinlock_t *ptl;

	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
	for (; addr != end; pte++, addr += PAGE_SIZE)
		if (is_target_pte_for_mc(vma, addr, *pte, NULL))
			mc.precharge++;	/* increment precharge temporarily */
	pte_unmap_unlock(pte - 1, ptl);
	cond_resched();

4441 4442 4443
	return 0;
}

4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470
static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
{
	unsigned long precharge;
	struct vm_area_struct *vma;

	down_read(&mm->mmap_sem);
	for (vma = mm->mmap; vma; vma = vma->vm_next) {
		struct mm_walk mem_cgroup_count_precharge_walk = {
			.pmd_entry = mem_cgroup_count_precharge_pte_range,
			.mm = mm,
			.private = vma,
		};
		if (is_vm_hugetlb_page(vma))
			continue;
		walk_page_range(vma->vm_start, vma->vm_end,
					&mem_cgroup_count_precharge_walk);
	}
	up_read(&mm->mmap_sem);

	precharge = mc.precharge;
	mc.precharge = 0;

	return precharge;
}

static int mem_cgroup_precharge_mc(struct mm_struct *mm)
{
4471
	return mem_cgroup_do_precharge(mem_cgroup_count_precharge(mm));
4472 4473 4474 4475
}

static void mem_cgroup_clear_mc(void)
{
4476 4477 4478
	struct mem_cgroup *from = mc.from;
	struct mem_cgroup *to = mc.to;

4479
	/* we must uncharge all the leftover precharges from mc.to */
4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490
	if (mc.precharge) {
		__mem_cgroup_cancel_charge(mc.to, mc.precharge);
		mc.precharge = 0;
	}
	/*
	 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
	 * we must uncharge here.
	 */
	if (mc.moved_charge) {
		__mem_cgroup_cancel_charge(mc.from, mc.moved_charge);
		mc.moved_charge = 0;
4491
	}
4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511
	/* we must fixup refcnts and charges */
	if (mc.moved_swap) {
		/* uncharge swap account from the old cgroup */
		if (!mem_cgroup_is_root(mc.from))
			res_counter_uncharge(&mc.from->memsw,
						PAGE_SIZE * mc.moved_swap);
		__mem_cgroup_put(mc.from, mc.moved_swap);

		if (!mem_cgroup_is_root(mc.to)) {
			/*
			 * we charged both to->res and to->memsw, so we should
			 * uncharge to->res.
			 */
			res_counter_uncharge(&mc.to->res,
						PAGE_SIZE * mc.moved_swap);
		}
		/* we've already done mem_cgroup_get(mc.to) */

		mc.moved_swap = 0;
	}
4512
	spin_lock(&mc.lock);
4513 4514
	mc.from = NULL;
	mc.to = NULL;
4515
	mc.moving_task = NULL;
4516 4517 4518
	spin_unlock(&mc.lock);
	memcg_oom_recover(from);
	memcg_oom_recover(to);
4519
	wake_up_all(&mc.waitq);
4520 4521
}

4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539
static int mem_cgroup_can_attach(struct cgroup_subsys *ss,
				struct cgroup *cgroup,
				struct task_struct *p,
				bool threadgroup)
{
	int ret = 0;
	struct mem_cgroup *mem = mem_cgroup_from_cont(cgroup);

	if (mem->move_charge_at_immigrate) {
		struct mm_struct *mm;
		struct mem_cgroup *from = mem_cgroup_from_task(p);

		VM_BUG_ON(from == mem);

		mm = get_task_mm(p);
		if (!mm)
			return 0;
		/* We move charges only when we move a owner of the mm */
4540 4541 4542 4543
		if (mm->owner == p) {
			VM_BUG_ON(mc.from);
			VM_BUG_ON(mc.to);
			VM_BUG_ON(mc.precharge);
4544
			VM_BUG_ON(mc.moved_charge);
4545
			VM_BUG_ON(mc.moved_swap);
4546
			VM_BUG_ON(mc.moving_task);
4547
			spin_lock(&mc.lock);
4548 4549 4550
			mc.from = from;
			mc.to = mem;
			mc.precharge = 0;
4551
			mc.moved_charge = 0;
4552
			mc.moved_swap = 0;
4553
			mc.moving_task = current;
4554
			spin_unlock(&mc.lock);
4555 4556 4557 4558 4559

			ret = mem_cgroup_precharge_mc(mm);
			if (ret)
				mem_cgroup_clear_mc();
		}
4560 4561 4562 4563 4564 4565 4566 4567 4568 4569
		mmput(mm);
	}
	return ret;
}

static void mem_cgroup_cancel_attach(struct cgroup_subsys *ss,
				struct cgroup *cgroup,
				struct task_struct *p,
				bool threadgroup)
{
4570
	mem_cgroup_clear_mc();
4571 4572
}

4573 4574 4575
static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
				unsigned long addr, unsigned long end,
				struct mm_walk *walk)
4576
{
4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589
	int ret = 0;
	struct vm_area_struct *vma = walk->private;
	pte_t *pte;
	spinlock_t *ptl;

retry:
	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
	for (; addr != end; addr += PAGE_SIZE) {
		pte_t ptent = *(pte++);
		union mc_target target;
		int type;
		struct page *page;
		struct page_cgroup *pc;
4590
		swp_entry_t ent;
4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601

		if (!mc.precharge)
			break;

		type = is_target_pte_for_mc(vma, addr, ptent, &target);
		switch (type) {
		case MC_TARGET_PAGE:
			page = target.page;
			if (isolate_lru_page(page))
				goto put;
			pc = lookup_page_cgroup(page);
4602 4603
			if (!mem_cgroup_move_account(pc,
						mc.from, mc.to, false)) {
4604
				mc.precharge--;
4605 4606
				/* we uncharge from mc.from later. */
				mc.moved_charge++;
4607 4608 4609 4610 4611
			}
			putback_lru_page(page);
put:			/* is_target_pte_for_mc() gets the page */
			put_page(page);
			break;
4612 4613
		case MC_TARGET_SWAP:
			ent = target.ent;
4614 4615
			if (!mem_cgroup_move_swap_account(ent,
						mc.from, mc.to, false)) {
4616
				mc.precharge--;
4617 4618 4619
				/* we fixup refcnts and charges later. */
				mc.moved_swap++;
			}
4620
			break;
4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634
		default:
			break;
		}
	}
	pte_unmap_unlock(pte - 1, ptl);
	cond_resched();

	if (addr != end) {
		/*
		 * We have consumed all precharges we got in can_attach().
		 * We try charge one by one, but don't do any additional
		 * charges to mc.to if we have failed in charge once in attach()
		 * phase.
		 */
4635
		ret = mem_cgroup_do_precharge(1);
4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667
		if (!ret)
			goto retry;
	}

	return ret;
}

static void mem_cgroup_move_charge(struct mm_struct *mm)
{
	struct vm_area_struct *vma;

	lru_add_drain_all();
	down_read(&mm->mmap_sem);
	for (vma = mm->mmap; vma; vma = vma->vm_next) {
		int ret;
		struct mm_walk mem_cgroup_move_charge_walk = {
			.pmd_entry = mem_cgroup_move_charge_pte_range,
			.mm = mm,
			.private = vma,
		};
		if (is_vm_hugetlb_page(vma))
			continue;
		ret = walk_page_range(vma->vm_start, vma->vm_end,
						&mem_cgroup_move_charge_walk);
		if (ret)
			/*
			 * means we have consumed all precharges and failed in
			 * doing additional charge. Just abandon here.
			 */
			break;
	}
	up_read(&mm->mmap_sem);
4668 4669
}

B
Balbir Singh 已提交
4670 4671 4672
static void mem_cgroup_move_task(struct cgroup_subsys *ss,
				struct cgroup *cont,
				struct cgroup *old_cont,
4673 4674
				struct task_struct *p,
				bool threadgroup)
B
Balbir Singh 已提交
4675
{
4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687
	struct mm_struct *mm;

	if (!mc.to)
		/* no need to move charge */
		return;

	mm = get_task_mm(p);
	if (mm) {
		mem_cgroup_move_charge(mm);
		mmput(mm);
	}
	mem_cgroup_clear_mc();
B
Balbir Singh 已提交
4688
}
4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710
#else	/* !CONFIG_MMU */
static int mem_cgroup_can_attach(struct cgroup_subsys *ss,
				struct cgroup *cgroup,
				struct task_struct *p,
				bool threadgroup)
{
	return 0;
}
static void mem_cgroup_cancel_attach(struct cgroup_subsys *ss,
				struct cgroup *cgroup,
				struct task_struct *p,
				bool threadgroup)
{
}
static void mem_cgroup_move_task(struct cgroup_subsys *ss,
				struct cgroup *cont,
				struct cgroup *old_cont,
				struct task_struct *p,
				bool threadgroup)
{
}
#endif
B
Balbir Singh 已提交
4711

B
Balbir Singh 已提交
4712 4713 4714 4715
struct cgroup_subsys mem_cgroup_subsys = {
	.name = "memory",
	.subsys_id = mem_cgroup_subsys_id,
	.create = mem_cgroup_create,
4716
	.pre_destroy = mem_cgroup_pre_destroy,
B
Balbir Singh 已提交
4717 4718
	.destroy = mem_cgroup_destroy,
	.populate = mem_cgroup_populate,
4719 4720
	.can_attach = mem_cgroup_can_attach,
	.cancel_attach = mem_cgroup_cancel_attach,
B
Balbir Singh 已提交
4721
	.attach = mem_cgroup_move_task,
4722
	.early_init = 0,
K
KAMEZAWA Hiroyuki 已提交
4723
	.use_id = 1,
B
Balbir Singh 已提交
4724
};
4725 4726 4727 4728 4729 4730 4731 4732 4733 4734

#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP

static int __init disable_swap_account(char *s)
{
	really_do_swap_account = 0;
	return 1;
}
__setup("noswapaccount", disable_swap_account);
#endif