memcontrol.c 129.5 KB
Newer Older
B
Balbir Singh 已提交
1 2 3 4 5
/* memcontrol.c - Memory Controller
 *
 * Copyright IBM Corporation, 2007
 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
 *
6 7 8
 * Copyright 2007 OpenVZ SWsoft Inc
 * Author: Pavel Emelianov <xemul@openvz.org>
 *
9 10 11 12
 * Memory thresholds
 * Copyright (C) 2009 Nokia Corporation
 * Author: Kirill A. Shutemov
 *
B
Balbir Singh 已提交
13 14 15 16 17 18 19 20 21 22 23 24 25 26
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 */

#include <linux/res_counter.h>
#include <linux/memcontrol.h>
#include <linux/cgroup.h>
27
#include <linux/mm.h>
28
#include <linux/hugetlb.h>
K
KAMEZAWA Hiroyuki 已提交
29
#include <linux/pagemap.h>
30
#include <linux/smp.h>
31
#include <linux/page-flags.h>
32
#include <linux/backing-dev.h>
33 34
#include <linux/bit_spinlock.h>
#include <linux/rcupdate.h>
35
#include <linux/limits.h>
36
#include <linux/mutex.h>
37
#include <linux/rbtree.h>
38
#include <linux/slab.h>
39
#include <linux/swap.h>
40
#include <linux/swapops.h>
41
#include <linux/spinlock.h>
42 43
#include <linux/eventfd.h>
#include <linux/sort.h>
44
#include <linux/fs.h>
45
#include <linux/seq_file.h>
46
#include <linux/vmalloc.h>
47
#include <linux/mm_inline.h>
48
#include <linux/page_cgroup.h>
49
#include <linux/cpu.h>
50
#include <linux/oom.h>
K
KAMEZAWA Hiroyuki 已提交
51
#include "internal.h"
B
Balbir Singh 已提交
52

53 54
#include <asm/uaccess.h>

55 56
#include <trace/events/vmscan.h>

57 58
struct cgroup_subsys mem_cgroup_subsys __read_mostly;
#define MEM_CGROUP_RECLAIM_RETRIES	5
59
struct mem_cgroup *root_mem_cgroup __read_mostly;
B
Balbir Singh 已提交
60

61
#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
L
Li Zefan 已提交
62
/* Turned on only when memory cgroup is enabled && really_do_swap_account = 1 */
63
int do_swap_account __read_mostly;
64 65 66 67 68 69 70 71

/* for remember boot option*/
#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP_ENABLED
static int really_do_swap_account __initdata = 1;
#else
static int really_do_swap_account __initdata = 0;
#endif

72 73 74 75
#else
#define do_swap_account		(0)
#endif

76 77 78 79 80 81 82 83 84
/*
 * Per memcg event counter is incremented at every pagein/pageout. This counter
 * is used for trigger some periodic events. This is straightforward and better
 * than using jiffies etc. to handle periodic memcg event.
 *
 * These values will be used as !((event) & ((1 <<(thresh)) - 1))
 */
#define THRESHOLDS_EVENTS_THRESH (7) /* once in 128 */
#define SOFTLIMIT_EVENTS_THRESH (10) /* once in 1024 */
85

86 87 88 89 90 91 92 93
/*
 * Statistics for memory cgroup.
 */
enum mem_cgroup_stat_index {
	/*
	 * For MEM_CONTAINER_TYPE_ALL, usage = pagecache + rss.
	 */
	MEM_CGROUP_STAT_CACHE, 	   /* # of pages charged as cache */
94
	MEM_CGROUP_STAT_RSS,	   /* # of pages charged as anon rss */
95
	MEM_CGROUP_STAT_FILE_MAPPED,  /* # of pages charged as file rss */
96 97
	MEM_CGROUP_STAT_PGPGIN_COUNT,	/* # of pages paged in */
	MEM_CGROUP_STAT_PGPGOUT_COUNT,	/* # of pages paged out */
98
	MEM_CGROUP_STAT_SWAPOUT, /* # of pages, swapped out */
99 100 101
	MEM_CGROUP_STAT_DATA, /* end of data requires synchronization */
	/* incremented at every  pagein/pageout */
	MEM_CGROUP_EVENTS = MEM_CGROUP_STAT_DATA,
102
	MEM_CGROUP_ON_MOVE,	/* someone is moving account between groups */
103 104 105 106 107 108 109 110

	MEM_CGROUP_STAT_NSTATS,
};

struct mem_cgroup_stat_cpu {
	s64 count[MEM_CGROUP_STAT_NSTATS];
};

111 112 113 114
/*
 * per-zone information in memory controller.
 */
struct mem_cgroup_per_zone {
115 116 117
	/*
	 * spin_lock to protect the per cgroup LRU
	 */
118 119
	struct list_head	lists[NR_LRU_LISTS];
	unsigned long		count[NR_LRU_LISTS];
K
KOSAKI Motohiro 已提交
120 121

	struct zone_reclaim_stat reclaim_stat;
122 123 124 125
	struct rb_node		tree_node;	/* RB tree node */
	unsigned long long	usage_in_excess;/* Set to the value by which */
						/* the soft limit is exceeded*/
	bool			on_tree;
126 127
	struct mem_cgroup	*mem;		/* Back pointer, we cannot */
						/* use container_of	   */
128 129 130 131 132 133 134 135 136 137 138 139
};
/* Macro for accessing counter */
#define MEM_CGROUP_ZSTAT(mz, idx)	((mz)->count[(idx)])

struct mem_cgroup_per_node {
	struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
};

struct mem_cgroup_lru_info {
	struct mem_cgroup_per_node *nodeinfo[MAX_NUMNODES];
};

140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159
/*
 * Cgroups above their limits are maintained in a RB-Tree, independent of
 * their hierarchy representation
 */

struct mem_cgroup_tree_per_zone {
	struct rb_root rb_root;
	spinlock_t lock;
};

struct mem_cgroup_tree_per_node {
	struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
};

struct mem_cgroup_tree {
	struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
};

static struct mem_cgroup_tree soft_limit_tree __read_mostly;

160 161 162 163 164
struct mem_cgroup_threshold {
	struct eventfd_ctx *eventfd;
	u64 threshold;
};

K
KAMEZAWA Hiroyuki 已提交
165
/* For threshold */
166 167
struct mem_cgroup_threshold_ary {
	/* An array index points to threshold just below usage. */
168
	int current_threshold;
169 170 171 172 173
	/* Size of entries[] */
	unsigned int size;
	/* Array of thresholds */
	struct mem_cgroup_threshold entries[0];
};
174 175 176 177 178 179 180 181 182 183 184 185

struct mem_cgroup_thresholds {
	/* Primary thresholds array */
	struct mem_cgroup_threshold_ary *primary;
	/*
	 * Spare threshold array.
	 * This is needed to make mem_cgroup_unregister_event() "never fail".
	 * It must be able to store at least primary->size - 1 entries.
	 */
	struct mem_cgroup_threshold_ary *spare;
};

K
KAMEZAWA Hiroyuki 已提交
186 187 188 189 190
/* for OOM */
struct mem_cgroup_eventfd_list {
	struct list_head list;
	struct eventfd_ctx *eventfd;
};
191 192

static void mem_cgroup_threshold(struct mem_cgroup *mem);
K
KAMEZAWA Hiroyuki 已提交
193
static void mem_cgroup_oom_notify(struct mem_cgroup *mem);
194

B
Balbir Singh 已提交
195 196 197 198 199 200 201
/*
 * The memory controller data structure. The memory controller controls both
 * page cache and RSS per cgroup. We would eventually like to provide
 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
 * to help the administrator determine what knobs to tune.
 *
 * TODO: Add a water mark for the memory controller. Reclaim will begin when
202 203 204
 * we hit the water mark. May be even add a low water mark, such that
 * no reclaim occurs from a cgroup at it's low water mark, this is
 * a feature that will be implemented much later in the future.
B
Balbir Singh 已提交
205 206 207 208 209 210 211
 */
struct mem_cgroup {
	struct cgroup_subsys_state css;
	/*
	 * the counter to account for memory usage
	 */
	struct res_counter res;
212 213 214 215
	/*
	 * the counter to account for mem+swap usage.
	 */
	struct res_counter memsw;
216 217 218 219
	/*
	 * Per cgroup active and inactive list, similar to the
	 * per zone LRU lists.
	 */
220
	struct mem_cgroup_lru_info info;
221

K
KOSAKI Motohiro 已提交
222 223 224 225 226
	/*
	  protect against reclaim related member.
	*/
	spinlock_t reclaim_param_lock;

227
	/*
228
	 * While reclaiming in a hierarchy, we cache the last child we
K
KAMEZAWA Hiroyuki 已提交
229
	 * reclaimed from.
230
	 */
K
KAMEZAWA Hiroyuki 已提交
231
	int last_scanned_child;
232 233 234 235
	/*
	 * Should the accounting and control be hierarchical, per subtree?
	 */
	bool use_hierarchy;
K
KAMEZAWA Hiroyuki 已提交
236
	atomic_t	oom_lock;
237
	atomic_t	refcnt;
238

K
KOSAKI Motohiro 已提交
239
	unsigned int	swappiness;
240 241
	/* OOM-Killer disable */
	int		oom_kill_disable;
K
KOSAKI Motohiro 已提交
242

243 244 245
	/* set when res.limit == memsw.limit */
	bool		memsw_is_minimum;

246 247 248 249
	/* protect arrays of thresholds */
	struct mutex thresholds_lock;

	/* thresholds for memory usage. RCU-protected */
250
	struct mem_cgroup_thresholds thresholds;
251

252
	/* thresholds for mem+swap usage. RCU-protected */
253
	struct mem_cgroup_thresholds memsw_thresholds;
254

K
KAMEZAWA Hiroyuki 已提交
255 256 257
	/* For oom notifier event fd */
	struct list_head oom_notify;

258 259 260 261 262
	/*
	 * Should we move charges of a task when a task is moved into this
	 * mem_cgroup ? And what type of charges should we move ?
	 */
	unsigned long 	move_charge_at_immigrate;
263
	/*
264
	 * percpu counter.
265
	 */
266
	struct mem_cgroup_stat_cpu *stat;
267 268 269 270 271 272
	/*
	 * used when a cpu is offlined or other synchronizations
	 * See mem_cgroup_read_stat().
	 */
	struct mem_cgroup_stat_cpu nocpu_base;
	spinlock_t pcp_counter_lock;
B
Balbir Singh 已提交
273 274
};

275 276 277 278 279 280
/* Stuffs for move charges at task migration. */
/*
 * Types of charges to be moved. "move_charge_at_immitgrate" is treated as a
 * left-shifted bitmap of these types.
 */
enum move_type {
281
	MOVE_CHARGE_TYPE_ANON,	/* private anonymous page and swap of it */
282
	MOVE_CHARGE_TYPE_FILE,	/* file page(including tmpfs) and swap of it */
283 284 285
	NR_MOVE_TYPE,
};

286 287
/* "mc" and its members are protected by cgroup_mutex */
static struct move_charge_struct {
288
	spinlock_t	  lock; /* for from, to */
289 290 291
	struct mem_cgroup *from;
	struct mem_cgroup *to;
	unsigned long precharge;
292
	unsigned long moved_charge;
293
	unsigned long moved_swap;
294 295 296
	struct task_struct *moving_task;	/* a task moving charges */
	wait_queue_head_t waitq;		/* a waitq for other context */
} mc = {
297
	.lock = __SPIN_LOCK_UNLOCKED(mc.lock),
298 299
	.waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
};
300

D
Daisuke Nishimura 已提交
301 302 303 304 305 306
static bool move_anon(void)
{
	return test_bit(MOVE_CHARGE_TYPE_ANON,
					&mc.to->move_charge_at_immigrate);
}

307 308 309 310 311 312
static bool move_file(void)
{
	return test_bit(MOVE_CHARGE_TYPE_FILE,
					&mc.to->move_charge_at_immigrate);
}

313 314 315 316 317 318 319
/*
 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
 * limit reclaim to prevent infinite loops, if they ever occur.
 */
#define	MEM_CGROUP_MAX_RECLAIM_LOOPS		(100)
#define	MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS	(2)

320 321 322
enum charge_type {
	MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
	MEM_CGROUP_CHARGE_TYPE_MAPPED,
323
	MEM_CGROUP_CHARGE_TYPE_SHMEM,	/* used by page migration of shmem */
324
	MEM_CGROUP_CHARGE_TYPE_FORCE,	/* used by force_empty */
K
KAMEZAWA Hiroyuki 已提交
325
	MEM_CGROUP_CHARGE_TYPE_SWAPOUT,	/* for accounting swapcache */
K
KAMEZAWA Hiroyuki 已提交
326
	MEM_CGROUP_CHARGE_TYPE_DROP,	/* a page was unused swap cache */
327 328 329
	NR_CHARGE_TYPE,
};

330 331 332 333
/* only for here (for easy reading.) */
#define PCGF_CACHE	(1UL << PCG_CACHE)
#define PCGF_USED	(1UL << PCG_USED)
#define PCGF_LOCK	(1UL << PCG_LOCK)
334 335
/* Not used, but added here for completeness */
#define PCGF_ACCT	(1UL << PCG_ACCT)
336

337 338 339
/* for encoding cft->private value on file */
#define _MEM			(0)
#define _MEMSWAP		(1)
K
KAMEZAWA Hiroyuki 已提交
340
#define _OOM_TYPE		(2)
341 342 343
#define MEMFILE_PRIVATE(x, val)	(((x) << 16) | (val))
#define MEMFILE_TYPE(val)	(((val) >> 16) & 0xffff)
#define MEMFILE_ATTR(val)	((val) & 0xffff)
K
KAMEZAWA Hiroyuki 已提交
344 345
/* Used for OOM nofiier */
#define OOM_CONTROL		(0)
346

347 348 349 350 351 352 353
/*
 * Reclaim flags for mem_cgroup_hierarchical_reclaim
 */
#define MEM_CGROUP_RECLAIM_NOSWAP_BIT	0x0
#define MEM_CGROUP_RECLAIM_NOSWAP	(1 << MEM_CGROUP_RECLAIM_NOSWAP_BIT)
#define MEM_CGROUP_RECLAIM_SHRINK_BIT	0x1
#define MEM_CGROUP_RECLAIM_SHRINK	(1 << MEM_CGROUP_RECLAIM_SHRINK_BIT)
354 355
#define MEM_CGROUP_RECLAIM_SOFT_BIT	0x2
#define MEM_CGROUP_RECLAIM_SOFT		(1 << MEM_CGROUP_RECLAIM_SOFT_BIT)
356

357 358
static void mem_cgroup_get(struct mem_cgroup *mem);
static void mem_cgroup_put(struct mem_cgroup *mem);
359
static struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *mem);
360
static void drain_all_stock_async(void);
361

362 363 364 365 366 367
static struct mem_cgroup_per_zone *
mem_cgroup_zoneinfo(struct mem_cgroup *mem, int nid, int zid)
{
	return &mem->info.nodeinfo[nid]->zoneinfo[zid];
}

368 369 370 371 372
struct cgroup_subsys_state *mem_cgroup_css(struct mem_cgroup *mem)
{
	return &mem->css;
}

373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401
static struct mem_cgroup_per_zone *
page_cgroup_zoneinfo(struct page_cgroup *pc)
{
	struct mem_cgroup *mem = pc->mem_cgroup;
	int nid = page_cgroup_nid(pc);
	int zid = page_cgroup_zid(pc);

	if (!mem)
		return NULL;

	return mem_cgroup_zoneinfo(mem, nid, zid);
}

static struct mem_cgroup_tree_per_zone *
soft_limit_tree_node_zone(int nid, int zid)
{
	return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
}

static struct mem_cgroup_tree_per_zone *
soft_limit_tree_from_page(struct page *page)
{
	int nid = page_to_nid(page);
	int zid = page_zonenum(page);

	return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
}

static void
402
__mem_cgroup_insert_exceeded(struct mem_cgroup *mem,
403
				struct mem_cgroup_per_zone *mz,
404 405
				struct mem_cgroup_tree_per_zone *mctz,
				unsigned long long new_usage_in_excess)
406 407 408 409 410 411 412 413
{
	struct rb_node **p = &mctz->rb_root.rb_node;
	struct rb_node *parent = NULL;
	struct mem_cgroup_per_zone *mz_node;

	if (mz->on_tree)
		return;

414 415 416
	mz->usage_in_excess = new_usage_in_excess;
	if (!mz->usage_in_excess)
		return;
417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432
	while (*p) {
		parent = *p;
		mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
					tree_node);
		if (mz->usage_in_excess < mz_node->usage_in_excess)
			p = &(*p)->rb_left;
		/*
		 * We can't avoid mem cgroups that are over their soft
		 * limit by the same amount
		 */
		else if (mz->usage_in_excess >= mz_node->usage_in_excess)
			p = &(*p)->rb_right;
	}
	rb_link_node(&mz->tree_node, parent, p);
	rb_insert_color(&mz->tree_node, &mctz->rb_root);
	mz->on_tree = true;
433 434 435 436 437 438 439 440 441 442 443 444 445
}

static void
__mem_cgroup_remove_exceeded(struct mem_cgroup *mem,
				struct mem_cgroup_per_zone *mz,
				struct mem_cgroup_tree_per_zone *mctz)
{
	if (!mz->on_tree)
		return;
	rb_erase(&mz->tree_node, &mctz->rb_root);
	mz->on_tree = false;
}

446 447 448 449 450 451
static void
mem_cgroup_remove_exceeded(struct mem_cgroup *mem,
				struct mem_cgroup_per_zone *mz,
				struct mem_cgroup_tree_per_zone *mctz)
{
	spin_lock(&mctz->lock);
452
	__mem_cgroup_remove_exceeded(mem, mz, mctz);
453 454 455 456 457 458
	spin_unlock(&mctz->lock);
}


static void mem_cgroup_update_tree(struct mem_cgroup *mem, struct page *page)
{
459
	unsigned long long excess;
460 461
	struct mem_cgroup_per_zone *mz;
	struct mem_cgroup_tree_per_zone *mctz;
462 463
	int nid = page_to_nid(page);
	int zid = page_zonenum(page);
464 465 466
	mctz = soft_limit_tree_from_page(page);

	/*
467 468
	 * Necessary to update all ancestors when hierarchy is used.
	 * because their event counter is not touched.
469
	 */
470 471
	for (; mem; mem = parent_mem_cgroup(mem)) {
		mz = mem_cgroup_zoneinfo(mem, nid, zid);
472
		excess = res_counter_soft_limit_excess(&mem->res);
473 474 475 476
		/*
		 * We have to update the tree if mz is on RB-tree or
		 * mem is over its softlimit.
		 */
477
		if (excess || mz->on_tree) {
478 479 480 481 482
			spin_lock(&mctz->lock);
			/* if on-tree, remove it */
			if (mz->on_tree)
				__mem_cgroup_remove_exceeded(mem, mz, mctz);
			/*
483 484
			 * Insert again. mz->usage_in_excess will be updated.
			 * If excess is 0, no tree ops.
485
			 */
486
			__mem_cgroup_insert_exceeded(mem, mz, mctz, excess);
487 488
			spin_unlock(&mctz->lock);
		}
489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506
	}
}

static void mem_cgroup_remove_from_trees(struct mem_cgroup *mem)
{
	int node, zone;
	struct mem_cgroup_per_zone *mz;
	struct mem_cgroup_tree_per_zone *mctz;

	for_each_node_state(node, N_POSSIBLE) {
		for (zone = 0; zone < MAX_NR_ZONES; zone++) {
			mz = mem_cgroup_zoneinfo(mem, node, zone);
			mctz = soft_limit_tree_node_zone(node, zone);
			mem_cgroup_remove_exceeded(mem, mz, mctz);
		}
	}
}

507 508 509 510 511 512 513 514 515
static inline unsigned long mem_cgroup_get_excess(struct mem_cgroup *mem)
{
	return res_counter_soft_limit_excess(&mem->res) >> PAGE_SHIFT;
}

static struct mem_cgroup_per_zone *
__mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
{
	struct rb_node *rightmost = NULL;
516
	struct mem_cgroup_per_zone *mz;
517 518

retry:
519
	mz = NULL;
520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548
	rightmost = rb_last(&mctz->rb_root);
	if (!rightmost)
		goto done;		/* Nothing to reclaim from */

	mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
	/*
	 * Remove the node now but someone else can add it back,
	 * we will to add it back at the end of reclaim to its correct
	 * position in the tree.
	 */
	__mem_cgroup_remove_exceeded(mz->mem, mz, mctz);
	if (!res_counter_soft_limit_excess(&mz->mem->res) ||
		!css_tryget(&mz->mem->css))
		goto retry;
done:
	return mz;
}

static struct mem_cgroup_per_zone *
mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
{
	struct mem_cgroup_per_zone *mz;

	spin_lock(&mctz->lock);
	mz = __mem_cgroup_largest_soft_limit_node(mctz);
	spin_unlock(&mctz->lock);
	return mz;
}

549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567
/*
 * Implementation Note: reading percpu statistics for memcg.
 *
 * Both of vmstat[] and percpu_counter has threshold and do periodic
 * synchronization to implement "quick" read. There are trade-off between
 * reading cost and precision of value. Then, we may have a chance to implement
 * a periodic synchronizion of counter in memcg's counter.
 *
 * But this _read() function is used for user interface now. The user accounts
 * memory usage by memory cgroup and he _always_ requires exact value because
 * he accounts memory. Even if we provide quick-and-fuzzy read, we always
 * have to visit all online cpus and make sum. So, for now, unnecessary
 * synchronization is not implemented. (just implemented for cpu hotplug)
 *
 * If there are kernel internal actions which can make use of some not-exact
 * value, and reading all cpu value can be performance bottleneck in some
 * common workload, threashold and synchonization as vmstat[] should be
 * implemented.
 */
568 569 570 571 572 573
static s64 mem_cgroup_read_stat(struct mem_cgroup *mem,
		enum mem_cgroup_stat_index idx)
{
	int cpu;
	s64 val = 0;

574 575
	get_online_cpus();
	for_each_online_cpu(cpu)
576
		val += per_cpu(mem->stat->count[idx], cpu);
577 578 579 580 581 582
#ifdef CONFIG_HOTPLUG_CPU
	spin_lock(&mem->pcp_counter_lock);
	val += mem->nocpu_base.count[idx];
	spin_unlock(&mem->pcp_counter_lock);
#endif
	put_online_cpus();
583 584 585 586 587 588 589 590 591 592 593 594
	return val;
}

static s64 mem_cgroup_local_usage(struct mem_cgroup *mem)
{
	s64 ret;

	ret = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_RSS);
	ret += mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_CACHE);
	return ret;
}

595 596 597 598
static void mem_cgroup_swap_statistics(struct mem_cgroup *mem,
					 bool charge)
{
	int val = (charge) ? 1 : -1;
599
	this_cpu_add(mem->stat->count[MEM_CGROUP_STAT_SWAPOUT], val);
600 601
}

602
static void mem_cgroup_charge_statistics(struct mem_cgroup *mem,
603
					 bool file, int nr_pages)
604
{
605 606
	preempt_disable();

607 608
	if (file)
		__this_cpu_add(mem->stat->count[MEM_CGROUP_STAT_CACHE], nr_pages);
609
	else
610
		__this_cpu_add(mem->stat->count[MEM_CGROUP_STAT_RSS], nr_pages);
611

612 613
	/* pagein of a big page is an event. So, ignore page size */
	if (nr_pages > 0)
614
		__this_cpu_inc(mem->stat->count[MEM_CGROUP_STAT_PGPGIN_COUNT]);
615
	else
616
		__this_cpu_inc(mem->stat->count[MEM_CGROUP_STAT_PGPGOUT_COUNT]);
617 618

	__this_cpu_add(mem->stat->count[MEM_CGROUP_EVENTS], nr_pages);
619

620
	preempt_enable();
621 622
}

K
KAMEZAWA Hiroyuki 已提交
623
static unsigned long mem_cgroup_get_local_zonestat(struct mem_cgroup *mem,
624
					enum lru_list idx)
625 626 627 628 629 630 631 632 633 634 635
{
	int nid, zid;
	struct mem_cgroup_per_zone *mz;
	u64 total = 0;

	for_each_online_node(nid)
		for (zid = 0; zid < MAX_NR_ZONES; zid++) {
			mz = mem_cgroup_zoneinfo(mem, nid, zid);
			total += MEM_CGROUP_ZSTAT(mz, idx);
		}
	return total;
636 637
}

638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660
static bool __memcg_event_check(struct mem_cgroup *mem, int event_mask_shift)
{
	s64 val;

	val = this_cpu_read(mem->stat->count[MEM_CGROUP_EVENTS]);

	return !(val & ((1 << event_mask_shift) - 1));
}

/*
 * Check events in order.
 *
 */
static void memcg_check_events(struct mem_cgroup *mem, struct page *page)
{
	/* threshold event is triggered in finer grain than soft limit */
	if (unlikely(__memcg_event_check(mem, THRESHOLDS_EVENTS_THRESH))) {
		mem_cgroup_threshold(mem);
		if (unlikely(__memcg_event_check(mem, SOFTLIMIT_EVENTS_THRESH)))
			mem_cgroup_update_tree(mem, page);
	}
}

661
static struct mem_cgroup *mem_cgroup_from_cont(struct cgroup *cont)
B
Balbir Singh 已提交
662 663 664 665 666 667
{
	return container_of(cgroup_subsys_state(cont,
				mem_cgroup_subsys_id), struct mem_cgroup,
				css);
}

668
struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
669
{
670 671 672 673 674 675 676 677
	/*
	 * mm_update_next_owner() may clear mm->owner to NULL
	 * if it races with swapoff, page migration, etc.
	 * So this can be called with p == NULL.
	 */
	if (unlikely(!p))
		return NULL;

678 679 680 681
	return container_of(task_subsys_state(p, mem_cgroup_subsys_id),
				struct mem_cgroup, css);
}

682 683 684
static struct mem_cgroup *try_get_mem_cgroup_from_mm(struct mm_struct *mm)
{
	struct mem_cgroup *mem = NULL;
685 686 687

	if (!mm)
		return NULL;
688 689 690 691 692 693 694 695 696 697 698 699 700 701 702
	/*
	 * Because we have no locks, mm->owner's may be being moved to other
	 * cgroup. We use css_tryget() here even if this looks
	 * pessimistic (rather than adding locks here).
	 */
	rcu_read_lock();
	do {
		mem = mem_cgroup_from_task(rcu_dereference(mm->owner));
		if (unlikely(!mem))
			break;
	} while (!css_tryget(&mem->css));
	rcu_read_unlock();
	return mem;
}

K
KAMEZAWA Hiroyuki 已提交
703 704
/* The caller has to guarantee "mem" exists before calling this */
static struct mem_cgroup *mem_cgroup_start_loop(struct mem_cgroup *mem)
K
KAMEZAWA Hiroyuki 已提交
705
{
706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727
	struct cgroup_subsys_state *css;
	int found;

	if (!mem) /* ROOT cgroup has the smallest ID */
		return root_mem_cgroup; /*css_put/get against root is ignored*/
	if (!mem->use_hierarchy) {
		if (css_tryget(&mem->css))
			return mem;
		return NULL;
	}
	rcu_read_lock();
	/*
	 * searching a memory cgroup which has the smallest ID under given
	 * ROOT cgroup. (ID >= 1)
	 */
	css = css_get_next(&mem_cgroup_subsys, 1, &mem->css, &found);
	if (css && css_tryget(css))
		mem = container_of(css, struct mem_cgroup, css);
	else
		mem = NULL;
	rcu_read_unlock();
	return mem;
K
KAMEZAWA Hiroyuki 已提交
728 729 730 731 732 733 734 735 736
}

static struct mem_cgroup *mem_cgroup_get_next(struct mem_cgroup *iter,
					struct mem_cgroup *root,
					bool cond)
{
	int nextid = css_id(&iter->css) + 1;
	int found;
	int hierarchy_used;
K
KAMEZAWA Hiroyuki 已提交
737 738
	struct cgroup_subsys_state *css;

K
KAMEZAWA Hiroyuki 已提交
739
	hierarchy_used = iter->use_hierarchy;
K
KAMEZAWA Hiroyuki 已提交
740

K
KAMEZAWA Hiroyuki 已提交
741
	css_put(&iter->css);
742 743
	/* If no ROOT, walk all, ignore hierarchy */
	if (!cond || (root && !hierarchy_used))
K
KAMEZAWA Hiroyuki 已提交
744
		return NULL;
K
KAMEZAWA Hiroyuki 已提交
745

746 747 748
	if (!root)
		root = root_mem_cgroup;

K
KAMEZAWA Hiroyuki 已提交
749 750
	do {
		iter = NULL;
K
KAMEZAWA Hiroyuki 已提交
751
		rcu_read_lock();
K
KAMEZAWA Hiroyuki 已提交
752 753 754

		css = css_get_next(&mem_cgroup_subsys, nextid,
				&root->css, &found);
K
KAMEZAWA Hiroyuki 已提交
755
		if (css && css_tryget(css))
K
KAMEZAWA Hiroyuki 已提交
756
			iter = container_of(css, struct mem_cgroup, css);
K
KAMEZAWA Hiroyuki 已提交
757
		rcu_read_unlock();
K
KAMEZAWA Hiroyuki 已提交
758
		/* If css is NULL, no more cgroups will be found */
K
KAMEZAWA Hiroyuki 已提交
759
		nextid = found + 1;
K
KAMEZAWA Hiroyuki 已提交
760
	} while (css && !iter);
K
KAMEZAWA Hiroyuki 已提交
761

K
KAMEZAWA Hiroyuki 已提交
762
	return iter;
K
KAMEZAWA Hiroyuki 已提交
763
}
K
KAMEZAWA Hiroyuki 已提交
764 765 766 767 768 769 770 771 772 773 774 775 776
/*
 * for_eacn_mem_cgroup_tree() for visiting all cgroup under tree. Please
 * be careful that "break" loop is not allowed. We have reference count.
 * Instead of that modify "cond" to be false and "continue" to exit the loop.
 */
#define for_each_mem_cgroup_tree_cond(iter, root, cond)	\
	for (iter = mem_cgroup_start_loop(root);\
	     iter != NULL;\
	     iter = mem_cgroup_get_next(iter, root, cond))

#define for_each_mem_cgroup_tree(iter, root) \
	for_each_mem_cgroup_tree_cond(iter, root, true)

777 778 779
#define for_each_mem_cgroup_all(iter) \
	for_each_mem_cgroup_tree_cond(iter, NULL, true)

K
KAMEZAWA Hiroyuki 已提交
780

781 782 783 784 785
static inline bool mem_cgroup_is_root(struct mem_cgroup *mem)
{
	return (mem == root_mem_cgroup);
}

K
KAMEZAWA Hiroyuki 已提交
786 787 788 789 790 791 792 793 794 795 796 797 798
/*
 * Following LRU functions are allowed to be used without PCG_LOCK.
 * Operations are called by routine of global LRU independently from memcg.
 * What we have to take care of here is validness of pc->mem_cgroup.
 *
 * Changes to pc->mem_cgroup happens when
 * 1. charge
 * 2. moving account
 * In typical case, "charge" is done before add-to-lru. Exception is SwapCache.
 * It is added to LRU before charge.
 * If PCG_USED bit is not set, page_cgroup is not added to this private LRU.
 * When moving account, the page is not on LRU. It's isolated.
 */
799

K
KAMEZAWA Hiroyuki 已提交
800 801 802 803
void mem_cgroup_del_lru_list(struct page *page, enum lru_list lru)
{
	struct page_cgroup *pc;
	struct mem_cgroup_per_zone *mz;
804

805
	if (mem_cgroup_disabled())
K
KAMEZAWA Hiroyuki 已提交
806 807 808
		return;
	pc = lookup_page_cgroup(page);
	/* can happen while we handle swapcache. */
809
	if (!TestClearPageCgroupAcctLRU(pc))
K
KAMEZAWA Hiroyuki 已提交
810
		return;
811
	VM_BUG_ON(!pc->mem_cgroup);
812 813 814 815
	/*
	 * We don't check PCG_USED bit. It's cleared when the "page" is finally
	 * removed from global LRU.
	 */
K
KAMEZAWA Hiroyuki 已提交
816
	mz = page_cgroup_zoneinfo(pc);
817 818
	/* huge page split is done under lru_lock. so, we have no races. */
	MEM_CGROUP_ZSTAT(mz, lru) -= 1 << compound_order(page);
819 820 821
	if (mem_cgroup_is_root(pc->mem_cgroup))
		return;
	VM_BUG_ON(list_empty(&pc->lru));
K
KAMEZAWA Hiroyuki 已提交
822
	list_del_init(&pc->lru);
823 824
}

K
KAMEZAWA Hiroyuki 已提交
825
void mem_cgroup_del_lru(struct page *page)
826
{
K
KAMEZAWA Hiroyuki 已提交
827 828
	mem_cgroup_del_lru_list(page, page_lru(page));
}
829

K
KAMEZAWA Hiroyuki 已提交
830 831 832 833
void mem_cgroup_rotate_lru_list(struct page *page, enum lru_list lru)
{
	struct mem_cgroup_per_zone *mz;
	struct page_cgroup *pc;
834

835
	if (mem_cgroup_disabled())
K
KAMEZAWA Hiroyuki 已提交
836
		return;
837

K
KAMEZAWA Hiroyuki 已提交
838
	pc = lookup_page_cgroup(page);
839 840 841 842
	/*
	 * Used bit is set without atomic ops but after smp_wmb().
	 * For making pc->mem_cgroup visible, insert smp_rmb() here.
	 */
K
KAMEZAWA Hiroyuki 已提交
843
	smp_rmb();
844 845
	/* unused or root page is not rotated. */
	if (!PageCgroupUsed(pc) || mem_cgroup_is_root(pc->mem_cgroup))
K
KAMEZAWA Hiroyuki 已提交
846 847 848
		return;
	mz = page_cgroup_zoneinfo(pc);
	list_move(&pc->lru, &mz->lists[lru]);
849 850
}

K
KAMEZAWA Hiroyuki 已提交
851
void mem_cgroup_add_lru_list(struct page *page, enum lru_list lru)
852
{
K
KAMEZAWA Hiroyuki 已提交
853 854
	struct page_cgroup *pc;
	struct mem_cgroup_per_zone *mz;
855

856
	if (mem_cgroup_disabled())
K
KAMEZAWA Hiroyuki 已提交
857 858
		return;
	pc = lookup_page_cgroup(page);
859
	VM_BUG_ON(PageCgroupAcctLRU(pc));
860 861 862 863
	/*
	 * Used bit is set without atomic ops but after smp_wmb().
	 * For making pc->mem_cgroup visible, insert smp_rmb() here.
	 */
K
KAMEZAWA Hiroyuki 已提交
864 865
	smp_rmb();
	if (!PageCgroupUsed(pc))
L
Lee Schermerhorn 已提交
866
		return;
867

K
KAMEZAWA Hiroyuki 已提交
868
	mz = page_cgroup_zoneinfo(pc);
869 870
	/* huge page split is done under lru_lock. so, we have no races. */
	MEM_CGROUP_ZSTAT(mz, lru) += 1 << compound_order(page);
871 872 873
	SetPageCgroupAcctLRU(pc);
	if (mem_cgroup_is_root(pc->mem_cgroup))
		return;
K
KAMEZAWA Hiroyuki 已提交
874 875
	list_add(&pc->lru, &mz->lists[lru]);
}
876

K
KAMEZAWA Hiroyuki 已提交
877
/*
878 879 880 881 882
 * At handling SwapCache, pc->mem_cgroup may be changed while it's linked to
 * lru because the page may.be reused after it's fully uncharged (because of
 * SwapCache behavior).To handle that, unlink page_cgroup from LRU when charge
 * it again. This function is only used to charge SwapCache. It's done under
 * lock_page and expected that zone->lru_lock is never held.
K
KAMEZAWA Hiroyuki 已提交
883
 */
884
static void mem_cgroup_lru_del_before_commit_swapcache(struct page *page)
K
KAMEZAWA Hiroyuki 已提交
885
{
886 887 888 889 890 891 892 893 894 895 896 897
	unsigned long flags;
	struct zone *zone = page_zone(page);
	struct page_cgroup *pc = lookup_page_cgroup(page);

	spin_lock_irqsave(&zone->lru_lock, flags);
	/*
	 * Forget old LRU when this page_cgroup is *not* used. This Used bit
	 * is guarded by lock_page() because the page is SwapCache.
	 */
	if (!PageCgroupUsed(pc))
		mem_cgroup_del_lru_list(page, page_lru(page));
	spin_unlock_irqrestore(&zone->lru_lock, flags);
K
KAMEZAWA Hiroyuki 已提交
898 899
}

900 901 902 903 904 905 906 907
static void mem_cgroup_lru_add_after_commit_swapcache(struct page *page)
{
	unsigned long flags;
	struct zone *zone = page_zone(page);
	struct page_cgroup *pc = lookup_page_cgroup(page);

	spin_lock_irqsave(&zone->lru_lock, flags);
	/* link when the page is linked to LRU but page_cgroup isn't */
908
	if (PageLRU(page) && !PageCgroupAcctLRU(pc))
909 910 911 912 913
		mem_cgroup_add_lru_list(page, page_lru(page));
	spin_unlock_irqrestore(&zone->lru_lock, flags);
}


K
KAMEZAWA Hiroyuki 已提交
914 915 916
void mem_cgroup_move_lists(struct page *page,
			   enum lru_list from, enum lru_list to)
{
917
	if (mem_cgroup_disabled())
K
KAMEZAWA Hiroyuki 已提交
918 919 920
		return;
	mem_cgroup_del_lru_list(page, from);
	mem_cgroup_add_lru_list(page, to);
921 922
}

923 924 925
int task_in_mem_cgroup(struct task_struct *task, const struct mem_cgroup *mem)
{
	int ret;
926
	struct mem_cgroup *curr = NULL;
927
	struct task_struct *p;
928

929 930 931 932 933
	p = find_lock_task_mm(task);
	if (!p)
		return 0;
	curr = try_get_mem_cgroup_from_mm(p->mm);
	task_unlock(p);
934 935
	if (!curr)
		return 0;
936 937 938 939 940 941 942
	/*
	 * We should check use_hierarchy of "mem" not "curr". Because checking
	 * use_hierarchy of "curr" here make this function true if hierarchy is
	 * enabled in "curr" and "curr" is a child of "mem" in *cgroup*
	 * hierarchy(even if use_hierarchy is disabled in "mem").
	 */
	if (mem->use_hierarchy)
943 944 945 946
		ret = css_is_ancestor(&curr->css, &mem->css);
	else
		ret = (curr == mem);
	css_put(&curr->css);
947 948 949
	return ret;
}

950
static int calc_inactive_ratio(struct mem_cgroup *memcg, unsigned long *present_pages)
951 952 953
{
	unsigned long active;
	unsigned long inactive;
954 955
	unsigned long gb;
	unsigned long inactive_ratio;
956

K
KAMEZAWA Hiroyuki 已提交
957 958
	inactive = mem_cgroup_get_local_zonestat(memcg, LRU_INACTIVE_ANON);
	active = mem_cgroup_get_local_zonestat(memcg, LRU_ACTIVE_ANON);
959

960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986
	gb = (inactive + active) >> (30 - PAGE_SHIFT);
	if (gb)
		inactive_ratio = int_sqrt(10 * gb);
	else
		inactive_ratio = 1;

	if (present_pages) {
		present_pages[0] = inactive;
		present_pages[1] = active;
	}

	return inactive_ratio;
}

int mem_cgroup_inactive_anon_is_low(struct mem_cgroup *memcg)
{
	unsigned long active;
	unsigned long inactive;
	unsigned long present_pages[2];
	unsigned long inactive_ratio;

	inactive_ratio = calc_inactive_ratio(memcg, present_pages);

	inactive = present_pages[0];
	active = present_pages[1];

	if (inactive * inactive_ratio < active)
987 988 989 990 991
		return 1;

	return 0;
}

992 993 994 995 996 997 998 999 1000 1001 1002
int mem_cgroup_inactive_file_is_low(struct mem_cgroup *memcg)
{
	unsigned long active;
	unsigned long inactive;

	inactive = mem_cgroup_get_local_zonestat(memcg, LRU_INACTIVE_FILE);
	active = mem_cgroup_get_local_zonestat(memcg, LRU_ACTIVE_FILE);

	return (active > inactive);
}

1003 1004 1005 1006
unsigned long mem_cgroup_zone_nr_pages(struct mem_cgroup *memcg,
				       struct zone *zone,
				       enum lru_list lru)
{
1007
	int nid = zone_to_nid(zone);
1008 1009 1010 1011 1012 1013
	int zid = zone_idx(zone);
	struct mem_cgroup_per_zone *mz = mem_cgroup_zoneinfo(memcg, nid, zid);

	return MEM_CGROUP_ZSTAT(mz, lru);
}

K
KOSAKI Motohiro 已提交
1014 1015 1016
struct zone_reclaim_stat *mem_cgroup_get_reclaim_stat(struct mem_cgroup *memcg,
						      struct zone *zone)
{
1017
	int nid = zone_to_nid(zone);
K
KOSAKI Motohiro 已提交
1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033
	int zid = zone_idx(zone);
	struct mem_cgroup_per_zone *mz = mem_cgroup_zoneinfo(memcg, nid, zid);

	return &mz->reclaim_stat;
}

struct zone_reclaim_stat *
mem_cgroup_get_reclaim_stat_from_page(struct page *page)
{
	struct page_cgroup *pc;
	struct mem_cgroup_per_zone *mz;

	if (mem_cgroup_disabled())
		return NULL;

	pc = lookup_page_cgroup(page);
1034 1035 1036 1037 1038 1039 1040 1041
	/*
	 * Used bit is set without atomic ops but after smp_wmb().
	 * For making pc->mem_cgroup visible, insert smp_rmb() here.
	 */
	smp_rmb();
	if (!PageCgroupUsed(pc))
		return NULL;

K
KOSAKI Motohiro 已提交
1042 1043 1044 1045 1046 1047 1048
	mz = page_cgroup_zoneinfo(pc);
	if (!mz)
		return NULL;

	return &mz->reclaim_stat;
}

1049 1050 1051 1052 1053
unsigned long mem_cgroup_isolate_pages(unsigned long nr_to_scan,
					struct list_head *dst,
					unsigned long *scanned, int order,
					int mode, struct zone *z,
					struct mem_cgroup *mem_cont,
1054
					int active, int file)
1055 1056 1057 1058 1059 1060
{
	unsigned long nr_taken = 0;
	struct page *page;
	unsigned long scan;
	LIST_HEAD(pc_list);
	struct list_head *src;
1061
	struct page_cgroup *pc, *tmp;
1062
	int nid = zone_to_nid(z);
1063 1064
	int zid = zone_idx(z);
	struct mem_cgroup_per_zone *mz;
1065
	int lru = LRU_FILE * file + active;
1066
	int ret;
1067

1068
	BUG_ON(!mem_cont);
1069
	mz = mem_cgroup_zoneinfo(mem_cont, nid, zid);
1070
	src = &mz->lists[lru];
1071

1072 1073
	scan = 0;
	list_for_each_entry_safe_reverse(pc, tmp, src, lru) {
H
Hugh Dickins 已提交
1074
		if (scan >= nr_to_scan)
1075
			break;
K
KAMEZAWA Hiroyuki 已提交
1076 1077

		page = pc->page;
1078 1079
		if (unlikely(!PageCgroupUsed(pc)))
			continue;
H
Hugh Dickins 已提交
1080
		if (unlikely(!PageLRU(page)))
1081 1082
			continue;

H
Hugh Dickins 已提交
1083
		scan++;
1084 1085 1086
		ret = __isolate_lru_page(page, mode, file);
		switch (ret) {
		case 0:
1087
			list_move(&page->lru, dst);
1088
			mem_cgroup_del_lru(page);
1089
			nr_taken += hpage_nr_pages(page);
1090 1091 1092 1093 1094 1095 1096
			break;
		case -EBUSY:
			/* we don't affect global LRU but rotate in our LRU */
			mem_cgroup_rotate_lru_list(page, page_lru(page));
			break;
		default:
			break;
1097 1098 1099 1100
		}
	}

	*scanned = scan;
1101 1102 1103 1104

	trace_mm_vmscan_memcg_isolate(0, nr_to_scan, scan, nr_taken,
				      0, 0, 0, mode);

1105 1106 1107
	return nr_taken;
}

1108 1109 1110
#define mem_cgroup_from_res_counter(counter, member)	\
	container_of(counter, struct mem_cgroup, member)

1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122
static bool mem_cgroup_check_under_limit(struct mem_cgroup *mem)
{
	if (do_swap_account) {
		if (res_counter_check_under_limit(&mem->res) &&
			res_counter_check_under_limit(&mem->memsw))
			return true;
	} else
		if (res_counter_check_under_limit(&mem->res))
			return true;
	return false;
}

K
KOSAKI Motohiro 已提交
1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138
static unsigned int get_swappiness(struct mem_cgroup *memcg)
{
	struct cgroup *cgrp = memcg->css.cgroup;
	unsigned int swappiness;

	/* root ? */
	if (cgrp->parent == NULL)
		return vm_swappiness;

	spin_lock(&memcg->reclaim_param_lock);
	swappiness = memcg->swappiness;
	spin_unlock(&memcg->reclaim_param_lock);

	return swappiness;
}

1139 1140 1141
static void mem_cgroup_start_move(struct mem_cgroup *mem)
{
	int cpu;
1142 1143 1144 1145

	get_online_cpus();
	spin_lock(&mem->pcp_counter_lock);
	for_each_online_cpu(cpu)
1146
		per_cpu(mem->stat->count[MEM_CGROUP_ON_MOVE], cpu) += 1;
1147 1148 1149
	mem->nocpu_base.count[MEM_CGROUP_ON_MOVE] += 1;
	spin_unlock(&mem->pcp_counter_lock);
	put_online_cpus();
1150 1151 1152 1153 1154 1155 1156 1157 1158 1159

	synchronize_rcu();
}

static void mem_cgroup_end_move(struct mem_cgroup *mem)
{
	int cpu;

	if (!mem)
		return;
1160 1161 1162
	get_online_cpus();
	spin_lock(&mem->pcp_counter_lock);
	for_each_online_cpu(cpu)
1163
		per_cpu(mem->stat->count[MEM_CGROUP_ON_MOVE], cpu) -= 1;
1164 1165 1166
	mem->nocpu_base.count[MEM_CGROUP_ON_MOVE] -= 1;
	spin_unlock(&mem->pcp_counter_lock);
	put_online_cpus();
1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184
}
/*
 * 2 routines for checking "mem" is under move_account() or not.
 *
 * mem_cgroup_stealed() - checking a cgroup is mc.from or not. This is used
 *			  for avoiding race in accounting. If true,
 *			  pc->mem_cgroup may be overwritten.
 *
 * mem_cgroup_under_move() - checking a cgroup is mc.from or mc.to or
 *			  under hierarchy of moving cgroups. This is for
 *			  waiting at hith-memory prressure caused by "move".
 */

static bool mem_cgroup_stealed(struct mem_cgroup *mem)
{
	VM_BUG_ON(!rcu_read_lock_held());
	return this_cpu_read(mem->stat->count[MEM_CGROUP_ON_MOVE]) > 0;
}
1185 1186 1187

static bool mem_cgroup_under_move(struct mem_cgroup *mem)
{
1188 1189
	struct mem_cgroup *from;
	struct mem_cgroup *to;
1190
	bool ret = false;
1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205
	/*
	 * Unlike task_move routines, we access mc.to, mc.from not under
	 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
	 */
	spin_lock(&mc.lock);
	from = mc.from;
	to = mc.to;
	if (!from)
		goto unlock;
	if (from == mem || to == mem
	    || (mem->use_hierarchy && css_is_ancestor(&from->css, &mem->css))
	    || (mem->use_hierarchy && css_is_ancestor(&to->css,	&mem->css)))
		ret = true;
unlock:
	spin_unlock(&mc.lock);
1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224
	return ret;
}

static bool mem_cgroup_wait_acct_move(struct mem_cgroup *mem)
{
	if (mc.moving_task && current != mc.moving_task) {
		if (mem_cgroup_under_move(mem)) {
			DEFINE_WAIT(wait);
			prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
			/* moving charge context might have finished. */
			if (mc.moving_task)
				schedule();
			finish_wait(&mc.waitq, &wait);
			return true;
		}
	}
	return false;
}

1225
/**
1226
 * mem_cgroup_print_oom_info: Called from OOM with tasklist_lock held in read mode.
1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244
 * @memcg: The memory cgroup that went over limit
 * @p: Task that is going to be killed
 *
 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
 * enabled
 */
void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
{
	struct cgroup *task_cgrp;
	struct cgroup *mem_cgrp;
	/*
	 * Need a buffer in BSS, can't rely on allocations. The code relies
	 * on the assumption that OOM is serialized for memory controller.
	 * If this assumption is broken, revisit this code.
	 */
	static char memcg_name[PATH_MAX];
	int ret;

1245
	if (!memcg || !p)
1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291
		return;


	rcu_read_lock();

	mem_cgrp = memcg->css.cgroup;
	task_cgrp = task_cgroup(p, mem_cgroup_subsys_id);

	ret = cgroup_path(task_cgrp, memcg_name, PATH_MAX);
	if (ret < 0) {
		/*
		 * Unfortunately, we are unable to convert to a useful name
		 * But we'll still print out the usage information
		 */
		rcu_read_unlock();
		goto done;
	}
	rcu_read_unlock();

	printk(KERN_INFO "Task in %s killed", memcg_name);

	rcu_read_lock();
	ret = cgroup_path(mem_cgrp, memcg_name, PATH_MAX);
	if (ret < 0) {
		rcu_read_unlock();
		goto done;
	}
	rcu_read_unlock();

	/*
	 * Continues from above, so we don't need an KERN_ level
	 */
	printk(KERN_CONT " as a result of limit of %s\n", memcg_name);
done:

	printk(KERN_INFO "memory: usage %llukB, limit %llukB, failcnt %llu\n",
		res_counter_read_u64(&memcg->res, RES_USAGE) >> 10,
		res_counter_read_u64(&memcg->res, RES_LIMIT) >> 10,
		res_counter_read_u64(&memcg->res, RES_FAILCNT));
	printk(KERN_INFO "memory+swap: usage %llukB, limit %llukB, "
		"failcnt %llu\n",
		res_counter_read_u64(&memcg->memsw, RES_USAGE) >> 10,
		res_counter_read_u64(&memcg->memsw, RES_LIMIT) >> 10,
		res_counter_read_u64(&memcg->memsw, RES_FAILCNT));
}

1292 1293 1294 1295 1296 1297 1298
/*
 * This function returns the number of memcg under hierarchy tree. Returns
 * 1(self count) if no children.
 */
static int mem_cgroup_count_children(struct mem_cgroup *mem)
{
	int num = 0;
K
KAMEZAWA Hiroyuki 已提交
1299 1300 1301 1302
	struct mem_cgroup *iter;

	for_each_mem_cgroup_tree(iter, mem)
		num++;
1303 1304 1305
	return num;
}

D
David Rientjes 已提交
1306 1307 1308 1309 1310 1311 1312 1313
/*
 * Return the memory (and swap, if configured) limit for a memcg.
 */
u64 mem_cgroup_get_limit(struct mem_cgroup *memcg)
{
	u64 limit;
	u64 memsw;

1314 1315 1316
	limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
	limit += total_swap_pages << PAGE_SHIFT;

D
David Rientjes 已提交
1317 1318 1319 1320 1321 1322 1323 1324
	memsw = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
	/*
	 * If memsw is finite and limits the amount of swap space available
	 * to this memcg, return that limit.
	 */
	return min(limit, memsw);
}

1325
/*
K
KAMEZAWA Hiroyuki 已提交
1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367
 * Visit the first child (need not be the first child as per the ordering
 * of the cgroup list, since we track last_scanned_child) of @mem and use
 * that to reclaim free pages from.
 */
static struct mem_cgroup *
mem_cgroup_select_victim(struct mem_cgroup *root_mem)
{
	struct mem_cgroup *ret = NULL;
	struct cgroup_subsys_state *css;
	int nextid, found;

	if (!root_mem->use_hierarchy) {
		css_get(&root_mem->css);
		ret = root_mem;
	}

	while (!ret) {
		rcu_read_lock();
		nextid = root_mem->last_scanned_child + 1;
		css = css_get_next(&mem_cgroup_subsys, nextid, &root_mem->css,
				   &found);
		if (css && css_tryget(css))
			ret = container_of(css, struct mem_cgroup, css);

		rcu_read_unlock();
		/* Updates scanning parameter */
		spin_lock(&root_mem->reclaim_param_lock);
		if (!css) {
			/* this means start scan from ID:1 */
			root_mem->last_scanned_child = 0;
		} else
			root_mem->last_scanned_child = found;
		spin_unlock(&root_mem->reclaim_param_lock);
	}

	return ret;
}

/*
 * Scan the hierarchy if needed to reclaim memory. We remember the last child
 * we reclaimed from, so that we don't end up penalizing one child extensively
 * based on its position in the children list.
1368 1369
 *
 * root_mem is the original ancestor that we've been reclaim from.
K
KAMEZAWA Hiroyuki 已提交
1370 1371 1372
 *
 * We give up and return to the caller when we visit root_mem twice.
 * (other groups can be removed while we're walking....)
1373 1374
 *
 * If shrink==true, for avoiding to free too much, this returns immedieately.
1375 1376
 */
static int mem_cgroup_hierarchical_reclaim(struct mem_cgroup *root_mem,
1377
						struct zone *zone,
1378 1379
						gfp_t gfp_mask,
						unsigned long reclaim_options)
1380
{
K
KAMEZAWA Hiroyuki 已提交
1381 1382 1383
	struct mem_cgroup *victim;
	int ret, total = 0;
	int loop = 0;
1384 1385
	bool noswap = reclaim_options & MEM_CGROUP_RECLAIM_NOSWAP;
	bool shrink = reclaim_options & MEM_CGROUP_RECLAIM_SHRINK;
1386 1387
	bool check_soft = reclaim_options & MEM_CGROUP_RECLAIM_SOFT;
	unsigned long excess = mem_cgroup_get_excess(root_mem);
K
KAMEZAWA Hiroyuki 已提交
1388

1389 1390 1391 1392
	/* If memsw_is_minimum==1, swap-out is of-no-use. */
	if (root_mem->memsw_is_minimum)
		noswap = true;

1393
	while (1) {
K
KAMEZAWA Hiroyuki 已提交
1394
		victim = mem_cgroup_select_victim(root_mem);
1395
		if (victim == root_mem) {
K
KAMEZAWA Hiroyuki 已提交
1396
			loop++;
1397 1398
			if (loop >= 1)
				drain_all_stock_async();
1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421
			if (loop >= 2) {
				/*
				 * If we have not been able to reclaim
				 * anything, it might because there are
				 * no reclaimable pages under this hierarchy
				 */
				if (!check_soft || !total) {
					css_put(&victim->css);
					break;
				}
				/*
				 * We want to do more targetted reclaim.
				 * excess >> 2 is not to excessive so as to
				 * reclaim too much, nor too less that we keep
				 * coming back to reclaim from this cgroup
				 */
				if (total >= (excess >> 2) ||
					(loop > MEM_CGROUP_MAX_RECLAIM_LOOPS)) {
					css_put(&victim->css);
					break;
				}
			}
		}
1422
		if (!mem_cgroup_local_usage(victim)) {
K
KAMEZAWA Hiroyuki 已提交
1423 1424
			/* this cgroup's local usage == 0 */
			css_put(&victim->css);
1425 1426
			continue;
		}
K
KAMEZAWA Hiroyuki 已提交
1427
		/* we use swappiness of local cgroup */
1428 1429
		if (check_soft)
			ret = mem_cgroup_shrink_node_zone(victim, gfp_mask,
1430
				noswap, get_swappiness(victim), zone);
1431 1432 1433
		else
			ret = try_to_free_mem_cgroup_pages(victim, gfp_mask,
						noswap, get_swappiness(victim));
K
KAMEZAWA Hiroyuki 已提交
1434
		css_put(&victim->css);
1435 1436 1437 1438 1439 1440 1441
		/*
		 * At shrinking usage, we can't check we should stop here or
		 * reclaim more. It's depends on callers. last_scanned_child
		 * will work enough for keeping fairness under tree.
		 */
		if (shrink)
			return ret;
K
KAMEZAWA Hiroyuki 已提交
1442
		total += ret;
1443 1444 1445 1446
		if (check_soft) {
			if (res_counter_check_under_soft_limit(&root_mem->res))
				return total;
		} else if (mem_cgroup_check_under_limit(root_mem))
K
KAMEZAWA Hiroyuki 已提交
1447
			return 1 + total;
1448
	}
K
KAMEZAWA Hiroyuki 已提交
1449
	return total;
1450 1451
}

K
KAMEZAWA Hiroyuki 已提交
1452 1453 1454 1455 1456 1457
/*
 * Check OOM-Killer is already running under our hierarchy.
 * If someone is running, return false.
 */
static bool mem_cgroup_oom_lock(struct mem_cgroup *mem)
{
K
KAMEZAWA Hiroyuki 已提交
1458 1459
	int x, lock_count = 0;
	struct mem_cgroup *iter;
1460

K
KAMEZAWA Hiroyuki 已提交
1461 1462 1463 1464
	for_each_mem_cgroup_tree(iter, mem) {
		x = atomic_inc_return(&iter->oom_lock);
		lock_count = max(x, lock_count);
	}
K
KAMEZAWA Hiroyuki 已提交
1465 1466 1467 1468

	if (lock_count == 1)
		return true;
	return false;
1469
}
1470

K
KAMEZAWA Hiroyuki 已提交
1471
static int mem_cgroup_oom_unlock(struct mem_cgroup *mem)
1472
{
K
KAMEZAWA Hiroyuki 已提交
1473 1474
	struct mem_cgroup *iter;

K
KAMEZAWA Hiroyuki 已提交
1475 1476 1477 1478 1479
	/*
	 * When a new child is created while the hierarchy is under oom,
	 * mem_cgroup_oom_lock() may not be called. We have to use
	 * atomic_add_unless() here.
	 */
K
KAMEZAWA Hiroyuki 已提交
1480 1481
	for_each_mem_cgroup_tree(iter, mem)
		atomic_add_unless(&iter->oom_lock, -1, 0);
1482 1483 1484
	return 0;
}

K
KAMEZAWA Hiroyuki 已提交
1485 1486 1487 1488

static DEFINE_MUTEX(memcg_oom_mutex);
static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);

K
KAMEZAWA Hiroyuki 已提交
1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524
struct oom_wait_info {
	struct mem_cgroup *mem;
	wait_queue_t	wait;
};

static int memcg_oom_wake_function(wait_queue_t *wait,
	unsigned mode, int sync, void *arg)
{
	struct mem_cgroup *wake_mem = (struct mem_cgroup *)arg;
	struct oom_wait_info *oom_wait_info;

	oom_wait_info = container_of(wait, struct oom_wait_info, wait);

	if (oom_wait_info->mem == wake_mem)
		goto wakeup;
	/* if no hierarchy, no match */
	if (!oom_wait_info->mem->use_hierarchy || !wake_mem->use_hierarchy)
		return 0;
	/*
	 * Both of oom_wait_info->mem and wake_mem are stable under us.
	 * Then we can use css_is_ancestor without taking care of RCU.
	 */
	if (!css_is_ancestor(&oom_wait_info->mem->css, &wake_mem->css) &&
	    !css_is_ancestor(&wake_mem->css, &oom_wait_info->mem->css))
		return 0;

wakeup:
	return autoremove_wake_function(wait, mode, sync, arg);
}

static void memcg_wakeup_oom(struct mem_cgroup *mem)
{
	/* for filtering, pass "mem" as argument. */
	__wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, mem);
}

1525 1526
static void memcg_oom_recover(struct mem_cgroup *mem)
{
1527
	if (mem && atomic_read(&mem->oom_lock))
1528 1529 1530
		memcg_wakeup_oom(mem);
}

K
KAMEZAWA Hiroyuki 已提交
1531 1532 1533 1534
/*
 * try to call OOM killer. returns false if we should exit memory-reclaim loop.
 */
bool mem_cgroup_handle_oom(struct mem_cgroup *mem, gfp_t mask)
1535
{
K
KAMEZAWA Hiroyuki 已提交
1536
	struct oom_wait_info owait;
1537
	bool locked, need_to_kill;
K
KAMEZAWA Hiroyuki 已提交
1538

K
KAMEZAWA Hiroyuki 已提交
1539 1540 1541 1542 1543
	owait.mem = mem;
	owait.wait.flags = 0;
	owait.wait.func = memcg_oom_wake_function;
	owait.wait.private = current;
	INIT_LIST_HEAD(&owait.wait.task_list);
1544
	need_to_kill = true;
K
KAMEZAWA Hiroyuki 已提交
1545 1546 1547 1548 1549 1550 1551 1552
	/* At first, try to OOM lock hierarchy under mem.*/
	mutex_lock(&memcg_oom_mutex);
	locked = mem_cgroup_oom_lock(mem);
	/*
	 * Even if signal_pending(), we can't quit charge() loop without
	 * accounting. So, UNINTERRUPTIBLE is appropriate. But SIGKILL
	 * under OOM is always welcomed, use TASK_KILLABLE here.
	 */
1553 1554 1555 1556
	prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
	if (!locked || mem->oom_kill_disable)
		need_to_kill = false;
	if (locked)
K
KAMEZAWA Hiroyuki 已提交
1557
		mem_cgroup_oom_notify(mem);
K
KAMEZAWA Hiroyuki 已提交
1558 1559
	mutex_unlock(&memcg_oom_mutex);

1560 1561
	if (need_to_kill) {
		finish_wait(&memcg_oom_waitq, &owait.wait);
K
KAMEZAWA Hiroyuki 已提交
1562
		mem_cgroup_out_of_memory(mem, mask);
1563
	} else {
K
KAMEZAWA Hiroyuki 已提交
1564
		schedule();
K
KAMEZAWA Hiroyuki 已提交
1565
		finish_wait(&memcg_oom_waitq, &owait.wait);
K
KAMEZAWA Hiroyuki 已提交
1566 1567 1568
	}
	mutex_lock(&memcg_oom_mutex);
	mem_cgroup_oom_unlock(mem);
K
KAMEZAWA Hiroyuki 已提交
1569
	memcg_wakeup_oom(mem);
K
KAMEZAWA Hiroyuki 已提交
1570 1571 1572 1573 1574 1575 1576
	mutex_unlock(&memcg_oom_mutex);

	if (test_thread_flag(TIF_MEMDIE) || fatal_signal_pending(current))
		return false;
	/* Give chance to dying process */
	schedule_timeout(1);
	return true;
1577 1578
}

1579 1580 1581
/*
 * Currently used to update mapped file statistics, but the routine can be
 * generalized to update other statistics as well.
1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600
 *
 * Notes: Race condition
 *
 * We usually use page_cgroup_lock() for accessing page_cgroup member but
 * it tends to be costly. But considering some conditions, we doesn't need
 * to do so _always_.
 *
 * Considering "charge", lock_page_cgroup() is not required because all
 * file-stat operations happen after a page is attached to radix-tree. There
 * are no race with "charge".
 *
 * Considering "uncharge", we know that memcg doesn't clear pc->mem_cgroup
 * at "uncharge" intentionally. So, we always see valid pc->mem_cgroup even
 * if there are race with "uncharge". Statistics itself is properly handled
 * by flags.
 *
 * Considering "move", this is an only case we see a race. To make the race
 * small, we check MEM_CGROUP_ON_MOVE percpu value and detect there are
 * possibility of race condition. If there is, we take a lock.
1601
 */
1602

1603 1604
void mem_cgroup_update_page_stat(struct page *page,
				 enum mem_cgroup_page_stat_item idx, int val)
1605 1606
{
	struct mem_cgroup *mem;
1607 1608
	struct page_cgroup *pc = lookup_page_cgroup(page);
	bool need_unlock = false;
1609
	unsigned long uninitialized_var(flags);
1610 1611 1612 1613

	if (unlikely(!pc))
		return;

1614
	rcu_read_lock();
1615
	mem = pc->mem_cgroup;
1616 1617 1618
	if (unlikely(!mem || !PageCgroupUsed(pc)))
		goto out;
	/* pc->mem_cgroup is unstable ? */
1619
	if (unlikely(mem_cgroup_stealed(mem)) || PageTransHuge(page)) {
1620
		/* take a lock against to access pc->mem_cgroup */
1621
		move_lock_page_cgroup(pc, &flags);
1622 1623 1624 1625 1626
		need_unlock = true;
		mem = pc->mem_cgroup;
		if (!mem || !PageCgroupUsed(pc))
			goto out;
	}
1627 1628

	switch (idx) {
1629
	case MEMCG_NR_FILE_MAPPED:
1630 1631 1632
		if (val > 0)
			SetPageCgroupFileMapped(pc);
		else if (!page_mapped(page))
1633
			ClearPageCgroupFileMapped(pc);
1634
		idx = MEM_CGROUP_STAT_FILE_MAPPED;
1635 1636 1637
		break;
	default:
		BUG();
1638
	}
1639

1640 1641
	this_cpu_add(mem->stat->count[idx], val);

1642 1643
out:
	if (unlikely(need_unlock))
1644
		move_unlock_page_cgroup(pc, &flags);
1645 1646
	rcu_read_unlock();
	return;
1647
}
1648
EXPORT_SYMBOL(mem_cgroup_update_page_stat);
1649

1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710
/*
 * size of first charge trial. "32" comes from vmscan.c's magic value.
 * TODO: maybe necessary to use big numbers in big irons.
 */
#define CHARGE_SIZE	(32 * PAGE_SIZE)
struct memcg_stock_pcp {
	struct mem_cgroup *cached; /* this never be root cgroup */
	int charge;
	struct work_struct work;
};
static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
static atomic_t memcg_drain_count;

/*
 * Try to consume stocked charge on this cpu. If success, PAGE_SIZE is consumed
 * from local stock and true is returned. If the stock is 0 or charges from a
 * cgroup which is not current target, returns false. This stock will be
 * refilled.
 */
static bool consume_stock(struct mem_cgroup *mem)
{
	struct memcg_stock_pcp *stock;
	bool ret = true;

	stock = &get_cpu_var(memcg_stock);
	if (mem == stock->cached && stock->charge)
		stock->charge -= PAGE_SIZE;
	else /* need to call res_counter_charge */
		ret = false;
	put_cpu_var(memcg_stock);
	return ret;
}

/*
 * Returns stocks cached in percpu to res_counter and reset cached information.
 */
static void drain_stock(struct memcg_stock_pcp *stock)
{
	struct mem_cgroup *old = stock->cached;

	if (stock->charge) {
		res_counter_uncharge(&old->res, stock->charge);
		if (do_swap_account)
			res_counter_uncharge(&old->memsw, stock->charge);
	}
	stock->cached = NULL;
	stock->charge = 0;
}

/*
 * This must be called under preempt disabled or must be called by
 * a thread which is pinned to local cpu.
 */
static void drain_local_stock(struct work_struct *dummy)
{
	struct memcg_stock_pcp *stock = &__get_cpu_var(memcg_stock);
	drain_stock(stock);
}

/*
 * Cache charges(val) which is from res_counter, to local per_cpu area.
1711
 * This will be consumed by consume_stock() function, later.
1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762
 */
static void refill_stock(struct mem_cgroup *mem, int val)
{
	struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);

	if (stock->cached != mem) { /* reset if necessary */
		drain_stock(stock);
		stock->cached = mem;
	}
	stock->charge += val;
	put_cpu_var(memcg_stock);
}

/*
 * Tries to drain stocked charges in other cpus. This function is asynchronous
 * and just put a work per cpu for draining localy on each cpu. Caller can
 * expects some charges will be back to res_counter later but cannot wait for
 * it.
 */
static void drain_all_stock_async(void)
{
	int cpu;
	/* This function is for scheduling "drain" in asynchronous way.
	 * The result of "drain" is not directly handled by callers. Then,
	 * if someone is calling drain, we don't have to call drain more.
	 * Anyway, WORK_STRUCT_PENDING check in queue_work_on() will catch if
	 * there is a race. We just do loose check here.
	 */
	if (atomic_read(&memcg_drain_count))
		return;
	/* Notify other cpus that system-wide "drain" is running */
	atomic_inc(&memcg_drain_count);
	get_online_cpus();
	for_each_online_cpu(cpu) {
		struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
		schedule_work_on(cpu, &stock->work);
	}
 	put_online_cpus();
	atomic_dec(&memcg_drain_count);
	/* We don't wait for flush_work */
}

/* This is a synchronous drain interface. */
static void drain_all_stock_sync(void)
{
	/* called when force_empty is called */
	atomic_inc(&memcg_drain_count);
	schedule_on_each_cpu(drain_local_stock);
	atomic_dec(&memcg_drain_count);
}

1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777
/*
 * This function drains percpu counter value from DEAD cpu and
 * move it to local cpu. Note that this function can be preempted.
 */
static void mem_cgroup_drain_pcp_counter(struct mem_cgroup *mem, int cpu)
{
	int i;

	spin_lock(&mem->pcp_counter_lock);
	for (i = 0; i < MEM_CGROUP_STAT_DATA; i++) {
		s64 x = per_cpu(mem->stat->count[i], cpu);

		per_cpu(mem->stat->count[i], cpu) = 0;
		mem->nocpu_base.count[i] += x;
	}
1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788
	/* need to clear ON_MOVE value, works as a kind of lock. */
	per_cpu(mem->stat->count[MEM_CGROUP_ON_MOVE], cpu) = 0;
	spin_unlock(&mem->pcp_counter_lock);
}

static void synchronize_mem_cgroup_on_move(struct mem_cgroup *mem, int cpu)
{
	int idx = MEM_CGROUP_ON_MOVE;

	spin_lock(&mem->pcp_counter_lock);
	per_cpu(mem->stat->count[idx], cpu) = mem->nocpu_base.count[idx];
1789 1790 1791 1792
	spin_unlock(&mem->pcp_counter_lock);
}

static int __cpuinit memcg_cpu_hotplug_callback(struct notifier_block *nb,
1793 1794 1795 1796 1797
					unsigned long action,
					void *hcpu)
{
	int cpu = (unsigned long)hcpu;
	struct memcg_stock_pcp *stock;
1798
	struct mem_cgroup *iter;
1799

1800 1801 1802 1803 1804 1805
	if ((action == CPU_ONLINE)) {
		for_each_mem_cgroup_all(iter)
			synchronize_mem_cgroup_on_move(iter, cpu);
		return NOTIFY_OK;
	}

1806
	if ((action != CPU_DEAD) || action != CPU_DEAD_FROZEN)
1807
		return NOTIFY_OK;
1808 1809 1810 1811

	for_each_mem_cgroup_all(iter)
		mem_cgroup_drain_pcp_counter(iter, cpu);

1812 1813 1814 1815 1816
	stock = &per_cpu(memcg_stock, cpu);
	drain_stock(stock);
	return NOTIFY_OK;
}

1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883

/* See __mem_cgroup_try_charge() for details */
enum {
	CHARGE_OK,		/* success */
	CHARGE_RETRY,		/* need to retry but retry is not bad */
	CHARGE_NOMEM,		/* we can't do more. return -ENOMEM */
	CHARGE_WOULDBLOCK,	/* GFP_WAIT wasn't set and no enough res. */
	CHARGE_OOM_DIE,		/* the current is killed because of OOM */
};

static int __mem_cgroup_do_charge(struct mem_cgroup *mem, gfp_t gfp_mask,
				int csize, bool oom_check)
{
	struct mem_cgroup *mem_over_limit;
	struct res_counter *fail_res;
	unsigned long flags = 0;
	int ret;

	ret = res_counter_charge(&mem->res, csize, &fail_res);

	if (likely(!ret)) {
		if (!do_swap_account)
			return CHARGE_OK;
		ret = res_counter_charge(&mem->memsw, csize, &fail_res);
		if (likely(!ret))
			return CHARGE_OK;

		mem_over_limit = mem_cgroup_from_res_counter(fail_res, memsw);
		flags |= MEM_CGROUP_RECLAIM_NOSWAP;
	} else
		mem_over_limit = mem_cgroup_from_res_counter(fail_res, res);

	if (csize > PAGE_SIZE) /* change csize and retry */
		return CHARGE_RETRY;

	if (!(gfp_mask & __GFP_WAIT))
		return CHARGE_WOULDBLOCK;

	ret = mem_cgroup_hierarchical_reclaim(mem_over_limit, NULL,
					gfp_mask, flags);
	/*
	 * try_to_free_mem_cgroup_pages() might not give us a full
	 * picture of reclaim. Some pages are reclaimed and might be
	 * moved to swap cache or just unmapped from the cgroup.
	 * Check the limit again to see if the reclaim reduced the
	 * current usage of the cgroup before giving up
	 */
	if (ret || mem_cgroup_check_under_limit(mem_over_limit))
		return CHARGE_RETRY;

	/*
	 * At task move, charge accounts can be doubly counted. So, it's
	 * better to wait until the end of task_move if something is going on.
	 */
	if (mem_cgroup_wait_acct_move(mem_over_limit))
		return CHARGE_RETRY;

	/* If we don't need to call oom-killer at el, return immediately */
	if (!oom_check)
		return CHARGE_NOMEM;
	/* check OOM */
	if (!mem_cgroup_handle_oom(mem_over_limit, gfp_mask))
		return CHARGE_OOM_DIE;

	return CHARGE_RETRY;
}

1884 1885 1886
/*
 * Unlike exported interface, "oom" parameter is added. if oom==true,
 * oom-killer can be invoked.
1887
 */
1888
static int __mem_cgroup_try_charge(struct mm_struct *mm,
A
Andrea Arcangeli 已提交
1889 1890 1891
				   gfp_t gfp_mask,
				   struct mem_cgroup **memcg, bool oom,
				   int page_size)
1892
{
1893 1894 1895
	int nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
	struct mem_cgroup *mem = NULL;
	int ret;
A
Andrea Arcangeli 已提交
1896
	int csize = max(CHARGE_SIZE, (unsigned long) page_size);
1897

K
KAMEZAWA Hiroyuki 已提交
1898 1899 1900 1901 1902 1903 1904 1905
	/*
	 * Unlike gloval-vm's OOM-kill, we're not in memory shortage
	 * in system level. So, allow to go ahead dying process in addition to
	 * MEMDIE process.
	 */
	if (unlikely(test_thread_flag(TIF_MEMDIE)
		     || fatal_signal_pending(current)))
		goto bypass;
1906

1907
	/*
1908 1909
	 * We always charge the cgroup the mm_struct belongs to.
	 * The mm_struct's mem_cgroup changes on task migration if the
1910 1911 1912
	 * thread group leader migrates. It's possible that mm is not
	 * set, if so charge the init_mm (happens for pagecache usage).
	 */
K
KAMEZAWA Hiroyuki 已提交
1913 1914 1915 1916
	if (!*memcg && !mm)
		goto bypass;
again:
	if (*memcg) { /* css should be a valid one */
1917
		mem = *memcg;
K
KAMEZAWA Hiroyuki 已提交
1918 1919 1920
		VM_BUG_ON(css_is_removed(&mem->css));
		if (mem_cgroup_is_root(mem))
			goto done;
A
Andrea Arcangeli 已提交
1921
		if (page_size == PAGE_SIZE && consume_stock(mem))
K
KAMEZAWA Hiroyuki 已提交
1922
			goto done;
1923 1924
		css_get(&mem->css);
	} else {
K
KAMEZAWA Hiroyuki 已提交
1925
		struct task_struct *p;
1926

K
KAMEZAWA Hiroyuki 已提交
1927 1928 1929
		rcu_read_lock();
		p = rcu_dereference(mm->owner);
		/*
1930 1931 1932 1933 1934 1935 1936 1937
		 * Because we don't have task_lock(), "p" can exit.
		 * In that case, "mem" can point to root or p can be NULL with
		 * race with swapoff. Then, we have small risk of mis-accouning.
		 * But such kind of mis-account by race always happens because
		 * we don't have cgroup_mutex(). It's overkill and we allo that
		 * small race, here.
		 * (*) swapoff at el will charge against mm-struct not against
		 * task-struct. So, mm->owner can be NULL.
K
KAMEZAWA Hiroyuki 已提交
1938 1939
		 */
		mem = mem_cgroup_from_task(p);
1940
		if (!mem || mem_cgroup_is_root(mem)) {
K
KAMEZAWA Hiroyuki 已提交
1941 1942 1943
			rcu_read_unlock();
			goto done;
		}
A
Andrea Arcangeli 已提交
1944
		if (page_size == PAGE_SIZE && consume_stock(mem)) {
K
KAMEZAWA Hiroyuki 已提交
1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962
			/*
			 * It seems dagerous to access memcg without css_get().
			 * But considering how consume_stok works, it's not
			 * necessary. If consume_stock success, some charges
			 * from this memcg are cached on this cpu. So, we
			 * don't need to call css_get()/css_tryget() before
			 * calling consume_stock().
			 */
			rcu_read_unlock();
			goto done;
		}
		/* after here, we may be blocked. we need to get refcnt */
		if (!css_tryget(&mem->css)) {
			rcu_read_unlock();
			goto again;
		}
		rcu_read_unlock();
	}
1963

1964 1965
	do {
		bool oom_check;
1966

1967
		/* If killed, bypass charge */
K
KAMEZAWA Hiroyuki 已提交
1968 1969
		if (fatal_signal_pending(current)) {
			css_put(&mem->css);
1970
			goto bypass;
K
KAMEZAWA Hiroyuki 已提交
1971
		}
1972

1973 1974 1975 1976
		oom_check = false;
		if (oom && !nr_oom_retries) {
			oom_check = true;
			nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
1977
		}
1978

1979
		ret = __mem_cgroup_do_charge(mem, gfp_mask, csize, oom_check);
1980

1981 1982 1983 1984
		switch (ret) {
		case CHARGE_OK:
			break;
		case CHARGE_RETRY: /* not in OOM situation but retry */
A
Andrea Arcangeli 已提交
1985
			csize = page_size;
K
KAMEZAWA Hiroyuki 已提交
1986 1987 1988
			css_put(&mem->css);
			mem = NULL;
			goto again;
1989
		case CHARGE_WOULDBLOCK: /* !__GFP_WAIT */
K
KAMEZAWA Hiroyuki 已提交
1990
			css_put(&mem->css);
1991 1992
			goto nomem;
		case CHARGE_NOMEM: /* OOM routine works */
K
KAMEZAWA Hiroyuki 已提交
1993 1994
			if (!oom) {
				css_put(&mem->css);
K
KAMEZAWA Hiroyuki 已提交
1995
				goto nomem;
K
KAMEZAWA Hiroyuki 已提交
1996
			}
1997 1998 1999 2000
			/* If oom, we never return -ENOMEM */
			nr_oom_retries--;
			break;
		case CHARGE_OOM_DIE: /* Killed by OOM Killer */
K
KAMEZAWA Hiroyuki 已提交
2001
			css_put(&mem->css);
K
KAMEZAWA Hiroyuki 已提交
2002
			goto bypass;
2003
		}
2004 2005
	} while (ret != CHARGE_OK);

A
Andrea Arcangeli 已提交
2006 2007
	if (csize > page_size)
		refill_stock(mem, csize - page_size);
K
KAMEZAWA Hiroyuki 已提交
2008
	css_put(&mem->css);
2009
done:
K
KAMEZAWA Hiroyuki 已提交
2010
	*memcg = mem;
2011 2012
	return 0;
nomem:
K
KAMEZAWA Hiroyuki 已提交
2013
	*memcg = NULL;
2014
	return -ENOMEM;
K
KAMEZAWA Hiroyuki 已提交
2015 2016 2017
bypass:
	*memcg = NULL;
	return 0;
2018
}
2019

2020 2021 2022 2023 2024
/*
 * Somemtimes we have to undo a charge we got by try_charge().
 * This function is for that and do uncharge, put css's refcnt.
 * gotten by try_charge().
 */
2025 2026
static void __mem_cgroup_cancel_charge(struct mem_cgroup *mem,
							unsigned long count)
2027 2028
{
	if (!mem_cgroup_is_root(mem)) {
2029
		res_counter_uncharge(&mem->res, PAGE_SIZE * count);
2030
		if (do_swap_account)
2031
			res_counter_uncharge(&mem->memsw, PAGE_SIZE * count);
2032
	}
2033 2034
}

A
Andrea Arcangeli 已提交
2035 2036
static void mem_cgroup_cancel_charge(struct mem_cgroup *mem,
				     int page_size)
2037
{
A
Andrea Arcangeli 已提交
2038
	__mem_cgroup_cancel_charge(mem, page_size >> PAGE_SHIFT);
2039 2040
}

2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059
/*
 * A helper function to get mem_cgroup from ID. must be called under
 * rcu_read_lock(). The caller must check css_is_removed() or some if
 * it's concern. (dropping refcnt from swap can be called against removed
 * memcg.)
 */
static struct mem_cgroup *mem_cgroup_lookup(unsigned short id)
{
	struct cgroup_subsys_state *css;

	/* ID 0 is unused ID */
	if (!id)
		return NULL;
	css = css_lookup(&mem_cgroup_subsys, id);
	if (!css)
		return NULL;
	return container_of(css, struct mem_cgroup, css);
}

2060
struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page)
2061
{
2062
	struct mem_cgroup *mem = NULL;
2063
	struct page_cgroup *pc;
2064
	unsigned short id;
2065 2066
	swp_entry_t ent;

2067 2068 2069
	VM_BUG_ON(!PageLocked(page));

	pc = lookup_page_cgroup(page);
2070
	lock_page_cgroup(pc);
2071
	if (PageCgroupUsed(pc)) {
2072
		mem = pc->mem_cgroup;
2073 2074
		if (mem && !css_tryget(&mem->css))
			mem = NULL;
2075
	} else if (PageSwapCache(page)) {
2076
		ent.val = page_private(page);
2077 2078 2079 2080 2081 2082
		id = lookup_swap_cgroup(ent);
		rcu_read_lock();
		mem = mem_cgroup_lookup(id);
		if (mem && !css_tryget(&mem->css))
			mem = NULL;
		rcu_read_unlock();
2083
	}
2084
	unlock_page_cgroup(pc);
2085 2086 2087
	return mem;
}

2088 2089 2090 2091
static void __mem_cgroup_commit_charge(struct mem_cgroup *mem,
				       struct page_cgroup *pc,
				       enum charge_type ctype,
				       int page_size)
2092
{
2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108
	int nr_pages = page_size >> PAGE_SHIFT;

	/* try_charge() can return NULL to *memcg, taking care of it. */
	if (!mem)
		return;

	lock_page_cgroup(pc);
	if (unlikely(PageCgroupUsed(pc))) {
		unlock_page_cgroup(pc);
		mem_cgroup_cancel_charge(mem, page_size);
		return;
	}
	/*
	 * we don't need page_cgroup_lock about tail pages, becase they are not
	 * accessed by any other context at this point.
	 */
2109
	pc->mem_cgroup = mem;
2110 2111 2112 2113 2114 2115 2116
	/*
	 * We access a page_cgroup asynchronously without lock_page_cgroup().
	 * Especially when a page_cgroup is taken from a page, pc->mem_cgroup
	 * is accessed after testing USED bit. To make pc->mem_cgroup visible
	 * before USED bit, we need memory barrier here.
	 * See mem_cgroup_add_lru_list(), etc.
 	 */
K
KAMEZAWA Hiroyuki 已提交
2117
	smp_wmb();
2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130
	switch (ctype) {
	case MEM_CGROUP_CHARGE_TYPE_CACHE:
	case MEM_CGROUP_CHARGE_TYPE_SHMEM:
		SetPageCgroupCache(pc);
		SetPageCgroupUsed(pc);
		break;
	case MEM_CGROUP_CHARGE_TYPE_MAPPED:
		ClearPageCgroupCache(pc);
		SetPageCgroupUsed(pc);
		break;
	default:
		break;
	}
2131

2132
	mem_cgroup_charge_statistics(mem, PageCgroupCache(pc), nr_pages);
2133
	unlock_page_cgroup(pc);
2134 2135 2136 2137 2138
	/*
	 * "charge_statistics" updated event counter. Then, check it.
	 * Insert ancestor (and ancestor's ancestors), to softlimit RB-tree.
	 * if they exceeds softlimit.
	 */
2139
	memcg_check_events(mem, pc->page);
2140
}
2141

2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156
#ifdef CONFIG_TRANSPARENT_HUGEPAGE

#define PCGF_NOCOPY_AT_SPLIT ((1 << PCG_LOCK) | (1 << PCG_MOVE_LOCK) |\
			(1 << PCG_ACCT_LRU) | (1 << PCG_MIGRATION))
/*
 * Because tail pages are not marked as "used", set it. We're under
 * zone->lru_lock, 'splitting on pmd' and compund_lock.
 */
void mem_cgroup_split_huge_fixup(struct page *head, struct page *tail)
{
	struct page_cgroup *head_pc = lookup_page_cgroup(head);
	struct page_cgroup *tail_pc = lookup_page_cgroup(tail);
	unsigned long flags;

	/*
2157
	 * We have no races with charge/uncharge but will have races with
2158 2159 2160 2161 2162 2163
	 * page state accounting.
	 */
	move_lock_page_cgroup(head_pc, &flags);

	tail_pc->mem_cgroup = head_pc->mem_cgroup;
	smp_wmb(); /* see __commit_charge() */
2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176
	if (PageCgroupAcctLRU(head_pc)) {
		enum lru_list lru;
		struct mem_cgroup_per_zone *mz;

		/*
		 * LRU flags cannot be copied because we need to add tail
		 *.page to LRU by generic call and our hook will be called.
		 * We hold lru_lock, then, reduce counter directly.
		 */
		lru = page_lru(head);
		mz = page_cgroup_zoneinfo(head_pc);
		MEM_CGROUP_ZSTAT(mz, lru) -= 1;
	}
2177 2178 2179 2180 2181
	tail_pc->flags = head_pc->flags & ~PCGF_NOCOPY_AT_SPLIT;
	move_unlock_page_cgroup(head_pc, &flags);
}
#endif

2182
/**
2183
 * __mem_cgroup_move_account - move account of the page
2184 2185 2186
 * @pc:	page_cgroup of the page.
 * @from: mem_cgroup which the page is moved from.
 * @to:	mem_cgroup which the page is moved to. @from != @to.
2187
 * @uncharge: whether we should call uncharge and css_put against @from.
2188 2189
 *
 * The caller must confirm following.
K
KAMEZAWA Hiroyuki 已提交
2190
 * - page is not on LRU (isolate_page() is useful.)
2191
 * - the pc is locked, used, and ->mem_cgroup points to @from.
2192
 *
2193 2194 2195 2196
 * This function doesn't do "charge" nor css_get to new cgroup. It should be
 * done by a caller(__mem_cgroup_try_charge would be usefull). If @uncharge is
 * true, this function does "uncharge" from old cgroup, but it doesn't if
 * @uncharge is false, so a caller should do "uncharge".
2197 2198
 */

2199
static void __mem_cgroup_move_account(struct page_cgroup *pc,
2200
	struct mem_cgroup *from, struct mem_cgroup *to, bool uncharge)
2201 2202
{
	VM_BUG_ON(from == to);
K
KAMEZAWA Hiroyuki 已提交
2203
	VM_BUG_ON(PageLRU(pc->page));
2204
	VM_BUG_ON(!page_is_cgroup_locked(pc));
2205 2206
	VM_BUG_ON(!PageCgroupUsed(pc));
	VM_BUG_ON(pc->mem_cgroup != from);
2207

2208
	if (PageCgroupFileMapped(pc)) {
2209 2210 2211 2212 2213
		/* Update mapped_file data for mem_cgroup */
		preempt_disable();
		__this_cpu_dec(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
		__this_cpu_inc(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
		preempt_enable();
2214
	}
2215
	mem_cgroup_charge_statistics(from, PageCgroupCache(pc), -1);
2216 2217
	if (uncharge)
		/* This is not "cancel", but cancel_charge does all we need. */
A
Andrea Arcangeli 已提交
2218
		mem_cgroup_cancel_charge(from, PAGE_SIZE);
2219

2220
	/* caller should have done css_get */
K
KAMEZAWA Hiroyuki 已提交
2221
	pc->mem_cgroup = to;
2222
	mem_cgroup_charge_statistics(to, PageCgroupCache(pc), 1);
2223 2224 2225
	/*
	 * We charges against "to" which may not have any tasks. Then, "to"
	 * can be under rmdir(). But in current implementation, caller of
2226 2227 2228
	 * this function is just force_empty() and move charge, so it's
	 * garanteed that "to" is never removed. So, we don't check rmdir
	 * status here.
2229
	 */
2230 2231 2232 2233 2234 2235 2236
}

/*
 * check whether the @pc is valid for moving account and call
 * __mem_cgroup_move_account()
 */
static int mem_cgroup_move_account(struct page_cgroup *pc,
2237
		struct mem_cgroup *from, struct mem_cgroup *to, bool uncharge)
2238 2239
{
	int ret = -EINVAL;
2240 2241
	unsigned long flags;

2242 2243
	lock_page_cgroup(pc);
	if (PageCgroupUsed(pc) && pc->mem_cgroup == from) {
2244
		move_lock_page_cgroup(pc, &flags);
2245
		__mem_cgroup_move_account(pc, from, to, uncharge);
2246
		move_unlock_page_cgroup(pc, &flags);
2247 2248 2249
		ret = 0;
	}
	unlock_page_cgroup(pc);
2250 2251 2252 2253 2254
	/*
	 * check events
	 */
	memcg_check_events(to, pc->page);
	memcg_check_events(from, pc->page);
2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265
	return ret;
}

/*
 * move charges to its parent.
 */

static int mem_cgroup_move_parent(struct page_cgroup *pc,
				  struct mem_cgroup *child,
				  gfp_t gfp_mask)
{
K
KAMEZAWA Hiroyuki 已提交
2266
	struct page *page = pc->page;
2267 2268 2269 2270 2271 2272 2273 2274 2275
	struct cgroup *cg = child->css.cgroup;
	struct cgroup *pcg = cg->parent;
	struct mem_cgroup *parent;
	int ret;

	/* Is ROOT ? */
	if (!pcg)
		return -EINVAL;

2276 2277 2278 2279 2280
	ret = -EBUSY;
	if (!get_page_unless_zero(page))
		goto out;
	if (isolate_lru_page(page))
		goto put;
K
KAMEZAWA Hiroyuki 已提交
2281

2282
	parent = mem_cgroup_from_cont(pcg);
A
Andrea Arcangeli 已提交
2283 2284
	ret = __mem_cgroup_try_charge(NULL, gfp_mask, &parent, false,
				      PAGE_SIZE);
2285
	if (ret || !parent)
2286
		goto put_back;
2287

2288 2289
	ret = mem_cgroup_move_account(pc, child, parent, true);
	if (ret)
A
Andrea Arcangeli 已提交
2290
		mem_cgroup_cancel_charge(parent, PAGE_SIZE);
2291
put_back:
K
KAMEZAWA Hiroyuki 已提交
2292
	putback_lru_page(page);
2293
put:
2294
	put_page(page);
2295
out:
2296 2297 2298
	return ret;
}

2299 2300 2301 2302 2303 2304 2305
/*
 * Charge the memory controller for page usage.
 * Return
 * 0 if the charge was successful
 * < 0 if the cgroup is over its limit
 */
static int mem_cgroup_charge_common(struct page *page, struct mm_struct *mm,
2306
				gfp_t gfp_mask, enum charge_type ctype)
2307
{
2308
	struct mem_cgroup *mem = NULL;
2309 2310
	struct page_cgroup *pc;
	int ret;
A
Andrea Arcangeli 已提交
2311 2312
	int page_size = PAGE_SIZE;

A
Andrea Arcangeli 已提交
2313
	if (PageTransHuge(page)) {
A
Andrea Arcangeli 已提交
2314
		page_size <<= compound_order(page);
A
Andrea Arcangeli 已提交
2315 2316
		VM_BUG_ON(!PageTransHuge(page));
	}
2317 2318 2319 2320 2321 2322 2323

	pc = lookup_page_cgroup(page);
	/* can happen at boot */
	if (unlikely(!pc))
		return 0;
	prefetchw(pc);

A
Andrea Arcangeli 已提交
2324
	ret = __mem_cgroup_try_charge(mm, gfp_mask, &mem, true, page_size);
2325
	if (ret || !mem)
2326 2327
		return ret;

A
Andrea Arcangeli 已提交
2328
	__mem_cgroup_commit_charge(mem, pc, ctype, page_size);
2329 2330 2331
	return 0;
}

2332 2333
int mem_cgroup_newpage_charge(struct page *page,
			      struct mm_struct *mm, gfp_t gfp_mask)
2334
{
2335
	if (mem_cgroup_disabled())
2336
		return 0;
2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347
	/*
	 * If already mapped, we don't have to account.
	 * If page cache, page->mapping has address_space.
	 * But page->mapping may have out-of-use anon_vma pointer,
	 * detecit it by PageAnon() check. newly-mapped-anon's page->mapping
	 * is NULL.
  	 */
	if (page_mapped(page) || (page->mapping && !PageAnon(page)))
		return 0;
	if (unlikely(!mm))
		mm = &init_mm;
2348
	return mem_cgroup_charge_common(page, mm, gfp_mask,
2349
				MEM_CGROUP_CHARGE_TYPE_MAPPED);
2350 2351
}

D
Daisuke Nishimura 已提交
2352 2353 2354 2355
static void
__mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr,
					enum charge_type ctype);

2356 2357
int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm,
				gfp_t gfp_mask)
2358
{
2359 2360
	int ret;

2361
	if (mem_cgroup_disabled())
2362
		return 0;
2363 2364
	if (PageCompound(page))
		return 0;
2365 2366 2367 2368 2369 2370 2371 2372
	/*
	 * Corner case handling. This is called from add_to_page_cache()
	 * in usual. But some FS (shmem) precharges this page before calling it
	 * and call add_to_page_cache() with GFP_NOWAIT.
	 *
	 * For GFP_NOWAIT case, the page may be pre-charged before calling
	 * add_to_page_cache(). (See shmem.c) check it here and avoid to call
	 * charge twice. (It works but has to pay a bit larger cost.)
2373 2374
	 * And when the page is SwapCache, it should take swap information
	 * into account. This is under lock_page() now.
2375 2376 2377 2378
	 */
	if (!(gfp_mask & __GFP_WAIT)) {
		struct page_cgroup *pc;

2379 2380 2381 2382 2383 2384
		pc = lookup_page_cgroup(page);
		if (!pc)
			return 0;
		lock_page_cgroup(pc);
		if (PageCgroupUsed(pc)) {
			unlock_page_cgroup(pc);
2385 2386
			return 0;
		}
2387
		unlock_page_cgroup(pc);
2388 2389
	}

2390
	if (unlikely(!mm))
2391
		mm = &init_mm;
2392

2393 2394
	if (page_is_file_cache(page))
		return mem_cgroup_charge_common(page, mm, gfp_mask,
2395
				MEM_CGROUP_CHARGE_TYPE_CACHE);
2396

D
Daisuke Nishimura 已提交
2397 2398
	/* shmem */
	if (PageSwapCache(page)) {
2399 2400
		struct mem_cgroup *mem = NULL;

D
Daisuke Nishimura 已提交
2401 2402 2403 2404 2405 2406
		ret = mem_cgroup_try_charge_swapin(mm, page, gfp_mask, &mem);
		if (!ret)
			__mem_cgroup_commit_charge_swapin(page, mem,
					MEM_CGROUP_CHARGE_TYPE_SHMEM);
	} else
		ret = mem_cgroup_charge_common(page, mm, gfp_mask,
2407
					MEM_CGROUP_CHARGE_TYPE_SHMEM);
2408 2409

	return ret;
2410 2411
}

2412 2413 2414
/*
 * While swap-in, try_charge -> commit or cancel, the page is locked.
 * And when try_charge() successfully returns, one refcnt to memcg without
2415
 * struct page_cgroup is acquired. This refcnt will be consumed by
2416 2417
 * "commit()" or removed by "cancel()"
 */
2418 2419 2420 2421 2422
int mem_cgroup_try_charge_swapin(struct mm_struct *mm,
				 struct page *page,
				 gfp_t mask, struct mem_cgroup **ptr)
{
	struct mem_cgroup *mem;
2423
	int ret;
2424

2425
	if (mem_cgroup_disabled())
2426 2427 2428 2429 2430 2431
		return 0;

	if (!do_swap_account)
		goto charge_cur_mm;
	/*
	 * A racing thread's fault, or swapoff, may have already updated
H
Hugh Dickins 已提交
2432 2433 2434
	 * the pte, and even removed page from swap cache: in those cases
	 * do_swap_page()'s pte_same() test will fail; but there's also a
	 * KSM case which does need to charge the page.
2435 2436
	 */
	if (!PageSwapCache(page))
H
Hugh Dickins 已提交
2437
		goto charge_cur_mm;
2438
	mem = try_get_mem_cgroup_from_page(page);
2439 2440
	if (!mem)
		goto charge_cur_mm;
2441
	*ptr = mem;
A
Andrea Arcangeli 已提交
2442
	ret = __mem_cgroup_try_charge(NULL, mask, ptr, true, PAGE_SIZE);
2443 2444
	css_put(&mem->css);
	return ret;
2445 2446 2447
charge_cur_mm:
	if (unlikely(!mm))
		mm = &init_mm;
A
Andrea Arcangeli 已提交
2448
	return __mem_cgroup_try_charge(mm, mask, ptr, true, PAGE_SIZE);
2449 2450
}

D
Daisuke Nishimura 已提交
2451 2452 2453
static void
__mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr,
					enum charge_type ctype)
2454 2455 2456
{
	struct page_cgroup *pc;

2457
	if (mem_cgroup_disabled())
2458 2459 2460
		return;
	if (!ptr)
		return;
2461
	cgroup_exclude_rmdir(&ptr->css);
2462
	pc = lookup_page_cgroup(page);
2463
	mem_cgroup_lru_del_before_commit_swapcache(page);
A
Andrea Arcangeli 已提交
2464
	__mem_cgroup_commit_charge(ptr, pc, ctype, PAGE_SIZE);
2465
	mem_cgroup_lru_add_after_commit_swapcache(page);
2466 2467 2468
	/*
	 * Now swap is on-memory. This means this page may be
	 * counted both as mem and swap....double count.
2469 2470 2471
	 * Fix it by uncharging from memsw. Basically, this SwapCache is stable
	 * under lock_page(). But in do_swap_page()::memory.c, reuse_swap_page()
	 * may call delete_from_swap_cache() before reach here.
2472
	 */
2473
	if (do_swap_account && PageSwapCache(page)) {
2474
		swp_entry_t ent = {.val = page_private(page)};
2475
		unsigned short id;
2476
		struct mem_cgroup *memcg;
2477 2478 2479 2480

		id = swap_cgroup_record(ent, 0);
		rcu_read_lock();
		memcg = mem_cgroup_lookup(id);
2481
		if (memcg) {
2482 2483 2484 2485
			/*
			 * This recorded memcg can be obsolete one. So, avoid
			 * calling css_tryget
			 */
2486
			if (!mem_cgroup_is_root(memcg))
2487
				res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
2488
			mem_cgroup_swap_statistics(memcg, false);
2489 2490
			mem_cgroup_put(memcg);
		}
2491
		rcu_read_unlock();
2492
	}
2493 2494 2495 2496 2497 2498
	/*
	 * At swapin, we may charge account against cgroup which has no tasks.
	 * So, rmdir()->pre_destroy() can be called while we do this charge.
	 * In that case, we need to call pre_destroy() again. check it here.
	 */
	cgroup_release_and_wakeup_rmdir(&ptr->css);
2499 2500
}

D
Daisuke Nishimura 已提交
2501 2502 2503 2504 2505 2506
void mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr)
{
	__mem_cgroup_commit_charge_swapin(page, ptr,
					MEM_CGROUP_CHARGE_TYPE_MAPPED);
}

2507 2508
void mem_cgroup_cancel_charge_swapin(struct mem_cgroup *mem)
{
2509
	if (mem_cgroup_disabled())
2510 2511 2512
		return;
	if (!mem)
		return;
A
Andrea Arcangeli 已提交
2513
	mem_cgroup_cancel_charge(mem, PAGE_SIZE);
2514 2515
}

2516
static void
A
Andrea Arcangeli 已提交
2517 2518
__do_uncharge(struct mem_cgroup *mem, const enum charge_type ctype,
	      int page_size)
2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533
{
	struct memcg_batch_info *batch = NULL;
	bool uncharge_memsw = true;
	/* If swapout, usage of swap doesn't decrease */
	if (!do_swap_account || ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT)
		uncharge_memsw = false;

	batch = &current->memcg_batch;
	/*
	 * In usual, we do css_get() when we remember memcg pointer.
	 * But in this case, we keep res->usage until end of a series of
	 * uncharges. Then, it's ok to ignore memcg's refcnt.
	 */
	if (!batch->memcg)
		batch->memcg = mem;
2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544
	/*
	 * do_batch > 0 when unmapping pages or inode invalidate/truncate.
	 * In those cases, all pages freed continously can be expected to be in
	 * the same cgroup and we have chance to coalesce uncharges.
	 * But we do uncharge one by one if this is killed by OOM(TIF_MEMDIE)
	 * because we want to do uncharge as soon as possible.
	 */

	if (!batch->do_batch || test_thread_flag(TIF_MEMDIE))
		goto direct_uncharge;

A
Andrea Arcangeli 已提交
2545 2546 2547
	if (page_size != PAGE_SIZE)
		goto direct_uncharge;

2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560
	/*
	 * In typical case, batch->memcg == mem. This means we can
	 * merge a series of uncharges to an uncharge of res_counter.
	 * If not, we uncharge res_counter ony by one.
	 */
	if (batch->memcg != mem)
		goto direct_uncharge;
	/* remember freed charge and uncharge it later */
	batch->bytes += PAGE_SIZE;
	if (uncharge_memsw)
		batch->memsw_bytes += PAGE_SIZE;
	return;
direct_uncharge:
A
Andrea Arcangeli 已提交
2561
	res_counter_uncharge(&mem->res, page_size);
2562
	if (uncharge_memsw)
A
Andrea Arcangeli 已提交
2563
		res_counter_uncharge(&mem->memsw, page_size);
2564 2565
	if (unlikely(batch->memcg != mem))
		memcg_oom_recover(mem);
2566 2567
	return;
}
2568

2569
/*
2570
 * uncharge if !page_mapped(page)
2571
 */
2572
static struct mem_cgroup *
2573
__mem_cgroup_uncharge_common(struct page *page, enum charge_type ctype)
2574
{
2575
	int count;
H
Hugh Dickins 已提交
2576
	struct page_cgroup *pc;
2577
	struct mem_cgroup *mem = NULL;
A
Andrea Arcangeli 已提交
2578
	int page_size = PAGE_SIZE;
2579

2580
	if (mem_cgroup_disabled())
2581
		return NULL;
2582

K
KAMEZAWA Hiroyuki 已提交
2583
	if (PageSwapCache(page))
2584
		return NULL;
K
KAMEZAWA Hiroyuki 已提交
2585

A
Andrea Arcangeli 已提交
2586
	if (PageTransHuge(page)) {
A
Andrea Arcangeli 已提交
2587
		page_size <<= compound_order(page);
A
Andrea Arcangeli 已提交
2588 2589
		VM_BUG_ON(!PageTransHuge(page));
	}
A
Andrea Arcangeli 已提交
2590

2591
	count = page_size >> PAGE_SHIFT;
2592
	/*
2593
	 * Check if our page_cgroup is valid
2594
	 */
2595 2596
	pc = lookup_page_cgroup(page);
	if (unlikely(!pc || !PageCgroupUsed(pc)))
2597
		return NULL;
2598

2599
	lock_page_cgroup(pc);
K
KAMEZAWA Hiroyuki 已提交
2600

2601 2602
	mem = pc->mem_cgroup;

K
KAMEZAWA Hiroyuki 已提交
2603 2604 2605 2606 2607
	if (!PageCgroupUsed(pc))
		goto unlock_out;

	switch (ctype) {
	case MEM_CGROUP_CHARGE_TYPE_MAPPED:
K
KAMEZAWA Hiroyuki 已提交
2608
	case MEM_CGROUP_CHARGE_TYPE_DROP:
2609 2610
		/* See mem_cgroup_prepare_migration() */
		if (page_mapped(page) || PageCgroupMigration(pc))
K
KAMEZAWA Hiroyuki 已提交
2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621
			goto unlock_out;
		break;
	case MEM_CGROUP_CHARGE_TYPE_SWAPOUT:
		if (!PageAnon(page)) {	/* Shared memory */
			if (page->mapping && !page_is_file_cache(page))
				goto unlock_out;
		} else if (page_mapped(page)) /* Anon */
				goto unlock_out;
		break;
	default:
		break;
2622
	}
K
KAMEZAWA Hiroyuki 已提交
2623

2624
	mem_cgroup_charge_statistics(mem, PageCgroupCache(pc), -count);
K
KAMEZAWA Hiroyuki 已提交
2625

2626
	ClearPageCgroupUsed(pc);
2627 2628 2629 2630 2631 2632
	/*
	 * pc->mem_cgroup is not cleared here. It will be accessed when it's
	 * freed from LRU. This is safe because uncharged page is expected not
	 * to be reused (freed soon). Exception is SwapCache, it's handled by
	 * special functions.
	 */
2633

2634
	unlock_page_cgroup(pc);
K
KAMEZAWA Hiroyuki 已提交
2635 2636 2637 2638
	/*
	 * even after unlock, we have mem->res.usage here and this memcg
	 * will never be freed.
	 */
2639
	memcg_check_events(mem, page);
K
KAMEZAWA Hiroyuki 已提交
2640 2641 2642 2643 2644
	if (do_swap_account && ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT) {
		mem_cgroup_swap_statistics(mem, true);
		mem_cgroup_get(mem);
	}
	if (!mem_cgroup_is_root(mem))
A
Andrea Arcangeli 已提交
2645
		__do_uncharge(mem, ctype, page_size);
2646

2647
	return mem;
K
KAMEZAWA Hiroyuki 已提交
2648 2649 2650

unlock_out:
	unlock_page_cgroup(pc);
2651
	return NULL;
2652 2653
}

2654 2655
void mem_cgroup_uncharge_page(struct page *page)
{
2656 2657 2658 2659 2660
	/* early check. */
	if (page_mapped(page))
		return;
	if (page->mapping && !PageAnon(page))
		return;
2661 2662 2663 2664 2665 2666
	__mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_MAPPED);
}

void mem_cgroup_uncharge_cache_page(struct page *page)
{
	VM_BUG_ON(page_mapped(page));
2667
	VM_BUG_ON(page->mapping);
2668 2669 2670
	__mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_CACHE);
}

2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710
/*
 * Batch_start/batch_end is called in unmap_page_range/invlidate/trucate.
 * In that cases, pages are freed continuously and we can expect pages
 * are in the same memcg. All these calls itself limits the number of
 * pages freed at once, then uncharge_start/end() is called properly.
 * This may be called prural(2) times in a context,
 */

void mem_cgroup_uncharge_start(void)
{
	current->memcg_batch.do_batch++;
	/* We can do nest. */
	if (current->memcg_batch.do_batch == 1) {
		current->memcg_batch.memcg = NULL;
		current->memcg_batch.bytes = 0;
		current->memcg_batch.memsw_bytes = 0;
	}
}

void mem_cgroup_uncharge_end(void)
{
	struct memcg_batch_info *batch = &current->memcg_batch;

	if (!batch->do_batch)
		return;

	batch->do_batch--;
	if (batch->do_batch) /* If stacked, do nothing. */
		return;

	if (!batch->memcg)
		return;
	/*
	 * This "batch->memcg" is valid without any css_get/put etc...
	 * bacause we hide charges behind us.
	 */
	if (batch->bytes)
		res_counter_uncharge(&batch->memcg->res, batch->bytes);
	if (batch->memsw_bytes)
		res_counter_uncharge(&batch->memcg->memsw, batch->memsw_bytes);
2711
	memcg_oom_recover(batch->memcg);
2712 2713 2714 2715
	/* forget this pointer (for sanity check) */
	batch->memcg = NULL;
}

2716
#ifdef CONFIG_SWAP
2717
/*
2718
 * called after __delete_from_swap_cache() and drop "page" account.
2719 2720
 * memcg information is recorded to swap_cgroup of "ent"
 */
K
KAMEZAWA Hiroyuki 已提交
2721 2722
void
mem_cgroup_uncharge_swapcache(struct page *page, swp_entry_t ent, bool swapout)
2723 2724
{
	struct mem_cgroup *memcg;
K
KAMEZAWA Hiroyuki 已提交
2725 2726 2727 2728 2729 2730
	int ctype = MEM_CGROUP_CHARGE_TYPE_SWAPOUT;

	if (!swapout) /* this was a swap cache but the swap is unused ! */
		ctype = MEM_CGROUP_CHARGE_TYPE_DROP;

	memcg = __mem_cgroup_uncharge_common(page, ctype);
2731

K
KAMEZAWA Hiroyuki 已提交
2732 2733 2734 2735 2736
	/*
	 * record memcg information,  if swapout && memcg != NULL,
	 * mem_cgroup_get() was called in uncharge().
	 */
	if (do_swap_account && swapout && memcg)
2737
		swap_cgroup_record(ent, css_id(&memcg->css));
2738
}
2739
#endif
2740 2741 2742 2743 2744 2745 2746

#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
/*
 * called from swap_entry_free(). remove record in swap_cgroup and
 * uncharge "memsw" account.
 */
void mem_cgroup_uncharge_swap(swp_entry_t ent)
K
KAMEZAWA Hiroyuki 已提交
2747
{
2748
	struct mem_cgroup *memcg;
2749
	unsigned short id;
2750 2751 2752 2753

	if (!do_swap_account)
		return;

2754 2755 2756
	id = swap_cgroup_record(ent, 0);
	rcu_read_lock();
	memcg = mem_cgroup_lookup(id);
2757
	if (memcg) {
2758 2759 2760 2761
		/*
		 * We uncharge this because swap is freed.
		 * This memcg can be obsolete one. We avoid calling css_tryget
		 */
2762
		if (!mem_cgroup_is_root(memcg))
2763
			res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
2764
		mem_cgroup_swap_statistics(memcg, false);
2765 2766
		mem_cgroup_put(memcg);
	}
2767
	rcu_read_unlock();
K
KAMEZAWA Hiroyuki 已提交
2768
}
2769 2770 2771 2772 2773 2774

/**
 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
 * @entry: swap entry to be moved
 * @from:  mem_cgroup which the entry is moved from
 * @to:  mem_cgroup which the entry is moved to
2775
 * @need_fixup: whether we should fixup res_counters and refcounts.
2776 2777 2778 2779 2780 2781 2782 2783 2784 2785
 *
 * It succeeds only when the swap_cgroup's record for this entry is the same
 * as the mem_cgroup's id of @from.
 *
 * Returns 0 on success, -EINVAL on failure.
 *
 * The caller must have charged to @to, IOW, called res_counter_charge() about
 * both res and memsw, and called css_get().
 */
static int mem_cgroup_move_swap_account(swp_entry_t entry,
2786
		struct mem_cgroup *from, struct mem_cgroup *to, bool need_fixup)
2787 2788 2789 2790 2791 2792 2793 2794
{
	unsigned short old_id, new_id;

	old_id = css_id(&from->css);
	new_id = css_id(&to->css);

	if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
		mem_cgroup_swap_statistics(from, false);
2795
		mem_cgroup_swap_statistics(to, true);
2796
		/*
2797 2798 2799 2800 2801 2802
		 * This function is only called from task migration context now.
		 * It postpones res_counter and refcount handling till the end
		 * of task migration(mem_cgroup_clear_mc()) for performance
		 * improvement. But we cannot postpone mem_cgroup_get(to)
		 * because if the process that has been moved to @to does
		 * swap-in, the refcount of @to might be decreased to 0.
2803 2804
		 */
		mem_cgroup_get(to);
2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815
		if (need_fixup) {
			if (!mem_cgroup_is_root(from))
				res_counter_uncharge(&from->memsw, PAGE_SIZE);
			mem_cgroup_put(from);
			/*
			 * we charged both to->res and to->memsw, so we should
			 * uncharge to->res.
			 */
			if (!mem_cgroup_is_root(to))
				res_counter_uncharge(&to->res, PAGE_SIZE);
		}
2816 2817 2818 2819 2820 2821
		return 0;
	}
	return -EINVAL;
}
#else
static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
2822
		struct mem_cgroup *from, struct mem_cgroup *to, bool need_fixup)
2823 2824 2825
{
	return -EINVAL;
}
2826
#endif
K
KAMEZAWA Hiroyuki 已提交
2827

2828
/*
2829 2830
 * Before starting migration, account PAGE_SIZE to mem_cgroup that the old
 * page belongs to.
2831
 */
2832 2833
int mem_cgroup_prepare_migration(struct page *page,
	struct page *newpage, struct mem_cgroup **ptr)
2834 2835
{
	struct page_cgroup *pc;
2836
	struct mem_cgroup *mem = NULL;
2837
	enum charge_type ctype;
2838
	int ret = 0;
2839

A
Andrea Arcangeli 已提交
2840
	VM_BUG_ON(PageTransHuge(page));
2841
	if (mem_cgroup_disabled())
2842 2843
		return 0;

2844 2845 2846
	pc = lookup_page_cgroup(page);
	lock_page_cgroup(pc);
	if (PageCgroupUsed(pc)) {
2847 2848
		mem = pc->mem_cgroup;
		css_get(&mem->css);
2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879
		/*
		 * At migrating an anonymous page, its mapcount goes down
		 * to 0 and uncharge() will be called. But, even if it's fully
		 * unmapped, migration may fail and this page has to be
		 * charged again. We set MIGRATION flag here and delay uncharge
		 * until end_migration() is called
		 *
		 * Corner Case Thinking
		 * A)
		 * When the old page was mapped as Anon and it's unmap-and-freed
		 * while migration was ongoing.
		 * If unmap finds the old page, uncharge() of it will be delayed
		 * until end_migration(). If unmap finds a new page, it's
		 * uncharged when it make mapcount to be 1->0. If unmap code
		 * finds swap_migration_entry, the new page will not be mapped
		 * and end_migration() will find it(mapcount==0).
		 *
		 * B)
		 * When the old page was mapped but migraion fails, the kernel
		 * remaps it. A charge for it is kept by MIGRATION flag even
		 * if mapcount goes down to 0. We can do remap successfully
		 * without charging it again.
		 *
		 * C)
		 * The "old" page is under lock_page() until the end of
		 * migration, so, the old page itself will not be swapped-out.
		 * If the new page is swapped out before end_migraton, our
		 * hook to usual swap-out path will catch the event.
		 */
		if (PageAnon(page))
			SetPageCgroupMigration(pc);
2880
	}
2881
	unlock_page_cgroup(pc);
2882 2883 2884 2885 2886 2887
	/*
	 * If the page is not charged at this point,
	 * we return here.
	 */
	if (!mem)
		return 0;
2888

A
Andrea Arcangeli 已提交
2889
	*ptr = mem;
A
Andrea Arcangeli 已提交
2890
	ret = __mem_cgroup_try_charge(NULL, GFP_KERNEL, ptr, false, PAGE_SIZE);
2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902
	css_put(&mem->css);/* drop extra refcnt */
	if (ret || *ptr == NULL) {
		if (PageAnon(page)) {
			lock_page_cgroup(pc);
			ClearPageCgroupMigration(pc);
			unlock_page_cgroup(pc);
			/*
			 * The old page may be fully unmapped while we kept it.
			 */
			mem_cgroup_uncharge_page(page);
		}
		return -ENOMEM;
2903
	}
2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916
	/*
	 * We charge new page before it's used/mapped. So, even if unlock_page()
	 * is called before end_migration, we can catch all events on this new
	 * page. In the case new page is migrated but not remapped, new page's
	 * mapcount will be finally 0 and we call uncharge in end_migration().
	 */
	pc = lookup_page_cgroup(newpage);
	if (PageAnon(page))
		ctype = MEM_CGROUP_CHARGE_TYPE_MAPPED;
	else if (page_is_file_cache(page))
		ctype = MEM_CGROUP_CHARGE_TYPE_CACHE;
	else
		ctype = MEM_CGROUP_CHARGE_TYPE_SHMEM;
A
Andrea Arcangeli 已提交
2917
	__mem_cgroup_commit_charge(mem, pc, ctype, PAGE_SIZE);
2918
	return ret;
2919
}
2920

2921
/* remove redundant charge if migration failed*/
2922
void mem_cgroup_end_migration(struct mem_cgroup *mem,
2923
	struct page *oldpage, struct page *newpage, bool migration_ok)
2924
{
2925
	struct page *used, *unused;
2926 2927 2928 2929
	struct page_cgroup *pc;

	if (!mem)
		return;
2930
	/* blocks rmdir() */
2931
	cgroup_exclude_rmdir(&mem->css);
2932
	if (!migration_ok) {
2933 2934
		used = oldpage;
		unused = newpage;
2935
	} else {
2936
		used = newpage;
2937 2938
		unused = oldpage;
	}
2939
	/*
2940 2941 2942
	 * We disallowed uncharge of pages under migration because mapcount
	 * of the page goes down to zero, temporarly.
	 * Clear the flag and check the page should be charged.
2943
	 */
2944 2945 2946 2947
	pc = lookup_page_cgroup(oldpage);
	lock_page_cgroup(pc);
	ClearPageCgroupMigration(pc);
	unlock_page_cgroup(pc);
2948

2949 2950
	__mem_cgroup_uncharge_common(unused, MEM_CGROUP_CHARGE_TYPE_FORCE);

2951
	/*
2952 2953 2954 2955 2956 2957
	 * If a page is a file cache, radix-tree replacement is very atomic
	 * and we can skip this check. When it was an Anon page, its mapcount
	 * goes down to 0. But because we added MIGRATION flage, it's not
	 * uncharged yet. There are several case but page->mapcount check
	 * and USED bit check in mem_cgroup_uncharge_page() will do enough
	 * check. (see prepare_charge() also)
2958
	 */
2959 2960
	if (PageAnon(used))
		mem_cgroup_uncharge_page(used);
2961
	/*
2962 2963
	 * At migration, we may charge account against cgroup which has no
	 * tasks.
2964 2965 2966 2967
	 * So, rmdir()->pre_destroy() can be called while we do this charge.
	 * In that case, we need to call pre_destroy() again. check it here.
	 */
	cgroup_release_and_wakeup_rmdir(&mem->css);
2968
}
2969

2970
/*
2971 2972 2973 2974 2975 2976
 * A call to try to shrink memory usage on charge failure at shmem's swapin.
 * Calling hierarchical_reclaim is not enough because we should update
 * last_oom_jiffies to prevent pagefault_out_of_memory from invoking global OOM.
 * Moreover considering hierarchy, we should reclaim from the mem_over_limit,
 * not from the memcg which this page would be charged to.
 * try_charge_swapin does all of these works properly.
2977
 */
2978
int mem_cgroup_shmem_charge_fallback(struct page *page,
2979 2980
			    struct mm_struct *mm,
			    gfp_t gfp_mask)
2981
{
2982
	struct mem_cgroup *mem = NULL;
2983
	int ret;
2984

2985
	if (mem_cgroup_disabled())
2986
		return 0;
2987

2988 2989 2990
	ret = mem_cgroup_try_charge_swapin(mm, page, gfp_mask, &mem);
	if (!ret)
		mem_cgroup_cancel_charge_swapin(mem); /* it does !mem check */
2991

2992
	return ret;
2993 2994
}

2995 2996
static DEFINE_MUTEX(set_limit_mutex);

2997
static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
2998
				unsigned long long val)
2999
{
3000
	int retry_count;
3001
	u64 memswlimit, memlimit;
3002
	int ret = 0;
3003 3004
	int children = mem_cgroup_count_children(memcg);
	u64 curusage, oldusage;
3005
	int enlarge;
3006 3007 3008 3009 3010 3011 3012 3013 3014

	/*
	 * For keeping hierarchical_reclaim simple, how long we should retry
	 * is depends on callers. We set our retry-count to be function
	 * of # of children which we should visit in this loop.
	 */
	retry_count = MEM_CGROUP_RECLAIM_RETRIES * children;

	oldusage = res_counter_read_u64(&memcg->res, RES_USAGE);
3015

3016
	enlarge = 0;
3017
	while (retry_count) {
3018 3019 3020 3021
		if (signal_pending(current)) {
			ret = -EINTR;
			break;
		}
3022 3023 3024 3025 3026 3027 3028 3029 3030 3031
		/*
		 * Rather than hide all in some function, I do this in
		 * open coded manner. You see what this really does.
		 * We have to guarantee mem->res.limit < mem->memsw.limit.
		 */
		mutex_lock(&set_limit_mutex);
		memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
		if (memswlimit < val) {
			ret = -EINVAL;
			mutex_unlock(&set_limit_mutex);
3032 3033
			break;
		}
3034 3035 3036 3037 3038

		memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
		if (memlimit < val)
			enlarge = 1;

3039
		ret = res_counter_set_limit(&memcg->res, val);
3040 3041 3042 3043 3044 3045
		if (!ret) {
			if (memswlimit == val)
				memcg->memsw_is_minimum = true;
			else
				memcg->memsw_is_minimum = false;
		}
3046 3047 3048 3049 3050
		mutex_unlock(&set_limit_mutex);

		if (!ret)
			break;

3051
		mem_cgroup_hierarchical_reclaim(memcg, NULL, GFP_KERNEL,
3052
						MEM_CGROUP_RECLAIM_SHRINK);
3053 3054 3055 3056 3057 3058
		curusage = res_counter_read_u64(&memcg->res, RES_USAGE);
		/* Usage is reduced ? */
  		if (curusage >= oldusage)
			retry_count--;
		else
			oldusage = curusage;
3059
	}
3060 3061
	if (!ret && enlarge)
		memcg_oom_recover(memcg);
3062

3063 3064 3065
	return ret;
}

L
Li Zefan 已提交
3066 3067
static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
					unsigned long long val)
3068
{
3069
	int retry_count;
3070
	u64 memlimit, memswlimit, oldusage, curusage;
3071 3072
	int children = mem_cgroup_count_children(memcg);
	int ret = -EBUSY;
3073
	int enlarge = 0;
3074

3075 3076 3077
	/* see mem_cgroup_resize_res_limit */
 	retry_count = children * MEM_CGROUP_RECLAIM_RETRIES;
	oldusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094
	while (retry_count) {
		if (signal_pending(current)) {
			ret = -EINTR;
			break;
		}
		/*
		 * Rather than hide all in some function, I do this in
		 * open coded manner. You see what this really does.
		 * We have to guarantee mem->res.limit < mem->memsw.limit.
		 */
		mutex_lock(&set_limit_mutex);
		memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
		if (memlimit > val) {
			ret = -EINVAL;
			mutex_unlock(&set_limit_mutex);
			break;
		}
3095 3096 3097
		memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
		if (memswlimit < val)
			enlarge = 1;
3098
		ret = res_counter_set_limit(&memcg->memsw, val);
3099 3100 3101 3102 3103 3104
		if (!ret) {
			if (memlimit == val)
				memcg->memsw_is_minimum = true;
			else
				memcg->memsw_is_minimum = false;
		}
3105 3106 3107 3108 3109
		mutex_unlock(&set_limit_mutex);

		if (!ret)
			break;

3110
		mem_cgroup_hierarchical_reclaim(memcg, NULL, GFP_KERNEL,
3111 3112
						MEM_CGROUP_RECLAIM_NOSWAP |
						MEM_CGROUP_RECLAIM_SHRINK);
3113
		curusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
3114
		/* Usage is reduced ? */
3115
		if (curusage >= oldusage)
3116
			retry_count--;
3117 3118
		else
			oldusage = curusage;
3119
	}
3120 3121
	if (!ret && enlarge)
		memcg_oom_recover(memcg);
3122 3123 3124
	return ret;
}

3125
unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
3126
					    gfp_t gfp_mask)
3127 3128 3129 3130 3131 3132
{
	unsigned long nr_reclaimed = 0;
	struct mem_cgroup_per_zone *mz, *next_mz = NULL;
	unsigned long reclaimed;
	int loop = 0;
	struct mem_cgroup_tree_per_zone *mctz;
3133
	unsigned long long excess;
3134 3135 3136 3137

	if (order > 0)
		return 0;

3138
	mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone));
3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185
	/*
	 * This loop can run a while, specially if mem_cgroup's continuously
	 * keep exceeding their soft limit and putting the system under
	 * pressure
	 */
	do {
		if (next_mz)
			mz = next_mz;
		else
			mz = mem_cgroup_largest_soft_limit_node(mctz);
		if (!mz)
			break;

		reclaimed = mem_cgroup_hierarchical_reclaim(mz->mem, zone,
						gfp_mask,
						MEM_CGROUP_RECLAIM_SOFT);
		nr_reclaimed += reclaimed;
		spin_lock(&mctz->lock);

		/*
		 * If we failed to reclaim anything from this memory cgroup
		 * it is time to move on to the next cgroup
		 */
		next_mz = NULL;
		if (!reclaimed) {
			do {
				/*
				 * Loop until we find yet another one.
				 *
				 * By the time we get the soft_limit lock
				 * again, someone might have aded the
				 * group back on the RB tree. Iterate to
				 * make sure we get a different mem.
				 * mem_cgroup_largest_soft_limit_node returns
				 * NULL if no other cgroup is present on
				 * the tree
				 */
				next_mz =
				__mem_cgroup_largest_soft_limit_node(mctz);
				if (next_mz == mz) {
					css_put(&next_mz->mem->css);
					next_mz = NULL;
				} else /* next_mz == NULL or other memcg */
					break;
			} while (1);
		}
		__mem_cgroup_remove_exceeded(mz->mem, mz, mctz);
3186
		excess = res_counter_soft_limit_excess(&mz->mem->res);
3187 3188 3189 3190 3191 3192 3193 3194
		/*
		 * One school of thought says that we should not add
		 * back the node to the tree if reclaim returns 0.
		 * But our reclaim could return 0, simply because due
		 * to priority we are exposing a smaller subset of
		 * memory to reclaim from. Consider this as a longer
		 * term TODO.
		 */
3195 3196
		/* If excess == 0, no tree ops */
		__mem_cgroup_insert_exceeded(mz->mem, mz, mctz, excess);
3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214
		spin_unlock(&mctz->lock);
		css_put(&mz->mem->css);
		loop++;
		/*
		 * Could not reclaim anything and there are no more
		 * mem cgroups to try or we seem to be looping without
		 * reclaiming anything.
		 */
		if (!nr_reclaimed &&
			(next_mz == NULL ||
			loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
			break;
	} while (!nr_reclaimed);
	if (next_mz)
		css_put(&next_mz->mem->css);
	return nr_reclaimed;
}

3215 3216 3217 3218
/*
 * This routine traverse page_cgroup in given list and drop them all.
 * *And* this routine doesn't reclaim page itself, just removes page_cgroup.
 */
3219
static int mem_cgroup_force_empty_list(struct mem_cgroup *mem,
K
KAMEZAWA Hiroyuki 已提交
3220
				int node, int zid, enum lru_list lru)
3221
{
K
KAMEZAWA Hiroyuki 已提交
3222 3223
	struct zone *zone;
	struct mem_cgroup_per_zone *mz;
3224
	struct page_cgroup *pc, *busy;
K
KAMEZAWA Hiroyuki 已提交
3225
	unsigned long flags, loop;
3226
	struct list_head *list;
3227
	int ret = 0;
3228

K
KAMEZAWA Hiroyuki 已提交
3229 3230
	zone = &NODE_DATA(node)->node_zones[zid];
	mz = mem_cgroup_zoneinfo(mem, node, zid);
3231
	list = &mz->lists[lru];
3232

3233 3234 3235 3236 3237 3238
	loop = MEM_CGROUP_ZSTAT(mz, lru);
	/* give some margin against EBUSY etc...*/
	loop += 256;
	busy = NULL;
	while (loop--) {
		ret = 0;
K
KAMEZAWA Hiroyuki 已提交
3239
		spin_lock_irqsave(&zone->lru_lock, flags);
3240
		if (list_empty(list)) {
K
KAMEZAWA Hiroyuki 已提交
3241
			spin_unlock_irqrestore(&zone->lru_lock, flags);
3242
			break;
3243 3244 3245 3246
		}
		pc = list_entry(list->prev, struct page_cgroup, lru);
		if (busy == pc) {
			list_move(&pc->lru, list);
3247
			busy = NULL;
K
KAMEZAWA Hiroyuki 已提交
3248
			spin_unlock_irqrestore(&zone->lru_lock, flags);
3249 3250
			continue;
		}
K
KAMEZAWA Hiroyuki 已提交
3251
		spin_unlock_irqrestore(&zone->lru_lock, flags);
3252

K
KAMEZAWA Hiroyuki 已提交
3253
		ret = mem_cgroup_move_parent(pc, mem, GFP_KERNEL);
3254
		if (ret == -ENOMEM)
3255
			break;
3256 3257 3258 3259 3260 3261 3262

		if (ret == -EBUSY || ret == -EINVAL) {
			/* found lock contention or "pc" is obsolete. */
			busy = pc;
			cond_resched();
		} else
			busy = NULL;
3263
	}
K
KAMEZAWA Hiroyuki 已提交
3264

3265 3266 3267
	if (!ret && !list_empty(list))
		return -EBUSY;
	return ret;
3268 3269 3270 3271 3272 3273
}

/*
 * make mem_cgroup's charge to be 0 if there is no task.
 * This enables deleting this mem_cgroup.
 */
3274
static int mem_cgroup_force_empty(struct mem_cgroup *mem, bool free_all)
3275
{
3276 3277 3278
	int ret;
	int node, zid, shrink;
	int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
3279
	struct cgroup *cgrp = mem->css.cgroup;
3280

3281
	css_get(&mem->css);
3282 3283

	shrink = 0;
3284 3285 3286
	/* should free all ? */
	if (free_all)
		goto try_to_free;
3287
move_account:
3288
	do {
3289
		ret = -EBUSY;
3290 3291 3292 3293
		if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children))
			goto out;
		ret = -EINTR;
		if (signal_pending(current))
3294
			goto out;
3295 3296
		/* This is for making all *used* pages to be on LRU. */
		lru_add_drain_all();
3297
		drain_all_stock_sync();
3298
		ret = 0;
3299
		mem_cgroup_start_move(mem);
3300
		for_each_node_state(node, N_HIGH_MEMORY) {
3301
			for (zid = 0; !ret && zid < MAX_NR_ZONES; zid++) {
3302
				enum lru_list l;
3303 3304
				for_each_lru(l) {
					ret = mem_cgroup_force_empty_list(mem,
K
KAMEZAWA Hiroyuki 已提交
3305
							node, zid, l);
3306 3307 3308
					if (ret)
						break;
				}
3309
			}
3310 3311 3312
			if (ret)
				break;
		}
3313
		mem_cgroup_end_move(mem);
3314
		memcg_oom_recover(mem);
3315 3316 3317
		/* it seems parent cgroup doesn't have enough mem */
		if (ret == -ENOMEM)
			goto try_to_free;
3318
		cond_resched();
3319 3320
	/* "ret" should also be checked to ensure all lists are empty. */
	} while (mem->res.usage > 0 || ret);
3321 3322 3323
out:
	css_put(&mem->css);
	return ret;
3324 3325

try_to_free:
3326 3327
	/* returns EBUSY if there is a task or if we come here twice. */
	if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children) || shrink) {
3328 3329 3330
		ret = -EBUSY;
		goto out;
	}
3331 3332
	/* we call try-to-free pages for make this cgroup empty */
	lru_add_drain_all();
3333 3334 3335 3336
	/* try to free all pages in this cgroup */
	shrink = 1;
	while (nr_retries && mem->res.usage > 0) {
		int progress;
3337 3338 3339 3340 3341

		if (signal_pending(current)) {
			ret = -EINTR;
			goto out;
		}
K
KOSAKI Motohiro 已提交
3342 3343
		progress = try_to_free_mem_cgroup_pages(mem, GFP_KERNEL,
						false, get_swappiness(mem));
3344
		if (!progress) {
3345
			nr_retries--;
3346
			/* maybe some writeback is necessary */
3347
			congestion_wait(BLK_RW_ASYNC, HZ/10);
3348
		}
3349 3350

	}
K
KAMEZAWA Hiroyuki 已提交
3351
	lru_add_drain();
3352
	/* try move_account...there may be some *locked* pages. */
3353
	goto move_account;
3354 3355
}

3356 3357 3358 3359 3360 3361
int mem_cgroup_force_empty_write(struct cgroup *cont, unsigned int event)
{
	return mem_cgroup_force_empty(mem_cgroup_from_cont(cont), true);
}


3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379
static u64 mem_cgroup_hierarchy_read(struct cgroup *cont, struct cftype *cft)
{
	return mem_cgroup_from_cont(cont)->use_hierarchy;
}

static int mem_cgroup_hierarchy_write(struct cgroup *cont, struct cftype *cft,
					u64 val)
{
	int retval = 0;
	struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
	struct cgroup *parent = cont->parent;
	struct mem_cgroup *parent_mem = NULL;

	if (parent)
		parent_mem = mem_cgroup_from_cont(parent);

	cgroup_lock();
	/*
3380
	 * If parent's use_hierarchy is set, we can't make any modifications
3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399
	 * in the child subtrees. If it is unset, then the change can
	 * occur, provided the current cgroup has no children.
	 *
	 * For the root cgroup, parent_mem is NULL, we allow value to be
	 * set if there are no children.
	 */
	if ((!parent_mem || !parent_mem->use_hierarchy) &&
				(val == 1 || val == 0)) {
		if (list_empty(&cont->children))
			mem->use_hierarchy = val;
		else
			retval = -EBUSY;
	} else
		retval = -EINVAL;
	cgroup_unlock();

	return retval;
}

3400

K
KAMEZAWA Hiroyuki 已提交
3401 3402
static u64 mem_cgroup_get_recursive_idx_stat(struct mem_cgroup *mem,
				enum mem_cgroup_stat_index idx)
3403
{
K
KAMEZAWA Hiroyuki 已提交
3404 3405
	struct mem_cgroup *iter;
	s64 val = 0;
3406

K
KAMEZAWA Hiroyuki 已提交
3407 3408 3409 3410 3411 3412 3413
	/* each per cpu's value can be minus.Then, use s64 */
	for_each_mem_cgroup_tree(iter, mem)
		val += mem_cgroup_read_stat(iter, idx);

	if (val < 0) /* race ? */
		val = 0;
	return val;
3414 3415
}

3416 3417
static inline u64 mem_cgroup_usage(struct mem_cgroup *mem, bool swap)
{
K
KAMEZAWA Hiroyuki 已提交
3418
	u64 val;
3419 3420 3421 3422 3423 3424 3425 3426

	if (!mem_cgroup_is_root(mem)) {
		if (!swap)
			return res_counter_read_u64(&mem->res, RES_USAGE);
		else
			return res_counter_read_u64(&mem->memsw, RES_USAGE);
	}

K
KAMEZAWA Hiroyuki 已提交
3427 3428
	val = mem_cgroup_get_recursive_idx_stat(mem, MEM_CGROUP_STAT_CACHE);
	val += mem_cgroup_get_recursive_idx_stat(mem, MEM_CGROUP_STAT_RSS);
3429

K
KAMEZAWA Hiroyuki 已提交
3430 3431 3432
	if (swap)
		val += mem_cgroup_get_recursive_idx_stat(mem,
				MEM_CGROUP_STAT_SWAPOUT);
3433 3434 3435 3436

	return val << PAGE_SHIFT;
}

3437
static u64 mem_cgroup_read(struct cgroup *cont, struct cftype *cft)
B
Balbir Singh 已提交
3438
{
3439
	struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
3440
	u64 val;
3441 3442 3443 3444 3445 3446
	int type, name;

	type = MEMFILE_TYPE(cft->private);
	name = MEMFILE_ATTR(cft->private);
	switch (type) {
	case _MEM:
3447 3448 3449
		if (name == RES_USAGE)
			val = mem_cgroup_usage(mem, false);
		else
3450
			val = res_counter_read_u64(&mem->res, name);
3451 3452
		break;
	case _MEMSWAP:
3453 3454 3455
		if (name == RES_USAGE)
			val = mem_cgroup_usage(mem, true);
		else
3456
			val = res_counter_read_u64(&mem->memsw, name);
3457 3458 3459 3460 3461 3462
		break;
	default:
		BUG();
		break;
	}
	return val;
B
Balbir Singh 已提交
3463
}
3464 3465 3466 3467
/*
 * The user of this function is...
 * RES_LIMIT.
 */
3468 3469
static int mem_cgroup_write(struct cgroup *cont, struct cftype *cft,
			    const char *buffer)
B
Balbir Singh 已提交
3470
{
3471
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
3472
	int type, name;
3473 3474 3475
	unsigned long long val;
	int ret;

3476 3477 3478
	type = MEMFILE_TYPE(cft->private);
	name = MEMFILE_ATTR(cft->private);
	switch (name) {
3479
	case RES_LIMIT:
3480 3481 3482 3483
		if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
			ret = -EINVAL;
			break;
		}
3484 3485
		/* This function does all necessary parse...reuse it */
		ret = res_counter_memparse_write_strategy(buffer, &val);
3486 3487 3488
		if (ret)
			break;
		if (type == _MEM)
3489
			ret = mem_cgroup_resize_limit(memcg, val);
3490 3491
		else
			ret = mem_cgroup_resize_memsw_limit(memcg, val);
3492
		break;
3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506
	case RES_SOFT_LIMIT:
		ret = res_counter_memparse_write_strategy(buffer, &val);
		if (ret)
			break;
		/*
		 * For memsw, soft limits are hard to implement in terms
		 * of semantics, for now, we support soft limits for
		 * control without swap
		 */
		if (type == _MEM)
			ret = res_counter_set_soft_limit(&memcg->res, val);
		else
			ret = -EINVAL;
		break;
3507 3508 3509 3510 3511
	default:
		ret = -EINVAL; /* should be BUG() ? */
		break;
	}
	return ret;
B
Balbir Singh 已提交
3512 3513
}

3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541
static void memcg_get_hierarchical_limit(struct mem_cgroup *memcg,
		unsigned long long *mem_limit, unsigned long long *memsw_limit)
{
	struct cgroup *cgroup;
	unsigned long long min_limit, min_memsw_limit, tmp;

	min_limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
	min_memsw_limit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
	cgroup = memcg->css.cgroup;
	if (!memcg->use_hierarchy)
		goto out;

	while (cgroup->parent) {
		cgroup = cgroup->parent;
		memcg = mem_cgroup_from_cont(cgroup);
		if (!memcg->use_hierarchy)
			break;
		tmp = res_counter_read_u64(&memcg->res, RES_LIMIT);
		min_limit = min(min_limit, tmp);
		tmp = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
		min_memsw_limit = min(min_memsw_limit, tmp);
	}
out:
	*mem_limit = min_limit;
	*memsw_limit = min_memsw_limit;
	return;
}

3542
static int mem_cgroup_reset(struct cgroup *cont, unsigned int event)
3543 3544
{
	struct mem_cgroup *mem;
3545
	int type, name;
3546 3547

	mem = mem_cgroup_from_cont(cont);
3548 3549 3550
	type = MEMFILE_TYPE(event);
	name = MEMFILE_ATTR(event);
	switch (name) {
3551
	case RES_MAX_USAGE:
3552 3553 3554 3555
		if (type == _MEM)
			res_counter_reset_max(&mem->res);
		else
			res_counter_reset_max(&mem->memsw);
3556 3557
		break;
	case RES_FAILCNT:
3558 3559 3560 3561
		if (type == _MEM)
			res_counter_reset_failcnt(&mem->res);
		else
			res_counter_reset_failcnt(&mem->memsw);
3562 3563
		break;
	}
3564

3565
	return 0;
3566 3567
}

3568 3569 3570 3571 3572 3573
static u64 mem_cgroup_move_charge_read(struct cgroup *cgrp,
					struct cftype *cft)
{
	return mem_cgroup_from_cont(cgrp)->move_charge_at_immigrate;
}

3574
#ifdef CONFIG_MMU
3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592
static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
					struct cftype *cft, u64 val)
{
	struct mem_cgroup *mem = mem_cgroup_from_cont(cgrp);

	if (val >= (1 << NR_MOVE_TYPE))
		return -EINVAL;
	/*
	 * We check this value several times in both in can_attach() and
	 * attach(), so we need cgroup lock to prevent this value from being
	 * inconsistent.
	 */
	cgroup_lock();
	mem->move_charge_at_immigrate = val;
	cgroup_unlock();

	return 0;
}
3593 3594 3595 3596 3597 3598 3599
#else
static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
					struct cftype *cft, u64 val)
{
	return -ENOSYS;
}
#endif
3600

K
KAMEZAWA Hiroyuki 已提交
3601 3602 3603 3604 3605

/* For read statistics */
enum {
	MCS_CACHE,
	MCS_RSS,
3606
	MCS_FILE_MAPPED,
K
KAMEZAWA Hiroyuki 已提交
3607 3608
	MCS_PGPGIN,
	MCS_PGPGOUT,
3609
	MCS_SWAP,
K
KAMEZAWA Hiroyuki 已提交
3610 3611 3612 3613 3614 3615 3616 3617 3618 3619
	MCS_INACTIVE_ANON,
	MCS_ACTIVE_ANON,
	MCS_INACTIVE_FILE,
	MCS_ACTIVE_FILE,
	MCS_UNEVICTABLE,
	NR_MCS_STAT,
};

struct mcs_total_stat {
	s64 stat[NR_MCS_STAT];
3620 3621
};

K
KAMEZAWA Hiroyuki 已提交
3622 3623 3624 3625 3626 3627
struct {
	char *local_name;
	char *total_name;
} memcg_stat_strings[NR_MCS_STAT] = {
	{"cache", "total_cache"},
	{"rss", "total_rss"},
3628
	{"mapped_file", "total_mapped_file"},
K
KAMEZAWA Hiroyuki 已提交
3629 3630
	{"pgpgin", "total_pgpgin"},
	{"pgpgout", "total_pgpgout"},
3631
	{"swap", "total_swap"},
K
KAMEZAWA Hiroyuki 已提交
3632 3633 3634 3635 3636 3637 3638 3639
	{"inactive_anon", "total_inactive_anon"},
	{"active_anon", "total_active_anon"},
	{"inactive_file", "total_inactive_file"},
	{"active_file", "total_active_file"},
	{"unevictable", "total_unevictable"}
};


K
KAMEZAWA Hiroyuki 已提交
3640 3641
static void
mem_cgroup_get_local_stat(struct mem_cgroup *mem, struct mcs_total_stat *s)
K
KAMEZAWA Hiroyuki 已提交
3642 3643 3644 3645
{
	s64 val;

	/* per cpu stat */
3646
	val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_CACHE);
K
KAMEZAWA Hiroyuki 已提交
3647
	s->stat[MCS_CACHE] += val * PAGE_SIZE;
3648
	val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_RSS);
K
KAMEZAWA Hiroyuki 已提交
3649
	s->stat[MCS_RSS] += val * PAGE_SIZE;
3650
	val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_FILE_MAPPED);
3651
	s->stat[MCS_FILE_MAPPED] += val * PAGE_SIZE;
3652
	val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_PGPGIN_COUNT);
K
KAMEZAWA Hiroyuki 已提交
3653
	s->stat[MCS_PGPGIN] += val;
3654
	val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_PGPGOUT_COUNT);
K
KAMEZAWA Hiroyuki 已提交
3655
	s->stat[MCS_PGPGOUT] += val;
3656
	if (do_swap_account) {
3657
		val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_SWAPOUT);
3658 3659
		s->stat[MCS_SWAP] += val * PAGE_SIZE;
	}
K
KAMEZAWA Hiroyuki 已提交
3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676

	/* per zone stat */
	val = mem_cgroup_get_local_zonestat(mem, LRU_INACTIVE_ANON);
	s->stat[MCS_INACTIVE_ANON] += val * PAGE_SIZE;
	val = mem_cgroup_get_local_zonestat(mem, LRU_ACTIVE_ANON);
	s->stat[MCS_ACTIVE_ANON] += val * PAGE_SIZE;
	val = mem_cgroup_get_local_zonestat(mem, LRU_INACTIVE_FILE);
	s->stat[MCS_INACTIVE_FILE] += val * PAGE_SIZE;
	val = mem_cgroup_get_local_zonestat(mem, LRU_ACTIVE_FILE);
	s->stat[MCS_ACTIVE_FILE] += val * PAGE_SIZE;
	val = mem_cgroup_get_local_zonestat(mem, LRU_UNEVICTABLE);
	s->stat[MCS_UNEVICTABLE] += val * PAGE_SIZE;
}

static void
mem_cgroup_get_total_stat(struct mem_cgroup *mem, struct mcs_total_stat *s)
{
K
KAMEZAWA Hiroyuki 已提交
3677 3678 3679 3680
	struct mem_cgroup *iter;

	for_each_mem_cgroup_tree(iter, mem)
		mem_cgroup_get_local_stat(iter, s);
K
KAMEZAWA Hiroyuki 已提交
3681 3682
}

3683 3684
static int mem_control_stat_show(struct cgroup *cont, struct cftype *cft,
				 struct cgroup_map_cb *cb)
3685 3686
{
	struct mem_cgroup *mem_cont = mem_cgroup_from_cont(cont);
K
KAMEZAWA Hiroyuki 已提交
3687
	struct mcs_total_stat mystat;
3688 3689
	int i;

K
KAMEZAWA Hiroyuki 已提交
3690 3691
	memset(&mystat, 0, sizeof(mystat));
	mem_cgroup_get_local_stat(mem_cont, &mystat);
3692

3693 3694 3695
	for (i = 0; i < NR_MCS_STAT; i++) {
		if (i == MCS_SWAP && !do_swap_account)
			continue;
K
KAMEZAWA Hiroyuki 已提交
3696
		cb->fill(cb, memcg_stat_strings[i].local_name, mystat.stat[i]);
3697
	}
L
Lee Schermerhorn 已提交
3698

K
KAMEZAWA Hiroyuki 已提交
3699
	/* Hierarchical information */
3700 3701 3702 3703 3704 3705 3706
	{
		unsigned long long limit, memsw_limit;
		memcg_get_hierarchical_limit(mem_cont, &limit, &memsw_limit);
		cb->fill(cb, "hierarchical_memory_limit", limit);
		if (do_swap_account)
			cb->fill(cb, "hierarchical_memsw_limit", memsw_limit);
	}
K
KOSAKI Motohiro 已提交
3707

K
KAMEZAWA Hiroyuki 已提交
3708 3709
	memset(&mystat, 0, sizeof(mystat));
	mem_cgroup_get_total_stat(mem_cont, &mystat);
3710 3711 3712
	for (i = 0; i < NR_MCS_STAT; i++) {
		if (i == MCS_SWAP && !do_swap_account)
			continue;
K
KAMEZAWA Hiroyuki 已提交
3713
		cb->fill(cb, memcg_stat_strings[i].total_name, mystat.stat[i]);
3714
	}
K
KAMEZAWA Hiroyuki 已提交
3715

K
KOSAKI Motohiro 已提交
3716
#ifdef CONFIG_DEBUG_VM
3717
	cb->fill(cb, "inactive_ratio", calc_inactive_ratio(mem_cont, NULL));
K
KOSAKI Motohiro 已提交
3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744

	{
		int nid, zid;
		struct mem_cgroup_per_zone *mz;
		unsigned long recent_rotated[2] = {0, 0};
		unsigned long recent_scanned[2] = {0, 0};

		for_each_online_node(nid)
			for (zid = 0; zid < MAX_NR_ZONES; zid++) {
				mz = mem_cgroup_zoneinfo(mem_cont, nid, zid);

				recent_rotated[0] +=
					mz->reclaim_stat.recent_rotated[0];
				recent_rotated[1] +=
					mz->reclaim_stat.recent_rotated[1];
				recent_scanned[0] +=
					mz->reclaim_stat.recent_scanned[0];
				recent_scanned[1] +=
					mz->reclaim_stat.recent_scanned[1];
			}
		cb->fill(cb, "recent_rotated_anon", recent_rotated[0]);
		cb->fill(cb, "recent_rotated_file", recent_rotated[1]);
		cb->fill(cb, "recent_scanned_anon", recent_scanned[0]);
		cb->fill(cb, "recent_scanned_file", recent_scanned[1]);
	}
#endif

3745 3746 3747
	return 0;
}

K
KOSAKI Motohiro 已提交
3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759
static u64 mem_cgroup_swappiness_read(struct cgroup *cgrp, struct cftype *cft)
{
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);

	return get_swappiness(memcg);
}

static int mem_cgroup_swappiness_write(struct cgroup *cgrp, struct cftype *cft,
				       u64 val)
{
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
	struct mem_cgroup *parent;
3760

K
KOSAKI Motohiro 已提交
3761 3762 3763 3764 3765 3766 3767
	if (val > 100)
		return -EINVAL;

	if (cgrp->parent == NULL)
		return -EINVAL;

	parent = mem_cgroup_from_cont(cgrp->parent);
3768 3769 3770

	cgroup_lock();

K
KOSAKI Motohiro 已提交
3771 3772
	/* If under hierarchy, only empty-root can set this value */
	if ((parent->use_hierarchy) ||
3773 3774
	    (memcg->use_hierarchy && !list_empty(&cgrp->children))) {
		cgroup_unlock();
K
KOSAKI Motohiro 已提交
3775
		return -EINVAL;
3776
	}
K
KOSAKI Motohiro 已提交
3777 3778 3779 3780 3781

	spin_lock(&memcg->reclaim_param_lock);
	memcg->swappiness = val;
	spin_unlock(&memcg->reclaim_param_lock);

3782 3783
	cgroup_unlock();

K
KOSAKI Motohiro 已提交
3784 3785 3786
	return 0;
}

3787 3788 3789 3790 3791 3792 3793 3794
static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
{
	struct mem_cgroup_threshold_ary *t;
	u64 usage;
	int i;

	rcu_read_lock();
	if (!swap)
3795
		t = rcu_dereference(memcg->thresholds.primary);
3796
	else
3797
		t = rcu_dereference(memcg->memsw_thresholds.primary);
3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808

	if (!t)
		goto unlock;

	usage = mem_cgroup_usage(memcg, swap);

	/*
	 * current_threshold points to threshold just below usage.
	 * If it's not true, a threshold was crossed after last
	 * call of __mem_cgroup_threshold().
	 */
3809
	i = t->current_threshold;
3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832

	/*
	 * Iterate backward over array of thresholds starting from
	 * current_threshold and check if a threshold is crossed.
	 * If none of thresholds below usage is crossed, we read
	 * only one element of the array here.
	 */
	for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
		eventfd_signal(t->entries[i].eventfd, 1);

	/* i = current_threshold + 1 */
	i++;

	/*
	 * Iterate forward over array of thresholds starting from
	 * current_threshold+1 and check if a threshold is crossed.
	 * If none of thresholds above usage is crossed, we read
	 * only one element of the array here.
	 */
	for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
		eventfd_signal(t->entries[i].eventfd, 1);

	/* Update current_threshold */
3833
	t->current_threshold = i - 1;
3834 3835 3836 3837 3838 3839
unlock:
	rcu_read_unlock();
}

static void mem_cgroup_threshold(struct mem_cgroup *memcg)
{
3840 3841 3842 3843 3844 3845 3846
	while (memcg) {
		__mem_cgroup_threshold(memcg, false);
		if (do_swap_account)
			__mem_cgroup_threshold(memcg, true);

		memcg = parent_mem_cgroup(memcg);
	}
3847 3848 3849 3850 3851 3852 3853 3854 3855 3856
}

static int compare_thresholds(const void *a, const void *b)
{
	const struct mem_cgroup_threshold *_a = a;
	const struct mem_cgroup_threshold *_b = b;

	return _a->threshold - _b->threshold;
}

K
KAMEZAWA Hiroyuki 已提交
3857
static int mem_cgroup_oom_notify_cb(struct mem_cgroup *mem)
K
KAMEZAWA Hiroyuki 已提交
3858 3859 3860 3861 3862 3863 3864 3865 3866 3867
{
	struct mem_cgroup_eventfd_list *ev;

	list_for_each_entry(ev, &mem->oom_notify, list)
		eventfd_signal(ev->eventfd, 1);
	return 0;
}

static void mem_cgroup_oom_notify(struct mem_cgroup *mem)
{
K
KAMEZAWA Hiroyuki 已提交
3868 3869 3870 3871
	struct mem_cgroup *iter;

	for_each_mem_cgroup_tree(iter, mem)
		mem_cgroup_oom_notify_cb(iter);
K
KAMEZAWA Hiroyuki 已提交
3872 3873 3874 3875
}

static int mem_cgroup_usage_register_event(struct cgroup *cgrp,
	struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
3876 3877
{
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
3878 3879
	struct mem_cgroup_thresholds *thresholds;
	struct mem_cgroup_threshold_ary *new;
3880 3881
	int type = MEMFILE_TYPE(cft->private);
	u64 threshold, usage;
3882
	int i, size, ret;
3883 3884 3885 3886 3887 3888

	ret = res_counter_memparse_write_strategy(args, &threshold);
	if (ret)
		return ret;

	mutex_lock(&memcg->thresholds_lock);
3889

3890
	if (type == _MEM)
3891
		thresholds = &memcg->thresholds;
3892
	else if (type == _MEMSWAP)
3893
		thresholds = &memcg->memsw_thresholds;
3894 3895 3896 3897 3898 3899
	else
		BUG();

	usage = mem_cgroup_usage(memcg, type == _MEMSWAP);

	/* Check if a threshold crossed before adding a new one */
3900
	if (thresholds->primary)
3901 3902
		__mem_cgroup_threshold(memcg, type == _MEMSWAP);

3903
	size = thresholds->primary ? thresholds->primary->size + 1 : 1;
3904 3905

	/* Allocate memory for new array of thresholds */
3906
	new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
3907
			GFP_KERNEL);
3908
	if (!new) {
3909 3910 3911
		ret = -ENOMEM;
		goto unlock;
	}
3912
	new->size = size;
3913 3914

	/* Copy thresholds (if any) to new array */
3915 3916
	if (thresholds->primary) {
		memcpy(new->entries, thresholds->primary->entries, (size - 1) *
3917
				sizeof(struct mem_cgroup_threshold));
3918 3919
	}

3920
	/* Add new threshold */
3921 3922
	new->entries[size - 1].eventfd = eventfd;
	new->entries[size - 1].threshold = threshold;
3923 3924

	/* Sort thresholds. Registering of new threshold isn't time-critical */
3925
	sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
3926 3927 3928
			compare_thresholds, NULL);

	/* Find current threshold */
3929
	new->current_threshold = -1;
3930
	for (i = 0; i < size; i++) {
3931
		if (new->entries[i].threshold < usage) {
3932
			/*
3933 3934
			 * new->current_threshold will not be used until
			 * rcu_assign_pointer(), so it's safe to increment
3935 3936
			 * it here.
			 */
3937
			++new->current_threshold;
3938 3939 3940
		}
	}

3941 3942 3943 3944 3945
	/* Free old spare buffer and save old primary buffer as spare */
	kfree(thresholds->spare);
	thresholds->spare = thresholds->primary;

	rcu_assign_pointer(thresholds->primary, new);
3946

3947
	/* To be sure that nobody uses thresholds */
3948 3949 3950 3951 3952 3953 3954 3955
	synchronize_rcu();

unlock:
	mutex_unlock(&memcg->thresholds_lock);

	return ret;
}

3956
static void mem_cgroup_usage_unregister_event(struct cgroup *cgrp,
K
KAMEZAWA Hiroyuki 已提交
3957
	struct cftype *cft, struct eventfd_ctx *eventfd)
3958 3959
{
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
3960 3961
	struct mem_cgroup_thresholds *thresholds;
	struct mem_cgroup_threshold_ary *new;
3962 3963
	int type = MEMFILE_TYPE(cft->private);
	u64 usage;
3964
	int i, j, size;
3965 3966 3967

	mutex_lock(&memcg->thresholds_lock);
	if (type == _MEM)
3968
		thresholds = &memcg->thresholds;
3969
	else if (type == _MEMSWAP)
3970
		thresholds = &memcg->memsw_thresholds;
3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985
	else
		BUG();

	/*
	 * Something went wrong if we trying to unregister a threshold
	 * if we don't have thresholds
	 */
	BUG_ON(!thresholds);

	usage = mem_cgroup_usage(memcg, type == _MEMSWAP);

	/* Check if a threshold crossed before removing */
	__mem_cgroup_threshold(memcg, type == _MEMSWAP);

	/* Calculate new number of threshold */
3986 3987 3988
	size = 0;
	for (i = 0; i < thresholds->primary->size; i++) {
		if (thresholds->primary->entries[i].eventfd != eventfd)
3989 3990 3991
			size++;
	}

3992
	new = thresholds->spare;
3993

3994 3995
	/* Set thresholds array to NULL if we don't have thresholds */
	if (!size) {
3996 3997
		kfree(new);
		new = NULL;
3998
		goto swap_buffers;
3999 4000
	}

4001
	new->size = size;
4002 4003

	/* Copy thresholds and find current threshold */
4004 4005 4006
	new->current_threshold = -1;
	for (i = 0, j = 0; i < thresholds->primary->size; i++) {
		if (thresholds->primary->entries[i].eventfd == eventfd)
4007 4008
			continue;

4009 4010
		new->entries[j] = thresholds->primary->entries[i];
		if (new->entries[j].threshold < usage) {
4011
			/*
4012
			 * new->current_threshold will not be used
4013 4014 4015
			 * until rcu_assign_pointer(), so it's safe to increment
			 * it here.
			 */
4016
			++new->current_threshold;
4017 4018 4019 4020
		}
		j++;
	}

4021
swap_buffers:
4022 4023 4024
	/* Swap primary and spare array */
	thresholds->spare = thresholds->primary;
	rcu_assign_pointer(thresholds->primary, new);
4025

4026
	/* To be sure that nobody uses thresholds */
4027 4028 4029 4030
	synchronize_rcu();

	mutex_unlock(&memcg->thresholds_lock);
}
4031

K
KAMEZAWA Hiroyuki 已提交
4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056
static int mem_cgroup_oom_register_event(struct cgroup *cgrp,
	struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
{
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
	struct mem_cgroup_eventfd_list *event;
	int type = MEMFILE_TYPE(cft->private);

	BUG_ON(type != _OOM_TYPE);
	event = kmalloc(sizeof(*event),	GFP_KERNEL);
	if (!event)
		return -ENOMEM;

	mutex_lock(&memcg_oom_mutex);

	event->eventfd = eventfd;
	list_add(&event->list, &memcg->oom_notify);

	/* already in OOM ? */
	if (atomic_read(&memcg->oom_lock))
		eventfd_signal(eventfd, 1);
	mutex_unlock(&memcg_oom_mutex);

	return 0;
}

4057
static void mem_cgroup_oom_unregister_event(struct cgroup *cgrp,
K
KAMEZAWA Hiroyuki 已提交
4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077
	struct cftype *cft, struct eventfd_ctx *eventfd)
{
	struct mem_cgroup *mem = mem_cgroup_from_cont(cgrp);
	struct mem_cgroup_eventfd_list *ev, *tmp;
	int type = MEMFILE_TYPE(cft->private);

	BUG_ON(type != _OOM_TYPE);

	mutex_lock(&memcg_oom_mutex);

	list_for_each_entry_safe(ev, tmp, &mem->oom_notify, list) {
		if (ev->eventfd == eventfd) {
			list_del(&ev->list);
			kfree(ev);
		}
	}

	mutex_unlock(&memcg_oom_mutex);
}

4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111
static int mem_cgroup_oom_control_read(struct cgroup *cgrp,
	struct cftype *cft,  struct cgroup_map_cb *cb)
{
	struct mem_cgroup *mem = mem_cgroup_from_cont(cgrp);

	cb->fill(cb, "oom_kill_disable", mem->oom_kill_disable);

	if (atomic_read(&mem->oom_lock))
		cb->fill(cb, "under_oom", 1);
	else
		cb->fill(cb, "under_oom", 0);
	return 0;
}

static int mem_cgroup_oom_control_write(struct cgroup *cgrp,
	struct cftype *cft, u64 val)
{
	struct mem_cgroup *mem = mem_cgroup_from_cont(cgrp);
	struct mem_cgroup *parent;

	/* cannot set to root cgroup and only 0 and 1 are allowed */
	if (!cgrp->parent || !((val == 0) || (val == 1)))
		return -EINVAL;

	parent = mem_cgroup_from_cont(cgrp->parent);

	cgroup_lock();
	/* oom-kill-disable is a flag for subhierarchy. */
	if ((parent->use_hierarchy) ||
	    (mem->use_hierarchy && !list_empty(&cgrp->children))) {
		cgroup_unlock();
		return -EINVAL;
	}
	mem->oom_kill_disable = val;
4112 4113
	if (!val)
		memcg_oom_recover(mem);
4114 4115 4116 4117
	cgroup_unlock();
	return 0;
}

B
Balbir Singh 已提交
4118 4119
static struct cftype mem_cgroup_files[] = {
	{
4120
		.name = "usage_in_bytes",
4121
		.private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
4122
		.read_u64 = mem_cgroup_read,
K
KAMEZAWA Hiroyuki 已提交
4123 4124
		.register_event = mem_cgroup_usage_register_event,
		.unregister_event = mem_cgroup_usage_unregister_event,
B
Balbir Singh 已提交
4125
	},
4126 4127
	{
		.name = "max_usage_in_bytes",
4128
		.private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
4129
		.trigger = mem_cgroup_reset,
4130 4131
		.read_u64 = mem_cgroup_read,
	},
B
Balbir Singh 已提交
4132
	{
4133
		.name = "limit_in_bytes",
4134
		.private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
4135
		.write_string = mem_cgroup_write,
4136
		.read_u64 = mem_cgroup_read,
B
Balbir Singh 已提交
4137
	},
4138 4139 4140 4141 4142 4143
	{
		.name = "soft_limit_in_bytes",
		.private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
		.write_string = mem_cgroup_write,
		.read_u64 = mem_cgroup_read,
	},
B
Balbir Singh 已提交
4144 4145
	{
		.name = "failcnt",
4146
		.private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
4147
		.trigger = mem_cgroup_reset,
4148
		.read_u64 = mem_cgroup_read,
B
Balbir Singh 已提交
4149
	},
4150 4151
	{
		.name = "stat",
4152
		.read_map = mem_control_stat_show,
4153
	},
4154 4155 4156 4157
	{
		.name = "force_empty",
		.trigger = mem_cgroup_force_empty_write,
	},
4158 4159 4160 4161 4162
	{
		.name = "use_hierarchy",
		.write_u64 = mem_cgroup_hierarchy_write,
		.read_u64 = mem_cgroup_hierarchy_read,
	},
K
KOSAKI Motohiro 已提交
4163 4164 4165 4166 4167
	{
		.name = "swappiness",
		.read_u64 = mem_cgroup_swappiness_read,
		.write_u64 = mem_cgroup_swappiness_write,
	},
4168 4169 4170 4171 4172
	{
		.name = "move_charge_at_immigrate",
		.read_u64 = mem_cgroup_move_charge_read,
		.write_u64 = mem_cgroup_move_charge_write,
	},
K
KAMEZAWA Hiroyuki 已提交
4173 4174
	{
		.name = "oom_control",
4175 4176
		.read_map = mem_cgroup_oom_control_read,
		.write_u64 = mem_cgroup_oom_control_write,
K
KAMEZAWA Hiroyuki 已提交
4177 4178 4179 4180
		.register_event = mem_cgroup_oom_register_event,
		.unregister_event = mem_cgroup_oom_unregister_event,
		.private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
	},
B
Balbir Singh 已提交
4181 4182
};

4183 4184 4185 4186 4187 4188
#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
static struct cftype memsw_cgroup_files[] = {
	{
		.name = "memsw.usage_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
		.read_u64 = mem_cgroup_read,
K
KAMEZAWA Hiroyuki 已提交
4189 4190
		.register_event = mem_cgroup_usage_register_event,
		.unregister_event = mem_cgroup_usage_unregister_event,
4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225
	},
	{
		.name = "memsw.max_usage_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
		.trigger = mem_cgroup_reset,
		.read_u64 = mem_cgroup_read,
	},
	{
		.name = "memsw.limit_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
		.write_string = mem_cgroup_write,
		.read_u64 = mem_cgroup_read,
	},
	{
		.name = "memsw.failcnt",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
		.trigger = mem_cgroup_reset,
		.read_u64 = mem_cgroup_read,
	},
};

static int register_memsw_files(struct cgroup *cont, struct cgroup_subsys *ss)
{
	if (!do_swap_account)
		return 0;
	return cgroup_add_files(cont, ss, memsw_cgroup_files,
				ARRAY_SIZE(memsw_cgroup_files));
};
#else
static int register_memsw_files(struct cgroup *cont, struct cgroup_subsys *ss)
{
	return 0;
}
#endif

4226 4227 4228
static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *mem, int node)
{
	struct mem_cgroup_per_node *pn;
4229
	struct mem_cgroup_per_zone *mz;
4230
	enum lru_list l;
4231
	int zone, tmp = node;
4232 4233 4234 4235 4236 4237 4238 4239
	/*
	 * This routine is called against possible nodes.
	 * But it's BUG to call kmalloc() against offline node.
	 *
	 * TODO: this routine can waste much memory for nodes which will
	 *       never be onlined. It's better to use memory hotplug callback
	 *       function.
	 */
4240 4241
	if (!node_state(node, N_NORMAL_MEMORY))
		tmp = -1;
4242
	pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
4243 4244
	if (!pn)
		return 1;
4245

4246
	mem->info.nodeinfo[node] = pn;
4247 4248
	for (zone = 0; zone < MAX_NR_ZONES; zone++) {
		mz = &pn->zoneinfo[zone];
4249 4250
		for_each_lru(l)
			INIT_LIST_HEAD(&mz->lists[l]);
4251
		mz->usage_in_excess = 0;
4252 4253
		mz->on_tree = false;
		mz->mem = mem;
4254
	}
4255 4256 4257
	return 0;
}

4258 4259 4260 4261 4262
static void free_mem_cgroup_per_zone_info(struct mem_cgroup *mem, int node)
{
	kfree(mem->info.nodeinfo[node]);
}

4263 4264 4265
static struct mem_cgroup *mem_cgroup_alloc(void)
{
	struct mem_cgroup *mem;
4266
	int size = sizeof(struct mem_cgroup);
4267

4268
	/* Can be very big if MAX_NUMNODES is very big */
4269
	if (size < PAGE_SIZE)
4270
		mem = kzalloc(size, GFP_KERNEL);
4271
	else
4272
		mem = vzalloc(size);
4273

4274 4275 4276
	if (!mem)
		return NULL;

4277
	mem->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
4278 4279
	if (!mem->stat)
		goto out_free;
4280
	spin_lock_init(&mem->pcp_counter_lock);
4281
	return mem;
4282 4283 4284 4285 4286 4287 4288

out_free:
	if (size < PAGE_SIZE)
		kfree(mem);
	else
		vfree(mem);
	return NULL;
4289 4290
}

4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301
/*
 * At destroying mem_cgroup, references from swap_cgroup can remain.
 * (scanning all at force_empty is too costly...)
 *
 * Instead of clearing all references at force_empty, we remember
 * the number of reference from swap_cgroup and free mem_cgroup when
 * it goes down to 0.
 *
 * Removal of cgroup itself succeeds regardless of refs from swap.
 */

4302
static void __mem_cgroup_free(struct mem_cgroup *mem)
4303
{
K
KAMEZAWA Hiroyuki 已提交
4304 4305
	int node;

4306
	mem_cgroup_remove_from_trees(mem);
K
KAMEZAWA Hiroyuki 已提交
4307 4308
	free_css_id(&mem_cgroup_subsys, &mem->css);

K
KAMEZAWA Hiroyuki 已提交
4309 4310 4311
	for_each_node_state(node, N_POSSIBLE)
		free_mem_cgroup_per_zone_info(mem, node);

4312 4313
	free_percpu(mem->stat);
	if (sizeof(struct mem_cgroup) < PAGE_SIZE)
4314 4315 4316 4317 4318
		kfree(mem);
	else
		vfree(mem);
}

4319 4320 4321 4322 4323
static void mem_cgroup_get(struct mem_cgroup *mem)
{
	atomic_inc(&mem->refcnt);
}

4324
static void __mem_cgroup_put(struct mem_cgroup *mem, int count)
4325
{
4326
	if (atomic_sub_and_test(count, &mem->refcnt)) {
4327
		struct mem_cgroup *parent = parent_mem_cgroup(mem);
4328
		__mem_cgroup_free(mem);
4329 4330 4331
		if (parent)
			mem_cgroup_put(parent);
	}
4332 4333
}

4334 4335 4336 4337 4338
static void mem_cgroup_put(struct mem_cgroup *mem)
{
	__mem_cgroup_put(mem, 1);
}

4339 4340 4341 4342 4343 4344 4345 4346 4347
/*
 * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
 */
static struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *mem)
{
	if (!mem->res.parent)
		return NULL;
	return mem_cgroup_from_res_counter(mem->res.parent, res);
}
4348

4349 4350 4351
#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
static void __init enable_swap_cgroup(void)
{
4352
	if (!mem_cgroup_disabled() && really_do_swap_account)
4353 4354 4355 4356 4357 4358 4359 4360
		do_swap_account = 1;
}
#else
static void __init enable_swap_cgroup(void)
{
}
#endif

4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385
static int mem_cgroup_soft_limit_tree_init(void)
{
	struct mem_cgroup_tree_per_node *rtpn;
	struct mem_cgroup_tree_per_zone *rtpz;
	int tmp, node, zone;

	for_each_node_state(node, N_POSSIBLE) {
		tmp = node;
		if (!node_state(node, N_NORMAL_MEMORY))
			tmp = -1;
		rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, tmp);
		if (!rtpn)
			return 1;

		soft_limit_tree.rb_tree_per_node[node] = rtpn;

		for (zone = 0; zone < MAX_NR_ZONES; zone++) {
			rtpz = &rtpn->rb_tree_per_zone[zone];
			rtpz->rb_root = RB_ROOT;
			spin_lock_init(&rtpz->lock);
		}
	}
	return 0;
}

L
Li Zefan 已提交
4386
static struct cgroup_subsys_state * __ref
B
Balbir Singh 已提交
4387 4388
mem_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cont)
{
4389
	struct mem_cgroup *mem, *parent;
K
KAMEZAWA Hiroyuki 已提交
4390
	long error = -ENOMEM;
4391
	int node;
B
Balbir Singh 已提交
4392

4393 4394
	mem = mem_cgroup_alloc();
	if (!mem)
K
KAMEZAWA Hiroyuki 已提交
4395
		return ERR_PTR(error);
4396

4397 4398 4399
	for_each_node_state(node, N_POSSIBLE)
		if (alloc_mem_cgroup_per_zone_info(mem, node))
			goto free_out;
4400

4401
	/* root ? */
4402
	if (cont->parent == NULL) {
4403
		int cpu;
4404
		enable_swap_cgroup();
4405
		parent = NULL;
4406
		root_mem_cgroup = mem;
4407 4408
		if (mem_cgroup_soft_limit_tree_init())
			goto free_out;
4409 4410 4411 4412 4413
		for_each_possible_cpu(cpu) {
			struct memcg_stock_pcp *stock =
						&per_cpu(memcg_stock, cpu);
			INIT_WORK(&stock->work, drain_local_stock);
		}
4414
		hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
4415
	} else {
4416
		parent = mem_cgroup_from_cont(cont->parent);
4417
		mem->use_hierarchy = parent->use_hierarchy;
4418
		mem->oom_kill_disable = parent->oom_kill_disable;
4419
	}
4420

4421 4422 4423
	if (parent && parent->use_hierarchy) {
		res_counter_init(&mem->res, &parent->res);
		res_counter_init(&mem->memsw, &parent->memsw);
4424 4425 4426 4427 4428 4429 4430
		/*
		 * We increment refcnt of the parent to ensure that we can
		 * safely access it on res_counter_charge/uncharge.
		 * This refcnt will be decremented when freeing this
		 * mem_cgroup(see mem_cgroup_put).
		 */
		mem_cgroup_get(parent);
4431 4432 4433 4434
	} else {
		res_counter_init(&mem->res, NULL);
		res_counter_init(&mem->memsw, NULL);
	}
K
KAMEZAWA Hiroyuki 已提交
4435
	mem->last_scanned_child = 0;
K
KOSAKI Motohiro 已提交
4436
	spin_lock_init(&mem->reclaim_param_lock);
K
KAMEZAWA Hiroyuki 已提交
4437
	INIT_LIST_HEAD(&mem->oom_notify);
4438

K
KOSAKI Motohiro 已提交
4439 4440
	if (parent)
		mem->swappiness = get_swappiness(parent);
4441
	atomic_set(&mem->refcnt, 1);
4442
	mem->move_charge_at_immigrate = 0;
4443
	mutex_init(&mem->thresholds_lock);
B
Balbir Singh 已提交
4444
	return &mem->css;
4445
free_out:
4446
	__mem_cgroup_free(mem);
4447
	root_mem_cgroup = NULL;
K
KAMEZAWA Hiroyuki 已提交
4448
	return ERR_PTR(error);
B
Balbir Singh 已提交
4449 4450
}

4451
static int mem_cgroup_pre_destroy(struct cgroup_subsys *ss,
4452 4453 4454
					struct cgroup *cont)
{
	struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
4455 4456

	return mem_cgroup_force_empty(mem, false);
4457 4458
}

B
Balbir Singh 已提交
4459 4460 4461
static void mem_cgroup_destroy(struct cgroup_subsys *ss,
				struct cgroup *cont)
{
4462 4463 4464
	struct mem_cgroup *mem = mem_cgroup_from_cont(cont);

	mem_cgroup_put(mem);
B
Balbir Singh 已提交
4465 4466 4467 4468 4469
}

static int mem_cgroup_populate(struct cgroup_subsys *ss,
				struct cgroup *cont)
{
4470 4471 4472 4473 4474 4475 4476 4477
	int ret;

	ret = cgroup_add_files(cont, ss, mem_cgroup_files,
				ARRAY_SIZE(mem_cgroup_files));

	if (!ret)
		ret = register_memsw_files(cont, ss);
	return ret;
B
Balbir Singh 已提交
4478 4479
}

4480
#ifdef CONFIG_MMU
4481
/* Handlers for move charge at task migration. */
4482 4483
#define PRECHARGE_COUNT_AT_ONCE	256
static int mem_cgroup_do_precharge(unsigned long count)
4484
{
4485 4486
	int ret = 0;
	int batch_count = PRECHARGE_COUNT_AT_ONCE;
4487 4488
	struct mem_cgroup *mem = mc.to;

4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523
	if (mem_cgroup_is_root(mem)) {
		mc.precharge += count;
		/* we don't need css_get for root */
		return ret;
	}
	/* try to charge at once */
	if (count > 1) {
		struct res_counter *dummy;
		/*
		 * "mem" cannot be under rmdir() because we've already checked
		 * by cgroup_lock_live_cgroup() that it is not removed and we
		 * are still under the same cgroup_mutex. So we can postpone
		 * css_get().
		 */
		if (res_counter_charge(&mem->res, PAGE_SIZE * count, &dummy))
			goto one_by_one;
		if (do_swap_account && res_counter_charge(&mem->memsw,
						PAGE_SIZE * count, &dummy)) {
			res_counter_uncharge(&mem->res, PAGE_SIZE * count);
			goto one_by_one;
		}
		mc.precharge += count;
		return ret;
	}
one_by_one:
	/* fall back to one by one charge */
	while (count--) {
		if (signal_pending(current)) {
			ret = -EINTR;
			break;
		}
		if (!batch_count--) {
			batch_count = PRECHARGE_COUNT_AT_ONCE;
			cond_resched();
		}
A
Andrea Arcangeli 已提交
4524 4525
		ret = __mem_cgroup_try_charge(NULL, GFP_KERNEL, &mem, false,
					      PAGE_SIZE);
4526 4527 4528 4529 4530
		if (ret || !mem)
			/* mem_cgroup_clear_mc() will do uncharge later */
			return -ENOMEM;
		mc.precharge++;
	}
4531 4532 4533 4534 4535 4536 4537 4538
	return ret;
}

/**
 * is_target_pte_for_mc - check a pte whether it is valid for move charge
 * @vma: the vma the pte to be checked belongs
 * @addr: the address corresponding to the pte to be checked
 * @ptent: the pte to be checked
4539
 * @target: the pointer the target page or swap ent will be stored(can be NULL)
4540 4541 4542 4543 4544 4545
 *
 * Returns
 *   0(MC_TARGET_NONE): if the pte is not a target for move charge.
 *   1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
 *     move charge. if @target is not NULL, the page is stored in target->page
 *     with extra refcnt got(Callers should handle it).
4546 4547 4548
 *   2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
 *     target for charge migration. if @target is not NULL, the entry is stored
 *     in target->ent.
4549 4550 4551 4552 4553
 *
 * Called with pte lock held.
 */
union mc_target {
	struct page	*page;
4554
	swp_entry_t	ent;
4555 4556 4557 4558 4559
};

enum mc_target_type {
	MC_TARGET_NONE,	/* not used */
	MC_TARGET_PAGE,
4560
	MC_TARGET_SWAP,
4561 4562
};

D
Daisuke Nishimura 已提交
4563 4564
static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
						unsigned long addr, pte_t ptent)
4565
{
D
Daisuke Nishimura 已提交
4566
	struct page *page = vm_normal_page(vma, addr, ptent);
4567

D
Daisuke Nishimura 已提交
4568 4569 4570 4571 4572 4573
	if (!page || !page_mapped(page))
		return NULL;
	if (PageAnon(page)) {
		/* we don't move shared anon */
		if (!move_anon() || page_mapcount(page) > 2)
			return NULL;
4574 4575
	} else if (!move_file())
		/* we ignore mapcount for file pages */
D
Daisuke Nishimura 已提交
4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593
		return NULL;
	if (!get_page_unless_zero(page))
		return NULL;

	return page;
}

static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
			unsigned long addr, pte_t ptent, swp_entry_t *entry)
{
	int usage_count;
	struct page *page = NULL;
	swp_entry_t ent = pte_to_swp_entry(ptent);

	if (!move_anon() || non_swap_entry(ent))
		return NULL;
	usage_count = mem_cgroup_count_swap_user(ent, &page);
	if (usage_count > 1) { /* we don't move shared anon */
4594 4595
		if (page)
			put_page(page);
D
Daisuke Nishimura 已提交
4596
		return NULL;
4597
	}
D
Daisuke Nishimura 已提交
4598 4599 4600 4601 4602 4603
	if (do_swap_account)
		entry->val = ent.val;

	return page;
}

4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636
static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
			unsigned long addr, pte_t ptent, swp_entry_t *entry)
{
	struct page *page = NULL;
	struct inode *inode;
	struct address_space *mapping;
	pgoff_t pgoff;

	if (!vma->vm_file) /* anonymous vma */
		return NULL;
	if (!move_file())
		return NULL;

	inode = vma->vm_file->f_path.dentry->d_inode;
	mapping = vma->vm_file->f_mapping;
	if (pte_none(ptent))
		pgoff = linear_page_index(vma, addr);
	else /* pte_file(ptent) is true */
		pgoff = pte_to_pgoff(ptent);

	/* page is moved even if it's not RSS of this task(page-faulted). */
	if (!mapping_cap_swap_backed(mapping)) { /* normal file */
		page = find_get_page(mapping, pgoff);
	} else { /* shmem/tmpfs file. we should take account of swap too. */
		swp_entry_t ent;
		mem_cgroup_get_shmem_target(inode, pgoff, &page, &ent);
		if (do_swap_account)
			entry->val = ent.val;
	}

	return page;
}

D
Daisuke Nishimura 已提交
4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648
static int is_target_pte_for_mc(struct vm_area_struct *vma,
		unsigned long addr, pte_t ptent, union mc_target *target)
{
	struct page *page = NULL;
	struct page_cgroup *pc;
	int ret = 0;
	swp_entry_t ent = { .val = 0 };

	if (pte_present(ptent))
		page = mc_handle_present_pte(vma, addr, ptent);
	else if (is_swap_pte(ptent))
		page = mc_handle_swap_pte(vma, addr, ptent, &ent);
4649 4650
	else if (pte_none(ptent) || pte_file(ptent))
		page = mc_handle_file_pte(vma, addr, ptent, &ent);
D
Daisuke Nishimura 已提交
4651 4652 4653

	if (!page && !ent.val)
		return 0;
4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668
	if (page) {
		pc = lookup_page_cgroup(page);
		/*
		 * Do only loose check w/o page_cgroup lock.
		 * mem_cgroup_move_account() checks the pc is valid or not under
		 * the lock.
		 */
		if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
			ret = MC_TARGET_PAGE;
			if (target)
				target->page = page;
		}
		if (!ret || !target)
			put_page(page);
	}
D
Daisuke Nishimura 已提交
4669 4670
	/* There is a swap entry and a page doesn't exist or isn't charged */
	if (ent.val && !ret &&
4671 4672 4673 4674
			css_id(&mc.from->css) == lookup_swap_cgroup(ent)) {
		ret = MC_TARGET_SWAP;
		if (target)
			target->ent = ent;
4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686
	}
	return ret;
}

static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
					unsigned long addr, unsigned long end,
					struct mm_walk *walk)
{
	struct vm_area_struct *vma = walk->private;
	pte_t *pte;
	spinlock_t *ptl;

A
Andrea Arcangeli 已提交
4687
	VM_BUG_ON(pmd_trans_huge(*pmd));
4688 4689 4690 4691 4692 4693 4694
	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
	for (; addr != end; pte++, addr += PAGE_SIZE)
		if (is_target_pte_for_mc(vma, addr, *pte, NULL))
			mc.precharge++;	/* increment precharge temporarily */
	pte_unmap_unlock(pte - 1, ptl);
	cond_resched();

4695 4696 4697
	return 0;
}

4698 4699 4700 4701 4702
static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
{
	unsigned long precharge;
	struct vm_area_struct *vma;

4703
	down_read(&mm->mmap_sem);
4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714
	for (vma = mm->mmap; vma; vma = vma->vm_next) {
		struct mm_walk mem_cgroup_count_precharge_walk = {
			.pmd_entry = mem_cgroup_count_precharge_pte_range,
			.mm = mm,
			.private = vma,
		};
		if (is_vm_hugetlb_page(vma))
			continue;
		walk_page_range(vma->vm_start, vma->vm_end,
					&mem_cgroup_count_precharge_walk);
	}
4715
	up_read(&mm->mmap_sem);
4716 4717 4718 4719 4720 4721 4722 4723 4724

	precharge = mc.precharge;
	mc.precharge = 0;

	return precharge;
}

static int mem_cgroup_precharge_mc(struct mm_struct *mm)
{
4725 4726 4727 4728 4729
	unsigned long precharge = mem_cgroup_count_precharge(mm);

	VM_BUG_ON(mc.moving_task);
	mc.moving_task = current;
	return mem_cgroup_do_precharge(precharge);
4730 4731
}

4732 4733
/* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
static void __mem_cgroup_clear_mc(void)
4734
{
4735 4736 4737
	struct mem_cgroup *from = mc.from;
	struct mem_cgroup *to = mc.to;

4738
	/* we must uncharge all the leftover precharges from mc.to */
4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749
	if (mc.precharge) {
		__mem_cgroup_cancel_charge(mc.to, mc.precharge);
		mc.precharge = 0;
	}
	/*
	 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
	 * we must uncharge here.
	 */
	if (mc.moved_charge) {
		__mem_cgroup_cancel_charge(mc.from, mc.moved_charge);
		mc.moved_charge = 0;
4750
	}
4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769
	/* we must fixup refcnts and charges */
	if (mc.moved_swap) {
		/* uncharge swap account from the old cgroup */
		if (!mem_cgroup_is_root(mc.from))
			res_counter_uncharge(&mc.from->memsw,
						PAGE_SIZE * mc.moved_swap);
		__mem_cgroup_put(mc.from, mc.moved_swap);

		if (!mem_cgroup_is_root(mc.to)) {
			/*
			 * we charged both to->res and to->memsw, so we should
			 * uncharge to->res.
			 */
			res_counter_uncharge(&mc.to->res,
						PAGE_SIZE * mc.moved_swap);
		}
		/* we've already done mem_cgroup_get(mc.to) */
		mc.moved_swap = 0;
	}
4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784
	memcg_oom_recover(from);
	memcg_oom_recover(to);
	wake_up_all(&mc.waitq);
}

static void mem_cgroup_clear_mc(void)
{
	struct mem_cgroup *from = mc.from;

	/*
	 * we must clear moving_task before waking up waiters at the end of
	 * task migration.
	 */
	mc.moving_task = NULL;
	__mem_cgroup_clear_mc();
4785
	spin_lock(&mc.lock);
4786 4787
	mc.from = NULL;
	mc.to = NULL;
4788
	spin_unlock(&mc.lock);
4789
	mem_cgroup_end_move(from);
4790 4791
}

4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809
static int mem_cgroup_can_attach(struct cgroup_subsys *ss,
				struct cgroup *cgroup,
				struct task_struct *p,
				bool threadgroup)
{
	int ret = 0;
	struct mem_cgroup *mem = mem_cgroup_from_cont(cgroup);

	if (mem->move_charge_at_immigrate) {
		struct mm_struct *mm;
		struct mem_cgroup *from = mem_cgroup_from_task(p);

		VM_BUG_ON(from == mem);

		mm = get_task_mm(p);
		if (!mm)
			return 0;
		/* We move charges only when we move a owner of the mm */
4810 4811 4812 4813
		if (mm->owner == p) {
			VM_BUG_ON(mc.from);
			VM_BUG_ON(mc.to);
			VM_BUG_ON(mc.precharge);
4814
			VM_BUG_ON(mc.moved_charge);
4815
			VM_BUG_ON(mc.moved_swap);
4816
			mem_cgroup_start_move(from);
4817
			spin_lock(&mc.lock);
4818 4819
			mc.from = from;
			mc.to = mem;
4820
			spin_unlock(&mc.lock);
4821
			/* We set mc.moving_task later */
4822 4823 4824 4825

			ret = mem_cgroup_precharge_mc(mm);
			if (ret)
				mem_cgroup_clear_mc();
4826 4827
		}
		mmput(mm);
4828 4829 4830 4831 4832 4833 4834 4835 4836
	}
	return ret;
}

static void mem_cgroup_cancel_attach(struct cgroup_subsys *ss,
				struct cgroup *cgroup,
				struct task_struct *p,
				bool threadgroup)
{
4837
	mem_cgroup_clear_mc();
4838 4839
}

4840 4841 4842
static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
				unsigned long addr, unsigned long end,
				struct mm_walk *walk)
4843
{
4844 4845 4846 4847 4848 4849
	int ret = 0;
	struct vm_area_struct *vma = walk->private;
	pte_t *pte;
	spinlock_t *ptl;

retry:
A
Andrea Arcangeli 已提交
4850
	VM_BUG_ON(pmd_trans_huge(*pmd));
4851 4852 4853 4854 4855 4856 4857
	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
	for (; addr != end; addr += PAGE_SIZE) {
		pte_t ptent = *(pte++);
		union mc_target target;
		int type;
		struct page *page;
		struct page_cgroup *pc;
4858
		swp_entry_t ent;
4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869

		if (!mc.precharge)
			break;

		type = is_target_pte_for_mc(vma, addr, ptent, &target);
		switch (type) {
		case MC_TARGET_PAGE:
			page = target.page;
			if (isolate_lru_page(page))
				goto put;
			pc = lookup_page_cgroup(page);
4870 4871
			if (!mem_cgroup_move_account(pc,
						mc.from, mc.to, false)) {
4872
				mc.precharge--;
4873 4874
				/* we uncharge from mc.from later. */
				mc.moved_charge++;
4875 4876 4877 4878 4879
			}
			putback_lru_page(page);
put:			/* is_target_pte_for_mc() gets the page */
			put_page(page);
			break;
4880 4881
		case MC_TARGET_SWAP:
			ent = target.ent;
4882 4883
			if (!mem_cgroup_move_swap_account(ent,
						mc.from, mc.to, false)) {
4884
				mc.precharge--;
4885 4886 4887
				/* we fixup refcnts and charges later. */
				mc.moved_swap++;
			}
4888
			break;
4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899 4900 4901 4902
		default:
			break;
		}
	}
	pte_unmap_unlock(pte - 1, ptl);
	cond_resched();

	if (addr != end) {
		/*
		 * We have consumed all precharges we got in can_attach().
		 * We try charge one by one, but don't do any additional
		 * charges to mc.to if we have failed in charge once in attach()
		 * phase.
		 */
4903
		ret = mem_cgroup_do_precharge(1);
4904 4905 4906 4907 4908 4909 4910 4911 4912 4913 4914 4915
		if (!ret)
			goto retry;
	}

	return ret;
}

static void mem_cgroup_move_charge(struct mm_struct *mm)
{
	struct vm_area_struct *vma;

	lru_add_drain_all();
4916 4917 4918 4919 4920 4921 4922 4923 4924 4925 4926 4927 4928
retry:
	if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
		/*
		 * Someone who are holding the mmap_sem might be waiting in
		 * waitq. So we cancel all extra charges, wake up all waiters,
		 * and retry. Because we cancel precharges, we might not be able
		 * to move enough charges, but moving charge is a best-effort
		 * feature anyway, so it wouldn't be a big problem.
		 */
		__mem_cgroup_clear_mc();
		cond_resched();
		goto retry;
	}
4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940 4941 4942 4943 4944 4945 4946
	for (vma = mm->mmap; vma; vma = vma->vm_next) {
		int ret;
		struct mm_walk mem_cgroup_move_charge_walk = {
			.pmd_entry = mem_cgroup_move_charge_pte_range,
			.mm = mm,
			.private = vma,
		};
		if (is_vm_hugetlb_page(vma))
			continue;
		ret = walk_page_range(vma->vm_start, vma->vm_end,
						&mem_cgroup_move_charge_walk);
		if (ret)
			/*
			 * means we have consumed all precharges and failed in
			 * doing additional charge. Just abandon here.
			 */
			break;
	}
4947
	up_read(&mm->mmap_sem);
4948 4949
}

B
Balbir Singh 已提交
4950 4951 4952
static void mem_cgroup_move_task(struct cgroup_subsys *ss,
				struct cgroup *cont,
				struct cgroup *old_cont,
4953 4954
				struct task_struct *p,
				bool threadgroup)
B
Balbir Singh 已提交
4955
{
4956 4957 4958
	struct mm_struct *mm;

	if (!mc.to)
4959 4960 4961
		/* no need to move charge */
		return;

4962 4963 4964 4965 4966
	mm = get_task_mm(p);
	if (mm) {
		mem_cgroup_move_charge(mm);
		mmput(mm);
	}
4967
	mem_cgroup_clear_mc();
B
Balbir Singh 已提交
4968
}
4969 4970 4971 4972 4973 4974 4975 4976 4977 4978 4979 4980 4981 4982 4983 4984 4985 4986 4987 4988 4989 4990
#else	/* !CONFIG_MMU */
static int mem_cgroup_can_attach(struct cgroup_subsys *ss,
				struct cgroup *cgroup,
				struct task_struct *p,
				bool threadgroup)
{
	return 0;
}
static void mem_cgroup_cancel_attach(struct cgroup_subsys *ss,
				struct cgroup *cgroup,
				struct task_struct *p,
				bool threadgroup)
{
}
static void mem_cgroup_move_task(struct cgroup_subsys *ss,
				struct cgroup *cont,
				struct cgroup *old_cont,
				struct task_struct *p,
				bool threadgroup)
{
}
#endif
B
Balbir Singh 已提交
4991

B
Balbir Singh 已提交
4992 4993 4994 4995
struct cgroup_subsys mem_cgroup_subsys = {
	.name = "memory",
	.subsys_id = mem_cgroup_subsys_id,
	.create = mem_cgroup_create,
4996
	.pre_destroy = mem_cgroup_pre_destroy,
B
Balbir Singh 已提交
4997 4998
	.destroy = mem_cgroup_destroy,
	.populate = mem_cgroup_populate,
4999 5000
	.can_attach = mem_cgroup_can_attach,
	.cancel_attach = mem_cgroup_cancel_attach,
B
Balbir Singh 已提交
5001
	.attach = mem_cgroup_move_task,
5002
	.early_init = 0,
K
KAMEZAWA Hiroyuki 已提交
5003
	.use_id = 1,
B
Balbir Singh 已提交
5004
};
5005 5006

#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
5007 5008 5009 5010 5011 5012 5013 5014 5015 5016
static int __init enable_swap_account(char *s)
{
	/* consider enabled if no parameter or 1 is given */
	if (!s || !strcmp(s, "1"))
		really_do_swap_account = 1;
	else if (!strcmp(s, "0"))
		really_do_swap_account = 0;
	return 1;
}
__setup("swapaccount", enable_swap_account);
5017 5018 5019

static int __init disable_swap_account(char *s)
{
5020
	enable_swap_account("0");
5021 5022 5023 5024
	return 1;
}
__setup("noswapaccount", disable_swap_account);
#endif