memcontrol.c 182.2 KB
Newer Older
B
Balbir Singh 已提交
1 2 3 4 5
/* memcontrol.c - Memory Controller
 *
 * Copyright IBM Corporation, 2007
 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
 *
6 7 8
 * Copyright 2007 OpenVZ SWsoft Inc
 * Author: Pavel Emelianov <xemul@openvz.org>
 *
9 10 11 12
 * Memory thresholds
 * Copyright (C) 2009 Nokia Corporation
 * Author: Kirill A. Shutemov
 *
13 14 15 16
 * Kernel Memory Controller
 * Copyright (C) 2012 Parallels Inc. and Google Inc.
 * Authors: Glauber Costa and Suleiman Souhlal
 *
B
Balbir Singh 已提交
17 18 19 20 21 22 23 24 25 26 27 28 29 30
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 */

#include <linux/res_counter.h>
#include <linux/memcontrol.h>
#include <linux/cgroup.h>
31
#include <linux/mm.h>
32
#include <linux/hugetlb.h>
K
KAMEZAWA Hiroyuki 已提交
33
#include <linux/pagemap.h>
34
#include <linux/smp.h>
35
#include <linux/page-flags.h>
36
#include <linux/backing-dev.h>
37 38
#include <linux/bit_spinlock.h>
#include <linux/rcupdate.h>
39
#include <linux/limits.h>
40
#include <linux/export.h>
41
#include <linux/mutex.h>
42
#include <linux/rbtree.h>
43
#include <linux/slab.h>
44
#include <linux/swap.h>
45
#include <linux/swapops.h>
46
#include <linux/spinlock.h>
47 48
#include <linux/eventfd.h>
#include <linux/sort.h>
49
#include <linux/fs.h>
50
#include <linux/seq_file.h>
51
#include <linux/vmalloc.h>
52
#include <linux/vmpressure.h>
53
#include <linux/mm_inline.h>
54
#include <linux/page_cgroup.h>
55
#include <linux/cpu.h>
56
#include <linux/oom.h>
K
KAMEZAWA Hiroyuki 已提交
57
#include "internal.h"
G
Glauber Costa 已提交
58
#include <net/sock.h>
M
Michal Hocko 已提交
59
#include <net/ip.h>
G
Glauber Costa 已提交
60
#include <net/tcp_memcontrol.h>
B
Balbir Singh 已提交
61

62 63
#include <asm/uaccess.h>

64 65
#include <trace/events/vmscan.h>

66
struct cgroup_subsys mem_cgroup_subsys __read_mostly;
67 68
EXPORT_SYMBOL(mem_cgroup_subsys);

69
#define MEM_CGROUP_RECLAIM_RETRIES	5
70
static struct mem_cgroup *root_mem_cgroup __read_mostly;
B
Balbir Singh 已提交
71

A
Andrew Morton 已提交
72
#ifdef CONFIG_MEMCG_SWAP
L
Li Zefan 已提交
73
/* Turned on only when memory cgroup is enabled && really_do_swap_account = 1 */
74
int do_swap_account __read_mostly;
75 76

/* for remember boot option*/
A
Andrew Morton 已提交
77
#ifdef CONFIG_MEMCG_SWAP_ENABLED
78 79 80 81 82
static int really_do_swap_account __initdata = 1;
#else
static int really_do_swap_account __initdata = 0;
#endif

83
#else
84
#define do_swap_account		0
85 86 87
#endif


88 89 90 91 92 93 94
/*
 * Statistics for memory cgroup.
 */
enum mem_cgroup_stat_index {
	/*
	 * For MEM_CONTAINER_TYPE_ALL, usage = pagecache + rss.
	 */
95 96 97 98 99
	MEM_CGROUP_STAT_CACHE,		/* # of pages charged as cache */
	MEM_CGROUP_STAT_RSS,		/* # of pages charged as anon rss */
	MEM_CGROUP_STAT_RSS_HUGE,	/* # of pages charged as anon huge */
	MEM_CGROUP_STAT_FILE_MAPPED,	/* # of pages charged as file rss */
	MEM_CGROUP_STAT_SWAP,		/* # of pages, swapped out */
100 101 102
	MEM_CGROUP_STAT_NSTATS,
};

103 104 105
static const char * const mem_cgroup_stat_names[] = {
	"cache",
	"rss",
106
	"rss_huge",
107 108 109 110
	"mapped_file",
	"swap",
};

111 112 113
enum mem_cgroup_events_index {
	MEM_CGROUP_EVENTS_PGPGIN,	/* # of pages paged in */
	MEM_CGROUP_EVENTS_PGPGOUT,	/* # of pages paged out */
114 115
	MEM_CGROUP_EVENTS_PGFAULT,	/* # of page-faults */
	MEM_CGROUP_EVENTS_PGMAJFAULT,	/* # of major page-faults */
116 117
	MEM_CGROUP_EVENTS_NSTATS,
};
118 119 120 121 122 123 124 125

static const char * const mem_cgroup_events_names[] = {
	"pgpgin",
	"pgpgout",
	"pgfault",
	"pgmajfault",
};

126 127 128 129 130 131 132 133
static const char * const mem_cgroup_lru_names[] = {
	"inactive_anon",
	"active_anon",
	"inactive_file",
	"active_file",
	"unevictable",
};

134 135 136 137 138 139 140 141 142
/*
 * Per memcg event counter is incremented at every pagein/pageout. With THP,
 * it will be incremated by the number of pages. This counter is used for
 * for trigger some periodic events. This is straightforward and better
 * than using jiffies etc. to handle periodic memcg event.
 */
enum mem_cgroup_events_target {
	MEM_CGROUP_TARGET_THRESH,
	MEM_CGROUP_TARGET_SOFTLIMIT,
143
	MEM_CGROUP_TARGET_NUMAINFO,
144 145
	MEM_CGROUP_NTARGETS,
};
146 147 148
#define THRESHOLDS_EVENTS_TARGET 128
#define SOFTLIMIT_EVENTS_TARGET 1024
#define NUMAINFO_EVENTS_TARGET	1024
149

150
struct mem_cgroup_stat_cpu {
151
	long count[MEM_CGROUP_STAT_NSTATS];
152
	unsigned long events[MEM_CGROUP_EVENTS_NSTATS];
153
	unsigned long nr_page_events;
154
	unsigned long targets[MEM_CGROUP_NTARGETS];
155 156
};

157
struct mem_cgroup_reclaim_iter {
M
Michal Hocko 已提交
158 159 160 161
	/*
	 * last scanned hierarchy member. Valid only if last_dead_count
	 * matches memcg->dead_count of the hierarchy root group.
	 */
162
	struct mem_cgroup *last_visited;
M
Michal Hocko 已提交
163 164
	unsigned long last_dead_count;

165 166 167 168
	/* scan generation, increased every round-trip */
	unsigned int generation;
};

169 170 171 172
/*
 * per-zone information in memory controller.
 */
struct mem_cgroup_per_zone {
173
	struct lruvec		lruvec;
174
	unsigned long		lru_size[NR_LRU_LISTS];
K
KOSAKI Motohiro 已提交
175

176 177
	struct mem_cgroup_reclaim_iter reclaim_iter[DEF_PRIORITY + 1];

178 179 180 181
	struct rb_node		tree_node;	/* RB tree node */
	unsigned long long	usage_in_excess;/* Set to the value by which */
						/* the soft limit is exceeded*/
	bool			on_tree;
182
	struct mem_cgroup	*memcg;		/* Back pointer, we cannot */
183
						/* use container_of	   */
184 185 186 187 188 189
};

struct mem_cgroup_per_node {
	struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
};

190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209
/*
 * Cgroups above their limits are maintained in a RB-Tree, independent of
 * their hierarchy representation
 */

struct mem_cgroup_tree_per_zone {
	struct rb_root rb_root;
	spinlock_t lock;
};

struct mem_cgroup_tree_per_node {
	struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
};

struct mem_cgroup_tree {
	struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
};

static struct mem_cgroup_tree soft_limit_tree __read_mostly;

210 211 212 213 214
struct mem_cgroup_threshold {
	struct eventfd_ctx *eventfd;
	u64 threshold;
};

K
KAMEZAWA Hiroyuki 已提交
215
/* For threshold */
216
struct mem_cgroup_threshold_ary {
217
	/* An array index points to threshold just below or equal to usage. */
218
	int current_threshold;
219 220 221 222 223
	/* Size of entries[] */
	unsigned int size;
	/* Array of thresholds */
	struct mem_cgroup_threshold entries[0];
};
224 225 226 227 228 229 230 231 232 233 234 235

struct mem_cgroup_thresholds {
	/* Primary thresholds array */
	struct mem_cgroup_threshold_ary *primary;
	/*
	 * Spare threshold array.
	 * This is needed to make mem_cgroup_unregister_event() "never fail".
	 * It must be able to store at least primary->size - 1 entries.
	 */
	struct mem_cgroup_threshold_ary *spare;
};

K
KAMEZAWA Hiroyuki 已提交
236 237 238 239 240
/* for OOM */
struct mem_cgroup_eventfd_list {
	struct list_head list;
	struct eventfd_ctx *eventfd;
};
241

242 243
static void mem_cgroup_threshold(struct mem_cgroup *memcg);
static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
244

B
Balbir Singh 已提交
245 246 247 248 249 250 251
/*
 * The memory controller data structure. The memory controller controls both
 * page cache and RSS per cgroup. We would eventually like to provide
 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
 * to help the administrator determine what knobs to tune.
 *
 * TODO: Add a water mark for the memory controller. Reclaim will begin when
252 253 254
 * we hit the water mark. May be even add a low water mark, such that
 * no reclaim occurs from a cgroup at it's low water mark, this is
 * a feature that will be implemented much later in the future.
B
Balbir Singh 已提交
255 256 257 258 259 260 261
 */
struct mem_cgroup {
	struct cgroup_subsys_state css;
	/*
	 * the counter to account for memory usage
	 */
	struct res_counter res;
262

263 264 265
	/* vmpressure notifications */
	struct vmpressure vmpressure;

266 267 268 269
	/*
	 * the counter to account for mem+swap usage.
	 */
	struct res_counter memsw;
270

271 272 273 274
	/*
	 * the counter to account for kernel memory usage.
	 */
	struct res_counter kmem;
275 276 277 278
	/*
	 * Should the accounting and control be hierarchical, per subtree?
	 */
	bool use_hierarchy;
279
	unsigned long kmem_account_flags; /* See KMEM_ACCOUNTED_*, below */
280 281 282 283

	bool		oom_lock;
	atomic_t	under_oom;

284
	int	swappiness;
285 286
	/* OOM-Killer disable */
	int		oom_kill_disable;
K
KOSAKI Motohiro 已提交
287

288 289 290
	/* set when res.limit == memsw.limit */
	bool		memsw_is_minimum;

291 292 293 294
	/* protect arrays of thresholds */
	struct mutex thresholds_lock;

	/* thresholds for memory usage. RCU-protected */
295
	struct mem_cgroup_thresholds thresholds;
296

297
	/* thresholds for mem+swap usage. RCU-protected */
298
	struct mem_cgroup_thresholds memsw_thresholds;
299

K
KAMEZAWA Hiroyuki 已提交
300 301
	/* For oom notifier event fd */
	struct list_head oom_notify;
302

303 304 305 306 307
	/*
	 * Should we move charges of a task when a task is moved into this
	 * mem_cgroup ? And what type of charges should we move ?
	 */
	unsigned long 	move_charge_at_immigrate;
308 309 310 311
	/*
	 * set > 0 if pages under this cgroup are moving to other cgroup.
	 */
	atomic_t	moving_account;
312 313
	/* taken only while moving_account > 0 */
	spinlock_t	move_lock;
314
	/*
315
	 * percpu counter.
316
	 */
317
	struct mem_cgroup_stat_cpu __percpu *stat;
318 319 320 321 322 323
	/*
	 * used when a cpu is offlined or other synchronizations
	 * See mem_cgroup_read_stat().
	 */
	struct mem_cgroup_stat_cpu nocpu_base;
	spinlock_t pcp_counter_lock;
G
Glauber Costa 已提交
324

M
Michal Hocko 已提交
325
	atomic_t	dead_count;
M
Michal Hocko 已提交
326
#if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_INET)
G
Glauber Costa 已提交
327 328
	struct tcp_memcontrol tcp_mem;
#endif
329 330 331 332 333 334 335 336
#if defined(CONFIG_MEMCG_KMEM)
	/* analogous to slab_common's slab_caches list. per-memcg */
	struct list_head memcg_slab_caches;
	/* Not a spinlock, we can take a lot of time walking the list */
	struct mutex slab_caches_mutex;
        /* Index in the kmem_cache->memcg_params->memcg_caches array */
	int kmemcg_id;
#endif
337 338 339 340 341 342 343

	int last_scanned_node;
#if MAX_NUMNODES > 1
	nodemask_t	scan_nodes;
	atomic_t	numainfo_events;
	atomic_t	numainfo_updating;
#endif
344

345 346
	struct mem_cgroup_per_node *nodeinfo[0];
	/* WARNING: nodeinfo must be the last member here */
B
Balbir Singh 已提交
347 348
};

349 350 351 352 353 354
static size_t memcg_size(void)
{
	return sizeof(struct mem_cgroup) +
		nr_node_ids * sizeof(struct mem_cgroup_per_node);
}

355 356 357
/* internal only representation about the status of kmem accounting. */
enum {
	KMEM_ACCOUNTED_ACTIVE = 0, /* accounted by this cgroup itself */
358
	KMEM_ACCOUNTED_ACTIVATED, /* static key enabled. */
359
	KMEM_ACCOUNTED_DEAD, /* dead memcg with pending kmem charges */
360 361
};

362 363 364
/* We account when limit is on, but only after call sites are patched */
#define KMEM_ACCOUNTED_MASK \
		((1 << KMEM_ACCOUNTED_ACTIVE) | (1 << KMEM_ACCOUNTED_ACTIVATED))
365 366 367 368 369 370

#ifdef CONFIG_MEMCG_KMEM
static inline void memcg_kmem_set_active(struct mem_cgroup *memcg)
{
	set_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags);
}
371 372 373 374 375 376

static bool memcg_kmem_is_active(struct mem_cgroup *memcg)
{
	return test_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags);
}

377 378 379 380 381
static void memcg_kmem_set_activated(struct mem_cgroup *memcg)
{
	set_bit(KMEM_ACCOUNTED_ACTIVATED, &memcg->kmem_account_flags);
}

382 383 384 385 386
static void memcg_kmem_clear_activated(struct mem_cgroup *memcg)
{
	clear_bit(KMEM_ACCOUNTED_ACTIVATED, &memcg->kmem_account_flags);
}

387 388
static void memcg_kmem_mark_dead(struct mem_cgroup *memcg)
{
389 390 391 392 393
	/*
	 * Our caller must use css_get() first, because memcg_uncharge_kmem()
	 * will call css_put() if it sees the memcg is dead.
	 */
	smp_wmb();
394 395 396 397 398 399 400 401 402
	if (test_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags))
		set_bit(KMEM_ACCOUNTED_DEAD, &memcg->kmem_account_flags);
}

static bool memcg_kmem_test_and_clear_dead(struct mem_cgroup *memcg)
{
	return test_and_clear_bit(KMEM_ACCOUNTED_DEAD,
				  &memcg->kmem_account_flags);
}
403 404
#endif

405 406
/* Stuffs for move charges at task migration. */
/*
407 408
 * Types of charges to be moved. "move_charge_at_immitgrate" and
 * "immigrate_flags" are treated as a left-shifted bitmap of these types.
409 410
 */
enum move_type {
411
	MOVE_CHARGE_TYPE_ANON,	/* private anonymous page and swap of it */
412
	MOVE_CHARGE_TYPE_FILE,	/* file page(including tmpfs) and swap of it */
413 414 415
	NR_MOVE_TYPE,
};

416 417
/* "mc" and its members are protected by cgroup_mutex */
static struct move_charge_struct {
418
	spinlock_t	  lock; /* for from, to */
419 420
	struct mem_cgroup *from;
	struct mem_cgroup *to;
421
	unsigned long immigrate_flags;
422
	unsigned long precharge;
423
	unsigned long moved_charge;
424
	unsigned long moved_swap;
425 426 427
	struct task_struct *moving_task;	/* a task moving charges */
	wait_queue_head_t waitq;		/* a waitq for other context */
} mc = {
428
	.lock = __SPIN_LOCK_UNLOCKED(mc.lock),
429 430
	.waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
};
431

D
Daisuke Nishimura 已提交
432 433
static bool move_anon(void)
{
434
	return test_bit(MOVE_CHARGE_TYPE_ANON, &mc.immigrate_flags);
D
Daisuke Nishimura 已提交
435 436
}

437 438
static bool move_file(void)
{
439
	return test_bit(MOVE_CHARGE_TYPE_FILE, &mc.immigrate_flags);
440 441
}

442 443 444 445
/*
 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
 * limit reclaim to prevent infinite loops, if they ever occur.
 */
446 447
#define	MEM_CGROUP_MAX_RECLAIM_LOOPS		100
#define	MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS	2
448

449 450
enum charge_type {
	MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
451
	MEM_CGROUP_CHARGE_TYPE_ANON,
K
KAMEZAWA Hiroyuki 已提交
452
	MEM_CGROUP_CHARGE_TYPE_SWAPOUT,	/* for accounting swapcache */
K
KAMEZAWA Hiroyuki 已提交
453
	MEM_CGROUP_CHARGE_TYPE_DROP,	/* a page was unused swap cache */
454 455 456
	NR_CHARGE_TYPE,
};

457
/* for encoding cft->private value on file */
G
Glauber Costa 已提交
458 459 460 461
enum res_type {
	_MEM,
	_MEMSWAP,
	_OOM_TYPE,
462
	_KMEM,
G
Glauber Costa 已提交
463 464
};

465 466
#define MEMFILE_PRIVATE(x, val)	((x) << 16 | (val))
#define MEMFILE_TYPE(val)	((val) >> 16 & 0xffff)
467
#define MEMFILE_ATTR(val)	((val) & 0xffff)
K
KAMEZAWA Hiroyuki 已提交
468 469
/* Used for OOM nofiier */
#define OOM_CONTROL		(0)
470

471 472 473 474 475 476 477 478
/*
 * Reclaim flags for mem_cgroup_hierarchical_reclaim
 */
#define MEM_CGROUP_RECLAIM_NOSWAP_BIT	0x0
#define MEM_CGROUP_RECLAIM_NOSWAP	(1 << MEM_CGROUP_RECLAIM_NOSWAP_BIT)
#define MEM_CGROUP_RECLAIM_SHRINK_BIT	0x1
#define MEM_CGROUP_RECLAIM_SHRINK	(1 << MEM_CGROUP_RECLAIM_SHRINK_BIT)

479 480 481 482 483 484 485
/*
 * The memcg_create_mutex will be held whenever a new cgroup is created.
 * As a consequence, any change that needs to protect against new child cgroups
 * appearing has to hold it as well.
 */
static DEFINE_MUTEX(memcg_create_mutex);

486 487
struct mem_cgroup *mem_cgroup_from_css(struct cgroup_subsys_state *s)
{
488
	return s ? container_of(s, struct mem_cgroup, css) : NULL;
489 490
}

491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508
/* Some nice accessors for the vmpressure. */
struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
{
	if (!memcg)
		memcg = root_mem_cgroup;
	return &memcg->vmpressure;
}

struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr)
{
	return &container_of(vmpr, struct mem_cgroup, vmpressure)->css;
}

struct vmpressure *css_to_vmpressure(struct cgroup_subsys_state *css)
{
	return &mem_cgroup_from_css(css)->vmpressure;
}

509 510 511 512 513
static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
{
	return (memcg == root_mem_cgroup);
}

G
Glauber Costa 已提交
514
/* Writing them here to avoid exposing memcg's inner layout */
M
Michal Hocko 已提交
515
#if defined(CONFIG_INET) && defined(CONFIG_MEMCG_KMEM)
G
Glauber Costa 已提交
516 517 518

void sock_update_memcg(struct sock *sk)
{
519
	if (mem_cgroup_sockets_enabled) {
G
Glauber Costa 已提交
520
		struct mem_cgroup *memcg;
521
		struct cg_proto *cg_proto;
G
Glauber Costa 已提交
522 523 524

		BUG_ON(!sk->sk_prot->proto_cgroup);

525 526 527 528 529 530 531 532 533 534
		/* Socket cloning can throw us here with sk_cgrp already
		 * filled. It won't however, necessarily happen from
		 * process context. So the test for root memcg given
		 * the current task's memcg won't help us in this case.
		 *
		 * Respecting the original socket's memcg is a better
		 * decision in this case.
		 */
		if (sk->sk_cgrp) {
			BUG_ON(mem_cgroup_is_root(sk->sk_cgrp->memcg));
535
			css_get(&sk->sk_cgrp->memcg->css);
536 537 538
			return;
		}

G
Glauber Costa 已提交
539 540
		rcu_read_lock();
		memcg = mem_cgroup_from_task(current);
541
		cg_proto = sk->sk_prot->proto_cgroup(memcg);
542 543
		if (!mem_cgroup_is_root(memcg) &&
		    memcg_proto_active(cg_proto) && css_tryget(&memcg->css)) {
544
			sk->sk_cgrp = cg_proto;
G
Glauber Costa 已提交
545 546 547 548 549 550 551 552
		}
		rcu_read_unlock();
	}
}
EXPORT_SYMBOL(sock_update_memcg);

void sock_release_memcg(struct sock *sk)
{
553
	if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
G
Glauber Costa 已提交
554 555 556
		struct mem_cgroup *memcg;
		WARN_ON(!sk->sk_cgrp->memcg);
		memcg = sk->sk_cgrp->memcg;
557
		css_put(&sk->sk_cgrp->memcg->css);
G
Glauber Costa 已提交
558 559
	}
}
G
Glauber Costa 已提交
560 561 562 563 564 565 566 567 568

struct cg_proto *tcp_proto_cgroup(struct mem_cgroup *memcg)
{
	if (!memcg || mem_cgroup_is_root(memcg))
		return NULL;

	return &memcg->tcp_mem.cg_proto;
}
EXPORT_SYMBOL(tcp_proto_cgroup);
G
Glauber Costa 已提交
569

570 571 572 573 574 575 576 577 578 579 580 581
static void disarm_sock_keys(struct mem_cgroup *memcg)
{
	if (!memcg_proto_activated(&memcg->tcp_mem.cg_proto))
		return;
	static_key_slow_dec(&memcg_socket_limit_enabled);
}
#else
static void disarm_sock_keys(struct mem_cgroup *memcg)
{
}
#endif

582
#ifdef CONFIG_MEMCG_KMEM
583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600
/*
 * This will be the memcg's index in each cache's ->memcg_params->memcg_caches.
 * There are two main reasons for not using the css_id for this:
 *  1) this works better in sparse environments, where we have a lot of memcgs,
 *     but only a few kmem-limited. Or also, if we have, for instance, 200
 *     memcgs, and none but the 200th is kmem-limited, we'd have to have a
 *     200 entry array for that.
 *
 *  2) In order not to violate the cgroup API, we would like to do all memory
 *     allocation in ->create(). At that point, we haven't yet allocated the
 *     css_id. Having a separate index prevents us from messing with the cgroup
 *     core for this
 *
 * The current size of the caches array is stored in
 * memcg_limited_groups_array_size.  It will double each time we have to
 * increase it.
 */
static DEFINE_IDA(kmem_limited_groups);
601 602
int memcg_limited_groups_array_size;

603 604 605 606 607 608 609 610 611 612 613 614 615 616 617
/*
 * MIN_SIZE is different than 1, because we would like to avoid going through
 * the alloc/free process all the time. In a small machine, 4 kmem-limited
 * cgroups is a reasonable guess. In the future, it could be a parameter or
 * tunable, but that is strictly not necessary.
 *
 * MAX_SIZE should be as large as the number of css_ids. Ideally, we could get
 * this constant directly from cgroup, but it is understandable that this is
 * better kept as an internal representation in cgroup.c. In any case, the
 * css_id space is not getting any smaller, and we don't have to necessarily
 * increase ours as well if it increases.
 */
#define MEMCG_CACHES_MIN_SIZE 4
#define MEMCG_CACHES_MAX_SIZE 65535

618 619 620 621 622 623
/*
 * A lot of the calls to the cache allocation functions are expected to be
 * inlined by the compiler. Since the calls to memcg_kmem_get_cache are
 * conditional to this static branch, we'll have to allow modules that does
 * kmem_cache_alloc and the such to see this symbol as well
 */
624
struct static_key memcg_kmem_enabled_key;
625
EXPORT_SYMBOL(memcg_kmem_enabled_key);
626 627 628

static void disarm_kmem_keys(struct mem_cgroup *memcg)
{
629
	if (memcg_kmem_is_active(memcg)) {
630
		static_key_slow_dec(&memcg_kmem_enabled_key);
631 632
		ida_simple_remove(&kmem_limited_groups, memcg->kmemcg_id);
	}
633 634 635 636 637
	/*
	 * This check can't live in kmem destruction function,
	 * since the charges will outlive the cgroup
	 */
	WARN_ON(res_counter_read_u64(&memcg->kmem, RES_USAGE) != 0);
638 639 640 641 642 643 644 645 646 647 648 649 650
}
#else
static void disarm_kmem_keys(struct mem_cgroup *memcg)
{
}
#endif /* CONFIG_MEMCG_KMEM */

static void disarm_static_keys(struct mem_cgroup *memcg)
{
	disarm_sock_keys(memcg);
	disarm_kmem_keys(memcg);
}

651
static void drain_all_stock_async(struct mem_cgroup *memcg);
652

653
static struct mem_cgroup_per_zone *
654
mem_cgroup_zoneinfo(struct mem_cgroup *memcg, int nid, int zid)
655
{
656
	VM_BUG_ON((unsigned)nid >= nr_node_ids);
657
	return &memcg->nodeinfo[nid]->zoneinfo[zid];
658 659
}

660
struct cgroup_subsys_state *mem_cgroup_css(struct mem_cgroup *memcg)
661
{
662
	return &memcg->css;
663 664
}

665
static struct mem_cgroup_per_zone *
666
page_cgroup_zoneinfo(struct mem_cgroup *memcg, struct page *page)
667
{
668 669
	int nid = page_to_nid(page);
	int zid = page_zonenum(page);
670

671
	return mem_cgroup_zoneinfo(memcg, nid, zid);
672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689
}

static struct mem_cgroup_tree_per_zone *
soft_limit_tree_node_zone(int nid, int zid)
{
	return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
}

static struct mem_cgroup_tree_per_zone *
soft_limit_tree_from_page(struct page *page)
{
	int nid = page_to_nid(page);
	int zid = page_zonenum(page);

	return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
}

static void
690
__mem_cgroup_insert_exceeded(struct mem_cgroup *memcg,
691
				struct mem_cgroup_per_zone *mz,
692 693
				struct mem_cgroup_tree_per_zone *mctz,
				unsigned long long new_usage_in_excess)
694 695 696 697 698 699 700 701
{
	struct rb_node **p = &mctz->rb_root.rb_node;
	struct rb_node *parent = NULL;
	struct mem_cgroup_per_zone *mz_node;

	if (mz->on_tree)
		return;

702 703 704
	mz->usage_in_excess = new_usage_in_excess;
	if (!mz->usage_in_excess)
		return;
705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720
	while (*p) {
		parent = *p;
		mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
					tree_node);
		if (mz->usage_in_excess < mz_node->usage_in_excess)
			p = &(*p)->rb_left;
		/*
		 * We can't avoid mem cgroups that are over their soft
		 * limit by the same amount
		 */
		else if (mz->usage_in_excess >= mz_node->usage_in_excess)
			p = &(*p)->rb_right;
	}
	rb_link_node(&mz->tree_node, parent, p);
	rb_insert_color(&mz->tree_node, &mctz->rb_root);
	mz->on_tree = true;
721 722 723
}

static void
724
__mem_cgroup_remove_exceeded(struct mem_cgroup *memcg,
725 726 727 728 729 730 731 732 733
				struct mem_cgroup_per_zone *mz,
				struct mem_cgroup_tree_per_zone *mctz)
{
	if (!mz->on_tree)
		return;
	rb_erase(&mz->tree_node, &mctz->rb_root);
	mz->on_tree = false;
}

734
static void
735
mem_cgroup_remove_exceeded(struct mem_cgroup *memcg,
736 737 738 739
				struct mem_cgroup_per_zone *mz,
				struct mem_cgroup_tree_per_zone *mctz)
{
	spin_lock(&mctz->lock);
740
	__mem_cgroup_remove_exceeded(memcg, mz, mctz);
741 742 743 744
	spin_unlock(&mctz->lock);
}


745
static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
746
{
747
	unsigned long long excess;
748 749
	struct mem_cgroup_per_zone *mz;
	struct mem_cgroup_tree_per_zone *mctz;
750 751
	int nid = page_to_nid(page);
	int zid = page_zonenum(page);
752 753 754
	mctz = soft_limit_tree_from_page(page);

	/*
755 756
	 * Necessary to update all ancestors when hierarchy is used.
	 * because their event counter is not touched.
757
	 */
758 759 760
	for (; memcg; memcg = parent_mem_cgroup(memcg)) {
		mz = mem_cgroup_zoneinfo(memcg, nid, zid);
		excess = res_counter_soft_limit_excess(&memcg->res);
761 762 763 764
		/*
		 * We have to update the tree if mz is on RB-tree or
		 * mem is over its softlimit.
		 */
765
		if (excess || mz->on_tree) {
766 767 768
			spin_lock(&mctz->lock);
			/* if on-tree, remove it */
			if (mz->on_tree)
769
				__mem_cgroup_remove_exceeded(memcg, mz, mctz);
770
			/*
771 772
			 * Insert again. mz->usage_in_excess will be updated.
			 * If excess is 0, no tree ops.
773
			 */
774
			__mem_cgroup_insert_exceeded(memcg, mz, mctz, excess);
775 776
			spin_unlock(&mctz->lock);
		}
777 778 779
	}
}

780
static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
781 782 783 784 785
{
	int node, zone;
	struct mem_cgroup_per_zone *mz;
	struct mem_cgroup_tree_per_zone *mctz;

B
Bob Liu 已提交
786
	for_each_node(node) {
787
		for (zone = 0; zone < MAX_NR_ZONES; zone++) {
788
			mz = mem_cgroup_zoneinfo(memcg, node, zone);
789
			mctz = soft_limit_tree_node_zone(node, zone);
790
			mem_cgroup_remove_exceeded(memcg, mz, mctz);
791 792 793 794
		}
	}
}

795 796 797 798
static struct mem_cgroup_per_zone *
__mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
{
	struct rb_node *rightmost = NULL;
799
	struct mem_cgroup_per_zone *mz;
800 801

retry:
802
	mz = NULL;
803 804 805 806 807 808 809 810 811 812
	rightmost = rb_last(&mctz->rb_root);
	if (!rightmost)
		goto done;		/* Nothing to reclaim from */

	mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
	/*
	 * Remove the node now but someone else can add it back,
	 * we will to add it back at the end of reclaim to its correct
	 * position in the tree.
	 */
813 814 815
	__mem_cgroup_remove_exceeded(mz->memcg, mz, mctz);
	if (!res_counter_soft_limit_excess(&mz->memcg->res) ||
		!css_tryget(&mz->memcg->css))
816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831
		goto retry;
done:
	return mz;
}

static struct mem_cgroup_per_zone *
mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
{
	struct mem_cgroup_per_zone *mz;

	spin_lock(&mctz->lock);
	mz = __mem_cgroup_largest_soft_limit_node(mctz);
	spin_unlock(&mctz->lock);
	return mz;
}

832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850
/*
 * Implementation Note: reading percpu statistics for memcg.
 *
 * Both of vmstat[] and percpu_counter has threshold and do periodic
 * synchronization to implement "quick" read. There are trade-off between
 * reading cost and precision of value. Then, we may have a chance to implement
 * a periodic synchronizion of counter in memcg's counter.
 *
 * But this _read() function is used for user interface now. The user accounts
 * memory usage by memory cgroup and he _always_ requires exact value because
 * he accounts memory. Even if we provide quick-and-fuzzy read, we always
 * have to visit all online cpus and make sum. So, for now, unnecessary
 * synchronization is not implemented. (just implemented for cpu hotplug)
 *
 * If there are kernel internal actions which can make use of some not-exact
 * value, and reading all cpu value can be performance bottleneck in some
 * common workload, threashold and synchonization as vmstat[] should be
 * implemented.
 */
851
static long mem_cgroup_read_stat(struct mem_cgroup *memcg,
852
				 enum mem_cgroup_stat_index idx)
853
{
854
	long val = 0;
855 856
	int cpu;

857 858
	get_online_cpus();
	for_each_online_cpu(cpu)
859
		val += per_cpu(memcg->stat->count[idx], cpu);
860
#ifdef CONFIG_HOTPLUG_CPU
861 862 863
	spin_lock(&memcg->pcp_counter_lock);
	val += memcg->nocpu_base.count[idx];
	spin_unlock(&memcg->pcp_counter_lock);
864 865
#endif
	put_online_cpus();
866 867 868
	return val;
}

869
static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg,
870 871 872
					 bool charge)
{
	int val = (charge) ? 1 : -1;
873
	this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_SWAP], val);
874 875
}

876
static unsigned long mem_cgroup_read_events(struct mem_cgroup *memcg,
877 878 879 880 881 882
					    enum mem_cgroup_events_index idx)
{
	unsigned long val = 0;
	int cpu;

	for_each_online_cpu(cpu)
883
		val += per_cpu(memcg->stat->events[idx], cpu);
884
#ifdef CONFIG_HOTPLUG_CPU
885 886 887
	spin_lock(&memcg->pcp_counter_lock);
	val += memcg->nocpu_base.events[idx];
	spin_unlock(&memcg->pcp_counter_lock);
888 889 890 891
#endif
	return val;
}

892
static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
893
					 struct page *page,
894
					 bool anon, int nr_pages)
895
{
896 897
	preempt_disable();

898 899 900 901 902 903
	/*
	 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
	 * counted as CACHE even if it's on ANON LRU.
	 */
	if (anon)
		__this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS],
904
				nr_pages);
905
	else
906
		__this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_CACHE],
907
				nr_pages);
908

909 910 911 912
	if (PageTransHuge(page))
		__this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
				nr_pages);

913 914
	/* pagein of a big page is an event. So, ignore page size */
	if (nr_pages > 0)
915
		__this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGIN]);
916
	else {
917
		__this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]);
918 919
		nr_pages = -nr_pages; /* for event */
	}
920

921
	__this_cpu_add(memcg->stat->nr_page_events, nr_pages);
922

923
	preempt_enable();
924 925
}

926
unsigned long
927
mem_cgroup_get_lru_size(struct lruvec *lruvec, enum lru_list lru)
928 929 930 931 932 933 934 935
{
	struct mem_cgroup_per_zone *mz;

	mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
	return mz->lru_size[lru];
}

static unsigned long
936
mem_cgroup_zone_nr_lru_pages(struct mem_cgroup *memcg, int nid, int zid,
937
			unsigned int lru_mask)
938 939
{
	struct mem_cgroup_per_zone *mz;
H
Hugh Dickins 已提交
940
	enum lru_list lru;
941 942
	unsigned long ret = 0;

943
	mz = mem_cgroup_zoneinfo(memcg, nid, zid);
944

H
Hugh Dickins 已提交
945 946 947
	for_each_lru(lru) {
		if (BIT(lru) & lru_mask)
			ret += mz->lru_size[lru];
948 949 950 951 952
	}
	return ret;
}

static unsigned long
953
mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
954 955
			int nid, unsigned int lru_mask)
{
956 957 958
	u64 total = 0;
	int zid;

959
	for (zid = 0; zid < MAX_NR_ZONES; zid++)
960 961
		total += mem_cgroup_zone_nr_lru_pages(memcg,
						nid, zid, lru_mask);
962

963 964
	return total;
}
965

966
static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
967
			unsigned int lru_mask)
968
{
969
	int nid;
970 971
	u64 total = 0;

972
	for_each_node_state(nid, N_MEMORY)
973
		total += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask);
974
	return total;
975 976
}

977 978
static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
				       enum mem_cgroup_events_target target)
979 980 981
{
	unsigned long val, next;

982
	val = __this_cpu_read(memcg->stat->nr_page_events);
983
	next = __this_cpu_read(memcg->stat->targets[target]);
984
	/* from time_after() in jiffies.h */
985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000
	if ((long)next - (long)val < 0) {
		switch (target) {
		case MEM_CGROUP_TARGET_THRESH:
			next = val + THRESHOLDS_EVENTS_TARGET;
			break;
		case MEM_CGROUP_TARGET_SOFTLIMIT:
			next = val + SOFTLIMIT_EVENTS_TARGET;
			break;
		case MEM_CGROUP_TARGET_NUMAINFO:
			next = val + NUMAINFO_EVENTS_TARGET;
			break;
		default:
			break;
		}
		__this_cpu_write(memcg->stat->targets[target], next);
		return true;
1001
	}
1002
	return false;
1003 1004 1005 1006 1007 1008
}

/*
 * Check events in order.
 *
 */
1009
static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
1010
{
1011
	preempt_disable();
1012
	/* threshold event is triggered in finer grain than soft limit */
1013 1014
	if (unlikely(mem_cgroup_event_ratelimit(memcg,
						MEM_CGROUP_TARGET_THRESH))) {
1015 1016
		bool do_softlimit;
		bool do_numainfo __maybe_unused;
1017 1018 1019 1020 1021 1022 1023 1024 1025

		do_softlimit = mem_cgroup_event_ratelimit(memcg,
						MEM_CGROUP_TARGET_SOFTLIMIT);
#if MAX_NUMNODES > 1
		do_numainfo = mem_cgroup_event_ratelimit(memcg,
						MEM_CGROUP_TARGET_NUMAINFO);
#endif
		preempt_enable();

1026
		mem_cgroup_threshold(memcg);
1027
		if (unlikely(do_softlimit))
1028
			mem_cgroup_update_tree(memcg, page);
1029
#if MAX_NUMNODES > 1
1030
		if (unlikely(do_numainfo))
1031
			atomic_inc(&memcg->numainfo_events);
1032
#endif
1033 1034
	} else
		preempt_enable();
1035 1036
}

1037
struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
1038
{
1039 1040 1041 1042 1043 1044 1045 1046
	/*
	 * mm_update_next_owner() may clear mm->owner to NULL
	 * if it races with swapoff, page migration, etc.
	 * So this can be called with p == NULL.
	 */
	if (unlikely(!p))
		return NULL;

1047
	return mem_cgroup_from_css(task_css(p, mem_cgroup_subsys_id));
1048 1049
}

1050
struct mem_cgroup *try_get_mem_cgroup_from_mm(struct mm_struct *mm)
1051
{
1052
	struct mem_cgroup *memcg = NULL;
1053 1054 1055

	if (!mm)
		return NULL;
1056 1057 1058 1059 1060 1061 1062
	/*
	 * Because we have no locks, mm->owner's may be being moved to other
	 * cgroup. We use css_tryget() here even if this looks
	 * pessimistic (rather than adding locks here).
	 */
	rcu_read_lock();
	do {
1063 1064
		memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
		if (unlikely(!memcg))
1065
			break;
1066
	} while (!css_tryget(&memcg->css));
1067
	rcu_read_unlock();
1068
	return memcg;
1069 1070
}

1071 1072 1073 1074 1075 1076 1077 1078 1079
/*
 * Returns a next (in a pre-order walk) alive memcg (with elevated css
 * ref. count) or NULL if the whole root's subtree has been visited.
 *
 * helper function to be used by mem_cgroup_iter
 */
static struct mem_cgroup *__mem_cgroup_iter_next(struct mem_cgroup *root,
		struct mem_cgroup *last_visited)
{
1080
	struct cgroup_subsys_state *prev_css, *next_css;
1081

1082
	prev_css = last_visited ? &last_visited->css : NULL;
1083
skip_node:
1084
	next_css = css_next_descendant_pre(prev_css, &root->css);
1085 1086 1087 1088 1089 1090 1091 1092

	/*
	 * Even if we found a group we have to make sure it is
	 * alive. css && !memcg means that the groups should be
	 * skipped and we should continue the tree walk.
	 * last_visited css is safe to use because it is
	 * protected by css_get and the tree walk is rcu safe.
	 */
1093 1094 1095
	if (next_css) {
		struct mem_cgroup *mem = mem_cgroup_from_css(next_css);

1096 1097 1098
		if (css_tryget(&mem->css))
			return mem;
		else {
1099
			prev_css = next_css;
1100 1101 1102 1103 1104 1105 1106
			goto skip_node;
		}
	}

	return NULL;
}

1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158
static void mem_cgroup_iter_invalidate(struct mem_cgroup *root)
{
	/*
	 * When a group in the hierarchy below root is destroyed, the
	 * hierarchy iterator can no longer be trusted since it might
	 * have pointed to the destroyed group.  Invalidate it.
	 */
	atomic_inc(&root->dead_count);
}

static struct mem_cgroup *
mem_cgroup_iter_load(struct mem_cgroup_reclaim_iter *iter,
		     struct mem_cgroup *root,
		     int *sequence)
{
	struct mem_cgroup *position = NULL;
	/*
	 * A cgroup destruction happens in two stages: offlining and
	 * release.  They are separated by a RCU grace period.
	 *
	 * If the iterator is valid, we may still race with an
	 * offlining.  The RCU lock ensures the object won't be
	 * released, tryget will fail if we lost the race.
	 */
	*sequence = atomic_read(&root->dead_count);
	if (iter->last_dead_count == *sequence) {
		smp_rmb();
		position = iter->last_visited;
		if (position && !css_tryget(&position->css))
			position = NULL;
	}
	return position;
}

static void mem_cgroup_iter_update(struct mem_cgroup_reclaim_iter *iter,
				   struct mem_cgroup *last_visited,
				   struct mem_cgroup *new_position,
				   int sequence)
{
	if (last_visited)
		css_put(&last_visited->css);
	/*
	 * We store the sequence count from the time @last_visited was
	 * loaded successfully instead of rereading it here so that we
	 * don't lose destruction events in between.  We could have
	 * raced with the destruction of @new_position after all.
	 */
	iter->last_visited = new_position;
	smp_wmb();
	iter->last_dead_count = sequence;
}

1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178
/**
 * mem_cgroup_iter - iterate over memory cgroup hierarchy
 * @root: hierarchy root
 * @prev: previously returned memcg, NULL on first invocation
 * @reclaim: cookie for shared reclaim walks, NULL for full walks
 *
 * Returns references to children of the hierarchy below @root, or
 * @root itself, or %NULL after a full round-trip.
 *
 * Caller must pass the return value in @prev on subsequent
 * invocations for reference counting, or use mem_cgroup_iter_break()
 * to cancel a hierarchy walk before the round-trip is complete.
 *
 * Reclaimers can specify a zone and a priority level in @reclaim to
 * divide up the memcgs in the hierarchy among all concurrent
 * reclaimers operating on the same zone and priority.
 */
struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
				   struct mem_cgroup *prev,
				   struct mem_cgroup_reclaim_cookie *reclaim)
K
KAMEZAWA Hiroyuki 已提交
1179
{
1180
	struct mem_cgroup *memcg = NULL;
1181
	struct mem_cgroup *last_visited = NULL;
1182

1183 1184 1185
	if (mem_cgroup_disabled())
		return NULL;

1186 1187
	if (!root)
		root = root_mem_cgroup;
K
KAMEZAWA Hiroyuki 已提交
1188

1189
	if (prev && !reclaim)
1190
		last_visited = prev;
K
KAMEZAWA Hiroyuki 已提交
1191

1192 1193
	if (!root->use_hierarchy && root != root_mem_cgroup) {
		if (prev)
1194
			goto out_css_put;
1195 1196
		return root;
	}
K
KAMEZAWA Hiroyuki 已提交
1197

1198
	rcu_read_lock();
1199
	while (!memcg) {
1200
		struct mem_cgroup_reclaim_iter *uninitialized_var(iter);
1201
		int uninitialized_var(seq);
1202

1203 1204 1205 1206 1207 1208 1209
		if (reclaim) {
			int nid = zone_to_nid(reclaim->zone);
			int zid = zone_idx(reclaim->zone);
			struct mem_cgroup_per_zone *mz;

			mz = mem_cgroup_zoneinfo(root, nid, zid);
			iter = &mz->reclaim_iter[reclaim->priority];
1210
			if (prev && reclaim->generation != iter->generation) {
M
Michal Hocko 已提交
1211
				iter->last_visited = NULL;
1212 1213
				goto out_unlock;
			}
M
Michal Hocko 已提交
1214

1215
			last_visited = mem_cgroup_iter_load(iter, root, &seq);
1216
		}
K
KAMEZAWA Hiroyuki 已提交
1217

1218
		memcg = __mem_cgroup_iter_next(root, last_visited);
K
KAMEZAWA Hiroyuki 已提交
1219

1220
		if (reclaim) {
1221
			mem_cgroup_iter_update(iter, last_visited, memcg, seq);
1222

M
Michal Hocko 已提交
1223
			if (!memcg)
1224 1225 1226 1227
				iter->generation++;
			else if (!prev && memcg)
				reclaim->generation = iter->generation;
		}
1228

M
Michal Hocko 已提交
1229
		if (prev && !memcg)
1230
			goto out_unlock;
1231
	}
1232 1233
out_unlock:
	rcu_read_unlock();
1234 1235 1236 1237
out_css_put:
	if (prev && prev != root)
		css_put(&prev->css);

1238
	return memcg;
K
KAMEZAWA Hiroyuki 已提交
1239
}
K
KAMEZAWA Hiroyuki 已提交
1240

1241 1242 1243 1244 1245 1246 1247
/**
 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
 * @root: hierarchy root
 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
 */
void mem_cgroup_iter_break(struct mem_cgroup *root,
			   struct mem_cgroup *prev)
1248 1249 1250 1251 1252 1253
{
	if (!root)
		root = root_mem_cgroup;
	if (prev && prev != root)
		css_put(&prev->css);
}
K
KAMEZAWA Hiroyuki 已提交
1254

1255 1256 1257 1258 1259 1260
/*
 * Iteration constructs for visiting all cgroups (under a tree).  If
 * loops are exited prematurely (break), mem_cgroup_iter_break() must
 * be used for reference counting.
 */
#define for_each_mem_cgroup_tree(iter, root)		\
1261
	for (iter = mem_cgroup_iter(root, NULL, NULL);	\
1262
	     iter != NULL;				\
1263
	     iter = mem_cgroup_iter(root, iter, NULL))
1264

1265
#define for_each_mem_cgroup(iter)			\
1266
	for (iter = mem_cgroup_iter(NULL, NULL, NULL);	\
1267
	     iter != NULL;				\
1268
	     iter = mem_cgroup_iter(NULL, iter, NULL))
K
KAMEZAWA Hiroyuki 已提交
1269

1270
void __mem_cgroup_count_vm_event(struct mm_struct *mm, enum vm_event_item idx)
1271
{
1272
	struct mem_cgroup *memcg;
1273 1274

	rcu_read_lock();
1275 1276
	memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
	if (unlikely(!memcg))
1277 1278 1279 1280
		goto out;

	switch (idx) {
	case PGFAULT:
1281 1282 1283 1284
		this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGFAULT]);
		break;
	case PGMAJFAULT:
		this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGMAJFAULT]);
1285 1286 1287 1288 1289 1290 1291
		break;
	default:
		BUG();
	}
out:
	rcu_read_unlock();
}
1292
EXPORT_SYMBOL(__mem_cgroup_count_vm_event);
1293

1294 1295 1296
/**
 * mem_cgroup_zone_lruvec - get the lru list vector for a zone and memcg
 * @zone: zone of the wanted lruvec
1297
 * @memcg: memcg of the wanted lruvec
1298 1299 1300 1301 1302 1303 1304 1305 1306
 *
 * Returns the lru list vector holding pages for the given @zone and
 * @mem.  This can be the global zone lruvec, if the memory controller
 * is disabled.
 */
struct lruvec *mem_cgroup_zone_lruvec(struct zone *zone,
				      struct mem_cgroup *memcg)
{
	struct mem_cgroup_per_zone *mz;
1307
	struct lruvec *lruvec;
1308

1309 1310 1311 1312
	if (mem_cgroup_disabled()) {
		lruvec = &zone->lruvec;
		goto out;
	}
1313 1314

	mz = mem_cgroup_zoneinfo(memcg, zone_to_nid(zone), zone_idx(zone));
1315 1316 1317 1318 1319 1320 1321 1322 1323 1324
	lruvec = &mz->lruvec;
out:
	/*
	 * Since a node can be onlined after the mem_cgroup was created,
	 * we have to be prepared to initialize lruvec->zone here;
	 * and if offlined then reonlined, we need to reinitialize it.
	 */
	if (unlikely(lruvec->zone != zone))
		lruvec->zone = zone;
	return lruvec;
1325 1326
}

K
KAMEZAWA Hiroyuki 已提交
1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339
/*
 * Following LRU functions are allowed to be used without PCG_LOCK.
 * Operations are called by routine of global LRU independently from memcg.
 * What we have to take care of here is validness of pc->mem_cgroup.
 *
 * Changes to pc->mem_cgroup happens when
 * 1. charge
 * 2. moving account
 * In typical case, "charge" is done before add-to-lru. Exception is SwapCache.
 * It is added to LRU before charge.
 * If PCG_USED bit is not set, page_cgroup is not added to this private LRU.
 * When moving account, the page is not on LRU. It's isolated.
 */
1340

1341
/**
1342
 * mem_cgroup_page_lruvec - return lruvec for adding an lru page
1343
 * @page: the page
1344
 * @zone: zone of the page
1345
 */
1346
struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct zone *zone)
K
KAMEZAWA Hiroyuki 已提交
1347 1348
{
	struct mem_cgroup_per_zone *mz;
1349 1350
	struct mem_cgroup *memcg;
	struct page_cgroup *pc;
1351
	struct lruvec *lruvec;
1352

1353 1354 1355 1356
	if (mem_cgroup_disabled()) {
		lruvec = &zone->lruvec;
		goto out;
	}
1357

K
KAMEZAWA Hiroyuki 已提交
1358
	pc = lookup_page_cgroup(page);
1359
	memcg = pc->mem_cgroup;
1360 1361

	/*
1362
	 * Surreptitiously switch any uncharged offlist page to root:
1363 1364 1365 1366 1367 1368 1369
	 * an uncharged page off lru does nothing to secure
	 * its former mem_cgroup from sudden removal.
	 *
	 * Our caller holds lru_lock, and PageCgroupUsed is updated
	 * under page_cgroup lock: between them, they make all uses
	 * of pc->mem_cgroup safe.
	 */
1370
	if (!PageLRU(page) && !PageCgroupUsed(pc) && memcg != root_mem_cgroup)
1371 1372
		pc->mem_cgroup = memcg = root_mem_cgroup;

1373
	mz = page_cgroup_zoneinfo(memcg, page);
1374 1375 1376 1377 1378 1379 1380 1381 1382 1383
	lruvec = &mz->lruvec;
out:
	/*
	 * Since a node can be onlined after the mem_cgroup was created,
	 * we have to be prepared to initialize lruvec->zone here;
	 * and if offlined then reonlined, we need to reinitialize it.
	 */
	if (unlikely(lruvec->zone != zone))
		lruvec->zone = zone;
	return lruvec;
K
KAMEZAWA Hiroyuki 已提交
1384
}
1385

1386
/**
1387 1388 1389 1390
 * mem_cgroup_update_lru_size - account for adding or removing an lru page
 * @lruvec: mem_cgroup per zone lru vector
 * @lru: index of lru list the page is sitting on
 * @nr_pages: positive when adding or negative when removing
1391
 *
1392 1393
 * This function must be called when a page is added to or removed from an
 * lru list.
1394
 */
1395 1396
void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
				int nr_pages)
1397 1398
{
	struct mem_cgroup_per_zone *mz;
1399
	unsigned long *lru_size;
1400 1401 1402 1403

	if (mem_cgroup_disabled())
		return;

1404 1405 1406 1407
	mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
	lru_size = mz->lru_size + lru;
	*lru_size += nr_pages;
	VM_BUG_ON((long)(*lru_size) < 0);
K
KAMEZAWA Hiroyuki 已提交
1408
}
1409

1410
/*
1411
 * Checks whether given mem is same or in the root_mem_cgroup's
1412 1413
 * hierarchy subtree
 */
1414 1415
bool __mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg,
				  struct mem_cgroup *memcg)
1416
{
1417 1418
	if (root_memcg == memcg)
		return true;
1419
	if (!root_memcg->use_hierarchy || !memcg)
1420
		return false;
1421 1422 1423 1424 1425 1426 1427 1428
	return css_is_ancestor(&memcg->css, &root_memcg->css);
}

static bool mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg,
				       struct mem_cgroup *memcg)
{
	bool ret;

1429
	rcu_read_lock();
1430
	ret = __mem_cgroup_same_or_subtree(root_memcg, memcg);
1431 1432
	rcu_read_unlock();
	return ret;
1433 1434
}

1435 1436
bool task_in_mem_cgroup(struct task_struct *task,
			const struct mem_cgroup *memcg)
1437
{
1438
	struct mem_cgroup *curr = NULL;
1439
	struct task_struct *p;
1440
	bool ret;
1441

1442
	p = find_lock_task_mm(task);
1443 1444 1445 1446 1447 1448 1449 1450 1451
	if (p) {
		curr = try_get_mem_cgroup_from_mm(p->mm);
		task_unlock(p);
	} else {
		/*
		 * All threads may have already detached their mm's, but the oom
		 * killer still needs to detect if they have already been oom
		 * killed to prevent needlessly killing additional tasks.
		 */
1452
		rcu_read_lock();
1453 1454 1455
		curr = mem_cgroup_from_task(task);
		if (curr)
			css_get(&curr->css);
1456
		rcu_read_unlock();
1457
	}
1458
	if (!curr)
1459
		return false;
1460
	/*
1461
	 * We should check use_hierarchy of "memcg" not "curr". Because checking
1462
	 * use_hierarchy of "curr" here make this function true if hierarchy is
1463 1464
	 * enabled in "curr" and "curr" is a child of "memcg" in *cgroup*
	 * hierarchy(even if use_hierarchy is disabled in "memcg").
1465
	 */
1466
	ret = mem_cgroup_same_or_subtree(memcg, curr);
1467
	css_put(&curr->css);
1468 1469 1470
	return ret;
}

1471
int mem_cgroup_inactive_anon_is_low(struct lruvec *lruvec)
1472
{
1473
	unsigned long inactive_ratio;
1474
	unsigned long inactive;
1475
	unsigned long active;
1476
	unsigned long gb;
1477

1478 1479
	inactive = mem_cgroup_get_lru_size(lruvec, LRU_INACTIVE_ANON);
	active = mem_cgroup_get_lru_size(lruvec, LRU_ACTIVE_ANON);
1480

1481 1482 1483 1484 1485 1486
	gb = (inactive + active) >> (30 - PAGE_SHIFT);
	if (gb)
		inactive_ratio = int_sqrt(10 * gb);
	else
		inactive_ratio = 1;

1487
	return inactive * inactive_ratio < active;
1488 1489
}

1490 1491 1492
#define mem_cgroup_from_res_counter(counter, member)	\
	container_of(counter, struct mem_cgroup, member)

1493
/**
1494
 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
W
Wanpeng Li 已提交
1495
 * @memcg: the memory cgroup
1496
 *
1497
 * Returns the maximum amount of memory @mem can be charged with, in
1498
 * pages.
1499
 */
1500
static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1501
{
1502 1503
	unsigned long long margin;

1504
	margin = res_counter_margin(&memcg->res);
1505
	if (do_swap_account)
1506
		margin = min(margin, res_counter_margin(&memcg->memsw));
1507
	return margin >> PAGE_SHIFT;
1508 1509
}

1510
int mem_cgroup_swappiness(struct mem_cgroup *memcg)
K
KOSAKI Motohiro 已提交
1511 1512
{
	/* root ? */
T
Tejun Heo 已提交
1513
	if (!css_parent(&memcg->css))
K
KOSAKI Motohiro 已提交
1514 1515
		return vm_swappiness;

1516
	return memcg->swappiness;
K
KOSAKI Motohiro 已提交
1517 1518
}

1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532
/*
 * memcg->moving_account is used for checking possibility that some thread is
 * calling move_account(). When a thread on CPU-A starts moving pages under
 * a memcg, other threads should check memcg->moving_account under
 * rcu_read_lock(), like this:
 *
 *         CPU-A                                    CPU-B
 *                                              rcu_read_lock()
 *         memcg->moving_account+1              if (memcg->mocing_account)
 *                                                   take heavy locks.
 *         synchronize_rcu()                    update something.
 *                                              rcu_read_unlock()
 *         start move here.
 */
1533 1534 1535 1536

/* for quick checking without looking up memcg */
atomic_t memcg_moving __read_mostly;

1537
static void mem_cgroup_start_move(struct mem_cgroup *memcg)
1538
{
1539
	atomic_inc(&memcg_moving);
1540
	atomic_inc(&memcg->moving_account);
1541 1542 1543
	synchronize_rcu();
}

1544
static void mem_cgroup_end_move(struct mem_cgroup *memcg)
1545
{
1546 1547 1548 1549
	/*
	 * Now, mem_cgroup_clear_mc() may call this function with NULL.
	 * We check NULL in callee rather than caller.
	 */
1550 1551
	if (memcg) {
		atomic_dec(&memcg_moving);
1552
		atomic_dec(&memcg->moving_account);
1553
	}
1554
}
1555

1556 1557 1558
/*
 * 2 routines for checking "mem" is under move_account() or not.
 *
1559 1560
 * mem_cgroup_stolen() -  checking whether a cgroup is mc.from or not. This
 *			  is used for avoiding races in accounting.  If true,
1561 1562 1563 1564 1565 1566 1567
 *			  pc->mem_cgroup may be overwritten.
 *
 * mem_cgroup_under_move() - checking a cgroup is mc.from or mc.to or
 *			  under hierarchy of moving cgroups. This is for
 *			  waiting at hith-memory prressure caused by "move".
 */

1568
static bool mem_cgroup_stolen(struct mem_cgroup *memcg)
1569 1570
{
	VM_BUG_ON(!rcu_read_lock_held());
1571
	return atomic_read(&memcg->moving_account) > 0;
1572
}
1573

1574
static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
1575
{
1576 1577
	struct mem_cgroup *from;
	struct mem_cgroup *to;
1578
	bool ret = false;
1579 1580 1581 1582 1583 1584 1585 1586 1587
	/*
	 * Unlike task_move routines, we access mc.to, mc.from not under
	 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
	 */
	spin_lock(&mc.lock);
	from = mc.from;
	to = mc.to;
	if (!from)
		goto unlock;
1588

1589 1590
	ret = mem_cgroup_same_or_subtree(memcg, from)
		|| mem_cgroup_same_or_subtree(memcg, to);
1591 1592
unlock:
	spin_unlock(&mc.lock);
1593 1594 1595
	return ret;
}

1596
static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1597 1598
{
	if (mc.moving_task && current != mc.moving_task) {
1599
		if (mem_cgroup_under_move(memcg)) {
1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611
			DEFINE_WAIT(wait);
			prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
			/* moving charge context might have finished. */
			if (mc.moving_task)
				schedule();
			finish_wait(&mc.waitq, &wait);
			return true;
		}
	}
	return false;
}

1612 1613 1614 1615
/*
 * Take this lock when
 * - a code tries to modify page's memcg while it's USED.
 * - a code tries to modify page state accounting in a memcg.
1616
 * see mem_cgroup_stolen(), too.
1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629
 */
static void move_lock_mem_cgroup(struct mem_cgroup *memcg,
				  unsigned long *flags)
{
	spin_lock_irqsave(&memcg->move_lock, *flags);
}

static void move_unlock_mem_cgroup(struct mem_cgroup *memcg,
				unsigned long *flags)
{
	spin_unlock_irqrestore(&memcg->move_lock, *flags);
}

1630
#define K(x) ((x) << (PAGE_SHIFT-10))
1631
/**
1632
 * mem_cgroup_print_oom_info: Print OOM information relevant to memory controller.
1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649
 * @memcg: The memory cgroup that went over limit
 * @p: Task that is going to be killed
 *
 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
 * enabled
 */
void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
{
	struct cgroup *task_cgrp;
	struct cgroup *mem_cgrp;
	/*
	 * Need a buffer in BSS, can't rely on allocations. The code relies
	 * on the assumption that OOM is serialized for memory controller.
	 * If this assumption is broken, revisit this code.
	 */
	static char memcg_name[PATH_MAX];
	int ret;
1650 1651
	struct mem_cgroup *iter;
	unsigned int i;
1652

1653
	if (!p)
1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671
		return;

	rcu_read_lock();

	mem_cgrp = memcg->css.cgroup;
	task_cgrp = task_cgroup(p, mem_cgroup_subsys_id);

	ret = cgroup_path(task_cgrp, memcg_name, PATH_MAX);
	if (ret < 0) {
		/*
		 * Unfortunately, we are unable to convert to a useful name
		 * But we'll still print out the usage information
		 */
		rcu_read_unlock();
		goto done;
	}
	rcu_read_unlock();

1672
	pr_info("Task in %s killed", memcg_name);
1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684

	rcu_read_lock();
	ret = cgroup_path(mem_cgrp, memcg_name, PATH_MAX);
	if (ret < 0) {
		rcu_read_unlock();
		goto done;
	}
	rcu_read_unlock();

	/*
	 * Continues from above, so we don't need an KERN_ level
	 */
1685
	pr_cont(" as a result of limit of %s\n", memcg_name);
1686 1687
done:

1688
	pr_info("memory: usage %llukB, limit %llukB, failcnt %llu\n",
1689 1690 1691
		res_counter_read_u64(&memcg->res, RES_USAGE) >> 10,
		res_counter_read_u64(&memcg->res, RES_LIMIT) >> 10,
		res_counter_read_u64(&memcg->res, RES_FAILCNT));
1692
	pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %llu\n",
1693 1694 1695
		res_counter_read_u64(&memcg->memsw, RES_USAGE) >> 10,
		res_counter_read_u64(&memcg->memsw, RES_LIMIT) >> 10,
		res_counter_read_u64(&memcg->memsw, RES_FAILCNT));
1696
	pr_info("kmem: usage %llukB, limit %llukB, failcnt %llu\n",
1697 1698 1699
		res_counter_read_u64(&memcg->kmem, RES_USAGE) >> 10,
		res_counter_read_u64(&memcg->kmem, RES_LIMIT) >> 10,
		res_counter_read_u64(&memcg->kmem, RES_FAILCNT));
1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723

	for_each_mem_cgroup_tree(iter, memcg) {
		pr_info("Memory cgroup stats");

		rcu_read_lock();
		ret = cgroup_path(iter->css.cgroup, memcg_name, PATH_MAX);
		if (!ret)
			pr_cont(" for %s", memcg_name);
		rcu_read_unlock();
		pr_cont(":");

		for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
			if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
				continue;
			pr_cont(" %s:%ldKB", mem_cgroup_stat_names[i],
				K(mem_cgroup_read_stat(iter, i)));
		}

		for (i = 0; i < NR_LRU_LISTS; i++)
			pr_cont(" %s:%luKB", mem_cgroup_lru_names[i],
				K(mem_cgroup_nr_lru_pages(iter, BIT(i))));

		pr_cont("\n");
	}
1724 1725
}

1726 1727 1728 1729
/*
 * This function returns the number of memcg under hierarchy tree. Returns
 * 1(self count) if no children.
 */
1730
static int mem_cgroup_count_children(struct mem_cgroup *memcg)
1731 1732
{
	int num = 0;
K
KAMEZAWA Hiroyuki 已提交
1733 1734
	struct mem_cgroup *iter;

1735
	for_each_mem_cgroup_tree(iter, memcg)
K
KAMEZAWA Hiroyuki 已提交
1736
		num++;
1737 1738 1739
	return num;
}

D
David Rientjes 已提交
1740 1741 1742
/*
 * Return the memory (and swap, if configured) limit for a memcg.
 */
1743
static u64 mem_cgroup_get_limit(struct mem_cgroup *memcg)
D
David Rientjes 已提交
1744 1745 1746
{
	u64 limit;

1747 1748
	limit = res_counter_read_u64(&memcg->res, RES_LIMIT);

D
David Rientjes 已提交
1749
	/*
1750
	 * Do not consider swap space if we cannot swap due to swappiness
D
David Rientjes 已提交
1751
	 */
1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765
	if (mem_cgroup_swappiness(memcg)) {
		u64 memsw;

		limit += total_swap_pages << PAGE_SHIFT;
		memsw = res_counter_read_u64(&memcg->memsw, RES_LIMIT);

		/*
		 * If memsw is finite and limits the amount of swap space
		 * available to this memcg, return that limit.
		 */
		limit = min(limit, memsw);
	}

	return limit;
D
David Rientjes 已提交
1766 1767
}

1768 1769
static void mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
				     int order)
1770 1771 1772 1773 1774 1775 1776
{
	struct mem_cgroup *iter;
	unsigned long chosen_points = 0;
	unsigned long totalpages;
	unsigned int points = 0;
	struct task_struct *chosen = NULL;

1777
	/*
1778 1779 1780
	 * If current has a pending SIGKILL or is exiting, then automatically
	 * select it.  The goal is to allow it to allocate so that it may
	 * quickly exit and free its memory.
1781
	 */
1782
	if (fatal_signal_pending(current) || current->flags & PF_EXITING) {
1783 1784 1785 1786 1787
		set_thread_flag(TIF_MEMDIE);
		return;
	}

	check_panic_on_oom(CONSTRAINT_MEMCG, gfp_mask, order, NULL);
1788 1789
	totalpages = mem_cgroup_get_limit(memcg) >> PAGE_SHIFT ? : 1;
	for_each_mem_cgroup_tree(iter, memcg) {
1790
		struct css_task_iter it;
1791 1792
		struct task_struct *task;

1793 1794
		css_task_iter_start(&iter->css, &it);
		while ((task = css_task_iter_next(&it))) {
1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806
			switch (oom_scan_process_thread(task, totalpages, NULL,
							false)) {
			case OOM_SCAN_SELECT:
				if (chosen)
					put_task_struct(chosen);
				chosen = task;
				chosen_points = ULONG_MAX;
				get_task_struct(chosen);
				/* fall through */
			case OOM_SCAN_CONTINUE:
				continue;
			case OOM_SCAN_ABORT:
1807
				css_task_iter_end(&it);
1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823
				mem_cgroup_iter_break(memcg, iter);
				if (chosen)
					put_task_struct(chosen);
				return;
			case OOM_SCAN_OK:
				break;
			};
			points = oom_badness(task, memcg, NULL, totalpages);
			if (points > chosen_points) {
				if (chosen)
					put_task_struct(chosen);
				chosen = task;
				chosen_points = points;
				get_task_struct(chosen);
			}
		}
1824
		css_task_iter_end(&it);
1825 1826 1827 1828 1829 1830 1831 1832 1833
	}

	if (!chosen)
		return;
	points = chosen_points * 1000 / totalpages;
	oom_kill_process(chosen, gfp_mask, order, points, totalpages, memcg,
			 NULL, "Memory cgroup out of memory");
}

1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869
static unsigned long mem_cgroup_reclaim(struct mem_cgroup *memcg,
					gfp_t gfp_mask,
					unsigned long flags)
{
	unsigned long total = 0;
	bool noswap = false;
	int loop;

	if (flags & MEM_CGROUP_RECLAIM_NOSWAP)
		noswap = true;
	if (!(flags & MEM_CGROUP_RECLAIM_SHRINK) && memcg->memsw_is_minimum)
		noswap = true;

	for (loop = 0; loop < MEM_CGROUP_MAX_RECLAIM_LOOPS; loop++) {
		if (loop)
			drain_all_stock_async(memcg);
		total += try_to_free_mem_cgroup_pages(memcg, gfp_mask, noswap);
		/*
		 * Allow limit shrinkers, which are triggered directly
		 * by userspace, to catch signals and stop reclaim
		 * after minimal progress, regardless of the margin.
		 */
		if (total && (flags & MEM_CGROUP_RECLAIM_SHRINK))
			break;
		if (mem_cgroup_margin(memcg))
			break;
		/*
		 * If nothing was reclaimed after two attempts, there
		 * may be no reclaimable pages in this hierarchy.
		 */
		if (loop && !total)
			break;
	}
	return total;
}

1870 1871
/**
 * test_mem_cgroup_node_reclaimable
W
Wanpeng Li 已提交
1872
 * @memcg: the target memcg
1873 1874 1875 1876 1877 1878 1879
 * @nid: the node ID to be checked.
 * @noswap : specify true here if the user wants flle only information.
 *
 * This function returns whether the specified memcg contains any
 * reclaimable pages on a node. Returns true if there are any reclaimable
 * pages in the node.
 */
1880
static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
1881 1882
		int nid, bool noswap)
{
1883
	if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE))
1884 1885 1886
		return true;
	if (noswap || !total_swap_pages)
		return false;
1887
	if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON))
1888 1889 1890 1891
		return true;
	return false;

}
1892 1893 1894 1895 1896 1897 1898 1899
#if MAX_NUMNODES > 1

/*
 * Always updating the nodemask is not very good - even if we have an empty
 * list or the wrong list here, we can start from some node and traverse all
 * nodes based on the zonelist. So update the list loosely once per 10 secs.
 *
 */
1900
static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
1901 1902
{
	int nid;
1903 1904 1905 1906
	/*
	 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
	 * pagein/pageout changes since the last update.
	 */
1907
	if (!atomic_read(&memcg->numainfo_events))
1908
		return;
1909
	if (atomic_inc_return(&memcg->numainfo_updating) > 1)
1910 1911 1912
		return;

	/* make a nodemask where this memcg uses memory from */
1913
	memcg->scan_nodes = node_states[N_MEMORY];
1914

1915
	for_each_node_mask(nid, node_states[N_MEMORY]) {
1916

1917 1918
		if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
			node_clear(nid, memcg->scan_nodes);
1919
	}
1920

1921 1922
	atomic_set(&memcg->numainfo_events, 0);
	atomic_set(&memcg->numainfo_updating, 0);
1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936
}

/*
 * Selecting a node where we start reclaim from. Because what we need is just
 * reducing usage counter, start from anywhere is O,K. Considering
 * memory reclaim from current node, there are pros. and cons.
 *
 * Freeing memory from current node means freeing memory from a node which
 * we'll use or we've used. So, it may make LRU bad. And if several threads
 * hit limits, it will see a contention on a node. But freeing from remote
 * node means more costs for memory reclaim because of memory latency.
 *
 * Now, we use round-robin. Better algorithm is welcomed.
 */
1937
int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1938 1939 1940
{
	int node;

1941 1942
	mem_cgroup_may_update_nodemask(memcg);
	node = memcg->last_scanned_node;
1943

1944
	node = next_node(node, memcg->scan_nodes);
1945
	if (node == MAX_NUMNODES)
1946
		node = first_node(memcg->scan_nodes);
1947 1948 1949 1950 1951 1952 1953 1954 1955
	/*
	 * We call this when we hit limit, not when pages are added to LRU.
	 * No LRU may hold pages because all pages are UNEVICTABLE or
	 * memcg is too small and all pages are not on LRU. In that case,
	 * we use curret node.
	 */
	if (unlikely(node == MAX_NUMNODES))
		node = numa_node_id();

1956
	memcg->last_scanned_node = node;
1957 1958 1959
	return node;
}

1960 1961 1962 1963 1964 1965
/*
 * Check all nodes whether it contains reclaimable pages or not.
 * For quick scan, we make use of scan_nodes. This will allow us to skip
 * unused nodes. But scan_nodes is lazily updated and may not cotain
 * enough new information. We need to do double check.
 */
1966
static bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap)
1967 1968 1969 1970 1971 1972 1973
{
	int nid;

	/*
	 * quick check...making use of scan_node.
	 * We can skip unused nodes.
	 */
1974 1975
	if (!nodes_empty(memcg->scan_nodes)) {
		for (nid = first_node(memcg->scan_nodes);
1976
		     nid < MAX_NUMNODES;
1977
		     nid = next_node(nid, memcg->scan_nodes)) {
1978

1979
			if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap))
1980 1981 1982 1983 1984 1985
				return true;
		}
	}
	/*
	 * Check rest of nodes.
	 */
1986
	for_each_node_state(nid, N_MEMORY) {
1987
		if (node_isset(nid, memcg->scan_nodes))
1988
			continue;
1989
		if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap))
1990 1991 1992 1993 1994
			return true;
	}
	return false;
}

1995
#else
1996
int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1997 1998 1999
{
	return 0;
}
2000

2001
static bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap)
2002
{
2003
	return test_mem_cgroup_node_reclaimable(memcg, 0, noswap);
2004
}
2005 2006
#endif

2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025
/*
 * A group is eligible for the soft limit reclaim if it is
 * 	a) is over its soft limit
 * 	b) any parent up the hierarchy is over its soft limit
 */
bool mem_cgroup_soft_reclaim_eligible(struct mem_cgroup *memcg)
{
	struct mem_cgroup *parent = memcg;

	if (res_counter_soft_limit_excess(&memcg->res))
		return true;

	/*
	 * If any parent up the hierarchy is over its soft limit then we
	 * have to obey and reclaim from this group as well.
	 */
	while((parent = parent_mem_cgroup(parent))) {
		if (res_counter_soft_limit_excess(&parent->res))
			return true;
2026
	}
2027 2028

	return false;
2029 2030
}

K
KAMEZAWA Hiroyuki 已提交
2031 2032 2033
/*
 * Check OOM-Killer is already running under our hierarchy.
 * If someone is running, return false.
2034
 * Has to be called with memcg_oom_lock
K
KAMEZAWA Hiroyuki 已提交
2035
 */
2036
static bool mem_cgroup_oom_lock(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
2037
{
2038
	struct mem_cgroup *iter, *failed = NULL;
2039

2040
	for_each_mem_cgroup_tree(iter, memcg) {
2041
		if (iter->oom_lock) {
2042 2043 2044 2045 2046
			/*
			 * this subtree of our hierarchy is already locked
			 * so we cannot give a lock.
			 */
			failed = iter;
2047 2048
			mem_cgroup_iter_break(memcg, iter);
			break;
2049 2050
		} else
			iter->oom_lock = true;
K
KAMEZAWA Hiroyuki 已提交
2051
	}
K
KAMEZAWA Hiroyuki 已提交
2052

2053
	if (!failed)
2054
		return true;
2055 2056 2057 2058 2059

	/*
	 * OK, we failed to lock the whole subtree so we have to clean up
	 * what we set up to the failing subtree
	 */
2060
	for_each_mem_cgroup_tree(iter, memcg) {
2061
		if (iter == failed) {
2062 2063
			mem_cgroup_iter_break(memcg, iter);
			break;
2064 2065 2066
		}
		iter->oom_lock = false;
	}
2067
	return false;
2068
}
2069

2070
/*
2071
 * Has to be called with memcg_oom_lock
2072
 */
2073
static int mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
2074
{
K
KAMEZAWA Hiroyuki 已提交
2075 2076
	struct mem_cgroup *iter;

2077
	for_each_mem_cgroup_tree(iter, memcg)
2078 2079 2080 2081
		iter->oom_lock = false;
	return 0;
}

2082
static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
2083 2084 2085
{
	struct mem_cgroup *iter;

2086
	for_each_mem_cgroup_tree(iter, memcg)
2087 2088 2089
		atomic_inc(&iter->under_oom);
}

2090
static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
2091 2092 2093
{
	struct mem_cgroup *iter;

K
KAMEZAWA Hiroyuki 已提交
2094 2095 2096 2097 2098
	/*
	 * When a new child is created while the hierarchy is under oom,
	 * mem_cgroup_oom_lock() may not be called. We have to use
	 * atomic_add_unless() here.
	 */
2099
	for_each_mem_cgroup_tree(iter, memcg)
2100
		atomic_add_unless(&iter->under_oom, -1, 0);
2101 2102
}

2103
static DEFINE_SPINLOCK(memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
2104 2105
static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);

K
KAMEZAWA Hiroyuki 已提交
2106
struct oom_wait_info {
2107
	struct mem_cgroup *memcg;
K
KAMEZAWA Hiroyuki 已提交
2108 2109 2110 2111 2112 2113
	wait_queue_t	wait;
};

static int memcg_oom_wake_function(wait_queue_t *wait,
	unsigned mode, int sync, void *arg)
{
2114 2115
	struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
	struct mem_cgroup *oom_wait_memcg;
K
KAMEZAWA Hiroyuki 已提交
2116 2117 2118
	struct oom_wait_info *oom_wait_info;

	oom_wait_info = container_of(wait, struct oom_wait_info, wait);
2119
	oom_wait_memcg = oom_wait_info->memcg;
K
KAMEZAWA Hiroyuki 已提交
2120 2121

	/*
2122
	 * Both of oom_wait_info->memcg and wake_memcg are stable under us.
K
KAMEZAWA Hiroyuki 已提交
2123 2124
	 * Then we can use css_is_ancestor without taking care of RCU.
	 */
2125 2126
	if (!mem_cgroup_same_or_subtree(oom_wait_memcg, wake_memcg)
		&& !mem_cgroup_same_or_subtree(wake_memcg, oom_wait_memcg))
K
KAMEZAWA Hiroyuki 已提交
2127 2128 2129 2130
		return 0;
	return autoremove_wake_function(wait, mode, sync, arg);
}

2131
static void memcg_wakeup_oom(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
2132
{
2133 2134
	/* for filtering, pass "memcg" as argument. */
	__wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
K
KAMEZAWA Hiroyuki 已提交
2135 2136
}

2137
static void memcg_oom_recover(struct mem_cgroup *memcg)
2138
{
2139 2140
	if (memcg && atomic_read(&memcg->under_oom))
		memcg_wakeup_oom(memcg);
2141 2142
}

K
KAMEZAWA Hiroyuki 已提交
2143 2144 2145
/*
 * try to call OOM killer. returns false if we should exit memory-reclaim loop.
 */
2146 2147
static bool mem_cgroup_handle_oom(struct mem_cgroup *memcg, gfp_t mask,
				  int order)
2148
{
K
KAMEZAWA Hiroyuki 已提交
2149
	struct oom_wait_info owait;
2150
	bool locked, need_to_kill;
K
KAMEZAWA Hiroyuki 已提交
2151

2152
	owait.memcg = memcg;
K
KAMEZAWA Hiroyuki 已提交
2153 2154 2155 2156
	owait.wait.flags = 0;
	owait.wait.func = memcg_oom_wake_function;
	owait.wait.private = current;
	INIT_LIST_HEAD(&owait.wait.task_list);
2157
	need_to_kill = true;
2158
	mem_cgroup_mark_under_oom(memcg);
2159

2160
	/* At first, try to OOM lock hierarchy under memcg.*/
2161
	spin_lock(&memcg_oom_lock);
2162
	locked = mem_cgroup_oom_lock(memcg);
K
KAMEZAWA Hiroyuki 已提交
2163 2164 2165 2166 2167
	/*
	 * Even if signal_pending(), we can't quit charge() loop without
	 * accounting. So, UNINTERRUPTIBLE is appropriate. But SIGKILL
	 * under OOM is always welcomed, use TASK_KILLABLE here.
	 */
2168
	prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
2169
	if (!locked || memcg->oom_kill_disable)
2170 2171
		need_to_kill = false;
	if (locked)
2172
		mem_cgroup_oom_notify(memcg);
2173
	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
2174

2175 2176
	if (need_to_kill) {
		finish_wait(&memcg_oom_waitq, &owait.wait);
2177
		mem_cgroup_out_of_memory(memcg, mask, order);
2178
	} else {
K
KAMEZAWA Hiroyuki 已提交
2179
		schedule();
K
KAMEZAWA Hiroyuki 已提交
2180
		finish_wait(&memcg_oom_waitq, &owait.wait);
K
KAMEZAWA Hiroyuki 已提交
2181
	}
2182
	spin_lock(&memcg_oom_lock);
2183
	if (locked)
2184 2185
		mem_cgroup_oom_unlock(memcg);
	memcg_wakeup_oom(memcg);
2186
	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
2187

2188
	mem_cgroup_unmark_under_oom(memcg);
2189

K
KAMEZAWA Hiroyuki 已提交
2190 2191 2192
	if (test_thread_flag(TIF_MEMDIE) || fatal_signal_pending(current))
		return false;
	/* Give chance to dying process */
2193
	schedule_timeout_uninterruptible(1);
K
KAMEZAWA Hiroyuki 已提交
2194
	return true;
2195 2196
}

2197 2198 2199
/*
 * Currently used to update mapped file statistics, but the routine can be
 * generalized to update other statistics as well.
2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216
 *
 * Notes: Race condition
 *
 * We usually use page_cgroup_lock() for accessing page_cgroup member but
 * it tends to be costly. But considering some conditions, we doesn't need
 * to do so _always_.
 *
 * Considering "charge", lock_page_cgroup() is not required because all
 * file-stat operations happen after a page is attached to radix-tree. There
 * are no race with "charge".
 *
 * Considering "uncharge", we know that memcg doesn't clear pc->mem_cgroup
 * at "uncharge" intentionally. So, we always see valid pc->mem_cgroup even
 * if there are race with "uncharge". Statistics itself is properly handled
 * by flags.
 *
 * Considering "move", this is an only case we see a race. To make the race
2217 2218
 * small, we check mm->moving_account and detect there are possibility of race
 * If there is, we take a lock.
2219
 */
2220

2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233
void __mem_cgroup_begin_update_page_stat(struct page *page,
				bool *locked, unsigned long *flags)
{
	struct mem_cgroup *memcg;
	struct page_cgroup *pc;

	pc = lookup_page_cgroup(page);
again:
	memcg = pc->mem_cgroup;
	if (unlikely(!memcg || !PageCgroupUsed(pc)))
		return;
	/*
	 * If this memory cgroup is not under account moving, we don't
2234
	 * need to take move_lock_mem_cgroup(). Because we already hold
2235
	 * rcu_read_lock(), any calls to move_account will be delayed until
2236
	 * rcu_read_unlock() if mem_cgroup_stolen() == true.
2237
	 */
2238
	if (!mem_cgroup_stolen(memcg))
2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255
		return;

	move_lock_mem_cgroup(memcg, flags);
	if (memcg != pc->mem_cgroup || !PageCgroupUsed(pc)) {
		move_unlock_mem_cgroup(memcg, flags);
		goto again;
	}
	*locked = true;
}

void __mem_cgroup_end_update_page_stat(struct page *page, unsigned long *flags)
{
	struct page_cgroup *pc = lookup_page_cgroup(page);

	/*
	 * It's guaranteed that pc->mem_cgroup never changes while
	 * lock is held because a routine modifies pc->mem_cgroup
2256
	 * should take move_lock_mem_cgroup().
2257 2258 2259 2260
	 */
	move_unlock_mem_cgroup(pc->mem_cgroup, flags);
}

2261 2262
void mem_cgroup_update_page_stat(struct page *page,
				 enum mem_cgroup_page_stat_item idx, int val)
2263
{
2264
	struct mem_cgroup *memcg;
2265
	struct page_cgroup *pc = lookup_page_cgroup(page);
2266
	unsigned long uninitialized_var(flags);
2267

2268
	if (mem_cgroup_disabled())
2269
		return;
2270

2271 2272
	memcg = pc->mem_cgroup;
	if (unlikely(!memcg || !PageCgroupUsed(pc)))
2273
		return;
2274 2275

	switch (idx) {
2276 2277
	case MEMCG_NR_FILE_MAPPED:
		idx = MEM_CGROUP_STAT_FILE_MAPPED;
2278 2279 2280
		break;
	default:
		BUG();
2281
	}
2282

2283
	this_cpu_add(memcg->stat->count[idx], val);
2284
}
2285

2286 2287 2288 2289
/*
 * size of first charge trial. "32" comes from vmscan.c's magic value.
 * TODO: maybe necessary to use big numbers in big irons.
 */
2290
#define CHARGE_BATCH	32U
2291 2292
struct memcg_stock_pcp {
	struct mem_cgroup *cached; /* this never be root cgroup */
2293
	unsigned int nr_pages;
2294
	struct work_struct work;
2295
	unsigned long flags;
2296
#define FLUSHING_CACHED_CHARGE	0
2297 2298
};
static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
2299
static DEFINE_MUTEX(percpu_charge_mutex);
2300

2301 2302 2303 2304 2305 2306 2307 2308 2309 2310
/**
 * consume_stock: Try to consume stocked charge on this cpu.
 * @memcg: memcg to consume from.
 * @nr_pages: how many pages to charge.
 *
 * The charges will only happen if @memcg matches the current cpu's memcg
 * stock, and at least @nr_pages are available in that stock.  Failure to
 * service an allocation will refill the stock.
 *
 * returns true if successful, false otherwise.
2311
 */
2312
static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2313 2314 2315 2316
{
	struct memcg_stock_pcp *stock;
	bool ret = true;

2317 2318 2319
	if (nr_pages > CHARGE_BATCH)
		return false;

2320
	stock = &get_cpu_var(memcg_stock);
2321 2322
	if (memcg == stock->cached && stock->nr_pages >= nr_pages)
		stock->nr_pages -= nr_pages;
2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335
	else /* need to call res_counter_charge */
		ret = false;
	put_cpu_var(memcg_stock);
	return ret;
}

/*
 * Returns stocks cached in percpu to res_counter and reset cached information.
 */
static void drain_stock(struct memcg_stock_pcp *stock)
{
	struct mem_cgroup *old = stock->cached;

2336 2337 2338 2339
	if (stock->nr_pages) {
		unsigned long bytes = stock->nr_pages * PAGE_SIZE;

		res_counter_uncharge(&old->res, bytes);
2340
		if (do_swap_account)
2341 2342
			res_counter_uncharge(&old->memsw, bytes);
		stock->nr_pages = 0;
2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354
	}
	stock->cached = NULL;
}

/*
 * This must be called under preempt disabled or must be called by
 * a thread which is pinned to local cpu.
 */
static void drain_local_stock(struct work_struct *dummy)
{
	struct memcg_stock_pcp *stock = &__get_cpu_var(memcg_stock);
	drain_stock(stock);
2355
	clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
2356 2357
}

2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368
static void __init memcg_stock_init(void)
{
	int cpu;

	for_each_possible_cpu(cpu) {
		struct memcg_stock_pcp *stock =
					&per_cpu(memcg_stock, cpu);
		INIT_WORK(&stock->work, drain_local_stock);
	}
}

2369 2370
/*
 * Cache charges(val) which is from res_counter, to local per_cpu area.
2371
 * This will be consumed by consume_stock() function, later.
2372
 */
2373
static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2374 2375 2376
{
	struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);

2377
	if (stock->cached != memcg) { /* reset if necessary */
2378
		drain_stock(stock);
2379
		stock->cached = memcg;
2380
	}
2381
	stock->nr_pages += nr_pages;
2382 2383 2384 2385
	put_cpu_var(memcg_stock);
}

/*
2386
 * Drains all per-CPU charge caches for given root_memcg resp. subtree
2387 2388
 * of the hierarchy under it. sync flag says whether we should block
 * until the work is done.
2389
 */
2390
static void drain_all_stock(struct mem_cgroup *root_memcg, bool sync)
2391
{
2392
	int cpu, curcpu;
2393

2394 2395
	/* Notify other cpus that system-wide "drain" is running */
	get_online_cpus();
2396
	curcpu = get_cpu();
2397 2398
	for_each_online_cpu(cpu) {
		struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2399
		struct mem_cgroup *memcg;
2400

2401 2402
		memcg = stock->cached;
		if (!memcg || !stock->nr_pages)
2403
			continue;
2404
		if (!mem_cgroup_same_or_subtree(root_memcg, memcg))
2405
			continue;
2406 2407 2408 2409 2410 2411
		if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
			if (cpu == curcpu)
				drain_local_stock(&stock->work);
			else
				schedule_work_on(cpu, &stock->work);
		}
2412
	}
2413
	put_cpu();
2414 2415 2416 2417 2418 2419

	if (!sync)
		goto out;

	for_each_online_cpu(cpu) {
		struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2420
		if (test_bit(FLUSHING_CACHED_CHARGE, &stock->flags))
2421 2422 2423
			flush_work(&stock->work);
	}
out:
2424
 	put_online_cpus();
2425 2426 2427 2428 2429 2430 2431 2432
}

/*
 * Tries to drain stocked charges in other cpus. This function is asynchronous
 * and just put a work per cpu for draining localy on each cpu. Caller can
 * expects some charges will be back to res_counter later but cannot wait for
 * it.
 */
2433
static void drain_all_stock_async(struct mem_cgroup *root_memcg)
2434
{
2435 2436 2437 2438 2439
	/*
	 * If someone calls draining, avoid adding more kworker runs.
	 */
	if (!mutex_trylock(&percpu_charge_mutex))
		return;
2440
	drain_all_stock(root_memcg, false);
2441
	mutex_unlock(&percpu_charge_mutex);
2442 2443 2444
}

/* This is a synchronous drain interface. */
2445
static void drain_all_stock_sync(struct mem_cgroup *root_memcg)
2446 2447
{
	/* called when force_empty is called */
2448
	mutex_lock(&percpu_charge_mutex);
2449
	drain_all_stock(root_memcg, true);
2450
	mutex_unlock(&percpu_charge_mutex);
2451 2452
}

2453 2454 2455 2456
/*
 * This function drains percpu counter value from DEAD cpu and
 * move it to local cpu. Note that this function can be preempted.
 */
2457
static void mem_cgroup_drain_pcp_counter(struct mem_cgroup *memcg, int cpu)
2458 2459 2460
{
	int i;

2461
	spin_lock(&memcg->pcp_counter_lock);
2462
	for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
2463
		long x = per_cpu(memcg->stat->count[i], cpu);
2464

2465 2466
		per_cpu(memcg->stat->count[i], cpu) = 0;
		memcg->nocpu_base.count[i] += x;
2467
	}
2468
	for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
2469
		unsigned long x = per_cpu(memcg->stat->events[i], cpu);
2470

2471 2472
		per_cpu(memcg->stat->events[i], cpu) = 0;
		memcg->nocpu_base.events[i] += x;
2473
	}
2474
	spin_unlock(&memcg->pcp_counter_lock);
2475 2476
}

2477
static int memcg_cpu_hotplug_callback(struct notifier_block *nb,
2478 2479 2480 2481 2482
					unsigned long action,
					void *hcpu)
{
	int cpu = (unsigned long)hcpu;
	struct memcg_stock_pcp *stock;
2483
	struct mem_cgroup *iter;
2484

2485
	if (action == CPU_ONLINE)
2486 2487
		return NOTIFY_OK;

2488
	if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
2489
		return NOTIFY_OK;
2490

2491
	for_each_mem_cgroup(iter)
2492 2493
		mem_cgroup_drain_pcp_counter(iter, cpu);

2494 2495 2496 2497 2498
	stock = &per_cpu(memcg_stock, cpu);
	drain_stock(stock);
	return NOTIFY_OK;
}

2499 2500 2501 2502 2503 2504 2505 2506 2507 2508

/* See __mem_cgroup_try_charge() for details */
enum {
	CHARGE_OK,		/* success */
	CHARGE_RETRY,		/* need to retry but retry is not bad */
	CHARGE_NOMEM,		/* we can't do more. return -ENOMEM */
	CHARGE_WOULDBLOCK,	/* GFP_WAIT wasn't set and no enough res. */
	CHARGE_OOM_DIE,		/* the current is killed because of OOM */
};

2509
static int mem_cgroup_do_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
2510 2511
				unsigned int nr_pages, unsigned int min_pages,
				bool oom_check)
2512
{
2513
	unsigned long csize = nr_pages * PAGE_SIZE;
2514 2515 2516 2517 2518
	struct mem_cgroup *mem_over_limit;
	struct res_counter *fail_res;
	unsigned long flags = 0;
	int ret;

2519
	ret = res_counter_charge(&memcg->res, csize, &fail_res);
2520 2521 2522 2523

	if (likely(!ret)) {
		if (!do_swap_account)
			return CHARGE_OK;
2524
		ret = res_counter_charge(&memcg->memsw, csize, &fail_res);
2525 2526 2527
		if (likely(!ret))
			return CHARGE_OK;

2528
		res_counter_uncharge(&memcg->res, csize);
2529 2530 2531 2532
		mem_over_limit = mem_cgroup_from_res_counter(fail_res, memsw);
		flags |= MEM_CGROUP_RECLAIM_NOSWAP;
	} else
		mem_over_limit = mem_cgroup_from_res_counter(fail_res, res);
2533 2534 2535 2536
	/*
	 * Never reclaim on behalf of optional batching, retry with a
	 * single page instead.
	 */
2537
	if (nr_pages > min_pages)
2538 2539 2540 2541 2542
		return CHARGE_RETRY;

	if (!(gfp_mask & __GFP_WAIT))
		return CHARGE_WOULDBLOCK;

2543 2544 2545
	if (gfp_mask & __GFP_NORETRY)
		return CHARGE_NOMEM;

2546
	ret = mem_cgroup_reclaim(mem_over_limit, gfp_mask, flags);
2547
	if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
2548
		return CHARGE_RETRY;
2549
	/*
2550 2551 2552 2553 2554 2555 2556
	 * Even though the limit is exceeded at this point, reclaim
	 * may have been able to free some pages.  Retry the charge
	 * before killing the task.
	 *
	 * Only for regular pages, though: huge pages are rather
	 * unlikely to succeed so close to the limit, and we fall back
	 * to regular pages anyway in case of failure.
2557
	 */
2558
	if (nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER) && ret)
2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571
		return CHARGE_RETRY;

	/*
	 * At task move, charge accounts can be doubly counted. So, it's
	 * better to wait until the end of task_move if something is going on.
	 */
	if (mem_cgroup_wait_acct_move(mem_over_limit))
		return CHARGE_RETRY;

	/* If we don't need to call oom-killer at el, return immediately */
	if (!oom_check)
		return CHARGE_NOMEM;
	/* check OOM */
2572
	if (!mem_cgroup_handle_oom(mem_over_limit, gfp_mask, get_order(csize)))
2573 2574 2575 2576 2577
		return CHARGE_OOM_DIE;

	return CHARGE_RETRY;
}

2578
/*
2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597
 * __mem_cgroup_try_charge() does
 * 1. detect memcg to be charged against from passed *mm and *ptr,
 * 2. update res_counter
 * 3. call memory reclaim if necessary.
 *
 * In some special case, if the task is fatal, fatal_signal_pending() or
 * has TIF_MEMDIE, this function returns -EINTR while writing root_mem_cgroup
 * to *ptr. There are two reasons for this. 1: fatal threads should quit as soon
 * as possible without any hazards. 2: all pages should have a valid
 * pc->mem_cgroup. If mm is NULL and the caller doesn't pass a valid memcg
 * pointer, that is treated as a charge to root_mem_cgroup.
 *
 * So __mem_cgroup_try_charge() will return
 *  0       ...  on success, filling *ptr with a valid memcg pointer.
 *  -ENOMEM ...  charge failure because of resource limits.
 *  -EINTR  ...  if thread is fatal. *ptr is filled with root_mem_cgroup.
 *
 * Unlike the exported interface, an "oom" parameter is added. if oom==true,
 * the oom-killer can be invoked.
2598
 */
2599
static int __mem_cgroup_try_charge(struct mm_struct *mm,
A
Andrea Arcangeli 已提交
2600
				   gfp_t gfp_mask,
2601
				   unsigned int nr_pages,
2602
				   struct mem_cgroup **ptr,
2603
				   bool oom)
2604
{
2605
	unsigned int batch = max(CHARGE_BATCH, nr_pages);
2606
	int nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
2607
	struct mem_cgroup *memcg = NULL;
2608
	int ret;
2609

K
KAMEZAWA Hiroyuki 已提交
2610 2611 2612 2613 2614 2615 2616 2617
	/*
	 * Unlike gloval-vm's OOM-kill, we're not in memory shortage
	 * in system level. So, allow to go ahead dying process in addition to
	 * MEMDIE process.
	 */
	if (unlikely(test_thread_flag(TIF_MEMDIE)
		     || fatal_signal_pending(current)))
		goto bypass;
2618

2619
	/*
2620 2621
	 * We always charge the cgroup the mm_struct belongs to.
	 * The mm_struct's mem_cgroup changes on task migration if the
2622
	 * thread group leader migrates. It's possible that mm is not
2623
	 * set, if so charge the root memcg (happens for pagecache usage).
2624
	 */
2625
	if (!*ptr && !mm)
2626
		*ptr = root_mem_cgroup;
K
KAMEZAWA Hiroyuki 已提交
2627
again:
2628 2629 2630
	if (*ptr) { /* css should be a valid one */
		memcg = *ptr;
		if (mem_cgroup_is_root(memcg))
K
KAMEZAWA Hiroyuki 已提交
2631
			goto done;
2632
		if (consume_stock(memcg, nr_pages))
K
KAMEZAWA Hiroyuki 已提交
2633
			goto done;
2634
		css_get(&memcg->css);
2635
	} else {
K
KAMEZAWA Hiroyuki 已提交
2636
		struct task_struct *p;
2637

K
KAMEZAWA Hiroyuki 已提交
2638 2639 2640
		rcu_read_lock();
		p = rcu_dereference(mm->owner);
		/*
2641
		 * Because we don't have task_lock(), "p" can exit.
2642
		 * In that case, "memcg" can point to root or p can be NULL with
2643 2644 2645 2646 2647 2648
		 * race with swapoff. Then, we have small risk of mis-accouning.
		 * But such kind of mis-account by race always happens because
		 * we don't have cgroup_mutex(). It's overkill and we allo that
		 * small race, here.
		 * (*) swapoff at el will charge against mm-struct not against
		 * task-struct. So, mm->owner can be NULL.
K
KAMEZAWA Hiroyuki 已提交
2649
		 */
2650
		memcg = mem_cgroup_from_task(p);
2651 2652 2653
		if (!memcg)
			memcg = root_mem_cgroup;
		if (mem_cgroup_is_root(memcg)) {
K
KAMEZAWA Hiroyuki 已提交
2654 2655 2656
			rcu_read_unlock();
			goto done;
		}
2657
		if (consume_stock(memcg, nr_pages)) {
K
KAMEZAWA Hiroyuki 已提交
2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669
			/*
			 * It seems dagerous to access memcg without css_get().
			 * But considering how consume_stok works, it's not
			 * necessary. If consume_stock success, some charges
			 * from this memcg are cached on this cpu. So, we
			 * don't need to call css_get()/css_tryget() before
			 * calling consume_stock().
			 */
			rcu_read_unlock();
			goto done;
		}
		/* after here, we may be blocked. we need to get refcnt */
2670
		if (!css_tryget(&memcg->css)) {
K
KAMEZAWA Hiroyuki 已提交
2671 2672 2673 2674 2675
			rcu_read_unlock();
			goto again;
		}
		rcu_read_unlock();
	}
2676

2677 2678
	do {
		bool oom_check;
2679

2680
		/* If killed, bypass charge */
K
KAMEZAWA Hiroyuki 已提交
2681
		if (fatal_signal_pending(current)) {
2682
			css_put(&memcg->css);
2683
			goto bypass;
K
KAMEZAWA Hiroyuki 已提交
2684
		}
2685

2686 2687 2688 2689
		oom_check = false;
		if (oom && !nr_oom_retries) {
			oom_check = true;
			nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
2690
		}
2691

2692 2693
		ret = mem_cgroup_do_charge(memcg, gfp_mask, batch, nr_pages,
		    oom_check);
2694 2695 2696 2697
		switch (ret) {
		case CHARGE_OK:
			break;
		case CHARGE_RETRY: /* not in OOM situation but retry */
2698
			batch = nr_pages;
2699 2700
			css_put(&memcg->css);
			memcg = NULL;
K
KAMEZAWA Hiroyuki 已提交
2701
			goto again;
2702
		case CHARGE_WOULDBLOCK: /* !__GFP_WAIT */
2703
			css_put(&memcg->css);
2704 2705
			goto nomem;
		case CHARGE_NOMEM: /* OOM routine works */
K
KAMEZAWA Hiroyuki 已提交
2706
			if (!oom) {
2707
				css_put(&memcg->css);
K
KAMEZAWA Hiroyuki 已提交
2708
				goto nomem;
K
KAMEZAWA Hiroyuki 已提交
2709
			}
2710 2711 2712 2713
			/* If oom, we never return -ENOMEM */
			nr_oom_retries--;
			break;
		case CHARGE_OOM_DIE: /* Killed by OOM Killer */
2714
			css_put(&memcg->css);
K
KAMEZAWA Hiroyuki 已提交
2715
			goto bypass;
2716
		}
2717 2718
	} while (ret != CHARGE_OK);

2719
	if (batch > nr_pages)
2720 2721
		refill_stock(memcg, batch - nr_pages);
	css_put(&memcg->css);
2722
done:
2723
	*ptr = memcg;
2724 2725
	return 0;
nomem:
2726
	*ptr = NULL;
2727
	return -ENOMEM;
K
KAMEZAWA Hiroyuki 已提交
2728
bypass:
2729 2730
	*ptr = root_mem_cgroup;
	return -EINTR;
2731
}
2732

2733 2734 2735 2736 2737
/*
 * Somemtimes we have to undo a charge we got by try_charge().
 * This function is for that and do uncharge, put css's refcnt.
 * gotten by try_charge().
 */
2738
static void __mem_cgroup_cancel_charge(struct mem_cgroup *memcg,
2739
				       unsigned int nr_pages)
2740
{
2741
	if (!mem_cgroup_is_root(memcg)) {
2742 2743
		unsigned long bytes = nr_pages * PAGE_SIZE;

2744
		res_counter_uncharge(&memcg->res, bytes);
2745
		if (do_swap_account)
2746
			res_counter_uncharge(&memcg->memsw, bytes);
2747
	}
2748 2749
}

2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767
/*
 * Cancel chrages in this cgroup....doesn't propagate to parent cgroup.
 * This is useful when moving usage to parent cgroup.
 */
static void __mem_cgroup_cancel_local_charge(struct mem_cgroup *memcg,
					unsigned int nr_pages)
{
	unsigned long bytes = nr_pages * PAGE_SIZE;

	if (mem_cgroup_is_root(memcg))
		return;

	res_counter_uncharge_until(&memcg->res, memcg->res.parent, bytes);
	if (do_swap_account)
		res_counter_uncharge_until(&memcg->memsw,
						memcg->memsw.parent, bytes);
}

2768 2769
/*
 * A helper function to get mem_cgroup from ID. must be called under
T
Tejun Heo 已提交
2770 2771 2772
 * rcu_read_lock().  The caller is responsible for calling css_tryget if
 * the mem_cgroup is used for charging. (dropping refcnt from swap can be
 * called against removed memcg.)
2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783
 */
static struct mem_cgroup *mem_cgroup_lookup(unsigned short id)
{
	struct cgroup_subsys_state *css;

	/* ID 0 is unused ID */
	if (!id)
		return NULL;
	css = css_lookup(&mem_cgroup_subsys, id);
	if (!css)
		return NULL;
2784
	return mem_cgroup_from_css(css);
2785 2786
}

2787
struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page)
2788
{
2789
	struct mem_cgroup *memcg = NULL;
2790
	struct page_cgroup *pc;
2791
	unsigned short id;
2792 2793
	swp_entry_t ent;

2794 2795 2796
	VM_BUG_ON(!PageLocked(page));

	pc = lookup_page_cgroup(page);
2797
	lock_page_cgroup(pc);
2798
	if (PageCgroupUsed(pc)) {
2799 2800 2801
		memcg = pc->mem_cgroup;
		if (memcg && !css_tryget(&memcg->css))
			memcg = NULL;
2802
	} else if (PageSwapCache(page)) {
2803
		ent.val = page_private(page);
2804
		id = lookup_swap_cgroup_id(ent);
2805
		rcu_read_lock();
2806 2807 2808
		memcg = mem_cgroup_lookup(id);
		if (memcg && !css_tryget(&memcg->css))
			memcg = NULL;
2809
		rcu_read_unlock();
2810
	}
2811
	unlock_page_cgroup(pc);
2812
	return memcg;
2813 2814
}

2815
static void __mem_cgroup_commit_charge(struct mem_cgroup *memcg,
2816
				       struct page *page,
2817
				       unsigned int nr_pages,
2818 2819
				       enum charge_type ctype,
				       bool lrucare)
2820
{
2821
	struct page_cgroup *pc = lookup_page_cgroup(page);
2822
	struct zone *uninitialized_var(zone);
2823
	struct lruvec *lruvec;
2824
	bool was_on_lru = false;
2825
	bool anon;
2826

2827
	lock_page_cgroup(pc);
2828
	VM_BUG_ON(PageCgroupUsed(pc));
2829 2830 2831 2832
	/*
	 * we don't need page_cgroup_lock about tail pages, becase they are not
	 * accessed by any other context at this point.
	 */
2833 2834 2835 2836 2837 2838 2839 2840 2841

	/*
	 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
	 * may already be on some other mem_cgroup's LRU.  Take care of it.
	 */
	if (lrucare) {
		zone = page_zone(page);
		spin_lock_irq(&zone->lru_lock);
		if (PageLRU(page)) {
2842
			lruvec = mem_cgroup_zone_lruvec(zone, pc->mem_cgroup);
2843
			ClearPageLRU(page);
2844
			del_page_from_lru_list(page, lruvec, page_lru(page));
2845 2846 2847 2848
			was_on_lru = true;
		}
	}

2849
	pc->mem_cgroup = memcg;
2850 2851 2852 2853 2854 2855 2856
	/*
	 * We access a page_cgroup asynchronously without lock_page_cgroup().
	 * Especially when a page_cgroup is taken from a page, pc->mem_cgroup
	 * is accessed after testing USED bit. To make pc->mem_cgroup visible
	 * before USED bit, we need memory barrier here.
	 * See mem_cgroup_add_lru_list(), etc.
 	 */
K
KAMEZAWA Hiroyuki 已提交
2857
	smp_wmb();
2858
	SetPageCgroupUsed(pc);
2859

2860 2861
	if (lrucare) {
		if (was_on_lru) {
2862
			lruvec = mem_cgroup_zone_lruvec(zone, pc->mem_cgroup);
2863 2864
			VM_BUG_ON(PageLRU(page));
			SetPageLRU(page);
2865
			add_page_to_lru_list(page, lruvec, page_lru(page));
2866 2867 2868 2869
		}
		spin_unlock_irq(&zone->lru_lock);
	}

2870
	if (ctype == MEM_CGROUP_CHARGE_TYPE_ANON)
2871 2872 2873 2874
		anon = true;
	else
		anon = false;

2875
	mem_cgroup_charge_statistics(memcg, page, anon, nr_pages);
2876
	unlock_page_cgroup(pc);
2877

2878 2879 2880 2881 2882
	/*
	 * "charge_statistics" updated event counter. Then, check it.
	 * Insert ancestor (and ancestor's ancestors), to softlimit RB-tree.
	 * if they exceeds softlimit.
	 */
2883
	memcg_check_events(memcg, page);
2884
}
2885

2886 2887
static DEFINE_MUTEX(set_limit_mutex);

2888 2889 2890 2891 2892 2893 2894
#ifdef CONFIG_MEMCG_KMEM
static inline bool memcg_can_account_kmem(struct mem_cgroup *memcg)
{
	return !mem_cgroup_disabled() && !mem_cgroup_is_root(memcg) &&
		(memcg->kmem_account_flags & KMEM_ACCOUNTED_MASK);
}

G
Glauber Costa 已提交
2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907
/*
 * This is a bit cumbersome, but it is rarely used and avoids a backpointer
 * in the memcg_cache_params struct.
 */
static struct kmem_cache *memcg_params_to_cache(struct memcg_cache_params *p)
{
	struct kmem_cache *cachep;

	VM_BUG_ON(p->is_root_cache);
	cachep = p->root_cache;
	return cachep->memcg_params->memcg_caches[memcg_cache_id(p->memcg)];
}

2908
#ifdef CONFIG_SLABINFO
2909 2910
static int mem_cgroup_slabinfo_read(struct cgroup_subsys_state *css,
				    struct cftype *cft, struct seq_file *m)
2911
{
2912
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928
	struct memcg_cache_params *params;

	if (!memcg_can_account_kmem(memcg))
		return -EIO;

	print_slabinfo_header(m);

	mutex_lock(&memcg->slab_caches_mutex);
	list_for_each_entry(params, &memcg->memcg_slab_caches, list)
		cache_show(memcg_params_to_cache(params), m);
	mutex_unlock(&memcg->slab_caches_mutex);

	return 0;
}
#endif

2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981
static int memcg_charge_kmem(struct mem_cgroup *memcg, gfp_t gfp, u64 size)
{
	struct res_counter *fail_res;
	struct mem_cgroup *_memcg;
	int ret = 0;
	bool may_oom;

	ret = res_counter_charge(&memcg->kmem, size, &fail_res);
	if (ret)
		return ret;

	/*
	 * Conditions under which we can wait for the oom_killer. Those are
	 * the same conditions tested by the core page allocator
	 */
	may_oom = (gfp & __GFP_FS) && !(gfp & __GFP_NORETRY);

	_memcg = memcg;
	ret = __mem_cgroup_try_charge(NULL, gfp, size >> PAGE_SHIFT,
				      &_memcg, may_oom);

	if (ret == -EINTR)  {
		/*
		 * __mem_cgroup_try_charge() chosed to bypass to root due to
		 * OOM kill or fatal signal.  Since our only options are to
		 * either fail the allocation or charge it to this cgroup, do
		 * it as a temporary condition. But we can't fail. From a
		 * kmem/slab perspective, the cache has already been selected,
		 * by mem_cgroup_kmem_get_cache(), so it is too late to change
		 * our minds.
		 *
		 * This condition will only trigger if the task entered
		 * memcg_charge_kmem in a sane state, but was OOM-killed during
		 * __mem_cgroup_try_charge() above. Tasks that were already
		 * dying when the allocation triggers should have been already
		 * directed to the root cgroup in memcontrol.h
		 */
		res_counter_charge_nofail(&memcg->res, size, &fail_res);
		if (do_swap_account)
			res_counter_charge_nofail(&memcg->memsw, size,
						  &fail_res);
		ret = 0;
	} else if (ret)
		res_counter_uncharge(&memcg->kmem, size);

	return ret;
}

static void memcg_uncharge_kmem(struct mem_cgroup *memcg, u64 size)
{
	res_counter_uncharge(&memcg->res, size);
	if (do_swap_account)
		res_counter_uncharge(&memcg->memsw, size);
2982 2983 2984 2985 2986

	/* Not down to 0 */
	if (res_counter_uncharge(&memcg->kmem, size))
		return;

2987 2988 2989 2990 2991 2992 2993 2994
	/*
	 * Releases a reference taken in kmem_cgroup_css_offline in case
	 * this last uncharge is racing with the offlining code or it is
	 * outliving the memcg existence.
	 *
	 * The memory barrier imposed by test&clear is paired with the
	 * explicit one in memcg_kmem_mark_dead().
	 */
2995
	if (memcg_kmem_test_and_clear_dead(memcg))
2996
		css_put(&memcg->css);
2997 2998
}

2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018
void memcg_cache_list_add(struct mem_cgroup *memcg, struct kmem_cache *cachep)
{
	if (!memcg)
		return;

	mutex_lock(&memcg->slab_caches_mutex);
	list_add(&cachep->memcg_params->list, &memcg->memcg_slab_caches);
	mutex_unlock(&memcg->slab_caches_mutex);
}

/*
 * helper for acessing a memcg's index. It will be used as an index in the
 * child cache array in kmem_cache, and also to derive its name. This function
 * will return -1 when this is not a kmem-limited memcg.
 */
int memcg_cache_id(struct mem_cgroup *memcg)
{
	return memcg ? memcg->kmemcg_id : -1;
}

3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081
/*
 * This ends up being protected by the set_limit mutex, during normal
 * operation, because that is its main call site.
 *
 * But when we create a new cache, we can call this as well if its parent
 * is kmem-limited. That will have to hold set_limit_mutex as well.
 */
int memcg_update_cache_sizes(struct mem_cgroup *memcg)
{
	int num, ret;

	num = ida_simple_get(&kmem_limited_groups,
				0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
	if (num < 0)
		return num;
	/*
	 * After this point, kmem_accounted (that we test atomically in
	 * the beginning of this conditional), is no longer 0. This
	 * guarantees only one process will set the following boolean
	 * to true. We don't need test_and_set because we're protected
	 * by the set_limit_mutex anyway.
	 */
	memcg_kmem_set_activated(memcg);

	ret = memcg_update_all_caches(num+1);
	if (ret) {
		ida_simple_remove(&kmem_limited_groups, num);
		memcg_kmem_clear_activated(memcg);
		return ret;
	}

	memcg->kmemcg_id = num;
	INIT_LIST_HEAD(&memcg->memcg_slab_caches);
	mutex_init(&memcg->slab_caches_mutex);
	return 0;
}

static size_t memcg_caches_array_size(int num_groups)
{
	ssize_t size;
	if (num_groups <= 0)
		return 0;

	size = 2 * num_groups;
	if (size < MEMCG_CACHES_MIN_SIZE)
		size = MEMCG_CACHES_MIN_SIZE;
	else if (size > MEMCG_CACHES_MAX_SIZE)
		size = MEMCG_CACHES_MAX_SIZE;

	return size;
}

/*
 * We should update the current array size iff all caches updates succeed. This
 * can only be done from the slab side. The slab mutex needs to be held when
 * calling this.
 */
void memcg_update_array_size(int num)
{
	if (num > memcg_limited_groups_array_size)
		memcg_limited_groups_array_size = memcg_caches_array_size(num);
}

3082 3083
static void kmem_cache_destroy_work_func(struct work_struct *w);

3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094
int memcg_update_cache_size(struct kmem_cache *s, int num_groups)
{
	struct memcg_cache_params *cur_params = s->memcg_params;

	VM_BUG_ON(s->memcg_params && !s->memcg_params->is_root_cache);

	if (num_groups > memcg_limited_groups_array_size) {
		int i;
		ssize_t size = memcg_caches_array_size(num_groups);

		size *= sizeof(void *);
3095
		size += offsetof(struct memcg_cache_params, memcg_caches);
3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134

		s->memcg_params = kzalloc(size, GFP_KERNEL);
		if (!s->memcg_params) {
			s->memcg_params = cur_params;
			return -ENOMEM;
		}

		s->memcg_params->is_root_cache = true;

		/*
		 * There is the chance it will be bigger than
		 * memcg_limited_groups_array_size, if we failed an allocation
		 * in a cache, in which case all caches updated before it, will
		 * have a bigger array.
		 *
		 * But if that is the case, the data after
		 * memcg_limited_groups_array_size is certainly unused
		 */
		for (i = 0; i < memcg_limited_groups_array_size; i++) {
			if (!cur_params->memcg_caches[i])
				continue;
			s->memcg_params->memcg_caches[i] =
						cur_params->memcg_caches[i];
		}

		/*
		 * Ideally, we would wait until all caches succeed, and only
		 * then free the old one. But this is not worth the extra
		 * pointer per-cache we'd have to have for this.
		 *
		 * It is not a big deal if some caches are left with a size
		 * bigger than the others. And all updates will reset this
		 * anyway.
		 */
		kfree(cur_params);
	}
	return 0;
}

G
Glauber Costa 已提交
3135 3136
int memcg_register_cache(struct mem_cgroup *memcg, struct kmem_cache *s,
			 struct kmem_cache *root_cache)
3137
{
3138
	size_t size;
3139 3140 3141 3142

	if (!memcg_kmem_enabled())
		return 0;

3143 3144
	if (!memcg) {
		size = offsetof(struct memcg_cache_params, memcg_caches);
3145
		size += memcg_limited_groups_array_size * sizeof(void *);
3146 3147
	} else
		size = sizeof(struct memcg_cache_params);
3148

3149 3150 3151 3152
	s->memcg_params = kzalloc(size, GFP_KERNEL);
	if (!s->memcg_params)
		return -ENOMEM;

G
Glauber Costa 已提交
3153
	if (memcg) {
3154
		s->memcg_params->memcg = memcg;
G
Glauber Costa 已提交
3155
		s->memcg_params->root_cache = root_cache;
3156 3157
		INIT_WORK(&s->memcg_params->destroy,
				kmem_cache_destroy_work_func);
3158 3159 3160
	} else
		s->memcg_params->is_root_cache = true;

3161 3162 3163 3164 3165
	return 0;
}

void memcg_release_cache(struct kmem_cache *s)
{
3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189
	struct kmem_cache *root;
	struct mem_cgroup *memcg;
	int id;

	/*
	 * This happens, for instance, when a root cache goes away before we
	 * add any memcg.
	 */
	if (!s->memcg_params)
		return;

	if (s->memcg_params->is_root_cache)
		goto out;

	memcg = s->memcg_params->memcg;
	id  = memcg_cache_id(memcg);

	root = s->memcg_params->root_cache;
	root->memcg_params->memcg_caches[id] = NULL;

	mutex_lock(&memcg->slab_caches_mutex);
	list_del(&s->memcg_params->list);
	mutex_unlock(&memcg->slab_caches_mutex);

3190
	css_put(&memcg->css);
3191
out:
3192 3193 3194
	kfree(s->memcg_params);
}

3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225
/*
 * During the creation a new cache, we need to disable our accounting mechanism
 * altogether. This is true even if we are not creating, but rather just
 * enqueing new caches to be created.
 *
 * This is because that process will trigger allocations; some visible, like
 * explicit kmallocs to auxiliary data structures, name strings and internal
 * cache structures; some well concealed, like INIT_WORK() that can allocate
 * objects during debug.
 *
 * If any allocation happens during memcg_kmem_get_cache, we will recurse back
 * to it. This may not be a bounded recursion: since the first cache creation
 * failed to complete (waiting on the allocation), we'll just try to create the
 * cache again, failing at the same point.
 *
 * memcg_kmem_get_cache is prepared to abort after seeing a positive count of
 * memcg_kmem_skip_account. So we enclose anything that might allocate memory
 * inside the following two functions.
 */
static inline void memcg_stop_kmem_account(void)
{
	VM_BUG_ON(!current->mm);
	current->memcg_kmem_skip_account++;
}

static inline void memcg_resume_kmem_account(void)
{
	VM_BUG_ON(!current->mm);
	current->memcg_kmem_skip_account--;
}

G
Glauber Costa 已提交
3226 3227 3228 3229 3230 3231 3232 3233 3234
static void kmem_cache_destroy_work_func(struct work_struct *w)
{
	struct kmem_cache *cachep;
	struct memcg_cache_params *p;

	p = container_of(w, struct memcg_cache_params, destroy);

	cachep = memcg_params_to_cache(p);

G
Glauber Costa 已提交
3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255
	/*
	 * If we get down to 0 after shrink, we could delete right away.
	 * However, memcg_release_pages() already puts us back in the workqueue
	 * in that case. If we proceed deleting, we'll get a dangling
	 * reference, and removing the object from the workqueue in that case
	 * is unnecessary complication. We are not a fast path.
	 *
	 * Note that this case is fundamentally different from racing with
	 * shrink_slab(): if memcg_cgroup_destroy_cache() is called in
	 * kmem_cache_shrink, not only we would be reinserting a dead cache
	 * into the queue, but doing so from inside the worker racing to
	 * destroy it.
	 *
	 * So if we aren't down to zero, we'll just schedule a worker and try
	 * again
	 */
	if (atomic_read(&cachep->memcg_params->nr_pages) != 0) {
		kmem_cache_shrink(cachep);
		if (atomic_read(&cachep->memcg_params->nr_pages) == 0)
			return;
	} else
G
Glauber Costa 已提交
3256 3257 3258 3259 3260 3261 3262 3263
		kmem_cache_destroy(cachep);
}

void mem_cgroup_destroy_cache(struct kmem_cache *cachep)
{
	if (!cachep->memcg_params->dead)
		return;

G
Glauber Costa 已提交
3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283
	/*
	 * There are many ways in which we can get here.
	 *
	 * We can get to a memory-pressure situation while the delayed work is
	 * still pending to run. The vmscan shrinkers can then release all
	 * cache memory and get us to destruction. If this is the case, we'll
	 * be executed twice, which is a bug (the second time will execute over
	 * bogus data). In this case, cancelling the work should be fine.
	 *
	 * But we can also get here from the worker itself, if
	 * kmem_cache_shrink is enough to shake all the remaining objects and
	 * get the page count to 0. In this case, we'll deadlock if we try to
	 * cancel the work (the worker runs with an internal lock held, which
	 * is the same lock we would hold for cancel_work_sync().)
	 *
	 * Since we can't possibly know who got us here, just refrain from
	 * running if there is already work pending
	 */
	if (work_pending(&cachep->memcg_params->destroy))
		return;
G
Glauber Costa 已提交
3284 3285 3286 3287 3288 3289 3290
	/*
	 * We have to defer the actual destroying to a workqueue, because
	 * we might currently be in a context that cannot sleep.
	 */
	schedule_work(&cachep->memcg_params->destroy);
}

3291 3292 3293 3294 3295 3296 3297 3298 3299
/*
 * This lock protects updaters, not readers. We want readers to be as fast as
 * they can, and they will either see NULL or a valid cache value. Our model
 * allow them to see NULL, in which case the root memcg will be selected.
 *
 * We need this lock because multiple allocations to the same cache from a non
 * will span more than one worker. Only one of them can create the cache.
 */
static DEFINE_MUTEX(memcg_cache_mutex);
3300

3301 3302 3303
/*
 * Called with memcg_cache_mutex held
 */
3304 3305 3306 3307
static struct kmem_cache *kmem_cache_dup(struct mem_cgroup *memcg,
					 struct kmem_cache *s)
{
	struct kmem_cache *new;
3308
	static char *tmp_name = NULL;
3309

3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327
	lockdep_assert_held(&memcg_cache_mutex);

	/*
	 * kmem_cache_create_memcg duplicates the given name and
	 * cgroup_name for this name requires RCU context.
	 * This static temporary buffer is used to prevent from
	 * pointless shortliving allocation.
	 */
	if (!tmp_name) {
		tmp_name = kmalloc(PATH_MAX, GFP_KERNEL);
		if (!tmp_name)
			return NULL;
	}

	rcu_read_lock();
	snprintf(tmp_name, PATH_MAX, "%s(%d:%s)", s->name,
			 memcg_cache_id(memcg), cgroup_name(memcg->css.cgroup));
	rcu_read_unlock();
3328

3329
	new = kmem_cache_create_memcg(memcg, tmp_name, s->object_size, s->align,
G
Glauber Costa 已提交
3330
				      (s->flags & ~SLAB_PANIC), s->ctor, s);
3331

3332 3333 3334
	if (new)
		new->allocflags |= __GFP_KMEMCG;

3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349
	return new;
}

static struct kmem_cache *memcg_create_kmem_cache(struct mem_cgroup *memcg,
						  struct kmem_cache *cachep)
{
	struct kmem_cache *new_cachep;
	int idx;

	BUG_ON(!memcg_can_account_kmem(memcg));

	idx = memcg_cache_id(memcg);

	mutex_lock(&memcg_cache_mutex);
	new_cachep = cachep->memcg_params->memcg_caches[idx];
3350 3351
	if (new_cachep) {
		css_put(&memcg->css);
3352
		goto out;
3353
	}
3354 3355 3356 3357

	new_cachep = kmem_cache_dup(memcg, cachep);
	if (new_cachep == NULL) {
		new_cachep = cachep;
3358
		css_put(&memcg->css);
3359 3360 3361
		goto out;
	}

G
Glauber Costa 已提交
3362
	atomic_set(&new_cachep->memcg_params->nr_pages , 0);
3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374

	cachep->memcg_params->memcg_caches[idx] = new_cachep;
	/*
	 * the readers won't lock, make sure everybody sees the updated value,
	 * so they won't put stuff in the queue again for no reason
	 */
	wmb();
out:
	mutex_unlock(&memcg_cache_mutex);
	return new_cachep;
}

3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413
void kmem_cache_destroy_memcg_children(struct kmem_cache *s)
{
	struct kmem_cache *c;
	int i;

	if (!s->memcg_params)
		return;
	if (!s->memcg_params->is_root_cache)
		return;

	/*
	 * If the cache is being destroyed, we trust that there is no one else
	 * requesting objects from it. Even if there are, the sanity checks in
	 * kmem_cache_destroy should caught this ill-case.
	 *
	 * Still, we don't want anyone else freeing memcg_caches under our
	 * noses, which can happen if a new memcg comes to life. As usual,
	 * we'll take the set_limit_mutex to protect ourselves against this.
	 */
	mutex_lock(&set_limit_mutex);
	for (i = 0; i < memcg_limited_groups_array_size; i++) {
		c = s->memcg_params->memcg_caches[i];
		if (!c)
			continue;

		/*
		 * We will now manually delete the caches, so to avoid races
		 * we need to cancel all pending destruction workers and
		 * proceed with destruction ourselves.
		 *
		 * kmem_cache_destroy() will call kmem_cache_shrink internally,
		 * and that could spawn the workers again: it is likely that
		 * the cache still have active pages until this very moment.
		 * This would lead us back to mem_cgroup_destroy_cache.
		 *
		 * But that will not execute at all if the "dead" flag is not
		 * set, so flip it down to guarantee we are in control.
		 */
		c->memcg_params->dead = false;
G
Glauber Costa 已提交
3414
		cancel_work_sync(&c->memcg_params->destroy);
3415 3416 3417 3418 3419
		kmem_cache_destroy(c);
	}
	mutex_unlock(&set_limit_mutex);
}

3420 3421 3422 3423 3424 3425
struct create_work {
	struct mem_cgroup *memcg;
	struct kmem_cache *cachep;
	struct work_struct work;
};

G
Glauber Costa 已提交
3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442
static void mem_cgroup_destroy_all_caches(struct mem_cgroup *memcg)
{
	struct kmem_cache *cachep;
	struct memcg_cache_params *params;

	if (!memcg_kmem_is_active(memcg))
		return;

	mutex_lock(&memcg->slab_caches_mutex);
	list_for_each_entry(params, &memcg->memcg_slab_caches, list) {
		cachep = memcg_params_to_cache(params);
		cachep->memcg_params->dead = true;
		schedule_work(&cachep->memcg_params->destroy);
	}
	mutex_unlock(&memcg->slab_caches_mutex);
}

3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454
static void memcg_create_cache_work_func(struct work_struct *w)
{
	struct create_work *cw;

	cw = container_of(w, struct create_work, work);
	memcg_create_kmem_cache(cw->memcg, cw->cachep);
	kfree(cw);
}

/*
 * Enqueue the creation of a per-memcg kmem_cache.
 */
3455 3456
static void __memcg_create_cache_enqueue(struct mem_cgroup *memcg,
					 struct kmem_cache *cachep)
3457 3458 3459 3460
{
	struct create_work *cw;

	cw = kmalloc(sizeof(struct create_work), GFP_NOWAIT);
3461 3462
	if (cw == NULL) {
		css_put(&memcg->css);
3463 3464 3465 3466 3467 3468 3469 3470 3471 3472
		return;
	}

	cw->memcg = memcg;
	cw->cachep = cachep;

	INIT_WORK(&cw->work, memcg_create_cache_work_func);
	schedule_work(&cw->work);
}

3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490
static void memcg_create_cache_enqueue(struct mem_cgroup *memcg,
				       struct kmem_cache *cachep)
{
	/*
	 * We need to stop accounting when we kmalloc, because if the
	 * corresponding kmalloc cache is not yet created, the first allocation
	 * in __memcg_create_cache_enqueue will recurse.
	 *
	 * However, it is better to enclose the whole function. Depending on
	 * the debugging options enabled, INIT_WORK(), for instance, can
	 * trigger an allocation. This too, will make us recurse. Because at
	 * this point we can't allow ourselves back into memcg_kmem_get_cache,
	 * the safest choice is to do it like this, wrapping the whole function.
	 */
	memcg_stop_kmem_account();
	__memcg_create_cache_enqueue(memcg, cachep);
	memcg_resume_kmem_account();
}
3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512
/*
 * Return the kmem_cache we're supposed to use for a slab allocation.
 * We try to use the current memcg's version of the cache.
 *
 * If the cache does not exist yet, if we are the first user of it,
 * we either create it immediately, if possible, or create it asynchronously
 * in a workqueue.
 * In the latter case, we will let the current allocation go through with
 * the original cache.
 *
 * Can't be called in interrupt context or from kernel threads.
 * This function needs to be called with rcu_read_lock() held.
 */
struct kmem_cache *__memcg_kmem_get_cache(struct kmem_cache *cachep,
					  gfp_t gfp)
{
	struct mem_cgroup *memcg;
	int idx;

	VM_BUG_ON(!cachep->memcg_params);
	VM_BUG_ON(!cachep->memcg_params->is_root_cache);

3513 3514 3515
	if (!current->mm || current->memcg_kmem_skip_account)
		return cachep;

3516 3517 3518 3519
	rcu_read_lock();
	memcg = mem_cgroup_from_task(rcu_dereference(current->mm->owner));

	if (!memcg_can_account_kmem(memcg))
3520
		goto out;
3521 3522 3523 3524 3525 3526 3527 3528

	idx = memcg_cache_id(memcg);

	/*
	 * barrier to mare sure we're always seeing the up to date value.  The
	 * code updating memcg_caches will issue a write barrier to match this.
	 */
	read_barrier_depends();
3529 3530 3531
	if (likely(cachep->memcg_params->memcg_caches[idx])) {
		cachep = cachep->memcg_params->memcg_caches[idx];
		goto out;
3532 3533
	}

3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560
	/* The corresponding put will be done in the workqueue. */
	if (!css_tryget(&memcg->css))
		goto out;
	rcu_read_unlock();

	/*
	 * If we are in a safe context (can wait, and not in interrupt
	 * context), we could be be predictable and return right away.
	 * This would guarantee that the allocation being performed
	 * already belongs in the new cache.
	 *
	 * However, there are some clashes that can arrive from locking.
	 * For instance, because we acquire the slab_mutex while doing
	 * kmem_cache_dup, this means no further allocation could happen
	 * with the slab_mutex held.
	 *
	 * Also, because cache creation issue get_online_cpus(), this
	 * creates a lock chain: memcg_slab_mutex -> cpu_hotplug_mutex,
	 * that ends up reversed during cpu hotplug. (cpuset allocates
	 * a bunch of GFP_KERNEL memory during cpuup). Due to all that,
	 * better to defer everything.
	 */
	memcg_create_cache_enqueue(memcg, cachep);
	return cachep;
out:
	rcu_read_unlock();
	return cachep;
3561 3562 3563
}
EXPORT_SYMBOL(__memcg_kmem_get_cache);

3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584
/*
 * We need to verify if the allocation against current->mm->owner's memcg is
 * possible for the given order. But the page is not allocated yet, so we'll
 * need a further commit step to do the final arrangements.
 *
 * It is possible for the task to switch cgroups in this mean time, so at
 * commit time, we can't rely on task conversion any longer.  We'll then use
 * the handle argument to return to the caller which cgroup we should commit
 * against. We could also return the memcg directly and avoid the pointer
 * passing, but a boolean return value gives better semantics considering
 * the compiled-out case as well.
 *
 * Returning true means the allocation is possible.
 */
bool
__memcg_kmem_newpage_charge(gfp_t gfp, struct mem_cgroup **_memcg, int order)
{
	struct mem_cgroup *memcg;
	int ret;

	*_memcg = NULL;
3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612

	/*
	 * Disabling accounting is only relevant for some specific memcg
	 * internal allocations. Therefore we would initially not have such
	 * check here, since direct calls to the page allocator that are marked
	 * with GFP_KMEMCG only happen outside memcg core. We are mostly
	 * concerned with cache allocations, and by having this test at
	 * memcg_kmem_get_cache, we are already able to relay the allocation to
	 * the root cache and bypass the memcg cache altogether.
	 *
	 * There is one exception, though: the SLUB allocator does not create
	 * large order caches, but rather service large kmallocs directly from
	 * the page allocator. Therefore, the following sequence when backed by
	 * the SLUB allocator:
	 *
	 * 	memcg_stop_kmem_account();
	 * 	kmalloc(<large_number>)
	 * 	memcg_resume_kmem_account();
	 *
	 * would effectively ignore the fact that we should skip accounting,
	 * since it will drive us directly to this function without passing
	 * through the cache selector memcg_kmem_get_cache. Such large
	 * allocations are extremely rare but can happen, for instance, for the
	 * cache arrays. We bring this test here.
	 */
	if (!current->mm || current->memcg_kmem_skip_account)
		return true;

3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686
	memcg = try_get_mem_cgroup_from_mm(current->mm);

	/*
	 * very rare case described in mem_cgroup_from_task. Unfortunately there
	 * isn't much we can do without complicating this too much, and it would
	 * be gfp-dependent anyway. Just let it go
	 */
	if (unlikely(!memcg))
		return true;

	if (!memcg_can_account_kmem(memcg)) {
		css_put(&memcg->css);
		return true;
	}

	ret = memcg_charge_kmem(memcg, gfp, PAGE_SIZE << order);
	if (!ret)
		*_memcg = memcg;

	css_put(&memcg->css);
	return (ret == 0);
}

void __memcg_kmem_commit_charge(struct page *page, struct mem_cgroup *memcg,
			      int order)
{
	struct page_cgroup *pc;

	VM_BUG_ON(mem_cgroup_is_root(memcg));

	/* The page allocation failed. Revert */
	if (!page) {
		memcg_uncharge_kmem(memcg, PAGE_SIZE << order);
		return;
	}

	pc = lookup_page_cgroup(page);
	lock_page_cgroup(pc);
	pc->mem_cgroup = memcg;
	SetPageCgroupUsed(pc);
	unlock_page_cgroup(pc);
}

void __memcg_kmem_uncharge_pages(struct page *page, int order)
{
	struct mem_cgroup *memcg = NULL;
	struct page_cgroup *pc;


	pc = lookup_page_cgroup(page);
	/*
	 * Fast unlocked return. Theoretically might have changed, have to
	 * check again after locking.
	 */
	if (!PageCgroupUsed(pc))
		return;

	lock_page_cgroup(pc);
	if (PageCgroupUsed(pc)) {
		memcg = pc->mem_cgroup;
		ClearPageCgroupUsed(pc);
	}
	unlock_page_cgroup(pc);

	/*
	 * We trust that only if there is a memcg associated with the page, it
	 * is a valid allocation
	 */
	if (!memcg)
		return;

	VM_BUG_ON(mem_cgroup_is_root(memcg));
	memcg_uncharge_kmem(memcg, PAGE_SIZE << order);
}
G
Glauber Costa 已提交
3687 3688 3689 3690
#else
static inline void mem_cgroup_destroy_all_caches(struct mem_cgroup *memcg)
{
}
3691 3692
#endif /* CONFIG_MEMCG_KMEM */

3693 3694
#ifdef CONFIG_TRANSPARENT_HUGEPAGE

3695
#define PCGF_NOCOPY_AT_SPLIT (1 << PCG_LOCK | 1 << PCG_MIGRATION)
3696 3697
/*
 * Because tail pages are not marked as "used", set it. We're under
3698 3699 3700
 * zone->lru_lock, 'splitting on pmd' and compound_lock.
 * charge/uncharge will be never happen and move_account() is done under
 * compound_lock(), so we don't have to take care of races.
3701
 */
3702
void mem_cgroup_split_huge_fixup(struct page *head)
3703 3704
{
	struct page_cgroup *head_pc = lookup_page_cgroup(head);
3705
	struct page_cgroup *pc;
3706
	struct mem_cgroup *memcg;
3707
	int i;
3708

3709 3710
	if (mem_cgroup_disabled())
		return;
3711 3712

	memcg = head_pc->mem_cgroup;
3713 3714
	for (i = 1; i < HPAGE_PMD_NR; i++) {
		pc = head_pc + i;
3715
		pc->mem_cgroup = memcg;
3716 3717 3718
		smp_wmb();/* see __commit_charge() */
		pc->flags = head_pc->flags & ~PCGF_NOCOPY_AT_SPLIT;
	}
3719 3720
	__this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
		       HPAGE_PMD_NR);
3721
}
3722
#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
3723

3724
/**
3725
 * mem_cgroup_move_account - move account of the page
3726
 * @page: the page
3727
 * @nr_pages: number of regular pages (>1 for huge pages)
3728 3729 3730 3731 3732
 * @pc:	page_cgroup of the page.
 * @from: mem_cgroup which the page is moved from.
 * @to:	mem_cgroup which the page is moved to. @from != @to.
 *
 * The caller must confirm following.
K
KAMEZAWA Hiroyuki 已提交
3733
 * - page is not on LRU (isolate_page() is useful.)
3734
 * - compound_lock is held when nr_pages > 1
3735
 *
3736 3737
 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
 * from old cgroup.
3738
 */
3739 3740 3741 3742
static int mem_cgroup_move_account(struct page *page,
				   unsigned int nr_pages,
				   struct page_cgroup *pc,
				   struct mem_cgroup *from,
3743
				   struct mem_cgroup *to)
3744
{
3745 3746
	unsigned long flags;
	int ret;
3747
	bool anon = PageAnon(page);
3748

3749
	VM_BUG_ON(from == to);
3750
	VM_BUG_ON(PageLRU(page));
3751 3752 3753 3754 3755 3756 3757
	/*
	 * The page is isolated from LRU. So, collapse function
	 * will not handle this page. But page splitting can happen.
	 * Do this check under compound_page_lock(). The caller should
	 * hold it.
	 */
	ret = -EBUSY;
3758
	if (nr_pages > 1 && !PageTransHuge(page))
3759 3760 3761 3762 3763 3764 3765 3766
		goto out;

	lock_page_cgroup(pc);

	ret = -EINVAL;
	if (!PageCgroupUsed(pc) || pc->mem_cgroup != from)
		goto unlock;

3767
	move_lock_mem_cgroup(from, &flags);
3768

3769
	if (!anon && page_mapped(page)) {
3770 3771 3772 3773 3774
		/* Update mapped_file data for mem_cgroup */
		preempt_disable();
		__this_cpu_dec(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
		__this_cpu_inc(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
		preempt_enable();
3775
	}
3776
	mem_cgroup_charge_statistics(from, page, anon, -nr_pages);
3777

3778
	/* caller should have done css_get */
K
KAMEZAWA Hiroyuki 已提交
3779
	pc->mem_cgroup = to;
3780
	mem_cgroup_charge_statistics(to, page, anon, nr_pages);
3781
	move_unlock_mem_cgroup(from, &flags);
3782 3783
	ret = 0;
unlock:
3784
	unlock_page_cgroup(pc);
3785 3786 3787
	/*
	 * check events
	 */
3788 3789
	memcg_check_events(to, page);
	memcg_check_events(from, page);
3790
out:
3791 3792 3793
	return ret;
}

3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813
/**
 * mem_cgroup_move_parent - moves page to the parent group
 * @page: the page to move
 * @pc: page_cgroup of the page
 * @child: page's cgroup
 *
 * move charges to its parent or the root cgroup if the group has no
 * parent (aka use_hierarchy==0).
 * Although this might fail (get_page_unless_zero, isolate_lru_page or
 * mem_cgroup_move_account fails) the failure is always temporary and
 * it signals a race with a page removal/uncharge or migration. In the
 * first case the page is on the way out and it will vanish from the LRU
 * on the next attempt and the call should be retried later.
 * Isolation from the LRU fails only if page has been isolated from
 * the LRU since we looked at it and that usually means either global
 * reclaim or migration going on. The page will either get back to the
 * LRU or vanish.
 * Finaly mem_cgroup_move_account fails only if the page got uncharged
 * (!PageCgroupUsed) or moved to a different group. The page will
 * disappear in the next attempt.
3814
 */
3815 3816
static int mem_cgroup_move_parent(struct page *page,
				  struct page_cgroup *pc,
3817
				  struct mem_cgroup *child)
3818 3819
{
	struct mem_cgroup *parent;
3820
	unsigned int nr_pages;
3821
	unsigned long uninitialized_var(flags);
3822 3823
	int ret;

3824
	VM_BUG_ON(mem_cgroup_is_root(child));
3825

3826 3827 3828 3829 3830
	ret = -EBUSY;
	if (!get_page_unless_zero(page))
		goto out;
	if (isolate_lru_page(page))
		goto put;
3831

3832
	nr_pages = hpage_nr_pages(page);
K
KAMEZAWA Hiroyuki 已提交
3833

3834 3835 3836 3837 3838 3839
	parent = parent_mem_cgroup(child);
	/*
	 * If no parent, move charges to root cgroup.
	 */
	if (!parent)
		parent = root_mem_cgroup;
3840

3841 3842
	if (nr_pages > 1) {
		VM_BUG_ON(!PageTransHuge(page));
3843
		flags = compound_lock_irqsave(page);
3844
	}
3845

3846
	ret = mem_cgroup_move_account(page, nr_pages,
3847
				pc, child, parent);
3848 3849
	if (!ret)
		__mem_cgroup_cancel_local_charge(child, nr_pages);
3850

3851
	if (nr_pages > 1)
3852
		compound_unlock_irqrestore(page, flags);
K
KAMEZAWA Hiroyuki 已提交
3853
	putback_lru_page(page);
3854
put:
3855
	put_page(page);
3856
out:
3857 3858 3859
	return ret;
}

3860 3861 3862 3863 3864 3865 3866
/*
 * Charge the memory controller for page usage.
 * Return
 * 0 if the charge was successful
 * < 0 if the cgroup is over its limit
 */
static int mem_cgroup_charge_common(struct page *page, struct mm_struct *mm,
3867
				gfp_t gfp_mask, enum charge_type ctype)
3868
{
3869
	struct mem_cgroup *memcg = NULL;
3870
	unsigned int nr_pages = 1;
3871
	bool oom = true;
3872
	int ret;
A
Andrea Arcangeli 已提交
3873

A
Andrea Arcangeli 已提交
3874
	if (PageTransHuge(page)) {
3875
		nr_pages <<= compound_order(page);
A
Andrea Arcangeli 已提交
3876
		VM_BUG_ON(!PageTransHuge(page));
3877 3878 3879 3880 3881
		/*
		 * Never OOM-kill a process for a huge page.  The
		 * fault handler will fall back to regular pages.
		 */
		oom = false;
A
Andrea Arcangeli 已提交
3882
	}
3883

3884
	ret = __mem_cgroup_try_charge(mm, gfp_mask, nr_pages, &memcg, oom);
3885
	if (ret == -ENOMEM)
3886
		return ret;
3887
	__mem_cgroup_commit_charge(memcg, page, nr_pages, ctype, false);
3888 3889 3890
	return 0;
}

3891 3892
int mem_cgroup_newpage_charge(struct page *page,
			      struct mm_struct *mm, gfp_t gfp_mask)
3893
{
3894
	if (mem_cgroup_disabled())
3895
		return 0;
3896 3897 3898
	VM_BUG_ON(page_mapped(page));
	VM_BUG_ON(page->mapping && !PageAnon(page));
	VM_BUG_ON(!mm);
3899
	return mem_cgroup_charge_common(page, mm, gfp_mask,
3900
					MEM_CGROUP_CHARGE_TYPE_ANON);
3901 3902
}

3903 3904 3905
/*
 * While swap-in, try_charge -> commit or cancel, the page is locked.
 * And when try_charge() successfully returns, one refcnt to memcg without
3906
 * struct page_cgroup is acquired. This refcnt will be consumed by
3907 3908
 * "commit()" or removed by "cancel()"
 */
3909 3910 3911 3912
static int __mem_cgroup_try_charge_swapin(struct mm_struct *mm,
					  struct page *page,
					  gfp_t mask,
					  struct mem_cgroup **memcgp)
3913
{
3914
	struct mem_cgroup *memcg;
3915
	struct page_cgroup *pc;
3916
	int ret;
3917

3918 3919 3920 3921 3922 3923 3924 3925 3926 3927
	pc = lookup_page_cgroup(page);
	/*
	 * Every swap fault against a single page tries to charge the
	 * page, bail as early as possible.  shmem_unuse() encounters
	 * already charged pages, too.  The USED bit is protected by
	 * the page lock, which serializes swap cache removal, which
	 * in turn serializes uncharging.
	 */
	if (PageCgroupUsed(pc))
		return 0;
3928 3929
	if (!do_swap_account)
		goto charge_cur_mm;
3930 3931
	memcg = try_get_mem_cgroup_from_page(page);
	if (!memcg)
3932
		goto charge_cur_mm;
3933 3934
	*memcgp = memcg;
	ret = __mem_cgroup_try_charge(NULL, mask, 1, memcgp, true);
3935
	css_put(&memcg->css);
3936 3937
	if (ret == -EINTR)
		ret = 0;
3938
	return ret;
3939
charge_cur_mm:
3940 3941 3942 3943
	ret = __mem_cgroup_try_charge(mm, mask, 1, memcgp, true);
	if (ret == -EINTR)
		ret = 0;
	return ret;
3944 3945
}

3946 3947 3948 3949 3950 3951
int mem_cgroup_try_charge_swapin(struct mm_struct *mm, struct page *page,
				 gfp_t gfp_mask, struct mem_cgroup **memcgp)
{
	*memcgp = NULL;
	if (mem_cgroup_disabled())
		return 0;
3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965
	/*
	 * A racing thread's fault, or swapoff, may have already
	 * updated the pte, and even removed page from swap cache: in
	 * those cases unuse_pte()'s pte_same() test will fail; but
	 * there's also a KSM case which does need to charge the page.
	 */
	if (!PageSwapCache(page)) {
		int ret;

		ret = __mem_cgroup_try_charge(mm, gfp_mask, 1, memcgp, true);
		if (ret == -EINTR)
			ret = 0;
		return ret;
	}
3966 3967 3968
	return __mem_cgroup_try_charge_swapin(mm, page, gfp_mask, memcgp);
}

3969 3970 3971 3972 3973 3974 3975 3976 3977
void mem_cgroup_cancel_charge_swapin(struct mem_cgroup *memcg)
{
	if (mem_cgroup_disabled())
		return;
	if (!memcg)
		return;
	__mem_cgroup_cancel_charge(memcg, 1);
}

D
Daisuke Nishimura 已提交
3978
static void
3979
__mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *memcg,
D
Daisuke Nishimura 已提交
3980
					enum charge_type ctype)
3981
{
3982
	if (mem_cgroup_disabled())
3983
		return;
3984
	if (!memcg)
3985
		return;
3986

3987
	__mem_cgroup_commit_charge(memcg, page, 1, ctype, true);
3988 3989 3990
	/*
	 * Now swap is on-memory. This means this page may be
	 * counted both as mem and swap....double count.
3991 3992 3993
	 * Fix it by uncharging from memsw. Basically, this SwapCache is stable
	 * under lock_page(). But in do_swap_page()::memory.c, reuse_swap_page()
	 * may call delete_from_swap_cache() before reach here.
3994
	 */
3995
	if (do_swap_account && PageSwapCache(page)) {
3996
		swp_entry_t ent = {.val = page_private(page)};
3997
		mem_cgroup_uncharge_swap(ent);
3998
	}
3999 4000
}

4001 4002
void mem_cgroup_commit_charge_swapin(struct page *page,
				     struct mem_cgroup *memcg)
D
Daisuke Nishimura 已提交
4003
{
4004
	__mem_cgroup_commit_charge_swapin(page, memcg,
4005
					  MEM_CGROUP_CHARGE_TYPE_ANON);
D
Daisuke Nishimura 已提交
4006 4007
}

4008 4009
int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm,
				gfp_t gfp_mask)
4010
{
4011 4012 4013 4014
	struct mem_cgroup *memcg = NULL;
	enum charge_type type = MEM_CGROUP_CHARGE_TYPE_CACHE;
	int ret;

4015
	if (mem_cgroup_disabled())
4016 4017 4018 4019 4020 4021 4022
		return 0;
	if (PageCompound(page))
		return 0;

	if (!PageSwapCache(page))
		ret = mem_cgroup_charge_common(page, mm, gfp_mask, type);
	else { /* page is swapcache/shmem */
4023 4024
		ret = __mem_cgroup_try_charge_swapin(mm, page,
						     gfp_mask, &memcg);
4025 4026 4027 4028
		if (!ret)
			__mem_cgroup_commit_charge_swapin(page, memcg, type);
	}
	return ret;
4029 4030
}

4031
static void mem_cgroup_do_uncharge(struct mem_cgroup *memcg,
4032 4033
				   unsigned int nr_pages,
				   const enum charge_type ctype)
4034 4035 4036
{
	struct memcg_batch_info *batch = NULL;
	bool uncharge_memsw = true;
4037

4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048
	/* If swapout, usage of swap doesn't decrease */
	if (!do_swap_account || ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT)
		uncharge_memsw = false;

	batch = &current->memcg_batch;
	/*
	 * In usual, we do css_get() when we remember memcg pointer.
	 * But in this case, we keep res->usage until end of a series of
	 * uncharges. Then, it's ok to ignore memcg's refcnt.
	 */
	if (!batch->memcg)
4049
		batch->memcg = memcg;
4050 4051
	/*
	 * do_batch > 0 when unmapping pages or inode invalidate/truncate.
L
Lucas De Marchi 已提交
4052
	 * In those cases, all pages freed continuously can be expected to be in
4053 4054 4055 4056 4057 4058 4059 4060
	 * the same cgroup and we have chance to coalesce uncharges.
	 * But we do uncharge one by one if this is killed by OOM(TIF_MEMDIE)
	 * because we want to do uncharge as soon as possible.
	 */

	if (!batch->do_batch || test_thread_flag(TIF_MEMDIE))
		goto direct_uncharge;

4061
	if (nr_pages > 1)
A
Andrea Arcangeli 已提交
4062 4063
		goto direct_uncharge;

4064 4065 4066 4067 4068
	/*
	 * In typical case, batch->memcg == mem. This means we can
	 * merge a series of uncharges to an uncharge of res_counter.
	 * If not, we uncharge res_counter ony by one.
	 */
4069
	if (batch->memcg != memcg)
4070 4071
		goto direct_uncharge;
	/* remember freed charge and uncharge it later */
4072
	batch->nr_pages++;
4073
	if (uncharge_memsw)
4074
		batch->memsw_nr_pages++;
4075 4076
	return;
direct_uncharge:
4077
	res_counter_uncharge(&memcg->res, nr_pages * PAGE_SIZE);
4078
	if (uncharge_memsw)
4079 4080 4081
		res_counter_uncharge(&memcg->memsw, nr_pages * PAGE_SIZE);
	if (unlikely(batch->memcg != memcg))
		memcg_oom_recover(memcg);
4082
}
4083

4084
/*
4085
 * uncharge if !page_mapped(page)
4086
 */
4087
static struct mem_cgroup *
4088 4089
__mem_cgroup_uncharge_common(struct page *page, enum charge_type ctype,
			     bool end_migration)
4090
{
4091
	struct mem_cgroup *memcg = NULL;
4092 4093
	unsigned int nr_pages = 1;
	struct page_cgroup *pc;
4094
	bool anon;
4095

4096
	if (mem_cgroup_disabled())
4097
		return NULL;
4098

A
Andrea Arcangeli 已提交
4099
	if (PageTransHuge(page)) {
4100
		nr_pages <<= compound_order(page);
A
Andrea Arcangeli 已提交
4101 4102
		VM_BUG_ON(!PageTransHuge(page));
	}
4103
	/*
4104
	 * Check if our page_cgroup is valid
4105
	 */
4106
	pc = lookup_page_cgroup(page);
4107
	if (unlikely(!PageCgroupUsed(pc)))
4108
		return NULL;
4109

4110
	lock_page_cgroup(pc);
K
KAMEZAWA Hiroyuki 已提交
4111

4112
	memcg = pc->mem_cgroup;
4113

K
KAMEZAWA Hiroyuki 已提交
4114 4115 4116
	if (!PageCgroupUsed(pc))
		goto unlock_out;

4117 4118
	anon = PageAnon(page);

K
KAMEZAWA Hiroyuki 已提交
4119
	switch (ctype) {
4120
	case MEM_CGROUP_CHARGE_TYPE_ANON:
4121 4122 4123 4124 4125
		/*
		 * Generally PageAnon tells if it's the anon statistics to be
		 * updated; but sometimes e.g. mem_cgroup_uncharge_page() is
		 * used before page reached the stage of being marked PageAnon.
		 */
4126 4127
		anon = true;
		/* fallthrough */
K
KAMEZAWA Hiroyuki 已提交
4128
	case MEM_CGROUP_CHARGE_TYPE_DROP:
4129
		/* See mem_cgroup_prepare_migration() */
4130 4131 4132 4133 4134 4135 4136 4137 4138 4139
		if (page_mapped(page))
			goto unlock_out;
		/*
		 * Pages under migration may not be uncharged.  But
		 * end_migration() /must/ be the one uncharging the
		 * unused post-migration page and so it has to call
		 * here with the migration bit still set.  See the
		 * res_counter handling below.
		 */
		if (!end_migration && PageCgroupMigration(pc))
K
KAMEZAWA Hiroyuki 已提交
4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150
			goto unlock_out;
		break;
	case MEM_CGROUP_CHARGE_TYPE_SWAPOUT:
		if (!PageAnon(page)) {	/* Shared memory */
			if (page->mapping && !page_is_file_cache(page))
				goto unlock_out;
		} else if (page_mapped(page)) /* Anon */
				goto unlock_out;
		break;
	default:
		break;
4151
	}
K
KAMEZAWA Hiroyuki 已提交
4152

4153
	mem_cgroup_charge_statistics(memcg, page, anon, -nr_pages);
K
KAMEZAWA Hiroyuki 已提交
4154

4155
	ClearPageCgroupUsed(pc);
4156 4157 4158 4159 4160 4161
	/*
	 * pc->mem_cgroup is not cleared here. It will be accessed when it's
	 * freed from LRU. This is safe because uncharged page is expected not
	 * to be reused (freed soon). Exception is SwapCache, it's handled by
	 * special functions.
	 */
4162

4163
	unlock_page_cgroup(pc);
K
KAMEZAWA Hiroyuki 已提交
4164
	/*
4165
	 * even after unlock, we have memcg->res.usage here and this memcg
L
Li Zefan 已提交
4166
	 * will never be freed, so it's safe to call css_get().
K
KAMEZAWA Hiroyuki 已提交
4167
	 */
4168
	memcg_check_events(memcg, page);
K
KAMEZAWA Hiroyuki 已提交
4169
	if (do_swap_account && ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT) {
4170
		mem_cgroup_swap_statistics(memcg, true);
L
Li Zefan 已提交
4171
		css_get(&memcg->css);
K
KAMEZAWA Hiroyuki 已提交
4172
	}
4173 4174 4175 4176 4177 4178
	/*
	 * Migration does not charge the res_counter for the
	 * replacement page, so leave it alone when phasing out the
	 * page that is unused after the migration.
	 */
	if (!end_migration && !mem_cgroup_is_root(memcg))
4179
		mem_cgroup_do_uncharge(memcg, nr_pages, ctype);
4180

4181
	return memcg;
K
KAMEZAWA Hiroyuki 已提交
4182 4183 4184

unlock_out:
	unlock_page_cgroup(pc);
4185
	return NULL;
4186 4187
}

4188 4189
void mem_cgroup_uncharge_page(struct page *page)
{
4190 4191 4192
	/* early check. */
	if (page_mapped(page))
		return;
4193
	VM_BUG_ON(page->mapping && !PageAnon(page));
4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205
	/*
	 * If the page is in swap cache, uncharge should be deferred
	 * to the swap path, which also properly accounts swap usage
	 * and handles memcg lifetime.
	 *
	 * Note that this check is not stable and reclaim may add the
	 * page to swap cache at any time after this.  However, if the
	 * page is not in swap cache by the time page->mapcount hits
	 * 0, there won't be any page table references to the swap
	 * slot, and reclaim will free it and not actually write the
	 * page to disk.
	 */
4206 4207
	if (PageSwapCache(page))
		return;
4208
	__mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_ANON, false);
4209 4210 4211 4212 4213
}

void mem_cgroup_uncharge_cache_page(struct page *page)
{
	VM_BUG_ON(page_mapped(page));
4214
	VM_BUG_ON(page->mapping);
4215
	__mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_CACHE, false);
4216 4217
}

4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231
/*
 * Batch_start/batch_end is called in unmap_page_range/invlidate/trucate.
 * In that cases, pages are freed continuously and we can expect pages
 * are in the same memcg. All these calls itself limits the number of
 * pages freed at once, then uncharge_start/end() is called properly.
 * This may be called prural(2) times in a context,
 */

void mem_cgroup_uncharge_start(void)
{
	current->memcg_batch.do_batch++;
	/* We can do nest. */
	if (current->memcg_batch.do_batch == 1) {
		current->memcg_batch.memcg = NULL;
4232 4233
		current->memcg_batch.nr_pages = 0;
		current->memcg_batch.memsw_nr_pages = 0;
4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253
	}
}

void mem_cgroup_uncharge_end(void)
{
	struct memcg_batch_info *batch = &current->memcg_batch;

	if (!batch->do_batch)
		return;

	batch->do_batch--;
	if (batch->do_batch) /* If stacked, do nothing. */
		return;

	if (!batch->memcg)
		return;
	/*
	 * This "batch->memcg" is valid without any css_get/put etc...
	 * bacause we hide charges behind us.
	 */
4254 4255 4256 4257 4258 4259
	if (batch->nr_pages)
		res_counter_uncharge(&batch->memcg->res,
				     batch->nr_pages * PAGE_SIZE);
	if (batch->memsw_nr_pages)
		res_counter_uncharge(&batch->memcg->memsw,
				     batch->memsw_nr_pages * PAGE_SIZE);
4260
	memcg_oom_recover(batch->memcg);
4261 4262 4263 4264
	/* forget this pointer (for sanity check) */
	batch->memcg = NULL;
}

4265
#ifdef CONFIG_SWAP
4266
/*
4267
 * called after __delete_from_swap_cache() and drop "page" account.
4268 4269
 * memcg information is recorded to swap_cgroup of "ent"
 */
K
KAMEZAWA Hiroyuki 已提交
4270 4271
void
mem_cgroup_uncharge_swapcache(struct page *page, swp_entry_t ent, bool swapout)
4272 4273
{
	struct mem_cgroup *memcg;
K
KAMEZAWA Hiroyuki 已提交
4274 4275 4276 4277 4278
	int ctype = MEM_CGROUP_CHARGE_TYPE_SWAPOUT;

	if (!swapout) /* this was a swap cache but the swap is unused ! */
		ctype = MEM_CGROUP_CHARGE_TYPE_DROP;

4279
	memcg = __mem_cgroup_uncharge_common(page, ctype, false);
4280

K
KAMEZAWA Hiroyuki 已提交
4281 4282
	/*
	 * record memcg information,  if swapout && memcg != NULL,
L
Li Zefan 已提交
4283
	 * css_get() was called in uncharge().
K
KAMEZAWA Hiroyuki 已提交
4284 4285
	 */
	if (do_swap_account && swapout && memcg)
4286
		swap_cgroup_record(ent, css_id(&memcg->css));
4287
}
4288
#endif
4289

A
Andrew Morton 已提交
4290
#ifdef CONFIG_MEMCG_SWAP
4291 4292 4293 4294 4295
/*
 * called from swap_entry_free(). remove record in swap_cgroup and
 * uncharge "memsw" account.
 */
void mem_cgroup_uncharge_swap(swp_entry_t ent)
K
KAMEZAWA Hiroyuki 已提交
4296
{
4297
	struct mem_cgroup *memcg;
4298
	unsigned short id;
4299 4300 4301 4302

	if (!do_swap_account)
		return;

4303 4304 4305
	id = swap_cgroup_record(ent, 0);
	rcu_read_lock();
	memcg = mem_cgroup_lookup(id);
4306
	if (memcg) {
4307 4308 4309 4310
		/*
		 * We uncharge this because swap is freed.
		 * This memcg can be obsolete one. We avoid calling css_tryget
		 */
4311
		if (!mem_cgroup_is_root(memcg))
4312
			res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
4313
		mem_cgroup_swap_statistics(memcg, false);
L
Li Zefan 已提交
4314
		css_put(&memcg->css);
4315
	}
4316
	rcu_read_unlock();
K
KAMEZAWA Hiroyuki 已提交
4317
}
4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333

/**
 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
 * @entry: swap entry to be moved
 * @from:  mem_cgroup which the entry is moved from
 * @to:  mem_cgroup which the entry is moved to
 *
 * It succeeds only when the swap_cgroup's record for this entry is the same
 * as the mem_cgroup's id of @from.
 *
 * Returns 0 on success, -EINVAL on failure.
 *
 * The caller must have charged to @to, IOW, called res_counter_charge() about
 * both res and memsw, and called css_get().
 */
static int mem_cgroup_move_swap_account(swp_entry_t entry,
4334
				struct mem_cgroup *from, struct mem_cgroup *to)
4335 4336 4337 4338 4339 4340 4341 4342
{
	unsigned short old_id, new_id;

	old_id = css_id(&from->css);
	new_id = css_id(&to->css);

	if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
		mem_cgroup_swap_statistics(from, false);
4343
		mem_cgroup_swap_statistics(to, true);
4344
		/*
4345 4346 4347
		 * This function is only called from task migration context now.
		 * It postpones res_counter and refcount handling till the end
		 * of task migration(mem_cgroup_clear_mc()) for performance
L
Li Zefan 已提交
4348 4349 4350 4351 4352 4353
		 * improvement. But we cannot postpone css_get(to)  because if
		 * the process that has been moved to @to does swap-in, the
		 * refcount of @to might be decreased to 0.
		 *
		 * We are in attach() phase, so the cgroup is guaranteed to be
		 * alive, so we can just call css_get().
4354
		 */
L
Li Zefan 已提交
4355
		css_get(&to->css);
4356 4357 4358 4359 4360 4361
		return 0;
	}
	return -EINVAL;
}
#else
static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
4362
				struct mem_cgroup *from, struct mem_cgroup *to)
4363 4364 4365
{
	return -EINVAL;
}
4366
#endif
K
KAMEZAWA Hiroyuki 已提交
4367

4368
/*
4369 4370
 * Before starting migration, account PAGE_SIZE to mem_cgroup that the old
 * page belongs to.
4371
 */
4372 4373
void mem_cgroup_prepare_migration(struct page *page, struct page *newpage,
				  struct mem_cgroup **memcgp)
4374
{
4375
	struct mem_cgroup *memcg = NULL;
4376
	unsigned int nr_pages = 1;
4377
	struct page_cgroup *pc;
4378
	enum charge_type ctype;
4379

4380
	*memcgp = NULL;
4381

4382
	if (mem_cgroup_disabled())
4383
		return;
4384

4385 4386 4387
	if (PageTransHuge(page))
		nr_pages <<= compound_order(page);

4388 4389 4390
	pc = lookup_page_cgroup(page);
	lock_page_cgroup(pc);
	if (PageCgroupUsed(pc)) {
4391 4392
		memcg = pc->mem_cgroup;
		css_get(&memcg->css);
4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423
		/*
		 * At migrating an anonymous page, its mapcount goes down
		 * to 0 and uncharge() will be called. But, even if it's fully
		 * unmapped, migration may fail and this page has to be
		 * charged again. We set MIGRATION flag here and delay uncharge
		 * until end_migration() is called
		 *
		 * Corner Case Thinking
		 * A)
		 * When the old page was mapped as Anon and it's unmap-and-freed
		 * while migration was ongoing.
		 * If unmap finds the old page, uncharge() of it will be delayed
		 * until end_migration(). If unmap finds a new page, it's
		 * uncharged when it make mapcount to be 1->0. If unmap code
		 * finds swap_migration_entry, the new page will not be mapped
		 * and end_migration() will find it(mapcount==0).
		 *
		 * B)
		 * When the old page was mapped but migraion fails, the kernel
		 * remaps it. A charge for it is kept by MIGRATION flag even
		 * if mapcount goes down to 0. We can do remap successfully
		 * without charging it again.
		 *
		 * C)
		 * The "old" page is under lock_page() until the end of
		 * migration, so, the old page itself will not be swapped-out.
		 * If the new page is swapped out before end_migraton, our
		 * hook to usual swap-out path will catch the event.
		 */
		if (PageAnon(page))
			SetPageCgroupMigration(pc);
4424
	}
4425
	unlock_page_cgroup(pc);
4426 4427 4428 4429
	/*
	 * If the page is not charged at this point,
	 * we return here.
	 */
4430
	if (!memcg)
4431
		return;
4432

4433
	*memcgp = memcg;
4434 4435 4436 4437 4438 4439 4440
	/*
	 * We charge new page before it's used/mapped. So, even if unlock_page()
	 * is called before end_migration, we can catch all events on this new
	 * page. In the case new page is migrated but not remapped, new page's
	 * mapcount will be finally 0 and we call uncharge in end_migration().
	 */
	if (PageAnon(page))
4441
		ctype = MEM_CGROUP_CHARGE_TYPE_ANON;
4442
	else
4443
		ctype = MEM_CGROUP_CHARGE_TYPE_CACHE;
4444 4445 4446 4447 4448
	/*
	 * The page is committed to the memcg, but it's not actually
	 * charged to the res_counter since we plan on replacing the
	 * old one and only one page is going to be left afterwards.
	 */
4449
	__mem_cgroup_commit_charge(memcg, newpage, nr_pages, ctype, false);
4450
}
4451

4452
/* remove redundant charge if migration failed*/
4453
void mem_cgroup_end_migration(struct mem_cgroup *memcg,
4454
	struct page *oldpage, struct page *newpage, bool migration_ok)
4455
{
4456
	struct page *used, *unused;
4457
	struct page_cgroup *pc;
4458
	bool anon;
4459

4460
	if (!memcg)
4461
		return;
4462

4463
	if (!migration_ok) {
4464 4465
		used = oldpage;
		unused = newpage;
4466
	} else {
4467
		used = newpage;
4468 4469
		unused = oldpage;
	}
4470
	anon = PageAnon(used);
4471 4472 4473 4474
	__mem_cgroup_uncharge_common(unused,
				     anon ? MEM_CGROUP_CHARGE_TYPE_ANON
				     : MEM_CGROUP_CHARGE_TYPE_CACHE,
				     true);
4475
	css_put(&memcg->css);
4476
	/*
4477 4478 4479
	 * We disallowed uncharge of pages under migration because mapcount
	 * of the page goes down to zero, temporarly.
	 * Clear the flag and check the page should be charged.
4480
	 */
4481 4482 4483 4484 4485
	pc = lookup_page_cgroup(oldpage);
	lock_page_cgroup(pc);
	ClearPageCgroupMigration(pc);
	unlock_page_cgroup(pc);

4486
	/*
4487 4488 4489 4490 4491 4492
	 * If a page is a file cache, radix-tree replacement is very atomic
	 * and we can skip this check. When it was an Anon page, its mapcount
	 * goes down to 0. But because we added MIGRATION flage, it's not
	 * uncharged yet. There are several case but page->mapcount check
	 * and USED bit check in mem_cgroup_uncharge_page() will do enough
	 * check. (see prepare_charge() also)
4493
	 */
4494
	if (anon)
4495
		mem_cgroup_uncharge_page(used);
4496
}
4497

4498 4499 4500 4501 4502 4503 4504 4505
/*
 * At replace page cache, newpage is not under any memcg but it's on
 * LRU. So, this function doesn't touch res_counter but handles LRU
 * in correct way. Both pages are locked so we cannot race with uncharge.
 */
void mem_cgroup_replace_page_cache(struct page *oldpage,
				  struct page *newpage)
{
4506
	struct mem_cgroup *memcg = NULL;
4507 4508 4509 4510 4511 4512 4513 4514 4515
	struct page_cgroup *pc;
	enum charge_type type = MEM_CGROUP_CHARGE_TYPE_CACHE;

	if (mem_cgroup_disabled())
		return;

	pc = lookup_page_cgroup(oldpage);
	/* fix accounting on old pages */
	lock_page_cgroup(pc);
4516 4517
	if (PageCgroupUsed(pc)) {
		memcg = pc->mem_cgroup;
4518
		mem_cgroup_charge_statistics(memcg, oldpage, false, -1);
4519 4520
		ClearPageCgroupUsed(pc);
	}
4521 4522
	unlock_page_cgroup(pc);

4523 4524 4525 4526 4527 4528
	/*
	 * When called from shmem_replace_page(), in some cases the
	 * oldpage has already been charged, and in some cases not.
	 */
	if (!memcg)
		return;
4529 4530 4531 4532 4533
	/*
	 * Even if newpage->mapping was NULL before starting replacement,
	 * the newpage may be on LRU(or pagevec for LRU) already. We lock
	 * LRU while we overwrite pc->mem_cgroup.
	 */
4534
	__mem_cgroup_commit_charge(memcg, newpage, 1, type, true);
4535 4536
}

4537 4538 4539 4540 4541 4542
#ifdef CONFIG_DEBUG_VM
static struct page_cgroup *lookup_page_cgroup_used(struct page *page)
{
	struct page_cgroup *pc;

	pc = lookup_page_cgroup(page);
4543 4544 4545 4546 4547
	/*
	 * Can be NULL while feeding pages into the page allocator for
	 * the first time, i.e. during boot or memory hotplug;
	 * or when mem_cgroup_disabled().
	 */
4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566
	if (likely(pc) && PageCgroupUsed(pc))
		return pc;
	return NULL;
}

bool mem_cgroup_bad_page_check(struct page *page)
{
	if (mem_cgroup_disabled())
		return false;

	return lookup_page_cgroup_used(page) != NULL;
}

void mem_cgroup_print_bad_page(struct page *page)
{
	struct page_cgroup *pc;

	pc = lookup_page_cgroup_used(page);
	if (pc) {
4567 4568
		pr_alert("pc:%p pc->flags:%lx pc->mem_cgroup:%p\n",
			 pc, pc->flags, pc->mem_cgroup);
4569 4570 4571 4572
	}
}
#endif

4573
static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
4574
				unsigned long long val)
4575
{
4576
	int retry_count;
4577
	u64 memswlimit, memlimit;
4578
	int ret = 0;
4579 4580
	int children = mem_cgroup_count_children(memcg);
	u64 curusage, oldusage;
4581
	int enlarge;
4582 4583 4584 4585 4586 4587 4588 4589 4590

	/*
	 * For keeping hierarchical_reclaim simple, how long we should retry
	 * is depends on callers. We set our retry-count to be function
	 * of # of children which we should visit in this loop.
	 */
	retry_count = MEM_CGROUP_RECLAIM_RETRIES * children;

	oldusage = res_counter_read_u64(&memcg->res, RES_USAGE);
4591

4592
	enlarge = 0;
4593
	while (retry_count) {
4594 4595 4596 4597
		if (signal_pending(current)) {
			ret = -EINTR;
			break;
		}
4598 4599 4600
		/*
		 * Rather than hide all in some function, I do this in
		 * open coded manner. You see what this really does.
4601
		 * We have to guarantee memcg->res.limit <= memcg->memsw.limit.
4602 4603 4604 4605 4606 4607
		 */
		mutex_lock(&set_limit_mutex);
		memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
		if (memswlimit < val) {
			ret = -EINVAL;
			mutex_unlock(&set_limit_mutex);
4608 4609
			break;
		}
4610 4611 4612 4613 4614

		memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
		if (memlimit < val)
			enlarge = 1;

4615
		ret = res_counter_set_limit(&memcg->res, val);
4616 4617 4618 4619 4620 4621
		if (!ret) {
			if (memswlimit == val)
				memcg->memsw_is_minimum = true;
			else
				memcg->memsw_is_minimum = false;
		}
4622 4623 4624 4625 4626
		mutex_unlock(&set_limit_mutex);

		if (!ret)
			break;

4627 4628
		mem_cgroup_reclaim(memcg, GFP_KERNEL,
				   MEM_CGROUP_RECLAIM_SHRINK);
4629 4630 4631 4632 4633 4634
		curusage = res_counter_read_u64(&memcg->res, RES_USAGE);
		/* Usage is reduced ? */
  		if (curusage >= oldusage)
			retry_count--;
		else
			oldusage = curusage;
4635
	}
4636 4637
	if (!ret && enlarge)
		memcg_oom_recover(memcg);
4638

4639 4640 4641
	return ret;
}

L
Li Zefan 已提交
4642 4643
static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
					unsigned long long val)
4644
{
4645
	int retry_count;
4646
	u64 memlimit, memswlimit, oldusage, curusage;
4647 4648
	int children = mem_cgroup_count_children(memcg);
	int ret = -EBUSY;
4649
	int enlarge = 0;
4650

4651 4652 4653
	/* see mem_cgroup_resize_res_limit */
 	retry_count = children * MEM_CGROUP_RECLAIM_RETRIES;
	oldusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
4654 4655 4656 4657 4658 4659 4660 4661
	while (retry_count) {
		if (signal_pending(current)) {
			ret = -EINTR;
			break;
		}
		/*
		 * Rather than hide all in some function, I do this in
		 * open coded manner. You see what this really does.
4662
		 * We have to guarantee memcg->res.limit <= memcg->memsw.limit.
4663 4664 4665 4666 4667 4668 4669 4670
		 */
		mutex_lock(&set_limit_mutex);
		memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
		if (memlimit > val) {
			ret = -EINVAL;
			mutex_unlock(&set_limit_mutex);
			break;
		}
4671 4672 4673
		memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
		if (memswlimit < val)
			enlarge = 1;
4674
		ret = res_counter_set_limit(&memcg->memsw, val);
4675 4676 4677 4678 4679 4680
		if (!ret) {
			if (memlimit == val)
				memcg->memsw_is_minimum = true;
			else
				memcg->memsw_is_minimum = false;
		}
4681 4682 4683 4684 4685
		mutex_unlock(&set_limit_mutex);

		if (!ret)
			break;

4686 4687 4688
		mem_cgroup_reclaim(memcg, GFP_KERNEL,
				   MEM_CGROUP_RECLAIM_NOSWAP |
				   MEM_CGROUP_RECLAIM_SHRINK);
4689
		curusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
4690
		/* Usage is reduced ? */
4691
		if (curusage >= oldusage)
4692
			retry_count--;
4693 4694
		else
			oldusage = curusage;
4695
	}
4696 4697
	if (!ret && enlarge)
		memcg_oom_recover(memcg);
4698 4699 4700
	return ret;
}

4701 4702 4703 4704 4705 4706 4707
/**
 * mem_cgroup_force_empty_list - clears LRU of a group
 * @memcg: group to clear
 * @node: NUMA node
 * @zid: zone id
 * @lru: lru to to clear
 *
4708
 * Traverse a specified page_cgroup list and try to drop them all.  This doesn't
4709 4710
 * reclaim the pages page themselves - pages are moved to the parent (or root)
 * group.
4711
 */
4712
static void mem_cgroup_force_empty_list(struct mem_cgroup *memcg,
K
KAMEZAWA Hiroyuki 已提交
4713
				int node, int zid, enum lru_list lru)
4714
{
4715
	struct lruvec *lruvec;
4716
	unsigned long flags;
4717
	struct list_head *list;
4718 4719
	struct page *busy;
	struct zone *zone;
4720

K
KAMEZAWA Hiroyuki 已提交
4721
	zone = &NODE_DATA(node)->node_zones[zid];
4722 4723
	lruvec = mem_cgroup_zone_lruvec(zone, memcg);
	list = &lruvec->lists[lru];
4724

4725
	busy = NULL;
4726
	do {
4727
		struct page_cgroup *pc;
4728 4729
		struct page *page;

K
KAMEZAWA Hiroyuki 已提交
4730
		spin_lock_irqsave(&zone->lru_lock, flags);
4731
		if (list_empty(list)) {
K
KAMEZAWA Hiroyuki 已提交
4732
			spin_unlock_irqrestore(&zone->lru_lock, flags);
4733
			break;
4734
		}
4735 4736 4737
		page = list_entry(list->prev, struct page, lru);
		if (busy == page) {
			list_move(&page->lru, list);
4738
			busy = NULL;
K
KAMEZAWA Hiroyuki 已提交
4739
			spin_unlock_irqrestore(&zone->lru_lock, flags);
4740 4741
			continue;
		}
K
KAMEZAWA Hiroyuki 已提交
4742
		spin_unlock_irqrestore(&zone->lru_lock, flags);
4743

4744
		pc = lookup_page_cgroup(page);
4745

4746
		if (mem_cgroup_move_parent(page, pc, memcg)) {
4747
			/* found lock contention or "pc" is obsolete. */
4748
			busy = page;
4749 4750 4751
			cond_resched();
		} else
			busy = NULL;
4752
	} while (!list_empty(list));
4753 4754 4755
}

/*
4756 4757
 * make mem_cgroup's charge to be 0 if there is no task by moving
 * all the charges and pages to the parent.
4758
 * This enables deleting this mem_cgroup.
4759 4760
 *
 * Caller is responsible for holding css reference on the memcg.
4761
 */
4762
static void mem_cgroup_reparent_charges(struct mem_cgroup *memcg)
4763
{
4764
	int node, zid;
4765
	u64 usage;
4766

4767
	do {
4768 4769
		/* This is for making all *used* pages to be on LRU. */
		lru_add_drain_all();
4770 4771
		drain_all_stock_sync(memcg);
		mem_cgroup_start_move(memcg);
4772
		for_each_node_state(node, N_MEMORY) {
4773
			for (zid = 0; zid < MAX_NR_ZONES; zid++) {
H
Hugh Dickins 已提交
4774 4775
				enum lru_list lru;
				for_each_lru(lru) {
4776
					mem_cgroup_force_empty_list(memcg,
H
Hugh Dickins 已提交
4777
							node, zid, lru);
4778
				}
4779
			}
4780
		}
4781 4782
		mem_cgroup_end_move(memcg);
		memcg_oom_recover(memcg);
4783
		cond_resched();
4784

4785
		/*
4786 4787 4788 4789 4790
		 * Kernel memory may not necessarily be trackable to a specific
		 * process. So they are not migrated, and therefore we can't
		 * expect their value to drop to 0 here.
		 * Having res filled up with kmem only is enough.
		 *
4791 4792 4793 4794 4795 4796
		 * This is a safety check because mem_cgroup_force_empty_list
		 * could have raced with mem_cgroup_replace_page_cache callers
		 * so the lru seemed empty but the page could have been added
		 * right after the check. RES_USAGE should be safe as we always
		 * charge before adding to the LRU.
		 */
4797 4798 4799
		usage = res_counter_read_u64(&memcg->res, RES_USAGE) -
			res_counter_read_u64(&memcg->kmem, RES_USAGE);
	} while (usage > 0);
4800 4801
}

4802 4803 4804 4805 4806 4807 4808
/*
 * This mainly exists for tests during the setting of set of use_hierarchy.
 * Since this is the very setting we are changing, the current hierarchy value
 * is meaningless
 */
static inline bool __memcg_has_children(struct mem_cgroup *memcg)
{
4809
	struct cgroup_subsys_state *pos;
4810 4811

	/* bounce at first found */
4812
	css_for_each_child(pos, &memcg->css)
4813 4814 4815 4816 4817
		return true;
	return false;
}

/*
4818 4819
 * Must be called with memcg_create_mutex held, unless the cgroup is guaranteed
 * to be already dead (as in mem_cgroup_force_empty, for instance).  This is
4820 4821 4822 4823 4824 4825 4826 4827 4828
 * from mem_cgroup_count_children(), in the sense that we don't really care how
 * many children we have; we only need to know if we have any.  It also counts
 * any memcg without hierarchy as infertile.
 */
static inline bool memcg_has_children(struct mem_cgroup *memcg)
{
	return memcg->use_hierarchy && __memcg_has_children(memcg);
}

4829 4830 4831 4832 4833 4834 4835 4836 4837 4838
/*
 * Reclaims as many pages from the given memcg as possible and moves
 * the rest to the parent.
 *
 * Caller is responsible for holding css reference for memcg.
 */
static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
{
	int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
	struct cgroup *cgrp = memcg->css.cgroup;
4839

4840
	/* returns EBUSY if there is a task or if we come here twice. */
4841 4842 4843
	if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children))
		return -EBUSY;

4844 4845
	/* we call try-to-free pages for make this cgroup empty */
	lru_add_drain_all();
4846
	/* try to free all pages in this cgroup */
4847
	while (nr_retries && res_counter_read_u64(&memcg->res, RES_USAGE) > 0) {
4848
		int progress;
4849

4850 4851 4852
		if (signal_pending(current))
			return -EINTR;

4853
		progress = try_to_free_mem_cgroup_pages(memcg, GFP_KERNEL,
4854
						false);
4855
		if (!progress) {
4856
			nr_retries--;
4857
			/* maybe some writeback is necessary */
4858
			congestion_wait(BLK_RW_ASYNC, HZ/10);
4859
		}
4860 4861

	}
K
KAMEZAWA Hiroyuki 已提交
4862
	lru_add_drain();
4863 4864 4865
	mem_cgroup_reparent_charges(memcg);

	return 0;
4866 4867
}

4868 4869
static int mem_cgroup_force_empty_write(struct cgroup_subsys_state *css,
					unsigned int event)
4870
{
4871
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4872

4873 4874
	if (mem_cgroup_is_root(memcg))
		return -EINVAL;
4875
	return mem_cgroup_force_empty(memcg);
4876 4877
}

4878 4879
static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
				     struct cftype *cft)
4880
{
4881
	return mem_cgroup_from_css(css)->use_hierarchy;
4882 4883
}

4884 4885
static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
				      struct cftype *cft, u64 val)
4886 4887
{
	int retval = 0;
4888
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
T
Tejun Heo 已提交
4889
	struct mem_cgroup *parent_memcg = mem_cgroup_from_css(css_parent(&memcg->css));
4890

4891
	mutex_lock(&memcg_create_mutex);
4892 4893 4894 4895

	if (memcg->use_hierarchy == val)
		goto out;

4896
	/*
4897
	 * If parent's use_hierarchy is set, we can't make any modifications
4898 4899 4900 4901 4902 4903
	 * in the child subtrees. If it is unset, then the change can
	 * occur, provided the current cgroup has no children.
	 *
	 * For the root cgroup, parent_mem is NULL, we allow value to be
	 * set if there are no children.
	 */
4904
	if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
4905
				(val == 1 || val == 0)) {
4906
		if (!__memcg_has_children(memcg))
4907
			memcg->use_hierarchy = val;
4908 4909 4910 4911
		else
			retval = -EBUSY;
	} else
		retval = -EINVAL;
4912 4913

out:
4914
	mutex_unlock(&memcg_create_mutex);
4915 4916 4917 4918

	return retval;
}

4919

4920
static unsigned long mem_cgroup_recursive_stat(struct mem_cgroup *memcg,
4921
					       enum mem_cgroup_stat_index idx)
4922
{
K
KAMEZAWA Hiroyuki 已提交
4923
	struct mem_cgroup *iter;
4924
	long val = 0;
4925

4926
	/* Per-cpu values can be negative, use a signed accumulator */
4927
	for_each_mem_cgroup_tree(iter, memcg)
K
KAMEZAWA Hiroyuki 已提交
4928 4929 4930 4931 4932
		val += mem_cgroup_read_stat(iter, idx);

	if (val < 0) /* race ? */
		val = 0;
	return val;
4933 4934
}

4935
static inline u64 mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
4936
{
K
KAMEZAWA Hiroyuki 已提交
4937
	u64 val;
4938

4939
	if (!mem_cgroup_is_root(memcg)) {
4940
		if (!swap)
4941
			return res_counter_read_u64(&memcg->res, RES_USAGE);
4942
		else
4943
			return res_counter_read_u64(&memcg->memsw, RES_USAGE);
4944 4945
	}

4946 4947 4948 4949
	/*
	 * Transparent hugepages are still accounted for in MEM_CGROUP_STAT_RSS
	 * as well as in MEM_CGROUP_STAT_RSS_HUGE.
	 */
4950 4951
	val = mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_CACHE);
	val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_RSS);
4952

K
KAMEZAWA Hiroyuki 已提交
4953
	if (swap)
4954
		val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_SWAP);
4955 4956 4957 4958

	return val << PAGE_SHIFT;
}

4959 4960 4961
static ssize_t mem_cgroup_read(struct cgroup_subsys_state *css,
			       struct cftype *cft, struct file *file,
			       char __user *buf, size_t nbytes, loff_t *ppos)
B
Balbir Singh 已提交
4962
{
4963
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4964
	char str[64];
4965
	u64 val;
G
Glauber Costa 已提交
4966 4967
	int name, len;
	enum res_type type;
4968 4969 4970

	type = MEMFILE_TYPE(cft->private);
	name = MEMFILE_ATTR(cft->private);
4971

4972 4973
	switch (type) {
	case _MEM:
4974
		if (name == RES_USAGE)
4975
			val = mem_cgroup_usage(memcg, false);
4976
		else
4977
			val = res_counter_read_u64(&memcg->res, name);
4978 4979
		break;
	case _MEMSWAP:
4980
		if (name == RES_USAGE)
4981
			val = mem_cgroup_usage(memcg, true);
4982
		else
4983
			val = res_counter_read_u64(&memcg->memsw, name);
4984
		break;
4985 4986 4987
	case _KMEM:
		val = res_counter_read_u64(&memcg->kmem, name);
		break;
4988 4989 4990
	default:
		BUG();
	}
4991 4992 4993

	len = scnprintf(str, sizeof(str), "%llu\n", (unsigned long long)val);
	return simple_read_from_buffer(buf, nbytes, ppos, str, len);
B
Balbir Singh 已提交
4994
}
4995

4996
static int memcg_update_kmem_limit(struct cgroup_subsys_state *css, u64 val)
4997 4998 4999
{
	int ret = -EINVAL;
#ifdef CONFIG_MEMCG_KMEM
5000
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5001 5002 5003 5004 5005 5006 5007 5008 5009 5010 5011 5012
	/*
	 * For simplicity, we won't allow this to be disabled.  It also can't
	 * be changed if the cgroup has children already, or if tasks had
	 * already joined.
	 *
	 * If tasks join before we set the limit, a person looking at
	 * kmem.usage_in_bytes will have no way to determine when it took
	 * place, which makes the value quite meaningless.
	 *
	 * After it first became limited, changes in the value of the limit are
	 * of course permitted.
	 */
5013
	mutex_lock(&memcg_create_mutex);
5014 5015
	mutex_lock(&set_limit_mutex);
	if (!memcg->kmem_account_flags && val != RESOURCE_MAX) {
5016
		if (cgroup_task_count(css->cgroup) || memcg_has_children(memcg)) {
5017 5018 5019 5020 5021 5022
			ret = -EBUSY;
			goto out;
		}
		ret = res_counter_set_limit(&memcg->kmem, val);
		VM_BUG_ON(ret);

5023 5024 5025 5026 5027
		ret = memcg_update_cache_sizes(memcg);
		if (ret) {
			res_counter_set_limit(&memcg->kmem, RESOURCE_MAX);
			goto out;
		}
5028 5029 5030 5031 5032 5033
		static_key_slow_inc(&memcg_kmem_enabled_key);
		/*
		 * setting the active bit after the inc will guarantee no one
		 * starts accounting before all call sites are patched
		 */
		memcg_kmem_set_active(memcg);
5034 5035 5036 5037
	} else
		ret = res_counter_set_limit(&memcg->kmem, val);
out:
	mutex_unlock(&set_limit_mutex);
5038
	mutex_unlock(&memcg_create_mutex);
5039 5040 5041 5042
#endif
	return ret;
}

5043
#ifdef CONFIG_MEMCG_KMEM
5044
static int memcg_propagate_kmem(struct mem_cgroup *memcg)
5045
{
5046
	int ret = 0;
5047 5048
	struct mem_cgroup *parent = parent_mem_cgroup(memcg);
	if (!parent)
5049 5050
		goto out;

5051
	memcg->kmem_account_flags = parent->kmem_account_flags;
5052 5053 5054 5055 5056 5057 5058 5059 5060 5061
	/*
	 * When that happen, we need to disable the static branch only on those
	 * memcgs that enabled it. To achieve this, we would be forced to
	 * complicate the code by keeping track of which memcgs were the ones
	 * that actually enabled limits, and which ones got it from its
	 * parents.
	 *
	 * It is a lot simpler just to do static_key_slow_inc() on every child
	 * that is accounted.
	 */
5062 5063 5064 5065
	if (!memcg_kmem_is_active(memcg))
		goto out;

	/*
5066 5067 5068
	 * __mem_cgroup_free() will issue static_key_slow_dec() because this
	 * memcg is active already. If the later initialization fails then the
	 * cgroup core triggers the cleanup so we do not have to do it here.
5069 5070 5071 5072
	 */
	static_key_slow_inc(&memcg_kmem_enabled_key);

	mutex_lock(&set_limit_mutex);
5073
	memcg_stop_kmem_account();
5074
	ret = memcg_update_cache_sizes(memcg);
5075
	memcg_resume_kmem_account();
5076 5077 5078
	mutex_unlock(&set_limit_mutex);
out:
	return ret;
5079
}
5080
#endif /* CONFIG_MEMCG_KMEM */
5081

5082 5083 5084 5085
/*
 * The user of this function is...
 * RES_LIMIT.
 */
5086
static int mem_cgroup_write(struct cgroup_subsys_state *css, struct cftype *cft,
5087
			    const char *buffer)
B
Balbir Singh 已提交
5088
{
5089
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
G
Glauber Costa 已提交
5090 5091
	enum res_type type;
	int name;
5092 5093 5094
	unsigned long long val;
	int ret;

5095 5096
	type = MEMFILE_TYPE(cft->private);
	name = MEMFILE_ATTR(cft->private);
5097

5098
	switch (name) {
5099
	case RES_LIMIT:
5100 5101 5102 5103
		if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
			ret = -EINVAL;
			break;
		}
5104 5105
		/* This function does all necessary parse...reuse it */
		ret = res_counter_memparse_write_strategy(buffer, &val);
5106 5107 5108
		if (ret)
			break;
		if (type == _MEM)
5109
			ret = mem_cgroup_resize_limit(memcg, val);
5110
		else if (type == _MEMSWAP)
5111
			ret = mem_cgroup_resize_memsw_limit(memcg, val);
5112
		else if (type == _KMEM)
5113
			ret = memcg_update_kmem_limit(css, val);
5114 5115
		else
			return -EINVAL;
5116
		break;
5117 5118 5119 5120 5121 5122 5123 5124 5125 5126 5127 5128 5129 5130
	case RES_SOFT_LIMIT:
		ret = res_counter_memparse_write_strategy(buffer, &val);
		if (ret)
			break;
		/*
		 * For memsw, soft limits are hard to implement in terms
		 * of semantics, for now, we support soft limits for
		 * control without swap
		 */
		if (type == _MEM)
			ret = res_counter_set_soft_limit(&memcg->res, val);
		else
			ret = -EINVAL;
		break;
5131 5132 5133 5134 5135
	default:
		ret = -EINVAL; /* should be BUG() ? */
		break;
	}
	return ret;
B
Balbir Singh 已提交
5136 5137
}

5138 5139 5140 5141 5142 5143 5144 5145 5146 5147
static void memcg_get_hierarchical_limit(struct mem_cgroup *memcg,
		unsigned long long *mem_limit, unsigned long long *memsw_limit)
{
	unsigned long long min_limit, min_memsw_limit, tmp;

	min_limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
	min_memsw_limit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
	if (!memcg->use_hierarchy)
		goto out;

T
Tejun Heo 已提交
5148 5149
	while (css_parent(&memcg->css)) {
		memcg = mem_cgroup_from_css(css_parent(&memcg->css));
5150 5151 5152 5153 5154 5155 5156 5157 5158 5159 5160 5161
		if (!memcg->use_hierarchy)
			break;
		tmp = res_counter_read_u64(&memcg->res, RES_LIMIT);
		min_limit = min(min_limit, tmp);
		tmp = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
		min_memsw_limit = min(min_memsw_limit, tmp);
	}
out:
	*mem_limit = min_limit;
	*memsw_limit = min_memsw_limit;
}

5162
static int mem_cgroup_reset(struct cgroup_subsys_state *css, unsigned int event)
5163
{
5164
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
G
Glauber Costa 已提交
5165 5166
	int name;
	enum res_type type;
5167

5168 5169
	type = MEMFILE_TYPE(event);
	name = MEMFILE_ATTR(event);
5170

5171
	switch (name) {
5172
	case RES_MAX_USAGE:
5173
		if (type == _MEM)
5174
			res_counter_reset_max(&memcg->res);
5175
		else if (type == _MEMSWAP)
5176
			res_counter_reset_max(&memcg->memsw);
5177 5178 5179 5180
		else if (type == _KMEM)
			res_counter_reset_max(&memcg->kmem);
		else
			return -EINVAL;
5181 5182
		break;
	case RES_FAILCNT:
5183
		if (type == _MEM)
5184
			res_counter_reset_failcnt(&memcg->res);
5185
		else if (type == _MEMSWAP)
5186
			res_counter_reset_failcnt(&memcg->memsw);
5187 5188 5189 5190
		else if (type == _KMEM)
			res_counter_reset_failcnt(&memcg->kmem);
		else
			return -EINVAL;
5191 5192
		break;
	}
5193

5194
	return 0;
5195 5196
}

5197
static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
5198 5199
					struct cftype *cft)
{
5200
	return mem_cgroup_from_css(css)->move_charge_at_immigrate;
5201 5202
}

5203
#ifdef CONFIG_MMU
5204
static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
5205 5206
					struct cftype *cft, u64 val)
{
5207
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5208 5209 5210

	if (val >= (1 << NR_MOVE_TYPE))
		return -EINVAL;
5211

5212
	/*
5213 5214 5215 5216
	 * No kind of locking is needed in here, because ->can_attach() will
	 * check this value once in the beginning of the process, and then carry
	 * on with stale data. This means that changes to this value will only
	 * affect task migrations starting after the change.
5217
	 */
5218
	memcg->move_charge_at_immigrate = val;
5219 5220
	return 0;
}
5221
#else
5222
static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
5223 5224 5225 5226 5227
					struct cftype *cft, u64 val)
{
	return -ENOSYS;
}
#endif
5228

5229
#ifdef CONFIG_NUMA
5230 5231
static int memcg_numa_stat_show(struct cgroup_subsys_state *css,
				struct cftype *cft, struct seq_file *m)
5232 5233 5234 5235
{
	int nid;
	unsigned long total_nr, file_nr, anon_nr, unevictable_nr;
	unsigned long node_nr;
5236
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5237

5238
	total_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL);
5239
	seq_printf(m, "total=%lu", total_nr);
5240
	for_each_node_state(nid, N_MEMORY) {
5241
		node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL);
5242 5243 5244 5245
		seq_printf(m, " N%d=%lu", nid, node_nr);
	}
	seq_putc(m, '\n');

5246
	file_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL_FILE);
5247
	seq_printf(m, "file=%lu", file_nr);
5248
	for_each_node_state(nid, N_MEMORY) {
5249
		node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
5250
				LRU_ALL_FILE);
5251 5252 5253 5254
		seq_printf(m, " N%d=%lu", nid, node_nr);
	}
	seq_putc(m, '\n');

5255
	anon_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL_ANON);
5256
	seq_printf(m, "anon=%lu", anon_nr);
5257
	for_each_node_state(nid, N_MEMORY) {
5258
		node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
5259
				LRU_ALL_ANON);
5260 5261 5262 5263
		seq_printf(m, " N%d=%lu", nid, node_nr);
	}
	seq_putc(m, '\n');

5264
	unevictable_nr = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_UNEVICTABLE));
5265
	seq_printf(m, "unevictable=%lu", unevictable_nr);
5266
	for_each_node_state(nid, N_MEMORY) {
5267
		node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
5268
				BIT(LRU_UNEVICTABLE));
5269 5270 5271 5272 5273 5274 5275
		seq_printf(m, " N%d=%lu", nid, node_nr);
	}
	seq_putc(m, '\n');
	return 0;
}
#endif /* CONFIG_NUMA */

5276 5277 5278 5279 5280
static inline void mem_cgroup_lru_names_not_uptodate(void)
{
	BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS);
}

5281
static int memcg_stat_show(struct cgroup_subsys_state *css, struct cftype *cft,
5282
				 struct seq_file *m)
5283
{
5284
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5285 5286
	struct mem_cgroup *mi;
	unsigned int i;
5287

5288
	for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
5289
		if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
5290
			continue;
5291 5292
		seq_printf(m, "%s %ld\n", mem_cgroup_stat_names[i],
			   mem_cgroup_read_stat(memcg, i) * PAGE_SIZE);
5293
	}
L
Lee Schermerhorn 已提交
5294

5295 5296 5297 5298 5299 5300 5301 5302
	for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++)
		seq_printf(m, "%s %lu\n", mem_cgroup_events_names[i],
			   mem_cgroup_read_events(memcg, i));

	for (i = 0; i < NR_LRU_LISTS; i++)
		seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i],
			   mem_cgroup_nr_lru_pages(memcg, BIT(i)) * PAGE_SIZE);

K
KAMEZAWA Hiroyuki 已提交
5303
	/* Hierarchical information */
5304 5305
	{
		unsigned long long limit, memsw_limit;
5306
		memcg_get_hierarchical_limit(memcg, &limit, &memsw_limit);
5307
		seq_printf(m, "hierarchical_memory_limit %llu\n", limit);
5308
		if (do_swap_account)
5309 5310
			seq_printf(m, "hierarchical_memsw_limit %llu\n",
				   memsw_limit);
5311
	}
K
KOSAKI Motohiro 已提交
5312

5313 5314 5315
	for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
		long long val = 0;

5316
		if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
5317
			continue;
5318 5319 5320 5321 5322 5323 5324 5325 5326 5327 5328 5329 5330 5331 5332 5333 5334 5335 5336 5337
		for_each_mem_cgroup_tree(mi, memcg)
			val += mem_cgroup_read_stat(mi, i) * PAGE_SIZE;
		seq_printf(m, "total_%s %lld\n", mem_cgroup_stat_names[i], val);
	}

	for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
		unsigned long long val = 0;

		for_each_mem_cgroup_tree(mi, memcg)
			val += mem_cgroup_read_events(mi, i);
		seq_printf(m, "total_%s %llu\n",
			   mem_cgroup_events_names[i], val);
	}

	for (i = 0; i < NR_LRU_LISTS; i++) {
		unsigned long long val = 0;

		for_each_mem_cgroup_tree(mi, memcg)
			val += mem_cgroup_nr_lru_pages(mi, BIT(i)) * PAGE_SIZE;
		seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i], val);
5338
	}
K
KAMEZAWA Hiroyuki 已提交
5339

K
KOSAKI Motohiro 已提交
5340 5341 5342 5343
#ifdef CONFIG_DEBUG_VM
	{
		int nid, zid;
		struct mem_cgroup_per_zone *mz;
5344
		struct zone_reclaim_stat *rstat;
K
KOSAKI Motohiro 已提交
5345 5346 5347 5348 5349
		unsigned long recent_rotated[2] = {0, 0};
		unsigned long recent_scanned[2] = {0, 0};

		for_each_online_node(nid)
			for (zid = 0; zid < MAX_NR_ZONES; zid++) {
5350
				mz = mem_cgroup_zoneinfo(memcg, nid, zid);
5351
				rstat = &mz->lruvec.reclaim_stat;
K
KOSAKI Motohiro 已提交
5352

5353 5354 5355 5356
				recent_rotated[0] += rstat->recent_rotated[0];
				recent_rotated[1] += rstat->recent_rotated[1];
				recent_scanned[0] += rstat->recent_scanned[0];
				recent_scanned[1] += rstat->recent_scanned[1];
K
KOSAKI Motohiro 已提交
5357
			}
5358 5359 5360 5361
		seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]);
		seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]);
		seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]);
		seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]);
K
KOSAKI Motohiro 已提交
5362 5363 5364
	}
#endif

5365 5366 5367
	return 0;
}

5368 5369
static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
				      struct cftype *cft)
K
KOSAKI Motohiro 已提交
5370
{
5371
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
K
KOSAKI Motohiro 已提交
5372

5373
	return mem_cgroup_swappiness(memcg);
K
KOSAKI Motohiro 已提交
5374 5375
}

5376 5377
static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
				       struct cftype *cft, u64 val)
K
KOSAKI Motohiro 已提交
5378
{
5379
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
T
Tejun Heo 已提交
5380
	struct mem_cgroup *parent = mem_cgroup_from_css(css_parent(&memcg->css));
K
KOSAKI Motohiro 已提交
5381

T
Tejun Heo 已提交
5382
	if (val > 100 || !parent)
K
KOSAKI Motohiro 已提交
5383 5384
		return -EINVAL;

5385
	mutex_lock(&memcg_create_mutex);
5386

K
KOSAKI Motohiro 已提交
5387
	/* If under hierarchy, only empty-root can set this value */
5388
	if ((parent->use_hierarchy) || memcg_has_children(memcg)) {
5389
		mutex_unlock(&memcg_create_mutex);
K
KOSAKI Motohiro 已提交
5390
		return -EINVAL;
5391
	}
K
KOSAKI Motohiro 已提交
5392 5393 5394

	memcg->swappiness = val;

5395
	mutex_unlock(&memcg_create_mutex);
5396

K
KOSAKI Motohiro 已提交
5397 5398 5399
	return 0;
}

5400 5401 5402 5403 5404 5405 5406 5407
static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
{
	struct mem_cgroup_threshold_ary *t;
	u64 usage;
	int i;

	rcu_read_lock();
	if (!swap)
5408
		t = rcu_dereference(memcg->thresholds.primary);
5409
	else
5410
		t = rcu_dereference(memcg->memsw_thresholds.primary);
5411 5412 5413 5414 5415 5416 5417

	if (!t)
		goto unlock;

	usage = mem_cgroup_usage(memcg, swap);

	/*
5418
	 * current_threshold points to threshold just below or equal to usage.
5419 5420 5421
	 * If it's not true, a threshold was crossed after last
	 * call of __mem_cgroup_threshold().
	 */
5422
	i = t->current_threshold;
5423 5424 5425 5426 5427 5428 5429 5430 5431 5432 5433 5434 5435 5436 5437 5438 5439 5440 5441 5442 5443 5444 5445

	/*
	 * Iterate backward over array of thresholds starting from
	 * current_threshold and check if a threshold is crossed.
	 * If none of thresholds below usage is crossed, we read
	 * only one element of the array here.
	 */
	for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
		eventfd_signal(t->entries[i].eventfd, 1);

	/* i = current_threshold + 1 */
	i++;

	/*
	 * Iterate forward over array of thresholds starting from
	 * current_threshold+1 and check if a threshold is crossed.
	 * If none of thresholds above usage is crossed, we read
	 * only one element of the array here.
	 */
	for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
		eventfd_signal(t->entries[i].eventfd, 1);

	/* Update current_threshold */
5446
	t->current_threshold = i - 1;
5447 5448 5449 5450 5451 5452
unlock:
	rcu_read_unlock();
}

static void mem_cgroup_threshold(struct mem_cgroup *memcg)
{
5453 5454 5455 5456 5457 5458 5459
	while (memcg) {
		__mem_cgroup_threshold(memcg, false);
		if (do_swap_account)
			__mem_cgroup_threshold(memcg, true);

		memcg = parent_mem_cgroup(memcg);
	}
5460 5461 5462 5463 5464 5465 5466
}

static int compare_thresholds(const void *a, const void *b)
{
	const struct mem_cgroup_threshold *_a = a;
	const struct mem_cgroup_threshold *_b = b;

5467 5468 5469 5470 5471 5472 5473
	if (_a->threshold > _b->threshold)
		return 1;

	if (_a->threshold < _b->threshold)
		return -1;

	return 0;
5474 5475
}

5476
static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
5477 5478 5479
{
	struct mem_cgroup_eventfd_list *ev;

5480
	list_for_each_entry(ev, &memcg->oom_notify, list)
K
KAMEZAWA Hiroyuki 已提交
5481 5482 5483 5484
		eventfd_signal(ev->eventfd, 1);
	return 0;
}

5485
static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
5486
{
K
KAMEZAWA Hiroyuki 已提交
5487 5488
	struct mem_cgroup *iter;

5489
	for_each_mem_cgroup_tree(iter, memcg)
K
KAMEZAWA Hiroyuki 已提交
5490
		mem_cgroup_oom_notify_cb(iter);
K
KAMEZAWA Hiroyuki 已提交
5491 5492
}

5493
static int mem_cgroup_usage_register_event(struct cgroup_subsys_state *css,
K
KAMEZAWA Hiroyuki 已提交
5494
	struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
5495
{
5496
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5497 5498
	struct mem_cgroup_thresholds *thresholds;
	struct mem_cgroup_threshold_ary *new;
G
Glauber Costa 已提交
5499
	enum res_type type = MEMFILE_TYPE(cft->private);
5500
	u64 threshold, usage;
5501
	int i, size, ret;
5502 5503 5504 5505 5506 5507

	ret = res_counter_memparse_write_strategy(args, &threshold);
	if (ret)
		return ret;

	mutex_lock(&memcg->thresholds_lock);
5508

5509
	if (type == _MEM)
5510
		thresholds = &memcg->thresholds;
5511
	else if (type == _MEMSWAP)
5512
		thresholds = &memcg->memsw_thresholds;
5513 5514 5515 5516 5517 5518
	else
		BUG();

	usage = mem_cgroup_usage(memcg, type == _MEMSWAP);

	/* Check if a threshold crossed before adding a new one */
5519
	if (thresholds->primary)
5520 5521
		__mem_cgroup_threshold(memcg, type == _MEMSWAP);

5522
	size = thresholds->primary ? thresholds->primary->size + 1 : 1;
5523 5524

	/* Allocate memory for new array of thresholds */
5525
	new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
5526
			GFP_KERNEL);
5527
	if (!new) {
5528 5529 5530
		ret = -ENOMEM;
		goto unlock;
	}
5531
	new->size = size;
5532 5533

	/* Copy thresholds (if any) to new array */
5534 5535
	if (thresholds->primary) {
		memcpy(new->entries, thresholds->primary->entries, (size - 1) *
5536
				sizeof(struct mem_cgroup_threshold));
5537 5538
	}

5539
	/* Add new threshold */
5540 5541
	new->entries[size - 1].eventfd = eventfd;
	new->entries[size - 1].threshold = threshold;
5542 5543

	/* Sort thresholds. Registering of new threshold isn't time-critical */
5544
	sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
5545 5546 5547
			compare_thresholds, NULL);

	/* Find current threshold */
5548
	new->current_threshold = -1;
5549
	for (i = 0; i < size; i++) {
5550
		if (new->entries[i].threshold <= usage) {
5551
			/*
5552 5553
			 * new->current_threshold will not be used until
			 * rcu_assign_pointer(), so it's safe to increment
5554 5555
			 * it here.
			 */
5556
			++new->current_threshold;
5557 5558
		} else
			break;
5559 5560
	}

5561 5562 5563 5564 5565
	/* Free old spare buffer and save old primary buffer as spare */
	kfree(thresholds->spare);
	thresholds->spare = thresholds->primary;

	rcu_assign_pointer(thresholds->primary, new);
5566

5567
	/* To be sure that nobody uses thresholds */
5568 5569 5570 5571 5572 5573 5574 5575
	synchronize_rcu();

unlock:
	mutex_unlock(&memcg->thresholds_lock);

	return ret;
}

5576
static void mem_cgroup_usage_unregister_event(struct cgroup_subsys_state *css,
K
KAMEZAWA Hiroyuki 已提交
5577
	struct cftype *cft, struct eventfd_ctx *eventfd)
5578
{
5579
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5580 5581
	struct mem_cgroup_thresholds *thresholds;
	struct mem_cgroup_threshold_ary *new;
G
Glauber Costa 已提交
5582
	enum res_type type = MEMFILE_TYPE(cft->private);
5583
	u64 usage;
5584
	int i, j, size;
5585 5586 5587

	mutex_lock(&memcg->thresholds_lock);
	if (type == _MEM)
5588
		thresholds = &memcg->thresholds;
5589
	else if (type == _MEMSWAP)
5590
		thresholds = &memcg->memsw_thresholds;
5591 5592 5593
	else
		BUG();

5594 5595 5596
	if (!thresholds->primary)
		goto unlock;

5597 5598 5599 5600 5601 5602
	usage = mem_cgroup_usage(memcg, type == _MEMSWAP);

	/* Check if a threshold crossed before removing */
	__mem_cgroup_threshold(memcg, type == _MEMSWAP);

	/* Calculate new number of threshold */
5603 5604 5605
	size = 0;
	for (i = 0; i < thresholds->primary->size; i++) {
		if (thresholds->primary->entries[i].eventfd != eventfd)
5606 5607 5608
			size++;
	}

5609
	new = thresholds->spare;
5610

5611 5612
	/* Set thresholds array to NULL if we don't have thresholds */
	if (!size) {
5613 5614
		kfree(new);
		new = NULL;
5615
		goto swap_buffers;
5616 5617
	}

5618
	new->size = size;
5619 5620

	/* Copy thresholds and find current threshold */
5621 5622 5623
	new->current_threshold = -1;
	for (i = 0, j = 0; i < thresholds->primary->size; i++) {
		if (thresholds->primary->entries[i].eventfd == eventfd)
5624 5625
			continue;

5626
		new->entries[j] = thresholds->primary->entries[i];
5627
		if (new->entries[j].threshold <= usage) {
5628
			/*
5629
			 * new->current_threshold will not be used
5630 5631 5632
			 * until rcu_assign_pointer(), so it's safe to increment
			 * it here.
			 */
5633
			++new->current_threshold;
5634 5635 5636 5637
		}
		j++;
	}

5638
swap_buffers:
5639 5640
	/* Swap primary and spare array */
	thresholds->spare = thresholds->primary;
5641 5642 5643 5644 5645 5646
	/* If all events are unregistered, free the spare array */
	if (!new) {
		kfree(thresholds->spare);
		thresholds->spare = NULL;
	}

5647
	rcu_assign_pointer(thresholds->primary, new);
5648

5649
	/* To be sure that nobody uses thresholds */
5650
	synchronize_rcu();
5651
unlock:
5652 5653
	mutex_unlock(&memcg->thresholds_lock);
}
5654

5655
static int mem_cgroup_oom_register_event(struct cgroup_subsys_state *css,
K
KAMEZAWA Hiroyuki 已提交
5656 5657
	struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
{
5658
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
K
KAMEZAWA Hiroyuki 已提交
5659
	struct mem_cgroup_eventfd_list *event;
G
Glauber Costa 已提交
5660
	enum res_type type = MEMFILE_TYPE(cft->private);
K
KAMEZAWA Hiroyuki 已提交
5661 5662 5663 5664 5665 5666

	BUG_ON(type != _OOM_TYPE);
	event = kmalloc(sizeof(*event),	GFP_KERNEL);
	if (!event)
		return -ENOMEM;

5667
	spin_lock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
5668 5669 5670 5671 5672

	event->eventfd = eventfd;
	list_add(&event->list, &memcg->oom_notify);

	/* already in OOM ? */
5673
	if (atomic_read(&memcg->under_oom))
K
KAMEZAWA Hiroyuki 已提交
5674
		eventfd_signal(eventfd, 1);
5675
	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
5676 5677 5678 5679

	return 0;
}

5680
static void mem_cgroup_oom_unregister_event(struct cgroup_subsys_state *css,
K
KAMEZAWA Hiroyuki 已提交
5681 5682
	struct cftype *cft, struct eventfd_ctx *eventfd)
{
5683
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
K
KAMEZAWA Hiroyuki 已提交
5684
	struct mem_cgroup_eventfd_list *ev, *tmp;
G
Glauber Costa 已提交
5685
	enum res_type type = MEMFILE_TYPE(cft->private);
K
KAMEZAWA Hiroyuki 已提交
5686 5687 5688

	BUG_ON(type != _OOM_TYPE);

5689
	spin_lock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
5690

5691
	list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
K
KAMEZAWA Hiroyuki 已提交
5692 5693 5694 5695 5696 5697
		if (ev->eventfd == eventfd) {
			list_del(&ev->list);
			kfree(ev);
		}
	}

5698
	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
5699 5700
}

5701
static int mem_cgroup_oom_control_read(struct cgroup_subsys_state *css,
5702 5703
	struct cftype *cft,  struct cgroup_map_cb *cb)
{
5704
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5705

5706
	cb->fill(cb, "oom_kill_disable", memcg->oom_kill_disable);
5707

5708
	if (atomic_read(&memcg->under_oom))
5709 5710 5711 5712 5713 5714
		cb->fill(cb, "under_oom", 1);
	else
		cb->fill(cb, "under_oom", 0);
	return 0;
}

5715
static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
5716 5717
	struct cftype *cft, u64 val)
{
5718
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
T
Tejun Heo 已提交
5719
	struct mem_cgroup *parent = mem_cgroup_from_css(css_parent(&memcg->css));
5720 5721

	/* cannot set to root cgroup and only 0 and 1 are allowed */
T
Tejun Heo 已提交
5722
	if (!parent || !((val == 0) || (val == 1)))
5723 5724
		return -EINVAL;

5725
	mutex_lock(&memcg_create_mutex);
5726
	/* oom-kill-disable is a flag for subhierarchy. */
5727
	if ((parent->use_hierarchy) || memcg_has_children(memcg)) {
5728
		mutex_unlock(&memcg_create_mutex);
5729 5730
		return -EINVAL;
	}
5731
	memcg->oom_kill_disable = val;
5732
	if (!val)
5733
		memcg_oom_recover(memcg);
5734
	mutex_unlock(&memcg_create_mutex);
5735 5736 5737
	return 0;
}

A
Andrew Morton 已提交
5738
#ifdef CONFIG_MEMCG_KMEM
5739
static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
5740
{
5741 5742
	int ret;

5743
	memcg->kmemcg_id = -1;
5744 5745 5746
	ret = memcg_propagate_kmem(memcg);
	if (ret)
		return ret;
5747

5748
	return mem_cgroup_sockets_init(memcg, ss);
5749
}
5750

5751
static void memcg_destroy_kmem(struct mem_cgroup *memcg)
G
Glauber Costa 已提交
5752
{
5753
	mem_cgroup_sockets_destroy(memcg);
5754 5755 5756 5757 5758 5759 5760 5761 5762 5763 5764 5765 5766 5767 5768 5769 5770 5771 5772 5773 5774 5775 5776 5777 5778 5779
}

static void kmem_cgroup_css_offline(struct mem_cgroup *memcg)
{
	if (!memcg_kmem_is_active(memcg))
		return;

	/*
	 * kmem charges can outlive the cgroup. In the case of slab
	 * pages, for instance, a page contain objects from various
	 * processes. As we prevent from taking a reference for every
	 * such allocation we have to be careful when doing uncharge
	 * (see memcg_uncharge_kmem) and here during offlining.
	 *
	 * The idea is that that only the _last_ uncharge which sees
	 * the dead memcg will drop the last reference. An additional
	 * reference is taken here before the group is marked dead
	 * which is then paired with css_put during uncharge resp. here.
	 *
	 * Although this might sound strange as this path is called from
	 * css_offline() when the referencemight have dropped down to 0
	 * and shouldn't be incremented anymore (css_tryget would fail)
	 * we do not have other options because of the kmem allocations
	 * lifetime.
	 */
	css_get(&memcg->css);
5780 5781 5782 5783 5784 5785 5786

	memcg_kmem_mark_dead(memcg);

	if (res_counter_read_u64(&memcg->kmem, RES_USAGE) != 0)
		return;

	if (memcg_kmem_test_and_clear_dead(memcg))
5787
		css_put(&memcg->css);
G
Glauber Costa 已提交
5788
}
5789
#else
5790
static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
5791 5792 5793
{
	return 0;
}
G
Glauber Costa 已提交
5794

5795 5796 5797 5798 5799
static void memcg_destroy_kmem(struct mem_cgroup *memcg)
{
}

static void kmem_cgroup_css_offline(struct mem_cgroup *memcg)
G
Glauber Costa 已提交
5800 5801
{
}
5802 5803
#endif

B
Balbir Singh 已提交
5804 5805
static struct cftype mem_cgroup_files[] = {
	{
5806
		.name = "usage_in_bytes",
5807
		.private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
5808
		.read = mem_cgroup_read,
K
KAMEZAWA Hiroyuki 已提交
5809 5810
		.register_event = mem_cgroup_usage_register_event,
		.unregister_event = mem_cgroup_usage_unregister_event,
B
Balbir Singh 已提交
5811
	},
5812 5813
	{
		.name = "max_usage_in_bytes",
5814
		.private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
5815
		.trigger = mem_cgroup_reset,
5816
		.read = mem_cgroup_read,
5817
	},
B
Balbir Singh 已提交
5818
	{
5819
		.name = "limit_in_bytes",
5820
		.private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
5821
		.write_string = mem_cgroup_write,
5822
		.read = mem_cgroup_read,
B
Balbir Singh 已提交
5823
	},
5824 5825 5826 5827
	{
		.name = "soft_limit_in_bytes",
		.private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
		.write_string = mem_cgroup_write,
5828
		.read = mem_cgroup_read,
5829
	},
B
Balbir Singh 已提交
5830 5831
	{
		.name = "failcnt",
5832
		.private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
5833
		.trigger = mem_cgroup_reset,
5834
		.read = mem_cgroup_read,
B
Balbir Singh 已提交
5835
	},
5836 5837
	{
		.name = "stat",
5838
		.read_seq_string = memcg_stat_show,
5839
	},
5840 5841 5842 5843
	{
		.name = "force_empty",
		.trigger = mem_cgroup_force_empty_write,
	},
5844 5845
	{
		.name = "use_hierarchy",
5846
		.flags = CFTYPE_INSANE,
5847 5848 5849
		.write_u64 = mem_cgroup_hierarchy_write,
		.read_u64 = mem_cgroup_hierarchy_read,
	},
K
KOSAKI Motohiro 已提交
5850 5851 5852 5853 5854
	{
		.name = "swappiness",
		.read_u64 = mem_cgroup_swappiness_read,
		.write_u64 = mem_cgroup_swappiness_write,
	},
5855 5856 5857 5858 5859
	{
		.name = "move_charge_at_immigrate",
		.read_u64 = mem_cgroup_move_charge_read,
		.write_u64 = mem_cgroup_move_charge_write,
	},
K
KAMEZAWA Hiroyuki 已提交
5860 5861
	{
		.name = "oom_control",
5862 5863
		.read_map = mem_cgroup_oom_control_read,
		.write_u64 = mem_cgroup_oom_control_write,
K
KAMEZAWA Hiroyuki 已提交
5864 5865 5866 5867
		.register_event = mem_cgroup_oom_register_event,
		.unregister_event = mem_cgroup_oom_unregister_event,
		.private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
	},
5868 5869 5870 5871 5872
	{
		.name = "pressure_level",
		.register_event = vmpressure_register_event,
		.unregister_event = vmpressure_unregister_event,
	},
5873 5874 5875
#ifdef CONFIG_NUMA
	{
		.name = "numa_stat",
5876
		.read_seq_string = memcg_numa_stat_show,
5877 5878
	},
#endif
5879 5880 5881 5882 5883 5884 5885 5886 5887 5888 5889 5890 5891 5892 5893 5894 5895 5896 5897 5898 5899 5900 5901 5902
#ifdef CONFIG_MEMCG_KMEM
	{
		.name = "kmem.limit_in_bytes",
		.private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
		.write_string = mem_cgroup_write,
		.read = mem_cgroup_read,
	},
	{
		.name = "kmem.usage_in_bytes",
		.private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
		.read = mem_cgroup_read,
	},
	{
		.name = "kmem.failcnt",
		.private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
		.trigger = mem_cgroup_reset,
		.read = mem_cgroup_read,
	},
	{
		.name = "kmem.max_usage_in_bytes",
		.private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
		.trigger = mem_cgroup_reset,
		.read = mem_cgroup_read,
	},
5903 5904 5905 5906 5907 5908
#ifdef CONFIG_SLABINFO
	{
		.name = "kmem.slabinfo",
		.read_seq_string = mem_cgroup_slabinfo_read,
	},
#endif
5909
#endif
5910
	{ },	/* terminate */
5911
};
5912

5913 5914 5915 5916 5917 5918 5919 5920 5921 5922 5923 5924 5925 5926 5927 5928 5929 5930 5931 5932 5933 5934 5935 5936 5937 5938 5939 5940 5941 5942
#ifdef CONFIG_MEMCG_SWAP
static struct cftype memsw_cgroup_files[] = {
	{
		.name = "memsw.usage_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
		.read = mem_cgroup_read,
		.register_event = mem_cgroup_usage_register_event,
		.unregister_event = mem_cgroup_usage_unregister_event,
	},
	{
		.name = "memsw.max_usage_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
		.trigger = mem_cgroup_reset,
		.read = mem_cgroup_read,
	},
	{
		.name = "memsw.limit_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
		.write_string = mem_cgroup_write,
		.read = mem_cgroup_read,
	},
	{
		.name = "memsw.failcnt",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
		.trigger = mem_cgroup_reset,
		.read = mem_cgroup_read,
	},
	{ },	/* terminate */
};
#endif
5943
static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
5944 5945
{
	struct mem_cgroup_per_node *pn;
5946
	struct mem_cgroup_per_zone *mz;
5947
	int zone, tmp = node;
5948 5949 5950 5951 5952 5953 5954 5955
	/*
	 * This routine is called against possible nodes.
	 * But it's BUG to call kmalloc() against offline node.
	 *
	 * TODO: this routine can waste much memory for nodes which will
	 *       never be onlined. It's better to use memory hotplug callback
	 *       function.
	 */
5956 5957
	if (!node_state(node, N_NORMAL_MEMORY))
		tmp = -1;
5958
	pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
5959 5960
	if (!pn)
		return 1;
5961 5962 5963

	for (zone = 0; zone < MAX_NR_ZONES; zone++) {
		mz = &pn->zoneinfo[zone];
5964
		lruvec_init(&mz->lruvec);
5965
		mz->usage_in_excess = 0;
5966
		mz->on_tree = false;
5967
		mz->memcg = memcg;
5968
	}
5969
	memcg->nodeinfo[node] = pn;
5970 5971 5972
	return 0;
}

5973
static void free_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
5974
{
5975
	kfree(memcg->nodeinfo[node]);
5976 5977
}

5978 5979
static struct mem_cgroup *mem_cgroup_alloc(void)
{
5980
	struct mem_cgroup *memcg;
5981
	size_t size = memcg_size();
5982

5983
	/* Can be very big if nr_node_ids is very big */
5984
	if (size < PAGE_SIZE)
5985
		memcg = kzalloc(size, GFP_KERNEL);
5986
	else
5987
		memcg = vzalloc(size);
5988

5989
	if (!memcg)
5990 5991
		return NULL;

5992 5993
	memcg->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
	if (!memcg->stat)
5994
		goto out_free;
5995 5996
	spin_lock_init(&memcg->pcp_counter_lock);
	return memcg;
5997 5998 5999

out_free:
	if (size < PAGE_SIZE)
6000
		kfree(memcg);
6001
	else
6002
		vfree(memcg);
6003
	return NULL;
6004 6005
}

6006
/*
6007 6008 6009 6010 6011 6012 6013 6014
 * At destroying mem_cgroup, references from swap_cgroup can remain.
 * (scanning all at force_empty is too costly...)
 *
 * Instead of clearing all references at force_empty, we remember
 * the number of reference from swap_cgroup and free mem_cgroup when
 * it goes down to 0.
 *
 * Removal of cgroup itself succeeds regardless of refs from swap.
6015
 */
6016 6017

static void __mem_cgroup_free(struct mem_cgroup *memcg)
6018
{
6019
	int node;
6020
	size_t size = memcg_size();
6021

6022 6023 6024 6025 6026 6027 6028 6029
	mem_cgroup_remove_from_trees(memcg);
	free_css_id(&mem_cgroup_subsys, &memcg->css);

	for_each_node(node)
		free_mem_cgroup_per_zone_info(memcg, node);

	free_percpu(memcg->stat);

6030 6031 6032 6033 6034 6035 6036 6037 6038 6039 6040
	/*
	 * We need to make sure that (at least for now), the jump label
	 * destruction code runs outside of the cgroup lock. This is because
	 * get_online_cpus(), which is called from the static_branch update,
	 * can't be called inside the cgroup_lock. cpusets are the ones
	 * enforcing this dependency, so if they ever change, we might as well.
	 *
	 * schedule_work() will guarantee this happens. Be careful if you need
	 * to move this code around, and make sure it is outside
	 * the cgroup_lock.
	 */
6041
	disarm_static_keys(memcg);
6042 6043 6044 6045
	if (size < PAGE_SIZE)
		kfree(memcg);
	else
		vfree(memcg);
6046
}
6047

6048 6049 6050
/*
 * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
 */
G
Glauber Costa 已提交
6051
struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg)
6052
{
6053
	if (!memcg->res.parent)
6054
		return NULL;
6055
	return mem_cgroup_from_res_counter(memcg->res.parent, res);
6056
}
G
Glauber Costa 已提交
6057
EXPORT_SYMBOL(parent_mem_cgroup);
6058

6059
static void __init mem_cgroup_soft_limit_tree_init(void)
6060 6061 6062 6063 6064
{
	struct mem_cgroup_tree_per_node *rtpn;
	struct mem_cgroup_tree_per_zone *rtpz;
	int tmp, node, zone;

B
Bob Liu 已提交
6065
	for_each_node(node) {
6066 6067 6068 6069
		tmp = node;
		if (!node_state(node, N_NORMAL_MEMORY))
			tmp = -1;
		rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, tmp);
6070
		BUG_ON(!rtpn);
6071 6072 6073 6074 6075 6076 6077 6078 6079 6080 6081

		soft_limit_tree.rb_tree_per_node[node] = rtpn;

		for (zone = 0; zone < MAX_NR_ZONES; zone++) {
			rtpz = &rtpn->rb_tree_per_zone[zone];
			rtpz->rb_root = RB_ROOT;
			spin_lock_init(&rtpz->lock);
		}
	}
}

L
Li Zefan 已提交
6082
static struct cgroup_subsys_state * __ref
6083
mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
B
Balbir Singh 已提交
6084
{
6085
	struct mem_cgroup *memcg;
K
KAMEZAWA Hiroyuki 已提交
6086
	long error = -ENOMEM;
6087
	int node;
B
Balbir Singh 已提交
6088

6089 6090
	memcg = mem_cgroup_alloc();
	if (!memcg)
K
KAMEZAWA Hiroyuki 已提交
6091
		return ERR_PTR(error);
6092

B
Bob Liu 已提交
6093
	for_each_node(node)
6094
		if (alloc_mem_cgroup_per_zone_info(memcg, node))
6095
			goto free_out;
6096

6097
	/* root ? */
6098
	if (parent_css == NULL) {
6099
		root_mem_cgroup = memcg;
6100 6101 6102
		res_counter_init(&memcg->res, NULL);
		res_counter_init(&memcg->memsw, NULL);
		res_counter_init(&memcg->kmem, NULL);
6103
	}
6104

6105 6106 6107 6108 6109
	memcg->last_scanned_node = MAX_NUMNODES;
	INIT_LIST_HEAD(&memcg->oom_notify);
	memcg->move_charge_at_immigrate = 0;
	mutex_init(&memcg->thresholds_lock);
	spin_lock_init(&memcg->move_lock);
6110
	vmpressure_init(&memcg->vmpressure);
6111 6112 6113 6114 6115 6116 6117 6118 6119

	return &memcg->css;

free_out:
	__mem_cgroup_free(memcg);
	return ERR_PTR(error);
}

static int
6120
mem_cgroup_css_online(struct cgroup_subsys_state *css)
6121
{
6122 6123
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
	struct mem_cgroup *parent = mem_cgroup_from_css(css_parent(css));
6124 6125
	int error = 0;

T
Tejun Heo 已提交
6126
	if (!parent)
6127 6128
		return 0;

6129
	mutex_lock(&memcg_create_mutex);
6130 6131 6132 6133 6134 6135

	memcg->use_hierarchy = parent->use_hierarchy;
	memcg->oom_kill_disable = parent->oom_kill_disable;
	memcg->swappiness = mem_cgroup_swappiness(parent);

	if (parent->use_hierarchy) {
6136 6137
		res_counter_init(&memcg->res, &parent->res);
		res_counter_init(&memcg->memsw, &parent->memsw);
6138
		res_counter_init(&memcg->kmem, &parent->kmem);
6139

6140
		/*
6141 6142
		 * No need to take a reference to the parent because cgroup
		 * core guarantees its existence.
6143
		 */
6144
	} else {
6145 6146
		res_counter_init(&memcg->res, NULL);
		res_counter_init(&memcg->memsw, NULL);
6147
		res_counter_init(&memcg->kmem, NULL);
6148 6149 6150 6151 6152
		/*
		 * Deeper hierachy with use_hierarchy == false doesn't make
		 * much sense so let cgroup subsystem know about this
		 * unfortunate state in our controller.
		 */
6153
		if (parent != root_mem_cgroup)
6154
			mem_cgroup_subsys.broken_hierarchy = true;
6155
	}
6156 6157

	error = memcg_init_kmem(memcg, &mem_cgroup_subsys);
6158
	mutex_unlock(&memcg_create_mutex);
6159
	return error;
B
Balbir Singh 已提交
6160 6161
}

M
Michal Hocko 已提交
6162 6163 6164 6165 6166 6167 6168 6169
/*
 * Announce all parents that a group from their hierarchy is gone.
 */
static void mem_cgroup_invalidate_reclaim_iterators(struct mem_cgroup *memcg)
{
	struct mem_cgroup *parent = memcg;

	while ((parent = parent_mem_cgroup(parent)))
6170
		mem_cgroup_iter_invalidate(parent);
M
Michal Hocko 已提交
6171 6172 6173 6174 6175 6176

	/*
	 * if the root memcg is not hierarchical we have to check it
	 * explicitely.
	 */
	if (!root_mem_cgroup->use_hierarchy)
6177
		mem_cgroup_iter_invalidate(root_mem_cgroup);
M
Michal Hocko 已提交
6178 6179
}

6180
static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
6181
{
6182
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
6183

6184 6185
	kmem_cgroup_css_offline(memcg);

M
Michal Hocko 已提交
6186
	mem_cgroup_invalidate_reclaim_iterators(memcg);
6187
	mem_cgroup_reparent_charges(memcg);
G
Glauber Costa 已提交
6188
	mem_cgroup_destroy_all_caches(memcg);
6189
	vmpressure_cleanup(&memcg->vmpressure);
6190 6191
}

6192
static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
B
Balbir Singh 已提交
6193
{
6194
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
6195

6196
	memcg_destroy_kmem(memcg);
6197
	__mem_cgroup_free(memcg);
B
Balbir Singh 已提交
6198 6199
}

6200
#ifdef CONFIG_MMU
6201
/* Handlers for move charge at task migration. */
6202 6203
#define PRECHARGE_COUNT_AT_ONCE	256
static int mem_cgroup_do_precharge(unsigned long count)
6204
{
6205 6206
	int ret = 0;
	int batch_count = PRECHARGE_COUNT_AT_ONCE;
6207
	struct mem_cgroup *memcg = mc.to;
6208

6209
	if (mem_cgroup_is_root(memcg)) {
6210 6211 6212 6213 6214 6215 6216 6217
		mc.precharge += count;
		/* we don't need css_get for root */
		return ret;
	}
	/* try to charge at once */
	if (count > 1) {
		struct res_counter *dummy;
		/*
6218
		 * "memcg" cannot be under rmdir() because we've already checked
6219 6220 6221 6222
		 * by cgroup_lock_live_cgroup() that it is not removed and we
		 * are still under the same cgroup_mutex. So we can postpone
		 * css_get().
		 */
6223
		if (res_counter_charge(&memcg->res, PAGE_SIZE * count, &dummy))
6224
			goto one_by_one;
6225
		if (do_swap_account && res_counter_charge(&memcg->memsw,
6226
						PAGE_SIZE * count, &dummy)) {
6227
			res_counter_uncharge(&memcg->res, PAGE_SIZE * count);
6228 6229 6230 6231 6232 6233 6234 6235 6236 6237 6238 6239 6240 6241 6242 6243
			goto one_by_one;
		}
		mc.precharge += count;
		return ret;
	}
one_by_one:
	/* fall back to one by one charge */
	while (count--) {
		if (signal_pending(current)) {
			ret = -EINTR;
			break;
		}
		if (!batch_count--) {
			batch_count = PRECHARGE_COUNT_AT_ONCE;
			cond_resched();
		}
6244 6245
		ret = __mem_cgroup_try_charge(NULL,
					GFP_KERNEL, 1, &memcg, false);
6246
		if (ret)
6247
			/* mem_cgroup_clear_mc() will do uncharge later */
6248
			return ret;
6249 6250
		mc.precharge++;
	}
6251 6252 6253 6254
	return ret;
}

/**
6255
 * get_mctgt_type - get target type of moving charge
6256 6257 6258
 * @vma: the vma the pte to be checked belongs
 * @addr: the address corresponding to the pte to be checked
 * @ptent: the pte to be checked
6259
 * @target: the pointer the target page or swap ent will be stored(can be NULL)
6260 6261 6262 6263 6264 6265
 *
 * Returns
 *   0(MC_TARGET_NONE): if the pte is not a target for move charge.
 *   1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
 *     move charge. if @target is not NULL, the page is stored in target->page
 *     with extra refcnt got(Callers should handle it).
6266 6267 6268
 *   2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
 *     target for charge migration. if @target is not NULL, the entry is stored
 *     in target->ent.
6269 6270 6271 6272 6273
 *
 * Called with pte lock held.
 */
union mc_target {
	struct page	*page;
6274
	swp_entry_t	ent;
6275 6276 6277
};

enum mc_target_type {
6278
	MC_TARGET_NONE = 0,
6279
	MC_TARGET_PAGE,
6280
	MC_TARGET_SWAP,
6281 6282
};

D
Daisuke Nishimura 已提交
6283 6284
static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
						unsigned long addr, pte_t ptent)
6285
{
D
Daisuke Nishimura 已提交
6286
	struct page *page = vm_normal_page(vma, addr, ptent);
6287

D
Daisuke Nishimura 已提交
6288 6289 6290 6291
	if (!page || !page_mapped(page))
		return NULL;
	if (PageAnon(page)) {
		/* we don't move shared anon */
6292
		if (!move_anon())
D
Daisuke Nishimura 已提交
6293
			return NULL;
6294 6295
	} else if (!move_file())
		/* we ignore mapcount for file pages */
D
Daisuke Nishimura 已提交
6296 6297 6298 6299 6300 6301 6302
		return NULL;
	if (!get_page_unless_zero(page))
		return NULL;

	return page;
}

6303
#ifdef CONFIG_SWAP
D
Daisuke Nishimura 已提交
6304 6305 6306 6307 6308 6309 6310 6311
static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
			unsigned long addr, pte_t ptent, swp_entry_t *entry)
{
	struct page *page = NULL;
	swp_entry_t ent = pte_to_swp_entry(ptent);

	if (!move_anon() || non_swap_entry(ent))
		return NULL;
6312 6313 6314 6315
	/*
	 * Because lookup_swap_cache() updates some statistics counter,
	 * we call find_get_page() with swapper_space directly.
	 */
6316
	page = find_get_page(swap_address_space(ent), ent.val);
D
Daisuke Nishimura 已提交
6317 6318 6319 6320 6321
	if (do_swap_account)
		entry->val = ent.val;

	return page;
}
6322 6323 6324 6325 6326 6327 6328
#else
static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
			unsigned long addr, pte_t ptent, swp_entry_t *entry)
{
	return NULL;
}
#endif
D
Daisuke Nishimura 已提交
6329

6330 6331 6332 6333 6334 6335 6336 6337 6338 6339 6340 6341 6342 6343 6344 6345 6346 6347 6348
static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
			unsigned long addr, pte_t ptent, swp_entry_t *entry)
{
	struct page *page = NULL;
	struct address_space *mapping;
	pgoff_t pgoff;

	if (!vma->vm_file) /* anonymous vma */
		return NULL;
	if (!move_file())
		return NULL;

	mapping = vma->vm_file->f_mapping;
	if (pte_none(ptent))
		pgoff = linear_page_index(vma, addr);
	else /* pte_file(ptent) is true */
		pgoff = pte_to_pgoff(ptent);

	/* page is moved even if it's not RSS of this task(page-faulted). */
6349 6350 6351 6352 6353 6354
	page = find_get_page(mapping, pgoff);

#ifdef CONFIG_SWAP
	/* shmem/tmpfs may report page out on swap: account for that too. */
	if (radix_tree_exceptional_entry(page)) {
		swp_entry_t swap = radix_to_swp_entry(page);
6355
		if (do_swap_account)
6356
			*entry = swap;
6357
		page = find_get_page(swap_address_space(swap), swap.val);
6358
	}
6359
#endif
6360 6361 6362
	return page;
}

6363
static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
D
Daisuke Nishimura 已提交
6364 6365 6366 6367
		unsigned long addr, pte_t ptent, union mc_target *target)
{
	struct page *page = NULL;
	struct page_cgroup *pc;
6368
	enum mc_target_type ret = MC_TARGET_NONE;
D
Daisuke Nishimura 已提交
6369 6370 6371 6372 6373 6374
	swp_entry_t ent = { .val = 0 };

	if (pte_present(ptent))
		page = mc_handle_present_pte(vma, addr, ptent);
	else if (is_swap_pte(ptent))
		page = mc_handle_swap_pte(vma, addr, ptent, &ent);
6375 6376
	else if (pte_none(ptent) || pte_file(ptent))
		page = mc_handle_file_pte(vma, addr, ptent, &ent);
D
Daisuke Nishimura 已提交
6377 6378

	if (!page && !ent.val)
6379
		return ret;
6380 6381 6382 6383 6384 6385 6386 6387 6388 6389 6390 6391 6392 6393 6394
	if (page) {
		pc = lookup_page_cgroup(page);
		/*
		 * Do only loose check w/o page_cgroup lock.
		 * mem_cgroup_move_account() checks the pc is valid or not under
		 * the lock.
		 */
		if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
			ret = MC_TARGET_PAGE;
			if (target)
				target->page = page;
		}
		if (!ret || !target)
			put_page(page);
	}
D
Daisuke Nishimura 已提交
6395 6396
	/* There is a swap entry and a page doesn't exist or isn't charged */
	if (ent.val && !ret &&
6397
			css_id(&mc.from->css) == lookup_swap_cgroup_id(ent)) {
6398 6399 6400
		ret = MC_TARGET_SWAP;
		if (target)
			target->ent = ent;
6401 6402 6403 6404
	}
	return ret;
}

6405 6406 6407 6408 6409 6410 6411 6412 6413 6414 6415 6416 6417 6418 6419 6420 6421 6422 6423 6424 6425 6426 6427 6428 6429 6430 6431 6432 6433 6434 6435 6436 6437 6438 6439
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
/*
 * We don't consider swapping or file mapped pages because THP does not
 * support them for now.
 * Caller should make sure that pmd_trans_huge(pmd) is true.
 */
static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
		unsigned long addr, pmd_t pmd, union mc_target *target)
{
	struct page *page = NULL;
	struct page_cgroup *pc;
	enum mc_target_type ret = MC_TARGET_NONE;

	page = pmd_page(pmd);
	VM_BUG_ON(!page || !PageHead(page));
	if (!move_anon())
		return ret;
	pc = lookup_page_cgroup(page);
	if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
		ret = MC_TARGET_PAGE;
		if (target) {
			get_page(page);
			target->page = page;
		}
	}
	return ret;
}
#else
static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
		unsigned long addr, pmd_t pmd, union mc_target *target)
{
	return MC_TARGET_NONE;
}
#endif

6440 6441 6442 6443 6444 6445 6446 6447
static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
					unsigned long addr, unsigned long end,
					struct mm_walk *walk)
{
	struct vm_area_struct *vma = walk->private;
	pte_t *pte;
	spinlock_t *ptl;

6448 6449 6450 6451
	if (pmd_trans_huge_lock(pmd, vma) == 1) {
		if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
			mc.precharge += HPAGE_PMD_NR;
		spin_unlock(&vma->vm_mm->page_table_lock);
6452
		return 0;
6453
	}
6454

6455 6456
	if (pmd_trans_unstable(pmd))
		return 0;
6457 6458
	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
	for (; addr != end; pte++, addr += PAGE_SIZE)
6459
		if (get_mctgt_type(vma, addr, *pte, NULL))
6460 6461 6462 6463
			mc.precharge++;	/* increment precharge temporarily */
	pte_unmap_unlock(pte - 1, ptl);
	cond_resched();

6464 6465 6466
	return 0;
}

6467 6468 6469 6470 6471
static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
{
	unsigned long precharge;
	struct vm_area_struct *vma;

6472
	down_read(&mm->mmap_sem);
6473 6474 6475 6476 6477 6478 6479 6480 6481 6482 6483
	for (vma = mm->mmap; vma; vma = vma->vm_next) {
		struct mm_walk mem_cgroup_count_precharge_walk = {
			.pmd_entry = mem_cgroup_count_precharge_pte_range,
			.mm = mm,
			.private = vma,
		};
		if (is_vm_hugetlb_page(vma))
			continue;
		walk_page_range(vma->vm_start, vma->vm_end,
					&mem_cgroup_count_precharge_walk);
	}
6484
	up_read(&mm->mmap_sem);
6485 6486 6487 6488 6489 6490 6491 6492 6493

	precharge = mc.precharge;
	mc.precharge = 0;

	return precharge;
}

static int mem_cgroup_precharge_mc(struct mm_struct *mm)
{
6494 6495 6496 6497 6498
	unsigned long precharge = mem_cgroup_count_precharge(mm);

	VM_BUG_ON(mc.moving_task);
	mc.moving_task = current;
	return mem_cgroup_do_precharge(precharge);
6499 6500
}

6501 6502
/* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
static void __mem_cgroup_clear_mc(void)
6503
{
6504 6505
	struct mem_cgroup *from = mc.from;
	struct mem_cgroup *to = mc.to;
L
Li Zefan 已提交
6506
	int i;
6507

6508
	/* we must uncharge all the leftover precharges from mc.to */
6509 6510 6511 6512 6513 6514 6515 6516 6517 6518 6519
	if (mc.precharge) {
		__mem_cgroup_cancel_charge(mc.to, mc.precharge);
		mc.precharge = 0;
	}
	/*
	 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
	 * we must uncharge here.
	 */
	if (mc.moved_charge) {
		__mem_cgroup_cancel_charge(mc.from, mc.moved_charge);
		mc.moved_charge = 0;
6520
	}
6521 6522 6523 6524 6525 6526
	/* we must fixup refcnts and charges */
	if (mc.moved_swap) {
		/* uncharge swap account from the old cgroup */
		if (!mem_cgroup_is_root(mc.from))
			res_counter_uncharge(&mc.from->memsw,
						PAGE_SIZE * mc.moved_swap);
L
Li Zefan 已提交
6527 6528 6529

		for (i = 0; i < mc.moved_swap; i++)
			css_put(&mc.from->css);
6530 6531 6532 6533 6534 6535 6536 6537 6538

		if (!mem_cgroup_is_root(mc.to)) {
			/*
			 * we charged both to->res and to->memsw, so we should
			 * uncharge to->res.
			 */
			res_counter_uncharge(&mc.to->res,
						PAGE_SIZE * mc.moved_swap);
		}
L
Li Zefan 已提交
6539
		/* we've already done css_get(mc.to) */
6540 6541
		mc.moved_swap = 0;
	}
6542 6543 6544 6545 6546 6547 6548 6549 6550 6551 6552 6553 6554 6555 6556
	memcg_oom_recover(from);
	memcg_oom_recover(to);
	wake_up_all(&mc.waitq);
}

static void mem_cgroup_clear_mc(void)
{
	struct mem_cgroup *from = mc.from;

	/*
	 * we must clear moving_task before waking up waiters at the end of
	 * task migration.
	 */
	mc.moving_task = NULL;
	__mem_cgroup_clear_mc();
6557
	spin_lock(&mc.lock);
6558 6559
	mc.from = NULL;
	mc.to = NULL;
6560
	spin_unlock(&mc.lock);
6561
	mem_cgroup_end_move(from);
6562 6563
}

6564
static int mem_cgroup_can_attach(struct cgroup_subsys_state *css,
6565
				 struct cgroup_taskset *tset)
6566
{
6567
	struct task_struct *p = cgroup_taskset_first(tset);
6568
	int ret = 0;
6569
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
6570
	unsigned long move_charge_at_immigrate;
6571

6572 6573 6574 6575 6576 6577 6578
	/*
	 * We are now commited to this value whatever it is. Changes in this
	 * tunable will only affect upcoming migrations, not the current one.
	 * So we need to save it, and keep it going.
	 */
	move_charge_at_immigrate  = memcg->move_charge_at_immigrate;
	if (move_charge_at_immigrate) {
6579 6580 6581
		struct mm_struct *mm;
		struct mem_cgroup *from = mem_cgroup_from_task(p);

6582
		VM_BUG_ON(from == memcg);
6583 6584 6585 6586 6587

		mm = get_task_mm(p);
		if (!mm)
			return 0;
		/* We move charges only when we move a owner of the mm */
6588 6589 6590 6591
		if (mm->owner == p) {
			VM_BUG_ON(mc.from);
			VM_BUG_ON(mc.to);
			VM_BUG_ON(mc.precharge);
6592
			VM_BUG_ON(mc.moved_charge);
6593
			VM_BUG_ON(mc.moved_swap);
6594
			mem_cgroup_start_move(from);
6595
			spin_lock(&mc.lock);
6596
			mc.from = from;
6597
			mc.to = memcg;
6598
			mc.immigrate_flags = move_charge_at_immigrate;
6599
			spin_unlock(&mc.lock);
6600
			/* We set mc.moving_task later */
6601 6602 6603 6604

			ret = mem_cgroup_precharge_mc(mm);
			if (ret)
				mem_cgroup_clear_mc();
6605 6606
		}
		mmput(mm);
6607 6608 6609 6610
	}
	return ret;
}

6611
static void mem_cgroup_cancel_attach(struct cgroup_subsys_state *css,
6612
				     struct cgroup_taskset *tset)
6613
{
6614
	mem_cgroup_clear_mc();
6615 6616
}

6617 6618 6619
static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
				unsigned long addr, unsigned long end,
				struct mm_walk *walk)
6620
{
6621 6622 6623 6624
	int ret = 0;
	struct vm_area_struct *vma = walk->private;
	pte_t *pte;
	spinlock_t *ptl;
6625 6626 6627 6628
	enum mc_target_type target_type;
	union mc_target target;
	struct page *page;
	struct page_cgroup *pc;
6629

6630 6631 6632 6633 6634 6635 6636 6637 6638 6639 6640
	/*
	 * We don't take compound_lock() here but no race with splitting thp
	 * happens because:
	 *  - if pmd_trans_huge_lock() returns 1, the relevant thp is not
	 *    under splitting, which means there's no concurrent thp split,
	 *  - if another thread runs into split_huge_page() just after we
	 *    entered this if-block, the thread must wait for page table lock
	 *    to be unlocked in __split_huge_page_splitting(), where the main
	 *    part of thp split is not executed yet.
	 */
	if (pmd_trans_huge_lock(pmd, vma) == 1) {
6641
		if (mc.precharge < HPAGE_PMD_NR) {
6642 6643 6644 6645 6646 6647 6648 6649 6650
			spin_unlock(&vma->vm_mm->page_table_lock);
			return 0;
		}
		target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
		if (target_type == MC_TARGET_PAGE) {
			page = target.page;
			if (!isolate_lru_page(page)) {
				pc = lookup_page_cgroup(page);
				if (!mem_cgroup_move_account(page, HPAGE_PMD_NR,
6651
							pc, mc.from, mc.to)) {
6652 6653 6654 6655 6656 6657 6658 6659
					mc.precharge -= HPAGE_PMD_NR;
					mc.moved_charge += HPAGE_PMD_NR;
				}
				putback_lru_page(page);
			}
			put_page(page);
		}
		spin_unlock(&vma->vm_mm->page_table_lock);
6660
		return 0;
6661 6662
	}

6663 6664
	if (pmd_trans_unstable(pmd))
		return 0;
6665 6666 6667 6668
retry:
	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
	for (; addr != end; addr += PAGE_SIZE) {
		pte_t ptent = *(pte++);
6669
		swp_entry_t ent;
6670 6671 6672 6673

		if (!mc.precharge)
			break;

6674
		switch (get_mctgt_type(vma, addr, ptent, &target)) {
6675 6676 6677 6678 6679
		case MC_TARGET_PAGE:
			page = target.page;
			if (isolate_lru_page(page))
				goto put;
			pc = lookup_page_cgroup(page);
6680
			if (!mem_cgroup_move_account(page, 1, pc,
6681
						     mc.from, mc.to)) {
6682
				mc.precharge--;
6683 6684
				/* we uncharge from mc.from later. */
				mc.moved_charge++;
6685 6686
			}
			putback_lru_page(page);
6687
put:			/* get_mctgt_type() gets the page */
6688 6689
			put_page(page);
			break;
6690 6691
		case MC_TARGET_SWAP:
			ent = target.ent;
6692
			if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
6693
				mc.precharge--;
6694 6695 6696
				/* we fixup refcnts and charges later. */
				mc.moved_swap++;
			}
6697
			break;
6698 6699 6700 6701 6702 6703 6704 6705 6706 6707 6708 6709 6710 6711
		default:
			break;
		}
	}
	pte_unmap_unlock(pte - 1, ptl);
	cond_resched();

	if (addr != end) {
		/*
		 * We have consumed all precharges we got in can_attach().
		 * We try charge one by one, but don't do any additional
		 * charges to mc.to if we have failed in charge once in attach()
		 * phase.
		 */
6712
		ret = mem_cgroup_do_precharge(1);
6713 6714 6715 6716 6717 6718 6719 6720 6721 6722 6723 6724
		if (!ret)
			goto retry;
	}

	return ret;
}

static void mem_cgroup_move_charge(struct mm_struct *mm)
{
	struct vm_area_struct *vma;

	lru_add_drain_all();
6725 6726 6727 6728 6729 6730 6731 6732 6733 6734 6735 6736 6737
retry:
	if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
		/*
		 * Someone who are holding the mmap_sem might be waiting in
		 * waitq. So we cancel all extra charges, wake up all waiters,
		 * and retry. Because we cancel precharges, we might not be able
		 * to move enough charges, but moving charge is a best-effort
		 * feature anyway, so it wouldn't be a big problem.
		 */
		__mem_cgroup_clear_mc();
		cond_resched();
		goto retry;
	}
6738 6739 6740 6741 6742 6743 6744 6745 6746 6747 6748 6749 6750 6751 6752 6753 6754 6755
	for (vma = mm->mmap; vma; vma = vma->vm_next) {
		int ret;
		struct mm_walk mem_cgroup_move_charge_walk = {
			.pmd_entry = mem_cgroup_move_charge_pte_range,
			.mm = mm,
			.private = vma,
		};
		if (is_vm_hugetlb_page(vma))
			continue;
		ret = walk_page_range(vma->vm_start, vma->vm_end,
						&mem_cgroup_move_charge_walk);
		if (ret)
			/*
			 * means we have consumed all precharges and failed in
			 * doing additional charge. Just abandon here.
			 */
			break;
	}
6756
	up_read(&mm->mmap_sem);
6757 6758
}

6759
static void mem_cgroup_move_task(struct cgroup_subsys_state *css,
6760
				 struct cgroup_taskset *tset)
B
Balbir Singh 已提交
6761
{
6762
	struct task_struct *p = cgroup_taskset_first(tset);
6763
	struct mm_struct *mm = get_task_mm(p);
6764 6765

	if (mm) {
6766 6767
		if (mc.to)
			mem_cgroup_move_charge(mm);
6768 6769
		mmput(mm);
	}
6770 6771
	if (mc.to)
		mem_cgroup_clear_mc();
B
Balbir Singh 已提交
6772
}
6773
#else	/* !CONFIG_MMU */
6774
static int mem_cgroup_can_attach(struct cgroup_subsys_state *css,
6775
				 struct cgroup_taskset *tset)
6776 6777 6778
{
	return 0;
}
6779
static void mem_cgroup_cancel_attach(struct cgroup_subsys_state *css,
6780
				     struct cgroup_taskset *tset)
6781 6782
{
}
6783
static void mem_cgroup_move_task(struct cgroup_subsys_state *css,
6784
				 struct cgroup_taskset *tset)
6785 6786 6787
{
}
#endif
B
Balbir Singh 已提交
6788

6789 6790 6791 6792
/*
 * Cgroup retains root cgroups across [un]mount cycles making it necessary
 * to verify sane_behavior flag on each mount attempt.
 */
6793
static void mem_cgroup_bind(struct cgroup_subsys_state *root_css)
6794 6795 6796 6797 6798 6799
{
	/*
	 * use_hierarchy is forced with sane_behavior.  cgroup core
	 * guarantees that @root doesn't have any children, so turning it
	 * on for the root memcg is enough.
	 */
6800 6801
	if (cgroup_sane_behavior(root_css->cgroup))
		mem_cgroup_from_css(root_css)->use_hierarchy = true;
6802 6803
}

B
Balbir Singh 已提交
6804 6805 6806
struct cgroup_subsys mem_cgroup_subsys = {
	.name = "memory",
	.subsys_id = mem_cgroup_subsys_id,
6807
	.css_alloc = mem_cgroup_css_alloc,
6808
	.css_online = mem_cgroup_css_online,
6809 6810
	.css_offline = mem_cgroup_css_offline,
	.css_free = mem_cgroup_css_free,
6811 6812
	.can_attach = mem_cgroup_can_attach,
	.cancel_attach = mem_cgroup_cancel_attach,
B
Balbir Singh 已提交
6813
	.attach = mem_cgroup_move_task,
6814
	.bind = mem_cgroup_bind,
6815
	.base_cftypes = mem_cgroup_files,
6816
	.early_init = 0,
K
KAMEZAWA Hiroyuki 已提交
6817
	.use_id = 1,
B
Balbir Singh 已提交
6818
};
6819

A
Andrew Morton 已提交
6820
#ifdef CONFIG_MEMCG_SWAP
6821 6822
static int __init enable_swap_account(char *s)
{
6823
	if (!strcmp(s, "1"))
6824
		really_do_swap_account = 1;
6825
	else if (!strcmp(s, "0"))
6826 6827 6828
		really_do_swap_account = 0;
	return 1;
}
6829
__setup("swapaccount=", enable_swap_account);
6830

6831 6832
static void __init memsw_file_init(void)
{
6833 6834 6835 6836 6837 6838 6839 6840 6841
	WARN_ON(cgroup_add_cftypes(&mem_cgroup_subsys, memsw_cgroup_files));
}

static void __init enable_swap_cgroup(void)
{
	if (!mem_cgroup_disabled() && really_do_swap_account) {
		do_swap_account = 1;
		memsw_file_init();
	}
6842
}
6843

6844
#else
6845
static void __init enable_swap_cgroup(void)
6846 6847
{
}
6848
#endif
6849 6850

/*
6851 6852 6853 6854 6855 6856
 * subsys_initcall() for memory controller.
 *
 * Some parts like hotcpu_notifier() have to be initialized from this context
 * because of lock dependencies (cgroup_lock -> cpu hotplug) but basically
 * everything that doesn't depend on a specific mem_cgroup structure should
 * be initialized from here.
6857 6858 6859 6860
 */
static int __init mem_cgroup_init(void)
{
	hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
6861
	enable_swap_cgroup();
6862
	mem_cgroup_soft_limit_tree_init();
6863
	memcg_stock_init();
6864 6865 6866
	return 0;
}
subsys_initcall(mem_cgroup_init);