memcontrol.c 126.1 KB
Newer Older
B
Balbir Singh 已提交
1 2 3 4 5
/* memcontrol.c - Memory Controller
 *
 * Copyright IBM Corporation, 2007
 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
 *
6 7 8
 * Copyright 2007 OpenVZ SWsoft Inc
 * Author: Pavel Emelianov <xemul@openvz.org>
 *
9 10 11 12
 * Memory thresholds
 * Copyright (C) 2009 Nokia Corporation
 * Author: Kirill A. Shutemov
 *
B
Balbir Singh 已提交
13 14 15 16 17 18 19 20 21 22 23 24 25 26
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 */

#include <linux/res_counter.h>
#include <linux/memcontrol.h>
#include <linux/cgroup.h>
27
#include <linux/mm.h>
28
#include <linux/hugetlb.h>
K
KAMEZAWA Hiroyuki 已提交
29
#include <linux/pagemap.h>
30
#include <linux/smp.h>
31
#include <linux/page-flags.h>
32
#include <linux/backing-dev.h>
33 34
#include <linux/bit_spinlock.h>
#include <linux/rcupdate.h>
35
#include <linux/limits.h>
36
#include <linux/mutex.h>
37
#include <linux/rbtree.h>
38
#include <linux/slab.h>
39
#include <linux/swap.h>
40
#include <linux/swapops.h>
41
#include <linux/spinlock.h>
42 43
#include <linux/eventfd.h>
#include <linux/sort.h>
44
#include <linux/fs.h>
45
#include <linux/seq_file.h>
46
#include <linux/vmalloc.h>
47
#include <linux/mm_inline.h>
48
#include <linux/page_cgroup.h>
49
#include <linux/cpu.h>
50
#include <linux/oom.h>
K
KAMEZAWA Hiroyuki 已提交
51
#include "internal.h"
B
Balbir Singh 已提交
52

53 54
#include <asm/uaccess.h>

55 56
#include <trace/events/vmscan.h>

57 58
struct cgroup_subsys mem_cgroup_subsys __read_mostly;
#define MEM_CGROUP_RECLAIM_RETRIES	5
59
struct mem_cgroup *root_mem_cgroup __read_mostly;
B
Balbir Singh 已提交
60

61
#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
L
Li Zefan 已提交
62
/* Turned on only when memory cgroup is enabled && really_do_swap_account = 1 */
63 64 65 66 67 68
int do_swap_account __read_mostly;
static int really_do_swap_account __initdata = 1; /* for remember boot option*/
#else
#define do_swap_account		(0)
#endif

69 70 71 72 73 74 75 76 77
/*
 * Per memcg event counter is incremented at every pagein/pageout. This counter
 * is used for trigger some periodic events. This is straightforward and better
 * than using jiffies etc. to handle periodic memcg event.
 *
 * These values will be used as !((event) & ((1 <<(thresh)) - 1))
 */
#define THRESHOLDS_EVENTS_THRESH (7) /* once in 128 */
#define SOFTLIMIT_EVENTS_THRESH (10) /* once in 1024 */
78

79 80 81 82 83 84 85 86
/*
 * Statistics for memory cgroup.
 */
enum mem_cgroup_stat_index {
	/*
	 * For MEM_CONTAINER_TYPE_ALL, usage = pagecache + rss.
	 */
	MEM_CGROUP_STAT_CACHE, 	   /* # of pages charged as cache */
87
	MEM_CGROUP_STAT_RSS,	   /* # of pages charged as anon rss */
88
	MEM_CGROUP_STAT_FILE_MAPPED,  /* # of pages charged as file rss */
89 90
	MEM_CGROUP_STAT_PGPGIN_COUNT,	/* # of pages paged in */
	MEM_CGROUP_STAT_PGPGOUT_COUNT,	/* # of pages paged out */
91
	MEM_CGROUP_STAT_SWAPOUT, /* # of pages, swapped out */
92 93 94
	MEM_CGROUP_STAT_DATA, /* end of data requires synchronization */
	/* incremented at every  pagein/pageout */
	MEM_CGROUP_EVENTS = MEM_CGROUP_STAT_DATA,
95
	MEM_CGROUP_ON_MOVE,	/* someone is moving account between groups */
96 97 98 99 100 101 102 103

	MEM_CGROUP_STAT_NSTATS,
};

struct mem_cgroup_stat_cpu {
	s64 count[MEM_CGROUP_STAT_NSTATS];
};

104 105 106 107
/*
 * per-zone information in memory controller.
 */
struct mem_cgroup_per_zone {
108 109 110
	/*
	 * spin_lock to protect the per cgroup LRU
	 */
111 112
	struct list_head	lists[NR_LRU_LISTS];
	unsigned long		count[NR_LRU_LISTS];
K
KOSAKI Motohiro 已提交
113 114

	struct zone_reclaim_stat reclaim_stat;
115 116 117 118
	struct rb_node		tree_node;	/* RB tree node */
	unsigned long long	usage_in_excess;/* Set to the value by which */
						/* the soft limit is exceeded*/
	bool			on_tree;
119 120
	struct mem_cgroup	*mem;		/* Back pointer, we cannot */
						/* use container_of	   */
121 122 123 124 125 126 127 128 129 130 131 132
};
/* Macro for accessing counter */
#define MEM_CGROUP_ZSTAT(mz, idx)	((mz)->count[(idx)])

struct mem_cgroup_per_node {
	struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
};

struct mem_cgroup_lru_info {
	struct mem_cgroup_per_node *nodeinfo[MAX_NUMNODES];
};

133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152
/*
 * Cgroups above their limits are maintained in a RB-Tree, independent of
 * their hierarchy representation
 */

struct mem_cgroup_tree_per_zone {
	struct rb_root rb_root;
	spinlock_t lock;
};

struct mem_cgroup_tree_per_node {
	struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
};

struct mem_cgroup_tree {
	struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
};

static struct mem_cgroup_tree soft_limit_tree __read_mostly;

153 154 155 156 157
struct mem_cgroup_threshold {
	struct eventfd_ctx *eventfd;
	u64 threshold;
};

K
KAMEZAWA Hiroyuki 已提交
158
/* For threshold */
159 160
struct mem_cgroup_threshold_ary {
	/* An array index points to threshold just below usage. */
161
	int current_threshold;
162 163 164 165 166
	/* Size of entries[] */
	unsigned int size;
	/* Array of thresholds */
	struct mem_cgroup_threshold entries[0];
};
167 168 169 170 171 172 173 174 175 176 177 178

struct mem_cgroup_thresholds {
	/* Primary thresholds array */
	struct mem_cgroup_threshold_ary *primary;
	/*
	 * Spare threshold array.
	 * This is needed to make mem_cgroup_unregister_event() "never fail".
	 * It must be able to store at least primary->size - 1 entries.
	 */
	struct mem_cgroup_threshold_ary *spare;
};

K
KAMEZAWA Hiroyuki 已提交
179 180 181 182 183
/* for OOM */
struct mem_cgroup_eventfd_list {
	struct list_head list;
	struct eventfd_ctx *eventfd;
};
184 185

static void mem_cgroup_threshold(struct mem_cgroup *mem);
K
KAMEZAWA Hiroyuki 已提交
186
static void mem_cgroup_oom_notify(struct mem_cgroup *mem);
187

B
Balbir Singh 已提交
188 189 190 191 192 193 194
/*
 * The memory controller data structure. The memory controller controls both
 * page cache and RSS per cgroup. We would eventually like to provide
 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
 * to help the administrator determine what knobs to tune.
 *
 * TODO: Add a water mark for the memory controller. Reclaim will begin when
195 196 197
 * we hit the water mark. May be even add a low water mark, such that
 * no reclaim occurs from a cgroup at it's low water mark, this is
 * a feature that will be implemented much later in the future.
B
Balbir Singh 已提交
198 199 200 201 202 203 204
 */
struct mem_cgroup {
	struct cgroup_subsys_state css;
	/*
	 * the counter to account for memory usage
	 */
	struct res_counter res;
205 206 207 208
	/*
	 * the counter to account for mem+swap usage.
	 */
	struct res_counter memsw;
209 210 211 212
	/*
	 * Per cgroup active and inactive list, similar to the
	 * per zone LRU lists.
	 */
213
	struct mem_cgroup_lru_info info;
214

K
KOSAKI Motohiro 已提交
215 216 217 218 219
	/*
	  protect against reclaim related member.
	*/
	spinlock_t reclaim_param_lock;

220
	/*
221
	 * While reclaiming in a hierarchy, we cache the last child we
K
KAMEZAWA Hiroyuki 已提交
222
	 * reclaimed from.
223
	 */
K
KAMEZAWA Hiroyuki 已提交
224
	int last_scanned_child;
225 226 227 228
	/*
	 * Should the accounting and control be hierarchical, per subtree?
	 */
	bool use_hierarchy;
K
KAMEZAWA Hiroyuki 已提交
229
	atomic_t	oom_lock;
230
	atomic_t	refcnt;
231

K
KOSAKI Motohiro 已提交
232
	unsigned int	swappiness;
233 234
	/* OOM-Killer disable */
	int		oom_kill_disable;
K
KOSAKI Motohiro 已提交
235

236 237 238
	/* set when res.limit == memsw.limit */
	bool		memsw_is_minimum;

239 240 241 242
	/* protect arrays of thresholds */
	struct mutex thresholds_lock;

	/* thresholds for memory usage. RCU-protected */
243
	struct mem_cgroup_thresholds thresholds;
244

245
	/* thresholds for mem+swap usage. RCU-protected */
246
	struct mem_cgroup_thresholds memsw_thresholds;
247

K
KAMEZAWA Hiroyuki 已提交
248 249 250
	/* For oom notifier event fd */
	struct list_head oom_notify;

251 252 253 254 255
	/*
	 * Should we move charges of a task when a task is moved into this
	 * mem_cgroup ? And what type of charges should we move ?
	 */
	unsigned long 	move_charge_at_immigrate;
256
	/*
257
	 * percpu counter.
258
	 */
259
	struct mem_cgroup_stat_cpu *stat;
260 261 262 263 264 265
	/*
	 * used when a cpu is offlined or other synchronizations
	 * See mem_cgroup_read_stat().
	 */
	struct mem_cgroup_stat_cpu nocpu_base;
	spinlock_t pcp_counter_lock;
B
Balbir Singh 已提交
266 267
};

268 269 270 271 272 273
/* Stuffs for move charges at task migration. */
/*
 * Types of charges to be moved. "move_charge_at_immitgrate" is treated as a
 * left-shifted bitmap of these types.
 */
enum move_type {
274
	MOVE_CHARGE_TYPE_ANON,	/* private anonymous page and swap of it */
275
	MOVE_CHARGE_TYPE_FILE,	/* file page(including tmpfs) and swap of it */
276 277 278
	NR_MOVE_TYPE,
};

279 280
/* "mc" and its members are protected by cgroup_mutex */
static struct move_charge_struct {
281
	spinlock_t	  lock; /* for from, to, moving_task */
282 283 284
	struct mem_cgroup *from;
	struct mem_cgroup *to;
	unsigned long precharge;
285
	unsigned long moved_charge;
286
	unsigned long moved_swap;
287 288 289
	struct task_struct *moving_task;	/* a task moving charges */
	wait_queue_head_t waitq;		/* a waitq for other context */
} mc = {
290
	.lock = __SPIN_LOCK_UNLOCKED(mc.lock),
291 292
	.waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
};
293

D
Daisuke Nishimura 已提交
294 295 296 297 298 299
static bool move_anon(void)
{
	return test_bit(MOVE_CHARGE_TYPE_ANON,
					&mc.to->move_charge_at_immigrate);
}

300 301 302 303 304 305
static bool move_file(void)
{
	return test_bit(MOVE_CHARGE_TYPE_FILE,
					&mc.to->move_charge_at_immigrate);
}

306 307 308 309 310 311 312
/*
 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
 * limit reclaim to prevent infinite loops, if they ever occur.
 */
#define	MEM_CGROUP_MAX_RECLAIM_LOOPS		(100)
#define	MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS	(2)

313 314 315
enum charge_type {
	MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
	MEM_CGROUP_CHARGE_TYPE_MAPPED,
316
	MEM_CGROUP_CHARGE_TYPE_SHMEM,	/* used by page migration of shmem */
317
	MEM_CGROUP_CHARGE_TYPE_FORCE,	/* used by force_empty */
K
KAMEZAWA Hiroyuki 已提交
318
	MEM_CGROUP_CHARGE_TYPE_SWAPOUT,	/* for accounting swapcache */
K
KAMEZAWA Hiroyuki 已提交
319
	MEM_CGROUP_CHARGE_TYPE_DROP,	/* a page was unused swap cache */
320 321 322
	NR_CHARGE_TYPE,
};

323 324 325 326
/* only for here (for easy reading.) */
#define PCGF_CACHE	(1UL << PCG_CACHE)
#define PCGF_USED	(1UL << PCG_USED)
#define PCGF_LOCK	(1UL << PCG_LOCK)
327 328
/* Not used, but added here for completeness */
#define PCGF_ACCT	(1UL << PCG_ACCT)
329

330 331 332
/* for encoding cft->private value on file */
#define _MEM			(0)
#define _MEMSWAP		(1)
K
KAMEZAWA Hiroyuki 已提交
333
#define _OOM_TYPE		(2)
334 335 336
#define MEMFILE_PRIVATE(x, val)	(((x) << 16) | (val))
#define MEMFILE_TYPE(val)	(((val) >> 16) & 0xffff)
#define MEMFILE_ATTR(val)	((val) & 0xffff)
K
KAMEZAWA Hiroyuki 已提交
337 338
/* Used for OOM nofiier */
#define OOM_CONTROL		(0)
339

340 341 342 343 344 345 346
/*
 * Reclaim flags for mem_cgroup_hierarchical_reclaim
 */
#define MEM_CGROUP_RECLAIM_NOSWAP_BIT	0x0
#define MEM_CGROUP_RECLAIM_NOSWAP	(1 << MEM_CGROUP_RECLAIM_NOSWAP_BIT)
#define MEM_CGROUP_RECLAIM_SHRINK_BIT	0x1
#define MEM_CGROUP_RECLAIM_SHRINK	(1 << MEM_CGROUP_RECLAIM_SHRINK_BIT)
347 348
#define MEM_CGROUP_RECLAIM_SOFT_BIT	0x2
#define MEM_CGROUP_RECLAIM_SOFT		(1 << MEM_CGROUP_RECLAIM_SOFT_BIT)
349

350 351
static void mem_cgroup_get(struct mem_cgroup *mem);
static void mem_cgroup_put(struct mem_cgroup *mem);
352
static struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *mem);
353
static void drain_all_stock_async(void);
354

355 356 357 358 359 360
static struct mem_cgroup_per_zone *
mem_cgroup_zoneinfo(struct mem_cgroup *mem, int nid, int zid)
{
	return &mem->info.nodeinfo[nid]->zoneinfo[zid];
}

361 362 363 364 365
struct cgroup_subsys_state *mem_cgroup_css(struct mem_cgroup *mem)
{
	return &mem->css;
}

366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394
static struct mem_cgroup_per_zone *
page_cgroup_zoneinfo(struct page_cgroup *pc)
{
	struct mem_cgroup *mem = pc->mem_cgroup;
	int nid = page_cgroup_nid(pc);
	int zid = page_cgroup_zid(pc);

	if (!mem)
		return NULL;

	return mem_cgroup_zoneinfo(mem, nid, zid);
}

static struct mem_cgroup_tree_per_zone *
soft_limit_tree_node_zone(int nid, int zid)
{
	return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
}

static struct mem_cgroup_tree_per_zone *
soft_limit_tree_from_page(struct page *page)
{
	int nid = page_to_nid(page);
	int zid = page_zonenum(page);

	return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
}

static void
395
__mem_cgroup_insert_exceeded(struct mem_cgroup *mem,
396
				struct mem_cgroup_per_zone *mz,
397 398
				struct mem_cgroup_tree_per_zone *mctz,
				unsigned long long new_usage_in_excess)
399 400 401 402 403 404 405 406
{
	struct rb_node **p = &mctz->rb_root.rb_node;
	struct rb_node *parent = NULL;
	struct mem_cgroup_per_zone *mz_node;

	if (mz->on_tree)
		return;

407 408 409
	mz->usage_in_excess = new_usage_in_excess;
	if (!mz->usage_in_excess)
		return;
410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425
	while (*p) {
		parent = *p;
		mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
					tree_node);
		if (mz->usage_in_excess < mz_node->usage_in_excess)
			p = &(*p)->rb_left;
		/*
		 * We can't avoid mem cgroups that are over their soft
		 * limit by the same amount
		 */
		else if (mz->usage_in_excess >= mz_node->usage_in_excess)
			p = &(*p)->rb_right;
	}
	rb_link_node(&mz->tree_node, parent, p);
	rb_insert_color(&mz->tree_node, &mctz->rb_root);
	mz->on_tree = true;
426 427 428 429 430 431 432 433 434 435 436 437 438
}

static void
__mem_cgroup_remove_exceeded(struct mem_cgroup *mem,
				struct mem_cgroup_per_zone *mz,
				struct mem_cgroup_tree_per_zone *mctz)
{
	if (!mz->on_tree)
		return;
	rb_erase(&mz->tree_node, &mctz->rb_root);
	mz->on_tree = false;
}

439 440 441 442 443 444
static void
mem_cgroup_remove_exceeded(struct mem_cgroup *mem,
				struct mem_cgroup_per_zone *mz,
				struct mem_cgroup_tree_per_zone *mctz)
{
	spin_lock(&mctz->lock);
445
	__mem_cgroup_remove_exceeded(mem, mz, mctz);
446 447 448 449 450 451
	spin_unlock(&mctz->lock);
}


static void mem_cgroup_update_tree(struct mem_cgroup *mem, struct page *page)
{
452
	unsigned long long excess;
453 454
	struct mem_cgroup_per_zone *mz;
	struct mem_cgroup_tree_per_zone *mctz;
455 456
	int nid = page_to_nid(page);
	int zid = page_zonenum(page);
457 458 459
	mctz = soft_limit_tree_from_page(page);

	/*
460 461
	 * Necessary to update all ancestors when hierarchy is used.
	 * because their event counter is not touched.
462
	 */
463 464
	for (; mem; mem = parent_mem_cgroup(mem)) {
		mz = mem_cgroup_zoneinfo(mem, nid, zid);
465
		excess = res_counter_soft_limit_excess(&mem->res);
466 467 468 469
		/*
		 * We have to update the tree if mz is on RB-tree or
		 * mem is over its softlimit.
		 */
470
		if (excess || mz->on_tree) {
471 472 473 474 475
			spin_lock(&mctz->lock);
			/* if on-tree, remove it */
			if (mz->on_tree)
				__mem_cgroup_remove_exceeded(mem, mz, mctz);
			/*
476 477
			 * Insert again. mz->usage_in_excess will be updated.
			 * If excess is 0, no tree ops.
478
			 */
479
			__mem_cgroup_insert_exceeded(mem, mz, mctz, excess);
480 481
			spin_unlock(&mctz->lock);
		}
482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499
	}
}

static void mem_cgroup_remove_from_trees(struct mem_cgroup *mem)
{
	int node, zone;
	struct mem_cgroup_per_zone *mz;
	struct mem_cgroup_tree_per_zone *mctz;

	for_each_node_state(node, N_POSSIBLE) {
		for (zone = 0; zone < MAX_NR_ZONES; zone++) {
			mz = mem_cgroup_zoneinfo(mem, node, zone);
			mctz = soft_limit_tree_node_zone(node, zone);
			mem_cgroup_remove_exceeded(mem, mz, mctz);
		}
	}
}

500 501 502 503 504 505 506 507 508
static inline unsigned long mem_cgroup_get_excess(struct mem_cgroup *mem)
{
	return res_counter_soft_limit_excess(&mem->res) >> PAGE_SHIFT;
}

static struct mem_cgroup_per_zone *
__mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
{
	struct rb_node *rightmost = NULL;
509
	struct mem_cgroup_per_zone *mz;
510 511

retry:
512
	mz = NULL;
513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541
	rightmost = rb_last(&mctz->rb_root);
	if (!rightmost)
		goto done;		/* Nothing to reclaim from */

	mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
	/*
	 * Remove the node now but someone else can add it back,
	 * we will to add it back at the end of reclaim to its correct
	 * position in the tree.
	 */
	__mem_cgroup_remove_exceeded(mz->mem, mz, mctz);
	if (!res_counter_soft_limit_excess(&mz->mem->res) ||
		!css_tryget(&mz->mem->css))
		goto retry;
done:
	return mz;
}

static struct mem_cgroup_per_zone *
mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
{
	struct mem_cgroup_per_zone *mz;

	spin_lock(&mctz->lock);
	mz = __mem_cgroup_largest_soft_limit_node(mctz);
	spin_unlock(&mctz->lock);
	return mz;
}

542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560
/*
 * Implementation Note: reading percpu statistics for memcg.
 *
 * Both of vmstat[] and percpu_counter has threshold and do periodic
 * synchronization to implement "quick" read. There are trade-off between
 * reading cost and precision of value. Then, we may have a chance to implement
 * a periodic synchronizion of counter in memcg's counter.
 *
 * But this _read() function is used for user interface now. The user accounts
 * memory usage by memory cgroup and he _always_ requires exact value because
 * he accounts memory. Even if we provide quick-and-fuzzy read, we always
 * have to visit all online cpus and make sum. So, for now, unnecessary
 * synchronization is not implemented. (just implemented for cpu hotplug)
 *
 * If there are kernel internal actions which can make use of some not-exact
 * value, and reading all cpu value can be performance bottleneck in some
 * common workload, threashold and synchonization as vmstat[] should be
 * implemented.
 */
561 562 563 564 565 566
static s64 mem_cgroup_read_stat(struct mem_cgroup *mem,
		enum mem_cgroup_stat_index idx)
{
	int cpu;
	s64 val = 0;

567 568
	get_online_cpus();
	for_each_online_cpu(cpu)
569
		val += per_cpu(mem->stat->count[idx], cpu);
570 571 572 573 574 575
#ifdef CONFIG_HOTPLUG_CPU
	spin_lock(&mem->pcp_counter_lock);
	val += mem->nocpu_base.count[idx];
	spin_unlock(&mem->pcp_counter_lock);
#endif
	put_online_cpus();
576 577 578 579 580 581 582 583 584 585 586 587
	return val;
}

static s64 mem_cgroup_local_usage(struct mem_cgroup *mem)
{
	s64 ret;

	ret = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_RSS);
	ret += mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_CACHE);
	return ret;
}

588 589 590 591
static void mem_cgroup_swap_statistics(struct mem_cgroup *mem,
					 bool charge)
{
	int val = (charge) ? 1 : -1;
592
	this_cpu_add(mem->stat->count[MEM_CGROUP_STAT_SWAPOUT], val);
593 594
}

595 596 597
static void mem_cgroup_charge_statistics(struct mem_cgroup *mem,
					 struct page_cgroup *pc,
					 bool charge)
598
{
599
	int val = (charge) ? 1 : -1;
600

601 602
	preempt_disable();

603
	if (PageCgroupCache(pc))
604
		__this_cpu_add(mem->stat->count[MEM_CGROUP_STAT_CACHE], val);
605
	else
606
		__this_cpu_add(mem->stat->count[MEM_CGROUP_STAT_RSS], val);
607 608

	if (charge)
609
		__this_cpu_inc(mem->stat->count[MEM_CGROUP_STAT_PGPGIN_COUNT]);
610
	else
611
		__this_cpu_inc(mem->stat->count[MEM_CGROUP_STAT_PGPGOUT_COUNT]);
612
	__this_cpu_inc(mem->stat->count[MEM_CGROUP_EVENTS]);
613

614
	preempt_enable();
615 616
}

K
KAMEZAWA Hiroyuki 已提交
617
static unsigned long mem_cgroup_get_local_zonestat(struct mem_cgroup *mem,
618
					enum lru_list idx)
619 620 621 622 623 624 625 626 627 628 629
{
	int nid, zid;
	struct mem_cgroup_per_zone *mz;
	u64 total = 0;

	for_each_online_node(nid)
		for (zid = 0; zid < MAX_NR_ZONES; zid++) {
			mz = mem_cgroup_zoneinfo(mem, nid, zid);
			total += MEM_CGROUP_ZSTAT(mz, idx);
		}
	return total;
630 631
}

632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654
static bool __memcg_event_check(struct mem_cgroup *mem, int event_mask_shift)
{
	s64 val;

	val = this_cpu_read(mem->stat->count[MEM_CGROUP_EVENTS]);

	return !(val & ((1 << event_mask_shift) - 1));
}

/*
 * Check events in order.
 *
 */
static void memcg_check_events(struct mem_cgroup *mem, struct page *page)
{
	/* threshold event is triggered in finer grain than soft limit */
	if (unlikely(__memcg_event_check(mem, THRESHOLDS_EVENTS_THRESH))) {
		mem_cgroup_threshold(mem);
		if (unlikely(__memcg_event_check(mem, SOFTLIMIT_EVENTS_THRESH)))
			mem_cgroup_update_tree(mem, page);
	}
}

655
static struct mem_cgroup *mem_cgroup_from_cont(struct cgroup *cont)
B
Balbir Singh 已提交
656 657 658 659 660 661
{
	return container_of(cgroup_subsys_state(cont,
				mem_cgroup_subsys_id), struct mem_cgroup,
				css);
}

662
struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
663
{
664 665 666 667 668 669 670 671
	/*
	 * mm_update_next_owner() may clear mm->owner to NULL
	 * if it races with swapoff, page migration, etc.
	 * So this can be called with p == NULL.
	 */
	if (unlikely(!p))
		return NULL;

672 673 674 675
	return container_of(task_subsys_state(p, mem_cgroup_subsys_id),
				struct mem_cgroup, css);
}

676 677 678
static struct mem_cgroup *try_get_mem_cgroup_from_mm(struct mm_struct *mm)
{
	struct mem_cgroup *mem = NULL;
679 680 681

	if (!mm)
		return NULL;
682 683 684 685 686 687 688 689 690 691 692 693 694 695 696
	/*
	 * Because we have no locks, mm->owner's may be being moved to other
	 * cgroup. We use css_tryget() here even if this looks
	 * pessimistic (rather than adding locks here).
	 */
	rcu_read_lock();
	do {
		mem = mem_cgroup_from_task(rcu_dereference(mm->owner));
		if (unlikely(!mem))
			break;
	} while (!css_tryget(&mem->css));
	rcu_read_unlock();
	return mem;
}

K
KAMEZAWA Hiroyuki 已提交
697 698
/* The caller has to guarantee "mem" exists before calling this */
static struct mem_cgroup *mem_cgroup_start_loop(struct mem_cgroup *mem)
K
KAMEZAWA Hiroyuki 已提交
699
{
700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721
	struct cgroup_subsys_state *css;
	int found;

	if (!mem) /* ROOT cgroup has the smallest ID */
		return root_mem_cgroup; /*css_put/get against root is ignored*/
	if (!mem->use_hierarchy) {
		if (css_tryget(&mem->css))
			return mem;
		return NULL;
	}
	rcu_read_lock();
	/*
	 * searching a memory cgroup which has the smallest ID under given
	 * ROOT cgroup. (ID >= 1)
	 */
	css = css_get_next(&mem_cgroup_subsys, 1, &mem->css, &found);
	if (css && css_tryget(css))
		mem = container_of(css, struct mem_cgroup, css);
	else
		mem = NULL;
	rcu_read_unlock();
	return mem;
K
KAMEZAWA Hiroyuki 已提交
722 723 724 725 726 727 728 729 730
}

static struct mem_cgroup *mem_cgroup_get_next(struct mem_cgroup *iter,
					struct mem_cgroup *root,
					bool cond)
{
	int nextid = css_id(&iter->css) + 1;
	int found;
	int hierarchy_used;
K
KAMEZAWA Hiroyuki 已提交
731 732
	struct cgroup_subsys_state *css;

K
KAMEZAWA Hiroyuki 已提交
733
	hierarchy_used = iter->use_hierarchy;
K
KAMEZAWA Hiroyuki 已提交
734

K
KAMEZAWA Hiroyuki 已提交
735
	css_put(&iter->css);
736 737
	/* If no ROOT, walk all, ignore hierarchy */
	if (!cond || (root && !hierarchy_used))
K
KAMEZAWA Hiroyuki 已提交
738
		return NULL;
K
KAMEZAWA Hiroyuki 已提交
739

740 741 742
	if (!root)
		root = root_mem_cgroup;

K
KAMEZAWA Hiroyuki 已提交
743 744
	do {
		iter = NULL;
K
KAMEZAWA Hiroyuki 已提交
745
		rcu_read_lock();
K
KAMEZAWA Hiroyuki 已提交
746 747 748

		css = css_get_next(&mem_cgroup_subsys, nextid,
				&root->css, &found);
K
KAMEZAWA Hiroyuki 已提交
749
		if (css && css_tryget(css))
K
KAMEZAWA Hiroyuki 已提交
750
			iter = container_of(css, struct mem_cgroup, css);
K
KAMEZAWA Hiroyuki 已提交
751
		rcu_read_unlock();
K
KAMEZAWA Hiroyuki 已提交
752
		/* If css is NULL, no more cgroups will be found */
K
KAMEZAWA Hiroyuki 已提交
753
		nextid = found + 1;
K
KAMEZAWA Hiroyuki 已提交
754
	} while (css && !iter);
K
KAMEZAWA Hiroyuki 已提交
755

K
KAMEZAWA Hiroyuki 已提交
756
	return iter;
K
KAMEZAWA Hiroyuki 已提交
757
}
K
KAMEZAWA Hiroyuki 已提交
758 759 760 761 762 763 764 765 766 767 768 769 770
/*
 * for_eacn_mem_cgroup_tree() for visiting all cgroup under tree. Please
 * be careful that "break" loop is not allowed. We have reference count.
 * Instead of that modify "cond" to be false and "continue" to exit the loop.
 */
#define for_each_mem_cgroup_tree_cond(iter, root, cond)	\
	for (iter = mem_cgroup_start_loop(root);\
	     iter != NULL;\
	     iter = mem_cgroup_get_next(iter, root, cond))

#define for_each_mem_cgroup_tree(iter, root) \
	for_each_mem_cgroup_tree_cond(iter, root, true)

771 772 773
#define for_each_mem_cgroup_all(iter) \
	for_each_mem_cgroup_tree_cond(iter, NULL, true)

K
KAMEZAWA Hiroyuki 已提交
774

775 776 777 778 779
static inline bool mem_cgroup_is_root(struct mem_cgroup *mem)
{
	return (mem == root_mem_cgroup);
}

K
KAMEZAWA Hiroyuki 已提交
780 781 782 783 784 785 786 787 788 789 790 791 792
/*
 * Following LRU functions are allowed to be used without PCG_LOCK.
 * Operations are called by routine of global LRU independently from memcg.
 * What we have to take care of here is validness of pc->mem_cgroup.
 *
 * Changes to pc->mem_cgroup happens when
 * 1. charge
 * 2. moving account
 * In typical case, "charge" is done before add-to-lru. Exception is SwapCache.
 * It is added to LRU before charge.
 * If PCG_USED bit is not set, page_cgroup is not added to this private LRU.
 * When moving account, the page is not on LRU. It's isolated.
 */
793

K
KAMEZAWA Hiroyuki 已提交
794 795 796 797
void mem_cgroup_del_lru_list(struct page *page, enum lru_list lru)
{
	struct page_cgroup *pc;
	struct mem_cgroup_per_zone *mz;
798

799
	if (mem_cgroup_disabled())
K
KAMEZAWA Hiroyuki 已提交
800 801 802
		return;
	pc = lookup_page_cgroup(page);
	/* can happen while we handle swapcache. */
803
	if (!TestClearPageCgroupAcctLRU(pc))
K
KAMEZAWA Hiroyuki 已提交
804
		return;
805
	VM_BUG_ON(!pc->mem_cgroup);
806 807 808 809
	/*
	 * We don't check PCG_USED bit. It's cleared when the "page" is finally
	 * removed from global LRU.
	 */
K
KAMEZAWA Hiroyuki 已提交
810
	mz = page_cgroup_zoneinfo(pc);
811
	MEM_CGROUP_ZSTAT(mz, lru) -= 1;
812 813 814
	if (mem_cgroup_is_root(pc->mem_cgroup))
		return;
	VM_BUG_ON(list_empty(&pc->lru));
K
KAMEZAWA Hiroyuki 已提交
815 816
	list_del_init(&pc->lru);
	return;
817 818
}

K
KAMEZAWA Hiroyuki 已提交
819
void mem_cgroup_del_lru(struct page *page)
820
{
K
KAMEZAWA Hiroyuki 已提交
821 822
	mem_cgroup_del_lru_list(page, page_lru(page));
}
823

K
KAMEZAWA Hiroyuki 已提交
824 825 826 827
void mem_cgroup_rotate_lru_list(struct page *page, enum lru_list lru)
{
	struct mem_cgroup_per_zone *mz;
	struct page_cgroup *pc;
828

829
	if (mem_cgroup_disabled())
K
KAMEZAWA Hiroyuki 已提交
830
		return;
831

K
KAMEZAWA Hiroyuki 已提交
832
	pc = lookup_page_cgroup(page);
833 834 835 836
	/*
	 * Used bit is set without atomic ops but after smp_wmb().
	 * For making pc->mem_cgroup visible, insert smp_rmb() here.
	 */
K
KAMEZAWA Hiroyuki 已提交
837
	smp_rmb();
838 839
	/* unused or root page is not rotated. */
	if (!PageCgroupUsed(pc) || mem_cgroup_is_root(pc->mem_cgroup))
K
KAMEZAWA Hiroyuki 已提交
840 841 842
		return;
	mz = page_cgroup_zoneinfo(pc);
	list_move(&pc->lru, &mz->lists[lru]);
843 844
}

K
KAMEZAWA Hiroyuki 已提交
845
void mem_cgroup_add_lru_list(struct page *page, enum lru_list lru)
846
{
K
KAMEZAWA Hiroyuki 已提交
847 848
	struct page_cgroup *pc;
	struct mem_cgroup_per_zone *mz;
849

850
	if (mem_cgroup_disabled())
K
KAMEZAWA Hiroyuki 已提交
851 852
		return;
	pc = lookup_page_cgroup(page);
853
	VM_BUG_ON(PageCgroupAcctLRU(pc));
854 855 856 857
	/*
	 * Used bit is set without atomic ops but after smp_wmb().
	 * For making pc->mem_cgroup visible, insert smp_rmb() here.
	 */
K
KAMEZAWA Hiroyuki 已提交
858 859
	smp_rmb();
	if (!PageCgroupUsed(pc))
L
Lee Schermerhorn 已提交
860
		return;
861

K
KAMEZAWA Hiroyuki 已提交
862
	mz = page_cgroup_zoneinfo(pc);
863
	MEM_CGROUP_ZSTAT(mz, lru) += 1;
864 865 866
	SetPageCgroupAcctLRU(pc);
	if (mem_cgroup_is_root(pc->mem_cgroup))
		return;
K
KAMEZAWA Hiroyuki 已提交
867 868
	list_add(&pc->lru, &mz->lists[lru]);
}
869

K
KAMEZAWA Hiroyuki 已提交
870
/*
871 872 873 874 875
 * At handling SwapCache, pc->mem_cgroup may be changed while it's linked to
 * lru because the page may.be reused after it's fully uncharged (because of
 * SwapCache behavior).To handle that, unlink page_cgroup from LRU when charge
 * it again. This function is only used to charge SwapCache. It's done under
 * lock_page and expected that zone->lru_lock is never held.
K
KAMEZAWA Hiroyuki 已提交
876
 */
877
static void mem_cgroup_lru_del_before_commit_swapcache(struct page *page)
K
KAMEZAWA Hiroyuki 已提交
878
{
879 880 881 882 883 884 885 886 887 888 889 890
	unsigned long flags;
	struct zone *zone = page_zone(page);
	struct page_cgroup *pc = lookup_page_cgroup(page);

	spin_lock_irqsave(&zone->lru_lock, flags);
	/*
	 * Forget old LRU when this page_cgroup is *not* used. This Used bit
	 * is guarded by lock_page() because the page is SwapCache.
	 */
	if (!PageCgroupUsed(pc))
		mem_cgroup_del_lru_list(page, page_lru(page));
	spin_unlock_irqrestore(&zone->lru_lock, flags);
K
KAMEZAWA Hiroyuki 已提交
891 892
}

893 894 895 896 897 898 899 900
static void mem_cgroup_lru_add_after_commit_swapcache(struct page *page)
{
	unsigned long flags;
	struct zone *zone = page_zone(page);
	struct page_cgroup *pc = lookup_page_cgroup(page);

	spin_lock_irqsave(&zone->lru_lock, flags);
	/* link when the page is linked to LRU but page_cgroup isn't */
901
	if (PageLRU(page) && !PageCgroupAcctLRU(pc))
902 903 904 905 906
		mem_cgroup_add_lru_list(page, page_lru(page));
	spin_unlock_irqrestore(&zone->lru_lock, flags);
}


K
KAMEZAWA Hiroyuki 已提交
907 908 909
void mem_cgroup_move_lists(struct page *page,
			   enum lru_list from, enum lru_list to)
{
910
	if (mem_cgroup_disabled())
K
KAMEZAWA Hiroyuki 已提交
911 912 913
		return;
	mem_cgroup_del_lru_list(page, from);
	mem_cgroup_add_lru_list(page, to);
914 915
}

916 917 918
int task_in_mem_cgroup(struct task_struct *task, const struct mem_cgroup *mem)
{
	int ret;
919
	struct mem_cgroup *curr = NULL;
920
	struct task_struct *p;
921

922 923 924 925 926
	p = find_lock_task_mm(task);
	if (!p)
		return 0;
	curr = try_get_mem_cgroup_from_mm(p->mm);
	task_unlock(p);
927 928
	if (!curr)
		return 0;
929 930 931 932 933 934 935
	/*
	 * We should check use_hierarchy of "mem" not "curr". Because checking
	 * use_hierarchy of "curr" here make this function true if hierarchy is
	 * enabled in "curr" and "curr" is a child of "mem" in *cgroup*
	 * hierarchy(even if use_hierarchy is disabled in "mem").
	 */
	if (mem->use_hierarchy)
936 937 938 939
		ret = css_is_ancestor(&curr->css, &mem->css);
	else
		ret = (curr == mem);
	css_put(&curr->css);
940 941 942
	return ret;
}

943
static int calc_inactive_ratio(struct mem_cgroup *memcg, unsigned long *present_pages)
944 945 946
{
	unsigned long active;
	unsigned long inactive;
947 948
	unsigned long gb;
	unsigned long inactive_ratio;
949

K
KAMEZAWA Hiroyuki 已提交
950 951
	inactive = mem_cgroup_get_local_zonestat(memcg, LRU_INACTIVE_ANON);
	active = mem_cgroup_get_local_zonestat(memcg, LRU_ACTIVE_ANON);
952

953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979
	gb = (inactive + active) >> (30 - PAGE_SHIFT);
	if (gb)
		inactive_ratio = int_sqrt(10 * gb);
	else
		inactive_ratio = 1;

	if (present_pages) {
		present_pages[0] = inactive;
		present_pages[1] = active;
	}

	return inactive_ratio;
}

int mem_cgroup_inactive_anon_is_low(struct mem_cgroup *memcg)
{
	unsigned long active;
	unsigned long inactive;
	unsigned long present_pages[2];
	unsigned long inactive_ratio;

	inactive_ratio = calc_inactive_ratio(memcg, present_pages);

	inactive = present_pages[0];
	active = present_pages[1];

	if (inactive * inactive_ratio < active)
980 981 982 983 984
		return 1;

	return 0;
}

985 986 987 988 989 990 991 992 993 994 995
int mem_cgroup_inactive_file_is_low(struct mem_cgroup *memcg)
{
	unsigned long active;
	unsigned long inactive;

	inactive = mem_cgroup_get_local_zonestat(memcg, LRU_INACTIVE_FILE);
	active = mem_cgroup_get_local_zonestat(memcg, LRU_ACTIVE_FILE);

	return (active > inactive);
}

996 997 998 999
unsigned long mem_cgroup_zone_nr_pages(struct mem_cgroup *memcg,
				       struct zone *zone,
				       enum lru_list lru)
{
1000
	int nid = zone_to_nid(zone);
1001 1002 1003 1004 1005 1006
	int zid = zone_idx(zone);
	struct mem_cgroup_per_zone *mz = mem_cgroup_zoneinfo(memcg, nid, zid);

	return MEM_CGROUP_ZSTAT(mz, lru);
}

K
KOSAKI Motohiro 已提交
1007 1008 1009
struct zone_reclaim_stat *mem_cgroup_get_reclaim_stat(struct mem_cgroup *memcg,
						      struct zone *zone)
{
1010
	int nid = zone_to_nid(zone);
K
KOSAKI Motohiro 已提交
1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026
	int zid = zone_idx(zone);
	struct mem_cgroup_per_zone *mz = mem_cgroup_zoneinfo(memcg, nid, zid);

	return &mz->reclaim_stat;
}

struct zone_reclaim_stat *
mem_cgroup_get_reclaim_stat_from_page(struct page *page)
{
	struct page_cgroup *pc;
	struct mem_cgroup_per_zone *mz;

	if (mem_cgroup_disabled())
		return NULL;

	pc = lookup_page_cgroup(page);
1027 1028 1029 1030 1031 1032 1033 1034
	/*
	 * Used bit is set without atomic ops but after smp_wmb().
	 * For making pc->mem_cgroup visible, insert smp_rmb() here.
	 */
	smp_rmb();
	if (!PageCgroupUsed(pc))
		return NULL;

K
KOSAKI Motohiro 已提交
1035 1036 1037 1038 1039 1040 1041
	mz = page_cgroup_zoneinfo(pc);
	if (!mz)
		return NULL;

	return &mz->reclaim_stat;
}

1042 1043 1044 1045 1046
unsigned long mem_cgroup_isolate_pages(unsigned long nr_to_scan,
					struct list_head *dst,
					unsigned long *scanned, int order,
					int mode, struct zone *z,
					struct mem_cgroup *mem_cont,
1047
					int active, int file)
1048 1049 1050 1051 1052 1053
{
	unsigned long nr_taken = 0;
	struct page *page;
	unsigned long scan;
	LIST_HEAD(pc_list);
	struct list_head *src;
1054
	struct page_cgroup *pc, *tmp;
1055
	int nid = zone_to_nid(z);
1056 1057
	int zid = zone_idx(z);
	struct mem_cgroup_per_zone *mz;
1058
	int lru = LRU_FILE * file + active;
1059
	int ret;
1060

1061
	BUG_ON(!mem_cont);
1062
	mz = mem_cgroup_zoneinfo(mem_cont, nid, zid);
1063
	src = &mz->lists[lru];
1064

1065 1066
	scan = 0;
	list_for_each_entry_safe_reverse(pc, tmp, src, lru) {
H
Hugh Dickins 已提交
1067
		if (scan >= nr_to_scan)
1068
			break;
K
KAMEZAWA Hiroyuki 已提交
1069 1070

		page = pc->page;
1071 1072
		if (unlikely(!PageCgroupUsed(pc)))
			continue;
H
Hugh Dickins 已提交
1073
		if (unlikely(!PageLRU(page)))
1074 1075
			continue;

H
Hugh Dickins 已提交
1076
		scan++;
1077 1078 1079
		ret = __isolate_lru_page(page, mode, file);
		switch (ret) {
		case 0:
1080
			list_move(&page->lru, dst);
1081
			mem_cgroup_del_lru(page);
1082
			nr_taken++;
1083 1084 1085 1086 1087 1088 1089
			break;
		case -EBUSY:
			/* we don't affect global LRU but rotate in our LRU */
			mem_cgroup_rotate_lru_list(page, page_lru(page));
			break;
		default:
			break;
1090 1091 1092 1093
		}
	}

	*scanned = scan;
1094 1095 1096 1097

	trace_mm_vmscan_memcg_isolate(0, nr_to_scan, scan, nr_taken,
				      0, 0, 0, mode);

1098 1099 1100
	return nr_taken;
}

1101 1102 1103
#define mem_cgroup_from_res_counter(counter, member)	\
	container_of(counter, struct mem_cgroup, member)

1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115
static bool mem_cgroup_check_under_limit(struct mem_cgroup *mem)
{
	if (do_swap_account) {
		if (res_counter_check_under_limit(&mem->res) &&
			res_counter_check_under_limit(&mem->memsw))
			return true;
	} else
		if (res_counter_check_under_limit(&mem->res))
			return true;
	return false;
}

K
KOSAKI Motohiro 已提交
1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131
static unsigned int get_swappiness(struct mem_cgroup *memcg)
{
	struct cgroup *cgrp = memcg->css.cgroup;
	unsigned int swappiness;

	/* root ? */
	if (cgrp->parent == NULL)
		return vm_swappiness;

	spin_lock(&memcg->reclaim_param_lock);
	swappiness = memcg->swappiness;
	spin_unlock(&memcg->reclaim_param_lock);

	return swappiness;
}

1132 1133 1134
static void mem_cgroup_start_move(struct mem_cgroup *mem)
{
	int cpu;
1135 1136 1137 1138

	get_online_cpus();
	spin_lock(&mem->pcp_counter_lock);
	for_each_online_cpu(cpu)
1139
		per_cpu(mem->stat->count[MEM_CGROUP_ON_MOVE], cpu) += 1;
1140 1141 1142
	mem->nocpu_base.count[MEM_CGROUP_ON_MOVE] += 1;
	spin_unlock(&mem->pcp_counter_lock);
	put_online_cpus();
1143 1144 1145 1146 1147 1148 1149 1150 1151 1152

	synchronize_rcu();
}

static void mem_cgroup_end_move(struct mem_cgroup *mem)
{
	int cpu;

	if (!mem)
		return;
1153 1154 1155
	get_online_cpus();
	spin_lock(&mem->pcp_counter_lock);
	for_each_online_cpu(cpu)
1156
		per_cpu(mem->stat->count[MEM_CGROUP_ON_MOVE], cpu) -= 1;
1157 1158 1159
	mem->nocpu_base.count[MEM_CGROUP_ON_MOVE] -= 1;
	spin_unlock(&mem->pcp_counter_lock);
	put_online_cpus();
1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177
}
/*
 * 2 routines for checking "mem" is under move_account() or not.
 *
 * mem_cgroup_stealed() - checking a cgroup is mc.from or not. This is used
 *			  for avoiding race in accounting. If true,
 *			  pc->mem_cgroup may be overwritten.
 *
 * mem_cgroup_under_move() - checking a cgroup is mc.from or mc.to or
 *			  under hierarchy of moving cgroups. This is for
 *			  waiting at hith-memory prressure caused by "move".
 */

static bool mem_cgroup_stealed(struct mem_cgroup *mem)
{
	VM_BUG_ON(!rcu_read_lock_held());
	return this_cpu_read(mem->stat->count[MEM_CGROUP_ON_MOVE]) > 0;
}
1178 1179 1180

static bool mem_cgroup_under_move(struct mem_cgroup *mem)
{
1181 1182
	struct mem_cgroup *from;
	struct mem_cgroup *to;
1183
	bool ret = false;
1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198
	/*
	 * Unlike task_move routines, we access mc.to, mc.from not under
	 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
	 */
	spin_lock(&mc.lock);
	from = mc.from;
	to = mc.to;
	if (!from)
		goto unlock;
	if (from == mem || to == mem
	    || (mem->use_hierarchy && css_is_ancestor(&from->css, &mem->css))
	    || (mem->use_hierarchy && css_is_ancestor(&to->css,	&mem->css)))
		ret = true;
unlock:
	spin_unlock(&mc.lock);
1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217
	return ret;
}

static bool mem_cgroup_wait_acct_move(struct mem_cgroup *mem)
{
	if (mc.moving_task && current != mc.moving_task) {
		if (mem_cgroup_under_move(mem)) {
			DEFINE_WAIT(wait);
			prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
			/* moving charge context might have finished. */
			if (mc.moving_task)
				schedule();
			finish_wait(&mc.waitq, &wait);
			return true;
		}
	}
	return false;
}

1218
/**
1219
 * mem_cgroup_print_oom_info: Called from OOM with tasklist_lock held in read mode.
1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237
 * @memcg: The memory cgroup that went over limit
 * @p: Task that is going to be killed
 *
 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
 * enabled
 */
void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
{
	struct cgroup *task_cgrp;
	struct cgroup *mem_cgrp;
	/*
	 * Need a buffer in BSS, can't rely on allocations. The code relies
	 * on the assumption that OOM is serialized for memory controller.
	 * If this assumption is broken, revisit this code.
	 */
	static char memcg_name[PATH_MAX];
	int ret;

1238
	if (!memcg || !p)
1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284
		return;


	rcu_read_lock();

	mem_cgrp = memcg->css.cgroup;
	task_cgrp = task_cgroup(p, mem_cgroup_subsys_id);

	ret = cgroup_path(task_cgrp, memcg_name, PATH_MAX);
	if (ret < 0) {
		/*
		 * Unfortunately, we are unable to convert to a useful name
		 * But we'll still print out the usage information
		 */
		rcu_read_unlock();
		goto done;
	}
	rcu_read_unlock();

	printk(KERN_INFO "Task in %s killed", memcg_name);

	rcu_read_lock();
	ret = cgroup_path(mem_cgrp, memcg_name, PATH_MAX);
	if (ret < 0) {
		rcu_read_unlock();
		goto done;
	}
	rcu_read_unlock();

	/*
	 * Continues from above, so we don't need an KERN_ level
	 */
	printk(KERN_CONT " as a result of limit of %s\n", memcg_name);
done:

	printk(KERN_INFO "memory: usage %llukB, limit %llukB, failcnt %llu\n",
		res_counter_read_u64(&memcg->res, RES_USAGE) >> 10,
		res_counter_read_u64(&memcg->res, RES_LIMIT) >> 10,
		res_counter_read_u64(&memcg->res, RES_FAILCNT));
	printk(KERN_INFO "memory+swap: usage %llukB, limit %llukB, "
		"failcnt %llu\n",
		res_counter_read_u64(&memcg->memsw, RES_USAGE) >> 10,
		res_counter_read_u64(&memcg->memsw, RES_LIMIT) >> 10,
		res_counter_read_u64(&memcg->memsw, RES_FAILCNT));
}

1285 1286 1287 1288 1289 1290 1291
/*
 * This function returns the number of memcg under hierarchy tree. Returns
 * 1(self count) if no children.
 */
static int mem_cgroup_count_children(struct mem_cgroup *mem)
{
	int num = 0;
K
KAMEZAWA Hiroyuki 已提交
1292 1293 1294 1295
	struct mem_cgroup *iter;

	for_each_mem_cgroup_tree(iter, mem)
		num++;
1296 1297 1298
	return num;
}

D
David Rientjes 已提交
1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316
/*
 * Return the memory (and swap, if configured) limit for a memcg.
 */
u64 mem_cgroup_get_limit(struct mem_cgroup *memcg)
{
	u64 limit;
	u64 memsw;

	limit = res_counter_read_u64(&memcg->res, RES_LIMIT) +
			total_swap_pages;
	memsw = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
	/*
	 * If memsw is finite and limits the amount of swap space available
	 * to this memcg, return that limit.
	 */
	return min(limit, memsw);
}

1317
/*
K
KAMEZAWA Hiroyuki 已提交
1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359
 * Visit the first child (need not be the first child as per the ordering
 * of the cgroup list, since we track last_scanned_child) of @mem and use
 * that to reclaim free pages from.
 */
static struct mem_cgroup *
mem_cgroup_select_victim(struct mem_cgroup *root_mem)
{
	struct mem_cgroup *ret = NULL;
	struct cgroup_subsys_state *css;
	int nextid, found;

	if (!root_mem->use_hierarchy) {
		css_get(&root_mem->css);
		ret = root_mem;
	}

	while (!ret) {
		rcu_read_lock();
		nextid = root_mem->last_scanned_child + 1;
		css = css_get_next(&mem_cgroup_subsys, nextid, &root_mem->css,
				   &found);
		if (css && css_tryget(css))
			ret = container_of(css, struct mem_cgroup, css);

		rcu_read_unlock();
		/* Updates scanning parameter */
		spin_lock(&root_mem->reclaim_param_lock);
		if (!css) {
			/* this means start scan from ID:1 */
			root_mem->last_scanned_child = 0;
		} else
			root_mem->last_scanned_child = found;
		spin_unlock(&root_mem->reclaim_param_lock);
	}

	return ret;
}

/*
 * Scan the hierarchy if needed to reclaim memory. We remember the last child
 * we reclaimed from, so that we don't end up penalizing one child extensively
 * based on its position in the children list.
1360 1361
 *
 * root_mem is the original ancestor that we've been reclaim from.
K
KAMEZAWA Hiroyuki 已提交
1362 1363 1364
 *
 * We give up and return to the caller when we visit root_mem twice.
 * (other groups can be removed while we're walking....)
1365 1366
 *
 * If shrink==true, for avoiding to free too much, this returns immedieately.
1367 1368
 */
static int mem_cgroup_hierarchical_reclaim(struct mem_cgroup *root_mem,
1369
						struct zone *zone,
1370 1371
						gfp_t gfp_mask,
						unsigned long reclaim_options)
1372
{
K
KAMEZAWA Hiroyuki 已提交
1373 1374 1375
	struct mem_cgroup *victim;
	int ret, total = 0;
	int loop = 0;
1376 1377
	bool noswap = reclaim_options & MEM_CGROUP_RECLAIM_NOSWAP;
	bool shrink = reclaim_options & MEM_CGROUP_RECLAIM_SHRINK;
1378 1379
	bool check_soft = reclaim_options & MEM_CGROUP_RECLAIM_SOFT;
	unsigned long excess = mem_cgroup_get_excess(root_mem);
K
KAMEZAWA Hiroyuki 已提交
1380

1381 1382 1383 1384
	/* If memsw_is_minimum==1, swap-out is of-no-use. */
	if (root_mem->memsw_is_minimum)
		noswap = true;

1385
	while (1) {
K
KAMEZAWA Hiroyuki 已提交
1386
		victim = mem_cgroup_select_victim(root_mem);
1387
		if (victim == root_mem) {
K
KAMEZAWA Hiroyuki 已提交
1388
			loop++;
1389 1390
			if (loop >= 1)
				drain_all_stock_async();
1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413
			if (loop >= 2) {
				/*
				 * If we have not been able to reclaim
				 * anything, it might because there are
				 * no reclaimable pages under this hierarchy
				 */
				if (!check_soft || !total) {
					css_put(&victim->css);
					break;
				}
				/*
				 * We want to do more targetted reclaim.
				 * excess >> 2 is not to excessive so as to
				 * reclaim too much, nor too less that we keep
				 * coming back to reclaim from this cgroup
				 */
				if (total >= (excess >> 2) ||
					(loop > MEM_CGROUP_MAX_RECLAIM_LOOPS)) {
					css_put(&victim->css);
					break;
				}
			}
		}
1414
		if (!mem_cgroup_local_usage(victim)) {
K
KAMEZAWA Hiroyuki 已提交
1415 1416
			/* this cgroup's local usage == 0 */
			css_put(&victim->css);
1417 1418
			continue;
		}
K
KAMEZAWA Hiroyuki 已提交
1419
		/* we use swappiness of local cgroup */
1420 1421
		if (check_soft)
			ret = mem_cgroup_shrink_node_zone(victim, gfp_mask,
1422
				noswap, get_swappiness(victim), zone);
1423 1424 1425
		else
			ret = try_to_free_mem_cgroup_pages(victim, gfp_mask,
						noswap, get_swappiness(victim));
K
KAMEZAWA Hiroyuki 已提交
1426
		css_put(&victim->css);
1427 1428 1429 1430 1431 1432 1433
		/*
		 * At shrinking usage, we can't check we should stop here or
		 * reclaim more. It's depends on callers. last_scanned_child
		 * will work enough for keeping fairness under tree.
		 */
		if (shrink)
			return ret;
K
KAMEZAWA Hiroyuki 已提交
1434
		total += ret;
1435 1436 1437 1438
		if (check_soft) {
			if (res_counter_check_under_soft_limit(&root_mem->res))
				return total;
		} else if (mem_cgroup_check_under_limit(root_mem))
K
KAMEZAWA Hiroyuki 已提交
1439
			return 1 + total;
1440
	}
K
KAMEZAWA Hiroyuki 已提交
1441
	return total;
1442 1443
}

K
KAMEZAWA Hiroyuki 已提交
1444 1445 1446 1447 1448 1449
/*
 * Check OOM-Killer is already running under our hierarchy.
 * If someone is running, return false.
 */
static bool mem_cgroup_oom_lock(struct mem_cgroup *mem)
{
K
KAMEZAWA Hiroyuki 已提交
1450 1451
	int x, lock_count = 0;
	struct mem_cgroup *iter;
1452

K
KAMEZAWA Hiroyuki 已提交
1453 1454 1455 1456
	for_each_mem_cgroup_tree(iter, mem) {
		x = atomic_inc_return(&iter->oom_lock);
		lock_count = max(x, lock_count);
	}
K
KAMEZAWA Hiroyuki 已提交
1457 1458 1459 1460

	if (lock_count == 1)
		return true;
	return false;
1461
}
1462

K
KAMEZAWA Hiroyuki 已提交
1463
static int mem_cgroup_oom_unlock(struct mem_cgroup *mem)
1464
{
K
KAMEZAWA Hiroyuki 已提交
1465 1466
	struct mem_cgroup *iter;

K
KAMEZAWA Hiroyuki 已提交
1467 1468 1469 1470 1471
	/*
	 * When a new child is created while the hierarchy is under oom,
	 * mem_cgroup_oom_lock() may not be called. We have to use
	 * atomic_add_unless() here.
	 */
K
KAMEZAWA Hiroyuki 已提交
1472 1473
	for_each_mem_cgroup_tree(iter, mem)
		atomic_add_unless(&iter->oom_lock, -1, 0);
1474 1475 1476
	return 0;
}

K
KAMEZAWA Hiroyuki 已提交
1477 1478 1479 1480

static DEFINE_MUTEX(memcg_oom_mutex);
static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);

K
KAMEZAWA Hiroyuki 已提交
1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516
struct oom_wait_info {
	struct mem_cgroup *mem;
	wait_queue_t	wait;
};

static int memcg_oom_wake_function(wait_queue_t *wait,
	unsigned mode, int sync, void *arg)
{
	struct mem_cgroup *wake_mem = (struct mem_cgroup *)arg;
	struct oom_wait_info *oom_wait_info;

	oom_wait_info = container_of(wait, struct oom_wait_info, wait);

	if (oom_wait_info->mem == wake_mem)
		goto wakeup;
	/* if no hierarchy, no match */
	if (!oom_wait_info->mem->use_hierarchy || !wake_mem->use_hierarchy)
		return 0;
	/*
	 * Both of oom_wait_info->mem and wake_mem are stable under us.
	 * Then we can use css_is_ancestor without taking care of RCU.
	 */
	if (!css_is_ancestor(&oom_wait_info->mem->css, &wake_mem->css) &&
	    !css_is_ancestor(&wake_mem->css, &oom_wait_info->mem->css))
		return 0;

wakeup:
	return autoremove_wake_function(wait, mode, sync, arg);
}

static void memcg_wakeup_oom(struct mem_cgroup *mem)
{
	/* for filtering, pass "mem" as argument. */
	__wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, mem);
}

1517 1518
static void memcg_oom_recover(struct mem_cgroup *mem)
{
1519
	if (mem && atomic_read(&mem->oom_lock))
1520 1521 1522
		memcg_wakeup_oom(mem);
}

K
KAMEZAWA Hiroyuki 已提交
1523 1524 1525 1526
/*
 * try to call OOM killer. returns false if we should exit memory-reclaim loop.
 */
bool mem_cgroup_handle_oom(struct mem_cgroup *mem, gfp_t mask)
1527
{
K
KAMEZAWA Hiroyuki 已提交
1528
	struct oom_wait_info owait;
1529
	bool locked, need_to_kill;
K
KAMEZAWA Hiroyuki 已提交
1530

K
KAMEZAWA Hiroyuki 已提交
1531 1532 1533 1534 1535
	owait.mem = mem;
	owait.wait.flags = 0;
	owait.wait.func = memcg_oom_wake_function;
	owait.wait.private = current;
	INIT_LIST_HEAD(&owait.wait.task_list);
1536
	need_to_kill = true;
K
KAMEZAWA Hiroyuki 已提交
1537 1538 1539 1540 1541 1542 1543 1544
	/* At first, try to OOM lock hierarchy under mem.*/
	mutex_lock(&memcg_oom_mutex);
	locked = mem_cgroup_oom_lock(mem);
	/*
	 * Even if signal_pending(), we can't quit charge() loop without
	 * accounting. So, UNINTERRUPTIBLE is appropriate. But SIGKILL
	 * under OOM is always welcomed, use TASK_KILLABLE here.
	 */
1545 1546 1547 1548
	prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
	if (!locked || mem->oom_kill_disable)
		need_to_kill = false;
	if (locked)
K
KAMEZAWA Hiroyuki 已提交
1549
		mem_cgroup_oom_notify(mem);
K
KAMEZAWA Hiroyuki 已提交
1550 1551
	mutex_unlock(&memcg_oom_mutex);

1552 1553
	if (need_to_kill) {
		finish_wait(&memcg_oom_waitq, &owait.wait);
K
KAMEZAWA Hiroyuki 已提交
1554
		mem_cgroup_out_of_memory(mem, mask);
1555
	} else {
K
KAMEZAWA Hiroyuki 已提交
1556
		schedule();
K
KAMEZAWA Hiroyuki 已提交
1557
		finish_wait(&memcg_oom_waitq, &owait.wait);
K
KAMEZAWA Hiroyuki 已提交
1558 1559 1560
	}
	mutex_lock(&memcg_oom_mutex);
	mem_cgroup_oom_unlock(mem);
K
KAMEZAWA Hiroyuki 已提交
1561
	memcg_wakeup_oom(mem);
K
KAMEZAWA Hiroyuki 已提交
1562 1563 1564 1565 1566 1567 1568
	mutex_unlock(&memcg_oom_mutex);

	if (test_thread_flag(TIF_MEMDIE) || fatal_signal_pending(current))
		return false;
	/* Give chance to dying process */
	schedule_timeout(1);
	return true;
1569 1570
}

1571 1572 1573
/*
 * Currently used to update mapped file statistics, but the routine can be
 * generalized to update other statistics as well.
1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592
 *
 * Notes: Race condition
 *
 * We usually use page_cgroup_lock() for accessing page_cgroup member but
 * it tends to be costly. But considering some conditions, we doesn't need
 * to do so _always_.
 *
 * Considering "charge", lock_page_cgroup() is not required because all
 * file-stat operations happen after a page is attached to radix-tree. There
 * are no race with "charge".
 *
 * Considering "uncharge", we know that memcg doesn't clear pc->mem_cgroup
 * at "uncharge" intentionally. So, we always see valid pc->mem_cgroup even
 * if there are race with "uncharge". Statistics itself is properly handled
 * by flags.
 *
 * Considering "move", this is an only case we see a race. To make the race
 * small, we check MEM_CGROUP_ON_MOVE percpu value and detect there are
 * possibility of race condition. If there is, we take a lock.
1593
 */
1594 1595

static void mem_cgroup_update_file_stat(struct page *page, int idx, int val)
1596 1597
{
	struct mem_cgroup *mem;
1598 1599
	struct page_cgroup *pc = lookup_page_cgroup(page);
	bool need_unlock = false;
1600 1601 1602 1603

	if (unlikely(!pc))
		return;

1604
	rcu_read_lock();
1605
	mem = pc->mem_cgroup;
1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616
	if (unlikely(!mem || !PageCgroupUsed(pc)))
		goto out;
	/* pc->mem_cgroup is unstable ? */
	if (unlikely(mem_cgroup_stealed(mem))) {
		/* take a lock against to access pc->mem_cgroup */
		lock_page_cgroup(pc);
		need_unlock = true;
		mem = pc->mem_cgroup;
		if (!mem || !PageCgroupUsed(pc))
			goto out;
	}
1617 1618 1619 1620 1621 1622 1623 1624

	this_cpu_add(mem->stat->count[idx], val);

	switch (idx) {
	case MEM_CGROUP_STAT_FILE_MAPPED:
		if (val > 0)
			SetPageCgroupFileMapped(pc);
		else if (!page_mapped(page))
1625
			ClearPageCgroupFileMapped(pc);
1626 1627 1628
		break;
	default:
		BUG();
1629
	}
1630

1631 1632 1633 1634 1635
out:
	if (unlikely(need_unlock))
		unlock_page_cgroup(pc);
	rcu_read_unlock();
	return;
1636
}
1637

1638 1639 1640 1641 1642
void mem_cgroup_update_file_mapped(struct page *page, int val)
{
	mem_cgroup_update_file_stat(page, MEM_CGROUP_STAT_FILE_MAPPED, val);
}

1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703
/*
 * size of first charge trial. "32" comes from vmscan.c's magic value.
 * TODO: maybe necessary to use big numbers in big irons.
 */
#define CHARGE_SIZE	(32 * PAGE_SIZE)
struct memcg_stock_pcp {
	struct mem_cgroup *cached; /* this never be root cgroup */
	int charge;
	struct work_struct work;
};
static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
static atomic_t memcg_drain_count;

/*
 * Try to consume stocked charge on this cpu. If success, PAGE_SIZE is consumed
 * from local stock and true is returned. If the stock is 0 or charges from a
 * cgroup which is not current target, returns false. This stock will be
 * refilled.
 */
static bool consume_stock(struct mem_cgroup *mem)
{
	struct memcg_stock_pcp *stock;
	bool ret = true;

	stock = &get_cpu_var(memcg_stock);
	if (mem == stock->cached && stock->charge)
		stock->charge -= PAGE_SIZE;
	else /* need to call res_counter_charge */
		ret = false;
	put_cpu_var(memcg_stock);
	return ret;
}

/*
 * Returns stocks cached in percpu to res_counter and reset cached information.
 */
static void drain_stock(struct memcg_stock_pcp *stock)
{
	struct mem_cgroup *old = stock->cached;

	if (stock->charge) {
		res_counter_uncharge(&old->res, stock->charge);
		if (do_swap_account)
			res_counter_uncharge(&old->memsw, stock->charge);
	}
	stock->cached = NULL;
	stock->charge = 0;
}

/*
 * This must be called under preempt disabled or must be called by
 * a thread which is pinned to local cpu.
 */
static void drain_local_stock(struct work_struct *dummy)
{
	struct memcg_stock_pcp *stock = &__get_cpu_var(memcg_stock);
	drain_stock(stock);
}

/*
 * Cache charges(val) which is from res_counter, to local per_cpu area.
1704
 * This will be consumed by consume_stock() function, later.
1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755
 */
static void refill_stock(struct mem_cgroup *mem, int val)
{
	struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);

	if (stock->cached != mem) { /* reset if necessary */
		drain_stock(stock);
		stock->cached = mem;
	}
	stock->charge += val;
	put_cpu_var(memcg_stock);
}

/*
 * Tries to drain stocked charges in other cpus. This function is asynchronous
 * and just put a work per cpu for draining localy on each cpu. Caller can
 * expects some charges will be back to res_counter later but cannot wait for
 * it.
 */
static void drain_all_stock_async(void)
{
	int cpu;
	/* This function is for scheduling "drain" in asynchronous way.
	 * The result of "drain" is not directly handled by callers. Then,
	 * if someone is calling drain, we don't have to call drain more.
	 * Anyway, WORK_STRUCT_PENDING check in queue_work_on() will catch if
	 * there is a race. We just do loose check here.
	 */
	if (atomic_read(&memcg_drain_count))
		return;
	/* Notify other cpus that system-wide "drain" is running */
	atomic_inc(&memcg_drain_count);
	get_online_cpus();
	for_each_online_cpu(cpu) {
		struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
		schedule_work_on(cpu, &stock->work);
	}
 	put_online_cpus();
	atomic_dec(&memcg_drain_count);
	/* We don't wait for flush_work */
}

/* This is a synchronous drain interface. */
static void drain_all_stock_sync(void)
{
	/* called when force_empty is called */
	atomic_inc(&memcg_drain_count);
	schedule_on_each_cpu(drain_local_stock);
	atomic_dec(&memcg_drain_count);
}

1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770
/*
 * This function drains percpu counter value from DEAD cpu and
 * move it to local cpu. Note that this function can be preempted.
 */
static void mem_cgroup_drain_pcp_counter(struct mem_cgroup *mem, int cpu)
{
	int i;

	spin_lock(&mem->pcp_counter_lock);
	for (i = 0; i < MEM_CGROUP_STAT_DATA; i++) {
		s64 x = per_cpu(mem->stat->count[i], cpu);

		per_cpu(mem->stat->count[i], cpu) = 0;
		mem->nocpu_base.count[i] += x;
	}
1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781
	/* need to clear ON_MOVE value, works as a kind of lock. */
	per_cpu(mem->stat->count[MEM_CGROUP_ON_MOVE], cpu) = 0;
	spin_unlock(&mem->pcp_counter_lock);
}

static void synchronize_mem_cgroup_on_move(struct mem_cgroup *mem, int cpu)
{
	int idx = MEM_CGROUP_ON_MOVE;

	spin_lock(&mem->pcp_counter_lock);
	per_cpu(mem->stat->count[idx], cpu) = mem->nocpu_base.count[idx];
1782 1783 1784 1785
	spin_unlock(&mem->pcp_counter_lock);
}

static int __cpuinit memcg_cpu_hotplug_callback(struct notifier_block *nb,
1786 1787 1788 1789 1790
					unsigned long action,
					void *hcpu)
{
	int cpu = (unsigned long)hcpu;
	struct memcg_stock_pcp *stock;
1791
	struct mem_cgroup *iter;
1792

1793 1794 1795 1796 1797 1798
	if ((action == CPU_ONLINE)) {
		for_each_mem_cgroup_all(iter)
			synchronize_mem_cgroup_on_move(iter, cpu);
		return NOTIFY_OK;
	}

1799
	if ((action != CPU_DEAD) || action != CPU_DEAD_FROZEN)
1800
		return NOTIFY_OK;
1801 1802 1803 1804

	for_each_mem_cgroup_all(iter)
		mem_cgroup_drain_pcp_counter(iter, cpu);

1805 1806 1807 1808 1809
	stock = &per_cpu(memcg_stock, cpu);
	drain_stock(stock);
	return NOTIFY_OK;
}

1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876

/* See __mem_cgroup_try_charge() for details */
enum {
	CHARGE_OK,		/* success */
	CHARGE_RETRY,		/* need to retry but retry is not bad */
	CHARGE_NOMEM,		/* we can't do more. return -ENOMEM */
	CHARGE_WOULDBLOCK,	/* GFP_WAIT wasn't set and no enough res. */
	CHARGE_OOM_DIE,		/* the current is killed because of OOM */
};

static int __mem_cgroup_do_charge(struct mem_cgroup *mem, gfp_t gfp_mask,
				int csize, bool oom_check)
{
	struct mem_cgroup *mem_over_limit;
	struct res_counter *fail_res;
	unsigned long flags = 0;
	int ret;

	ret = res_counter_charge(&mem->res, csize, &fail_res);

	if (likely(!ret)) {
		if (!do_swap_account)
			return CHARGE_OK;
		ret = res_counter_charge(&mem->memsw, csize, &fail_res);
		if (likely(!ret))
			return CHARGE_OK;

		mem_over_limit = mem_cgroup_from_res_counter(fail_res, memsw);
		flags |= MEM_CGROUP_RECLAIM_NOSWAP;
	} else
		mem_over_limit = mem_cgroup_from_res_counter(fail_res, res);

	if (csize > PAGE_SIZE) /* change csize and retry */
		return CHARGE_RETRY;

	if (!(gfp_mask & __GFP_WAIT))
		return CHARGE_WOULDBLOCK;

	ret = mem_cgroup_hierarchical_reclaim(mem_over_limit, NULL,
					gfp_mask, flags);
	/*
	 * try_to_free_mem_cgroup_pages() might not give us a full
	 * picture of reclaim. Some pages are reclaimed and might be
	 * moved to swap cache or just unmapped from the cgroup.
	 * Check the limit again to see if the reclaim reduced the
	 * current usage of the cgroup before giving up
	 */
	if (ret || mem_cgroup_check_under_limit(mem_over_limit))
		return CHARGE_RETRY;

	/*
	 * At task move, charge accounts can be doubly counted. So, it's
	 * better to wait until the end of task_move if something is going on.
	 */
	if (mem_cgroup_wait_acct_move(mem_over_limit))
		return CHARGE_RETRY;

	/* If we don't need to call oom-killer at el, return immediately */
	if (!oom_check)
		return CHARGE_NOMEM;
	/* check OOM */
	if (!mem_cgroup_handle_oom(mem_over_limit, gfp_mask))
		return CHARGE_OOM_DIE;

	return CHARGE_RETRY;
}

1877 1878 1879
/*
 * Unlike exported interface, "oom" parameter is added. if oom==true,
 * oom-killer can be invoked.
1880
 */
1881
static int __mem_cgroup_try_charge(struct mm_struct *mm,
1882
		gfp_t gfp_mask, struct mem_cgroup **memcg, bool oom)
1883
{
1884 1885 1886
	int nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
	struct mem_cgroup *mem = NULL;
	int ret;
1887
	int csize = CHARGE_SIZE;
1888

K
KAMEZAWA Hiroyuki 已提交
1889 1890 1891 1892 1893 1894 1895 1896
	/*
	 * Unlike gloval-vm's OOM-kill, we're not in memory shortage
	 * in system level. So, allow to go ahead dying process in addition to
	 * MEMDIE process.
	 */
	if (unlikely(test_thread_flag(TIF_MEMDIE)
		     || fatal_signal_pending(current)))
		goto bypass;
1897

1898
	/*
1899 1900
	 * We always charge the cgroup the mm_struct belongs to.
	 * The mm_struct's mem_cgroup changes on task migration if the
1901 1902 1903
	 * thread group leader migrates. It's possible that mm is not
	 * set, if so charge the init_mm (happens for pagecache usage).
	 */
K
KAMEZAWA Hiroyuki 已提交
1904 1905 1906 1907
	if (!*memcg && !mm)
		goto bypass;
again:
	if (*memcg) { /* css should be a valid one */
1908
		mem = *memcg;
K
KAMEZAWA Hiroyuki 已提交
1909 1910 1911 1912 1913
		VM_BUG_ON(css_is_removed(&mem->css));
		if (mem_cgroup_is_root(mem))
			goto done;
		if (consume_stock(mem))
			goto done;
1914 1915
		css_get(&mem->css);
	} else {
K
KAMEZAWA Hiroyuki 已提交
1916
		struct task_struct *p;
1917

K
KAMEZAWA Hiroyuki 已提交
1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954
		rcu_read_lock();
		p = rcu_dereference(mm->owner);
		VM_BUG_ON(!p);
		/*
		 * because we don't have task_lock(), "p" can exit while
		 * we're here. In that case, "mem" can point to root
		 * cgroup but never be NULL. (and task_struct itself is freed
		 * by RCU, cgroup itself is RCU safe.) Then, we have small
		 * risk here to get wrong cgroup. But such kind of mis-account
		 * by race always happens because we don't have cgroup_mutex().
		 * It's overkill and we allow that small race, here.
		 */
		mem = mem_cgroup_from_task(p);
		VM_BUG_ON(!mem);
		if (mem_cgroup_is_root(mem)) {
			rcu_read_unlock();
			goto done;
		}
		if (consume_stock(mem)) {
			/*
			 * It seems dagerous to access memcg without css_get().
			 * But considering how consume_stok works, it's not
			 * necessary. If consume_stock success, some charges
			 * from this memcg are cached on this cpu. So, we
			 * don't need to call css_get()/css_tryget() before
			 * calling consume_stock().
			 */
			rcu_read_unlock();
			goto done;
		}
		/* after here, we may be blocked. we need to get refcnt */
		if (!css_tryget(&mem->css)) {
			rcu_read_unlock();
			goto again;
		}
		rcu_read_unlock();
	}
1955

1956 1957
	do {
		bool oom_check;
1958

1959
		/* If killed, bypass charge */
K
KAMEZAWA Hiroyuki 已提交
1960 1961
		if (fatal_signal_pending(current)) {
			css_put(&mem->css);
1962
			goto bypass;
K
KAMEZAWA Hiroyuki 已提交
1963
		}
1964

1965 1966 1967 1968
		oom_check = false;
		if (oom && !nr_oom_retries) {
			oom_check = true;
			nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
1969
		}
1970

1971
		ret = __mem_cgroup_do_charge(mem, gfp_mask, csize, oom_check);
1972

1973 1974 1975 1976 1977
		switch (ret) {
		case CHARGE_OK:
			break;
		case CHARGE_RETRY: /* not in OOM situation but retry */
			csize = PAGE_SIZE;
K
KAMEZAWA Hiroyuki 已提交
1978 1979 1980
			css_put(&mem->css);
			mem = NULL;
			goto again;
1981
		case CHARGE_WOULDBLOCK: /* !__GFP_WAIT */
K
KAMEZAWA Hiroyuki 已提交
1982
			css_put(&mem->css);
1983 1984
			goto nomem;
		case CHARGE_NOMEM: /* OOM routine works */
K
KAMEZAWA Hiroyuki 已提交
1985 1986
			if (!oom) {
				css_put(&mem->css);
K
KAMEZAWA Hiroyuki 已提交
1987
				goto nomem;
K
KAMEZAWA Hiroyuki 已提交
1988
			}
1989 1990 1991 1992
			/* If oom, we never return -ENOMEM */
			nr_oom_retries--;
			break;
		case CHARGE_OOM_DIE: /* Killed by OOM Killer */
K
KAMEZAWA Hiroyuki 已提交
1993
			css_put(&mem->css);
K
KAMEZAWA Hiroyuki 已提交
1994
			goto bypass;
1995
		}
1996 1997
	} while (ret != CHARGE_OK);

1998 1999
	if (csize > PAGE_SIZE)
		refill_stock(mem, csize - PAGE_SIZE);
K
KAMEZAWA Hiroyuki 已提交
2000
	css_put(&mem->css);
2001
done:
K
KAMEZAWA Hiroyuki 已提交
2002
	*memcg = mem;
2003 2004
	return 0;
nomem:
K
KAMEZAWA Hiroyuki 已提交
2005
	*memcg = NULL;
2006
	return -ENOMEM;
K
KAMEZAWA Hiroyuki 已提交
2007 2008 2009
bypass:
	*memcg = NULL;
	return 0;
2010
}
2011

2012 2013 2014 2015 2016
/*
 * Somemtimes we have to undo a charge we got by try_charge().
 * This function is for that and do uncharge, put css's refcnt.
 * gotten by try_charge().
 */
2017 2018
static void __mem_cgroup_cancel_charge(struct mem_cgroup *mem,
							unsigned long count)
2019 2020
{
	if (!mem_cgroup_is_root(mem)) {
2021
		res_counter_uncharge(&mem->res, PAGE_SIZE * count);
2022
		if (do_swap_account)
2023
			res_counter_uncharge(&mem->memsw, PAGE_SIZE * count);
2024
	}
2025 2026 2027 2028 2029
}

static void mem_cgroup_cancel_charge(struct mem_cgroup *mem)
{
	__mem_cgroup_cancel_charge(mem, 1);
2030 2031
}

2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050
/*
 * A helper function to get mem_cgroup from ID. must be called under
 * rcu_read_lock(). The caller must check css_is_removed() or some if
 * it's concern. (dropping refcnt from swap can be called against removed
 * memcg.)
 */
static struct mem_cgroup *mem_cgroup_lookup(unsigned short id)
{
	struct cgroup_subsys_state *css;

	/* ID 0 is unused ID */
	if (!id)
		return NULL;
	css = css_lookup(&mem_cgroup_subsys, id);
	if (!css)
		return NULL;
	return container_of(css, struct mem_cgroup, css);
}

2051
struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page)
2052
{
2053
	struct mem_cgroup *mem = NULL;
2054
	struct page_cgroup *pc;
2055
	unsigned short id;
2056 2057
	swp_entry_t ent;

2058 2059 2060
	VM_BUG_ON(!PageLocked(page));

	pc = lookup_page_cgroup(page);
2061
	lock_page_cgroup(pc);
2062
	if (PageCgroupUsed(pc)) {
2063
		mem = pc->mem_cgroup;
2064 2065
		if (mem && !css_tryget(&mem->css))
			mem = NULL;
2066
	} else if (PageSwapCache(page)) {
2067
		ent.val = page_private(page);
2068 2069 2070 2071 2072 2073
		id = lookup_swap_cgroup(ent);
		rcu_read_lock();
		mem = mem_cgroup_lookup(id);
		if (mem && !css_tryget(&mem->css))
			mem = NULL;
		rcu_read_unlock();
2074
	}
2075
	unlock_page_cgroup(pc);
2076 2077 2078
	return mem;
}

2079
/*
2080
 * commit a charge got by __mem_cgroup_try_charge() and makes page_cgroup to be
2081 2082 2083 2084 2085 2086 2087 2088 2089 2090
 * USED state. If already USED, uncharge and return.
 */

static void __mem_cgroup_commit_charge(struct mem_cgroup *mem,
				     struct page_cgroup *pc,
				     enum charge_type ctype)
{
	/* try_charge() can return NULL to *memcg, taking care of it. */
	if (!mem)
		return;
2091 2092 2093 2094

	lock_page_cgroup(pc);
	if (unlikely(PageCgroupUsed(pc))) {
		unlock_page_cgroup(pc);
2095
		mem_cgroup_cancel_charge(mem);
2096
		return;
2097
	}
2098

2099
	pc->mem_cgroup = mem;
2100 2101 2102 2103 2104 2105 2106
	/*
	 * We access a page_cgroup asynchronously without lock_page_cgroup().
	 * Especially when a page_cgroup is taken from a page, pc->mem_cgroup
	 * is accessed after testing USED bit. To make pc->mem_cgroup visible
	 * before USED bit, we need memory barrier here.
	 * See mem_cgroup_add_lru_list(), etc.
 	 */
K
KAMEZAWA Hiroyuki 已提交
2107
	smp_wmb();
2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120
	switch (ctype) {
	case MEM_CGROUP_CHARGE_TYPE_CACHE:
	case MEM_CGROUP_CHARGE_TYPE_SHMEM:
		SetPageCgroupCache(pc);
		SetPageCgroupUsed(pc);
		break;
	case MEM_CGROUP_CHARGE_TYPE_MAPPED:
		ClearPageCgroupCache(pc);
		SetPageCgroupUsed(pc);
		break;
	default:
		break;
	}
2121

K
KAMEZAWA Hiroyuki 已提交
2122
	mem_cgroup_charge_statistics(mem, pc, true);
2123 2124

	unlock_page_cgroup(pc);
2125 2126 2127 2128 2129
	/*
	 * "charge_statistics" updated event counter. Then, check it.
	 * Insert ancestor (and ancestor's ancestors), to softlimit RB-tree.
	 * if they exceeds softlimit.
	 */
2130
	memcg_check_events(mem, pc->page);
2131
}
2132

2133
/**
2134
 * __mem_cgroup_move_account - move account of the page
2135 2136 2137
 * @pc:	page_cgroup of the page.
 * @from: mem_cgroup which the page is moved from.
 * @to:	mem_cgroup which the page is moved to. @from != @to.
2138
 * @uncharge: whether we should call uncharge and css_put against @from.
2139 2140
 *
 * The caller must confirm following.
K
KAMEZAWA Hiroyuki 已提交
2141
 * - page is not on LRU (isolate_page() is useful.)
2142
 * - the pc is locked, used, and ->mem_cgroup points to @from.
2143
 *
2144 2145 2146 2147
 * This function doesn't do "charge" nor css_get to new cgroup. It should be
 * done by a caller(__mem_cgroup_try_charge would be usefull). If @uncharge is
 * true, this function does "uncharge" from old cgroup, but it doesn't if
 * @uncharge is false, so a caller should do "uncharge".
2148 2149
 */

2150
static void __mem_cgroup_move_account(struct page_cgroup *pc,
2151
	struct mem_cgroup *from, struct mem_cgroup *to, bool uncharge)
2152 2153
{
	VM_BUG_ON(from == to);
K
KAMEZAWA Hiroyuki 已提交
2154
	VM_BUG_ON(PageLRU(pc->page));
2155
	VM_BUG_ON(!page_is_cgroup_locked(pc));
2156 2157
	VM_BUG_ON(!PageCgroupUsed(pc));
	VM_BUG_ON(pc->mem_cgroup != from);
2158

2159
	if (PageCgroupFileMapped(pc)) {
2160 2161 2162 2163 2164
		/* Update mapped_file data for mem_cgroup */
		preempt_disable();
		__this_cpu_dec(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
		__this_cpu_inc(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
		preempt_enable();
2165
	}
2166 2167 2168 2169
	mem_cgroup_charge_statistics(from, pc, false);
	if (uncharge)
		/* This is not "cancel", but cancel_charge does all we need. */
		mem_cgroup_cancel_charge(from);
2170

2171
	/* caller should have done css_get */
K
KAMEZAWA Hiroyuki 已提交
2172 2173
	pc->mem_cgroup = to;
	mem_cgroup_charge_statistics(to, pc, true);
2174 2175 2176
	/*
	 * We charges against "to" which may not have any tasks. Then, "to"
	 * can be under rmdir(). But in current implementation, caller of
2177 2178 2179
	 * this function is just force_empty() and move charge, so it's
	 * garanteed that "to" is never removed. So, we don't check rmdir
	 * status here.
2180
	 */
2181 2182 2183 2184 2185 2186 2187
}

/*
 * check whether the @pc is valid for moving account and call
 * __mem_cgroup_move_account()
 */
static int mem_cgroup_move_account(struct page_cgroup *pc,
2188
		struct mem_cgroup *from, struct mem_cgroup *to, bool uncharge)
2189 2190 2191 2192
{
	int ret = -EINVAL;
	lock_page_cgroup(pc);
	if (PageCgroupUsed(pc) && pc->mem_cgroup == from) {
2193
		__mem_cgroup_move_account(pc, from, to, uncharge);
2194 2195 2196
		ret = 0;
	}
	unlock_page_cgroup(pc);
2197 2198 2199 2200 2201
	/*
	 * check events
	 */
	memcg_check_events(to, pc->page);
	memcg_check_events(from, pc->page);
2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212
	return ret;
}

/*
 * move charges to its parent.
 */

static int mem_cgroup_move_parent(struct page_cgroup *pc,
				  struct mem_cgroup *child,
				  gfp_t gfp_mask)
{
K
KAMEZAWA Hiroyuki 已提交
2213
	struct page *page = pc->page;
2214 2215 2216 2217 2218 2219 2220 2221 2222
	struct cgroup *cg = child->css.cgroup;
	struct cgroup *pcg = cg->parent;
	struct mem_cgroup *parent;
	int ret;

	/* Is ROOT ? */
	if (!pcg)
		return -EINVAL;

2223 2224 2225 2226 2227
	ret = -EBUSY;
	if (!get_page_unless_zero(page))
		goto out;
	if (isolate_lru_page(page))
		goto put;
K
KAMEZAWA Hiroyuki 已提交
2228

2229
	parent = mem_cgroup_from_cont(pcg);
2230
	ret = __mem_cgroup_try_charge(NULL, gfp_mask, &parent, false);
2231
	if (ret || !parent)
2232
		goto put_back;
2233

2234 2235 2236
	ret = mem_cgroup_move_account(pc, child, parent, true);
	if (ret)
		mem_cgroup_cancel_charge(parent);
2237
put_back:
K
KAMEZAWA Hiroyuki 已提交
2238
	putback_lru_page(page);
2239
put:
2240
	put_page(page);
2241
out:
2242 2243 2244
	return ret;
}

2245 2246 2247 2248 2249 2250 2251
/*
 * Charge the memory controller for page usage.
 * Return
 * 0 if the charge was successful
 * < 0 if the cgroup is over its limit
 */
static int mem_cgroup_charge_common(struct page *page, struct mm_struct *mm,
2252
				gfp_t gfp_mask, enum charge_type ctype)
2253
{
2254
	struct mem_cgroup *mem = NULL;
2255 2256 2257 2258 2259 2260 2261 2262 2263
	struct page_cgroup *pc;
	int ret;

	pc = lookup_page_cgroup(page);
	/* can happen at boot */
	if (unlikely(!pc))
		return 0;
	prefetchw(pc);

2264
	ret = __mem_cgroup_try_charge(mm, gfp_mask, &mem, true);
2265
	if (ret || !mem)
2266 2267 2268
		return ret;

	__mem_cgroup_commit_charge(mem, pc, ctype);
2269 2270 2271
	return 0;
}

2272 2273
int mem_cgroup_newpage_charge(struct page *page,
			      struct mm_struct *mm, gfp_t gfp_mask)
2274
{
2275
	if (mem_cgroup_disabled())
2276
		return 0;
2277 2278
	if (PageCompound(page))
		return 0;
2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289
	/*
	 * If already mapped, we don't have to account.
	 * If page cache, page->mapping has address_space.
	 * But page->mapping may have out-of-use anon_vma pointer,
	 * detecit it by PageAnon() check. newly-mapped-anon's page->mapping
	 * is NULL.
  	 */
	if (page_mapped(page) || (page->mapping && !PageAnon(page)))
		return 0;
	if (unlikely(!mm))
		mm = &init_mm;
2290
	return mem_cgroup_charge_common(page, mm, gfp_mask,
2291
				MEM_CGROUP_CHARGE_TYPE_MAPPED);
2292 2293
}

D
Daisuke Nishimura 已提交
2294 2295 2296 2297
static void
__mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr,
					enum charge_type ctype);

2298 2299
int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm,
				gfp_t gfp_mask)
2300
{
2301 2302
	int ret;

2303
	if (mem_cgroup_disabled())
2304
		return 0;
2305 2306
	if (PageCompound(page))
		return 0;
2307 2308 2309 2310 2311 2312 2313 2314
	/*
	 * Corner case handling. This is called from add_to_page_cache()
	 * in usual. But some FS (shmem) precharges this page before calling it
	 * and call add_to_page_cache() with GFP_NOWAIT.
	 *
	 * For GFP_NOWAIT case, the page may be pre-charged before calling
	 * add_to_page_cache(). (See shmem.c) check it here and avoid to call
	 * charge twice. (It works but has to pay a bit larger cost.)
2315 2316
	 * And when the page is SwapCache, it should take swap information
	 * into account. This is under lock_page() now.
2317 2318 2319 2320
	 */
	if (!(gfp_mask & __GFP_WAIT)) {
		struct page_cgroup *pc;

2321 2322 2323 2324 2325 2326
		pc = lookup_page_cgroup(page);
		if (!pc)
			return 0;
		lock_page_cgroup(pc);
		if (PageCgroupUsed(pc)) {
			unlock_page_cgroup(pc);
2327 2328
			return 0;
		}
2329
		unlock_page_cgroup(pc);
2330 2331
	}

2332
	if (unlikely(!mm))
2333
		mm = &init_mm;
2334

2335 2336
	if (page_is_file_cache(page))
		return mem_cgroup_charge_common(page, mm, gfp_mask,
2337
				MEM_CGROUP_CHARGE_TYPE_CACHE);
2338

D
Daisuke Nishimura 已提交
2339 2340
	/* shmem */
	if (PageSwapCache(page)) {
2341 2342
		struct mem_cgroup *mem = NULL;

D
Daisuke Nishimura 已提交
2343 2344 2345 2346 2347 2348
		ret = mem_cgroup_try_charge_swapin(mm, page, gfp_mask, &mem);
		if (!ret)
			__mem_cgroup_commit_charge_swapin(page, mem,
					MEM_CGROUP_CHARGE_TYPE_SHMEM);
	} else
		ret = mem_cgroup_charge_common(page, mm, gfp_mask,
2349
					MEM_CGROUP_CHARGE_TYPE_SHMEM);
2350 2351

	return ret;
2352 2353
}

2354 2355 2356
/*
 * While swap-in, try_charge -> commit or cancel, the page is locked.
 * And when try_charge() successfully returns, one refcnt to memcg without
2357
 * struct page_cgroup is acquired. This refcnt will be consumed by
2358 2359
 * "commit()" or removed by "cancel()"
 */
2360 2361 2362 2363 2364
int mem_cgroup_try_charge_swapin(struct mm_struct *mm,
				 struct page *page,
				 gfp_t mask, struct mem_cgroup **ptr)
{
	struct mem_cgroup *mem;
2365
	int ret;
2366

2367
	if (mem_cgroup_disabled())
2368 2369 2370 2371 2372 2373
		return 0;

	if (!do_swap_account)
		goto charge_cur_mm;
	/*
	 * A racing thread's fault, or swapoff, may have already updated
H
Hugh Dickins 已提交
2374 2375 2376
	 * the pte, and even removed page from swap cache: in those cases
	 * do_swap_page()'s pte_same() test will fail; but there's also a
	 * KSM case which does need to charge the page.
2377 2378
	 */
	if (!PageSwapCache(page))
H
Hugh Dickins 已提交
2379
		goto charge_cur_mm;
2380
	mem = try_get_mem_cgroup_from_page(page);
2381 2382
	if (!mem)
		goto charge_cur_mm;
2383
	*ptr = mem;
2384
	ret = __mem_cgroup_try_charge(NULL, mask, ptr, true);
2385 2386
	css_put(&mem->css);
	return ret;
2387 2388 2389
charge_cur_mm:
	if (unlikely(!mm))
		mm = &init_mm;
2390
	return __mem_cgroup_try_charge(mm, mask, ptr, true);
2391 2392
}

D
Daisuke Nishimura 已提交
2393 2394 2395
static void
__mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr,
					enum charge_type ctype)
2396 2397 2398
{
	struct page_cgroup *pc;

2399
	if (mem_cgroup_disabled())
2400 2401 2402
		return;
	if (!ptr)
		return;
2403
	cgroup_exclude_rmdir(&ptr->css);
2404
	pc = lookup_page_cgroup(page);
2405
	mem_cgroup_lru_del_before_commit_swapcache(page);
D
Daisuke Nishimura 已提交
2406
	__mem_cgroup_commit_charge(ptr, pc, ctype);
2407
	mem_cgroup_lru_add_after_commit_swapcache(page);
2408 2409 2410
	/*
	 * Now swap is on-memory. This means this page may be
	 * counted both as mem and swap....double count.
2411 2412 2413
	 * Fix it by uncharging from memsw. Basically, this SwapCache is stable
	 * under lock_page(). But in do_swap_page()::memory.c, reuse_swap_page()
	 * may call delete_from_swap_cache() before reach here.
2414
	 */
2415
	if (do_swap_account && PageSwapCache(page)) {
2416
		swp_entry_t ent = {.val = page_private(page)};
2417
		unsigned short id;
2418
		struct mem_cgroup *memcg;
2419 2420 2421 2422

		id = swap_cgroup_record(ent, 0);
		rcu_read_lock();
		memcg = mem_cgroup_lookup(id);
2423
		if (memcg) {
2424 2425 2426 2427
			/*
			 * This recorded memcg can be obsolete one. So, avoid
			 * calling css_tryget
			 */
2428
			if (!mem_cgroup_is_root(memcg))
2429
				res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
2430
			mem_cgroup_swap_statistics(memcg, false);
2431 2432
			mem_cgroup_put(memcg);
		}
2433
		rcu_read_unlock();
2434
	}
2435 2436 2437 2438 2439 2440
	/*
	 * At swapin, we may charge account against cgroup which has no tasks.
	 * So, rmdir()->pre_destroy() can be called while we do this charge.
	 * In that case, we need to call pre_destroy() again. check it here.
	 */
	cgroup_release_and_wakeup_rmdir(&ptr->css);
2441 2442
}

D
Daisuke Nishimura 已提交
2443 2444 2445 2446 2447 2448
void mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr)
{
	__mem_cgroup_commit_charge_swapin(page, ptr,
					MEM_CGROUP_CHARGE_TYPE_MAPPED);
}

2449 2450
void mem_cgroup_cancel_charge_swapin(struct mem_cgroup *mem)
{
2451
	if (mem_cgroup_disabled())
2452 2453 2454
		return;
	if (!mem)
		return;
2455
	mem_cgroup_cancel_charge(mem);
2456 2457
}

2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474
static void
__do_uncharge(struct mem_cgroup *mem, const enum charge_type ctype)
{
	struct memcg_batch_info *batch = NULL;
	bool uncharge_memsw = true;
	/* If swapout, usage of swap doesn't decrease */
	if (!do_swap_account || ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT)
		uncharge_memsw = false;

	batch = &current->memcg_batch;
	/*
	 * In usual, we do css_get() when we remember memcg pointer.
	 * But in this case, we keep res->usage until end of a series of
	 * uncharges. Then, it's ok to ignore memcg's refcnt.
	 */
	if (!batch->memcg)
		batch->memcg = mem;
2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485
	/*
	 * do_batch > 0 when unmapping pages or inode invalidate/truncate.
	 * In those cases, all pages freed continously can be expected to be in
	 * the same cgroup and we have chance to coalesce uncharges.
	 * But we do uncharge one by one if this is killed by OOM(TIF_MEMDIE)
	 * because we want to do uncharge as soon as possible.
	 */

	if (!batch->do_batch || test_thread_flag(TIF_MEMDIE))
		goto direct_uncharge;

2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501
	/*
	 * In typical case, batch->memcg == mem. This means we can
	 * merge a series of uncharges to an uncharge of res_counter.
	 * If not, we uncharge res_counter ony by one.
	 */
	if (batch->memcg != mem)
		goto direct_uncharge;
	/* remember freed charge and uncharge it later */
	batch->bytes += PAGE_SIZE;
	if (uncharge_memsw)
		batch->memsw_bytes += PAGE_SIZE;
	return;
direct_uncharge:
	res_counter_uncharge(&mem->res, PAGE_SIZE);
	if (uncharge_memsw)
		res_counter_uncharge(&mem->memsw, PAGE_SIZE);
2502 2503
	if (unlikely(batch->memcg != mem))
		memcg_oom_recover(mem);
2504 2505
	return;
}
2506

2507
/*
2508
 * uncharge if !page_mapped(page)
2509
 */
2510
static struct mem_cgroup *
2511
__mem_cgroup_uncharge_common(struct page *page, enum charge_type ctype)
2512
{
H
Hugh Dickins 已提交
2513
	struct page_cgroup *pc;
2514
	struct mem_cgroup *mem = NULL;
2515

2516
	if (mem_cgroup_disabled())
2517
		return NULL;
2518

K
KAMEZAWA Hiroyuki 已提交
2519
	if (PageSwapCache(page))
2520
		return NULL;
K
KAMEZAWA Hiroyuki 已提交
2521

2522
	/*
2523
	 * Check if our page_cgroup is valid
2524
	 */
2525 2526
	pc = lookup_page_cgroup(page);
	if (unlikely(!pc || !PageCgroupUsed(pc)))
2527
		return NULL;
2528

2529
	lock_page_cgroup(pc);
K
KAMEZAWA Hiroyuki 已提交
2530

2531 2532
	mem = pc->mem_cgroup;

K
KAMEZAWA Hiroyuki 已提交
2533 2534 2535 2536 2537
	if (!PageCgroupUsed(pc))
		goto unlock_out;

	switch (ctype) {
	case MEM_CGROUP_CHARGE_TYPE_MAPPED:
K
KAMEZAWA Hiroyuki 已提交
2538
	case MEM_CGROUP_CHARGE_TYPE_DROP:
2539 2540
		/* See mem_cgroup_prepare_migration() */
		if (page_mapped(page) || PageCgroupMigration(pc))
K
KAMEZAWA Hiroyuki 已提交
2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551
			goto unlock_out;
		break;
	case MEM_CGROUP_CHARGE_TYPE_SWAPOUT:
		if (!PageAnon(page)) {	/* Shared memory */
			if (page->mapping && !page_is_file_cache(page))
				goto unlock_out;
		} else if (page_mapped(page)) /* Anon */
				goto unlock_out;
		break;
	default:
		break;
2552
	}
K
KAMEZAWA Hiroyuki 已提交
2553

K
KAMEZAWA Hiroyuki 已提交
2554
	mem_cgroup_charge_statistics(mem, pc, false);
K
KAMEZAWA Hiroyuki 已提交
2555

2556
	ClearPageCgroupUsed(pc);
2557 2558 2559 2560 2561 2562
	/*
	 * pc->mem_cgroup is not cleared here. It will be accessed when it's
	 * freed from LRU. This is safe because uncharged page is expected not
	 * to be reused (freed soon). Exception is SwapCache, it's handled by
	 * special functions.
	 */
2563

2564
	unlock_page_cgroup(pc);
K
KAMEZAWA Hiroyuki 已提交
2565 2566 2567 2568
	/*
	 * even after unlock, we have mem->res.usage here and this memcg
	 * will never be freed.
	 */
2569
	memcg_check_events(mem, page);
K
KAMEZAWA Hiroyuki 已提交
2570 2571 2572 2573 2574 2575
	if (do_swap_account && ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT) {
		mem_cgroup_swap_statistics(mem, true);
		mem_cgroup_get(mem);
	}
	if (!mem_cgroup_is_root(mem))
		__do_uncharge(mem, ctype);
2576

2577
	return mem;
K
KAMEZAWA Hiroyuki 已提交
2578 2579 2580

unlock_out:
	unlock_page_cgroup(pc);
2581
	return NULL;
2582 2583
}

2584 2585
void mem_cgroup_uncharge_page(struct page *page)
{
2586 2587 2588 2589 2590
	/* early check. */
	if (page_mapped(page))
		return;
	if (page->mapping && !PageAnon(page))
		return;
2591 2592 2593 2594 2595 2596
	__mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_MAPPED);
}

void mem_cgroup_uncharge_cache_page(struct page *page)
{
	VM_BUG_ON(page_mapped(page));
2597
	VM_BUG_ON(page->mapping);
2598 2599 2600
	__mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_CACHE);
}

2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640
/*
 * Batch_start/batch_end is called in unmap_page_range/invlidate/trucate.
 * In that cases, pages are freed continuously and we can expect pages
 * are in the same memcg. All these calls itself limits the number of
 * pages freed at once, then uncharge_start/end() is called properly.
 * This may be called prural(2) times in a context,
 */

void mem_cgroup_uncharge_start(void)
{
	current->memcg_batch.do_batch++;
	/* We can do nest. */
	if (current->memcg_batch.do_batch == 1) {
		current->memcg_batch.memcg = NULL;
		current->memcg_batch.bytes = 0;
		current->memcg_batch.memsw_bytes = 0;
	}
}

void mem_cgroup_uncharge_end(void)
{
	struct memcg_batch_info *batch = &current->memcg_batch;

	if (!batch->do_batch)
		return;

	batch->do_batch--;
	if (batch->do_batch) /* If stacked, do nothing. */
		return;

	if (!batch->memcg)
		return;
	/*
	 * This "batch->memcg" is valid without any css_get/put etc...
	 * bacause we hide charges behind us.
	 */
	if (batch->bytes)
		res_counter_uncharge(&batch->memcg->res, batch->bytes);
	if (batch->memsw_bytes)
		res_counter_uncharge(&batch->memcg->memsw, batch->memsw_bytes);
2641
	memcg_oom_recover(batch->memcg);
2642 2643 2644 2645
	/* forget this pointer (for sanity check) */
	batch->memcg = NULL;
}

2646
#ifdef CONFIG_SWAP
2647
/*
2648
 * called after __delete_from_swap_cache() and drop "page" account.
2649 2650
 * memcg information is recorded to swap_cgroup of "ent"
 */
K
KAMEZAWA Hiroyuki 已提交
2651 2652
void
mem_cgroup_uncharge_swapcache(struct page *page, swp_entry_t ent, bool swapout)
2653 2654
{
	struct mem_cgroup *memcg;
K
KAMEZAWA Hiroyuki 已提交
2655 2656 2657 2658 2659 2660
	int ctype = MEM_CGROUP_CHARGE_TYPE_SWAPOUT;

	if (!swapout) /* this was a swap cache but the swap is unused ! */
		ctype = MEM_CGROUP_CHARGE_TYPE_DROP;

	memcg = __mem_cgroup_uncharge_common(page, ctype);
2661

K
KAMEZAWA Hiroyuki 已提交
2662 2663 2664 2665 2666
	/*
	 * record memcg information,  if swapout && memcg != NULL,
	 * mem_cgroup_get() was called in uncharge().
	 */
	if (do_swap_account && swapout && memcg)
2667
		swap_cgroup_record(ent, css_id(&memcg->css));
2668
}
2669
#endif
2670 2671 2672 2673 2674 2675 2676

#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
/*
 * called from swap_entry_free(). remove record in swap_cgroup and
 * uncharge "memsw" account.
 */
void mem_cgroup_uncharge_swap(swp_entry_t ent)
K
KAMEZAWA Hiroyuki 已提交
2677
{
2678
	struct mem_cgroup *memcg;
2679
	unsigned short id;
2680 2681 2682 2683

	if (!do_swap_account)
		return;

2684 2685 2686
	id = swap_cgroup_record(ent, 0);
	rcu_read_lock();
	memcg = mem_cgroup_lookup(id);
2687
	if (memcg) {
2688 2689 2690 2691
		/*
		 * We uncharge this because swap is freed.
		 * This memcg can be obsolete one. We avoid calling css_tryget
		 */
2692
		if (!mem_cgroup_is_root(memcg))
2693
			res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
2694
		mem_cgroup_swap_statistics(memcg, false);
2695 2696
		mem_cgroup_put(memcg);
	}
2697
	rcu_read_unlock();
K
KAMEZAWA Hiroyuki 已提交
2698
}
2699 2700 2701 2702 2703 2704

/**
 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
 * @entry: swap entry to be moved
 * @from:  mem_cgroup which the entry is moved from
 * @to:  mem_cgroup which the entry is moved to
2705
 * @need_fixup: whether we should fixup res_counters and refcounts.
2706 2707 2708 2709 2710 2711 2712 2713 2714 2715
 *
 * It succeeds only when the swap_cgroup's record for this entry is the same
 * as the mem_cgroup's id of @from.
 *
 * Returns 0 on success, -EINVAL on failure.
 *
 * The caller must have charged to @to, IOW, called res_counter_charge() about
 * both res and memsw, and called css_get().
 */
static int mem_cgroup_move_swap_account(swp_entry_t entry,
2716
		struct mem_cgroup *from, struct mem_cgroup *to, bool need_fixup)
2717 2718 2719 2720 2721 2722 2723 2724
{
	unsigned short old_id, new_id;

	old_id = css_id(&from->css);
	new_id = css_id(&to->css);

	if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
		mem_cgroup_swap_statistics(from, false);
2725
		mem_cgroup_swap_statistics(to, true);
2726
		/*
2727 2728 2729 2730 2731 2732
		 * This function is only called from task migration context now.
		 * It postpones res_counter and refcount handling till the end
		 * of task migration(mem_cgroup_clear_mc()) for performance
		 * improvement. But we cannot postpone mem_cgroup_get(to)
		 * because if the process that has been moved to @to does
		 * swap-in, the refcount of @to might be decreased to 0.
2733 2734
		 */
		mem_cgroup_get(to);
2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745
		if (need_fixup) {
			if (!mem_cgroup_is_root(from))
				res_counter_uncharge(&from->memsw, PAGE_SIZE);
			mem_cgroup_put(from);
			/*
			 * we charged both to->res and to->memsw, so we should
			 * uncharge to->res.
			 */
			if (!mem_cgroup_is_root(to))
				res_counter_uncharge(&to->res, PAGE_SIZE);
		}
2746 2747 2748 2749 2750 2751
		return 0;
	}
	return -EINVAL;
}
#else
static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
2752
		struct mem_cgroup *from, struct mem_cgroup *to, bool need_fixup)
2753 2754 2755
{
	return -EINVAL;
}
2756
#endif
K
KAMEZAWA Hiroyuki 已提交
2757

2758
/*
2759 2760
 * Before starting migration, account PAGE_SIZE to mem_cgroup that the old
 * page belongs to.
2761
 */
2762 2763
int mem_cgroup_prepare_migration(struct page *page,
	struct page *newpage, struct mem_cgroup **ptr)
2764 2765
{
	struct page_cgroup *pc;
2766
	struct mem_cgroup *mem = NULL;
2767
	enum charge_type ctype;
2768
	int ret = 0;
2769

2770
	if (mem_cgroup_disabled())
2771 2772
		return 0;

2773 2774 2775
	pc = lookup_page_cgroup(page);
	lock_page_cgroup(pc);
	if (PageCgroupUsed(pc)) {
2776 2777
		mem = pc->mem_cgroup;
		css_get(&mem->css);
2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808
		/*
		 * At migrating an anonymous page, its mapcount goes down
		 * to 0 and uncharge() will be called. But, even if it's fully
		 * unmapped, migration may fail and this page has to be
		 * charged again. We set MIGRATION flag here and delay uncharge
		 * until end_migration() is called
		 *
		 * Corner Case Thinking
		 * A)
		 * When the old page was mapped as Anon and it's unmap-and-freed
		 * while migration was ongoing.
		 * If unmap finds the old page, uncharge() of it will be delayed
		 * until end_migration(). If unmap finds a new page, it's
		 * uncharged when it make mapcount to be 1->0. If unmap code
		 * finds swap_migration_entry, the new page will not be mapped
		 * and end_migration() will find it(mapcount==0).
		 *
		 * B)
		 * When the old page was mapped but migraion fails, the kernel
		 * remaps it. A charge for it is kept by MIGRATION flag even
		 * if mapcount goes down to 0. We can do remap successfully
		 * without charging it again.
		 *
		 * C)
		 * The "old" page is under lock_page() until the end of
		 * migration, so, the old page itself will not be swapped-out.
		 * If the new page is swapped out before end_migraton, our
		 * hook to usual swap-out path will catch the event.
		 */
		if (PageAnon(page))
			SetPageCgroupMigration(pc);
2809
	}
2810
	unlock_page_cgroup(pc);
2811 2812 2813 2814 2815 2816
	/*
	 * If the page is not charged at this point,
	 * we return here.
	 */
	if (!mem)
		return 0;
2817

A
Andrea Arcangeli 已提交
2818
	*ptr = mem;
2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831
	ret = __mem_cgroup_try_charge(NULL, GFP_KERNEL, ptr, false);
	css_put(&mem->css);/* drop extra refcnt */
	if (ret || *ptr == NULL) {
		if (PageAnon(page)) {
			lock_page_cgroup(pc);
			ClearPageCgroupMigration(pc);
			unlock_page_cgroup(pc);
			/*
			 * The old page may be fully unmapped while we kept it.
			 */
			mem_cgroup_uncharge_page(page);
		}
		return -ENOMEM;
2832
	}
2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846
	/*
	 * We charge new page before it's used/mapped. So, even if unlock_page()
	 * is called before end_migration, we can catch all events on this new
	 * page. In the case new page is migrated but not remapped, new page's
	 * mapcount will be finally 0 and we call uncharge in end_migration().
	 */
	pc = lookup_page_cgroup(newpage);
	if (PageAnon(page))
		ctype = MEM_CGROUP_CHARGE_TYPE_MAPPED;
	else if (page_is_file_cache(page))
		ctype = MEM_CGROUP_CHARGE_TYPE_CACHE;
	else
		ctype = MEM_CGROUP_CHARGE_TYPE_SHMEM;
	__mem_cgroup_commit_charge(mem, pc, ctype);
2847
	return ret;
2848
}
2849

2850
/* remove redundant charge if migration failed*/
2851
void mem_cgroup_end_migration(struct mem_cgroup *mem,
2852
	struct page *oldpage, struct page *newpage)
2853
{
2854
	struct page *used, *unused;
2855 2856 2857 2858
	struct page_cgroup *pc;

	if (!mem)
		return;
2859
	/* blocks rmdir() */
2860
	cgroup_exclude_rmdir(&mem->css);
2861 2862
	/* at migration success, oldpage->mapping is NULL. */
	if (oldpage->mapping) {
2863 2864
		used = oldpage;
		unused = newpage;
2865
	} else {
2866
		used = newpage;
2867 2868
		unused = oldpage;
	}
2869
	/*
2870 2871 2872
	 * We disallowed uncharge of pages under migration because mapcount
	 * of the page goes down to zero, temporarly.
	 * Clear the flag and check the page should be charged.
2873
	 */
2874 2875 2876 2877
	pc = lookup_page_cgroup(oldpage);
	lock_page_cgroup(pc);
	ClearPageCgroupMigration(pc);
	unlock_page_cgroup(pc);
2878

2879 2880
	__mem_cgroup_uncharge_common(unused, MEM_CGROUP_CHARGE_TYPE_FORCE);

2881
	/*
2882 2883 2884 2885 2886 2887
	 * If a page is a file cache, radix-tree replacement is very atomic
	 * and we can skip this check. When it was an Anon page, its mapcount
	 * goes down to 0. But because we added MIGRATION flage, it's not
	 * uncharged yet. There are several case but page->mapcount check
	 * and USED bit check in mem_cgroup_uncharge_page() will do enough
	 * check. (see prepare_charge() also)
2888
	 */
2889 2890
	if (PageAnon(used))
		mem_cgroup_uncharge_page(used);
2891
	/*
2892 2893
	 * At migration, we may charge account against cgroup which has no
	 * tasks.
2894 2895 2896 2897
	 * So, rmdir()->pre_destroy() can be called while we do this charge.
	 * In that case, we need to call pre_destroy() again. check it here.
	 */
	cgroup_release_and_wakeup_rmdir(&mem->css);
2898
}
2899

2900
/*
2901 2902 2903 2904 2905 2906
 * A call to try to shrink memory usage on charge failure at shmem's swapin.
 * Calling hierarchical_reclaim is not enough because we should update
 * last_oom_jiffies to prevent pagefault_out_of_memory from invoking global OOM.
 * Moreover considering hierarchy, we should reclaim from the mem_over_limit,
 * not from the memcg which this page would be charged to.
 * try_charge_swapin does all of these works properly.
2907
 */
2908
int mem_cgroup_shmem_charge_fallback(struct page *page,
2909 2910
			    struct mm_struct *mm,
			    gfp_t gfp_mask)
2911
{
2912
	struct mem_cgroup *mem = NULL;
2913
	int ret;
2914

2915
	if (mem_cgroup_disabled())
2916
		return 0;
2917

2918 2919 2920
	ret = mem_cgroup_try_charge_swapin(mm, page, gfp_mask, &mem);
	if (!ret)
		mem_cgroup_cancel_charge_swapin(mem); /* it does !mem check */
2921

2922
	return ret;
2923 2924
}

2925 2926
static DEFINE_MUTEX(set_limit_mutex);

2927
static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
2928
				unsigned long long val)
2929
{
2930
	int retry_count;
2931
	u64 memswlimit, memlimit;
2932
	int ret = 0;
2933 2934
	int children = mem_cgroup_count_children(memcg);
	u64 curusage, oldusage;
2935
	int enlarge;
2936 2937 2938 2939 2940 2941 2942 2943 2944

	/*
	 * For keeping hierarchical_reclaim simple, how long we should retry
	 * is depends on callers. We set our retry-count to be function
	 * of # of children which we should visit in this loop.
	 */
	retry_count = MEM_CGROUP_RECLAIM_RETRIES * children;

	oldusage = res_counter_read_u64(&memcg->res, RES_USAGE);
2945

2946
	enlarge = 0;
2947
	while (retry_count) {
2948 2949 2950 2951
		if (signal_pending(current)) {
			ret = -EINTR;
			break;
		}
2952 2953 2954 2955 2956 2957 2958 2959 2960 2961
		/*
		 * Rather than hide all in some function, I do this in
		 * open coded manner. You see what this really does.
		 * We have to guarantee mem->res.limit < mem->memsw.limit.
		 */
		mutex_lock(&set_limit_mutex);
		memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
		if (memswlimit < val) {
			ret = -EINVAL;
			mutex_unlock(&set_limit_mutex);
2962 2963
			break;
		}
2964 2965 2966 2967 2968

		memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
		if (memlimit < val)
			enlarge = 1;

2969
		ret = res_counter_set_limit(&memcg->res, val);
2970 2971 2972 2973 2974 2975
		if (!ret) {
			if (memswlimit == val)
				memcg->memsw_is_minimum = true;
			else
				memcg->memsw_is_minimum = false;
		}
2976 2977 2978 2979 2980
		mutex_unlock(&set_limit_mutex);

		if (!ret)
			break;

2981
		mem_cgroup_hierarchical_reclaim(memcg, NULL, GFP_KERNEL,
2982
						MEM_CGROUP_RECLAIM_SHRINK);
2983 2984 2985 2986 2987 2988
		curusage = res_counter_read_u64(&memcg->res, RES_USAGE);
		/* Usage is reduced ? */
  		if (curusage >= oldusage)
			retry_count--;
		else
			oldusage = curusage;
2989
	}
2990 2991
	if (!ret && enlarge)
		memcg_oom_recover(memcg);
2992

2993 2994 2995
	return ret;
}

L
Li Zefan 已提交
2996 2997
static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
					unsigned long long val)
2998
{
2999
	int retry_count;
3000
	u64 memlimit, memswlimit, oldusage, curusage;
3001 3002
	int children = mem_cgroup_count_children(memcg);
	int ret = -EBUSY;
3003
	int enlarge = 0;
3004

3005 3006 3007
	/* see mem_cgroup_resize_res_limit */
 	retry_count = children * MEM_CGROUP_RECLAIM_RETRIES;
	oldusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024
	while (retry_count) {
		if (signal_pending(current)) {
			ret = -EINTR;
			break;
		}
		/*
		 * Rather than hide all in some function, I do this in
		 * open coded manner. You see what this really does.
		 * We have to guarantee mem->res.limit < mem->memsw.limit.
		 */
		mutex_lock(&set_limit_mutex);
		memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
		if (memlimit > val) {
			ret = -EINVAL;
			mutex_unlock(&set_limit_mutex);
			break;
		}
3025 3026 3027
		memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
		if (memswlimit < val)
			enlarge = 1;
3028
		ret = res_counter_set_limit(&memcg->memsw, val);
3029 3030 3031 3032 3033 3034
		if (!ret) {
			if (memlimit == val)
				memcg->memsw_is_minimum = true;
			else
				memcg->memsw_is_minimum = false;
		}
3035 3036 3037 3038 3039
		mutex_unlock(&set_limit_mutex);

		if (!ret)
			break;

3040
		mem_cgroup_hierarchical_reclaim(memcg, NULL, GFP_KERNEL,
3041 3042
						MEM_CGROUP_RECLAIM_NOSWAP |
						MEM_CGROUP_RECLAIM_SHRINK);
3043
		curusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
3044
		/* Usage is reduced ? */
3045
		if (curusage >= oldusage)
3046
			retry_count--;
3047 3048
		else
			oldusage = curusage;
3049
	}
3050 3051
	if (!ret && enlarge)
		memcg_oom_recover(memcg);
3052 3053 3054
	return ret;
}

3055
unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
3056
					    gfp_t gfp_mask)
3057 3058 3059 3060 3061 3062
{
	unsigned long nr_reclaimed = 0;
	struct mem_cgroup_per_zone *mz, *next_mz = NULL;
	unsigned long reclaimed;
	int loop = 0;
	struct mem_cgroup_tree_per_zone *mctz;
3063
	unsigned long long excess;
3064 3065 3066 3067

	if (order > 0)
		return 0;

3068
	mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone));
3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115
	/*
	 * This loop can run a while, specially if mem_cgroup's continuously
	 * keep exceeding their soft limit and putting the system under
	 * pressure
	 */
	do {
		if (next_mz)
			mz = next_mz;
		else
			mz = mem_cgroup_largest_soft_limit_node(mctz);
		if (!mz)
			break;

		reclaimed = mem_cgroup_hierarchical_reclaim(mz->mem, zone,
						gfp_mask,
						MEM_CGROUP_RECLAIM_SOFT);
		nr_reclaimed += reclaimed;
		spin_lock(&mctz->lock);

		/*
		 * If we failed to reclaim anything from this memory cgroup
		 * it is time to move on to the next cgroup
		 */
		next_mz = NULL;
		if (!reclaimed) {
			do {
				/*
				 * Loop until we find yet another one.
				 *
				 * By the time we get the soft_limit lock
				 * again, someone might have aded the
				 * group back on the RB tree. Iterate to
				 * make sure we get a different mem.
				 * mem_cgroup_largest_soft_limit_node returns
				 * NULL if no other cgroup is present on
				 * the tree
				 */
				next_mz =
				__mem_cgroup_largest_soft_limit_node(mctz);
				if (next_mz == mz) {
					css_put(&next_mz->mem->css);
					next_mz = NULL;
				} else /* next_mz == NULL or other memcg */
					break;
			} while (1);
		}
		__mem_cgroup_remove_exceeded(mz->mem, mz, mctz);
3116
		excess = res_counter_soft_limit_excess(&mz->mem->res);
3117 3118 3119 3120 3121 3122 3123 3124
		/*
		 * One school of thought says that we should not add
		 * back the node to the tree if reclaim returns 0.
		 * But our reclaim could return 0, simply because due
		 * to priority we are exposing a smaller subset of
		 * memory to reclaim from. Consider this as a longer
		 * term TODO.
		 */
3125 3126
		/* If excess == 0, no tree ops */
		__mem_cgroup_insert_exceeded(mz->mem, mz, mctz, excess);
3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144
		spin_unlock(&mctz->lock);
		css_put(&mz->mem->css);
		loop++;
		/*
		 * Could not reclaim anything and there are no more
		 * mem cgroups to try or we seem to be looping without
		 * reclaiming anything.
		 */
		if (!nr_reclaimed &&
			(next_mz == NULL ||
			loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
			break;
	} while (!nr_reclaimed);
	if (next_mz)
		css_put(&next_mz->mem->css);
	return nr_reclaimed;
}

3145 3146 3147 3148
/*
 * This routine traverse page_cgroup in given list and drop them all.
 * *And* this routine doesn't reclaim page itself, just removes page_cgroup.
 */
3149
static int mem_cgroup_force_empty_list(struct mem_cgroup *mem,
K
KAMEZAWA Hiroyuki 已提交
3150
				int node, int zid, enum lru_list lru)
3151
{
K
KAMEZAWA Hiroyuki 已提交
3152 3153
	struct zone *zone;
	struct mem_cgroup_per_zone *mz;
3154
	struct page_cgroup *pc, *busy;
K
KAMEZAWA Hiroyuki 已提交
3155
	unsigned long flags, loop;
3156
	struct list_head *list;
3157
	int ret = 0;
3158

K
KAMEZAWA Hiroyuki 已提交
3159 3160
	zone = &NODE_DATA(node)->node_zones[zid];
	mz = mem_cgroup_zoneinfo(mem, node, zid);
3161
	list = &mz->lists[lru];
3162

3163 3164 3165 3166 3167 3168
	loop = MEM_CGROUP_ZSTAT(mz, lru);
	/* give some margin against EBUSY etc...*/
	loop += 256;
	busy = NULL;
	while (loop--) {
		ret = 0;
K
KAMEZAWA Hiroyuki 已提交
3169
		spin_lock_irqsave(&zone->lru_lock, flags);
3170
		if (list_empty(list)) {
K
KAMEZAWA Hiroyuki 已提交
3171
			spin_unlock_irqrestore(&zone->lru_lock, flags);
3172
			break;
3173 3174 3175 3176
		}
		pc = list_entry(list->prev, struct page_cgroup, lru);
		if (busy == pc) {
			list_move(&pc->lru, list);
3177
			busy = NULL;
K
KAMEZAWA Hiroyuki 已提交
3178
			spin_unlock_irqrestore(&zone->lru_lock, flags);
3179 3180
			continue;
		}
K
KAMEZAWA Hiroyuki 已提交
3181
		spin_unlock_irqrestore(&zone->lru_lock, flags);
3182

K
KAMEZAWA Hiroyuki 已提交
3183
		ret = mem_cgroup_move_parent(pc, mem, GFP_KERNEL);
3184
		if (ret == -ENOMEM)
3185
			break;
3186 3187 3188 3189 3190 3191 3192

		if (ret == -EBUSY || ret == -EINVAL) {
			/* found lock contention or "pc" is obsolete. */
			busy = pc;
			cond_resched();
		} else
			busy = NULL;
3193
	}
K
KAMEZAWA Hiroyuki 已提交
3194

3195 3196 3197
	if (!ret && !list_empty(list))
		return -EBUSY;
	return ret;
3198 3199 3200 3201 3202 3203
}

/*
 * make mem_cgroup's charge to be 0 if there is no task.
 * This enables deleting this mem_cgroup.
 */
3204
static int mem_cgroup_force_empty(struct mem_cgroup *mem, bool free_all)
3205
{
3206 3207 3208
	int ret;
	int node, zid, shrink;
	int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
3209
	struct cgroup *cgrp = mem->css.cgroup;
3210

3211
	css_get(&mem->css);
3212 3213

	shrink = 0;
3214 3215 3216
	/* should free all ? */
	if (free_all)
		goto try_to_free;
3217
move_account:
3218
	do {
3219
		ret = -EBUSY;
3220 3221 3222 3223
		if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children))
			goto out;
		ret = -EINTR;
		if (signal_pending(current))
3224
			goto out;
3225 3226
		/* This is for making all *used* pages to be on LRU. */
		lru_add_drain_all();
3227
		drain_all_stock_sync();
3228
		ret = 0;
3229
		mem_cgroup_start_move(mem);
3230
		for_each_node_state(node, N_HIGH_MEMORY) {
3231
			for (zid = 0; !ret && zid < MAX_NR_ZONES; zid++) {
3232
				enum lru_list l;
3233 3234
				for_each_lru(l) {
					ret = mem_cgroup_force_empty_list(mem,
K
KAMEZAWA Hiroyuki 已提交
3235
							node, zid, l);
3236 3237 3238
					if (ret)
						break;
				}
3239
			}
3240 3241 3242
			if (ret)
				break;
		}
3243
		mem_cgroup_end_move(mem);
3244
		memcg_oom_recover(mem);
3245 3246 3247
		/* it seems parent cgroup doesn't have enough mem */
		if (ret == -ENOMEM)
			goto try_to_free;
3248
		cond_resched();
3249 3250
	/* "ret" should also be checked to ensure all lists are empty. */
	} while (mem->res.usage > 0 || ret);
3251 3252 3253
out:
	css_put(&mem->css);
	return ret;
3254 3255

try_to_free:
3256 3257
	/* returns EBUSY if there is a task or if we come here twice. */
	if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children) || shrink) {
3258 3259 3260
		ret = -EBUSY;
		goto out;
	}
3261 3262
	/* we call try-to-free pages for make this cgroup empty */
	lru_add_drain_all();
3263 3264 3265 3266
	/* try to free all pages in this cgroup */
	shrink = 1;
	while (nr_retries && mem->res.usage > 0) {
		int progress;
3267 3268 3269 3270 3271

		if (signal_pending(current)) {
			ret = -EINTR;
			goto out;
		}
K
KOSAKI Motohiro 已提交
3272 3273
		progress = try_to_free_mem_cgroup_pages(mem, GFP_KERNEL,
						false, get_swappiness(mem));
3274
		if (!progress) {
3275
			nr_retries--;
3276
			/* maybe some writeback is necessary */
3277
			congestion_wait(BLK_RW_ASYNC, HZ/10);
3278
		}
3279 3280

	}
K
KAMEZAWA Hiroyuki 已提交
3281
	lru_add_drain();
3282
	/* try move_account...there may be some *locked* pages. */
3283
	goto move_account;
3284 3285
}

3286 3287 3288 3289 3290 3291
int mem_cgroup_force_empty_write(struct cgroup *cont, unsigned int event)
{
	return mem_cgroup_force_empty(mem_cgroup_from_cont(cont), true);
}


3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309
static u64 mem_cgroup_hierarchy_read(struct cgroup *cont, struct cftype *cft)
{
	return mem_cgroup_from_cont(cont)->use_hierarchy;
}

static int mem_cgroup_hierarchy_write(struct cgroup *cont, struct cftype *cft,
					u64 val)
{
	int retval = 0;
	struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
	struct cgroup *parent = cont->parent;
	struct mem_cgroup *parent_mem = NULL;

	if (parent)
		parent_mem = mem_cgroup_from_cont(parent);

	cgroup_lock();
	/*
3310
	 * If parent's use_hierarchy is set, we can't make any modifications
3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329
	 * in the child subtrees. If it is unset, then the change can
	 * occur, provided the current cgroup has no children.
	 *
	 * For the root cgroup, parent_mem is NULL, we allow value to be
	 * set if there are no children.
	 */
	if ((!parent_mem || !parent_mem->use_hierarchy) &&
				(val == 1 || val == 0)) {
		if (list_empty(&cont->children))
			mem->use_hierarchy = val;
		else
			retval = -EBUSY;
	} else
		retval = -EINVAL;
	cgroup_unlock();

	return retval;
}

3330

K
KAMEZAWA Hiroyuki 已提交
3331 3332
static u64 mem_cgroup_get_recursive_idx_stat(struct mem_cgroup *mem,
				enum mem_cgroup_stat_index idx)
3333
{
K
KAMEZAWA Hiroyuki 已提交
3334 3335
	struct mem_cgroup *iter;
	s64 val = 0;
3336

K
KAMEZAWA Hiroyuki 已提交
3337 3338 3339 3340 3341 3342 3343
	/* each per cpu's value can be minus.Then, use s64 */
	for_each_mem_cgroup_tree(iter, mem)
		val += mem_cgroup_read_stat(iter, idx);

	if (val < 0) /* race ? */
		val = 0;
	return val;
3344 3345
}

3346 3347
static inline u64 mem_cgroup_usage(struct mem_cgroup *mem, bool swap)
{
K
KAMEZAWA Hiroyuki 已提交
3348
	u64 val;
3349 3350 3351 3352 3353 3354 3355 3356

	if (!mem_cgroup_is_root(mem)) {
		if (!swap)
			return res_counter_read_u64(&mem->res, RES_USAGE);
		else
			return res_counter_read_u64(&mem->memsw, RES_USAGE);
	}

K
KAMEZAWA Hiroyuki 已提交
3357 3358
	val = mem_cgroup_get_recursive_idx_stat(mem, MEM_CGROUP_STAT_CACHE);
	val += mem_cgroup_get_recursive_idx_stat(mem, MEM_CGROUP_STAT_RSS);
3359

K
KAMEZAWA Hiroyuki 已提交
3360 3361 3362
	if (swap)
		val += mem_cgroup_get_recursive_idx_stat(mem,
				MEM_CGROUP_STAT_SWAPOUT);
3363 3364 3365 3366

	return val << PAGE_SHIFT;
}

3367
static u64 mem_cgroup_read(struct cgroup *cont, struct cftype *cft)
B
Balbir Singh 已提交
3368
{
3369
	struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
3370
	u64 val;
3371 3372 3373 3374 3375 3376
	int type, name;

	type = MEMFILE_TYPE(cft->private);
	name = MEMFILE_ATTR(cft->private);
	switch (type) {
	case _MEM:
3377 3378 3379
		if (name == RES_USAGE)
			val = mem_cgroup_usage(mem, false);
		else
3380
			val = res_counter_read_u64(&mem->res, name);
3381 3382
		break;
	case _MEMSWAP:
3383 3384 3385
		if (name == RES_USAGE)
			val = mem_cgroup_usage(mem, true);
		else
3386
			val = res_counter_read_u64(&mem->memsw, name);
3387 3388 3389 3390 3391 3392
		break;
	default:
		BUG();
		break;
	}
	return val;
B
Balbir Singh 已提交
3393
}
3394 3395 3396 3397
/*
 * The user of this function is...
 * RES_LIMIT.
 */
3398 3399
static int mem_cgroup_write(struct cgroup *cont, struct cftype *cft,
			    const char *buffer)
B
Balbir Singh 已提交
3400
{
3401
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
3402
	int type, name;
3403 3404 3405
	unsigned long long val;
	int ret;

3406 3407 3408
	type = MEMFILE_TYPE(cft->private);
	name = MEMFILE_ATTR(cft->private);
	switch (name) {
3409
	case RES_LIMIT:
3410 3411 3412 3413
		if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
			ret = -EINVAL;
			break;
		}
3414 3415
		/* This function does all necessary parse...reuse it */
		ret = res_counter_memparse_write_strategy(buffer, &val);
3416 3417 3418
		if (ret)
			break;
		if (type == _MEM)
3419
			ret = mem_cgroup_resize_limit(memcg, val);
3420 3421
		else
			ret = mem_cgroup_resize_memsw_limit(memcg, val);
3422
		break;
3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436
	case RES_SOFT_LIMIT:
		ret = res_counter_memparse_write_strategy(buffer, &val);
		if (ret)
			break;
		/*
		 * For memsw, soft limits are hard to implement in terms
		 * of semantics, for now, we support soft limits for
		 * control without swap
		 */
		if (type == _MEM)
			ret = res_counter_set_soft_limit(&memcg->res, val);
		else
			ret = -EINVAL;
		break;
3437 3438 3439 3440 3441
	default:
		ret = -EINVAL; /* should be BUG() ? */
		break;
	}
	return ret;
B
Balbir Singh 已提交
3442 3443
}

3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471
static void memcg_get_hierarchical_limit(struct mem_cgroup *memcg,
		unsigned long long *mem_limit, unsigned long long *memsw_limit)
{
	struct cgroup *cgroup;
	unsigned long long min_limit, min_memsw_limit, tmp;

	min_limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
	min_memsw_limit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
	cgroup = memcg->css.cgroup;
	if (!memcg->use_hierarchy)
		goto out;

	while (cgroup->parent) {
		cgroup = cgroup->parent;
		memcg = mem_cgroup_from_cont(cgroup);
		if (!memcg->use_hierarchy)
			break;
		tmp = res_counter_read_u64(&memcg->res, RES_LIMIT);
		min_limit = min(min_limit, tmp);
		tmp = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
		min_memsw_limit = min(min_memsw_limit, tmp);
	}
out:
	*mem_limit = min_limit;
	*memsw_limit = min_memsw_limit;
	return;
}

3472
static int mem_cgroup_reset(struct cgroup *cont, unsigned int event)
3473 3474
{
	struct mem_cgroup *mem;
3475
	int type, name;
3476 3477

	mem = mem_cgroup_from_cont(cont);
3478 3479 3480
	type = MEMFILE_TYPE(event);
	name = MEMFILE_ATTR(event);
	switch (name) {
3481
	case RES_MAX_USAGE:
3482 3483 3484 3485
		if (type == _MEM)
			res_counter_reset_max(&mem->res);
		else
			res_counter_reset_max(&mem->memsw);
3486 3487
		break;
	case RES_FAILCNT:
3488 3489 3490 3491
		if (type == _MEM)
			res_counter_reset_failcnt(&mem->res);
		else
			res_counter_reset_failcnt(&mem->memsw);
3492 3493
		break;
	}
3494

3495
	return 0;
3496 3497
}

3498 3499 3500 3501 3502 3503
static u64 mem_cgroup_move_charge_read(struct cgroup *cgrp,
					struct cftype *cft)
{
	return mem_cgroup_from_cont(cgrp)->move_charge_at_immigrate;
}

3504
#ifdef CONFIG_MMU
3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522
static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
					struct cftype *cft, u64 val)
{
	struct mem_cgroup *mem = mem_cgroup_from_cont(cgrp);

	if (val >= (1 << NR_MOVE_TYPE))
		return -EINVAL;
	/*
	 * We check this value several times in both in can_attach() and
	 * attach(), so we need cgroup lock to prevent this value from being
	 * inconsistent.
	 */
	cgroup_lock();
	mem->move_charge_at_immigrate = val;
	cgroup_unlock();

	return 0;
}
3523 3524 3525 3526 3527 3528 3529
#else
static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
					struct cftype *cft, u64 val)
{
	return -ENOSYS;
}
#endif
3530

K
KAMEZAWA Hiroyuki 已提交
3531 3532 3533 3534 3535

/* For read statistics */
enum {
	MCS_CACHE,
	MCS_RSS,
3536
	MCS_FILE_MAPPED,
K
KAMEZAWA Hiroyuki 已提交
3537 3538
	MCS_PGPGIN,
	MCS_PGPGOUT,
3539
	MCS_SWAP,
K
KAMEZAWA Hiroyuki 已提交
3540 3541 3542 3543 3544 3545 3546 3547 3548 3549
	MCS_INACTIVE_ANON,
	MCS_ACTIVE_ANON,
	MCS_INACTIVE_FILE,
	MCS_ACTIVE_FILE,
	MCS_UNEVICTABLE,
	NR_MCS_STAT,
};

struct mcs_total_stat {
	s64 stat[NR_MCS_STAT];
3550 3551
};

K
KAMEZAWA Hiroyuki 已提交
3552 3553 3554 3555 3556 3557
struct {
	char *local_name;
	char *total_name;
} memcg_stat_strings[NR_MCS_STAT] = {
	{"cache", "total_cache"},
	{"rss", "total_rss"},
3558
	{"mapped_file", "total_mapped_file"},
K
KAMEZAWA Hiroyuki 已提交
3559 3560
	{"pgpgin", "total_pgpgin"},
	{"pgpgout", "total_pgpgout"},
3561
	{"swap", "total_swap"},
K
KAMEZAWA Hiroyuki 已提交
3562 3563 3564 3565 3566 3567 3568 3569
	{"inactive_anon", "total_inactive_anon"},
	{"active_anon", "total_active_anon"},
	{"inactive_file", "total_inactive_file"},
	{"active_file", "total_active_file"},
	{"unevictable", "total_unevictable"}
};


K
KAMEZAWA Hiroyuki 已提交
3570 3571
static void
mem_cgroup_get_local_stat(struct mem_cgroup *mem, struct mcs_total_stat *s)
K
KAMEZAWA Hiroyuki 已提交
3572 3573 3574 3575
{
	s64 val;

	/* per cpu stat */
3576
	val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_CACHE);
K
KAMEZAWA Hiroyuki 已提交
3577
	s->stat[MCS_CACHE] += val * PAGE_SIZE;
3578
	val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_RSS);
K
KAMEZAWA Hiroyuki 已提交
3579
	s->stat[MCS_RSS] += val * PAGE_SIZE;
3580
	val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_FILE_MAPPED);
3581
	s->stat[MCS_FILE_MAPPED] += val * PAGE_SIZE;
3582
	val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_PGPGIN_COUNT);
K
KAMEZAWA Hiroyuki 已提交
3583
	s->stat[MCS_PGPGIN] += val;
3584
	val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_PGPGOUT_COUNT);
K
KAMEZAWA Hiroyuki 已提交
3585
	s->stat[MCS_PGPGOUT] += val;
3586
	if (do_swap_account) {
3587
		val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_SWAPOUT);
3588 3589
		s->stat[MCS_SWAP] += val * PAGE_SIZE;
	}
K
KAMEZAWA Hiroyuki 已提交
3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606

	/* per zone stat */
	val = mem_cgroup_get_local_zonestat(mem, LRU_INACTIVE_ANON);
	s->stat[MCS_INACTIVE_ANON] += val * PAGE_SIZE;
	val = mem_cgroup_get_local_zonestat(mem, LRU_ACTIVE_ANON);
	s->stat[MCS_ACTIVE_ANON] += val * PAGE_SIZE;
	val = mem_cgroup_get_local_zonestat(mem, LRU_INACTIVE_FILE);
	s->stat[MCS_INACTIVE_FILE] += val * PAGE_SIZE;
	val = mem_cgroup_get_local_zonestat(mem, LRU_ACTIVE_FILE);
	s->stat[MCS_ACTIVE_FILE] += val * PAGE_SIZE;
	val = mem_cgroup_get_local_zonestat(mem, LRU_UNEVICTABLE);
	s->stat[MCS_UNEVICTABLE] += val * PAGE_SIZE;
}

static void
mem_cgroup_get_total_stat(struct mem_cgroup *mem, struct mcs_total_stat *s)
{
K
KAMEZAWA Hiroyuki 已提交
3607 3608 3609 3610
	struct mem_cgroup *iter;

	for_each_mem_cgroup_tree(iter, mem)
		mem_cgroup_get_local_stat(iter, s);
K
KAMEZAWA Hiroyuki 已提交
3611 3612
}

3613 3614
static int mem_control_stat_show(struct cgroup *cont, struct cftype *cft,
				 struct cgroup_map_cb *cb)
3615 3616
{
	struct mem_cgroup *mem_cont = mem_cgroup_from_cont(cont);
K
KAMEZAWA Hiroyuki 已提交
3617
	struct mcs_total_stat mystat;
3618 3619
	int i;

K
KAMEZAWA Hiroyuki 已提交
3620 3621
	memset(&mystat, 0, sizeof(mystat));
	mem_cgroup_get_local_stat(mem_cont, &mystat);
3622

3623 3624 3625
	for (i = 0; i < NR_MCS_STAT; i++) {
		if (i == MCS_SWAP && !do_swap_account)
			continue;
K
KAMEZAWA Hiroyuki 已提交
3626
		cb->fill(cb, memcg_stat_strings[i].local_name, mystat.stat[i]);
3627
	}
L
Lee Schermerhorn 已提交
3628

K
KAMEZAWA Hiroyuki 已提交
3629
	/* Hierarchical information */
3630 3631 3632 3633 3634 3635 3636
	{
		unsigned long long limit, memsw_limit;
		memcg_get_hierarchical_limit(mem_cont, &limit, &memsw_limit);
		cb->fill(cb, "hierarchical_memory_limit", limit);
		if (do_swap_account)
			cb->fill(cb, "hierarchical_memsw_limit", memsw_limit);
	}
K
KOSAKI Motohiro 已提交
3637

K
KAMEZAWA Hiroyuki 已提交
3638 3639
	memset(&mystat, 0, sizeof(mystat));
	mem_cgroup_get_total_stat(mem_cont, &mystat);
3640 3641 3642
	for (i = 0; i < NR_MCS_STAT; i++) {
		if (i == MCS_SWAP && !do_swap_account)
			continue;
K
KAMEZAWA Hiroyuki 已提交
3643
		cb->fill(cb, memcg_stat_strings[i].total_name, mystat.stat[i]);
3644
	}
K
KAMEZAWA Hiroyuki 已提交
3645

K
KOSAKI Motohiro 已提交
3646
#ifdef CONFIG_DEBUG_VM
3647
	cb->fill(cb, "inactive_ratio", calc_inactive_ratio(mem_cont, NULL));
K
KOSAKI Motohiro 已提交
3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674

	{
		int nid, zid;
		struct mem_cgroup_per_zone *mz;
		unsigned long recent_rotated[2] = {0, 0};
		unsigned long recent_scanned[2] = {0, 0};

		for_each_online_node(nid)
			for (zid = 0; zid < MAX_NR_ZONES; zid++) {
				mz = mem_cgroup_zoneinfo(mem_cont, nid, zid);

				recent_rotated[0] +=
					mz->reclaim_stat.recent_rotated[0];
				recent_rotated[1] +=
					mz->reclaim_stat.recent_rotated[1];
				recent_scanned[0] +=
					mz->reclaim_stat.recent_scanned[0];
				recent_scanned[1] +=
					mz->reclaim_stat.recent_scanned[1];
			}
		cb->fill(cb, "recent_rotated_anon", recent_rotated[0]);
		cb->fill(cb, "recent_rotated_file", recent_rotated[1]);
		cb->fill(cb, "recent_scanned_anon", recent_scanned[0]);
		cb->fill(cb, "recent_scanned_file", recent_scanned[1]);
	}
#endif

3675 3676 3677
	return 0;
}

K
KOSAKI Motohiro 已提交
3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689
static u64 mem_cgroup_swappiness_read(struct cgroup *cgrp, struct cftype *cft)
{
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);

	return get_swappiness(memcg);
}

static int mem_cgroup_swappiness_write(struct cgroup *cgrp, struct cftype *cft,
				       u64 val)
{
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
	struct mem_cgroup *parent;
3690

K
KOSAKI Motohiro 已提交
3691 3692 3693 3694 3695 3696 3697
	if (val > 100)
		return -EINVAL;

	if (cgrp->parent == NULL)
		return -EINVAL;

	parent = mem_cgroup_from_cont(cgrp->parent);
3698 3699 3700

	cgroup_lock();

K
KOSAKI Motohiro 已提交
3701 3702
	/* If under hierarchy, only empty-root can set this value */
	if ((parent->use_hierarchy) ||
3703 3704
	    (memcg->use_hierarchy && !list_empty(&cgrp->children))) {
		cgroup_unlock();
K
KOSAKI Motohiro 已提交
3705
		return -EINVAL;
3706
	}
K
KOSAKI Motohiro 已提交
3707 3708 3709 3710 3711

	spin_lock(&memcg->reclaim_param_lock);
	memcg->swappiness = val;
	spin_unlock(&memcg->reclaim_param_lock);

3712 3713
	cgroup_unlock();

K
KOSAKI Motohiro 已提交
3714 3715 3716
	return 0;
}

3717 3718 3719 3720 3721 3722 3723 3724
static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
{
	struct mem_cgroup_threshold_ary *t;
	u64 usage;
	int i;

	rcu_read_lock();
	if (!swap)
3725
		t = rcu_dereference(memcg->thresholds.primary);
3726
	else
3727
		t = rcu_dereference(memcg->memsw_thresholds.primary);
3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738

	if (!t)
		goto unlock;

	usage = mem_cgroup_usage(memcg, swap);

	/*
	 * current_threshold points to threshold just below usage.
	 * If it's not true, a threshold was crossed after last
	 * call of __mem_cgroup_threshold().
	 */
3739
	i = t->current_threshold;
3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762

	/*
	 * Iterate backward over array of thresholds starting from
	 * current_threshold and check if a threshold is crossed.
	 * If none of thresholds below usage is crossed, we read
	 * only one element of the array here.
	 */
	for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
		eventfd_signal(t->entries[i].eventfd, 1);

	/* i = current_threshold + 1 */
	i++;

	/*
	 * Iterate forward over array of thresholds starting from
	 * current_threshold+1 and check if a threshold is crossed.
	 * If none of thresholds above usage is crossed, we read
	 * only one element of the array here.
	 */
	for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
		eventfd_signal(t->entries[i].eventfd, 1);

	/* Update current_threshold */
3763
	t->current_threshold = i - 1;
3764 3765 3766 3767 3768 3769
unlock:
	rcu_read_unlock();
}

static void mem_cgroup_threshold(struct mem_cgroup *memcg)
{
3770 3771 3772 3773 3774 3775 3776
	while (memcg) {
		__mem_cgroup_threshold(memcg, false);
		if (do_swap_account)
			__mem_cgroup_threshold(memcg, true);

		memcg = parent_mem_cgroup(memcg);
	}
3777 3778 3779 3780 3781 3782 3783 3784 3785 3786
}

static int compare_thresholds(const void *a, const void *b)
{
	const struct mem_cgroup_threshold *_a = a;
	const struct mem_cgroup_threshold *_b = b;

	return _a->threshold - _b->threshold;
}

K
KAMEZAWA Hiroyuki 已提交
3787
static int mem_cgroup_oom_notify_cb(struct mem_cgroup *mem)
K
KAMEZAWA Hiroyuki 已提交
3788 3789 3790 3791 3792 3793 3794 3795 3796 3797
{
	struct mem_cgroup_eventfd_list *ev;

	list_for_each_entry(ev, &mem->oom_notify, list)
		eventfd_signal(ev->eventfd, 1);
	return 0;
}

static void mem_cgroup_oom_notify(struct mem_cgroup *mem)
{
K
KAMEZAWA Hiroyuki 已提交
3798 3799 3800 3801
	struct mem_cgroup *iter;

	for_each_mem_cgroup_tree(iter, mem)
		mem_cgroup_oom_notify_cb(iter);
K
KAMEZAWA Hiroyuki 已提交
3802 3803 3804 3805
}

static int mem_cgroup_usage_register_event(struct cgroup *cgrp,
	struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
3806 3807
{
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
3808 3809
	struct mem_cgroup_thresholds *thresholds;
	struct mem_cgroup_threshold_ary *new;
3810 3811
	int type = MEMFILE_TYPE(cft->private);
	u64 threshold, usage;
3812
	int i, size, ret;
3813 3814 3815 3816 3817 3818

	ret = res_counter_memparse_write_strategy(args, &threshold);
	if (ret)
		return ret;

	mutex_lock(&memcg->thresholds_lock);
3819

3820
	if (type == _MEM)
3821
		thresholds = &memcg->thresholds;
3822
	else if (type == _MEMSWAP)
3823
		thresholds = &memcg->memsw_thresholds;
3824 3825 3826 3827 3828 3829
	else
		BUG();

	usage = mem_cgroup_usage(memcg, type == _MEMSWAP);

	/* Check if a threshold crossed before adding a new one */
3830
	if (thresholds->primary)
3831 3832
		__mem_cgroup_threshold(memcg, type == _MEMSWAP);

3833
	size = thresholds->primary ? thresholds->primary->size + 1 : 1;
3834 3835

	/* Allocate memory for new array of thresholds */
3836
	new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
3837
			GFP_KERNEL);
3838
	if (!new) {
3839 3840 3841
		ret = -ENOMEM;
		goto unlock;
	}
3842
	new->size = size;
3843 3844

	/* Copy thresholds (if any) to new array */
3845 3846
	if (thresholds->primary) {
		memcpy(new->entries, thresholds->primary->entries, (size - 1) *
3847
				sizeof(struct mem_cgroup_threshold));
3848 3849
	}

3850
	/* Add new threshold */
3851 3852
	new->entries[size - 1].eventfd = eventfd;
	new->entries[size - 1].threshold = threshold;
3853 3854

	/* Sort thresholds. Registering of new threshold isn't time-critical */
3855
	sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
3856 3857 3858
			compare_thresholds, NULL);

	/* Find current threshold */
3859
	new->current_threshold = -1;
3860
	for (i = 0; i < size; i++) {
3861
		if (new->entries[i].threshold < usage) {
3862
			/*
3863 3864
			 * new->current_threshold will not be used until
			 * rcu_assign_pointer(), so it's safe to increment
3865 3866
			 * it here.
			 */
3867
			++new->current_threshold;
3868 3869 3870
		}
	}

3871 3872 3873 3874 3875
	/* Free old spare buffer and save old primary buffer as spare */
	kfree(thresholds->spare);
	thresholds->spare = thresholds->primary;

	rcu_assign_pointer(thresholds->primary, new);
3876

3877
	/* To be sure that nobody uses thresholds */
3878 3879 3880 3881 3882 3883 3884 3885
	synchronize_rcu();

unlock:
	mutex_unlock(&memcg->thresholds_lock);

	return ret;
}

3886
static void mem_cgroup_usage_unregister_event(struct cgroup *cgrp,
K
KAMEZAWA Hiroyuki 已提交
3887
	struct cftype *cft, struct eventfd_ctx *eventfd)
3888 3889
{
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
3890 3891
	struct mem_cgroup_thresholds *thresholds;
	struct mem_cgroup_threshold_ary *new;
3892 3893
	int type = MEMFILE_TYPE(cft->private);
	u64 usage;
3894
	int i, j, size;
3895 3896 3897

	mutex_lock(&memcg->thresholds_lock);
	if (type == _MEM)
3898
		thresholds = &memcg->thresholds;
3899
	else if (type == _MEMSWAP)
3900
		thresholds = &memcg->memsw_thresholds;
3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915
	else
		BUG();

	/*
	 * Something went wrong if we trying to unregister a threshold
	 * if we don't have thresholds
	 */
	BUG_ON(!thresholds);

	usage = mem_cgroup_usage(memcg, type == _MEMSWAP);

	/* Check if a threshold crossed before removing */
	__mem_cgroup_threshold(memcg, type == _MEMSWAP);

	/* Calculate new number of threshold */
3916 3917 3918
	size = 0;
	for (i = 0; i < thresholds->primary->size; i++) {
		if (thresholds->primary->entries[i].eventfd != eventfd)
3919 3920 3921
			size++;
	}

3922
	new = thresholds->spare;
3923

3924 3925
	/* Set thresholds array to NULL if we don't have thresholds */
	if (!size) {
3926 3927
		kfree(new);
		new = NULL;
3928
		goto swap_buffers;
3929 3930
	}

3931
	new->size = size;
3932 3933

	/* Copy thresholds and find current threshold */
3934 3935 3936
	new->current_threshold = -1;
	for (i = 0, j = 0; i < thresholds->primary->size; i++) {
		if (thresholds->primary->entries[i].eventfd == eventfd)
3937 3938
			continue;

3939 3940
		new->entries[j] = thresholds->primary->entries[i];
		if (new->entries[j].threshold < usage) {
3941
			/*
3942
			 * new->current_threshold will not be used
3943 3944 3945
			 * until rcu_assign_pointer(), so it's safe to increment
			 * it here.
			 */
3946
			++new->current_threshold;
3947 3948 3949 3950
		}
		j++;
	}

3951
swap_buffers:
3952 3953 3954
	/* Swap primary and spare array */
	thresholds->spare = thresholds->primary;
	rcu_assign_pointer(thresholds->primary, new);
3955

3956
	/* To be sure that nobody uses thresholds */
3957 3958 3959 3960
	synchronize_rcu();

	mutex_unlock(&memcg->thresholds_lock);
}
3961

K
KAMEZAWA Hiroyuki 已提交
3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986
static int mem_cgroup_oom_register_event(struct cgroup *cgrp,
	struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
{
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
	struct mem_cgroup_eventfd_list *event;
	int type = MEMFILE_TYPE(cft->private);

	BUG_ON(type != _OOM_TYPE);
	event = kmalloc(sizeof(*event),	GFP_KERNEL);
	if (!event)
		return -ENOMEM;

	mutex_lock(&memcg_oom_mutex);

	event->eventfd = eventfd;
	list_add(&event->list, &memcg->oom_notify);

	/* already in OOM ? */
	if (atomic_read(&memcg->oom_lock))
		eventfd_signal(eventfd, 1);
	mutex_unlock(&memcg_oom_mutex);

	return 0;
}

3987
static void mem_cgroup_oom_unregister_event(struct cgroup *cgrp,
K
KAMEZAWA Hiroyuki 已提交
3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007
	struct cftype *cft, struct eventfd_ctx *eventfd)
{
	struct mem_cgroup *mem = mem_cgroup_from_cont(cgrp);
	struct mem_cgroup_eventfd_list *ev, *tmp;
	int type = MEMFILE_TYPE(cft->private);

	BUG_ON(type != _OOM_TYPE);

	mutex_lock(&memcg_oom_mutex);

	list_for_each_entry_safe(ev, tmp, &mem->oom_notify, list) {
		if (ev->eventfd == eventfd) {
			list_del(&ev->list);
			kfree(ev);
		}
	}

	mutex_unlock(&memcg_oom_mutex);
}

4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041
static int mem_cgroup_oom_control_read(struct cgroup *cgrp,
	struct cftype *cft,  struct cgroup_map_cb *cb)
{
	struct mem_cgroup *mem = mem_cgroup_from_cont(cgrp);

	cb->fill(cb, "oom_kill_disable", mem->oom_kill_disable);

	if (atomic_read(&mem->oom_lock))
		cb->fill(cb, "under_oom", 1);
	else
		cb->fill(cb, "under_oom", 0);
	return 0;
}

static int mem_cgroup_oom_control_write(struct cgroup *cgrp,
	struct cftype *cft, u64 val)
{
	struct mem_cgroup *mem = mem_cgroup_from_cont(cgrp);
	struct mem_cgroup *parent;

	/* cannot set to root cgroup and only 0 and 1 are allowed */
	if (!cgrp->parent || !((val == 0) || (val == 1)))
		return -EINVAL;

	parent = mem_cgroup_from_cont(cgrp->parent);

	cgroup_lock();
	/* oom-kill-disable is a flag for subhierarchy. */
	if ((parent->use_hierarchy) ||
	    (mem->use_hierarchy && !list_empty(&cgrp->children))) {
		cgroup_unlock();
		return -EINVAL;
	}
	mem->oom_kill_disable = val;
4042 4043
	if (!val)
		memcg_oom_recover(mem);
4044 4045 4046 4047
	cgroup_unlock();
	return 0;
}

B
Balbir Singh 已提交
4048 4049
static struct cftype mem_cgroup_files[] = {
	{
4050
		.name = "usage_in_bytes",
4051
		.private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
4052
		.read_u64 = mem_cgroup_read,
K
KAMEZAWA Hiroyuki 已提交
4053 4054
		.register_event = mem_cgroup_usage_register_event,
		.unregister_event = mem_cgroup_usage_unregister_event,
B
Balbir Singh 已提交
4055
	},
4056 4057
	{
		.name = "max_usage_in_bytes",
4058
		.private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
4059
		.trigger = mem_cgroup_reset,
4060 4061
		.read_u64 = mem_cgroup_read,
	},
B
Balbir Singh 已提交
4062
	{
4063
		.name = "limit_in_bytes",
4064
		.private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
4065
		.write_string = mem_cgroup_write,
4066
		.read_u64 = mem_cgroup_read,
B
Balbir Singh 已提交
4067
	},
4068 4069 4070 4071 4072 4073
	{
		.name = "soft_limit_in_bytes",
		.private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
		.write_string = mem_cgroup_write,
		.read_u64 = mem_cgroup_read,
	},
B
Balbir Singh 已提交
4074 4075
	{
		.name = "failcnt",
4076
		.private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
4077
		.trigger = mem_cgroup_reset,
4078
		.read_u64 = mem_cgroup_read,
B
Balbir Singh 已提交
4079
	},
4080 4081
	{
		.name = "stat",
4082
		.read_map = mem_control_stat_show,
4083
	},
4084 4085 4086 4087
	{
		.name = "force_empty",
		.trigger = mem_cgroup_force_empty_write,
	},
4088 4089 4090 4091 4092
	{
		.name = "use_hierarchy",
		.write_u64 = mem_cgroup_hierarchy_write,
		.read_u64 = mem_cgroup_hierarchy_read,
	},
K
KOSAKI Motohiro 已提交
4093 4094 4095 4096 4097
	{
		.name = "swappiness",
		.read_u64 = mem_cgroup_swappiness_read,
		.write_u64 = mem_cgroup_swappiness_write,
	},
4098 4099 4100 4101 4102
	{
		.name = "move_charge_at_immigrate",
		.read_u64 = mem_cgroup_move_charge_read,
		.write_u64 = mem_cgroup_move_charge_write,
	},
K
KAMEZAWA Hiroyuki 已提交
4103 4104
	{
		.name = "oom_control",
4105 4106
		.read_map = mem_cgroup_oom_control_read,
		.write_u64 = mem_cgroup_oom_control_write,
K
KAMEZAWA Hiroyuki 已提交
4107 4108 4109 4110
		.register_event = mem_cgroup_oom_register_event,
		.unregister_event = mem_cgroup_oom_unregister_event,
		.private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
	},
B
Balbir Singh 已提交
4111 4112
};

4113 4114 4115 4116 4117 4118
#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
static struct cftype memsw_cgroup_files[] = {
	{
		.name = "memsw.usage_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
		.read_u64 = mem_cgroup_read,
K
KAMEZAWA Hiroyuki 已提交
4119 4120
		.register_event = mem_cgroup_usage_register_event,
		.unregister_event = mem_cgroup_usage_unregister_event,
4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155
	},
	{
		.name = "memsw.max_usage_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
		.trigger = mem_cgroup_reset,
		.read_u64 = mem_cgroup_read,
	},
	{
		.name = "memsw.limit_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
		.write_string = mem_cgroup_write,
		.read_u64 = mem_cgroup_read,
	},
	{
		.name = "memsw.failcnt",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
		.trigger = mem_cgroup_reset,
		.read_u64 = mem_cgroup_read,
	},
};

static int register_memsw_files(struct cgroup *cont, struct cgroup_subsys *ss)
{
	if (!do_swap_account)
		return 0;
	return cgroup_add_files(cont, ss, memsw_cgroup_files,
				ARRAY_SIZE(memsw_cgroup_files));
};
#else
static int register_memsw_files(struct cgroup *cont, struct cgroup_subsys *ss)
{
	return 0;
}
#endif

4156 4157 4158
static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *mem, int node)
{
	struct mem_cgroup_per_node *pn;
4159
	struct mem_cgroup_per_zone *mz;
4160
	enum lru_list l;
4161
	int zone, tmp = node;
4162 4163 4164 4165 4166 4167 4168 4169
	/*
	 * This routine is called against possible nodes.
	 * But it's BUG to call kmalloc() against offline node.
	 *
	 * TODO: this routine can waste much memory for nodes which will
	 *       never be onlined. It's better to use memory hotplug callback
	 *       function.
	 */
4170 4171 4172
	if (!node_state(node, N_NORMAL_MEMORY))
		tmp = -1;
	pn = kmalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
4173 4174
	if (!pn)
		return 1;
4175

4176 4177
	mem->info.nodeinfo[node] = pn;
	memset(pn, 0, sizeof(*pn));
4178 4179 4180

	for (zone = 0; zone < MAX_NR_ZONES; zone++) {
		mz = &pn->zoneinfo[zone];
4181 4182
		for_each_lru(l)
			INIT_LIST_HEAD(&mz->lists[l]);
4183
		mz->usage_in_excess = 0;
4184 4185
		mz->on_tree = false;
		mz->mem = mem;
4186
	}
4187 4188 4189
	return 0;
}

4190 4191 4192 4193 4194
static void free_mem_cgroup_per_zone_info(struct mem_cgroup *mem, int node)
{
	kfree(mem->info.nodeinfo[node]);
}

4195 4196 4197
static struct mem_cgroup *mem_cgroup_alloc(void)
{
	struct mem_cgroup *mem;
4198
	int size = sizeof(struct mem_cgroup);
4199

4200
	/* Can be very big if MAX_NUMNODES is very big */
4201 4202
	if (size < PAGE_SIZE)
		mem = kmalloc(size, GFP_KERNEL);
4203
	else
4204
		mem = vmalloc(size);
4205

4206 4207 4208 4209
	if (!mem)
		return NULL;

	memset(mem, 0, size);
4210
	mem->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
4211 4212
	if (!mem->stat)
		goto out_free;
4213
	spin_lock_init(&mem->pcp_counter_lock);
4214
	return mem;
4215 4216 4217 4218 4219 4220 4221

out_free:
	if (size < PAGE_SIZE)
		kfree(mem);
	else
		vfree(mem);
	return NULL;
4222 4223
}

4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234
/*
 * At destroying mem_cgroup, references from swap_cgroup can remain.
 * (scanning all at force_empty is too costly...)
 *
 * Instead of clearing all references at force_empty, we remember
 * the number of reference from swap_cgroup and free mem_cgroup when
 * it goes down to 0.
 *
 * Removal of cgroup itself succeeds regardless of refs from swap.
 */

4235
static void __mem_cgroup_free(struct mem_cgroup *mem)
4236
{
K
KAMEZAWA Hiroyuki 已提交
4237 4238
	int node;

4239
	mem_cgroup_remove_from_trees(mem);
K
KAMEZAWA Hiroyuki 已提交
4240 4241
	free_css_id(&mem_cgroup_subsys, &mem->css);

K
KAMEZAWA Hiroyuki 已提交
4242 4243 4244
	for_each_node_state(node, N_POSSIBLE)
		free_mem_cgroup_per_zone_info(mem, node);

4245 4246
	free_percpu(mem->stat);
	if (sizeof(struct mem_cgroup) < PAGE_SIZE)
4247 4248 4249 4250 4251
		kfree(mem);
	else
		vfree(mem);
}

4252 4253 4254 4255 4256
static void mem_cgroup_get(struct mem_cgroup *mem)
{
	atomic_inc(&mem->refcnt);
}

4257
static void __mem_cgroup_put(struct mem_cgroup *mem, int count)
4258
{
4259
	if (atomic_sub_and_test(count, &mem->refcnt)) {
4260
		struct mem_cgroup *parent = parent_mem_cgroup(mem);
4261
		__mem_cgroup_free(mem);
4262 4263 4264
		if (parent)
			mem_cgroup_put(parent);
	}
4265 4266
}

4267 4268 4269 4270 4271
static void mem_cgroup_put(struct mem_cgroup *mem)
{
	__mem_cgroup_put(mem, 1);
}

4272 4273 4274 4275 4276 4277 4278 4279 4280
/*
 * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
 */
static struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *mem)
{
	if (!mem->res.parent)
		return NULL;
	return mem_cgroup_from_res_counter(mem->res.parent, res);
}
4281

4282 4283 4284
#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
static void __init enable_swap_cgroup(void)
{
4285
	if (!mem_cgroup_disabled() && really_do_swap_account)
4286 4287 4288 4289 4290 4291 4292 4293
		do_swap_account = 1;
}
#else
static void __init enable_swap_cgroup(void)
{
}
#endif

4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318
static int mem_cgroup_soft_limit_tree_init(void)
{
	struct mem_cgroup_tree_per_node *rtpn;
	struct mem_cgroup_tree_per_zone *rtpz;
	int tmp, node, zone;

	for_each_node_state(node, N_POSSIBLE) {
		tmp = node;
		if (!node_state(node, N_NORMAL_MEMORY))
			tmp = -1;
		rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, tmp);
		if (!rtpn)
			return 1;

		soft_limit_tree.rb_tree_per_node[node] = rtpn;

		for (zone = 0; zone < MAX_NR_ZONES; zone++) {
			rtpz = &rtpn->rb_tree_per_zone[zone];
			rtpz->rb_root = RB_ROOT;
			spin_lock_init(&rtpz->lock);
		}
	}
	return 0;
}

L
Li Zefan 已提交
4319
static struct cgroup_subsys_state * __ref
B
Balbir Singh 已提交
4320 4321
mem_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cont)
{
4322
	struct mem_cgroup *mem, *parent;
K
KAMEZAWA Hiroyuki 已提交
4323
	long error = -ENOMEM;
4324
	int node;
B
Balbir Singh 已提交
4325

4326 4327
	mem = mem_cgroup_alloc();
	if (!mem)
K
KAMEZAWA Hiroyuki 已提交
4328
		return ERR_PTR(error);
4329

4330 4331 4332
	for_each_node_state(node, N_POSSIBLE)
		if (alloc_mem_cgroup_per_zone_info(mem, node))
			goto free_out;
4333

4334
	/* root ? */
4335
	if (cont->parent == NULL) {
4336
		int cpu;
4337
		enable_swap_cgroup();
4338
		parent = NULL;
4339
		root_mem_cgroup = mem;
4340 4341
		if (mem_cgroup_soft_limit_tree_init())
			goto free_out;
4342 4343 4344 4345 4346
		for_each_possible_cpu(cpu) {
			struct memcg_stock_pcp *stock =
						&per_cpu(memcg_stock, cpu);
			INIT_WORK(&stock->work, drain_local_stock);
		}
4347
		hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
4348
	} else {
4349
		parent = mem_cgroup_from_cont(cont->parent);
4350
		mem->use_hierarchy = parent->use_hierarchy;
4351
		mem->oom_kill_disable = parent->oom_kill_disable;
4352
	}
4353

4354 4355 4356
	if (parent && parent->use_hierarchy) {
		res_counter_init(&mem->res, &parent->res);
		res_counter_init(&mem->memsw, &parent->memsw);
4357 4358 4359 4360 4361 4362 4363
		/*
		 * We increment refcnt of the parent to ensure that we can
		 * safely access it on res_counter_charge/uncharge.
		 * This refcnt will be decremented when freeing this
		 * mem_cgroup(see mem_cgroup_put).
		 */
		mem_cgroup_get(parent);
4364 4365 4366 4367
	} else {
		res_counter_init(&mem->res, NULL);
		res_counter_init(&mem->memsw, NULL);
	}
K
KAMEZAWA Hiroyuki 已提交
4368
	mem->last_scanned_child = 0;
K
KOSAKI Motohiro 已提交
4369
	spin_lock_init(&mem->reclaim_param_lock);
K
KAMEZAWA Hiroyuki 已提交
4370
	INIT_LIST_HEAD(&mem->oom_notify);
4371

K
KOSAKI Motohiro 已提交
4372 4373
	if (parent)
		mem->swappiness = get_swappiness(parent);
4374
	atomic_set(&mem->refcnt, 1);
4375
	mem->move_charge_at_immigrate = 0;
4376
	mutex_init(&mem->thresholds_lock);
B
Balbir Singh 已提交
4377
	return &mem->css;
4378
free_out:
4379
	__mem_cgroup_free(mem);
4380
	root_mem_cgroup = NULL;
K
KAMEZAWA Hiroyuki 已提交
4381
	return ERR_PTR(error);
B
Balbir Singh 已提交
4382 4383
}

4384
static int mem_cgroup_pre_destroy(struct cgroup_subsys *ss,
4385 4386 4387
					struct cgroup *cont)
{
	struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
4388 4389

	return mem_cgroup_force_empty(mem, false);
4390 4391
}

B
Balbir Singh 已提交
4392 4393 4394
static void mem_cgroup_destroy(struct cgroup_subsys *ss,
				struct cgroup *cont)
{
4395 4396 4397
	struct mem_cgroup *mem = mem_cgroup_from_cont(cont);

	mem_cgroup_put(mem);
B
Balbir Singh 已提交
4398 4399 4400 4401 4402
}

static int mem_cgroup_populate(struct cgroup_subsys *ss,
				struct cgroup *cont)
{
4403 4404 4405 4406 4407 4408 4409 4410
	int ret;

	ret = cgroup_add_files(cont, ss, mem_cgroup_files,
				ARRAY_SIZE(mem_cgroup_files));

	if (!ret)
		ret = register_memsw_files(cont, ss);
	return ret;
B
Balbir Singh 已提交
4411 4412
}

4413
#ifdef CONFIG_MMU
4414
/* Handlers for move charge at task migration. */
4415 4416
#define PRECHARGE_COUNT_AT_ONCE	256
static int mem_cgroup_do_precharge(unsigned long count)
4417
{
4418 4419
	int ret = 0;
	int batch_count = PRECHARGE_COUNT_AT_ONCE;
4420 4421
	struct mem_cgroup *mem = mc.to;

4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456
	if (mem_cgroup_is_root(mem)) {
		mc.precharge += count;
		/* we don't need css_get for root */
		return ret;
	}
	/* try to charge at once */
	if (count > 1) {
		struct res_counter *dummy;
		/*
		 * "mem" cannot be under rmdir() because we've already checked
		 * by cgroup_lock_live_cgroup() that it is not removed and we
		 * are still under the same cgroup_mutex. So we can postpone
		 * css_get().
		 */
		if (res_counter_charge(&mem->res, PAGE_SIZE * count, &dummy))
			goto one_by_one;
		if (do_swap_account && res_counter_charge(&mem->memsw,
						PAGE_SIZE * count, &dummy)) {
			res_counter_uncharge(&mem->res, PAGE_SIZE * count);
			goto one_by_one;
		}
		mc.precharge += count;
		return ret;
	}
one_by_one:
	/* fall back to one by one charge */
	while (count--) {
		if (signal_pending(current)) {
			ret = -EINTR;
			break;
		}
		if (!batch_count--) {
			batch_count = PRECHARGE_COUNT_AT_ONCE;
			cond_resched();
		}
4457
		ret = __mem_cgroup_try_charge(NULL, GFP_KERNEL, &mem, false);
4458 4459 4460 4461 4462
		if (ret || !mem)
			/* mem_cgroup_clear_mc() will do uncharge later */
			return -ENOMEM;
		mc.precharge++;
	}
4463 4464 4465 4466 4467 4468 4469 4470
	return ret;
}

/**
 * is_target_pte_for_mc - check a pte whether it is valid for move charge
 * @vma: the vma the pte to be checked belongs
 * @addr: the address corresponding to the pte to be checked
 * @ptent: the pte to be checked
4471
 * @target: the pointer the target page or swap ent will be stored(can be NULL)
4472 4473 4474 4475 4476 4477
 *
 * Returns
 *   0(MC_TARGET_NONE): if the pte is not a target for move charge.
 *   1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
 *     move charge. if @target is not NULL, the page is stored in target->page
 *     with extra refcnt got(Callers should handle it).
4478 4479 4480
 *   2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
 *     target for charge migration. if @target is not NULL, the entry is stored
 *     in target->ent.
4481 4482 4483 4484 4485
 *
 * Called with pte lock held.
 */
union mc_target {
	struct page	*page;
4486
	swp_entry_t	ent;
4487 4488 4489 4490 4491
};

enum mc_target_type {
	MC_TARGET_NONE,	/* not used */
	MC_TARGET_PAGE,
4492
	MC_TARGET_SWAP,
4493 4494
};

D
Daisuke Nishimura 已提交
4495 4496
static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
						unsigned long addr, pte_t ptent)
4497
{
D
Daisuke Nishimura 已提交
4498
	struct page *page = vm_normal_page(vma, addr, ptent);
4499

D
Daisuke Nishimura 已提交
4500 4501 4502 4503 4504 4505
	if (!page || !page_mapped(page))
		return NULL;
	if (PageAnon(page)) {
		/* we don't move shared anon */
		if (!move_anon() || page_mapcount(page) > 2)
			return NULL;
4506 4507
	} else if (!move_file())
		/* we ignore mapcount for file pages */
D
Daisuke Nishimura 已提交
4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525
		return NULL;
	if (!get_page_unless_zero(page))
		return NULL;

	return page;
}

static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
			unsigned long addr, pte_t ptent, swp_entry_t *entry)
{
	int usage_count;
	struct page *page = NULL;
	swp_entry_t ent = pte_to_swp_entry(ptent);

	if (!move_anon() || non_swap_entry(ent))
		return NULL;
	usage_count = mem_cgroup_count_swap_user(ent, &page);
	if (usage_count > 1) { /* we don't move shared anon */
4526 4527
		if (page)
			put_page(page);
D
Daisuke Nishimura 已提交
4528
		return NULL;
4529
	}
D
Daisuke Nishimura 已提交
4530 4531 4532 4533 4534 4535
	if (do_swap_account)
		entry->val = ent.val;

	return page;
}

4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568
static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
			unsigned long addr, pte_t ptent, swp_entry_t *entry)
{
	struct page *page = NULL;
	struct inode *inode;
	struct address_space *mapping;
	pgoff_t pgoff;

	if (!vma->vm_file) /* anonymous vma */
		return NULL;
	if (!move_file())
		return NULL;

	inode = vma->vm_file->f_path.dentry->d_inode;
	mapping = vma->vm_file->f_mapping;
	if (pte_none(ptent))
		pgoff = linear_page_index(vma, addr);
	else /* pte_file(ptent) is true */
		pgoff = pte_to_pgoff(ptent);

	/* page is moved even if it's not RSS of this task(page-faulted). */
	if (!mapping_cap_swap_backed(mapping)) { /* normal file */
		page = find_get_page(mapping, pgoff);
	} else { /* shmem/tmpfs file. we should take account of swap too. */
		swp_entry_t ent;
		mem_cgroup_get_shmem_target(inode, pgoff, &page, &ent);
		if (do_swap_account)
			entry->val = ent.val;
	}

	return page;
}

D
Daisuke Nishimura 已提交
4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580
static int is_target_pte_for_mc(struct vm_area_struct *vma,
		unsigned long addr, pte_t ptent, union mc_target *target)
{
	struct page *page = NULL;
	struct page_cgroup *pc;
	int ret = 0;
	swp_entry_t ent = { .val = 0 };

	if (pte_present(ptent))
		page = mc_handle_present_pte(vma, addr, ptent);
	else if (is_swap_pte(ptent))
		page = mc_handle_swap_pte(vma, addr, ptent, &ent);
4581 4582
	else if (pte_none(ptent) || pte_file(ptent))
		page = mc_handle_file_pte(vma, addr, ptent, &ent);
D
Daisuke Nishimura 已提交
4583 4584 4585

	if (!page && !ent.val)
		return 0;
4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600
	if (page) {
		pc = lookup_page_cgroup(page);
		/*
		 * Do only loose check w/o page_cgroup lock.
		 * mem_cgroup_move_account() checks the pc is valid or not under
		 * the lock.
		 */
		if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
			ret = MC_TARGET_PAGE;
			if (target)
				target->page = page;
		}
		if (!ret || !target)
			put_page(page);
	}
D
Daisuke Nishimura 已提交
4601 4602
	/* There is a swap entry and a page doesn't exist or isn't charged */
	if (ent.val && !ret &&
4603 4604 4605 4606
			css_id(&mc.from->css) == lookup_swap_cgroup(ent)) {
		ret = MC_TARGET_SWAP;
		if (target)
			target->ent = ent;
4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625
	}
	return ret;
}

static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
					unsigned long addr, unsigned long end,
					struct mm_walk *walk)
{
	struct vm_area_struct *vma = walk->private;
	pte_t *pte;
	spinlock_t *ptl;

	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
	for (; addr != end; pte++, addr += PAGE_SIZE)
		if (is_target_pte_for_mc(vma, addr, *pte, NULL))
			mc.precharge++;	/* increment precharge temporarily */
	pte_unmap_unlock(pte - 1, ptl);
	cond_resched();

4626 4627 4628
	return 0;
}

4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655
static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
{
	unsigned long precharge;
	struct vm_area_struct *vma;

	down_read(&mm->mmap_sem);
	for (vma = mm->mmap; vma; vma = vma->vm_next) {
		struct mm_walk mem_cgroup_count_precharge_walk = {
			.pmd_entry = mem_cgroup_count_precharge_pte_range,
			.mm = mm,
			.private = vma,
		};
		if (is_vm_hugetlb_page(vma))
			continue;
		walk_page_range(vma->vm_start, vma->vm_end,
					&mem_cgroup_count_precharge_walk);
	}
	up_read(&mm->mmap_sem);

	precharge = mc.precharge;
	mc.precharge = 0;

	return precharge;
}

static int mem_cgroup_precharge_mc(struct mm_struct *mm)
{
4656
	return mem_cgroup_do_precharge(mem_cgroup_count_precharge(mm));
4657 4658 4659 4660
}

static void mem_cgroup_clear_mc(void)
{
4661 4662 4663
	struct mem_cgroup *from = mc.from;
	struct mem_cgroup *to = mc.to;

4664
	/* we must uncharge all the leftover precharges from mc.to */
4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675
	if (mc.precharge) {
		__mem_cgroup_cancel_charge(mc.to, mc.precharge);
		mc.precharge = 0;
	}
	/*
	 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
	 * we must uncharge here.
	 */
	if (mc.moved_charge) {
		__mem_cgroup_cancel_charge(mc.from, mc.moved_charge);
		mc.moved_charge = 0;
4676
	}
4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696
	/* we must fixup refcnts and charges */
	if (mc.moved_swap) {
		/* uncharge swap account from the old cgroup */
		if (!mem_cgroup_is_root(mc.from))
			res_counter_uncharge(&mc.from->memsw,
						PAGE_SIZE * mc.moved_swap);
		__mem_cgroup_put(mc.from, mc.moved_swap);

		if (!mem_cgroup_is_root(mc.to)) {
			/*
			 * we charged both to->res and to->memsw, so we should
			 * uncharge to->res.
			 */
			res_counter_uncharge(&mc.to->res,
						PAGE_SIZE * mc.moved_swap);
		}
		/* we've already done mem_cgroup_get(mc.to) */

		mc.moved_swap = 0;
	}
4697
	spin_lock(&mc.lock);
4698 4699
	mc.from = NULL;
	mc.to = NULL;
4700
	mc.moving_task = NULL;
4701
	spin_unlock(&mc.lock);
4702
	mem_cgroup_end_move(from);
4703 4704
	memcg_oom_recover(from);
	memcg_oom_recover(to);
4705
	wake_up_all(&mc.waitq);
4706 4707
}

4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725
static int mem_cgroup_can_attach(struct cgroup_subsys *ss,
				struct cgroup *cgroup,
				struct task_struct *p,
				bool threadgroup)
{
	int ret = 0;
	struct mem_cgroup *mem = mem_cgroup_from_cont(cgroup);

	if (mem->move_charge_at_immigrate) {
		struct mm_struct *mm;
		struct mem_cgroup *from = mem_cgroup_from_task(p);

		VM_BUG_ON(from == mem);

		mm = get_task_mm(p);
		if (!mm)
			return 0;
		/* We move charges only when we move a owner of the mm */
4726 4727 4728 4729
		if (mm->owner == p) {
			VM_BUG_ON(mc.from);
			VM_BUG_ON(mc.to);
			VM_BUG_ON(mc.precharge);
4730
			VM_BUG_ON(mc.moved_charge);
4731
			VM_BUG_ON(mc.moved_swap);
4732
			VM_BUG_ON(mc.moving_task);
4733
			mem_cgroup_start_move(from);
4734
			spin_lock(&mc.lock);
4735 4736 4737
			mc.from = from;
			mc.to = mem;
			mc.precharge = 0;
4738
			mc.moved_charge = 0;
4739
			mc.moved_swap = 0;
4740
			mc.moving_task = current;
4741
			spin_unlock(&mc.lock);
4742 4743 4744 4745 4746

			ret = mem_cgroup_precharge_mc(mm);
			if (ret)
				mem_cgroup_clear_mc();
		}
4747 4748 4749 4750 4751 4752 4753 4754 4755 4756
		mmput(mm);
	}
	return ret;
}

static void mem_cgroup_cancel_attach(struct cgroup_subsys *ss,
				struct cgroup *cgroup,
				struct task_struct *p,
				bool threadgroup)
{
4757
	mem_cgroup_clear_mc();
4758 4759
}

4760 4761 4762
static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
				unsigned long addr, unsigned long end,
				struct mm_walk *walk)
4763
{
4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776
	int ret = 0;
	struct vm_area_struct *vma = walk->private;
	pte_t *pte;
	spinlock_t *ptl;

retry:
	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
	for (; addr != end; addr += PAGE_SIZE) {
		pte_t ptent = *(pte++);
		union mc_target target;
		int type;
		struct page *page;
		struct page_cgroup *pc;
4777
		swp_entry_t ent;
4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788

		if (!mc.precharge)
			break;

		type = is_target_pte_for_mc(vma, addr, ptent, &target);
		switch (type) {
		case MC_TARGET_PAGE:
			page = target.page;
			if (isolate_lru_page(page))
				goto put;
			pc = lookup_page_cgroup(page);
4789 4790
			if (!mem_cgroup_move_account(pc,
						mc.from, mc.to, false)) {
4791
				mc.precharge--;
4792 4793
				/* we uncharge from mc.from later. */
				mc.moved_charge++;
4794 4795 4796 4797 4798
			}
			putback_lru_page(page);
put:			/* is_target_pte_for_mc() gets the page */
			put_page(page);
			break;
4799 4800
		case MC_TARGET_SWAP:
			ent = target.ent;
4801 4802
			if (!mem_cgroup_move_swap_account(ent,
						mc.from, mc.to, false)) {
4803
				mc.precharge--;
4804 4805 4806
				/* we fixup refcnts and charges later. */
				mc.moved_swap++;
			}
4807
			break;
4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821
		default:
			break;
		}
	}
	pte_unmap_unlock(pte - 1, ptl);
	cond_resched();

	if (addr != end) {
		/*
		 * We have consumed all precharges we got in can_attach().
		 * We try charge one by one, but don't do any additional
		 * charges to mc.to if we have failed in charge once in attach()
		 * phase.
		 */
4822
		ret = mem_cgroup_do_precharge(1);
4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854
		if (!ret)
			goto retry;
	}

	return ret;
}

static void mem_cgroup_move_charge(struct mm_struct *mm)
{
	struct vm_area_struct *vma;

	lru_add_drain_all();
	down_read(&mm->mmap_sem);
	for (vma = mm->mmap; vma; vma = vma->vm_next) {
		int ret;
		struct mm_walk mem_cgroup_move_charge_walk = {
			.pmd_entry = mem_cgroup_move_charge_pte_range,
			.mm = mm,
			.private = vma,
		};
		if (is_vm_hugetlb_page(vma))
			continue;
		ret = walk_page_range(vma->vm_start, vma->vm_end,
						&mem_cgroup_move_charge_walk);
		if (ret)
			/*
			 * means we have consumed all precharges and failed in
			 * doing additional charge. Just abandon here.
			 */
			break;
	}
	up_read(&mm->mmap_sem);
4855 4856
}

B
Balbir Singh 已提交
4857 4858 4859
static void mem_cgroup_move_task(struct cgroup_subsys *ss,
				struct cgroup *cont,
				struct cgroup *old_cont,
4860 4861
				struct task_struct *p,
				bool threadgroup)
B
Balbir Singh 已提交
4862
{
4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874
	struct mm_struct *mm;

	if (!mc.to)
		/* no need to move charge */
		return;

	mm = get_task_mm(p);
	if (mm) {
		mem_cgroup_move_charge(mm);
		mmput(mm);
	}
	mem_cgroup_clear_mc();
B
Balbir Singh 已提交
4875
}
4876 4877 4878 4879 4880 4881 4882 4883 4884 4885 4886 4887 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897
#else	/* !CONFIG_MMU */
static int mem_cgroup_can_attach(struct cgroup_subsys *ss,
				struct cgroup *cgroup,
				struct task_struct *p,
				bool threadgroup)
{
	return 0;
}
static void mem_cgroup_cancel_attach(struct cgroup_subsys *ss,
				struct cgroup *cgroup,
				struct task_struct *p,
				bool threadgroup)
{
}
static void mem_cgroup_move_task(struct cgroup_subsys *ss,
				struct cgroup *cont,
				struct cgroup *old_cont,
				struct task_struct *p,
				bool threadgroup)
{
}
#endif
B
Balbir Singh 已提交
4898

B
Balbir Singh 已提交
4899 4900 4901 4902
struct cgroup_subsys mem_cgroup_subsys = {
	.name = "memory",
	.subsys_id = mem_cgroup_subsys_id,
	.create = mem_cgroup_create,
4903
	.pre_destroy = mem_cgroup_pre_destroy,
B
Balbir Singh 已提交
4904 4905
	.destroy = mem_cgroup_destroy,
	.populate = mem_cgroup_populate,
4906 4907
	.can_attach = mem_cgroup_can_attach,
	.cancel_attach = mem_cgroup_cancel_attach,
B
Balbir Singh 已提交
4908
	.attach = mem_cgroup_move_task,
4909
	.early_init = 0,
K
KAMEZAWA Hiroyuki 已提交
4910
	.use_id = 1,
B
Balbir Singh 已提交
4911
};
4912 4913 4914 4915 4916 4917 4918 4919 4920 4921

#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP

static int __init disable_swap_account(char *s)
{
	really_do_swap_account = 0;
	return 1;
}
__setup("noswapaccount", disable_swap_account);
#endif