memcontrol.c 119.3 KB
Newer Older
B
Balbir Singh 已提交
1 2 3 4 5
/* memcontrol.c - Memory Controller
 *
 * Copyright IBM Corporation, 2007
 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
 *
6 7 8
 * Copyright 2007 OpenVZ SWsoft Inc
 * Author: Pavel Emelianov <xemul@openvz.org>
 *
9 10 11 12
 * Memory thresholds
 * Copyright (C) 2009 Nokia Corporation
 * Author: Kirill A. Shutemov
 *
B
Balbir Singh 已提交
13 14 15 16 17 18 19 20 21 22 23 24 25 26
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 */

#include <linux/res_counter.h>
#include <linux/memcontrol.h>
#include <linux/cgroup.h>
27
#include <linux/mm.h>
28
#include <linux/hugetlb.h>
K
KAMEZAWA Hiroyuki 已提交
29
#include <linux/pagemap.h>
30
#include <linux/smp.h>
31
#include <linux/page-flags.h>
32
#include <linux/backing-dev.h>
33 34
#include <linux/bit_spinlock.h>
#include <linux/rcupdate.h>
35
#include <linux/limits.h>
36
#include <linux/mutex.h>
37
#include <linux/rbtree.h>
38
#include <linux/slab.h>
39
#include <linux/swap.h>
40
#include <linux/swapops.h>
41
#include <linux/spinlock.h>
42 43
#include <linux/eventfd.h>
#include <linux/sort.h>
44
#include <linux/fs.h>
45
#include <linux/seq_file.h>
46
#include <linux/vmalloc.h>
47
#include <linux/mm_inline.h>
48
#include <linux/page_cgroup.h>
49
#include <linux/cpu.h>
K
KAMEZAWA Hiroyuki 已提交
50
#include "internal.h"
B
Balbir Singh 已提交
51

52 53
#include <asm/uaccess.h>

54 55
#include <trace/events/vmscan.h>

56 57
struct cgroup_subsys mem_cgroup_subsys __read_mostly;
#define MEM_CGROUP_RECLAIM_RETRIES	5
58
struct mem_cgroup *root_mem_cgroup __read_mostly;
B
Balbir Singh 已提交
59

60
#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
L
Li Zefan 已提交
61
/* Turned on only when memory cgroup is enabled && really_do_swap_account = 1 */
62 63 64 65 66 67
int do_swap_account __read_mostly;
static int really_do_swap_account __initdata = 1; /* for remember boot option*/
#else
#define do_swap_account		(0)
#endif

68 69 70 71 72 73 74 75 76
/*
 * Per memcg event counter is incremented at every pagein/pageout. This counter
 * is used for trigger some periodic events. This is straightforward and better
 * than using jiffies etc. to handle periodic memcg event.
 *
 * These values will be used as !((event) & ((1 <<(thresh)) - 1))
 */
#define THRESHOLDS_EVENTS_THRESH (7) /* once in 128 */
#define SOFTLIMIT_EVENTS_THRESH (10) /* once in 1024 */
77

78 79 80 81 82 83 84 85
/*
 * Statistics for memory cgroup.
 */
enum mem_cgroup_stat_index {
	/*
	 * For MEM_CONTAINER_TYPE_ALL, usage = pagecache + rss.
	 */
	MEM_CGROUP_STAT_CACHE, 	   /* # of pages charged as cache */
86
	MEM_CGROUP_STAT_RSS,	   /* # of pages charged as anon rss */
87
	MEM_CGROUP_STAT_FILE_MAPPED,  /* # of pages charged as file rss */
88 89
	MEM_CGROUP_STAT_PGPGIN_COUNT,	/* # of pages paged in */
	MEM_CGROUP_STAT_PGPGOUT_COUNT,	/* # of pages paged out */
90
	MEM_CGROUP_STAT_SWAPOUT, /* # of pages, swapped out */
91
	MEM_CGROUP_EVENTS,	/* incremented at every  pagein/pageout */
92 93 94 95 96 97 98 99

	MEM_CGROUP_STAT_NSTATS,
};

struct mem_cgroup_stat_cpu {
	s64 count[MEM_CGROUP_STAT_NSTATS];
};

100 101 102 103
/*
 * per-zone information in memory controller.
 */
struct mem_cgroup_per_zone {
104 105 106
	/*
	 * spin_lock to protect the per cgroup LRU
	 */
107 108
	struct list_head	lists[NR_LRU_LISTS];
	unsigned long		count[NR_LRU_LISTS];
K
KOSAKI Motohiro 已提交
109 110

	struct zone_reclaim_stat reclaim_stat;
111 112 113 114
	struct rb_node		tree_node;	/* RB tree node */
	unsigned long long	usage_in_excess;/* Set to the value by which */
						/* the soft limit is exceeded*/
	bool			on_tree;
115 116
	struct mem_cgroup	*mem;		/* Back pointer, we cannot */
						/* use container_of	   */
117 118 119 120 121 122 123 124 125 126 127 128
};
/* Macro for accessing counter */
#define MEM_CGROUP_ZSTAT(mz, idx)	((mz)->count[(idx)])

struct mem_cgroup_per_node {
	struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
};

struct mem_cgroup_lru_info {
	struct mem_cgroup_per_node *nodeinfo[MAX_NUMNODES];
};

129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148
/*
 * Cgroups above their limits are maintained in a RB-Tree, independent of
 * their hierarchy representation
 */

struct mem_cgroup_tree_per_zone {
	struct rb_root rb_root;
	spinlock_t lock;
};

struct mem_cgroup_tree_per_node {
	struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
};

struct mem_cgroup_tree {
	struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
};

static struct mem_cgroup_tree soft_limit_tree __read_mostly;

149 150 151 152 153
struct mem_cgroup_threshold {
	struct eventfd_ctx *eventfd;
	u64 threshold;
};

K
KAMEZAWA Hiroyuki 已提交
154
/* For threshold */
155 156
struct mem_cgroup_threshold_ary {
	/* An array index points to threshold just below usage. */
157
	int current_threshold;
158 159 160 161 162
	/* Size of entries[] */
	unsigned int size;
	/* Array of thresholds */
	struct mem_cgroup_threshold entries[0];
};
163 164 165 166 167 168 169 170 171 172 173 174

struct mem_cgroup_thresholds {
	/* Primary thresholds array */
	struct mem_cgroup_threshold_ary *primary;
	/*
	 * Spare threshold array.
	 * This is needed to make mem_cgroup_unregister_event() "never fail".
	 * It must be able to store at least primary->size - 1 entries.
	 */
	struct mem_cgroup_threshold_ary *spare;
};

K
KAMEZAWA Hiroyuki 已提交
175 176 177 178 179
/* for OOM */
struct mem_cgroup_eventfd_list {
	struct list_head list;
	struct eventfd_ctx *eventfd;
};
180 181

static void mem_cgroup_threshold(struct mem_cgroup *mem);
K
KAMEZAWA Hiroyuki 已提交
182
static void mem_cgroup_oom_notify(struct mem_cgroup *mem);
183

B
Balbir Singh 已提交
184 185 186 187 188 189 190
/*
 * The memory controller data structure. The memory controller controls both
 * page cache and RSS per cgroup. We would eventually like to provide
 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
 * to help the administrator determine what knobs to tune.
 *
 * TODO: Add a water mark for the memory controller. Reclaim will begin when
191 192 193
 * we hit the water mark. May be even add a low water mark, such that
 * no reclaim occurs from a cgroup at it's low water mark, this is
 * a feature that will be implemented much later in the future.
B
Balbir Singh 已提交
194 195 196 197 198 199 200
 */
struct mem_cgroup {
	struct cgroup_subsys_state css;
	/*
	 * the counter to account for memory usage
	 */
	struct res_counter res;
201 202 203 204
	/*
	 * the counter to account for mem+swap usage.
	 */
	struct res_counter memsw;
205 206 207 208
	/*
	 * Per cgroup active and inactive list, similar to the
	 * per zone LRU lists.
	 */
209
	struct mem_cgroup_lru_info info;
210

K
KOSAKI Motohiro 已提交
211 212 213 214 215
	/*
	  protect against reclaim related member.
	*/
	spinlock_t reclaim_param_lock;

216
	/*
217
	 * While reclaiming in a hierarchy, we cache the last child we
K
KAMEZAWA Hiroyuki 已提交
218
	 * reclaimed from.
219
	 */
K
KAMEZAWA Hiroyuki 已提交
220
	int last_scanned_child;
221 222 223 224
	/*
	 * Should the accounting and control be hierarchical, per subtree?
	 */
	bool use_hierarchy;
K
KAMEZAWA Hiroyuki 已提交
225
	atomic_t	oom_lock;
226
	atomic_t	refcnt;
227

K
KOSAKI Motohiro 已提交
228
	unsigned int	swappiness;
229 230
	/* OOM-Killer disable */
	int		oom_kill_disable;
K
KOSAKI Motohiro 已提交
231

232 233 234
	/* set when res.limit == memsw.limit */
	bool		memsw_is_minimum;

235 236 237 238
	/* protect arrays of thresholds */
	struct mutex thresholds_lock;

	/* thresholds for memory usage. RCU-protected */
239
	struct mem_cgroup_thresholds thresholds;
240

241
	/* thresholds for mem+swap usage. RCU-protected */
242
	struct mem_cgroup_thresholds memsw_thresholds;
243

K
KAMEZAWA Hiroyuki 已提交
244 245 246
	/* For oom notifier event fd */
	struct list_head oom_notify;

247 248 249 250 251
	/*
	 * Should we move charges of a task when a task is moved into this
	 * mem_cgroup ? And what type of charges should we move ?
	 */
	unsigned long 	move_charge_at_immigrate;
252
	/*
253
	 * percpu counter.
254
	 */
255
	struct mem_cgroup_stat_cpu *stat;
B
Balbir Singh 已提交
256 257
};

258 259 260 261 262 263
/* Stuffs for move charges at task migration. */
/*
 * Types of charges to be moved. "move_charge_at_immitgrate" is treated as a
 * left-shifted bitmap of these types.
 */
enum move_type {
264
	MOVE_CHARGE_TYPE_ANON,	/* private anonymous page and swap of it */
265
	MOVE_CHARGE_TYPE_FILE,	/* file page(including tmpfs) and swap of it */
266 267 268
	NR_MOVE_TYPE,
};

269 270
/* "mc" and its members are protected by cgroup_mutex */
static struct move_charge_struct {
271
	spinlock_t	  lock; /* for from, to, moving_task */
272 273 274
	struct mem_cgroup *from;
	struct mem_cgroup *to;
	unsigned long precharge;
275
	unsigned long moved_charge;
276
	unsigned long moved_swap;
277 278 279
	struct task_struct *moving_task;	/* a task moving charges */
	wait_queue_head_t waitq;		/* a waitq for other context */
} mc = {
280
	.lock = __SPIN_LOCK_UNLOCKED(mc.lock),
281 282
	.waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
};
283

D
Daisuke Nishimura 已提交
284 285 286 287 288 289
static bool move_anon(void)
{
	return test_bit(MOVE_CHARGE_TYPE_ANON,
					&mc.to->move_charge_at_immigrate);
}

290 291 292 293 294 295
static bool move_file(void)
{
	return test_bit(MOVE_CHARGE_TYPE_FILE,
					&mc.to->move_charge_at_immigrate);
}

296 297 298 299 300 301 302
/*
 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
 * limit reclaim to prevent infinite loops, if they ever occur.
 */
#define	MEM_CGROUP_MAX_RECLAIM_LOOPS		(100)
#define	MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS	(2)

303 304 305
enum charge_type {
	MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
	MEM_CGROUP_CHARGE_TYPE_MAPPED,
306
	MEM_CGROUP_CHARGE_TYPE_SHMEM,	/* used by page migration of shmem */
307
	MEM_CGROUP_CHARGE_TYPE_FORCE,	/* used by force_empty */
K
KAMEZAWA Hiroyuki 已提交
308
	MEM_CGROUP_CHARGE_TYPE_SWAPOUT,	/* for accounting swapcache */
K
KAMEZAWA Hiroyuki 已提交
309
	MEM_CGROUP_CHARGE_TYPE_DROP,	/* a page was unused swap cache */
310 311 312
	NR_CHARGE_TYPE,
};

313 314 315 316
/* only for here (for easy reading.) */
#define PCGF_CACHE	(1UL << PCG_CACHE)
#define PCGF_USED	(1UL << PCG_USED)
#define PCGF_LOCK	(1UL << PCG_LOCK)
317 318
/* Not used, but added here for completeness */
#define PCGF_ACCT	(1UL << PCG_ACCT)
319

320 321 322
/* for encoding cft->private value on file */
#define _MEM			(0)
#define _MEMSWAP		(1)
K
KAMEZAWA Hiroyuki 已提交
323
#define _OOM_TYPE		(2)
324 325 326
#define MEMFILE_PRIVATE(x, val)	(((x) << 16) | (val))
#define MEMFILE_TYPE(val)	(((val) >> 16) & 0xffff)
#define MEMFILE_ATTR(val)	((val) & 0xffff)
K
KAMEZAWA Hiroyuki 已提交
327 328
/* Used for OOM nofiier */
#define OOM_CONTROL		(0)
329

330 331 332 333 334 335 336
/*
 * Reclaim flags for mem_cgroup_hierarchical_reclaim
 */
#define MEM_CGROUP_RECLAIM_NOSWAP_BIT	0x0
#define MEM_CGROUP_RECLAIM_NOSWAP	(1 << MEM_CGROUP_RECLAIM_NOSWAP_BIT)
#define MEM_CGROUP_RECLAIM_SHRINK_BIT	0x1
#define MEM_CGROUP_RECLAIM_SHRINK	(1 << MEM_CGROUP_RECLAIM_SHRINK_BIT)
337 338
#define MEM_CGROUP_RECLAIM_SOFT_BIT	0x2
#define MEM_CGROUP_RECLAIM_SOFT		(1 << MEM_CGROUP_RECLAIM_SOFT_BIT)
339

340 341
static void mem_cgroup_get(struct mem_cgroup *mem);
static void mem_cgroup_put(struct mem_cgroup *mem);
342
static struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *mem);
343
static void drain_all_stock_async(void);
344

345 346 347 348 349 350
static struct mem_cgroup_per_zone *
mem_cgroup_zoneinfo(struct mem_cgroup *mem, int nid, int zid)
{
	return &mem->info.nodeinfo[nid]->zoneinfo[zid];
}

351 352 353 354 355
struct cgroup_subsys_state *mem_cgroup_css(struct mem_cgroup *mem)
{
	return &mem->css;
}

356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384
static struct mem_cgroup_per_zone *
page_cgroup_zoneinfo(struct page_cgroup *pc)
{
	struct mem_cgroup *mem = pc->mem_cgroup;
	int nid = page_cgroup_nid(pc);
	int zid = page_cgroup_zid(pc);

	if (!mem)
		return NULL;

	return mem_cgroup_zoneinfo(mem, nid, zid);
}

static struct mem_cgroup_tree_per_zone *
soft_limit_tree_node_zone(int nid, int zid)
{
	return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
}

static struct mem_cgroup_tree_per_zone *
soft_limit_tree_from_page(struct page *page)
{
	int nid = page_to_nid(page);
	int zid = page_zonenum(page);

	return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
}

static void
385
__mem_cgroup_insert_exceeded(struct mem_cgroup *mem,
386
				struct mem_cgroup_per_zone *mz,
387 388
				struct mem_cgroup_tree_per_zone *mctz,
				unsigned long long new_usage_in_excess)
389 390 391 392 393 394 395 396
{
	struct rb_node **p = &mctz->rb_root.rb_node;
	struct rb_node *parent = NULL;
	struct mem_cgroup_per_zone *mz_node;

	if (mz->on_tree)
		return;

397 398 399
	mz->usage_in_excess = new_usage_in_excess;
	if (!mz->usage_in_excess)
		return;
400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415
	while (*p) {
		parent = *p;
		mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
					tree_node);
		if (mz->usage_in_excess < mz_node->usage_in_excess)
			p = &(*p)->rb_left;
		/*
		 * We can't avoid mem cgroups that are over their soft
		 * limit by the same amount
		 */
		else if (mz->usage_in_excess >= mz_node->usage_in_excess)
			p = &(*p)->rb_right;
	}
	rb_link_node(&mz->tree_node, parent, p);
	rb_insert_color(&mz->tree_node, &mctz->rb_root);
	mz->on_tree = true;
416 417 418 419 420 421 422 423 424 425 426 427 428
}

static void
__mem_cgroup_remove_exceeded(struct mem_cgroup *mem,
				struct mem_cgroup_per_zone *mz,
				struct mem_cgroup_tree_per_zone *mctz)
{
	if (!mz->on_tree)
		return;
	rb_erase(&mz->tree_node, &mctz->rb_root);
	mz->on_tree = false;
}

429 430 431 432 433 434
static void
mem_cgroup_remove_exceeded(struct mem_cgroup *mem,
				struct mem_cgroup_per_zone *mz,
				struct mem_cgroup_tree_per_zone *mctz)
{
	spin_lock(&mctz->lock);
435
	__mem_cgroup_remove_exceeded(mem, mz, mctz);
436 437 438 439 440 441
	spin_unlock(&mctz->lock);
}


static void mem_cgroup_update_tree(struct mem_cgroup *mem, struct page *page)
{
442
	unsigned long long excess;
443 444
	struct mem_cgroup_per_zone *mz;
	struct mem_cgroup_tree_per_zone *mctz;
445 446
	int nid = page_to_nid(page);
	int zid = page_zonenum(page);
447 448 449
	mctz = soft_limit_tree_from_page(page);

	/*
450 451
	 * Necessary to update all ancestors when hierarchy is used.
	 * because their event counter is not touched.
452
	 */
453 454
	for (; mem; mem = parent_mem_cgroup(mem)) {
		mz = mem_cgroup_zoneinfo(mem, nid, zid);
455
		excess = res_counter_soft_limit_excess(&mem->res);
456 457 458 459
		/*
		 * We have to update the tree if mz is on RB-tree or
		 * mem is over its softlimit.
		 */
460
		if (excess || mz->on_tree) {
461 462 463 464 465
			spin_lock(&mctz->lock);
			/* if on-tree, remove it */
			if (mz->on_tree)
				__mem_cgroup_remove_exceeded(mem, mz, mctz);
			/*
466 467
			 * Insert again. mz->usage_in_excess will be updated.
			 * If excess is 0, no tree ops.
468
			 */
469
			__mem_cgroup_insert_exceeded(mem, mz, mctz, excess);
470 471
			spin_unlock(&mctz->lock);
		}
472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489
	}
}

static void mem_cgroup_remove_from_trees(struct mem_cgroup *mem)
{
	int node, zone;
	struct mem_cgroup_per_zone *mz;
	struct mem_cgroup_tree_per_zone *mctz;

	for_each_node_state(node, N_POSSIBLE) {
		for (zone = 0; zone < MAX_NR_ZONES; zone++) {
			mz = mem_cgroup_zoneinfo(mem, node, zone);
			mctz = soft_limit_tree_node_zone(node, zone);
			mem_cgroup_remove_exceeded(mem, mz, mctz);
		}
	}
}

490 491 492 493 494 495 496 497 498
static inline unsigned long mem_cgroup_get_excess(struct mem_cgroup *mem)
{
	return res_counter_soft_limit_excess(&mem->res) >> PAGE_SHIFT;
}

static struct mem_cgroup_per_zone *
__mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
{
	struct rb_node *rightmost = NULL;
499
	struct mem_cgroup_per_zone *mz;
500 501

retry:
502
	mz = NULL;
503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531
	rightmost = rb_last(&mctz->rb_root);
	if (!rightmost)
		goto done;		/* Nothing to reclaim from */

	mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
	/*
	 * Remove the node now but someone else can add it back,
	 * we will to add it back at the end of reclaim to its correct
	 * position in the tree.
	 */
	__mem_cgroup_remove_exceeded(mz->mem, mz, mctz);
	if (!res_counter_soft_limit_excess(&mz->mem->res) ||
		!css_tryget(&mz->mem->css))
		goto retry;
done:
	return mz;
}

static struct mem_cgroup_per_zone *
mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
{
	struct mem_cgroup_per_zone *mz;

	spin_lock(&mctz->lock);
	mz = __mem_cgroup_largest_soft_limit_node(mctz);
	spin_unlock(&mctz->lock);
	return mz;
}

532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551
static s64 mem_cgroup_read_stat(struct mem_cgroup *mem,
		enum mem_cgroup_stat_index idx)
{
	int cpu;
	s64 val = 0;

	for_each_possible_cpu(cpu)
		val += per_cpu(mem->stat->count[idx], cpu);
	return val;
}

static s64 mem_cgroup_local_usage(struct mem_cgroup *mem)
{
	s64 ret;

	ret = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_RSS);
	ret += mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_CACHE);
	return ret;
}

552 553 554 555
static void mem_cgroup_swap_statistics(struct mem_cgroup *mem,
					 bool charge)
{
	int val = (charge) ? 1 : -1;
556
	this_cpu_add(mem->stat->count[MEM_CGROUP_STAT_SWAPOUT], val);
557 558
}

559 560 561
static void mem_cgroup_charge_statistics(struct mem_cgroup *mem,
					 struct page_cgroup *pc,
					 bool charge)
562
{
563
	int val = (charge) ? 1 : -1;
564

565 566
	preempt_disable();

567
	if (PageCgroupCache(pc))
568
		__this_cpu_add(mem->stat->count[MEM_CGROUP_STAT_CACHE], val);
569
	else
570
		__this_cpu_add(mem->stat->count[MEM_CGROUP_STAT_RSS], val);
571 572

	if (charge)
573
		__this_cpu_inc(mem->stat->count[MEM_CGROUP_STAT_PGPGIN_COUNT]);
574
	else
575
		__this_cpu_inc(mem->stat->count[MEM_CGROUP_STAT_PGPGOUT_COUNT]);
576
	__this_cpu_inc(mem->stat->count[MEM_CGROUP_EVENTS]);
577

578
	preempt_enable();
579 580
}

K
KAMEZAWA Hiroyuki 已提交
581
static unsigned long mem_cgroup_get_local_zonestat(struct mem_cgroup *mem,
582
					enum lru_list idx)
583 584 585 586 587 588 589 590 591 592 593
{
	int nid, zid;
	struct mem_cgroup_per_zone *mz;
	u64 total = 0;

	for_each_online_node(nid)
		for (zid = 0; zid < MAX_NR_ZONES; zid++) {
			mz = mem_cgroup_zoneinfo(mem, nid, zid);
			total += MEM_CGROUP_ZSTAT(mz, idx);
		}
	return total;
594 595
}

596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618
static bool __memcg_event_check(struct mem_cgroup *mem, int event_mask_shift)
{
	s64 val;

	val = this_cpu_read(mem->stat->count[MEM_CGROUP_EVENTS]);

	return !(val & ((1 << event_mask_shift) - 1));
}

/*
 * Check events in order.
 *
 */
static void memcg_check_events(struct mem_cgroup *mem, struct page *page)
{
	/* threshold event is triggered in finer grain than soft limit */
	if (unlikely(__memcg_event_check(mem, THRESHOLDS_EVENTS_THRESH))) {
		mem_cgroup_threshold(mem);
		if (unlikely(__memcg_event_check(mem, SOFTLIMIT_EVENTS_THRESH)))
			mem_cgroup_update_tree(mem, page);
	}
}

619
static struct mem_cgroup *mem_cgroup_from_cont(struct cgroup *cont)
B
Balbir Singh 已提交
620 621 622 623 624 625
{
	return container_of(cgroup_subsys_state(cont,
				mem_cgroup_subsys_id), struct mem_cgroup,
				css);
}

626
struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
627
{
628 629 630 631 632 633 634 635
	/*
	 * mm_update_next_owner() may clear mm->owner to NULL
	 * if it races with swapoff, page migration, etc.
	 * So this can be called with p == NULL.
	 */
	if (unlikely(!p))
		return NULL;

636 637 638 639
	return container_of(task_subsys_state(p, mem_cgroup_subsys_id),
				struct mem_cgroup, css);
}

640 641 642
static struct mem_cgroup *try_get_mem_cgroup_from_mm(struct mm_struct *mm)
{
	struct mem_cgroup *mem = NULL;
643 644 645

	if (!mm)
		return NULL;
646 647 648 649 650 651 652 653 654 655 656 657 658 659 660
	/*
	 * Because we have no locks, mm->owner's may be being moved to other
	 * cgroup. We use css_tryget() here even if this looks
	 * pessimistic (rather than adding locks here).
	 */
	rcu_read_lock();
	do {
		mem = mem_cgroup_from_task(rcu_dereference(mm->owner));
		if (unlikely(!mem))
			break;
	} while (!css_tryget(&mem->css));
	rcu_read_unlock();
	return mem;
}

K
KAMEZAWA Hiroyuki 已提交
661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695
/*
 * Call callback function against all cgroup under hierarchy tree.
 */
static int mem_cgroup_walk_tree(struct mem_cgroup *root, void *data,
			  int (*func)(struct mem_cgroup *, void *))
{
	int found, ret, nextid;
	struct cgroup_subsys_state *css;
	struct mem_cgroup *mem;

	if (!root->use_hierarchy)
		return (*func)(root, data);

	nextid = 1;
	do {
		ret = 0;
		mem = NULL;

		rcu_read_lock();
		css = css_get_next(&mem_cgroup_subsys, nextid, &root->css,
				   &found);
		if (css && css_tryget(css))
			mem = container_of(css, struct mem_cgroup, css);
		rcu_read_unlock();

		if (mem) {
			ret = (*func)(mem, data);
			css_put(&mem->css);
		}
		nextid = found + 1;
	} while (!ret && css);

	return ret;
}

696 697 698 699 700
static inline bool mem_cgroup_is_root(struct mem_cgroup *mem)
{
	return (mem == root_mem_cgroup);
}

K
KAMEZAWA Hiroyuki 已提交
701 702 703 704 705 706 707 708 709 710 711 712 713
/*
 * Following LRU functions are allowed to be used without PCG_LOCK.
 * Operations are called by routine of global LRU independently from memcg.
 * What we have to take care of here is validness of pc->mem_cgroup.
 *
 * Changes to pc->mem_cgroup happens when
 * 1. charge
 * 2. moving account
 * In typical case, "charge" is done before add-to-lru. Exception is SwapCache.
 * It is added to LRU before charge.
 * If PCG_USED bit is not set, page_cgroup is not added to this private LRU.
 * When moving account, the page is not on LRU. It's isolated.
 */
714

K
KAMEZAWA Hiroyuki 已提交
715 716 717 718
void mem_cgroup_del_lru_list(struct page *page, enum lru_list lru)
{
	struct page_cgroup *pc;
	struct mem_cgroup_per_zone *mz;
719

720
	if (mem_cgroup_disabled())
K
KAMEZAWA Hiroyuki 已提交
721 722 723
		return;
	pc = lookup_page_cgroup(page);
	/* can happen while we handle swapcache. */
724
	if (!TestClearPageCgroupAcctLRU(pc))
K
KAMEZAWA Hiroyuki 已提交
725
		return;
726
	VM_BUG_ON(!pc->mem_cgroup);
727 728 729 730
	/*
	 * We don't check PCG_USED bit. It's cleared when the "page" is finally
	 * removed from global LRU.
	 */
K
KAMEZAWA Hiroyuki 已提交
731
	mz = page_cgroup_zoneinfo(pc);
732
	MEM_CGROUP_ZSTAT(mz, lru) -= 1;
733 734 735
	if (mem_cgroup_is_root(pc->mem_cgroup))
		return;
	VM_BUG_ON(list_empty(&pc->lru));
K
KAMEZAWA Hiroyuki 已提交
736 737
	list_del_init(&pc->lru);
	return;
738 739
}

K
KAMEZAWA Hiroyuki 已提交
740
void mem_cgroup_del_lru(struct page *page)
741
{
K
KAMEZAWA Hiroyuki 已提交
742 743
	mem_cgroup_del_lru_list(page, page_lru(page));
}
744

K
KAMEZAWA Hiroyuki 已提交
745 746 747 748
void mem_cgroup_rotate_lru_list(struct page *page, enum lru_list lru)
{
	struct mem_cgroup_per_zone *mz;
	struct page_cgroup *pc;
749

750
	if (mem_cgroup_disabled())
K
KAMEZAWA Hiroyuki 已提交
751
		return;
752

K
KAMEZAWA Hiroyuki 已提交
753
	pc = lookup_page_cgroup(page);
754 755 756 757
	/*
	 * Used bit is set without atomic ops but after smp_wmb().
	 * For making pc->mem_cgroup visible, insert smp_rmb() here.
	 */
K
KAMEZAWA Hiroyuki 已提交
758
	smp_rmb();
759 760
	/* unused or root page is not rotated. */
	if (!PageCgroupUsed(pc) || mem_cgroup_is_root(pc->mem_cgroup))
K
KAMEZAWA Hiroyuki 已提交
761 762 763
		return;
	mz = page_cgroup_zoneinfo(pc);
	list_move(&pc->lru, &mz->lists[lru]);
764 765
}

K
KAMEZAWA Hiroyuki 已提交
766
void mem_cgroup_add_lru_list(struct page *page, enum lru_list lru)
767
{
K
KAMEZAWA Hiroyuki 已提交
768 769
	struct page_cgroup *pc;
	struct mem_cgroup_per_zone *mz;
770

771
	if (mem_cgroup_disabled())
K
KAMEZAWA Hiroyuki 已提交
772 773
		return;
	pc = lookup_page_cgroup(page);
774
	VM_BUG_ON(PageCgroupAcctLRU(pc));
775 776 777 778
	/*
	 * Used bit is set without atomic ops but after smp_wmb().
	 * For making pc->mem_cgroup visible, insert smp_rmb() here.
	 */
K
KAMEZAWA Hiroyuki 已提交
779 780
	smp_rmb();
	if (!PageCgroupUsed(pc))
L
Lee Schermerhorn 已提交
781
		return;
782

K
KAMEZAWA Hiroyuki 已提交
783
	mz = page_cgroup_zoneinfo(pc);
784
	MEM_CGROUP_ZSTAT(mz, lru) += 1;
785 786 787
	SetPageCgroupAcctLRU(pc);
	if (mem_cgroup_is_root(pc->mem_cgroup))
		return;
K
KAMEZAWA Hiroyuki 已提交
788 789
	list_add(&pc->lru, &mz->lists[lru]);
}
790

K
KAMEZAWA Hiroyuki 已提交
791
/*
792 793 794 795 796
 * At handling SwapCache, pc->mem_cgroup may be changed while it's linked to
 * lru because the page may.be reused after it's fully uncharged (because of
 * SwapCache behavior).To handle that, unlink page_cgroup from LRU when charge
 * it again. This function is only used to charge SwapCache. It's done under
 * lock_page and expected that zone->lru_lock is never held.
K
KAMEZAWA Hiroyuki 已提交
797
 */
798
static void mem_cgroup_lru_del_before_commit_swapcache(struct page *page)
K
KAMEZAWA Hiroyuki 已提交
799
{
800 801 802 803 804 805 806 807 808 809 810 811
	unsigned long flags;
	struct zone *zone = page_zone(page);
	struct page_cgroup *pc = lookup_page_cgroup(page);

	spin_lock_irqsave(&zone->lru_lock, flags);
	/*
	 * Forget old LRU when this page_cgroup is *not* used. This Used bit
	 * is guarded by lock_page() because the page is SwapCache.
	 */
	if (!PageCgroupUsed(pc))
		mem_cgroup_del_lru_list(page, page_lru(page));
	spin_unlock_irqrestore(&zone->lru_lock, flags);
K
KAMEZAWA Hiroyuki 已提交
812 813
}

814 815 816 817 818 819 820 821
static void mem_cgroup_lru_add_after_commit_swapcache(struct page *page)
{
	unsigned long flags;
	struct zone *zone = page_zone(page);
	struct page_cgroup *pc = lookup_page_cgroup(page);

	spin_lock_irqsave(&zone->lru_lock, flags);
	/* link when the page is linked to LRU but page_cgroup isn't */
822
	if (PageLRU(page) && !PageCgroupAcctLRU(pc))
823 824 825 826 827
		mem_cgroup_add_lru_list(page, page_lru(page));
	spin_unlock_irqrestore(&zone->lru_lock, flags);
}


K
KAMEZAWA Hiroyuki 已提交
828 829 830
void mem_cgroup_move_lists(struct page *page,
			   enum lru_list from, enum lru_list to)
{
831
	if (mem_cgroup_disabled())
K
KAMEZAWA Hiroyuki 已提交
832 833 834
		return;
	mem_cgroup_del_lru_list(page, from);
	mem_cgroup_add_lru_list(page, to);
835 836
}

837 838 839
int task_in_mem_cgroup(struct task_struct *task, const struct mem_cgroup *mem)
{
	int ret;
840
	struct mem_cgroup *curr = NULL;
841 842

	task_lock(task);
843
	curr = try_get_mem_cgroup_from_mm(task->mm);
844
	task_unlock(task);
845 846
	if (!curr)
		return 0;
847 848 849 850 851 852 853
	/*
	 * We should check use_hierarchy of "mem" not "curr". Because checking
	 * use_hierarchy of "curr" here make this function true if hierarchy is
	 * enabled in "curr" and "curr" is a child of "mem" in *cgroup*
	 * hierarchy(even if use_hierarchy is disabled in "mem").
	 */
	if (mem->use_hierarchy)
854 855 856 857
		ret = css_is_ancestor(&curr->css, &mem->css);
	else
		ret = (curr == mem);
	css_put(&curr->css);
858 859 860
	return ret;
}

861
static int calc_inactive_ratio(struct mem_cgroup *memcg, unsigned long *present_pages)
862 863 864
{
	unsigned long active;
	unsigned long inactive;
865 866
	unsigned long gb;
	unsigned long inactive_ratio;
867

K
KAMEZAWA Hiroyuki 已提交
868 869
	inactive = mem_cgroup_get_local_zonestat(memcg, LRU_INACTIVE_ANON);
	active = mem_cgroup_get_local_zonestat(memcg, LRU_ACTIVE_ANON);
870

871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897
	gb = (inactive + active) >> (30 - PAGE_SHIFT);
	if (gb)
		inactive_ratio = int_sqrt(10 * gb);
	else
		inactive_ratio = 1;

	if (present_pages) {
		present_pages[0] = inactive;
		present_pages[1] = active;
	}

	return inactive_ratio;
}

int mem_cgroup_inactive_anon_is_low(struct mem_cgroup *memcg)
{
	unsigned long active;
	unsigned long inactive;
	unsigned long present_pages[2];
	unsigned long inactive_ratio;

	inactive_ratio = calc_inactive_ratio(memcg, present_pages);

	inactive = present_pages[0];
	active = present_pages[1];

	if (inactive * inactive_ratio < active)
898 899 900 901 902
		return 1;

	return 0;
}

903 904 905 906 907 908 909 910 911 912 913
int mem_cgroup_inactive_file_is_low(struct mem_cgroup *memcg)
{
	unsigned long active;
	unsigned long inactive;

	inactive = mem_cgroup_get_local_zonestat(memcg, LRU_INACTIVE_FILE);
	active = mem_cgroup_get_local_zonestat(memcg, LRU_ACTIVE_FILE);

	return (active > inactive);
}

914 915 916 917 918 919 920 921 922 923 924
unsigned long mem_cgroup_zone_nr_pages(struct mem_cgroup *memcg,
				       struct zone *zone,
				       enum lru_list lru)
{
	int nid = zone->zone_pgdat->node_id;
	int zid = zone_idx(zone);
	struct mem_cgroup_per_zone *mz = mem_cgroup_zoneinfo(memcg, nid, zid);

	return MEM_CGROUP_ZSTAT(mz, lru);
}

K
KOSAKI Motohiro 已提交
925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944
struct zone_reclaim_stat *mem_cgroup_get_reclaim_stat(struct mem_cgroup *memcg,
						      struct zone *zone)
{
	int nid = zone->zone_pgdat->node_id;
	int zid = zone_idx(zone);
	struct mem_cgroup_per_zone *mz = mem_cgroup_zoneinfo(memcg, nid, zid);

	return &mz->reclaim_stat;
}

struct zone_reclaim_stat *
mem_cgroup_get_reclaim_stat_from_page(struct page *page)
{
	struct page_cgroup *pc;
	struct mem_cgroup_per_zone *mz;

	if (mem_cgroup_disabled())
		return NULL;

	pc = lookup_page_cgroup(page);
945 946 947 948 949 950 951 952
	/*
	 * Used bit is set without atomic ops but after smp_wmb().
	 * For making pc->mem_cgroup visible, insert smp_rmb() here.
	 */
	smp_rmb();
	if (!PageCgroupUsed(pc))
		return NULL;

K
KOSAKI Motohiro 已提交
953 954 955 956 957 958 959
	mz = page_cgroup_zoneinfo(pc);
	if (!mz)
		return NULL;

	return &mz->reclaim_stat;
}

960 961 962 963 964
unsigned long mem_cgroup_isolate_pages(unsigned long nr_to_scan,
					struct list_head *dst,
					unsigned long *scanned, int order,
					int mode, struct zone *z,
					struct mem_cgroup *mem_cont,
965
					int active, int file)
966 967 968 969 970 971
{
	unsigned long nr_taken = 0;
	struct page *page;
	unsigned long scan;
	LIST_HEAD(pc_list);
	struct list_head *src;
972
	struct page_cgroup *pc, *tmp;
973 974 975
	int nid = z->zone_pgdat->node_id;
	int zid = zone_idx(z);
	struct mem_cgroup_per_zone *mz;
976
	int lru = LRU_FILE * file + active;
977
	int ret;
978

979
	BUG_ON(!mem_cont);
980
	mz = mem_cgroup_zoneinfo(mem_cont, nid, zid);
981
	src = &mz->lists[lru];
982

983 984
	scan = 0;
	list_for_each_entry_safe_reverse(pc, tmp, src, lru) {
H
Hugh Dickins 已提交
985
		if (scan >= nr_to_scan)
986
			break;
K
KAMEZAWA Hiroyuki 已提交
987 988

		page = pc->page;
989 990
		if (unlikely(!PageCgroupUsed(pc)))
			continue;
H
Hugh Dickins 已提交
991
		if (unlikely(!PageLRU(page)))
992 993
			continue;

H
Hugh Dickins 已提交
994
		scan++;
995 996 997
		ret = __isolate_lru_page(page, mode, file);
		switch (ret) {
		case 0:
998
			list_move(&page->lru, dst);
999
			mem_cgroup_del_lru(page);
1000
			nr_taken++;
1001 1002 1003 1004 1005 1006 1007
			break;
		case -EBUSY:
			/* we don't affect global LRU but rotate in our LRU */
			mem_cgroup_rotate_lru_list(page, page_lru(page));
			break;
		default:
			break;
1008 1009 1010 1011
		}
	}

	*scanned = scan;
1012 1013 1014 1015

	trace_mm_vmscan_memcg_isolate(0, nr_to_scan, scan, nr_taken,
				      0, 0, 0, mode);

1016 1017 1018
	return nr_taken;
}

1019 1020 1021
#define mem_cgroup_from_res_counter(counter, member)	\
	container_of(counter, struct mem_cgroup, member)

1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033
static bool mem_cgroup_check_under_limit(struct mem_cgroup *mem)
{
	if (do_swap_account) {
		if (res_counter_check_under_limit(&mem->res) &&
			res_counter_check_under_limit(&mem->memsw))
			return true;
	} else
		if (res_counter_check_under_limit(&mem->res))
			return true;
	return false;
}

K
KOSAKI Motohiro 已提交
1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049
static unsigned int get_swappiness(struct mem_cgroup *memcg)
{
	struct cgroup *cgrp = memcg->css.cgroup;
	unsigned int swappiness;

	/* root ? */
	if (cgrp->parent == NULL)
		return vm_swappiness;

	spin_lock(&memcg->reclaim_param_lock);
	swappiness = memcg->swappiness;
	spin_unlock(&memcg->reclaim_param_lock);

	return swappiness;
}

1050 1051 1052 1053
/* A routine for testing mem is not under move_account */

static bool mem_cgroup_under_move(struct mem_cgroup *mem)
{
1054 1055
	struct mem_cgroup *from;
	struct mem_cgroup *to;
1056
	bool ret = false;
1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071
	/*
	 * Unlike task_move routines, we access mc.to, mc.from not under
	 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
	 */
	spin_lock(&mc.lock);
	from = mc.from;
	to = mc.to;
	if (!from)
		goto unlock;
	if (from == mem || to == mem
	    || (mem->use_hierarchy && css_is_ancestor(&from->css, &mem->css))
	    || (mem->use_hierarchy && css_is_ancestor(&to->css,	&mem->css)))
		ret = true;
unlock:
	spin_unlock(&mc.lock);
1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090
	return ret;
}

static bool mem_cgroup_wait_acct_move(struct mem_cgroup *mem)
{
	if (mc.moving_task && current != mc.moving_task) {
		if (mem_cgroup_under_move(mem)) {
			DEFINE_WAIT(wait);
			prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
			/* moving charge context might have finished. */
			if (mc.moving_task)
				schedule();
			finish_wait(&mc.waitq, &wait);
			return true;
		}
	}
	return false;
}

1091 1092 1093 1094 1095 1096
static int mem_cgroup_count_children_cb(struct mem_cgroup *mem, void *data)
{
	int *val = data;
	(*val)++;
	return 0;
}
1097 1098

/**
1099
 * mem_cgroup_print_oom_info: Called from OOM with tasklist_lock held in read mode.
1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117
 * @memcg: The memory cgroup that went over limit
 * @p: Task that is going to be killed
 *
 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
 * enabled
 */
void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
{
	struct cgroup *task_cgrp;
	struct cgroup *mem_cgrp;
	/*
	 * Need a buffer in BSS, can't rely on allocations. The code relies
	 * on the assumption that OOM is serialized for memory controller.
	 * If this assumption is broken, revisit this code.
	 */
	static char memcg_name[PATH_MAX];
	int ret;

1118
	if (!memcg || !p)
1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164
		return;


	rcu_read_lock();

	mem_cgrp = memcg->css.cgroup;
	task_cgrp = task_cgroup(p, mem_cgroup_subsys_id);

	ret = cgroup_path(task_cgrp, memcg_name, PATH_MAX);
	if (ret < 0) {
		/*
		 * Unfortunately, we are unable to convert to a useful name
		 * But we'll still print out the usage information
		 */
		rcu_read_unlock();
		goto done;
	}
	rcu_read_unlock();

	printk(KERN_INFO "Task in %s killed", memcg_name);

	rcu_read_lock();
	ret = cgroup_path(mem_cgrp, memcg_name, PATH_MAX);
	if (ret < 0) {
		rcu_read_unlock();
		goto done;
	}
	rcu_read_unlock();

	/*
	 * Continues from above, so we don't need an KERN_ level
	 */
	printk(KERN_CONT " as a result of limit of %s\n", memcg_name);
done:

	printk(KERN_INFO "memory: usage %llukB, limit %llukB, failcnt %llu\n",
		res_counter_read_u64(&memcg->res, RES_USAGE) >> 10,
		res_counter_read_u64(&memcg->res, RES_LIMIT) >> 10,
		res_counter_read_u64(&memcg->res, RES_FAILCNT));
	printk(KERN_INFO "memory+swap: usage %llukB, limit %llukB, "
		"failcnt %llu\n",
		res_counter_read_u64(&memcg->memsw, RES_USAGE) >> 10,
		res_counter_read_u64(&memcg->memsw, RES_LIMIT) >> 10,
		res_counter_read_u64(&memcg->memsw, RES_FAILCNT));
}

1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175
/*
 * This function returns the number of memcg under hierarchy tree. Returns
 * 1(self count) if no children.
 */
static int mem_cgroup_count_children(struct mem_cgroup *mem)
{
	int num = 0;
 	mem_cgroup_walk_tree(mem, &num, mem_cgroup_count_children_cb);
	return num;
}

D
David Rientjes 已提交
1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193
/*
 * Return the memory (and swap, if configured) limit for a memcg.
 */
u64 mem_cgroup_get_limit(struct mem_cgroup *memcg)
{
	u64 limit;
	u64 memsw;

	limit = res_counter_read_u64(&memcg->res, RES_LIMIT) +
			total_swap_pages;
	memsw = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
	/*
	 * If memsw is finite and limits the amount of swap space available
	 * to this memcg, return that limit.
	 */
	return min(limit, memsw);
}

1194
/*
K
KAMEZAWA Hiroyuki 已提交
1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236
 * Visit the first child (need not be the first child as per the ordering
 * of the cgroup list, since we track last_scanned_child) of @mem and use
 * that to reclaim free pages from.
 */
static struct mem_cgroup *
mem_cgroup_select_victim(struct mem_cgroup *root_mem)
{
	struct mem_cgroup *ret = NULL;
	struct cgroup_subsys_state *css;
	int nextid, found;

	if (!root_mem->use_hierarchy) {
		css_get(&root_mem->css);
		ret = root_mem;
	}

	while (!ret) {
		rcu_read_lock();
		nextid = root_mem->last_scanned_child + 1;
		css = css_get_next(&mem_cgroup_subsys, nextid, &root_mem->css,
				   &found);
		if (css && css_tryget(css))
			ret = container_of(css, struct mem_cgroup, css);

		rcu_read_unlock();
		/* Updates scanning parameter */
		spin_lock(&root_mem->reclaim_param_lock);
		if (!css) {
			/* this means start scan from ID:1 */
			root_mem->last_scanned_child = 0;
		} else
			root_mem->last_scanned_child = found;
		spin_unlock(&root_mem->reclaim_param_lock);
	}

	return ret;
}

/*
 * Scan the hierarchy if needed to reclaim memory. We remember the last child
 * we reclaimed from, so that we don't end up penalizing one child extensively
 * based on its position in the children list.
1237 1238
 *
 * root_mem is the original ancestor that we've been reclaim from.
K
KAMEZAWA Hiroyuki 已提交
1239 1240 1241
 *
 * We give up and return to the caller when we visit root_mem twice.
 * (other groups can be removed while we're walking....)
1242 1243
 *
 * If shrink==true, for avoiding to free too much, this returns immedieately.
1244 1245
 */
static int mem_cgroup_hierarchical_reclaim(struct mem_cgroup *root_mem,
1246
						struct zone *zone,
1247 1248
						gfp_t gfp_mask,
						unsigned long reclaim_options)
1249
{
K
KAMEZAWA Hiroyuki 已提交
1250 1251 1252
	struct mem_cgroup *victim;
	int ret, total = 0;
	int loop = 0;
1253 1254
	bool noswap = reclaim_options & MEM_CGROUP_RECLAIM_NOSWAP;
	bool shrink = reclaim_options & MEM_CGROUP_RECLAIM_SHRINK;
1255 1256
	bool check_soft = reclaim_options & MEM_CGROUP_RECLAIM_SOFT;
	unsigned long excess = mem_cgroup_get_excess(root_mem);
K
KAMEZAWA Hiroyuki 已提交
1257

1258 1259 1260 1261
	/* If memsw_is_minimum==1, swap-out is of-no-use. */
	if (root_mem->memsw_is_minimum)
		noswap = true;

1262
	while (1) {
K
KAMEZAWA Hiroyuki 已提交
1263
		victim = mem_cgroup_select_victim(root_mem);
1264
		if (victim == root_mem) {
K
KAMEZAWA Hiroyuki 已提交
1265
			loop++;
1266 1267
			if (loop >= 1)
				drain_all_stock_async();
1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290
			if (loop >= 2) {
				/*
				 * If we have not been able to reclaim
				 * anything, it might because there are
				 * no reclaimable pages under this hierarchy
				 */
				if (!check_soft || !total) {
					css_put(&victim->css);
					break;
				}
				/*
				 * We want to do more targetted reclaim.
				 * excess >> 2 is not to excessive so as to
				 * reclaim too much, nor too less that we keep
				 * coming back to reclaim from this cgroup
				 */
				if (total >= (excess >> 2) ||
					(loop > MEM_CGROUP_MAX_RECLAIM_LOOPS)) {
					css_put(&victim->css);
					break;
				}
			}
		}
1291
		if (!mem_cgroup_local_usage(victim)) {
K
KAMEZAWA Hiroyuki 已提交
1292 1293
			/* this cgroup's local usage == 0 */
			css_put(&victim->css);
1294 1295
			continue;
		}
K
KAMEZAWA Hiroyuki 已提交
1296
		/* we use swappiness of local cgroup */
1297 1298 1299 1300 1301 1302 1303
		if (check_soft)
			ret = mem_cgroup_shrink_node_zone(victim, gfp_mask,
				noswap, get_swappiness(victim), zone,
				zone->zone_pgdat->node_id);
		else
			ret = try_to_free_mem_cgroup_pages(victim, gfp_mask,
						noswap, get_swappiness(victim));
K
KAMEZAWA Hiroyuki 已提交
1304
		css_put(&victim->css);
1305 1306 1307 1308 1309 1310 1311
		/*
		 * At shrinking usage, we can't check we should stop here or
		 * reclaim more. It's depends on callers. last_scanned_child
		 * will work enough for keeping fairness under tree.
		 */
		if (shrink)
			return ret;
K
KAMEZAWA Hiroyuki 已提交
1312
		total += ret;
1313 1314 1315 1316
		if (check_soft) {
			if (res_counter_check_under_soft_limit(&root_mem->res))
				return total;
		} else if (mem_cgroup_check_under_limit(root_mem))
K
KAMEZAWA Hiroyuki 已提交
1317
			return 1 + total;
1318
	}
K
KAMEZAWA Hiroyuki 已提交
1319
	return total;
1320 1321
}

K
KAMEZAWA Hiroyuki 已提交
1322
static int mem_cgroup_oom_lock_cb(struct mem_cgroup *mem, void *data)
1323
{
K
KAMEZAWA Hiroyuki 已提交
1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341
	int *val = (int *)data;
	int x;
	/*
	 * Logically, we can stop scanning immediately when we find
	 * a memcg is already locked. But condidering unlock ops and
	 * creation/removal of memcg, scan-all is simple operation.
	 */
	x = atomic_inc_return(&mem->oom_lock);
	*val = max(x, *val);
	return 0;
}
/*
 * Check OOM-Killer is already running under our hierarchy.
 * If someone is running, return false.
 */
static bool mem_cgroup_oom_lock(struct mem_cgroup *mem)
{
	int lock_count = 0;
1342

K
KAMEZAWA Hiroyuki 已提交
1343 1344 1345 1346 1347
	mem_cgroup_walk_tree(mem, &lock_count, mem_cgroup_oom_lock_cb);

	if (lock_count == 1)
		return true;
	return false;
1348
}
1349

K
KAMEZAWA Hiroyuki 已提交
1350
static int mem_cgroup_oom_unlock_cb(struct mem_cgroup *mem, void *data)
1351
{
K
KAMEZAWA Hiroyuki 已提交
1352 1353 1354 1355 1356 1357
	/*
	 * When a new child is created while the hierarchy is under oom,
	 * mem_cgroup_oom_lock() may not be called. We have to use
	 * atomic_add_unless() here.
	 */
	atomic_add_unless(&mem->oom_lock, -1, 0);
1358 1359 1360
	return 0;
}

K
KAMEZAWA Hiroyuki 已提交
1361 1362 1363 1364 1365 1366 1367 1368
static void mem_cgroup_oom_unlock(struct mem_cgroup *mem)
{
	mem_cgroup_walk_tree(mem, NULL,	mem_cgroup_oom_unlock_cb);
}

static DEFINE_MUTEX(memcg_oom_mutex);
static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);

K
KAMEZAWA Hiroyuki 已提交
1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404
struct oom_wait_info {
	struct mem_cgroup *mem;
	wait_queue_t	wait;
};

static int memcg_oom_wake_function(wait_queue_t *wait,
	unsigned mode, int sync, void *arg)
{
	struct mem_cgroup *wake_mem = (struct mem_cgroup *)arg;
	struct oom_wait_info *oom_wait_info;

	oom_wait_info = container_of(wait, struct oom_wait_info, wait);

	if (oom_wait_info->mem == wake_mem)
		goto wakeup;
	/* if no hierarchy, no match */
	if (!oom_wait_info->mem->use_hierarchy || !wake_mem->use_hierarchy)
		return 0;
	/*
	 * Both of oom_wait_info->mem and wake_mem are stable under us.
	 * Then we can use css_is_ancestor without taking care of RCU.
	 */
	if (!css_is_ancestor(&oom_wait_info->mem->css, &wake_mem->css) &&
	    !css_is_ancestor(&wake_mem->css, &oom_wait_info->mem->css))
		return 0;

wakeup:
	return autoremove_wake_function(wait, mode, sync, arg);
}

static void memcg_wakeup_oom(struct mem_cgroup *mem)
{
	/* for filtering, pass "mem" as argument. */
	__wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, mem);
}

1405 1406
static void memcg_oom_recover(struct mem_cgroup *mem)
{
1407
	if (mem && atomic_read(&mem->oom_lock))
1408 1409 1410
		memcg_wakeup_oom(mem);
}

K
KAMEZAWA Hiroyuki 已提交
1411 1412 1413 1414
/*
 * try to call OOM killer. returns false if we should exit memory-reclaim loop.
 */
bool mem_cgroup_handle_oom(struct mem_cgroup *mem, gfp_t mask)
1415
{
K
KAMEZAWA Hiroyuki 已提交
1416
	struct oom_wait_info owait;
1417
	bool locked, need_to_kill;
K
KAMEZAWA Hiroyuki 已提交
1418

K
KAMEZAWA Hiroyuki 已提交
1419 1420 1421 1422 1423
	owait.mem = mem;
	owait.wait.flags = 0;
	owait.wait.func = memcg_oom_wake_function;
	owait.wait.private = current;
	INIT_LIST_HEAD(&owait.wait.task_list);
1424
	need_to_kill = true;
K
KAMEZAWA Hiroyuki 已提交
1425 1426 1427 1428 1429 1430 1431 1432
	/* At first, try to OOM lock hierarchy under mem.*/
	mutex_lock(&memcg_oom_mutex);
	locked = mem_cgroup_oom_lock(mem);
	/*
	 * Even if signal_pending(), we can't quit charge() loop without
	 * accounting. So, UNINTERRUPTIBLE is appropriate. But SIGKILL
	 * under OOM is always welcomed, use TASK_KILLABLE here.
	 */
1433 1434 1435 1436
	prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
	if (!locked || mem->oom_kill_disable)
		need_to_kill = false;
	if (locked)
K
KAMEZAWA Hiroyuki 已提交
1437
		mem_cgroup_oom_notify(mem);
K
KAMEZAWA Hiroyuki 已提交
1438 1439
	mutex_unlock(&memcg_oom_mutex);

1440 1441
	if (need_to_kill) {
		finish_wait(&memcg_oom_waitq, &owait.wait);
K
KAMEZAWA Hiroyuki 已提交
1442
		mem_cgroup_out_of_memory(mem, mask);
1443
	} else {
K
KAMEZAWA Hiroyuki 已提交
1444
		schedule();
K
KAMEZAWA Hiroyuki 已提交
1445
		finish_wait(&memcg_oom_waitq, &owait.wait);
K
KAMEZAWA Hiroyuki 已提交
1446 1447 1448
	}
	mutex_lock(&memcg_oom_mutex);
	mem_cgroup_oom_unlock(mem);
K
KAMEZAWA Hiroyuki 已提交
1449
	memcg_wakeup_oom(mem);
K
KAMEZAWA Hiroyuki 已提交
1450 1451 1452 1453 1454 1455 1456
	mutex_unlock(&memcg_oom_mutex);

	if (test_thread_flag(TIF_MEMDIE) || fatal_signal_pending(current))
		return false;
	/* Give chance to dying process */
	schedule_timeout(1);
	return true;
1457 1458
}

1459 1460 1461 1462
/*
 * Currently used to update mapped file statistics, but the routine can be
 * generalized to update other statistics as well.
 */
1463
void mem_cgroup_update_file_mapped(struct page *page, int val)
1464 1465 1466 1467 1468 1469 1470 1471 1472 1473
{
	struct mem_cgroup *mem;
	struct page_cgroup *pc;

	pc = lookup_page_cgroup(page);
	if (unlikely(!pc))
		return;

	lock_page_cgroup(pc);
	mem = pc->mem_cgroup;
1474
	if (!mem || !PageCgroupUsed(pc))
1475 1476 1477
		goto done;

	/*
1478
	 * Preemption is already disabled. We can use __this_cpu_xxx
1479
	 */
1480 1481 1482 1483 1484 1485 1486
	if (val > 0) {
		__this_cpu_inc(mem->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
		SetPageCgroupFileMapped(pc);
	} else {
		__this_cpu_dec(mem->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
		ClearPageCgroupFileMapped(pc);
	}
1487 1488 1489 1490

done:
	unlock_page_cgroup(pc);
}
1491

1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552
/*
 * size of first charge trial. "32" comes from vmscan.c's magic value.
 * TODO: maybe necessary to use big numbers in big irons.
 */
#define CHARGE_SIZE	(32 * PAGE_SIZE)
struct memcg_stock_pcp {
	struct mem_cgroup *cached; /* this never be root cgroup */
	int charge;
	struct work_struct work;
};
static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
static atomic_t memcg_drain_count;

/*
 * Try to consume stocked charge on this cpu. If success, PAGE_SIZE is consumed
 * from local stock and true is returned. If the stock is 0 or charges from a
 * cgroup which is not current target, returns false. This stock will be
 * refilled.
 */
static bool consume_stock(struct mem_cgroup *mem)
{
	struct memcg_stock_pcp *stock;
	bool ret = true;

	stock = &get_cpu_var(memcg_stock);
	if (mem == stock->cached && stock->charge)
		stock->charge -= PAGE_SIZE;
	else /* need to call res_counter_charge */
		ret = false;
	put_cpu_var(memcg_stock);
	return ret;
}

/*
 * Returns stocks cached in percpu to res_counter and reset cached information.
 */
static void drain_stock(struct memcg_stock_pcp *stock)
{
	struct mem_cgroup *old = stock->cached;

	if (stock->charge) {
		res_counter_uncharge(&old->res, stock->charge);
		if (do_swap_account)
			res_counter_uncharge(&old->memsw, stock->charge);
	}
	stock->cached = NULL;
	stock->charge = 0;
}

/*
 * This must be called under preempt disabled or must be called by
 * a thread which is pinned to local cpu.
 */
static void drain_local_stock(struct work_struct *dummy)
{
	struct memcg_stock_pcp *stock = &__get_cpu_var(memcg_stock);
	drain_stock(stock);
}

/*
 * Cache charges(val) which is from res_counter, to local per_cpu area.
1553
 * This will be consumed by consume_stock() function, later.
1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618
 */
static void refill_stock(struct mem_cgroup *mem, int val)
{
	struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);

	if (stock->cached != mem) { /* reset if necessary */
		drain_stock(stock);
		stock->cached = mem;
	}
	stock->charge += val;
	put_cpu_var(memcg_stock);
}

/*
 * Tries to drain stocked charges in other cpus. This function is asynchronous
 * and just put a work per cpu for draining localy on each cpu. Caller can
 * expects some charges will be back to res_counter later but cannot wait for
 * it.
 */
static void drain_all_stock_async(void)
{
	int cpu;
	/* This function is for scheduling "drain" in asynchronous way.
	 * The result of "drain" is not directly handled by callers. Then,
	 * if someone is calling drain, we don't have to call drain more.
	 * Anyway, WORK_STRUCT_PENDING check in queue_work_on() will catch if
	 * there is a race. We just do loose check here.
	 */
	if (atomic_read(&memcg_drain_count))
		return;
	/* Notify other cpus that system-wide "drain" is running */
	atomic_inc(&memcg_drain_count);
	get_online_cpus();
	for_each_online_cpu(cpu) {
		struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
		schedule_work_on(cpu, &stock->work);
	}
 	put_online_cpus();
	atomic_dec(&memcg_drain_count);
	/* We don't wait for flush_work */
}

/* This is a synchronous drain interface. */
static void drain_all_stock_sync(void)
{
	/* called when force_empty is called */
	atomic_inc(&memcg_drain_count);
	schedule_on_each_cpu(drain_local_stock);
	atomic_dec(&memcg_drain_count);
}

static int __cpuinit memcg_stock_cpu_callback(struct notifier_block *nb,
					unsigned long action,
					void *hcpu)
{
	int cpu = (unsigned long)hcpu;
	struct memcg_stock_pcp *stock;

	if (action != CPU_DEAD)
		return NOTIFY_OK;
	stock = &per_cpu(memcg_stock, cpu);
	drain_stock(stock);
	return NOTIFY_OK;
}

1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685

/* See __mem_cgroup_try_charge() for details */
enum {
	CHARGE_OK,		/* success */
	CHARGE_RETRY,		/* need to retry but retry is not bad */
	CHARGE_NOMEM,		/* we can't do more. return -ENOMEM */
	CHARGE_WOULDBLOCK,	/* GFP_WAIT wasn't set and no enough res. */
	CHARGE_OOM_DIE,		/* the current is killed because of OOM */
};

static int __mem_cgroup_do_charge(struct mem_cgroup *mem, gfp_t gfp_mask,
				int csize, bool oom_check)
{
	struct mem_cgroup *mem_over_limit;
	struct res_counter *fail_res;
	unsigned long flags = 0;
	int ret;

	ret = res_counter_charge(&mem->res, csize, &fail_res);

	if (likely(!ret)) {
		if (!do_swap_account)
			return CHARGE_OK;
		ret = res_counter_charge(&mem->memsw, csize, &fail_res);
		if (likely(!ret))
			return CHARGE_OK;

		mem_over_limit = mem_cgroup_from_res_counter(fail_res, memsw);
		flags |= MEM_CGROUP_RECLAIM_NOSWAP;
	} else
		mem_over_limit = mem_cgroup_from_res_counter(fail_res, res);

	if (csize > PAGE_SIZE) /* change csize and retry */
		return CHARGE_RETRY;

	if (!(gfp_mask & __GFP_WAIT))
		return CHARGE_WOULDBLOCK;

	ret = mem_cgroup_hierarchical_reclaim(mem_over_limit, NULL,
					gfp_mask, flags);
	/*
	 * try_to_free_mem_cgroup_pages() might not give us a full
	 * picture of reclaim. Some pages are reclaimed and might be
	 * moved to swap cache or just unmapped from the cgroup.
	 * Check the limit again to see if the reclaim reduced the
	 * current usage of the cgroup before giving up
	 */
	if (ret || mem_cgroup_check_under_limit(mem_over_limit))
		return CHARGE_RETRY;

	/*
	 * At task move, charge accounts can be doubly counted. So, it's
	 * better to wait until the end of task_move if something is going on.
	 */
	if (mem_cgroup_wait_acct_move(mem_over_limit))
		return CHARGE_RETRY;

	/* If we don't need to call oom-killer at el, return immediately */
	if (!oom_check)
		return CHARGE_NOMEM;
	/* check OOM */
	if (!mem_cgroup_handle_oom(mem_over_limit, gfp_mask))
		return CHARGE_OOM_DIE;

	return CHARGE_RETRY;
}

1686 1687 1688
/*
 * Unlike exported interface, "oom" parameter is added. if oom==true,
 * oom-killer can be invoked.
1689
 */
1690
static int __mem_cgroup_try_charge(struct mm_struct *mm,
1691
		gfp_t gfp_mask, struct mem_cgroup **memcg, bool oom)
1692
{
1693 1694 1695
	int nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
	struct mem_cgroup *mem = NULL;
	int ret;
1696
	int csize = CHARGE_SIZE;
1697

K
KAMEZAWA Hiroyuki 已提交
1698 1699 1700 1701 1702 1703 1704 1705
	/*
	 * Unlike gloval-vm's OOM-kill, we're not in memory shortage
	 * in system level. So, allow to go ahead dying process in addition to
	 * MEMDIE process.
	 */
	if (unlikely(test_thread_flag(TIF_MEMDIE)
		     || fatal_signal_pending(current)))
		goto bypass;
1706

1707
	/*
1708 1709
	 * We always charge the cgroup the mm_struct belongs to.
	 * The mm_struct's mem_cgroup changes on task migration if the
1710 1711 1712
	 * thread group leader migrates. It's possible that mm is not
	 * set, if so charge the init_mm (happens for pagecache usage).
	 */
1713 1714 1715 1716
	if (*memcg) {
		mem = *memcg;
		css_get(&mem->css);
	} else {
1717
		mem = try_get_mem_cgroup_from_mm(mm);
1718 1719
		if (unlikely(!mem))
			return 0;
1720
		*memcg = mem;
1721
	}
1722

1723
	VM_BUG_ON(css_is_removed(&mem->css));
1724 1725
	if (mem_cgroup_is_root(mem))
		goto done;
1726

1727 1728
	do {
		bool oom_check;
1729

1730
		if (consume_stock(mem))
1731 1732 1733 1734
			goto done; /* don't need to fill stock */
		/* If killed, bypass charge */
		if (fatal_signal_pending(current))
			goto bypass;
1735

1736 1737 1738 1739
		oom_check = false;
		if (oom && !nr_oom_retries) {
			oom_check = true;
			nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
1740
		}
1741

1742
		ret = __mem_cgroup_do_charge(mem, gfp_mask, csize, oom_check);
1743

1744 1745 1746 1747 1748 1749 1750 1751 1752
		switch (ret) {
		case CHARGE_OK:
			break;
		case CHARGE_RETRY: /* not in OOM situation but retry */
			csize = PAGE_SIZE;
			break;
		case CHARGE_WOULDBLOCK: /* !__GFP_WAIT */
			goto nomem;
		case CHARGE_NOMEM: /* OOM routine works */
K
KAMEZAWA Hiroyuki 已提交
1753 1754
			if (!oom)
				goto nomem;
1755 1756 1757 1758
			/* If oom, we never return -ENOMEM */
			nr_oom_retries--;
			break;
		case CHARGE_OOM_DIE: /* Killed by OOM Killer */
K
KAMEZAWA Hiroyuki 已提交
1759
			goto bypass;
1760
		}
1761 1762
	} while (ret != CHARGE_OK);

1763 1764
	if (csize > PAGE_SIZE)
		refill_stock(mem, csize - PAGE_SIZE);
1765
done:
1766 1767 1768 1769
	return 0;
nomem:
	css_put(&mem->css);
	return -ENOMEM;
K
KAMEZAWA Hiroyuki 已提交
1770
bypass:
1771 1772
	if (mem)
		css_put(&mem->css);
K
KAMEZAWA Hiroyuki 已提交
1773 1774
	*memcg = NULL;
	return 0;
1775
}
1776

1777 1778 1779 1780 1781
/*
 * Somemtimes we have to undo a charge we got by try_charge().
 * This function is for that and do uncharge, put css's refcnt.
 * gotten by try_charge().
 */
1782 1783
static void __mem_cgroup_cancel_charge(struct mem_cgroup *mem,
							unsigned long count)
1784 1785
{
	if (!mem_cgroup_is_root(mem)) {
1786
		res_counter_uncharge(&mem->res, PAGE_SIZE * count);
1787
		if (do_swap_account)
1788 1789 1790 1791
			res_counter_uncharge(&mem->memsw, PAGE_SIZE * count);
		VM_BUG_ON(test_bit(CSS_ROOT, &mem->css.flags));
		WARN_ON_ONCE(count > INT_MAX);
		__css_put(&mem->css, (int)count);
1792
	}
1793 1794 1795 1796 1797 1798
	/* we don't need css_put for root */
}

static void mem_cgroup_cancel_charge(struct mem_cgroup *mem)
{
	__mem_cgroup_cancel_charge(mem, 1);
1799 1800
}

1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819
/*
 * A helper function to get mem_cgroup from ID. must be called under
 * rcu_read_lock(). The caller must check css_is_removed() or some if
 * it's concern. (dropping refcnt from swap can be called against removed
 * memcg.)
 */
static struct mem_cgroup *mem_cgroup_lookup(unsigned short id)
{
	struct cgroup_subsys_state *css;

	/* ID 0 is unused ID */
	if (!id)
		return NULL;
	css = css_lookup(&mem_cgroup_subsys, id);
	if (!css)
		return NULL;
	return container_of(css, struct mem_cgroup, css);
}

1820
struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page)
1821
{
1822
	struct mem_cgroup *mem = NULL;
1823
	struct page_cgroup *pc;
1824
	unsigned short id;
1825 1826
	swp_entry_t ent;

1827 1828 1829
	VM_BUG_ON(!PageLocked(page));

	pc = lookup_page_cgroup(page);
1830
	lock_page_cgroup(pc);
1831
	if (PageCgroupUsed(pc)) {
1832
		mem = pc->mem_cgroup;
1833 1834
		if (mem && !css_tryget(&mem->css))
			mem = NULL;
1835
	} else if (PageSwapCache(page)) {
1836
		ent.val = page_private(page);
1837 1838 1839 1840 1841 1842
		id = lookup_swap_cgroup(ent);
		rcu_read_lock();
		mem = mem_cgroup_lookup(id);
		if (mem && !css_tryget(&mem->css))
			mem = NULL;
		rcu_read_unlock();
1843
	}
1844
	unlock_page_cgroup(pc);
1845 1846 1847
	return mem;
}

1848
/*
1849
 * commit a charge got by __mem_cgroup_try_charge() and makes page_cgroup to be
1850 1851 1852 1853 1854 1855 1856 1857 1858 1859
 * USED state. If already USED, uncharge and return.
 */

static void __mem_cgroup_commit_charge(struct mem_cgroup *mem,
				     struct page_cgroup *pc,
				     enum charge_type ctype)
{
	/* try_charge() can return NULL to *memcg, taking care of it. */
	if (!mem)
		return;
1860 1861 1862 1863

	lock_page_cgroup(pc);
	if (unlikely(PageCgroupUsed(pc))) {
		unlock_page_cgroup(pc);
1864
		mem_cgroup_cancel_charge(mem);
1865
		return;
1866
	}
1867

1868
	pc->mem_cgroup = mem;
1869 1870 1871 1872 1873 1874 1875
	/*
	 * We access a page_cgroup asynchronously without lock_page_cgroup().
	 * Especially when a page_cgroup is taken from a page, pc->mem_cgroup
	 * is accessed after testing USED bit. To make pc->mem_cgroup visible
	 * before USED bit, we need memory barrier here.
	 * See mem_cgroup_add_lru_list(), etc.
 	 */
K
KAMEZAWA Hiroyuki 已提交
1876
	smp_wmb();
1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889
	switch (ctype) {
	case MEM_CGROUP_CHARGE_TYPE_CACHE:
	case MEM_CGROUP_CHARGE_TYPE_SHMEM:
		SetPageCgroupCache(pc);
		SetPageCgroupUsed(pc);
		break;
	case MEM_CGROUP_CHARGE_TYPE_MAPPED:
		ClearPageCgroupCache(pc);
		SetPageCgroupUsed(pc);
		break;
	default:
		break;
	}
1890

K
KAMEZAWA Hiroyuki 已提交
1891
	mem_cgroup_charge_statistics(mem, pc, true);
1892 1893

	unlock_page_cgroup(pc);
1894 1895 1896 1897 1898
	/*
	 * "charge_statistics" updated event counter. Then, check it.
	 * Insert ancestor (and ancestor's ancestors), to softlimit RB-tree.
	 * if they exceeds softlimit.
	 */
1899
	memcg_check_events(mem, pc->page);
1900
}
1901

1902
/**
1903
 * __mem_cgroup_move_account - move account of the page
1904 1905 1906
 * @pc:	page_cgroup of the page.
 * @from: mem_cgroup which the page is moved from.
 * @to:	mem_cgroup which the page is moved to. @from != @to.
1907
 * @uncharge: whether we should call uncharge and css_put against @from.
1908 1909
 *
 * The caller must confirm following.
K
KAMEZAWA Hiroyuki 已提交
1910
 * - page is not on LRU (isolate_page() is useful.)
1911
 * - the pc is locked, used, and ->mem_cgroup points to @from.
1912
 *
1913 1914 1915 1916
 * This function doesn't do "charge" nor css_get to new cgroup. It should be
 * done by a caller(__mem_cgroup_try_charge would be usefull). If @uncharge is
 * true, this function does "uncharge" from old cgroup, but it doesn't if
 * @uncharge is false, so a caller should do "uncharge".
1917 1918
 */

1919
static void __mem_cgroup_move_account(struct page_cgroup *pc,
1920
	struct mem_cgroup *from, struct mem_cgroup *to, bool uncharge)
1921 1922
{
	VM_BUG_ON(from == to);
K
KAMEZAWA Hiroyuki 已提交
1923
	VM_BUG_ON(PageLRU(pc->page));
1924 1925 1926
	VM_BUG_ON(!PageCgroupLocked(pc));
	VM_BUG_ON(!PageCgroupUsed(pc));
	VM_BUG_ON(pc->mem_cgroup != from);
1927

1928
	if (PageCgroupFileMapped(pc)) {
1929 1930 1931 1932 1933
		/* Update mapped_file data for mem_cgroup */
		preempt_disable();
		__this_cpu_dec(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
		__this_cpu_inc(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
		preempt_enable();
1934
	}
1935 1936 1937 1938
	mem_cgroup_charge_statistics(from, pc, false);
	if (uncharge)
		/* This is not "cancel", but cancel_charge does all we need. */
		mem_cgroup_cancel_charge(from);
1939

1940
	/* caller should have done css_get */
K
KAMEZAWA Hiroyuki 已提交
1941 1942
	pc->mem_cgroup = to;
	mem_cgroup_charge_statistics(to, pc, true);
1943 1944 1945
	/*
	 * We charges against "to" which may not have any tasks. Then, "to"
	 * can be under rmdir(). But in current implementation, caller of
1946 1947 1948
	 * this function is just force_empty() and move charge, so it's
	 * garanteed that "to" is never removed. So, we don't check rmdir
	 * status here.
1949
	 */
1950 1951 1952 1953 1954 1955 1956
}

/*
 * check whether the @pc is valid for moving account and call
 * __mem_cgroup_move_account()
 */
static int mem_cgroup_move_account(struct page_cgroup *pc,
1957
		struct mem_cgroup *from, struct mem_cgroup *to, bool uncharge)
1958 1959 1960 1961
{
	int ret = -EINVAL;
	lock_page_cgroup(pc);
	if (PageCgroupUsed(pc) && pc->mem_cgroup == from) {
1962
		__mem_cgroup_move_account(pc, from, to, uncharge);
1963 1964 1965
		ret = 0;
	}
	unlock_page_cgroup(pc);
1966 1967 1968 1969 1970
	/*
	 * check events
	 */
	memcg_check_events(to, pc->page);
	memcg_check_events(from, pc->page);
1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981
	return ret;
}

/*
 * move charges to its parent.
 */

static int mem_cgroup_move_parent(struct page_cgroup *pc,
				  struct mem_cgroup *child,
				  gfp_t gfp_mask)
{
K
KAMEZAWA Hiroyuki 已提交
1982
	struct page *page = pc->page;
1983 1984 1985 1986 1987 1988 1989 1990 1991
	struct cgroup *cg = child->css.cgroup;
	struct cgroup *pcg = cg->parent;
	struct mem_cgroup *parent;
	int ret;

	/* Is ROOT ? */
	if (!pcg)
		return -EINVAL;

1992 1993 1994 1995 1996
	ret = -EBUSY;
	if (!get_page_unless_zero(page))
		goto out;
	if (isolate_lru_page(page))
		goto put;
K
KAMEZAWA Hiroyuki 已提交
1997

1998
	parent = mem_cgroup_from_cont(pcg);
1999
	ret = __mem_cgroup_try_charge(NULL, gfp_mask, &parent, false);
2000
	if (ret || !parent)
2001
		goto put_back;
2002

2003 2004 2005
	ret = mem_cgroup_move_account(pc, child, parent, true);
	if (ret)
		mem_cgroup_cancel_charge(parent);
2006
put_back:
K
KAMEZAWA Hiroyuki 已提交
2007
	putback_lru_page(page);
2008
put:
2009
	put_page(page);
2010
out:
2011 2012 2013
	return ret;
}

2014 2015 2016 2017 2018 2019 2020
/*
 * Charge the memory controller for page usage.
 * Return
 * 0 if the charge was successful
 * < 0 if the cgroup is over its limit
 */
static int mem_cgroup_charge_common(struct page *page, struct mm_struct *mm,
2021
				gfp_t gfp_mask, enum charge_type ctype)
2022
{
2023
	struct mem_cgroup *mem = NULL;
2024 2025 2026 2027 2028 2029 2030 2031 2032
	struct page_cgroup *pc;
	int ret;

	pc = lookup_page_cgroup(page);
	/* can happen at boot */
	if (unlikely(!pc))
		return 0;
	prefetchw(pc);

2033
	ret = __mem_cgroup_try_charge(mm, gfp_mask, &mem, true);
2034
	if (ret || !mem)
2035 2036 2037
		return ret;

	__mem_cgroup_commit_charge(mem, pc, ctype);
2038 2039 2040
	return 0;
}

2041 2042
int mem_cgroup_newpage_charge(struct page *page,
			      struct mm_struct *mm, gfp_t gfp_mask)
2043
{
2044
	if (mem_cgroup_disabled())
2045
		return 0;
2046 2047
	if (PageCompound(page))
		return 0;
2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058
	/*
	 * If already mapped, we don't have to account.
	 * If page cache, page->mapping has address_space.
	 * But page->mapping may have out-of-use anon_vma pointer,
	 * detecit it by PageAnon() check. newly-mapped-anon's page->mapping
	 * is NULL.
  	 */
	if (page_mapped(page) || (page->mapping && !PageAnon(page)))
		return 0;
	if (unlikely(!mm))
		mm = &init_mm;
2059
	return mem_cgroup_charge_common(page, mm, gfp_mask,
2060
				MEM_CGROUP_CHARGE_TYPE_MAPPED);
2061 2062
}

D
Daisuke Nishimura 已提交
2063 2064 2065 2066
static void
__mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr,
					enum charge_type ctype);

2067 2068
int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm,
				gfp_t gfp_mask)
2069
{
2070 2071
	int ret;

2072
	if (mem_cgroup_disabled())
2073
		return 0;
2074 2075
	if (PageCompound(page))
		return 0;
2076 2077 2078 2079 2080 2081 2082 2083
	/*
	 * Corner case handling. This is called from add_to_page_cache()
	 * in usual. But some FS (shmem) precharges this page before calling it
	 * and call add_to_page_cache() with GFP_NOWAIT.
	 *
	 * For GFP_NOWAIT case, the page may be pre-charged before calling
	 * add_to_page_cache(). (See shmem.c) check it here and avoid to call
	 * charge twice. (It works but has to pay a bit larger cost.)
2084 2085
	 * And when the page is SwapCache, it should take swap information
	 * into account. This is under lock_page() now.
2086 2087 2088 2089
	 */
	if (!(gfp_mask & __GFP_WAIT)) {
		struct page_cgroup *pc;

2090 2091 2092 2093 2094 2095
		pc = lookup_page_cgroup(page);
		if (!pc)
			return 0;
		lock_page_cgroup(pc);
		if (PageCgroupUsed(pc)) {
			unlock_page_cgroup(pc);
2096 2097
			return 0;
		}
2098
		unlock_page_cgroup(pc);
2099 2100
	}

2101
	if (unlikely(!mm))
2102
		mm = &init_mm;
2103

2104 2105
	if (page_is_file_cache(page))
		return mem_cgroup_charge_common(page, mm, gfp_mask,
2106
				MEM_CGROUP_CHARGE_TYPE_CACHE);
2107

D
Daisuke Nishimura 已提交
2108 2109
	/* shmem */
	if (PageSwapCache(page)) {
2110 2111
		struct mem_cgroup *mem = NULL;

D
Daisuke Nishimura 已提交
2112 2113 2114 2115 2116 2117
		ret = mem_cgroup_try_charge_swapin(mm, page, gfp_mask, &mem);
		if (!ret)
			__mem_cgroup_commit_charge_swapin(page, mem,
					MEM_CGROUP_CHARGE_TYPE_SHMEM);
	} else
		ret = mem_cgroup_charge_common(page, mm, gfp_mask,
2118
					MEM_CGROUP_CHARGE_TYPE_SHMEM);
2119 2120

	return ret;
2121 2122
}

2123 2124 2125
/*
 * While swap-in, try_charge -> commit or cancel, the page is locked.
 * And when try_charge() successfully returns, one refcnt to memcg without
2126
 * struct page_cgroup is acquired. This refcnt will be consumed by
2127 2128
 * "commit()" or removed by "cancel()"
 */
2129 2130 2131 2132 2133
int mem_cgroup_try_charge_swapin(struct mm_struct *mm,
				 struct page *page,
				 gfp_t mask, struct mem_cgroup **ptr)
{
	struct mem_cgroup *mem;
2134
	int ret;
2135

2136
	if (mem_cgroup_disabled())
2137 2138 2139 2140 2141 2142
		return 0;

	if (!do_swap_account)
		goto charge_cur_mm;
	/*
	 * A racing thread's fault, or swapoff, may have already updated
H
Hugh Dickins 已提交
2143 2144 2145
	 * the pte, and even removed page from swap cache: in those cases
	 * do_swap_page()'s pte_same() test will fail; but there's also a
	 * KSM case which does need to charge the page.
2146 2147
	 */
	if (!PageSwapCache(page))
H
Hugh Dickins 已提交
2148
		goto charge_cur_mm;
2149
	mem = try_get_mem_cgroup_from_page(page);
2150 2151
	if (!mem)
		goto charge_cur_mm;
2152
	*ptr = mem;
2153
	ret = __mem_cgroup_try_charge(NULL, mask, ptr, true);
2154 2155 2156
	/* drop extra refcnt from tryget */
	css_put(&mem->css);
	return ret;
2157 2158 2159
charge_cur_mm:
	if (unlikely(!mm))
		mm = &init_mm;
2160
	return __mem_cgroup_try_charge(mm, mask, ptr, true);
2161 2162
}

D
Daisuke Nishimura 已提交
2163 2164 2165
static void
__mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr,
					enum charge_type ctype)
2166 2167 2168
{
	struct page_cgroup *pc;

2169
	if (mem_cgroup_disabled())
2170 2171 2172
		return;
	if (!ptr)
		return;
2173
	cgroup_exclude_rmdir(&ptr->css);
2174
	pc = lookup_page_cgroup(page);
2175
	mem_cgroup_lru_del_before_commit_swapcache(page);
D
Daisuke Nishimura 已提交
2176
	__mem_cgroup_commit_charge(ptr, pc, ctype);
2177
	mem_cgroup_lru_add_after_commit_swapcache(page);
2178 2179 2180
	/*
	 * Now swap is on-memory. This means this page may be
	 * counted both as mem and swap....double count.
2181 2182 2183
	 * Fix it by uncharging from memsw. Basically, this SwapCache is stable
	 * under lock_page(). But in do_swap_page()::memory.c, reuse_swap_page()
	 * may call delete_from_swap_cache() before reach here.
2184
	 */
2185
	if (do_swap_account && PageSwapCache(page)) {
2186
		swp_entry_t ent = {.val = page_private(page)};
2187
		unsigned short id;
2188
		struct mem_cgroup *memcg;
2189 2190 2191 2192

		id = swap_cgroup_record(ent, 0);
		rcu_read_lock();
		memcg = mem_cgroup_lookup(id);
2193
		if (memcg) {
2194 2195 2196 2197
			/*
			 * This recorded memcg can be obsolete one. So, avoid
			 * calling css_tryget
			 */
2198
			if (!mem_cgroup_is_root(memcg))
2199
				res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
2200
			mem_cgroup_swap_statistics(memcg, false);
2201 2202
			mem_cgroup_put(memcg);
		}
2203
		rcu_read_unlock();
2204
	}
2205 2206 2207 2208 2209 2210
	/*
	 * At swapin, we may charge account against cgroup which has no tasks.
	 * So, rmdir()->pre_destroy() can be called while we do this charge.
	 * In that case, we need to call pre_destroy() again. check it here.
	 */
	cgroup_release_and_wakeup_rmdir(&ptr->css);
2211 2212
}

D
Daisuke Nishimura 已提交
2213 2214 2215 2216 2217 2218
void mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr)
{
	__mem_cgroup_commit_charge_swapin(page, ptr,
					MEM_CGROUP_CHARGE_TYPE_MAPPED);
}

2219 2220
void mem_cgroup_cancel_charge_swapin(struct mem_cgroup *mem)
{
2221
	if (mem_cgroup_disabled())
2222 2223 2224
		return;
	if (!mem)
		return;
2225
	mem_cgroup_cancel_charge(mem);
2226 2227
}

2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244
static void
__do_uncharge(struct mem_cgroup *mem, const enum charge_type ctype)
{
	struct memcg_batch_info *batch = NULL;
	bool uncharge_memsw = true;
	/* If swapout, usage of swap doesn't decrease */
	if (!do_swap_account || ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT)
		uncharge_memsw = false;

	batch = &current->memcg_batch;
	/*
	 * In usual, we do css_get() when we remember memcg pointer.
	 * But in this case, we keep res->usage until end of a series of
	 * uncharges. Then, it's ok to ignore memcg's refcnt.
	 */
	if (!batch->memcg)
		batch->memcg = mem;
2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255
	/*
	 * do_batch > 0 when unmapping pages or inode invalidate/truncate.
	 * In those cases, all pages freed continously can be expected to be in
	 * the same cgroup and we have chance to coalesce uncharges.
	 * But we do uncharge one by one if this is killed by OOM(TIF_MEMDIE)
	 * because we want to do uncharge as soon as possible.
	 */

	if (!batch->do_batch || test_thread_flag(TIF_MEMDIE))
		goto direct_uncharge;

2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271
	/*
	 * In typical case, batch->memcg == mem. This means we can
	 * merge a series of uncharges to an uncharge of res_counter.
	 * If not, we uncharge res_counter ony by one.
	 */
	if (batch->memcg != mem)
		goto direct_uncharge;
	/* remember freed charge and uncharge it later */
	batch->bytes += PAGE_SIZE;
	if (uncharge_memsw)
		batch->memsw_bytes += PAGE_SIZE;
	return;
direct_uncharge:
	res_counter_uncharge(&mem->res, PAGE_SIZE);
	if (uncharge_memsw)
		res_counter_uncharge(&mem->memsw, PAGE_SIZE);
2272 2273
	if (unlikely(batch->memcg != mem))
		memcg_oom_recover(mem);
2274 2275
	return;
}
2276

2277
/*
2278
 * uncharge if !page_mapped(page)
2279
 */
2280
static struct mem_cgroup *
2281
__mem_cgroup_uncharge_common(struct page *page, enum charge_type ctype)
2282
{
H
Hugh Dickins 已提交
2283
	struct page_cgroup *pc;
2284
	struct mem_cgroup *mem = NULL;
2285

2286
	if (mem_cgroup_disabled())
2287
		return NULL;
2288

K
KAMEZAWA Hiroyuki 已提交
2289
	if (PageSwapCache(page))
2290
		return NULL;
K
KAMEZAWA Hiroyuki 已提交
2291

2292
	/*
2293
	 * Check if our page_cgroup is valid
2294
	 */
2295 2296
	pc = lookup_page_cgroup(page);
	if (unlikely(!pc || !PageCgroupUsed(pc)))
2297
		return NULL;
2298

2299
	lock_page_cgroup(pc);
K
KAMEZAWA Hiroyuki 已提交
2300

2301 2302
	mem = pc->mem_cgroup;

K
KAMEZAWA Hiroyuki 已提交
2303 2304 2305 2306 2307
	if (!PageCgroupUsed(pc))
		goto unlock_out;

	switch (ctype) {
	case MEM_CGROUP_CHARGE_TYPE_MAPPED:
K
KAMEZAWA Hiroyuki 已提交
2308
	case MEM_CGROUP_CHARGE_TYPE_DROP:
2309 2310
		/* See mem_cgroup_prepare_migration() */
		if (page_mapped(page) || PageCgroupMigration(pc))
K
KAMEZAWA Hiroyuki 已提交
2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321
			goto unlock_out;
		break;
	case MEM_CGROUP_CHARGE_TYPE_SWAPOUT:
		if (!PageAnon(page)) {	/* Shared memory */
			if (page->mapping && !page_is_file_cache(page))
				goto unlock_out;
		} else if (page_mapped(page)) /* Anon */
				goto unlock_out;
		break;
	default:
		break;
2322
	}
K
KAMEZAWA Hiroyuki 已提交
2323

2324 2325
	if (!mem_cgroup_is_root(mem))
		__do_uncharge(mem, ctype);
2326 2327
	if (ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT)
		mem_cgroup_swap_statistics(mem, true);
K
KAMEZAWA Hiroyuki 已提交
2328
	mem_cgroup_charge_statistics(mem, pc, false);
K
KAMEZAWA Hiroyuki 已提交
2329

2330
	ClearPageCgroupUsed(pc);
2331 2332 2333 2334 2335 2336
	/*
	 * pc->mem_cgroup is not cleared here. It will be accessed when it's
	 * freed from LRU. This is safe because uncharged page is expected not
	 * to be reused (freed soon). Exception is SwapCache, it's handled by
	 * special functions.
	 */
2337

2338
	unlock_page_cgroup(pc);
H
Hugh Dickins 已提交
2339

2340
	memcg_check_events(mem, page);
K
KAMEZAWA Hiroyuki 已提交
2341 2342 2343
	/* at swapout, this memcg will be accessed to record to swap */
	if (ctype != MEM_CGROUP_CHARGE_TYPE_SWAPOUT)
		css_put(&mem->css);
2344

2345
	return mem;
K
KAMEZAWA Hiroyuki 已提交
2346 2347 2348

unlock_out:
	unlock_page_cgroup(pc);
2349
	return NULL;
2350 2351
}

2352 2353
void mem_cgroup_uncharge_page(struct page *page)
{
2354 2355 2356 2357 2358
	/* early check. */
	if (page_mapped(page))
		return;
	if (page->mapping && !PageAnon(page))
		return;
2359 2360 2361 2362 2363 2364
	__mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_MAPPED);
}

void mem_cgroup_uncharge_cache_page(struct page *page)
{
	VM_BUG_ON(page_mapped(page));
2365
	VM_BUG_ON(page->mapping);
2366 2367 2368
	__mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_CACHE);
}

2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408
/*
 * Batch_start/batch_end is called in unmap_page_range/invlidate/trucate.
 * In that cases, pages are freed continuously and we can expect pages
 * are in the same memcg. All these calls itself limits the number of
 * pages freed at once, then uncharge_start/end() is called properly.
 * This may be called prural(2) times in a context,
 */

void mem_cgroup_uncharge_start(void)
{
	current->memcg_batch.do_batch++;
	/* We can do nest. */
	if (current->memcg_batch.do_batch == 1) {
		current->memcg_batch.memcg = NULL;
		current->memcg_batch.bytes = 0;
		current->memcg_batch.memsw_bytes = 0;
	}
}

void mem_cgroup_uncharge_end(void)
{
	struct memcg_batch_info *batch = &current->memcg_batch;

	if (!batch->do_batch)
		return;

	batch->do_batch--;
	if (batch->do_batch) /* If stacked, do nothing. */
		return;

	if (!batch->memcg)
		return;
	/*
	 * This "batch->memcg" is valid without any css_get/put etc...
	 * bacause we hide charges behind us.
	 */
	if (batch->bytes)
		res_counter_uncharge(&batch->memcg->res, batch->bytes);
	if (batch->memsw_bytes)
		res_counter_uncharge(&batch->memcg->memsw, batch->memsw_bytes);
2409
	memcg_oom_recover(batch->memcg);
2410 2411 2412 2413
	/* forget this pointer (for sanity check) */
	batch->memcg = NULL;
}

2414
#ifdef CONFIG_SWAP
2415
/*
2416
 * called after __delete_from_swap_cache() and drop "page" account.
2417 2418
 * memcg information is recorded to swap_cgroup of "ent"
 */
K
KAMEZAWA Hiroyuki 已提交
2419 2420
void
mem_cgroup_uncharge_swapcache(struct page *page, swp_entry_t ent, bool swapout)
2421 2422
{
	struct mem_cgroup *memcg;
K
KAMEZAWA Hiroyuki 已提交
2423 2424 2425 2426 2427 2428
	int ctype = MEM_CGROUP_CHARGE_TYPE_SWAPOUT;

	if (!swapout) /* this was a swap cache but the swap is unused ! */
		ctype = MEM_CGROUP_CHARGE_TYPE_DROP;

	memcg = __mem_cgroup_uncharge_common(page, ctype);
2429 2430

	/* record memcg information */
K
KAMEZAWA Hiroyuki 已提交
2431
	if (do_swap_account && swapout && memcg) {
2432
		swap_cgroup_record(ent, css_id(&memcg->css));
2433 2434
		mem_cgroup_get(memcg);
	}
K
KAMEZAWA Hiroyuki 已提交
2435
	if (swapout && memcg)
K
KAMEZAWA Hiroyuki 已提交
2436
		css_put(&memcg->css);
2437
}
2438
#endif
2439 2440 2441 2442 2443 2444 2445

#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
/*
 * called from swap_entry_free(). remove record in swap_cgroup and
 * uncharge "memsw" account.
 */
void mem_cgroup_uncharge_swap(swp_entry_t ent)
K
KAMEZAWA Hiroyuki 已提交
2446
{
2447
	struct mem_cgroup *memcg;
2448
	unsigned short id;
2449 2450 2451 2452

	if (!do_swap_account)
		return;

2453 2454 2455
	id = swap_cgroup_record(ent, 0);
	rcu_read_lock();
	memcg = mem_cgroup_lookup(id);
2456
	if (memcg) {
2457 2458 2459 2460
		/*
		 * We uncharge this because swap is freed.
		 * This memcg can be obsolete one. We avoid calling css_tryget
		 */
2461
		if (!mem_cgroup_is_root(memcg))
2462
			res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
2463
		mem_cgroup_swap_statistics(memcg, false);
2464 2465
		mem_cgroup_put(memcg);
	}
2466
	rcu_read_unlock();
K
KAMEZAWA Hiroyuki 已提交
2467
}
2468 2469 2470 2471 2472 2473

/**
 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
 * @entry: swap entry to be moved
 * @from:  mem_cgroup which the entry is moved from
 * @to:  mem_cgroup which the entry is moved to
2474
 * @need_fixup: whether we should fixup res_counters and refcounts.
2475 2476 2477 2478 2479 2480 2481 2482 2483 2484
 *
 * It succeeds only when the swap_cgroup's record for this entry is the same
 * as the mem_cgroup's id of @from.
 *
 * Returns 0 on success, -EINVAL on failure.
 *
 * The caller must have charged to @to, IOW, called res_counter_charge() about
 * both res and memsw, and called css_get().
 */
static int mem_cgroup_move_swap_account(swp_entry_t entry,
2485
		struct mem_cgroup *from, struct mem_cgroup *to, bool need_fixup)
2486 2487 2488 2489 2490 2491 2492 2493
{
	unsigned short old_id, new_id;

	old_id = css_id(&from->css);
	new_id = css_id(&to->css);

	if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
		mem_cgroup_swap_statistics(from, false);
2494
		mem_cgroup_swap_statistics(to, true);
2495
		/*
2496 2497 2498 2499 2500 2501
		 * This function is only called from task migration context now.
		 * It postpones res_counter and refcount handling till the end
		 * of task migration(mem_cgroup_clear_mc()) for performance
		 * improvement. But we cannot postpone mem_cgroup_get(to)
		 * because if the process that has been moved to @to does
		 * swap-in, the refcount of @to might be decreased to 0.
2502 2503
		 */
		mem_cgroup_get(to);
2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515
		if (need_fixup) {
			if (!mem_cgroup_is_root(from))
				res_counter_uncharge(&from->memsw, PAGE_SIZE);
			mem_cgroup_put(from);
			/*
			 * we charged both to->res and to->memsw, so we should
			 * uncharge to->res.
			 */
			if (!mem_cgroup_is_root(to))
				res_counter_uncharge(&to->res, PAGE_SIZE);
			css_put(&to->css);
		}
2516 2517 2518 2519 2520 2521
		return 0;
	}
	return -EINVAL;
}
#else
static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
2522
		struct mem_cgroup *from, struct mem_cgroup *to, bool need_fixup)
2523 2524 2525
{
	return -EINVAL;
}
2526
#endif
K
KAMEZAWA Hiroyuki 已提交
2527

2528
/*
2529 2530
 * Before starting migration, account PAGE_SIZE to mem_cgroup that the old
 * page belongs to.
2531
 */
2532 2533
int mem_cgroup_prepare_migration(struct page *page,
	struct page *newpage, struct mem_cgroup **ptr)
2534 2535
{
	struct page_cgroup *pc;
2536
	struct mem_cgroup *mem = NULL;
2537
	enum charge_type ctype;
2538
	int ret = 0;
2539

2540
	if (mem_cgroup_disabled())
2541 2542
		return 0;

2543 2544 2545
	pc = lookup_page_cgroup(page);
	lock_page_cgroup(pc);
	if (PageCgroupUsed(pc)) {
2546 2547
		mem = pc->mem_cgroup;
		css_get(&mem->css);
2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578
		/*
		 * At migrating an anonymous page, its mapcount goes down
		 * to 0 and uncharge() will be called. But, even if it's fully
		 * unmapped, migration may fail and this page has to be
		 * charged again. We set MIGRATION flag here and delay uncharge
		 * until end_migration() is called
		 *
		 * Corner Case Thinking
		 * A)
		 * When the old page was mapped as Anon and it's unmap-and-freed
		 * while migration was ongoing.
		 * If unmap finds the old page, uncharge() of it will be delayed
		 * until end_migration(). If unmap finds a new page, it's
		 * uncharged when it make mapcount to be 1->0. If unmap code
		 * finds swap_migration_entry, the new page will not be mapped
		 * and end_migration() will find it(mapcount==0).
		 *
		 * B)
		 * When the old page was mapped but migraion fails, the kernel
		 * remaps it. A charge for it is kept by MIGRATION flag even
		 * if mapcount goes down to 0. We can do remap successfully
		 * without charging it again.
		 *
		 * C)
		 * The "old" page is under lock_page() until the end of
		 * migration, so, the old page itself will not be swapped-out.
		 * If the new page is swapped out before end_migraton, our
		 * hook to usual swap-out path will catch the event.
		 */
		if (PageAnon(page))
			SetPageCgroupMigration(pc);
2579
	}
2580
	unlock_page_cgroup(pc);
2581 2582 2583 2584 2585 2586
	/*
	 * If the page is not charged at this point,
	 * we return here.
	 */
	if (!mem)
		return 0;
2587

A
Andrea Arcangeli 已提交
2588
	*ptr = mem;
2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601
	ret = __mem_cgroup_try_charge(NULL, GFP_KERNEL, ptr, false);
	css_put(&mem->css);/* drop extra refcnt */
	if (ret || *ptr == NULL) {
		if (PageAnon(page)) {
			lock_page_cgroup(pc);
			ClearPageCgroupMigration(pc);
			unlock_page_cgroup(pc);
			/*
			 * The old page may be fully unmapped while we kept it.
			 */
			mem_cgroup_uncharge_page(page);
		}
		return -ENOMEM;
2602
	}
2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616
	/*
	 * We charge new page before it's used/mapped. So, even if unlock_page()
	 * is called before end_migration, we can catch all events on this new
	 * page. In the case new page is migrated but not remapped, new page's
	 * mapcount will be finally 0 and we call uncharge in end_migration().
	 */
	pc = lookup_page_cgroup(newpage);
	if (PageAnon(page))
		ctype = MEM_CGROUP_CHARGE_TYPE_MAPPED;
	else if (page_is_file_cache(page))
		ctype = MEM_CGROUP_CHARGE_TYPE_CACHE;
	else
		ctype = MEM_CGROUP_CHARGE_TYPE_SHMEM;
	__mem_cgroup_commit_charge(mem, pc, ctype);
2617
	return ret;
2618
}
2619

2620
/* remove redundant charge if migration failed*/
2621
void mem_cgroup_end_migration(struct mem_cgroup *mem,
2622
	struct page *oldpage, struct page *newpage)
2623
{
2624
	struct page *used, *unused;
2625 2626 2627 2628
	struct page_cgroup *pc;

	if (!mem)
		return;
2629
	/* blocks rmdir() */
2630
	cgroup_exclude_rmdir(&mem->css);
2631 2632
	/* at migration success, oldpage->mapping is NULL. */
	if (oldpage->mapping) {
2633 2634
		used = oldpage;
		unused = newpage;
2635
	} else {
2636
		used = newpage;
2637 2638
		unused = oldpage;
	}
2639
	/*
2640 2641 2642
	 * We disallowed uncharge of pages under migration because mapcount
	 * of the page goes down to zero, temporarly.
	 * Clear the flag and check the page should be charged.
2643
	 */
2644 2645 2646 2647
	pc = lookup_page_cgroup(oldpage);
	lock_page_cgroup(pc);
	ClearPageCgroupMigration(pc);
	unlock_page_cgroup(pc);
2648

2649 2650
	__mem_cgroup_uncharge_common(unused, MEM_CGROUP_CHARGE_TYPE_FORCE);

2651
	/*
2652 2653 2654 2655 2656 2657
	 * If a page is a file cache, radix-tree replacement is very atomic
	 * and we can skip this check. When it was an Anon page, its mapcount
	 * goes down to 0. But because we added MIGRATION flage, it's not
	 * uncharged yet. There are several case but page->mapcount check
	 * and USED bit check in mem_cgroup_uncharge_page() will do enough
	 * check. (see prepare_charge() also)
2658
	 */
2659 2660
	if (PageAnon(used))
		mem_cgroup_uncharge_page(used);
2661
	/*
2662 2663
	 * At migration, we may charge account against cgroup which has no
	 * tasks.
2664 2665 2666 2667
	 * So, rmdir()->pre_destroy() can be called while we do this charge.
	 * In that case, we need to call pre_destroy() again. check it here.
	 */
	cgroup_release_and_wakeup_rmdir(&mem->css);
2668
}
2669

2670
/*
2671 2672 2673 2674 2675 2676
 * A call to try to shrink memory usage on charge failure at shmem's swapin.
 * Calling hierarchical_reclaim is not enough because we should update
 * last_oom_jiffies to prevent pagefault_out_of_memory from invoking global OOM.
 * Moreover considering hierarchy, we should reclaim from the mem_over_limit,
 * not from the memcg which this page would be charged to.
 * try_charge_swapin does all of these works properly.
2677
 */
2678
int mem_cgroup_shmem_charge_fallback(struct page *page,
2679 2680
			    struct mm_struct *mm,
			    gfp_t gfp_mask)
2681
{
2682
	struct mem_cgroup *mem = NULL;
2683
	int ret;
2684

2685
	if (mem_cgroup_disabled())
2686
		return 0;
2687

2688 2689 2690
	ret = mem_cgroup_try_charge_swapin(mm, page, gfp_mask, &mem);
	if (!ret)
		mem_cgroup_cancel_charge_swapin(mem); /* it does !mem check */
2691

2692
	return ret;
2693 2694
}

2695 2696
static DEFINE_MUTEX(set_limit_mutex);

2697
static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
2698
				unsigned long long val)
2699
{
2700
	int retry_count;
2701
	u64 memswlimit, memlimit;
2702
	int ret = 0;
2703 2704
	int children = mem_cgroup_count_children(memcg);
	u64 curusage, oldusage;
2705
	int enlarge;
2706 2707 2708 2709 2710 2711 2712 2713 2714

	/*
	 * For keeping hierarchical_reclaim simple, how long we should retry
	 * is depends on callers. We set our retry-count to be function
	 * of # of children which we should visit in this loop.
	 */
	retry_count = MEM_CGROUP_RECLAIM_RETRIES * children;

	oldusage = res_counter_read_u64(&memcg->res, RES_USAGE);
2715

2716
	enlarge = 0;
2717
	while (retry_count) {
2718 2719 2720 2721
		if (signal_pending(current)) {
			ret = -EINTR;
			break;
		}
2722 2723 2724 2725 2726 2727 2728 2729 2730 2731
		/*
		 * Rather than hide all in some function, I do this in
		 * open coded manner. You see what this really does.
		 * We have to guarantee mem->res.limit < mem->memsw.limit.
		 */
		mutex_lock(&set_limit_mutex);
		memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
		if (memswlimit < val) {
			ret = -EINVAL;
			mutex_unlock(&set_limit_mutex);
2732 2733
			break;
		}
2734 2735 2736 2737 2738

		memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
		if (memlimit < val)
			enlarge = 1;

2739
		ret = res_counter_set_limit(&memcg->res, val);
2740 2741 2742 2743 2744 2745
		if (!ret) {
			if (memswlimit == val)
				memcg->memsw_is_minimum = true;
			else
				memcg->memsw_is_minimum = false;
		}
2746 2747 2748 2749 2750
		mutex_unlock(&set_limit_mutex);

		if (!ret)
			break;

2751
		mem_cgroup_hierarchical_reclaim(memcg, NULL, GFP_KERNEL,
2752
						MEM_CGROUP_RECLAIM_SHRINK);
2753 2754 2755 2756 2757 2758
		curusage = res_counter_read_u64(&memcg->res, RES_USAGE);
		/* Usage is reduced ? */
  		if (curusage >= oldusage)
			retry_count--;
		else
			oldusage = curusage;
2759
	}
2760 2761
	if (!ret && enlarge)
		memcg_oom_recover(memcg);
2762

2763 2764 2765
	return ret;
}

L
Li Zefan 已提交
2766 2767
static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
					unsigned long long val)
2768
{
2769
	int retry_count;
2770
	u64 memlimit, memswlimit, oldusage, curusage;
2771 2772
	int children = mem_cgroup_count_children(memcg);
	int ret = -EBUSY;
2773
	int enlarge = 0;
2774

2775 2776 2777
	/* see mem_cgroup_resize_res_limit */
 	retry_count = children * MEM_CGROUP_RECLAIM_RETRIES;
	oldusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794
	while (retry_count) {
		if (signal_pending(current)) {
			ret = -EINTR;
			break;
		}
		/*
		 * Rather than hide all in some function, I do this in
		 * open coded manner. You see what this really does.
		 * We have to guarantee mem->res.limit < mem->memsw.limit.
		 */
		mutex_lock(&set_limit_mutex);
		memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
		if (memlimit > val) {
			ret = -EINVAL;
			mutex_unlock(&set_limit_mutex);
			break;
		}
2795 2796 2797
		memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
		if (memswlimit < val)
			enlarge = 1;
2798
		ret = res_counter_set_limit(&memcg->memsw, val);
2799 2800 2801 2802 2803 2804
		if (!ret) {
			if (memlimit == val)
				memcg->memsw_is_minimum = true;
			else
				memcg->memsw_is_minimum = false;
		}
2805 2806 2807 2808 2809
		mutex_unlock(&set_limit_mutex);

		if (!ret)
			break;

2810
		mem_cgroup_hierarchical_reclaim(memcg, NULL, GFP_KERNEL,
2811 2812
						MEM_CGROUP_RECLAIM_NOSWAP |
						MEM_CGROUP_RECLAIM_SHRINK);
2813
		curusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
2814
		/* Usage is reduced ? */
2815
		if (curusage >= oldusage)
2816
			retry_count--;
2817 2818
		else
			oldusage = curusage;
2819
	}
2820 2821
	if (!ret && enlarge)
		memcg_oom_recover(memcg);
2822 2823 2824
	return ret;
}

2825 2826 2827 2828 2829 2830 2831 2832 2833
unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
						gfp_t gfp_mask, int nid,
						int zid)
{
	unsigned long nr_reclaimed = 0;
	struct mem_cgroup_per_zone *mz, *next_mz = NULL;
	unsigned long reclaimed;
	int loop = 0;
	struct mem_cgroup_tree_per_zone *mctz;
2834
	unsigned long long excess;
2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886

	if (order > 0)
		return 0;

	mctz = soft_limit_tree_node_zone(nid, zid);
	/*
	 * This loop can run a while, specially if mem_cgroup's continuously
	 * keep exceeding their soft limit and putting the system under
	 * pressure
	 */
	do {
		if (next_mz)
			mz = next_mz;
		else
			mz = mem_cgroup_largest_soft_limit_node(mctz);
		if (!mz)
			break;

		reclaimed = mem_cgroup_hierarchical_reclaim(mz->mem, zone,
						gfp_mask,
						MEM_CGROUP_RECLAIM_SOFT);
		nr_reclaimed += reclaimed;
		spin_lock(&mctz->lock);

		/*
		 * If we failed to reclaim anything from this memory cgroup
		 * it is time to move on to the next cgroup
		 */
		next_mz = NULL;
		if (!reclaimed) {
			do {
				/*
				 * Loop until we find yet another one.
				 *
				 * By the time we get the soft_limit lock
				 * again, someone might have aded the
				 * group back on the RB tree. Iterate to
				 * make sure we get a different mem.
				 * mem_cgroup_largest_soft_limit_node returns
				 * NULL if no other cgroup is present on
				 * the tree
				 */
				next_mz =
				__mem_cgroup_largest_soft_limit_node(mctz);
				if (next_mz == mz) {
					css_put(&next_mz->mem->css);
					next_mz = NULL;
				} else /* next_mz == NULL or other memcg */
					break;
			} while (1);
		}
		__mem_cgroup_remove_exceeded(mz->mem, mz, mctz);
2887
		excess = res_counter_soft_limit_excess(&mz->mem->res);
2888 2889 2890 2891 2892 2893 2894 2895
		/*
		 * One school of thought says that we should not add
		 * back the node to the tree if reclaim returns 0.
		 * But our reclaim could return 0, simply because due
		 * to priority we are exposing a smaller subset of
		 * memory to reclaim from. Consider this as a longer
		 * term TODO.
		 */
2896 2897
		/* If excess == 0, no tree ops */
		__mem_cgroup_insert_exceeded(mz->mem, mz, mctz, excess);
2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915
		spin_unlock(&mctz->lock);
		css_put(&mz->mem->css);
		loop++;
		/*
		 * Could not reclaim anything and there are no more
		 * mem cgroups to try or we seem to be looping without
		 * reclaiming anything.
		 */
		if (!nr_reclaimed &&
			(next_mz == NULL ||
			loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
			break;
	} while (!nr_reclaimed);
	if (next_mz)
		css_put(&next_mz->mem->css);
	return nr_reclaimed;
}

2916 2917 2918 2919
/*
 * This routine traverse page_cgroup in given list and drop them all.
 * *And* this routine doesn't reclaim page itself, just removes page_cgroup.
 */
2920
static int mem_cgroup_force_empty_list(struct mem_cgroup *mem,
K
KAMEZAWA Hiroyuki 已提交
2921
				int node, int zid, enum lru_list lru)
2922
{
K
KAMEZAWA Hiroyuki 已提交
2923 2924
	struct zone *zone;
	struct mem_cgroup_per_zone *mz;
2925
	struct page_cgroup *pc, *busy;
K
KAMEZAWA Hiroyuki 已提交
2926
	unsigned long flags, loop;
2927
	struct list_head *list;
2928
	int ret = 0;
2929

K
KAMEZAWA Hiroyuki 已提交
2930 2931
	zone = &NODE_DATA(node)->node_zones[zid];
	mz = mem_cgroup_zoneinfo(mem, node, zid);
2932
	list = &mz->lists[lru];
2933

2934 2935 2936 2937 2938 2939
	loop = MEM_CGROUP_ZSTAT(mz, lru);
	/* give some margin against EBUSY etc...*/
	loop += 256;
	busy = NULL;
	while (loop--) {
		ret = 0;
K
KAMEZAWA Hiroyuki 已提交
2940
		spin_lock_irqsave(&zone->lru_lock, flags);
2941
		if (list_empty(list)) {
K
KAMEZAWA Hiroyuki 已提交
2942
			spin_unlock_irqrestore(&zone->lru_lock, flags);
2943
			break;
2944 2945 2946 2947
		}
		pc = list_entry(list->prev, struct page_cgroup, lru);
		if (busy == pc) {
			list_move(&pc->lru, list);
2948
			busy = NULL;
K
KAMEZAWA Hiroyuki 已提交
2949
			spin_unlock_irqrestore(&zone->lru_lock, flags);
2950 2951
			continue;
		}
K
KAMEZAWA Hiroyuki 已提交
2952
		spin_unlock_irqrestore(&zone->lru_lock, flags);
2953

K
KAMEZAWA Hiroyuki 已提交
2954
		ret = mem_cgroup_move_parent(pc, mem, GFP_KERNEL);
2955
		if (ret == -ENOMEM)
2956
			break;
2957 2958 2959 2960 2961 2962 2963

		if (ret == -EBUSY || ret == -EINVAL) {
			/* found lock contention or "pc" is obsolete. */
			busy = pc;
			cond_resched();
		} else
			busy = NULL;
2964
	}
K
KAMEZAWA Hiroyuki 已提交
2965

2966 2967 2968
	if (!ret && !list_empty(list))
		return -EBUSY;
	return ret;
2969 2970 2971 2972 2973 2974
}

/*
 * make mem_cgroup's charge to be 0 if there is no task.
 * This enables deleting this mem_cgroup.
 */
2975
static int mem_cgroup_force_empty(struct mem_cgroup *mem, bool free_all)
2976
{
2977 2978 2979
	int ret;
	int node, zid, shrink;
	int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
2980
	struct cgroup *cgrp = mem->css.cgroup;
2981

2982
	css_get(&mem->css);
2983 2984

	shrink = 0;
2985 2986 2987
	/* should free all ? */
	if (free_all)
		goto try_to_free;
2988
move_account:
2989
	do {
2990
		ret = -EBUSY;
2991 2992 2993 2994
		if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children))
			goto out;
		ret = -EINTR;
		if (signal_pending(current))
2995
			goto out;
2996 2997
		/* This is for making all *used* pages to be on LRU. */
		lru_add_drain_all();
2998
		drain_all_stock_sync();
2999
		ret = 0;
3000
		for_each_node_state(node, N_HIGH_MEMORY) {
3001
			for (zid = 0; !ret && zid < MAX_NR_ZONES; zid++) {
3002
				enum lru_list l;
3003 3004
				for_each_lru(l) {
					ret = mem_cgroup_force_empty_list(mem,
K
KAMEZAWA Hiroyuki 已提交
3005
							node, zid, l);
3006 3007 3008
					if (ret)
						break;
				}
3009
			}
3010 3011 3012
			if (ret)
				break;
		}
3013
		memcg_oom_recover(mem);
3014 3015 3016
		/* it seems parent cgroup doesn't have enough mem */
		if (ret == -ENOMEM)
			goto try_to_free;
3017
		cond_resched();
3018 3019
	/* "ret" should also be checked to ensure all lists are empty. */
	} while (mem->res.usage > 0 || ret);
3020 3021 3022
out:
	css_put(&mem->css);
	return ret;
3023 3024

try_to_free:
3025 3026
	/* returns EBUSY if there is a task or if we come here twice. */
	if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children) || shrink) {
3027 3028 3029
		ret = -EBUSY;
		goto out;
	}
3030 3031
	/* we call try-to-free pages for make this cgroup empty */
	lru_add_drain_all();
3032 3033 3034 3035
	/* try to free all pages in this cgroup */
	shrink = 1;
	while (nr_retries && mem->res.usage > 0) {
		int progress;
3036 3037 3038 3039 3040

		if (signal_pending(current)) {
			ret = -EINTR;
			goto out;
		}
K
KOSAKI Motohiro 已提交
3041 3042
		progress = try_to_free_mem_cgroup_pages(mem, GFP_KERNEL,
						false, get_swappiness(mem));
3043
		if (!progress) {
3044
			nr_retries--;
3045
			/* maybe some writeback is necessary */
3046
			congestion_wait(BLK_RW_ASYNC, HZ/10);
3047
		}
3048 3049

	}
K
KAMEZAWA Hiroyuki 已提交
3050
	lru_add_drain();
3051
	/* try move_account...there may be some *locked* pages. */
3052
	goto move_account;
3053 3054
}

3055 3056 3057 3058 3059 3060
int mem_cgroup_force_empty_write(struct cgroup *cont, unsigned int event)
{
	return mem_cgroup_force_empty(mem_cgroup_from_cont(cont), true);
}


3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078
static u64 mem_cgroup_hierarchy_read(struct cgroup *cont, struct cftype *cft)
{
	return mem_cgroup_from_cont(cont)->use_hierarchy;
}

static int mem_cgroup_hierarchy_write(struct cgroup *cont, struct cftype *cft,
					u64 val)
{
	int retval = 0;
	struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
	struct cgroup *parent = cont->parent;
	struct mem_cgroup *parent_mem = NULL;

	if (parent)
		parent_mem = mem_cgroup_from_cont(parent);

	cgroup_lock();
	/*
3079
	 * If parent's use_hierarchy is set, we can't make any modifications
3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098
	 * in the child subtrees. If it is unset, then the change can
	 * occur, provided the current cgroup has no children.
	 *
	 * For the root cgroup, parent_mem is NULL, we allow value to be
	 * set if there are no children.
	 */
	if ((!parent_mem || !parent_mem->use_hierarchy) &&
				(val == 1 || val == 0)) {
		if (list_empty(&cont->children))
			mem->use_hierarchy = val;
		else
			retval = -EBUSY;
	} else
		retval = -EINVAL;
	cgroup_unlock();

	return retval;
}

3099 3100 3101 3102 3103 3104 3105 3106 3107
struct mem_cgroup_idx_data {
	s64 val;
	enum mem_cgroup_stat_index idx;
};

static int
mem_cgroup_get_idx_stat(struct mem_cgroup *mem, void *data)
{
	struct mem_cgroup_idx_data *d = data;
3108
	d->val += mem_cgroup_read_stat(mem, d->idx);
3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122
	return 0;
}

static void
mem_cgroup_get_recursive_idx_stat(struct mem_cgroup *mem,
				enum mem_cgroup_stat_index idx, s64 *val)
{
	struct mem_cgroup_idx_data d;
	d.idx = idx;
	d.val = 0;
	mem_cgroup_walk_tree(mem, &d, mem_cgroup_get_idx_stat);
	*val = d.val;
}

3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147
static inline u64 mem_cgroup_usage(struct mem_cgroup *mem, bool swap)
{
	u64 idx_val, val;

	if (!mem_cgroup_is_root(mem)) {
		if (!swap)
			return res_counter_read_u64(&mem->res, RES_USAGE);
		else
			return res_counter_read_u64(&mem->memsw, RES_USAGE);
	}

	mem_cgroup_get_recursive_idx_stat(mem, MEM_CGROUP_STAT_CACHE, &idx_val);
	val = idx_val;
	mem_cgroup_get_recursive_idx_stat(mem, MEM_CGROUP_STAT_RSS, &idx_val);
	val += idx_val;

	if (swap) {
		mem_cgroup_get_recursive_idx_stat(mem,
				MEM_CGROUP_STAT_SWAPOUT, &idx_val);
		val += idx_val;
	}

	return val << PAGE_SHIFT;
}

3148
static u64 mem_cgroup_read(struct cgroup *cont, struct cftype *cft)
B
Balbir Singh 已提交
3149
{
3150
	struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
3151
	u64 val;
3152 3153 3154 3155 3156 3157
	int type, name;

	type = MEMFILE_TYPE(cft->private);
	name = MEMFILE_ATTR(cft->private);
	switch (type) {
	case _MEM:
3158 3159 3160
		if (name == RES_USAGE)
			val = mem_cgroup_usage(mem, false);
		else
3161
			val = res_counter_read_u64(&mem->res, name);
3162 3163
		break;
	case _MEMSWAP:
3164 3165 3166
		if (name == RES_USAGE)
			val = mem_cgroup_usage(mem, true);
		else
3167
			val = res_counter_read_u64(&mem->memsw, name);
3168 3169 3170 3171 3172 3173
		break;
	default:
		BUG();
		break;
	}
	return val;
B
Balbir Singh 已提交
3174
}
3175 3176 3177 3178
/*
 * The user of this function is...
 * RES_LIMIT.
 */
3179 3180
static int mem_cgroup_write(struct cgroup *cont, struct cftype *cft,
			    const char *buffer)
B
Balbir Singh 已提交
3181
{
3182
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
3183
	int type, name;
3184 3185 3186
	unsigned long long val;
	int ret;

3187 3188 3189
	type = MEMFILE_TYPE(cft->private);
	name = MEMFILE_ATTR(cft->private);
	switch (name) {
3190
	case RES_LIMIT:
3191 3192 3193 3194
		if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
			ret = -EINVAL;
			break;
		}
3195 3196
		/* This function does all necessary parse...reuse it */
		ret = res_counter_memparse_write_strategy(buffer, &val);
3197 3198 3199
		if (ret)
			break;
		if (type == _MEM)
3200
			ret = mem_cgroup_resize_limit(memcg, val);
3201 3202
		else
			ret = mem_cgroup_resize_memsw_limit(memcg, val);
3203
		break;
3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217
	case RES_SOFT_LIMIT:
		ret = res_counter_memparse_write_strategy(buffer, &val);
		if (ret)
			break;
		/*
		 * For memsw, soft limits are hard to implement in terms
		 * of semantics, for now, we support soft limits for
		 * control without swap
		 */
		if (type == _MEM)
			ret = res_counter_set_soft_limit(&memcg->res, val);
		else
			ret = -EINVAL;
		break;
3218 3219 3220 3221 3222
	default:
		ret = -EINVAL; /* should be BUG() ? */
		break;
	}
	return ret;
B
Balbir Singh 已提交
3223 3224
}

3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252
static void memcg_get_hierarchical_limit(struct mem_cgroup *memcg,
		unsigned long long *mem_limit, unsigned long long *memsw_limit)
{
	struct cgroup *cgroup;
	unsigned long long min_limit, min_memsw_limit, tmp;

	min_limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
	min_memsw_limit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
	cgroup = memcg->css.cgroup;
	if (!memcg->use_hierarchy)
		goto out;

	while (cgroup->parent) {
		cgroup = cgroup->parent;
		memcg = mem_cgroup_from_cont(cgroup);
		if (!memcg->use_hierarchy)
			break;
		tmp = res_counter_read_u64(&memcg->res, RES_LIMIT);
		min_limit = min(min_limit, tmp);
		tmp = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
		min_memsw_limit = min(min_memsw_limit, tmp);
	}
out:
	*mem_limit = min_limit;
	*memsw_limit = min_memsw_limit;
	return;
}

3253
static int mem_cgroup_reset(struct cgroup *cont, unsigned int event)
3254 3255
{
	struct mem_cgroup *mem;
3256
	int type, name;
3257 3258

	mem = mem_cgroup_from_cont(cont);
3259 3260 3261
	type = MEMFILE_TYPE(event);
	name = MEMFILE_ATTR(event);
	switch (name) {
3262
	case RES_MAX_USAGE:
3263 3264 3265 3266
		if (type == _MEM)
			res_counter_reset_max(&mem->res);
		else
			res_counter_reset_max(&mem->memsw);
3267 3268
		break;
	case RES_FAILCNT:
3269 3270 3271 3272
		if (type == _MEM)
			res_counter_reset_failcnt(&mem->res);
		else
			res_counter_reset_failcnt(&mem->memsw);
3273 3274
		break;
	}
3275

3276
	return 0;
3277 3278
}

3279 3280 3281 3282 3283 3284
static u64 mem_cgroup_move_charge_read(struct cgroup *cgrp,
					struct cftype *cft)
{
	return mem_cgroup_from_cont(cgrp)->move_charge_at_immigrate;
}

3285
#ifdef CONFIG_MMU
3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303
static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
					struct cftype *cft, u64 val)
{
	struct mem_cgroup *mem = mem_cgroup_from_cont(cgrp);

	if (val >= (1 << NR_MOVE_TYPE))
		return -EINVAL;
	/*
	 * We check this value several times in both in can_attach() and
	 * attach(), so we need cgroup lock to prevent this value from being
	 * inconsistent.
	 */
	cgroup_lock();
	mem->move_charge_at_immigrate = val;
	cgroup_unlock();

	return 0;
}
3304 3305 3306 3307 3308 3309 3310
#else
static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
					struct cftype *cft, u64 val)
{
	return -ENOSYS;
}
#endif
3311

K
KAMEZAWA Hiroyuki 已提交
3312 3313 3314 3315 3316

/* For read statistics */
enum {
	MCS_CACHE,
	MCS_RSS,
3317
	MCS_FILE_MAPPED,
K
KAMEZAWA Hiroyuki 已提交
3318 3319
	MCS_PGPGIN,
	MCS_PGPGOUT,
3320
	MCS_SWAP,
K
KAMEZAWA Hiroyuki 已提交
3321 3322 3323 3324 3325 3326 3327 3328 3329 3330
	MCS_INACTIVE_ANON,
	MCS_ACTIVE_ANON,
	MCS_INACTIVE_FILE,
	MCS_ACTIVE_FILE,
	MCS_UNEVICTABLE,
	NR_MCS_STAT,
};

struct mcs_total_stat {
	s64 stat[NR_MCS_STAT];
3331 3332
};

K
KAMEZAWA Hiroyuki 已提交
3333 3334 3335 3336 3337 3338
struct {
	char *local_name;
	char *total_name;
} memcg_stat_strings[NR_MCS_STAT] = {
	{"cache", "total_cache"},
	{"rss", "total_rss"},
3339
	{"mapped_file", "total_mapped_file"},
K
KAMEZAWA Hiroyuki 已提交
3340 3341
	{"pgpgin", "total_pgpgin"},
	{"pgpgout", "total_pgpgout"},
3342
	{"swap", "total_swap"},
K
KAMEZAWA Hiroyuki 已提交
3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356
	{"inactive_anon", "total_inactive_anon"},
	{"active_anon", "total_active_anon"},
	{"inactive_file", "total_inactive_file"},
	{"active_file", "total_active_file"},
	{"unevictable", "total_unevictable"}
};


static int mem_cgroup_get_local_stat(struct mem_cgroup *mem, void *data)
{
	struct mcs_total_stat *s = data;
	s64 val;

	/* per cpu stat */
3357
	val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_CACHE);
K
KAMEZAWA Hiroyuki 已提交
3358
	s->stat[MCS_CACHE] += val * PAGE_SIZE;
3359
	val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_RSS);
K
KAMEZAWA Hiroyuki 已提交
3360
	s->stat[MCS_RSS] += val * PAGE_SIZE;
3361
	val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_FILE_MAPPED);
3362
	s->stat[MCS_FILE_MAPPED] += val * PAGE_SIZE;
3363
	val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_PGPGIN_COUNT);
K
KAMEZAWA Hiroyuki 已提交
3364
	s->stat[MCS_PGPGIN] += val;
3365
	val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_PGPGOUT_COUNT);
K
KAMEZAWA Hiroyuki 已提交
3366
	s->stat[MCS_PGPGOUT] += val;
3367
	if (do_swap_account) {
3368
		val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_SWAPOUT);
3369 3370
		s->stat[MCS_SWAP] += val * PAGE_SIZE;
	}
K
KAMEZAWA Hiroyuki 已提交
3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391

	/* per zone stat */
	val = mem_cgroup_get_local_zonestat(mem, LRU_INACTIVE_ANON);
	s->stat[MCS_INACTIVE_ANON] += val * PAGE_SIZE;
	val = mem_cgroup_get_local_zonestat(mem, LRU_ACTIVE_ANON);
	s->stat[MCS_ACTIVE_ANON] += val * PAGE_SIZE;
	val = mem_cgroup_get_local_zonestat(mem, LRU_INACTIVE_FILE);
	s->stat[MCS_INACTIVE_FILE] += val * PAGE_SIZE;
	val = mem_cgroup_get_local_zonestat(mem, LRU_ACTIVE_FILE);
	s->stat[MCS_ACTIVE_FILE] += val * PAGE_SIZE;
	val = mem_cgroup_get_local_zonestat(mem, LRU_UNEVICTABLE);
	s->stat[MCS_UNEVICTABLE] += val * PAGE_SIZE;
	return 0;
}

static void
mem_cgroup_get_total_stat(struct mem_cgroup *mem, struct mcs_total_stat *s)
{
	mem_cgroup_walk_tree(mem, s, mem_cgroup_get_local_stat);
}

3392 3393
static int mem_control_stat_show(struct cgroup *cont, struct cftype *cft,
				 struct cgroup_map_cb *cb)
3394 3395
{
	struct mem_cgroup *mem_cont = mem_cgroup_from_cont(cont);
K
KAMEZAWA Hiroyuki 已提交
3396
	struct mcs_total_stat mystat;
3397 3398
	int i;

K
KAMEZAWA Hiroyuki 已提交
3399 3400
	memset(&mystat, 0, sizeof(mystat));
	mem_cgroup_get_local_stat(mem_cont, &mystat);
3401

3402 3403 3404
	for (i = 0; i < NR_MCS_STAT; i++) {
		if (i == MCS_SWAP && !do_swap_account)
			continue;
K
KAMEZAWA Hiroyuki 已提交
3405
		cb->fill(cb, memcg_stat_strings[i].local_name, mystat.stat[i]);
3406
	}
L
Lee Schermerhorn 已提交
3407

K
KAMEZAWA Hiroyuki 已提交
3408
	/* Hierarchical information */
3409 3410 3411 3412 3413 3414 3415
	{
		unsigned long long limit, memsw_limit;
		memcg_get_hierarchical_limit(mem_cont, &limit, &memsw_limit);
		cb->fill(cb, "hierarchical_memory_limit", limit);
		if (do_swap_account)
			cb->fill(cb, "hierarchical_memsw_limit", memsw_limit);
	}
K
KOSAKI Motohiro 已提交
3416

K
KAMEZAWA Hiroyuki 已提交
3417 3418
	memset(&mystat, 0, sizeof(mystat));
	mem_cgroup_get_total_stat(mem_cont, &mystat);
3419 3420 3421
	for (i = 0; i < NR_MCS_STAT; i++) {
		if (i == MCS_SWAP && !do_swap_account)
			continue;
K
KAMEZAWA Hiroyuki 已提交
3422
		cb->fill(cb, memcg_stat_strings[i].total_name, mystat.stat[i]);
3423
	}
K
KAMEZAWA Hiroyuki 已提交
3424

K
KOSAKI Motohiro 已提交
3425
#ifdef CONFIG_DEBUG_VM
3426
	cb->fill(cb, "inactive_ratio", calc_inactive_ratio(mem_cont, NULL));
K
KOSAKI Motohiro 已提交
3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453

	{
		int nid, zid;
		struct mem_cgroup_per_zone *mz;
		unsigned long recent_rotated[2] = {0, 0};
		unsigned long recent_scanned[2] = {0, 0};

		for_each_online_node(nid)
			for (zid = 0; zid < MAX_NR_ZONES; zid++) {
				mz = mem_cgroup_zoneinfo(mem_cont, nid, zid);

				recent_rotated[0] +=
					mz->reclaim_stat.recent_rotated[0];
				recent_rotated[1] +=
					mz->reclaim_stat.recent_rotated[1];
				recent_scanned[0] +=
					mz->reclaim_stat.recent_scanned[0];
				recent_scanned[1] +=
					mz->reclaim_stat.recent_scanned[1];
			}
		cb->fill(cb, "recent_rotated_anon", recent_rotated[0]);
		cb->fill(cb, "recent_rotated_file", recent_rotated[1]);
		cb->fill(cb, "recent_scanned_anon", recent_scanned[0]);
		cb->fill(cb, "recent_scanned_file", recent_scanned[1]);
	}
#endif

3454 3455 3456
	return 0;
}

K
KOSAKI Motohiro 已提交
3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468
static u64 mem_cgroup_swappiness_read(struct cgroup *cgrp, struct cftype *cft)
{
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);

	return get_swappiness(memcg);
}

static int mem_cgroup_swappiness_write(struct cgroup *cgrp, struct cftype *cft,
				       u64 val)
{
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
	struct mem_cgroup *parent;
3469

K
KOSAKI Motohiro 已提交
3470 3471 3472 3473 3474 3475 3476
	if (val > 100)
		return -EINVAL;

	if (cgrp->parent == NULL)
		return -EINVAL;

	parent = mem_cgroup_from_cont(cgrp->parent);
3477 3478 3479

	cgroup_lock();

K
KOSAKI Motohiro 已提交
3480 3481
	/* If under hierarchy, only empty-root can set this value */
	if ((parent->use_hierarchy) ||
3482 3483
	    (memcg->use_hierarchy && !list_empty(&cgrp->children))) {
		cgroup_unlock();
K
KOSAKI Motohiro 已提交
3484
		return -EINVAL;
3485
	}
K
KOSAKI Motohiro 已提交
3486 3487 3488 3489 3490

	spin_lock(&memcg->reclaim_param_lock);
	memcg->swappiness = val;
	spin_unlock(&memcg->reclaim_param_lock);

3491 3492
	cgroup_unlock();

K
KOSAKI Motohiro 已提交
3493 3494 3495
	return 0;
}

3496 3497 3498 3499 3500 3501 3502 3503
static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
{
	struct mem_cgroup_threshold_ary *t;
	u64 usage;
	int i;

	rcu_read_lock();
	if (!swap)
3504
		t = rcu_dereference(memcg->thresholds.primary);
3505
	else
3506
		t = rcu_dereference(memcg->memsw_thresholds.primary);
3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517

	if (!t)
		goto unlock;

	usage = mem_cgroup_usage(memcg, swap);

	/*
	 * current_threshold points to threshold just below usage.
	 * If it's not true, a threshold was crossed after last
	 * call of __mem_cgroup_threshold().
	 */
3518
	i = t->current_threshold;
3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541

	/*
	 * Iterate backward over array of thresholds starting from
	 * current_threshold and check if a threshold is crossed.
	 * If none of thresholds below usage is crossed, we read
	 * only one element of the array here.
	 */
	for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
		eventfd_signal(t->entries[i].eventfd, 1);

	/* i = current_threshold + 1 */
	i++;

	/*
	 * Iterate forward over array of thresholds starting from
	 * current_threshold+1 and check if a threshold is crossed.
	 * If none of thresholds above usage is crossed, we read
	 * only one element of the array here.
	 */
	for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
		eventfd_signal(t->entries[i].eventfd, 1);

	/* Update current_threshold */
3542
	t->current_threshold = i - 1;
3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561
unlock:
	rcu_read_unlock();
}

static void mem_cgroup_threshold(struct mem_cgroup *memcg)
{
	__mem_cgroup_threshold(memcg, false);
	if (do_swap_account)
		__mem_cgroup_threshold(memcg, true);
}

static int compare_thresholds(const void *a, const void *b)
{
	const struct mem_cgroup_threshold *_a = a;
	const struct mem_cgroup_threshold *_b = b;

	return _a->threshold - _b->threshold;
}

K
KAMEZAWA Hiroyuki 已提交
3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577
static int mem_cgroup_oom_notify_cb(struct mem_cgroup *mem, void *data)
{
	struct mem_cgroup_eventfd_list *ev;

	list_for_each_entry(ev, &mem->oom_notify, list)
		eventfd_signal(ev->eventfd, 1);
	return 0;
}

static void mem_cgroup_oom_notify(struct mem_cgroup *mem)
{
	mem_cgroup_walk_tree(mem, NULL, mem_cgroup_oom_notify_cb);
}

static int mem_cgroup_usage_register_event(struct cgroup *cgrp,
	struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
3578 3579
{
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
3580 3581
	struct mem_cgroup_thresholds *thresholds;
	struct mem_cgroup_threshold_ary *new;
3582 3583
	int type = MEMFILE_TYPE(cft->private);
	u64 threshold, usage;
3584
	int i, size, ret;
3585 3586 3587 3588 3589 3590

	ret = res_counter_memparse_write_strategy(args, &threshold);
	if (ret)
		return ret;

	mutex_lock(&memcg->thresholds_lock);
3591

3592
	if (type == _MEM)
3593
		thresholds = &memcg->thresholds;
3594
	else if (type == _MEMSWAP)
3595
		thresholds = &memcg->memsw_thresholds;
3596 3597 3598 3599 3600 3601
	else
		BUG();

	usage = mem_cgroup_usage(memcg, type == _MEMSWAP);

	/* Check if a threshold crossed before adding a new one */
3602
	if (thresholds->primary)
3603 3604
		__mem_cgroup_threshold(memcg, type == _MEMSWAP);

3605
	size = thresholds->primary ? thresholds->primary->size + 1 : 1;
3606 3607

	/* Allocate memory for new array of thresholds */
3608
	new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
3609
			GFP_KERNEL);
3610
	if (!new) {
3611 3612 3613
		ret = -ENOMEM;
		goto unlock;
	}
3614
	new->size = size;
3615 3616

	/* Copy thresholds (if any) to new array */
3617 3618
	if (thresholds->primary) {
		memcpy(new->entries, thresholds->primary->entries, (size - 1) *
3619
				sizeof(struct mem_cgroup_threshold));
3620 3621
	}

3622
	/* Add new threshold */
3623 3624
	new->entries[size - 1].eventfd = eventfd;
	new->entries[size - 1].threshold = threshold;
3625 3626

	/* Sort thresholds. Registering of new threshold isn't time-critical */
3627
	sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
3628 3629 3630
			compare_thresholds, NULL);

	/* Find current threshold */
3631
	new->current_threshold = -1;
3632
	for (i = 0; i < size; i++) {
3633
		if (new->entries[i].threshold < usage) {
3634
			/*
3635 3636
			 * new->current_threshold will not be used until
			 * rcu_assign_pointer(), so it's safe to increment
3637 3638
			 * it here.
			 */
3639
			++new->current_threshold;
3640 3641 3642
		}
	}

3643 3644 3645 3646 3647
	/* Free old spare buffer and save old primary buffer as spare */
	kfree(thresholds->spare);
	thresholds->spare = thresholds->primary;

	rcu_assign_pointer(thresholds->primary, new);
3648

3649
	/* To be sure that nobody uses thresholds */
3650 3651 3652 3653 3654 3655 3656 3657
	synchronize_rcu();

unlock:
	mutex_unlock(&memcg->thresholds_lock);

	return ret;
}

3658
static void mem_cgroup_usage_unregister_event(struct cgroup *cgrp,
K
KAMEZAWA Hiroyuki 已提交
3659
	struct cftype *cft, struct eventfd_ctx *eventfd)
3660 3661
{
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
3662 3663
	struct mem_cgroup_thresholds *thresholds;
	struct mem_cgroup_threshold_ary *new;
3664 3665
	int type = MEMFILE_TYPE(cft->private);
	u64 usage;
3666
	int i, j, size;
3667 3668 3669

	mutex_lock(&memcg->thresholds_lock);
	if (type == _MEM)
3670
		thresholds = &memcg->thresholds;
3671
	else if (type == _MEMSWAP)
3672
		thresholds = &memcg->memsw_thresholds;
3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687
	else
		BUG();

	/*
	 * Something went wrong if we trying to unregister a threshold
	 * if we don't have thresholds
	 */
	BUG_ON(!thresholds);

	usage = mem_cgroup_usage(memcg, type == _MEMSWAP);

	/* Check if a threshold crossed before removing */
	__mem_cgroup_threshold(memcg, type == _MEMSWAP);

	/* Calculate new number of threshold */
3688 3689 3690
	size = 0;
	for (i = 0; i < thresholds->primary->size; i++) {
		if (thresholds->primary->entries[i].eventfd != eventfd)
3691 3692 3693
			size++;
	}

3694
	new = thresholds->spare;
3695

3696 3697
	/* Set thresholds array to NULL if we don't have thresholds */
	if (!size) {
3698 3699
		kfree(new);
		new = NULL;
3700
		goto swap_buffers;
3701 3702
	}

3703
	new->size = size;
3704 3705

	/* Copy thresholds and find current threshold */
3706 3707 3708
	new->current_threshold = -1;
	for (i = 0, j = 0; i < thresholds->primary->size; i++) {
		if (thresholds->primary->entries[i].eventfd == eventfd)
3709 3710
			continue;

3711 3712
		new->entries[j] = thresholds->primary->entries[i];
		if (new->entries[j].threshold < usage) {
3713
			/*
3714
			 * new->current_threshold will not be used
3715 3716 3717
			 * until rcu_assign_pointer(), so it's safe to increment
			 * it here.
			 */
3718
			++new->current_threshold;
3719 3720 3721 3722
		}
		j++;
	}

3723
swap_buffers:
3724 3725 3726
	/* Swap primary and spare array */
	thresholds->spare = thresholds->primary;
	rcu_assign_pointer(thresholds->primary, new);
3727

3728
	/* To be sure that nobody uses thresholds */
3729 3730 3731 3732
	synchronize_rcu();

	mutex_unlock(&memcg->thresholds_lock);
}
3733

K
KAMEZAWA Hiroyuki 已提交
3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758
static int mem_cgroup_oom_register_event(struct cgroup *cgrp,
	struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
{
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
	struct mem_cgroup_eventfd_list *event;
	int type = MEMFILE_TYPE(cft->private);

	BUG_ON(type != _OOM_TYPE);
	event = kmalloc(sizeof(*event),	GFP_KERNEL);
	if (!event)
		return -ENOMEM;

	mutex_lock(&memcg_oom_mutex);

	event->eventfd = eventfd;
	list_add(&event->list, &memcg->oom_notify);

	/* already in OOM ? */
	if (atomic_read(&memcg->oom_lock))
		eventfd_signal(eventfd, 1);
	mutex_unlock(&memcg_oom_mutex);

	return 0;
}

3759
static void mem_cgroup_oom_unregister_event(struct cgroup *cgrp,
K
KAMEZAWA Hiroyuki 已提交
3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779
	struct cftype *cft, struct eventfd_ctx *eventfd)
{
	struct mem_cgroup *mem = mem_cgroup_from_cont(cgrp);
	struct mem_cgroup_eventfd_list *ev, *tmp;
	int type = MEMFILE_TYPE(cft->private);

	BUG_ON(type != _OOM_TYPE);

	mutex_lock(&memcg_oom_mutex);

	list_for_each_entry_safe(ev, tmp, &mem->oom_notify, list) {
		if (ev->eventfd == eventfd) {
			list_del(&ev->list);
			kfree(ev);
		}
	}

	mutex_unlock(&memcg_oom_mutex);
}

3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813
static int mem_cgroup_oom_control_read(struct cgroup *cgrp,
	struct cftype *cft,  struct cgroup_map_cb *cb)
{
	struct mem_cgroup *mem = mem_cgroup_from_cont(cgrp);

	cb->fill(cb, "oom_kill_disable", mem->oom_kill_disable);

	if (atomic_read(&mem->oom_lock))
		cb->fill(cb, "under_oom", 1);
	else
		cb->fill(cb, "under_oom", 0);
	return 0;
}

static int mem_cgroup_oom_control_write(struct cgroup *cgrp,
	struct cftype *cft, u64 val)
{
	struct mem_cgroup *mem = mem_cgroup_from_cont(cgrp);
	struct mem_cgroup *parent;

	/* cannot set to root cgroup and only 0 and 1 are allowed */
	if (!cgrp->parent || !((val == 0) || (val == 1)))
		return -EINVAL;

	parent = mem_cgroup_from_cont(cgrp->parent);

	cgroup_lock();
	/* oom-kill-disable is a flag for subhierarchy. */
	if ((parent->use_hierarchy) ||
	    (mem->use_hierarchy && !list_empty(&cgrp->children))) {
		cgroup_unlock();
		return -EINVAL;
	}
	mem->oom_kill_disable = val;
3814 3815
	if (!val)
		memcg_oom_recover(mem);
3816 3817 3818 3819
	cgroup_unlock();
	return 0;
}

B
Balbir Singh 已提交
3820 3821
static struct cftype mem_cgroup_files[] = {
	{
3822
		.name = "usage_in_bytes",
3823
		.private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
3824
		.read_u64 = mem_cgroup_read,
K
KAMEZAWA Hiroyuki 已提交
3825 3826
		.register_event = mem_cgroup_usage_register_event,
		.unregister_event = mem_cgroup_usage_unregister_event,
B
Balbir Singh 已提交
3827
	},
3828 3829
	{
		.name = "max_usage_in_bytes",
3830
		.private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
3831
		.trigger = mem_cgroup_reset,
3832 3833
		.read_u64 = mem_cgroup_read,
	},
B
Balbir Singh 已提交
3834
	{
3835
		.name = "limit_in_bytes",
3836
		.private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
3837
		.write_string = mem_cgroup_write,
3838
		.read_u64 = mem_cgroup_read,
B
Balbir Singh 已提交
3839
	},
3840 3841 3842 3843 3844 3845
	{
		.name = "soft_limit_in_bytes",
		.private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
		.write_string = mem_cgroup_write,
		.read_u64 = mem_cgroup_read,
	},
B
Balbir Singh 已提交
3846 3847
	{
		.name = "failcnt",
3848
		.private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
3849
		.trigger = mem_cgroup_reset,
3850
		.read_u64 = mem_cgroup_read,
B
Balbir Singh 已提交
3851
	},
3852 3853
	{
		.name = "stat",
3854
		.read_map = mem_control_stat_show,
3855
	},
3856 3857 3858 3859
	{
		.name = "force_empty",
		.trigger = mem_cgroup_force_empty_write,
	},
3860 3861 3862 3863 3864
	{
		.name = "use_hierarchy",
		.write_u64 = mem_cgroup_hierarchy_write,
		.read_u64 = mem_cgroup_hierarchy_read,
	},
K
KOSAKI Motohiro 已提交
3865 3866 3867 3868 3869
	{
		.name = "swappiness",
		.read_u64 = mem_cgroup_swappiness_read,
		.write_u64 = mem_cgroup_swappiness_write,
	},
3870 3871 3872 3873 3874
	{
		.name = "move_charge_at_immigrate",
		.read_u64 = mem_cgroup_move_charge_read,
		.write_u64 = mem_cgroup_move_charge_write,
	},
K
KAMEZAWA Hiroyuki 已提交
3875 3876
	{
		.name = "oom_control",
3877 3878
		.read_map = mem_cgroup_oom_control_read,
		.write_u64 = mem_cgroup_oom_control_write,
K
KAMEZAWA Hiroyuki 已提交
3879 3880 3881 3882
		.register_event = mem_cgroup_oom_register_event,
		.unregister_event = mem_cgroup_oom_unregister_event,
		.private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
	},
B
Balbir Singh 已提交
3883 3884
};

3885 3886 3887 3888 3889 3890
#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
static struct cftype memsw_cgroup_files[] = {
	{
		.name = "memsw.usage_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
		.read_u64 = mem_cgroup_read,
K
KAMEZAWA Hiroyuki 已提交
3891 3892
		.register_event = mem_cgroup_usage_register_event,
		.unregister_event = mem_cgroup_usage_unregister_event,
3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927
	},
	{
		.name = "memsw.max_usage_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
		.trigger = mem_cgroup_reset,
		.read_u64 = mem_cgroup_read,
	},
	{
		.name = "memsw.limit_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
		.write_string = mem_cgroup_write,
		.read_u64 = mem_cgroup_read,
	},
	{
		.name = "memsw.failcnt",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
		.trigger = mem_cgroup_reset,
		.read_u64 = mem_cgroup_read,
	},
};

static int register_memsw_files(struct cgroup *cont, struct cgroup_subsys *ss)
{
	if (!do_swap_account)
		return 0;
	return cgroup_add_files(cont, ss, memsw_cgroup_files,
				ARRAY_SIZE(memsw_cgroup_files));
};
#else
static int register_memsw_files(struct cgroup *cont, struct cgroup_subsys *ss)
{
	return 0;
}
#endif

3928 3929 3930
static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *mem, int node)
{
	struct mem_cgroup_per_node *pn;
3931
	struct mem_cgroup_per_zone *mz;
3932
	enum lru_list l;
3933
	int zone, tmp = node;
3934 3935 3936 3937 3938 3939 3940 3941
	/*
	 * This routine is called against possible nodes.
	 * But it's BUG to call kmalloc() against offline node.
	 *
	 * TODO: this routine can waste much memory for nodes which will
	 *       never be onlined. It's better to use memory hotplug callback
	 *       function.
	 */
3942 3943 3944
	if (!node_state(node, N_NORMAL_MEMORY))
		tmp = -1;
	pn = kmalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
3945 3946
	if (!pn)
		return 1;
3947

3948 3949
	mem->info.nodeinfo[node] = pn;
	memset(pn, 0, sizeof(*pn));
3950 3951 3952

	for (zone = 0; zone < MAX_NR_ZONES; zone++) {
		mz = &pn->zoneinfo[zone];
3953 3954
		for_each_lru(l)
			INIT_LIST_HEAD(&mz->lists[l]);
3955
		mz->usage_in_excess = 0;
3956 3957
		mz->on_tree = false;
		mz->mem = mem;
3958
	}
3959 3960 3961
	return 0;
}

3962 3963 3964 3965 3966
static void free_mem_cgroup_per_zone_info(struct mem_cgroup *mem, int node)
{
	kfree(mem->info.nodeinfo[node]);
}

3967 3968 3969
static struct mem_cgroup *mem_cgroup_alloc(void)
{
	struct mem_cgroup *mem;
3970
	int size = sizeof(struct mem_cgroup);
3971

3972
	/* Can be very big if MAX_NUMNODES is very big */
3973 3974
	if (size < PAGE_SIZE)
		mem = kmalloc(size, GFP_KERNEL);
3975
	else
3976
		mem = vmalloc(size);
3977

3978 3979 3980 3981
	if (!mem)
		return NULL;

	memset(mem, 0, size);
3982 3983 3984 3985 3986 3987 3988 3989
	mem->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
	if (!mem->stat) {
		if (size < PAGE_SIZE)
			kfree(mem);
		else
			vfree(mem);
		mem = NULL;
	}
3990 3991 3992
	return mem;
}

3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003
/*
 * At destroying mem_cgroup, references from swap_cgroup can remain.
 * (scanning all at force_empty is too costly...)
 *
 * Instead of clearing all references at force_empty, we remember
 * the number of reference from swap_cgroup and free mem_cgroup when
 * it goes down to 0.
 *
 * Removal of cgroup itself succeeds regardless of refs from swap.
 */

4004
static void __mem_cgroup_free(struct mem_cgroup *mem)
4005
{
K
KAMEZAWA Hiroyuki 已提交
4006 4007
	int node;

4008
	mem_cgroup_remove_from_trees(mem);
K
KAMEZAWA Hiroyuki 已提交
4009 4010
	free_css_id(&mem_cgroup_subsys, &mem->css);

K
KAMEZAWA Hiroyuki 已提交
4011 4012 4013
	for_each_node_state(node, N_POSSIBLE)
		free_mem_cgroup_per_zone_info(mem, node);

4014 4015
	free_percpu(mem->stat);
	if (sizeof(struct mem_cgroup) < PAGE_SIZE)
4016 4017 4018 4019 4020
		kfree(mem);
	else
		vfree(mem);
}

4021 4022 4023 4024 4025
static void mem_cgroup_get(struct mem_cgroup *mem)
{
	atomic_inc(&mem->refcnt);
}

4026
static void __mem_cgroup_put(struct mem_cgroup *mem, int count)
4027
{
4028
	if (atomic_sub_and_test(count, &mem->refcnt)) {
4029
		struct mem_cgroup *parent = parent_mem_cgroup(mem);
4030
		__mem_cgroup_free(mem);
4031 4032 4033
		if (parent)
			mem_cgroup_put(parent);
	}
4034 4035
}

4036 4037 4038 4039 4040
static void mem_cgroup_put(struct mem_cgroup *mem)
{
	__mem_cgroup_put(mem, 1);
}

4041 4042 4043 4044 4045 4046 4047 4048 4049
/*
 * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
 */
static struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *mem)
{
	if (!mem->res.parent)
		return NULL;
	return mem_cgroup_from_res_counter(mem->res.parent, res);
}
4050

4051 4052 4053
#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
static void __init enable_swap_cgroup(void)
{
4054
	if (!mem_cgroup_disabled() && really_do_swap_account)
4055 4056 4057 4058 4059 4060 4061 4062
		do_swap_account = 1;
}
#else
static void __init enable_swap_cgroup(void)
{
}
#endif

4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087
static int mem_cgroup_soft_limit_tree_init(void)
{
	struct mem_cgroup_tree_per_node *rtpn;
	struct mem_cgroup_tree_per_zone *rtpz;
	int tmp, node, zone;

	for_each_node_state(node, N_POSSIBLE) {
		tmp = node;
		if (!node_state(node, N_NORMAL_MEMORY))
			tmp = -1;
		rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, tmp);
		if (!rtpn)
			return 1;

		soft_limit_tree.rb_tree_per_node[node] = rtpn;

		for (zone = 0; zone < MAX_NR_ZONES; zone++) {
			rtpz = &rtpn->rb_tree_per_zone[zone];
			rtpz->rb_root = RB_ROOT;
			spin_lock_init(&rtpz->lock);
		}
	}
	return 0;
}

L
Li Zefan 已提交
4088
static struct cgroup_subsys_state * __ref
B
Balbir Singh 已提交
4089 4090
mem_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cont)
{
4091
	struct mem_cgroup *mem, *parent;
K
KAMEZAWA Hiroyuki 已提交
4092
	long error = -ENOMEM;
4093
	int node;
B
Balbir Singh 已提交
4094

4095 4096
	mem = mem_cgroup_alloc();
	if (!mem)
K
KAMEZAWA Hiroyuki 已提交
4097
		return ERR_PTR(error);
4098

4099 4100 4101
	for_each_node_state(node, N_POSSIBLE)
		if (alloc_mem_cgroup_per_zone_info(mem, node))
			goto free_out;
4102

4103
	/* root ? */
4104
	if (cont->parent == NULL) {
4105
		int cpu;
4106
		enable_swap_cgroup();
4107
		parent = NULL;
4108
		root_mem_cgroup = mem;
4109 4110
		if (mem_cgroup_soft_limit_tree_init())
			goto free_out;
4111 4112 4113 4114 4115 4116
		for_each_possible_cpu(cpu) {
			struct memcg_stock_pcp *stock =
						&per_cpu(memcg_stock, cpu);
			INIT_WORK(&stock->work, drain_local_stock);
		}
		hotcpu_notifier(memcg_stock_cpu_callback, 0);
4117
	} else {
4118
		parent = mem_cgroup_from_cont(cont->parent);
4119
		mem->use_hierarchy = parent->use_hierarchy;
4120
		mem->oom_kill_disable = parent->oom_kill_disable;
4121
	}
4122

4123 4124 4125
	if (parent && parent->use_hierarchy) {
		res_counter_init(&mem->res, &parent->res);
		res_counter_init(&mem->memsw, &parent->memsw);
4126 4127 4128 4129 4130 4131 4132
		/*
		 * We increment refcnt of the parent to ensure that we can
		 * safely access it on res_counter_charge/uncharge.
		 * This refcnt will be decremented when freeing this
		 * mem_cgroup(see mem_cgroup_put).
		 */
		mem_cgroup_get(parent);
4133 4134 4135 4136
	} else {
		res_counter_init(&mem->res, NULL);
		res_counter_init(&mem->memsw, NULL);
	}
K
KAMEZAWA Hiroyuki 已提交
4137
	mem->last_scanned_child = 0;
K
KOSAKI Motohiro 已提交
4138
	spin_lock_init(&mem->reclaim_param_lock);
K
KAMEZAWA Hiroyuki 已提交
4139
	INIT_LIST_HEAD(&mem->oom_notify);
4140

K
KOSAKI Motohiro 已提交
4141 4142
	if (parent)
		mem->swappiness = get_swappiness(parent);
4143
	atomic_set(&mem->refcnt, 1);
4144
	mem->move_charge_at_immigrate = 0;
4145
	mutex_init(&mem->thresholds_lock);
B
Balbir Singh 已提交
4146
	return &mem->css;
4147
free_out:
4148
	__mem_cgroup_free(mem);
4149
	root_mem_cgroup = NULL;
K
KAMEZAWA Hiroyuki 已提交
4150
	return ERR_PTR(error);
B
Balbir Singh 已提交
4151 4152
}

4153
static int mem_cgroup_pre_destroy(struct cgroup_subsys *ss,
4154 4155 4156
					struct cgroup *cont)
{
	struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
4157 4158

	return mem_cgroup_force_empty(mem, false);
4159 4160
}

B
Balbir Singh 已提交
4161 4162 4163
static void mem_cgroup_destroy(struct cgroup_subsys *ss,
				struct cgroup *cont)
{
4164 4165 4166
	struct mem_cgroup *mem = mem_cgroup_from_cont(cont);

	mem_cgroup_put(mem);
B
Balbir Singh 已提交
4167 4168 4169 4170 4171
}

static int mem_cgroup_populate(struct cgroup_subsys *ss,
				struct cgroup *cont)
{
4172 4173 4174 4175 4176 4177 4178 4179
	int ret;

	ret = cgroup_add_files(cont, ss, mem_cgroup_files,
				ARRAY_SIZE(mem_cgroup_files));

	if (!ret)
		ret = register_memsw_files(cont, ss);
	return ret;
B
Balbir Singh 已提交
4180 4181
}

4182
#ifdef CONFIG_MMU
4183
/* Handlers for move charge at task migration. */
4184 4185
#define PRECHARGE_COUNT_AT_ONCE	256
static int mem_cgroup_do_precharge(unsigned long count)
4186
{
4187 4188
	int ret = 0;
	int batch_count = PRECHARGE_COUNT_AT_ONCE;
4189 4190
	struct mem_cgroup *mem = mc.to;

4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228
	if (mem_cgroup_is_root(mem)) {
		mc.precharge += count;
		/* we don't need css_get for root */
		return ret;
	}
	/* try to charge at once */
	if (count > 1) {
		struct res_counter *dummy;
		/*
		 * "mem" cannot be under rmdir() because we've already checked
		 * by cgroup_lock_live_cgroup() that it is not removed and we
		 * are still under the same cgroup_mutex. So we can postpone
		 * css_get().
		 */
		if (res_counter_charge(&mem->res, PAGE_SIZE * count, &dummy))
			goto one_by_one;
		if (do_swap_account && res_counter_charge(&mem->memsw,
						PAGE_SIZE * count, &dummy)) {
			res_counter_uncharge(&mem->res, PAGE_SIZE * count);
			goto one_by_one;
		}
		mc.precharge += count;
		VM_BUG_ON(test_bit(CSS_ROOT, &mem->css.flags));
		WARN_ON_ONCE(count > INT_MAX);
		__css_get(&mem->css, (int)count);
		return ret;
	}
one_by_one:
	/* fall back to one by one charge */
	while (count--) {
		if (signal_pending(current)) {
			ret = -EINTR;
			break;
		}
		if (!batch_count--) {
			batch_count = PRECHARGE_COUNT_AT_ONCE;
			cond_resched();
		}
4229
		ret = __mem_cgroup_try_charge(NULL, GFP_KERNEL, &mem, false);
4230 4231 4232 4233 4234
		if (ret || !mem)
			/* mem_cgroup_clear_mc() will do uncharge later */
			return -ENOMEM;
		mc.precharge++;
	}
4235 4236 4237 4238 4239 4240 4241 4242
	return ret;
}

/**
 * is_target_pte_for_mc - check a pte whether it is valid for move charge
 * @vma: the vma the pte to be checked belongs
 * @addr: the address corresponding to the pte to be checked
 * @ptent: the pte to be checked
4243
 * @target: the pointer the target page or swap ent will be stored(can be NULL)
4244 4245 4246 4247 4248 4249
 *
 * Returns
 *   0(MC_TARGET_NONE): if the pte is not a target for move charge.
 *   1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
 *     move charge. if @target is not NULL, the page is stored in target->page
 *     with extra refcnt got(Callers should handle it).
4250 4251 4252
 *   2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
 *     target for charge migration. if @target is not NULL, the entry is stored
 *     in target->ent.
4253 4254 4255 4256 4257
 *
 * Called with pte lock held.
 */
union mc_target {
	struct page	*page;
4258
	swp_entry_t	ent;
4259 4260 4261 4262 4263
};

enum mc_target_type {
	MC_TARGET_NONE,	/* not used */
	MC_TARGET_PAGE,
4264
	MC_TARGET_SWAP,
4265 4266
};

D
Daisuke Nishimura 已提交
4267 4268
static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
						unsigned long addr, pte_t ptent)
4269
{
D
Daisuke Nishimura 已提交
4270
	struct page *page = vm_normal_page(vma, addr, ptent);
4271

D
Daisuke Nishimura 已提交
4272 4273 4274 4275 4276 4277
	if (!page || !page_mapped(page))
		return NULL;
	if (PageAnon(page)) {
		/* we don't move shared anon */
		if (!move_anon() || page_mapcount(page) > 2)
			return NULL;
4278 4279
	} else if (!move_file())
		/* we ignore mapcount for file pages */
D
Daisuke Nishimura 已提交
4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297
		return NULL;
	if (!get_page_unless_zero(page))
		return NULL;

	return page;
}

static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
			unsigned long addr, pte_t ptent, swp_entry_t *entry)
{
	int usage_count;
	struct page *page = NULL;
	swp_entry_t ent = pte_to_swp_entry(ptent);

	if (!move_anon() || non_swap_entry(ent))
		return NULL;
	usage_count = mem_cgroup_count_swap_user(ent, &page);
	if (usage_count > 1) { /* we don't move shared anon */
4298 4299
		if (page)
			put_page(page);
D
Daisuke Nishimura 已提交
4300
		return NULL;
4301
	}
D
Daisuke Nishimura 已提交
4302 4303 4304 4305 4306 4307
	if (do_swap_account)
		entry->val = ent.val;

	return page;
}

4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340
static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
			unsigned long addr, pte_t ptent, swp_entry_t *entry)
{
	struct page *page = NULL;
	struct inode *inode;
	struct address_space *mapping;
	pgoff_t pgoff;

	if (!vma->vm_file) /* anonymous vma */
		return NULL;
	if (!move_file())
		return NULL;

	inode = vma->vm_file->f_path.dentry->d_inode;
	mapping = vma->vm_file->f_mapping;
	if (pte_none(ptent))
		pgoff = linear_page_index(vma, addr);
	else /* pte_file(ptent) is true */
		pgoff = pte_to_pgoff(ptent);

	/* page is moved even if it's not RSS of this task(page-faulted). */
	if (!mapping_cap_swap_backed(mapping)) { /* normal file */
		page = find_get_page(mapping, pgoff);
	} else { /* shmem/tmpfs file. we should take account of swap too. */
		swp_entry_t ent;
		mem_cgroup_get_shmem_target(inode, pgoff, &page, &ent);
		if (do_swap_account)
			entry->val = ent.val;
	}

	return page;
}

D
Daisuke Nishimura 已提交
4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352
static int is_target_pte_for_mc(struct vm_area_struct *vma,
		unsigned long addr, pte_t ptent, union mc_target *target)
{
	struct page *page = NULL;
	struct page_cgroup *pc;
	int ret = 0;
	swp_entry_t ent = { .val = 0 };

	if (pte_present(ptent))
		page = mc_handle_present_pte(vma, addr, ptent);
	else if (is_swap_pte(ptent))
		page = mc_handle_swap_pte(vma, addr, ptent, &ent);
4353 4354
	else if (pte_none(ptent) || pte_file(ptent))
		page = mc_handle_file_pte(vma, addr, ptent, &ent);
D
Daisuke Nishimura 已提交
4355 4356 4357

	if (!page && !ent.val)
		return 0;
4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372
	if (page) {
		pc = lookup_page_cgroup(page);
		/*
		 * Do only loose check w/o page_cgroup lock.
		 * mem_cgroup_move_account() checks the pc is valid or not under
		 * the lock.
		 */
		if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
			ret = MC_TARGET_PAGE;
			if (target)
				target->page = page;
		}
		if (!ret || !target)
			put_page(page);
	}
D
Daisuke Nishimura 已提交
4373 4374
	/* There is a swap entry and a page doesn't exist or isn't charged */
	if (ent.val && !ret &&
4375 4376 4377 4378
			css_id(&mc.from->css) == lookup_swap_cgroup(ent)) {
		ret = MC_TARGET_SWAP;
		if (target)
			target->ent = ent;
4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397
	}
	return ret;
}

static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
					unsigned long addr, unsigned long end,
					struct mm_walk *walk)
{
	struct vm_area_struct *vma = walk->private;
	pte_t *pte;
	spinlock_t *ptl;

	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
	for (; addr != end; pte++, addr += PAGE_SIZE)
		if (is_target_pte_for_mc(vma, addr, *pte, NULL))
			mc.precharge++;	/* increment precharge temporarily */
	pte_unmap_unlock(pte - 1, ptl);
	cond_resched();

4398 4399 4400
	return 0;
}

4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427
static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
{
	unsigned long precharge;
	struct vm_area_struct *vma;

	down_read(&mm->mmap_sem);
	for (vma = mm->mmap; vma; vma = vma->vm_next) {
		struct mm_walk mem_cgroup_count_precharge_walk = {
			.pmd_entry = mem_cgroup_count_precharge_pte_range,
			.mm = mm,
			.private = vma,
		};
		if (is_vm_hugetlb_page(vma))
			continue;
		walk_page_range(vma->vm_start, vma->vm_end,
					&mem_cgroup_count_precharge_walk);
	}
	up_read(&mm->mmap_sem);

	precharge = mc.precharge;
	mc.precharge = 0;

	return precharge;
}

static int mem_cgroup_precharge_mc(struct mm_struct *mm)
{
4428
	return mem_cgroup_do_precharge(mem_cgroup_count_precharge(mm));
4429 4430 4431 4432
}

static void mem_cgroup_clear_mc(void)
{
4433 4434 4435
	struct mem_cgroup *from = mc.from;
	struct mem_cgroup *to = mc.to;

4436
	/* we must uncharge all the leftover precharges from mc.to */
4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447
	if (mc.precharge) {
		__mem_cgroup_cancel_charge(mc.to, mc.precharge);
		mc.precharge = 0;
	}
	/*
	 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
	 * we must uncharge here.
	 */
	if (mc.moved_charge) {
		__mem_cgroup_cancel_charge(mc.from, mc.moved_charge);
		mc.moved_charge = 0;
4448
	}
4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471
	/* we must fixup refcnts and charges */
	if (mc.moved_swap) {
		WARN_ON_ONCE(mc.moved_swap > INT_MAX);
		/* uncharge swap account from the old cgroup */
		if (!mem_cgroup_is_root(mc.from))
			res_counter_uncharge(&mc.from->memsw,
						PAGE_SIZE * mc.moved_swap);
		__mem_cgroup_put(mc.from, mc.moved_swap);

		if (!mem_cgroup_is_root(mc.to)) {
			/*
			 * we charged both to->res and to->memsw, so we should
			 * uncharge to->res.
			 */
			res_counter_uncharge(&mc.to->res,
						PAGE_SIZE * mc.moved_swap);
			VM_BUG_ON(test_bit(CSS_ROOT, &mc.to->css.flags));
			__css_put(&mc.to->css, mc.moved_swap);
		}
		/* we've already done mem_cgroup_get(mc.to) */

		mc.moved_swap = 0;
	}
4472
	spin_lock(&mc.lock);
4473 4474
	mc.from = NULL;
	mc.to = NULL;
4475
	mc.moving_task = NULL;
4476 4477 4478
	spin_unlock(&mc.lock);
	memcg_oom_recover(from);
	memcg_oom_recover(to);
4479
	wake_up_all(&mc.waitq);
4480 4481
}

4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499
static int mem_cgroup_can_attach(struct cgroup_subsys *ss,
				struct cgroup *cgroup,
				struct task_struct *p,
				bool threadgroup)
{
	int ret = 0;
	struct mem_cgroup *mem = mem_cgroup_from_cont(cgroup);

	if (mem->move_charge_at_immigrate) {
		struct mm_struct *mm;
		struct mem_cgroup *from = mem_cgroup_from_task(p);

		VM_BUG_ON(from == mem);

		mm = get_task_mm(p);
		if (!mm)
			return 0;
		/* We move charges only when we move a owner of the mm */
4500 4501 4502 4503
		if (mm->owner == p) {
			VM_BUG_ON(mc.from);
			VM_BUG_ON(mc.to);
			VM_BUG_ON(mc.precharge);
4504
			VM_BUG_ON(mc.moved_charge);
4505
			VM_BUG_ON(mc.moved_swap);
4506
			VM_BUG_ON(mc.moving_task);
4507
			spin_lock(&mc.lock);
4508 4509 4510
			mc.from = from;
			mc.to = mem;
			mc.precharge = 0;
4511
			mc.moved_charge = 0;
4512
			mc.moved_swap = 0;
4513
			mc.moving_task = current;
4514
			spin_unlock(&mc.lock);
4515 4516 4517 4518 4519

			ret = mem_cgroup_precharge_mc(mm);
			if (ret)
				mem_cgroup_clear_mc();
		}
4520 4521 4522 4523 4524 4525 4526 4527 4528 4529
		mmput(mm);
	}
	return ret;
}

static void mem_cgroup_cancel_attach(struct cgroup_subsys *ss,
				struct cgroup *cgroup,
				struct task_struct *p,
				bool threadgroup)
{
4530
	mem_cgroup_clear_mc();
4531 4532
}

4533 4534 4535
static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
				unsigned long addr, unsigned long end,
				struct mm_walk *walk)
4536
{
4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549
	int ret = 0;
	struct vm_area_struct *vma = walk->private;
	pte_t *pte;
	spinlock_t *ptl;

retry:
	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
	for (; addr != end; addr += PAGE_SIZE) {
		pte_t ptent = *(pte++);
		union mc_target target;
		int type;
		struct page *page;
		struct page_cgroup *pc;
4550
		swp_entry_t ent;
4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561

		if (!mc.precharge)
			break;

		type = is_target_pte_for_mc(vma, addr, ptent, &target);
		switch (type) {
		case MC_TARGET_PAGE:
			page = target.page;
			if (isolate_lru_page(page))
				goto put;
			pc = lookup_page_cgroup(page);
4562 4563
			if (!mem_cgroup_move_account(pc,
						mc.from, mc.to, false)) {
4564
				mc.precharge--;
4565 4566
				/* we uncharge from mc.from later. */
				mc.moved_charge++;
4567 4568 4569 4570 4571
			}
			putback_lru_page(page);
put:			/* is_target_pte_for_mc() gets the page */
			put_page(page);
			break;
4572 4573
		case MC_TARGET_SWAP:
			ent = target.ent;
4574 4575
			if (!mem_cgroup_move_swap_account(ent,
						mc.from, mc.to, false)) {
4576
				mc.precharge--;
4577 4578 4579
				/* we fixup refcnts and charges later. */
				mc.moved_swap++;
			}
4580
			break;
4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594
		default:
			break;
		}
	}
	pte_unmap_unlock(pte - 1, ptl);
	cond_resched();

	if (addr != end) {
		/*
		 * We have consumed all precharges we got in can_attach().
		 * We try charge one by one, but don't do any additional
		 * charges to mc.to if we have failed in charge once in attach()
		 * phase.
		 */
4595
		ret = mem_cgroup_do_precharge(1);
4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627
		if (!ret)
			goto retry;
	}

	return ret;
}

static void mem_cgroup_move_charge(struct mm_struct *mm)
{
	struct vm_area_struct *vma;

	lru_add_drain_all();
	down_read(&mm->mmap_sem);
	for (vma = mm->mmap; vma; vma = vma->vm_next) {
		int ret;
		struct mm_walk mem_cgroup_move_charge_walk = {
			.pmd_entry = mem_cgroup_move_charge_pte_range,
			.mm = mm,
			.private = vma,
		};
		if (is_vm_hugetlb_page(vma))
			continue;
		ret = walk_page_range(vma->vm_start, vma->vm_end,
						&mem_cgroup_move_charge_walk);
		if (ret)
			/*
			 * means we have consumed all precharges and failed in
			 * doing additional charge. Just abandon here.
			 */
			break;
	}
	up_read(&mm->mmap_sem);
4628 4629
}

B
Balbir Singh 已提交
4630 4631 4632
static void mem_cgroup_move_task(struct cgroup_subsys *ss,
				struct cgroup *cont,
				struct cgroup *old_cont,
4633 4634
				struct task_struct *p,
				bool threadgroup)
B
Balbir Singh 已提交
4635
{
4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647
	struct mm_struct *mm;

	if (!mc.to)
		/* no need to move charge */
		return;

	mm = get_task_mm(p);
	if (mm) {
		mem_cgroup_move_charge(mm);
		mmput(mm);
	}
	mem_cgroup_clear_mc();
B
Balbir Singh 已提交
4648
}
4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670
#else	/* !CONFIG_MMU */
static int mem_cgroup_can_attach(struct cgroup_subsys *ss,
				struct cgroup *cgroup,
				struct task_struct *p,
				bool threadgroup)
{
	return 0;
}
static void mem_cgroup_cancel_attach(struct cgroup_subsys *ss,
				struct cgroup *cgroup,
				struct task_struct *p,
				bool threadgroup)
{
}
static void mem_cgroup_move_task(struct cgroup_subsys *ss,
				struct cgroup *cont,
				struct cgroup *old_cont,
				struct task_struct *p,
				bool threadgroup)
{
}
#endif
B
Balbir Singh 已提交
4671

B
Balbir Singh 已提交
4672 4673 4674 4675
struct cgroup_subsys mem_cgroup_subsys = {
	.name = "memory",
	.subsys_id = mem_cgroup_subsys_id,
	.create = mem_cgroup_create,
4676
	.pre_destroy = mem_cgroup_pre_destroy,
B
Balbir Singh 已提交
4677 4678
	.destroy = mem_cgroup_destroy,
	.populate = mem_cgroup_populate,
4679 4680
	.can_attach = mem_cgroup_can_attach,
	.cancel_attach = mem_cgroup_cancel_attach,
B
Balbir Singh 已提交
4681
	.attach = mem_cgroup_move_task,
4682
	.early_init = 0,
K
KAMEZAWA Hiroyuki 已提交
4683
	.use_id = 1,
B
Balbir Singh 已提交
4684
};
4685 4686 4687 4688 4689 4690 4691 4692 4693 4694

#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP

static int __init disable_swap_account(char *s)
{
	really_do_swap_account = 0;
	return 1;
}
__setup("noswapaccount", disable_swap_account);
#endif