vmscan.c 93.4 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
/*
 *  linux/mm/vmscan.c
 *
 *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
 *
 *  Swap reorganised 29.12.95, Stephen Tweedie.
 *  kswapd added: 7.1.96  sct
 *  Removed kswapd_ctl limits, and swap out as many pages as needed
 *  to bring the system back to freepages.high: 2.4.97, Rik van Riel.
 *  Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
 *  Multiqueue VM started 5.8.00, Rik van Riel.
 */

#include <linux/mm.h>
#include <linux/module.h>
16
#include <linux/gfp.h>
L
Linus Torvalds 已提交
17 18 19 20 21
#include <linux/kernel_stat.h>
#include <linux/swap.h>
#include <linux/pagemap.h>
#include <linux/init.h>
#include <linux/highmem.h>
22
#include <linux/vmstat.h>
L
Linus Torvalds 已提交
23 24 25 26 27 28 29 30 31 32 33
#include <linux/file.h>
#include <linux/writeback.h>
#include <linux/blkdev.h>
#include <linux/buffer_head.h>	/* for try_to_release_page(),
					buffer_heads_over_limit */
#include <linux/mm_inline.h>
#include <linux/backing-dev.h>
#include <linux/rmap.h>
#include <linux/topology.h>
#include <linux/cpu.h>
#include <linux/cpuset.h>
34
#include <linux/compaction.h>
L
Linus Torvalds 已提交
35 36
#include <linux/notifier.h>
#include <linux/rwsem.h>
37
#include <linux/delay.h>
38
#include <linux/kthread.h>
39
#include <linux/freezer.h>
40
#include <linux/memcontrol.h>
41
#include <linux/delayacct.h>
42
#include <linux/sysctl.h>
43
#include <linux/oom.h>
44
#include <linux/prefetch.h>
L
Linus Torvalds 已提交
45 46 47 48 49 50

#include <asm/tlbflush.h>
#include <asm/div64.h>

#include <linux/swapops.h>

51 52
#include "internal.h"

53 54 55
#define CREATE_TRACE_POINTS
#include <trace/events/vmscan.h>

L
Linus Torvalds 已提交
56 57 58 59
struct scan_control {
	/* Incremented by the number of inactive pages that were scanned */
	unsigned long nr_scanned;

60 61 62
	/* Number of pages freed so far during a call to shrink_zones() */
	unsigned long nr_reclaimed;

63 64 65
	/* How many pages shrink_list() should reclaim */
	unsigned long nr_to_reclaim;

66 67
	unsigned long hibernation_mode;

L
Linus Torvalds 已提交
68
	/* This context's GFP mask */
A
Al Viro 已提交
69
	gfp_t gfp_mask;
L
Linus Torvalds 已提交
70 71 72

	int may_writepage;

73 74
	/* Can mapped pages be reclaimed? */
	int may_unmap;
75

76 77 78
	/* Can pages be swapped as part of reclaim? */
	int may_swap;

A
Andy Whitcroft 已提交
79
	int order;
80

81 82 83
	/* Scan (total_size >> priority) pages at once */
	int priority;

84 85 86 87 88
	/*
	 * The memory cgroup that hit its limit and as a result is the
	 * primary target of this reclaim invocation.
	 */
	struct mem_cgroup *target_mem_cgroup;
89

90 91 92 93 94
	/*
	 * Nodemask of nodes allowed by the caller. If NULL, all nodes
	 * are scanned.
	 */
	nodemask_t	*nodemask;
L
Linus Torvalds 已提交
95 96
};

97 98 99 100 101
struct mem_cgroup_zone {
	struct mem_cgroup *mem_cgroup;
	struct zone *zone;
};

L
Linus Torvalds 已提交
102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135
#define lru_to_page(_head) (list_entry((_head)->prev, struct page, lru))

#ifdef ARCH_HAS_PREFETCH
#define prefetch_prev_lru_page(_page, _base, _field)			\
	do {								\
		if ((_page)->lru.prev != _base) {			\
			struct page *prev;				\
									\
			prev = lru_to_page(&(_page->lru));		\
			prefetch(&prev->_field);			\
		}							\
	} while (0)
#else
#define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
#endif

#ifdef ARCH_HAS_PREFETCHW
#define prefetchw_prev_lru_page(_page, _base, _field)			\
	do {								\
		if ((_page)->lru.prev != _base) {			\
			struct page *prev;				\
									\
			prev = lru_to_page(&(_page->lru));		\
			prefetchw(&prev->_field);			\
		}							\
	} while (0)
#else
#define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
#endif

/*
 * From 0 .. 100.  Higher means more swappy.
 */
int vm_swappiness = 60;
136
long vm_total_pages;	/* The total number of pages which the VM controls */
L
Linus Torvalds 已提交
137 138 139 140

static LIST_HEAD(shrinker_list);
static DECLARE_RWSEM(shrinker_rwsem);

141
#ifdef CONFIG_CGROUP_MEM_RES_CTLR
142 143
static bool global_reclaim(struct scan_control *sc)
{
144
	return !sc->target_mem_cgroup;
145
}
146
#else
147 148 149 150
static bool global_reclaim(struct scan_control *sc)
{
	return true;
}
151 152
#endif

153
static unsigned long get_lruvec_size(struct lruvec *lruvec, enum lru_list lru)
154
{
155
	if (!mem_cgroup_disabled())
156
		return mem_cgroup_get_lruvec_size(lruvec, lru);
157

158
	return zone_page_state(lruvec_zone(lruvec), NR_LRU_BASE + lru);
159 160
}

L
Linus Torvalds 已提交
161 162 163
/*
 * Add a shrinker callback to be called from the vm
 */
164
void register_shrinker(struct shrinker *shrinker)
L
Linus Torvalds 已提交
165
{
166
	atomic_long_set(&shrinker->nr_in_batch, 0);
167 168 169
	down_write(&shrinker_rwsem);
	list_add_tail(&shrinker->list, &shrinker_list);
	up_write(&shrinker_rwsem);
L
Linus Torvalds 已提交
170
}
171
EXPORT_SYMBOL(register_shrinker);
L
Linus Torvalds 已提交
172 173 174 175

/*
 * Remove one
 */
176
void unregister_shrinker(struct shrinker *shrinker)
L
Linus Torvalds 已提交
177 178 179 180 181
{
	down_write(&shrinker_rwsem);
	list_del(&shrinker->list);
	up_write(&shrinker_rwsem);
}
182
EXPORT_SYMBOL(unregister_shrinker);
L
Linus Torvalds 已提交
183

184 185 186 187 188 189 190 191
static inline int do_shrinker_shrink(struct shrinker *shrinker,
				     struct shrink_control *sc,
				     unsigned long nr_to_scan)
{
	sc->nr_to_scan = nr_to_scan;
	return (*shrinker->shrink)(shrinker, sc);
}

L
Linus Torvalds 已提交
192 193 194 195 196 197 198 199 200
#define SHRINK_BATCH 128
/*
 * Call the shrink functions to age shrinkable caches
 *
 * Here we assume it costs one seek to replace a lru page and that it also
 * takes a seek to recreate a cache object.  With this in mind we age equal
 * percentages of the lru and ageable caches.  This should balance the seeks
 * generated by these structures.
 *
S
Simon Arlott 已提交
201
 * If the vm encountered mapped pages on the LRU it increase the pressure on
L
Linus Torvalds 已提交
202 203 204 205 206 207 208
 * slab to avoid swapping.
 *
 * We do weird things to avoid (scanned*seeks*entries) overflowing 32 bits.
 *
 * `lru_pages' represents the number of on-LRU pages in all the zones which
 * are eligible for the caller's allocation attempt.  It is used for balancing
 * slab reclaim versus page reclaim.
209 210
 *
 * Returns the number of slab objects which we shrunk.
L
Linus Torvalds 已提交
211
 */
212
unsigned long shrink_slab(struct shrink_control *shrink,
213
			  unsigned long nr_pages_scanned,
214
			  unsigned long lru_pages)
L
Linus Torvalds 已提交
215 216
{
	struct shrinker *shrinker;
217
	unsigned long ret = 0;
L
Linus Torvalds 已提交
218

219 220
	if (nr_pages_scanned == 0)
		nr_pages_scanned = SWAP_CLUSTER_MAX;
L
Linus Torvalds 已提交
221

222 223 224 225 226
	if (!down_read_trylock(&shrinker_rwsem)) {
		/* Assume we'll be able to shrink next time */
		ret = 1;
		goto out;
	}
L
Linus Torvalds 已提交
227 228 229

	list_for_each_entry(shrinker, &shrinker_list, list) {
		unsigned long long delta;
230 231
		long total_scan;
		long max_pass;
232
		int shrink_ret = 0;
233 234
		long nr;
		long new_nr;
235 236
		long batch_size = shrinker->batch ? shrinker->batch
						  : SHRINK_BATCH;
L
Linus Torvalds 已提交
237

238 239 240 241
		max_pass = do_shrinker_shrink(shrinker, shrink, 0);
		if (max_pass <= 0)
			continue;

242 243 244 245 246
		/*
		 * copy the current shrinker scan count into a local variable
		 * and zero it so that other concurrent shrinker invocations
		 * don't also do this scanning work.
		 */
247
		nr = atomic_long_xchg(&shrinker->nr_in_batch, 0);
248 249

		total_scan = nr;
250
		delta = (4 * nr_pages_scanned) / shrinker->seeks;
251
		delta *= max_pass;
L
Linus Torvalds 已提交
252
		do_div(delta, lru_pages + 1);
253 254
		total_scan += delta;
		if (total_scan < 0) {
255 256
			printk(KERN_ERR "shrink_slab: %pF negative objects to "
			       "delete nr=%ld\n",
257 258
			       shrinker->shrink, total_scan);
			total_scan = max_pass;
259 260
		}

261 262 263 264 265 266 267 268 269 270 271 272 273 274 275
		/*
		 * We need to avoid excessive windup on filesystem shrinkers
		 * due to large numbers of GFP_NOFS allocations causing the
		 * shrinkers to return -1 all the time. This results in a large
		 * nr being built up so when a shrink that can do some work
		 * comes along it empties the entire cache due to nr >>>
		 * max_pass.  This is bad for sustaining a working set in
		 * memory.
		 *
		 * Hence only allow the shrinker to scan the entire cache when
		 * a large delta change is calculated directly.
		 */
		if (delta < max_pass / 4)
			total_scan = min(total_scan, max_pass / 2);

276 277 278 279 280
		/*
		 * Avoid risking looping forever due to too large nr value:
		 * never try to free more than twice the estimate number of
		 * freeable entries.
		 */
281 282
		if (total_scan > max_pass * 2)
			total_scan = max_pass * 2;
L
Linus Torvalds 已提交
283

284
		trace_mm_shrink_slab_start(shrinker, shrink, nr,
285 286 287
					nr_pages_scanned, lru_pages,
					max_pass, delta, total_scan);

288
		while (total_scan >= batch_size) {
289
			int nr_before;
L
Linus Torvalds 已提交
290

291 292
			nr_before = do_shrinker_shrink(shrinker, shrink, 0);
			shrink_ret = do_shrinker_shrink(shrinker, shrink,
293
							batch_size);
L
Linus Torvalds 已提交
294 295
			if (shrink_ret == -1)
				break;
296 297
			if (shrink_ret < nr_before)
				ret += nr_before - shrink_ret;
298 299
			count_vm_events(SLABS_SCANNED, batch_size);
			total_scan -= batch_size;
L
Linus Torvalds 已提交
300 301 302 303

			cond_resched();
		}

304 305 306 307 308
		/*
		 * move the unused scan count back into the shrinker in a
		 * manner that handles concurrent updates. If we exhausted the
		 * scan, there is no need to do an update.
		 */
309 310 311 312 313
		if (total_scan > 0)
			new_nr = atomic_long_add_return(total_scan,
					&shrinker->nr_in_batch);
		else
			new_nr = atomic_long_read(&shrinker->nr_in_batch);
314 315

		trace_mm_shrink_slab_end(shrinker, shrink_ret, nr, new_nr);
L
Linus Torvalds 已提交
316 317
	}
	up_read(&shrinker_rwsem);
318 319
out:
	cond_resched();
320
	return ret;
L
Linus Torvalds 已提交
321 322 323 324
}

static inline int is_page_cache_freeable(struct page *page)
{
325 326 327 328 329
	/*
	 * A freeable page cache page is referenced only by the caller
	 * that isolated the page, the page cache radix tree and
	 * optional buffer heads at page->private.
	 */
330
	return page_count(page) - page_has_private(page) == 2;
L
Linus Torvalds 已提交
331 332
}

333 334
static int may_write_to_queue(struct backing_dev_info *bdi,
			      struct scan_control *sc)
L
Linus Torvalds 已提交
335
{
336
	if (current->flags & PF_SWAPWRITE)
L
Linus Torvalds 已提交
337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359
		return 1;
	if (!bdi_write_congested(bdi))
		return 1;
	if (bdi == current->backing_dev_info)
		return 1;
	return 0;
}

/*
 * We detected a synchronous write error writing a page out.  Probably
 * -ENOSPC.  We need to propagate that into the address_space for a subsequent
 * fsync(), msync() or close().
 *
 * The tricky part is that after writepage we cannot touch the mapping: nothing
 * prevents it from being freed up.  But we have a ref on the page and once
 * that page is locked, the mapping is pinned.
 *
 * We're allowed to run sleeping lock_page() here because we know the caller has
 * __GFP_FS.
 */
static void handle_write_error(struct address_space *mapping,
				struct page *page, int error)
{
J
Jens Axboe 已提交
360
	lock_page(page);
361 362
	if (page_mapping(page) == mapping)
		mapping_set_error(mapping, error);
L
Linus Torvalds 已提交
363 364 365
	unlock_page(page);
}

366 367 368 369 370 371 372 373 374 375 376 377
/* possible outcome of pageout() */
typedef enum {
	/* failed to write page out, page is locked */
	PAGE_KEEP,
	/* move page to the active list, page is locked */
	PAGE_ACTIVATE,
	/* page has been sent to the disk successfully, page is unlocked */
	PAGE_SUCCESS,
	/* page is clean and locked */
	PAGE_CLEAN,
} pageout_t;

L
Linus Torvalds 已提交
378
/*
A
Andrew Morton 已提交
379 380
 * pageout is called by shrink_page_list() for each dirty page.
 * Calls ->writepage().
L
Linus Torvalds 已提交
381
 */
382
static pageout_t pageout(struct page *page, struct address_space *mapping,
383
			 struct scan_control *sc)
L
Linus Torvalds 已提交
384 385 386 387 388 389 390 391
{
	/*
	 * If the page is dirty, only perform writeback if that write
	 * will be non-blocking.  To prevent this allocation from being
	 * stalled by pagecache activity.  But note that there may be
	 * stalls if we need to run get_block().  We could test
	 * PagePrivate for that.
	 *
392
	 * If this process is currently in __generic_file_aio_write() against
L
Linus Torvalds 已提交
393 394 395 396 397 398 399 400 401 402 403 404 405 406 407
	 * this page's queue, we can perform writeback even if that
	 * will block.
	 *
	 * If the page is swapcache, write it back even if that would
	 * block, for some throttling. This happens by accident, because
	 * swap_backing_dev_info is bust: it doesn't reflect the
	 * congestion state of the swapdevs.  Easy to fix, if needed.
	 */
	if (!is_page_cache_freeable(page))
		return PAGE_KEEP;
	if (!mapping) {
		/*
		 * Some data journaling orphaned pages can have
		 * page->mapping == NULL while being dirty with clean buffers.
		 */
408
		if (page_has_private(page)) {
L
Linus Torvalds 已提交
409 410
			if (try_to_free_buffers(page)) {
				ClearPageDirty(page);
411
				printk("%s: orphaned page\n", __func__);
L
Linus Torvalds 已提交
412 413 414 415 416 417 418
				return PAGE_CLEAN;
			}
		}
		return PAGE_KEEP;
	}
	if (mapping->a_ops->writepage == NULL)
		return PAGE_ACTIVATE;
419
	if (!may_write_to_queue(mapping->backing_dev_info, sc))
L
Linus Torvalds 已提交
420 421 422 423 424 425 426
		return PAGE_KEEP;

	if (clear_page_dirty_for_io(page)) {
		int res;
		struct writeback_control wbc = {
			.sync_mode = WB_SYNC_NONE,
			.nr_to_write = SWAP_CLUSTER_MAX,
427 428
			.range_start = 0,
			.range_end = LLONG_MAX,
L
Linus Torvalds 已提交
429 430 431 432 433 434 435
			.for_reclaim = 1,
		};

		SetPageReclaim(page);
		res = mapping->a_ops->writepage(page, &wbc);
		if (res < 0)
			handle_write_error(mapping, page, res);
436
		if (res == AOP_WRITEPAGE_ACTIVATE) {
L
Linus Torvalds 已提交
437 438 439
			ClearPageReclaim(page);
			return PAGE_ACTIVATE;
		}
440

L
Linus Torvalds 已提交
441 442 443 444
		if (!PageWriteback(page)) {
			/* synchronous write or broken a_ops? */
			ClearPageReclaim(page);
		}
M
Mel Gorman 已提交
445
		trace_mm_vmscan_writepage(page, trace_reclaim_flags(page));
446
		inc_zone_page_state(page, NR_VMSCAN_WRITE);
L
Linus Torvalds 已提交
447 448 449 450 451 452
		return PAGE_SUCCESS;
	}

	return PAGE_CLEAN;
}

453
/*
N
Nick Piggin 已提交
454 455
 * Same as remove_mapping, but if the page is removed from the mapping, it
 * gets returned with a refcount of 0.
456
 */
N
Nick Piggin 已提交
457
static int __remove_mapping(struct address_space *mapping, struct page *page)
458
{
459 460
	BUG_ON(!PageLocked(page));
	BUG_ON(mapping != page_mapping(page));
461

N
Nick Piggin 已提交
462
	spin_lock_irq(&mapping->tree_lock);
463
	/*
N
Nick Piggin 已提交
464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486
	 * The non racy check for a busy page.
	 *
	 * Must be careful with the order of the tests. When someone has
	 * a ref to the page, it may be possible that they dirty it then
	 * drop the reference. So if PageDirty is tested before page_count
	 * here, then the following race may occur:
	 *
	 * get_user_pages(&page);
	 * [user mapping goes away]
	 * write_to(page);
	 *				!PageDirty(page)    [good]
	 * SetPageDirty(page);
	 * put_page(page);
	 *				!page_count(page)   [good, discard it]
	 *
	 * [oops, our write_to data is lost]
	 *
	 * Reversing the order of the tests ensures such a situation cannot
	 * escape unnoticed. The smp_rmb is needed to ensure the page->flags
	 * load is not satisfied before that of page->_count.
	 *
	 * Note that if SetPageDirty is always performed via set_page_dirty,
	 * and thus under tree_lock, then this ordering is not required.
487
	 */
N
Nick Piggin 已提交
488
	if (!page_freeze_refs(page, 2))
489
		goto cannot_free;
N
Nick Piggin 已提交
490 491 492
	/* note: atomic_cmpxchg in page_freeze_refs provides the smp_rmb */
	if (unlikely(PageDirty(page))) {
		page_unfreeze_refs(page, 2);
493
		goto cannot_free;
N
Nick Piggin 已提交
494
	}
495 496 497 498

	if (PageSwapCache(page)) {
		swp_entry_t swap = { .val = page_private(page) };
		__delete_from_swap_cache(page);
N
Nick Piggin 已提交
499
		spin_unlock_irq(&mapping->tree_lock);
500
		swapcache_free(swap, page);
N
Nick Piggin 已提交
501
	} else {
502 503 504 505
		void (*freepage)(struct page *);

		freepage = mapping->a_ops->freepage;

506
		__delete_from_page_cache(page);
N
Nick Piggin 已提交
507
		spin_unlock_irq(&mapping->tree_lock);
508
		mem_cgroup_uncharge_cache_page(page);
509 510 511

		if (freepage != NULL)
			freepage(page);
512 513 514 515 516
	}

	return 1;

cannot_free:
N
Nick Piggin 已提交
517
	spin_unlock_irq(&mapping->tree_lock);
518 519 520
	return 0;
}

N
Nick Piggin 已提交
521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540
/*
 * Attempt to detach a locked page from its ->mapping.  If it is dirty or if
 * someone else has a ref on the page, abort and return 0.  If it was
 * successfully detached, return 1.  Assumes the caller has a single ref on
 * this page.
 */
int remove_mapping(struct address_space *mapping, struct page *page)
{
	if (__remove_mapping(mapping, page)) {
		/*
		 * Unfreezing the refcount with 1 rather than 2 effectively
		 * drops the pagecache ref for us without requiring another
		 * atomic operation.
		 */
		page_unfreeze_refs(page, 1);
		return 1;
	}
	return 0;
}

L
Lee Schermerhorn 已提交
541 542 543 544 545 546 547 548 549 550 551 552 553
/**
 * putback_lru_page - put previously isolated page onto appropriate LRU list
 * @page: page to be put back to appropriate lru list
 *
 * Add previously isolated @page to appropriate LRU list.
 * Page may still be unevictable for other reasons.
 *
 * lru_lock must not be held, interrupts must be enabled.
 */
void putback_lru_page(struct page *page)
{
	int lru;
	int active = !!TestClearPageActive(page);
554
	int was_unevictable = PageUnevictable(page);
L
Lee Schermerhorn 已提交
555 556 557 558 559 560 561 562 563 564 565 566 567

	VM_BUG_ON(PageLRU(page));

redo:
	ClearPageUnevictable(page);

	if (page_evictable(page, NULL)) {
		/*
		 * For evictable pages, we can use the cache.
		 * In event of a race, worst case is we end up with an
		 * unevictable page on [in]active list.
		 * We know how to handle that.
		 */
568
		lru = active + page_lru_base_type(page);
L
Lee Schermerhorn 已提交
569 570 571 572 573 574 575 576
		lru_cache_add_lru(page, lru);
	} else {
		/*
		 * Put unevictable pages directly on zone's unevictable
		 * list.
		 */
		lru = LRU_UNEVICTABLE;
		add_page_to_unevictable_list(page);
577
		/*
578 579 580
		 * When racing with an mlock or AS_UNEVICTABLE clearing
		 * (page is unlocked) make sure that if the other thread
		 * does not observe our setting of PG_lru and fails
581
		 * isolation/check_move_unevictable_pages,
582
		 * we see PG_mlocked/AS_UNEVICTABLE cleared below and move
583 584
		 * the page back to the evictable list.
		 *
585
		 * The other side is TestClearPageMlocked() or shmem_lock().
586 587
		 */
		smp_mb();
L
Lee Schermerhorn 已提交
588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605
	}

	/*
	 * page's status can change while we move it among lru. If an evictable
	 * page is on unevictable list, it never be freed. To avoid that,
	 * check after we added it to the list, again.
	 */
	if (lru == LRU_UNEVICTABLE && page_evictable(page, NULL)) {
		if (!isolate_lru_page(page)) {
			put_page(page);
			goto redo;
		}
		/* This means someone else dropped this page from LRU
		 * So, it will be freed or putback to LRU again. There is
		 * nothing to do here.
		 */
	}

606 607 608 609 610
	if (was_unevictable && lru != LRU_UNEVICTABLE)
		count_vm_event(UNEVICTABLE_PGRESCUED);
	else if (!was_unevictable && lru == LRU_UNEVICTABLE)
		count_vm_event(UNEVICTABLE_PGCULLED);

L
Lee Schermerhorn 已提交
611 612 613
	put_page(page);		/* drop ref from isolate */
}

614 615 616
enum page_references {
	PAGEREF_RECLAIM,
	PAGEREF_RECLAIM_CLEAN,
617
	PAGEREF_KEEP,
618 619 620 621 622 623
	PAGEREF_ACTIVATE,
};

static enum page_references page_check_references(struct page *page,
						  struct scan_control *sc)
{
624
	int referenced_ptes, referenced_page;
625 626
	unsigned long vm_flags;

627 628
	referenced_ptes = page_referenced(page, 1, sc->target_mem_cgroup,
					  &vm_flags);
629
	referenced_page = TestClearPageReferenced(page);
630 631 632 633 634 635 636 637

	/*
	 * Mlock lost the isolation race with us.  Let try_to_unmap()
	 * move the page to the unevictable list.
	 */
	if (vm_flags & VM_LOCKED)
		return PAGEREF_RECLAIM;

638
	if (referenced_ptes) {
639
		if (PageSwapBacked(page))
640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656
			return PAGEREF_ACTIVATE;
		/*
		 * All mapped pages start out with page table
		 * references from the instantiating fault, so we need
		 * to look twice if a mapped file page is used more
		 * than once.
		 *
		 * Mark it and spare it for another trip around the
		 * inactive list.  Another page table reference will
		 * lead to its activation.
		 *
		 * Note: the mark is set for activated pages as well
		 * so that recently deactivated but used pages are
		 * quickly recovered.
		 */
		SetPageReferenced(page);

657
		if (referenced_page || referenced_ptes > 1)
658 659
			return PAGEREF_ACTIVATE;

660 661 662 663 664 665
		/*
		 * Activate file-backed executable pages after first usage.
		 */
		if (vm_flags & VM_EXEC)
			return PAGEREF_ACTIVATE;

666 667
		return PAGEREF_KEEP;
	}
668 669

	/* Reclaim if clean, defer dirty pages to writeback */
670
	if (referenced_page && !PageSwapBacked(page))
671 672 673
		return PAGEREF_RECLAIM_CLEAN;

	return PAGEREF_RECLAIM;
674 675
}

L
Linus Torvalds 已提交
676
/*
A
Andrew Morton 已提交
677
 * shrink_page_list() returns the number of reclaimed pages
L
Linus Torvalds 已提交
678
 */
A
Andrew Morton 已提交
679
static unsigned long shrink_page_list(struct list_head *page_list,
680
				      struct zone *zone,
681
				      struct scan_control *sc,
682 683
				      unsigned long *ret_nr_dirty,
				      unsigned long *ret_nr_writeback)
L
Linus Torvalds 已提交
684 685
{
	LIST_HEAD(ret_pages);
686
	LIST_HEAD(free_pages);
L
Linus Torvalds 已提交
687
	int pgactivate = 0;
688 689
	unsigned long nr_dirty = 0;
	unsigned long nr_congested = 0;
690
	unsigned long nr_reclaimed = 0;
691
	unsigned long nr_writeback = 0;
L
Linus Torvalds 已提交
692 693 694 695

	cond_resched();

	while (!list_empty(page_list)) {
696
		enum page_references references;
L
Linus Torvalds 已提交
697 698 699 700 701 702 703 704 705
		struct address_space *mapping;
		struct page *page;
		int may_enter_fs;

		cond_resched();

		page = lru_to_page(page_list);
		list_del(&page->lru);

N
Nick Piggin 已提交
706
		if (!trylock_page(page))
L
Linus Torvalds 已提交
707 708
			goto keep;

N
Nick Piggin 已提交
709
		VM_BUG_ON(PageActive(page));
710
		VM_BUG_ON(page_zone(page) != zone);
L
Linus Torvalds 已提交
711 712

		sc->nr_scanned++;
713

N
Nick Piggin 已提交
714 715
		if (unlikely(!page_evictable(page, NULL)))
			goto cull_mlocked;
L
Lee Schermerhorn 已提交
716

717
		if (!sc->may_unmap && page_mapped(page))
718 719
			goto keep_locked;

L
Linus Torvalds 已提交
720 721 722 723
		/* Double the slab pressure for mapped and swapcache pages */
		if (page_mapped(page) || PageSwapCache(page))
			sc->nr_scanned++;

724 725 726 727
		may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
			(PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));

		if (PageWriteback(page)) {
728
			nr_writeback++;
729 730
			unlock_page(page);
			goto keep;
731
		}
L
Linus Torvalds 已提交
732

733
		references = page_check_references(page, sc);
734 735
		switch (references) {
		case PAGEREF_ACTIVATE:
L
Linus Torvalds 已提交
736
			goto activate_locked;
737 738
		case PAGEREF_KEEP:
			goto keep_locked;
739 740 741 742
		case PAGEREF_RECLAIM:
		case PAGEREF_RECLAIM_CLEAN:
			; /* try to reclaim the page below */
		}
L
Linus Torvalds 已提交
743 744 745 746 747

		/*
		 * Anonymous process memory has backing store?
		 * Try to allocate it some swap space here.
		 */
N
Nick Piggin 已提交
748
		if (PageAnon(page) && !PageSwapCache(page)) {
749 750
			if (!(sc->gfp_mask & __GFP_IO))
				goto keep_locked;
751
			if (!add_to_swap(page))
L
Linus Torvalds 已提交
752
				goto activate_locked;
753
			may_enter_fs = 1;
N
Nick Piggin 已提交
754
		}
L
Linus Torvalds 已提交
755 756 757 758 759 760 761 762

		mapping = page_mapping(page);

		/*
		 * The page is mapped into the page tables of one or more
		 * processes. Try to unmap it here.
		 */
		if (page_mapped(page) && mapping) {
763
			switch (try_to_unmap(page, TTU_UNMAP)) {
L
Linus Torvalds 已提交
764 765 766 767
			case SWAP_FAIL:
				goto activate_locked;
			case SWAP_AGAIN:
				goto keep_locked;
N
Nick Piggin 已提交
768 769
			case SWAP_MLOCK:
				goto cull_mlocked;
L
Linus Torvalds 已提交
770 771 772 773 774 775
			case SWAP_SUCCESS:
				; /* try to free the page below */
			}
		}

		if (PageDirty(page)) {
776 777
			nr_dirty++;

778 779
			/*
			 * Only kswapd can writeback filesystem pages to
780 781
			 * avoid risk of stack overflow but do not writeback
			 * unless under significant pressure.
782
			 */
783
			if (page_is_file_cache(page) &&
784 785
					(!current_is_kswapd() ||
					 sc->priority >= DEF_PRIORITY - 2)) {
786 787 788 789 790 791 792 793 794
				/*
				 * Immediately reclaim when written back.
				 * Similar in principal to deactivate_page()
				 * except we already have the page isolated
				 * and know it's dirty
				 */
				inc_zone_page_state(page, NR_VMSCAN_IMMEDIATE);
				SetPageReclaim(page);

795 796 797
				goto keep_locked;
			}

798
			if (references == PAGEREF_RECLAIM_CLEAN)
L
Linus Torvalds 已提交
799
				goto keep_locked;
800
			if (!may_enter_fs)
L
Linus Torvalds 已提交
801
				goto keep_locked;
802
			if (!sc->may_writepage)
L
Linus Torvalds 已提交
803 804 805
				goto keep_locked;

			/* Page is dirty, try to write it out here */
806
			switch (pageout(page, mapping, sc)) {
L
Linus Torvalds 已提交
807
			case PAGE_KEEP:
808
				nr_congested++;
L
Linus Torvalds 已提交
809 810 811 812
				goto keep_locked;
			case PAGE_ACTIVATE:
				goto activate_locked;
			case PAGE_SUCCESS:
813
				if (PageWriteback(page))
814
					goto keep;
815
				if (PageDirty(page))
L
Linus Torvalds 已提交
816
					goto keep;
817

L
Linus Torvalds 已提交
818 819 820 821
				/*
				 * A synchronous write - probably a ramdisk.  Go
				 * ahead and try to reclaim the page.
				 */
N
Nick Piggin 已提交
822
				if (!trylock_page(page))
L
Linus Torvalds 已提交
823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841
					goto keep;
				if (PageDirty(page) || PageWriteback(page))
					goto keep_locked;
				mapping = page_mapping(page);
			case PAGE_CLEAN:
				; /* try to free the page below */
			}
		}

		/*
		 * If the page has buffers, try to free the buffer mappings
		 * associated with this page. If we succeed we try to free
		 * the page as well.
		 *
		 * We do this even if the page is PageDirty().
		 * try_to_release_page() does not perform I/O, but it is
		 * possible for a page to have PageDirty set, but it is actually
		 * clean (all its buffers are clean).  This happens if the
		 * buffers were written out directly, with submit_bh(). ext3
L
Lee Schermerhorn 已提交
842
		 * will do this, as well as the blockdev mapping.
L
Linus Torvalds 已提交
843 844 845 846 847 848 849 850 851 852
		 * try_to_release_page() will discover that cleanness and will
		 * drop the buffers and mark the page clean - it can be freed.
		 *
		 * Rarely, pages can have buffers and no ->mapping.  These are
		 * the pages which were not successfully invalidated in
		 * truncate_complete_page().  We try to drop those buffers here
		 * and if that worked, and the page is no longer mapped into
		 * process address space (page_count == 1) it can be freed.
		 * Otherwise, leave the page on the LRU so it is swappable.
		 */
853
		if (page_has_private(page)) {
L
Linus Torvalds 已提交
854 855
			if (!try_to_release_page(page, sc->gfp_mask))
				goto activate_locked;
N
Nick Piggin 已提交
856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871
			if (!mapping && page_count(page) == 1) {
				unlock_page(page);
				if (put_page_testzero(page))
					goto free_it;
				else {
					/*
					 * rare race with speculative reference.
					 * the speculative reference will free
					 * this page shortly, so we may
					 * increment nr_reclaimed here (and
					 * leave it off the LRU).
					 */
					nr_reclaimed++;
					continue;
				}
			}
L
Linus Torvalds 已提交
872 873
		}

N
Nick Piggin 已提交
874
		if (!mapping || !__remove_mapping(mapping, page))
875
			goto keep_locked;
L
Linus Torvalds 已提交
876

N
Nick Piggin 已提交
877 878 879 880 881 882 883 884
		/*
		 * At this point, we have no other references and there is
		 * no way to pick any more up (removed from LRU, removed
		 * from pagecache). Can use non-atomic bitops now (and
		 * we obviously don't have to worry about waking up a process
		 * waiting on the page lock, because there are no references.
		 */
		__clear_page_locked(page);
N
Nick Piggin 已提交
885
free_it:
886
		nr_reclaimed++;
887 888 889 890 891 892

		/*
		 * Is there need to periodically free_page_list? It would
		 * appear not as the counts should be low
		 */
		list_add(&page->lru, &free_pages);
L
Linus Torvalds 已提交
893 894
		continue;

N
Nick Piggin 已提交
895
cull_mlocked:
896 897
		if (PageSwapCache(page))
			try_to_free_swap(page);
N
Nick Piggin 已提交
898 899 900 901
		unlock_page(page);
		putback_lru_page(page);
		continue;

L
Linus Torvalds 已提交
902
activate_locked:
903 904
		/* Not a candidate for swapping, so reclaim swap space. */
		if (PageSwapCache(page) && vm_swap_full())
905
			try_to_free_swap(page);
L
Lee Schermerhorn 已提交
906
		VM_BUG_ON(PageActive(page));
L
Linus Torvalds 已提交
907 908 909 910 911 912
		SetPageActive(page);
		pgactivate++;
keep_locked:
		unlock_page(page);
keep:
		list_add(&page->lru, &ret_pages);
N
Nick Piggin 已提交
913
		VM_BUG_ON(PageLRU(page) || PageUnevictable(page));
L
Linus Torvalds 已提交
914
	}
915

916 917 918 919 920 921
	/*
	 * Tag a zone as congested if all the dirty pages encountered were
	 * backed by a congested BDI. In this case, reclaimers should just
	 * back off and wait for congestion to clear because further reclaim
	 * will encounter the same problem
	 */
922
	if (nr_dirty && nr_dirty == nr_congested && global_reclaim(sc))
923
		zone_set_flag(zone, ZONE_CONGESTED);
924

925
	free_hot_cold_page_list(&free_pages, 1);
926

L
Linus Torvalds 已提交
927
	list_splice(&ret_pages, page_list);
928
	count_vm_events(PGACTIVATE, pgactivate);
929 930
	*ret_nr_dirty += nr_dirty;
	*ret_nr_writeback += nr_writeback;
931
	return nr_reclaimed;
L
Linus Torvalds 已提交
932 933
}

A
Andy Whitcroft 已提交
934 935 936 937 938 939 940 941 942 943
/*
 * Attempt to remove the specified page from its LRU.  Only take this page
 * if it is of the appropriate PageActive status.  Pages which are being
 * freed elsewhere are also ignored.
 *
 * page:	page to consider
 * mode:	one of the LRU isolation modes defined above
 *
 * returns 0 on success, -ve errno on failure.
 */
944
int __isolate_lru_page(struct page *page, isolate_mode_t mode)
A
Andy Whitcroft 已提交
945 946 947 948 949 950 951
{
	int ret = -EINVAL;

	/* Only take pages on the LRU. */
	if (!PageLRU(page))
		return ret;

M
Mel Gorman 已提交
952
	/* Do not give back unevictable pages for compaction */
L
Lee Schermerhorn 已提交
953 954 955
	if (PageUnevictable(page))
		return ret;

A
Andy Whitcroft 已提交
956
	ret = -EBUSY;
K
KAMEZAWA Hiroyuki 已提交
957

958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990
	/*
	 * To minimise LRU disruption, the caller can indicate that it only
	 * wants to isolate pages it will be able to operate on without
	 * blocking - clean pages for the most part.
	 *
	 * ISOLATE_CLEAN means that only clean pages should be isolated. This
	 * is used by reclaim when it is cannot write to backing storage
	 *
	 * ISOLATE_ASYNC_MIGRATE is used to indicate that it only wants to pages
	 * that it is possible to migrate without blocking
	 */
	if (mode & (ISOLATE_CLEAN|ISOLATE_ASYNC_MIGRATE)) {
		/* All the caller can do on PageWriteback is block */
		if (PageWriteback(page))
			return ret;

		if (PageDirty(page)) {
			struct address_space *mapping;

			/* ISOLATE_CLEAN means only clean pages */
			if (mode & ISOLATE_CLEAN)
				return ret;

			/*
			 * Only pages without mappings or that have a
			 * ->migratepage callback are possible to migrate
			 * without blocking
			 */
			mapping = page_mapping(page);
			if (mapping && !mapping->a_ops->migratepage)
				return ret;
		}
	}
991

992 993 994
	if ((mode & ISOLATE_UNMAPPED) && page_mapped(page))
		return ret;

A
Andy Whitcroft 已提交
995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007
	if (likely(get_page_unless_zero(page))) {
		/*
		 * Be careful not to clear PageLRU until after we're
		 * sure the page is not being freed elsewhere -- the
		 * page release code relies on it.
		 */
		ClearPageLRU(page);
		ret = 0;
	}

	return ret;
}

L
Linus Torvalds 已提交
1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018
/*
 * zone->lru_lock is heavily contended.  Some of the functions that
 * shrink the lists perform better by taking out a batch of pages
 * and working on them outside the LRU lock.
 *
 * For pagecache intensive workloads, this function is the hottest
 * spot in the kernel (apart from copy_*_user functions).
 *
 * Appropriate locks must be held before calling this function.
 *
 * @nr_to_scan:	The number of pages to look through on the list.
1019
 * @lruvec:	The LRU vector to pull pages from.
L
Linus Torvalds 已提交
1020
 * @dst:	The temp list to put pages on to.
H
Hugh Dickins 已提交
1021
 * @nr_scanned:	The number of pages that were scanned.
1022
 * @sc:		The scan_control struct for this reclaim session
A
Andy Whitcroft 已提交
1023
 * @mode:	One of the LRU isolation modes
1024
 * @lru:	LRU list id for isolating
L
Linus Torvalds 已提交
1025 1026 1027
 *
 * returns how many pages were moved onto *@dst.
 */
1028
static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
1029
		struct lruvec *lruvec, struct list_head *dst,
1030
		unsigned long *nr_scanned, struct scan_control *sc,
1031
		isolate_mode_t mode, enum lru_list lru)
L
Linus Torvalds 已提交
1032
{
H
Hugh Dickins 已提交
1033
	struct list_head *src;
1034
	unsigned long nr_taken = 0;
1035
	unsigned long scan;
1036
	int file = is_file_lru(lru);
H
Hugh Dickins 已提交
1037 1038

	src = &lruvec->lists[lru];
L
Linus Torvalds 已提交
1039

1040
	for (scan = 0; scan < nr_to_scan && !list_empty(src); scan++) {
A
Andy Whitcroft 已提交
1041 1042
		struct page *page;

L
Linus Torvalds 已提交
1043 1044 1045
		page = lru_to_page(src);
		prefetchw_prev_lru_page(page, src, flags);

N
Nick Piggin 已提交
1046
		VM_BUG_ON(!PageLRU(page));
N
Nick Piggin 已提交
1047

1048
		switch (__isolate_lru_page(page, mode)) {
A
Andy Whitcroft 已提交
1049
		case 0:
1050
			mem_cgroup_lru_del_list(page, lru);
A
Andy Whitcroft 已提交
1051
			list_move(&page->lru, dst);
1052
			nr_taken += hpage_nr_pages(page);
A
Andy Whitcroft 已提交
1053 1054 1055 1056 1057 1058
			break;

		case -EBUSY:
			/* else it is being freed elsewhere */
			list_move(&page->lru, src);
			continue;
1059

A
Andy Whitcroft 已提交
1060 1061 1062
		default:
			BUG();
		}
L
Linus Torvalds 已提交
1063 1064
	}

H
Hugh Dickins 已提交
1065
	*nr_scanned = scan;
1066

1067
	trace_mm_vmscan_lru_isolate(sc->order,
1068 1069
			nr_to_scan, scan,
			nr_taken,
1070
			mode, file);
L
Linus Torvalds 已提交
1071 1072 1073
	return nr_taken;
}

1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084
/**
 * isolate_lru_page - tries to isolate a page from its LRU list
 * @page: page to isolate from its LRU list
 *
 * Isolates a @page from an LRU list, clears PageLRU and adjusts the
 * vmstat statistic corresponding to whatever LRU list the page was on.
 *
 * Returns 0 if the page was removed from an LRU list.
 * Returns -EBUSY if the page was not on an LRU list.
 *
 * The returned page will have PageLRU() cleared.  If it was found on
L
Lee Schermerhorn 已提交
1085 1086 1087
 * the active list, it will have PageActive set.  If it was found on
 * the unevictable list, it will have the PageUnevictable bit set. That flag
 * may need to be cleared by the caller before letting the page go.
1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102
 *
 * The vmstat statistic corresponding to the list on which the page was
 * found will be decremented.
 *
 * Restrictions:
 * (1) Must be called with an elevated refcount on the page. This is a
 *     fundamentnal difference from isolate_lru_pages (which is called
 *     without a stable reference).
 * (2) the lru_lock must not be held.
 * (3) interrupts must be enabled.
 */
int isolate_lru_page(struct page *page)
{
	int ret = -EBUSY;

1103 1104
	VM_BUG_ON(!page_count(page));

1105 1106 1107 1108
	if (PageLRU(page)) {
		struct zone *zone = page_zone(page);

		spin_lock_irq(&zone->lru_lock);
1109
		if (PageLRU(page)) {
L
Lee Schermerhorn 已提交
1110
			int lru = page_lru(page);
1111
			ret = 0;
1112
			get_page(page);
1113
			ClearPageLRU(page);
1114 1115

			del_page_from_lru_list(zone, page, lru);
1116 1117 1118 1119 1120 1121
		}
		spin_unlock_irq(&zone->lru_lock);
	}
	return ret;
}

1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132
/*
 * Are there way too many processes in the direct reclaim path already?
 */
static int too_many_isolated(struct zone *zone, int file,
		struct scan_control *sc)
{
	unsigned long inactive, isolated;

	if (current_is_kswapd())
		return 0;

1133
	if (!global_reclaim(sc))
1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146
		return 0;

	if (file) {
		inactive = zone_page_state(zone, NR_INACTIVE_FILE);
		isolated = zone_page_state(zone, NR_ISOLATED_FILE);
	} else {
		inactive = zone_page_state(zone, NR_INACTIVE_ANON);
		isolated = zone_page_state(zone, NR_ISOLATED_ANON);
	}

	return isolated > inactive;
}

1147
static noinline_for_stack void
1148
putback_inactive_pages(struct lruvec *lruvec,
1149
		       struct list_head *page_list)
1150
{
1151 1152
	struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
	struct zone *zone = lruvec_zone(lruvec);
1153
	LIST_HEAD(pages_to_free);
1154 1155 1156 1157 1158

	/*
	 * Put back any unfreeable pages.
	 */
	while (!list_empty(page_list)) {
1159
		struct page *page = lru_to_page(page_list);
1160
		int lru;
1161

1162 1163 1164 1165 1166 1167 1168 1169
		VM_BUG_ON(PageLRU(page));
		list_del(&page->lru);
		if (unlikely(!page_evictable(page, NULL))) {
			spin_unlock_irq(&zone->lru_lock);
			putback_lru_page(page);
			spin_lock_irq(&zone->lru_lock);
			continue;
		}
1170
		SetPageLRU(page);
1171
		lru = page_lru(page);
1172
		add_page_to_lru_list(zone, page, lru);
1173 1174
		if (is_active_lru(lru)) {
			int file = is_file_lru(lru);
1175 1176
			int numpages = hpage_nr_pages(page);
			reclaim_stat->recent_rotated[file] += numpages;
1177
		}
1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188
		if (put_page_testzero(page)) {
			__ClearPageLRU(page);
			__ClearPageActive(page);
			del_page_from_lru_list(zone, page, lru);

			if (unlikely(PageCompound(page))) {
				spin_unlock_irq(&zone->lru_lock);
				(*get_compound_page_dtor(page))(page);
				spin_lock_irq(&zone->lru_lock);
			} else
				list_add(&page->lru, &pages_to_free);
1189 1190 1191
		}
	}

1192 1193 1194 1195
	/*
	 * To save our caller's stack, now use input list for pages to free.
	 */
	list_splice(&pages_to_free, page_list);
1196 1197
}

L
Linus Torvalds 已提交
1198
/*
A
Andrew Morton 已提交
1199 1200
 * shrink_inactive_list() is a helper for shrink_zone().  It returns the number
 * of reclaimed pages
L
Linus Torvalds 已提交
1201
 */
1202
static noinline_for_stack unsigned long
1203
shrink_inactive_list(unsigned long nr_to_scan, struct lruvec *lruvec,
1204
		     struct scan_control *sc, enum lru_list lru)
L
Linus Torvalds 已提交
1205 1206
{
	LIST_HEAD(page_list);
1207
	unsigned long nr_scanned;
1208
	unsigned long nr_reclaimed = 0;
1209
	unsigned long nr_taken;
1210 1211
	unsigned long nr_dirty = 0;
	unsigned long nr_writeback = 0;
1212
	isolate_mode_t isolate_mode = 0;
1213
	int file = is_file_lru(lru);
1214 1215
	struct zone *zone = lruvec_zone(lruvec);
	struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1216

1217
	while (unlikely(too_many_isolated(zone, file, sc))) {
1218
		congestion_wait(BLK_RW_ASYNC, HZ/10);
1219 1220 1221 1222 1223 1224

		/* We are about to die and free our memory. Return now. */
		if (fatal_signal_pending(current))
			return SWAP_CLUSTER_MAX;
	}

L
Linus Torvalds 已提交
1225
	lru_add_drain();
1226 1227

	if (!sc->may_unmap)
1228
		isolate_mode |= ISOLATE_UNMAPPED;
1229
	if (!sc->may_writepage)
1230
		isolate_mode |= ISOLATE_CLEAN;
1231

L
Linus Torvalds 已提交
1232
	spin_lock_irq(&zone->lru_lock);
1233

1234 1235
	nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &page_list,
				     &nr_scanned, sc, isolate_mode, lru);
1236 1237 1238 1239

	__mod_zone_page_state(zone, NR_LRU_BASE + lru, -nr_taken);
	__mod_zone_page_state(zone, NR_ISOLATED_ANON + file, nr_taken);

1240
	if (global_reclaim(sc)) {
1241 1242 1243 1244 1245 1246 1247 1248
		zone->pages_scanned += nr_scanned;
		if (current_is_kswapd())
			__count_zone_vm_events(PGSCAN_KSWAPD, zone,
					       nr_scanned);
		else
			__count_zone_vm_events(PGSCAN_DIRECT, zone,
					       nr_scanned);
	}
1249
	spin_unlock_irq(&zone->lru_lock);
1250

1251
	if (nr_taken == 0)
1252
		return 0;
A
Andy Whitcroft 已提交
1253

1254
	nr_reclaimed = shrink_page_list(&page_list, zone, sc,
1255
						&nr_dirty, &nr_writeback);
1256

1257 1258
	spin_lock_irq(&zone->lru_lock);

1259
	reclaim_stat->recent_scanned[file] += nr_taken;
1260

Y
Ying Han 已提交
1261 1262 1263 1264 1265 1266 1267 1268
	if (global_reclaim(sc)) {
		if (current_is_kswapd())
			__count_zone_vm_events(PGSTEAL_KSWAPD, zone,
					       nr_reclaimed);
		else
			__count_zone_vm_events(PGSTEAL_DIRECT, zone,
					       nr_reclaimed);
	}
N
Nick Piggin 已提交
1269

1270
	putback_inactive_pages(lruvec, &page_list);
1271

1272
	__mod_zone_page_state(zone, NR_ISOLATED_ANON + file, -nr_taken);
1273 1274 1275 1276

	spin_unlock_irq(&zone->lru_lock);

	free_hot_cold_page_list(&page_list, 1);
1277

1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300
	/*
	 * If reclaim is isolating dirty pages under writeback, it implies
	 * that the long-lived page allocation rate is exceeding the page
	 * laundering rate. Either the global limits are not being effective
	 * at throttling processes due to the page distribution throughout
	 * zones or there is heavy usage of a slow backing device. The
	 * only option is to throttle from reclaim context which is not ideal
	 * as there is no guarantee the dirtying process is throttled in the
	 * same way balance_dirty_pages() manages.
	 *
	 * This scales the number of dirty pages that must be under writeback
	 * before throttling depending on priority. It is a simple backoff
	 * function that has the most effect in the range DEF_PRIORITY to
	 * DEF_PRIORITY-2 which is the priority reclaim is considered to be
	 * in trouble and reclaim is considered to be in trouble.
	 *
	 * DEF_PRIORITY   100% isolated pages must be PageWriteback to throttle
	 * DEF_PRIORITY-1  50% must be PageWriteback
	 * DEF_PRIORITY-2  25% must be PageWriteback, kswapd in trouble
	 * ...
	 * DEF_PRIORITY-6 For SWAP_CLUSTER_MAX isolated pages, throttle if any
	 *                     isolated page is PageWriteback
	 */
1301 1302
	if (nr_writeback && nr_writeback >=
			(nr_taken >> (DEF_PRIORITY - sc->priority)))
1303 1304
		wait_iff_congested(zone, BLK_RW_ASYNC, HZ/10);

1305 1306 1307
	trace_mm_vmscan_lru_shrink_inactive(zone->zone_pgdat->node_id,
		zone_idx(zone),
		nr_scanned, nr_reclaimed,
1308
		sc->priority,
M
Mel Gorman 已提交
1309
		trace_shrink_flags(file));
1310
	return nr_reclaimed;
L
Linus Torvalds 已提交
1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329
}

/*
 * This moves pages from the active list to the inactive list.
 *
 * We move them the other way if the page is referenced by one or more
 * processes, from rmap.
 *
 * If the pages are mostly unmapped, the processing is fast and it is
 * appropriate to hold zone->lru_lock across the whole operation.  But if
 * the pages are mapped, the processing is slow (page_referenced()) so we
 * should drop zone->lru_lock around each page.  It's impossible to balance
 * this, so instead we remove the pages from the LRU while processing them.
 * It is safe to rely on PG_active against the non-LRU pages in here because
 * nobody will play with that bit on a non-LRU page.
 *
 * The downside is that we have to touch page->_count against each page.
 * But we had to alter page->flags anyway.
 */
1330

1331 1332
static void move_active_pages_to_lru(struct zone *zone,
				     struct list_head *list,
1333
				     struct list_head *pages_to_free,
1334 1335 1336 1337 1338 1339
				     enum lru_list lru)
{
	unsigned long pgmoved = 0;
	struct page *page;

	while (!list_empty(list)) {
1340 1341
		struct lruvec *lruvec;

1342 1343 1344 1345 1346
		page = lru_to_page(list);

		VM_BUG_ON(PageLRU(page));
		SetPageLRU(page);

1347 1348
		lruvec = mem_cgroup_lru_add_list(zone, page, lru);
		list_move(&page->lru, &lruvec->lists[lru]);
1349
		pgmoved += hpage_nr_pages(page);
1350

1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361
		if (put_page_testzero(page)) {
			__ClearPageLRU(page);
			__ClearPageActive(page);
			del_page_from_lru_list(zone, page, lru);

			if (unlikely(PageCompound(page))) {
				spin_unlock_irq(&zone->lru_lock);
				(*get_compound_page_dtor(page))(page);
				spin_lock_irq(&zone->lru_lock);
			} else
				list_add(&page->lru, pages_to_free);
1362 1363 1364 1365 1366 1367
		}
	}
	__mod_zone_page_state(zone, NR_LRU_BASE + lru, pgmoved);
	if (!is_active_lru(lru))
		__count_vm_events(PGDEACTIVATE, pgmoved);
}
1368

H
Hugh Dickins 已提交
1369
static void shrink_active_list(unsigned long nr_to_scan,
1370
			       struct lruvec *lruvec,
1371
			       struct scan_control *sc,
1372
			       enum lru_list lru)
L
Linus Torvalds 已提交
1373
{
1374
	unsigned long nr_taken;
H
Hugh Dickins 已提交
1375
	unsigned long nr_scanned;
1376
	unsigned long vm_flags;
L
Linus Torvalds 已提交
1377
	LIST_HEAD(l_hold);	/* The pages which were snipped off */
1378
	LIST_HEAD(l_active);
1379
	LIST_HEAD(l_inactive);
L
Linus Torvalds 已提交
1380
	struct page *page;
1381
	struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1382
	unsigned long nr_rotated = 0;
1383
	isolate_mode_t isolate_mode = 0;
1384
	int file = is_file_lru(lru);
1385
	struct zone *zone = lruvec_zone(lruvec);
L
Linus Torvalds 已提交
1386 1387

	lru_add_drain();
1388 1389

	if (!sc->may_unmap)
1390
		isolate_mode |= ISOLATE_UNMAPPED;
1391
	if (!sc->may_writepage)
1392
		isolate_mode |= ISOLATE_CLEAN;
1393

L
Linus Torvalds 已提交
1394
	spin_lock_irq(&zone->lru_lock);
1395

1396 1397
	nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &l_hold,
				     &nr_scanned, sc, isolate_mode, lru);
1398
	if (global_reclaim(sc))
H
Hugh Dickins 已提交
1399
		zone->pages_scanned += nr_scanned;
1400

1401
	reclaim_stat->recent_scanned[file] += nr_taken;
1402

H
Hugh Dickins 已提交
1403
	__count_zone_vm_events(PGREFILL, zone, nr_scanned);
1404
	__mod_zone_page_state(zone, NR_LRU_BASE + lru, -nr_taken);
K
KOSAKI Motohiro 已提交
1405
	__mod_zone_page_state(zone, NR_ISOLATED_ANON + file, nr_taken);
L
Linus Torvalds 已提交
1406 1407 1408 1409 1410 1411
	spin_unlock_irq(&zone->lru_lock);

	while (!list_empty(&l_hold)) {
		cond_resched();
		page = lru_to_page(&l_hold);
		list_del(&page->lru);
1412

L
Lee Schermerhorn 已提交
1413 1414 1415 1416 1417
		if (unlikely(!page_evictable(page, NULL))) {
			putback_lru_page(page);
			continue;
		}

1418 1419 1420 1421 1422 1423 1424 1425
		if (unlikely(buffer_heads_over_limit)) {
			if (page_has_private(page) && trylock_page(page)) {
				if (page_has_private(page))
					try_to_release_page(page, 0);
				unlock_page(page);
			}
		}

1426 1427
		if (page_referenced(page, 0, sc->target_mem_cgroup,
				    &vm_flags)) {
1428
			nr_rotated += hpage_nr_pages(page);
1429 1430 1431 1432 1433 1434 1435 1436 1437
			/*
			 * Identify referenced, file-backed active pages and
			 * give them one more trip around the active list. So
			 * that executable code get better chances to stay in
			 * memory under moderate memory pressure.  Anon pages
			 * are not likely to be evicted by use-once streaming
			 * IO, plus JVM can create lots of anon VM_EXEC pages,
			 * so we ignore them here.
			 */
1438
			if ((vm_flags & VM_EXEC) && page_is_file_cache(page)) {
1439 1440 1441 1442
				list_add(&page->lru, &l_active);
				continue;
			}
		}
1443

1444
		ClearPageActive(page);	/* we are de-activating */
L
Linus Torvalds 已提交
1445 1446 1447
		list_add(&page->lru, &l_inactive);
	}

1448
	/*
1449
	 * Move pages back to the lru list.
1450
	 */
1451
	spin_lock_irq(&zone->lru_lock);
1452
	/*
1453 1454 1455 1456
	 * Count referenced pages from currently used mappings as rotated,
	 * even though only some of them are actually re-activated.  This
	 * helps balance scan pressure between file and anonymous pages in
	 * get_scan_ratio.
1457
	 */
1458
	reclaim_stat->recent_rotated[file] += nr_rotated;
1459

1460 1461
	move_active_pages_to_lru(zone, &l_active, &l_hold, lru);
	move_active_pages_to_lru(zone, &l_inactive, &l_hold, lru - LRU_ACTIVE);
K
KOSAKI Motohiro 已提交
1462
	__mod_zone_page_state(zone, NR_ISOLATED_ANON + file, -nr_taken);
1463
	spin_unlock_irq(&zone->lru_lock);
1464 1465

	free_hot_cold_page_list(&l_hold, 1);
L
Linus Torvalds 已提交
1466 1467
}

1468
#ifdef CONFIG_SWAP
1469
static int inactive_anon_is_low_global(struct zone *zone)
1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481
{
	unsigned long active, inactive;

	active = zone_page_state(zone, NR_ACTIVE_ANON);
	inactive = zone_page_state(zone, NR_INACTIVE_ANON);

	if (inactive * zone->inactive_ratio < active)
		return 1;

	return 0;
}

1482 1483
/**
 * inactive_anon_is_low - check if anonymous pages need to be deactivated
1484
 * @lruvec: LRU vector to check
1485 1486 1487 1488
 *
 * Returns true if the zone does not have enough inactive anon pages,
 * meaning some active anon pages need to be deactivated.
 */
1489
static int inactive_anon_is_low(struct lruvec *lruvec)
1490
{
1491 1492 1493 1494 1495 1496 1497
	/*
	 * If we don't have swap space, anonymous page deactivation
	 * is pointless.
	 */
	if (!total_swap_pages)
		return 0;

1498
	if (!mem_cgroup_disabled())
1499
		return mem_cgroup_inactive_anon_is_low(lruvec);
1500

1501
	return inactive_anon_is_low_global(lruvec_zone(lruvec));
1502
}
1503
#else
1504
static inline int inactive_anon_is_low(struct lruvec *lruvec)
1505 1506 1507 1508
{
	return 0;
}
#endif
1509

1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521
static int inactive_file_is_low_global(struct zone *zone)
{
	unsigned long active, inactive;

	active = zone_page_state(zone, NR_ACTIVE_FILE);
	inactive = zone_page_state(zone, NR_INACTIVE_FILE);

	return (active > inactive);
}

/**
 * inactive_file_is_low - check if file pages need to be deactivated
1522
 * @lruvec: LRU vector to check
1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533
 *
 * When the system is doing streaming IO, memory pressure here
 * ensures that active file pages get deactivated, until more
 * than half of the file pages are on the inactive list.
 *
 * Once we get to that situation, protect the system's working
 * set from being evicted by disabling active file page aging.
 *
 * This uses a different ratio than the anonymous pages, because
 * the page cache uses a use-once replacement algorithm.
 */
1534
static int inactive_file_is_low(struct lruvec *lruvec)
1535
{
1536
	if (!mem_cgroup_disabled())
1537
		return mem_cgroup_inactive_file_is_low(lruvec);
1538

1539
	return inactive_file_is_low_global(lruvec_zone(lruvec));
1540 1541
}

1542
static int inactive_list_is_low(struct lruvec *lruvec, int file)
1543 1544
{
	if (file)
1545
		return inactive_file_is_low(lruvec);
1546
	else
1547
		return inactive_anon_is_low(lruvec);
1548 1549
}

1550
static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
1551
				 struct lruvec *lruvec, struct scan_control *sc)
1552
{
1553 1554
	int file = is_file_lru(lru);

1555
	if (is_active_lru(lru)) {
1556
		if (inactive_list_is_low(lruvec, file))
1557
			shrink_active_list(nr_to_scan, lruvec, sc, lru);
1558 1559 1560
		return 0;
	}

1561
	return shrink_inactive_list(nr_to_scan, lruvec, sc, lru);
1562 1563
}

1564
static int vmscan_swappiness(struct scan_control *sc)
1565
{
1566
	if (global_reclaim(sc))
1567
		return vm_swappiness;
1568
	return mem_cgroup_swappiness(sc->target_mem_cgroup);
1569 1570
}

1571 1572 1573 1574 1575 1576
/*
 * Determine how aggressively the anon and file LRU lists should be
 * scanned.  The relative value of each set of LRU lists is determined
 * by looking at the fraction of the pages scanned we did rotate back
 * onto the active list instead of evict.
 *
1577
 * nr[0] = anon pages to scan; nr[1] = file pages to scan
1578
 */
1579
static void get_scan_count(struct lruvec *lruvec, struct scan_control *sc,
1580
			   unsigned long *nr)
1581 1582 1583 1584
{
	unsigned long anon, file, free;
	unsigned long anon_prio, file_prio;
	unsigned long ap, fp;
1585
	struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1586
	u64 fraction[2], denominator;
H
Hugh Dickins 已提交
1587
	enum lru_list lru;
1588
	int noswap = 0;
1589
	bool force_scan = false;
1590
	struct zone *zone = lruvec_zone(lruvec);
1591

1592 1593 1594 1595 1596 1597 1598 1599 1600 1601
	/*
	 * If the zone or memcg is small, nr[l] can be 0.  This
	 * results in no scanning on this priority and a potential
	 * priority drop.  Global direct reclaim can go to the next
	 * zone and tends to have no problems. Global kswapd is for
	 * zone balancing and it needs to scan a minimum amount. When
	 * reclaiming for a memcg, a priority drop can cause high
	 * latencies, so it's better to scan a minimum amount there as
	 * well.
	 */
1602
	if (current_is_kswapd() && zone->all_unreclaimable)
1603
		force_scan = true;
1604
	if (!global_reclaim(sc))
1605
		force_scan = true;
1606 1607 1608 1609 1610 1611 1612 1613 1614

	/* If we have no swap space, do not bother scanning anon pages. */
	if (!sc->may_swap || (nr_swap_pages <= 0)) {
		noswap = 1;
		fraction[0] = 0;
		fraction[1] = 1;
		denominator = 1;
		goto out;
	}
1615

1616 1617 1618 1619
	anon  = get_lruvec_size(lruvec, LRU_ACTIVE_ANON) +
		get_lruvec_size(lruvec, LRU_INACTIVE_ANON);
	file  = get_lruvec_size(lruvec, LRU_ACTIVE_FILE) +
		get_lruvec_size(lruvec, LRU_INACTIVE_FILE);
1620

1621
	if (global_reclaim(sc)) {
1622
		free  = zone_page_state(zone, NR_FREE_PAGES);
1623 1624
		/* If we have very few page cache pages,
		   force-scan anon pages. */
1625
		if (unlikely(file + free <= high_wmark_pages(zone))) {
1626 1627 1628 1629
			fraction[0] = 1;
			fraction[1] = 0;
			denominator = 1;
			goto out;
1630
		}
1631 1632
	}

1633 1634 1635 1636
	/*
	 * With swappiness at 100, anonymous and file have the same priority.
	 * This scanning priority is essentially the inverse of IO cost.
	 */
1637 1638
	anon_prio = vmscan_swappiness(sc);
	file_prio = 200 - vmscan_swappiness(sc);
1639

1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650
	/*
	 * OK, so we have swap space and a fair amount of page cache
	 * pages.  We use the recently rotated / recently scanned
	 * ratios to determine how valuable each cache is.
	 *
	 * Because workloads change over time (and to avoid overflow)
	 * we keep these statistics as a floating average, which ends
	 * up weighing recent references more than old ones.
	 *
	 * anon in [0], file in [1]
	 */
1651
	spin_lock_irq(&zone->lru_lock);
1652 1653 1654
	if (unlikely(reclaim_stat->recent_scanned[0] > anon / 4)) {
		reclaim_stat->recent_scanned[0] /= 2;
		reclaim_stat->recent_rotated[0] /= 2;
1655 1656
	}

1657 1658 1659
	if (unlikely(reclaim_stat->recent_scanned[1] > file / 4)) {
		reclaim_stat->recent_scanned[1] /= 2;
		reclaim_stat->recent_rotated[1] /= 2;
1660 1661 1662
	}

	/*
1663 1664 1665
	 * The amount of pressure on anon vs file pages is inversely
	 * proportional to the fraction of recently scanned pages on
	 * each list that were recently referenced and in active use.
1666
	 */
1667
	ap = anon_prio * (reclaim_stat->recent_scanned[0] + 1);
1668
	ap /= reclaim_stat->recent_rotated[0] + 1;
1669

1670
	fp = file_prio * (reclaim_stat->recent_scanned[1] + 1);
1671
	fp /= reclaim_stat->recent_rotated[1] + 1;
1672
	spin_unlock_irq(&zone->lru_lock);
1673

1674 1675 1676 1677
	fraction[0] = ap;
	fraction[1] = fp;
	denominator = ap + fp + 1;
out:
H
Hugh Dickins 已提交
1678 1679
	for_each_evictable_lru(lru) {
		int file = is_file_lru(lru);
1680
		unsigned long scan;
1681

1682
		scan = get_lruvec_size(lruvec, lru);
1683 1684
		if (sc->priority || noswap || !vmscan_swappiness(sc)) {
			scan >>= sc->priority;
1685 1686
			if (!scan && force_scan)
				scan = SWAP_CLUSTER_MAX;
1687 1688
			scan = div64_u64(scan * fraction[file], denominator);
		}
H
Hugh Dickins 已提交
1689
		nr[lru] = scan;
1690
	}
1691
}
1692

M
Mel Gorman 已提交
1693
/* Use reclaim/compaction for costly allocs or under memory pressure */
1694
static bool in_reclaim_compaction(struct scan_control *sc)
M
Mel Gorman 已提交
1695 1696 1697
{
	if (COMPACTION_BUILD && sc->order &&
			(sc->order > PAGE_ALLOC_COSTLY_ORDER ||
1698
			 sc->priority < DEF_PRIORITY - 2))
M
Mel Gorman 已提交
1699 1700 1701 1702 1703
		return true;

	return false;
}

1704
/*
M
Mel Gorman 已提交
1705 1706 1707 1708 1709
 * Reclaim/compaction is used for high-order allocation requests. It reclaims
 * order-0 pages before compacting the zone. should_continue_reclaim() returns
 * true if more pages should be reclaimed such that when the page allocator
 * calls try_to_compact_zone() that it will have enough free pages to succeed.
 * It will give up earlier than that if there is difficulty reclaiming pages.
1710
 */
1711
static inline bool should_continue_reclaim(struct mem_cgroup_zone *mz,
1712 1713 1714 1715 1716 1717
					unsigned long nr_reclaimed,
					unsigned long nr_scanned,
					struct scan_control *sc)
{
	unsigned long pages_for_compaction;
	unsigned long inactive_lru_pages;
1718
	struct lruvec *lruvec;
1719 1720

	/* If not in reclaim/compaction mode, stop */
1721
	if (!in_reclaim_compaction(sc))
1722 1723
		return false;

1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745
	/* Consider stopping depending on scan and reclaim activity */
	if (sc->gfp_mask & __GFP_REPEAT) {
		/*
		 * For __GFP_REPEAT allocations, stop reclaiming if the
		 * full LRU list has been scanned and we are still failing
		 * to reclaim pages. This full LRU scan is potentially
		 * expensive but a __GFP_REPEAT caller really wants to succeed
		 */
		if (!nr_reclaimed && !nr_scanned)
			return false;
	} else {
		/*
		 * For non-__GFP_REPEAT allocations which can presumably
		 * fail without consequence, stop if we failed to reclaim
		 * any pages from the last SWAP_CLUSTER_MAX number of
		 * pages that were scanned. This will return to the
		 * caller faster at the risk reclaim/compaction and
		 * the resulting allocation attempt fails
		 */
		if (!nr_reclaimed)
			return false;
	}
1746 1747 1748 1749 1750

	/*
	 * If we have not reclaimed enough pages for compaction and the
	 * inactive lists are large enough, continue reclaiming
	 */
1751
	lruvec = mem_cgroup_zone_lruvec(mz->zone, mz->mem_cgroup);
1752
	pages_for_compaction = (2UL << sc->order);
1753
	inactive_lru_pages = get_lruvec_size(lruvec, LRU_INACTIVE_FILE);
1754
	if (nr_swap_pages > 0)
1755 1756
		inactive_lru_pages += get_lruvec_size(lruvec,
						      LRU_INACTIVE_ANON);
1757 1758 1759 1760 1761
	if (sc->nr_reclaimed < pages_for_compaction &&
			inactive_lru_pages > pages_for_compaction)
		return true;

	/* If compaction would go ahead or the allocation would succeed, stop */
1762
	switch (compaction_suitable(mz->zone, sc->order)) {
1763 1764 1765 1766 1767 1768 1769 1770
	case COMPACT_PARTIAL:
	case COMPACT_CONTINUE:
		return false;
	default:
		return true;
	}
}

L
Linus Torvalds 已提交
1771 1772 1773
/*
 * This is a basic per-zone page freer.  Used by both kswapd and direct reclaim.
 */
1774
static void shrink_mem_cgroup_zone(struct mem_cgroup_zone *mz,
1775
				   struct scan_control *sc)
L
Linus Torvalds 已提交
1776
{
1777
	unsigned long nr[NR_LRU_LISTS];
1778
	unsigned long nr_to_scan;
H
Hugh Dickins 已提交
1779
	enum lru_list lru;
1780
	unsigned long nr_reclaimed, nr_scanned;
1781
	unsigned long nr_to_reclaim = sc->nr_to_reclaim;
1782
	struct blk_plug plug;
1783 1784 1785
	struct lruvec *lruvec;

	lruvec = mem_cgroup_zone_lruvec(mz->zone, mz->mem_cgroup);
1786

1787 1788
restart:
	nr_reclaimed = 0;
1789
	nr_scanned = sc->nr_scanned;
1790
	get_scan_count(lruvec, sc, nr);
L
Linus Torvalds 已提交
1791

1792
	blk_start_plug(&plug);
1793 1794
	while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
					nr[LRU_INACTIVE_FILE]) {
H
Hugh Dickins 已提交
1795 1796
		for_each_evictable_lru(lru) {
			if (nr[lru]) {
K
KOSAKI Motohiro 已提交
1797
				nr_to_scan = min_t(unsigned long,
H
Hugh Dickins 已提交
1798 1799
						   nr[lru], SWAP_CLUSTER_MAX);
				nr[lru] -= nr_to_scan;
L
Linus Torvalds 已提交
1800

H
Hugh Dickins 已提交
1801
				nr_reclaimed += shrink_list(lru, nr_to_scan,
1802
							    lruvec, sc);
1803
			}
L
Linus Torvalds 已提交
1804
		}
1805 1806 1807 1808 1809 1810 1811 1812
		/*
		 * On large memory systems, scan >> priority can become
		 * really large. This is fine for the starting priority;
		 * we want to put equal scanning pressure on each zone.
		 * However, if the VM has a harder time of freeing pages,
		 * with multiple processes reclaiming pages, the total
		 * freeing target can get unreasonably large.
		 */
1813 1814
		if (nr_reclaimed >= nr_to_reclaim &&
		    sc->priority < DEF_PRIORITY)
1815
			break;
L
Linus Torvalds 已提交
1816
	}
1817
	blk_finish_plug(&plug);
1818
	sc->nr_reclaimed += nr_reclaimed;
1819

1820 1821 1822 1823
	/*
	 * Even if we did not try to evict anon pages at all, we want to
	 * rebalance the anon lru active/inactive ratio.
	 */
1824
	if (inactive_anon_is_low(lruvec))
1825
		shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
1826
				   sc, LRU_ACTIVE_ANON);
1827

1828
	/* reclaim/compaction might need reclaim to continue */
1829
	if (should_continue_reclaim(mz, nr_reclaimed,
1830
				    sc->nr_scanned - nr_scanned, sc))
1831 1832
		goto restart;

1833
	throttle_vm_writeout(sc->gfp_mask);
L
Linus Torvalds 已提交
1834 1835
}

1836
static void shrink_zone(struct zone *zone, struct scan_control *sc)
1837
{
1838 1839
	struct mem_cgroup *root = sc->target_mem_cgroup;
	struct mem_cgroup_reclaim_cookie reclaim = {
1840
		.zone = zone,
1841
		.priority = sc->priority,
1842
	};
1843 1844 1845 1846 1847 1848 1849 1850
	struct mem_cgroup *memcg;

	memcg = mem_cgroup_iter(root, NULL, &reclaim);
	do {
		struct mem_cgroup_zone mz = {
			.mem_cgroup = memcg,
			.zone = zone,
		};
1851

1852
		shrink_mem_cgroup_zone(&mz, sc);
1853 1854 1855 1856 1857
		/*
		 * Limit reclaim has historically picked one memcg and
		 * scanned it with decreasing priority levels until
		 * nr_to_reclaim had been reclaimed.  This priority
		 * cycle is thus over after a single memcg.
1858 1859 1860 1861
		 *
		 * Direct reclaim and kswapd, on the other hand, have
		 * to scan all memory cgroups to fulfill the overall
		 * scan target for the zone.
1862 1863 1864 1865 1866 1867 1868
		 */
		if (!global_reclaim(sc)) {
			mem_cgroup_iter_break(root, memcg);
			break;
		}
		memcg = mem_cgroup_iter(root, memcg, &reclaim);
	} while (memcg);
1869 1870
}

1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896
/* Returns true if compaction should go ahead for a high-order request */
static inline bool compaction_ready(struct zone *zone, struct scan_control *sc)
{
	unsigned long balance_gap, watermark;
	bool watermark_ok;

	/* Do not consider compaction for orders reclaim is meant to satisfy */
	if (sc->order <= PAGE_ALLOC_COSTLY_ORDER)
		return false;

	/*
	 * Compaction takes time to run and there are potentially other
	 * callers using the pages just freed. Continue reclaiming until
	 * there is a buffer of free pages available to give compaction
	 * a reasonable chance of completing and allocating the page
	 */
	balance_gap = min(low_wmark_pages(zone),
		(zone->present_pages + KSWAPD_ZONE_BALANCE_GAP_RATIO-1) /
			KSWAPD_ZONE_BALANCE_GAP_RATIO);
	watermark = high_wmark_pages(zone) + balance_gap + (2UL << sc->order);
	watermark_ok = zone_watermark_ok_safe(zone, 0, watermark, 0, 0);

	/*
	 * If compaction is deferred, reclaim up to a point where
	 * compaction will have a chance of success when re-enabled
	 */
1897
	if (compaction_deferred(zone, sc->order))
1898 1899 1900 1901 1902 1903 1904 1905 1906
		return watermark_ok;

	/* If compaction is not ready to start, keep reclaiming */
	if (!compaction_suitable(zone, sc->order))
		return false;

	return watermark_ok;
}

L
Linus Torvalds 已提交
1907 1908 1909 1910 1911
/*
 * This is the direct reclaim path, for page-allocating processes.  We only
 * try to reclaim pages from zones which will satisfy the caller's allocation
 * request.
 *
1912 1913
 * We reclaim from a zone even if that zone is over high_wmark_pages(zone).
 * Because:
L
Linus Torvalds 已提交
1914 1915
 * a) The caller may be trying to free *extra* pages to satisfy a higher-order
 *    allocation or
1916 1917 1918
 * b) The target zone may be at high_wmark_pages(zone) but the lower zones
 *    must go *over* high_wmark_pages(zone) to satisfy the `incremental min'
 *    zone defense algorithm.
L
Linus Torvalds 已提交
1919 1920 1921
 *
 * If a zone is deemed to be full of pinned pages then just give it a light
 * scan then give up on it.
1922 1923
 *
 * This function returns true if a zone is being reclaimed for a costly
1924
 * high-order allocation and compaction is ready to begin. This indicates to
1925 1926
 * the caller that it should consider retrying the allocation instead of
 * further reclaim.
L
Linus Torvalds 已提交
1927
 */
1928
static bool shrink_zones(struct zonelist *zonelist, struct scan_control *sc)
L
Linus Torvalds 已提交
1929
{
1930
	struct zoneref *z;
1931
	struct zone *zone;
1932 1933
	unsigned long nr_soft_reclaimed;
	unsigned long nr_soft_scanned;
1934
	bool aborted_reclaim = false;
1935

1936 1937 1938 1939 1940 1941 1942 1943
	/*
	 * If the number of buffer_heads in the machine exceeds the maximum
	 * allowed level, force direct reclaim to scan the highmem zone as
	 * highmem pages could be pinning lowmem pages storing buffer_heads
	 */
	if (buffer_heads_over_limit)
		sc->gfp_mask |= __GFP_HIGHMEM;

1944 1945
	for_each_zone_zonelist_nodemask(zone, z, zonelist,
					gfp_zone(sc->gfp_mask), sc->nodemask) {
1946
		if (!populated_zone(zone))
L
Linus Torvalds 已提交
1947
			continue;
1948 1949 1950 1951
		/*
		 * Take care memory controller reclaiming has small influence
		 * to global LRU.
		 */
1952
		if (global_reclaim(sc)) {
1953 1954
			if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
				continue;
1955 1956
			if (zone->all_unreclaimable &&
					sc->priority != DEF_PRIORITY)
1957
				continue;	/* Let kswapd poll it */
1958 1959
			if (COMPACTION_BUILD) {
				/*
1960 1961 1962 1963 1964
				 * If we already have plenty of memory free for
				 * compaction in this zone, don't free any more.
				 * Even though compaction is invoked for any
				 * non-zero order, only frequent costly order
				 * reclamation is disruptive enough to become a
1965 1966
				 * noticeable problem, like transparent huge
				 * page allocations.
1967
				 */
1968
				if (compaction_ready(zone, sc)) {
1969
					aborted_reclaim = true;
1970
					continue;
1971
				}
1972
			}
1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985
			/*
			 * This steals pages from memory cgroups over softlimit
			 * and returns the number of reclaimed pages and
			 * scanned pages. This works for global memory pressure
			 * and balancing, not for a memcg's limit.
			 */
			nr_soft_scanned = 0;
			nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone,
						sc->order, sc->gfp_mask,
						&nr_soft_scanned);
			sc->nr_reclaimed += nr_soft_reclaimed;
			sc->nr_scanned += nr_soft_scanned;
			/* need some check for avoid more shrink_zone() */
1986
		}
1987

1988
		shrink_zone(zone, sc);
L
Linus Torvalds 已提交
1989
	}
1990

1991
	return aborted_reclaim;
1992 1993 1994 1995 1996 1997 1998
}

static bool zone_reclaimable(struct zone *zone)
{
	return zone->pages_scanned < zone_reclaimable_pages(zone) * 6;
}

1999
/* All zones in zonelist are unreclaimable? */
2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011
static bool all_unreclaimable(struct zonelist *zonelist,
		struct scan_control *sc)
{
	struct zoneref *z;
	struct zone *zone;

	for_each_zone_zonelist_nodemask(zone, z, zonelist,
			gfp_zone(sc->gfp_mask), sc->nodemask) {
		if (!populated_zone(zone))
			continue;
		if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
			continue;
2012 2013
		if (!zone->all_unreclaimable)
			return false;
2014 2015
	}

2016
	return true;
L
Linus Torvalds 已提交
2017
}
2018

L
Linus Torvalds 已提交
2019 2020 2021 2022 2023 2024 2025 2026
/*
 * This is the main entry point to direct page reclaim.
 *
 * If a full scan of the inactive list fails to free enough memory then we
 * are "out of memory" and something needs to be killed.
 *
 * If the caller is !__GFP_FS then the probability of a failure is reasonably
 * high - the zone may be full of dirty or under-writeback pages, which this
2027 2028 2029 2030
 * caller can't do much about.  We kick the writeback threads and take explicit
 * naps in the hope that some of these pages can be written.  But if the
 * allocating task holds filesystem locks which prevent writeout this might not
 * work, and the allocation attempt will fail.
2031 2032 2033
 *
 * returns:	0, if no pages reclaimed
 * 		else, the number of pages reclaimed
L
Linus Torvalds 已提交
2034
 */
2035
static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
2036 2037
					struct scan_control *sc,
					struct shrink_control *shrink)
L
Linus Torvalds 已提交
2038
{
2039
	unsigned long total_scanned = 0;
L
Linus Torvalds 已提交
2040
	struct reclaim_state *reclaim_state = current->reclaim_state;
2041
	struct zoneref *z;
2042
	struct zone *zone;
2043
	unsigned long writeback_threshold;
2044
	bool aborted_reclaim;
L
Linus Torvalds 已提交
2045

2046 2047
	delayacct_freepages_start();

2048
	if (global_reclaim(sc))
2049
		count_vm_event(ALLOCSTALL);
L
Linus Torvalds 已提交
2050

2051
	do {
2052
		sc->nr_scanned = 0;
2053
		aborted_reclaim = shrink_zones(zonelist, sc);
2054

2055 2056 2057 2058
		/*
		 * Don't shrink slabs when reclaiming memory from
		 * over limit cgroups
		 */
2059
		if (global_reclaim(sc)) {
2060
			unsigned long lru_pages = 0;
2061 2062
			for_each_zone_zonelist(zone, z, zonelist,
					gfp_zone(sc->gfp_mask)) {
2063 2064 2065 2066 2067 2068
				if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
					continue;

				lru_pages += zone_reclaimable_pages(zone);
			}

2069
			shrink_slab(shrink, sc->nr_scanned, lru_pages);
2070
			if (reclaim_state) {
2071
				sc->nr_reclaimed += reclaim_state->reclaimed_slab;
2072 2073
				reclaim_state->reclaimed_slab = 0;
			}
L
Linus Torvalds 已提交
2074
		}
2075
		total_scanned += sc->nr_scanned;
2076
		if (sc->nr_reclaimed >= sc->nr_to_reclaim)
L
Linus Torvalds 已提交
2077 2078 2079 2080 2081 2082 2083 2084 2085
			goto out;

		/*
		 * Try to write back as many pages as we just scanned.  This
		 * tends to cause slow streaming writers to write data to the
		 * disk smoothly, at the dirtying rate, which is nice.   But
		 * that's undesirable in laptop mode, where we *want* lumpy
		 * writeout.  So in laptop mode, write out the whole world.
		 */
2086 2087
		writeback_threshold = sc->nr_to_reclaim + sc->nr_to_reclaim / 2;
		if (total_scanned > writeback_threshold) {
2088 2089
			wakeup_flusher_threads(laptop_mode ? 0 : total_scanned,
						WB_REASON_TRY_TO_FREE_PAGES);
2090
			sc->may_writepage = 1;
L
Linus Torvalds 已提交
2091 2092 2093
		}

		/* Take a nap, wait for some writeback to complete */
2094
		if (!sc->hibernation_mode && sc->nr_scanned &&
2095
		    sc->priority < DEF_PRIORITY - 2) {
2096 2097 2098
			struct zone *preferred_zone;

			first_zones_zonelist(zonelist, gfp_zone(sc->gfp_mask),
2099 2100
						&cpuset_current_mems_allowed,
						&preferred_zone);
2101 2102
			wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/10);
		}
2103
	} while (--sc->priority >= 0);
2104

L
Linus Torvalds 已提交
2105
out:
2106 2107
	delayacct_freepages_end();

2108 2109 2110
	if (sc->nr_reclaimed)
		return sc->nr_reclaimed;

2111 2112 2113 2114 2115 2116 2117 2118
	/*
	 * As hibernation is going on, kswapd is freezed so that it can't mark
	 * the zone into all_unreclaimable. Thus bypassing all_unreclaimable
	 * check.
	 */
	if (oom_killer_disabled)
		return 0;

2119 2120
	/* Aborted reclaim to try compaction? don't OOM, then */
	if (aborted_reclaim)
2121 2122
		return 1;

2123
	/* top priority shrink_zones still had more to do? don't OOM, then */
2124
	if (global_reclaim(sc) && !all_unreclaimable(zonelist, sc))
2125 2126 2127
		return 1;

	return 0;
L
Linus Torvalds 已提交
2128 2129
}

2130
unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
2131
				gfp_t gfp_mask, nodemask_t *nodemask)
2132
{
2133
	unsigned long nr_reclaimed;
2134 2135 2136
	struct scan_control sc = {
		.gfp_mask = gfp_mask,
		.may_writepage = !laptop_mode,
2137
		.nr_to_reclaim = SWAP_CLUSTER_MAX,
2138
		.may_unmap = 1,
2139
		.may_swap = 1,
2140
		.order = order,
2141
		.priority = DEF_PRIORITY,
2142
		.target_mem_cgroup = NULL,
2143
		.nodemask = nodemask,
2144
	};
2145 2146 2147
	struct shrink_control shrink = {
		.gfp_mask = sc.gfp_mask,
	};
2148

2149 2150 2151 2152
	trace_mm_vmscan_direct_reclaim_begin(order,
				sc.may_writepage,
				gfp_mask);

2153
	nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink);
2154 2155 2156 2157

	trace_mm_vmscan_direct_reclaim_end(nr_reclaimed);

	return nr_reclaimed;
2158 2159
}

2160
#ifdef CONFIG_CGROUP_MEM_RES_CTLR
2161

2162
unsigned long mem_cgroup_shrink_node_zone(struct mem_cgroup *memcg,
2163
						gfp_t gfp_mask, bool noswap,
2164 2165
						struct zone *zone,
						unsigned long *nr_scanned)
2166 2167
{
	struct scan_control sc = {
2168
		.nr_scanned = 0,
2169
		.nr_to_reclaim = SWAP_CLUSTER_MAX,
2170 2171 2172 2173
		.may_writepage = !laptop_mode,
		.may_unmap = 1,
		.may_swap = !noswap,
		.order = 0,
2174
		.priority = 0,
2175
		.target_mem_cgroup = memcg,
2176
	};
2177
	struct mem_cgroup_zone mz = {
2178
		.mem_cgroup = memcg,
2179 2180
		.zone = zone,
	};
2181

2182 2183
	sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
			(GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
2184

2185
	trace_mm_vmscan_memcg_softlimit_reclaim_begin(sc.order,
2186 2187 2188
						      sc.may_writepage,
						      sc.gfp_mask);

2189 2190 2191 2192 2193 2194 2195
	/*
	 * NOTE: Although we can get the priority field, using it
	 * here is not a good idea, since it limits the pages we can scan.
	 * if we don't reclaim here, the shrink_zone from balance_pgdat
	 * will pick up pages from other mem cgroup's as well. We hack
	 * the priority and make it zero.
	 */
2196
	shrink_mem_cgroup_zone(&mz, &sc);
2197 2198 2199

	trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed);

2200
	*nr_scanned = sc.nr_scanned;
2201 2202 2203
	return sc.nr_reclaimed;
}

2204
unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg,
K
KOSAKI Motohiro 已提交
2205
					   gfp_t gfp_mask,
2206
					   bool noswap)
2207
{
2208
	struct zonelist *zonelist;
2209
	unsigned long nr_reclaimed;
2210
	int nid;
2211 2212
	struct scan_control sc = {
		.may_writepage = !laptop_mode,
2213
		.may_unmap = 1,
2214
		.may_swap = !noswap,
2215
		.nr_to_reclaim = SWAP_CLUSTER_MAX,
2216
		.order = 0,
2217
		.priority = DEF_PRIORITY,
2218
		.target_mem_cgroup = memcg,
2219
		.nodemask = NULL, /* we don't care the placement */
2220 2221 2222 2223 2224
		.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
				(GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK),
	};
	struct shrink_control shrink = {
		.gfp_mask = sc.gfp_mask,
2225 2226
	};

2227 2228 2229 2230 2231
	/*
	 * Unlike direct reclaim via alloc_pages(), memcg's reclaim doesn't
	 * take care of from where we get pages. So the node where we start the
	 * scan does not need to be the current node.
	 */
2232
	nid = mem_cgroup_select_victim_node(memcg);
2233 2234

	zonelist = NODE_DATA(nid)->node_zonelists;
2235 2236 2237 2238 2239

	trace_mm_vmscan_memcg_reclaim_begin(0,
					    sc.may_writepage,
					    sc.gfp_mask);

2240
	nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink);
2241 2242 2243 2244

	trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed);

	return nr_reclaimed;
2245 2246 2247
}
#endif

2248
static void age_active_anon(struct zone *zone, struct scan_control *sc)
2249
{
2250
	struct mem_cgroup *memcg;
2251

2252 2253 2254 2255 2256
	if (!total_swap_pages)
		return;

	memcg = mem_cgroup_iter(NULL, NULL, NULL);
	do {
2257
		struct lruvec *lruvec = mem_cgroup_zone_lruvec(zone, memcg);
2258

2259
		if (inactive_anon_is_low(lruvec))
2260
			shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
2261
					   sc, LRU_ACTIVE_ANON);
2262 2263 2264

		memcg = mem_cgroup_iter(NULL, memcg, NULL);
	} while (memcg);
2265 2266
}

2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277
/*
 * pgdat_balanced is used when checking if a node is balanced for high-order
 * allocations. Only zones that meet watermarks and are in a zone allowed
 * by the callers classzone_idx are added to balanced_pages. The total of
 * balanced pages must be at least 25% of the zones allowed by classzone_idx
 * for the node to be considered balanced. Forcing all zones to be balanced
 * for high orders can cause excessive reclaim when there are imbalanced zones.
 * The choice of 25% is due to
 *   o a 16M DMA zone that is balanced will not balance a zone on any
 *     reasonable sized machine
 *   o On all other machines, the top zone must be at least a reasonable
L
Lucas De Marchi 已提交
2278
 *     percentage of the middle zones. For example, on 32-bit x86, highmem
2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291
 *     would need to be at least 256M for it to be balance a whole node.
 *     Similarly, on x86-64 the Normal zone would need to be at least 1G
 *     to balance a node on its own. These seemed like reasonable ratios.
 */
static bool pgdat_balanced(pg_data_t *pgdat, unsigned long balanced_pages,
						int classzone_idx)
{
	unsigned long present_pages = 0;
	int i;

	for (i = 0; i <= classzone_idx; i++)
		present_pages += pgdat->node_zones[i].present_pages;

S
Shaohua Li 已提交
2292 2293
	/* A special case here: if zone has no page, we think it's balanced */
	return balanced_pages >= (present_pages >> 2);
2294 2295
}

2296
/* is kswapd sleeping prematurely? */
2297 2298
static bool sleeping_prematurely(pg_data_t *pgdat, int order, long remaining,
					int classzone_idx)
2299
{
2300
	int i;
2301 2302
	unsigned long balanced = 0;
	bool all_zones_ok = true;
2303 2304 2305

	/* If a direct reclaimer woke kswapd within HZ/10, it's premature */
	if (remaining)
2306
		return true;
2307

2308
	/* Check the watermark levels */
2309
	for (i = 0; i <= classzone_idx; i++) {
2310 2311 2312 2313 2314
		struct zone *zone = pgdat->node_zones + i;

		if (!populated_zone(zone))
			continue;

2315 2316 2317 2318 2319 2320 2321 2322
		/*
		 * balance_pgdat() skips over all_unreclaimable after
		 * DEF_PRIORITY. Effectively, it considers them balanced so
		 * they must be considered balanced here as well if kswapd
		 * is to sleep
		 */
		if (zone->all_unreclaimable) {
			balanced += zone->present_pages;
2323
			continue;
2324
		}
2325

2326
		if (!zone_watermark_ok_safe(zone, order, high_wmark_pages(zone),
2327
							i, 0))
2328 2329 2330
			all_zones_ok = false;
		else
			balanced += zone->present_pages;
2331
	}
2332

2333 2334 2335 2336 2337 2338
	/*
	 * For high-order requests, the balanced zones must contain at least
	 * 25% of the nodes pages for kswapd to sleep. For order-0, all zones
	 * must be balanced
	 */
	if (order)
2339
		return !pgdat_balanced(pgdat, balanced, classzone_idx);
2340 2341
	else
		return !all_zones_ok;
2342 2343
}

L
Linus Torvalds 已提交
2344 2345
/*
 * For kswapd, balance_pgdat() will work across all this node's zones until
2346
 * they are all at high_wmark_pages(zone).
L
Linus Torvalds 已提交
2347
 *
2348
 * Returns the final order kswapd was reclaiming at
L
Linus Torvalds 已提交
2349 2350 2351 2352 2353 2354 2355 2356 2357 2358
 *
 * There is special handling here for zones which are full of pinned pages.
 * This can happen if the pages are all mlocked, or if they are all used by
 * device drivers (say, ZONE_DMA).  Or if they are all in use by hugetlb.
 * What we do is to detect the case where all pages in the zone have been
 * scanned twice and there has been zero successful reclaim.  Mark the zone as
 * dead and from now on, only perform a short scan.  Basically we're polling
 * the zone for when the problem goes away.
 *
 * kswapd scans the zones in the highmem->normal->dma direction.  It skips
2359 2360 2361 2362 2363
 * zones which have free_pages > high_wmark_pages(zone), but once a zone is
 * found to have free_pages <= high_wmark_pages(zone), we scan that zone and the
 * lower zones regardless of the number of free pages in the lower zones. This
 * interoperates with the page allocator fallback scheme to ensure that aging
 * of pages is balanced across the zones.
L
Linus Torvalds 已提交
2364
 */
2365
static unsigned long balance_pgdat(pg_data_t *pgdat, int order,
2366
							int *classzone_idx)
L
Linus Torvalds 已提交
2367 2368
{
	int all_zones_ok;
2369
	unsigned long balanced;
L
Linus Torvalds 已提交
2370
	int i;
2371
	int end_zone = 0;	/* Inclusive.  0 = ZONE_DMA */
2372
	unsigned long total_scanned;
L
Linus Torvalds 已提交
2373
	struct reclaim_state *reclaim_state = current->reclaim_state;
2374 2375
	unsigned long nr_soft_reclaimed;
	unsigned long nr_soft_scanned;
2376 2377
	struct scan_control sc = {
		.gfp_mask = GFP_KERNEL,
2378
		.may_unmap = 1,
2379
		.may_swap = 1,
2380 2381 2382 2383 2384
		/*
		 * kswapd doesn't want to be bailed out while reclaim. because
		 * we want to put equal scanning pressure on each zone.
		 */
		.nr_to_reclaim = ULONG_MAX,
A
Andy Whitcroft 已提交
2385
		.order = order,
2386
		.target_mem_cgroup = NULL,
2387
	};
2388 2389 2390
	struct shrink_control shrink = {
		.gfp_mask = sc.gfp_mask,
	};
L
Linus Torvalds 已提交
2391 2392
loop_again:
	total_scanned = 0;
2393
	sc.priority = DEF_PRIORITY;
2394
	sc.nr_reclaimed = 0;
C
Christoph Lameter 已提交
2395
	sc.may_writepage = !laptop_mode;
2396
	count_vm_event(PAGEOUTRUN);
L
Linus Torvalds 已提交
2397

2398
	do {
L
Linus Torvalds 已提交
2399
		unsigned long lru_pages = 0;
2400
		int has_under_min_watermark_zone = 0;
L
Linus Torvalds 已提交
2401 2402

		all_zones_ok = 1;
2403
		balanced = 0;
L
Linus Torvalds 已提交
2404

2405 2406 2407 2408 2409 2410
		/*
		 * Scan in the highmem->dma direction for the highest
		 * zone which needs scanning
		 */
		for (i = pgdat->nr_zones - 1; i >= 0; i--) {
			struct zone *zone = pgdat->node_zones + i;
L
Linus Torvalds 已提交
2411

2412 2413
			if (!populated_zone(zone))
				continue;
L
Linus Torvalds 已提交
2414

2415 2416
			if (zone->all_unreclaimable &&
			    sc.priority != DEF_PRIORITY)
2417
				continue;
L
Linus Torvalds 已提交
2418

2419 2420 2421 2422
			/*
			 * Do some background aging of the anon list, to give
			 * pages a chance to be referenced before reclaiming.
			 */
2423
			age_active_anon(zone, &sc);
2424

2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435
			/*
			 * If the number of buffer_heads in the machine
			 * exceeds the maximum allowed level and this node
			 * has a highmem zone, force kswapd to reclaim from
			 * it to relieve lowmem pressure.
			 */
			if (buffer_heads_over_limit && is_highmem_idx(i)) {
				end_zone = i;
				break;
			}

2436
			if (!zone_watermark_ok_safe(zone, order,
2437
					high_wmark_pages(zone), 0, 0)) {
2438
				end_zone = i;
A
Andrew Morton 已提交
2439
				break;
2440 2441 2442
			} else {
				/* If balanced, clear the congested flag */
				zone_clear_flag(zone, ZONE_CONGESTED);
L
Linus Torvalds 已提交
2443 2444
			}
		}
A
Andrew Morton 已提交
2445 2446 2447
		if (i < 0)
			goto out;

L
Linus Torvalds 已提交
2448 2449 2450
		for (i = 0; i <= end_zone; i++) {
			struct zone *zone = pgdat->node_zones + i;

2451
			lru_pages += zone_reclaimable_pages(zone);
L
Linus Torvalds 已提交
2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464
		}

		/*
		 * Now scan the zone in the dma->highmem direction, stopping
		 * at the last zone which needs scanning.
		 *
		 * We do this because the page allocator works in the opposite
		 * direction.  This prevents the page allocator from allocating
		 * pages behind kswapd's direction of progress, which would
		 * cause too much scanning of the lower zones.
		 */
		for (i = 0; i <= end_zone; i++) {
			struct zone *zone = pgdat->node_zones + i;
2465
			int nr_slab, testorder;
2466
			unsigned long balance_gap;
L
Linus Torvalds 已提交
2467

2468
			if (!populated_zone(zone))
L
Linus Torvalds 已提交
2469 2470
				continue;

2471 2472
			if (zone->all_unreclaimable &&
			    sc.priority != DEF_PRIORITY)
L
Linus Torvalds 已提交
2473 2474 2475
				continue;

			sc.nr_scanned = 0;
2476

2477
			nr_soft_scanned = 0;
2478 2479 2480
			/*
			 * Call soft limit reclaim before calling shrink_zone.
			 */
2481 2482 2483 2484 2485
			nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone,
							order, sc.gfp_mask,
							&nr_soft_scanned);
			sc.nr_reclaimed += nr_soft_reclaimed;
			total_scanned += nr_soft_scanned;
2486

2487
			/*
2488 2489 2490 2491 2492 2493
			 * We put equal pressure on every zone, unless
			 * one zone has way too many pages free
			 * already. The "too many pages" is defined
			 * as the high wmark plus a "gap" where the
			 * gap is either the low watermark or 1%
			 * of the zone, whichever is smaller.
2494
			 */
2495 2496 2497 2498
			balance_gap = min(low_wmark_pages(zone),
				(zone->present_pages +
					KSWAPD_ZONE_BALANCE_GAP_RATIO-1) /
				KSWAPD_ZONE_BALANCE_GAP_RATIO);
2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511
			/*
			 * Kswapd reclaims only single pages with compaction
			 * enabled. Trying too hard to reclaim until contiguous
			 * free pages have become available can hurt performance
			 * by evicting too much useful data from memory.
			 * Do not reclaim more than needed for compaction.
			 */
			testorder = order;
			if (COMPACTION_BUILD && order &&
					compaction_suitable(zone, order) !=
						COMPACT_SKIPPED)
				testorder = 0;

2512
			if ((buffer_heads_over_limit && is_highmem_idx(i)) ||
2513
				    !zone_watermark_ok_safe(zone, testorder,
2514
					high_wmark_pages(zone) + balance_gap,
2515
					end_zone, 0)) {
2516
				shrink_zone(zone, &sc);
2517

2518 2519 2520 2521 2522 2523 2524 2525 2526
				reclaim_state->reclaimed_slab = 0;
				nr_slab = shrink_slab(&shrink, sc.nr_scanned, lru_pages);
				sc.nr_reclaimed += reclaim_state->reclaimed_slab;
				total_scanned += sc.nr_scanned;

				if (nr_slab == 0 && !zone_reclaimable(zone))
					zone->all_unreclaimable = 1;
			}

L
Linus Torvalds 已提交
2527 2528 2529 2530 2531 2532
			/*
			 * If we've done a decent amount of scanning and
			 * the reclaim ratio is low, start doing writepage
			 * even in laptop mode
			 */
			if (total_scanned > SWAP_CLUSTER_MAX * 2 &&
2533
			    total_scanned > sc.nr_reclaimed + sc.nr_reclaimed / 2)
L
Linus Torvalds 已提交
2534
				sc.may_writepage = 1;
2535

2536 2537 2538
			if (zone->all_unreclaimable) {
				if (end_zone && end_zone == i)
					end_zone--;
2539
				continue;
2540
			}
2541

2542
			if (!zone_watermark_ok_safe(zone, testorder,
2543 2544 2545 2546 2547 2548 2549
					high_wmark_pages(zone), end_zone, 0)) {
				all_zones_ok = 0;
				/*
				 * We are still under min water mark.  This
				 * means that we have a GFP_ATOMIC allocation
				 * failure risk. Hurry up!
				 */
2550
				if (!zone_watermark_ok_safe(zone, order,
2551 2552
					    min_wmark_pages(zone), end_zone, 0))
					has_under_min_watermark_zone = 1;
2553 2554 2555 2556 2557 2558 2559 2560 2561
			} else {
				/*
				 * If a zone reaches its high watermark,
				 * consider it to be no longer congested. It's
				 * possible there are dirty pages backed by
				 * congested BDIs but as pressure is relieved,
				 * spectulatively avoid congestion waits
				 */
				zone_clear_flag(zone, ZONE_CONGESTED);
2562
				if (i <= *classzone_idx)
2563
					balanced += zone->present_pages;
2564
			}
2565

L
Linus Torvalds 已提交
2566
		}
2567
		if (all_zones_ok || (order && pgdat_balanced(pgdat, balanced, *classzone_idx)))
L
Linus Torvalds 已提交
2568 2569 2570 2571 2572
			break;		/* kswapd: all done */
		/*
		 * OK, kswapd is getting into trouble.  Take a nap, then take
		 * another pass across the zones.
		 */
2573
		if (total_scanned && (sc.priority < DEF_PRIORITY - 2)) {
2574 2575 2576 2577 2578
			if (has_under_min_watermark_zone)
				count_vm_event(KSWAPD_SKIP_CONGESTION_WAIT);
			else
				congestion_wait(BLK_RW_ASYNC, HZ/10);
		}
L
Linus Torvalds 已提交
2579 2580 2581 2582 2583 2584 2585

		/*
		 * We do this so kswapd doesn't build up large priorities for
		 * example when it is freeing in parallel with allocators. It
		 * matches the direct reclaim path behaviour in terms of impact
		 * on zone->*_priority.
		 */
2586
		if (sc.nr_reclaimed >= SWAP_CLUSTER_MAX)
L
Linus Torvalds 已提交
2587
			break;
2588
	} while (--sc.priority >= 0);
L
Linus Torvalds 已提交
2589
out:
2590 2591 2592

	/*
	 * order-0: All zones must meet high watermark for a balanced node
2593 2594
	 * high-order: Balanced zones must make up at least 25% of the node
	 *             for the node to be balanced
2595
	 */
2596
	if (!(all_zones_ok || (order && pgdat_balanced(pgdat, balanced, *classzone_idx)))) {
L
Linus Torvalds 已提交
2597
		cond_resched();
2598 2599 2600

		try_to_freeze();

2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617
		/*
		 * Fragmentation may mean that the system cannot be
		 * rebalanced for high-order allocations in all zones.
		 * At this point, if nr_reclaimed < SWAP_CLUSTER_MAX,
		 * it means the zones have been fully scanned and are still
		 * not balanced. For high-order allocations, there is
		 * little point trying all over again as kswapd may
		 * infinite loop.
		 *
		 * Instead, recheck all watermarks at order-0 as they
		 * are the most important. If watermarks are ok, kswapd will go
		 * back to sleep. High-order users can still perform direct
		 * reclaim if they wish.
		 */
		if (sc.nr_reclaimed < SWAP_CLUSTER_MAX)
			order = sc.order = 0;

L
Linus Torvalds 已提交
2618 2619 2620
		goto loop_again;
	}

2621 2622 2623 2624 2625 2626 2627 2628 2629
	/*
	 * If kswapd was reclaiming at a higher order, it has the option of
	 * sleeping without all zones being balanced. Before it does, it must
	 * ensure that the watermarks for order-0 on *all* zones are met and
	 * that the congestion flags are cleared. The congestion flag must
	 * be cleared as kswapd is the only mechanism that clears the flag
	 * and it is potentially going to sleep here.
	 */
	if (order) {
2630 2631
		int zones_need_compaction = 1;

2632 2633 2634 2635 2636 2637
		for (i = 0; i <= end_zone; i++) {
			struct zone *zone = pgdat->node_zones + i;

			if (!populated_zone(zone))
				continue;

2638 2639
			if (zone->all_unreclaimable &&
			    sc.priority != DEF_PRIORITY)
2640 2641
				continue;

2642
			/* Would compaction fail due to lack of free memory? */
2643 2644
			if (COMPACTION_BUILD &&
			    compaction_suitable(zone, order) == COMPACT_SKIPPED)
2645 2646
				goto loop_again;

2647 2648 2649 2650 2651 2652 2653
			/* Confirm the zone is balanced for order-0 */
			if (!zone_watermark_ok(zone, 0,
					high_wmark_pages(zone), 0, 0)) {
				order = sc.order = 0;
				goto loop_again;
			}

2654 2655 2656 2657 2658
			/* Check if the memory needs to be defragmented. */
			if (zone_watermark_ok(zone, order,
				    low_wmark_pages(zone), *classzone_idx, 0))
				zones_need_compaction = 0;

2659 2660 2661
			/* If balanced, clear the congested flag */
			zone_clear_flag(zone, ZONE_CONGESTED);
		}
2662 2663 2664

		if (zones_need_compaction)
			compact_pgdat(pgdat, order);
2665 2666
	}

2667 2668 2669 2670 2671 2672
	/*
	 * Return the order we were reclaiming at so sleeping_prematurely()
	 * makes a decision on the order we were last reclaiming at. However,
	 * if another caller entered the allocator slow path while kswapd
	 * was awake, order will remain at the higher level
	 */
2673
	*classzone_idx = end_zone;
2674
	return order;
L
Linus Torvalds 已提交
2675 2676
}

2677
static void kswapd_try_to_sleep(pg_data_t *pgdat, int order, int classzone_idx)
2678 2679 2680 2681 2682 2683 2684 2685 2686 2687
{
	long remaining = 0;
	DEFINE_WAIT(wait);

	if (freezing(current) || kthread_should_stop())
		return;

	prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);

	/* Try to sleep for a short interval */
2688
	if (!sleeping_prematurely(pgdat, order, remaining, classzone_idx)) {
2689 2690 2691 2692 2693 2694 2695 2696 2697
		remaining = schedule_timeout(HZ/10);
		finish_wait(&pgdat->kswapd_wait, &wait);
		prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
	}

	/*
	 * After a short sleep, check if it was a premature sleep. If not, then
	 * go fully to sleep until explicitly woken up.
	 */
2698
	if (!sleeping_prematurely(pgdat, order, remaining, classzone_idx)) {
2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720
		trace_mm_vmscan_kswapd_sleep(pgdat->node_id);

		/*
		 * vmstat counters are not perfectly accurate and the estimated
		 * value for counters such as NR_FREE_PAGES can deviate from the
		 * true value by nr_online_cpus * threshold. To avoid the zone
		 * watermarks being breached while under pressure, we reduce the
		 * per-cpu vmstat threshold while kswapd is awake and restore
		 * them before going back to sleep.
		 */
		set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold);
		schedule();
		set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold);
	} else {
		if (remaining)
			count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
		else
			count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
	}
	finish_wait(&pgdat->kswapd_wait, &wait);
}

L
Linus Torvalds 已提交
2721 2722
/*
 * The background pageout daemon, started as a kernel thread
2723
 * from the init process.
L
Linus Torvalds 已提交
2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735
 *
 * This basically trickles out pages so that we have _some_
 * free memory available even if there is no other activity
 * that frees anything up. This is needed for things like routing
 * etc, where we otherwise might have all activity going on in
 * asynchronous contexts that cannot page things out.
 *
 * If there are applications that are active memory-allocators
 * (most normal use), this basically shouldn't matter.
 */
static int kswapd(void *p)
{
2736
	unsigned long order, new_order;
2737
	unsigned balanced_order;
2738
	int classzone_idx, new_classzone_idx;
2739
	int balanced_classzone_idx;
L
Linus Torvalds 已提交
2740 2741
	pg_data_t *pgdat = (pg_data_t*)p;
	struct task_struct *tsk = current;
2742

L
Linus Torvalds 已提交
2743 2744 2745
	struct reclaim_state reclaim_state = {
		.reclaimed_slab = 0,
	};
2746
	const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
L
Linus Torvalds 已提交
2747

2748 2749
	lockdep_set_current_reclaim_state(GFP_KERNEL);

R
Rusty Russell 已提交
2750
	if (!cpumask_empty(cpumask))
2751
		set_cpus_allowed_ptr(tsk, cpumask);
L
Linus Torvalds 已提交
2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765
	current->reclaim_state = &reclaim_state;

	/*
	 * Tell the memory management that we're a "memory allocator",
	 * and that if we need more memory we should get access to it
	 * regardless (see "__alloc_pages()"). "kswapd" should
	 * never get caught in the normal page freeing logic.
	 *
	 * (Kswapd normally doesn't need memory anyway, but sometimes
	 * you need a small amount of memory in order to be able to
	 * page out something else, and this flag essentially protects
	 * us from recursively trying to free more memory as we're
	 * trying to free the first piece of memory in the first place).
	 */
2766
	tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
2767
	set_freezable();
L
Linus Torvalds 已提交
2768

2769
	order = new_order = 0;
2770
	balanced_order = 0;
2771
	classzone_idx = new_classzone_idx = pgdat->nr_zones - 1;
2772
	balanced_classzone_idx = classzone_idx;
L
Linus Torvalds 已提交
2773
	for ( ; ; ) {
2774
		int ret;
2775

2776 2777 2778 2779 2780
		/*
		 * If the last balance_pgdat was unsuccessful it's unlikely a
		 * new request of a similar or harder type will succeed soon
		 * so consider going to sleep on the basis we reclaimed at
		 */
2781 2782
		if (balanced_classzone_idx >= new_classzone_idx &&
					balanced_order == new_order) {
2783 2784 2785 2786 2787 2788
			new_order = pgdat->kswapd_max_order;
			new_classzone_idx = pgdat->classzone_idx;
			pgdat->kswapd_max_order =  0;
			pgdat->classzone_idx = pgdat->nr_zones - 1;
		}

2789
		if (order < new_order || classzone_idx > new_classzone_idx) {
L
Linus Torvalds 已提交
2790 2791
			/*
			 * Don't sleep if someone wants a larger 'order'
2792
			 * allocation or has tigher zone constraints
L
Linus Torvalds 已提交
2793 2794
			 */
			order = new_order;
2795
			classzone_idx = new_classzone_idx;
L
Linus Torvalds 已提交
2796
		} else {
2797 2798
			kswapd_try_to_sleep(pgdat, balanced_order,
						balanced_classzone_idx);
L
Linus Torvalds 已提交
2799
			order = pgdat->kswapd_max_order;
2800
			classzone_idx = pgdat->classzone_idx;
2801 2802
			new_order = order;
			new_classzone_idx = classzone_idx;
2803
			pgdat->kswapd_max_order = 0;
2804
			pgdat->classzone_idx = pgdat->nr_zones - 1;
L
Linus Torvalds 已提交
2805 2806
		}

2807 2808 2809 2810 2811 2812 2813 2814
		ret = try_to_freeze();
		if (kthread_should_stop())
			break;

		/*
		 * We can speed up thawing tasks if we don't call balance_pgdat
		 * after returning from the refrigerator
		 */
2815 2816
		if (!ret) {
			trace_mm_vmscan_kswapd_wake(pgdat->node_id, order);
2817 2818 2819
			balanced_classzone_idx = classzone_idx;
			balanced_order = balance_pgdat(pgdat, order,
						&balanced_classzone_idx);
2820
		}
L
Linus Torvalds 已提交
2821 2822 2823 2824 2825 2826 2827
	}
	return 0;
}

/*
 * A zone is low on free memory, so wake its kswapd task to service it.
 */
2828
void wakeup_kswapd(struct zone *zone, int order, enum zone_type classzone_idx)
L
Linus Torvalds 已提交
2829 2830 2831
{
	pg_data_t *pgdat;

2832
	if (!populated_zone(zone))
L
Linus Torvalds 已提交
2833 2834
		return;

2835
	if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
L
Linus Torvalds 已提交
2836
		return;
2837
	pgdat = zone->zone_pgdat;
2838
	if (pgdat->kswapd_max_order < order) {
L
Linus Torvalds 已提交
2839
		pgdat->kswapd_max_order = order;
2840 2841
		pgdat->classzone_idx = min(pgdat->classzone_idx, classzone_idx);
	}
2842
	if (!waitqueue_active(&pgdat->kswapd_wait))
L
Linus Torvalds 已提交
2843
		return;
2844 2845 2846 2847
	if (zone_watermark_ok_safe(zone, order, low_wmark_pages(zone), 0, 0))
		return;

	trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, zone_idx(zone), order);
2848
	wake_up_interruptible(&pgdat->kswapd_wait);
L
Linus Torvalds 已提交
2849 2850
}

2851 2852 2853 2854 2855 2856 2857 2858
/*
 * The reclaimable count would be mostly accurate.
 * The less reclaimable pages may be
 * - mlocked pages, which will be moved to unevictable list when encountered
 * - mapped pages, which may require several travels to be reclaimed
 * - dirty pages, which is not "instantly" reclaimable
 */
unsigned long global_reclaimable_pages(void)
2859
{
2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883
	int nr;

	nr = global_page_state(NR_ACTIVE_FILE) +
	     global_page_state(NR_INACTIVE_FILE);

	if (nr_swap_pages > 0)
		nr += global_page_state(NR_ACTIVE_ANON) +
		      global_page_state(NR_INACTIVE_ANON);

	return nr;
}

unsigned long zone_reclaimable_pages(struct zone *zone)
{
	int nr;

	nr = zone_page_state(zone, NR_ACTIVE_FILE) +
	     zone_page_state(zone, NR_INACTIVE_FILE);

	if (nr_swap_pages > 0)
		nr += zone_page_state(zone, NR_ACTIVE_ANON) +
		      zone_page_state(zone, NR_INACTIVE_ANON);

	return nr;
2884 2885
}

2886
#ifdef CONFIG_HIBERNATION
L
Linus Torvalds 已提交
2887
/*
2888
 * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
2889 2890 2891 2892 2893
 * freed pages.
 *
 * Rather than trying to age LRUs the aim is to preserve the overall
 * LRU order by reclaiming preferentially
 * inactive > active > active referenced > active mapped
L
Linus Torvalds 已提交
2894
 */
2895
unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
L
Linus Torvalds 已提交
2896
{
2897 2898
	struct reclaim_state reclaim_state;
	struct scan_control sc = {
2899 2900 2901
		.gfp_mask = GFP_HIGHUSER_MOVABLE,
		.may_swap = 1,
		.may_unmap = 1,
2902
		.may_writepage = 1,
2903 2904 2905
		.nr_to_reclaim = nr_to_reclaim,
		.hibernation_mode = 1,
		.order = 0,
2906
		.priority = DEF_PRIORITY,
L
Linus Torvalds 已提交
2907
	};
2908 2909 2910 2911
	struct shrink_control shrink = {
		.gfp_mask = sc.gfp_mask,
	};
	struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
2912 2913
	struct task_struct *p = current;
	unsigned long nr_reclaimed;
L
Linus Torvalds 已提交
2914

2915 2916 2917 2918
	p->flags |= PF_MEMALLOC;
	lockdep_set_current_reclaim_state(sc.gfp_mask);
	reclaim_state.reclaimed_slab = 0;
	p->reclaim_state = &reclaim_state;
2919

2920
	nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink);
2921

2922 2923 2924
	p->reclaim_state = NULL;
	lockdep_clear_current_reclaim_state();
	p->flags &= ~PF_MEMALLOC;
2925

2926
	return nr_reclaimed;
L
Linus Torvalds 已提交
2927
}
2928
#endif /* CONFIG_HIBERNATION */
L
Linus Torvalds 已提交
2929 2930 2931 2932 2933

/* It's optimal to keep kswapds on the same CPUs as their memory, but
   not required for correctness.  So if the last cpu in a node goes
   away, we get changed to run anywhere: as the first one comes back,
   restore their cpu bindings. */
2934
static int __devinit cpu_callback(struct notifier_block *nfb,
2935
				  unsigned long action, void *hcpu)
L
Linus Torvalds 已提交
2936
{
2937
	int nid;
L
Linus Torvalds 已提交
2938

2939
	if (action == CPU_ONLINE || action == CPU_ONLINE_FROZEN) {
2940
		for_each_node_state(nid, N_HIGH_MEMORY) {
2941
			pg_data_t *pgdat = NODE_DATA(nid);
2942 2943 2944
			const struct cpumask *mask;

			mask = cpumask_of_node(pgdat->node_id);
2945

2946
			if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
L
Linus Torvalds 已提交
2947
				/* One of our CPUs online: restore mask */
2948
				set_cpus_allowed_ptr(pgdat->kswapd, mask);
L
Linus Torvalds 已提交
2949 2950 2951 2952 2953
		}
	}
	return NOTIFY_OK;
}

2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975
/*
 * This kswapd start function will be called by init and node-hot-add.
 * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
 */
int kswapd_run(int nid)
{
	pg_data_t *pgdat = NODE_DATA(nid);
	int ret = 0;

	if (pgdat->kswapd)
		return 0;

	pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
	if (IS_ERR(pgdat->kswapd)) {
		/* failure at boot is fatal */
		BUG_ON(system_state == SYSTEM_BOOTING);
		printk("Failed to start kswapd on node %d\n",nid);
		ret = -1;
	}
	return ret;
}

2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986
/*
 * Called by memory hotplug when all memory in a node is offlined.
 */
void kswapd_stop(int nid)
{
	struct task_struct *kswapd = NODE_DATA(nid)->kswapd;

	if (kswapd)
		kthread_stop(kswapd);
}

L
Linus Torvalds 已提交
2987 2988
static int __init kswapd_init(void)
{
2989
	int nid;
2990

L
Linus Torvalds 已提交
2991
	swap_setup();
2992
	for_each_node_state(nid, N_HIGH_MEMORY)
2993
 		kswapd_run(nid);
L
Linus Torvalds 已提交
2994 2995 2996 2997 2998
	hotcpu_notifier(cpu_callback, 0);
	return 0;
}

module_init(kswapd_init)
2999 3000 3001 3002 3003 3004 3005 3006 3007 3008

#ifdef CONFIG_NUMA
/*
 * Zone reclaim mode
 *
 * If non-zero call zone_reclaim when the number of free pages falls below
 * the watermarks.
 */
int zone_reclaim_mode __read_mostly;

3009
#define RECLAIM_OFF 0
3010
#define RECLAIM_ZONE (1<<0)	/* Run shrink_inactive_list on the zone */
3011 3012 3013
#define RECLAIM_WRITE (1<<1)	/* Writeout pages during reclaim */
#define RECLAIM_SWAP (1<<2)	/* Swap pages out during reclaim */

3014 3015 3016 3017 3018 3019 3020
/*
 * Priority for ZONE_RECLAIM. This determines the fraction of pages
 * of a node considered for each zone_reclaim. 4 scans 1/16th of
 * a zone.
 */
#define ZONE_RECLAIM_PRIORITY 4

3021 3022 3023 3024 3025 3026
/*
 * Percentage of pages in a zone that must be unmapped for zone_reclaim to
 * occur.
 */
int sysctl_min_unmapped_ratio = 1;

3027 3028 3029 3030 3031 3032
/*
 * If the number of slab pages in a zone grows beyond this percentage then
 * slab reclaim needs to occur.
 */
int sysctl_min_slab_ratio = 5;

3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074
static inline unsigned long zone_unmapped_file_pages(struct zone *zone)
{
	unsigned long file_mapped = zone_page_state(zone, NR_FILE_MAPPED);
	unsigned long file_lru = zone_page_state(zone, NR_INACTIVE_FILE) +
		zone_page_state(zone, NR_ACTIVE_FILE);

	/*
	 * It's possible for there to be more file mapped pages than
	 * accounted for by the pages on the file LRU lists because
	 * tmpfs pages accounted for as ANON can also be FILE_MAPPED
	 */
	return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
}

/* Work out how many page cache pages we can reclaim in this reclaim_mode */
static long zone_pagecache_reclaimable(struct zone *zone)
{
	long nr_pagecache_reclaimable;
	long delta = 0;

	/*
	 * If RECLAIM_SWAP is set, then all file pages are considered
	 * potentially reclaimable. Otherwise, we have to worry about
	 * pages like swapcache and zone_unmapped_file_pages() provides
	 * a better estimate
	 */
	if (zone_reclaim_mode & RECLAIM_SWAP)
		nr_pagecache_reclaimable = zone_page_state(zone, NR_FILE_PAGES);
	else
		nr_pagecache_reclaimable = zone_unmapped_file_pages(zone);

	/* If we can't clean pages, remove dirty pages from consideration */
	if (!(zone_reclaim_mode & RECLAIM_WRITE))
		delta += zone_page_state(zone, NR_FILE_DIRTY);

	/* Watch for any possible underflows due to delta */
	if (unlikely(delta > nr_pagecache_reclaimable))
		delta = nr_pagecache_reclaimable;

	return nr_pagecache_reclaimable - delta;
}

3075 3076 3077
/*
 * Try to free up some pages from this zone through reclaim.
 */
3078
static int __zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
3079
{
3080
	/* Minimum pages needed in order to stay on node */
3081
	const unsigned long nr_pages = 1 << order;
3082 3083
	struct task_struct *p = current;
	struct reclaim_state reclaim_state;
3084 3085
	struct scan_control sc = {
		.may_writepage = !!(zone_reclaim_mode & RECLAIM_WRITE),
3086
		.may_unmap = !!(zone_reclaim_mode & RECLAIM_SWAP),
3087
		.may_swap = 1,
3088 3089
		.nr_to_reclaim = max_t(unsigned long, nr_pages,
				       SWAP_CLUSTER_MAX),
3090
		.gfp_mask = gfp_mask,
3091
		.order = order,
3092
		.priority = ZONE_RECLAIM_PRIORITY,
3093
	};
3094 3095 3096
	struct shrink_control shrink = {
		.gfp_mask = sc.gfp_mask,
	};
3097
	unsigned long nr_slab_pages0, nr_slab_pages1;
3098 3099

	cond_resched();
3100 3101 3102 3103 3104 3105
	/*
	 * We need to be able to allocate from the reserves for RECLAIM_SWAP
	 * and we also need to be able to write out pages for RECLAIM_WRITE
	 * and RECLAIM_SWAP.
	 */
	p->flags |= PF_MEMALLOC | PF_SWAPWRITE;
3106
	lockdep_set_current_reclaim_state(gfp_mask);
3107 3108
	reclaim_state.reclaimed_slab = 0;
	p->reclaim_state = &reclaim_state;
3109

3110
	if (zone_pagecache_reclaimable(zone) > zone->min_unmapped_pages) {
3111 3112 3113 3114 3115
		/*
		 * Free memory by calling shrink zone with increasing
		 * priorities until we have enough memory freed.
		 */
		do {
3116 3117
			shrink_zone(zone, &sc);
		} while (sc.nr_reclaimed < nr_pages && --sc.priority >= 0);
3118
	}
3119

3120 3121
	nr_slab_pages0 = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
	if (nr_slab_pages0 > zone->min_slab_pages) {
3122
		/*
3123
		 * shrink_slab() does not currently allow us to determine how
3124 3125 3126 3127
		 * many pages were freed in this zone. So we take the current
		 * number of slab pages and shake the slab until it is reduced
		 * by the same nr_pages that we used for reclaiming unmapped
		 * pages.
3128
		 *
3129 3130
		 * Note that shrink_slab will free memory on all zones and may
		 * take a long time.
3131
		 */
3132 3133 3134 3135
		for (;;) {
			unsigned long lru_pages = zone_reclaimable_pages(zone);

			/* No reclaimable slab or very low memory pressure */
3136
			if (!shrink_slab(&shrink, sc.nr_scanned, lru_pages))
3137 3138 3139 3140 3141 3142 3143 3144
				break;

			/* Freed enough memory */
			nr_slab_pages1 = zone_page_state(zone,
							NR_SLAB_RECLAIMABLE);
			if (nr_slab_pages1 + nr_pages <= nr_slab_pages0)
				break;
		}
3145 3146 3147 3148 3149

		/*
		 * Update nr_reclaimed by the number of slab pages we
		 * reclaimed from this zone.
		 */
3150 3151 3152
		nr_slab_pages1 = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
		if (nr_slab_pages1 < nr_slab_pages0)
			sc.nr_reclaimed += nr_slab_pages0 - nr_slab_pages1;
3153 3154
	}

3155
	p->reclaim_state = NULL;
3156
	current->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE);
3157
	lockdep_clear_current_reclaim_state();
3158
	return sc.nr_reclaimed >= nr_pages;
3159
}
3160 3161 3162 3163

int zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
{
	int node_id;
3164
	int ret;
3165 3166

	/*
3167 3168
	 * Zone reclaim reclaims unmapped file backed pages and
	 * slab pages if we are over the defined limits.
3169
	 *
3170 3171 3172 3173 3174
	 * A small portion of unmapped file backed pages is needed for
	 * file I/O otherwise pages read by file I/O will be immediately
	 * thrown out if the zone is overallocated. So we do not reclaim
	 * if less than a specified percentage of the zone is used by
	 * unmapped file backed pages.
3175
	 */
3176 3177
	if (zone_pagecache_reclaimable(zone) <= zone->min_unmapped_pages &&
	    zone_page_state(zone, NR_SLAB_RECLAIMABLE) <= zone->min_slab_pages)
3178
		return ZONE_RECLAIM_FULL;
3179

3180
	if (zone->all_unreclaimable)
3181
		return ZONE_RECLAIM_FULL;
3182

3183
	/*
3184
	 * Do not scan if the allocation should not be delayed.
3185
	 */
3186
	if (!(gfp_mask & __GFP_WAIT) || (current->flags & PF_MEMALLOC))
3187
		return ZONE_RECLAIM_NOSCAN;
3188 3189 3190 3191 3192 3193 3194

	/*
	 * Only run zone reclaim on the local zone or on zones that do not
	 * have associated processors. This will favor the local processor
	 * over remote processors and spread off node memory allocations
	 * as wide as possible.
	 */
3195
	node_id = zone_to_nid(zone);
3196
	if (node_state(node_id, N_CPU) && node_id != numa_node_id())
3197
		return ZONE_RECLAIM_NOSCAN;
3198 3199

	if (zone_test_and_set_flag(zone, ZONE_RECLAIM_LOCKED))
3200 3201
		return ZONE_RECLAIM_NOSCAN;

3202 3203 3204
	ret = __zone_reclaim(zone, gfp_mask, order);
	zone_clear_flag(zone, ZONE_RECLAIM_LOCKED);

3205 3206 3207
	if (!ret)
		count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);

3208
	return ret;
3209
}
3210
#endif
L
Lee Schermerhorn 已提交
3211 3212 3213 3214 3215 3216 3217

/*
 * page_evictable - test whether a page is evictable
 * @page: the page to test
 * @vma: the VMA in which the page is or will be mapped, may be NULL
 *
 * Test whether page is evictable--i.e., should be placed on active/inactive
N
Nick Piggin 已提交
3218 3219
 * lists vs unevictable list.  The vma argument is !NULL when called from the
 * fault path to determine how to instantate a new page.
L
Lee Schermerhorn 已提交
3220 3221
 *
 * Reasons page might not be evictable:
3222
 * (1) page's mapping marked unevictable
N
Nick Piggin 已提交
3223
 * (2) page is part of an mlocked VMA
3224
 *
L
Lee Schermerhorn 已提交
3225 3226 3227 3228
 */
int page_evictable(struct page *page, struct vm_area_struct *vma)
{

3229 3230 3231
	if (mapping_unevictable(page_mapping(page)))
		return 0;

3232
	if (PageMlocked(page) || (vma && mlocked_vma_newpage(vma, page)))
N
Nick Piggin 已提交
3233
		return 0;
L
Lee Schermerhorn 已提交
3234 3235 3236

	return 1;
}
3237

3238
#ifdef CONFIG_SHMEM
3239
/**
3240 3241 3242
 * check_move_unevictable_pages - check pages for evictability and move to appropriate zone lru list
 * @pages:	array of pages to check
 * @nr_pages:	number of pages to check
3243
 *
3244
 * Checks pages for evictability and moves them to the appropriate lru list.
3245 3246
 *
 * This function is only used for SysV IPC SHM_UNLOCK.
3247
 */
3248
void check_move_unevictable_pages(struct page **pages, int nr_pages)
3249
{
3250
	struct lruvec *lruvec;
3251 3252 3253 3254
	struct zone *zone = NULL;
	int pgscanned = 0;
	int pgrescued = 0;
	int i;
3255

3256 3257 3258
	for (i = 0; i < nr_pages; i++) {
		struct page *page = pages[i];
		struct zone *pagezone;
3259

3260 3261 3262 3263 3264 3265 3266 3267
		pgscanned++;
		pagezone = page_zone(page);
		if (pagezone != zone) {
			if (zone)
				spin_unlock_irq(&zone->lru_lock);
			zone = pagezone;
			spin_lock_irq(&zone->lru_lock);
		}
3268

3269 3270
		if (!PageLRU(page) || !PageUnevictable(page))
			continue;
3271

3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282
		if (page_evictable(page, NULL)) {
			enum lru_list lru = page_lru_base_type(page);

			VM_BUG_ON(PageActive(page));
			ClearPageUnevictable(page);
			__dec_zone_state(zone, NR_UNEVICTABLE);
			lruvec = mem_cgroup_lru_move_lists(zone, page,
						LRU_UNEVICTABLE, lru);
			list_move(&page->lru, &lruvec->lists[lru]);
			__inc_zone_state(zone, NR_INACTIVE_ANON + lru);
			pgrescued++;
3283
		}
3284
	}
3285

3286 3287 3288 3289
	if (zone) {
		__count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued);
		__count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned);
		spin_unlock_irq(&zone->lru_lock);
3290 3291
	}
}
3292
#endif /* CONFIG_SHMEM */
3293

3294
static void warn_scan_unevictable_pages(void)
3295
{
3296
	printk_once(KERN_WARNING
3297
		    "%s: The scan_unevictable_pages sysctl/node-interface has been "
3298
		    "disabled for lack of a legitimate use case.  If you have "
3299 3300
		    "one, please send an email to linux-mm@kvack.org.\n",
		    current->comm);
3301 3302 3303 3304 3305 3306 3307 3308 3309
}

/*
 * scan_unevictable_pages [vm] sysctl handler.  On demand re-scan of
 * all nodes' unevictable lists for evictable pages
 */
unsigned long scan_unevictable_pages;

int scan_unevictable_handler(struct ctl_table *table, int write,
3310
			   void __user *buffer,
3311 3312
			   size_t *length, loff_t *ppos)
{
3313
	warn_scan_unevictable_pages();
3314
	proc_doulongvec_minmax(table, write, buffer, length, ppos);
3315 3316 3317 3318
	scan_unevictable_pages = 0;
	return 0;
}

3319
#ifdef CONFIG_NUMA
3320 3321 3322 3323 3324
/*
 * per node 'scan_unevictable_pages' attribute.  On demand re-scan of
 * a specified node's per zone unevictable lists for evictable pages.
 */

3325 3326
static ssize_t read_scan_unevictable_node(struct device *dev,
					  struct device_attribute *attr,
3327 3328
					  char *buf)
{
3329
	warn_scan_unevictable_pages();
3330 3331 3332
	return sprintf(buf, "0\n");	/* always zero; should fit... */
}

3333 3334
static ssize_t write_scan_unevictable_node(struct device *dev,
					   struct device_attribute *attr,
3335 3336
					const char *buf, size_t count)
{
3337
	warn_scan_unevictable_pages();
3338 3339 3340 3341
	return 1;
}


3342
static DEVICE_ATTR(scan_unevictable_pages, S_IRUGO | S_IWUSR,
3343 3344 3345 3346 3347
			read_scan_unevictable_node,
			write_scan_unevictable_node);

int scan_unevictable_register_node(struct node *node)
{
3348
	return device_create_file(&node->dev, &dev_attr_scan_unevictable_pages);
3349 3350 3351 3352
}

void scan_unevictable_unregister_node(struct node *node)
{
3353
	device_remove_file(&node->dev, &dev_attr_scan_unevictable_pages);
3354
}
3355
#endif