inode.c 170.0 KB
Newer Older
1
/*
2
 *  linux/fs/ext4/inode.c
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
 *
 * Copyright (C) 1992, 1993, 1994, 1995
 * Remy Card (card@masi.ibp.fr)
 * Laboratoire MASI - Institut Blaise Pascal
 * Universite Pierre et Marie Curie (Paris VI)
 *
 *  from
 *
 *  linux/fs/minix/inode.c
 *
 *  Copyright (C) 1991, 1992  Linus Torvalds
 *
 *  Goal-directed block allocation by Stephen Tweedie
 *	(sct@redhat.com), 1993, 1998
 *  Big-endian to little-endian byte-swapping/bitmaps by
 *        David S. Miller (davem@caip.rutgers.edu), 1995
 *  64-bit file support on 64-bit platforms by Jakub Jelinek
 *	(jj@sunsite.ms.mff.cuni.cz)
 *
22
 *  Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
23 24 25 26 27
 */

#include <linux/module.h>
#include <linux/fs.h>
#include <linux/time.h>
28
#include <linux/jbd2.h>
29 30 31 32 33 34
#include <linux/highuid.h>
#include <linux/pagemap.h>
#include <linux/quotaops.h>
#include <linux/string.h>
#include <linux/buffer_head.h>
#include <linux/writeback.h>
35
#include <linux/pagevec.h>
36
#include <linux/mpage.h>
37
#include <linux/namei.h>
38 39
#include <linux/uio.h>
#include <linux/bio.h>
40
#include <linux/workqueue.h>
41
#include <linux/kernel.h>
42
#include <linux/printk.h>
43
#include <linux/slab.h>
44
#include <linux/ratelimit.h>
45

46
#include "ext4_jbd2.h"
47 48
#include "xattr.h"
#include "acl.h"
49
#include "ext4_extents.h"
50
#include "truncate.h"
51

52 53
#include <trace/events/ext4.h>

54 55
#define MPAGE_DA_EXTENT_TAIL 0x01

56 57 58
static inline int ext4_begin_ordered_truncate(struct inode *inode,
					      loff_t new_size)
{
59
	trace_ext4_begin_ordered_truncate(inode, new_size);
60 61 62 63 64 65 66 67 68 69 70
	/*
	 * If jinode is zero, then we never opened the file for
	 * writing, so there's no need to call
	 * jbd2_journal_begin_ordered_truncate() since there's no
	 * outstanding writes we need to flush.
	 */
	if (!EXT4_I(inode)->jinode)
		return 0;
	return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode),
						   EXT4_I(inode)->jinode,
						   new_size);
71 72
}

73
static void ext4_invalidatepage(struct page *page, unsigned long offset);
74 75 76 77 78 79
static int noalloc_get_block_write(struct inode *inode, sector_t iblock,
				   struct buffer_head *bh_result, int create);
static int ext4_set_bh_endio(struct buffer_head *bh, struct inode *inode);
static void ext4_end_io_buffer_write(struct buffer_head *bh, int uptodate);
static int __ext4_journalled_writepage(struct page *page, unsigned int len);
static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh);
80

81 82 83
/*
 * Test whether an inode is a fast symlink.
 */
84
static int ext4_inode_is_fast_symlink(struct inode *inode)
85
{
86
	int ea_blocks = EXT4_I(inode)->i_file_acl ?
87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105
		(inode->i_sb->s_blocksize >> 9) : 0;

	return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
}

/*
 * Truncate transactions can be complex and absolutely huge.  So we need to
 * be able to restart the transaction at a conventient checkpoint to make
 * sure we don't overflow the journal.
 *
 * start_transaction gets us a new handle for a truncate transaction,
 * and extend_transaction tries to extend the existing one a bit.  If
 * extend fails, we need to propagate the failure up and restart the
 * transaction in the top-level truncate loop. --sct
 */
static handle_t *start_transaction(struct inode *inode)
{
	handle_t *result;

106
	result = ext4_journal_start(inode, ext4_blocks_for_truncate(inode));
107 108 109
	if (!IS_ERR(result))
		return result;

110
	ext4_std_error(inode->i_sb, PTR_ERR(result));
111 112 113 114 115 116 117 118 119 120 121
	return result;
}

/*
 * Try to extend this transaction for the purposes of truncation.
 *
 * Returns 0 if we managed to create more room.  If we can't create more
 * room, and the transaction must be restarted we return 1.
 */
static int try_to_extend_transaction(handle_t *handle, struct inode *inode)
{
122 123 124
	if (!ext4_handle_valid(handle))
		return 0;
	if (ext4_handle_has_enough_credits(handle, EXT4_RESERVE_TRANS_BLOCKS+1))
125
		return 0;
126
	if (!ext4_journal_extend(handle, ext4_blocks_for_truncate(inode)))
127 128 129 130 131 132 133 134 135
		return 0;
	return 1;
}

/*
 * Restart the transaction associated with *handle.  This does a commit,
 * so before we call here everything must be consistently dirtied against
 * this transaction.
 */
136
int ext4_truncate_restart_trans(handle_t *handle, struct inode *inode,
137
				 int nblocks)
138
{
139 140 141
	int ret;

	/*
142
	 * Drop i_data_sem to avoid deadlock with ext4_map_blocks.  At this
143 144 145 146
	 * moment, get_block can be called only for blocks inside i_size since
	 * page cache has been already dropped and writes are blocked by
	 * i_mutex. So we can safely drop the i_data_sem here.
	 */
147
	BUG_ON(EXT4_JOURNAL(inode) == NULL);
148
	jbd_debug(2, "restarting handle %p\n", handle);
149
	up_write(&EXT4_I(inode)->i_data_sem);
150
	ret = ext4_journal_restart(handle, nblocks);
151
	down_write(&EXT4_I(inode)->i_data_sem);
152
	ext4_discard_preallocations(inode);
153 154

	return ret;
155 156 157 158 159
}

/*
 * Called at the last iput() if i_nlink is zero.
 */
A
Al Viro 已提交
160
void ext4_evict_inode(struct inode *inode)
161 162
{
	handle_t *handle;
163
	int err;
164

165
	trace_ext4_evict_inode(inode);
A
Al Viro 已提交
166 167 168 169 170
	if (inode->i_nlink) {
		truncate_inode_pages(&inode->i_data, 0);
		goto no_delete;
	}

171
	if (!is_bad_inode(inode))
172
		dquot_initialize(inode);
173

174 175
	if (ext4_should_order_data(inode))
		ext4_begin_ordered_truncate(inode, 0);
176 177 178 179 180
	truncate_inode_pages(&inode->i_data, 0);

	if (is_bad_inode(inode))
		goto no_delete;

181
	handle = ext4_journal_start(inode, ext4_blocks_for_truncate(inode)+3);
182
	if (IS_ERR(handle)) {
183
		ext4_std_error(inode->i_sb, PTR_ERR(handle));
184 185 186 187 188
		/*
		 * If we're going to skip the normal cleanup, we still need to
		 * make sure that the in-core orphan linked list is properly
		 * cleaned up.
		 */
189
		ext4_orphan_del(NULL, inode);
190 191 192 193
		goto no_delete;
	}

	if (IS_SYNC(inode))
194
		ext4_handle_sync(handle);
195
	inode->i_size = 0;
196 197
	err = ext4_mark_inode_dirty(handle, inode);
	if (err) {
198
		ext4_warning(inode->i_sb,
199 200 201
			     "couldn't mark inode dirty (err %d)", err);
		goto stop_handle;
	}
202
	if (inode->i_blocks)
203
		ext4_truncate(inode);
204 205 206 207 208 209 210

	/*
	 * ext4_ext_truncate() doesn't reserve any slop when it
	 * restarts journal transactions; therefore there may not be
	 * enough credits left in the handle to remove the inode from
	 * the orphan list and set the dtime field.
	 */
211
	if (!ext4_handle_has_enough_credits(handle, 3)) {
212 213 214 215
		err = ext4_journal_extend(handle, 3);
		if (err > 0)
			err = ext4_journal_restart(handle, 3);
		if (err != 0) {
216
			ext4_warning(inode->i_sb,
217 218 219
				     "couldn't extend journal (err %d)", err);
		stop_handle:
			ext4_journal_stop(handle);
220
			ext4_orphan_del(NULL, inode);
221 222 223 224
			goto no_delete;
		}
	}

225
	/*
226
	 * Kill off the orphan record which ext4_truncate created.
227
	 * AKPM: I think this can be inside the above `if'.
228
	 * Note that ext4_orphan_del() has to be able to cope with the
229
	 * deletion of a non-existent orphan - this is because we don't
230
	 * know if ext4_truncate() actually created an orphan record.
231 232
	 * (Well, we could do this if we need to, but heck - it works)
	 */
233 234
	ext4_orphan_del(handle, inode);
	EXT4_I(inode)->i_dtime	= get_seconds();
235 236 237 238 239 240 241 242

	/*
	 * One subtle ordering requirement: if anything has gone wrong
	 * (transaction abort, IO errors, whatever), then we can still
	 * do these next steps (the fs will already have been marked as
	 * having errors), but we can't free the inode if the mark_dirty
	 * fails.
	 */
243
	if (ext4_mark_inode_dirty(handle, inode))
244
		/* If that failed, just do the required in-core inode clear. */
A
Al Viro 已提交
245
		ext4_clear_inode(inode);
246
	else
247 248
		ext4_free_inode(handle, inode);
	ext4_journal_stop(handle);
249 250
	return;
no_delete:
A
Al Viro 已提交
251
	ext4_clear_inode(inode);	/* We must guarantee clearing of inode... */
252 253 254 255 256 257 258 259 260 261 262 263 264 265 266
}

typedef struct {
	__le32	*p;
	__le32	key;
	struct buffer_head *bh;
} Indirect;

static inline void add_chain(Indirect *p, struct buffer_head *bh, __le32 *v)
{
	p->key = *(p->p = v);
	p->bh = bh;
}

/**
267
 *	ext4_block_to_path - parse the block number into array of offsets
268 269 270
 *	@inode: inode in question (we are only interested in its superblock)
 *	@i_block: block number to be parsed
 *	@offsets: array to store the offsets in
D
Dave Kleikamp 已提交
271 272
 *	@boundary: set this non-zero if the referred-to block is likely to be
 *	       followed (on disk) by an indirect block.
273
 *
274
 *	To store the locations of file's data ext4 uses a data structure common
275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296
 *	for UNIX filesystems - tree of pointers anchored in the inode, with
 *	data blocks at leaves and indirect blocks in intermediate nodes.
 *	This function translates the block number into path in that tree -
 *	return value is the path length and @offsets[n] is the offset of
 *	pointer to (n+1)th node in the nth one. If @block is out of range
 *	(negative or too large) warning is printed and zero returned.
 *
 *	Note: function doesn't find node addresses, so no IO is needed. All
 *	we need to know is the capacity of indirect blocks (taken from the
 *	inode->i_sb).
 */

/*
 * Portability note: the last comparison (check that we fit into triple
 * indirect block) is spelled differently, because otherwise on an
 * architecture with 32-bit longs and 8Kb pages we might get into trouble
 * if our filesystem had 8Kb blocks. We might use long long, but that would
 * kill us on x86. Oh, well, at least the sign propagation does not matter -
 * i_block would have to be negative in the very beginning, so we would not
 * get there at all.
 */

297
static int ext4_block_to_path(struct inode *inode,
298 299
			      ext4_lblk_t i_block,
			      ext4_lblk_t offsets[4], int *boundary)
300
{
301 302 303
	int ptrs = EXT4_ADDR_PER_BLOCK(inode->i_sb);
	int ptrs_bits = EXT4_ADDR_PER_BLOCK_BITS(inode->i_sb);
	const long direct_blocks = EXT4_NDIR_BLOCKS,
304 305 306 307 308
		indirect_blocks = ptrs,
		double_blocks = (1 << (ptrs_bits * 2));
	int n = 0;
	int final = 0;

309
	if (i_block < direct_blocks) {
310 311
		offsets[n++] = i_block;
		final = direct_blocks;
312
	} else if ((i_block -= direct_blocks) < indirect_blocks) {
313
		offsets[n++] = EXT4_IND_BLOCK;
314 315 316
		offsets[n++] = i_block;
		final = ptrs;
	} else if ((i_block -= indirect_blocks) < double_blocks) {
317
		offsets[n++] = EXT4_DIND_BLOCK;
318 319 320 321
		offsets[n++] = i_block >> ptrs_bits;
		offsets[n++] = i_block & (ptrs - 1);
		final = ptrs;
	} else if (((i_block -= double_blocks) >> (ptrs_bits * 2)) < ptrs) {
322
		offsets[n++] = EXT4_TIND_BLOCK;
323 324 325 326 327
		offsets[n++] = i_block >> (ptrs_bits * 2);
		offsets[n++] = (i_block >> ptrs_bits) & (ptrs - 1);
		offsets[n++] = i_block & (ptrs - 1);
		final = ptrs;
	} else {
328
		ext4_warning(inode->i_sb, "block %lu > max in inode %lu",
329 330
			     i_block + direct_blocks +
			     indirect_blocks + double_blocks, inode->i_ino);
331 332 333 334 335 336 337
	}
	if (boundary)
		*boundary = final - 1 - (i_block & (ptrs - 1));
	return n;
}

/**
338
 *	ext4_get_branch - read the chain of indirect blocks leading to data
339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362
 *	@inode: inode in question
 *	@depth: depth of the chain (1 - direct pointer, etc.)
 *	@offsets: offsets of pointers in inode/indirect blocks
 *	@chain: place to store the result
 *	@err: here we store the error value
 *
 *	Function fills the array of triples <key, p, bh> and returns %NULL
 *	if everything went OK or the pointer to the last filled triple
 *	(incomplete one) otherwise. Upon the return chain[i].key contains
 *	the number of (i+1)-th block in the chain (as it is stored in memory,
 *	i.e. little-endian 32-bit), chain[i].p contains the address of that
 *	number (it points into struct inode for i==0 and into the bh->b_data
 *	for i>0) and chain[i].bh points to the buffer_head of i-th indirect
 *	block for i>0 and NULL for i==0. In other words, it holds the block
 *	numbers of the chain, addresses they were taken from (and where we can
 *	verify that chain did not change) and buffer_heads hosting these
 *	numbers.
 *
 *	Function stops when it stumbles upon zero pointer (absent block)
 *		(pointer to last triple returned, *@err == 0)
 *	or when it gets an IO error reading an indirect block
 *		(ditto, *@err == -EIO)
 *	or when it reads all @depth-1 indirect blocks successfully and finds
 *	the whole chain, all way to the data (returns %NULL, *err == 0).
363 364
 *
 *      Need to be called with
365
 *      down_read(&EXT4_I(inode)->i_data_sem)
366
 */
A
Aneesh Kumar K.V 已提交
367 368
static Indirect *ext4_get_branch(struct inode *inode, int depth,
				 ext4_lblk_t  *offsets,
369 370 371 372 373 374 375 376
				 Indirect chain[4], int *err)
{
	struct super_block *sb = inode->i_sb;
	Indirect *p = chain;
	struct buffer_head *bh;

	*err = 0;
	/* i_data is not going away, no lock needed */
377
	add_chain(chain, NULL, EXT4_I(inode)->i_data + *offsets);
378 379 380
	if (!p->key)
		goto no_block;
	while (--depth) {
381 382
		bh = sb_getblk(sb, le32_to_cpu(p->key));
		if (unlikely(!bh))
383
			goto failure;
384

385 386 387 388 389 390 391 392 393 394 395
		if (!bh_uptodate_or_lock(bh)) {
			if (bh_submit_read(bh) < 0) {
				put_bh(bh);
				goto failure;
			}
			/* validate block references */
			if (ext4_check_indirect_blockref(inode, bh)) {
				put_bh(bh);
				goto failure;
			}
		}
396

397
		add_chain(++p, bh, (__le32 *)bh->b_data + *++offsets);
398 399 400 401 402 403 404 405 406 407 408 409 410
		/* Reader: end */
		if (!p->key)
			goto no_block;
	}
	return NULL;

failure:
	*err = -EIO;
no_block:
	return p;
}

/**
411
 *	ext4_find_near - find a place for allocation with sufficient locality
412 413 414
 *	@inode: owner
 *	@ind: descriptor of indirect block.
 *
415
 *	This function returns the preferred place for block allocation.
416 417 418 419 420 421 422 423 424 425 426 427 428 429
 *	It is used when heuristic for sequential allocation fails.
 *	Rules are:
 *	  + if there is a block to the left of our position - allocate near it.
 *	  + if pointer will live in indirect block - allocate near that block.
 *	  + if pointer will live in inode - allocate in the same
 *	    cylinder group.
 *
 * In the latter case we colour the starting block by the callers PID to
 * prevent it from clashing with concurrent allocations for a different inode
 * in the same block group.   The PID is used here so that functionally related
 * files will be close-by on-disk.
 *
 *	Caller must make sure that @ind is valid and will stay that way.
 */
430
static ext4_fsblk_t ext4_find_near(struct inode *inode, Indirect *ind)
431
{
432
	struct ext4_inode_info *ei = EXT4_I(inode);
433
	__le32 *start = ind->bh ? (__le32 *) ind->bh->b_data : ei->i_data;
434
	__le32 *p;
435
	ext4_fsblk_t bg_start;
436
	ext4_fsblk_t last_block;
437
	ext4_grpblk_t colour;
438 439
	ext4_group_t block_group;
	int flex_size = ext4_flex_bg_size(EXT4_SB(inode->i_sb));
440 441 442 443 444 445 446 447 448 449 450 451 452 453 454

	/* Try to find previous block */
	for (p = ind->p - 1; p >= start; p--) {
		if (*p)
			return le32_to_cpu(*p);
	}

	/* No such thing, so let's try location of indirect block */
	if (ind->bh)
		return ind->bh->b_blocknr;

	/*
	 * It is going to be referred to from the inode itself? OK, just put it
	 * into the same cylinder group then.
	 */
455 456 457 458 459 460 461
	block_group = ei->i_block_group;
	if (flex_size >= EXT4_FLEX_SIZE_DIR_ALLOC_SCHEME) {
		block_group &= ~(flex_size-1);
		if (S_ISREG(inode->i_mode))
			block_group++;
	}
	bg_start = ext4_group_first_block_no(inode->i_sb, block_group);
462 463
	last_block = ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es) - 1;

464 465 466 467 468 469 470
	/*
	 * If we are doing delayed allocation, we don't need take
	 * colour into account.
	 */
	if (test_opt(inode->i_sb, DELALLOC))
		return bg_start;

471 472
	if (bg_start + EXT4_BLOCKS_PER_GROUP(inode->i_sb) <= last_block)
		colour = (current->pid % 16) *
473
			(EXT4_BLOCKS_PER_GROUP(inode->i_sb) / 16);
474 475
	else
		colour = (current->pid % 16) * ((last_block - bg_start) / 16);
476 477 478 479
	return bg_start + colour;
}

/**
480
 *	ext4_find_goal - find a preferred place for allocation.
481 482 483 484
 *	@inode: owner
 *	@block:  block we want
 *	@partial: pointer to the last triple within a chain
 *
485
 *	Normally this function find the preferred place for block allocation,
486
 *	returns it.
487 488
 *	Because this is only used for non-extent files, we limit the block nr
 *	to 32 bits.
489
 */
A
Aneesh Kumar K.V 已提交
490
static ext4_fsblk_t ext4_find_goal(struct inode *inode, ext4_lblk_t block,
491
				   Indirect *partial)
492
{
493 494
	ext4_fsblk_t goal;

495
	/*
496
	 * XXX need to get goal block from mballoc's data structures
497 498
	 */

499 500 501
	goal = ext4_find_near(inode, partial);
	goal = goal & EXT4_MAX_BLOCK_FILE_PHYS;
	return goal;
502 503 504
}

/**
T
Theodore Ts'o 已提交
505
 *	ext4_blks_to_allocate - Look up the block map and count the number
506 507 508 509 510 511 512 513 514 515
 *	of direct blocks need to be allocated for the given branch.
 *
 *	@branch: chain of indirect blocks
 *	@k: number of blocks need for indirect blocks
 *	@blks: number of data blocks to be mapped.
 *	@blocks_to_boundary:  the offset in the indirect block
 *
 *	return the total number of blocks to be allocate, including the
 *	direct and indirect blocks.
 */
516
static int ext4_blks_to_allocate(Indirect *branch, int k, unsigned int blks,
517
				 int blocks_to_boundary)
518
{
519
	unsigned int count = 0;
520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542

	/*
	 * Simple case, [t,d]Indirect block(s) has not allocated yet
	 * then it's clear blocks on that path have not allocated
	 */
	if (k > 0) {
		/* right now we don't handle cross boundary allocation */
		if (blks < blocks_to_boundary + 1)
			count += blks;
		else
			count += blocks_to_boundary + 1;
		return count;
	}

	count++;
	while (count < blks && count <= blocks_to_boundary &&
		le32_to_cpu(*(branch[0].p + count)) == 0) {
		count++;
	}
	return count;
}

/**
543
 *	ext4_alloc_blocks: multiple allocate blocks needed for a branch
T
Theodore Ts'o 已提交
544 545 546 547
 *	@handle: handle for this transaction
 *	@inode: inode which needs allocated blocks
 *	@iblock: the logical block to start allocated at
 *	@goal: preferred physical block of allocation
548 549
 *	@indirect_blks: the number of blocks need to allocate for indirect
 *			blocks
T
Theodore Ts'o 已提交
550
 *	@blks: number of desired blocks
551 552
 *	@new_blocks: on return it will store the new block numbers for
 *	the indirect blocks(if needed) and the first direct block,
T
Theodore Ts'o 已提交
553 554 555 556
 *	@err: on return it will store the error code
 *
 *	This function will return the number of blocks allocated as
 *	requested by the passed-in parameters.
557
 */
558
static int ext4_alloc_blocks(handle_t *handle, struct inode *inode,
559 560 561
			     ext4_lblk_t iblock, ext4_fsblk_t goal,
			     int indirect_blks, int blks,
			     ext4_fsblk_t new_blocks[4], int *err)
562
{
563
	struct ext4_allocation_request ar;
564
	int target, i;
565
	unsigned long count = 0, blk_allocated = 0;
566
	int index = 0;
567
	ext4_fsblk_t current_block = 0;
568 569 570 571 572 573 574 575 576 577
	int ret = 0;

	/*
	 * Here we try to allocate the requested multiple blocks at once,
	 * on a best-effort basis.
	 * To build a branch, we should allocate blocks for
	 * the indirect blocks(if not allocated yet), and at least
	 * the first direct block of this branch.  That's the
	 * minimum number of blocks need to allocate(required)
	 */
578 579 580
	/* first we try to allocate the indirect blocks */
	target = indirect_blks;
	while (target > 0) {
581 582
		count = target;
		/* allocating blocks for indirect blocks and direct blocks */
583 584
		current_block = ext4_new_meta_blocks(handle, inode, goal,
						     0, &count, err);
585 586 587
		if (*err)
			goto failed_out;

588 589 590 591 592 593 594 595
		if (unlikely(current_block + count > EXT4_MAX_BLOCK_FILE_PHYS)) {
			EXT4_ERROR_INODE(inode,
					 "current_block %llu + count %lu > %d!",
					 current_block, count,
					 EXT4_MAX_BLOCK_FILE_PHYS);
			*err = -EIO;
			goto failed_out;
		}
596

597 598 599 600 601 602
		target -= count;
		/* allocate blocks for indirect blocks */
		while (index < indirect_blks && count) {
			new_blocks[index++] = current_block++;
			count--;
		}
603 604 605 606 607 608 609 610 611
		if (count > 0) {
			/*
			 * save the new block number
			 * for the first direct block
			 */
			new_blocks[index] = current_block;
			printk(KERN_INFO "%s returned more blocks than "
						"requested\n", __func__);
			WARN_ON(1);
612
			break;
613
		}
614 615
	}

616 617 618 619 620
	target = blks - count ;
	blk_allocated = count;
	if (!target)
		goto allocated;
	/* Now allocate data blocks */
621 622 623 624 625 626 627 628 629 630
	memset(&ar, 0, sizeof(ar));
	ar.inode = inode;
	ar.goal = goal;
	ar.len = target;
	ar.logical = iblock;
	if (S_ISREG(inode->i_mode))
		/* enable in-core preallocation only for regular files */
		ar.flags = EXT4_MB_HINT_DATA;

	current_block = ext4_mb_new_blocks(handle, &ar, err);
631 632 633 634 635 636 637 638
	if (unlikely(current_block + ar.len > EXT4_MAX_BLOCK_FILE_PHYS)) {
		EXT4_ERROR_INODE(inode,
				 "current_block %llu + ar.len %d > %d!",
				 current_block, ar.len,
				 EXT4_MAX_BLOCK_FILE_PHYS);
		*err = -EIO;
		goto failed_out;
	}
639

640 641 642 643 644 645 646 647 648
	if (*err && (target == blks)) {
		/*
		 * if the allocation failed and we didn't allocate
		 * any blocks before
		 */
		goto failed_out;
	}
	if (!*err) {
		if (target == blks) {
649 650 651 652
			/*
			 * save the new block number
			 * for the first direct block
			 */
653 654
			new_blocks[index] = current_block;
		}
655
		blk_allocated += ar.len;
656 657
	}
allocated:
658
	/* total number of blocks allocated for direct blocks */
659
	ret = blk_allocated;
660 661 662
	*err = 0;
	return ret;
failed_out:
663
	for (i = 0; i < index; i++)
664
		ext4_free_blocks(handle, inode, NULL, new_blocks[i], 1, 0);
665 666 667 668
	return ret;
}

/**
669
 *	ext4_alloc_branch - allocate and set up a chain of blocks.
T
Theodore Ts'o 已提交
670
 *	@handle: handle for this transaction
671 672 673
 *	@inode: owner
 *	@indirect_blks: number of allocated indirect blocks
 *	@blks: number of allocated direct blocks
T
Theodore Ts'o 已提交
674
 *	@goal: preferred place for allocation
675 676 677 678 679 680 681
 *	@offsets: offsets (in the blocks) to store the pointers to next.
 *	@branch: place to store the chain in.
 *
 *	This function allocates blocks, zeroes out all but the last one,
 *	links them into chain and (if we are synchronous) writes them to disk.
 *	In other words, it prepares a branch that can be spliced onto the
 *	inode. It stores the information about that chain in the branch[], in
682
 *	the same format as ext4_get_branch() would do. We are calling it after
683 684
 *	we had read the existing part of chain and partial points to the last
 *	triple of that (one with zero ->key). Upon the exit we have the same
685
 *	picture as after the successful ext4_get_block(), except that in one
686 687 688 689 690 691
 *	place chain is disconnected - *branch->p is still zero (we did not
 *	set the last link), but branch->key contains the number that should
 *	be placed into *branch->p to fill that gap.
 *
 *	If allocation fails we free all blocks we've allocated (and forget
 *	their buffer_heads) and return the error value the from failed
692
 *	ext4_alloc_block() (normally -ENOSPC). Otherwise we set the chain
693 694
 *	as described above and return 0.
 */
695
static int ext4_alloc_branch(handle_t *handle, struct inode *inode,
696 697 698
			     ext4_lblk_t iblock, int indirect_blks,
			     int *blks, ext4_fsblk_t goal,
			     ext4_lblk_t *offsets, Indirect *branch)
699 700 701 702 703 704
{
	int blocksize = inode->i_sb->s_blocksize;
	int i, n = 0;
	int err = 0;
	struct buffer_head *bh;
	int num;
705 706
	ext4_fsblk_t new_blocks[4];
	ext4_fsblk_t current_block;
707

708
	num = ext4_alloc_blocks(handle, inode, iblock, goal, indirect_blks,
709 710 711 712 713 714 715 716 717 718 719 720 721 722 723
				*blks, new_blocks, &err);
	if (err)
		return err;

	branch[0].key = cpu_to_le32(new_blocks[0]);
	/*
	 * metadata blocks and data blocks are allocated.
	 */
	for (n = 1; n <= indirect_blks;  n++) {
		/*
		 * Get buffer_head for parent block, zero it out
		 * and set the pointer to new one, then send
		 * parent to disk.
		 */
		bh = sb_getblk(inode->i_sb, new_blocks[n-1]);
724 725 726 727 728
		if (unlikely(!bh)) {
			err = -EIO;
			goto failed;
		}

729 730 731
		branch[n].bh = bh;
		lock_buffer(bh);
		BUFFER_TRACE(bh, "call get_create_access");
732
		err = ext4_journal_get_create_access(handle, bh);
733
		if (err) {
734 735
			/* Don't brelse(bh) here; it's done in
			 * ext4_journal_forget() below */
736 737 738 739 740 741 742 743
			unlock_buffer(bh);
			goto failed;
		}

		memset(bh->b_data, 0, blocksize);
		branch[n].p = (__le32 *) bh->b_data + offsets[n];
		branch[n].key = cpu_to_le32(new_blocks[n]);
		*branch[n].p = branch[n].key;
744
		if (n == indirect_blks) {
745 746 747 748 749 750
			current_block = new_blocks[n];
			/*
			 * End of chain, update the last new metablock of
			 * the chain to point to the new allocated
			 * data blocks numbers
			 */
751
			for (i = 1; i < num; i++)
752 753 754 755 756 757
				*(branch[n].p + i) = cpu_to_le32(++current_block);
		}
		BUFFER_TRACE(bh, "marking uptodate");
		set_buffer_uptodate(bh);
		unlock_buffer(bh);

758 759
		BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
		err = ext4_handle_dirty_metadata(handle, inode, bh);
760 761 762 763 764 765 766
		if (err)
			goto failed;
	}
	*blks = num;
	return err;
failed:
	/* Allocation failed, free what we already allocated */
767
	ext4_free_blocks(handle, inode, NULL, new_blocks[0], 1, 0);
768
	for (i = 1; i <= n ; i++) {
769
		/*
770 771 772
		 * branch[i].bh is newly allocated, so there is no
		 * need to revoke the block, which is why we don't
		 * need to set EXT4_FREE_BLOCKS_METADATA.
773
		 */
774
		ext4_free_blocks(handle, inode, NULL, new_blocks[i], 1,
775
				 EXT4_FREE_BLOCKS_FORGET);
776
	}
777
	for (i = n+1; i < indirect_blks; i++)
778
		ext4_free_blocks(handle, inode, NULL, new_blocks[i], 1, 0);
779

780
	ext4_free_blocks(handle, inode, NULL, new_blocks[i], num, 0);
781 782 783 784 785

	return err;
}

/**
786
 * ext4_splice_branch - splice the allocated branch onto inode.
T
Theodore Ts'o 已提交
787
 * @handle: handle for this transaction
788 789 790
 * @inode: owner
 * @block: (logical) number of block we are adding
 * @chain: chain of indirect blocks (with a missing link - see
791
 *	ext4_alloc_branch)
792 793 794 795 796 797 798 799
 * @where: location of missing link
 * @num:   number of indirect blocks we are adding
 * @blks:  number of direct blocks we are adding
 *
 * This function fills the missing link and does all housekeeping needed in
 * inode (->i_blocks, etc.). In case of success we end up with the full
 * chain to new block and return 0.
 */
800
static int ext4_splice_branch(handle_t *handle, struct inode *inode,
801 802
			      ext4_lblk_t block, Indirect *where, int num,
			      int blks)
803 804 805
{
	int i;
	int err = 0;
806
	ext4_fsblk_t current_block;
807 808 809 810 811 812 813 814

	/*
	 * If we're splicing into a [td]indirect block (as opposed to the
	 * inode) then we need to get write access to the [td]indirect block
	 * before the splice.
	 */
	if (where->bh) {
		BUFFER_TRACE(where->bh, "get_write_access");
815
		err = ext4_journal_get_write_access(handle, where->bh);
816 817 818 819 820 821 822 823 824 825 826 827 828 829
		if (err)
			goto err_out;
	}
	/* That's it */

	*where->p = where->key;

	/*
	 * Update the host buffer_head or inode to point to more just allocated
	 * direct blocks blocks
	 */
	if (num == 0 && blks > 1) {
		current_block = le32_to_cpu(where->key) + 1;
		for (i = 1; i < blks; i++)
830
			*(where->p + i) = cpu_to_le32(current_block++);
831 832 833 834 835 836 837 838 839 840 841
	}

	/* We are done with atomic stuff, now do the rest of housekeeping */
	/* had we spliced it onto indirect block? */
	if (where->bh) {
		/*
		 * If we spliced it onto an indirect block, we haven't
		 * altered the inode.  Note however that if it is being spliced
		 * onto an indirect block at the very end of the file (the
		 * file is growing) then we *will* alter the inode to reflect
		 * the new i_size.  But that is not done here - it is done in
842
		 * generic_commit_write->__mark_inode_dirty->ext4_dirty_inode.
843 844
		 */
		jbd_debug(5, "splicing indirect only\n");
845 846
		BUFFER_TRACE(where->bh, "call ext4_handle_dirty_metadata");
		err = ext4_handle_dirty_metadata(handle, inode, where->bh);
847 848 849 850 851 852
		if (err)
			goto err_out;
	} else {
		/*
		 * OK, we spliced it into the inode itself on a direct block.
		 */
853
		ext4_mark_inode_dirty(handle, inode);
854 855 856 857 858 859
		jbd_debug(5, "splicing direct\n");
	}
	return err;

err_out:
	for (i = 1; i <= num; i++) {
860
		/*
861 862 863
		 * branch[i].bh is newly allocated, so there is no
		 * need to revoke the block, which is why we don't
		 * need to set EXT4_FREE_BLOCKS_METADATA.
864
		 */
865 866
		ext4_free_blocks(handle, inode, where[i].bh, 0, 1,
				 EXT4_FREE_BLOCKS_FORGET);
867
	}
868
	ext4_free_blocks(handle, inode, NULL, le32_to_cpu(where[num].key),
869
			 blks, 0);
870 871 872 873 874

	return err;
}

/*
875
 * The ext4_ind_map_blocks() function handles non-extents inodes
876
 * (i.e., using the traditional indirect/double-indirect i_blocks
877
 * scheme) for ext4_map_blocks().
878
 *
879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894
 * Allocation strategy is simple: if we have to allocate something, we will
 * have to go the whole way to leaf. So let's do it before attaching anything
 * to tree, set linkage between the newborn blocks, write them if sync is
 * required, recheck the path, free and repeat if check fails, otherwise
 * set the last missing link (that will protect us from any truncate-generated
 * removals - all blocks on the path are immune now) and possibly force the
 * write on the parent block.
 * That has a nice additional property: no special recovery from the failed
 * allocations is needed - we simply release blocks and do not touch anything
 * reachable from inode.
 *
 * `handle' can be NULL if create == 0.
 *
 * return > 0, # of blocks mapped or allocated.
 * return = 0, if plain lookup failed.
 * return < 0, error case.
895
 *
896 897 898 899 900
 * The ext4_ind_get_blocks() function should be called with
 * down_write(&EXT4_I(inode)->i_data_sem) if allocating filesystem
 * blocks (i.e., flags has EXT4_GET_BLOCKS_CREATE set) or
 * down_read(&EXT4_I(inode)->i_data_sem) if not allocating file system
 * blocks.
901
 */
902 903
static int ext4_ind_map_blocks(handle_t *handle, struct inode *inode,
			       struct ext4_map_blocks *map,
904
			       int flags)
905 906
{
	int err = -EIO;
A
Aneesh Kumar K.V 已提交
907
	ext4_lblk_t offsets[4];
908 909
	Indirect chain[4];
	Indirect *partial;
910
	ext4_fsblk_t goal;
911 912 913 914
	int indirect_blks;
	int blocks_to_boundary = 0;
	int depth;
	int count = 0;
915
	ext4_fsblk_t first_block = 0;
916

917
	trace_ext4_ind_map_blocks_enter(inode, map->m_lblk, map->m_len, flags);
918
	J_ASSERT(!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)));
919
	J_ASSERT(handle != NULL || (flags & EXT4_GET_BLOCKS_CREATE) == 0);
920
	depth = ext4_block_to_path(inode, map->m_lblk, offsets,
921
				   &blocks_to_boundary);
922 923 924 925

	if (depth == 0)
		goto out;

926
	partial = ext4_get_branch(inode, depth, offsets, chain, &err);
927 928 929 930 931 932

	/* Simplest case - block found, no allocation needed */
	if (!partial) {
		first_block = le32_to_cpu(chain[depth - 1].key);
		count++;
		/*map more blocks*/
933
		while (count < map->m_len && count <= blocks_to_boundary) {
934
			ext4_fsblk_t blk;
935 936 937 938 939 940 941 942

			blk = le32_to_cpu(*(chain[depth-1].p + count));

			if (blk == first_block + count)
				count++;
			else
				break;
		}
943
		goto got_it;
944 945 946
	}

	/* Next simple case - plain lookup or failed read of indirect block */
947
	if ((flags & EXT4_GET_BLOCKS_CREATE) == 0 || err == -EIO)
948 949 950
		goto cleanup;

	/*
951
	 * Okay, we need to do block allocation.
952
	*/
953
	goal = ext4_find_goal(inode, map->m_lblk, partial);
954 955 956 957 958 959 960 961

	/* the number of blocks need to allocate for [d,t]indirect blocks */
	indirect_blks = (chain + depth) - partial - 1;

	/*
	 * Next look up the indirect map to count the totoal number of
	 * direct blocks to allocate for this branch.
	 */
962
	count = ext4_blks_to_allocate(partial, indirect_blks,
963
				      map->m_len, blocks_to_boundary);
964
	/*
965
	 * Block out ext4_truncate while we alter the tree
966
	 */
967
	err = ext4_alloc_branch(handle, inode, map->m_lblk, indirect_blks,
968 969
				&count, goal,
				offsets + (partial - chain), partial);
970 971

	/*
972
	 * The ext4_splice_branch call will free and forget any buffers
973 974 975 976 977 978
	 * on the new chain if there is a failure, but that risks using
	 * up transaction credits, especially for bitmaps where the
	 * credits cannot be returned.  Can we handle this somehow?  We
	 * may need to return -EAGAIN upwards in the worst case.  --sct
	 */
	if (!err)
979
		err = ext4_splice_branch(handle, inode, map->m_lblk,
980
					 partial, indirect_blks, count);
981
	if (err)
982 983
		goto cleanup;

984
	map->m_flags |= EXT4_MAP_NEW;
985 986

	ext4_update_inode_fsync_trans(handle, inode, 1);
987
got_it:
988 989 990
	map->m_flags |= EXT4_MAP_MAPPED;
	map->m_pblk = le32_to_cpu(chain[depth-1].key);
	map->m_len = count;
991
	if (count > blocks_to_boundary)
992
		map->m_flags |= EXT4_MAP_BOUNDARY;
993 994 995 996 997 998 999 1000 1001 1002
	err = count;
	/* Clean up and exit */
	partial = chain + depth - 1;	/* the whole chain */
cleanup:
	while (partial > chain) {
		BUFFER_TRACE(partial->bh, "call brelse");
		brelse(partial->bh);
		partial--;
	}
out:
1003 1004
	trace_ext4_ind_map_blocks_exit(inode, map->m_lblk,
				map->m_pblk, map->m_len, err);
1005 1006 1007
	return err;
}

1008 1009
#ifdef CONFIG_QUOTA
qsize_t *ext4_get_reserved_space(struct inode *inode)
1010
{
1011
	return &EXT4_I(inode)->i_reserved_quota;
1012
}
1013
#endif
1014

1015 1016
/*
 * Calculate the number of metadata blocks need to reserve
1017
 * to allocate a new block at @lblocks for non extent file based file
1018
 */
1019
static int ext4_ind_calc_metadata_amount(struct inode *inode, sector_t lblock)
1020
{
1021
	struct ext4_inode_info *ei = EXT4_I(inode);
1022
	sector_t dind_mask = ~((sector_t)EXT4_ADDR_PER_BLOCK(inode->i_sb) - 1);
1023
	int blk_bits;
1024

1025 1026
	if (lblock < EXT4_NDIR_BLOCKS)
		return 0;
1027

1028
	lblock -= EXT4_NDIR_BLOCKS;
1029

1030 1031 1032 1033 1034 1035 1036
	if (ei->i_da_metadata_calc_len &&
	    (lblock & dind_mask) == ei->i_da_metadata_calc_last_lblock) {
		ei->i_da_metadata_calc_len++;
		return 0;
	}
	ei->i_da_metadata_calc_last_lblock = lblock & dind_mask;
	ei->i_da_metadata_calc_len = 1;
1037
	blk_bits = order_base_2(lblock);
1038
	return (blk_bits / EXT4_ADDR_PER_BLOCK_BITS(inode->i_sb)) + 1;
1039 1040 1041 1042
}

/*
 * Calculate the number of metadata blocks need to reserve
1043
 * to allocate a block located at @lblock
1044
 */
1045
static int ext4_calc_metadata_amount(struct inode *inode, ext4_lblk_t lblock)
1046
{
1047
	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
1048
		return ext4_ext_calc_metadata_amount(inode, lblock);
1049

1050
	return ext4_ind_calc_metadata_amount(inode, lblock);
1051 1052
}

1053 1054 1055 1056
/*
 * Called with i_data_sem down, which is important since we can call
 * ext4_discard_preallocations() from here.
 */
1057 1058
void ext4_da_update_reserve_space(struct inode *inode,
					int used, int quota_claim)
1059 1060
{
	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1061 1062 1063
	struct ext4_inode_info *ei = EXT4_I(inode);

	spin_lock(&ei->i_block_reservation_lock);
1064
	trace_ext4_da_update_reserve_space(inode, used);
1065 1066 1067 1068 1069 1070 1071 1072
	if (unlikely(used > ei->i_reserved_data_blocks)) {
		ext4_msg(inode->i_sb, KERN_NOTICE, "%s: ino %lu, used %d "
			 "with only %d reserved data blocks\n",
			 __func__, inode->i_ino, used,
			 ei->i_reserved_data_blocks);
		WARN_ON(1);
		used = ei->i_reserved_data_blocks;
	}
1073

1074 1075 1076
	/* Update per-inode reservations */
	ei->i_reserved_data_blocks -= used;
	ei->i_reserved_meta_blocks -= ei->i_allocated_meta_blocks;
1077 1078
	percpu_counter_sub(&sbi->s_dirtyblocks_counter,
			   used + ei->i_allocated_meta_blocks);
1079
	ei->i_allocated_meta_blocks = 0;
1080

1081 1082 1083 1084 1085 1086
	if (ei->i_reserved_data_blocks == 0) {
		/*
		 * We can release all of the reserved metadata blocks
		 * only when we have written all of the delayed
		 * allocation blocks.
		 */
1087 1088
		percpu_counter_sub(&sbi->s_dirtyblocks_counter,
				   ei->i_reserved_meta_blocks);
1089
		ei->i_reserved_meta_blocks = 0;
1090
		ei->i_da_metadata_calc_len = 0;
1091
	}
1092
	spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1093

1094 1095
	/* Update quota subsystem for data blocks */
	if (quota_claim)
1096
		dquot_claim_block(inode, used);
1097
	else {
1098 1099 1100
		/*
		 * We did fallocate with an offset that is already delayed
		 * allocated. So on delayed allocated writeback we should
1101
		 * not re-claim the quota for fallocated blocks.
1102
		 */
1103
		dquot_release_reservation_block(inode, used);
1104
	}
1105 1106 1107 1108 1109 1110

	/*
	 * If we have done all the pending block allocations and if
	 * there aren't any writers on the inode, we can discard the
	 * inode's preallocations.
	 */
1111 1112
	if ((ei->i_reserved_data_blocks == 0) &&
	    (atomic_read(&inode->i_writecount) == 0))
1113
		ext4_discard_preallocations(inode);
1114 1115
}

1116
static int __check_block_validity(struct inode *inode, const char *func,
1117 1118
				unsigned int line,
				struct ext4_map_blocks *map)
1119
{
1120 1121
	if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), map->m_pblk,
				   map->m_len)) {
1122 1123 1124 1125
		ext4_error_inode(inode, func, line, map->m_pblk,
				 "lblock %lu mapped to illegal pblock "
				 "(length %d)", (unsigned long) map->m_lblk,
				 map->m_len);
1126 1127 1128 1129 1130
		return -EIO;
	}
	return 0;
}

1131
#define check_block_validity(inode, map)	\
1132
	__check_block_validity((inode), __func__, __LINE__, (map))
1133

1134
/*
1135 1136
 * Return the number of contiguous dirty pages in a given inode
 * starting at page frame idx.
1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169
 */
static pgoff_t ext4_num_dirty_pages(struct inode *inode, pgoff_t idx,
				    unsigned int max_pages)
{
	struct address_space *mapping = inode->i_mapping;
	pgoff_t	index;
	struct pagevec pvec;
	pgoff_t num = 0;
	int i, nr_pages, done = 0;

	if (max_pages == 0)
		return 0;
	pagevec_init(&pvec, 0);
	while (!done) {
		index = idx;
		nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
					      PAGECACHE_TAG_DIRTY,
					      (pgoff_t)PAGEVEC_SIZE);
		if (nr_pages == 0)
			break;
		for (i = 0; i < nr_pages; i++) {
			struct page *page = pvec.pages[i];
			struct buffer_head *bh, *head;

			lock_page(page);
			if (unlikely(page->mapping != mapping) ||
			    !PageDirty(page) ||
			    PageWriteback(page) ||
			    page->index != idx) {
				done = 1;
				unlock_page(page);
				break;
			}
1170 1171 1172 1173 1174 1175 1176 1177 1178
			if (page_has_buffers(page)) {
				bh = head = page_buffers(page);
				do {
					if (!buffer_delay(bh) &&
					    !buffer_unwritten(bh))
						done = 1;
					bh = bh->b_this_page;
				} while (!done && (bh != head));
			}
1179 1180 1181 1182 1183
			unlock_page(page);
			if (done)
				break;
			idx++;
			num++;
1184 1185
			if (num >= max_pages) {
				done = 1;
1186
				break;
1187
			}
1188 1189 1190 1191 1192 1193
		}
		pagevec_release(&pvec);
	}
	return num;
}

1194
/*
1195
 * The ext4_map_blocks() function tries to look up the requested blocks,
1196
 * and returns if the blocks are already mapped.
1197 1198 1199 1200 1201
 *
 * Otherwise it takes the write lock of the i_data_sem and allocate blocks
 * and store the allocated blocks in the result buffer head and mark it
 * mapped.
 *
1202 1203
 * If file type is extents based, it will call ext4_ext_map_blocks(),
 * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping
1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215
 * based files
 *
 * On success, it returns the number of blocks being mapped or allocate.
 * if create==0 and the blocks are pre-allocated and uninitialized block,
 * the result buffer head is unmapped. If the create ==1, it will make sure
 * the buffer head is mapped.
 *
 * It returns 0 if plain look up failed (blocks have not been allocated), in
 * that casem, buffer head is unmapped
 *
 * It returns the error in case of allocation failure.
 */
1216 1217
int ext4_map_blocks(handle_t *handle, struct inode *inode,
		    struct ext4_map_blocks *map, int flags)
1218 1219
{
	int retval;
1220

1221 1222 1223 1224
	map->m_flags = 0;
	ext_debug("ext4_map_blocks(): inode %lu, flag %d, max_blocks %u,"
		  "logical block %lu\n", inode->i_ino, flags, map->m_len,
		  (unsigned long) map->m_lblk);
1225
	/*
1226 1227
	 * Try to see if we can get the block without requesting a new
	 * file system block.
1228 1229
	 */
	down_read((&EXT4_I(inode)->i_data_sem));
1230
	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
1231
		retval = ext4_ext_map_blocks(handle, inode, map, 0);
1232
	} else {
1233
		retval = ext4_ind_map_blocks(handle, inode, map, 0);
1234
	}
1235
	up_read((&EXT4_I(inode)->i_data_sem));
1236

1237
	if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
1238
		int ret = check_block_validity(inode, map);
1239 1240 1241 1242
		if (ret != 0)
			return ret;
	}

1243
	/* If it is only a block(s) look up */
1244
	if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
1245 1246 1247 1248 1249 1250 1251 1252 1253
		return retval;

	/*
	 * Returns if the blocks have already allocated
	 *
	 * Note that if blocks have been preallocated
	 * ext4_ext_get_block() returns th create = 0
	 * with buffer head unmapped.
	 */
1254
	if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
1255 1256
		return retval;

1257 1258 1259 1260 1261 1262 1263 1264 1265 1266
	/*
	 * When we call get_blocks without the create flag, the
	 * BH_Unwritten flag could have gotten set if the blocks
	 * requested were part of a uninitialized extent.  We need to
	 * clear this flag now that we are committed to convert all or
	 * part of the uninitialized extent to be an initialized
	 * extent.  This is because we need to avoid the combination
	 * of BH_Unwritten and BH_Mapped flags being simultaneously
	 * set on the buffer_head.
	 */
1267
	map->m_flags &= ~EXT4_MAP_UNWRITTEN;
1268

1269
	/*
1270 1271 1272 1273
	 * New blocks allocate and/or writing to uninitialized extent
	 * will possibly result in updating i_data, so we take
	 * the write lock of i_data_sem, and call get_blocks()
	 * with create == 1 flag.
1274 1275
	 */
	down_write((&EXT4_I(inode)->i_data_sem));
1276 1277 1278 1279 1280 1281 1282

	/*
	 * if the caller is from delayed allocation writeout path
	 * we have already reserved fs blocks for allocation
	 * let the underlying get_block() function know to
	 * avoid double accounting
	 */
1283
	if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
1284
		ext4_set_inode_state(inode, EXT4_STATE_DELALLOC_RESERVED);
1285 1286 1287 1288
	/*
	 * We need to check for EXT4 here because migrate
	 * could have changed the inode type in between
	 */
1289
	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
1290
		retval = ext4_ext_map_blocks(handle, inode, map, flags);
1291
	} else {
1292
		retval = ext4_ind_map_blocks(handle, inode, map, flags);
1293

1294
		if (retval > 0 && map->m_flags & EXT4_MAP_NEW) {
1295 1296 1297 1298 1299
			/*
			 * We allocated new blocks which will result in
			 * i_data's format changing.  Force the migrate
			 * to fail by clearing migrate flags
			 */
1300
			ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE);
1301
		}
1302

1303 1304 1305 1306 1307 1308 1309
		/*
		 * Update reserved blocks/metadata blocks after successful
		 * block allocation which had been deferred till now. We don't
		 * support fallocate for non extent files. So we can update
		 * reserve space here.
		 */
		if ((retval > 0) &&
1310
			(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE))
1311 1312
			ext4_da_update_reserve_space(inode, retval, 1);
	}
1313
	if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
1314
		ext4_clear_inode_state(inode, EXT4_STATE_DELALLOC_RESERVED);
1315

1316
	up_write((&EXT4_I(inode)->i_data_sem));
1317
	if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
1318
		int ret = check_block_validity(inode, map);
1319 1320 1321
		if (ret != 0)
			return ret;
	}
1322 1323 1324
	return retval;
}

1325 1326 1327
/* Maximum number of blocks we map for direct IO at once. */
#define DIO_MAX_BLOCKS 4096

1328 1329
static int _ext4_get_block(struct inode *inode, sector_t iblock,
			   struct buffer_head *bh, int flags)
1330
{
1331
	handle_t *handle = ext4_journal_current_handle();
1332
	struct ext4_map_blocks map;
J
Jan Kara 已提交
1333
	int ret = 0, started = 0;
1334
	int dio_credits;
1335

1336 1337 1338 1339
	map.m_lblk = iblock;
	map.m_len = bh->b_size >> inode->i_blkbits;

	if (flags && !handle) {
J
Jan Kara 已提交
1340
		/* Direct IO write... */
1341 1342 1343
		if (map.m_len > DIO_MAX_BLOCKS)
			map.m_len = DIO_MAX_BLOCKS;
		dio_credits = ext4_chunk_trans_blocks(inode, map.m_len);
1344
		handle = ext4_journal_start(inode, dio_credits);
J
Jan Kara 已提交
1345
		if (IS_ERR(handle)) {
1346
			ret = PTR_ERR(handle);
1347
			return ret;
1348
		}
J
Jan Kara 已提交
1349
		started = 1;
1350 1351
	}

1352
	ret = ext4_map_blocks(handle, inode, &map, flags);
J
Jan Kara 已提交
1353
	if (ret > 0) {
1354 1355 1356
		map_bh(bh, inode->i_sb, map.m_pblk);
		bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;
		bh->b_size = inode->i_sb->s_blocksize * map.m_len;
J
Jan Kara 已提交
1357
		ret = 0;
1358
	}
J
Jan Kara 已提交
1359 1360
	if (started)
		ext4_journal_stop(handle);
1361 1362 1363
	return ret;
}

1364 1365 1366 1367 1368 1369 1370
int ext4_get_block(struct inode *inode, sector_t iblock,
		   struct buffer_head *bh, int create)
{
	return _ext4_get_block(inode, iblock, bh,
			       create ? EXT4_GET_BLOCKS_CREATE : 0);
}

1371 1372 1373
/*
 * `handle' can be NULL if create is zero
 */
1374
struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
A
Aneesh Kumar K.V 已提交
1375
				ext4_lblk_t block, int create, int *errp)
1376
{
1377 1378
	struct ext4_map_blocks map;
	struct buffer_head *bh;
1379 1380 1381 1382
	int fatal = 0, err;

	J_ASSERT(handle != NULL || create == 0);

1383 1384 1385 1386
	map.m_lblk = block;
	map.m_len = 1;
	err = ext4_map_blocks(handle, inode, &map,
			      create ? EXT4_GET_BLOCKS_CREATE : 0);
1387

1388 1389 1390 1391 1392 1393 1394 1395 1396 1397
	if (err < 0)
		*errp = err;
	if (err <= 0)
		return NULL;
	*errp = 0;

	bh = sb_getblk(inode->i_sb, map.m_pblk);
	if (!bh) {
		*errp = -EIO;
		return NULL;
1398
	}
1399 1400 1401
	if (map.m_flags & EXT4_MAP_NEW) {
		J_ASSERT(create != 0);
		J_ASSERT(handle != NULL);
1402

1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415
		/*
		 * Now that we do not always journal data, we should
		 * keep in mind whether this should always journal the
		 * new buffer as metadata.  For now, regular file
		 * writes use ext4_get_block instead, so it's not a
		 * problem.
		 */
		lock_buffer(bh);
		BUFFER_TRACE(bh, "call get_create_access");
		fatal = ext4_journal_get_create_access(handle, bh);
		if (!fatal && !buffer_uptodate(bh)) {
			memset(bh->b_data, 0, inode->i_sb->s_blocksize);
			set_buffer_uptodate(bh);
1416
		}
1417 1418 1419 1420 1421 1422 1423
		unlock_buffer(bh);
		BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
		err = ext4_handle_dirty_metadata(handle, inode, bh);
		if (!fatal)
			fatal = err;
	} else {
		BUFFER_TRACE(bh, "not a new buffer");
1424
	}
1425 1426 1427 1428 1429 1430
	if (fatal) {
		*errp = fatal;
		brelse(bh);
		bh = NULL;
	}
	return bh;
1431 1432
}

1433
struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
A
Aneesh Kumar K.V 已提交
1434
			       ext4_lblk_t block, int create, int *err)
1435
{
1436
	struct buffer_head *bh;
1437

1438
	bh = ext4_getblk(handle, inode, block, create, err);
1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451
	if (!bh)
		return bh;
	if (buffer_uptodate(bh))
		return bh;
	ll_rw_block(READ_META, 1, &bh);
	wait_on_buffer(bh);
	if (buffer_uptodate(bh))
		return bh;
	put_bh(bh);
	*err = -EIO;
	return NULL;
}

1452 1453 1454 1455 1456 1457 1458
static int walk_page_buffers(handle_t *handle,
			     struct buffer_head *head,
			     unsigned from,
			     unsigned to,
			     int *partial,
			     int (*fn)(handle_t *handle,
				       struct buffer_head *bh))
1459 1460 1461 1462 1463 1464 1465
{
	struct buffer_head *bh;
	unsigned block_start, block_end;
	unsigned blocksize = head->b_size;
	int err, ret = 0;
	struct buffer_head *next;

1466 1467
	for (bh = head, block_start = 0;
	     ret == 0 && (bh != head || !block_start);
1468
	     block_start = block_end, bh = next) {
1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485
		next = bh->b_this_page;
		block_end = block_start + blocksize;
		if (block_end <= from || block_start >= to) {
			if (partial && !buffer_uptodate(bh))
				*partial = 1;
			continue;
		}
		err = (*fn)(handle, bh);
		if (!ret)
			ret = err;
	}
	return ret;
}

/*
 * To preserve ordering, it is essential that the hole instantiation and
 * the data write be encapsulated in a single transaction.  We cannot
1486
 * close off a transaction and start a new one between the ext4_get_block()
1487
 * and the commit_write().  So doing the jbd2_journal_start at the start of
1488 1489
 * prepare_write() is the right place.
 *
1490 1491
 * Also, this function can nest inside ext4_writepage() ->
 * block_write_full_page(). In that case, we *know* that ext4_writepage()
1492 1493 1494 1495
 * has generated enough buffer credits to do the whole page.  So we won't
 * block on the journal in that case, which is good, because the caller may
 * be PF_MEMALLOC.
 *
1496
 * By accident, ext4 can be reentered when a transaction is open via
1497 1498 1499 1500 1501 1502
 * quota file writes.  If we were to commit the transaction while thus
 * reentered, there can be a deadlock - we would be holding a quota
 * lock, and the commit would never complete if another thread had a
 * transaction open and was blocking on the quota lock - a ranking
 * violation.
 *
1503
 * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
1504 1505 1506 1507 1508
 * will _not_ run commit under these circumstances because handle->h_ref
 * is elevated.  We'll still have enough credits for the tiny quotafile
 * write.
 */
static int do_journal_get_write_access(handle_t *handle,
1509
				       struct buffer_head *bh)
1510
{
1511 1512 1513
	int dirty = buffer_dirty(bh);
	int ret;

1514 1515
	if (!buffer_mapped(bh) || buffer_freed(bh))
		return 0;
1516
	/*
C
Christoph Hellwig 已提交
1517
	 * __block_write_begin() could have dirtied some buffers. Clean
1518 1519
	 * the dirty bit as jbd2_journal_get_write_access() could complain
	 * otherwise about fs integrity issues. Setting of the dirty bit
C
Christoph Hellwig 已提交
1520
	 * by __block_write_begin() isn't a real problem here as we clear
1521 1522 1523 1524 1525 1526 1527 1528 1529
	 * the bit before releasing a page lock and thus writeback cannot
	 * ever write the buffer.
	 */
	if (dirty)
		clear_buffer_dirty(bh);
	ret = ext4_journal_get_write_access(handle, bh);
	if (!ret && dirty)
		ret = ext4_handle_dirty_metadata(handle, NULL, bh);
	return ret;
1530 1531
}

1532 1533
static int ext4_get_block_write(struct inode *inode, sector_t iblock,
		   struct buffer_head *bh_result, int create);
N
Nick Piggin 已提交
1534
static int ext4_write_begin(struct file *file, struct address_space *mapping,
1535 1536
			    loff_t pos, unsigned len, unsigned flags,
			    struct page **pagep, void **fsdata)
1537
{
1538
	struct inode *inode = mapping->host;
1539
	int ret, needed_blocks;
1540 1541
	handle_t *handle;
	int retries = 0;
1542
	struct page *page;
1543
	pgoff_t index;
1544
	unsigned from, to;
N
Nick Piggin 已提交
1545

1546
	trace_ext4_write_begin(inode, pos, len, flags);
1547 1548 1549 1550 1551
	/*
	 * Reserve one block more for addition to orphan list in case
	 * we allocate blocks but write fails for some reason
	 */
	needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
1552
	index = pos >> PAGE_CACHE_SHIFT;
1553 1554
	from = pos & (PAGE_CACHE_SIZE - 1);
	to = from + len;
1555 1556

retry:
1557 1558 1559 1560
	handle = ext4_journal_start(inode, needed_blocks);
	if (IS_ERR(handle)) {
		ret = PTR_ERR(handle);
		goto out;
1561
	}
1562

1563 1564 1565 1566
	/* We cannot recurse into the filesystem as the transaction is already
	 * started */
	flags |= AOP_FLAG_NOFS;

1567
	page = grab_cache_page_write_begin(mapping, index, flags);
1568 1569 1570 1571 1572 1573 1574
	if (!page) {
		ext4_journal_stop(handle);
		ret = -ENOMEM;
		goto out;
	}
	*pagep = page;

1575
	if (ext4_should_dioread_nolock(inode))
1576
		ret = __block_write_begin(page, pos, len, ext4_get_block_write);
1577
	else
1578
		ret = __block_write_begin(page, pos, len, ext4_get_block);
N
Nick Piggin 已提交
1579 1580

	if (!ret && ext4_should_journal_data(inode)) {
1581 1582 1583
		ret = walk_page_buffers(handle, page_buffers(page),
				from, to, NULL, do_journal_get_write_access);
	}
N
Nick Piggin 已提交
1584 1585

	if (ret) {
1586 1587
		unlock_page(page);
		page_cache_release(page);
1588
		/*
1589
		 * __block_write_begin may have instantiated a few blocks
1590 1591
		 * outside i_size.  Trim these off again. Don't need
		 * i_size_read because we hold i_mutex.
1592 1593 1594
		 *
		 * Add inode to orphan list in case we crash before
		 * truncate finishes
1595
		 */
1596
		if (pos + len > inode->i_size && ext4_can_truncate(inode))
1597 1598 1599 1600
			ext4_orphan_add(handle, inode);

		ext4_journal_stop(handle);
		if (pos + len > inode->i_size) {
1601
			ext4_truncate_failed_write(inode);
1602
			/*
1603
			 * If truncate failed early the inode might
1604 1605 1606 1607 1608 1609 1610
			 * still be on the orphan list; we need to
			 * make sure the inode is removed from the
			 * orphan list in that case.
			 */
			if (inode->i_nlink)
				ext4_orphan_del(NULL, inode);
		}
N
Nick Piggin 已提交
1611 1612
	}

1613
	if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
1614
		goto retry;
1615
out:
1616 1617 1618
	return ret;
}

N
Nick Piggin 已提交
1619 1620
/* For write_end() in data=journal mode */
static int write_end_fn(handle_t *handle, struct buffer_head *bh)
1621 1622 1623 1624
{
	if (!buffer_mapped(bh) || buffer_freed(bh))
		return 0;
	set_buffer_uptodate(bh);
1625
	return ext4_handle_dirty_metadata(handle, NULL, bh);
1626 1627
}

1628
static int ext4_generic_write_end(struct file *file,
1629 1630 1631
				  struct address_space *mapping,
				  loff_t pos, unsigned len, unsigned copied,
				  struct page *page, void *fsdata)
1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673
{
	int i_size_changed = 0;
	struct inode *inode = mapping->host;
	handle_t *handle = ext4_journal_current_handle();

	copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);

	/*
	 * No need to use i_size_read() here, the i_size
	 * cannot change under us because we hold i_mutex.
	 *
	 * But it's important to update i_size while still holding page lock:
	 * page writeout could otherwise come in and zero beyond i_size.
	 */
	if (pos + copied > inode->i_size) {
		i_size_write(inode, pos + copied);
		i_size_changed = 1;
	}

	if (pos + copied >  EXT4_I(inode)->i_disksize) {
		/* We need to mark inode dirty even if
		 * new_i_size is less that inode->i_size
		 * bu greater than i_disksize.(hint delalloc)
		 */
		ext4_update_i_disksize(inode, (pos + copied));
		i_size_changed = 1;
	}
	unlock_page(page);
	page_cache_release(page);

	/*
	 * Don't mark the inode dirty under page lock. First, it unnecessarily
	 * makes the holding time of page lock longer. Second, it forces lock
	 * ordering of page lock and transaction start for journaling
	 * filesystems.
	 */
	if (i_size_changed)
		ext4_mark_inode_dirty(handle, inode);

	return copied;
}

1674 1675 1676 1677
/*
 * We need to pick up the new inode size which generic_commit_write gave us
 * `file' can be NULL - eg, when called from page_symlink().
 *
1678
 * ext4 never places buffers on inode->i_mapping->private_list.  metadata
1679 1680
 * buffers are managed internally.
 */
N
Nick Piggin 已提交
1681
static int ext4_ordered_write_end(struct file *file,
1682 1683 1684
				  struct address_space *mapping,
				  loff_t pos, unsigned len, unsigned copied,
				  struct page *page, void *fsdata)
1685
{
1686
	handle_t *handle = ext4_journal_current_handle();
1687
	struct inode *inode = mapping->host;
1688 1689
	int ret = 0, ret2;

1690
	trace_ext4_ordered_write_end(inode, pos, len, copied);
1691
	ret = ext4_jbd2_file_inode(handle, inode);
1692 1693

	if (ret == 0) {
1694
		ret2 = ext4_generic_write_end(file, mapping, pos, len, copied,
N
Nick Piggin 已提交
1695
							page, fsdata);
1696
		copied = ret2;
1697
		if (pos + len > inode->i_size && ext4_can_truncate(inode))
1698 1699 1700 1701 1702
			/* if we have allocated more blocks and copied
			 * less. We will have blocks allocated outside
			 * inode->i_size. So truncate them
			 */
			ext4_orphan_add(handle, inode);
1703 1704
		if (ret2 < 0)
			ret = ret2;
1705
	}
1706
	ret2 = ext4_journal_stop(handle);
1707 1708
	if (!ret)
		ret = ret2;
N
Nick Piggin 已提交
1709

1710
	if (pos + len > inode->i_size) {
1711
		ext4_truncate_failed_write(inode);
1712
		/*
1713
		 * If truncate failed early the inode might still be
1714 1715 1716 1717 1718 1719 1720 1721
		 * on the orphan list; we need to make sure the inode
		 * is removed from the orphan list in that case.
		 */
		if (inode->i_nlink)
			ext4_orphan_del(NULL, inode);
	}


N
Nick Piggin 已提交
1722
	return ret ? ret : copied;
1723 1724
}

N
Nick Piggin 已提交
1725
static int ext4_writeback_write_end(struct file *file,
1726 1727 1728
				    struct address_space *mapping,
				    loff_t pos, unsigned len, unsigned copied,
				    struct page *page, void *fsdata)
1729
{
1730
	handle_t *handle = ext4_journal_current_handle();
1731
	struct inode *inode = mapping->host;
1732 1733
	int ret = 0, ret2;

1734
	trace_ext4_writeback_write_end(inode, pos, len, copied);
1735
	ret2 = ext4_generic_write_end(file, mapping, pos, len, copied,
N
Nick Piggin 已提交
1736
							page, fsdata);
1737
	copied = ret2;
1738
	if (pos + len > inode->i_size && ext4_can_truncate(inode))
1739 1740 1741 1742 1743 1744
		/* if we have allocated more blocks and copied
		 * less. We will have blocks allocated outside
		 * inode->i_size. So truncate them
		 */
		ext4_orphan_add(handle, inode);

1745 1746
	if (ret2 < 0)
		ret = ret2;
1747

1748
	ret2 = ext4_journal_stop(handle);
1749 1750
	if (!ret)
		ret = ret2;
N
Nick Piggin 已提交
1751

1752
	if (pos + len > inode->i_size) {
1753
		ext4_truncate_failed_write(inode);
1754
		/*
1755
		 * If truncate failed early the inode might still be
1756 1757 1758 1759 1760 1761 1762
		 * on the orphan list; we need to make sure the inode
		 * is removed from the orphan list in that case.
		 */
		if (inode->i_nlink)
			ext4_orphan_del(NULL, inode);
	}

N
Nick Piggin 已提交
1763
	return ret ? ret : copied;
1764 1765
}

N
Nick Piggin 已提交
1766
static int ext4_journalled_write_end(struct file *file,
1767 1768 1769
				     struct address_space *mapping,
				     loff_t pos, unsigned len, unsigned copied,
				     struct page *page, void *fsdata)
1770
{
1771
	handle_t *handle = ext4_journal_current_handle();
N
Nick Piggin 已提交
1772
	struct inode *inode = mapping->host;
1773 1774
	int ret = 0, ret2;
	int partial = 0;
N
Nick Piggin 已提交
1775
	unsigned from, to;
1776
	loff_t new_i_size;
1777

1778
	trace_ext4_journalled_write_end(inode, pos, len, copied);
N
Nick Piggin 已提交
1779 1780 1781 1782 1783 1784 1785 1786
	from = pos & (PAGE_CACHE_SIZE - 1);
	to = from + len;

	if (copied < len) {
		if (!PageUptodate(page))
			copied = 0;
		page_zero_new_buffers(page, from+copied, to);
	}
1787 1788

	ret = walk_page_buffers(handle, page_buffers(page), from,
N
Nick Piggin 已提交
1789
				to, &partial, write_end_fn);
1790 1791
	if (!partial)
		SetPageUptodate(page);
1792 1793
	new_i_size = pos + copied;
	if (new_i_size > inode->i_size)
N
Nick Piggin 已提交
1794
		i_size_write(inode, pos+copied);
1795
	ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1796 1797
	if (new_i_size > EXT4_I(inode)->i_disksize) {
		ext4_update_i_disksize(inode, new_i_size);
1798
		ret2 = ext4_mark_inode_dirty(handle, inode);
1799 1800 1801
		if (!ret)
			ret = ret2;
	}
N
Nick Piggin 已提交
1802

1803
	unlock_page(page);
1804
	page_cache_release(page);
1805
	if (pos + len > inode->i_size && ext4_can_truncate(inode))
1806 1807 1808 1809 1810 1811
		/* if we have allocated more blocks and copied
		 * less. We will have blocks allocated outside
		 * inode->i_size. So truncate them
		 */
		ext4_orphan_add(handle, inode);

1812
	ret2 = ext4_journal_stop(handle);
1813 1814
	if (!ret)
		ret = ret2;
1815
	if (pos + len > inode->i_size) {
1816
		ext4_truncate_failed_write(inode);
1817
		/*
1818
		 * If truncate failed early the inode might still be
1819 1820 1821 1822 1823 1824
		 * on the orphan list; we need to make sure the inode
		 * is removed from the orphan list in that case.
		 */
		if (inode->i_nlink)
			ext4_orphan_del(NULL, inode);
	}
N
Nick Piggin 已提交
1825 1826

	return ret ? ret : copied;
1827
}
1828

1829 1830 1831
/*
 * Reserve a single block located at lblock
 */
1832
static int ext4_da_reserve_space(struct inode *inode, ext4_lblk_t lblock)
1833
{
A
Aneesh Kumar K.V 已提交
1834
	int retries = 0;
1835
	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1836
	struct ext4_inode_info *ei = EXT4_I(inode);
1837
	unsigned long md_needed;
1838
	int ret;
1839 1840 1841 1842 1843 1844

	/*
	 * recalculate the amount of metadata blocks to reserve
	 * in order to allocate nrblocks
	 * worse case is one extent per block
	 */
A
Aneesh Kumar K.V 已提交
1845
repeat:
1846
	spin_lock(&ei->i_block_reservation_lock);
1847
	md_needed = ext4_calc_metadata_amount(inode, lblock);
1848
	trace_ext4_da_reserve_space(inode, md_needed);
1849
	spin_unlock(&ei->i_block_reservation_lock);
1850

1851
	/*
1852 1853 1854
	 * We will charge metadata quota at writeout time; this saves
	 * us from metadata over-estimation, though we may go over by
	 * a small amount in the end.  Here we just reserve for data.
1855
	 */
1856
	ret = dquot_reserve_block(inode, 1);
1857 1858
	if (ret)
		return ret;
1859 1860 1861 1862
	/*
	 * We do still charge estimated metadata to the sb though;
	 * we cannot afford to run out of free blocks.
	 */
1863
	if (ext4_claim_free_blocks(sbi, md_needed + 1, 0)) {
1864
		dquot_release_reservation_block(inode, 1);
A
Aneesh Kumar K.V 已提交
1865 1866 1867 1868
		if (ext4_should_retry_alloc(inode->i_sb, &retries)) {
			yield();
			goto repeat;
		}
1869 1870
		return -ENOSPC;
	}
1871
	spin_lock(&ei->i_block_reservation_lock);
1872
	ei->i_reserved_data_blocks++;
1873 1874
	ei->i_reserved_meta_blocks += md_needed;
	spin_unlock(&ei->i_block_reservation_lock);
1875

1876 1877 1878
	return 0;       /* success */
}

1879
static void ext4_da_release_space(struct inode *inode, int to_free)
1880 1881
{
	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1882
	struct ext4_inode_info *ei = EXT4_I(inode);
1883

1884 1885 1886
	if (!to_free)
		return;		/* Nothing to release, exit */

1887
	spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1888

L
Li Zefan 已提交
1889
	trace_ext4_da_release_space(inode, to_free);
1890
	if (unlikely(to_free > ei->i_reserved_data_blocks)) {
1891
		/*
1892 1893 1894 1895
		 * if there aren't enough reserved blocks, then the
		 * counter is messed up somewhere.  Since this
		 * function is called from invalidate page, it's
		 * harmless to return without any action.
1896
		 */
1897 1898 1899 1900 1901 1902
		ext4_msg(inode->i_sb, KERN_NOTICE, "ext4_da_release_space: "
			 "ino %lu, to_free %d with only %d reserved "
			 "data blocks\n", inode->i_ino, to_free,
			 ei->i_reserved_data_blocks);
		WARN_ON(1);
		to_free = ei->i_reserved_data_blocks;
1903
	}
1904
	ei->i_reserved_data_blocks -= to_free;
1905

1906 1907 1908 1909 1910 1911
	if (ei->i_reserved_data_blocks == 0) {
		/*
		 * We can release all of the reserved metadata blocks
		 * only when we have written all of the delayed
		 * allocation blocks.
		 */
1912 1913
		percpu_counter_sub(&sbi->s_dirtyblocks_counter,
				   ei->i_reserved_meta_blocks);
1914
		ei->i_reserved_meta_blocks = 0;
1915
		ei->i_da_metadata_calc_len = 0;
1916
	}
1917

1918
	/* update fs dirty data blocks counter */
1919
	percpu_counter_sub(&sbi->s_dirtyblocks_counter, to_free);
1920 1921

	spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1922

1923
	dquot_release_reservation_block(inode, to_free);
1924 1925 1926
}

static void ext4_da_page_release_reservation(struct page *page,
1927
					     unsigned long offset)
1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943
{
	int to_release = 0;
	struct buffer_head *head, *bh;
	unsigned int curr_off = 0;

	head = page_buffers(page);
	bh = head;
	do {
		unsigned int next_off = curr_off + bh->b_size;

		if ((offset <= curr_off) && (buffer_delay(bh))) {
			to_release++;
			clear_buffer_delay(bh);
		}
		curr_off = next_off;
	} while ((bh = bh->b_this_page) != head);
1944
	ext4_da_release_space(page->mapping->host, to_release);
1945
}
1946

1947 1948 1949 1950 1951 1952
/*
 * Delayed allocation stuff
 */

/*
 * mpage_da_submit_io - walks through extent of pages and try to write
1953
 * them with writepage() call back
1954 1955 1956 1957 1958 1959 1960 1961 1962 1963
 *
 * @mpd->inode: inode
 * @mpd->first_page: first page of the extent
 * @mpd->next_page: page after the last page of the extent
 *
 * By the time mpage_da_submit_io() is called we expect all blocks
 * to be allocated. this may be wrong if allocation failed.
 *
 * As pages are already locked by write_cache_pages(), we can't use it
 */
1964 1965
static int mpage_da_submit_io(struct mpage_da_data *mpd,
			      struct ext4_map_blocks *map)
1966
{
1967 1968 1969 1970 1971
	struct pagevec pvec;
	unsigned long index, end;
	int ret = 0, err, nr_pages, i;
	struct inode *inode = mpd->inode;
	struct address_space *mapping = inode->i_mapping;
1972
	loff_t size = i_size_read(inode);
1973 1974
	unsigned int len, block_start;
	struct buffer_head *bh, *page_bufs = NULL;
1975
	int journal_data = ext4_should_journal_data(inode);
1976
	sector_t pblock = 0, cur_logical = 0;
1977
	struct ext4_io_submit io_submit;
1978 1979

	BUG_ON(mpd->next_page <= mpd->first_page);
1980
	memset(&io_submit, 0, sizeof(io_submit));
1981 1982 1983
	/*
	 * We need to start from the first_page to the next_page - 1
	 * to make sure we also write the mapped dirty buffer_heads.
1984
	 * If we look at mpd->b_blocknr we would only be looking
1985 1986
	 * at the currently mapped buffer_heads.
	 */
1987 1988 1989
	index = mpd->first_page;
	end = mpd->next_page - 1;

1990
	pagevec_init(&pvec, 0);
1991
	while (index <= end) {
1992
		nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1993 1994 1995
		if (nr_pages == 0)
			break;
		for (i = 0; i < nr_pages; i++) {
1996
			int commit_write = 0, skip_page = 0;
1997 1998
			struct page *page = pvec.pages[i];

1999 2000 2001
			index = page->index;
			if (index > end)
				break;
2002 2003 2004 2005 2006

			if (index == size >> PAGE_CACHE_SHIFT)
				len = size & ~PAGE_CACHE_MASK;
			else
				len = PAGE_CACHE_SIZE;
2007 2008 2009 2010 2011 2012
			if (map) {
				cur_logical = index << (PAGE_CACHE_SHIFT -
							inode->i_blkbits);
				pblock = map->m_pblk + (cur_logical -
							map->m_lblk);
			}
2013 2014 2015 2016 2017
			index++;

			BUG_ON(!PageLocked(page));
			BUG_ON(PageWriteback(page));

2018
			/*
2019 2020
			 * If the page does not have buffers (for
			 * whatever reason), try to create them using
2021
			 * __block_write_begin.  If this fails,
2022
			 * skip the page and move on.
2023
			 */
2024
			if (!page_has_buffers(page)) {
2025
				if (__block_write_begin(page, 0, len,
2026
						noalloc_get_block_write)) {
2027
				skip_page:
2028 2029 2030 2031 2032
					unlock_page(page);
					continue;
				}
				commit_write = 1;
			}
2033

2034 2035
			bh = page_bufs = page_buffers(page);
			block_start = 0;
2036
			do {
2037
				if (!bh)
2038
					goto skip_page;
2039 2040 2041
				if (map && (cur_logical >= map->m_lblk) &&
				    (cur_logical <= (map->m_lblk +
						     (map->m_len - 1)))) {
2042 2043 2044 2045
					if (buffer_delay(bh)) {
						clear_buffer_delay(bh);
						bh->b_blocknr = pblock;
					}
2046 2047 2048 2049 2050 2051 2052
					if (buffer_unwritten(bh) ||
					    buffer_mapped(bh))
						BUG_ON(bh->b_blocknr != pblock);
					if (map->m_flags & EXT4_MAP_UNINIT)
						set_buffer_uninit(bh);
					clear_buffer_unwritten(bh);
				}
2053

2054
				/* skip page if block allocation undone */
2055
				if (buffer_delay(bh) || buffer_unwritten(bh))
2056
					skip_page = 1;
2057 2058
				bh = bh->b_this_page;
				block_start += bh->b_size;
2059 2060
				cur_logical++;
				pblock++;
2061 2062
			} while (bh != page_bufs);

2063 2064
			if (skip_page)
				goto skip_page;
2065 2066 2067 2068 2069

			if (commit_write)
				/* mark the buffer_heads as dirty & uptodate */
				block_commit_write(page, 0, len);

2070
			clear_page_dirty_for_io(page);
2071 2072 2073 2074 2075 2076
			/*
			 * Delalloc doesn't support data journalling,
			 * but eventually maybe we'll lift this
			 * restriction.
			 */
			if (unlikely(journal_data && PageChecked(page)))
2077
				err = __ext4_journalled_writepage(page, len);
2078
			else if (test_opt(inode->i_sb, MBLK_IO_SUBMIT))
2079 2080
				err = ext4_bio_write_page(&io_submit, page,
							  len, mpd->wbc);
2081 2082 2083
			else
				err = block_write_full_page(page,
					noalloc_get_block_write, mpd->wbc);
2084 2085

			if (!err)
2086
				mpd->pages_written++;
2087 2088 2089 2090 2091 2092 2093 2094 2095
			/*
			 * In error case, we have to continue because
			 * remaining pages are still locked
			 */
			if (ret == 0)
				ret = err;
		}
		pagevec_release(&pvec);
	}
2096
	ext4_io_submit(&io_submit);
2097 2098 2099
	return ret;
}

2100
static void ext4_da_block_invalidatepages(struct mpage_da_data *mpd)
2101 2102 2103 2104 2105 2106 2107
{
	int nr_pages, i;
	pgoff_t index, end;
	struct pagevec pvec;
	struct inode *inode = mpd->inode;
	struct address_space *mapping = inode->i_mapping;

2108 2109
	index = mpd->first_page;
	end   = mpd->next_page - 1;
2110 2111 2112 2113 2114 2115
	while (index <= end) {
		nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
		if (nr_pages == 0)
			break;
		for (i = 0; i < nr_pages; i++) {
			struct page *page = pvec.pages[i];
2116
			if (page->index > end)
2117 2118 2119 2120 2121 2122 2123
				break;
			BUG_ON(!PageLocked(page));
			BUG_ON(PageWriteback(page));
			block_invalidatepage(page, 0);
			ClearPageUptodate(page);
			unlock_page(page);
		}
2124 2125
		index = pvec.pages[nr_pages - 1]->index + 1;
		pagevec_release(&pvec);
2126 2127 2128 2129
	}
	return;
}

2130 2131 2132
static void ext4_print_free_blocks(struct inode *inode)
{
	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144
	printk(KERN_CRIT "Total free blocks count %lld\n",
	       ext4_count_free_blocks(inode->i_sb));
	printk(KERN_CRIT "Free/Dirty block details\n");
	printk(KERN_CRIT "free_blocks=%lld\n",
	       (long long) percpu_counter_sum(&sbi->s_freeblocks_counter));
	printk(KERN_CRIT "dirty_blocks=%lld\n",
	       (long long) percpu_counter_sum(&sbi->s_dirtyblocks_counter));
	printk(KERN_CRIT "Block reservation details\n");
	printk(KERN_CRIT "i_reserved_data_blocks=%u\n",
	       EXT4_I(inode)->i_reserved_data_blocks);
	printk(KERN_CRIT "i_reserved_meta_blocks=%u\n",
	       EXT4_I(inode)->i_reserved_meta_blocks);
2145 2146 2147
	return;
}

2148
/*
2149 2150
 * mpage_da_map_and_submit - go through given space, map them
 *       if necessary, and then submit them for I/O
2151
 *
2152
 * @mpd - bh describing space
2153 2154 2155 2156
 *
 * The function skips space we know is already mapped to disk blocks.
 *
 */
2157
static void mpage_da_map_and_submit(struct mpage_da_data *mpd)
2158
{
2159
	int err, blks, get_blocks_flags;
2160
	struct ext4_map_blocks map, *mapp = NULL;
2161 2162 2163 2164
	sector_t next = mpd->b_blocknr;
	unsigned max_blocks = mpd->b_size >> mpd->inode->i_blkbits;
	loff_t disksize = EXT4_I(mpd->inode)->i_disksize;
	handle_t *handle = NULL;
2165 2166

	/*
2167 2168
	 * If the blocks are mapped already, or we couldn't accumulate
	 * any blocks, then proceed immediately to the submission stage.
2169
	 */
2170 2171 2172 2173 2174
	if ((mpd->b_size == 0) ||
	    ((mpd->b_state  & (1 << BH_Mapped)) &&
	     !(mpd->b_state & (1 << BH_Delay)) &&
	     !(mpd->b_state & (1 << BH_Unwritten))))
		goto submit_io;
2175 2176 2177 2178

	handle = ext4_journal_current_handle();
	BUG_ON(!handle);

2179
	/*
2180
	 * Call ext4_map_blocks() to allocate any delayed allocation
2181 2182 2183 2184 2185 2186 2187 2188
	 * blocks, or to convert an uninitialized extent to be
	 * initialized (in the case where we have written into
	 * one or more preallocated blocks).
	 *
	 * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE to
	 * indicate that we are on the delayed allocation path.  This
	 * affects functions in many different parts of the allocation
	 * call path.  This flag exists primarily because we don't
2189
	 * want to change *many* call functions, so ext4_map_blocks()
2190
	 * will set the EXT4_STATE_DELALLOC_RESERVED flag once the
2191 2192 2193 2194 2195
	 * inode's allocation semaphore is taken.
	 *
	 * If the blocks in questions were delalloc blocks, set
	 * EXT4_GET_BLOCKS_DELALLOC_RESERVE so the delalloc accounting
	 * variables are updated after the blocks have been allocated.
2196
	 */
2197 2198
	map.m_lblk = next;
	map.m_len = max_blocks;
2199
	get_blocks_flags = EXT4_GET_BLOCKS_CREATE;
2200 2201
	if (ext4_should_dioread_nolock(mpd->inode))
		get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT;
2202
	if (mpd->b_state & (1 << BH_Delay))
2203 2204
		get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE;

2205
	blks = ext4_map_blocks(handle, mpd->inode, &map, get_blocks_flags);
2206
	if (blks < 0) {
2207 2208
		struct super_block *sb = mpd->inode->i_sb;

2209
		err = blks;
2210
		/*
2211
		 * If get block returns EAGAIN or ENOSPC and there
2212 2213
		 * appears to be free blocks we will just let
		 * mpage_da_submit_io() unlock all of the pages.
2214 2215
		 */
		if (err == -EAGAIN)
2216
			goto submit_io;
2217 2218

		if (err == -ENOSPC &&
2219
		    ext4_count_free_blocks(sb)) {
2220
			mpd->retval = err;
2221
			goto submit_io;
2222 2223
		}

2224
		/*
2225 2226 2227 2228 2229
		 * get block failure will cause us to loop in
		 * writepages, because a_ops->writepage won't be able
		 * to make progress. The page will be redirtied by
		 * writepage and writepages will again try to write
		 * the same.
2230
		 */
2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241
		if (!(EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED)) {
			ext4_msg(sb, KERN_CRIT,
				 "delayed block allocation failed for inode %lu "
				 "at logical offset %llu with max blocks %zd "
				 "with error %d", mpd->inode->i_ino,
				 (unsigned long long) next,
				 mpd->b_size >> mpd->inode->i_blkbits, err);
			ext4_msg(sb, KERN_CRIT,
				"This should not happen!! Data will be lost\n");
			if (err == -ENOSPC)
				ext4_print_free_blocks(mpd->inode);
A
Aneesh Kumar K.V 已提交
2242
		}
2243
		/* invalidate all the pages */
2244
		ext4_da_block_invalidatepages(mpd);
2245 2246 2247

		/* Mark this page range as having been completed */
		mpd->io_done = 1;
2248
		return;
2249
	}
2250 2251
	BUG_ON(blks == 0);

2252
	mapp = &map;
2253 2254 2255
	if (map.m_flags & EXT4_MAP_NEW) {
		struct block_device *bdev = mpd->inode->i_sb->s_bdev;
		int i;
2256

2257 2258 2259
		for (i = 0; i < map.m_len; i++)
			unmap_underlying_metadata(bdev, map.m_pblk + i);
	}
2260

2261 2262 2263
	if (ext4_should_order_data(mpd->inode)) {
		err = ext4_jbd2_file_inode(handle, mpd->inode);
		if (err)
2264 2265
			/* This only happens if the journal is aborted */
			return;
2266 2267 2268
	}

	/*
2269
	 * Update on-disk size along with block allocation.
2270 2271 2272 2273 2274 2275
	 */
	disksize = ((loff_t) next + blks) << mpd->inode->i_blkbits;
	if (disksize > i_size_read(mpd->inode))
		disksize = i_size_read(mpd->inode);
	if (disksize > EXT4_I(mpd->inode)->i_disksize) {
		ext4_update_i_disksize(mpd->inode, disksize);
2276 2277 2278 2279 2280
		err = ext4_mark_inode_dirty(handle, mpd->inode);
		if (err)
			ext4_error(mpd->inode->i_sb,
				   "Failed to mark inode %lu dirty",
				   mpd->inode->i_ino);
2281 2282
	}

2283
submit_io:
2284
	mpage_da_submit_io(mpd, mapp);
2285
	mpd->io_done = 1;
2286 2287
}

2288 2289
#define BH_FLAGS ((1 << BH_Uptodate) | (1 << BH_Mapped) | \
		(1 << BH_Delay) | (1 << BH_Unwritten))
2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300

/*
 * mpage_add_bh_to_extent - try to add one more block to extent of blocks
 *
 * @mpd->lbh - extent of blocks
 * @logical - logical number of the block in the file
 * @bh - bh of the block (used to access block's state)
 *
 * the function is used to collect contig. blocks in same state
 */
static void mpage_add_bh_to_extent(struct mpage_da_data *mpd,
2301 2302
				   sector_t logical, size_t b_size,
				   unsigned long b_state)
2303 2304
{
	sector_t next;
2305
	int nrblocks = mpd->b_size >> mpd->inode->i_blkbits;
2306

2307 2308 2309 2310
	/*
	 * XXX Don't go larger than mballoc is willing to allocate
	 * This is a stopgap solution.  We eventually need to fold
	 * mpage_da_submit_io() into this function and then call
2311
	 * ext4_map_blocks() multiple times in a loop
2312 2313 2314 2315
	 */
	if (nrblocks >= 8*1024*1024/mpd->inode->i_sb->s_blocksize)
		goto flush_it;

2316
	/* check if thereserved journal credits might overflow */
2317
	if (!(ext4_test_inode_flag(mpd->inode, EXT4_INODE_EXTENTS))) {
2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337
		if (nrblocks >= EXT4_MAX_TRANS_DATA) {
			/*
			 * With non-extent format we are limited by the journal
			 * credit available.  Total credit needed to insert
			 * nrblocks contiguous blocks is dependent on the
			 * nrblocks.  So limit nrblocks.
			 */
			goto flush_it;
		} else if ((nrblocks + (b_size >> mpd->inode->i_blkbits)) >
				EXT4_MAX_TRANS_DATA) {
			/*
			 * Adding the new buffer_head would make it cross the
			 * allowed limit for which we have journal credit
			 * reserved. So limit the new bh->b_size
			 */
			b_size = (EXT4_MAX_TRANS_DATA - nrblocks) <<
						mpd->inode->i_blkbits;
			/* we will do mpage_da_submit_io in the next loop */
		}
	}
2338 2339 2340
	/*
	 * First block in the extent
	 */
2341 2342 2343 2344
	if (mpd->b_size == 0) {
		mpd->b_blocknr = logical;
		mpd->b_size = b_size;
		mpd->b_state = b_state & BH_FLAGS;
2345 2346 2347
		return;
	}

2348
	next = mpd->b_blocknr + nrblocks;
2349 2350 2351
	/*
	 * Can we merge the block to our big extent?
	 */
2352 2353
	if (logical == next && (b_state & BH_FLAGS) == mpd->b_state) {
		mpd->b_size += b_size;
2354 2355 2356
		return;
	}

2357
flush_it:
2358 2359 2360 2361
	/*
	 * We couldn't merge the block to our extent, so we
	 * need to flush current  extent and start new one
	 */
2362
	mpage_da_map_and_submit(mpd);
2363
	return;
2364 2365
}

2366
static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh)
2367
{
2368
	return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh);
2369 2370
}

2371
/*
2372 2373 2374
 * This is a special get_blocks_t callback which is used by
 * ext4_da_write_begin().  It will either return mapped block or
 * reserve space for a single block.
2375 2376 2377 2378 2379 2380 2381
 *
 * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
 * We also have b_blocknr = -1 and b_bdev initialized properly
 *
 * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
 * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
 * initialized properly.
2382 2383
 */
static int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
2384
				  struct buffer_head *bh, int create)
2385
{
2386
	struct ext4_map_blocks map;
2387
	int ret = 0;
2388 2389 2390 2391
	sector_t invalid_block = ~((sector_t) 0xffff);

	if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
		invalid_block = ~0;
2392 2393

	BUG_ON(create == 0);
2394 2395 2396 2397
	BUG_ON(bh->b_size != inode->i_sb->s_blocksize);

	map.m_lblk = iblock;
	map.m_len = 1;
2398 2399 2400 2401 2402 2403

	/*
	 * first, we need to know whether the block is allocated already
	 * preallocated blocks are unmapped but should treated
	 * the same as allocated blocks.
	 */
2404 2405 2406 2407 2408 2409
	ret = ext4_map_blocks(NULL, inode, &map, 0);
	if (ret < 0)
		return ret;
	if (ret == 0) {
		if (buffer_delay(bh))
			return 0; /* Not sure this could or should happen */
2410
		/*
C
Christoph Hellwig 已提交
2411
		 * XXX: __block_write_begin() unmaps passed block, is it OK?
2412
		 */
2413
		ret = ext4_da_reserve_space(inode, iblock);
2414 2415 2416 2417
		if (ret)
			/* not enough space to reserve */
			return ret;

2418 2419 2420 2421
		map_bh(bh, inode->i_sb, invalid_block);
		set_buffer_new(bh);
		set_buffer_delay(bh);
		return 0;
2422 2423
	}

2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434
	map_bh(bh, inode->i_sb, map.m_pblk);
	bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;

	if (buffer_unwritten(bh)) {
		/* A delayed write to unwritten bh should be marked
		 * new and mapped.  Mapped ensures that we don't do
		 * get_block multiple times when we write to the same
		 * offset and new ensures that we do proper zero out
		 * for partial write.
		 */
		set_buffer_new(bh);
2435
		set_buffer_mapped(bh);
2436 2437
	}
	return 0;
2438
}
2439

2440 2441 2442
/*
 * This function is used as a standard get_block_t calback function
 * when there is no desire to allocate any blocks.  It is used as a
C
Christoph Hellwig 已提交
2443
 * callback function for block_write_begin() and block_write_full_page().
2444
 * These functions should only try to map a single block at a time.
2445 2446 2447 2448 2449
 *
 * Since this function doesn't do block allocations even if the caller
 * requests it by passing in create=1, it is critically important that
 * any caller checks to make sure that any buffer heads are returned
 * by this function are either all already mapped or marked for
2450 2451 2452
 * delayed allocation before calling  block_write_full_page().  Otherwise,
 * b_blocknr could be left unitialized, and the page write functions will
 * be taken by surprise.
2453 2454
 */
static int noalloc_get_block_write(struct inode *inode, sector_t iblock,
2455 2456
				   struct buffer_head *bh_result, int create)
{
2457
	BUG_ON(bh_result->b_size != inode->i_sb->s_blocksize);
2458
	return _ext4_get_block(inode, iblock, bh_result, 0);
2459 2460
}

2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482
static int bget_one(handle_t *handle, struct buffer_head *bh)
{
	get_bh(bh);
	return 0;
}

static int bput_one(handle_t *handle, struct buffer_head *bh)
{
	put_bh(bh);
	return 0;
}

static int __ext4_journalled_writepage(struct page *page,
				       unsigned int len)
{
	struct address_space *mapping = page->mapping;
	struct inode *inode = mapping->host;
	struct buffer_head *page_bufs;
	handle_t *handle = NULL;
	int ret = 0;
	int err;

2483
	ClearPageChecked(page);
2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508
	page_bufs = page_buffers(page);
	BUG_ON(!page_bufs);
	walk_page_buffers(handle, page_bufs, 0, len, NULL, bget_one);
	/* As soon as we unlock the page, it can go away, but we have
	 * references to buffers so we are safe */
	unlock_page(page);

	handle = ext4_journal_start(inode, ext4_writepage_trans_blocks(inode));
	if (IS_ERR(handle)) {
		ret = PTR_ERR(handle);
		goto out;
	}

	ret = walk_page_buffers(handle, page_bufs, 0, len, NULL,
				do_journal_get_write_access);

	err = walk_page_buffers(handle, page_bufs, 0, len, NULL,
				write_end_fn);
	if (ret == 0)
		ret = err;
	err = ext4_journal_stop(handle);
	if (!ret)
		ret = err;

	walk_page_buffers(handle, page_bufs, 0, len, NULL, bput_one);
2509
	ext4_set_inode_state(inode, EXT4_STATE_JDATA);
2510 2511 2512 2513
out:
	return ret;
}

2514 2515 2516
static int ext4_set_bh_endio(struct buffer_head *bh, struct inode *inode);
static void ext4_end_io_buffer_write(struct buffer_head *bh, int uptodate);

2517
/*
2518 2519 2520 2521
 * Note that we don't need to start a transaction unless we're journaling data
 * because we should have holes filled from ext4_page_mkwrite(). We even don't
 * need to file the inode to the transaction's list in ordered mode because if
 * we are writing back data added by write(), the inode is already there and if
L
Lucas De Marchi 已提交
2522
 * we are writing back data modified via mmap(), no one guarantees in which
2523 2524 2525 2526
 * transaction the data will hit the disk. In case we are journaling data, we
 * cannot start transaction directly because transaction start ranks above page
 * lock so we have to do some magic.
 *
2527 2528 2529 2530 2531
 * This function can get called via...
 *   - ext4_da_writepages after taking page lock (have journal handle)
 *   - journal_submit_inode_data_buffers (no journal handle)
 *   - shrink_page_list via pdflush (no journal handle)
 *   - grab_page_cache when doing write_begin (have journal handle)
2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556
 *
 * We don't do any block allocation in this function. If we have page with
 * multiple blocks we need to write those buffer_heads that are mapped. This
 * is important for mmaped based write. So if we do with blocksize 1K
 * truncate(f, 1024);
 * a = mmap(f, 0, 4096);
 * a[0] = 'a';
 * truncate(f, 4096);
 * we have in the page first buffer_head mapped via page_mkwrite call back
 * but other bufer_heads would be unmapped but dirty(dirty done via the
 * do_wp_page). So writepage should write the first block. If we modify
 * the mmap area beyond 1024 we will again get a page_fault and the
 * page_mkwrite callback will do the block allocation and mark the
 * buffer_heads mapped.
 *
 * We redirty the page if we have any buffer_heads that is either delay or
 * unwritten in the page.
 *
 * We can get recursively called as show below.
 *
 *	ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
 *		ext4_writepage()
 *
 * But since we don't do any block allocation we should not deadlock.
 * Page also have the dirty flag cleared so we don't get recurive page_lock.
2557
 */
2558
static int ext4_writepage(struct page *page,
2559
			  struct writeback_control *wbc)
2560
{
T
Theodore Ts'o 已提交
2561
	int ret = 0, commit_write = 0;
2562
	loff_t size;
2563
	unsigned int len;
2564
	struct buffer_head *page_bufs = NULL;
2565 2566
	struct inode *inode = page->mapping->host;

L
Lukas Czerner 已提交
2567
	trace_ext4_writepage(page);
2568 2569 2570 2571 2572
	size = i_size_read(inode);
	if (page->index == size >> PAGE_CACHE_SHIFT)
		len = size & ~PAGE_CACHE_MASK;
	else
		len = PAGE_CACHE_SIZE;
2573

T
Theodore Ts'o 已提交
2574 2575
	/*
	 * If the page does not have buffers (for whatever reason),
2576
	 * try to create them using __block_write_begin.  If this
T
Theodore Ts'o 已提交
2577 2578
	 * fails, redirty the page and move on.
	 */
2579
	if (!page_has_buffers(page)) {
2580
		if (__block_write_begin(page, 0, len,
T
Theodore Ts'o 已提交
2581 2582
					noalloc_get_block_write)) {
		redirty_page:
2583 2584 2585 2586
			redirty_page_for_writepage(wbc, page);
			unlock_page(page);
			return 0;
		}
T
Theodore Ts'o 已提交
2587 2588 2589 2590 2591
		commit_write = 1;
	}
	page_bufs = page_buffers(page);
	if (walk_page_buffers(NULL, page_bufs, 0, len, NULL,
			      ext4_bh_delay_or_unwritten)) {
2592
		/*
2593 2594 2595 2596
		 * We don't want to do block allocation, so redirty
		 * the page and return.  We may reach here when we do
		 * a journal commit via journal_submit_inode_data_buffers.
		 * We can also reach here via shrink_page_list
2597
		 */
T
Theodore Ts'o 已提交
2598 2599 2600
		goto redirty_page;
	}
	if (commit_write)
2601
		/* now mark the buffer_heads as dirty and uptodate */
2602
		block_commit_write(page, 0, len);
2603

2604
	if (PageChecked(page) && ext4_should_journal_data(inode))
2605 2606 2607 2608
		/*
		 * It's mmapped pagecache.  Add buffers and journal it.  There
		 * doesn't seem much point in redirtying the page here.
		 */
2609
		return __ext4_journalled_writepage(page, len);
2610

T
Theodore Ts'o 已提交
2611
	if (buffer_uninit(page_bufs)) {
2612 2613 2614 2615
		ext4_set_bh_endio(page_bufs, inode);
		ret = block_write_full_page_endio(page, noalloc_get_block_write,
					    wbc, ext4_end_io_buffer_write);
	} else
2616 2617
		ret = block_write_full_page(page, noalloc_get_block_write,
					    wbc);
2618 2619 2620 2621

	return ret;
}

2622
/*
2623
 * This is called via ext4_da_writepages() to
L
Lucas De Marchi 已提交
2624
 * calculate the total number of credits to reserve to fit
2625 2626 2627
 * a single extent allocation into a single transaction,
 * ext4_da_writpeages() will loop calling this before
 * the block allocation.
2628
 */
2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639

static int ext4_da_writepages_trans_blocks(struct inode *inode)
{
	int max_blocks = EXT4_I(inode)->i_reserved_data_blocks;

	/*
	 * With non-extent format the journal credit needed to
	 * insert nrblocks contiguous block is dependent on
	 * number of contiguous block. So we will limit
	 * number of contiguous block to a sane value
	 */
2640
	if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) &&
2641 2642 2643 2644 2645
	    (max_blocks > EXT4_MAX_TRANS_DATA))
		max_blocks = EXT4_MAX_TRANS_DATA;

	return ext4_chunk_trans_blocks(inode, max_blocks);
}
2646

2647 2648
/*
 * write_cache_pages_da - walk the list of dirty pages of the given
2649
 * address space and accumulate pages that need writing, and call
2650 2651
 * mpage_da_map_and_submit to map a single contiguous memory region
 * and then write them.
2652 2653 2654
 */
static int write_cache_pages_da(struct address_space *mapping,
				struct writeback_control *wbc,
2655 2656
				struct mpage_da_data *mpd,
				pgoff_t *done_index)
2657
{
2658
	struct buffer_head	*bh, *head;
2659
	struct inode		*inode = mapping->host;
2660 2661 2662 2663 2664 2665
	struct pagevec		pvec;
	unsigned int		nr_pages;
	sector_t		logical;
	pgoff_t			index, end;
	long			nr_to_write = wbc->nr_to_write;
	int			i, tag, ret = 0;
2666

2667 2668 2669
	memset(mpd, 0, sizeof(struct mpage_da_data));
	mpd->wbc = wbc;
	mpd->inode = inode;
2670 2671 2672 2673
	pagevec_init(&pvec, 0);
	index = wbc->range_start >> PAGE_CACHE_SHIFT;
	end = wbc->range_end >> PAGE_CACHE_SHIFT;

2674 2675 2676 2677 2678
	if (wbc->sync_mode == WB_SYNC_ALL)
		tag = PAGECACHE_TAG_TOWRITE;
	else
		tag = PAGECACHE_TAG_DIRTY;

2679
	*done_index = index;
2680
	while (index <= end) {
2681
		nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
2682 2683
			      min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
		if (nr_pages == 0)
2684
			return 0;
2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695

		for (i = 0; i < nr_pages; i++) {
			struct page *page = pvec.pages[i];

			/*
			 * At this point, the page may be truncated or
			 * invalidated (changing page->mapping to NULL), or
			 * even swizzled back from swapper_space to tmpfs file
			 * mapping. However, page->index will not change
			 * because we have a reference on the page.
			 */
2696 2697
			if (page->index > end)
				goto out;
2698

2699 2700
			*done_index = page->index + 1;

2701 2702 2703 2704 2705 2706 2707 2708 2709 2710
			/*
			 * If we can't merge this page, and we have
			 * accumulated an contiguous region, write it
			 */
			if ((mpd->next_page != page->index) &&
			    (mpd->next_page != mpd->first_page)) {
				mpage_da_map_and_submit(mpd);
				goto ret_extent_tail;
			}

2711 2712 2713
			lock_page(page);

			/*
2714 2715 2716 2717 2718 2719
			 * If the page is no longer dirty, or its
			 * mapping no longer corresponds to inode we
			 * are writing (which means it has been
			 * truncated or invalidated), or the page is
			 * already under writeback and we are not
			 * doing a data integrity writeback, skip the page
2720
			 */
2721 2722 2723 2724
			if (!PageDirty(page) ||
			    (PageWriteback(page) &&
			     (wbc->sync_mode == WB_SYNC_NONE)) ||
			    unlikely(page->mapping != mapping)) {
2725 2726 2727 2728
				unlock_page(page);
				continue;
			}

2729
			wait_on_page_writeback(page);
2730 2731
			BUG_ON(PageWriteback(page));

2732
			if (mpd->next_page != page->index)
2733 2734 2735 2736 2737 2738
				mpd->first_page = page->index;
			mpd->next_page = page->index + 1;
			logical = (sector_t) page->index <<
				(PAGE_CACHE_SHIFT - inode->i_blkbits);

			if (!page_has_buffers(page)) {
2739 2740
				mpage_add_bh_to_extent(mpd, logical,
						       PAGE_CACHE_SIZE,
2741
						       (1 << BH_Dirty) | (1 << BH_Uptodate));
2742 2743
				if (mpd->io_done)
					goto ret_extent_tail;
2744 2745
			} else {
				/*
2746 2747
				 * Page with regular buffer heads,
				 * just add all dirty ones
2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762
				 */
				head = page_buffers(page);
				bh = head;
				do {
					BUG_ON(buffer_locked(bh));
					/*
					 * We need to try to allocate
					 * unmapped blocks in the same page.
					 * Otherwise we won't make progress
					 * with the page in ext4_writepage
					 */
					if (ext4_bh_delay_or_unwritten(NULL, bh)) {
						mpage_add_bh_to_extent(mpd, logical,
								       bh->b_size,
								       bh->b_state);
2763 2764
						if (mpd->io_done)
							goto ret_extent_tail;
2765 2766
					} else if (buffer_dirty(bh) && (buffer_mapped(bh))) {
						/*
2767 2768 2769 2770 2771 2772 2773 2774 2775
						 * mapped dirty buffer. We need
						 * to update the b_state
						 * because we look at b_state
						 * in mpage_da_map_blocks.  We
						 * don't update b_size because
						 * if we find an unmapped
						 * buffer_head later we need to
						 * use the b_state flag of that
						 * buffer_head.
2776 2777 2778 2779 2780 2781
						 */
						if (mpd->b_size == 0)
							mpd->b_state = bh->b_state & BH_FLAGS;
					}
					logical++;
				} while ((bh = bh->b_this_page) != head);
2782 2783 2784 2785 2786
			}

			if (nr_to_write > 0) {
				nr_to_write--;
				if (nr_to_write == 0 &&
2787
				    wbc->sync_mode == WB_SYNC_NONE)
2788 2789 2790 2791 2792 2793 2794 2795 2796 2797
					/*
					 * We stop writing back only if we are
					 * not doing integrity sync. In case of
					 * integrity sync we have to keep going
					 * because someone may be concurrently
					 * dirtying pages, and we might have
					 * synced a lot of newly appeared dirty
					 * pages, but have not synced all of the
					 * old dirty pages.
					 */
2798
					goto out;
2799 2800 2801 2802 2803
			}
		}
		pagevec_release(&pvec);
		cond_resched();
	}
2804 2805 2806
	return 0;
ret_extent_tail:
	ret = MPAGE_DA_EXTENT_TAIL;
2807 2808 2809
out:
	pagevec_release(&pvec);
	cond_resched();
2810 2811 2812 2813
	return ret;
}


2814
static int ext4_da_writepages(struct address_space *mapping,
2815
			      struct writeback_control *wbc)
2816
{
2817 2818
	pgoff_t	index;
	int range_whole = 0;
2819
	handle_t *handle = NULL;
2820
	struct mpage_da_data mpd;
2821
	struct inode *inode = mapping->host;
2822
	int pages_written = 0;
2823
	unsigned int max_pages;
2824
	int range_cyclic, cycled = 1, io_done = 0;
2825 2826
	int needed_blocks, ret = 0;
	long desired_nr_to_write, nr_to_writebump = 0;
2827
	loff_t range_start = wbc->range_start;
2828
	struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2829
	pgoff_t done_index = 0;
2830
	pgoff_t end;
2831

2832
	trace_ext4_da_writepages(inode, wbc);
2833

2834 2835 2836 2837 2838
	/*
	 * No pages to write? This is mainly a kludge to avoid starting
	 * a transaction for special inodes like journal inode on last iput()
	 * because that could violate lock ordering on umount
	 */
2839
	if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2840
		return 0;
2841 2842 2843 2844 2845

	/*
	 * If the filesystem has aborted, it is read-only, so return
	 * right away instead of dumping stack traces later on that
	 * will obscure the real source of the problem.  We test
2846
	 * EXT4_MF_FS_ABORTED instead of sb->s_flag's MS_RDONLY because
2847 2848 2849 2850 2851
	 * the latter could be true if the filesystem is mounted
	 * read-only, and in that case, ext4_da_writepages should
	 * *never* be called, so if that ever happens, we would want
	 * the stack trace.
	 */
2852
	if (unlikely(sbi->s_mount_flags & EXT4_MF_FS_ABORTED))
2853 2854
		return -EROFS;

2855 2856
	if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
		range_whole = 1;
2857

2858 2859
	range_cyclic = wbc->range_cyclic;
	if (wbc->range_cyclic) {
2860
		index = mapping->writeback_index;
2861 2862 2863 2864 2865
		if (index)
			cycled = 0;
		wbc->range_start = index << PAGE_CACHE_SHIFT;
		wbc->range_end  = LLONG_MAX;
		wbc->range_cyclic = 0;
2866 2867
		end = -1;
	} else {
2868
		index = wbc->range_start >> PAGE_CACHE_SHIFT;
2869 2870
		end = wbc->range_end >> PAGE_CACHE_SHIFT;
	}
2871

2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888
	/*
	 * This works around two forms of stupidity.  The first is in
	 * the writeback code, which caps the maximum number of pages
	 * written to be 1024 pages.  This is wrong on multiple
	 * levels; different architectues have a different page size,
	 * which changes the maximum amount of data which gets
	 * written.  Secondly, 4 megabytes is way too small.  XFS
	 * forces this value to be 16 megabytes by multiplying
	 * nr_to_write parameter by four, and then relies on its
	 * allocator to allocate larger extents to make them
	 * contiguous.  Unfortunately this brings us to the second
	 * stupidity, which is that ext4's mballoc code only allocates
	 * at most 2048 blocks.  So we force contiguous writes up to
	 * the number of dirty blocks in the inode, or
	 * sbi->max_writeback_mb_bump whichever is smaller.
	 */
	max_pages = sbi->s_max_writeback_mb_bump << (20 - PAGE_CACHE_SHIFT);
2889 2890 2891 2892 2893 2894
	if (!range_cyclic && range_whole) {
		if (wbc->nr_to_write == LONG_MAX)
			desired_nr_to_write = wbc->nr_to_write;
		else
			desired_nr_to_write = wbc->nr_to_write * 8;
	} else
2895 2896 2897 2898 2899 2900 2901 2902 2903 2904
		desired_nr_to_write = ext4_num_dirty_pages(inode, index,
							   max_pages);
	if (desired_nr_to_write > max_pages)
		desired_nr_to_write = max_pages;

	if (wbc->nr_to_write < desired_nr_to_write) {
		nr_to_writebump = desired_nr_to_write - wbc->nr_to_write;
		wbc->nr_to_write = desired_nr_to_write;
	}

2905
retry:
2906 2907 2908
	if (wbc->sync_mode == WB_SYNC_ALL)
		tag_pages_for_writeback(mapping, index, end);

2909
	while (!ret && wbc->nr_to_write > 0) {
2910 2911 2912 2913 2914 2915 2916 2917

		/*
		 * we  insert one extent at a time. So we need
		 * credit needed for single extent allocation.
		 * journalled mode is currently not supported
		 * by delalloc
		 */
		BUG_ON(ext4_should_journal_data(inode));
2918
		needed_blocks = ext4_da_writepages_trans_blocks(inode);
2919

2920 2921 2922 2923
		/* start a new transaction*/
		handle = ext4_journal_start(inode, needed_blocks);
		if (IS_ERR(handle)) {
			ret = PTR_ERR(handle);
2924
			ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
2925
			       "%ld pages, ino %lu; err %d", __func__,
2926
				wbc->nr_to_write, inode->i_ino, ret);
2927 2928
			goto out_writepages;
		}
2929 2930

		/*
2931
		 * Now call write_cache_pages_da() to find the next
2932
		 * contiguous region of logical blocks that need
2933
		 * blocks to be allocated by ext4 and submit them.
2934
		 */
2935
		ret = write_cache_pages_da(mapping, wbc, &mpd, &done_index);
2936
		/*
2937
		 * If we have a contiguous extent of pages and we
2938 2939 2940 2941
		 * haven't done the I/O yet, map the blocks and submit
		 * them for I/O.
		 */
		if (!mpd.io_done && mpd.next_page != mpd.first_page) {
2942
			mpage_da_map_and_submit(&mpd);
2943 2944
			ret = MPAGE_DA_EXTENT_TAIL;
		}
2945
		trace_ext4_da_write_pages(inode, &mpd);
2946
		wbc->nr_to_write -= mpd.pages_written;
2947

2948
		ext4_journal_stop(handle);
2949

2950
		if ((mpd.retval == -ENOSPC) && sbi->s_journal) {
2951 2952 2953 2954
			/* commit the transaction which would
			 * free blocks released in the transaction
			 * and try again
			 */
2955
			jbd2_journal_force_commit_nested(sbi->s_journal);
2956 2957
			ret = 0;
		} else if (ret == MPAGE_DA_EXTENT_TAIL) {
2958 2959 2960 2961
			/*
			 * got one extent now try with
			 * rest of the pages
			 */
2962
			pages_written += mpd.pages_written;
2963
			ret = 0;
2964
			io_done = 1;
2965
		} else if (wbc->nr_to_write)
2966 2967 2968 2969 2970 2971
			/*
			 * There is no more writeout needed
			 * or we requested for a noblocking writeout
			 * and we found the device congested
			 */
			break;
2972
	}
2973 2974 2975 2976 2977 2978 2979
	if (!io_done && !cycled) {
		cycled = 1;
		index = 0;
		wbc->range_start = index << PAGE_CACHE_SHIFT;
		wbc->range_end  = mapping->writeback_index - 1;
		goto retry;
	}
2980 2981

	/* Update index */
2982
	wbc->range_cyclic = range_cyclic;
2983 2984 2985 2986 2987
	if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
		/*
		 * set the writeback_index so that range_cyclic
		 * mode will write it back later
		 */
2988
		mapping->writeback_index = done_index;
2989

2990
out_writepages:
2991
	wbc->nr_to_write -= nr_to_writebump;
2992
	wbc->range_start = range_start;
2993
	trace_ext4_da_writepages_result(inode, wbc, ret, pages_written);
2994
	return ret;
2995 2996
}

2997 2998 2999 3000 3001 3002 3003 3004 3005
#define FALL_BACK_TO_NONDELALLOC 1
static int ext4_nonda_switch(struct super_block *sb)
{
	s64 free_blocks, dirty_blocks;
	struct ext4_sb_info *sbi = EXT4_SB(sb);

	/*
	 * switch to non delalloc mode if we are running low
	 * on free block. The free block accounting via percpu
3006
	 * counters can get slightly wrong with percpu_counter_batch getting
3007 3008 3009 3010 3011 3012 3013 3014 3015
	 * accumulated on each CPU without updating global counters
	 * Delalloc need an accurate free block accounting. So switch
	 * to non delalloc when we are near to error range.
	 */
	free_blocks  = percpu_counter_read_positive(&sbi->s_freeblocks_counter);
	dirty_blocks = percpu_counter_read_positive(&sbi->s_dirtyblocks_counter);
	if (2 * free_blocks < 3 * dirty_blocks ||
		free_blocks < (dirty_blocks + EXT4_FREEBLOCKS_WATERMARK)) {
		/*
3016 3017
		 * free block count is less than 150% of dirty blocks
		 * or free blocks is less than watermark
3018 3019 3020
		 */
		return 1;
	}
3021 3022 3023 3024 3025 3026 3027
	/*
	 * Even if we don't switch but are nearing capacity,
	 * start pushing delalloc when 1/2 of free blocks are dirty.
	 */
	if (free_blocks < 2 * dirty_blocks)
		writeback_inodes_sb_if_idle(sb);

3028 3029 3030
	return 0;
}

3031
static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
3032 3033
			       loff_t pos, unsigned len, unsigned flags,
			       struct page **pagep, void **fsdata)
3034
{
3035
	int ret, retries = 0;
3036 3037 3038 3039 3040 3041
	struct page *page;
	pgoff_t index;
	struct inode *inode = mapping->host;
	handle_t *handle;

	index = pos >> PAGE_CACHE_SHIFT;
3042 3043 3044 3045 3046 3047 3048

	if (ext4_nonda_switch(inode->i_sb)) {
		*fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
		return ext4_write_begin(file, mapping, pos,
					len, flags, pagep, fsdata);
	}
	*fsdata = (void *)0;
3049
	trace_ext4_da_write_begin(inode, pos, len, flags);
3050
retry:
3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061
	/*
	 * With delayed allocation, we don't log the i_disksize update
	 * if there is delayed block allocation. But we still need
	 * to journalling the i_disksize update if writes to the end
	 * of file which has an already mapped buffer.
	 */
	handle = ext4_journal_start(inode, 1);
	if (IS_ERR(handle)) {
		ret = PTR_ERR(handle);
		goto out;
	}
3062 3063 3064
	/* We cannot recurse into the filesystem as the transaction is already
	 * started */
	flags |= AOP_FLAG_NOFS;
3065

3066
	page = grab_cache_page_write_begin(mapping, index, flags);
3067 3068 3069 3070 3071
	if (!page) {
		ext4_journal_stop(handle);
		ret = -ENOMEM;
		goto out;
	}
3072 3073
	*pagep = page;

3074
	ret = __block_write_begin(page, pos, len, ext4_da_get_block_prep);
3075 3076 3077 3078
	if (ret < 0) {
		unlock_page(page);
		ext4_journal_stop(handle);
		page_cache_release(page);
3079 3080 3081 3082 3083 3084
		/*
		 * block_write_begin may have instantiated a few blocks
		 * outside i_size.  Trim these off again. Don't need
		 * i_size_read because we hold i_mutex.
		 */
		if (pos + len > inode->i_size)
3085
			ext4_truncate_failed_write(inode);
3086 3087
	}

3088 3089
	if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
		goto retry;
3090 3091 3092 3093
out:
	return ret;
}

3094 3095 3096 3097 3098
/*
 * Check if we should update i_disksize
 * when write to the end of file but not require block allocation
 */
static int ext4_da_should_update_i_disksize(struct page *page,
3099
					    unsigned long offset)
3100 3101 3102 3103 3104 3105 3106 3107 3108
{
	struct buffer_head *bh;
	struct inode *inode = page->mapping->host;
	unsigned int idx;
	int i;

	bh = page_buffers(page);
	idx = offset >> inode->i_blkbits;

3109
	for (i = 0; i < idx; i++)
3110 3111
		bh = bh->b_this_page;

3112
	if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
3113 3114 3115 3116
		return 0;
	return 1;
}

3117
static int ext4_da_write_end(struct file *file,
3118 3119 3120
			     struct address_space *mapping,
			     loff_t pos, unsigned len, unsigned copied,
			     struct page *page, void *fsdata)
3121 3122 3123 3124 3125
{
	struct inode *inode = mapping->host;
	int ret = 0, ret2;
	handle_t *handle = ext4_journal_current_handle();
	loff_t new_i_size;
3126
	unsigned long start, end;
3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139
	int write_mode = (int)(unsigned long)fsdata;

	if (write_mode == FALL_BACK_TO_NONDELALLOC) {
		if (ext4_should_order_data(inode)) {
			return ext4_ordered_write_end(file, mapping, pos,
					len, copied, page, fsdata);
		} else if (ext4_should_writeback_data(inode)) {
			return ext4_writeback_write_end(file, mapping, pos,
					len, copied, page, fsdata);
		} else {
			BUG();
		}
	}
3140

3141
	trace_ext4_da_write_end(inode, pos, len, copied);
3142
	start = pos & (PAGE_CACHE_SIZE - 1);
3143
	end = start + copied - 1;
3144 3145 3146 3147 3148 3149 3150 3151

	/*
	 * generic_write_end() will run mark_inode_dirty() if i_size
	 * changes.  So let's piggyback the i_disksize mark_inode_dirty
	 * into that.
	 */

	new_i_size = pos + copied;
3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162
	if (new_i_size > EXT4_I(inode)->i_disksize) {
		if (ext4_da_should_update_i_disksize(page, end)) {
			down_write(&EXT4_I(inode)->i_data_sem);
			if (new_i_size > EXT4_I(inode)->i_disksize) {
				/*
				 * Updating i_disksize when extending file
				 * without needing block allocation
				 */
				if (ext4_should_order_data(inode))
					ret = ext4_jbd2_file_inode(handle,
								   inode);
3163

3164 3165 3166
				EXT4_I(inode)->i_disksize = new_i_size;
			}
			up_write(&EXT4_I(inode)->i_data_sem);
3167 3168 3169 3170 3171
			/* We need to mark inode dirty even if
			 * new_i_size is less that inode->i_size
			 * bu greater than i_disksize.(hint delalloc)
			 */
			ext4_mark_inode_dirty(handle, inode);
3172
		}
3173
	}
3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194
	ret2 = generic_write_end(file, mapping, pos, len, copied,
							page, fsdata);
	copied = ret2;
	if (ret2 < 0)
		ret = ret2;
	ret2 = ext4_journal_stop(handle);
	if (!ret)
		ret = ret2;

	return ret ? ret : copied;
}

static void ext4_da_invalidatepage(struct page *page, unsigned long offset)
{
	/*
	 * Drop reserved blocks
	 */
	BUG_ON(!PageLocked(page));
	if (!page_has_buffers(page))
		goto out;

3195
	ext4_da_page_release_reservation(page, offset);
3196 3197 3198 3199 3200 3201 3202

out:
	ext4_invalidatepage(page, offset);

	return;
}

3203 3204 3205 3206 3207
/*
 * Force all delayed allocation blocks to be allocated for a given inode.
 */
int ext4_alloc_da_blocks(struct inode *inode)
{
3208 3209
	trace_ext4_alloc_da_blocks(inode);

3210 3211 3212 3213 3214 3215 3216 3217 3218 3219
	if (!EXT4_I(inode)->i_reserved_data_blocks &&
	    !EXT4_I(inode)->i_reserved_meta_blocks)
		return 0;

	/*
	 * We do something simple for now.  The filemap_flush() will
	 * also start triggering a write of the data blocks, which is
	 * not strictly speaking necessary (and for users of
	 * laptop_mode, not even desirable).  However, to do otherwise
	 * would require replicating code paths in:
3220
	 *
3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232
	 * ext4_da_writepages() ->
	 *    write_cache_pages() ---> (via passed in callback function)
	 *        __mpage_da_writepage() -->
	 *           mpage_add_bh_to_extent()
	 *           mpage_da_map_blocks()
	 *
	 * The problem is that write_cache_pages(), located in
	 * mm/page-writeback.c, marks pages clean in preparation for
	 * doing I/O, which is not desirable if we're not planning on
	 * doing I/O at all.
	 *
	 * We could call write_cache_pages(), and then redirty all of
3233
	 * the pages by calling redirty_page_for_writepage() but that
3234 3235
	 * would be ugly in the extreme.  So instead we would need to
	 * replicate parts of the code in the above functions,
L
Lucas De Marchi 已提交
3236
	 * simplifying them because we wouldn't actually intend to
3237 3238 3239
	 * write out the pages, but rather only collect contiguous
	 * logical block extents, call the multi-block allocator, and
	 * then update the buffer heads with the block allocations.
3240
	 *
3241 3242 3243 3244 3245 3246
	 * For now, though, we'll cheat by calling filemap_flush(),
	 * which will map the blocks, and start the I/O, but not
	 * actually wait for the I/O to complete.
	 */
	return filemap_flush(inode->i_mapping);
}
3247

3248 3249 3250 3251 3252
/*
 * bmap() is special.  It gets used by applications such as lilo and by
 * the swapper to find the on-disk block of a specific piece of data.
 *
 * Naturally, this is dangerous if the block concerned is still in the
3253
 * journal.  If somebody makes a swapfile on an ext4 data-journaling
3254 3255 3256 3257 3258 3259 3260 3261
 * filesystem and enables swap, then they may get a nasty shock when the
 * data getting swapped to that swapfile suddenly gets overwritten by
 * the original zero's written out previously to the journal and
 * awaiting writeback in the kernel's buffer cache.
 *
 * So, if we see any bmap calls here on a modified, data-journaled file,
 * take extra steps to flush any blocks which might be in the cache.
 */
3262
static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
3263 3264 3265 3266 3267
{
	struct inode *inode = mapping->host;
	journal_t *journal;
	int err;

3268 3269 3270 3271 3272 3273 3274 3275 3276 3277
	if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
			test_opt(inode->i_sb, DELALLOC)) {
		/*
		 * With delalloc we want to sync the file
		 * so that we can make sure we allocate
		 * blocks for file
		 */
		filemap_write_and_wait(mapping);
	}

3278 3279
	if (EXT4_JOURNAL(inode) &&
	    ext4_test_inode_state(inode, EXT4_STATE_JDATA)) {
3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290
		/*
		 * This is a REALLY heavyweight approach, but the use of
		 * bmap on dirty files is expected to be extremely rare:
		 * only if we run lilo or swapon on a freshly made file
		 * do we expect this to happen.
		 *
		 * (bmap requires CAP_SYS_RAWIO so this does not
		 * represent an unprivileged user DOS attack --- we'd be
		 * in trouble if mortal users could trigger this path at
		 * will.)
		 *
3291
		 * NB. EXT4_STATE_JDATA is not set on files other than
3292 3293 3294 3295 3296 3297
		 * regular files.  If somebody wants to bmap a directory
		 * or symlink and gets confused because the buffer
		 * hasn't yet been flushed to disk, they deserve
		 * everything they get.
		 */

3298
		ext4_clear_inode_state(inode, EXT4_STATE_JDATA);
3299
		journal = EXT4_JOURNAL(inode);
3300 3301 3302
		jbd2_journal_lock_updates(journal);
		err = jbd2_journal_flush(journal);
		jbd2_journal_unlock_updates(journal);
3303 3304 3305 3306 3307

		if (err)
			return 0;
	}

3308
	return generic_block_bmap(mapping, block, ext4_get_block);
3309 3310
}

3311
static int ext4_readpage(struct file *file, struct page *page)
3312
{
3313
	trace_ext4_readpage(page);
3314
	return mpage_readpage(page, ext4_get_block);
3315 3316 3317
}

static int
3318
ext4_readpages(struct file *file, struct address_space *mapping,
3319 3320
		struct list_head *pages, unsigned nr_pages)
{
3321
	return mpage_readpages(mapping, pages, nr_pages, ext4_get_block);
3322 3323
}

3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343
static void ext4_invalidatepage_free_endio(struct page *page, unsigned long offset)
{
	struct buffer_head *head, *bh;
	unsigned int curr_off = 0;

	if (!page_has_buffers(page))
		return;
	head = bh = page_buffers(page);
	do {
		if (offset <= curr_off && test_clear_buffer_uninit(bh)
					&& bh->b_private) {
			ext4_free_io_end(bh->b_private);
			bh->b_private = NULL;
			bh->b_end_io = NULL;
		}
		curr_off = curr_off + bh->b_size;
		bh = bh->b_this_page;
	} while (bh != head);
}

3344
static void ext4_invalidatepage(struct page *page, unsigned long offset)
3345
{
3346
	journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3347

3348 3349
	trace_ext4_invalidatepage(page, offset);

3350 3351 3352 3353 3354
	/*
	 * free any io_end structure allocated for buffers to be discarded
	 */
	if (ext4_should_dioread_nolock(page->mapping->host))
		ext4_invalidatepage_free_endio(page, offset);
3355 3356 3357 3358 3359 3360
	/*
	 * If it's a full truncate we just forget about the pending dirtying
	 */
	if (offset == 0)
		ClearPageChecked(page);

3361 3362 3363 3364
	if (journal)
		jbd2_journal_invalidatepage(journal, page, offset);
	else
		block_invalidatepage(page, offset);
3365 3366
}

3367
static int ext4_releasepage(struct page *page, gfp_t wait)
3368
{
3369
	journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3370

3371 3372
	trace_ext4_releasepage(page);

3373 3374 3375
	WARN_ON(PageChecked(page));
	if (!page_has_buffers(page))
		return 0;
3376 3377 3378 3379
	if (journal)
		return jbd2_journal_try_to_free_buffers(journal, page, wait);
	else
		return try_to_free_buffers(page);
3380 3381 3382
}

/*
3383 3384
 * O_DIRECT for ext3 (or indirect map) based files
 *
3385 3386 3387 3388 3389
 * If the O_DIRECT write will extend the file then add this inode to the
 * orphan list.  So recovery will truncate it back to the original size
 * if the machine crashes during the write.
 *
 * If the O_DIRECT write is intantiating holes inside i_size and the machine
J
Jan Kara 已提交
3390 3391
 * crashes then stale disk data _may_ be exposed inside the file. But current
 * VFS code falls back into buffered path in that case so we are safe.
3392
 */
3393
static ssize_t ext4_ind_direct_IO(int rw, struct kiocb *iocb,
3394 3395
			      const struct iovec *iov, loff_t offset,
			      unsigned long nr_segs)
3396 3397 3398
{
	struct file *file = iocb->ki_filp;
	struct inode *inode = file->f_mapping->host;
3399
	struct ext4_inode_info *ei = EXT4_I(inode);
J
Jan Kara 已提交
3400
	handle_t *handle;
3401 3402 3403
	ssize_t ret;
	int orphan = 0;
	size_t count = iov_length(iov, nr_segs);
3404
	int retries = 0;
3405 3406 3407 3408 3409

	if (rw == WRITE) {
		loff_t final_size = offset + count;

		if (final_size > inode->i_size) {
J
Jan Kara 已提交
3410 3411 3412 3413 3414 3415
			/* Credits for sb + inode write */
			handle = ext4_journal_start(inode, 2);
			if (IS_ERR(handle)) {
				ret = PTR_ERR(handle);
				goto out;
			}
3416
			ret = ext4_orphan_add(handle, inode);
J
Jan Kara 已提交
3417 3418 3419 3420
			if (ret) {
				ext4_journal_stop(handle);
				goto out;
			}
3421 3422
			orphan = 1;
			ei->i_disksize = inode->i_size;
J
Jan Kara 已提交
3423
			ext4_journal_stop(handle);
3424 3425 3426
		}
	}

3427
retry:
3428
	if (rw == READ && ext4_should_dioread_nolock(inode))
3429
		ret = __blockdev_direct_IO(rw, iocb, inode,
3430 3431
				 inode->i_sb->s_bdev, iov,
				 offset, nr_segs,
3432 3433
				 ext4_get_block, NULL, NULL, 0);
	else {
3434 3435
		ret = blockdev_direct_IO(rw, iocb, inode,
				 inode->i_sb->s_bdev, iov,
3436
				 offset, nr_segs,
3437
				 ext4_get_block, NULL);
3438 3439 3440 3441 3442 3443

		if (unlikely((rw & WRITE) && ret < 0)) {
			loff_t isize = i_size_read(inode);
			loff_t end = offset + iov_length(iov, nr_segs);

			if (end > isize)
3444
				ext4_truncate_failed_write(inode);
3445 3446
		}
	}
3447 3448
	if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
		goto retry;
3449

J
Jan Kara 已提交
3450
	if (orphan) {
3451 3452
		int err;

J
Jan Kara 已提交
3453 3454 3455 3456 3457 3458 3459
		/* Credits for sb + inode write */
		handle = ext4_journal_start(inode, 2);
		if (IS_ERR(handle)) {
			/* This is really bad luck. We've written the data
			 * but cannot extend i_size. Bail out and pretend
			 * the write failed... */
			ret = PTR_ERR(handle);
3460 3461 3462
			if (inode->i_nlink)
				ext4_orphan_del(NULL, inode);

J
Jan Kara 已提交
3463 3464 3465
			goto out;
		}
		if (inode->i_nlink)
3466
			ext4_orphan_del(handle, inode);
J
Jan Kara 已提交
3467
		if (ret > 0) {
3468 3469 3470 3471 3472 3473 3474 3475
			loff_t end = offset + ret;
			if (end > inode->i_size) {
				ei->i_disksize = end;
				i_size_write(inode, end);
				/*
				 * We're going to return a positive `ret'
				 * here due to non-zero-length I/O, so there's
				 * no way of reporting error returns from
3476
				 * ext4_mark_inode_dirty() to userspace.  So
3477 3478
				 * ignore it.
				 */
3479
				ext4_mark_inode_dirty(handle, inode);
3480 3481
			}
		}
3482
		err = ext4_journal_stop(handle);
3483 3484 3485 3486 3487 3488 3489
		if (ret == 0)
			ret = err;
	}
out:
	return ret;
}

3490 3491 3492 3493 3494
/*
 * ext4_get_block used when preparing for a DIO write or buffer write.
 * We allocate an uinitialized extent if blocks haven't been allocated.
 * The extent will be converted to initialized after the IO is complete.
 */
3495
static int ext4_get_block_write(struct inode *inode, sector_t iblock,
3496 3497
		   struct buffer_head *bh_result, int create)
{
3498
	ext4_debug("ext4_get_block_write: inode %lu, create flag %d\n",
3499
		   inode->i_ino, create);
3500 3501
	return _ext4_get_block(inode, iblock, bh_result,
			       EXT4_GET_BLOCKS_IO_CREATE_EXT);
3502 3503 3504
}

static void ext4_end_io_dio(struct kiocb *iocb, loff_t offset,
3505 3506
			    ssize_t size, void *private, int ret,
			    bool is_async)
3507 3508 3509
{
        ext4_io_end_t *io_end = iocb->private;
	struct workqueue_struct *wq;
3510 3511
	unsigned long flags;
	struct ext4_inode_info *ei;
3512

3513 3514
	/* if not async direct IO or dio with 0 bytes write, just return */
	if (!io_end || !size)
3515
		goto out;
3516

3517 3518 3519 3520 3521 3522
	ext_debug("ext4_end_io_dio(): io_end 0x%p"
		  "for inode %lu, iocb 0x%p, offset %llu, size %llu\n",
 		  iocb->private, io_end->inode->i_ino, iocb, offset,
		  size);

	/* if not aio dio with unwritten extents, just free io and return */
3523
	if (!(io_end->flag & EXT4_IO_END_UNWRITTEN)) {
3524 3525
		ext4_free_io_end(io_end);
		iocb->private = NULL;
3526 3527 3528 3529
out:
		if (is_async)
			aio_complete(iocb, ret, 0);
		return;
3530 3531
	}

3532 3533
	io_end->offset = offset;
	io_end->size = size;
3534 3535 3536 3537
	if (is_async) {
		io_end->iocb = iocb;
		io_end->result = ret;
	}
3538 3539
	wq = EXT4_SB(io_end->inode->i_sb)->dio_unwritten_wq;

3540
	/* Add the io_end to per-inode completed aio dio list*/
3541 3542 3543 3544
	ei = EXT4_I(io_end->inode);
	spin_lock_irqsave(&ei->i_completed_io_lock, flags);
	list_add_tail(&io_end->list, &ei->i_completed_io_list);
	spin_unlock_irqrestore(&ei->i_completed_io_lock, flags);
3545 3546 3547

	/* queue the work to convert unwritten extents to written */
	queue_work(wq, &io_end->work);
3548 3549
	iocb->private = NULL;
}
3550

3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567
static void ext4_end_io_buffer_write(struct buffer_head *bh, int uptodate)
{
	ext4_io_end_t *io_end = bh->b_private;
	struct workqueue_struct *wq;
	struct inode *inode;
	unsigned long flags;

	if (!test_clear_buffer_uninit(bh) || !io_end)
		goto out;

	if (!(io_end->inode->i_sb->s_flags & MS_ACTIVE)) {
		printk("sb umounted, discard end_io request for inode %lu\n",
			io_end->inode->i_ino);
		ext4_free_io_end(io_end);
		goto out;
	}

3568
	io_end->flag = EXT4_IO_END_UNWRITTEN;
3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595
	inode = io_end->inode;

	/* Add the io_end to per-inode completed io list*/
	spin_lock_irqsave(&EXT4_I(inode)->i_completed_io_lock, flags);
	list_add_tail(&io_end->list, &EXT4_I(inode)->i_completed_io_list);
	spin_unlock_irqrestore(&EXT4_I(inode)->i_completed_io_lock, flags);

	wq = EXT4_SB(inode->i_sb)->dio_unwritten_wq;
	/* queue the work to convert unwritten extents to written */
	queue_work(wq, &io_end->work);
out:
	bh->b_private = NULL;
	bh->b_end_io = NULL;
	clear_buffer_uninit(bh);
	end_buffer_async_write(bh, uptodate);
}

static int ext4_set_bh_endio(struct buffer_head *bh, struct inode *inode)
{
	ext4_io_end_t *io_end;
	struct page *page = bh->b_page;
	loff_t offset = (sector_t)page->index << PAGE_CACHE_SHIFT;
	size_t size = bh->b_size;

retry:
	io_end = ext4_init_io_end(inode, GFP_ATOMIC);
	if (!io_end) {
3596
		pr_warn_ratelimited("%s: allocation fail\n", __func__);
3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614
		schedule();
		goto retry;
	}
	io_end->offset = offset;
	io_end->size = size;
	/*
	 * We need to hold a reference to the page to make sure it
	 * doesn't get evicted before ext4_end_io_work() has a chance
	 * to convert the extent from written to unwritten.
	 */
	io_end->page = page;
	get_page(io_end->page);

	bh->b_private = io_end;
	bh->b_end_io = ext4_end_io_buffer_write;
	return 0;
}

3615 3616 3617 3618 3619
/*
 * For ext4 extent files, ext4 will do direct-io write to holes,
 * preallocated extents, and those write extend the file, no need to
 * fall back to buffered IO.
 *
3620
 * For holes, we fallocate those blocks, mark them as uninitialized
3621
 * If those blocks were preallocated, we mark sure they are splited, but
3622
 * still keep the range to write as uninitialized.
3623
 *
3624 3625
 * The unwrritten extents will be converted to written when DIO is completed.
 * For async direct IO, since the IO may still pending when return, we
L
Lucas De Marchi 已提交
3626
 * set up an end_io call back function, which will do the conversion
3627
 * when async direct IO completed.
3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645
 *
 * If the O_DIRECT write will extend the file then add this inode to the
 * orphan list.  So recovery will truncate it back to the original size
 * if the machine crashes during the write.
 *
 */
static ssize_t ext4_ext_direct_IO(int rw, struct kiocb *iocb,
			      const struct iovec *iov, loff_t offset,
			      unsigned long nr_segs)
{
	struct file *file = iocb->ki_filp;
	struct inode *inode = file->f_mapping->host;
	ssize_t ret;
	size_t count = iov_length(iov, nr_segs);

	loff_t final_size = offset + count;
	if (rw == WRITE && final_size <= inode->i_size) {
		/*
3646 3647 3648
 		 * We could direct write to holes and fallocate.
		 *
 		 * Allocated blocks to fill the hole are marked as uninitialized
L
Lucas De Marchi 已提交
3649
 		 * to prevent parallel buffered read to expose the stale data
3650
 		 * before DIO complete the data IO.
3651 3652
		 *
 		 * As to previously fallocated extents, ext4 get_block
3653 3654 3655
 		 * will just simply mark the buffer mapped but still
 		 * keep the extents uninitialized.
 		 *
3656 3657 3658 3659 3660 3661 3662 3663
		 * for non AIO case, we will convert those unwritten extents
		 * to written after return back from blockdev_direct_IO.
		 *
		 * for async DIO, the conversion needs to be defered when
		 * the IO is completed. The ext4 end_io callback function
		 * will be called to take care of the conversion work.
		 * Here for async case, we allocate an io_end structure to
		 * hook to the iocb.
3664
 		 */
3665 3666 3667
		iocb->private = NULL;
		EXT4_I(inode)->cur_aio_dio = NULL;
		if (!is_sync_kiocb(iocb)) {
3668
			iocb->private = ext4_init_io_end(inode, GFP_NOFS);
3669 3670 3671 3672
			if (!iocb->private)
				return -ENOMEM;
			/*
			 * we save the io structure for current async
3673
			 * direct IO, so that later ext4_map_blocks()
3674 3675 3676 3677 3678 3679 3680
			 * could flag the io structure whether there
			 * is a unwritten extents needs to be converted
			 * when IO is completed.
			 */
			EXT4_I(inode)->cur_aio_dio = iocb->private;
		}

3681 3682 3683
		ret = blockdev_direct_IO(rw, iocb, inode,
					 inode->i_sb->s_bdev, iov,
					 offset, nr_segs,
3684
					 ext4_get_block_write,
3685
					 ext4_end_io_dio);
3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704
		if (iocb->private)
			EXT4_I(inode)->cur_aio_dio = NULL;
		/*
		 * The io_end structure takes a reference to the inode,
		 * that structure needs to be destroyed and the
		 * reference to the inode need to be dropped, when IO is
		 * complete, even with 0 byte write, or failed.
		 *
		 * In the successful AIO DIO case, the io_end structure will be
		 * desctroyed and the reference to the inode will be dropped
		 * after the end_io call back function is called.
		 *
		 * In the case there is 0 byte write, or error case, since
		 * VFS direct IO won't invoke the end_io call back function,
		 * we need to free the end_io structure here.
		 */
		if (ret != -EIOCBQUEUED && ret <= 0 && iocb->private) {
			ext4_free_io_end(iocb->private);
			iocb->private = NULL;
3705 3706
		} else if (ret > 0 && ext4_test_inode_state(inode,
						EXT4_STATE_DIO_UNWRITTEN)) {
3707
			int err;
3708 3709
			/*
			 * for non AIO case, since the IO is already
L
Lucas De Marchi 已提交
3710
			 * completed, we could do the conversion right here
3711
			 */
3712 3713 3714 3715
			err = ext4_convert_unwritten_extents(inode,
							     offset, ret);
			if (err < 0)
				ret = err;
3716
			ext4_clear_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
3717
		}
3718 3719
		return ret;
	}
3720 3721

	/* for write the the end of file case, we fall back to old way */
3722 3723 3724 3725 3726 3727 3728 3729 3730
	return ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs);
}

static ssize_t ext4_direct_IO(int rw, struct kiocb *iocb,
			      const struct iovec *iov, loff_t offset,
			      unsigned long nr_segs)
{
	struct file *file = iocb->ki_filp;
	struct inode *inode = file->f_mapping->host;
3731
	ssize_t ret;
3732

3733
	trace_ext4_direct_IO_enter(inode, offset, iov_length(iov, nr_segs), rw);
3734
	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3735 3736 3737 3738 3739 3740
		ret = ext4_ext_direct_IO(rw, iocb, iov, offset, nr_segs);
	else
		ret = ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs);
	trace_ext4_direct_IO_exit(inode, offset,
				iov_length(iov, nr_segs), rw, ret);
	return ret;
3741 3742
}

3743
/*
3744
 * Pages can be marked dirty completely asynchronously from ext4's journalling
3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755
 * activity.  By filemap_sync_pte(), try_to_unmap_one(), etc.  We cannot do
 * much here because ->set_page_dirty is called under VFS locks.  The page is
 * not necessarily locked.
 *
 * We cannot just dirty the page and leave attached buffers clean, because the
 * buffers' dirty state is "definitive".  We cannot just set the buffers dirty
 * or jbddirty because all the journalling code will explode.
 *
 * So what we do is to mark the page "pending dirty" and next time writepage
 * is called, propagate that into the buffers appropriately.
 */
3756
static int ext4_journalled_set_page_dirty(struct page *page)
3757 3758 3759 3760 3761
{
	SetPageChecked(page);
	return __set_page_dirty_nobuffers(page);
}

3762
static const struct address_space_operations ext4_ordered_aops = {
3763 3764
	.readpage		= ext4_readpage,
	.readpages		= ext4_readpages,
3765
	.writepage		= ext4_writepage,
3766 3767 3768 3769 3770 3771 3772 3773
	.write_begin		= ext4_write_begin,
	.write_end		= ext4_ordered_write_end,
	.bmap			= ext4_bmap,
	.invalidatepage		= ext4_invalidatepage,
	.releasepage		= ext4_releasepage,
	.direct_IO		= ext4_direct_IO,
	.migratepage		= buffer_migrate_page,
	.is_partially_uptodate  = block_is_partially_uptodate,
3774
	.error_remove_page	= generic_error_remove_page,
3775 3776
};

3777
static const struct address_space_operations ext4_writeback_aops = {
3778 3779
	.readpage		= ext4_readpage,
	.readpages		= ext4_readpages,
3780
	.writepage		= ext4_writepage,
3781 3782 3783 3784 3785 3786 3787 3788
	.write_begin		= ext4_write_begin,
	.write_end		= ext4_writeback_write_end,
	.bmap			= ext4_bmap,
	.invalidatepage		= ext4_invalidatepage,
	.releasepage		= ext4_releasepage,
	.direct_IO		= ext4_direct_IO,
	.migratepage		= buffer_migrate_page,
	.is_partially_uptodate  = block_is_partially_uptodate,
3789
	.error_remove_page	= generic_error_remove_page,
3790 3791
};

3792
static const struct address_space_operations ext4_journalled_aops = {
3793 3794
	.readpage		= ext4_readpage,
	.readpages		= ext4_readpages,
3795
	.writepage		= ext4_writepage,
3796 3797 3798 3799 3800 3801 3802
	.write_begin		= ext4_write_begin,
	.write_end		= ext4_journalled_write_end,
	.set_page_dirty		= ext4_journalled_set_page_dirty,
	.bmap			= ext4_bmap,
	.invalidatepage		= ext4_invalidatepage,
	.releasepage		= ext4_releasepage,
	.is_partially_uptodate  = block_is_partially_uptodate,
3803
	.error_remove_page	= generic_error_remove_page,
3804 3805
};

3806
static const struct address_space_operations ext4_da_aops = {
3807 3808
	.readpage		= ext4_readpage,
	.readpages		= ext4_readpages,
3809
	.writepage		= ext4_writepage,
3810 3811 3812 3813 3814 3815 3816 3817 3818
	.writepages		= ext4_da_writepages,
	.write_begin		= ext4_da_write_begin,
	.write_end		= ext4_da_write_end,
	.bmap			= ext4_bmap,
	.invalidatepage		= ext4_da_invalidatepage,
	.releasepage		= ext4_releasepage,
	.direct_IO		= ext4_direct_IO,
	.migratepage		= buffer_migrate_page,
	.is_partially_uptodate  = block_is_partially_uptodate,
3819
	.error_remove_page	= generic_error_remove_page,
3820 3821
};

3822
void ext4_set_aops(struct inode *inode)
3823
{
3824 3825 3826 3827
	if (ext4_should_order_data(inode) &&
		test_opt(inode->i_sb, DELALLOC))
		inode->i_mapping->a_ops = &ext4_da_aops;
	else if (ext4_should_order_data(inode))
3828
		inode->i_mapping->a_ops = &ext4_ordered_aops;
3829 3830 3831
	else if (ext4_should_writeback_data(inode) &&
		 test_opt(inode->i_sb, DELALLOC))
		inode->i_mapping->a_ops = &ext4_da_aops;
3832 3833
	else if (ext4_should_writeback_data(inode))
		inode->i_mapping->a_ops = &ext4_writeback_aops;
3834
	else
3835
		inode->i_mapping->a_ops = &ext4_journalled_aops;
3836 3837 3838
}

/*
3839
 * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
3840 3841 3842 3843
 * up to the end of the block which corresponds to `from'.
 * This required during truncate. We need to physically zero the tail end
 * of that block so it doesn't yield old data if the file is later grown.
 */
3844
int ext4_block_truncate_page(handle_t *handle,
3845
		struct address_space *mapping, loff_t from)
3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866
{
	unsigned offset = from & (PAGE_CACHE_SIZE-1);
	unsigned length;
	unsigned blocksize;
	struct inode *inode = mapping->host;

	blocksize = inode->i_sb->s_blocksize;
	length = blocksize - (offset & (blocksize - 1));

	return ext4_block_zero_page_range(handle, mapping, from, length);
}

/*
 * ext4_block_zero_page_range() zeros out a mapping of length 'length'
 * starting from file offset 'from'.  The range to be zero'd must
 * be contained with in one block.  If the specified range exceeds
 * the end of the block it will be shortened to end of the block
 * that cooresponds to 'from'
 */
int ext4_block_zero_page_range(handle_t *handle,
		struct address_space *mapping, loff_t from, loff_t length)
3867
{
3868
	ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT;
3869
	unsigned offset = from & (PAGE_CACHE_SIZE-1);
3870
	unsigned blocksize, max, pos;
A
Aneesh Kumar K.V 已提交
3871
	ext4_lblk_t iblock;
3872 3873
	struct inode *inode = mapping->host;
	struct buffer_head *bh;
3874
	struct page *page;
3875 3876
	int err = 0;

3877 3878
	page = find_or_create_page(mapping, from >> PAGE_CACHE_SHIFT,
				   mapping_gfp_mask(mapping) & ~__GFP_FS);
3879 3880 3881
	if (!page)
		return -EINVAL;

3882
	blocksize = inode->i_sb->s_blocksize;
3883 3884 3885 3886 3887 3888 3889 3890 3891
	max = blocksize - (offset & (blocksize - 1));

	/*
	 * correct length if it does not fall between
	 * 'from' and the end of the block
	 */
	if (length > max || length < 0)
		length = max;

3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913
	iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);

	if (!page_has_buffers(page))
		create_empty_buffers(page, blocksize, 0);

	/* Find the buffer that contains "offset" */
	bh = page_buffers(page);
	pos = blocksize;
	while (offset >= pos) {
		bh = bh->b_this_page;
		iblock++;
		pos += blocksize;
	}

	err = 0;
	if (buffer_freed(bh)) {
		BUFFER_TRACE(bh, "freed: skip");
		goto unlock;
	}

	if (!buffer_mapped(bh)) {
		BUFFER_TRACE(bh, "unmapped");
3914
		ext4_get_block(inode, iblock, bh, 0);
3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934
		/* unmapped? It's a hole - nothing to do */
		if (!buffer_mapped(bh)) {
			BUFFER_TRACE(bh, "still unmapped");
			goto unlock;
		}
	}

	/* Ok, it's mapped. Make sure it's up-to-date */
	if (PageUptodate(page))
		set_buffer_uptodate(bh);

	if (!buffer_uptodate(bh)) {
		err = -EIO;
		ll_rw_block(READ, 1, &bh);
		wait_on_buffer(bh);
		/* Uhhuh. Read error. Complain and punt. */
		if (!buffer_uptodate(bh))
			goto unlock;
	}

3935
	if (ext4_should_journal_data(inode)) {
3936
		BUFFER_TRACE(bh, "get write access");
3937
		err = ext4_journal_get_write_access(handle, bh);
3938 3939 3940 3941
		if (err)
			goto unlock;
	}

3942
	zero_user(page, offset, length);
3943 3944 3945 3946

	BUFFER_TRACE(bh, "zeroed end of block");

	err = 0;
3947
	if (ext4_should_journal_data(inode)) {
3948
		err = ext4_handle_dirty_metadata(handle, inode, bh);
3949
	} else {
3950
		if (ext4_should_order_data(inode) && EXT4_I(inode)->jinode)
3951
			err = ext4_jbd2_file_inode(handle, inode);
3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974
		mark_buffer_dirty(bh);
	}

unlock:
	unlock_page(page);
	page_cache_release(page);
	return err;
}

/*
 * Probably it should be a library function... search for first non-zero word
 * or memcmp with zero_page, whatever is better for particular architecture.
 * Linus?
 */
static inline int all_zeroes(__le32 *p, __le32 *q)
{
	while (p < q)
		if (*p++)
			return 0;
	return 1;
}

/**
3975
 *	ext4_find_shared - find the indirect blocks for partial truncation.
3976 3977
 *	@inode:	  inode in question
 *	@depth:	  depth of the affected branch
3978
 *	@offsets: offsets of pointers in that branch (see ext4_block_to_path)
3979 3980 3981
 *	@chain:	  place to store the pointers to partial indirect blocks
 *	@top:	  place to the (detached) top of branch
 *
3982
 *	This is a helper function used by ext4_truncate().
3983 3984 3985
 *
 *	When we do truncate() we may have to clean the ends of several
 *	indirect blocks but leave the blocks themselves alive. Block is
L
Lucas De Marchi 已提交
3986
 *	partially truncated if some data below the new i_size is referred
3987 3988 3989
 *	from it (and it is on the path to the first completely truncated
 *	data block, indeed).  We have to free the top of that path along
 *	with everything to the right of the path. Since no allocation
3990
 *	past the truncation point is possible until ext4_truncate()
3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008
 *	finishes, we may safely do the latter, but top of branch may
 *	require special attention - pageout below the truncation point
 *	might try to populate it.
 *
 *	We atomically detach the top of branch from the tree, store the
 *	block number of its root in *@top, pointers to buffer_heads of
 *	partially truncated blocks - in @chain[].bh and pointers to
 *	their last elements that should not be removed - in
 *	@chain[].p. Return value is the pointer to last filled element
 *	of @chain.
 *
 *	The work left to caller to do the actual freeing of subtrees:
 *		a) free the subtree starting from *@top
 *		b) free the subtrees whose roots are stored in
 *			(@chain[i].p+1 .. end of @chain[i].bh->b_data)
 *		c) free the subtrees growing from the inode past the @chain[0].
 *			(no partially truncated stuff there).  */

4009
static Indirect *ext4_find_shared(struct inode *inode, int depth,
4010 4011
				  ext4_lblk_t offsets[4], Indirect chain[4],
				  __le32 *top)
4012 4013 4014 4015 4016
{
	Indirect *partial, *p;
	int k, err;

	*top = 0;
4017
	/* Make k index the deepest non-null offset + 1 */
4018 4019
	for (k = depth; k > 1 && !offsets[k-1]; k--)
		;
4020
	partial = ext4_get_branch(inode, k, offsets, chain, &err);
4021 4022 4023 4024 4025 4026 4027 4028 4029 4030
	/* Writer: pointers */
	if (!partial)
		partial = chain + k-1;
	/*
	 * If the branch acquired continuation since we've looked at it -
	 * fine, it should all survive and (new) top doesn't belong to us.
	 */
	if (!partial->key && *partial->p)
		/* Writer: end */
		goto no_top;
4031
	for (p = partial; (p > chain) && all_zeroes((__le32 *) p->bh->b_data, p->p); p--)
4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042
		;
	/*
	 * OK, we've found the last block that must survive. The rest of our
	 * branch should be detached before unlocking. However, if that rest
	 * of branch is all ours and does not grow immediately from the inode
	 * it's easier to cheat and just decrement partial->p.
	 */
	if (p == chain + k - 1 && p > chain) {
		p->p--;
	} else {
		*top = *p->p;
4043
		/* Nope, don't do this in ext4.  Must leave the tree intact */
4044 4045 4046 4047 4048 4049
#if 0
		*p->p = 0;
#endif
	}
	/* Writer: end */

4050
	while (partial > p) {
4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064
		brelse(partial->bh);
		partial--;
	}
no_top:
	return partial;
}

/*
 * Zero a number of block pointers in either an inode or an indirect block.
 * If we restart the transaction we must again get write access to the
 * indirect block for further modification.
 *
 * We release `count' blocks on disk, but (last - first) may be greater
 * than `count' because there can be holes in there.
4065 4066 4067
 *
 * Return 0 on success, 1 on invalid block range
 * and < 0 on fatal error.
4068
 */
4069 4070 4071 4072 4073
static int ext4_clear_blocks(handle_t *handle, struct inode *inode,
			     struct buffer_head *bh,
			     ext4_fsblk_t block_to_free,
			     unsigned long count, __le32 *first,
			     __le32 *last)
4074 4075
{
	__le32 *p;
4076
	int	flags = EXT4_FREE_BLOCKS_FORGET | EXT4_FREE_BLOCKS_VALIDATED;
4077
	int	err;
4078 4079 4080

	if (S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode))
		flags |= EXT4_FREE_BLOCKS_METADATA;
4081

4082 4083
	if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), block_to_free,
				   count)) {
4084 4085 4086
		EXT4_ERROR_INODE(inode, "attempt to clear invalid "
				 "blocks %llu len %lu",
				 (unsigned long long) block_to_free, count);
4087 4088 4089
		return 1;
	}

4090 4091
	if (try_to_extend_transaction(handle, inode)) {
		if (bh) {
4092
			BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
4093
			err = ext4_handle_dirty_metadata(handle, inode, bh);
4094 4095
			if (unlikely(err))
				goto out_err;
4096 4097
		}
		err = ext4_mark_inode_dirty(handle, inode);
4098 4099
		if (unlikely(err))
			goto out_err;
4100
		err = ext4_truncate_restart_trans(handle, inode,
4101
					ext4_blocks_for_truncate(inode));
4102 4103
		if (unlikely(err))
			goto out_err;
4104 4105
		if (bh) {
			BUFFER_TRACE(bh, "retaking write access");
4106 4107 4108
			err = ext4_journal_get_write_access(handle, bh);
			if (unlikely(err))
				goto out_err;
4109 4110 4111
		}
	}

4112 4113
	for (p = first; p < last; p++)
		*p = 0;
4114

4115
	ext4_free_blocks(handle, inode, NULL, block_to_free, count, flags);
4116
	return 0;
4117 4118 4119
out_err:
	ext4_std_error(inode->i_sb, err);
	return err;
4120 4121 4122
}

/**
4123
 * ext4_free_data - free a list of data blocks
4124 4125 4126 4127 4128 4129
 * @handle:	handle for this transaction
 * @inode:	inode we are dealing with
 * @this_bh:	indirect buffer_head which contains *@first and *@last
 * @first:	array of block numbers
 * @last:	points immediately past the end of array
 *
L
Lucas De Marchi 已提交
4130
 * We are freeing all blocks referred from that array (numbers are stored as
4131 4132 4133 4134 4135 4136 4137 4138 4139 4140
 * little-endian 32-bit) and updating @inode->i_blocks appropriately.
 *
 * We accumulate contiguous runs of blocks to free.  Conveniently, if these
 * blocks are contiguous then releasing them at one time will only affect one
 * or two bitmap blocks (+ group descriptor(s) and superblock) and we won't
 * actually use a lot of journal space.
 *
 * @this_bh will be %NULL if @first and @last point into the inode's direct
 * block pointers.
 */
4141
static void ext4_free_data(handle_t *handle, struct inode *inode,
4142 4143 4144
			   struct buffer_head *this_bh,
			   __le32 *first, __le32 *last)
{
4145
	ext4_fsblk_t block_to_free = 0;    /* Starting block # of a run */
4146 4147 4148 4149
	unsigned long count = 0;	    /* Number of blocks in the run */
	__le32 *block_to_free_p = NULL;	    /* Pointer into inode/ind
					       corresponding to
					       block_to_free */
4150
	ext4_fsblk_t nr;		    /* Current block # */
4151 4152
	__le32 *p;			    /* Pointer into inode/ind
					       for current block */
4153
	int err = 0;
4154 4155 4156

	if (this_bh) {				/* For indirect block */
		BUFFER_TRACE(this_bh, "get_write_access");
4157
		err = ext4_journal_get_write_access(handle, this_bh);
4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174
		/* Important: if we can't update the indirect pointers
		 * to the blocks, we can't free them. */
		if (err)
			return;
	}

	for (p = first; p < last; p++) {
		nr = le32_to_cpu(*p);
		if (nr) {
			/* accumulate blocks to free if they're contiguous */
			if (count == 0) {
				block_to_free = nr;
				block_to_free_p = p;
				count = 1;
			} else if (nr == block_to_free + count) {
				count++;
			} else {
4175 4176 4177 4178
				err = ext4_clear_blocks(handle, inode, this_bh,
						        block_to_free, count,
						        block_to_free_p, p);
				if (err)
4179
					break;
4180 4181 4182 4183 4184 4185 4186
				block_to_free = nr;
				block_to_free_p = p;
				count = 1;
			}
		}
	}

4187 4188 4189 4190 4191 4192
	if (!err && count > 0)
		err = ext4_clear_blocks(handle, inode, this_bh, block_to_free,
					count, block_to_free_p, p);
	if (err < 0)
		/* fatal error */
		return;
4193 4194

	if (this_bh) {
4195
		BUFFER_TRACE(this_bh, "call ext4_handle_dirty_metadata");
4196 4197 4198 4199 4200 4201 4202

		/*
		 * The buffer head should have an attached journal head at this
		 * point. However, if the data is corrupted and an indirect
		 * block pointed to itself, it would have been detached when
		 * the block was cleared. Check for this instead of OOPSing.
		 */
4203
		if ((EXT4_JOURNAL(inode) == NULL) || bh2jh(this_bh))
4204
			ext4_handle_dirty_metadata(handle, inode, this_bh);
4205
		else
4206 4207 4208 4209
			EXT4_ERROR_INODE(inode,
					 "circular indirect block detected at "
					 "block %llu",
				(unsigned long long) this_bh->b_blocknr);
4210 4211 4212 4213
	}
}

/**
4214
 *	ext4_free_branches - free an array of branches
4215 4216 4217 4218 4219 4220 4221
 *	@handle: JBD handle for this transaction
 *	@inode:	inode we are dealing with
 *	@parent_bh: the buffer_head which contains *@first and *@last
 *	@first:	array of block numbers
 *	@last:	pointer immediately past the end of array
 *	@depth:	depth of the branches to free
 *
L
Lucas De Marchi 已提交
4222
 *	We are freeing all blocks referred from these branches (numbers are
4223 4224 4225
 *	stored as little-endian 32-bit) and updating @inode->i_blocks
 *	appropriately.
 */
4226
static void ext4_free_branches(handle_t *handle, struct inode *inode,
4227 4228 4229
			       struct buffer_head *parent_bh,
			       __le32 *first, __le32 *last, int depth)
{
4230
	ext4_fsblk_t nr;
4231 4232
	__le32 *p;

4233
	if (ext4_handle_is_aborted(handle))
4234 4235 4236 4237
		return;

	if (depth--) {
		struct buffer_head *bh;
4238
		int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
4239 4240 4241 4242 4243 4244
		p = last;
		while (--p >= first) {
			nr = le32_to_cpu(*p);
			if (!nr)
				continue;		/* A hole */

4245 4246
			if (!ext4_data_block_valid(EXT4_SB(inode->i_sb),
						   nr, 1)) {
4247 4248 4249 4250
				EXT4_ERROR_INODE(inode,
						 "invalid indirect mapped "
						 "block %lu (level %d)",
						 (unsigned long) nr, depth);
4251 4252 4253
				break;
			}

4254 4255 4256 4257 4258 4259 4260 4261
			/* Go read the buffer for the next level down */
			bh = sb_bread(inode->i_sb, nr);

			/*
			 * A read failure? Report error and clear slot
			 * (should be rare).
			 */
			if (!bh) {
4262 4263
				EXT4_ERROR_INODE_BLOCK(inode, nr,
						       "Read failure");
4264 4265 4266 4267 4268
				continue;
			}

			/* This zaps the entire block.  Bottom up. */
			BUFFER_TRACE(bh, "free child branches");
4269
			ext4_free_branches(handle, inode, bh,
4270 4271 4272
					(__le32 *) bh->b_data,
					(__le32 *) bh->b_data + addr_per_block,
					depth);
4273
			brelse(bh);
4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290

			/*
			 * Everything below this this pointer has been
			 * released.  Now let this top-of-subtree go.
			 *
			 * We want the freeing of this indirect block to be
			 * atomic in the journal with the updating of the
			 * bitmap block which owns it.  So make some room in
			 * the journal.
			 *
			 * We zero the parent pointer *after* freeing its
			 * pointee in the bitmaps, so if extend_transaction()
			 * for some reason fails to put the bitmap changes and
			 * the release into the same transaction, recovery
			 * will merely complain about releasing a free block,
			 * rather than leaking blocks.
			 */
4291
			if (ext4_handle_is_aborted(handle))
4292 4293
				return;
			if (try_to_extend_transaction(handle, inode)) {
4294
				ext4_mark_inode_dirty(handle, inode);
4295
				ext4_truncate_restart_trans(handle, inode,
4296
					    ext4_blocks_for_truncate(inode));
4297 4298
			}

4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309
			/*
			 * The forget flag here is critical because if
			 * we are journaling (and not doing data
			 * journaling), we have to make sure a revoke
			 * record is written to prevent the journal
			 * replay from overwriting the (former)
			 * indirect block if it gets reallocated as a
			 * data block.  This must happen in the same
			 * transaction where the data blocks are
			 * actually freed.
			 */
4310
			ext4_free_blocks(handle, inode, NULL, nr, 1,
4311 4312
					 EXT4_FREE_BLOCKS_METADATA|
					 EXT4_FREE_BLOCKS_FORGET);
4313 4314 4315 4316 4317 4318 4319

			if (parent_bh) {
				/*
				 * The block which we have just freed is
				 * pointed to by an indirect block: journal it
				 */
				BUFFER_TRACE(parent_bh, "get_write_access");
4320
				if (!ext4_journal_get_write_access(handle,
4321 4322 4323
								   parent_bh)){
					*p = 0;
					BUFFER_TRACE(parent_bh,
4324 4325 4326 4327
					"call ext4_handle_dirty_metadata");
					ext4_handle_dirty_metadata(handle,
								   inode,
								   parent_bh);
4328 4329 4330 4331 4332 4333
				}
			}
		}
	} else {
		/* We have reached the bottom of the tree. */
		BUFFER_TRACE(parent_bh, "free data blocks");
4334
		ext4_free_data(handle, inode, parent_bh, first, last);
4335 4336 4337
	}
}

4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348
int ext4_can_truncate(struct inode *inode)
{
	if (S_ISREG(inode->i_mode))
		return 1;
	if (S_ISDIR(inode->i_mode))
		return 1;
	if (S_ISLNK(inode->i_mode))
		return !ext4_inode_is_fast_symlink(inode);
	return 0;
}

4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373
/*
 * ext4_punch_hole: punches a hole in a file by releaseing the blocks
 * associated with the given offset and length
 *
 * @inode:  File inode
 * @offset: The offset where the hole will begin
 * @len:    The length of the hole
 *
 * Returns: 0 on sucess or negative on failure
 */

int ext4_punch_hole(struct file *file, loff_t offset, loff_t length)
{
	struct inode *inode = file->f_path.dentry->d_inode;
	if (!S_ISREG(inode->i_mode))
		return -ENOTSUPP;

	if (!ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
		/* TODO: Add support for non extent hole punching */
		return -ENOTSUPP;
	}

	return ext4_ext_punch_hole(file, offset, length);
}

4374
/*
4375
 * ext4_truncate()
4376
 *
4377 4378
 * We block out ext4_get_block() block instantiations across the entire
 * transaction, and VFS/VM ensures that ext4_truncate() cannot run
4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394
 * simultaneously on behalf of the same inode.
 *
 * As we work through the truncate and commmit bits of it to the journal there
 * is one core, guiding principle: the file's tree must always be consistent on
 * disk.  We must be able to restart the truncate after a crash.
 *
 * The file's tree may be transiently inconsistent in memory (although it
 * probably isn't), but whenever we close off and commit a journal transaction,
 * the contents of (the filesystem + the journal) must be consistent and
 * restartable.  It's pretty simple, really: bottom up, right to left (although
 * left-to-right works OK too).
 *
 * Note that at recovery time, journal replay occurs *before* the restart of
 * truncate against the orphan inode list.
 *
 * The committed inode has the new, desired i_size (which is the same as
4395
 * i_disksize in this case).  After a crash, ext4_orphan_cleanup() will see
4396
 * that this inode's truncate did not complete and it will again call
4397 4398
 * ext4_truncate() to have another go.  So there will be instantiated blocks
 * to the right of the truncation point in a crashed ext4 filesystem.  But
4399
 * that's fine - as long as they are linked from the inode, the post-crash
4400
 * ext4_truncate() run will find them and release them.
4401
 */
4402
void ext4_truncate(struct inode *inode)
4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422
{
	trace_ext4_truncate_enter(inode);

	if (!ext4_can_truncate(inode))
		return;

	ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS);

	if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
		ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);

	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
		ext4_ext_truncate(inode);
	else
		ext4_ind_truncate(inode);

	trace_ext4_truncate_exit(inode);
}

void ext4_ind_truncate(struct inode *inode)
4423 4424
{
	handle_t *handle;
4425
	struct ext4_inode_info *ei = EXT4_I(inode);
4426
	__le32 *i_data = ei->i_data;
4427
	int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
4428
	struct address_space *mapping = inode->i_mapping;
A
Aneesh Kumar K.V 已提交
4429
	ext4_lblk_t offsets[4];
4430 4431 4432
	Indirect chain[4];
	Indirect *partial;
	__le32 nr = 0;
4433 4434
	int n = 0;
	ext4_lblk_t last_block, max_block;
4435 4436 4437
	unsigned blocksize = inode->i_sb->s_blocksize;

	handle = start_transaction(inode);
4438
	if (IS_ERR(handle))
4439 4440 4441
		return;		/* AKPM: return what? */

	last_block = (inode->i_size + blocksize-1)
4442
					>> EXT4_BLOCK_SIZE_BITS(inode->i_sb);
4443 4444
	max_block = (EXT4_SB(inode->i_sb)->s_bitmap_maxbytes + blocksize-1)
					>> EXT4_BLOCK_SIZE_BITS(inode->i_sb);
4445

4446 4447 4448
	if (inode->i_size & (blocksize - 1))
		if (ext4_block_truncate_page(handle, mapping, inode->i_size))
			goto out_stop;
4449

4450 4451 4452 4453 4454
	if (last_block != max_block) {
		n = ext4_block_to_path(inode, last_block, offsets, NULL);
		if (n == 0)
			goto out_stop;	/* error */
	}
4455 4456 4457 4458 4459 4460 4461 4462 4463 4464

	/*
	 * OK.  This truncate is going to happen.  We add the inode to the
	 * orphan list, so that if this truncate spans multiple transactions,
	 * and we crash, we will resume the truncate when the filesystem
	 * recovers.  It also marks the inode dirty, to catch the new size.
	 *
	 * Implication: the file must always be in a sane, consistent
	 * truncatable state while each transaction commits.
	 */
4465
	if (ext4_orphan_add(handle, inode))
4466 4467
		goto out_stop;

4468 4469 4470 4471 4472
	/*
	 * From here we block out all ext4_get_block() callers who want to
	 * modify the block allocation tree.
	 */
	down_write(&ei->i_data_sem);
4473

4474
	ext4_discard_preallocations(inode);
4475

4476 4477 4478 4479 4480
	/*
	 * The orphan list entry will now protect us from any crash which
	 * occurs before the truncate completes, so it is now safe to propagate
	 * the new, shorter inode size (held for now in i_size) into the
	 * on-disk inode. We do this via i_disksize, which is the value which
4481
	 * ext4 *really* writes onto the disk inode.
4482 4483 4484
	 */
	ei->i_disksize = inode->i_size;

4485 4486 4487 4488 4489 4490 4491
	if (last_block == max_block) {
		/*
		 * It is unnecessary to free any data blocks if last_block is
		 * equal to the indirect block limit.
		 */
		goto out_unlock;
	} else if (n == 1) {		/* direct blocks */
4492 4493
		ext4_free_data(handle, inode, NULL, i_data+offsets[0],
			       i_data + EXT4_NDIR_BLOCKS);
4494 4495 4496
		goto do_indirects;
	}

4497
	partial = ext4_find_shared(inode, n, offsets, chain, &nr);
4498 4499 4500 4501
	/* Kill the top of shared branch (not detached) */
	if (nr) {
		if (partial == chain) {
			/* Shared branch grows from the inode */
4502
			ext4_free_branches(handle, inode, NULL,
4503 4504 4505 4506 4507 4508 4509 4510 4511
					   &nr, &nr+1, (chain+n-1) - partial);
			*partial->p = 0;
			/*
			 * We mark the inode dirty prior to restart,
			 * and prior to stop.  No need for it here.
			 */
		} else {
			/* Shared branch grows from an indirect block */
			BUFFER_TRACE(partial->bh, "get_write_access");
4512
			ext4_free_branches(handle, inode, partial->bh,
4513 4514 4515 4516 4517 4518
					partial->p,
					partial->p+1, (chain+n-1) - partial);
		}
	}
	/* Clear the ends of indirect blocks on the shared branch */
	while (partial > chain) {
4519
		ext4_free_branches(handle, inode, partial->bh, partial->p + 1,
4520 4521 4522
				   (__le32*)partial->bh->b_data+addr_per_block,
				   (chain+n-1) - partial);
		BUFFER_TRACE(partial->bh, "call brelse");
4523
		brelse(partial->bh);
4524 4525 4526 4527 4528 4529
		partial--;
	}
do_indirects:
	/* Kill the remaining (whole) subtrees */
	switch (offsets[0]) {
	default:
4530
		nr = i_data[EXT4_IND_BLOCK];
4531
		if (nr) {
4532 4533
			ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 1);
			i_data[EXT4_IND_BLOCK] = 0;
4534
		}
4535 4536
	case EXT4_IND_BLOCK:
		nr = i_data[EXT4_DIND_BLOCK];
4537
		if (nr) {
4538 4539
			ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 2);
			i_data[EXT4_DIND_BLOCK] = 0;
4540
		}
4541 4542
	case EXT4_DIND_BLOCK:
		nr = i_data[EXT4_TIND_BLOCK];
4543
		if (nr) {
4544 4545
			ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 3);
			i_data[EXT4_TIND_BLOCK] = 0;
4546
		}
4547
	case EXT4_TIND_BLOCK:
4548 4549 4550
		;
	}

4551
out_unlock:
4552
	up_write(&ei->i_data_sem);
K
Kalpak Shah 已提交
4553
	inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
4554
	ext4_mark_inode_dirty(handle, inode);
4555 4556 4557 4558 4559 4560

	/*
	 * In a multi-transaction truncate, we only make the final transaction
	 * synchronous
	 */
	if (IS_SYNC(inode))
4561
		ext4_handle_sync(handle);
4562 4563 4564 4565 4566
out_stop:
	/*
	 * If this was a simple ftruncate(), and the file will remain alive
	 * then we need to clear up the orphan record which we created above.
	 * However, if this was a real unlink then we were called by
4567
	 * ext4_delete_inode(), and we allow that function to clean up the
4568 4569 4570
	 * orphan info for us.
	 */
	if (inode->i_nlink)
4571
		ext4_orphan_del(handle, inode);
4572

4573
	ext4_journal_stop(handle);
4574
	trace_ext4_truncate_exit(inode);
4575 4576 4577
}

/*
4578
 * ext4_get_inode_loc returns with an extra refcount against the inode's
4579 4580 4581 4582
 * underlying buffer_head on success. If 'in_mem' is true, we have all
 * data in memory that is needed to recreate the on-disk version of this
 * inode.
 */
4583 4584
static int __ext4_get_inode_loc(struct inode *inode,
				struct ext4_iloc *iloc, int in_mem)
4585
{
4586 4587 4588 4589 4590 4591
	struct ext4_group_desc	*gdp;
	struct buffer_head	*bh;
	struct super_block	*sb = inode->i_sb;
	ext4_fsblk_t		block;
	int			inodes_per_block, inode_offset;

A
Aneesh Kumar K.V 已提交
4592
	iloc->bh = NULL;
4593 4594
	if (!ext4_valid_inum(sb, inode->i_ino))
		return -EIO;
4595

4596 4597 4598
	iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb);
	gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
	if (!gdp)
4599 4600
		return -EIO;

4601 4602 4603
	/*
	 * Figure out the offset within the block group inode table
	 */
4604
	inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
4605 4606 4607 4608 4609 4610
	inode_offset = ((inode->i_ino - 1) %
			EXT4_INODES_PER_GROUP(sb));
	block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
	iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);

	bh = sb_getblk(sb, block);
4611
	if (!bh) {
4612 4613
		EXT4_ERROR_INODE_BLOCK(inode, block,
				       "unable to read itable block");
4614 4615 4616 4617
		return -EIO;
	}
	if (!buffer_uptodate(bh)) {
		lock_buffer(bh);
4618 4619 4620 4621 4622 4623 4624 4625 4626 4627

		/*
		 * If the buffer has the write error flag, we have failed
		 * to write out another inode in the same block.  In this
		 * case, we don't have to read the block because we may
		 * read the old inode data successfully.
		 */
		if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
			set_buffer_uptodate(bh);

4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640
		if (buffer_uptodate(bh)) {
			/* someone brought it uptodate while we waited */
			unlock_buffer(bh);
			goto has_buffer;
		}

		/*
		 * If we have all information of the inode in memory and this
		 * is the only valid inode in the block, we need not read the
		 * block.
		 */
		if (in_mem) {
			struct buffer_head *bitmap_bh;
4641
			int i, start;
4642

4643
			start = inode_offset & ~(inodes_per_block - 1);
4644

4645 4646
			/* Is the inode bitmap in cache? */
			bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658
			if (!bitmap_bh)
				goto make_io;

			/*
			 * If the inode bitmap isn't in cache then the
			 * optimisation may end up performing two reads instead
			 * of one, so skip it.
			 */
			if (!buffer_uptodate(bitmap_bh)) {
				brelse(bitmap_bh);
				goto make_io;
			}
4659
			for (i = start; i < start + inodes_per_block; i++) {
4660 4661
				if (i == inode_offset)
					continue;
4662
				if (ext4_test_bit(i, bitmap_bh->b_data))
4663 4664 4665
					break;
			}
			brelse(bitmap_bh);
4666
			if (i == start + inodes_per_block) {
4667 4668 4669 4670 4671 4672 4673 4674 4675
				/* all other inodes are free, so skip I/O */
				memset(bh->b_data, 0, bh->b_size);
				set_buffer_uptodate(bh);
				unlock_buffer(bh);
				goto has_buffer;
			}
		}

make_io:
4676 4677 4678 4679 4680 4681 4682 4683 4684
		/*
		 * If we need to do any I/O, try to pre-readahead extra
		 * blocks from the inode table.
		 */
		if (EXT4_SB(sb)->s_inode_readahead_blks) {
			ext4_fsblk_t b, end, table;
			unsigned num;

			table = ext4_inode_table(sb, gdp);
T
Theodore Ts'o 已提交
4685
			/* s_inode_readahead_blks is always a power of 2 */
4686 4687 4688 4689 4690 4691 4692
			b = block & ~(EXT4_SB(sb)->s_inode_readahead_blks-1);
			if (table > b)
				b = table;
			end = b + EXT4_SB(sb)->s_inode_readahead_blks;
			num = EXT4_INODES_PER_GROUP(sb);
			if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
				       EXT4_FEATURE_RO_COMPAT_GDT_CSUM))
4693
				num -= ext4_itable_unused_count(sb, gdp);
4694 4695 4696 4697 4698 4699 4700
			table += num / inodes_per_block;
			if (end > table)
				end = table;
			while (b <= end)
				sb_breadahead(sb, b++);
		}

4701 4702 4703 4704 4705
		/*
		 * There are other valid inodes in the buffer, this inode
		 * has in-inode xattrs, or we don't have this inode in memory.
		 * Read the block from disk.
		 */
4706
		trace_ext4_load_inode(inode);
4707 4708 4709 4710 4711
		get_bh(bh);
		bh->b_end_io = end_buffer_read_sync;
		submit_bh(READ_META, bh);
		wait_on_buffer(bh);
		if (!buffer_uptodate(bh)) {
4712 4713
			EXT4_ERROR_INODE_BLOCK(inode, block,
					       "unable to read itable block");
4714 4715 4716 4717 4718 4719 4720 4721 4722
			brelse(bh);
			return -EIO;
		}
	}
has_buffer:
	iloc->bh = bh;
	return 0;
}

4723
int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
4724 4725
{
	/* We have all inode data except xattrs in memory here. */
4726
	return __ext4_get_inode_loc(inode, iloc,
4727
		!ext4_test_inode_state(inode, EXT4_STATE_XATTR));
4728 4729
}

4730
void ext4_set_inode_flags(struct inode *inode)
4731
{
4732
	unsigned int flags = EXT4_I(inode)->i_flags;
4733 4734

	inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC);
4735
	if (flags & EXT4_SYNC_FL)
4736
		inode->i_flags |= S_SYNC;
4737
	if (flags & EXT4_APPEND_FL)
4738
		inode->i_flags |= S_APPEND;
4739
	if (flags & EXT4_IMMUTABLE_FL)
4740
		inode->i_flags |= S_IMMUTABLE;
4741
	if (flags & EXT4_NOATIME_FL)
4742
		inode->i_flags |= S_NOATIME;
4743
	if (flags & EXT4_DIRSYNC_FL)
4744 4745 4746
		inode->i_flags |= S_DIRSYNC;
}

4747 4748 4749
/* Propagate flags from i_flags to EXT4_I(inode)->i_flags */
void ext4_get_inode_flags(struct ext4_inode_info *ei)
{
4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769
	unsigned int vfs_fl;
	unsigned long old_fl, new_fl;

	do {
		vfs_fl = ei->vfs_inode.i_flags;
		old_fl = ei->i_flags;
		new_fl = old_fl & ~(EXT4_SYNC_FL|EXT4_APPEND_FL|
				EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL|
				EXT4_DIRSYNC_FL);
		if (vfs_fl & S_SYNC)
			new_fl |= EXT4_SYNC_FL;
		if (vfs_fl & S_APPEND)
			new_fl |= EXT4_APPEND_FL;
		if (vfs_fl & S_IMMUTABLE)
			new_fl |= EXT4_IMMUTABLE_FL;
		if (vfs_fl & S_NOATIME)
			new_fl |= EXT4_NOATIME_FL;
		if (vfs_fl & S_DIRSYNC)
			new_fl |= EXT4_DIRSYNC_FL;
	} while (cmpxchg(&ei->i_flags, old_fl, new_fl) != old_fl);
4770
}
4771

4772
static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
4773
				  struct ext4_inode_info *ei)
4774 4775
{
	blkcnt_t i_blocks ;
A
Aneesh Kumar K.V 已提交
4776 4777
	struct inode *inode = &(ei->vfs_inode);
	struct super_block *sb = inode->i_sb;
4778 4779 4780 4781 4782 4783

	if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
				EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) {
		/* we are using combined 48 bit field */
		i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
					le32_to_cpu(raw_inode->i_blocks_lo);
4784
		if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) {
A
Aneesh Kumar K.V 已提交
4785 4786 4787 4788 4789
			/* i_blocks represent file system block size */
			return i_blocks  << (inode->i_blkbits - 9);
		} else {
			return i_blocks;
		}
4790 4791 4792 4793
	} else {
		return le32_to_cpu(raw_inode->i_blocks_lo);
	}
}
4794

4795
struct inode *ext4_iget(struct super_block *sb, unsigned long ino)
4796
{
4797 4798
	struct ext4_iloc iloc;
	struct ext4_inode *raw_inode;
4799 4800
	struct ext4_inode_info *ei;
	struct inode *inode;
4801
	journal_t *journal = EXT4_SB(sb)->s_journal;
4802
	long ret;
4803 4804
	int block;

4805 4806 4807 4808 4809 4810 4811
	inode = iget_locked(sb, ino);
	if (!inode)
		return ERR_PTR(-ENOMEM);
	if (!(inode->i_state & I_NEW))
		return inode;

	ei = EXT4_I(inode);
4812
	iloc.bh = NULL;
4813

4814 4815
	ret = __ext4_get_inode_loc(inode, &iloc, 0);
	if (ret < 0)
4816
		goto bad_inode;
4817
	raw_inode = ext4_raw_inode(&iloc);
4818 4819 4820
	inode->i_mode = le16_to_cpu(raw_inode->i_mode);
	inode->i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
	inode->i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
4821
	if (!(test_opt(inode->i_sb, NO_UID32))) {
4822 4823 4824 4825 4826
		inode->i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
		inode->i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
	}
	inode->i_nlink = le16_to_cpu(raw_inode->i_links_count);

4827
	ext4_clear_state_flags(ei);	/* Only relevant on 32-bit archs */
4828 4829 4830 4831 4832 4833 4834 4835 4836
	ei->i_dir_start_lookup = 0;
	ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
	/* We now have enough fields to check if the inode was active or not.
	 * This is needed because nfsd might try to access dead inodes
	 * the test is that same one that e2fsck uses
	 * NeilBrown 1999oct15
	 */
	if (inode->i_nlink == 0) {
		if (inode->i_mode == 0 ||
4837
		    !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) {
4838
			/* this inode is deleted */
4839
			ret = -ESTALE;
4840 4841 4842 4843 4844 4845 4846 4847
			goto bad_inode;
		}
		/* The only unlinked inodes we let through here have
		 * valid i_mode and are being read by the orphan
		 * recovery code: that's fine, we're about to complete
		 * the process of deleting those. */
	}
	ei->i_flags = le32_to_cpu(raw_inode->i_flags);
4848
	inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
4849
	ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
4850
	if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT))
B
Badari Pulavarty 已提交
4851 4852
		ei->i_file_acl |=
			((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
4853
	inode->i_size = ext4_isize(raw_inode);
4854
	ei->i_disksize = inode->i_size;
4855 4856 4857
#ifdef CONFIG_QUOTA
	ei->i_reserved_quota = 0;
#endif
4858 4859
	inode->i_generation = le32_to_cpu(raw_inode->i_generation);
	ei->i_block_group = iloc.block_group;
4860
	ei->i_last_alloc_group = ~0;
4861 4862 4863 4864
	/*
	 * NOTE! The in-memory inode i_data array is in little-endian order
	 * even on big-endian machines: we do NOT byteswap the block numbers!
	 */
4865
	for (block = 0; block < EXT4_N_BLOCKS; block++)
4866 4867 4868
		ei->i_data[block] = raw_inode->i_block[block];
	INIT_LIST_HEAD(&ei->i_orphan);

4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879
	/*
	 * Set transaction id's of transactions that have to be committed
	 * to finish f[data]sync. We set them to currently running transaction
	 * as we cannot be sure that the inode or some of its metadata isn't
	 * part of the transaction - the inode could have been reclaimed and
	 * now it is reread from disk.
	 */
	if (journal) {
		transaction_t *transaction;
		tid_t tid;

4880
		read_lock(&journal->j_state_lock);
4881 4882 4883 4884 4885 4886 4887 4888
		if (journal->j_running_transaction)
			transaction = journal->j_running_transaction;
		else
			transaction = journal->j_committing_transaction;
		if (transaction)
			tid = transaction->t_tid;
		else
			tid = journal->j_commit_sequence;
4889
		read_unlock(&journal->j_state_lock);
4890 4891 4892 4893
		ei->i_sync_tid = tid;
		ei->i_datasync_tid = tid;
	}

4894
	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4895
		ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
4896
		if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
4897
		    EXT4_INODE_SIZE(inode->i_sb)) {
4898
			ret = -EIO;
4899
			goto bad_inode;
4900
		}
4901 4902
		if (ei->i_extra_isize == 0) {
			/* The extra space is currently unused. Use it. */
4903 4904
			ei->i_extra_isize = sizeof(struct ext4_inode) -
					    EXT4_GOOD_OLD_INODE_SIZE;
4905 4906
		} else {
			__le32 *magic = (void *)raw_inode +
4907
					EXT4_GOOD_OLD_INODE_SIZE +
4908
					ei->i_extra_isize;
4909
			if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC))
4910
				ext4_set_inode_state(inode, EXT4_STATE_XATTR);
4911 4912 4913 4914
		}
	} else
		ei->i_extra_isize = 0;

K
Kalpak Shah 已提交
4915 4916 4917 4918 4919
	EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
	EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
	EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
	EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);

4920 4921 4922 4923 4924 4925 4926
	inode->i_version = le32_to_cpu(raw_inode->i_disk_version);
	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
		if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
			inode->i_version |=
			(__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
	}

4927
	ret = 0;
4928
	if (ei->i_file_acl &&
4929
	    !ext4_data_block_valid(EXT4_SB(sb), ei->i_file_acl, 1)) {
4930 4931
		EXT4_ERROR_INODE(inode, "bad extended attribute block %llu",
				 ei->i_file_acl);
4932 4933
		ret = -EIO;
		goto bad_inode;
4934
	} else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
4935 4936 4937 4938 4939
		if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
		    (S_ISLNK(inode->i_mode) &&
		     !ext4_inode_is_fast_symlink(inode)))
			/* Validate extent which is part of inode */
			ret = ext4_ext_check_inode(inode);
4940
	} else if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4941 4942
		   (S_ISLNK(inode->i_mode) &&
		    !ext4_inode_is_fast_symlink(inode))) {
4943
		/* Validate block references which are part of inode */
4944
		ret = ext4_ind_check_inode(inode);
4945
	}
4946
	if (ret)
4947
		goto bad_inode;
4948

4949
	if (S_ISREG(inode->i_mode)) {
4950 4951 4952
		inode->i_op = &ext4_file_inode_operations;
		inode->i_fop = &ext4_file_operations;
		ext4_set_aops(inode);
4953
	} else if (S_ISDIR(inode->i_mode)) {
4954 4955
		inode->i_op = &ext4_dir_inode_operations;
		inode->i_fop = &ext4_dir_operations;
4956
	} else if (S_ISLNK(inode->i_mode)) {
4957
		if (ext4_inode_is_fast_symlink(inode)) {
4958
			inode->i_op = &ext4_fast_symlink_inode_operations;
4959 4960 4961
			nd_terminate_link(ei->i_data, inode->i_size,
				sizeof(ei->i_data) - 1);
		} else {
4962 4963
			inode->i_op = &ext4_symlink_inode_operations;
			ext4_set_aops(inode);
4964
		}
4965 4966
	} else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
	      S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
4967
		inode->i_op = &ext4_special_inode_operations;
4968 4969 4970 4971 4972 4973
		if (raw_inode->i_block[0])
			init_special_inode(inode, inode->i_mode,
			   old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
		else
			init_special_inode(inode, inode->i_mode,
			   new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
4974 4975
	} else {
		ret = -EIO;
4976
		EXT4_ERROR_INODE(inode, "bogus i_mode (%o)", inode->i_mode);
4977
		goto bad_inode;
4978
	}
4979
	brelse(iloc.bh);
4980
	ext4_set_inode_flags(inode);
4981 4982
	unlock_new_inode(inode);
	return inode;
4983 4984

bad_inode:
4985
	brelse(iloc.bh);
4986 4987
	iget_failed(inode);
	return ERR_PTR(ret);
4988 4989
}

4990 4991 4992 4993 4994 4995 4996 4997 4998 4999 5000 5001 5002
static int ext4_inode_blocks_set(handle_t *handle,
				struct ext4_inode *raw_inode,
				struct ext4_inode_info *ei)
{
	struct inode *inode = &(ei->vfs_inode);
	u64 i_blocks = inode->i_blocks;
	struct super_block *sb = inode->i_sb;

	if (i_blocks <= ~0U) {
		/*
		 * i_blocks can be represnted in a 32 bit variable
		 * as multiple of 512 bytes
		 */
A
Aneesh Kumar K.V 已提交
5003
		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
5004
		raw_inode->i_blocks_high = 0;
5005
		ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
5006 5007 5008 5009 5010 5011
		return 0;
	}
	if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_HUGE_FILE))
		return -EFBIG;

	if (i_blocks <= 0xffffffffffffULL) {
5012 5013 5014 5015
		/*
		 * i_blocks can be represented in a 48 bit variable
		 * as multiple of 512 bytes
		 */
A
Aneesh Kumar K.V 已提交
5016
		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
5017
		raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
5018
		ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
5019
	} else {
5020
		ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE);
A
Aneesh Kumar K.V 已提交
5021 5022 5023 5024
		/* i_block is stored in file system block size */
		i_blocks = i_blocks >> (inode->i_blkbits - 9);
		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
		raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
5025
	}
5026
	return 0;
5027 5028
}

5029 5030 5031 5032 5033 5034 5035
/*
 * Post the struct inode info into an on-disk inode location in the
 * buffer-cache.  This gobbles the caller's reference to the
 * buffer_head in the inode location struct.
 *
 * The caller must have write access to iloc->bh.
 */
5036
static int ext4_do_update_inode(handle_t *handle,
5037
				struct inode *inode,
5038
				struct ext4_iloc *iloc)
5039
{
5040 5041
	struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
	struct ext4_inode_info *ei = EXT4_I(inode);
5042 5043 5044 5045 5046
	struct buffer_head *bh = iloc->bh;
	int err = 0, rc, block;

	/* For fields not not tracking in the in-memory inode,
	 * initialise them to zero for new inodes. */
5047
	if (ext4_test_inode_state(inode, EXT4_STATE_NEW))
5048
		memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
5049

5050
	ext4_get_inode_flags(ei);
5051
	raw_inode->i_mode = cpu_to_le16(inode->i_mode);
5052
	if (!(test_opt(inode->i_sb, NO_UID32))) {
5053 5054 5055 5056 5057 5058
		raw_inode->i_uid_low = cpu_to_le16(low_16_bits(inode->i_uid));
		raw_inode->i_gid_low = cpu_to_le16(low_16_bits(inode->i_gid));
/*
 * Fix up interoperability with old kernels. Otherwise, old inodes get
 * re-used with the upper 16 bits of the uid/gid intact
 */
5059
		if (!ei->i_dtime) {
5060 5061 5062 5063 5064 5065 5066 5067 5068 5069 5070 5071 5072 5073 5074 5075 5076
			raw_inode->i_uid_high =
				cpu_to_le16(high_16_bits(inode->i_uid));
			raw_inode->i_gid_high =
				cpu_to_le16(high_16_bits(inode->i_gid));
		} else {
			raw_inode->i_uid_high = 0;
			raw_inode->i_gid_high = 0;
		}
	} else {
		raw_inode->i_uid_low =
			cpu_to_le16(fs_high2lowuid(inode->i_uid));
		raw_inode->i_gid_low =
			cpu_to_le16(fs_high2lowgid(inode->i_gid));
		raw_inode->i_uid_high = 0;
		raw_inode->i_gid_high = 0;
	}
	raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
K
Kalpak Shah 已提交
5077 5078 5079 5080 5081 5082

	EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
	EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
	EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
	EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);

5083 5084
	if (ext4_inode_blocks_set(handle, raw_inode, ei))
		goto out_brelse;
5085
	raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
5086
	raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF);
5087 5088
	if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
	    cpu_to_le32(EXT4_OS_HURD))
B
Badari Pulavarty 已提交
5089 5090
		raw_inode->i_file_acl_high =
			cpu_to_le16(ei->i_file_acl >> 32);
5091
	raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
5092 5093 5094 5095 5096 5097 5098 5099 5100 5101 5102 5103 5104 5105 5106 5107
	ext4_isize_set(raw_inode, ei->i_disksize);
	if (ei->i_disksize > 0x7fffffffULL) {
		struct super_block *sb = inode->i_sb;
		if (!EXT4_HAS_RO_COMPAT_FEATURE(sb,
				EXT4_FEATURE_RO_COMPAT_LARGE_FILE) ||
				EXT4_SB(sb)->s_es->s_rev_level ==
				cpu_to_le32(EXT4_GOOD_OLD_REV)) {
			/* If this is the first large file
			 * created, add a flag to the superblock.
			 */
			err = ext4_journal_get_write_access(handle,
					EXT4_SB(sb)->s_sbh);
			if (err)
				goto out_brelse;
			ext4_update_dynamic_rev(sb);
			EXT4_SET_RO_COMPAT_FEATURE(sb,
5108
					EXT4_FEATURE_RO_COMPAT_LARGE_FILE);
5109
			sb->s_dirt = 1;
5110
			ext4_handle_sync(handle);
5111
			err = ext4_handle_dirty_metadata(handle, NULL,
5112
					EXT4_SB(sb)->s_sbh);
5113 5114 5115 5116 5117 5118 5119 5120 5121 5122 5123 5124 5125 5126
		}
	}
	raw_inode->i_generation = cpu_to_le32(inode->i_generation);
	if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
		if (old_valid_dev(inode->i_rdev)) {
			raw_inode->i_block[0] =
				cpu_to_le32(old_encode_dev(inode->i_rdev));
			raw_inode->i_block[1] = 0;
		} else {
			raw_inode->i_block[0] = 0;
			raw_inode->i_block[1] =
				cpu_to_le32(new_encode_dev(inode->i_rdev));
			raw_inode->i_block[2] = 0;
		}
5127 5128 5129
	} else
		for (block = 0; block < EXT4_N_BLOCKS; block++)
			raw_inode->i_block[block] = ei->i_data[block];
5130

5131 5132 5133 5134 5135
	raw_inode->i_disk_version = cpu_to_le32(inode->i_version);
	if (ei->i_extra_isize) {
		if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
			raw_inode->i_version_hi =
			cpu_to_le32(inode->i_version >> 32);
5136
		raw_inode->i_extra_isize = cpu_to_le16(ei->i_extra_isize);
5137 5138
	}

5139
	BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
5140
	rc = ext4_handle_dirty_metadata(handle, NULL, bh);
5141 5142
	if (!err)
		err = rc;
5143
	ext4_clear_inode_state(inode, EXT4_STATE_NEW);
5144

5145
	ext4_update_inode_fsync_trans(handle, inode, 0);
5146
out_brelse:
5147
	brelse(bh);
5148
	ext4_std_error(inode->i_sb, err);
5149 5150 5151 5152
	return err;
}

/*
5153
 * ext4_write_inode()
5154 5155 5156 5157 5158 5159 5160 5161 5162 5163 5164 5165 5166 5167 5168 5169
 *
 * We are called from a few places:
 *
 * - Within generic_file_write() for O_SYNC files.
 *   Here, there will be no transaction running. We wait for any running
 *   trasnaction to commit.
 *
 * - Within sys_sync(), kupdate and such.
 *   We wait on commit, if tol to.
 *
 * - Within prune_icache() (PF_MEMALLOC == true)
 *   Here we simply return.  We can't afford to block kswapd on the
 *   journal commit.
 *
 * In all cases it is actually safe for us to return without doing anything,
 * because the inode has been copied into a raw inode buffer in
5170
 * ext4_mark_inode_dirty().  This is a correctness thing for O_SYNC and for
5171 5172 5173 5174 5175 5176 5177 5178 5179 5180 5181 5182 5183 5184 5185 5186
 * knfsd.
 *
 * Note that we are absolutely dependent upon all inode dirtiers doing the
 * right thing: they *must* call mark_inode_dirty() after dirtying info in
 * which we are interested.
 *
 * It would be a bug for them to not do this.  The code:
 *
 *	mark_inode_dirty(inode)
 *	stuff();
 *	inode->i_size = expr;
 *
 * is in error because a kswapd-driven write_inode() could occur while
 * `stuff()' is running, and the new i_size will be lost.  Plus the inode
 * will no longer be on the superblock's dirty inode list.
 */
5187
int ext4_write_inode(struct inode *inode, struct writeback_control *wbc)
5188
{
5189 5190
	int err;

5191 5192 5193
	if (current->flags & PF_MEMALLOC)
		return 0;

5194 5195 5196 5197 5198 5199
	if (EXT4_SB(inode->i_sb)->s_journal) {
		if (ext4_journal_current_handle()) {
			jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
			dump_stack();
			return -EIO;
		}
5200

5201
		if (wbc->sync_mode != WB_SYNC_ALL)
5202 5203 5204 5205 5206
			return 0;

		err = ext4_force_commit(inode->i_sb);
	} else {
		struct ext4_iloc iloc;
5207

5208
		err = __ext4_get_inode_loc(inode, &iloc, 0);
5209 5210
		if (err)
			return err;
5211
		if (wbc->sync_mode == WB_SYNC_ALL)
5212 5213
			sync_dirty_buffer(iloc.bh);
		if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) {
5214 5215
			EXT4_ERROR_INODE_BLOCK(inode, iloc.bh->b_blocknr,
					 "IO error syncing inode");
5216 5217
			err = -EIO;
		}
5218
		brelse(iloc.bh);
5219 5220
	}
	return err;
5221 5222 5223
}

/*
5224
 * ext4_setattr()
5225 5226 5227 5228 5229 5230 5231 5232 5233 5234 5235 5236 5237
 *
 * Called from notify_change.
 *
 * We want to trap VFS attempts to truncate the file as soon as
 * possible.  In particular, we want to make sure that when the VFS
 * shrinks i_size, we put the inode on the orphan list and modify
 * i_disksize immediately, so that during the subsequent flushing of
 * dirty pages and freeing of disk blocks, we can guarantee that any
 * commit will leave the blocks being flushed in an unused state on
 * disk.  (On recovery, the inode will get truncated and the blocks will
 * be freed, so we have a strong guarantee that no future commit will
 * leave these blocks visible to the user.)
 *
5238 5239 5240 5241 5242 5243 5244 5245
 * Another thing we have to assure is that if we are in ordered mode
 * and inode is still attached to the committing transaction, we must
 * we start writeout of all the dirty pages which are being truncated.
 * This way we are sure that all the data written in the previous
 * transaction are already on disk (truncate waits for pages under
 * writeback).
 *
 * Called with inode->i_mutex down.
5246
 */
5247
int ext4_setattr(struct dentry *dentry, struct iattr *attr)
5248 5249 5250
{
	struct inode *inode = dentry->d_inode;
	int error, rc = 0;
5251
	int orphan = 0;
5252 5253 5254 5255 5256 5257
	const unsigned int ia_valid = attr->ia_valid;

	error = inode_change_ok(inode, attr);
	if (error)
		return error;

5258
	if (is_quota_modification(inode, attr))
5259
		dquot_initialize(inode);
5260 5261 5262 5263 5264 5265
	if ((ia_valid & ATTR_UID && attr->ia_uid != inode->i_uid) ||
		(ia_valid & ATTR_GID && attr->ia_gid != inode->i_gid)) {
		handle_t *handle;

		/* (user+group)*(old+new) structure, inode write (sb,
		 * inode block, ? - but truncate inode update has it) */
D
Dmitry Monakhov 已提交
5266
		handle = ext4_journal_start(inode, (EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb)+
5267
					EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb))+3);
5268 5269 5270 5271
		if (IS_ERR(handle)) {
			error = PTR_ERR(handle);
			goto err_out;
		}
5272
		error = dquot_transfer(inode, attr);
5273
		if (error) {
5274
			ext4_journal_stop(handle);
5275 5276 5277 5278 5279 5280 5281 5282
			return error;
		}
		/* Update corresponding info in inode so that everything is in
		 * one transaction */
		if (attr->ia_valid & ATTR_UID)
			inode->i_uid = attr->ia_uid;
		if (attr->ia_valid & ATTR_GID)
			inode->i_gid = attr->ia_gid;
5283 5284
		error = ext4_mark_inode_dirty(handle, inode);
		ext4_journal_stop(handle);
5285 5286
	}

5287
	if (attr->ia_valid & ATTR_SIZE) {
5288
		if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
5289 5290
			struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);

5291 5292
			if (attr->ia_size > sbi->s_bitmap_maxbytes)
				return -EFBIG;
5293 5294 5295
		}
	}

5296
	if (S_ISREG(inode->i_mode) &&
5297
	    attr->ia_valid & ATTR_SIZE &&
5298
	    (attr->ia_size < inode->i_size)) {
5299 5300
		handle_t *handle;

5301
		handle = ext4_journal_start(inode, 3);
5302 5303 5304 5305
		if (IS_ERR(handle)) {
			error = PTR_ERR(handle);
			goto err_out;
		}
5306 5307 5308 5309
		if (ext4_handle_valid(handle)) {
			error = ext4_orphan_add(handle, inode);
			orphan = 1;
		}
5310 5311
		EXT4_I(inode)->i_disksize = attr->ia_size;
		rc = ext4_mark_inode_dirty(handle, inode);
5312 5313
		if (!error)
			error = rc;
5314
		ext4_journal_stop(handle);
5315 5316 5317 5318 5319 5320 5321 5322 5323 5324 5325 5326

		if (ext4_should_order_data(inode)) {
			error = ext4_begin_ordered_truncate(inode,
							    attr->ia_size);
			if (error) {
				/* Do as much error cleanup as possible */
				handle = ext4_journal_start(inode, 3);
				if (IS_ERR(handle)) {
					ext4_orphan_del(NULL, inode);
					goto err_out;
				}
				ext4_orphan_del(handle, inode);
5327
				orphan = 0;
5328 5329 5330 5331
				ext4_journal_stop(handle);
				goto err_out;
			}
		}
5332 5333
	}

5334 5335 5336 5337 5338 5339 5340
	if (attr->ia_valid & ATTR_SIZE) {
		if (attr->ia_size != i_size_read(inode)) {
			truncate_setsize(inode, attr->ia_size);
			ext4_truncate(inode);
		} else if (ext4_test_inode_flag(inode, EXT4_INODE_EOFBLOCKS))
			ext4_truncate(inode);
	}
5341

C
Christoph Hellwig 已提交
5342 5343 5344 5345 5346 5347 5348 5349 5350
	if (!rc) {
		setattr_copy(inode, attr);
		mark_inode_dirty(inode);
	}

	/*
	 * If the call to ext4_truncate failed to get a transaction handle at
	 * all, we need to clean up the in-core orphan list manually.
	 */
5351
	if (orphan && inode->i_nlink)
5352
		ext4_orphan_del(NULL, inode);
5353 5354

	if (!rc && (ia_valid & ATTR_MODE))
5355
		rc = ext4_acl_chmod(inode);
5356 5357

err_out:
5358
	ext4_std_error(inode->i_sb, error);
5359 5360 5361 5362 5363
	if (!error)
		error = rc;
	return error;
}

5364 5365 5366 5367 5368 5369 5370 5371 5372 5373 5374 5375 5376 5377 5378 5379 5380 5381 5382 5383 5384 5385 5386 5387
int ext4_getattr(struct vfsmount *mnt, struct dentry *dentry,
		 struct kstat *stat)
{
	struct inode *inode;
	unsigned long delalloc_blocks;

	inode = dentry->d_inode;
	generic_fillattr(inode, stat);

	/*
	 * We can't update i_blocks if the block allocation is delayed
	 * otherwise in the case of system crash before the real block
	 * allocation is done, we will have i_blocks inconsistent with
	 * on-disk file blocks.
	 * We always keep i_blocks updated together with real
	 * allocation. But to not confuse with user, stat
	 * will return the blocks that include the delayed allocation
	 * blocks for this file.
	 */
	delalloc_blocks = EXT4_I(inode)->i_reserved_data_blocks;

	stat->blocks += (delalloc_blocks << inode->i_sb->s_blocksize_bits)>>9;
	return 0;
}
5388

5389
static int ext4_ind_trans_blocks(struct inode *inode, int nrblocks, int chunk)
5390 5391 5392 5393 5394 5395
{
	int indirects;

	/* if nrblocks are contiguous */
	if (chunk) {
		/*
5396 5397 5398
		 * With N contiguous data blocks, we need at most
		 * N/EXT4_ADDR_PER_BLOCK(inode->i_sb) + 1 indirect blocks,
		 * 2 dindirect blocks, and 1 tindirect block
5399
		 */
5400 5401
		return DIV_ROUND_UP(nrblocks,
				    EXT4_ADDR_PER_BLOCK(inode->i_sb)) + 4;
5402 5403 5404 5405 5406 5407 5408 5409 5410 5411 5412 5413
	}
	/*
	 * if nrblocks are not contiguous, worse case, each block touch
	 * a indirect block, and each indirect block touch a double indirect
	 * block, plus a triple indirect block
	 */
	indirects = nrblocks * 2 + 1;
	return indirects;
}

static int ext4_index_trans_blocks(struct inode *inode, int nrblocks, int chunk)
{
5414
	if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
5415
		return ext4_ind_trans_blocks(inode, nrblocks, chunk);
5416
	return ext4_ext_index_trans_blocks(inode, nrblocks, chunk);
5417
}
5418

5419
/*
5420 5421 5422
 * Account for index blocks, block groups bitmaps and block group
 * descriptor blocks if modify datablocks and index blocks
 * worse case, the indexs blocks spread over different block groups
5423
 *
5424
 * If datablocks are discontiguous, they are possible to spread over
5425
 * different block groups too. If they are contiuguous, with flexbg,
5426
 * they could still across block group boundary.
5427
 *
5428 5429
 * Also account for superblock, inode, quota and xattr blocks
 */
5430
static int ext4_meta_trans_blocks(struct inode *inode, int nrblocks, int chunk)
5431
{
5432 5433
	ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
	int gdpblocks;
5434 5435 5436 5437 5438 5439 5440 5441 5442 5443 5444 5445 5446 5447 5448 5449 5450 5451 5452 5453 5454 5455 5456 5457 5458 5459
	int idxblocks;
	int ret = 0;

	/*
	 * How many index blocks need to touch to modify nrblocks?
	 * The "Chunk" flag indicating whether the nrblocks is
	 * physically contiguous on disk
	 *
	 * For Direct IO and fallocate, they calls get_block to allocate
	 * one single extent at a time, so they could set the "Chunk" flag
	 */
	idxblocks = ext4_index_trans_blocks(inode, nrblocks, chunk);

	ret = idxblocks;

	/*
	 * Now let's see how many group bitmaps and group descriptors need
	 * to account
	 */
	groups = idxblocks;
	if (chunk)
		groups += 1;
	else
		groups += nrblocks;

	gdpblocks = groups;
5460 5461
	if (groups > ngroups)
		groups = ngroups;
5462 5463 5464 5465 5466 5467 5468 5469 5470 5471 5472 5473 5474
	if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
		gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;

	/* bitmaps and block group descriptor blocks */
	ret += groups + gdpblocks;

	/* Blocks for super block, inode, quota and xattr blocks */
	ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);

	return ret;
}

/*
L
Lucas De Marchi 已提交
5475
 * Calculate the total number of credits to reserve to fit
5476 5477
 * the modification of a single pages into a single transaction,
 * which may include multiple chunks of block allocations.
5478
 *
5479
 * This could be called via ext4_write_begin()
5480
 *
5481
 * We need to consider the worse case, when
5482
 * one new block per extent.
5483
 */
A
Alex Tomas 已提交
5484
int ext4_writepage_trans_blocks(struct inode *inode)
5485
{
5486
	int bpp = ext4_journal_blocks_per_page(inode);
5487 5488
	int ret;

5489
	ret = ext4_meta_trans_blocks(inode, bpp, 0);
A
Alex Tomas 已提交
5490

5491
	/* Account for data blocks for journalled mode */
5492
	if (ext4_should_journal_data(inode))
5493
		ret += bpp;
5494 5495
	return ret;
}
5496 5497 5498 5499 5500

/*
 * Calculate the journal credits for a chunk of data modification.
 *
 * This is called from DIO, fallocate or whoever calling
5501
 * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks.
5502 5503 5504 5505 5506 5507 5508 5509 5510
 *
 * journal buffers for data blocks are not included here, as DIO
 * and fallocate do no need to journal data buffers.
 */
int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
{
	return ext4_meta_trans_blocks(inode, nrblocks, 1);
}

5511
/*
5512
 * The caller must have previously called ext4_reserve_inode_write().
5513 5514
 * Give this, we know that the caller already has write access to iloc->bh.
 */
5515
int ext4_mark_iloc_dirty(handle_t *handle,
5516
			 struct inode *inode, struct ext4_iloc *iloc)
5517 5518 5519
{
	int err = 0;

5520 5521 5522
	if (test_opt(inode->i_sb, I_VERSION))
		inode_inc_iversion(inode);

5523 5524 5525
	/* the do_update_inode consumes one bh->b_count */
	get_bh(iloc->bh);

5526
	/* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
5527
	err = ext4_do_update_inode(handle, inode, iloc);
5528 5529 5530 5531 5532 5533 5534 5535 5536 5537
	put_bh(iloc->bh);
	return err;
}

/*
 * On success, We end up with an outstanding reference count against
 * iloc->bh.  This _must_ be cleaned up later.
 */

int
5538 5539
ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
			 struct ext4_iloc *iloc)
5540
{
5541 5542 5543 5544 5545 5546 5547 5548 5549
	int err;

	err = ext4_get_inode_loc(inode, iloc);
	if (!err) {
		BUFFER_TRACE(iloc->bh, "get_write_access");
		err = ext4_journal_get_write_access(handle, iloc->bh);
		if (err) {
			brelse(iloc->bh);
			iloc->bh = NULL;
5550 5551
		}
	}
5552
	ext4_std_error(inode->i_sb, err);
5553 5554 5555
	return err;
}

5556 5557 5558 5559
/*
 * Expand an inode by new_extra_isize bytes.
 * Returns 0 on success or negative error number on failure.
 */
A
Aneesh Kumar K.V 已提交
5560 5561 5562 5563
static int ext4_expand_extra_isize(struct inode *inode,
				   unsigned int new_extra_isize,
				   struct ext4_iloc iloc,
				   handle_t *handle)
5564 5565 5566 5567 5568 5569 5570 5571 5572 5573 5574 5575
{
	struct ext4_inode *raw_inode;
	struct ext4_xattr_ibody_header *header;

	if (EXT4_I(inode)->i_extra_isize >= new_extra_isize)
		return 0;

	raw_inode = ext4_raw_inode(&iloc);

	header = IHDR(inode, raw_inode);

	/* No extended attributes present */
5576 5577
	if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
	    header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
5578 5579 5580 5581 5582 5583 5584 5585 5586 5587 5588
		memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0,
			new_extra_isize);
		EXT4_I(inode)->i_extra_isize = new_extra_isize;
		return 0;
	}

	/* try to expand with EAs present */
	return ext4_expand_extra_isize_ea(inode, new_extra_isize,
					  raw_inode, handle);
}

5589 5590 5591 5592 5593 5594 5595 5596 5597 5598 5599 5600 5601 5602 5603 5604 5605 5606 5607 5608 5609
/*
 * What we do here is to mark the in-core inode as clean with respect to inode
 * dirtiness (it may still be data-dirty).
 * This means that the in-core inode may be reaped by prune_icache
 * without having to perform any I/O.  This is a very good thing,
 * because *any* task may call prune_icache - even ones which
 * have a transaction open against a different journal.
 *
 * Is this cheating?  Not really.  Sure, we haven't written the
 * inode out, but prune_icache isn't a user-visible syncing function.
 * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
 * we start and wait on commits.
 *
 * Is this efficient/effective?  Well, we're being nice to the system
 * by cleaning up our inodes proactively so they can be reaped
 * without I/O.  But we are potentially leaving up to five seconds'
 * worth of inodes floating about which prune_icache wants us to
 * write out.  One way to fix that would be to get prune_icache()
 * to do a write_super() to free up some memory.  It has the desired
 * effect.
 */
5610
int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
5611
{
5612
	struct ext4_iloc iloc;
5613 5614 5615
	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
	static unsigned int mnt_count;
	int err, ret;
5616 5617

	might_sleep();
5618
	trace_ext4_mark_inode_dirty(inode, _RET_IP_);
5619
	err = ext4_reserve_inode_write(handle, inode, &iloc);
5620 5621
	if (ext4_handle_valid(handle) &&
	    EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize &&
5622
	    !ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) {
5623 5624 5625 5626 5627 5628 5629 5630 5631 5632 5633 5634 5635
		/*
		 * We need extra buffer credits since we may write into EA block
		 * with this same handle. If journal_extend fails, then it will
		 * only result in a minor loss of functionality for that inode.
		 * If this is felt to be critical, then e2fsck should be run to
		 * force a large enough s_min_extra_isize.
		 */
		if ((jbd2_journal_extend(handle,
			     EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) {
			ret = ext4_expand_extra_isize(inode,
						      sbi->s_want_extra_isize,
						      iloc, handle);
			if (ret) {
5636 5637
				ext4_set_inode_state(inode,
						     EXT4_STATE_NO_EXPAND);
A
Aneesh Kumar K.V 已提交
5638 5639
				if (mnt_count !=
					le16_to_cpu(sbi->s_es->s_mnt_count)) {
5640
					ext4_warning(inode->i_sb,
5641 5642 5643
					"Unable to expand inode %lu. Delete"
					" some EAs or run e2fsck.",
					inode->i_ino);
A
Aneesh Kumar K.V 已提交
5644 5645
					mnt_count =
					  le16_to_cpu(sbi->s_es->s_mnt_count);
5646 5647 5648 5649
				}
			}
		}
	}
5650
	if (!err)
5651
		err = ext4_mark_iloc_dirty(handle, inode, &iloc);
5652 5653 5654 5655
	return err;
}

/*
5656
 * ext4_dirty_inode() is called from __mark_inode_dirty()
5657 5658 5659 5660 5661
 *
 * We're really interested in the case where a file is being extended.
 * i_size has been changed by generic_commit_write() and we thus need
 * to include the updated inode in the current transaction.
 *
5662
 * Also, dquot_alloc_block() will always dirty the inode when blocks
5663 5664 5665 5666 5667 5668
 * are allocated to the file.
 *
 * If the inode is marked synchronous, we don't honour that here - doing
 * so would cause a commit on atime updates, which we don't bother doing.
 * We handle synchronous inodes at the highest possible level.
 */
5669
void ext4_dirty_inode(struct inode *inode, int flags)
5670 5671 5672
{
	handle_t *handle;

5673
	handle = ext4_journal_start(inode, 2);
5674 5675
	if (IS_ERR(handle))
		goto out;
5676 5677 5678

	ext4_mark_inode_dirty(handle, inode);

5679
	ext4_journal_stop(handle);
5680 5681 5682 5683 5684 5685 5686 5687
out:
	return;
}

#if 0
/*
 * Bind an inode's backing buffer_head into this transaction, to prevent
 * it from being flushed to disk early.  Unlike
5688
 * ext4_reserve_inode_write, this leaves behind no bh reference and
5689 5690 5691
 * returns no iloc structure, so the caller needs to repeat the iloc
 * lookup to mark the inode dirty later.
 */
5692
static int ext4_pin_inode(handle_t *handle, struct inode *inode)
5693
{
5694
	struct ext4_iloc iloc;
5695 5696 5697

	int err = 0;
	if (handle) {
5698
		err = ext4_get_inode_loc(inode, &iloc);
5699 5700
		if (!err) {
			BUFFER_TRACE(iloc.bh, "get_write_access");
5701
			err = jbd2_journal_get_write_access(handle, iloc.bh);
5702
			if (!err)
5703
				err = ext4_handle_dirty_metadata(handle,
5704
								 NULL,
5705
								 iloc.bh);
5706 5707 5708
			brelse(iloc.bh);
		}
	}
5709
	ext4_std_error(inode->i_sb, err);
5710 5711 5712 5713
	return err;
}
#endif

5714
int ext4_change_inode_journal_flag(struct inode *inode, int val)
5715 5716 5717 5718 5719 5720 5721 5722 5723 5724 5725 5726 5727 5728 5729
{
	journal_t *journal;
	handle_t *handle;
	int err;

	/*
	 * We have to be very careful here: changing a data block's
	 * journaling status dynamically is dangerous.  If we write a
	 * data block to the journal, change the status and then delete
	 * that block, we risk forgetting to revoke the old log record
	 * from the journal and so a subsequent replay can corrupt data.
	 * So, first we make sure that the journal is empty and that
	 * nobody is changing anything.
	 */

5730
	journal = EXT4_JOURNAL(inode);
5731 5732
	if (!journal)
		return 0;
5733
	if (is_journal_aborted(journal))
5734 5735
		return -EROFS;

5736 5737
	jbd2_journal_lock_updates(journal);
	jbd2_journal_flush(journal);
5738 5739 5740 5741 5742 5743 5744 5745 5746 5747

	/*
	 * OK, there are no updates running now, and all cached data is
	 * synced to disk.  We are now in a completely consistent state
	 * which doesn't have anything in the journal, and we know that
	 * no filesystem updates are running, so it is safe to modify
	 * the inode's in-core data-journaling state flag now.
	 */

	if (val)
5748
		ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
5749
	else
5750
		ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
5751
	ext4_set_aops(inode);
5752

5753
	jbd2_journal_unlock_updates(journal);
5754 5755 5756

	/* Finally we can mark the inode as dirty. */

5757
	handle = ext4_journal_start(inode, 1);
5758 5759 5760
	if (IS_ERR(handle))
		return PTR_ERR(handle);

5761
	err = ext4_mark_inode_dirty(handle, inode);
5762
	ext4_handle_sync(handle);
5763 5764
	ext4_journal_stop(handle);
	ext4_std_error(inode->i_sb, err);
5765 5766 5767

	return err;
}
5768 5769 5770 5771 5772 5773

static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
{
	return !buffer_mapped(bh);
}

5774
int ext4_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
5775
{
5776
	struct page *page = vmf->page;
5777 5778 5779
	loff_t size;
	unsigned long len;
	int ret = -EINVAL;
5780
	void *fsdata;
5781 5782 5783 5784 5785 5786 5787 5788 5789 5790 5791 5792 5793 5794 5795 5796
	struct file *file = vma->vm_file;
	struct inode *inode = file->f_path.dentry->d_inode;
	struct address_space *mapping = inode->i_mapping;

	/*
	 * Get i_alloc_sem to stop truncates messing with the inode. We cannot
	 * get i_mutex because we are already holding mmap_sem.
	 */
	down_read(&inode->i_alloc_sem);
	size = i_size_read(inode);
	if (page->mapping != mapping || size <= page_offset(page)
	    || !PageUptodate(page)) {
		/* page got truncated from under us? */
		goto out_unlock;
	}
	ret = 0;
5797 5798 5799 5800 5801 5802 5803

	lock_page(page);
	wait_on_page_writeback(page);
	if (PageMappedToDisk(page)) {
		up_read(&inode->i_alloc_sem);
		return VM_FAULT_LOCKED;
	}
5804 5805 5806 5807 5808 5809

	if (page->index == size >> PAGE_CACHE_SHIFT)
		len = size & ~PAGE_CACHE_MASK;
	else
		len = PAGE_CACHE_SIZE;

5810 5811 5812 5813 5814 5815
	/*
	 * return if we have all the buffers mapped. This avoid
	 * the need to call write_begin/write_end which does a
	 * journal_start/journal_stop which can block and take
	 * long time
	 */
5816 5817
	if (page_has_buffers(page)) {
		if (!walk_page_buffers(NULL, page_buffers(page), 0, len, NULL,
5818
					ext4_bh_unmapped)) {
5819 5820
			up_read(&inode->i_alloc_sem);
			return VM_FAULT_LOCKED;
5821
		}
5822
	}
5823
	unlock_page(page);
5824 5825 5826 5827 5828 5829 5830 5831
	/*
	 * OK, we need to fill the hole... Do write_begin write_end
	 * to do block allocation/reservation.We are not holding
	 * inode.i__mutex here. That allow * parallel write_begin,
	 * write_end call. lock_page prevent this from happening
	 * on the same page though
	 */
	ret = mapping->a_ops->write_begin(file, mapping, page_offset(page),
5832
			len, AOP_FLAG_UNINTERRUPTIBLE, &page, &fsdata);
5833 5834 5835
	if (ret < 0)
		goto out_unlock;
	ret = mapping->a_ops->write_end(file, mapping, page_offset(page),
5836
			len, len, page, fsdata);
5837 5838 5839
	if (ret < 0)
		goto out_unlock;
	ret = 0;
5840 5841 5842 5843 5844 5845 5846 5847 5848 5849

	/*
	 * write_begin/end might have created a dirty page and someone
	 * could wander in and start the IO.  Make sure that hasn't
	 * happened.
	 */
	lock_page(page);
	wait_on_page_writeback(page);
	up_read(&inode->i_alloc_sem);
	return VM_FAULT_LOCKED;
5850
out_unlock:
5851 5852
	if (ret)
		ret = VM_FAULT_SIGBUS;
5853 5854 5855
	up_read(&inode->i_alloc_sem);
	return ret;
}