inode.c 153.8 KB
Newer Older
1
/*
2
 *  linux/fs/ext4/inode.c
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
 *
 * Copyright (C) 1992, 1993, 1994, 1995
 * Remy Card (card@masi.ibp.fr)
 * Laboratoire MASI - Institut Blaise Pascal
 * Universite Pierre et Marie Curie (Paris VI)
 *
 *  from
 *
 *  linux/fs/minix/inode.c
 *
 *  Copyright (C) 1991, 1992  Linus Torvalds
 *
 *  Goal-directed block allocation by Stephen Tweedie
 *	(sct@redhat.com), 1993, 1998
 *  Big-endian to little-endian byte-swapping/bitmaps by
 *        David S. Miller (davem@caip.rutgers.edu), 1995
 *  64-bit file support on 64-bit platforms by Jakub Jelinek
 *	(jj@sunsite.ms.mff.cuni.cz)
 *
22
 *  Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
23 24 25 26 27
 */

#include <linux/module.h>
#include <linux/fs.h>
#include <linux/time.h>
28
#include <linux/jbd2.h>
29 30 31 32 33 34
#include <linux/highuid.h>
#include <linux/pagemap.h>
#include <linux/quotaops.h>
#include <linux/string.h>
#include <linux/buffer_head.h>
#include <linux/writeback.h>
35
#include <linux/pagevec.h>
36
#include <linux/mpage.h>
37
#include <linux/namei.h>
38 39
#include <linux/uio.h>
#include <linux/bio.h>
40

41
#include "ext4_jbd2.h"
42 43
#include "xattr.h"
#include "acl.h"
44
#include "ext4_extents.h"
45

46 47
#include <trace/events/ext4.h>

48 49
#define MPAGE_DA_EXTENT_TAIL 0x01

50 51 52
static inline int ext4_begin_ordered_truncate(struct inode *inode,
					      loff_t new_size)
{
53 54 55 56
	return jbd2_journal_begin_ordered_truncate(
					EXT4_SB(inode->i_sb)->s_journal,
					&EXT4_I(inode)->jinode,
					new_size);
57 58
}

59 60
static void ext4_invalidatepage(struct page *page, unsigned long offset);

61 62 63
/*
 * Test whether an inode is a fast symlink.
 */
64
static int ext4_inode_is_fast_symlink(struct inode *inode)
65
{
66
	int ea_blocks = EXT4_I(inode)->i_file_acl ?
67 68 69 70 71 72
		(inode->i_sb->s_blocksize >> 9) : 0;

	return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
}

/*
73
 * The ext4 forget function must perform a revoke if we are freeing data
74 75 76 77 78 79
 * which has been journaled.  Metadata (eg. indirect blocks) must be
 * revoked in all cases.
 *
 * "bh" may be NULL: a metadata block may have been freed from memory
 * but there may still be a record of it in the journal, and that record
 * still needs to be revoked.
80
 *
81 82
 * If the handle isn't valid we're not journaling, but we still need to
 * call into ext4_journal_revoke() to put the buffer head.
83
 */
84
int ext4_forget(handle_t *handle, int is_metadata, struct inode *inode,
85
		struct buffer_head *bh, ext4_fsblk_t blocknr)
86 87 88 89 90 91 92 93
{
	int err;

	might_sleep();

	BUFFER_TRACE(bh, "enter");

	jbd_debug(4, "forgetting bh %p: is_metadata = %d, mode %o, "
94
		  "data mode %x\n",
95 96 97 98 99 100 101 102
		  bh, is_metadata, inode->i_mode,
		  test_opt(inode->i_sb, DATA_FLAGS));

	/* Never use the revoke function if we are doing full data
	 * journaling: there is no need to, and a V1 superblock won't
	 * support it.  Otherwise, only skip the revoke on un-journaled
	 * data blocks. */

103 104
	if (test_opt(inode->i_sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA ||
	    (!is_metadata && !ext4_should_journal_data(inode))) {
105
		if (bh) {
106
			BUFFER_TRACE(bh, "call jbd2_journal_forget");
107
			return ext4_journal_forget(handle, bh);
108 109 110 111 112 113 114
		}
		return 0;
	}

	/*
	 * data!=journal && (is_metadata || should_journal_data(inode))
	 */
115 116
	BUFFER_TRACE(bh, "call ext4_journal_revoke");
	err = ext4_journal_revoke(handle, blocknr, bh);
117
	if (err)
118
		ext4_abort(inode->i_sb, __func__,
119 120 121 122 123 124 125 126 127 128 129
			   "error %d when attempting revoke", err);
	BUFFER_TRACE(bh, "exit");
	return err;
}

/*
 * Work out how many blocks we need to proceed with the next chunk of a
 * truncate transaction.
 */
static unsigned long blocks_for_truncate(struct inode *inode)
{
A
Aneesh Kumar K.V 已提交
130
	ext4_lblk_t needed;
131 132 133 134 135 136

	needed = inode->i_blocks >> (inode->i_sb->s_blocksize_bits - 9);

	/* Give ourselves just enough room to cope with inodes in which
	 * i_blocks is corrupt: we've seen disk corruptions in the past
	 * which resulted in random data in an inode which looked enough
137
	 * like a regular file for ext4 to try to delete it.  Things
138 139 140 141 142 143 144
	 * will go a bit crazy if that happens, but at least we should
	 * try not to panic the whole kernel. */
	if (needed < 2)
		needed = 2;

	/* But we need to bound the transaction so we don't overflow the
	 * journal. */
145 146
	if (needed > EXT4_MAX_TRANS_DATA)
		needed = EXT4_MAX_TRANS_DATA;
147

148
	return EXT4_DATA_TRANS_BLOCKS(inode->i_sb) + needed;
149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164
}

/*
 * Truncate transactions can be complex and absolutely huge.  So we need to
 * be able to restart the transaction at a conventient checkpoint to make
 * sure we don't overflow the journal.
 *
 * start_transaction gets us a new handle for a truncate transaction,
 * and extend_transaction tries to extend the existing one a bit.  If
 * extend fails, we need to propagate the failure up and restart the
 * transaction in the top-level truncate loop. --sct
 */
static handle_t *start_transaction(struct inode *inode)
{
	handle_t *result;

165
	result = ext4_journal_start(inode, blocks_for_truncate(inode));
166 167 168
	if (!IS_ERR(result))
		return result;

169
	ext4_std_error(inode->i_sb, PTR_ERR(result));
170 171 172 173 174 175 176 177 178 179 180
	return result;
}

/*
 * Try to extend this transaction for the purposes of truncation.
 *
 * Returns 0 if we managed to create more room.  If we can't create more
 * room, and the transaction must be restarted we return 1.
 */
static int try_to_extend_transaction(handle_t *handle, struct inode *inode)
{
181 182 183
	if (!ext4_handle_valid(handle))
		return 0;
	if (ext4_handle_has_enough_credits(handle, EXT4_RESERVE_TRANS_BLOCKS+1))
184
		return 0;
185
	if (!ext4_journal_extend(handle, blocks_for_truncate(inode)))
186 187 188 189 190 191 192 193 194
		return 0;
	return 1;
}

/*
 * Restart the transaction associated with *handle.  This does a commit,
 * so before we call here everything must be consistently dirtied against
 * this transaction.
 */
195
static int ext4_journal_test_restart(handle_t *handle, struct inode *inode)
196
{
197
	BUG_ON(EXT4_JOURNAL(inode) == NULL);
198
	jbd_debug(2, "restarting handle %p\n", handle);
199
	return ext4_journal_restart(handle, blocks_for_truncate(inode));
200 201 202 203 204
}

/*
 * Called at the last iput() if i_nlink is zero.
 */
205
void ext4_delete_inode(struct inode *inode)
206 207
{
	handle_t *handle;
208
	int err;
209

210 211
	if (ext4_should_order_data(inode))
		ext4_begin_ordered_truncate(inode, 0);
212 213 214 215 216
	truncate_inode_pages(&inode->i_data, 0);

	if (is_bad_inode(inode))
		goto no_delete;

217
	handle = ext4_journal_start(inode, blocks_for_truncate(inode)+3);
218
	if (IS_ERR(handle)) {
219
		ext4_std_error(inode->i_sb, PTR_ERR(handle));
220 221 222 223 224
		/*
		 * If we're going to skip the normal cleanup, we still need to
		 * make sure that the in-core orphan linked list is properly
		 * cleaned up.
		 */
225
		ext4_orphan_del(NULL, inode);
226 227 228 229
		goto no_delete;
	}

	if (IS_SYNC(inode))
230
		ext4_handle_sync(handle);
231
	inode->i_size = 0;
232 233 234 235 236 237
	err = ext4_mark_inode_dirty(handle, inode);
	if (err) {
		ext4_warning(inode->i_sb, __func__,
			     "couldn't mark inode dirty (err %d)", err);
		goto stop_handle;
	}
238
	if (inode->i_blocks)
239
		ext4_truncate(inode);
240 241 242 243 244 245 246

	/*
	 * ext4_ext_truncate() doesn't reserve any slop when it
	 * restarts journal transactions; therefore there may not be
	 * enough credits left in the handle to remove the inode from
	 * the orphan list and set the dtime field.
	 */
247
	if (!ext4_handle_has_enough_credits(handle, 3)) {
248 249 250 251 252 253 254 255 256 257 258 259
		err = ext4_journal_extend(handle, 3);
		if (err > 0)
			err = ext4_journal_restart(handle, 3);
		if (err != 0) {
			ext4_warning(inode->i_sb, __func__,
				     "couldn't extend journal (err %d)", err);
		stop_handle:
			ext4_journal_stop(handle);
			goto no_delete;
		}
	}

260
	/*
261
	 * Kill off the orphan record which ext4_truncate created.
262
	 * AKPM: I think this can be inside the above `if'.
263
	 * Note that ext4_orphan_del() has to be able to cope with the
264
	 * deletion of a non-existent orphan - this is because we don't
265
	 * know if ext4_truncate() actually created an orphan record.
266 267
	 * (Well, we could do this if we need to, but heck - it works)
	 */
268 269
	ext4_orphan_del(handle, inode);
	EXT4_I(inode)->i_dtime	= get_seconds();
270 271 272 273 274 275 276 277

	/*
	 * One subtle ordering requirement: if anything has gone wrong
	 * (transaction abort, IO errors, whatever), then we can still
	 * do these next steps (the fs will already have been marked as
	 * having errors), but we can't free the inode if the mark_dirty
	 * fails.
	 */
278
	if (ext4_mark_inode_dirty(handle, inode))
279 280 281
		/* If that failed, just do the required in-core inode clear. */
		clear_inode(inode);
	else
282 283
		ext4_free_inode(handle, inode);
	ext4_journal_stop(handle);
284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301
	return;
no_delete:
	clear_inode(inode);	/* We must guarantee clearing of inode... */
}

typedef struct {
	__le32	*p;
	__le32	key;
	struct buffer_head *bh;
} Indirect;

static inline void add_chain(Indirect *p, struct buffer_head *bh, __le32 *v)
{
	p->key = *(p->p = v);
	p->bh = bh;
}

/**
302
 *	ext4_block_to_path - parse the block number into array of offsets
303 304 305
 *	@inode: inode in question (we are only interested in its superblock)
 *	@i_block: block number to be parsed
 *	@offsets: array to store the offsets in
D
Dave Kleikamp 已提交
306 307
 *	@boundary: set this non-zero if the referred-to block is likely to be
 *	       followed (on disk) by an indirect block.
308
 *
309
 *	To store the locations of file's data ext4 uses a data structure common
310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331
 *	for UNIX filesystems - tree of pointers anchored in the inode, with
 *	data blocks at leaves and indirect blocks in intermediate nodes.
 *	This function translates the block number into path in that tree -
 *	return value is the path length and @offsets[n] is the offset of
 *	pointer to (n+1)th node in the nth one. If @block is out of range
 *	(negative or too large) warning is printed and zero returned.
 *
 *	Note: function doesn't find node addresses, so no IO is needed. All
 *	we need to know is the capacity of indirect blocks (taken from the
 *	inode->i_sb).
 */

/*
 * Portability note: the last comparison (check that we fit into triple
 * indirect block) is spelled differently, because otherwise on an
 * architecture with 32-bit longs and 8Kb pages we might get into trouble
 * if our filesystem had 8Kb blocks. We might use long long, but that would
 * kill us on x86. Oh, well, at least the sign propagation does not matter -
 * i_block would have to be negative in the very beginning, so we would not
 * get there at all.
 */

332
static int ext4_block_to_path(struct inode *inode,
333 334
			      ext4_lblk_t i_block,
			      ext4_lblk_t offsets[4], int *boundary)
335
{
336 337 338
	int ptrs = EXT4_ADDR_PER_BLOCK(inode->i_sb);
	int ptrs_bits = EXT4_ADDR_PER_BLOCK_BITS(inode->i_sb);
	const long direct_blocks = EXT4_NDIR_BLOCKS,
339 340 341 342 343 344
		indirect_blocks = ptrs,
		double_blocks = (1 << (ptrs_bits * 2));
	int n = 0;
	int final = 0;

	if (i_block < 0) {
345
		ext4_warning(inode->i_sb, "ext4_block_to_path", "block < 0");
346 347 348
	} else if (i_block < direct_blocks) {
		offsets[n++] = i_block;
		final = direct_blocks;
349
	} else if ((i_block -= direct_blocks) < indirect_blocks) {
350
		offsets[n++] = EXT4_IND_BLOCK;
351 352 353
		offsets[n++] = i_block;
		final = ptrs;
	} else if ((i_block -= indirect_blocks) < double_blocks) {
354
		offsets[n++] = EXT4_DIND_BLOCK;
355 356 357 358
		offsets[n++] = i_block >> ptrs_bits;
		offsets[n++] = i_block & (ptrs - 1);
		final = ptrs;
	} else if (((i_block -= double_blocks) >> (ptrs_bits * 2)) < ptrs) {
359
		offsets[n++] = EXT4_TIND_BLOCK;
360 361 362 363 364
		offsets[n++] = i_block >> (ptrs_bits * 2);
		offsets[n++] = (i_block >> ptrs_bits) & (ptrs - 1);
		offsets[n++] = i_block & (ptrs - 1);
		final = ptrs;
	} else {
365
		ext4_warning(inode->i_sb, "ext4_block_to_path",
366 367 368
			     "block %lu > max in inode %lu",
			     i_block + direct_blocks +
			     indirect_blocks + double_blocks, inode->i_ino);
369 370 371 372 373 374
	}
	if (boundary)
		*boundary = final - 1 - (i_block & (ptrs - 1));
	return n;
}

375
static int __ext4_check_blockref(const char *function, struct inode *inode,
376 377
				 __le32 *p, unsigned int max)
{
378
	__le32 *bref = p;
379 380
	unsigned int blk;

381
	while (bref < p+max) {
382
		blk = le32_to_cpu(*bref++);
383 384
		if (blk &&
		    unlikely(!ext4_data_block_valid(EXT4_SB(inode->i_sb),
385
						    blk, 1))) {
386
			ext4_error(inode->i_sb, function,
387 388
				   "invalid block reference %u "
				   "in inode #%lu", blk, inode->i_ino);
389 390 391 392
			return -EIO;
		}
	}
	return 0;
393 394 395 396
}


#define ext4_check_indirect_blockref(inode, bh)                         \
397
	__ext4_check_blockref(__func__, inode, (__le32 *)(bh)->b_data,  \
398 399 400
			      EXT4_ADDR_PER_BLOCK((inode)->i_sb))

#define ext4_check_inode_blockref(inode)                                \
401
	__ext4_check_blockref(__func__, inode, EXT4_I(inode)->i_data,   \
402 403
			      EXT4_NDIR_BLOCKS)

404
/**
405
 *	ext4_get_branch - read the chain of indirect blocks leading to data
406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429
 *	@inode: inode in question
 *	@depth: depth of the chain (1 - direct pointer, etc.)
 *	@offsets: offsets of pointers in inode/indirect blocks
 *	@chain: place to store the result
 *	@err: here we store the error value
 *
 *	Function fills the array of triples <key, p, bh> and returns %NULL
 *	if everything went OK or the pointer to the last filled triple
 *	(incomplete one) otherwise. Upon the return chain[i].key contains
 *	the number of (i+1)-th block in the chain (as it is stored in memory,
 *	i.e. little-endian 32-bit), chain[i].p contains the address of that
 *	number (it points into struct inode for i==0 and into the bh->b_data
 *	for i>0) and chain[i].bh points to the buffer_head of i-th indirect
 *	block for i>0 and NULL for i==0. In other words, it holds the block
 *	numbers of the chain, addresses they were taken from (and where we can
 *	verify that chain did not change) and buffer_heads hosting these
 *	numbers.
 *
 *	Function stops when it stumbles upon zero pointer (absent block)
 *		(pointer to last triple returned, *@err == 0)
 *	or when it gets an IO error reading an indirect block
 *		(ditto, *@err == -EIO)
 *	or when it reads all @depth-1 indirect blocks successfully and finds
 *	the whole chain, all way to the data (returns %NULL, *err == 0).
430 431
 *
 *      Need to be called with
432
 *      down_read(&EXT4_I(inode)->i_data_sem)
433
 */
A
Aneesh Kumar K.V 已提交
434 435
static Indirect *ext4_get_branch(struct inode *inode, int depth,
				 ext4_lblk_t  *offsets,
436 437 438 439 440 441 442 443
				 Indirect chain[4], int *err)
{
	struct super_block *sb = inode->i_sb;
	Indirect *p = chain;
	struct buffer_head *bh;

	*err = 0;
	/* i_data is not going away, no lock needed */
444
	add_chain(chain, NULL, EXT4_I(inode)->i_data + *offsets);
445 446 447
	if (!p->key)
		goto no_block;
	while (--depth) {
448 449
		bh = sb_getblk(sb, le32_to_cpu(p->key));
		if (unlikely(!bh))
450
			goto failure;
451

452 453 454 455 456 457 458 459 460 461 462
		if (!bh_uptodate_or_lock(bh)) {
			if (bh_submit_read(bh) < 0) {
				put_bh(bh);
				goto failure;
			}
			/* validate block references */
			if (ext4_check_indirect_blockref(inode, bh)) {
				put_bh(bh);
				goto failure;
			}
		}
463

464
		add_chain(++p, bh, (__le32 *)bh->b_data + *++offsets);
465 466 467 468 469 470 471 472 473 474 475 476 477
		/* Reader: end */
		if (!p->key)
			goto no_block;
	}
	return NULL;

failure:
	*err = -EIO;
no_block:
	return p;
}

/**
478
 *	ext4_find_near - find a place for allocation with sufficient locality
479 480 481
 *	@inode: owner
 *	@ind: descriptor of indirect block.
 *
482
 *	This function returns the preferred place for block allocation.
483 484 485 486 487 488 489 490 491 492 493 494 495 496
 *	It is used when heuristic for sequential allocation fails.
 *	Rules are:
 *	  + if there is a block to the left of our position - allocate near it.
 *	  + if pointer will live in indirect block - allocate near that block.
 *	  + if pointer will live in inode - allocate in the same
 *	    cylinder group.
 *
 * In the latter case we colour the starting block by the callers PID to
 * prevent it from clashing with concurrent allocations for a different inode
 * in the same block group.   The PID is used here so that functionally related
 * files will be close-by on-disk.
 *
 *	Caller must make sure that @ind is valid and will stay that way.
 */
497
static ext4_fsblk_t ext4_find_near(struct inode *inode, Indirect *ind)
498
{
499
	struct ext4_inode_info *ei = EXT4_I(inode);
500
	__le32 *start = ind->bh ? (__le32 *) ind->bh->b_data : ei->i_data;
501
	__le32 *p;
502
	ext4_fsblk_t bg_start;
503
	ext4_fsblk_t last_block;
504
	ext4_grpblk_t colour;
505 506
	ext4_group_t block_group;
	int flex_size = ext4_flex_bg_size(EXT4_SB(inode->i_sb));
507 508 509 510 511 512 513 514 515 516 517 518 519 520 521

	/* Try to find previous block */
	for (p = ind->p - 1; p >= start; p--) {
		if (*p)
			return le32_to_cpu(*p);
	}

	/* No such thing, so let's try location of indirect block */
	if (ind->bh)
		return ind->bh->b_blocknr;

	/*
	 * It is going to be referred to from the inode itself? OK, just put it
	 * into the same cylinder group then.
	 */
522 523 524 525 526 527 528
	block_group = ei->i_block_group;
	if (flex_size >= EXT4_FLEX_SIZE_DIR_ALLOC_SCHEME) {
		block_group &= ~(flex_size-1);
		if (S_ISREG(inode->i_mode))
			block_group++;
	}
	bg_start = ext4_group_first_block_no(inode->i_sb, block_group);
529 530
	last_block = ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es) - 1;

531 532 533 534 535 536 537
	/*
	 * If we are doing delayed allocation, we don't need take
	 * colour into account.
	 */
	if (test_opt(inode->i_sb, DELALLOC))
		return bg_start;

538 539
	if (bg_start + EXT4_BLOCKS_PER_GROUP(inode->i_sb) <= last_block)
		colour = (current->pid % 16) *
540
			(EXT4_BLOCKS_PER_GROUP(inode->i_sb) / 16);
541 542
	else
		colour = (current->pid % 16) * ((last_block - bg_start) / 16);
543 544 545 546
	return bg_start + colour;
}

/**
547
 *	ext4_find_goal - find a preferred place for allocation.
548 549 550 551
 *	@inode: owner
 *	@block:  block we want
 *	@partial: pointer to the last triple within a chain
 *
552
 *	Normally this function find the preferred place for block allocation,
553
 *	returns it.
554
 */
A
Aneesh Kumar K.V 已提交
555
static ext4_fsblk_t ext4_find_goal(struct inode *inode, ext4_lblk_t block,
556
				   Indirect *partial)
557 558
{
	/*
559
	 * XXX need to get goal block from mballoc's data structures
560 561
	 */

562
	return ext4_find_near(inode, partial);
563 564 565
}

/**
566
 *	ext4_blks_to_allocate: Look up the block map and count the number
567 568 569 570 571 572 573 574 575 576
 *	of direct blocks need to be allocated for the given branch.
 *
 *	@branch: chain of indirect blocks
 *	@k: number of blocks need for indirect blocks
 *	@blks: number of data blocks to be mapped.
 *	@blocks_to_boundary:  the offset in the indirect block
 *
 *	return the total number of blocks to be allocate, including the
 *	direct and indirect blocks.
 */
577
static int ext4_blks_to_allocate(Indirect *branch, int k, unsigned int blks,
578
				 int blocks_to_boundary)
579
{
580
	unsigned int count = 0;
581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603

	/*
	 * Simple case, [t,d]Indirect block(s) has not allocated yet
	 * then it's clear blocks on that path have not allocated
	 */
	if (k > 0) {
		/* right now we don't handle cross boundary allocation */
		if (blks < blocks_to_boundary + 1)
			count += blks;
		else
			count += blocks_to_boundary + 1;
		return count;
	}

	count++;
	while (count < blks && count <= blocks_to_boundary &&
		le32_to_cpu(*(branch[0].p + count)) == 0) {
		count++;
	}
	return count;
}

/**
604
 *	ext4_alloc_blocks: multiple allocate blocks needed for a branch
605 606 607 608 609 610 611 612
 *	@indirect_blks: the number of blocks need to allocate for indirect
 *			blocks
 *
 *	@new_blocks: on return it will store the new block numbers for
 *	the indirect blocks(if needed) and the first direct block,
 *	@blks:	on return it will store the total number of allocated
 *		direct blocks
 */
613
static int ext4_alloc_blocks(handle_t *handle, struct inode *inode,
614 615 616
			     ext4_lblk_t iblock, ext4_fsblk_t goal,
			     int indirect_blks, int blks,
			     ext4_fsblk_t new_blocks[4], int *err)
617
{
618
	struct ext4_allocation_request ar;
619
	int target, i;
620
	unsigned long count = 0, blk_allocated = 0;
621
	int index = 0;
622
	ext4_fsblk_t current_block = 0;
623 624 625 626 627 628 629 630 631 632
	int ret = 0;

	/*
	 * Here we try to allocate the requested multiple blocks at once,
	 * on a best-effort basis.
	 * To build a branch, we should allocate blocks for
	 * the indirect blocks(if not allocated yet), and at least
	 * the first direct block of this branch.  That's the
	 * minimum number of blocks need to allocate(required)
	 */
633 634 635
	/* first we try to allocate the indirect blocks */
	target = indirect_blks;
	while (target > 0) {
636 637
		count = target;
		/* allocating blocks for indirect blocks and direct blocks */
638 639
		current_block = ext4_new_meta_blocks(handle, inode,
							goal, &count, err);
640 641 642 643 644 645 646 647 648
		if (*err)
			goto failed_out;

		target -= count;
		/* allocate blocks for indirect blocks */
		while (index < indirect_blks && count) {
			new_blocks[index++] = current_block++;
			count--;
		}
649 650 651 652 653 654 655 656 657
		if (count > 0) {
			/*
			 * save the new block number
			 * for the first direct block
			 */
			new_blocks[index] = current_block;
			printk(KERN_INFO "%s returned more blocks than "
						"requested\n", __func__);
			WARN_ON(1);
658
			break;
659
		}
660 661
	}

662 663 664 665 666
	target = blks - count ;
	blk_allocated = count;
	if (!target)
		goto allocated;
	/* Now allocate data blocks */
667 668 669 670 671 672 673 674 675 676 677
	memset(&ar, 0, sizeof(ar));
	ar.inode = inode;
	ar.goal = goal;
	ar.len = target;
	ar.logical = iblock;
	if (S_ISREG(inode->i_mode))
		/* enable in-core preallocation only for regular files */
		ar.flags = EXT4_MB_HINT_DATA;

	current_block = ext4_mb_new_blocks(handle, &ar, err);

678 679 680 681 682 683 684 685 686
	if (*err && (target == blks)) {
		/*
		 * if the allocation failed and we didn't allocate
		 * any blocks before
		 */
		goto failed_out;
	}
	if (!*err) {
		if (target == blks) {
687 688 689 690
			/*
			 * save the new block number
			 * for the first direct block
			 */
691 692
			new_blocks[index] = current_block;
		}
693
		blk_allocated += ar.len;
694 695
	}
allocated:
696
	/* total number of blocks allocated for direct blocks */
697
	ret = blk_allocated;
698 699 700
	*err = 0;
	return ret;
failed_out:
701
	for (i = 0; i < index; i++)
702
		ext4_free_blocks(handle, inode, new_blocks[i], 1, 0);
703 704 705 706
	return ret;
}

/**
707
 *	ext4_alloc_branch - allocate and set up a chain of blocks.
708 709 710 711 712 713 714 715 716 717
 *	@inode: owner
 *	@indirect_blks: number of allocated indirect blocks
 *	@blks: number of allocated direct blocks
 *	@offsets: offsets (in the blocks) to store the pointers to next.
 *	@branch: place to store the chain in.
 *
 *	This function allocates blocks, zeroes out all but the last one,
 *	links them into chain and (if we are synchronous) writes them to disk.
 *	In other words, it prepares a branch that can be spliced onto the
 *	inode. It stores the information about that chain in the branch[], in
718
 *	the same format as ext4_get_branch() would do. We are calling it after
719 720
 *	we had read the existing part of chain and partial points to the last
 *	triple of that (one with zero ->key). Upon the exit we have the same
721
 *	picture as after the successful ext4_get_block(), except that in one
722 723 724 725 726 727
 *	place chain is disconnected - *branch->p is still zero (we did not
 *	set the last link), but branch->key contains the number that should
 *	be placed into *branch->p to fill that gap.
 *
 *	If allocation fails we free all blocks we've allocated (and forget
 *	their buffer_heads) and return the error value the from failed
728
 *	ext4_alloc_block() (normally -ENOSPC). Otherwise we set the chain
729 730
 *	as described above and return 0.
 */
731
static int ext4_alloc_branch(handle_t *handle, struct inode *inode,
732 733 734
			     ext4_lblk_t iblock, int indirect_blks,
			     int *blks, ext4_fsblk_t goal,
			     ext4_lblk_t *offsets, Indirect *branch)
735 736 737 738 739 740
{
	int blocksize = inode->i_sb->s_blocksize;
	int i, n = 0;
	int err = 0;
	struct buffer_head *bh;
	int num;
741 742
	ext4_fsblk_t new_blocks[4];
	ext4_fsblk_t current_block;
743

744
	num = ext4_alloc_blocks(handle, inode, iblock, goal, indirect_blks,
745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762
				*blks, new_blocks, &err);
	if (err)
		return err;

	branch[0].key = cpu_to_le32(new_blocks[0]);
	/*
	 * metadata blocks and data blocks are allocated.
	 */
	for (n = 1; n <= indirect_blks;  n++) {
		/*
		 * Get buffer_head for parent block, zero it out
		 * and set the pointer to new one, then send
		 * parent to disk.
		 */
		bh = sb_getblk(inode->i_sb, new_blocks[n-1]);
		branch[n].bh = bh;
		lock_buffer(bh);
		BUFFER_TRACE(bh, "call get_create_access");
763
		err = ext4_journal_get_create_access(handle, bh);
764
		if (err) {
765 766
			/* Don't brelse(bh) here; it's done in
			 * ext4_journal_forget() below */
767 768 769 770 771 772 773 774
			unlock_buffer(bh);
			goto failed;
		}

		memset(bh->b_data, 0, blocksize);
		branch[n].p = (__le32 *) bh->b_data + offsets[n];
		branch[n].key = cpu_to_le32(new_blocks[n]);
		*branch[n].p = branch[n].key;
775
		if (n == indirect_blks) {
776 777 778 779 780 781
			current_block = new_blocks[n];
			/*
			 * End of chain, update the last new metablock of
			 * the chain to point to the new allocated
			 * data blocks numbers
			 */
782
			for (i = 1; i < num; i++)
783 784 785 786 787 788
				*(branch[n].p + i) = cpu_to_le32(++current_block);
		}
		BUFFER_TRACE(bh, "marking uptodate");
		set_buffer_uptodate(bh);
		unlock_buffer(bh);

789 790
		BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
		err = ext4_handle_dirty_metadata(handle, inode, bh);
791 792 793 794 795 796 797 798
		if (err)
			goto failed;
	}
	*blks = num;
	return err;
failed:
	/* Allocation failed, free what we already allocated */
	for (i = 1; i <= n ; i++) {
799
		BUFFER_TRACE(branch[i].bh, "call jbd2_journal_forget");
800
		ext4_journal_forget(handle, branch[i].bh);
801
	}
802
	for (i = 0; i < indirect_blks; i++)
803
		ext4_free_blocks(handle, inode, new_blocks[i], 1, 0);
804

805
	ext4_free_blocks(handle, inode, new_blocks[i], num, 0);
806 807 808 809 810

	return err;
}

/**
811
 * ext4_splice_branch - splice the allocated branch onto inode.
812 813 814
 * @inode: owner
 * @block: (logical) number of block we are adding
 * @chain: chain of indirect blocks (with a missing link - see
815
 *	ext4_alloc_branch)
816 817 818 819 820 821 822 823
 * @where: location of missing link
 * @num:   number of indirect blocks we are adding
 * @blks:  number of direct blocks we are adding
 *
 * This function fills the missing link and does all housekeeping needed in
 * inode (->i_blocks, etc.). In case of success we end up with the full
 * chain to new block and return 0.
 */
824
static int ext4_splice_branch(handle_t *handle, struct inode *inode,
825 826
			      ext4_lblk_t block, Indirect *where, int num,
			      int blks)
827 828 829
{
	int i;
	int err = 0;
830
	ext4_fsblk_t current_block;
831 832 833 834 835 836 837 838

	/*
	 * If we're splicing into a [td]indirect block (as opposed to the
	 * inode) then we need to get write access to the [td]indirect block
	 * before the splice.
	 */
	if (where->bh) {
		BUFFER_TRACE(where->bh, "get_write_access");
839
		err = ext4_journal_get_write_access(handle, where->bh);
840 841 842 843 844 845 846 847 848 849 850 851 852 853
		if (err)
			goto err_out;
	}
	/* That's it */

	*where->p = where->key;

	/*
	 * Update the host buffer_head or inode to point to more just allocated
	 * direct blocks blocks
	 */
	if (num == 0 && blks > 1) {
		current_block = le32_to_cpu(where->key) + 1;
		for (i = 1; i < blks; i++)
854
			*(where->p + i) = cpu_to_le32(current_block++);
855 856 857 858 859 860 861 862 863 864 865
	}

	/* We are done with atomic stuff, now do the rest of housekeeping */
	/* had we spliced it onto indirect block? */
	if (where->bh) {
		/*
		 * If we spliced it onto an indirect block, we haven't
		 * altered the inode.  Note however that if it is being spliced
		 * onto an indirect block at the very end of the file (the
		 * file is growing) then we *will* alter the inode to reflect
		 * the new i_size.  But that is not done here - it is done in
866
		 * generic_commit_write->__mark_inode_dirty->ext4_dirty_inode.
867 868
		 */
		jbd_debug(5, "splicing indirect only\n");
869 870
		BUFFER_TRACE(where->bh, "call ext4_handle_dirty_metadata");
		err = ext4_handle_dirty_metadata(handle, inode, where->bh);
871 872 873 874 875 876
		if (err)
			goto err_out;
	} else {
		/*
		 * OK, we spliced it into the inode itself on a direct block.
		 */
877
		ext4_mark_inode_dirty(handle, inode);
878 879 880 881 882 883
		jbd_debug(5, "splicing direct\n");
	}
	return err;

err_out:
	for (i = 1; i <= num; i++) {
884
		BUFFER_TRACE(where[i].bh, "call jbd2_journal_forget");
885
		ext4_journal_forget(handle, where[i].bh);
886 887
		ext4_free_blocks(handle, inode,
					le32_to_cpu(where[i-1].key), 1, 0);
888
	}
889
	ext4_free_blocks(handle, inode, le32_to_cpu(where[num].key), blks, 0);
890 891 892 893 894

	return err;
}

/*
895 896 897 898
 * The ext4_ind_get_blocks() function handles non-extents inodes
 * (i.e., using the traditional indirect/double-indirect i_blocks
 * scheme) for ext4_get_blocks().
 *
899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914
 * Allocation strategy is simple: if we have to allocate something, we will
 * have to go the whole way to leaf. So let's do it before attaching anything
 * to tree, set linkage between the newborn blocks, write them if sync is
 * required, recheck the path, free and repeat if check fails, otherwise
 * set the last missing link (that will protect us from any truncate-generated
 * removals - all blocks on the path are immune now) and possibly force the
 * write on the parent block.
 * That has a nice additional property: no special recovery from the failed
 * allocations is needed - we simply release blocks and do not touch anything
 * reachable from inode.
 *
 * `handle' can be NULL if create == 0.
 *
 * return > 0, # of blocks mapped or allocated.
 * return = 0, if plain lookup failed.
 * return < 0, error case.
915
 *
916 917 918 919 920
 * The ext4_ind_get_blocks() function should be called with
 * down_write(&EXT4_I(inode)->i_data_sem) if allocating filesystem
 * blocks (i.e., flags has EXT4_GET_BLOCKS_CREATE set) or
 * down_read(&EXT4_I(inode)->i_data_sem) if not allocating file system
 * blocks.
921
 */
922
static int ext4_ind_get_blocks(handle_t *handle, struct inode *inode,
923 924 925
			       ext4_lblk_t iblock, unsigned int maxblocks,
			       struct buffer_head *bh_result,
			       int flags)
926 927
{
	int err = -EIO;
A
Aneesh Kumar K.V 已提交
928
	ext4_lblk_t offsets[4];
929 930
	Indirect chain[4];
	Indirect *partial;
931
	ext4_fsblk_t goal;
932 933 934 935
	int indirect_blks;
	int blocks_to_boundary = 0;
	int depth;
	int count = 0;
936
	ext4_fsblk_t first_block = 0;
937

A
Alex Tomas 已提交
938
	J_ASSERT(!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL));
939
	J_ASSERT(handle != NULL || (flags & EXT4_GET_BLOCKS_CREATE) == 0);
A
Aneesh Kumar K.V 已提交
940
	depth = ext4_block_to_path(inode, iblock, offsets,
941
				   &blocks_to_boundary);
942 943 944 945

	if (depth == 0)
		goto out;

946
	partial = ext4_get_branch(inode, depth, offsets, chain, &err);
947 948 949 950 951 952 953 954

	/* Simplest case - block found, no allocation needed */
	if (!partial) {
		first_block = le32_to_cpu(chain[depth - 1].key);
		clear_buffer_new(bh_result);
		count++;
		/*map more blocks*/
		while (count < maxblocks && count <= blocks_to_boundary) {
955
			ext4_fsblk_t blk;
956 957 958 959 960 961 962 963

			blk = le32_to_cpu(*(chain[depth-1].p + count));

			if (blk == first_block + count)
				count++;
			else
				break;
		}
964
		goto got_it;
965 966 967
	}

	/* Next simple case - plain lookup or failed read of indirect block */
968
	if ((flags & EXT4_GET_BLOCKS_CREATE) == 0 || err == -EIO)
969 970 971
		goto cleanup;

	/*
972
	 * Okay, we need to do block allocation.
973
	*/
974
	goal = ext4_find_goal(inode, iblock, partial);
975 976 977 978 979 980 981 982

	/* the number of blocks need to allocate for [d,t]indirect blocks */
	indirect_blks = (chain + depth) - partial - 1;

	/*
	 * Next look up the indirect map to count the totoal number of
	 * direct blocks to allocate for this branch.
	 */
983
	count = ext4_blks_to_allocate(partial, indirect_blks,
984 985
					maxblocks, blocks_to_boundary);
	/*
986
	 * Block out ext4_truncate while we alter the tree
987
	 */
988
	err = ext4_alloc_branch(handle, inode, iblock, indirect_blks,
989 990
				&count, goal,
				offsets + (partial - chain), partial);
991 992

	/*
993
	 * The ext4_splice_branch call will free and forget any buffers
994 995 996 997 998 999
	 * on the new chain if there is a failure, but that risks using
	 * up transaction credits, especially for bitmaps where the
	 * credits cannot be returned.  Can we handle this somehow?  We
	 * may need to return -EAGAIN upwards in the worst case.  --sct
	 */
	if (!err)
1000
		err = ext4_splice_branch(handle, inode, iblock,
1001 1002
					 partial, indirect_blks, count);
	else
1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023
		goto cleanup;

	set_buffer_new(bh_result);
got_it:
	map_bh(bh_result, inode->i_sb, le32_to_cpu(chain[depth-1].key));
	if (count > blocks_to_boundary)
		set_buffer_boundary(bh_result);
	err = count;
	/* Clean up and exit */
	partial = chain + depth - 1;	/* the whole chain */
cleanup:
	while (partial > chain) {
		BUFFER_TRACE(partial->bh, "call brelse");
		brelse(partial->bh);
		partial--;
	}
	BUFFER_TRACE(bh_result, "returned");
out:
	return err;
}

1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034
qsize_t ext4_get_reserved_space(struct inode *inode)
{
	unsigned long long total;

	spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
	total = EXT4_I(inode)->i_reserved_data_blocks +
		EXT4_I(inode)->i_reserved_meta_blocks;
	spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);

	return total;
}
1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059
/*
 * Calculate the number of metadata blocks need to reserve
 * to allocate @blocks for non extent file based file
 */
static int ext4_indirect_calc_metadata_amount(struct inode *inode, int blocks)
{
	int icap = EXT4_ADDR_PER_BLOCK(inode->i_sb);
	int ind_blks, dind_blks, tind_blks;

	/* number of new indirect blocks needed */
	ind_blks = (blocks + icap - 1) / icap;

	dind_blks = (ind_blks + icap - 1) / icap;

	tind_blks = 1;

	return ind_blks + dind_blks + tind_blks;
}

/*
 * Calculate the number of metadata blocks need to reserve
 * to allocate given number of blocks
 */
static int ext4_calc_metadata_amount(struct inode *inode, int blocks)
{
1060 1061 1062
	if (!blocks)
		return 0;

1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082
	if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL)
		return ext4_ext_calc_metadata_amount(inode, blocks);

	return ext4_indirect_calc_metadata_amount(inode, blocks);
}

static void ext4_da_update_reserve_space(struct inode *inode, int used)
{
	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
	int total, mdb, mdb_free;

	spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
	/* recalculate the number of metablocks still need to be reserved */
	total = EXT4_I(inode)->i_reserved_data_blocks - used;
	mdb = ext4_calc_metadata_amount(inode, total);

	/* figure out how many metablocks to release */
	BUG_ON(mdb > EXT4_I(inode)->i_reserved_meta_blocks);
	mdb_free = EXT4_I(inode)->i_reserved_meta_blocks - mdb;

1083 1084 1085 1086 1087 1088 1089 1090 1091
	if (mdb_free) {
		/* Account for allocated meta_blocks */
		mdb_free -= EXT4_I(inode)->i_allocated_meta_blocks;

		/* update fs dirty blocks counter */
		percpu_counter_sub(&sbi->s_dirtyblocks_counter, mdb_free);
		EXT4_I(inode)->i_allocated_meta_blocks = 0;
		EXT4_I(inode)->i_reserved_meta_blocks = mdb;
	}
1092 1093 1094 1095 1096

	/* update per-inode reservations */
	BUG_ON(used  > EXT4_I(inode)->i_reserved_data_blocks);
	EXT4_I(inode)->i_reserved_data_blocks -= used;
	spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1097 1098 1099 1100 1101 1102

	/*
	 * free those over-booking quota for metadata blocks
	 */
	if (mdb_free)
		vfs_dq_release_reservation_block(inode, mdb_free);
1103 1104 1105 1106 1107 1108 1109 1110

	/*
	 * If we have done all the pending block allocations and if
	 * there aren't any writers on the inode, we can discard the
	 * inode's preallocations.
	 */
	if (!total && (atomic_read(&inode->i_writecount) == 0))
		ext4_discard_preallocations(inode);
1111 1112
}

1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127
static int check_block_validity(struct inode *inode, sector_t logical,
				sector_t phys, int len)
{
	if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), phys, len)) {
		ext4_error(inode->i_sb, "check_block_validity",
			   "inode #%lu logical block %llu mapped to %llu "
			   "(size %d)", inode->i_ino,
			   (unsigned long long) logical,
			   (unsigned long long) phys, len);
		WARN_ON(1);
		return -EIO;
	}
	return 0;
}

1128
/*
1129
 * The ext4_get_blocks() function tries to look up the requested blocks,
1130
 * and returns if the blocks are already mapped.
1131 1132 1133 1134 1135 1136
 *
 * Otherwise it takes the write lock of the i_data_sem and allocate blocks
 * and store the allocated blocks in the result buffer head and mark it
 * mapped.
 *
 * If file type is extents based, it will call ext4_ext_get_blocks(),
1137
 * Otherwise, call with ext4_ind_get_blocks() to handle indirect mapping
1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149
 * based files
 *
 * On success, it returns the number of blocks being mapped or allocate.
 * if create==0 and the blocks are pre-allocated and uninitialized block,
 * the result buffer head is unmapped. If the create ==1, it will make sure
 * the buffer head is mapped.
 *
 * It returns 0 if plain look up failed (blocks have not been allocated), in
 * that casem, buffer head is unmapped
 *
 * It returns the error in case of allocation failure.
 */
1150 1151
int ext4_get_blocks(handle_t *handle, struct inode *inode, sector_t block,
		    unsigned int max_blocks, struct buffer_head *bh,
1152
		    int flags)
1153 1154
{
	int retval;
1155 1156

	clear_buffer_mapped(bh);
1157
	clear_buffer_unwritten(bh);
1158

1159
	/*
1160 1161
	 * Try to see if we can get the block without requesting a new
	 * file system block.
1162 1163 1164 1165
	 */
	down_read((&EXT4_I(inode)->i_data_sem));
	if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) {
		retval =  ext4_ext_get_blocks(handle, inode, block, max_blocks,
1166
				bh, 0);
1167
	} else {
1168
		retval = ext4_ind_get_blocks(handle, inode, block, max_blocks,
1169
					     bh, 0);
1170
	}
1171
	up_read((&EXT4_I(inode)->i_data_sem));
1172

1173
	if (retval > 0 && buffer_mapped(bh)) {
1174
		int ret = check_block_validity(inode, block,
1175 1176 1177 1178 1179
					       bh->b_blocknr, retval);
		if (ret != 0)
			return ret;
	}

1180
	/* If it is only a block(s) look up */
1181
	if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
1182 1183 1184 1185 1186 1187 1188 1189 1190 1191
		return retval;

	/*
	 * Returns if the blocks have already allocated
	 *
	 * Note that if blocks have been preallocated
	 * ext4_ext_get_block() returns th create = 0
	 * with buffer head unmapped.
	 */
	if (retval > 0 && buffer_mapped(bh))
1192 1193
		return retval;

1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205
	/*
	 * When we call get_blocks without the create flag, the
	 * BH_Unwritten flag could have gotten set if the blocks
	 * requested were part of a uninitialized extent.  We need to
	 * clear this flag now that we are committed to convert all or
	 * part of the uninitialized extent to be an initialized
	 * extent.  This is because we need to avoid the combination
	 * of BH_Unwritten and BH_Mapped flags being simultaneously
	 * set on the buffer_head.
	 */
	clear_buffer_unwritten(bh);

1206
	/*
1207 1208 1209 1210
	 * New blocks allocate and/or writing to uninitialized extent
	 * will possibly result in updating i_data, so we take
	 * the write lock of i_data_sem, and call get_blocks()
	 * with create == 1 flag.
1211 1212
	 */
	down_write((&EXT4_I(inode)->i_data_sem));
1213 1214 1215 1216 1217 1218 1219

	/*
	 * if the caller is from delayed allocation writeout path
	 * we have already reserved fs blocks for allocation
	 * let the underlying get_block() function know to
	 * avoid double accounting
	 */
1220
	if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
1221
		EXT4_I(inode)->i_delalloc_reserved_flag = 1;
1222 1223 1224 1225
	/*
	 * We need to check for EXT4 here because migrate
	 * could have changed the inode type in between
	 */
1226 1227
	if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) {
		retval =  ext4_ext_get_blocks(handle, inode, block, max_blocks,
1228
					      bh, flags);
1229
	} else {
1230
		retval = ext4_ind_get_blocks(handle, inode, block,
1231
					     max_blocks, bh, flags);
1232 1233 1234 1235 1236 1237 1238 1239 1240 1241

		if (retval > 0 && buffer_new(bh)) {
			/*
			 * We allocated new blocks which will result in
			 * i_data's format changing.  Force the migrate
			 * to fail by clearing migrate flags
			 */
			EXT4_I(inode)->i_flags = EXT4_I(inode)->i_flags &
							~EXT4_EXT_MIGRATE;
		}
1242
	}
1243

1244
	if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
1245
		EXT4_I(inode)->i_delalloc_reserved_flag = 0;
1246 1247 1248 1249 1250 1251 1252

	/*
	 * Update reserved blocks/metadata blocks after successful
	 * block allocation which had been deferred till now.
	 */
	if ((retval > 0) && (flags & EXT4_GET_BLOCKS_UPDATE_RESERVE_SPACE))
		ext4_da_update_reserve_space(inode, retval);
1253

1254
	up_write((&EXT4_I(inode)->i_data_sem));
1255
	if (retval > 0 && buffer_mapped(bh)) {
1256
		int ret = check_block_validity(inode, block,
1257 1258 1259 1260
					       bh->b_blocknr, retval);
		if (ret != 0)
			return ret;
	}
1261 1262 1263
	return retval;
}

1264 1265 1266
/* Maximum number of blocks we map for direct IO at once. */
#define DIO_MAX_BLOCKS 4096

1267 1268
int ext4_get_block(struct inode *inode, sector_t iblock,
		   struct buffer_head *bh_result, int create)
1269
{
1270
	handle_t *handle = ext4_journal_current_handle();
J
Jan Kara 已提交
1271
	int ret = 0, started = 0;
1272
	unsigned max_blocks = bh_result->b_size >> inode->i_blkbits;
1273
	int dio_credits;
1274

J
Jan Kara 已提交
1275 1276 1277 1278
	if (create && !handle) {
		/* Direct IO write... */
		if (max_blocks > DIO_MAX_BLOCKS)
			max_blocks = DIO_MAX_BLOCKS;
1279 1280
		dio_credits = ext4_chunk_trans_blocks(inode, max_blocks);
		handle = ext4_journal_start(inode, dio_credits);
J
Jan Kara 已提交
1281
		if (IS_ERR(handle)) {
1282
			ret = PTR_ERR(handle);
J
Jan Kara 已提交
1283
			goto out;
1284
		}
J
Jan Kara 已提交
1285
		started = 1;
1286 1287
	}

1288
	ret = ext4_get_blocks(handle, inode, iblock, max_blocks, bh_result,
1289
			      create ? EXT4_GET_BLOCKS_CREATE : 0);
J
Jan Kara 已提交
1290 1291 1292
	if (ret > 0) {
		bh_result->b_size = (ret << inode->i_blkbits);
		ret = 0;
1293
	}
J
Jan Kara 已提交
1294 1295 1296
	if (started)
		ext4_journal_stop(handle);
out:
1297 1298 1299 1300 1301 1302
	return ret;
}

/*
 * `handle' can be NULL if create is zero
 */
1303
struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
A
Aneesh Kumar K.V 已提交
1304
				ext4_lblk_t block, int create, int *errp)
1305 1306 1307
{
	struct buffer_head dummy;
	int fatal = 0, err;
1308
	int flags = 0;
1309 1310 1311 1312 1313 1314

	J_ASSERT(handle != NULL || create == 0);

	dummy.b_state = 0;
	dummy.b_blocknr = -1000;
	buffer_trace_init(&dummy.b_history);
1315 1316 1317
	if (create)
		flags |= EXT4_GET_BLOCKS_CREATE;
	err = ext4_get_blocks(handle, inode, block, 1, &dummy, flags);
1318
	/*
1319 1320
	 * ext4_get_blocks() returns number of blocks mapped. 0 in
	 * case of a HOLE.
1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336
	 */
	if (err > 0) {
		if (err > 1)
			WARN_ON(1);
		err = 0;
	}
	*errp = err;
	if (!err && buffer_mapped(&dummy)) {
		struct buffer_head *bh;
		bh = sb_getblk(inode->i_sb, dummy.b_blocknr);
		if (!bh) {
			*errp = -EIO;
			goto err;
		}
		if (buffer_new(&dummy)) {
			J_ASSERT(create != 0);
A
Aneesh Kumar K.V 已提交
1337
			J_ASSERT(handle != NULL);
1338 1339 1340 1341 1342

			/*
			 * Now that we do not always journal data, we should
			 * keep in mind whether this should always journal the
			 * new buffer as metadata.  For now, regular file
1343
			 * writes use ext4_get_block instead, so it's not a
1344 1345 1346 1347
			 * problem.
			 */
			lock_buffer(bh);
			BUFFER_TRACE(bh, "call get_create_access");
1348
			fatal = ext4_journal_get_create_access(handle, bh);
1349
			if (!fatal && !buffer_uptodate(bh)) {
1350
				memset(bh->b_data, 0, inode->i_sb->s_blocksize);
1351 1352 1353
				set_buffer_uptodate(bh);
			}
			unlock_buffer(bh);
1354 1355
			BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
			err = ext4_handle_dirty_metadata(handle, inode, bh);
1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371
			if (!fatal)
				fatal = err;
		} else {
			BUFFER_TRACE(bh, "not a new buffer");
		}
		if (fatal) {
			*errp = fatal;
			brelse(bh);
			bh = NULL;
		}
		return bh;
	}
err:
	return NULL;
}

1372
struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
A
Aneesh Kumar K.V 已提交
1373
			       ext4_lblk_t block, int create, int *err)
1374
{
1375
	struct buffer_head *bh;
1376

1377
	bh = ext4_getblk(handle, inode, block, create, err);
1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390
	if (!bh)
		return bh;
	if (buffer_uptodate(bh))
		return bh;
	ll_rw_block(READ_META, 1, &bh);
	wait_on_buffer(bh);
	if (buffer_uptodate(bh))
		return bh;
	put_bh(bh);
	*err = -EIO;
	return NULL;
}

1391 1392 1393 1394 1395 1396 1397
static int walk_page_buffers(handle_t *handle,
			     struct buffer_head *head,
			     unsigned from,
			     unsigned to,
			     int *partial,
			     int (*fn)(handle_t *handle,
				       struct buffer_head *bh))
1398 1399 1400 1401 1402 1403 1404
{
	struct buffer_head *bh;
	unsigned block_start, block_end;
	unsigned blocksize = head->b_size;
	int err, ret = 0;
	struct buffer_head *next;

1405 1406
	for (bh = head, block_start = 0;
	     ret == 0 && (bh != head || !block_start);
1407
	     block_start = block_end, bh = next) {
1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424
		next = bh->b_this_page;
		block_end = block_start + blocksize;
		if (block_end <= from || block_start >= to) {
			if (partial && !buffer_uptodate(bh))
				*partial = 1;
			continue;
		}
		err = (*fn)(handle, bh);
		if (!ret)
			ret = err;
	}
	return ret;
}

/*
 * To preserve ordering, it is essential that the hole instantiation and
 * the data write be encapsulated in a single transaction.  We cannot
1425
 * close off a transaction and start a new one between the ext4_get_block()
1426
 * and the commit_write().  So doing the jbd2_journal_start at the start of
1427 1428
 * prepare_write() is the right place.
 *
1429 1430
 * Also, this function can nest inside ext4_writepage() ->
 * block_write_full_page(). In that case, we *know* that ext4_writepage()
1431 1432 1433 1434
 * has generated enough buffer credits to do the whole page.  So we won't
 * block on the journal in that case, which is good, because the caller may
 * be PF_MEMALLOC.
 *
1435
 * By accident, ext4 can be reentered when a transaction is open via
1436 1437 1438 1439 1440 1441
 * quota file writes.  If we were to commit the transaction while thus
 * reentered, there can be a deadlock - we would be holding a quota
 * lock, and the commit would never complete if another thread had a
 * transaction open and was blocking on the quota lock - a ranking
 * violation.
 *
1442
 * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
1443 1444 1445 1446 1447
 * will _not_ run commit under these circumstances because handle->h_ref
 * is elevated.  We'll still have enough credits for the tiny quotafile
 * write.
 */
static int do_journal_get_write_access(handle_t *handle,
1448
				       struct buffer_head *bh)
1449 1450 1451
{
	if (!buffer_mapped(bh) || buffer_freed(bh))
		return 0;
1452
	return ext4_journal_get_write_access(handle, bh);
1453 1454
}

N
Nick Piggin 已提交
1455
static int ext4_write_begin(struct file *file, struct address_space *mapping,
1456 1457
			    loff_t pos, unsigned len, unsigned flags,
			    struct page **pagep, void **fsdata)
1458
{
1459
	struct inode *inode = mapping->host;
1460
	int ret, needed_blocks;
1461 1462
	handle_t *handle;
	int retries = 0;
1463
	struct page *page;
1464
	pgoff_t index;
1465
	unsigned from, to;
N
Nick Piggin 已提交
1466

1467
	trace_ext4_write_begin(inode, pos, len, flags);
1468 1469 1470 1471 1472
	/*
	 * Reserve one block more for addition to orphan list in case
	 * we allocate blocks but write fails for some reason
	 */
	needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
1473
	index = pos >> PAGE_CACHE_SHIFT;
1474 1475
	from = pos & (PAGE_CACHE_SIZE - 1);
	to = from + len;
1476 1477

retry:
1478 1479 1480 1481
	handle = ext4_journal_start(inode, needed_blocks);
	if (IS_ERR(handle)) {
		ret = PTR_ERR(handle);
		goto out;
1482
	}
1483

1484 1485 1486 1487
	/* We cannot recurse into the filesystem as the transaction is already
	 * started */
	flags |= AOP_FLAG_NOFS;

1488
	page = grab_cache_page_write_begin(mapping, index, flags);
1489 1490 1491 1492 1493 1494 1495
	if (!page) {
		ext4_journal_stop(handle);
		ret = -ENOMEM;
		goto out;
	}
	*pagep = page;

N
Nick Piggin 已提交
1496
	ret = block_write_begin(file, mapping, pos, len, flags, pagep, fsdata,
1497
				ext4_get_block);
N
Nick Piggin 已提交
1498 1499

	if (!ret && ext4_should_journal_data(inode)) {
1500 1501 1502
		ret = walk_page_buffers(handle, page_buffers(page),
				from, to, NULL, do_journal_get_write_access);
	}
N
Nick Piggin 已提交
1503 1504

	if (ret) {
1505 1506
		unlock_page(page);
		page_cache_release(page);
1507 1508 1509 1510
		/*
		 * block_write_begin may have instantiated a few blocks
		 * outside i_size.  Trim these off again. Don't need
		 * i_size_read because we hold i_mutex.
1511 1512 1513
		 *
		 * Add inode to orphan list in case we crash before
		 * truncate finishes
1514
		 */
1515
		if (pos + len > inode->i_size && ext4_can_truncate(inode))
1516 1517 1518 1519
			ext4_orphan_add(handle, inode);

		ext4_journal_stop(handle);
		if (pos + len > inode->i_size) {
1520
			ext4_truncate(inode);
1521
			/*
1522
			 * If truncate failed early the inode might
1523 1524 1525 1526 1527 1528 1529
			 * still be on the orphan list; we need to
			 * make sure the inode is removed from the
			 * orphan list in that case.
			 */
			if (inode->i_nlink)
				ext4_orphan_del(NULL, inode);
		}
N
Nick Piggin 已提交
1530 1531
	}

1532
	if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
1533
		goto retry;
1534
out:
1535 1536 1537
	return ret;
}

N
Nick Piggin 已提交
1538 1539
/* For write_end() in data=journal mode */
static int write_end_fn(handle_t *handle, struct buffer_head *bh)
1540 1541 1542 1543
{
	if (!buffer_mapped(bh) || buffer_freed(bh))
		return 0;
	set_buffer_uptodate(bh);
1544
	return ext4_handle_dirty_metadata(handle, NULL, bh);
1545 1546
}

1547
static int ext4_generic_write_end(struct file *file,
1548 1549 1550
				  struct address_space *mapping,
				  loff_t pos, unsigned len, unsigned copied,
				  struct page *page, void *fsdata)
1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592
{
	int i_size_changed = 0;
	struct inode *inode = mapping->host;
	handle_t *handle = ext4_journal_current_handle();

	copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);

	/*
	 * No need to use i_size_read() here, the i_size
	 * cannot change under us because we hold i_mutex.
	 *
	 * But it's important to update i_size while still holding page lock:
	 * page writeout could otherwise come in and zero beyond i_size.
	 */
	if (pos + copied > inode->i_size) {
		i_size_write(inode, pos + copied);
		i_size_changed = 1;
	}

	if (pos + copied >  EXT4_I(inode)->i_disksize) {
		/* We need to mark inode dirty even if
		 * new_i_size is less that inode->i_size
		 * bu greater than i_disksize.(hint delalloc)
		 */
		ext4_update_i_disksize(inode, (pos + copied));
		i_size_changed = 1;
	}
	unlock_page(page);
	page_cache_release(page);

	/*
	 * Don't mark the inode dirty under page lock. First, it unnecessarily
	 * makes the holding time of page lock longer. Second, it forces lock
	 * ordering of page lock and transaction start for journaling
	 * filesystems.
	 */
	if (i_size_changed)
		ext4_mark_inode_dirty(handle, inode);

	return copied;
}

1593 1594 1595 1596
/*
 * We need to pick up the new inode size which generic_commit_write gave us
 * `file' can be NULL - eg, when called from page_symlink().
 *
1597
 * ext4 never places buffers on inode->i_mapping->private_list.  metadata
1598 1599
 * buffers are managed internally.
 */
N
Nick Piggin 已提交
1600
static int ext4_ordered_write_end(struct file *file,
1601 1602 1603
				  struct address_space *mapping,
				  loff_t pos, unsigned len, unsigned copied,
				  struct page *page, void *fsdata)
1604
{
1605
	handle_t *handle = ext4_journal_current_handle();
1606
	struct inode *inode = mapping->host;
1607 1608
	int ret = 0, ret2;

1609
	trace_ext4_ordered_write_end(inode, pos, len, copied);
1610
	ret = ext4_jbd2_file_inode(handle, inode);
1611 1612

	if (ret == 0) {
1613
		ret2 = ext4_generic_write_end(file, mapping, pos, len, copied,
N
Nick Piggin 已提交
1614
							page, fsdata);
1615
		copied = ret2;
1616
		if (pos + len > inode->i_size && ext4_can_truncate(inode))
1617 1618 1619 1620 1621
			/* if we have allocated more blocks and copied
			 * less. We will have blocks allocated outside
			 * inode->i_size. So truncate them
			 */
			ext4_orphan_add(handle, inode);
1622 1623
		if (ret2 < 0)
			ret = ret2;
1624
	}
1625
	ret2 = ext4_journal_stop(handle);
1626 1627
	if (!ret)
		ret = ret2;
N
Nick Piggin 已提交
1628

1629
	if (pos + len > inode->i_size) {
1630
		ext4_truncate(inode);
1631
		/*
1632
		 * If truncate failed early the inode might still be
1633 1634 1635 1636 1637 1638 1639 1640
		 * on the orphan list; we need to make sure the inode
		 * is removed from the orphan list in that case.
		 */
		if (inode->i_nlink)
			ext4_orphan_del(NULL, inode);
	}


N
Nick Piggin 已提交
1641
	return ret ? ret : copied;
1642 1643
}

N
Nick Piggin 已提交
1644
static int ext4_writeback_write_end(struct file *file,
1645 1646 1647
				    struct address_space *mapping,
				    loff_t pos, unsigned len, unsigned copied,
				    struct page *page, void *fsdata)
1648
{
1649
	handle_t *handle = ext4_journal_current_handle();
1650
	struct inode *inode = mapping->host;
1651 1652
	int ret = 0, ret2;

1653
	trace_ext4_writeback_write_end(inode, pos, len, copied);
1654
	ret2 = ext4_generic_write_end(file, mapping, pos, len, copied,
N
Nick Piggin 已提交
1655
							page, fsdata);
1656
	copied = ret2;
1657
	if (pos + len > inode->i_size && ext4_can_truncate(inode))
1658 1659 1660 1661 1662 1663
		/* if we have allocated more blocks and copied
		 * less. We will have blocks allocated outside
		 * inode->i_size. So truncate them
		 */
		ext4_orphan_add(handle, inode);

1664 1665
	if (ret2 < 0)
		ret = ret2;
1666

1667
	ret2 = ext4_journal_stop(handle);
1668 1669
	if (!ret)
		ret = ret2;
N
Nick Piggin 已提交
1670

1671
	if (pos + len > inode->i_size) {
1672
		ext4_truncate(inode);
1673
		/*
1674
		 * If truncate failed early the inode might still be
1675 1676 1677 1678 1679 1680 1681
		 * on the orphan list; we need to make sure the inode
		 * is removed from the orphan list in that case.
		 */
		if (inode->i_nlink)
			ext4_orphan_del(NULL, inode);
	}

N
Nick Piggin 已提交
1682
	return ret ? ret : copied;
1683 1684
}

N
Nick Piggin 已提交
1685
static int ext4_journalled_write_end(struct file *file,
1686 1687 1688
				     struct address_space *mapping,
				     loff_t pos, unsigned len, unsigned copied,
				     struct page *page, void *fsdata)
1689
{
1690
	handle_t *handle = ext4_journal_current_handle();
N
Nick Piggin 已提交
1691
	struct inode *inode = mapping->host;
1692 1693
	int ret = 0, ret2;
	int partial = 0;
N
Nick Piggin 已提交
1694
	unsigned from, to;
1695
	loff_t new_i_size;
1696

1697
	trace_ext4_journalled_write_end(inode, pos, len, copied);
N
Nick Piggin 已提交
1698 1699 1700 1701 1702 1703 1704 1705
	from = pos & (PAGE_CACHE_SIZE - 1);
	to = from + len;

	if (copied < len) {
		if (!PageUptodate(page))
			copied = 0;
		page_zero_new_buffers(page, from+copied, to);
	}
1706 1707

	ret = walk_page_buffers(handle, page_buffers(page), from,
N
Nick Piggin 已提交
1708
				to, &partial, write_end_fn);
1709 1710
	if (!partial)
		SetPageUptodate(page);
1711 1712
	new_i_size = pos + copied;
	if (new_i_size > inode->i_size)
N
Nick Piggin 已提交
1713
		i_size_write(inode, pos+copied);
1714
	EXT4_I(inode)->i_state |= EXT4_STATE_JDATA;
1715 1716
	if (new_i_size > EXT4_I(inode)->i_disksize) {
		ext4_update_i_disksize(inode, new_i_size);
1717
		ret2 = ext4_mark_inode_dirty(handle, inode);
1718 1719 1720
		if (!ret)
			ret = ret2;
	}
N
Nick Piggin 已提交
1721

1722
	unlock_page(page);
1723
	page_cache_release(page);
1724
	if (pos + len > inode->i_size && ext4_can_truncate(inode))
1725 1726 1727 1728 1729 1730
		/* if we have allocated more blocks and copied
		 * less. We will have blocks allocated outside
		 * inode->i_size. So truncate them
		 */
		ext4_orphan_add(handle, inode);

1731
	ret2 = ext4_journal_stop(handle);
1732 1733
	if (!ret)
		ret = ret2;
1734
	if (pos + len > inode->i_size) {
1735
		ext4_truncate(inode);
1736
		/*
1737
		 * If truncate failed early the inode might still be
1738 1739 1740 1741 1742 1743
		 * on the orphan list; we need to make sure the inode
		 * is removed from the orphan list in that case.
		 */
		if (inode->i_nlink)
			ext4_orphan_del(NULL, inode);
	}
N
Nick Piggin 已提交
1744 1745

	return ret ? ret : copied;
1746
}
1747 1748 1749

static int ext4_da_reserve_space(struct inode *inode, int nrblocks)
{
A
Aneesh Kumar K.V 已提交
1750
	int retries = 0;
1751 1752
	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
	unsigned long md_needed, mdblocks, total = 0;
1753 1754 1755 1756 1757 1758

	/*
	 * recalculate the amount of metadata blocks to reserve
	 * in order to allocate nrblocks
	 * worse case is one extent per block
	 */
A
Aneesh Kumar K.V 已提交
1759
repeat:
1760 1761 1762 1763 1764 1765 1766 1767
	spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
	total = EXT4_I(inode)->i_reserved_data_blocks + nrblocks;
	mdblocks = ext4_calc_metadata_amount(inode, total);
	BUG_ON(mdblocks < EXT4_I(inode)->i_reserved_meta_blocks);

	md_needed = mdblocks - EXT4_I(inode)->i_reserved_meta_blocks;
	total = md_needed + nrblocks;

1768 1769 1770 1771 1772 1773 1774 1775 1776 1777
	/*
	 * Make quota reservation here to prevent quota overflow
	 * later. Real quota accounting is done at pages writeout
	 * time.
	 */
	if (vfs_dq_reserve_block(inode, total)) {
		spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
		return -EDQUOT;
	}

1778
	if (ext4_claim_free_blocks(sbi, total)) {
1779
		spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
A
Aneesh Kumar K.V 已提交
1780 1781 1782 1783
		if (ext4_should_retry_alloc(inode->i_sb, &retries)) {
			yield();
			goto repeat;
		}
1784
		vfs_dq_release_reservation_block(inode, total);
1785 1786 1787 1788 1789 1790 1791 1792 1793
		return -ENOSPC;
	}
	EXT4_I(inode)->i_reserved_data_blocks += nrblocks;
	EXT4_I(inode)->i_reserved_meta_blocks = mdblocks;

	spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
	return 0;       /* success */
}

1794
static void ext4_da_release_space(struct inode *inode, int to_free)
1795 1796 1797 1798
{
	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
	int total, mdb, mdb_free, release;

1799 1800 1801
	if (!to_free)
		return;		/* Nothing to release, exit */

1802
	spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817

	if (!EXT4_I(inode)->i_reserved_data_blocks) {
		/*
		 * if there is no reserved blocks, but we try to free some
		 * then the counter is messed up somewhere.
		 * but since this function is called from invalidate
		 * page, it's harmless to return without any action
		 */
		printk(KERN_INFO "ext4 delalloc try to release %d reserved "
			    "blocks for inode %lu, but there is no reserved "
			    "data blocks\n", to_free, inode->i_ino);
		spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
		return;
	}

1818
	/* recalculate the number of metablocks still need to be reserved */
1819
	total = EXT4_I(inode)->i_reserved_data_blocks - to_free;
1820 1821 1822 1823 1824 1825 1826 1827
	mdb = ext4_calc_metadata_amount(inode, total);

	/* figure out how many metablocks to release */
	BUG_ON(mdb > EXT4_I(inode)->i_reserved_meta_blocks);
	mdb_free = EXT4_I(inode)->i_reserved_meta_blocks - mdb;

	release = to_free + mdb_free;

1828 1829
	/* update fs dirty blocks counter for truncate case */
	percpu_counter_sub(&sbi->s_dirtyblocks_counter, release);
1830 1831

	/* update per-inode reservations */
1832 1833
	BUG_ON(to_free > EXT4_I(inode)->i_reserved_data_blocks);
	EXT4_I(inode)->i_reserved_data_blocks -= to_free;
1834 1835 1836 1837

	BUG_ON(mdb > EXT4_I(inode)->i_reserved_meta_blocks);
	EXT4_I(inode)->i_reserved_meta_blocks = mdb;
	spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1838 1839

	vfs_dq_release_reservation_block(inode, release);
1840 1841 1842
}

static void ext4_da_page_release_reservation(struct page *page,
1843
					     unsigned long offset)
1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859
{
	int to_release = 0;
	struct buffer_head *head, *bh;
	unsigned int curr_off = 0;

	head = page_buffers(page);
	bh = head;
	do {
		unsigned int next_off = curr_off + bh->b_size;

		if ((offset <= curr_off) && (buffer_delay(bh))) {
			to_release++;
			clear_buffer_delay(bh);
		}
		curr_off = next_off;
	} while ((bh = bh->b_this_page) != head);
1860
	ext4_da_release_space(page->mapping->host, to_release);
1861
}
1862

1863 1864 1865 1866 1867 1868
/*
 * Delayed allocation stuff
 */

struct mpage_da_data {
	struct inode *inode;
1869 1870 1871
	sector_t b_blocknr;		/* start block number of extent */
	size_t b_size;			/* size of extent */
	unsigned long b_state;		/* state of the extent */
1872 1873
	unsigned long first_page, next_page;	/* extent of pages */
	struct writeback_control *wbc;
1874
	int io_done;
1875
	int pages_written;
1876
	int retval;
1877 1878 1879 1880
};

/*
 * mpage_da_submit_io - walks through extent of pages and try to write
1881
 * them with writepage() call back
1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893
 *
 * @mpd->inode: inode
 * @mpd->first_page: first page of the extent
 * @mpd->next_page: page after the last page of the extent
 *
 * By the time mpage_da_submit_io() is called we expect all blocks
 * to be allocated. this may be wrong if allocation failed.
 *
 * As pages are already locked by write_cache_pages(), we can't use it
 */
static int mpage_da_submit_io(struct mpage_da_data *mpd)
{
1894
	long pages_skipped;
1895 1896 1897 1898 1899
	struct pagevec pvec;
	unsigned long index, end;
	int ret = 0, err, nr_pages, i;
	struct inode *inode = mpd->inode;
	struct address_space *mapping = inode->i_mapping;
1900 1901

	BUG_ON(mpd->next_page <= mpd->first_page);
1902 1903 1904
	/*
	 * We need to start from the first_page to the next_page - 1
	 * to make sure we also write the mapped dirty buffer_heads.
1905
	 * If we look at mpd->b_blocknr we would only be looking
1906 1907
	 * at the currently mapped buffer_heads.
	 */
1908 1909 1910
	index = mpd->first_page;
	end = mpd->next_page - 1;

1911
	pagevec_init(&pvec, 0);
1912
	while (index <= end) {
1913
		nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1914 1915 1916 1917 1918
		if (nr_pages == 0)
			break;
		for (i = 0; i < nr_pages; i++) {
			struct page *page = pvec.pages[i];

1919 1920 1921 1922 1923 1924 1925 1926
			index = page->index;
			if (index > end)
				break;
			index++;

			BUG_ON(!PageLocked(page));
			BUG_ON(PageWriteback(page));

1927
			pages_skipped = mpd->wbc->pages_skipped;
1928
			err = mapping->a_ops->writepage(page, mpd->wbc);
1929 1930 1931 1932 1933
			if (!err && (pages_skipped == mpd->wbc->pages_skipped))
				/*
				 * have successfully written the page
				 * without skipping the same
				 */
1934
				mpd->pages_written++;
1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956
			/*
			 * In error case, we have to continue because
			 * remaining pages are still locked
			 * XXX: unlock and re-dirty them?
			 */
			if (ret == 0)
				ret = err;
		}
		pagevec_release(&pvec);
	}
	return ret;
}

/*
 * mpage_put_bnr_to_bhs - walk blocks and assign them actual numbers
 *
 * @mpd->inode - inode to walk through
 * @exbh->b_blocknr - first block on a disk
 * @exbh->b_size - amount of space in bytes
 * @logical - first logical block to start assignment with
 *
 * the function goes through all passed space and put actual disk
1957
 * block numbers into buffer heads, dropping BH_Delay and BH_Unwritten
1958 1959 1960 1961 1962 1963 1964 1965 1966
 */
static void mpage_put_bnr_to_bhs(struct mpage_da_data *mpd, sector_t logical,
				 struct buffer_head *exbh)
{
	struct inode *inode = mpd->inode;
	struct address_space *mapping = inode->i_mapping;
	int blocks = exbh->b_size >> inode->i_blkbits;
	sector_t pblock = exbh->b_blocknr, cur_logical;
	struct buffer_head *head, *bh;
1967
	pgoff_t index, end;
1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006
	struct pagevec pvec;
	int nr_pages, i;

	index = logical >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
	end = (logical + blocks - 1) >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
	cur_logical = index << (PAGE_CACHE_SHIFT - inode->i_blkbits);

	pagevec_init(&pvec, 0);

	while (index <= end) {
		/* XXX: optimize tail */
		nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
		if (nr_pages == 0)
			break;
		for (i = 0; i < nr_pages; i++) {
			struct page *page = pvec.pages[i];

			index = page->index;
			if (index > end)
				break;
			index++;

			BUG_ON(!PageLocked(page));
			BUG_ON(PageWriteback(page));
			BUG_ON(!page_has_buffers(page));

			bh = page_buffers(page);
			head = bh;

			/* skip blocks out of the range */
			do {
				if (cur_logical >= logical)
					break;
				cur_logical++;
			} while ((bh = bh->b_this_page) != head);

			do {
				if (cur_logical >= logical + blocks)
					break;
2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024

				if (buffer_delay(bh) ||
						buffer_unwritten(bh)) {

					BUG_ON(bh->b_bdev != inode->i_sb->s_bdev);

					if (buffer_delay(bh)) {
						clear_buffer_delay(bh);
						bh->b_blocknr = pblock;
					} else {
						/*
						 * unwritten already should have
						 * blocknr assigned. Verify that
						 */
						clear_buffer_unwritten(bh);
						BUG_ON(bh->b_blocknr != pblock);
					}

2025
				} else if (buffer_mapped(bh))
2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051
					BUG_ON(bh->b_blocknr != pblock);

				cur_logical++;
				pblock++;
			} while ((bh = bh->b_this_page) != head);
		}
		pagevec_release(&pvec);
	}
}


/*
 * __unmap_underlying_blocks - just a helper function to unmap
 * set of blocks described by @bh
 */
static inline void __unmap_underlying_blocks(struct inode *inode,
					     struct buffer_head *bh)
{
	struct block_device *bdev = inode->i_sb->s_bdev;
	int blocks, i;

	blocks = bh->b_size >> inode->i_blkbits;
	for (i = 0; i < blocks; i++)
		unmap_underlying_metadata(bdev, bh->b_blocknr + i);
}

2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084
static void ext4_da_block_invalidatepages(struct mpage_da_data *mpd,
					sector_t logical, long blk_cnt)
{
	int nr_pages, i;
	pgoff_t index, end;
	struct pagevec pvec;
	struct inode *inode = mpd->inode;
	struct address_space *mapping = inode->i_mapping;

	index = logical >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
	end   = (logical + blk_cnt - 1) >>
				(PAGE_CACHE_SHIFT - inode->i_blkbits);
	while (index <= end) {
		nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
		if (nr_pages == 0)
			break;
		for (i = 0; i < nr_pages; i++) {
			struct page *page = pvec.pages[i];
			index = page->index;
			if (index > end)
				break;
			index++;

			BUG_ON(!PageLocked(page));
			BUG_ON(PageWriteback(page));
			block_invalidatepage(page, 0);
			ClearPageUptodate(page);
			unlock_page(page);
		}
	}
	return;
}

2085 2086 2087 2088 2089 2090 2091
static void ext4_print_free_blocks(struct inode *inode)
{
	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
	printk(KERN_EMERG "Total free blocks count %lld\n",
			ext4_count_free_blocks(inode->i_sb));
	printk(KERN_EMERG "Free/Dirty block details\n");
	printk(KERN_EMERG "free_blocks=%lld\n",
2092
			(long long)percpu_counter_sum(&sbi->s_freeblocks_counter));
2093
	printk(KERN_EMERG "dirty_blocks=%lld\n",
2094
			(long long)percpu_counter_sum(&sbi->s_dirtyblocks_counter));
2095
	printk(KERN_EMERG "Block reservation details\n");
2096
	printk(KERN_EMERG "i_reserved_data_blocks=%u\n",
2097
			EXT4_I(inode)->i_reserved_data_blocks);
2098
	printk(KERN_EMERG "i_reserved_meta_blocks=%u\n",
2099 2100 2101 2102
			EXT4_I(inode)->i_reserved_meta_blocks);
	return;
}

2103 2104 2105
/*
 * mpage_da_map_blocks - go through given space
 *
2106
 * @mpd - bh describing space
2107 2108 2109 2110
 *
 * The function skips space we know is already mapped to disk blocks.
 *
 */
2111
static int mpage_da_map_blocks(struct mpage_da_data *mpd)
2112
{
2113
	int err, blks, get_blocks_flags;
A
Aneesh Kumar K.V 已提交
2114
	struct buffer_head new;
2115 2116 2117 2118
	sector_t next = mpd->b_blocknr;
	unsigned max_blocks = mpd->b_size >> mpd->inode->i_blkbits;
	loff_t disksize = EXT4_I(mpd->inode)->i_disksize;
	handle_t *handle = NULL;
2119 2120 2121 2122

	/*
	 * We consider only non-mapped and non-allocated blocks
	 */
2123
	if ((mpd->b_state  & (1 << BH_Mapped)) &&
2124 2125
		!(mpd->b_state & (1 << BH_Delay)) &&
		!(mpd->b_state & (1 << BH_Unwritten)))
2126
		return 0;
2127 2128 2129 2130 2131 2132 2133 2134 2135 2136

	/*
	 * If we didn't accumulate anything to write simply return
	 */
	if (!mpd->b_size)
		return 0;

	handle = ext4_journal_current_handle();
	BUG_ON(!handle);

2137
	/*
2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153
	 * Call ext4_get_blocks() to allocate any delayed allocation
	 * blocks, or to convert an uninitialized extent to be
	 * initialized (in the case where we have written into
	 * one or more preallocated blocks).
	 *
	 * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE to
	 * indicate that we are on the delayed allocation path.  This
	 * affects functions in many different parts of the allocation
	 * call path.  This flag exists primarily because we don't
	 * want to change *many* call functions, so ext4_get_blocks()
	 * will set the magic i_delalloc_reserved_flag once the
	 * inode's allocation semaphore is taken.
	 *
	 * If the blocks in questions were delalloc blocks, set
	 * EXT4_GET_BLOCKS_DELALLOC_RESERVE so the delalloc accounting
	 * variables are updated after the blocks have been allocated.
2154
	 */
2155 2156 2157 2158 2159
	new.b_state = 0;
	get_blocks_flags = (EXT4_GET_BLOCKS_CREATE |
			    EXT4_GET_BLOCKS_DELALLOC_RESERVE);
	if (mpd->b_state & (1 << BH_Delay))
		get_blocks_flags |= EXT4_GET_BLOCKS_UPDATE_RESERVE_SPACE;
2160
	blks = ext4_get_blocks(handle, mpd->inode, next, max_blocks,
2161
			       &new, get_blocks_flags);
2162 2163
	if (blks < 0) {
		err = blks;
2164 2165 2166 2167
		/*
		 * If get block returns with error we simply
		 * return. Later writepage will redirty the page and
		 * writepages will find the dirty page again
2168 2169 2170
		 */
		if (err == -EAGAIN)
			return 0;
2171 2172

		if (err == -ENOSPC &&
2173
		    ext4_count_free_blocks(mpd->inode->i_sb)) {
2174 2175 2176 2177
			mpd->retval = err;
			return 0;
		}

2178
		/*
2179 2180 2181 2182 2183
		 * get block failure will cause us to loop in
		 * writepages, because a_ops->writepage won't be able
		 * to make progress. The page will be redirtied by
		 * writepage and writepages will again try to write
		 * the same.
2184 2185 2186 2187 2188 2189
		 */
		printk(KERN_EMERG "%s block allocation failed for inode %lu "
				  "at logical offset %llu with max blocks "
				  "%zd with error %d\n",
				  __func__, mpd->inode->i_ino,
				  (unsigned long long)next,
2190
				  mpd->b_size >> mpd->inode->i_blkbits, err);
2191 2192
		printk(KERN_EMERG "This should not happen.!! "
					"Data will be lost\n");
A
Aneesh Kumar K.V 已提交
2193
		if (err == -ENOSPC) {
2194
			ext4_print_free_blocks(mpd->inode);
A
Aneesh Kumar K.V 已提交
2195
		}
2196
		/* invalidate all the pages */
2197
		ext4_da_block_invalidatepages(mpd, next,
2198
				mpd->b_size >> mpd->inode->i_blkbits);
2199 2200
		return err;
	}
2201 2202 2203
	BUG_ON(blks == 0);

	new.b_size = (blks << mpd->inode->i_blkbits);
2204

2205 2206
	if (buffer_new(&new))
		__unmap_underlying_blocks(mpd->inode, &new);
2207

2208 2209 2210 2211
	/*
	 * If blocks are delayed marked, we need to
	 * put actual blocknr and drop delayed bit
	 */
2212 2213
	if ((mpd->b_state & (1 << BH_Delay)) ||
	    (mpd->b_state & (1 << BH_Unwritten)))
2214
		mpage_put_bnr_to_bhs(mpd, next, &new);
2215

2216 2217 2218 2219 2220 2221 2222
	if (ext4_should_order_data(mpd->inode)) {
		err = ext4_jbd2_file_inode(handle, mpd->inode);
		if (err)
			return err;
	}

	/*
2223
	 * Update on-disk size along with block allocation.
2224 2225 2226 2227 2228 2229 2230 2231 2232
	 */
	disksize = ((loff_t) next + blks) << mpd->inode->i_blkbits;
	if (disksize > i_size_read(mpd->inode))
		disksize = i_size_read(mpd->inode);
	if (disksize > EXT4_I(mpd->inode)->i_disksize) {
		ext4_update_i_disksize(mpd->inode, disksize);
		return ext4_mark_inode_dirty(handle, mpd->inode);
	}

2233
	return 0;
2234 2235
}

2236 2237
#define BH_FLAGS ((1 << BH_Uptodate) | (1 << BH_Mapped) | \
		(1 << BH_Delay) | (1 << BH_Unwritten))
2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248

/*
 * mpage_add_bh_to_extent - try to add one more block to extent of blocks
 *
 * @mpd->lbh - extent of blocks
 * @logical - logical number of the block in the file
 * @bh - bh of the block (used to access block's state)
 *
 * the function is used to collect contig. blocks in same state
 */
static void mpage_add_bh_to_extent(struct mpage_da_data *mpd,
2249 2250
				   sector_t logical, size_t b_size,
				   unsigned long b_state)
2251 2252
{
	sector_t next;
2253
	int nrblocks = mpd->b_size >> mpd->inode->i_blkbits;
2254

2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276
	/* check if thereserved journal credits might overflow */
	if (!(EXT4_I(mpd->inode)->i_flags & EXT4_EXTENTS_FL)) {
		if (nrblocks >= EXT4_MAX_TRANS_DATA) {
			/*
			 * With non-extent format we are limited by the journal
			 * credit available.  Total credit needed to insert
			 * nrblocks contiguous blocks is dependent on the
			 * nrblocks.  So limit nrblocks.
			 */
			goto flush_it;
		} else if ((nrblocks + (b_size >> mpd->inode->i_blkbits)) >
				EXT4_MAX_TRANS_DATA) {
			/*
			 * Adding the new buffer_head would make it cross the
			 * allowed limit for which we have journal credit
			 * reserved. So limit the new bh->b_size
			 */
			b_size = (EXT4_MAX_TRANS_DATA - nrblocks) <<
						mpd->inode->i_blkbits;
			/* we will do mpage_da_submit_io in the next loop */
		}
	}
2277 2278 2279
	/*
	 * First block in the extent
	 */
2280 2281 2282 2283
	if (mpd->b_size == 0) {
		mpd->b_blocknr = logical;
		mpd->b_size = b_size;
		mpd->b_state = b_state & BH_FLAGS;
2284 2285 2286
		return;
	}

2287
	next = mpd->b_blocknr + nrblocks;
2288 2289 2290
	/*
	 * Can we merge the block to our big extent?
	 */
2291 2292
	if (logical == next && (b_state & BH_FLAGS) == mpd->b_state) {
		mpd->b_size += b_size;
2293 2294 2295
		return;
	}

2296
flush_it:
2297 2298 2299 2300
	/*
	 * We couldn't merge the block to our extent, so we
	 * need to flush current  extent and start new one
	 */
2301 2302
	if (mpage_da_map_blocks(mpd) == 0)
		mpage_da_submit_io(mpd);
2303 2304
	mpd->io_done = 1;
	return;
2305 2306
}

2307
static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh)
2308
{
2309
	return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh);
2310 2311
}

2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325
/*
 * __mpage_da_writepage - finds extent of pages and blocks
 *
 * @page: page to consider
 * @wbc: not used, we just follow rules
 * @data: context
 *
 * The function finds extents of pages and scan them for all blocks.
 */
static int __mpage_da_writepage(struct page *page,
				struct writeback_control *wbc, void *data)
{
	struct mpage_da_data *mpd = data;
	struct inode *inode = mpd->inode;
2326
	struct buffer_head *bh, *head;
2327 2328
	sector_t logical;

2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339
	if (mpd->io_done) {
		/*
		 * Rest of the page in the page_vec
		 * redirty then and skip then. We will
		 * try to to write them again after
		 * starting a new transaction
		 */
		redirty_page_for_writepage(wbc, page);
		unlock_page(page);
		return MPAGE_DA_EXTENT_TAIL;
	}
2340 2341 2342 2343 2344 2345
	/*
	 * Can we merge this page to current extent?
	 */
	if (mpd->next_page != page->index) {
		/*
		 * Nope, we can't. So, we map non-allocated blocks
2346
		 * and start IO on them using writepage()
2347 2348
		 */
		if (mpd->next_page != mpd->first_page) {
2349 2350
			if (mpage_da_map_blocks(mpd) == 0)
				mpage_da_submit_io(mpd);
2351 2352 2353 2354 2355 2356 2357
			/*
			 * skip rest of the page in the page_vec
			 */
			mpd->io_done = 1;
			redirty_page_for_writepage(wbc, page);
			unlock_page(page);
			return MPAGE_DA_EXTENT_TAIL;
2358 2359 2360 2361 2362 2363 2364 2365 2366 2367
		}

		/*
		 * Start next extent of pages ...
		 */
		mpd->first_page = page->index;

		/*
		 * ... and blocks
		 */
2368 2369 2370
		mpd->b_size = 0;
		mpd->b_state = 0;
		mpd->b_blocknr = 0;
2371 2372 2373 2374 2375 2376 2377
	}

	mpd->next_page = page->index + 1;
	logical = (sector_t) page->index <<
		  (PAGE_CACHE_SHIFT - inode->i_blkbits);

	if (!page_has_buffers(page)) {
2378 2379
		mpage_add_bh_to_extent(mpd, logical, PAGE_CACHE_SIZE,
				       (1 << BH_Dirty) | (1 << BH_Uptodate));
2380 2381
		if (mpd->io_done)
			return MPAGE_DA_EXTENT_TAIL;
2382 2383 2384 2385 2386 2387 2388 2389
	} else {
		/*
		 * Page with regular buffer heads, just add all dirty ones
		 */
		head = page_buffers(page);
		bh = head;
		do {
			BUG_ON(buffer_locked(bh));
2390 2391 2392 2393
			/*
			 * We need to try to allocate
			 * unmapped blocks in the same page.
			 * Otherwise we won't make progress
2394
			 * with the page in ext4_writepage
2395
			 */
2396
			if (ext4_bh_delay_or_unwritten(NULL, bh)) {
2397 2398 2399
				mpage_add_bh_to_extent(mpd, logical,
						       bh->b_size,
						       bh->b_state);
2400 2401
				if (mpd->io_done)
					return MPAGE_DA_EXTENT_TAIL;
2402 2403 2404 2405 2406 2407 2408 2409 2410
			} else if (buffer_dirty(bh) && (buffer_mapped(bh))) {
				/*
				 * mapped dirty buffer. We need to update
				 * the b_state because we look at
				 * b_state in mpage_da_map_blocks. We don't
				 * update b_size because if we find an
				 * unmapped buffer_head later we need to
				 * use the b_state flag of that buffer_head.
				 */
2411 2412
				if (mpd->b_size == 0)
					mpd->b_state = bh->b_state & BH_FLAGS;
2413
			}
2414 2415 2416 2417 2418 2419 2420 2421
			logical++;
		} while ((bh = bh->b_this_page) != head);
	}

	return 0;
}

/*
2422 2423 2424
 * This is a special get_blocks_t callback which is used by
 * ext4_da_write_begin().  It will either return mapped block or
 * reserve space for a single block.
2425 2426 2427 2428 2429 2430 2431
 *
 * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
 * We also have b_blocknr = -1 and b_bdev initialized properly
 *
 * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
 * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
 * initialized properly.
2432 2433 2434 2435 2436
 */
static int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
				  struct buffer_head *bh_result, int create)
{
	int ret = 0;
2437 2438 2439 2440
	sector_t invalid_block = ~((sector_t) 0xffff);

	if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
		invalid_block = ~0;
2441 2442 2443 2444 2445 2446 2447 2448 2449

	BUG_ON(create == 0);
	BUG_ON(bh_result->b_size != inode->i_sb->s_blocksize);

	/*
	 * first, we need to know whether the block is allocated already
	 * preallocated blocks are unmapped but should treated
	 * the same as allocated blocks.
	 */
2450
	ret = ext4_get_blocks(NULL, inode, iblock, 1,  bh_result, 0);
2451 2452
	if ((ret == 0) && !buffer_delay(bh_result)) {
		/* the block isn't (pre)allocated yet, let's reserve space */
2453 2454 2455 2456
		/*
		 * XXX: __block_prepare_write() unmaps passed block,
		 * is it OK?
		 */
2457 2458 2459 2460 2461
		ret = ext4_da_reserve_space(inode, 1);
		if (ret)
			/* not enough space to reserve */
			return ret;

2462
		map_bh(bh_result, inode->i_sb, invalid_block);
2463 2464 2465 2466
		set_buffer_new(bh_result);
		set_buffer_delay(bh_result);
	} else if (ret > 0) {
		bh_result->b_size = (ret << inode->i_blkbits);
2467 2468 2469 2470 2471 2472 2473 2474
		if (buffer_unwritten(bh_result)) {
			/* A delayed write to unwritten bh should
			 * be marked new and mapped.  Mapped ensures
			 * that we don't do get_block multiple times
			 * when we write to the same offset and new
			 * ensures that we do proper zero out for
			 * partial write.
			 */
2475
			set_buffer_new(bh_result);
2476 2477
			set_buffer_mapped(bh_result);
		}
2478 2479 2480 2481 2482
		ret = 0;
	}

	return ret;
}
2483

2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500
/*
 * This function is used as a standard get_block_t calback function
 * when there is no desire to allocate any blocks.  It is used as a
 * callback function for block_prepare_write(), nobh_writepage(), and
 * block_write_full_page().  These functions should only try to map a
 * single block at a time.
 *
 * Since this function doesn't do block allocations even if the caller
 * requests it by passing in create=1, it is critically important that
 * any caller checks to make sure that any buffer heads are returned
 * by this function are either all already mapped or marked for
 * delayed allocation before calling nobh_writepage() or
 * block_write_full_page().  Otherwise, b_blocknr could be left
 * unitialized, and the page write functions will be taken by
 * surprise.
 */
static int noalloc_get_block_write(struct inode *inode, sector_t iblock,
2501 2502 2503 2504 2505
				   struct buffer_head *bh_result, int create)
{
	int ret = 0;
	unsigned max_blocks = bh_result->b_size >> inode->i_blkbits;

2506 2507
	BUG_ON(bh_result->b_size != inode->i_sb->s_blocksize);

2508 2509 2510 2511
	/*
	 * we don't want to do block allocation in writepage
	 * so call get_block_wrap with create = 0
	 */
2512
	ret = ext4_get_blocks(NULL, inode, iblock, max_blocks, bh_result, 0);
2513 2514 2515 2516 2517
	if (ret > 0) {
		bh_result->b_size = (ret << inode->i_blkbits);
		ret = 0;
	}
	return ret;
2518 2519
}

2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572
static int bget_one(handle_t *handle, struct buffer_head *bh)
{
	get_bh(bh);
	return 0;
}

static int bput_one(handle_t *handle, struct buffer_head *bh)
{
	put_bh(bh);
	return 0;
}

static int __ext4_journalled_writepage(struct page *page,
				       struct writeback_control *wbc,
				       unsigned int len)
{
	struct address_space *mapping = page->mapping;
	struct inode *inode = mapping->host;
	struct buffer_head *page_bufs;
	handle_t *handle = NULL;
	int ret = 0;
	int err;

	page_bufs = page_buffers(page);
	BUG_ON(!page_bufs);
	walk_page_buffers(handle, page_bufs, 0, len, NULL, bget_one);
	/* As soon as we unlock the page, it can go away, but we have
	 * references to buffers so we are safe */
	unlock_page(page);

	handle = ext4_journal_start(inode, ext4_writepage_trans_blocks(inode));
	if (IS_ERR(handle)) {
		ret = PTR_ERR(handle);
		goto out;
	}

	ret = walk_page_buffers(handle, page_bufs, 0, len, NULL,
				do_journal_get_write_access);

	err = walk_page_buffers(handle, page_bufs, 0, len, NULL,
				write_end_fn);
	if (ret == 0)
		ret = err;
	err = ext4_journal_stop(handle);
	if (!ret)
		ret = err;

	walk_page_buffers(handle, page_bufs, 0, len, NULL, bput_one);
	EXT4_I(inode)->i_state |= EXT4_STATE_JDATA;
out:
	return ret;
}

2573
/*
2574 2575 2576 2577 2578 2579 2580 2581 2582
 * Note that we don't need to start a transaction unless we're journaling data
 * because we should have holes filled from ext4_page_mkwrite(). We even don't
 * need to file the inode to the transaction's list in ordered mode because if
 * we are writing back data added by write(), the inode is already there and if
 * we are writing back data modified via mmap(), noone guarantees in which
 * transaction the data will hit the disk. In case we are journaling data, we
 * cannot start transaction directly because transaction start ranks above page
 * lock so we have to do some magic.
 *
2583 2584 2585 2586 2587
 * This function can get called via...
 *   - ext4_da_writepages after taking page lock (have journal handle)
 *   - journal_submit_inode_data_buffers (no journal handle)
 *   - shrink_page_list via pdflush (no journal handle)
 *   - grab_page_cache when doing write_begin (have journal handle)
2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612
 *
 * We don't do any block allocation in this function. If we have page with
 * multiple blocks we need to write those buffer_heads that are mapped. This
 * is important for mmaped based write. So if we do with blocksize 1K
 * truncate(f, 1024);
 * a = mmap(f, 0, 4096);
 * a[0] = 'a';
 * truncate(f, 4096);
 * we have in the page first buffer_head mapped via page_mkwrite call back
 * but other bufer_heads would be unmapped but dirty(dirty done via the
 * do_wp_page). So writepage should write the first block. If we modify
 * the mmap area beyond 1024 we will again get a page_fault and the
 * page_mkwrite callback will do the block allocation and mark the
 * buffer_heads mapped.
 *
 * We redirty the page if we have any buffer_heads that is either delay or
 * unwritten in the page.
 *
 * We can get recursively called as show below.
 *
 *	ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
 *		ext4_writepage()
 *
 * But since we don't do any block allocation we should not deadlock.
 * Page also have the dirty flag cleared so we don't get recurive page_lock.
2613
 */
2614
static int ext4_writepage(struct page *page,
2615
			  struct writeback_control *wbc)
2616 2617
{
	int ret = 0;
2618
	loff_t size;
2619
	unsigned int len;
2620 2621 2622
	struct buffer_head *page_bufs;
	struct inode *inode = page->mapping->host;

2623
	trace_ext4_writepage(inode, page);
2624 2625 2626 2627 2628
	size = i_size_read(inode);
	if (page->index == size >> PAGE_CACHE_SHIFT)
		len = size & ~PAGE_CACHE_MASK;
	else
		len = PAGE_CACHE_SIZE;
2629

2630
	if (page_has_buffers(page)) {
2631
		page_bufs = page_buffers(page);
2632
		if (walk_page_buffers(NULL, page_bufs, 0, len, NULL,
2633
					ext4_bh_delay_or_unwritten)) {
2634
			/*
2635 2636
			 * We don't want to do  block allocation
			 * So redirty the page and return
2637 2638 2639
			 * We may reach here when we do a journal commit
			 * via journal_submit_inode_data_buffers.
			 * If we don't have mapping block we just ignore
2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659
			 * them. We can also reach here via shrink_page_list
			 */
			redirty_page_for_writepage(wbc, page);
			unlock_page(page);
			return 0;
		}
	} else {
		/*
		 * The test for page_has_buffers() is subtle:
		 * We know the page is dirty but it lost buffers. That means
		 * that at some moment in time after write_begin()/write_end()
		 * has been called all buffers have been clean and thus they
		 * must have been written at least once. So they are all
		 * mapped and we can happily proceed with mapping them
		 * and writing the page.
		 *
		 * Try to initialize the buffer_heads and check whether
		 * all are mapped and non delay. We don't want to
		 * do block allocation here.
		 */
2660
		ret = block_prepare_write(page, 0, len,
2661
					  noalloc_get_block_write);
2662 2663 2664 2665
		if (!ret) {
			page_bufs = page_buffers(page);
			/* check whether all are mapped and non delay */
			if (walk_page_buffers(NULL, page_bufs, 0, len, NULL,
2666
						ext4_bh_delay_or_unwritten)) {
2667 2668 2669 2670 2671 2672 2673 2674 2675
				redirty_page_for_writepage(wbc, page);
				unlock_page(page);
				return 0;
			}
		} else {
			/*
			 * We can't do block allocation here
			 * so just redity the page and unlock
			 * and return
2676 2677 2678 2679 2680
			 */
			redirty_page_for_writepage(wbc, page);
			unlock_page(page);
			return 0;
		}
2681
		/* now mark the buffer_heads as dirty and uptodate */
2682
		block_commit_write(page, 0, len);
2683 2684
	}

2685 2686 2687 2688 2689 2690 2691 2692 2693
	if (PageChecked(page) && ext4_should_journal_data(inode)) {
		/*
		 * It's mmapped pagecache.  Add buffers and journal it.  There
		 * doesn't seem much point in redirtying the page here.
		 */
		ClearPageChecked(page);
		return __ext4_journalled_writepage(page, wbc, len);
	}

2694
	if (test_opt(inode->i_sb, NOBH) && ext4_should_writeback_data(inode))
2695
		ret = nobh_writepage(page, noalloc_get_block_write, wbc);
2696
	else
2697 2698
		ret = block_write_full_page(page, noalloc_get_block_write,
					    wbc);
2699 2700 2701 2702

	return ret;
}

2703
/*
2704 2705 2706 2707 2708
 * This is called via ext4_da_writepages() to
 * calulate the total number of credits to reserve to fit
 * a single extent allocation into a single transaction,
 * ext4_da_writpeages() will loop calling this before
 * the block allocation.
2709
 */
2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726

static int ext4_da_writepages_trans_blocks(struct inode *inode)
{
	int max_blocks = EXT4_I(inode)->i_reserved_data_blocks;

	/*
	 * With non-extent format the journal credit needed to
	 * insert nrblocks contiguous block is dependent on
	 * number of contiguous block. So we will limit
	 * number of contiguous block to a sane value
	 */
	if (!(inode->i_flags & EXT4_EXTENTS_FL) &&
	    (max_blocks > EXT4_MAX_TRANS_DATA))
		max_blocks = EXT4_MAX_TRANS_DATA;

	return ext4_chunk_trans_blocks(inode, max_blocks);
}
2727

2728
static int ext4_da_writepages(struct address_space *mapping,
2729
			      struct writeback_control *wbc)
2730
{
2731 2732
	pgoff_t	index;
	int range_whole = 0;
2733
	handle_t *handle = NULL;
2734
	struct mpage_da_data mpd;
2735
	struct inode *inode = mapping->host;
2736
	int no_nrwrite_index_update;
2737 2738
	int pages_written = 0;
	long pages_skipped;
2739
	int range_cyclic, cycled = 1, io_done = 0;
2740 2741
	int needed_blocks, ret = 0, nr_to_writebump = 0;
	struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2742

2743
	trace_ext4_da_writepages(inode, wbc);
2744

2745 2746 2747 2748 2749
	/*
	 * No pages to write? This is mainly a kludge to avoid starting
	 * a transaction for special inodes like journal inode on last iput()
	 * because that could violate lock ordering on umount
	 */
2750
	if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2751
		return 0;
2752 2753 2754 2755 2756

	/*
	 * If the filesystem has aborted, it is read-only, so return
	 * right away instead of dumping stack traces later on that
	 * will obscure the real source of the problem.  We test
2757
	 * EXT4_MF_FS_ABORTED instead of sb->s_flag's MS_RDONLY because
2758 2759 2760 2761 2762
	 * the latter could be true if the filesystem is mounted
	 * read-only, and in that case, ext4_da_writepages should
	 * *never* be called, so if that ever happens, we would want
	 * the stack trace.
	 */
2763
	if (unlikely(sbi->s_mount_flags & EXT4_MF_FS_ABORTED))
2764 2765
		return -EROFS;

2766 2767 2768 2769 2770 2771 2772 2773 2774 2775
	/*
	 * Make sure nr_to_write is >= sbi->s_mb_stream_request
	 * This make sure small files blocks are allocated in
	 * single attempt. This ensure that small files
	 * get less fragmented.
	 */
	if (wbc->nr_to_write < sbi->s_mb_stream_request) {
		nr_to_writebump = sbi->s_mb_stream_request - wbc->nr_to_write;
		wbc->nr_to_write = sbi->s_mb_stream_request;
	}
2776 2777
	if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
		range_whole = 1;
2778

2779 2780
	range_cyclic = wbc->range_cyclic;
	if (wbc->range_cyclic) {
2781
		index = mapping->writeback_index;
2782 2783 2784 2785 2786 2787
		if (index)
			cycled = 0;
		wbc->range_start = index << PAGE_CACHE_SHIFT;
		wbc->range_end  = LLONG_MAX;
		wbc->range_cyclic = 0;
	} else
2788
		index = wbc->range_start >> PAGE_CACHE_SHIFT;
2789

2790 2791 2792
	mpd.wbc = wbc;
	mpd.inode = mapping->host;

2793 2794 2795 2796 2797 2798 2799 2800
	/*
	 * we don't want write_cache_pages to update
	 * nr_to_write and writeback_index
	 */
	no_nrwrite_index_update = wbc->no_nrwrite_index_update;
	wbc->no_nrwrite_index_update = 1;
	pages_skipped = wbc->pages_skipped;

2801
retry:
2802
	while (!ret && wbc->nr_to_write > 0) {
2803 2804 2805 2806 2807 2808 2809 2810

		/*
		 * we  insert one extent at a time. So we need
		 * credit needed for single extent allocation.
		 * journalled mode is currently not supported
		 * by delalloc
		 */
		BUG_ON(ext4_should_journal_data(inode));
2811
		needed_blocks = ext4_da_writepages_trans_blocks(inode);
2812

2813 2814 2815 2816
		/* start a new transaction*/
		handle = ext4_journal_start(inode, needed_blocks);
		if (IS_ERR(handle)) {
			ret = PTR_ERR(handle);
2817
			printk(KERN_CRIT "%s: jbd2_start: "
2818 2819 2820
			       "%ld pages, ino %lu; err %d\n", __func__,
				wbc->nr_to_write, inode->i_ino, ret);
			dump_stack();
2821 2822
			goto out_writepages;
		}
2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854

		/*
		 * Now call __mpage_da_writepage to find the next
		 * contiguous region of logical blocks that need
		 * blocks to be allocated by ext4.  We don't actually
		 * submit the blocks for I/O here, even though
		 * write_cache_pages thinks it will, and will set the
		 * pages as clean for write before calling
		 * __mpage_da_writepage().
		 */
		mpd.b_size = 0;
		mpd.b_state = 0;
		mpd.b_blocknr = 0;
		mpd.first_page = 0;
		mpd.next_page = 0;
		mpd.io_done = 0;
		mpd.pages_written = 0;
		mpd.retval = 0;
		ret = write_cache_pages(mapping, wbc, __mpage_da_writepage,
					&mpd);
		/*
		 * If we have a contigous extent of pages and we
		 * haven't done the I/O yet, map the blocks and submit
		 * them for I/O.
		 */
		if (!mpd.io_done && mpd.next_page != mpd.first_page) {
			if (mpage_da_map_blocks(&mpd) == 0)
				mpage_da_submit_io(&mpd);
			mpd.io_done = 1;
			ret = MPAGE_DA_EXTENT_TAIL;
		}
		wbc->nr_to_write -= mpd.pages_written;
2855

2856
		ext4_journal_stop(handle);
2857

2858
		if ((mpd.retval == -ENOSPC) && sbi->s_journal) {
2859 2860 2861 2862
			/* commit the transaction which would
			 * free blocks released in the transaction
			 * and try again
			 */
2863
			jbd2_journal_force_commit_nested(sbi->s_journal);
2864 2865 2866
			wbc->pages_skipped = pages_skipped;
			ret = 0;
		} else if (ret == MPAGE_DA_EXTENT_TAIL) {
2867 2868 2869 2870
			/*
			 * got one extent now try with
			 * rest of the pages
			 */
2871 2872
			pages_written += mpd.pages_written;
			wbc->pages_skipped = pages_skipped;
2873
			ret = 0;
2874
			io_done = 1;
2875
		} else if (wbc->nr_to_write)
2876 2877 2878 2879 2880 2881
			/*
			 * There is no more writeout needed
			 * or we requested for a noblocking writeout
			 * and we found the device congested
			 */
			break;
2882
	}
2883 2884 2885 2886 2887 2888 2889
	if (!io_done && !cycled) {
		cycled = 1;
		index = 0;
		wbc->range_start = index << PAGE_CACHE_SHIFT;
		wbc->range_end  = mapping->writeback_index - 1;
		goto retry;
	}
2890 2891 2892 2893 2894 2895 2896
	if (pages_skipped != wbc->pages_skipped)
		printk(KERN_EMERG "This should not happen leaving %s "
				"with nr_to_write = %ld ret = %d\n",
				__func__, wbc->nr_to_write, ret);

	/* Update index */
	index += pages_written;
2897
	wbc->range_cyclic = range_cyclic;
2898 2899 2900 2901 2902 2903
	if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
		/*
		 * set the writeback_index so that range_cyclic
		 * mode will write it back later
		 */
		mapping->writeback_index = index;
2904

2905
out_writepages:
2906 2907 2908
	if (!no_nrwrite_index_update)
		wbc->no_nrwrite_index_update = 0;
	wbc->nr_to_write -= nr_to_writebump;
2909
	trace_ext4_da_writepages_result(inode, wbc, ret, pages_written);
2910
	return ret;
2911 2912
}

2913 2914 2915 2916 2917 2918 2919 2920 2921
#define FALL_BACK_TO_NONDELALLOC 1
static int ext4_nonda_switch(struct super_block *sb)
{
	s64 free_blocks, dirty_blocks;
	struct ext4_sb_info *sbi = EXT4_SB(sb);

	/*
	 * switch to non delalloc mode if we are running low
	 * on free block. The free block accounting via percpu
2922
	 * counters can get slightly wrong with percpu_counter_batch getting
2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939
	 * accumulated on each CPU without updating global counters
	 * Delalloc need an accurate free block accounting. So switch
	 * to non delalloc when we are near to error range.
	 */
	free_blocks  = percpu_counter_read_positive(&sbi->s_freeblocks_counter);
	dirty_blocks = percpu_counter_read_positive(&sbi->s_dirtyblocks_counter);
	if (2 * free_blocks < 3 * dirty_blocks ||
		free_blocks < (dirty_blocks + EXT4_FREEBLOCKS_WATERMARK)) {
		/*
		 * free block count is less that 150% of dirty blocks
		 * or free blocks is less that watermark
		 */
		return 1;
	}
	return 0;
}

2940
static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
2941 2942
			       loff_t pos, unsigned len, unsigned flags,
			       struct page **pagep, void **fsdata)
2943
{
2944
	int ret, retries = 0;
2945 2946 2947 2948 2949 2950 2951 2952 2953
	struct page *page;
	pgoff_t index;
	unsigned from, to;
	struct inode *inode = mapping->host;
	handle_t *handle;

	index = pos >> PAGE_CACHE_SHIFT;
	from = pos & (PAGE_CACHE_SIZE - 1);
	to = from + len;
2954 2955 2956 2957 2958 2959 2960

	if (ext4_nonda_switch(inode->i_sb)) {
		*fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
		return ext4_write_begin(file, mapping, pos,
					len, flags, pagep, fsdata);
	}
	*fsdata = (void *)0;
2961
	trace_ext4_da_write_begin(inode, pos, len, flags);
2962
retry:
2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973
	/*
	 * With delayed allocation, we don't log the i_disksize update
	 * if there is delayed block allocation. But we still need
	 * to journalling the i_disksize update if writes to the end
	 * of file which has an already mapped buffer.
	 */
	handle = ext4_journal_start(inode, 1);
	if (IS_ERR(handle)) {
		ret = PTR_ERR(handle);
		goto out;
	}
2974 2975 2976
	/* We cannot recurse into the filesystem as the transaction is already
	 * started */
	flags |= AOP_FLAG_NOFS;
2977

2978
	page = grab_cache_page_write_begin(mapping, index, flags);
2979 2980 2981 2982 2983
	if (!page) {
		ext4_journal_stop(handle);
		ret = -ENOMEM;
		goto out;
	}
2984 2985 2986
	*pagep = page;

	ret = block_write_begin(file, mapping, pos, len, flags, pagep, fsdata,
2987
				ext4_da_get_block_prep);
2988 2989 2990 2991
	if (ret < 0) {
		unlock_page(page);
		ext4_journal_stop(handle);
		page_cache_release(page);
2992 2993 2994 2995 2996 2997
		/*
		 * block_write_begin may have instantiated a few blocks
		 * outside i_size.  Trim these off again. Don't need
		 * i_size_read because we hold i_mutex.
		 */
		if (pos + len > inode->i_size)
2998
			ext4_truncate(inode);
2999 3000
	}

3001 3002
	if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
		goto retry;
3003 3004 3005 3006
out:
	return ret;
}

3007 3008 3009 3010 3011
/*
 * Check if we should update i_disksize
 * when write to the end of file but not require block allocation
 */
static int ext4_da_should_update_i_disksize(struct page *page,
3012
					    unsigned long offset)
3013 3014 3015 3016 3017 3018 3019 3020 3021
{
	struct buffer_head *bh;
	struct inode *inode = page->mapping->host;
	unsigned int idx;
	int i;

	bh = page_buffers(page);
	idx = offset >> inode->i_blkbits;

3022
	for (i = 0; i < idx; i++)
3023 3024
		bh = bh->b_this_page;

3025
	if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
3026 3027 3028 3029
		return 0;
	return 1;
}

3030
static int ext4_da_write_end(struct file *file,
3031 3032 3033
			     struct address_space *mapping,
			     loff_t pos, unsigned len, unsigned copied,
			     struct page *page, void *fsdata)
3034 3035 3036 3037 3038
{
	struct inode *inode = mapping->host;
	int ret = 0, ret2;
	handle_t *handle = ext4_journal_current_handle();
	loff_t new_i_size;
3039
	unsigned long start, end;
3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052
	int write_mode = (int)(unsigned long)fsdata;

	if (write_mode == FALL_BACK_TO_NONDELALLOC) {
		if (ext4_should_order_data(inode)) {
			return ext4_ordered_write_end(file, mapping, pos,
					len, copied, page, fsdata);
		} else if (ext4_should_writeback_data(inode)) {
			return ext4_writeback_write_end(file, mapping, pos,
					len, copied, page, fsdata);
		} else {
			BUG();
		}
	}
3053

3054
	trace_ext4_da_write_end(inode, pos, len, copied);
3055
	start = pos & (PAGE_CACHE_SIZE - 1);
3056
	end = start + copied - 1;
3057 3058 3059 3060 3061 3062 3063 3064

	/*
	 * generic_write_end() will run mark_inode_dirty() if i_size
	 * changes.  So let's piggyback the i_disksize mark_inode_dirty
	 * into that.
	 */

	new_i_size = pos + copied;
3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075
	if (new_i_size > EXT4_I(inode)->i_disksize) {
		if (ext4_da_should_update_i_disksize(page, end)) {
			down_write(&EXT4_I(inode)->i_data_sem);
			if (new_i_size > EXT4_I(inode)->i_disksize) {
				/*
				 * Updating i_disksize when extending file
				 * without needing block allocation
				 */
				if (ext4_should_order_data(inode))
					ret = ext4_jbd2_file_inode(handle,
								   inode);
3076

3077 3078 3079
				EXT4_I(inode)->i_disksize = new_i_size;
			}
			up_write(&EXT4_I(inode)->i_data_sem);
3080 3081 3082 3083 3084
			/* We need to mark inode dirty even if
			 * new_i_size is less that inode->i_size
			 * bu greater than i_disksize.(hint delalloc)
			 */
			ext4_mark_inode_dirty(handle, inode);
3085
		}
3086
	}
3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107
	ret2 = generic_write_end(file, mapping, pos, len, copied,
							page, fsdata);
	copied = ret2;
	if (ret2 < 0)
		ret = ret2;
	ret2 = ext4_journal_stop(handle);
	if (!ret)
		ret = ret2;

	return ret ? ret : copied;
}

static void ext4_da_invalidatepage(struct page *page, unsigned long offset)
{
	/*
	 * Drop reserved blocks
	 */
	BUG_ON(!PageLocked(page));
	if (!page_has_buffers(page))
		goto out;

3108
	ext4_da_page_release_reservation(page, offset);
3109 3110 3111 3112 3113 3114 3115

out:
	ext4_invalidatepage(page, offset);

	return;
}

3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130
/*
 * Force all delayed allocation blocks to be allocated for a given inode.
 */
int ext4_alloc_da_blocks(struct inode *inode)
{
	if (!EXT4_I(inode)->i_reserved_data_blocks &&
	    !EXT4_I(inode)->i_reserved_meta_blocks)
		return 0;

	/*
	 * We do something simple for now.  The filemap_flush() will
	 * also start triggering a write of the data blocks, which is
	 * not strictly speaking necessary (and for users of
	 * laptop_mode, not even desirable).  However, to do otherwise
	 * would require replicating code paths in:
3131
	 *
3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150
	 * ext4_da_writepages() ->
	 *    write_cache_pages() ---> (via passed in callback function)
	 *        __mpage_da_writepage() -->
	 *           mpage_add_bh_to_extent()
	 *           mpage_da_map_blocks()
	 *
	 * The problem is that write_cache_pages(), located in
	 * mm/page-writeback.c, marks pages clean in preparation for
	 * doing I/O, which is not desirable if we're not planning on
	 * doing I/O at all.
	 *
	 * We could call write_cache_pages(), and then redirty all of
	 * the pages by calling redirty_page_for_writeback() but that
	 * would be ugly in the extreme.  So instead we would need to
	 * replicate parts of the code in the above functions,
	 * simplifying them becuase we wouldn't actually intend to
	 * write out the pages, but rather only collect contiguous
	 * logical block extents, call the multi-block allocator, and
	 * then update the buffer heads with the block allocations.
3151
	 *
3152 3153 3154 3155 3156 3157
	 * For now, though, we'll cheat by calling filemap_flush(),
	 * which will map the blocks, and start the I/O, but not
	 * actually wait for the I/O to complete.
	 */
	return filemap_flush(inode->i_mapping);
}
3158

3159 3160 3161 3162 3163
/*
 * bmap() is special.  It gets used by applications such as lilo and by
 * the swapper to find the on-disk block of a specific piece of data.
 *
 * Naturally, this is dangerous if the block concerned is still in the
3164
 * journal.  If somebody makes a swapfile on an ext4 data-journaling
3165 3166 3167 3168 3169 3170 3171 3172
 * filesystem and enables swap, then they may get a nasty shock when the
 * data getting swapped to that swapfile suddenly gets overwritten by
 * the original zero's written out previously to the journal and
 * awaiting writeback in the kernel's buffer cache.
 *
 * So, if we see any bmap calls here on a modified, data-journaled file,
 * take extra steps to flush any blocks which might be in the cache.
 */
3173
static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
3174 3175 3176 3177 3178
{
	struct inode *inode = mapping->host;
	journal_t *journal;
	int err;

3179 3180 3181 3182 3183 3184 3185 3186 3187 3188
	if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
			test_opt(inode->i_sb, DELALLOC)) {
		/*
		 * With delalloc we want to sync the file
		 * so that we can make sure we allocate
		 * blocks for file
		 */
		filemap_write_and_wait(mapping);
	}

3189
	if (EXT4_JOURNAL(inode) && EXT4_I(inode)->i_state & EXT4_STATE_JDATA) {
3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200
		/*
		 * This is a REALLY heavyweight approach, but the use of
		 * bmap on dirty files is expected to be extremely rare:
		 * only if we run lilo or swapon on a freshly made file
		 * do we expect this to happen.
		 *
		 * (bmap requires CAP_SYS_RAWIO so this does not
		 * represent an unprivileged user DOS attack --- we'd be
		 * in trouble if mortal users could trigger this path at
		 * will.)
		 *
3201
		 * NB. EXT4_STATE_JDATA is not set on files other than
3202 3203 3204 3205 3206 3207
		 * regular files.  If somebody wants to bmap a directory
		 * or symlink and gets confused because the buffer
		 * hasn't yet been flushed to disk, they deserve
		 * everything they get.
		 */

3208 3209
		EXT4_I(inode)->i_state &= ~EXT4_STATE_JDATA;
		journal = EXT4_JOURNAL(inode);
3210 3211 3212
		jbd2_journal_lock_updates(journal);
		err = jbd2_journal_flush(journal);
		jbd2_journal_unlock_updates(journal);
3213 3214 3215 3216 3217

		if (err)
			return 0;
	}

3218
	return generic_block_bmap(mapping, block, ext4_get_block);
3219 3220
}

3221
static int ext4_readpage(struct file *file, struct page *page)
3222
{
3223
	return mpage_readpage(page, ext4_get_block);
3224 3225 3226
}

static int
3227
ext4_readpages(struct file *file, struct address_space *mapping,
3228 3229
		struct list_head *pages, unsigned nr_pages)
{
3230
	return mpage_readpages(mapping, pages, nr_pages, ext4_get_block);
3231 3232
}

3233
static void ext4_invalidatepage(struct page *page, unsigned long offset)
3234
{
3235
	journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3236 3237 3238 3239 3240 3241 3242

	/*
	 * If it's a full truncate we just forget about the pending dirtying
	 */
	if (offset == 0)
		ClearPageChecked(page);

3243 3244 3245 3246
	if (journal)
		jbd2_journal_invalidatepage(journal, page, offset);
	else
		block_invalidatepage(page, offset);
3247 3248
}

3249
static int ext4_releasepage(struct page *page, gfp_t wait)
3250
{
3251
	journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3252 3253 3254 3255

	WARN_ON(PageChecked(page));
	if (!page_has_buffers(page))
		return 0;
3256 3257 3258 3259
	if (journal)
		return jbd2_journal_try_to_free_buffers(journal, page, wait);
	else
		return try_to_free_buffers(page);
3260 3261 3262 3263 3264 3265 3266 3267
}

/*
 * If the O_DIRECT write will extend the file then add this inode to the
 * orphan list.  So recovery will truncate it back to the original size
 * if the machine crashes during the write.
 *
 * If the O_DIRECT write is intantiating holes inside i_size and the machine
J
Jan Kara 已提交
3268 3269
 * crashes then stale disk data _may_ be exposed inside the file. But current
 * VFS code falls back into buffered path in that case so we are safe.
3270
 */
3271
static ssize_t ext4_direct_IO(int rw, struct kiocb *iocb,
3272 3273
			      const struct iovec *iov, loff_t offset,
			      unsigned long nr_segs)
3274 3275 3276
{
	struct file *file = iocb->ki_filp;
	struct inode *inode = file->f_mapping->host;
3277
	struct ext4_inode_info *ei = EXT4_I(inode);
J
Jan Kara 已提交
3278
	handle_t *handle;
3279 3280 3281 3282 3283 3284 3285 3286
	ssize_t ret;
	int orphan = 0;
	size_t count = iov_length(iov, nr_segs);

	if (rw == WRITE) {
		loff_t final_size = offset + count;

		if (final_size > inode->i_size) {
J
Jan Kara 已提交
3287 3288 3289 3290 3291 3292
			/* Credits for sb + inode write */
			handle = ext4_journal_start(inode, 2);
			if (IS_ERR(handle)) {
				ret = PTR_ERR(handle);
				goto out;
			}
3293
			ret = ext4_orphan_add(handle, inode);
J
Jan Kara 已提交
3294 3295 3296 3297
			if (ret) {
				ext4_journal_stop(handle);
				goto out;
			}
3298 3299
			orphan = 1;
			ei->i_disksize = inode->i_size;
J
Jan Kara 已提交
3300
			ext4_journal_stop(handle);
3301 3302 3303 3304 3305
		}
	}

	ret = blockdev_direct_IO(rw, iocb, inode, inode->i_sb->s_bdev, iov,
				 offset, nr_segs,
3306
				 ext4_get_block, NULL);
3307

J
Jan Kara 已提交
3308
	if (orphan) {
3309 3310
		int err;

J
Jan Kara 已提交
3311 3312 3313 3314 3315 3316 3317 3318 3319 3320
		/* Credits for sb + inode write */
		handle = ext4_journal_start(inode, 2);
		if (IS_ERR(handle)) {
			/* This is really bad luck. We've written the data
			 * but cannot extend i_size. Bail out and pretend
			 * the write failed... */
			ret = PTR_ERR(handle);
			goto out;
		}
		if (inode->i_nlink)
3321
			ext4_orphan_del(handle, inode);
J
Jan Kara 已提交
3322
		if (ret > 0) {
3323 3324 3325 3326 3327 3328 3329 3330
			loff_t end = offset + ret;
			if (end > inode->i_size) {
				ei->i_disksize = end;
				i_size_write(inode, end);
				/*
				 * We're going to return a positive `ret'
				 * here due to non-zero-length I/O, so there's
				 * no way of reporting error returns from
3331
				 * ext4_mark_inode_dirty() to userspace.  So
3332 3333
				 * ignore it.
				 */
3334
				ext4_mark_inode_dirty(handle, inode);
3335 3336
			}
		}
3337
		err = ext4_journal_stop(handle);
3338 3339 3340 3341 3342 3343 3344 3345
		if (ret == 0)
			ret = err;
	}
out:
	return ret;
}

/*
3346
 * Pages can be marked dirty completely asynchronously from ext4's journalling
3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357
 * activity.  By filemap_sync_pte(), try_to_unmap_one(), etc.  We cannot do
 * much here because ->set_page_dirty is called under VFS locks.  The page is
 * not necessarily locked.
 *
 * We cannot just dirty the page and leave attached buffers clean, because the
 * buffers' dirty state is "definitive".  We cannot just set the buffers dirty
 * or jbddirty because all the journalling code will explode.
 *
 * So what we do is to mark the page "pending dirty" and next time writepage
 * is called, propagate that into the buffers appropriately.
 */
3358
static int ext4_journalled_set_page_dirty(struct page *page)
3359 3360 3361 3362 3363
{
	SetPageChecked(page);
	return __set_page_dirty_nobuffers(page);
}

3364
static const struct address_space_operations ext4_ordered_aops = {
3365 3366
	.readpage		= ext4_readpage,
	.readpages		= ext4_readpages,
3367
	.writepage		= ext4_writepage,
3368 3369 3370 3371 3372 3373 3374 3375 3376
	.sync_page		= block_sync_page,
	.write_begin		= ext4_write_begin,
	.write_end		= ext4_ordered_write_end,
	.bmap			= ext4_bmap,
	.invalidatepage		= ext4_invalidatepage,
	.releasepage		= ext4_releasepage,
	.direct_IO		= ext4_direct_IO,
	.migratepage		= buffer_migrate_page,
	.is_partially_uptodate  = block_is_partially_uptodate,
3377 3378
};

3379
static const struct address_space_operations ext4_writeback_aops = {
3380 3381
	.readpage		= ext4_readpage,
	.readpages		= ext4_readpages,
3382
	.writepage		= ext4_writepage,
3383 3384 3385 3386 3387 3388 3389 3390 3391
	.sync_page		= block_sync_page,
	.write_begin		= ext4_write_begin,
	.write_end		= ext4_writeback_write_end,
	.bmap			= ext4_bmap,
	.invalidatepage		= ext4_invalidatepage,
	.releasepage		= ext4_releasepage,
	.direct_IO		= ext4_direct_IO,
	.migratepage		= buffer_migrate_page,
	.is_partially_uptodate  = block_is_partially_uptodate,
3392 3393
};

3394
static const struct address_space_operations ext4_journalled_aops = {
3395 3396
	.readpage		= ext4_readpage,
	.readpages		= ext4_readpages,
3397
	.writepage		= ext4_writepage,
3398 3399 3400 3401 3402 3403 3404 3405
	.sync_page		= block_sync_page,
	.write_begin		= ext4_write_begin,
	.write_end		= ext4_journalled_write_end,
	.set_page_dirty		= ext4_journalled_set_page_dirty,
	.bmap			= ext4_bmap,
	.invalidatepage		= ext4_invalidatepage,
	.releasepage		= ext4_releasepage,
	.is_partially_uptodate  = block_is_partially_uptodate,
3406 3407
};

3408
static const struct address_space_operations ext4_da_aops = {
3409 3410
	.readpage		= ext4_readpage,
	.readpages		= ext4_readpages,
3411
	.writepage		= ext4_writepage,
3412 3413 3414 3415 3416 3417 3418 3419 3420 3421
	.writepages		= ext4_da_writepages,
	.sync_page		= block_sync_page,
	.write_begin		= ext4_da_write_begin,
	.write_end		= ext4_da_write_end,
	.bmap			= ext4_bmap,
	.invalidatepage		= ext4_da_invalidatepage,
	.releasepage		= ext4_releasepage,
	.direct_IO		= ext4_direct_IO,
	.migratepage		= buffer_migrate_page,
	.is_partially_uptodate  = block_is_partially_uptodate,
3422 3423
};

3424
void ext4_set_aops(struct inode *inode)
3425
{
3426 3427 3428 3429
	if (ext4_should_order_data(inode) &&
		test_opt(inode->i_sb, DELALLOC))
		inode->i_mapping->a_ops = &ext4_da_aops;
	else if (ext4_should_order_data(inode))
3430
		inode->i_mapping->a_ops = &ext4_ordered_aops;
3431 3432 3433
	else if (ext4_should_writeback_data(inode) &&
		 test_opt(inode->i_sb, DELALLOC))
		inode->i_mapping->a_ops = &ext4_da_aops;
3434 3435
	else if (ext4_should_writeback_data(inode))
		inode->i_mapping->a_ops = &ext4_writeback_aops;
3436
	else
3437
		inode->i_mapping->a_ops = &ext4_journalled_aops;
3438 3439 3440
}

/*
3441
 * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
3442 3443 3444 3445
 * up to the end of the block which corresponds to `from'.
 * This required during truncate. We need to physically zero the tail end
 * of that block so it doesn't yield old data if the file is later grown.
 */
3446
int ext4_block_truncate_page(handle_t *handle,
3447 3448
		struct address_space *mapping, loff_t from)
{
3449
	ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT;
3450
	unsigned offset = from & (PAGE_CACHE_SIZE-1);
A
Aneesh Kumar K.V 已提交
3451 3452
	unsigned blocksize, length, pos;
	ext4_lblk_t iblock;
3453 3454
	struct inode *inode = mapping->host;
	struct buffer_head *bh;
3455
	struct page *page;
3456 3457
	int err = 0;

3458 3459
	page = find_or_create_page(mapping, from >> PAGE_CACHE_SHIFT,
				   mapping_gfp_mask(mapping) & ~__GFP_FS);
3460 3461 3462
	if (!page)
		return -EINVAL;

3463 3464 3465 3466 3467 3468 3469 3470 3471
	blocksize = inode->i_sb->s_blocksize;
	length = blocksize - (offset & (blocksize - 1));
	iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);

	/*
	 * For "nobh" option,  we can only work if we don't need to
	 * read-in the page - otherwise we create buffers to do the IO.
	 */
	if (!page_has_buffers(page) && test_opt(inode->i_sb, NOBH) &&
3472
	     ext4_should_writeback_data(inode) && PageUptodate(page)) {
3473
		zero_user(page, offset, length);
3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497
		set_page_dirty(page);
		goto unlock;
	}

	if (!page_has_buffers(page))
		create_empty_buffers(page, blocksize, 0);

	/* Find the buffer that contains "offset" */
	bh = page_buffers(page);
	pos = blocksize;
	while (offset >= pos) {
		bh = bh->b_this_page;
		iblock++;
		pos += blocksize;
	}

	err = 0;
	if (buffer_freed(bh)) {
		BUFFER_TRACE(bh, "freed: skip");
		goto unlock;
	}

	if (!buffer_mapped(bh)) {
		BUFFER_TRACE(bh, "unmapped");
3498
		ext4_get_block(inode, iblock, bh, 0);
3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518
		/* unmapped? It's a hole - nothing to do */
		if (!buffer_mapped(bh)) {
			BUFFER_TRACE(bh, "still unmapped");
			goto unlock;
		}
	}

	/* Ok, it's mapped. Make sure it's up-to-date */
	if (PageUptodate(page))
		set_buffer_uptodate(bh);

	if (!buffer_uptodate(bh)) {
		err = -EIO;
		ll_rw_block(READ, 1, &bh);
		wait_on_buffer(bh);
		/* Uhhuh. Read error. Complain and punt. */
		if (!buffer_uptodate(bh))
			goto unlock;
	}

3519
	if (ext4_should_journal_data(inode)) {
3520
		BUFFER_TRACE(bh, "get write access");
3521
		err = ext4_journal_get_write_access(handle, bh);
3522 3523 3524 3525
		if (err)
			goto unlock;
	}

3526
	zero_user(page, offset, length);
3527 3528 3529 3530

	BUFFER_TRACE(bh, "zeroed end of block");

	err = 0;
3531
	if (ext4_should_journal_data(inode)) {
3532
		err = ext4_handle_dirty_metadata(handle, inode, bh);
3533
	} else {
3534
		if (ext4_should_order_data(inode))
3535
			err = ext4_jbd2_file_inode(handle, inode);
3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558
		mark_buffer_dirty(bh);
	}

unlock:
	unlock_page(page);
	page_cache_release(page);
	return err;
}

/*
 * Probably it should be a library function... search for first non-zero word
 * or memcmp with zero_page, whatever is better for particular architecture.
 * Linus?
 */
static inline int all_zeroes(__le32 *p, __le32 *q)
{
	while (p < q)
		if (*p++)
			return 0;
	return 1;
}

/**
3559
 *	ext4_find_shared - find the indirect blocks for partial truncation.
3560 3561
 *	@inode:	  inode in question
 *	@depth:	  depth of the affected branch
3562
 *	@offsets: offsets of pointers in that branch (see ext4_block_to_path)
3563 3564 3565
 *	@chain:	  place to store the pointers to partial indirect blocks
 *	@top:	  place to the (detached) top of branch
 *
3566
 *	This is a helper function used by ext4_truncate().
3567 3568 3569 3570 3571 3572 3573
 *
 *	When we do truncate() we may have to clean the ends of several
 *	indirect blocks but leave the blocks themselves alive. Block is
 *	partially truncated if some data below the new i_size is refered
 *	from it (and it is on the path to the first completely truncated
 *	data block, indeed).  We have to free the top of that path along
 *	with everything to the right of the path. Since no allocation
3574
 *	past the truncation point is possible until ext4_truncate()
3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592
 *	finishes, we may safely do the latter, but top of branch may
 *	require special attention - pageout below the truncation point
 *	might try to populate it.
 *
 *	We atomically detach the top of branch from the tree, store the
 *	block number of its root in *@top, pointers to buffer_heads of
 *	partially truncated blocks - in @chain[].bh and pointers to
 *	their last elements that should not be removed - in
 *	@chain[].p. Return value is the pointer to last filled element
 *	of @chain.
 *
 *	The work left to caller to do the actual freeing of subtrees:
 *		a) free the subtree starting from *@top
 *		b) free the subtrees whose roots are stored in
 *			(@chain[i].p+1 .. end of @chain[i].bh->b_data)
 *		c) free the subtrees growing from the inode past the @chain[0].
 *			(no partially truncated stuff there).  */

3593
static Indirect *ext4_find_shared(struct inode *inode, int depth,
3594 3595
				  ext4_lblk_t offsets[4], Indirect chain[4],
				  __le32 *top)
3596 3597 3598 3599 3600 3601 3602 3603
{
	Indirect *partial, *p;
	int k, err;

	*top = 0;
	/* Make k index the deepest non-null offest + 1 */
	for (k = depth; k > 1 && !offsets[k-1]; k--)
		;
3604
	partial = ext4_get_branch(inode, k, offsets, chain, &err);
3605 3606 3607 3608 3609 3610 3611 3612 3613 3614
	/* Writer: pointers */
	if (!partial)
		partial = chain + k-1;
	/*
	 * If the branch acquired continuation since we've looked at it -
	 * fine, it should all survive and (new) top doesn't belong to us.
	 */
	if (!partial->key && *partial->p)
		/* Writer: end */
		goto no_top;
3615
	for (p = partial; (p > chain) && all_zeroes((__le32 *) p->bh->b_data, p->p); p--)
3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626
		;
	/*
	 * OK, we've found the last block that must survive. The rest of our
	 * branch should be detached before unlocking. However, if that rest
	 * of branch is all ours and does not grow immediately from the inode
	 * it's easier to cheat and just decrement partial->p.
	 */
	if (p == chain + k - 1 && p > chain) {
		p->p--;
	} else {
		*top = *p->p;
3627
		/* Nope, don't do this in ext4.  Must leave the tree intact */
3628 3629 3630 3631 3632 3633
#if 0
		*p->p = 0;
#endif
	}
	/* Writer: end */

3634
	while (partial > p) {
3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649
		brelse(partial->bh);
		partial--;
	}
no_top:
	return partial;
}

/*
 * Zero a number of block pointers in either an inode or an indirect block.
 * If we restart the transaction we must again get write access to the
 * indirect block for further modification.
 *
 * We release `count' blocks on disk, but (last - first) may be greater
 * than `count' because there can be holes in there.
 */
3650
static void ext4_clear_blocks(handle_t *handle, struct inode *inode,
3651 3652 3653 3654
			      struct buffer_head *bh,
			      ext4_fsblk_t block_to_free,
			      unsigned long count, __le32 *first,
			      __le32 *last)
3655 3656 3657 3658
{
	__le32 *p;
	if (try_to_extend_transaction(handle, inode)) {
		if (bh) {
3659 3660
			BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
			ext4_handle_dirty_metadata(handle, inode, bh);
3661
		}
3662 3663
		ext4_mark_inode_dirty(handle, inode);
		ext4_journal_test_restart(handle, inode);
3664 3665
		if (bh) {
			BUFFER_TRACE(bh, "retaking write access");
3666
			ext4_journal_get_write_access(handle, bh);
3667 3668 3669 3670
		}
	}

	/*
3671 3672 3673 3674 3675
	 * Any buffers which are on the journal will be in memory. We
	 * find them on the hash table so jbd2_journal_revoke() will
	 * run jbd2_journal_forget() on them.  We've already detached
	 * each block from the file, so bforget() in
	 * jbd2_journal_forget() should be safe.
3676
	 *
3677
	 * AKPM: turn on bforget in jbd2_journal_forget()!!!
3678 3679 3680 3681
	 */
	for (p = first; p < last; p++) {
		u32 nr = le32_to_cpu(*p);
		if (nr) {
A
Aneesh Kumar K.V 已提交
3682
			struct buffer_head *tbh;
3683 3684

			*p = 0;
A
Aneesh Kumar K.V 已提交
3685 3686
			tbh = sb_find_get_block(inode->i_sb, nr);
			ext4_forget(handle, 0, inode, tbh, nr);
3687 3688 3689
		}
	}

3690
	ext4_free_blocks(handle, inode, block_to_free, count, 0);
3691 3692 3693
}

/**
3694
 * ext4_free_data - free a list of data blocks
3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711
 * @handle:	handle for this transaction
 * @inode:	inode we are dealing with
 * @this_bh:	indirect buffer_head which contains *@first and *@last
 * @first:	array of block numbers
 * @last:	points immediately past the end of array
 *
 * We are freeing all blocks refered from that array (numbers are stored as
 * little-endian 32-bit) and updating @inode->i_blocks appropriately.
 *
 * We accumulate contiguous runs of blocks to free.  Conveniently, if these
 * blocks are contiguous then releasing them at one time will only affect one
 * or two bitmap blocks (+ group descriptor(s) and superblock) and we won't
 * actually use a lot of journal space.
 *
 * @this_bh will be %NULL if @first and @last point into the inode's direct
 * block pointers.
 */
3712
static void ext4_free_data(handle_t *handle, struct inode *inode,
3713 3714 3715
			   struct buffer_head *this_bh,
			   __le32 *first, __le32 *last)
{
3716
	ext4_fsblk_t block_to_free = 0;    /* Starting block # of a run */
3717 3718 3719 3720
	unsigned long count = 0;	    /* Number of blocks in the run */
	__le32 *block_to_free_p = NULL;	    /* Pointer into inode/ind
					       corresponding to
					       block_to_free */
3721
	ext4_fsblk_t nr;		    /* Current block # */
3722 3723 3724 3725 3726 3727
	__le32 *p;			    /* Pointer into inode/ind
					       for current block */
	int err;

	if (this_bh) {				/* For indirect block */
		BUFFER_TRACE(this_bh, "get_write_access");
3728
		err = ext4_journal_get_write_access(handle, this_bh);
3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745
		/* Important: if we can't update the indirect pointers
		 * to the blocks, we can't free them. */
		if (err)
			return;
	}

	for (p = first; p < last; p++) {
		nr = le32_to_cpu(*p);
		if (nr) {
			/* accumulate blocks to free if they're contiguous */
			if (count == 0) {
				block_to_free = nr;
				block_to_free_p = p;
				count = 1;
			} else if (nr == block_to_free + count) {
				count++;
			} else {
3746
				ext4_clear_blocks(handle, inode, this_bh,
3747 3748 3749 3750 3751 3752 3753 3754 3755 3756
						  block_to_free,
						  count, block_to_free_p, p);
				block_to_free = nr;
				block_to_free_p = p;
				count = 1;
			}
		}
	}

	if (count > 0)
3757
		ext4_clear_blocks(handle, inode, this_bh, block_to_free,
3758 3759 3760
				  count, block_to_free_p, p);

	if (this_bh) {
3761
		BUFFER_TRACE(this_bh, "call ext4_handle_dirty_metadata");
3762 3763 3764 3765 3766 3767 3768

		/*
		 * The buffer head should have an attached journal head at this
		 * point. However, if the data is corrupted and an indirect
		 * block pointed to itself, it would have been detached when
		 * the block was cleared. Check for this instead of OOPSing.
		 */
3769
		if ((EXT4_JOURNAL(inode) == NULL) || bh2jh(this_bh))
3770
			ext4_handle_dirty_metadata(handle, inode, this_bh);
3771 3772 3773 3774 3775 3776
		else
			ext4_error(inode->i_sb, __func__,
				   "circular indirect block detected, "
				   "inode=%lu, block=%llu",
				   inode->i_ino,
				   (unsigned long long) this_bh->b_blocknr);
3777 3778 3779 3780
	}
}

/**
3781
 *	ext4_free_branches - free an array of branches
3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792
 *	@handle: JBD handle for this transaction
 *	@inode:	inode we are dealing with
 *	@parent_bh: the buffer_head which contains *@first and *@last
 *	@first:	array of block numbers
 *	@last:	pointer immediately past the end of array
 *	@depth:	depth of the branches to free
 *
 *	We are freeing all blocks refered from these branches (numbers are
 *	stored as little-endian 32-bit) and updating @inode->i_blocks
 *	appropriately.
 */
3793
static void ext4_free_branches(handle_t *handle, struct inode *inode,
3794 3795 3796
			       struct buffer_head *parent_bh,
			       __le32 *first, __le32 *last, int depth)
{
3797
	ext4_fsblk_t nr;
3798 3799
	__le32 *p;

3800
	if (ext4_handle_is_aborted(handle))
3801 3802 3803 3804
		return;

	if (depth--) {
		struct buffer_head *bh;
3805
		int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819
		p = last;
		while (--p >= first) {
			nr = le32_to_cpu(*p);
			if (!nr)
				continue;		/* A hole */

			/* Go read the buffer for the next level down */
			bh = sb_bread(inode->i_sb, nr);

			/*
			 * A read failure? Report error and clear slot
			 * (should be rare).
			 */
			if (!bh) {
3820
				ext4_error(inode->i_sb, "ext4_free_branches",
3821
					   "Read failure, inode=%lu, block=%llu",
3822 3823 3824 3825 3826 3827
					   inode->i_ino, nr);
				continue;
			}

			/* This zaps the entire block.  Bottom up. */
			BUFFER_TRACE(bh, "free child branches");
3828
			ext4_free_branches(handle, inode, bh,
3829 3830 3831
					(__le32 *) bh->b_data,
					(__le32 *) bh->b_data + addr_per_block,
					depth);
3832 3833 3834 3835 3836

			/*
			 * We've probably journalled the indirect block several
			 * times during the truncate.  But it's no longer
			 * needed and we now drop it from the transaction via
3837
			 * jbd2_journal_revoke().
3838 3839 3840
			 *
			 * That's easy if it's exclusively part of this
			 * transaction.  But if it's part of the committing
3841
			 * transaction then jbd2_journal_forget() will simply
3842
			 * brelse() it.  That means that if the underlying
3843
			 * block is reallocated in ext4_get_block(),
3844 3845 3846 3847 3848 3849 3850 3851
			 * unmap_underlying_metadata() will find this block
			 * and will try to get rid of it.  damn, damn.
			 *
			 * If this block has already been committed to the
			 * journal, a revoke record will be written.  And
			 * revoke records must be emitted *before* clearing
			 * this block's bit in the bitmaps.
			 */
3852
			ext4_forget(handle, 1, inode, bh, bh->b_blocknr);
3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869

			/*
			 * Everything below this this pointer has been
			 * released.  Now let this top-of-subtree go.
			 *
			 * We want the freeing of this indirect block to be
			 * atomic in the journal with the updating of the
			 * bitmap block which owns it.  So make some room in
			 * the journal.
			 *
			 * We zero the parent pointer *after* freeing its
			 * pointee in the bitmaps, so if extend_transaction()
			 * for some reason fails to put the bitmap changes and
			 * the release into the same transaction, recovery
			 * will merely complain about releasing a free block,
			 * rather than leaking blocks.
			 */
3870
			if (ext4_handle_is_aborted(handle))
3871 3872
				return;
			if (try_to_extend_transaction(handle, inode)) {
3873 3874
				ext4_mark_inode_dirty(handle, inode);
				ext4_journal_test_restart(handle, inode);
3875 3876
			}

3877
			ext4_free_blocks(handle, inode, nr, 1, 1);
3878 3879 3880 3881 3882 3883 3884

			if (parent_bh) {
				/*
				 * The block which we have just freed is
				 * pointed to by an indirect block: journal it
				 */
				BUFFER_TRACE(parent_bh, "get_write_access");
3885
				if (!ext4_journal_get_write_access(handle,
3886 3887 3888
								   parent_bh)){
					*p = 0;
					BUFFER_TRACE(parent_bh,
3889 3890 3891 3892
					"call ext4_handle_dirty_metadata");
					ext4_handle_dirty_metadata(handle,
								   inode,
								   parent_bh);
3893 3894 3895 3896 3897 3898
				}
			}
		}
	} else {
		/* We have reached the bottom of the tree. */
		BUFFER_TRACE(parent_bh, "free data blocks");
3899
		ext4_free_data(handle, inode, parent_bh, first, last);
3900 3901 3902
	}
}

3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915
int ext4_can_truncate(struct inode *inode)
{
	if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
		return 0;
	if (S_ISREG(inode->i_mode))
		return 1;
	if (S_ISDIR(inode->i_mode))
		return 1;
	if (S_ISLNK(inode->i_mode))
		return !ext4_inode_is_fast_symlink(inode);
	return 0;
}

3916
/*
3917
 * ext4_truncate()
3918
 *
3919 3920
 * We block out ext4_get_block() block instantiations across the entire
 * transaction, and VFS/VM ensures that ext4_truncate() cannot run
3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936
 * simultaneously on behalf of the same inode.
 *
 * As we work through the truncate and commmit bits of it to the journal there
 * is one core, guiding principle: the file's tree must always be consistent on
 * disk.  We must be able to restart the truncate after a crash.
 *
 * The file's tree may be transiently inconsistent in memory (although it
 * probably isn't), but whenever we close off and commit a journal transaction,
 * the contents of (the filesystem + the journal) must be consistent and
 * restartable.  It's pretty simple, really: bottom up, right to left (although
 * left-to-right works OK too).
 *
 * Note that at recovery time, journal replay occurs *before* the restart of
 * truncate against the orphan inode list.
 *
 * The committed inode has the new, desired i_size (which is the same as
3937
 * i_disksize in this case).  After a crash, ext4_orphan_cleanup() will see
3938
 * that this inode's truncate did not complete and it will again call
3939 3940
 * ext4_truncate() to have another go.  So there will be instantiated blocks
 * to the right of the truncation point in a crashed ext4 filesystem.  But
3941
 * that's fine - as long as they are linked from the inode, the post-crash
3942
 * ext4_truncate() run will find them and release them.
3943
 */
3944
void ext4_truncate(struct inode *inode)
3945 3946
{
	handle_t *handle;
3947
	struct ext4_inode_info *ei = EXT4_I(inode);
3948
	__le32 *i_data = ei->i_data;
3949
	int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
3950
	struct address_space *mapping = inode->i_mapping;
A
Aneesh Kumar K.V 已提交
3951
	ext4_lblk_t offsets[4];
3952 3953 3954 3955
	Indirect chain[4];
	Indirect *partial;
	__le32 nr = 0;
	int n;
A
Aneesh Kumar K.V 已提交
3956
	ext4_lblk_t last_block;
3957 3958
	unsigned blocksize = inode->i_sb->s_blocksize;

3959
	if (!ext4_can_truncate(inode))
3960 3961
		return;

3962 3963
	if (ei->i_disksize && inode->i_size == 0 &&
	    !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
3964 3965
		ei->i_state |= EXT4_STATE_DA_ALLOC_CLOSE;

A
Aneesh Kumar K.V 已提交
3966
	if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) {
3967
		ext4_ext_truncate(inode);
A
Aneesh Kumar K.V 已提交
3968 3969
		return;
	}
A
Alex Tomas 已提交
3970

3971
	handle = start_transaction(inode);
3972
	if (IS_ERR(handle))
3973 3974 3975
		return;		/* AKPM: return what? */

	last_block = (inode->i_size + blocksize-1)
3976
					>> EXT4_BLOCK_SIZE_BITS(inode->i_sb);
3977

3978 3979 3980
	if (inode->i_size & (blocksize - 1))
		if (ext4_block_truncate_page(handle, mapping, inode->i_size))
			goto out_stop;
3981

3982
	n = ext4_block_to_path(inode, last_block, offsets, NULL);
3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994
	if (n == 0)
		goto out_stop;	/* error */

	/*
	 * OK.  This truncate is going to happen.  We add the inode to the
	 * orphan list, so that if this truncate spans multiple transactions,
	 * and we crash, we will resume the truncate when the filesystem
	 * recovers.  It also marks the inode dirty, to catch the new size.
	 *
	 * Implication: the file must always be in a sane, consistent
	 * truncatable state while each transaction commits.
	 */
3995
	if (ext4_orphan_add(handle, inode))
3996 3997
		goto out_stop;

3998 3999 4000 4001 4002
	/*
	 * From here we block out all ext4_get_block() callers who want to
	 * modify the block allocation tree.
	 */
	down_write(&ei->i_data_sem);
4003

4004
	ext4_discard_preallocations(inode);
4005

4006 4007 4008 4009 4010
	/*
	 * The orphan list entry will now protect us from any crash which
	 * occurs before the truncate completes, so it is now safe to propagate
	 * the new, shorter inode size (held for now in i_size) into the
	 * on-disk inode. We do this via i_disksize, which is the value which
4011
	 * ext4 *really* writes onto the disk inode.
4012 4013 4014 4015
	 */
	ei->i_disksize = inode->i_size;

	if (n == 1) {		/* direct blocks */
4016 4017
		ext4_free_data(handle, inode, NULL, i_data+offsets[0],
			       i_data + EXT4_NDIR_BLOCKS);
4018 4019 4020
		goto do_indirects;
	}

4021
	partial = ext4_find_shared(inode, n, offsets, chain, &nr);
4022 4023 4024 4025
	/* Kill the top of shared branch (not detached) */
	if (nr) {
		if (partial == chain) {
			/* Shared branch grows from the inode */
4026
			ext4_free_branches(handle, inode, NULL,
4027 4028 4029 4030 4031 4032 4033 4034 4035
					   &nr, &nr+1, (chain+n-1) - partial);
			*partial->p = 0;
			/*
			 * We mark the inode dirty prior to restart,
			 * and prior to stop.  No need for it here.
			 */
		} else {
			/* Shared branch grows from an indirect block */
			BUFFER_TRACE(partial->bh, "get_write_access");
4036
			ext4_free_branches(handle, inode, partial->bh,
4037 4038 4039 4040 4041 4042
					partial->p,
					partial->p+1, (chain+n-1) - partial);
		}
	}
	/* Clear the ends of indirect blocks on the shared branch */
	while (partial > chain) {
4043
		ext4_free_branches(handle, inode, partial->bh, partial->p + 1,
4044 4045 4046
				   (__le32*)partial->bh->b_data+addr_per_block,
				   (chain+n-1) - partial);
		BUFFER_TRACE(partial->bh, "call brelse");
4047
		brelse(partial->bh);
4048 4049 4050 4051 4052 4053
		partial--;
	}
do_indirects:
	/* Kill the remaining (whole) subtrees */
	switch (offsets[0]) {
	default:
4054
		nr = i_data[EXT4_IND_BLOCK];
4055
		if (nr) {
4056 4057
			ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 1);
			i_data[EXT4_IND_BLOCK] = 0;
4058
		}
4059 4060
	case EXT4_IND_BLOCK:
		nr = i_data[EXT4_DIND_BLOCK];
4061
		if (nr) {
4062 4063
			ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 2);
			i_data[EXT4_DIND_BLOCK] = 0;
4064
		}
4065 4066
	case EXT4_DIND_BLOCK:
		nr = i_data[EXT4_TIND_BLOCK];
4067
		if (nr) {
4068 4069
			ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 3);
			i_data[EXT4_TIND_BLOCK] = 0;
4070
		}
4071
	case EXT4_TIND_BLOCK:
4072 4073 4074
		;
	}

4075
	up_write(&ei->i_data_sem);
K
Kalpak Shah 已提交
4076
	inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
4077
	ext4_mark_inode_dirty(handle, inode);
4078 4079 4080 4081 4082 4083

	/*
	 * In a multi-transaction truncate, we only make the final transaction
	 * synchronous
	 */
	if (IS_SYNC(inode))
4084
		ext4_handle_sync(handle);
4085 4086 4087 4088 4089
out_stop:
	/*
	 * If this was a simple ftruncate(), and the file will remain alive
	 * then we need to clear up the orphan record which we created above.
	 * However, if this was a real unlink then we were called by
4090
	 * ext4_delete_inode(), and we allow that function to clean up the
4091 4092 4093
	 * orphan info for us.
	 */
	if (inode->i_nlink)
4094
		ext4_orphan_del(handle, inode);
4095

4096
	ext4_journal_stop(handle);
4097 4098 4099
}

/*
4100
 * ext4_get_inode_loc returns with an extra refcount against the inode's
4101 4102 4103 4104
 * underlying buffer_head on success. If 'in_mem' is true, we have all
 * data in memory that is needed to recreate the on-disk version of this
 * inode.
 */
4105 4106
static int __ext4_get_inode_loc(struct inode *inode,
				struct ext4_iloc *iloc, int in_mem)
4107
{
4108 4109 4110 4111 4112 4113
	struct ext4_group_desc	*gdp;
	struct buffer_head	*bh;
	struct super_block	*sb = inode->i_sb;
	ext4_fsblk_t		block;
	int			inodes_per_block, inode_offset;

A
Aneesh Kumar K.V 已提交
4114
	iloc->bh = NULL;
4115 4116
	if (!ext4_valid_inum(sb, inode->i_ino))
		return -EIO;
4117

4118 4119 4120
	iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb);
	gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
	if (!gdp)
4121 4122
		return -EIO;

4123 4124 4125 4126 4127 4128 4129 4130 4131 4132
	/*
	 * Figure out the offset within the block group inode table
	 */
	inodes_per_block = (EXT4_BLOCK_SIZE(sb) / EXT4_INODE_SIZE(sb));
	inode_offset = ((inode->i_ino - 1) %
			EXT4_INODES_PER_GROUP(sb));
	block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
	iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);

	bh = sb_getblk(sb, block);
4133
	if (!bh) {
4134 4135 4136
		ext4_error(sb, "ext4_get_inode_loc", "unable to read "
			   "inode block - inode=%lu, block=%llu",
			   inode->i_ino, block);
4137 4138 4139 4140
		return -EIO;
	}
	if (!buffer_uptodate(bh)) {
		lock_buffer(bh);
4141 4142 4143 4144 4145 4146 4147 4148 4149 4150

		/*
		 * If the buffer has the write error flag, we have failed
		 * to write out another inode in the same block.  In this
		 * case, we don't have to read the block because we may
		 * read the old inode data successfully.
		 */
		if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
			set_buffer_uptodate(bh);

4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163
		if (buffer_uptodate(bh)) {
			/* someone brought it uptodate while we waited */
			unlock_buffer(bh);
			goto has_buffer;
		}

		/*
		 * If we have all information of the inode in memory and this
		 * is the only valid inode in the block, we need not read the
		 * block.
		 */
		if (in_mem) {
			struct buffer_head *bitmap_bh;
4164
			int i, start;
4165

4166
			start = inode_offset & ~(inodes_per_block - 1);
4167

4168 4169
			/* Is the inode bitmap in cache? */
			bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181
			if (!bitmap_bh)
				goto make_io;

			/*
			 * If the inode bitmap isn't in cache then the
			 * optimisation may end up performing two reads instead
			 * of one, so skip it.
			 */
			if (!buffer_uptodate(bitmap_bh)) {
				brelse(bitmap_bh);
				goto make_io;
			}
4182
			for (i = start; i < start + inodes_per_block; i++) {
4183 4184
				if (i == inode_offset)
					continue;
4185
				if (ext4_test_bit(i, bitmap_bh->b_data))
4186 4187 4188
					break;
			}
			brelse(bitmap_bh);
4189
			if (i == start + inodes_per_block) {
4190 4191 4192 4193 4194 4195 4196 4197 4198
				/* all other inodes are free, so skip I/O */
				memset(bh->b_data, 0, bh->b_size);
				set_buffer_uptodate(bh);
				unlock_buffer(bh);
				goto has_buffer;
			}
		}

make_io:
4199 4200 4201 4202 4203 4204 4205 4206 4207
		/*
		 * If we need to do any I/O, try to pre-readahead extra
		 * blocks from the inode table.
		 */
		if (EXT4_SB(sb)->s_inode_readahead_blks) {
			ext4_fsblk_t b, end, table;
			unsigned num;

			table = ext4_inode_table(sb, gdp);
T
Theodore Ts'o 已提交
4208
			/* s_inode_readahead_blks is always a power of 2 */
4209 4210 4211 4212 4213 4214 4215
			b = block & ~(EXT4_SB(sb)->s_inode_readahead_blks-1);
			if (table > b)
				b = table;
			end = b + EXT4_SB(sb)->s_inode_readahead_blks;
			num = EXT4_INODES_PER_GROUP(sb);
			if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
				       EXT4_FEATURE_RO_COMPAT_GDT_CSUM))
4216
				num -= ext4_itable_unused_count(sb, gdp);
4217 4218 4219 4220 4221 4222 4223
			table += num / inodes_per_block;
			if (end > table)
				end = table;
			while (b <= end)
				sb_breadahead(sb, b++);
		}

4224 4225 4226 4227 4228 4229 4230 4231 4232 4233
		/*
		 * There are other valid inodes in the buffer, this inode
		 * has in-inode xattrs, or we don't have this inode in memory.
		 * Read the block from disk.
		 */
		get_bh(bh);
		bh->b_end_io = end_buffer_read_sync;
		submit_bh(READ_META, bh);
		wait_on_buffer(bh);
		if (!buffer_uptodate(bh)) {
4234 4235 4236
			ext4_error(sb, __func__,
				   "unable to read inode block - inode=%lu, "
				   "block=%llu", inode->i_ino, block);
4237 4238 4239 4240 4241 4242 4243 4244 4245
			brelse(bh);
			return -EIO;
		}
	}
has_buffer:
	iloc->bh = bh;
	return 0;
}

4246
int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
4247 4248
{
	/* We have all inode data except xattrs in memory here. */
4249 4250
	return __ext4_get_inode_loc(inode, iloc,
		!(EXT4_I(inode)->i_state & EXT4_STATE_XATTR));
4251 4252
}

4253
void ext4_set_inode_flags(struct inode *inode)
4254
{
4255
	unsigned int flags = EXT4_I(inode)->i_flags;
4256 4257

	inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC);
4258
	if (flags & EXT4_SYNC_FL)
4259
		inode->i_flags |= S_SYNC;
4260
	if (flags & EXT4_APPEND_FL)
4261
		inode->i_flags |= S_APPEND;
4262
	if (flags & EXT4_IMMUTABLE_FL)
4263
		inode->i_flags |= S_IMMUTABLE;
4264
	if (flags & EXT4_NOATIME_FL)
4265
		inode->i_flags |= S_NOATIME;
4266
	if (flags & EXT4_DIRSYNC_FL)
4267 4268 4269
		inode->i_flags |= S_DIRSYNC;
}

4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287
/* Propagate flags from i_flags to EXT4_I(inode)->i_flags */
void ext4_get_inode_flags(struct ext4_inode_info *ei)
{
	unsigned int flags = ei->vfs_inode.i_flags;

	ei->i_flags &= ~(EXT4_SYNC_FL|EXT4_APPEND_FL|
			EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL|EXT4_DIRSYNC_FL);
	if (flags & S_SYNC)
		ei->i_flags |= EXT4_SYNC_FL;
	if (flags & S_APPEND)
		ei->i_flags |= EXT4_APPEND_FL;
	if (flags & S_IMMUTABLE)
		ei->i_flags |= EXT4_IMMUTABLE_FL;
	if (flags & S_NOATIME)
		ei->i_flags |= EXT4_NOATIME_FL;
	if (flags & S_DIRSYNC)
		ei->i_flags |= EXT4_DIRSYNC_FL;
}
4288

4289
static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
4290
				  struct ext4_inode_info *ei)
4291 4292
{
	blkcnt_t i_blocks ;
A
Aneesh Kumar K.V 已提交
4293 4294
	struct inode *inode = &(ei->vfs_inode);
	struct super_block *sb = inode->i_sb;
4295 4296 4297 4298 4299 4300

	if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
				EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) {
		/* we are using combined 48 bit field */
		i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
					le32_to_cpu(raw_inode->i_blocks_lo);
A
Aneesh Kumar K.V 已提交
4301 4302 4303 4304 4305 4306
		if (ei->i_flags & EXT4_HUGE_FILE_FL) {
			/* i_blocks represent file system block size */
			return i_blocks  << (inode->i_blkbits - 9);
		} else {
			return i_blocks;
		}
4307 4308 4309 4310
	} else {
		return le32_to_cpu(raw_inode->i_blocks_lo);
	}
}
4311

4312
struct inode *ext4_iget(struct super_block *sb, unsigned long ino)
4313
{
4314 4315
	struct ext4_iloc iloc;
	struct ext4_inode *raw_inode;
4316
	struct ext4_inode_info *ei;
4317
	struct buffer_head *bh;
4318 4319
	struct inode *inode;
	long ret;
4320 4321
	int block;

4322 4323 4324 4325 4326 4327 4328
	inode = iget_locked(sb, ino);
	if (!inode)
		return ERR_PTR(-ENOMEM);
	if (!(inode->i_state & I_NEW))
		return inode;

	ei = EXT4_I(inode);
4329

4330 4331
	ret = __ext4_get_inode_loc(inode, &iloc, 0);
	if (ret < 0)
4332 4333
		goto bad_inode;
	bh = iloc.bh;
4334
	raw_inode = ext4_raw_inode(&iloc);
4335 4336 4337
	inode->i_mode = le16_to_cpu(raw_inode->i_mode);
	inode->i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
	inode->i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
4338
	if (!(test_opt(inode->i_sb, NO_UID32))) {
4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353
		inode->i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
		inode->i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
	}
	inode->i_nlink = le16_to_cpu(raw_inode->i_links_count);

	ei->i_state = 0;
	ei->i_dir_start_lookup = 0;
	ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
	/* We now have enough fields to check if the inode was active or not.
	 * This is needed because nfsd might try to access dead inodes
	 * the test is that same one that e2fsck uses
	 * NeilBrown 1999oct15
	 */
	if (inode->i_nlink == 0) {
		if (inode->i_mode == 0 ||
4354
		    !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) {
4355
			/* this inode is deleted */
4356
			brelse(bh);
4357
			ret = -ESTALE;
4358 4359 4360 4361 4362 4363 4364 4365
			goto bad_inode;
		}
		/* The only unlinked inodes we let through here have
		 * valid i_mode and are being read by the orphan
		 * recovery code: that's fine, we're about to complete
		 * the process of deleting those. */
	}
	ei->i_flags = le32_to_cpu(raw_inode->i_flags);
4366
	inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
4367
	ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
4368
	if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT))
B
Badari Pulavarty 已提交
4369 4370
		ei->i_file_acl |=
			((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
4371
	inode->i_size = ext4_isize(raw_inode);
4372 4373 4374
	ei->i_disksize = inode->i_size;
	inode->i_generation = le32_to_cpu(raw_inode->i_generation);
	ei->i_block_group = iloc.block_group;
4375
	ei->i_last_alloc_group = ~0;
4376 4377 4378 4379
	/*
	 * NOTE! The in-memory inode i_data array is in little-endian order
	 * even on big-endian machines: we do NOT byteswap the block numbers!
	 */
4380
	for (block = 0; block < EXT4_N_BLOCKS; block++)
4381 4382 4383
		ei->i_data[block] = raw_inode->i_block[block];
	INIT_LIST_HEAD(&ei->i_orphan);

4384
	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4385
		ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
4386
		if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
4387
		    EXT4_INODE_SIZE(inode->i_sb)) {
4388
			brelse(bh);
4389
			ret = -EIO;
4390
			goto bad_inode;
4391
		}
4392 4393
		if (ei->i_extra_isize == 0) {
			/* The extra space is currently unused. Use it. */
4394 4395
			ei->i_extra_isize = sizeof(struct ext4_inode) -
					    EXT4_GOOD_OLD_INODE_SIZE;
4396 4397
		} else {
			__le32 *magic = (void *)raw_inode +
4398
					EXT4_GOOD_OLD_INODE_SIZE +
4399
					ei->i_extra_isize;
4400
			if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC))
4401
				ei->i_state |= EXT4_STATE_XATTR;
4402 4403 4404 4405
		}
	} else
		ei->i_extra_isize = 0;

K
Kalpak Shah 已提交
4406 4407 4408 4409 4410
	EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
	EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
	EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
	EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);

4411 4412 4413 4414 4415 4416 4417
	inode->i_version = le32_to_cpu(raw_inode->i_disk_version);
	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
		if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
			inode->i_version |=
			(__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
	}

4418
	ret = 0;
4419
	if (ei->i_file_acl &&
4420
	    ((ei->i_file_acl <
4421 4422 4423 4424 4425 4426 4427 4428 4429
	      (le32_to_cpu(EXT4_SB(sb)->s_es->s_first_data_block) +
	       EXT4_SB(sb)->s_gdb_count)) ||
	     (ei->i_file_acl >= ext4_blocks_count(EXT4_SB(sb)->s_es)))) {
		ext4_error(sb, __func__,
			   "bad extended attribute block %llu in inode #%lu",
			   ei->i_file_acl, inode->i_ino);
		ret = -EIO;
		goto bad_inode;
	} else if (ei->i_flags & EXT4_EXTENTS_FL) {
4430 4431 4432 4433 4434
		if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
		    (S_ISLNK(inode->i_mode) &&
		     !ext4_inode_is_fast_symlink(inode)))
			/* Validate extent which is part of inode */
			ret = ext4_ext_check_inode(inode);
4435
	} else if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4436 4437
		   (S_ISLNK(inode->i_mode) &&
		    !ext4_inode_is_fast_symlink(inode))) {
4438
		/* Validate block references which are part of inode */
4439 4440 4441
		ret = ext4_check_inode_blockref(inode);
	}
	if (ret) {
4442 4443
		brelse(bh);
		goto bad_inode;
4444 4445
	}

4446
	if (S_ISREG(inode->i_mode)) {
4447 4448 4449
		inode->i_op = &ext4_file_inode_operations;
		inode->i_fop = &ext4_file_operations;
		ext4_set_aops(inode);
4450
	} else if (S_ISDIR(inode->i_mode)) {
4451 4452
		inode->i_op = &ext4_dir_inode_operations;
		inode->i_fop = &ext4_dir_operations;
4453
	} else if (S_ISLNK(inode->i_mode)) {
4454
		if (ext4_inode_is_fast_symlink(inode)) {
4455
			inode->i_op = &ext4_fast_symlink_inode_operations;
4456 4457 4458
			nd_terminate_link(ei->i_data, inode->i_size,
				sizeof(ei->i_data) - 1);
		} else {
4459 4460
			inode->i_op = &ext4_symlink_inode_operations;
			ext4_set_aops(inode);
4461
		}
4462 4463
	} else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
	      S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
4464
		inode->i_op = &ext4_special_inode_operations;
4465 4466 4467 4468 4469 4470
		if (raw_inode->i_block[0])
			init_special_inode(inode, inode->i_mode,
			   old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
		else
			init_special_inode(inode, inode->i_mode,
			   new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
4471 4472 4473
	} else {
		brelse(bh);
		ret = -EIO;
4474
		ext4_error(inode->i_sb, __func__,
4475 4476 4477
			   "bogus i_mode (%o) for inode=%lu",
			   inode->i_mode, inode->i_ino);
		goto bad_inode;
4478
	}
4479
	brelse(iloc.bh);
4480
	ext4_set_inode_flags(inode);
4481 4482
	unlock_new_inode(inode);
	return inode;
4483 4484

bad_inode:
4485 4486
	iget_failed(inode);
	return ERR_PTR(ret);
4487 4488
}

4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501
static int ext4_inode_blocks_set(handle_t *handle,
				struct ext4_inode *raw_inode,
				struct ext4_inode_info *ei)
{
	struct inode *inode = &(ei->vfs_inode);
	u64 i_blocks = inode->i_blocks;
	struct super_block *sb = inode->i_sb;

	if (i_blocks <= ~0U) {
		/*
		 * i_blocks can be represnted in a 32 bit variable
		 * as multiple of 512 bytes
		 */
A
Aneesh Kumar K.V 已提交
4502
		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4503
		raw_inode->i_blocks_high = 0;
A
Aneesh Kumar K.V 已提交
4504
		ei->i_flags &= ~EXT4_HUGE_FILE_FL;
4505 4506 4507 4508 4509 4510
		return 0;
	}
	if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_HUGE_FILE))
		return -EFBIG;

	if (i_blocks <= 0xffffffffffffULL) {
4511 4512 4513 4514
		/*
		 * i_blocks can be represented in a 48 bit variable
		 * as multiple of 512 bytes
		 */
A
Aneesh Kumar K.V 已提交
4515
		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4516
		raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
A
Aneesh Kumar K.V 已提交
4517
		ei->i_flags &= ~EXT4_HUGE_FILE_FL;
4518
	} else {
A
Aneesh Kumar K.V 已提交
4519 4520 4521 4522 4523
		ei->i_flags |= EXT4_HUGE_FILE_FL;
		/* i_block is stored in file system block size */
		i_blocks = i_blocks >> (inode->i_blkbits - 9);
		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
		raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4524
	}
4525
	return 0;
4526 4527
}

4528 4529 4530 4531 4532 4533 4534
/*
 * Post the struct inode info into an on-disk inode location in the
 * buffer-cache.  This gobbles the caller's reference to the
 * buffer_head in the inode location struct.
 *
 * The caller must have write access to iloc->bh.
 */
4535
static int ext4_do_update_inode(handle_t *handle,
4536
				struct inode *inode,
4537
				struct ext4_iloc *iloc)
4538
{
4539 4540
	struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
	struct ext4_inode_info *ei = EXT4_I(inode);
4541 4542 4543 4544 4545
	struct buffer_head *bh = iloc->bh;
	int err = 0, rc, block;

	/* For fields not not tracking in the in-memory inode,
	 * initialise them to zero for new inodes. */
4546 4547
	if (ei->i_state & EXT4_STATE_NEW)
		memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
4548

4549
	ext4_get_inode_flags(ei);
4550
	raw_inode->i_mode = cpu_to_le16(inode->i_mode);
4551
	if (!(test_opt(inode->i_sb, NO_UID32))) {
4552 4553 4554 4555 4556 4557
		raw_inode->i_uid_low = cpu_to_le16(low_16_bits(inode->i_uid));
		raw_inode->i_gid_low = cpu_to_le16(low_16_bits(inode->i_gid));
/*
 * Fix up interoperability with old kernels. Otherwise, old inodes get
 * re-used with the upper 16 bits of the uid/gid intact
 */
4558
		if (!ei->i_dtime) {
4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575
			raw_inode->i_uid_high =
				cpu_to_le16(high_16_bits(inode->i_uid));
			raw_inode->i_gid_high =
				cpu_to_le16(high_16_bits(inode->i_gid));
		} else {
			raw_inode->i_uid_high = 0;
			raw_inode->i_gid_high = 0;
		}
	} else {
		raw_inode->i_uid_low =
			cpu_to_le16(fs_high2lowuid(inode->i_uid));
		raw_inode->i_gid_low =
			cpu_to_le16(fs_high2lowgid(inode->i_gid));
		raw_inode->i_uid_high = 0;
		raw_inode->i_gid_high = 0;
	}
	raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
K
Kalpak Shah 已提交
4576 4577 4578 4579 4580 4581

	EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
	EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
	EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
	EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);

4582 4583
	if (ext4_inode_blocks_set(handle, raw_inode, ei))
		goto out_brelse;
4584
	raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
4585 4586
	/* clear the migrate flag in the raw_inode */
	raw_inode->i_flags = cpu_to_le32(ei->i_flags & ~EXT4_EXT_MIGRATE);
4587 4588
	if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
	    cpu_to_le32(EXT4_OS_HURD))
B
Badari Pulavarty 已提交
4589 4590
		raw_inode->i_file_acl_high =
			cpu_to_le16(ei->i_file_acl >> 32);
4591
	raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607
	ext4_isize_set(raw_inode, ei->i_disksize);
	if (ei->i_disksize > 0x7fffffffULL) {
		struct super_block *sb = inode->i_sb;
		if (!EXT4_HAS_RO_COMPAT_FEATURE(sb,
				EXT4_FEATURE_RO_COMPAT_LARGE_FILE) ||
				EXT4_SB(sb)->s_es->s_rev_level ==
				cpu_to_le32(EXT4_GOOD_OLD_REV)) {
			/* If this is the first large file
			 * created, add a flag to the superblock.
			 */
			err = ext4_journal_get_write_access(handle,
					EXT4_SB(sb)->s_sbh);
			if (err)
				goto out_brelse;
			ext4_update_dynamic_rev(sb);
			EXT4_SET_RO_COMPAT_FEATURE(sb,
4608
					EXT4_FEATURE_RO_COMPAT_LARGE_FILE);
4609
			sb->s_dirt = 1;
4610 4611
			ext4_handle_sync(handle);
			err = ext4_handle_dirty_metadata(handle, inode,
4612
					EXT4_SB(sb)->s_sbh);
4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626
		}
	}
	raw_inode->i_generation = cpu_to_le32(inode->i_generation);
	if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
		if (old_valid_dev(inode->i_rdev)) {
			raw_inode->i_block[0] =
				cpu_to_le32(old_encode_dev(inode->i_rdev));
			raw_inode->i_block[1] = 0;
		} else {
			raw_inode->i_block[0] = 0;
			raw_inode->i_block[1] =
				cpu_to_le32(new_encode_dev(inode->i_rdev));
			raw_inode->i_block[2] = 0;
		}
4627 4628 4629
	} else
		for (block = 0; block < EXT4_N_BLOCKS; block++)
			raw_inode->i_block[block] = ei->i_data[block];
4630

4631 4632 4633 4634 4635
	raw_inode->i_disk_version = cpu_to_le32(inode->i_version);
	if (ei->i_extra_isize) {
		if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
			raw_inode->i_version_hi =
			cpu_to_le32(inode->i_version >> 32);
4636
		raw_inode->i_extra_isize = cpu_to_le16(ei->i_extra_isize);
4637 4638
	}

4639 4640
	BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
	rc = ext4_handle_dirty_metadata(handle, inode, bh);
4641 4642
	if (!err)
		err = rc;
4643
	ei->i_state &= ~EXT4_STATE_NEW;
4644 4645

out_brelse:
4646
	brelse(bh);
4647
	ext4_std_error(inode->i_sb, err);
4648 4649 4650 4651
	return err;
}

/*
4652
 * ext4_write_inode()
4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668
 *
 * We are called from a few places:
 *
 * - Within generic_file_write() for O_SYNC files.
 *   Here, there will be no transaction running. We wait for any running
 *   trasnaction to commit.
 *
 * - Within sys_sync(), kupdate and such.
 *   We wait on commit, if tol to.
 *
 * - Within prune_icache() (PF_MEMALLOC == true)
 *   Here we simply return.  We can't afford to block kswapd on the
 *   journal commit.
 *
 * In all cases it is actually safe for us to return without doing anything,
 * because the inode has been copied into a raw inode buffer in
4669
 * ext4_mark_inode_dirty().  This is a correctness thing for O_SYNC and for
4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685
 * knfsd.
 *
 * Note that we are absolutely dependent upon all inode dirtiers doing the
 * right thing: they *must* call mark_inode_dirty() after dirtying info in
 * which we are interested.
 *
 * It would be a bug for them to not do this.  The code:
 *
 *	mark_inode_dirty(inode)
 *	stuff();
 *	inode->i_size = expr;
 *
 * is in error because a kswapd-driven write_inode() could occur while
 * `stuff()' is running, and the new i_size will be lost.  Plus the inode
 * will no longer be on the superblock's dirty inode list.
 */
4686
int ext4_write_inode(struct inode *inode, int wait)
4687 4688 4689 4690
{
	if (current->flags & PF_MEMALLOC)
		return 0;

4691
	if (ext4_journal_current_handle()) {
M
Mingming Cao 已提交
4692
		jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
4693 4694 4695 4696 4697 4698 4699
		dump_stack();
		return -EIO;
	}

	if (!wait)
		return 0;

4700
	return ext4_force_commit(inode->i_sb);
4701 4702 4703
}

/*
4704
 * ext4_setattr()
4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717
 *
 * Called from notify_change.
 *
 * We want to trap VFS attempts to truncate the file as soon as
 * possible.  In particular, we want to make sure that when the VFS
 * shrinks i_size, we put the inode on the orphan list and modify
 * i_disksize immediately, so that during the subsequent flushing of
 * dirty pages and freeing of disk blocks, we can guarantee that any
 * commit will leave the blocks being flushed in an unused state on
 * disk.  (On recovery, the inode will get truncated and the blocks will
 * be freed, so we have a strong guarantee that no future commit will
 * leave these blocks visible to the user.)
 *
4718 4719 4720 4721 4722 4723 4724 4725
 * Another thing we have to assure is that if we are in ordered mode
 * and inode is still attached to the committing transaction, we must
 * we start writeout of all the dirty pages which are being truncated.
 * This way we are sure that all the data written in the previous
 * transaction are already on disk (truncate waits for pages under
 * writeback).
 *
 * Called with inode->i_mutex down.
4726
 */
4727
int ext4_setattr(struct dentry *dentry, struct iattr *attr)
4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742
{
	struct inode *inode = dentry->d_inode;
	int error, rc = 0;
	const unsigned int ia_valid = attr->ia_valid;

	error = inode_change_ok(inode, attr);
	if (error)
		return error;

	if ((ia_valid & ATTR_UID && attr->ia_uid != inode->i_uid) ||
		(ia_valid & ATTR_GID && attr->ia_gid != inode->i_gid)) {
		handle_t *handle;

		/* (user+group)*(old+new) structure, inode write (sb,
		 * inode block, ? - but truncate inode update has it) */
4743 4744
		handle = ext4_journal_start(inode, 2*(EXT4_QUOTA_INIT_BLOCKS(inode->i_sb)+
					EXT4_QUOTA_DEL_BLOCKS(inode->i_sb))+3);
4745 4746 4747 4748
		if (IS_ERR(handle)) {
			error = PTR_ERR(handle);
			goto err_out;
		}
4749
		error = vfs_dq_transfer(inode, attr) ? -EDQUOT : 0;
4750
		if (error) {
4751
			ext4_journal_stop(handle);
4752 4753 4754 4755 4756 4757 4758 4759
			return error;
		}
		/* Update corresponding info in inode so that everything is in
		 * one transaction */
		if (attr->ia_valid & ATTR_UID)
			inode->i_uid = attr->ia_uid;
		if (attr->ia_valid & ATTR_GID)
			inode->i_gid = attr->ia_gid;
4760 4761
		error = ext4_mark_inode_dirty(handle, inode);
		ext4_journal_stop(handle);
4762 4763
	}

4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774
	if (attr->ia_valid & ATTR_SIZE) {
		if (!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL)) {
			struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);

			if (attr->ia_size > sbi->s_bitmap_maxbytes) {
				error = -EFBIG;
				goto err_out;
			}
		}
	}

4775 4776 4777 4778
	if (S_ISREG(inode->i_mode) &&
	    attr->ia_valid & ATTR_SIZE && attr->ia_size < inode->i_size) {
		handle_t *handle;

4779
		handle = ext4_journal_start(inode, 3);
4780 4781 4782 4783 4784
		if (IS_ERR(handle)) {
			error = PTR_ERR(handle);
			goto err_out;
		}

4785 4786 4787
		error = ext4_orphan_add(handle, inode);
		EXT4_I(inode)->i_disksize = attr->ia_size;
		rc = ext4_mark_inode_dirty(handle, inode);
4788 4789
		if (!error)
			error = rc;
4790
		ext4_journal_stop(handle);
4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806

		if (ext4_should_order_data(inode)) {
			error = ext4_begin_ordered_truncate(inode,
							    attr->ia_size);
			if (error) {
				/* Do as much error cleanup as possible */
				handle = ext4_journal_start(inode, 3);
				if (IS_ERR(handle)) {
					ext4_orphan_del(NULL, inode);
					goto err_out;
				}
				ext4_orphan_del(handle, inode);
				ext4_journal_stop(handle);
				goto err_out;
			}
		}
4807 4808 4809 4810
	}

	rc = inode_setattr(inode, attr);

4811
	/* If inode_setattr's call to ext4_truncate failed to get a
4812 4813 4814
	 * transaction handle at all, we need to clean up the in-core
	 * orphan list manually. */
	if (inode->i_nlink)
4815
		ext4_orphan_del(NULL, inode);
4816 4817

	if (!rc && (ia_valid & ATTR_MODE))
4818
		rc = ext4_acl_chmod(inode);
4819 4820

err_out:
4821
	ext4_std_error(inode->i_sb, error);
4822 4823 4824 4825 4826
	if (!error)
		error = rc;
	return error;
}

4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852
int ext4_getattr(struct vfsmount *mnt, struct dentry *dentry,
		 struct kstat *stat)
{
	struct inode *inode;
	unsigned long delalloc_blocks;

	inode = dentry->d_inode;
	generic_fillattr(inode, stat);

	/*
	 * We can't update i_blocks if the block allocation is delayed
	 * otherwise in the case of system crash before the real block
	 * allocation is done, we will have i_blocks inconsistent with
	 * on-disk file blocks.
	 * We always keep i_blocks updated together with real
	 * allocation. But to not confuse with user, stat
	 * will return the blocks that include the delayed allocation
	 * blocks for this file.
	 */
	spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
	delalloc_blocks = EXT4_I(inode)->i_reserved_data_blocks;
	spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);

	stat->blocks += (delalloc_blocks << inode->i_sb->s_blocksize_bits)>>9;
	return 0;
}
4853

4854 4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881
static int ext4_indirect_trans_blocks(struct inode *inode, int nrblocks,
				      int chunk)
{
	int indirects;

	/* if nrblocks are contiguous */
	if (chunk) {
		/*
		 * With N contiguous data blocks, it need at most
		 * N/EXT4_ADDR_PER_BLOCK(inode->i_sb) indirect blocks
		 * 2 dindirect blocks
		 * 1 tindirect block
		 */
		indirects = nrblocks / EXT4_ADDR_PER_BLOCK(inode->i_sb);
		return indirects + 3;
	}
	/*
	 * if nrblocks are not contiguous, worse case, each block touch
	 * a indirect block, and each indirect block touch a double indirect
	 * block, plus a triple indirect block
	 */
	indirects = nrblocks * 2 + 1;
	return indirects;
}

static int ext4_index_trans_blocks(struct inode *inode, int nrblocks, int chunk)
{
	if (!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL))
4882 4883
		return ext4_indirect_trans_blocks(inode, nrblocks, chunk);
	return ext4_ext_index_trans_blocks(inode, nrblocks, chunk);
4884
}
4885

4886
/*
4887 4888 4889
 * Account for index blocks, block groups bitmaps and block group
 * descriptor blocks if modify datablocks and index blocks
 * worse case, the indexs blocks spread over different block groups
4890
 *
4891 4892 4893
 * If datablocks are discontiguous, they are possible to spread over
 * different block groups too. If they are contiugous, with flexbg,
 * they could still across block group boundary.
4894
 *
4895 4896 4897 4898
 * Also account for superblock, inode, quota and xattr blocks
 */
int ext4_meta_trans_blocks(struct inode *inode, int nrblocks, int chunk)
{
4899 4900
	ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
	int gdpblocks;
4901 4902 4903 4904 4905 4906 4907 4908 4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923 4924 4925 4926
	int idxblocks;
	int ret = 0;

	/*
	 * How many index blocks need to touch to modify nrblocks?
	 * The "Chunk" flag indicating whether the nrblocks is
	 * physically contiguous on disk
	 *
	 * For Direct IO and fallocate, they calls get_block to allocate
	 * one single extent at a time, so they could set the "Chunk" flag
	 */
	idxblocks = ext4_index_trans_blocks(inode, nrblocks, chunk);

	ret = idxblocks;

	/*
	 * Now let's see how many group bitmaps and group descriptors need
	 * to account
	 */
	groups = idxblocks;
	if (chunk)
		groups += 1;
	else
		groups += nrblocks;

	gdpblocks = groups;
4927 4928
	if (groups > ngroups)
		groups = ngroups;
4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940 4941 4942
	if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
		gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;

	/* bitmaps and block group descriptor blocks */
	ret += groups + gdpblocks;

	/* Blocks for super block, inode, quota and xattr blocks */
	ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);

	return ret;
}

/*
 * Calulate the total number of credits to reserve to fit
4943 4944
 * the modification of a single pages into a single transaction,
 * which may include multiple chunks of block allocations.
4945
 *
4946
 * This could be called via ext4_write_begin()
4947
 *
4948
 * We need to consider the worse case, when
4949
 * one new block per extent.
4950
 */
A
Alex Tomas 已提交
4951
int ext4_writepage_trans_blocks(struct inode *inode)
4952
{
4953
	int bpp = ext4_journal_blocks_per_page(inode);
4954 4955
	int ret;

4956
	ret = ext4_meta_trans_blocks(inode, bpp, 0);
A
Alex Tomas 已提交
4957

4958
	/* Account for data blocks for journalled mode */
4959
	if (ext4_should_journal_data(inode))
4960
		ret += bpp;
4961 4962
	return ret;
}
4963 4964 4965 4966 4967

/*
 * Calculate the journal credits for a chunk of data modification.
 *
 * This is called from DIO, fallocate or whoever calling
4968
 * ext4_get_blocks() to map/allocate a chunk of contigous disk blocks.
4969 4970 4971 4972 4973 4974 4975 4976 4977
 *
 * journal buffers for data blocks are not included here, as DIO
 * and fallocate do no need to journal data buffers.
 */
int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
{
	return ext4_meta_trans_blocks(inode, nrblocks, 1);
}

4978
/*
4979
 * The caller must have previously called ext4_reserve_inode_write().
4980 4981
 * Give this, we know that the caller already has write access to iloc->bh.
 */
4982
int ext4_mark_iloc_dirty(handle_t *handle,
4983
			 struct inode *inode, struct ext4_iloc *iloc)
4984 4985 4986
{
	int err = 0;

4987 4988 4989
	if (test_opt(inode->i_sb, I_VERSION))
		inode_inc_iversion(inode);

4990 4991 4992
	/* the do_update_inode consumes one bh->b_count */
	get_bh(iloc->bh);

4993
	/* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
4994
	err = ext4_do_update_inode(handle, inode, iloc);
4995 4996 4997 4998 4999 5000 5001 5002 5003 5004
	put_bh(iloc->bh);
	return err;
}

/*
 * On success, We end up with an outstanding reference count against
 * iloc->bh.  This _must_ be cleaned up later.
 */

int
5005 5006
ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
			 struct ext4_iloc *iloc)
5007
{
5008 5009 5010 5011 5012 5013 5014 5015 5016
	int err;

	err = ext4_get_inode_loc(inode, iloc);
	if (!err) {
		BUFFER_TRACE(iloc->bh, "get_write_access");
		err = ext4_journal_get_write_access(handle, iloc->bh);
		if (err) {
			brelse(iloc->bh);
			iloc->bh = NULL;
5017 5018
		}
	}
5019
	ext4_std_error(inode->i_sb, err);
5020 5021 5022
	return err;
}

5023 5024 5025 5026
/*
 * Expand an inode by new_extra_isize bytes.
 * Returns 0 on success or negative error number on failure.
 */
A
Aneesh Kumar K.V 已提交
5027 5028 5029 5030
static int ext4_expand_extra_isize(struct inode *inode,
				   unsigned int new_extra_isize,
				   struct ext4_iloc iloc,
				   handle_t *handle)
5031 5032 5033 5034 5035 5036 5037 5038 5039 5040 5041 5042 5043 5044 5045 5046 5047 5048 5049 5050 5051 5052 5053 5054 5055 5056 5057
{
	struct ext4_inode *raw_inode;
	struct ext4_xattr_ibody_header *header;
	struct ext4_xattr_entry *entry;

	if (EXT4_I(inode)->i_extra_isize >= new_extra_isize)
		return 0;

	raw_inode = ext4_raw_inode(&iloc);

	header = IHDR(inode, raw_inode);
	entry = IFIRST(header);

	/* No extended attributes present */
	if (!(EXT4_I(inode)->i_state & EXT4_STATE_XATTR) ||
		header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
		memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0,
			new_extra_isize);
		EXT4_I(inode)->i_extra_isize = new_extra_isize;
		return 0;
	}

	/* try to expand with EAs present */
	return ext4_expand_extra_isize_ea(inode, new_extra_isize,
					  raw_inode, handle);
}

5058 5059 5060 5061 5062 5063 5064 5065 5066 5067 5068 5069 5070 5071 5072 5073 5074 5075 5076 5077 5078
/*
 * What we do here is to mark the in-core inode as clean with respect to inode
 * dirtiness (it may still be data-dirty).
 * This means that the in-core inode may be reaped by prune_icache
 * without having to perform any I/O.  This is a very good thing,
 * because *any* task may call prune_icache - even ones which
 * have a transaction open against a different journal.
 *
 * Is this cheating?  Not really.  Sure, we haven't written the
 * inode out, but prune_icache isn't a user-visible syncing function.
 * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
 * we start and wait on commits.
 *
 * Is this efficient/effective?  Well, we're being nice to the system
 * by cleaning up our inodes proactively so they can be reaped
 * without I/O.  But we are potentially leaving up to five seconds'
 * worth of inodes floating about which prune_icache wants us to
 * write out.  One way to fix that would be to get prune_icache()
 * to do a write_super() to free up some memory.  It has the desired
 * effect.
 */
5079
int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
5080
{
5081
	struct ext4_iloc iloc;
5082 5083 5084
	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
	static unsigned int mnt_count;
	int err, ret;
5085 5086

	might_sleep();
5087
	err = ext4_reserve_inode_write(handle, inode, &iloc);
5088 5089
	if (ext4_handle_valid(handle) &&
	    EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize &&
5090 5091 5092 5093 5094 5095 5096 5097 5098 5099 5100 5101 5102 5103 5104
	    !(EXT4_I(inode)->i_state & EXT4_STATE_NO_EXPAND)) {
		/*
		 * We need extra buffer credits since we may write into EA block
		 * with this same handle. If journal_extend fails, then it will
		 * only result in a minor loss of functionality for that inode.
		 * If this is felt to be critical, then e2fsck should be run to
		 * force a large enough s_min_extra_isize.
		 */
		if ((jbd2_journal_extend(handle,
			     EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) {
			ret = ext4_expand_extra_isize(inode,
						      sbi->s_want_extra_isize,
						      iloc, handle);
			if (ret) {
				EXT4_I(inode)->i_state |= EXT4_STATE_NO_EXPAND;
A
Aneesh Kumar K.V 已提交
5105 5106
				if (mnt_count !=
					le16_to_cpu(sbi->s_es->s_mnt_count)) {
5107
					ext4_warning(inode->i_sb, __func__,
5108 5109 5110
					"Unable to expand inode %lu. Delete"
					" some EAs or run e2fsck.",
					inode->i_ino);
A
Aneesh Kumar K.V 已提交
5111 5112
					mnt_count =
					  le16_to_cpu(sbi->s_es->s_mnt_count);
5113 5114 5115 5116
				}
			}
		}
	}
5117
	if (!err)
5118
		err = ext4_mark_iloc_dirty(handle, inode, &iloc);
5119 5120 5121 5122
	return err;
}

/*
5123
 * ext4_dirty_inode() is called from __mark_inode_dirty()
5124 5125 5126 5127 5128
 *
 * We're really interested in the case where a file is being extended.
 * i_size has been changed by generic_commit_write() and we thus need
 * to include the updated inode in the current transaction.
 *
5129
 * Also, vfs_dq_alloc_block() will always dirty the inode when blocks
5130 5131 5132 5133 5134 5135
 * are allocated to the file.
 *
 * If the inode is marked synchronous, we don't honour that here - doing
 * so would cause a commit on atime updates, which we don't bother doing.
 * We handle synchronous inodes at the highest possible level.
 */
5136
void ext4_dirty_inode(struct inode *inode)
5137
{
5138
	handle_t *current_handle = ext4_journal_current_handle();
5139 5140
	handle_t *handle;

5141 5142 5143 5144 5145
	if (!ext4_handle_valid(current_handle)) {
		ext4_mark_inode_dirty(current_handle, inode);
		return;
	}

5146
	handle = ext4_journal_start(inode, 2);
5147 5148 5149 5150 5151 5152
	if (IS_ERR(handle))
		goto out;
	if (current_handle &&
		current_handle->h_transaction != handle->h_transaction) {
		/* This task has a transaction open against a different fs */
		printk(KERN_EMERG "%s: transactions do not match!\n",
5153
		       __func__);
5154 5155 5156
	} else {
		jbd_debug(5, "marking dirty.  outer handle=%p\n",
				current_handle);
5157
		ext4_mark_inode_dirty(handle, inode);
5158
	}
5159
	ext4_journal_stop(handle);
5160 5161 5162 5163 5164 5165 5166 5167
out:
	return;
}

#if 0
/*
 * Bind an inode's backing buffer_head into this transaction, to prevent
 * it from being flushed to disk early.  Unlike
5168
 * ext4_reserve_inode_write, this leaves behind no bh reference and
5169 5170 5171
 * returns no iloc structure, so the caller needs to repeat the iloc
 * lookup to mark the inode dirty later.
 */
5172
static int ext4_pin_inode(handle_t *handle, struct inode *inode)
5173
{
5174
	struct ext4_iloc iloc;
5175 5176 5177

	int err = 0;
	if (handle) {
5178
		err = ext4_get_inode_loc(inode, &iloc);
5179 5180
		if (!err) {
			BUFFER_TRACE(iloc.bh, "get_write_access");
5181
			err = jbd2_journal_get_write_access(handle, iloc.bh);
5182
			if (!err)
5183 5184 5185
				err = ext4_handle_dirty_metadata(handle,
								 inode,
								 iloc.bh);
5186 5187 5188
			brelse(iloc.bh);
		}
	}
5189
	ext4_std_error(inode->i_sb, err);
5190 5191 5192 5193
	return err;
}
#endif

5194
int ext4_change_inode_journal_flag(struct inode *inode, int val)
5195 5196 5197 5198 5199 5200 5201 5202 5203 5204 5205 5206 5207 5208 5209
{
	journal_t *journal;
	handle_t *handle;
	int err;

	/*
	 * We have to be very careful here: changing a data block's
	 * journaling status dynamically is dangerous.  If we write a
	 * data block to the journal, change the status and then delete
	 * that block, we risk forgetting to revoke the old log record
	 * from the journal and so a subsequent replay can corrupt data.
	 * So, first we make sure that the journal is empty and that
	 * nobody is changing anything.
	 */

5210
	journal = EXT4_JOURNAL(inode);
5211 5212
	if (!journal)
		return 0;
5213
	if (is_journal_aborted(journal))
5214 5215
		return -EROFS;

5216 5217
	jbd2_journal_lock_updates(journal);
	jbd2_journal_flush(journal);
5218 5219 5220 5221 5222 5223 5224 5225 5226 5227

	/*
	 * OK, there are no updates running now, and all cached data is
	 * synced to disk.  We are now in a completely consistent state
	 * which doesn't have anything in the journal, and we know that
	 * no filesystem updates are running, so it is safe to modify
	 * the inode's in-core data-journaling state flag now.
	 */

	if (val)
5228
		EXT4_I(inode)->i_flags |= EXT4_JOURNAL_DATA_FL;
5229
	else
5230 5231
		EXT4_I(inode)->i_flags &= ~EXT4_JOURNAL_DATA_FL;
	ext4_set_aops(inode);
5232

5233
	jbd2_journal_unlock_updates(journal);
5234 5235 5236

	/* Finally we can mark the inode as dirty. */

5237
	handle = ext4_journal_start(inode, 1);
5238 5239 5240
	if (IS_ERR(handle))
		return PTR_ERR(handle);

5241
	err = ext4_mark_inode_dirty(handle, inode);
5242
	ext4_handle_sync(handle);
5243 5244
	ext4_journal_stop(handle);
	ext4_std_error(inode->i_sb, err);
5245 5246 5247

	return err;
}
5248 5249 5250 5251 5252 5253

static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
{
	return !buffer_mapped(bh);
}

5254
int ext4_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
5255
{
5256
	struct page *page = vmf->page;
5257 5258 5259
	loff_t size;
	unsigned long len;
	int ret = -EINVAL;
5260
	void *fsdata;
5261 5262 5263 5264 5265 5266 5267 5268 5269 5270 5271 5272 5273 5274 5275 5276 5277 5278 5279 5280 5281 5282 5283 5284 5285 5286 5287 5288 5289 5290 5291 5292 5293 5294 5295 5296 5297 5298
	struct file *file = vma->vm_file;
	struct inode *inode = file->f_path.dentry->d_inode;
	struct address_space *mapping = inode->i_mapping;

	/*
	 * Get i_alloc_sem to stop truncates messing with the inode. We cannot
	 * get i_mutex because we are already holding mmap_sem.
	 */
	down_read(&inode->i_alloc_sem);
	size = i_size_read(inode);
	if (page->mapping != mapping || size <= page_offset(page)
	    || !PageUptodate(page)) {
		/* page got truncated from under us? */
		goto out_unlock;
	}
	ret = 0;
	if (PageMappedToDisk(page))
		goto out_unlock;

	if (page->index == size >> PAGE_CACHE_SHIFT)
		len = size & ~PAGE_CACHE_MASK;
	else
		len = PAGE_CACHE_SIZE;

	if (page_has_buffers(page)) {
		/* return if we have all the buffers mapped */
		if (!walk_page_buffers(NULL, page_buffers(page), 0, len, NULL,
				       ext4_bh_unmapped))
			goto out_unlock;
	}
	/*
	 * OK, we need to fill the hole... Do write_begin write_end
	 * to do block allocation/reservation.We are not holding
	 * inode.i__mutex here. That allow * parallel write_begin,
	 * write_end call. lock_page prevent this from happening
	 * on the same page though
	 */
	ret = mapping->a_ops->write_begin(file, mapping, page_offset(page),
5299
			len, AOP_FLAG_UNINTERRUPTIBLE, &page, &fsdata);
5300 5301 5302
	if (ret < 0)
		goto out_unlock;
	ret = mapping->a_ops->write_end(file, mapping, page_offset(page),
5303
			len, len, page, fsdata);
5304 5305 5306 5307
	if (ret < 0)
		goto out_unlock;
	ret = 0;
out_unlock:
5308 5309
	if (ret)
		ret = VM_FAULT_SIGBUS;
5310 5311 5312
	up_read(&inode->i_alloc_sem);
	return ret;
}