inode.c 170.0 KB
Newer Older
1
/*
2
 *  linux/fs/ext4/inode.c
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
 *
 * Copyright (C) 1992, 1993, 1994, 1995
 * Remy Card (card@masi.ibp.fr)
 * Laboratoire MASI - Institut Blaise Pascal
 * Universite Pierre et Marie Curie (Paris VI)
 *
 *  from
 *
 *  linux/fs/minix/inode.c
 *
 *  Copyright (C) 1991, 1992  Linus Torvalds
 *
 *  Goal-directed block allocation by Stephen Tweedie
 *	(sct@redhat.com), 1993, 1998
 *  Big-endian to little-endian byte-swapping/bitmaps by
 *        David S. Miller (davem@caip.rutgers.edu), 1995
 *  64-bit file support on 64-bit platforms by Jakub Jelinek
 *	(jj@sunsite.ms.mff.cuni.cz)
 *
22
 *  Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
23 24 25 26 27
 */

#include <linux/module.h>
#include <linux/fs.h>
#include <linux/time.h>
28
#include <linux/jbd2.h>
29 30 31 32 33 34
#include <linux/highuid.h>
#include <linux/pagemap.h>
#include <linux/quotaops.h>
#include <linux/string.h>
#include <linux/buffer_head.h>
#include <linux/writeback.h>
35
#include <linux/pagevec.h>
36
#include <linux/mpage.h>
37
#include <linux/namei.h>
38 39
#include <linux/uio.h>
#include <linux/bio.h>
40
#include <linux/workqueue.h>
41
#include <linux/kernel.h>
42
#include <linux/slab.h>
43

44
#include "ext4_jbd2.h"
45 46
#include "xattr.h"
#include "acl.h"
47
#include "ext4_extents.h"
48

49 50
#include <trace/events/ext4.h>

51 52
#define MPAGE_DA_EXTENT_TAIL 0x01

53 54 55
static inline int ext4_begin_ordered_truncate(struct inode *inode,
					      loff_t new_size)
{
56
	trace_ext4_begin_ordered_truncate(inode, new_size);
57 58 59 60
	return jbd2_journal_begin_ordered_truncate(
					EXT4_SB(inode->i_sb)->s_journal,
					&EXT4_I(inode)->jinode,
					new_size);
61 62
}

63
static void ext4_invalidatepage(struct page *page, unsigned long offset);
64 65 66 67 68 69
static int noalloc_get_block_write(struct inode *inode, sector_t iblock,
				   struct buffer_head *bh_result, int create);
static int ext4_set_bh_endio(struct buffer_head *bh, struct inode *inode);
static void ext4_end_io_buffer_write(struct buffer_head *bh, int uptodate);
static int __ext4_journalled_writepage(struct page *page, unsigned int len);
static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh);
70

71 72 73
/*
 * Test whether an inode is a fast symlink.
 */
74
static int ext4_inode_is_fast_symlink(struct inode *inode)
75
{
76
	int ea_blocks = EXT4_I(inode)->i_file_acl ?
77 78 79 80 81 82 83 84 85 86 87
		(inode->i_sb->s_blocksize >> 9) : 0;

	return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
}

/*
 * Work out how many blocks we need to proceed with the next chunk of a
 * truncate transaction.
 */
static unsigned long blocks_for_truncate(struct inode *inode)
{
A
Aneesh Kumar K.V 已提交
88
	ext4_lblk_t needed;
89 90 91 92 93 94

	needed = inode->i_blocks >> (inode->i_sb->s_blocksize_bits - 9);

	/* Give ourselves just enough room to cope with inodes in which
	 * i_blocks is corrupt: we've seen disk corruptions in the past
	 * which resulted in random data in an inode which looked enough
95
	 * like a regular file for ext4 to try to delete it.  Things
96 97 98 99 100 101 102
	 * will go a bit crazy if that happens, but at least we should
	 * try not to panic the whole kernel. */
	if (needed < 2)
		needed = 2;

	/* But we need to bound the transaction so we don't overflow the
	 * journal. */
103 104
	if (needed > EXT4_MAX_TRANS_DATA)
		needed = EXT4_MAX_TRANS_DATA;
105

106
	return EXT4_DATA_TRANS_BLOCKS(inode->i_sb) + needed;
107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122
}

/*
 * Truncate transactions can be complex and absolutely huge.  So we need to
 * be able to restart the transaction at a conventient checkpoint to make
 * sure we don't overflow the journal.
 *
 * start_transaction gets us a new handle for a truncate transaction,
 * and extend_transaction tries to extend the existing one a bit.  If
 * extend fails, we need to propagate the failure up and restart the
 * transaction in the top-level truncate loop. --sct
 */
static handle_t *start_transaction(struct inode *inode)
{
	handle_t *result;

123
	result = ext4_journal_start(inode, blocks_for_truncate(inode));
124 125 126
	if (!IS_ERR(result))
		return result;

127
	ext4_std_error(inode->i_sb, PTR_ERR(result));
128 129 130 131 132 133 134 135 136 137 138
	return result;
}

/*
 * Try to extend this transaction for the purposes of truncation.
 *
 * Returns 0 if we managed to create more room.  If we can't create more
 * room, and the transaction must be restarted we return 1.
 */
static int try_to_extend_transaction(handle_t *handle, struct inode *inode)
{
139 140 141
	if (!ext4_handle_valid(handle))
		return 0;
	if (ext4_handle_has_enough_credits(handle, EXT4_RESERVE_TRANS_BLOCKS+1))
142
		return 0;
143
	if (!ext4_journal_extend(handle, blocks_for_truncate(inode)))
144 145 146 147 148 149 150 151 152
		return 0;
	return 1;
}

/*
 * Restart the transaction associated with *handle.  This does a commit,
 * so before we call here everything must be consistently dirtied against
 * this transaction.
 */
153
int ext4_truncate_restart_trans(handle_t *handle, struct inode *inode,
154
				 int nblocks)
155
{
156 157 158
	int ret;

	/*
159
	 * Drop i_data_sem to avoid deadlock with ext4_map_blocks.  At this
160 161 162 163
	 * moment, get_block can be called only for blocks inside i_size since
	 * page cache has been already dropped and writes are blocked by
	 * i_mutex. So we can safely drop the i_data_sem here.
	 */
164
	BUG_ON(EXT4_JOURNAL(inode) == NULL);
165
	jbd_debug(2, "restarting handle %p\n", handle);
166 167 168
	up_write(&EXT4_I(inode)->i_data_sem);
	ret = ext4_journal_restart(handle, blocks_for_truncate(inode));
	down_write(&EXT4_I(inode)->i_data_sem);
169
	ext4_discard_preallocations(inode);
170 171

	return ret;
172 173 174 175 176
}

/*
 * Called at the last iput() if i_nlink is zero.
 */
A
Al Viro 已提交
177
void ext4_evict_inode(struct inode *inode)
178 179
{
	handle_t *handle;
180
	int err;
181

182
	trace_ext4_evict_inode(inode);
A
Al Viro 已提交
183 184 185 186 187
	if (inode->i_nlink) {
		truncate_inode_pages(&inode->i_data, 0);
		goto no_delete;
	}

188
	if (!is_bad_inode(inode))
189
		dquot_initialize(inode);
190

191 192
	if (ext4_should_order_data(inode))
		ext4_begin_ordered_truncate(inode, 0);
193 194 195 196 197
	truncate_inode_pages(&inode->i_data, 0);

	if (is_bad_inode(inode))
		goto no_delete;

198
	handle = ext4_journal_start(inode, blocks_for_truncate(inode)+3);
199
	if (IS_ERR(handle)) {
200
		ext4_std_error(inode->i_sb, PTR_ERR(handle));
201 202 203 204 205
		/*
		 * If we're going to skip the normal cleanup, we still need to
		 * make sure that the in-core orphan linked list is properly
		 * cleaned up.
		 */
206
		ext4_orphan_del(NULL, inode);
207 208 209 210
		goto no_delete;
	}

	if (IS_SYNC(inode))
211
		ext4_handle_sync(handle);
212
	inode->i_size = 0;
213 214
	err = ext4_mark_inode_dirty(handle, inode);
	if (err) {
215
		ext4_warning(inode->i_sb,
216 217 218
			     "couldn't mark inode dirty (err %d)", err);
		goto stop_handle;
	}
219
	if (inode->i_blocks)
220
		ext4_truncate(inode);
221 222 223 224 225 226 227

	/*
	 * ext4_ext_truncate() doesn't reserve any slop when it
	 * restarts journal transactions; therefore there may not be
	 * enough credits left in the handle to remove the inode from
	 * the orphan list and set the dtime field.
	 */
228
	if (!ext4_handle_has_enough_credits(handle, 3)) {
229 230 231 232
		err = ext4_journal_extend(handle, 3);
		if (err > 0)
			err = ext4_journal_restart(handle, 3);
		if (err != 0) {
233
			ext4_warning(inode->i_sb,
234 235 236
				     "couldn't extend journal (err %d)", err);
		stop_handle:
			ext4_journal_stop(handle);
237
			ext4_orphan_del(NULL, inode);
238 239 240 241
			goto no_delete;
		}
	}

242
	/*
243
	 * Kill off the orphan record which ext4_truncate created.
244
	 * AKPM: I think this can be inside the above `if'.
245
	 * Note that ext4_orphan_del() has to be able to cope with the
246
	 * deletion of a non-existent orphan - this is because we don't
247
	 * know if ext4_truncate() actually created an orphan record.
248 249
	 * (Well, we could do this if we need to, but heck - it works)
	 */
250 251
	ext4_orphan_del(handle, inode);
	EXT4_I(inode)->i_dtime	= get_seconds();
252 253 254 255 256 257 258 259

	/*
	 * One subtle ordering requirement: if anything has gone wrong
	 * (transaction abort, IO errors, whatever), then we can still
	 * do these next steps (the fs will already have been marked as
	 * having errors), but we can't free the inode if the mark_dirty
	 * fails.
	 */
260
	if (ext4_mark_inode_dirty(handle, inode))
261
		/* If that failed, just do the required in-core inode clear. */
A
Al Viro 已提交
262
		ext4_clear_inode(inode);
263
	else
264 265
		ext4_free_inode(handle, inode);
	ext4_journal_stop(handle);
266 267
	return;
no_delete:
A
Al Viro 已提交
268
	ext4_clear_inode(inode);	/* We must guarantee clearing of inode... */
269 270 271 272 273 274 275 276 277 278 279 280 281 282 283
}

typedef struct {
	__le32	*p;
	__le32	key;
	struct buffer_head *bh;
} Indirect;

static inline void add_chain(Indirect *p, struct buffer_head *bh, __le32 *v)
{
	p->key = *(p->p = v);
	p->bh = bh;
}

/**
284
 *	ext4_block_to_path - parse the block number into array of offsets
285 286 287
 *	@inode: inode in question (we are only interested in its superblock)
 *	@i_block: block number to be parsed
 *	@offsets: array to store the offsets in
D
Dave Kleikamp 已提交
288 289
 *	@boundary: set this non-zero if the referred-to block is likely to be
 *	       followed (on disk) by an indirect block.
290
 *
291
 *	To store the locations of file's data ext4 uses a data structure common
292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313
 *	for UNIX filesystems - tree of pointers anchored in the inode, with
 *	data blocks at leaves and indirect blocks in intermediate nodes.
 *	This function translates the block number into path in that tree -
 *	return value is the path length and @offsets[n] is the offset of
 *	pointer to (n+1)th node in the nth one. If @block is out of range
 *	(negative or too large) warning is printed and zero returned.
 *
 *	Note: function doesn't find node addresses, so no IO is needed. All
 *	we need to know is the capacity of indirect blocks (taken from the
 *	inode->i_sb).
 */

/*
 * Portability note: the last comparison (check that we fit into triple
 * indirect block) is spelled differently, because otherwise on an
 * architecture with 32-bit longs and 8Kb pages we might get into trouble
 * if our filesystem had 8Kb blocks. We might use long long, but that would
 * kill us on x86. Oh, well, at least the sign propagation does not matter -
 * i_block would have to be negative in the very beginning, so we would not
 * get there at all.
 */

314
static int ext4_block_to_path(struct inode *inode,
315 316
			      ext4_lblk_t i_block,
			      ext4_lblk_t offsets[4], int *boundary)
317
{
318 319 320
	int ptrs = EXT4_ADDR_PER_BLOCK(inode->i_sb);
	int ptrs_bits = EXT4_ADDR_PER_BLOCK_BITS(inode->i_sb);
	const long direct_blocks = EXT4_NDIR_BLOCKS,
321 322 323 324 325
		indirect_blocks = ptrs,
		double_blocks = (1 << (ptrs_bits * 2));
	int n = 0;
	int final = 0;

326
	if (i_block < direct_blocks) {
327 328
		offsets[n++] = i_block;
		final = direct_blocks;
329
	} else if ((i_block -= direct_blocks) < indirect_blocks) {
330
		offsets[n++] = EXT4_IND_BLOCK;
331 332 333
		offsets[n++] = i_block;
		final = ptrs;
	} else if ((i_block -= indirect_blocks) < double_blocks) {
334
		offsets[n++] = EXT4_DIND_BLOCK;
335 336 337 338
		offsets[n++] = i_block >> ptrs_bits;
		offsets[n++] = i_block & (ptrs - 1);
		final = ptrs;
	} else if (((i_block -= double_blocks) >> (ptrs_bits * 2)) < ptrs) {
339
		offsets[n++] = EXT4_TIND_BLOCK;
340 341 342 343 344
		offsets[n++] = i_block >> (ptrs_bits * 2);
		offsets[n++] = (i_block >> ptrs_bits) & (ptrs - 1);
		offsets[n++] = i_block & (ptrs - 1);
		final = ptrs;
	} else {
345
		ext4_warning(inode->i_sb, "block %lu > max in inode %lu",
346 347
			     i_block + direct_blocks +
			     indirect_blocks + double_blocks, inode->i_ino);
348 349 350 351 352 353
	}
	if (boundary)
		*boundary = final - 1 - (i_block & (ptrs - 1));
	return n;
}

354 355
static int __ext4_check_blockref(const char *function, unsigned int line,
				 struct inode *inode,
356 357
				 __le32 *p, unsigned int max)
{
358
	struct ext4_super_block *es = EXT4_SB(inode->i_sb)->s_es;
359
	__le32 *bref = p;
360 361
	unsigned int blk;

362
	while (bref < p+max) {
363
		blk = le32_to_cpu(*bref++);
364 365
		if (blk &&
		    unlikely(!ext4_data_block_valid(EXT4_SB(inode->i_sb),
366
						    blk, 1))) {
367
			es->s_last_error_block = cpu_to_le64(blk);
368 369
			ext4_error_inode(inode, function, line, blk,
					 "invalid block");
370 371 372 373
			return -EIO;
		}
	}
	return 0;
374 375 376 377
}


#define ext4_check_indirect_blockref(inode, bh)                         \
378 379
	__ext4_check_blockref(__func__, __LINE__, inode,		\
			      (__le32 *)(bh)->b_data,			\
380 381 382
			      EXT4_ADDR_PER_BLOCK((inode)->i_sb))

#define ext4_check_inode_blockref(inode)                                \
383 384
	__ext4_check_blockref(__func__, __LINE__, inode,		\
			      EXT4_I(inode)->i_data,			\
385 386
			      EXT4_NDIR_BLOCKS)

387
/**
388
 *	ext4_get_branch - read the chain of indirect blocks leading to data
389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412
 *	@inode: inode in question
 *	@depth: depth of the chain (1 - direct pointer, etc.)
 *	@offsets: offsets of pointers in inode/indirect blocks
 *	@chain: place to store the result
 *	@err: here we store the error value
 *
 *	Function fills the array of triples <key, p, bh> and returns %NULL
 *	if everything went OK or the pointer to the last filled triple
 *	(incomplete one) otherwise. Upon the return chain[i].key contains
 *	the number of (i+1)-th block in the chain (as it is stored in memory,
 *	i.e. little-endian 32-bit), chain[i].p contains the address of that
 *	number (it points into struct inode for i==0 and into the bh->b_data
 *	for i>0) and chain[i].bh points to the buffer_head of i-th indirect
 *	block for i>0 and NULL for i==0. In other words, it holds the block
 *	numbers of the chain, addresses they were taken from (and where we can
 *	verify that chain did not change) and buffer_heads hosting these
 *	numbers.
 *
 *	Function stops when it stumbles upon zero pointer (absent block)
 *		(pointer to last triple returned, *@err == 0)
 *	or when it gets an IO error reading an indirect block
 *		(ditto, *@err == -EIO)
 *	or when it reads all @depth-1 indirect blocks successfully and finds
 *	the whole chain, all way to the data (returns %NULL, *err == 0).
413 414
 *
 *      Need to be called with
415
 *      down_read(&EXT4_I(inode)->i_data_sem)
416
 */
A
Aneesh Kumar K.V 已提交
417 418
static Indirect *ext4_get_branch(struct inode *inode, int depth,
				 ext4_lblk_t  *offsets,
419 420 421 422 423 424 425 426
				 Indirect chain[4], int *err)
{
	struct super_block *sb = inode->i_sb;
	Indirect *p = chain;
	struct buffer_head *bh;

	*err = 0;
	/* i_data is not going away, no lock needed */
427
	add_chain(chain, NULL, EXT4_I(inode)->i_data + *offsets);
428 429 430
	if (!p->key)
		goto no_block;
	while (--depth) {
431 432
		bh = sb_getblk(sb, le32_to_cpu(p->key));
		if (unlikely(!bh))
433
			goto failure;
434

435 436 437 438 439 440 441 442 443 444 445
		if (!bh_uptodate_or_lock(bh)) {
			if (bh_submit_read(bh) < 0) {
				put_bh(bh);
				goto failure;
			}
			/* validate block references */
			if (ext4_check_indirect_blockref(inode, bh)) {
				put_bh(bh);
				goto failure;
			}
		}
446

447
		add_chain(++p, bh, (__le32 *)bh->b_data + *++offsets);
448 449 450 451 452 453 454 455 456 457 458 459 460
		/* Reader: end */
		if (!p->key)
			goto no_block;
	}
	return NULL;

failure:
	*err = -EIO;
no_block:
	return p;
}

/**
461
 *	ext4_find_near - find a place for allocation with sufficient locality
462 463 464
 *	@inode: owner
 *	@ind: descriptor of indirect block.
 *
465
 *	This function returns the preferred place for block allocation.
466 467 468 469 470 471 472 473 474 475 476 477 478 479
 *	It is used when heuristic for sequential allocation fails.
 *	Rules are:
 *	  + if there is a block to the left of our position - allocate near it.
 *	  + if pointer will live in indirect block - allocate near that block.
 *	  + if pointer will live in inode - allocate in the same
 *	    cylinder group.
 *
 * In the latter case we colour the starting block by the callers PID to
 * prevent it from clashing with concurrent allocations for a different inode
 * in the same block group.   The PID is used here so that functionally related
 * files will be close-by on-disk.
 *
 *	Caller must make sure that @ind is valid and will stay that way.
 */
480
static ext4_fsblk_t ext4_find_near(struct inode *inode, Indirect *ind)
481
{
482
	struct ext4_inode_info *ei = EXT4_I(inode);
483
	__le32 *start = ind->bh ? (__le32 *) ind->bh->b_data : ei->i_data;
484
	__le32 *p;
485
	ext4_fsblk_t bg_start;
486
	ext4_fsblk_t last_block;
487
	ext4_grpblk_t colour;
488 489
	ext4_group_t block_group;
	int flex_size = ext4_flex_bg_size(EXT4_SB(inode->i_sb));
490 491 492 493 494 495 496 497 498 499 500 501 502 503 504

	/* Try to find previous block */
	for (p = ind->p - 1; p >= start; p--) {
		if (*p)
			return le32_to_cpu(*p);
	}

	/* No such thing, so let's try location of indirect block */
	if (ind->bh)
		return ind->bh->b_blocknr;

	/*
	 * It is going to be referred to from the inode itself? OK, just put it
	 * into the same cylinder group then.
	 */
505 506 507 508 509 510 511
	block_group = ei->i_block_group;
	if (flex_size >= EXT4_FLEX_SIZE_DIR_ALLOC_SCHEME) {
		block_group &= ~(flex_size-1);
		if (S_ISREG(inode->i_mode))
			block_group++;
	}
	bg_start = ext4_group_first_block_no(inode->i_sb, block_group);
512 513
	last_block = ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es) - 1;

514 515 516 517 518 519 520
	/*
	 * If we are doing delayed allocation, we don't need take
	 * colour into account.
	 */
	if (test_opt(inode->i_sb, DELALLOC))
		return bg_start;

521 522
	if (bg_start + EXT4_BLOCKS_PER_GROUP(inode->i_sb) <= last_block)
		colour = (current->pid % 16) *
523
			(EXT4_BLOCKS_PER_GROUP(inode->i_sb) / 16);
524 525
	else
		colour = (current->pid % 16) * ((last_block - bg_start) / 16);
526 527 528 529
	return bg_start + colour;
}

/**
530
 *	ext4_find_goal - find a preferred place for allocation.
531 532 533 534
 *	@inode: owner
 *	@block:  block we want
 *	@partial: pointer to the last triple within a chain
 *
535
 *	Normally this function find the preferred place for block allocation,
536
 *	returns it.
537 538
 *	Because this is only used for non-extent files, we limit the block nr
 *	to 32 bits.
539
 */
A
Aneesh Kumar K.V 已提交
540
static ext4_fsblk_t ext4_find_goal(struct inode *inode, ext4_lblk_t block,
541
				   Indirect *partial)
542
{
543 544
	ext4_fsblk_t goal;

545
	/*
546
	 * XXX need to get goal block from mballoc's data structures
547 548
	 */

549 550 551
	goal = ext4_find_near(inode, partial);
	goal = goal & EXT4_MAX_BLOCK_FILE_PHYS;
	return goal;
552 553 554
}

/**
555
 *	ext4_blks_to_allocate: Look up the block map and count the number
556 557 558 559 560 561 562 563 564 565
 *	of direct blocks need to be allocated for the given branch.
 *
 *	@branch: chain of indirect blocks
 *	@k: number of blocks need for indirect blocks
 *	@blks: number of data blocks to be mapped.
 *	@blocks_to_boundary:  the offset in the indirect block
 *
 *	return the total number of blocks to be allocate, including the
 *	direct and indirect blocks.
 */
566
static int ext4_blks_to_allocate(Indirect *branch, int k, unsigned int blks,
567
				 int blocks_to_boundary)
568
{
569
	unsigned int count = 0;
570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592

	/*
	 * Simple case, [t,d]Indirect block(s) has not allocated yet
	 * then it's clear blocks on that path have not allocated
	 */
	if (k > 0) {
		/* right now we don't handle cross boundary allocation */
		if (blks < blocks_to_boundary + 1)
			count += blks;
		else
			count += blocks_to_boundary + 1;
		return count;
	}

	count++;
	while (count < blks && count <= blocks_to_boundary &&
		le32_to_cpu(*(branch[0].p + count)) == 0) {
		count++;
	}
	return count;
}

/**
593
 *	ext4_alloc_blocks: multiple allocate blocks needed for a branch
594 595 596 597 598 599 600 601
 *	@indirect_blks: the number of blocks need to allocate for indirect
 *			blocks
 *
 *	@new_blocks: on return it will store the new block numbers for
 *	the indirect blocks(if needed) and the first direct block,
 *	@blks:	on return it will store the total number of allocated
 *		direct blocks
 */
602
static int ext4_alloc_blocks(handle_t *handle, struct inode *inode,
603 604 605
			     ext4_lblk_t iblock, ext4_fsblk_t goal,
			     int indirect_blks, int blks,
			     ext4_fsblk_t new_blocks[4], int *err)
606
{
607
	struct ext4_allocation_request ar;
608
	int target, i;
609
	unsigned long count = 0, blk_allocated = 0;
610
	int index = 0;
611
	ext4_fsblk_t current_block = 0;
612 613 614 615 616 617 618 619 620 621
	int ret = 0;

	/*
	 * Here we try to allocate the requested multiple blocks at once,
	 * on a best-effort basis.
	 * To build a branch, we should allocate blocks for
	 * the indirect blocks(if not allocated yet), and at least
	 * the first direct block of this branch.  That's the
	 * minimum number of blocks need to allocate(required)
	 */
622 623 624
	/* first we try to allocate the indirect blocks */
	target = indirect_blks;
	while (target > 0) {
625 626
		count = target;
		/* allocating blocks for indirect blocks and direct blocks */
627 628
		current_block = ext4_new_meta_blocks(handle, inode,
							goal, &count, err);
629 630 631
		if (*err)
			goto failed_out;

632 633 634 635 636 637 638 639
		if (unlikely(current_block + count > EXT4_MAX_BLOCK_FILE_PHYS)) {
			EXT4_ERROR_INODE(inode,
					 "current_block %llu + count %lu > %d!",
					 current_block, count,
					 EXT4_MAX_BLOCK_FILE_PHYS);
			*err = -EIO;
			goto failed_out;
		}
640

641 642 643 644 645 646
		target -= count;
		/* allocate blocks for indirect blocks */
		while (index < indirect_blks && count) {
			new_blocks[index++] = current_block++;
			count--;
		}
647 648 649 650 651 652 653 654 655
		if (count > 0) {
			/*
			 * save the new block number
			 * for the first direct block
			 */
			new_blocks[index] = current_block;
			printk(KERN_INFO "%s returned more blocks than "
						"requested\n", __func__);
			WARN_ON(1);
656
			break;
657
		}
658 659
	}

660 661 662 663 664
	target = blks - count ;
	blk_allocated = count;
	if (!target)
		goto allocated;
	/* Now allocate data blocks */
665 666 667 668 669 670 671 672 673 674
	memset(&ar, 0, sizeof(ar));
	ar.inode = inode;
	ar.goal = goal;
	ar.len = target;
	ar.logical = iblock;
	if (S_ISREG(inode->i_mode))
		/* enable in-core preallocation only for regular files */
		ar.flags = EXT4_MB_HINT_DATA;

	current_block = ext4_mb_new_blocks(handle, &ar, err);
675 676 677 678 679 680 681 682
	if (unlikely(current_block + ar.len > EXT4_MAX_BLOCK_FILE_PHYS)) {
		EXT4_ERROR_INODE(inode,
				 "current_block %llu + ar.len %d > %d!",
				 current_block, ar.len,
				 EXT4_MAX_BLOCK_FILE_PHYS);
		*err = -EIO;
		goto failed_out;
	}
683

684 685 686 687 688 689 690 691 692
	if (*err && (target == blks)) {
		/*
		 * if the allocation failed and we didn't allocate
		 * any blocks before
		 */
		goto failed_out;
	}
	if (!*err) {
		if (target == blks) {
693 694 695 696
			/*
			 * save the new block number
			 * for the first direct block
			 */
697 698
			new_blocks[index] = current_block;
		}
699
		blk_allocated += ar.len;
700 701
	}
allocated:
702
	/* total number of blocks allocated for direct blocks */
703
	ret = blk_allocated;
704 705 706
	*err = 0;
	return ret;
failed_out:
707
	for (i = 0; i < index; i++)
708
		ext4_free_blocks(handle, inode, 0, new_blocks[i], 1, 0);
709 710 711 712
	return ret;
}

/**
713
 *	ext4_alloc_branch - allocate and set up a chain of blocks.
714 715 716 717 718 719 720 721 722 723
 *	@inode: owner
 *	@indirect_blks: number of allocated indirect blocks
 *	@blks: number of allocated direct blocks
 *	@offsets: offsets (in the blocks) to store the pointers to next.
 *	@branch: place to store the chain in.
 *
 *	This function allocates blocks, zeroes out all but the last one,
 *	links them into chain and (if we are synchronous) writes them to disk.
 *	In other words, it prepares a branch that can be spliced onto the
 *	inode. It stores the information about that chain in the branch[], in
724
 *	the same format as ext4_get_branch() would do. We are calling it after
725 726
 *	we had read the existing part of chain and partial points to the last
 *	triple of that (one with zero ->key). Upon the exit we have the same
727
 *	picture as after the successful ext4_get_block(), except that in one
728 729 730 731 732 733
 *	place chain is disconnected - *branch->p is still zero (we did not
 *	set the last link), but branch->key contains the number that should
 *	be placed into *branch->p to fill that gap.
 *
 *	If allocation fails we free all blocks we've allocated (and forget
 *	their buffer_heads) and return the error value the from failed
734
 *	ext4_alloc_block() (normally -ENOSPC). Otherwise we set the chain
735 736
 *	as described above and return 0.
 */
737
static int ext4_alloc_branch(handle_t *handle, struct inode *inode,
738 739 740
			     ext4_lblk_t iblock, int indirect_blks,
			     int *blks, ext4_fsblk_t goal,
			     ext4_lblk_t *offsets, Indirect *branch)
741 742 743 744 745 746
{
	int blocksize = inode->i_sb->s_blocksize;
	int i, n = 0;
	int err = 0;
	struct buffer_head *bh;
	int num;
747 748
	ext4_fsblk_t new_blocks[4];
	ext4_fsblk_t current_block;
749

750
	num = ext4_alloc_blocks(handle, inode, iblock, goal, indirect_blks,
751 752 753 754 755 756 757 758 759 760 761 762 763 764 765
				*blks, new_blocks, &err);
	if (err)
		return err;

	branch[0].key = cpu_to_le32(new_blocks[0]);
	/*
	 * metadata blocks and data blocks are allocated.
	 */
	for (n = 1; n <= indirect_blks;  n++) {
		/*
		 * Get buffer_head for parent block, zero it out
		 * and set the pointer to new one, then send
		 * parent to disk.
		 */
		bh = sb_getblk(inode->i_sb, new_blocks[n-1]);
766 767 768 769 770
		if (unlikely(!bh)) {
			err = -EIO;
			goto failed;
		}

771 772 773
		branch[n].bh = bh;
		lock_buffer(bh);
		BUFFER_TRACE(bh, "call get_create_access");
774
		err = ext4_journal_get_create_access(handle, bh);
775
		if (err) {
776 777
			/* Don't brelse(bh) here; it's done in
			 * ext4_journal_forget() below */
778 779 780 781 782 783 784 785
			unlock_buffer(bh);
			goto failed;
		}

		memset(bh->b_data, 0, blocksize);
		branch[n].p = (__le32 *) bh->b_data + offsets[n];
		branch[n].key = cpu_to_le32(new_blocks[n]);
		*branch[n].p = branch[n].key;
786
		if (n == indirect_blks) {
787 788 789 790 791 792
			current_block = new_blocks[n];
			/*
			 * End of chain, update the last new metablock of
			 * the chain to point to the new allocated
			 * data blocks numbers
			 */
793
			for (i = 1; i < num; i++)
794 795 796 797 798 799
				*(branch[n].p + i) = cpu_to_le32(++current_block);
		}
		BUFFER_TRACE(bh, "marking uptodate");
		set_buffer_uptodate(bh);
		unlock_buffer(bh);

800 801
		BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
		err = ext4_handle_dirty_metadata(handle, inode, bh);
802 803 804 805 806 807 808
		if (err)
			goto failed;
	}
	*blks = num;
	return err;
failed:
	/* Allocation failed, free what we already allocated */
809
	ext4_free_blocks(handle, inode, 0, new_blocks[0], 1, 0);
810
	for (i = 1; i <= n ; i++) {
811
		/*
812 813 814
		 * branch[i].bh is newly allocated, so there is no
		 * need to revoke the block, which is why we don't
		 * need to set EXT4_FREE_BLOCKS_METADATA.
815
		 */
816 817
		ext4_free_blocks(handle, inode, 0, new_blocks[i], 1,
				 EXT4_FREE_BLOCKS_FORGET);
818
	}
819 820
	for (i = n+1; i < indirect_blks; i++)
		ext4_free_blocks(handle, inode, 0, new_blocks[i], 1, 0);
821

822
	ext4_free_blocks(handle, inode, 0, new_blocks[i], num, 0);
823 824 825 826 827

	return err;
}

/**
828
 * ext4_splice_branch - splice the allocated branch onto inode.
829 830 831
 * @inode: owner
 * @block: (logical) number of block we are adding
 * @chain: chain of indirect blocks (with a missing link - see
832
 *	ext4_alloc_branch)
833 834 835 836 837 838 839 840
 * @where: location of missing link
 * @num:   number of indirect blocks we are adding
 * @blks:  number of direct blocks we are adding
 *
 * This function fills the missing link and does all housekeeping needed in
 * inode (->i_blocks, etc.). In case of success we end up with the full
 * chain to new block and return 0.
 */
841
static int ext4_splice_branch(handle_t *handle, struct inode *inode,
842 843
			      ext4_lblk_t block, Indirect *where, int num,
			      int blks)
844 845 846
{
	int i;
	int err = 0;
847
	ext4_fsblk_t current_block;
848 849 850 851 852 853 854 855

	/*
	 * If we're splicing into a [td]indirect block (as opposed to the
	 * inode) then we need to get write access to the [td]indirect block
	 * before the splice.
	 */
	if (where->bh) {
		BUFFER_TRACE(where->bh, "get_write_access");
856
		err = ext4_journal_get_write_access(handle, where->bh);
857 858 859 860 861 862 863 864 865 866 867 868 869 870
		if (err)
			goto err_out;
	}
	/* That's it */

	*where->p = where->key;

	/*
	 * Update the host buffer_head or inode to point to more just allocated
	 * direct blocks blocks
	 */
	if (num == 0 && blks > 1) {
		current_block = le32_to_cpu(where->key) + 1;
		for (i = 1; i < blks; i++)
871
			*(where->p + i) = cpu_to_le32(current_block++);
872 873 874 875 876 877 878 879 880 881 882
	}

	/* We are done with atomic stuff, now do the rest of housekeeping */
	/* had we spliced it onto indirect block? */
	if (where->bh) {
		/*
		 * If we spliced it onto an indirect block, we haven't
		 * altered the inode.  Note however that if it is being spliced
		 * onto an indirect block at the very end of the file (the
		 * file is growing) then we *will* alter the inode to reflect
		 * the new i_size.  But that is not done here - it is done in
883
		 * generic_commit_write->__mark_inode_dirty->ext4_dirty_inode.
884 885
		 */
		jbd_debug(5, "splicing indirect only\n");
886 887
		BUFFER_TRACE(where->bh, "call ext4_handle_dirty_metadata");
		err = ext4_handle_dirty_metadata(handle, inode, where->bh);
888 889 890 891 892 893
		if (err)
			goto err_out;
	} else {
		/*
		 * OK, we spliced it into the inode itself on a direct block.
		 */
894
		ext4_mark_inode_dirty(handle, inode);
895 896 897 898 899 900
		jbd_debug(5, "splicing direct\n");
	}
	return err;

err_out:
	for (i = 1; i <= num; i++) {
901
		/*
902 903 904
		 * branch[i].bh is newly allocated, so there is no
		 * need to revoke the block, which is why we don't
		 * need to set EXT4_FREE_BLOCKS_METADATA.
905
		 */
906 907
		ext4_free_blocks(handle, inode, where[i].bh, 0, 1,
				 EXT4_FREE_BLOCKS_FORGET);
908
	}
909 910
	ext4_free_blocks(handle, inode, 0, le32_to_cpu(where[num].key),
			 blks, 0);
911 912 913 914 915

	return err;
}

/*
916
 * The ext4_ind_map_blocks() function handles non-extents inodes
917
 * (i.e., using the traditional indirect/double-indirect i_blocks
918
 * scheme) for ext4_map_blocks().
919
 *
920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935
 * Allocation strategy is simple: if we have to allocate something, we will
 * have to go the whole way to leaf. So let's do it before attaching anything
 * to tree, set linkage between the newborn blocks, write them if sync is
 * required, recheck the path, free and repeat if check fails, otherwise
 * set the last missing link (that will protect us from any truncate-generated
 * removals - all blocks on the path are immune now) and possibly force the
 * write on the parent block.
 * That has a nice additional property: no special recovery from the failed
 * allocations is needed - we simply release blocks and do not touch anything
 * reachable from inode.
 *
 * `handle' can be NULL if create == 0.
 *
 * return > 0, # of blocks mapped or allocated.
 * return = 0, if plain lookup failed.
 * return < 0, error case.
936
 *
937 938 939 940 941
 * The ext4_ind_get_blocks() function should be called with
 * down_write(&EXT4_I(inode)->i_data_sem) if allocating filesystem
 * blocks (i.e., flags has EXT4_GET_BLOCKS_CREATE set) or
 * down_read(&EXT4_I(inode)->i_data_sem) if not allocating file system
 * blocks.
942
 */
943 944
static int ext4_ind_map_blocks(handle_t *handle, struct inode *inode,
			       struct ext4_map_blocks *map,
945
			       int flags)
946 947
{
	int err = -EIO;
A
Aneesh Kumar K.V 已提交
948
	ext4_lblk_t offsets[4];
949 950
	Indirect chain[4];
	Indirect *partial;
951
	ext4_fsblk_t goal;
952 953 954 955
	int indirect_blks;
	int blocks_to_boundary = 0;
	int depth;
	int count = 0;
956
	ext4_fsblk_t first_block = 0;
957

958
	J_ASSERT(!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)));
959
	J_ASSERT(handle != NULL || (flags & EXT4_GET_BLOCKS_CREATE) == 0);
960
	depth = ext4_block_to_path(inode, map->m_lblk, offsets,
961
				   &blocks_to_boundary);
962 963 964 965

	if (depth == 0)
		goto out;

966
	partial = ext4_get_branch(inode, depth, offsets, chain, &err);
967 968 969 970 971 972

	/* Simplest case - block found, no allocation needed */
	if (!partial) {
		first_block = le32_to_cpu(chain[depth - 1].key);
		count++;
		/*map more blocks*/
973
		while (count < map->m_len && count <= blocks_to_boundary) {
974
			ext4_fsblk_t blk;
975 976 977 978 979 980 981 982

			blk = le32_to_cpu(*(chain[depth-1].p + count));

			if (blk == first_block + count)
				count++;
			else
				break;
		}
983
		goto got_it;
984 985 986
	}

	/* Next simple case - plain lookup or failed read of indirect block */
987
	if ((flags & EXT4_GET_BLOCKS_CREATE) == 0 || err == -EIO)
988 989 990
		goto cleanup;

	/*
991
	 * Okay, we need to do block allocation.
992
	*/
993
	goal = ext4_find_goal(inode, map->m_lblk, partial);
994 995 996 997 998 999 1000 1001

	/* the number of blocks need to allocate for [d,t]indirect blocks */
	indirect_blks = (chain + depth) - partial - 1;

	/*
	 * Next look up the indirect map to count the totoal number of
	 * direct blocks to allocate for this branch.
	 */
1002
	count = ext4_blks_to_allocate(partial, indirect_blks,
1003
				      map->m_len, blocks_to_boundary);
1004
	/*
1005
	 * Block out ext4_truncate while we alter the tree
1006
	 */
1007
	err = ext4_alloc_branch(handle, inode, map->m_lblk, indirect_blks,
1008 1009
				&count, goal,
				offsets + (partial - chain), partial);
1010 1011

	/*
1012
	 * The ext4_splice_branch call will free and forget any buffers
1013 1014 1015 1016 1017 1018
	 * on the new chain if there is a failure, but that risks using
	 * up transaction credits, especially for bitmaps where the
	 * credits cannot be returned.  Can we handle this somehow?  We
	 * may need to return -EAGAIN upwards in the worst case.  --sct
	 */
	if (!err)
1019
		err = ext4_splice_branch(handle, inode, map->m_lblk,
1020
					 partial, indirect_blks, count);
1021
	if (err)
1022 1023
		goto cleanup;

1024
	map->m_flags |= EXT4_MAP_NEW;
1025 1026

	ext4_update_inode_fsync_trans(handle, inode, 1);
1027
got_it:
1028 1029 1030
	map->m_flags |= EXT4_MAP_MAPPED;
	map->m_pblk = le32_to_cpu(chain[depth-1].key);
	map->m_len = count;
1031
	if (count > blocks_to_boundary)
1032
		map->m_flags |= EXT4_MAP_BOUNDARY;
1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045
	err = count;
	/* Clean up and exit */
	partial = chain + depth - 1;	/* the whole chain */
cleanup:
	while (partial > chain) {
		BUFFER_TRACE(partial->bh, "call brelse");
		brelse(partial->bh);
		partial--;
	}
out:
	return err;
}

1046 1047
#ifdef CONFIG_QUOTA
qsize_t *ext4_get_reserved_space(struct inode *inode)
1048
{
1049
	return &EXT4_I(inode)->i_reserved_quota;
1050
}
1051
#endif
1052

1053 1054
/*
 * Calculate the number of metadata blocks need to reserve
1055
 * to allocate a new block at @lblocks for non extent file based file
1056
 */
1057 1058
static int ext4_indirect_calc_metadata_amount(struct inode *inode,
					      sector_t lblock)
1059
{
1060
	struct ext4_inode_info *ei = EXT4_I(inode);
1061
	sector_t dind_mask = ~((sector_t)EXT4_ADDR_PER_BLOCK(inode->i_sb) - 1);
1062
	int blk_bits;
1063

1064 1065
	if (lblock < EXT4_NDIR_BLOCKS)
		return 0;
1066

1067
	lblock -= EXT4_NDIR_BLOCKS;
1068

1069 1070 1071 1072 1073 1074 1075
	if (ei->i_da_metadata_calc_len &&
	    (lblock & dind_mask) == ei->i_da_metadata_calc_last_lblock) {
		ei->i_da_metadata_calc_len++;
		return 0;
	}
	ei->i_da_metadata_calc_last_lblock = lblock & dind_mask;
	ei->i_da_metadata_calc_len = 1;
1076
	blk_bits = order_base_2(lblock);
1077
	return (blk_bits / EXT4_ADDR_PER_BLOCK_BITS(inode->i_sb)) + 1;
1078 1079 1080 1081
}

/*
 * Calculate the number of metadata blocks need to reserve
1082
 * to allocate a block located at @lblock
1083
 */
1084
static int ext4_calc_metadata_amount(struct inode *inode, sector_t lblock)
1085
{
1086
	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
1087
		return ext4_ext_calc_metadata_amount(inode, lblock);
1088

1089
	return ext4_indirect_calc_metadata_amount(inode, lblock);
1090 1091
}

1092 1093 1094 1095
/*
 * Called with i_data_sem down, which is important since we can call
 * ext4_discard_preallocations() from here.
 */
1096 1097
void ext4_da_update_reserve_space(struct inode *inode,
					int used, int quota_claim)
1098 1099
{
	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1100 1101 1102
	struct ext4_inode_info *ei = EXT4_I(inode);

	spin_lock(&ei->i_block_reservation_lock);
1103
	trace_ext4_da_update_reserve_space(inode, used);
1104 1105 1106 1107 1108 1109 1110 1111
	if (unlikely(used > ei->i_reserved_data_blocks)) {
		ext4_msg(inode->i_sb, KERN_NOTICE, "%s: ino %lu, used %d "
			 "with only %d reserved data blocks\n",
			 __func__, inode->i_ino, used,
			 ei->i_reserved_data_blocks);
		WARN_ON(1);
		used = ei->i_reserved_data_blocks;
	}
1112

1113 1114 1115
	/* Update per-inode reservations */
	ei->i_reserved_data_blocks -= used;
	ei->i_reserved_meta_blocks -= ei->i_allocated_meta_blocks;
1116 1117
	percpu_counter_sub(&sbi->s_dirtyblocks_counter,
			   used + ei->i_allocated_meta_blocks);
1118
	ei->i_allocated_meta_blocks = 0;
1119

1120 1121 1122 1123 1124 1125
	if (ei->i_reserved_data_blocks == 0) {
		/*
		 * We can release all of the reserved metadata blocks
		 * only when we have written all of the delayed
		 * allocation blocks.
		 */
1126 1127
		percpu_counter_sub(&sbi->s_dirtyblocks_counter,
				   ei->i_reserved_meta_blocks);
1128
		ei->i_reserved_meta_blocks = 0;
1129
		ei->i_da_metadata_calc_len = 0;
1130
	}
1131
	spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1132

1133 1134
	/* Update quota subsystem for data blocks */
	if (quota_claim)
1135
		dquot_claim_block(inode, used);
1136
	else {
1137 1138 1139
		/*
		 * We did fallocate with an offset that is already delayed
		 * allocated. So on delayed allocated writeback we should
1140
		 * not re-claim the quota for fallocated blocks.
1141
		 */
1142
		dquot_release_reservation_block(inode, used);
1143
	}
1144 1145 1146 1147 1148 1149

	/*
	 * If we have done all the pending block allocations and if
	 * there aren't any writers on the inode, we can discard the
	 * inode's preallocations.
	 */
1150 1151
	if ((ei->i_reserved_data_blocks == 0) &&
	    (atomic_read(&inode->i_writecount) == 0))
1152
		ext4_discard_preallocations(inode);
1153 1154
}

1155
static int __check_block_validity(struct inode *inode, const char *func,
1156 1157
				unsigned int line,
				struct ext4_map_blocks *map)
1158
{
1159 1160
	if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), map->m_pblk,
				   map->m_len)) {
1161 1162 1163 1164
		ext4_error_inode(inode, func, line, map->m_pblk,
				 "lblock %lu mapped to illegal pblock "
				 "(length %d)", (unsigned long) map->m_lblk,
				 map->m_len);
1165 1166 1167 1168 1169
		return -EIO;
	}
	return 0;
}

1170
#define check_block_validity(inode, map)	\
1171
	__check_block_validity((inode), __func__, __LINE__, (map))
1172

1173
/*
1174 1175
 * Return the number of contiguous dirty pages in a given inode
 * starting at page frame idx.
1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208
 */
static pgoff_t ext4_num_dirty_pages(struct inode *inode, pgoff_t idx,
				    unsigned int max_pages)
{
	struct address_space *mapping = inode->i_mapping;
	pgoff_t	index;
	struct pagevec pvec;
	pgoff_t num = 0;
	int i, nr_pages, done = 0;

	if (max_pages == 0)
		return 0;
	pagevec_init(&pvec, 0);
	while (!done) {
		index = idx;
		nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
					      PAGECACHE_TAG_DIRTY,
					      (pgoff_t)PAGEVEC_SIZE);
		if (nr_pages == 0)
			break;
		for (i = 0; i < nr_pages; i++) {
			struct page *page = pvec.pages[i];
			struct buffer_head *bh, *head;

			lock_page(page);
			if (unlikely(page->mapping != mapping) ||
			    !PageDirty(page) ||
			    PageWriteback(page) ||
			    page->index != idx) {
				done = 1;
				unlock_page(page);
				break;
			}
1209 1210 1211 1212 1213 1214 1215 1216 1217
			if (page_has_buffers(page)) {
				bh = head = page_buffers(page);
				do {
					if (!buffer_delay(bh) &&
					    !buffer_unwritten(bh))
						done = 1;
					bh = bh->b_this_page;
				} while (!done && (bh != head));
			}
1218 1219 1220 1221 1222
			unlock_page(page);
			if (done)
				break;
			idx++;
			num++;
1223 1224
			if (num >= max_pages) {
				done = 1;
1225
				break;
1226
			}
1227 1228 1229 1230 1231 1232
		}
		pagevec_release(&pvec);
	}
	return num;
}

1233
/*
1234
 * The ext4_map_blocks() function tries to look up the requested blocks,
1235
 * and returns if the blocks are already mapped.
1236 1237 1238 1239 1240
 *
 * Otherwise it takes the write lock of the i_data_sem and allocate blocks
 * and store the allocated blocks in the result buffer head and mark it
 * mapped.
 *
1241 1242
 * If file type is extents based, it will call ext4_ext_map_blocks(),
 * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping
1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254
 * based files
 *
 * On success, it returns the number of blocks being mapped or allocate.
 * if create==0 and the blocks are pre-allocated and uninitialized block,
 * the result buffer head is unmapped. If the create ==1, it will make sure
 * the buffer head is mapped.
 *
 * It returns 0 if plain look up failed (blocks have not been allocated), in
 * that casem, buffer head is unmapped
 *
 * It returns the error in case of allocation failure.
 */
1255 1256
int ext4_map_blocks(handle_t *handle, struct inode *inode,
		    struct ext4_map_blocks *map, int flags)
1257 1258
{
	int retval;
1259

1260 1261 1262 1263
	map->m_flags = 0;
	ext_debug("ext4_map_blocks(): inode %lu, flag %d, max_blocks %u,"
		  "logical block %lu\n", inode->i_ino, flags, map->m_len,
		  (unsigned long) map->m_lblk);
1264
	/*
1265 1266
	 * Try to see if we can get the block without requesting a new
	 * file system block.
1267 1268
	 */
	down_read((&EXT4_I(inode)->i_data_sem));
1269
	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
1270
		retval = ext4_ext_map_blocks(handle, inode, map, 0);
1271
	} else {
1272
		retval = ext4_ind_map_blocks(handle, inode, map, 0);
1273
	}
1274
	up_read((&EXT4_I(inode)->i_data_sem));
1275

1276
	if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
1277
		int ret = check_block_validity(inode, map);
1278 1279 1280 1281
		if (ret != 0)
			return ret;
	}

1282
	/* If it is only a block(s) look up */
1283
	if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
1284 1285 1286 1287 1288 1289 1290 1291 1292
		return retval;

	/*
	 * Returns if the blocks have already allocated
	 *
	 * Note that if blocks have been preallocated
	 * ext4_ext_get_block() returns th create = 0
	 * with buffer head unmapped.
	 */
1293
	if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
1294 1295
		return retval;

1296 1297 1298 1299 1300 1301 1302 1303 1304 1305
	/*
	 * When we call get_blocks without the create flag, the
	 * BH_Unwritten flag could have gotten set if the blocks
	 * requested were part of a uninitialized extent.  We need to
	 * clear this flag now that we are committed to convert all or
	 * part of the uninitialized extent to be an initialized
	 * extent.  This is because we need to avoid the combination
	 * of BH_Unwritten and BH_Mapped flags being simultaneously
	 * set on the buffer_head.
	 */
1306
	map->m_flags &= ~EXT4_MAP_UNWRITTEN;
1307

1308
	/*
1309 1310 1311 1312
	 * New blocks allocate and/or writing to uninitialized extent
	 * will possibly result in updating i_data, so we take
	 * the write lock of i_data_sem, and call get_blocks()
	 * with create == 1 flag.
1313 1314
	 */
	down_write((&EXT4_I(inode)->i_data_sem));
1315 1316 1317 1318 1319 1320 1321

	/*
	 * if the caller is from delayed allocation writeout path
	 * we have already reserved fs blocks for allocation
	 * let the underlying get_block() function know to
	 * avoid double accounting
	 */
1322
	if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
1323
		EXT4_I(inode)->i_delalloc_reserved_flag = 1;
1324 1325 1326 1327
	/*
	 * We need to check for EXT4 here because migrate
	 * could have changed the inode type in between
	 */
1328
	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
1329
		retval = ext4_ext_map_blocks(handle, inode, map, flags);
1330
	} else {
1331
		retval = ext4_ind_map_blocks(handle, inode, map, flags);
1332

1333
		if (retval > 0 && map->m_flags & EXT4_MAP_NEW) {
1334 1335 1336 1337 1338
			/*
			 * We allocated new blocks which will result in
			 * i_data's format changing.  Force the migrate
			 * to fail by clearing migrate flags
			 */
1339
			ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE);
1340
		}
1341

1342 1343 1344 1345 1346 1347 1348
		/*
		 * Update reserved blocks/metadata blocks after successful
		 * block allocation which had been deferred till now. We don't
		 * support fallocate for non extent files. So we can update
		 * reserve space here.
		 */
		if ((retval > 0) &&
1349
			(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE))
1350 1351
			ext4_da_update_reserve_space(inode, retval, 1);
	}
1352
	if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
1353
		EXT4_I(inode)->i_delalloc_reserved_flag = 0;
1354

1355
	up_write((&EXT4_I(inode)->i_data_sem));
1356
	if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
1357
		int ret = check_block_validity(inode, map);
1358 1359 1360
		if (ret != 0)
			return ret;
	}
1361 1362 1363
	return retval;
}

1364 1365 1366
/* Maximum number of blocks we map for direct IO at once. */
#define DIO_MAX_BLOCKS 4096

1367 1368
static int _ext4_get_block(struct inode *inode, sector_t iblock,
			   struct buffer_head *bh, int flags)
1369
{
1370
	handle_t *handle = ext4_journal_current_handle();
1371
	struct ext4_map_blocks map;
J
Jan Kara 已提交
1372
	int ret = 0, started = 0;
1373
	int dio_credits;
1374

1375 1376 1377 1378
	map.m_lblk = iblock;
	map.m_len = bh->b_size >> inode->i_blkbits;

	if (flags && !handle) {
J
Jan Kara 已提交
1379
		/* Direct IO write... */
1380 1381 1382
		if (map.m_len > DIO_MAX_BLOCKS)
			map.m_len = DIO_MAX_BLOCKS;
		dio_credits = ext4_chunk_trans_blocks(inode, map.m_len);
1383
		handle = ext4_journal_start(inode, dio_credits);
J
Jan Kara 已提交
1384
		if (IS_ERR(handle)) {
1385
			ret = PTR_ERR(handle);
1386
			return ret;
1387
		}
J
Jan Kara 已提交
1388
		started = 1;
1389 1390
	}

1391
	ret = ext4_map_blocks(handle, inode, &map, flags);
J
Jan Kara 已提交
1392
	if (ret > 0) {
1393 1394 1395
		map_bh(bh, inode->i_sb, map.m_pblk);
		bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;
		bh->b_size = inode->i_sb->s_blocksize * map.m_len;
J
Jan Kara 已提交
1396
		ret = 0;
1397
	}
J
Jan Kara 已提交
1398 1399
	if (started)
		ext4_journal_stop(handle);
1400 1401 1402
	return ret;
}

1403 1404 1405 1406 1407 1408 1409
int ext4_get_block(struct inode *inode, sector_t iblock,
		   struct buffer_head *bh, int create)
{
	return _ext4_get_block(inode, iblock, bh,
			       create ? EXT4_GET_BLOCKS_CREATE : 0);
}

1410 1411 1412
/*
 * `handle' can be NULL if create is zero
 */
1413
struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
A
Aneesh Kumar K.V 已提交
1414
				ext4_lblk_t block, int create, int *errp)
1415
{
1416 1417
	struct ext4_map_blocks map;
	struct buffer_head *bh;
1418 1419 1420 1421
	int fatal = 0, err;

	J_ASSERT(handle != NULL || create == 0);

1422 1423 1424 1425
	map.m_lblk = block;
	map.m_len = 1;
	err = ext4_map_blocks(handle, inode, &map,
			      create ? EXT4_GET_BLOCKS_CREATE : 0);
1426

1427 1428 1429 1430 1431 1432 1433 1434 1435 1436
	if (err < 0)
		*errp = err;
	if (err <= 0)
		return NULL;
	*errp = 0;

	bh = sb_getblk(inode->i_sb, map.m_pblk);
	if (!bh) {
		*errp = -EIO;
		return NULL;
1437
	}
1438 1439 1440
	if (map.m_flags & EXT4_MAP_NEW) {
		J_ASSERT(create != 0);
		J_ASSERT(handle != NULL);
1441

1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454
		/*
		 * Now that we do not always journal data, we should
		 * keep in mind whether this should always journal the
		 * new buffer as metadata.  For now, regular file
		 * writes use ext4_get_block instead, so it's not a
		 * problem.
		 */
		lock_buffer(bh);
		BUFFER_TRACE(bh, "call get_create_access");
		fatal = ext4_journal_get_create_access(handle, bh);
		if (!fatal && !buffer_uptodate(bh)) {
			memset(bh->b_data, 0, inode->i_sb->s_blocksize);
			set_buffer_uptodate(bh);
1455
		}
1456 1457 1458 1459 1460 1461 1462
		unlock_buffer(bh);
		BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
		err = ext4_handle_dirty_metadata(handle, inode, bh);
		if (!fatal)
			fatal = err;
	} else {
		BUFFER_TRACE(bh, "not a new buffer");
1463
	}
1464 1465 1466 1467 1468 1469
	if (fatal) {
		*errp = fatal;
		brelse(bh);
		bh = NULL;
	}
	return bh;
1470 1471
}

1472
struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
A
Aneesh Kumar K.V 已提交
1473
			       ext4_lblk_t block, int create, int *err)
1474
{
1475
	struct buffer_head *bh;
1476

1477
	bh = ext4_getblk(handle, inode, block, create, err);
1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490
	if (!bh)
		return bh;
	if (buffer_uptodate(bh))
		return bh;
	ll_rw_block(READ_META, 1, &bh);
	wait_on_buffer(bh);
	if (buffer_uptodate(bh))
		return bh;
	put_bh(bh);
	*err = -EIO;
	return NULL;
}

1491 1492 1493 1494 1495 1496 1497
static int walk_page_buffers(handle_t *handle,
			     struct buffer_head *head,
			     unsigned from,
			     unsigned to,
			     int *partial,
			     int (*fn)(handle_t *handle,
				       struct buffer_head *bh))
1498 1499 1500 1501 1502 1503 1504
{
	struct buffer_head *bh;
	unsigned block_start, block_end;
	unsigned blocksize = head->b_size;
	int err, ret = 0;
	struct buffer_head *next;

1505 1506
	for (bh = head, block_start = 0;
	     ret == 0 && (bh != head || !block_start);
1507
	     block_start = block_end, bh = next) {
1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524
		next = bh->b_this_page;
		block_end = block_start + blocksize;
		if (block_end <= from || block_start >= to) {
			if (partial && !buffer_uptodate(bh))
				*partial = 1;
			continue;
		}
		err = (*fn)(handle, bh);
		if (!ret)
			ret = err;
	}
	return ret;
}

/*
 * To preserve ordering, it is essential that the hole instantiation and
 * the data write be encapsulated in a single transaction.  We cannot
1525
 * close off a transaction and start a new one between the ext4_get_block()
1526
 * and the commit_write().  So doing the jbd2_journal_start at the start of
1527 1528
 * prepare_write() is the right place.
 *
1529 1530
 * Also, this function can nest inside ext4_writepage() ->
 * block_write_full_page(). In that case, we *know* that ext4_writepage()
1531 1532 1533 1534
 * has generated enough buffer credits to do the whole page.  So we won't
 * block on the journal in that case, which is good, because the caller may
 * be PF_MEMALLOC.
 *
1535
 * By accident, ext4 can be reentered when a transaction is open via
1536 1537 1538 1539 1540 1541
 * quota file writes.  If we were to commit the transaction while thus
 * reentered, there can be a deadlock - we would be holding a quota
 * lock, and the commit would never complete if another thread had a
 * transaction open and was blocking on the quota lock - a ranking
 * violation.
 *
1542
 * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
1543 1544 1545 1546 1547
 * will _not_ run commit under these circumstances because handle->h_ref
 * is elevated.  We'll still have enough credits for the tiny quotafile
 * write.
 */
static int do_journal_get_write_access(handle_t *handle,
1548
				       struct buffer_head *bh)
1549
{
1550 1551 1552
	int dirty = buffer_dirty(bh);
	int ret;

1553 1554
	if (!buffer_mapped(bh) || buffer_freed(bh))
		return 0;
1555
	/*
C
Christoph Hellwig 已提交
1556
	 * __block_write_begin() could have dirtied some buffers. Clean
1557 1558
	 * the dirty bit as jbd2_journal_get_write_access() could complain
	 * otherwise about fs integrity issues. Setting of the dirty bit
C
Christoph Hellwig 已提交
1559
	 * by __block_write_begin() isn't a real problem here as we clear
1560 1561 1562 1563 1564 1565 1566 1567 1568
	 * the bit before releasing a page lock and thus writeback cannot
	 * ever write the buffer.
	 */
	if (dirty)
		clear_buffer_dirty(bh);
	ret = ext4_journal_get_write_access(handle, bh);
	if (!ret && dirty)
		ret = ext4_handle_dirty_metadata(handle, NULL, bh);
	return ret;
1569 1570
}

1571 1572 1573 1574 1575 1576 1577 1578 1579 1580
/*
 * Truncate blocks that were not used by write. We have to truncate the
 * pagecache as well so that corresponding buffers get properly unmapped.
 */
static void ext4_truncate_failed_write(struct inode *inode)
{
	truncate_inode_pages(inode->i_mapping, inode->i_size);
	ext4_truncate(inode);
}

1581 1582
static int ext4_get_block_write(struct inode *inode, sector_t iblock,
		   struct buffer_head *bh_result, int create);
N
Nick Piggin 已提交
1583
static int ext4_write_begin(struct file *file, struct address_space *mapping,
1584 1585
			    loff_t pos, unsigned len, unsigned flags,
			    struct page **pagep, void **fsdata)
1586
{
1587
	struct inode *inode = mapping->host;
1588
	int ret, needed_blocks;
1589 1590
	handle_t *handle;
	int retries = 0;
1591
	struct page *page;
1592
	pgoff_t index;
1593
	unsigned from, to;
N
Nick Piggin 已提交
1594

1595
	trace_ext4_write_begin(inode, pos, len, flags);
1596 1597 1598 1599 1600
	/*
	 * Reserve one block more for addition to orphan list in case
	 * we allocate blocks but write fails for some reason
	 */
	needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
1601
	index = pos >> PAGE_CACHE_SHIFT;
1602 1603
	from = pos & (PAGE_CACHE_SIZE - 1);
	to = from + len;
1604 1605

retry:
1606 1607 1608 1609
	handle = ext4_journal_start(inode, needed_blocks);
	if (IS_ERR(handle)) {
		ret = PTR_ERR(handle);
		goto out;
1610
	}
1611

1612 1613 1614 1615
	/* We cannot recurse into the filesystem as the transaction is already
	 * started */
	flags |= AOP_FLAG_NOFS;

1616
	page = grab_cache_page_write_begin(mapping, index, flags);
1617 1618 1619 1620 1621 1622 1623
	if (!page) {
		ext4_journal_stop(handle);
		ret = -ENOMEM;
		goto out;
	}
	*pagep = page;

1624
	if (ext4_should_dioread_nolock(inode))
1625
		ret = __block_write_begin(page, pos, len, ext4_get_block_write);
1626
	else
1627
		ret = __block_write_begin(page, pos, len, ext4_get_block);
N
Nick Piggin 已提交
1628 1629

	if (!ret && ext4_should_journal_data(inode)) {
1630 1631 1632
		ret = walk_page_buffers(handle, page_buffers(page),
				from, to, NULL, do_journal_get_write_access);
	}
N
Nick Piggin 已提交
1633 1634

	if (ret) {
1635 1636
		unlock_page(page);
		page_cache_release(page);
1637
		/*
1638
		 * __block_write_begin may have instantiated a few blocks
1639 1640
		 * outside i_size.  Trim these off again. Don't need
		 * i_size_read because we hold i_mutex.
1641 1642 1643
		 *
		 * Add inode to orphan list in case we crash before
		 * truncate finishes
1644
		 */
1645
		if (pos + len > inode->i_size && ext4_can_truncate(inode))
1646 1647 1648 1649
			ext4_orphan_add(handle, inode);

		ext4_journal_stop(handle);
		if (pos + len > inode->i_size) {
1650
			ext4_truncate_failed_write(inode);
1651
			/*
1652
			 * If truncate failed early the inode might
1653 1654 1655 1656 1657 1658 1659
			 * still be on the orphan list; we need to
			 * make sure the inode is removed from the
			 * orphan list in that case.
			 */
			if (inode->i_nlink)
				ext4_orphan_del(NULL, inode);
		}
N
Nick Piggin 已提交
1660 1661
	}

1662
	if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
1663
		goto retry;
1664
out:
1665 1666 1667
	return ret;
}

N
Nick Piggin 已提交
1668 1669
/* For write_end() in data=journal mode */
static int write_end_fn(handle_t *handle, struct buffer_head *bh)
1670 1671 1672 1673
{
	if (!buffer_mapped(bh) || buffer_freed(bh))
		return 0;
	set_buffer_uptodate(bh);
1674
	return ext4_handle_dirty_metadata(handle, NULL, bh);
1675 1676
}

1677
static int ext4_generic_write_end(struct file *file,
1678 1679 1680
				  struct address_space *mapping,
				  loff_t pos, unsigned len, unsigned copied,
				  struct page *page, void *fsdata)
1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722
{
	int i_size_changed = 0;
	struct inode *inode = mapping->host;
	handle_t *handle = ext4_journal_current_handle();

	copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);

	/*
	 * No need to use i_size_read() here, the i_size
	 * cannot change under us because we hold i_mutex.
	 *
	 * But it's important to update i_size while still holding page lock:
	 * page writeout could otherwise come in and zero beyond i_size.
	 */
	if (pos + copied > inode->i_size) {
		i_size_write(inode, pos + copied);
		i_size_changed = 1;
	}

	if (pos + copied >  EXT4_I(inode)->i_disksize) {
		/* We need to mark inode dirty even if
		 * new_i_size is less that inode->i_size
		 * bu greater than i_disksize.(hint delalloc)
		 */
		ext4_update_i_disksize(inode, (pos + copied));
		i_size_changed = 1;
	}
	unlock_page(page);
	page_cache_release(page);

	/*
	 * Don't mark the inode dirty under page lock. First, it unnecessarily
	 * makes the holding time of page lock longer. Second, it forces lock
	 * ordering of page lock and transaction start for journaling
	 * filesystems.
	 */
	if (i_size_changed)
		ext4_mark_inode_dirty(handle, inode);

	return copied;
}

1723 1724 1725 1726
/*
 * We need to pick up the new inode size which generic_commit_write gave us
 * `file' can be NULL - eg, when called from page_symlink().
 *
1727
 * ext4 never places buffers on inode->i_mapping->private_list.  metadata
1728 1729
 * buffers are managed internally.
 */
N
Nick Piggin 已提交
1730
static int ext4_ordered_write_end(struct file *file,
1731 1732 1733
				  struct address_space *mapping,
				  loff_t pos, unsigned len, unsigned copied,
				  struct page *page, void *fsdata)
1734
{
1735
	handle_t *handle = ext4_journal_current_handle();
1736
	struct inode *inode = mapping->host;
1737 1738
	int ret = 0, ret2;

1739
	trace_ext4_ordered_write_end(inode, pos, len, copied);
1740
	ret = ext4_jbd2_file_inode(handle, inode);
1741 1742

	if (ret == 0) {
1743
		ret2 = ext4_generic_write_end(file, mapping, pos, len, copied,
N
Nick Piggin 已提交
1744
							page, fsdata);
1745
		copied = ret2;
1746
		if (pos + len > inode->i_size && ext4_can_truncate(inode))
1747 1748 1749 1750 1751
			/* if we have allocated more blocks and copied
			 * less. We will have blocks allocated outside
			 * inode->i_size. So truncate them
			 */
			ext4_orphan_add(handle, inode);
1752 1753
		if (ret2 < 0)
			ret = ret2;
1754
	}
1755
	ret2 = ext4_journal_stop(handle);
1756 1757
	if (!ret)
		ret = ret2;
N
Nick Piggin 已提交
1758

1759
	if (pos + len > inode->i_size) {
1760
		ext4_truncate_failed_write(inode);
1761
		/*
1762
		 * If truncate failed early the inode might still be
1763 1764 1765 1766 1767 1768 1769 1770
		 * on the orphan list; we need to make sure the inode
		 * is removed from the orphan list in that case.
		 */
		if (inode->i_nlink)
			ext4_orphan_del(NULL, inode);
	}


N
Nick Piggin 已提交
1771
	return ret ? ret : copied;
1772 1773
}

N
Nick Piggin 已提交
1774
static int ext4_writeback_write_end(struct file *file,
1775 1776 1777
				    struct address_space *mapping,
				    loff_t pos, unsigned len, unsigned copied,
				    struct page *page, void *fsdata)
1778
{
1779
	handle_t *handle = ext4_journal_current_handle();
1780
	struct inode *inode = mapping->host;
1781 1782
	int ret = 0, ret2;

1783
	trace_ext4_writeback_write_end(inode, pos, len, copied);
1784
	ret2 = ext4_generic_write_end(file, mapping, pos, len, copied,
N
Nick Piggin 已提交
1785
							page, fsdata);
1786
	copied = ret2;
1787
	if (pos + len > inode->i_size && ext4_can_truncate(inode))
1788 1789 1790 1791 1792 1793
		/* if we have allocated more blocks and copied
		 * less. We will have blocks allocated outside
		 * inode->i_size. So truncate them
		 */
		ext4_orphan_add(handle, inode);

1794 1795
	if (ret2 < 0)
		ret = ret2;
1796

1797
	ret2 = ext4_journal_stop(handle);
1798 1799
	if (!ret)
		ret = ret2;
N
Nick Piggin 已提交
1800

1801
	if (pos + len > inode->i_size) {
1802
		ext4_truncate_failed_write(inode);
1803
		/*
1804
		 * If truncate failed early the inode might still be
1805 1806 1807 1808 1809 1810 1811
		 * on the orphan list; we need to make sure the inode
		 * is removed from the orphan list in that case.
		 */
		if (inode->i_nlink)
			ext4_orphan_del(NULL, inode);
	}

N
Nick Piggin 已提交
1812
	return ret ? ret : copied;
1813 1814
}

N
Nick Piggin 已提交
1815
static int ext4_journalled_write_end(struct file *file,
1816 1817 1818
				     struct address_space *mapping,
				     loff_t pos, unsigned len, unsigned copied,
				     struct page *page, void *fsdata)
1819
{
1820
	handle_t *handle = ext4_journal_current_handle();
N
Nick Piggin 已提交
1821
	struct inode *inode = mapping->host;
1822 1823
	int ret = 0, ret2;
	int partial = 0;
N
Nick Piggin 已提交
1824
	unsigned from, to;
1825
	loff_t new_i_size;
1826

1827
	trace_ext4_journalled_write_end(inode, pos, len, copied);
N
Nick Piggin 已提交
1828 1829 1830 1831 1832 1833 1834 1835
	from = pos & (PAGE_CACHE_SIZE - 1);
	to = from + len;

	if (copied < len) {
		if (!PageUptodate(page))
			copied = 0;
		page_zero_new_buffers(page, from+copied, to);
	}
1836 1837

	ret = walk_page_buffers(handle, page_buffers(page), from,
N
Nick Piggin 已提交
1838
				to, &partial, write_end_fn);
1839 1840
	if (!partial)
		SetPageUptodate(page);
1841 1842
	new_i_size = pos + copied;
	if (new_i_size > inode->i_size)
N
Nick Piggin 已提交
1843
		i_size_write(inode, pos+copied);
1844
	ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1845 1846
	if (new_i_size > EXT4_I(inode)->i_disksize) {
		ext4_update_i_disksize(inode, new_i_size);
1847
		ret2 = ext4_mark_inode_dirty(handle, inode);
1848 1849 1850
		if (!ret)
			ret = ret2;
	}
N
Nick Piggin 已提交
1851

1852
	unlock_page(page);
1853
	page_cache_release(page);
1854
	if (pos + len > inode->i_size && ext4_can_truncate(inode))
1855 1856 1857 1858 1859 1860
		/* if we have allocated more blocks and copied
		 * less. We will have blocks allocated outside
		 * inode->i_size. So truncate them
		 */
		ext4_orphan_add(handle, inode);

1861
	ret2 = ext4_journal_stop(handle);
1862 1863
	if (!ret)
		ret = ret2;
1864
	if (pos + len > inode->i_size) {
1865
		ext4_truncate_failed_write(inode);
1866
		/*
1867
		 * If truncate failed early the inode might still be
1868 1869 1870 1871 1872 1873
		 * on the orphan list; we need to make sure the inode
		 * is removed from the orphan list in that case.
		 */
		if (inode->i_nlink)
			ext4_orphan_del(NULL, inode);
	}
N
Nick Piggin 已提交
1874 1875

	return ret ? ret : copied;
1876
}
1877

1878 1879 1880 1881
/*
 * Reserve a single block located at lblock
 */
static int ext4_da_reserve_space(struct inode *inode, sector_t lblock)
1882
{
A
Aneesh Kumar K.V 已提交
1883
	int retries = 0;
1884
	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1885
	struct ext4_inode_info *ei = EXT4_I(inode);
1886
	unsigned long md_needed;
1887
	int ret;
1888 1889 1890 1891 1892 1893

	/*
	 * recalculate the amount of metadata blocks to reserve
	 * in order to allocate nrblocks
	 * worse case is one extent per block
	 */
A
Aneesh Kumar K.V 已提交
1894
repeat:
1895
	spin_lock(&ei->i_block_reservation_lock);
1896
	md_needed = ext4_calc_metadata_amount(inode, lblock);
1897
	trace_ext4_da_reserve_space(inode, md_needed);
1898
	spin_unlock(&ei->i_block_reservation_lock);
1899

1900
	/*
1901 1902 1903
	 * We will charge metadata quota at writeout time; this saves
	 * us from metadata over-estimation, though we may go over by
	 * a small amount in the end.  Here we just reserve for data.
1904
	 */
1905
	ret = dquot_reserve_block(inode, 1);
1906 1907
	if (ret)
		return ret;
1908 1909 1910 1911
	/*
	 * We do still charge estimated metadata to the sb though;
	 * we cannot afford to run out of free blocks.
	 */
1912
	if (ext4_claim_free_blocks(sbi, md_needed + 1)) {
1913
		dquot_release_reservation_block(inode, 1);
A
Aneesh Kumar K.V 已提交
1914 1915 1916 1917
		if (ext4_should_retry_alloc(inode->i_sb, &retries)) {
			yield();
			goto repeat;
		}
1918 1919
		return -ENOSPC;
	}
1920
	spin_lock(&ei->i_block_reservation_lock);
1921
	ei->i_reserved_data_blocks++;
1922 1923
	ei->i_reserved_meta_blocks += md_needed;
	spin_unlock(&ei->i_block_reservation_lock);
1924

1925 1926 1927
	return 0;       /* success */
}

1928
static void ext4_da_release_space(struct inode *inode, int to_free)
1929 1930
{
	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1931
	struct ext4_inode_info *ei = EXT4_I(inode);
1932

1933 1934 1935
	if (!to_free)
		return;		/* Nothing to release, exit */

1936
	spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1937

L
Li Zefan 已提交
1938
	trace_ext4_da_release_space(inode, to_free);
1939
	if (unlikely(to_free > ei->i_reserved_data_blocks)) {
1940
		/*
1941 1942 1943 1944
		 * if there aren't enough reserved blocks, then the
		 * counter is messed up somewhere.  Since this
		 * function is called from invalidate page, it's
		 * harmless to return without any action.
1945
		 */
1946 1947 1948 1949 1950 1951
		ext4_msg(inode->i_sb, KERN_NOTICE, "ext4_da_release_space: "
			 "ino %lu, to_free %d with only %d reserved "
			 "data blocks\n", inode->i_ino, to_free,
			 ei->i_reserved_data_blocks);
		WARN_ON(1);
		to_free = ei->i_reserved_data_blocks;
1952
	}
1953
	ei->i_reserved_data_blocks -= to_free;
1954

1955 1956 1957 1958 1959 1960
	if (ei->i_reserved_data_blocks == 0) {
		/*
		 * We can release all of the reserved metadata blocks
		 * only when we have written all of the delayed
		 * allocation blocks.
		 */
1961 1962
		percpu_counter_sub(&sbi->s_dirtyblocks_counter,
				   ei->i_reserved_meta_blocks);
1963
		ei->i_reserved_meta_blocks = 0;
1964
		ei->i_da_metadata_calc_len = 0;
1965
	}
1966

1967
	/* update fs dirty data blocks counter */
1968
	percpu_counter_sub(&sbi->s_dirtyblocks_counter, to_free);
1969 1970

	spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1971

1972
	dquot_release_reservation_block(inode, to_free);
1973 1974 1975
}

static void ext4_da_page_release_reservation(struct page *page,
1976
					     unsigned long offset)
1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992
{
	int to_release = 0;
	struct buffer_head *head, *bh;
	unsigned int curr_off = 0;

	head = page_buffers(page);
	bh = head;
	do {
		unsigned int next_off = curr_off + bh->b_size;

		if ((offset <= curr_off) && (buffer_delay(bh))) {
			to_release++;
			clear_buffer_delay(bh);
		}
		curr_off = next_off;
	} while ((bh = bh->b_this_page) != head);
1993
	ext4_da_release_space(page->mapping->host, to_release);
1994
}
1995

1996 1997 1998 1999 2000 2001
/*
 * Delayed allocation stuff
 */

/*
 * mpage_da_submit_io - walks through extent of pages and try to write
2002
 * them with writepage() call back
2003 2004 2005 2006 2007 2008 2009 2010 2011 2012
 *
 * @mpd->inode: inode
 * @mpd->first_page: first page of the extent
 * @mpd->next_page: page after the last page of the extent
 *
 * By the time mpage_da_submit_io() is called we expect all blocks
 * to be allocated. this may be wrong if allocation failed.
 *
 * As pages are already locked by write_cache_pages(), we can't use it
 */
2013 2014
static int mpage_da_submit_io(struct mpage_da_data *mpd,
			      struct ext4_map_blocks *map)
2015
{
2016 2017 2018 2019 2020
	struct pagevec pvec;
	unsigned long index, end;
	int ret = 0, err, nr_pages, i;
	struct inode *inode = mpd->inode;
	struct address_space *mapping = inode->i_mapping;
2021
	loff_t size = i_size_read(inode);
2022 2023
	unsigned int len, block_start;
	struct buffer_head *bh, *page_bufs = NULL;
2024
	int journal_data = ext4_should_journal_data(inode);
2025
	sector_t pblock = 0, cur_logical = 0;
2026
	struct ext4_io_submit io_submit;
2027 2028

	BUG_ON(mpd->next_page <= mpd->first_page);
2029
	memset(&io_submit, 0, sizeof(io_submit));
2030 2031 2032
	/*
	 * We need to start from the first_page to the next_page - 1
	 * to make sure we also write the mapped dirty buffer_heads.
2033
	 * If we look at mpd->b_blocknr we would only be looking
2034 2035
	 * at the currently mapped buffer_heads.
	 */
2036 2037 2038
	index = mpd->first_page;
	end = mpd->next_page - 1;

2039
	pagevec_init(&pvec, 0);
2040
	while (index <= end) {
2041
		nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
2042 2043 2044
		if (nr_pages == 0)
			break;
		for (i = 0; i < nr_pages; i++) {
2045
			int commit_write = 0, redirty_page = 0;
2046 2047
			struct page *page = pvec.pages[i];

2048 2049 2050
			index = page->index;
			if (index > end)
				break;
2051 2052 2053 2054 2055

			if (index == size >> PAGE_CACHE_SHIFT)
				len = size & ~PAGE_CACHE_MASK;
			else
				len = PAGE_CACHE_SIZE;
2056 2057 2058 2059 2060 2061
			if (map) {
				cur_logical = index << (PAGE_CACHE_SHIFT -
							inode->i_blkbits);
				pblock = map->m_pblk + (cur_logical -
							map->m_lblk);
			}
2062 2063 2064 2065 2066
			index++;

			BUG_ON(!PageLocked(page));
			BUG_ON(PageWriteback(page));

2067
			/*
2068 2069
			 * If the page does not have buffers (for
			 * whatever reason), try to create them using
2070
			 * __block_write_begin.  If this fails,
2071
			 * redirty the page and move on.
2072
			 */
2073
			if (!page_has_buffers(page)) {
2074
				if (__block_write_begin(page, 0, len,
2075 2076 2077 2078 2079 2080 2081 2082 2083
						noalloc_get_block_write)) {
				redirty_page:
					redirty_page_for_writepage(mpd->wbc,
								   page);
					unlock_page(page);
					continue;
				}
				commit_write = 1;
			}
2084

2085 2086
			bh = page_bufs = page_buffers(page);
			block_start = 0;
2087
			do {
2088
				if (!bh)
2089
					goto redirty_page;
2090 2091 2092
				if (map && (cur_logical >= map->m_lblk) &&
				    (cur_logical <= (map->m_lblk +
						     (map->m_len - 1)))) {
2093 2094 2095 2096
					if (buffer_delay(bh)) {
						clear_buffer_delay(bh);
						bh->b_blocknr = pblock;
					}
2097 2098 2099 2100 2101 2102 2103
					if (buffer_unwritten(bh) ||
					    buffer_mapped(bh))
						BUG_ON(bh->b_blocknr != pblock);
					if (map->m_flags & EXT4_MAP_UNINIT)
						set_buffer_uninit(bh);
					clear_buffer_unwritten(bh);
				}
2104

2105 2106 2107
				/* redirty page if block allocation undone */
				if (buffer_delay(bh) || buffer_unwritten(bh))
					redirty_page = 1;
2108 2109
				bh = bh->b_this_page;
				block_start += bh->b_size;
2110 2111
				cur_logical++;
				pblock++;
2112 2113 2114 2115
			} while (bh != page_bufs);

			if (redirty_page)
				goto redirty_page;
2116 2117 2118 2119 2120

			if (commit_write)
				/* mark the buffer_heads as dirty & uptodate */
				block_commit_write(page, 0, len);

2121 2122 2123 2124 2125 2126
			/*
			 * Delalloc doesn't support data journalling,
			 * but eventually maybe we'll lift this
			 * restriction.
			 */
			if (unlikely(journal_data && PageChecked(page)))
2127
				err = __ext4_journalled_writepage(page, len);
2128
			else if (test_opt(inode->i_sb, MBLK_IO_SUBMIT))
2129 2130
				err = ext4_bio_write_page(&io_submit, page,
							  len, mpd->wbc);
2131 2132 2133
			else
				err = block_write_full_page(page,
					noalloc_get_block_write, mpd->wbc);
2134 2135

			if (!err)
2136
				mpd->pages_written++;
2137 2138 2139 2140 2141 2142 2143 2144 2145
			/*
			 * In error case, we have to continue because
			 * remaining pages are still locked
			 */
			if (ret == 0)
				ret = err;
		}
		pagevec_release(&pvec);
	}
2146
	ext4_io_submit(&io_submit);
2147 2148 2149
	return ret;
}

2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167
static void ext4_da_block_invalidatepages(struct mpage_da_data *mpd,
					sector_t logical, long blk_cnt)
{
	int nr_pages, i;
	pgoff_t index, end;
	struct pagevec pvec;
	struct inode *inode = mpd->inode;
	struct address_space *mapping = inode->i_mapping;

	index = logical >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
	end   = (logical + blk_cnt - 1) >>
				(PAGE_CACHE_SHIFT - inode->i_blkbits);
	while (index <= end) {
		nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
		if (nr_pages == 0)
			break;
		for (i = 0; i < nr_pages; i++) {
			struct page *page = pvec.pages[i];
2168
			if (page->index > end)
2169 2170 2171 2172 2173 2174 2175
				break;
			BUG_ON(!PageLocked(page));
			BUG_ON(PageWriteback(page));
			block_invalidatepage(page, 0);
			ClearPageUptodate(page);
			unlock_page(page);
		}
2176 2177
		index = pvec.pages[nr_pages - 1]->index + 1;
		pagevec_release(&pvec);
2178 2179 2180 2181
	}
	return;
}

2182 2183 2184
static void ext4_print_free_blocks(struct inode *inode)
{
	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196
	printk(KERN_CRIT "Total free blocks count %lld\n",
	       ext4_count_free_blocks(inode->i_sb));
	printk(KERN_CRIT "Free/Dirty block details\n");
	printk(KERN_CRIT "free_blocks=%lld\n",
	       (long long) percpu_counter_sum(&sbi->s_freeblocks_counter));
	printk(KERN_CRIT "dirty_blocks=%lld\n",
	       (long long) percpu_counter_sum(&sbi->s_dirtyblocks_counter));
	printk(KERN_CRIT "Block reservation details\n");
	printk(KERN_CRIT "i_reserved_data_blocks=%u\n",
	       EXT4_I(inode)->i_reserved_data_blocks);
	printk(KERN_CRIT "i_reserved_meta_blocks=%u\n",
	       EXT4_I(inode)->i_reserved_meta_blocks);
2197 2198 2199
	return;
}

2200
/*
2201 2202
 * mpage_da_map_and_submit - go through given space, map them
 *       if necessary, and then submit them for I/O
2203
 *
2204
 * @mpd - bh describing space
2205 2206 2207 2208
 *
 * The function skips space we know is already mapped to disk blocks.
 *
 */
2209
static void mpage_da_map_and_submit(struct mpage_da_data *mpd)
2210
{
2211
	int err, blks, get_blocks_flags;
2212
	struct ext4_map_blocks map, *mapp = NULL;
2213 2214 2215 2216
	sector_t next = mpd->b_blocknr;
	unsigned max_blocks = mpd->b_size >> mpd->inode->i_blkbits;
	loff_t disksize = EXT4_I(mpd->inode)->i_disksize;
	handle_t *handle = NULL;
2217 2218

	/*
2219 2220
	 * If the blocks are mapped already, or we couldn't accumulate
	 * any blocks, then proceed immediately to the submission stage.
2221
	 */
2222 2223 2224 2225 2226
	if ((mpd->b_size == 0) ||
	    ((mpd->b_state  & (1 << BH_Mapped)) &&
	     !(mpd->b_state & (1 << BH_Delay)) &&
	     !(mpd->b_state & (1 << BH_Unwritten))))
		goto submit_io;
2227 2228 2229 2230

	handle = ext4_journal_current_handle();
	BUG_ON(!handle);

2231
	/*
2232
	 * Call ext4_map_blocks() to allocate any delayed allocation
2233 2234 2235 2236 2237 2238 2239 2240
	 * blocks, or to convert an uninitialized extent to be
	 * initialized (in the case where we have written into
	 * one or more preallocated blocks).
	 *
	 * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE to
	 * indicate that we are on the delayed allocation path.  This
	 * affects functions in many different parts of the allocation
	 * call path.  This flag exists primarily because we don't
2241
	 * want to change *many* call functions, so ext4_map_blocks()
2242 2243 2244 2245 2246 2247
	 * will set the magic i_delalloc_reserved_flag once the
	 * inode's allocation semaphore is taken.
	 *
	 * If the blocks in questions were delalloc blocks, set
	 * EXT4_GET_BLOCKS_DELALLOC_RESERVE so the delalloc accounting
	 * variables are updated after the blocks have been allocated.
2248
	 */
2249 2250
	map.m_lblk = next;
	map.m_len = max_blocks;
2251
	get_blocks_flags = EXT4_GET_BLOCKS_CREATE;
2252 2253
	if (ext4_should_dioread_nolock(mpd->inode))
		get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT;
2254
	if (mpd->b_state & (1 << BH_Delay))
2255 2256
		get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE;

2257
	blks = ext4_map_blocks(handle, mpd->inode, &map, get_blocks_flags);
2258
	if (blks < 0) {
2259 2260
		struct super_block *sb = mpd->inode->i_sb;

2261
		err = blks;
2262
		/*
2263 2264 2265 2266
		 * If get block returns EAGAIN or ENOSPC and there
		 * appears to be free blocks we will call
		 * ext4_writepage() for all of the pages which will
		 * just redirty the pages.
2267 2268
		 */
		if (err == -EAGAIN)
2269
			goto submit_io;
2270 2271

		if (err == -ENOSPC &&
2272
		    ext4_count_free_blocks(sb)) {
2273
			mpd->retval = err;
2274
			goto submit_io;
2275 2276
		}

2277
		/*
2278 2279 2280 2281 2282
		 * get block failure will cause us to loop in
		 * writepages, because a_ops->writepage won't be able
		 * to make progress. The page will be redirtied by
		 * writepage and writepages will again try to write
		 * the same.
2283
		 */
2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294
		if (!(EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED)) {
			ext4_msg(sb, KERN_CRIT,
				 "delayed block allocation failed for inode %lu "
				 "at logical offset %llu with max blocks %zd "
				 "with error %d", mpd->inode->i_ino,
				 (unsigned long long) next,
				 mpd->b_size >> mpd->inode->i_blkbits, err);
			ext4_msg(sb, KERN_CRIT,
				"This should not happen!! Data will be lost\n");
			if (err == -ENOSPC)
				ext4_print_free_blocks(mpd->inode);
A
Aneesh Kumar K.V 已提交
2295
		}
2296
		/* invalidate all the pages */
2297
		ext4_da_block_invalidatepages(mpd, next,
2298
				mpd->b_size >> mpd->inode->i_blkbits);
2299
		return;
2300
	}
2301 2302
	BUG_ON(blks == 0);

2303
	mapp = &map;
2304 2305 2306
	if (map.m_flags & EXT4_MAP_NEW) {
		struct block_device *bdev = mpd->inode->i_sb->s_bdev;
		int i;
2307

2308 2309 2310
		for (i = 0; i < map.m_len; i++)
			unmap_underlying_metadata(bdev, map.m_pblk + i);
	}
2311

2312 2313 2314
	if (ext4_should_order_data(mpd->inode)) {
		err = ext4_jbd2_file_inode(handle, mpd->inode);
		if (err)
2315 2316
			/* This only happens if the journal is aborted */
			return;
2317 2318 2319
	}

	/*
2320
	 * Update on-disk size along with block allocation.
2321 2322 2323 2324 2325 2326
	 */
	disksize = ((loff_t) next + blks) << mpd->inode->i_blkbits;
	if (disksize > i_size_read(mpd->inode))
		disksize = i_size_read(mpd->inode);
	if (disksize > EXT4_I(mpd->inode)->i_disksize) {
		ext4_update_i_disksize(mpd->inode, disksize);
2327 2328 2329 2330 2331
		err = ext4_mark_inode_dirty(handle, mpd->inode);
		if (err)
			ext4_error(mpd->inode->i_sb,
				   "Failed to mark inode %lu dirty",
				   mpd->inode->i_ino);
2332 2333
	}

2334
submit_io:
2335
	mpage_da_submit_io(mpd, mapp);
2336
	mpd->io_done = 1;
2337 2338
}

2339 2340
#define BH_FLAGS ((1 << BH_Uptodate) | (1 << BH_Mapped) | \
		(1 << BH_Delay) | (1 << BH_Unwritten))
2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351

/*
 * mpage_add_bh_to_extent - try to add one more block to extent of blocks
 *
 * @mpd->lbh - extent of blocks
 * @logical - logical number of the block in the file
 * @bh - bh of the block (used to access block's state)
 *
 * the function is used to collect contig. blocks in same state
 */
static void mpage_add_bh_to_extent(struct mpage_da_data *mpd,
2352 2353
				   sector_t logical, size_t b_size,
				   unsigned long b_state)
2354 2355
{
	sector_t next;
2356
	int nrblocks = mpd->b_size >> mpd->inode->i_blkbits;
2357

2358 2359 2360 2361
	/*
	 * XXX Don't go larger than mballoc is willing to allocate
	 * This is a stopgap solution.  We eventually need to fold
	 * mpage_da_submit_io() into this function and then call
2362
	 * ext4_map_blocks() multiple times in a loop
2363 2364 2365 2366
	 */
	if (nrblocks >= 8*1024*1024/mpd->inode->i_sb->s_blocksize)
		goto flush_it;

2367
	/* check if thereserved journal credits might overflow */
2368
	if (!(ext4_test_inode_flag(mpd->inode, EXT4_INODE_EXTENTS))) {
2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388
		if (nrblocks >= EXT4_MAX_TRANS_DATA) {
			/*
			 * With non-extent format we are limited by the journal
			 * credit available.  Total credit needed to insert
			 * nrblocks contiguous blocks is dependent on the
			 * nrblocks.  So limit nrblocks.
			 */
			goto flush_it;
		} else if ((nrblocks + (b_size >> mpd->inode->i_blkbits)) >
				EXT4_MAX_TRANS_DATA) {
			/*
			 * Adding the new buffer_head would make it cross the
			 * allowed limit for which we have journal credit
			 * reserved. So limit the new bh->b_size
			 */
			b_size = (EXT4_MAX_TRANS_DATA - nrblocks) <<
						mpd->inode->i_blkbits;
			/* we will do mpage_da_submit_io in the next loop */
		}
	}
2389 2390 2391
	/*
	 * First block in the extent
	 */
2392 2393 2394 2395
	if (mpd->b_size == 0) {
		mpd->b_blocknr = logical;
		mpd->b_size = b_size;
		mpd->b_state = b_state & BH_FLAGS;
2396 2397 2398
		return;
	}

2399
	next = mpd->b_blocknr + nrblocks;
2400 2401 2402
	/*
	 * Can we merge the block to our big extent?
	 */
2403 2404
	if (logical == next && (b_state & BH_FLAGS) == mpd->b_state) {
		mpd->b_size += b_size;
2405 2406 2407
		return;
	}

2408
flush_it:
2409 2410 2411 2412
	/*
	 * We couldn't merge the block to our extent, so we
	 * need to flush current  extent and start new one
	 */
2413
	mpage_da_map_and_submit(mpd);
2414
	return;
2415 2416
}

2417
static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh)
2418
{
2419
	return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh);
2420 2421
}

2422 2423 2424 2425 2426 2427 2428 2429 2430 2431
/*
 * __mpage_da_writepage - finds extent of pages and blocks
 *
 * @page: page to consider
 * @wbc: not used, we just follow rules
 * @data: context
 *
 * The function finds extents of pages and scan them for all blocks.
 */
static int __mpage_da_writepage(struct page *page,
2432 2433
				struct writeback_control *wbc,
				struct mpage_da_data *mpd)
2434 2435
{
	struct inode *inode = mpd->inode;
2436
	struct buffer_head *bh, *head;
2437 2438 2439 2440 2441 2442 2443 2444
	sector_t logical;

	/*
	 * Can we merge this page to current extent?
	 */
	if (mpd->next_page != page->index) {
		/*
		 * Nope, we can't. So, we map non-allocated blocks
2445
		 * and start IO on them
2446 2447
		 */
		if (mpd->next_page != mpd->first_page) {
2448
			mpage_da_map_and_submit(mpd);
2449 2450 2451 2452 2453 2454
			/*
			 * skip rest of the page in the page_vec
			 */
			redirty_page_for_writepage(wbc, page);
			unlock_page(page);
			return MPAGE_DA_EXTENT_TAIL;
2455 2456 2457 2458 2459 2460 2461 2462 2463 2464
		}

		/*
		 * Start next extent of pages ...
		 */
		mpd->first_page = page->index;

		/*
		 * ... and blocks
		 */
2465 2466 2467
		mpd->b_size = 0;
		mpd->b_state = 0;
		mpd->b_blocknr = 0;
2468 2469 2470 2471 2472 2473 2474
	}

	mpd->next_page = page->index + 1;
	logical = (sector_t) page->index <<
		  (PAGE_CACHE_SHIFT - inode->i_blkbits);

	if (!page_has_buffers(page)) {
2475 2476
		mpage_add_bh_to_extent(mpd, logical, PAGE_CACHE_SIZE,
				       (1 << BH_Dirty) | (1 << BH_Uptodate));
2477 2478
		if (mpd->io_done)
			return MPAGE_DA_EXTENT_TAIL;
2479 2480 2481 2482 2483 2484 2485 2486
	} else {
		/*
		 * Page with regular buffer heads, just add all dirty ones
		 */
		head = page_buffers(page);
		bh = head;
		do {
			BUG_ON(buffer_locked(bh));
2487 2488 2489 2490
			/*
			 * We need to try to allocate
			 * unmapped blocks in the same page.
			 * Otherwise we won't make progress
2491
			 * with the page in ext4_writepage
2492
			 */
2493
			if (ext4_bh_delay_or_unwritten(NULL, bh)) {
2494 2495 2496
				mpage_add_bh_to_extent(mpd, logical,
						       bh->b_size,
						       bh->b_state);
2497 2498
				if (mpd->io_done)
					return MPAGE_DA_EXTENT_TAIL;
2499 2500 2501 2502 2503 2504 2505 2506 2507
			} else if (buffer_dirty(bh) && (buffer_mapped(bh))) {
				/*
				 * mapped dirty buffer. We need to update
				 * the b_state because we look at
				 * b_state in mpage_da_map_blocks. We don't
				 * update b_size because if we find an
				 * unmapped buffer_head later we need to
				 * use the b_state flag of that buffer_head.
				 */
2508 2509
				if (mpd->b_size == 0)
					mpd->b_state = bh->b_state & BH_FLAGS;
2510
			}
2511 2512 2513 2514 2515 2516 2517 2518
			logical++;
		} while ((bh = bh->b_this_page) != head);
	}

	return 0;
}

/*
2519 2520 2521
 * This is a special get_blocks_t callback which is used by
 * ext4_da_write_begin().  It will either return mapped block or
 * reserve space for a single block.
2522 2523 2524 2525 2526 2527 2528
 *
 * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
 * We also have b_blocknr = -1 and b_bdev initialized properly
 *
 * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
 * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
 * initialized properly.
2529 2530
 */
static int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
2531
				  struct buffer_head *bh, int create)
2532
{
2533
	struct ext4_map_blocks map;
2534
	int ret = 0;
2535 2536 2537 2538
	sector_t invalid_block = ~((sector_t) 0xffff);

	if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
		invalid_block = ~0;
2539 2540

	BUG_ON(create == 0);
2541 2542 2543 2544
	BUG_ON(bh->b_size != inode->i_sb->s_blocksize);

	map.m_lblk = iblock;
	map.m_len = 1;
2545 2546 2547 2548 2549 2550

	/*
	 * first, we need to know whether the block is allocated already
	 * preallocated blocks are unmapped but should treated
	 * the same as allocated blocks.
	 */
2551 2552 2553 2554 2555 2556
	ret = ext4_map_blocks(NULL, inode, &map, 0);
	if (ret < 0)
		return ret;
	if (ret == 0) {
		if (buffer_delay(bh))
			return 0; /* Not sure this could or should happen */
2557
		/*
C
Christoph Hellwig 已提交
2558
		 * XXX: __block_write_begin() unmaps passed block, is it OK?
2559
		 */
2560
		ret = ext4_da_reserve_space(inode, iblock);
2561 2562 2563 2564
		if (ret)
			/* not enough space to reserve */
			return ret;

2565 2566 2567 2568
		map_bh(bh, inode->i_sb, invalid_block);
		set_buffer_new(bh);
		set_buffer_delay(bh);
		return 0;
2569 2570
	}

2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584
	map_bh(bh, inode->i_sb, map.m_pblk);
	bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;

	if (buffer_unwritten(bh)) {
		/* A delayed write to unwritten bh should be marked
		 * new and mapped.  Mapped ensures that we don't do
		 * get_block multiple times when we write to the same
		 * offset and new ensures that we do proper zero out
		 * for partial write.
		 */
		set_buffer_new(bh);
		set_buffer_mapped(bh);
	}
	return 0;
2585
}
2586

2587 2588 2589
/*
 * This function is used as a standard get_block_t calback function
 * when there is no desire to allocate any blocks.  It is used as a
C
Christoph Hellwig 已提交
2590
 * callback function for block_write_begin() and block_write_full_page().
2591
 * These functions should only try to map a single block at a time.
2592 2593 2594 2595 2596
 *
 * Since this function doesn't do block allocations even if the caller
 * requests it by passing in create=1, it is critically important that
 * any caller checks to make sure that any buffer heads are returned
 * by this function are either all already mapped or marked for
2597 2598 2599
 * delayed allocation before calling  block_write_full_page().  Otherwise,
 * b_blocknr could be left unitialized, and the page write functions will
 * be taken by surprise.
2600 2601
 */
static int noalloc_get_block_write(struct inode *inode, sector_t iblock,
2602 2603
				   struct buffer_head *bh_result, int create)
{
2604
	BUG_ON(bh_result->b_size != inode->i_sb->s_blocksize);
2605
	return _ext4_get_block(inode, iblock, bh_result, 0);
2606 2607
}

2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629
static int bget_one(handle_t *handle, struct buffer_head *bh)
{
	get_bh(bh);
	return 0;
}

static int bput_one(handle_t *handle, struct buffer_head *bh)
{
	put_bh(bh);
	return 0;
}

static int __ext4_journalled_writepage(struct page *page,
				       unsigned int len)
{
	struct address_space *mapping = page->mapping;
	struct inode *inode = mapping->host;
	struct buffer_head *page_bufs;
	handle_t *handle = NULL;
	int ret = 0;
	int err;

2630
	ClearPageChecked(page);
2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655
	page_bufs = page_buffers(page);
	BUG_ON(!page_bufs);
	walk_page_buffers(handle, page_bufs, 0, len, NULL, bget_one);
	/* As soon as we unlock the page, it can go away, but we have
	 * references to buffers so we are safe */
	unlock_page(page);

	handle = ext4_journal_start(inode, ext4_writepage_trans_blocks(inode));
	if (IS_ERR(handle)) {
		ret = PTR_ERR(handle);
		goto out;
	}

	ret = walk_page_buffers(handle, page_bufs, 0, len, NULL,
				do_journal_get_write_access);

	err = walk_page_buffers(handle, page_bufs, 0, len, NULL,
				write_end_fn);
	if (ret == 0)
		ret = err;
	err = ext4_journal_stop(handle);
	if (!ret)
		ret = err;

	walk_page_buffers(handle, page_bufs, 0, len, NULL, bput_one);
2656
	ext4_set_inode_state(inode, EXT4_STATE_JDATA);
2657 2658 2659 2660
out:
	return ret;
}

2661 2662 2663
static int ext4_set_bh_endio(struct buffer_head *bh, struct inode *inode);
static void ext4_end_io_buffer_write(struct buffer_head *bh, int uptodate);

2664
/*
2665 2666 2667 2668 2669 2670 2671 2672 2673
 * Note that we don't need to start a transaction unless we're journaling data
 * because we should have holes filled from ext4_page_mkwrite(). We even don't
 * need to file the inode to the transaction's list in ordered mode because if
 * we are writing back data added by write(), the inode is already there and if
 * we are writing back data modified via mmap(), noone guarantees in which
 * transaction the data will hit the disk. In case we are journaling data, we
 * cannot start transaction directly because transaction start ranks above page
 * lock so we have to do some magic.
 *
2674 2675 2676 2677 2678
 * This function can get called via...
 *   - ext4_da_writepages after taking page lock (have journal handle)
 *   - journal_submit_inode_data_buffers (no journal handle)
 *   - shrink_page_list via pdflush (no journal handle)
 *   - grab_page_cache when doing write_begin (have journal handle)
2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703
 *
 * We don't do any block allocation in this function. If we have page with
 * multiple blocks we need to write those buffer_heads that are mapped. This
 * is important for mmaped based write. So if we do with blocksize 1K
 * truncate(f, 1024);
 * a = mmap(f, 0, 4096);
 * a[0] = 'a';
 * truncate(f, 4096);
 * we have in the page first buffer_head mapped via page_mkwrite call back
 * but other bufer_heads would be unmapped but dirty(dirty done via the
 * do_wp_page). So writepage should write the first block. If we modify
 * the mmap area beyond 1024 we will again get a page_fault and the
 * page_mkwrite callback will do the block allocation and mark the
 * buffer_heads mapped.
 *
 * We redirty the page if we have any buffer_heads that is either delay or
 * unwritten in the page.
 *
 * We can get recursively called as show below.
 *
 *	ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
 *		ext4_writepage()
 *
 * But since we don't do any block allocation we should not deadlock.
 * Page also have the dirty flag cleared so we don't get recurive page_lock.
2704
 */
2705
static int ext4_writepage(struct page *page,
2706
			  struct writeback_control *wbc)
2707
{
T
Theodore Ts'o 已提交
2708
	int ret = 0, commit_write = 0;
2709
	loff_t size;
2710
	unsigned int len;
2711
	struct buffer_head *page_bufs = NULL;
2712 2713
	struct inode *inode = page->mapping->host;

2714
	trace_ext4_writepage(inode, page);
2715 2716 2717 2718 2719
	size = i_size_read(inode);
	if (page->index == size >> PAGE_CACHE_SHIFT)
		len = size & ~PAGE_CACHE_MASK;
	else
		len = PAGE_CACHE_SIZE;
2720

T
Theodore Ts'o 已提交
2721 2722
	/*
	 * If the page does not have buffers (for whatever reason),
2723
	 * try to create them using __block_write_begin.  If this
T
Theodore Ts'o 已提交
2724 2725
	 * fails, redirty the page and move on.
	 */
2726
	if (!page_has_buffers(page)) {
2727
		if (__block_write_begin(page, 0, len,
T
Theodore Ts'o 已提交
2728 2729
					noalloc_get_block_write)) {
		redirty_page:
2730 2731 2732 2733
			redirty_page_for_writepage(wbc, page);
			unlock_page(page);
			return 0;
		}
T
Theodore Ts'o 已提交
2734 2735 2736 2737 2738
		commit_write = 1;
	}
	page_bufs = page_buffers(page);
	if (walk_page_buffers(NULL, page_bufs, 0, len, NULL,
			      ext4_bh_delay_or_unwritten)) {
2739
		/*
2740 2741 2742 2743
		 * We don't want to do block allocation, so redirty
		 * the page and return.  We may reach here when we do
		 * a journal commit via journal_submit_inode_data_buffers.
		 * We can also reach here via shrink_page_list
2744
		 */
T
Theodore Ts'o 已提交
2745 2746 2747
		goto redirty_page;
	}
	if (commit_write)
2748
		/* now mark the buffer_heads as dirty and uptodate */
2749
		block_commit_write(page, 0, len);
2750

2751
	if (PageChecked(page) && ext4_should_journal_data(inode))
2752 2753 2754 2755
		/*
		 * It's mmapped pagecache.  Add buffers and journal it.  There
		 * doesn't seem much point in redirtying the page here.
		 */
2756
		return __ext4_journalled_writepage(page, len);
2757

T
Theodore Ts'o 已提交
2758
	if (buffer_uninit(page_bufs)) {
2759 2760 2761 2762
		ext4_set_bh_endio(page_bufs, inode);
		ret = block_write_full_page_endio(page, noalloc_get_block_write,
					    wbc, ext4_end_io_buffer_write);
	} else
2763 2764
		ret = block_write_full_page(page, noalloc_get_block_write,
					    wbc);
2765 2766 2767 2768

	return ret;
}

2769
/*
2770 2771 2772 2773 2774
 * This is called via ext4_da_writepages() to
 * calulate the total number of credits to reserve to fit
 * a single extent allocation into a single transaction,
 * ext4_da_writpeages() will loop calling this before
 * the block allocation.
2775
 */
2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786

static int ext4_da_writepages_trans_blocks(struct inode *inode)
{
	int max_blocks = EXT4_I(inode)->i_reserved_data_blocks;

	/*
	 * With non-extent format the journal credit needed to
	 * insert nrblocks contiguous block is dependent on
	 * number of contiguous block. So we will limit
	 * number of contiguous block to a sane value
	 */
2787
	if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) &&
2788 2789 2790 2791 2792
	    (max_blocks > EXT4_MAX_TRANS_DATA))
		max_blocks = EXT4_MAX_TRANS_DATA;

	return ext4_chunk_trans_blocks(inode, max_blocks);
}
2793

2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804
/*
 * write_cache_pages_da - walk the list of dirty pages of the given
 * address space and call the callback function (which usually writes
 * the pages).
 *
 * This is a forked version of write_cache_pages().  Differences:
 *	Range cyclic is ignored.
 *	no_nrwrite_index_update is always presumed true
 */
static int write_cache_pages_da(struct address_space *mapping,
				struct writeback_control *wbc,
2805 2806
				struct mpage_da_data *mpd,
				pgoff_t *done_index)
2807 2808 2809 2810
{
	int ret = 0;
	int done = 0;
	struct pagevec pvec;
2811
	unsigned nr_pages;
2812 2813 2814
	pgoff_t index;
	pgoff_t end;		/* Inclusive */
	long nr_to_write = wbc->nr_to_write;
2815
	int tag;
2816 2817 2818 2819 2820

	pagevec_init(&pvec, 0);
	index = wbc->range_start >> PAGE_CACHE_SHIFT;
	end = wbc->range_end >> PAGE_CACHE_SHIFT;

2821 2822 2823 2824 2825
	if (wbc->sync_mode == WB_SYNC_ALL)
		tag = PAGECACHE_TAG_TOWRITE;
	else
		tag = PAGECACHE_TAG_DIRTY;

2826
	*done_index = index;
2827 2828 2829
	while (!done && (index <= end)) {
		int i;

2830
		nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849
			      min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
		if (nr_pages == 0)
			break;

		for (i = 0; i < nr_pages; i++) {
			struct page *page = pvec.pages[i];

			/*
			 * At this point, the page may be truncated or
			 * invalidated (changing page->mapping to NULL), or
			 * even swizzled back from swapper_space to tmpfs file
			 * mapping. However, page->index will not change
			 * because we have a reference on the page.
			 */
			if (page->index > end) {
				done = 1;
				break;
			}

2850 2851
			*done_index = page->index + 1;

2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920
			lock_page(page);

			/*
			 * Page truncated or invalidated. We can freely skip it
			 * then, even for data integrity operations: the page
			 * has disappeared concurrently, so there could be no
			 * real expectation of this data interity operation
			 * even if there is now a new, dirty page at the same
			 * pagecache address.
			 */
			if (unlikely(page->mapping != mapping)) {
continue_unlock:
				unlock_page(page);
				continue;
			}

			if (!PageDirty(page)) {
				/* someone wrote it for us */
				goto continue_unlock;
			}

			if (PageWriteback(page)) {
				if (wbc->sync_mode != WB_SYNC_NONE)
					wait_on_page_writeback(page);
				else
					goto continue_unlock;
			}

			BUG_ON(PageWriteback(page));
			if (!clear_page_dirty_for_io(page))
				goto continue_unlock;

			ret = __mpage_da_writepage(page, wbc, mpd);
			if (unlikely(ret)) {
				if (ret == AOP_WRITEPAGE_ACTIVATE) {
					unlock_page(page);
					ret = 0;
				} else {
					done = 1;
					break;
				}
			}

			if (nr_to_write > 0) {
				nr_to_write--;
				if (nr_to_write == 0 &&
				    wbc->sync_mode == WB_SYNC_NONE) {
					/*
					 * We stop writing back only if we are
					 * not doing integrity sync. In case of
					 * integrity sync we have to keep going
					 * because someone may be concurrently
					 * dirtying pages, and we might have
					 * synced a lot of newly appeared dirty
					 * pages, but have not synced all of the
					 * old dirty pages.
					 */
					done = 1;
					break;
				}
			}
		}
		pagevec_release(&pvec);
		cond_resched();
	}
	return ret;
}


2921
static int ext4_da_writepages(struct address_space *mapping,
2922
			      struct writeback_control *wbc)
2923
{
2924 2925
	pgoff_t	index;
	int range_whole = 0;
2926
	handle_t *handle = NULL;
2927
	struct mpage_da_data mpd;
2928
	struct inode *inode = mapping->host;
2929 2930
	int pages_written = 0;
	long pages_skipped;
2931
	unsigned int max_pages;
2932
	int range_cyclic, cycled = 1, io_done = 0;
2933 2934
	int needed_blocks, ret = 0;
	long desired_nr_to_write, nr_to_writebump = 0;
2935
	loff_t range_start = wbc->range_start;
2936
	struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2937
	pgoff_t done_index = 0;
2938
	pgoff_t end;
2939

2940
	trace_ext4_da_writepages(inode, wbc);
2941

2942 2943 2944 2945 2946
	/*
	 * No pages to write? This is mainly a kludge to avoid starting
	 * a transaction for special inodes like journal inode on last iput()
	 * because that could violate lock ordering on umount
	 */
2947
	if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2948
		return 0;
2949 2950 2951 2952 2953

	/*
	 * If the filesystem has aborted, it is read-only, so return
	 * right away instead of dumping stack traces later on that
	 * will obscure the real source of the problem.  We test
2954
	 * EXT4_MF_FS_ABORTED instead of sb->s_flag's MS_RDONLY because
2955 2956 2957 2958 2959
	 * the latter could be true if the filesystem is mounted
	 * read-only, and in that case, ext4_da_writepages should
	 * *never* be called, so if that ever happens, we would want
	 * the stack trace.
	 */
2960
	if (unlikely(sbi->s_mount_flags & EXT4_MF_FS_ABORTED))
2961 2962
		return -EROFS;

2963 2964
	if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
		range_whole = 1;
2965

2966 2967
	range_cyclic = wbc->range_cyclic;
	if (wbc->range_cyclic) {
2968
		index = mapping->writeback_index;
2969 2970 2971 2972 2973
		if (index)
			cycled = 0;
		wbc->range_start = index << PAGE_CACHE_SHIFT;
		wbc->range_end  = LLONG_MAX;
		wbc->range_cyclic = 0;
2974 2975
		end = -1;
	} else {
2976
		index = wbc->range_start >> PAGE_CACHE_SHIFT;
2977 2978
		end = wbc->range_end >> PAGE_CACHE_SHIFT;
	}
2979

2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996
	/*
	 * This works around two forms of stupidity.  The first is in
	 * the writeback code, which caps the maximum number of pages
	 * written to be 1024 pages.  This is wrong on multiple
	 * levels; different architectues have a different page size,
	 * which changes the maximum amount of data which gets
	 * written.  Secondly, 4 megabytes is way too small.  XFS
	 * forces this value to be 16 megabytes by multiplying
	 * nr_to_write parameter by four, and then relies on its
	 * allocator to allocate larger extents to make them
	 * contiguous.  Unfortunately this brings us to the second
	 * stupidity, which is that ext4's mballoc code only allocates
	 * at most 2048 blocks.  So we force contiguous writes up to
	 * the number of dirty blocks in the inode, or
	 * sbi->max_writeback_mb_bump whichever is smaller.
	 */
	max_pages = sbi->s_max_writeback_mb_bump << (20 - PAGE_CACHE_SHIFT);
2997 2998 2999 3000 3001 3002
	if (!range_cyclic && range_whole) {
		if (wbc->nr_to_write == LONG_MAX)
			desired_nr_to_write = wbc->nr_to_write;
		else
			desired_nr_to_write = wbc->nr_to_write * 8;
	} else
3003 3004 3005 3006 3007 3008 3009 3010 3011 3012
		desired_nr_to_write = ext4_num_dirty_pages(inode, index,
							   max_pages);
	if (desired_nr_to_write > max_pages)
		desired_nr_to_write = max_pages;

	if (wbc->nr_to_write < desired_nr_to_write) {
		nr_to_writebump = desired_nr_to_write - wbc->nr_to_write;
		wbc->nr_to_write = desired_nr_to_write;
	}

3013 3014 3015
	mpd.wbc = wbc;
	mpd.inode = mapping->host;

3016 3017
	pages_skipped = wbc->pages_skipped;

3018
retry:
3019 3020 3021
	if (wbc->sync_mode == WB_SYNC_ALL)
		tag_pages_for_writeback(mapping, index, end);

3022
	while (!ret && wbc->nr_to_write > 0) {
3023 3024 3025 3026 3027 3028 3029 3030

		/*
		 * we  insert one extent at a time. So we need
		 * credit needed for single extent allocation.
		 * journalled mode is currently not supported
		 * by delalloc
		 */
		BUG_ON(ext4_should_journal_data(inode));
3031
		needed_blocks = ext4_da_writepages_trans_blocks(inode);
3032

3033 3034 3035 3036
		/* start a new transaction*/
		handle = ext4_journal_start(inode, needed_blocks);
		if (IS_ERR(handle)) {
			ret = PTR_ERR(handle);
3037
			ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
3038
			       "%ld pages, ino %lu; err %d", __func__,
3039
				wbc->nr_to_write, inode->i_ino, ret);
3040 3041
			goto out_writepages;
		}
3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059

		/*
		 * Now call __mpage_da_writepage to find the next
		 * contiguous region of logical blocks that need
		 * blocks to be allocated by ext4.  We don't actually
		 * submit the blocks for I/O here, even though
		 * write_cache_pages thinks it will, and will set the
		 * pages as clean for write before calling
		 * __mpage_da_writepage().
		 */
		mpd.b_size = 0;
		mpd.b_state = 0;
		mpd.b_blocknr = 0;
		mpd.first_page = 0;
		mpd.next_page = 0;
		mpd.io_done = 0;
		mpd.pages_written = 0;
		mpd.retval = 0;
3060
		ret = write_cache_pages_da(mapping, wbc, &mpd, &done_index);
3061
		/*
3062
		 * If we have a contiguous extent of pages and we
3063 3064 3065 3066
		 * haven't done the I/O yet, map the blocks and submit
		 * them for I/O.
		 */
		if (!mpd.io_done && mpd.next_page != mpd.first_page) {
3067
			mpage_da_map_and_submit(&mpd);
3068 3069
			ret = MPAGE_DA_EXTENT_TAIL;
		}
3070
		trace_ext4_da_write_pages(inode, &mpd);
3071
		wbc->nr_to_write -= mpd.pages_written;
3072

3073
		ext4_journal_stop(handle);
3074

3075
		if ((mpd.retval == -ENOSPC) && sbi->s_journal) {
3076 3077 3078 3079
			/* commit the transaction which would
			 * free blocks released in the transaction
			 * and try again
			 */
3080
			jbd2_journal_force_commit_nested(sbi->s_journal);
3081 3082 3083
			wbc->pages_skipped = pages_skipped;
			ret = 0;
		} else if (ret == MPAGE_DA_EXTENT_TAIL) {
3084 3085 3086 3087
			/*
			 * got one extent now try with
			 * rest of the pages
			 */
3088 3089
			pages_written += mpd.pages_written;
			wbc->pages_skipped = pages_skipped;
3090
			ret = 0;
3091
			io_done = 1;
3092
		} else if (wbc->nr_to_write)
3093 3094 3095 3096 3097 3098
			/*
			 * There is no more writeout needed
			 * or we requested for a noblocking writeout
			 * and we found the device congested
			 */
			break;
3099
	}
3100 3101 3102 3103 3104 3105 3106
	if (!io_done && !cycled) {
		cycled = 1;
		index = 0;
		wbc->range_start = index << PAGE_CACHE_SHIFT;
		wbc->range_end  = mapping->writeback_index - 1;
		goto retry;
	}
3107
	if (pages_skipped != wbc->pages_skipped)
3108 3109
		ext4_msg(inode->i_sb, KERN_CRIT,
			 "This should not happen leaving %s "
3110
			 "with nr_to_write = %ld ret = %d",
3111
			 __func__, wbc->nr_to_write, ret);
3112 3113

	/* Update index */
3114
	wbc->range_cyclic = range_cyclic;
3115 3116 3117 3118 3119
	if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
		/*
		 * set the writeback_index so that range_cyclic
		 * mode will write it back later
		 */
3120
		mapping->writeback_index = done_index;
3121

3122
out_writepages:
3123
	wbc->nr_to_write -= nr_to_writebump;
3124
	wbc->range_start = range_start;
3125
	trace_ext4_da_writepages_result(inode, wbc, ret, pages_written);
3126
	return ret;
3127 3128
}

3129 3130 3131 3132 3133 3134 3135 3136 3137
#define FALL_BACK_TO_NONDELALLOC 1
static int ext4_nonda_switch(struct super_block *sb)
{
	s64 free_blocks, dirty_blocks;
	struct ext4_sb_info *sbi = EXT4_SB(sb);

	/*
	 * switch to non delalloc mode if we are running low
	 * on free block. The free block accounting via percpu
3138
	 * counters can get slightly wrong with percpu_counter_batch getting
3139 3140 3141 3142 3143 3144 3145 3146 3147
	 * accumulated on each CPU without updating global counters
	 * Delalloc need an accurate free block accounting. So switch
	 * to non delalloc when we are near to error range.
	 */
	free_blocks  = percpu_counter_read_positive(&sbi->s_freeblocks_counter);
	dirty_blocks = percpu_counter_read_positive(&sbi->s_dirtyblocks_counter);
	if (2 * free_blocks < 3 * dirty_blocks ||
		free_blocks < (dirty_blocks + EXT4_FREEBLOCKS_WATERMARK)) {
		/*
3148 3149
		 * free block count is less than 150% of dirty blocks
		 * or free blocks is less than watermark
3150 3151 3152
		 */
		return 1;
	}
3153 3154 3155 3156 3157 3158 3159
	/*
	 * Even if we don't switch but are nearing capacity,
	 * start pushing delalloc when 1/2 of free blocks are dirty.
	 */
	if (free_blocks < 2 * dirty_blocks)
		writeback_inodes_sb_if_idle(sb);

3160 3161 3162
	return 0;
}

3163
static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
3164 3165
			       loff_t pos, unsigned len, unsigned flags,
			       struct page **pagep, void **fsdata)
3166
{
3167
	int ret, retries = 0;
3168 3169 3170 3171 3172 3173
	struct page *page;
	pgoff_t index;
	struct inode *inode = mapping->host;
	handle_t *handle;

	index = pos >> PAGE_CACHE_SHIFT;
3174 3175 3176 3177 3178 3179 3180

	if (ext4_nonda_switch(inode->i_sb)) {
		*fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
		return ext4_write_begin(file, mapping, pos,
					len, flags, pagep, fsdata);
	}
	*fsdata = (void *)0;
3181
	trace_ext4_da_write_begin(inode, pos, len, flags);
3182
retry:
3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193
	/*
	 * With delayed allocation, we don't log the i_disksize update
	 * if there is delayed block allocation. But we still need
	 * to journalling the i_disksize update if writes to the end
	 * of file which has an already mapped buffer.
	 */
	handle = ext4_journal_start(inode, 1);
	if (IS_ERR(handle)) {
		ret = PTR_ERR(handle);
		goto out;
	}
3194 3195 3196
	/* We cannot recurse into the filesystem as the transaction is already
	 * started */
	flags |= AOP_FLAG_NOFS;
3197

3198
	page = grab_cache_page_write_begin(mapping, index, flags);
3199 3200 3201 3202 3203
	if (!page) {
		ext4_journal_stop(handle);
		ret = -ENOMEM;
		goto out;
	}
3204 3205
	*pagep = page;

3206
	ret = __block_write_begin(page, pos, len, ext4_da_get_block_prep);
3207 3208 3209 3210
	if (ret < 0) {
		unlock_page(page);
		ext4_journal_stop(handle);
		page_cache_release(page);
3211 3212 3213 3214 3215 3216
		/*
		 * block_write_begin may have instantiated a few blocks
		 * outside i_size.  Trim these off again. Don't need
		 * i_size_read because we hold i_mutex.
		 */
		if (pos + len > inode->i_size)
3217
			ext4_truncate_failed_write(inode);
3218 3219
	}

3220 3221
	if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
		goto retry;
3222 3223 3224 3225
out:
	return ret;
}

3226 3227 3228 3229 3230
/*
 * Check if we should update i_disksize
 * when write to the end of file but not require block allocation
 */
static int ext4_da_should_update_i_disksize(struct page *page,
3231
					    unsigned long offset)
3232 3233 3234 3235 3236 3237 3238 3239 3240
{
	struct buffer_head *bh;
	struct inode *inode = page->mapping->host;
	unsigned int idx;
	int i;

	bh = page_buffers(page);
	idx = offset >> inode->i_blkbits;

3241
	for (i = 0; i < idx; i++)
3242 3243
		bh = bh->b_this_page;

3244
	if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
3245 3246 3247 3248
		return 0;
	return 1;
}

3249
static int ext4_da_write_end(struct file *file,
3250 3251 3252
			     struct address_space *mapping,
			     loff_t pos, unsigned len, unsigned copied,
			     struct page *page, void *fsdata)
3253 3254 3255 3256 3257
{
	struct inode *inode = mapping->host;
	int ret = 0, ret2;
	handle_t *handle = ext4_journal_current_handle();
	loff_t new_i_size;
3258
	unsigned long start, end;
3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271
	int write_mode = (int)(unsigned long)fsdata;

	if (write_mode == FALL_BACK_TO_NONDELALLOC) {
		if (ext4_should_order_data(inode)) {
			return ext4_ordered_write_end(file, mapping, pos,
					len, copied, page, fsdata);
		} else if (ext4_should_writeback_data(inode)) {
			return ext4_writeback_write_end(file, mapping, pos,
					len, copied, page, fsdata);
		} else {
			BUG();
		}
	}
3272

3273
	trace_ext4_da_write_end(inode, pos, len, copied);
3274
	start = pos & (PAGE_CACHE_SIZE - 1);
3275
	end = start + copied - 1;
3276 3277 3278 3279 3280 3281 3282 3283

	/*
	 * generic_write_end() will run mark_inode_dirty() if i_size
	 * changes.  So let's piggyback the i_disksize mark_inode_dirty
	 * into that.
	 */

	new_i_size = pos + copied;
3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294
	if (new_i_size > EXT4_I(inode)->i_disksize) {
		if (ext4_da_should_update_i_disksize(page, end)) {
			down_write(&EXT4_I(inode)->i_data_sem);
			if (new_i_size > EXT4_I(inode)->i_disksize) {
				/*
				 * Updating i_disksize when extending file
				 * without needing block allocation
				 */
				if (ext4_should_order_data(inode))
					ret = ext4_jbd2_file_inode(handle,
								   inode);
3295

3296 3297 3298
				EXT4_I(inode)->i_disksize = new_i_size;
			}
			up_write(&EXT4_I(inode)->i_data_sem);
3299 3300 3301 3302 3303
			/* We need to mark inode dirty even if
			 * new_i_size is less that inode->i_size
			 * bu greater than i_disksize.(hint delalloc)
			 */
			ext4_mark_inode_dirty(handle, inode);
3304
		}
3305
	}
3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326
	ret2 = generic_write_end(file, mapping, pos, len, copied,
							page, fsdata);
	copied = ret2;
	if (ret2 < 0)
		ret = ret2;
	ret2 = ext4_journal_stop(handle);
	if (!ret)
		ret = ret2;

	return ret ? ret : copied;
}

static void ext4_da_invalidatepage(struct page *page, unsigned long offset)
{
	/*
	 * Drop reserved blocks
	 */
	BUG_ON(!PageLocked(page));
	if (!page_has_buffers(page))
		goto out;

3327
	ext4_da_page_release_reservation(page, offset);
3328 3329 3330 3331 3332 3333 3334

out:
	ext4_invalidatepage(page, offset);

	return;
}

3335 3336 3337 3338 3339
/*
 * Force all delayed allocation blocks to be allocated for a given inode.
 */
int ext4_alloc_da_blocks(struct inode *inode)
{
3340 3341
	trace_ext4_alloc_da_blocks(inode);

3342 3343 3344 3345 3346 3347 3348 3349 3350 3351
	if (!EXT4_I(inode)->i_reserved_data_blocks &&
	    !EXT4_I(inode)->i_reserved_meta_blocks)
		return 0;

	/*
	 * We do something simple for now.  The filemap_flush() will
	 * also start triggering a write of the data blocks, which is
	 * not strictly speaking necessary (and for users of
	 * laptop_mode, not even desirable).  However, to do otherwise
	 * would require replicating code paths in:
3352
	 *
3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371
	 * ext4_da_writepages() ->
	 *    write_cache_pages() ---> (via passed in callback function)
	 *        __mpage_da_writepage() -->
	 *           mpage_add_bh_to_extent()
	 *           mpage_da_map_blocks()
	 *
	 * The problem is that write_cache_pages(), located in
	 * mm/page-writeback.c, marks pages clean in preparation for
	 * doing I/O, which is not desirable if we're not planning on
	 * doing I/O at all.
	 *
	 * We could call write_cache_pages(), and then redirty all of
	 * the pages by calling redirty_page_for_writeback() but that
	 * would be ugly in the extreme.  So instead we would need to
	 * replicate parts of the code in the above functions,
	 * simplifying them becuase we wouldn't actually intend to
	 * write out the pages, but rather only collect contiguous
	 * logical block extents, call the multi-block allocator, and
	 * then update the buffer heads with the block allocations.
3372
	 *
3373 3374 3375 3376 3377 3378
	 * For now, though, we'll cheat by calling filemap_flush(),
	 * which will map the blocks, and start the I/O, but not
	 * actually wait for the I/O to complete.
	 */
	return filemap_flush(inode->i_mapping);
}
3379

3380 3381 3382 3383 3384
/*
 * bmap() is special.  It gets used by applications such as lilo and by
 * the swapper to find the on-disk block of a specific piece of data.
 *
 * Naturally, this is dangerous if the block concerned is still in the
3385
 * journal.  If somebody makes a swapfile on an ext4 data-journaling
3386 3387 3388 3389 3390 3391 3392 3393
 * filesystem and enables swap, then they may get a nasty shock when the
 * data getting swapped to that swapfile suddenly gets overwritten by
 * the original zero's written out previously to the journal and
 * awaiting writeback in the kernel's buffer cache.
 *
 * So, if we see any bmap calls here on a modified, data-journaled file,
 * take extra steps to flush any blocks which might be in the cache.
 */
3394
static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
3395 3396 3397 3398 3399
{
	struct inode *inode = mapping->host;
	journal_t *journal;
	int err;

3400 3401 3402 3403 3404 3405 3406 3407 3408 3409
	if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
			test_opt(inode->i_sb, DELALLOC)) {
		/*
		 * With delalloc we want to sync the file
		 * so that we can make sure we allocate
		 * blocks for file
		 */
		filemap_write_and_wait(mapping);
	}

3410 3411
	if (EXT4_JOURNAL(inode) &&
	    ext4_test_inode_state(inode, EXT4_STATE_JDATA)) {
3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422
		/*
		 * This is a REALLY heavyweight approach, but the use of
		 * bmap on dirty files is expected to be extremely rare:
		 * only if we run lilo or swapon on a freshly made file
		 * do we expect this to happen.
		 *
		 * (bmap requires CAP_SYS_RAWIO so this does not
		 * represent an unprivileged user DOS attack --- we'd be
		 * in trouble if mortal users could trigger this path at
		 * will.)
		 *
3423
		 * NB. EXT4_STATE_JDATA is not set on files other than
3424 3425 3426 3427 3428 3429
		 * regular files.  If somebody wants to bmap a directory
		 * or symlink and gets confused because the buffer
		 * hasn't yet been flushed to disk, they deserve
		 * everything they get.
		 */

3430
		ext4_clear_inode_state(inode, EXT4_STATE_JDATA);
3431
		journal = EXT4_JOURNAL(inode);
3432 3433 3434
		jbd2_journal_lock_updates(journal);
		err = jbd2_journal_flush(journal);
		jbd2_journal_unlock_updates(journal);
3435 3436 3437 3438 3439

		if (err)
			return 0;
	}

3440
	return generic_block_bmap(mapping, block, ext4_get_block);
3441 3442
}

3443
static int ext4_readpage(struct file *file, struct page *page)
3444
{
3445
	return mpage_readpage(page, ext4_get_block);
3446 3447 3448
}

static int
3449
ext4_readpages(struct file *file, struct address_space *mapping,
3450 3451
		struct list_head *pages, unsigned nr_pages)
{
3452
	return mpage_readpages(mapping, pages, nr_pages, ext4_get_block);
3453 3454
}

3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474
static void ext4_invalidatepage_free_endio(struct page *page, unsigned long offset)
{
	struct buffer_head *head, *bh;
	unsigned int curr_off = 0;

	if (!page_has_buffers(page))
		return;
	head = bh = page_buffers(page);
	do {
		if (offset <= curr_off && test_clear_buffer_uninit(bh)
					&& bh->b_private) {
			ext4_free_io_end(bh->b_private);
			bh->b_private = NULL;
			bh->b_end_io = NULL;
		}
		curr_off = curr_off + bh->b_size;
		bh = bh->b_this_page;
	} while (bh != head);
}

3475
static void ext4_invalidatepage(struct page *page, unsigned long offset)
3476
{
3477
	journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3478

3479 3480 3481 3482 3483
	/*
	 * free any io_end structure allocated for buffers to be discarded
	 */
	if (ext4_should_dioread_nolock(page->mapping->host))
		ext4_invalidatepage_free_endio(page, offset);
3484 3485 3486 3487 3488 3489
	/*
	 * If it's a full truncate we just forget about the pending dirtying
	 */
	if (offset == 0)
		ClearPageChecked(page);

3490 3491 3492 3493
	if (journal)
		jbd2_journal_invalidatepage(journal, page, offset);
	else
		block_invalidatepage(page, offset);
3494 3495
}

3496
static int ext4_releasepage(struct page *page, gfp_t wait)
3497
{
3498
	journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3499 3500 3501 3502

	WARN_ON(PageChecked(page));
	if (!page_has_buffers(page))
		return 0;
3503 3504 3505 3506
	if (journal)
		return jbd2_journal_try_to_free_buffers(journal, page, wait);
	else
		return try_to_free_buffers(page);
3507 3508 3509
}

/*
3510 3511
 * O_DIRECT for ext3 (or indirect map) based files
 *
3512 3513 3514 3515 3516
 * If the O_DIRECT write will extend the file then add this inode to the
 * orphan list.  So recovery will truncate it back to the original size
 * if the machine crashes during the write.
 *
 * If the O_DIRECT write is intantiating holes inside i_size and the machine
J
Jan Kara 已提交
3517 3518
 * crashes then stale disk data _may_ be exposed inside the file. But current
 * VFS code falls back into buffered path in that case so we are safe.
3519
 */
3520
static ssize_t ext4_ind_direct_IO(int rw, struct kiocb *iocb,
3521 3522
			      const struct iovec *iov, loff_t offset,
			      unsigned long nr_segs)
3523 3524 3525
{
	struct file *file = iocb->ki_filp;
	struct inode *inode = file->f_mapping->host;
3526
	struct ext4_inode_info *ei = EXT4_I(inode);
J
Jan Kara 已提交
3527
	handle_t *handle;
3528 3529 3530
	ssize_t ret;
	int orphan = 0;
	size_t count = iov_length(iov, nr_segs);
3531
	int retries = 0;
3532 3533 3534 3535 3536

	if (rw == WRITE) {
		loff_t final_size = offset + count;

		if (final_size > inode->i_size) {
J
Jan Kara 已提交
3537 3538 3539 3540 3541 3542
			/* Credits for sb + inode write */
			handle = ext4_journal_start(inode, 2);
			if (IS_ERR(handle)) {
				ret = PTR_ERR(handle);
				goto out;
			}
3543
			ret = ext4_orphan_add(handle, inode);
J
Jan Kara 已提交
3544 3545 3546 3547
			if (ret) {
				ext4_journal_stop(handle);
				goto out;
			}
3548 3549
			orphan = 1;
			ei->i_disksize = inode->i_size;
J
Jan Kara 已提交
3550
			ext4_journal_stop(handle);
3551 3552 3553
		}
	}

3554
retry:
3555
	if (rw == READ && ext4_should_dioread_nolock(inode))
3556
		ret = __blockdev_direct_IO(rw, iocb, inode,
3557 3558
				 inode->i_sb->s_bdev, iov,
				 offset, nr_segs,
3559 3560
				 ext4_get_block, NULL, NULL, 0);
	else {
3561 3562
		ret = blockdev_direct_IO(rw, iocb, inode,
				 inode->i_sb->s_bdev, iov,
3563
				 offset, nr_segs,
3564
				 ext4_get_block, NULL);
3565 3566 3567 3568 3569 3570 3571 3572 3573

		if (unlikely((rw & WRITE) && ret < 0)) {
			loff_t isize = i_size_read(inode);
			loff_t end = offset + iov_length(iov, nr_segs);

			if (end > isize)
				vmtruncate(inode, isize);
		}
	}
3574 3575
	if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
		goto retry;
3576

J
Jan Kara 已提交
3577
	if (orphan) {
3578 3579
		int err;

J
Jan Kara 已提交
3580 3581 3582 3583 3584 3585 3586
		/* Credits for sb + inode write */
		handle = ext4_journal_start(inode, 2);
		if (IS_ERR(handle)) {
			/* This is really bad luck. We've written the data
			 * but cannot extend i_size. Bail out and pretend
			 * the write failed... */
			ret = PTR_ERR(handle);
3587 3588 3589
			if (inode->i_nlink)
				ext4_orphan_del(NULL, inode);

J
Jan Kara 已提交
3590 3591 3592
			goto out;
		}
		if (inode->i_nlink)
3593
			ext4_orphan_del(handle, inode);
J
Jan Kara 已提交
3594
		if (ret > 0) {
3595 3596 3597 3598 3599 3600 3601 3602
			loff_t end = offset + ret;
			if (end > inode->i_size) {
				ei->i_disksize = end;
				i_size_write(inode, end);
				/*
				 * We're going to return a positive `ret'
				 * here due to non-zero-length I/O, so there's
				 * no way of reporting error returns from
3603
				 * ext4_mark_inode_dirty() to userspace.  So
3604 3605
				 * ignore it.
				 */
3606
				ext4_mark_inode_dirty(handle, inode);
3607 3608
			}
		}
3609
		err = ext4_journal_stop(handle);
3610 3611 3612 3613 3614 3615 3616
		if (ret == 0)
			ret = err;
	}
out:
	return ret;
}

3617 3618 3619 3620 3621
/*
 * ext4_get_block used when preparing for a DIO write or buffer write.
 * We allocate an uinitialized extent if blocks haven't been allocated.
 * The extent will be converted to initialized after the IO is complete.
 */
3622
static int ext4_get_block_write(struct inode *inode, sector_t iblock,
3623 3624
		   struct buffer_head *bh_result, int create)
{
3625
	ext4_debug("ext4_get_block_write: inode %lu, create flag %d\n",
3626
		   inode->i_ino, create);
3627 3628
	return _ext4_get_block(inode, iblock, bh_result,
			       EXT4_GET_BLOCKS_IO_CREATE_EXT);
3629 3630 3631
}

static void ext4_end_io_dio(struct kiocb *iocb, loff_t offset,
3632 3633
			    ssize_t size, void *private, int ret,
			    bool is_async)
3634 3635 3636
{
        ext4_io_end_t *io_end = iocb->private;
	struct workqueue_struct *wq;
3637 3638
	unsigned long flags;
	struct ext4_inode_info *ei;
3639

3640 3641
	/* if not async direct IO or dio with 0 bytes write, just return */
	if (!io_end || !size)
3642
		goto out;
3643

3644 3645 3646 3647 3648 3649
	ext_debug("ext4_end_io_dio(): io_end 0x%p"
		  "for inode %lu, iocb 0x%p, offset %llu, size %llu\n",
 		  iocb->private, io_end->inode->i_ino, iocb, offset,
		  size);

	/* if not aio dio with unwritten extents, just free io and return */
3650
	if (!(io_end->flag & EXT4_IO_END_UNWRITTEN)) {
3651 3652
		ext4_free_io_end(io_end);
		iocb->private = NULL;
3653 3654 3655 3656
out:
		if (is_async)
			aio_complete(iocb, ret, 0);
		return;
3657 3658
	}

3659 3660
	io_end->offset = offset;
	io_end->size = size;
3661 3662 3663 3664
	if (is_async) {
		io_end->iocb = iocb;
		io_end->result = ret;
	}
3665 3666
	wq = EXT4_SB(io_end->inode->i_sb)->dio_unwritten_wq;

3667
	/* Add the io_end to per-inode completed aio dio list*/
3668 3669 3670 3671
	ei = EXT4_I(io_end->inode);
	spin_lock_irqsave(&ei->i_completed_io_lock, flags);
	list_add_tail(&io_end->list, &ei->i_completed_io_list);
	spin_unlock_irqrestore(&ei->i_completed_io_lock, flags);
3672 3673 3674

	/* queue the work to convert unwritten extents to written */
	queue_work(wq, &io_end->work);
3675 3676
	iocb->private = NULL;
}
3677

3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694
static void ext4_end_io_buffer_write(struct buffer_head *bh, int uptodate)
{
	ext4_io_end_t *io_end = bh->b_private;
	struct workqueue_struct *wq;
	struct inode *inode;
	unsigned long flags;

	if (!test_clear_buffer_uninit(bh) || !io_end)
		goto out;

	if (!(io_end->inode->i_sb->s_flags & MS_ACTIVE)) {
		printk("sb umounted, discard end_io request for inode %lu\n",
			io_end->inode->i_ino);
		ext4_free_io_end(io_end);
		goto out;
	}

3695
	io_end->flag = EXT4_IO_END_UNWRITTEN;
3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742
	inode = io_end->inode;

	/* Add the io_end to per-inode completed io list*/
	spin_lock_irqsave(&EXT4_I(inode)->i_completed_io_lock, flags);
	list_add_tail(&io_end->list, &EXT4_I(inode)->i_completed_io_list);
	spin_unlock_irqrestore(&EXT4_I(inode)->i_completed_io_lock, flags);

	wq = EXT4_SB(inode->i_sb)->dio_unwritten_wq;
	/* queue the work to convert unwritten extents to written */
	queue_work(wq, &io_end->work);
out:
	bh->b_private = NULL;
	bh->b_end_io = NULL;
	clear_buffer_uninit(bh);
	end_buffer_async_write(bh, uptodate);
}

static int ext4_set_bh_endio(struct buffer_head *bh, struct inode *inode)
{
	ext4_io_end_t *io_end;
	struct page *page = bh->b_page;
	loff_t offset = (sector_t)page->index << PAGE_CACHE_SHIFT;
	size_t size = bh->b_size;

retry:
	io_end = ext4_init_io_end(inode, GFP_ATOMIC);
	if (!io_end) {
		if (printk_ratelimit())
			printk(KERN_WARNING "%s: allocation fail\n", __func__);
		schedule();
		goto retry;
	}
	io_end->offset = offset;
	io_end->size = size;
	/*
	 * We need to hold a reference to the page to make sure it
	 * doesn't get evicted before ext4_end_io_work() has a chance
	 * to convert the extent from written to unwritten.
	 */
	io_end->page = page;
	get_page(io_end->page);

	bh->b_private = io_end;
	bh->b_end_io = ext4_end_io_buffer_write;
	return 0;
}

3743 3744 3745 3746 3747 3748 3749 3750 3751
/*
 * For ext4 extent files, ext4 will do direct-io write to holes,
 * preallocated extents, and those write extend the file, no need to
 * fall back to buffered IO.
 *
 * For holes, we fallocate those blocks, mark them as unintialized
 * If those blocks were preallocated, we mark sure they are splited, but
 * still keep the range to write as unintialized.
 *
3752 3753 3754 3755
 * The unwrritten extents will be converted to written when DIO is completed.
 * For async direct IO, since the IO may still pending when return, we
 * set up an end_io call back function, which will do the convertion
 * when async direct IO completed.
3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773
 *
 * If the O_DIRECT write will extend the file then add this inode to the
 * orphan list.  So recovery will truncate it back to the original size
 * if the machine crashes during the write.
 *
 */
static ssize_t ext4_ext_direct_IO(int rw, struct kiocb *iocb,
			      const struct iovec *iov, loff_t offset,
			      unsigned long nr_segs)
{
	struct file *file = iocb->ki_filp;
	struct inode *inode = file->f_mapping->host;
	ssize_t ret;
	size_t count = iov_length(iov, nr_segs);

	loff_t final_size = offset + count;
	if (rw == WRITE && final_size <= inode->i_size) {
		/*
3774 3775 3776
 		 * We could direct write to holes and fallocate.
		 *
 		 * Allocated blocks to fill the hole are marked as uninitialized
3777 3778
 		 * to prevent paralel buffered read to expose the stale data
 		 * before DIO complete the data IO.
3779 3780
		 *
 		 * As to previously fallocated extents, ext4 get_block
3781 3782 3783
 		 * will just simply mark the buffer mapped but still
 		 * keep the extents uninitialized.
 		 *
3784 3785 3786 3787 3788 3789 3790 3791
		 * for non AIO case, we will convert those unwritten extents
		 * to written after return back from blockdev_direct_IO.
		 *
		 * for async DIO, the conversion needs to be defered when
		 * the IO is completed. The ext4 end_io callback function
		 * will be called to take care of the conversion work.
		 * Here for async case, we allocate an io_end structure to
		 * hook to the iocb.
3792
 		 */
3793 3794 3795
		iocb->private = NULL;
		EXT4_I(inode)->cur_aio_dio = NULL;
		if (!is_sync_kiocb(iocb)) {
3796
			iocb->private = ext4_init_io_end(inode, GFP_NOFS);
3797 3798 3799 3800
			if (!iocb->private)
				return -ENOMEM;
			/*
			 * we save the io structure for current async
3801
			 * direct IO, so that later ext4_map_blocks()
3802 3803 3804 3805 3806 3807 3808
			 * could flag the io structure whether there
			 * is a unwritten extents needs to be converted
			 * when IO is completed.
			 */
			EXT4_I(inode)->cur_aio_dio = iocb->private;
		}

3809 3810 3811
		ret = blockdev_direct_IO(rw, iocb, inode,
					 inode->i_sb->s_bdev, iov,
					 offset, nr_segs,
3812
					 ext4_get_block_write,
3813
					 ext4_end_io_dio);
3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832
		if (iocb->private)
			EXT4_I(inode)->cur_aio_dio = NULL;
		/*
		 * The io_end structure takes a reference to the inode,
		 * that structure needs to be destroyed and the
		 * reference to the inode need to be dropped, when IO is
		 * complete, even with 0 byte write, or failed.
		 *
		 * In the successful AIO DIO case, the io_end structure will be
		 * desctroyed and the reference to the inode will be dropped
		 * after the end_io call back function is called.
		 *
		 * In the case there is 0 byte write, or error case, since
		 * VFS direct IO won't invoke the end_io call back function,
		 * we need to free the end_io structure here.
		 */
		if (ret != -EIOCBQUEUED && ret <= 0 && iocb->private) {
			ext4_free_io_end(iocb->private);
			iocb->private = NULL;
3833 3834
		} else if (ret > 0 && ext4_test_inode_state(inode,
						EXT4_STATE_DIO_UNWRITTEN)) {
3835
			int err;
3836 3837 3838 3839
			/*
			 * for non AIO case, since the IO is already
			 * completed, we could do the convertion right here
			 */
3840 3841 3842 3843
			err = ext4_convert_unwritten_extents(inode,
							     offset, ret);
			if (err < 0)
				ret = err;
3844
			ext4_clear_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
3845
		}
3846 3847
		return ret;
	}
3848 3849

	/* for write the the end of file case, we fall back to old way */
3850 3851 3852 3853 3854 3855 3856 3857 3858 3859
	return ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs);
}

static ssize_t ext4_direct_IO(int rw, struct kiocb *iocb,
			      const struct iovec *iov, loff_t offset,
			      unsigned long nr_segs)
{
	struct file *file = iocb->ki_filp;
	struct inode *inode = file->f_mapping->host;

3860
	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3861 3862 3863 3864 3865
		return ext4_ext_direct_IO(rw, iocb, iov, offset, nr_segs);

	return ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs);
}

3866
/*
3867
 * Pages can be marked dirty completely asynchronously from ext4's journalling
3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878
 * activity.  By filemap_sync_pte(), try_to_unmap_one(), etc.  We cannot do
 * much here because ->set_page_dirty is called under VFS locks.  The page is
 * not necessarily locked.
 *
 * We cannot just dirty the page and leave attached buffers clean, because the
 * buffers' dirty state is "definitive".  We cannot just set the buffers dirty
 * or jbddirty because all the journalling code will explode.
 *
 * So what we do is to mark the page "pending dirty" and next time writepage
 * is called, propagate that into the buffers appropriately.
 */
3879
static int ext4_journalled_set_page_dirty(struct page *page)
3880 3881 3882 3883 3884
{
	SetPageChecked(page);
	return __set_page_dirty_nobuffers(page);
}

3885
static const struct address_space_operations ext4_ordered_aops = {
3886 3887
	.readpage		= ext4_readpage,
	.readpages		= ext4_readpages,
3888
	.writepage		= ext4_writepage,
3889 3890 3891 3892 3893 3894 3895 3896 3897
	.sync_page		= block_sync_page,
	.write_begin		= ext4_write_begin,
	.write_end		= ext4_ordered_write_end,
	.bmap			= ext4_bmap,
	.invalidatepage		= ext4_invalidatepage,
	.releasepage		= ext4_releasepage,
	.direct_IO		= ext4_direct_IO,
	.migratepage		= buffer_migrate_page,
	.is_partially_uptodate  = block_is_partially_uptodate,
3898
	.error_remove_page	= generic_error_remove_page,
3899 3900
};

3901
static const struct address_space_operations ext4_writeback_aops = {
3902 3903
	.readpage		= ext4_readpage,
	.readpages		= ext4_readpages,
3904
	.writepage		= ext4_writepage,
3905 3906 3907 3908 3909 3910 3911 3912 3913
	.sync_page		= block_sync_page,
	.write_begin		= ext4_write_begin,
	.write_end		= ext4_writeback_write_end,
	.bmap			= ext4_bmap,
	.invalidatepage		= ext4_invalidatepage,
	.releasepage		= ext4_releasepage,
	.direct_IO		= ext4_direct_IO,
	.migratepage		= buffer_migrate_page,
	.is_partially_uptodate  = block_is_partially_uptodate,
3914
	.error_remove_page	= generic_error_remove_page,
3915 3916
};

3917
static const struct address_space_operations ext4_journalled_aops = {
3918 3919
	.readpage		= ext4_readpage,
	.readpages		= ext4_readpages,
3920
	.writepage		= ext4_writepage,
3921 3922 3923 3924 3925 3926 3927 3928
	.sync_page		= block_sync_page,
	.write_begin		= ext4_write_begin,
	.write_end		= ext4_journalled_write_end,
	.set_page_dirty		= ext4_journalled_set_page_dirty,
	.bmap			= ext4_bmap,
	.invalidatepage		= ext4_invalidatepage,
	.releasepage		= ext4_releasepage,
	.is_partially_uptodate  = block_is_partially_uptodate,
3929
	.error_remove_page	= generic_error_remove_page,
3930 3931
};

3932
static const struct address_space_operations ext4_da_aops = {
3933 3934
	.readpage		= ext4_readpage,
	.readpages		= ext4_readpages,
3935
	.writepage		= ext4_writepage,
3936 3937 3938 3939 3940 3941 3942 3943 3944 3945
	.writepages		= ext4_da_writepages,
	.sync_page		= block_sync_page,
	.write_begin		= ext4_da_write_begin,
	.write_end		= ext4_da_write_end,
	.bmap			= ext4_bmap,
	.invalidatepage		= ext4_da_invalidatepage,
	.releasepage		= ext4_releasepage,
	.direct_IO		= ext4_direct_IO,
	.migratepage		= buffer_migrate_page,
	.is_partially_uptodate  = block_is_partially_uptodate,
3946
	.error_remove_page	= generic_error_remove_page,
3947 3948
};

3949
void ext4_set_aops(struct inode *inode)
3950
{
3951 3952 3953 3954
	if (ext4_should_order_data(inode) &&
		test_opt(inode->i_sb, DELALLOC))
		inode->i_mapping->a_ops = &ext4_da_aops;
	else if (ext4_should_order_data(inode))
3955
		inode->i_mapping->a_ops = &ext4_ordered_aops;
3956 3957 3958
	else if (ext4_should_writeback_data(inode) &&
		 test_opt(inode->i_sb, DELALLOC))
		inode->i_mapping->a_ops = &ext4_da_aops;
3959 3960
	else if (ext4_should_writeback_data(inode))
		inode->i_mapping->a_ops = &ext4_writeback_aops;
3961
	else
3962
		inode->i_mapping->a_ops = &ext4_journalled_aops;
3963 3964 3965
}

/*
3966
 * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
3967 3968 3969 3970
 * up to the end of the block which corresponds to `from'.
 * This required during truncate. We need to physically zero the tail end
 * of that block so it doesn't yield old data if the file is later grown.
 */
3971
int ext4_block_truncate_page(handle_t *handle,
3972 3973
		struct address_space *mapping, loff_t from)
{
3974
	ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT;
3975
	unsigned offset = from & (PAGE_CACHE_SIZE-1);
A
Aneesh Kumar K.V 已提交
3976 3977
	unsigned blocksize, length, pos;
	ext4_lblk_t iblock;
3978 3979
	struct inode *inode = mapping->host;
	struct buffer_head *bh;
3980
	struct page *page;
3981 3982
	int err = 0;

3983 3984
	page = find_or_create_page(mapping, from >> PAGE_CACHE_SHIFT,
				   mapping_gfp_mask(mapping) & ~__GFP_FS);
3985 3986 3987
	if (!page)
		return -EINVAL;

3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011
	blocksize = inode->i_sb->s_blocksize;
	length = blocksize - (offset & (blocksize - 1));
	iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);

	if (!page_has_buffers(page))
		create_empty_buffers(page, blocksize, 0);

	/* Find the buffer that contains "offset" */
	bh = page_buffers(page);
	pos = blocksize;
	while (offset >= pos) {
		bh = bh->b_this_page;
		iblock++;
		pos += blocksize;
	}

	err = 0;
	if (buffer_freed(bh)) {
		BUFFER_TRACE(bh, "freed: skip");
		goto unlock;
	}

	if (!buffer_mapped(bh)) {
		BUFFER_TRACE(bh, "unmapped");
4012
		ext4_get_block(inode, iblock, bh, 0);
4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032
		/* unmapped? It's a hole - nothing to do */
		if (!buffer_mapped(bh)) {
			BUFFER_TRACE(bh, "still unmapped");
			goto unlock;
		}
	}

	/* Ok, it's mapped. Make sure it's up-to-date */
	if (PageUptodate(page))
		set_buffer_uptodate(bh);

	if (!buffer_uptodate(bh)) {
		err = -EIO;
		ll_rw_block(READ, 1, &bh);
		wait_on_buffer(bh);
		/* Uhhuh. Read error. Complain and punt. */
		if (!buffer_uptodate(bh))
			goto unlock;
	}

4033
	if (ext4_should_journal_data(inode)) {
4034
		BUFFER_TRACE(bh, "get write access");
4035
		err = ext4_journal_get_write_access(handle, bh);
4036 4037 4038 4039
		if (err)
			goto unlock;
	}

4040
	zero_user(page, offset, length);
4041 4042 4043 4044

	BUFFER_TRACE(bh, "zeroed end of block");

	err = 0;
4045
	if (ext4_should_journal_data(inode)) {
4046
		err = ext4_handle_dirty_metadata(handle, inode, bh);
4047
	} else {
4048
		if (ext4_should_order_data(inode))
4049
			err = ext4_jbd2_file_inode(handle, inode);
4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072
		mark_buffer_dirty(bh);
	}

unlock:
	unlock_page(page);
	page_cache_release(page);
	return err;
}

/*
 * Probably it should be a library function... search for first non-zero word
 * or memcmp with zero_page, whatever is better for particular architecture.
 * Linus?
 */
static inline int all_zeroes(__le32 *p, __le32 *q)
{
	while (p < q)
		if (*p++)
			return 0;
	return 1;
}

/**
4073
 *	ext4_find_shared - find the indirect blocks for partial truncation.
4074 4075
 *	@inode:	  inode in question
 *	@depth:	  depth of the affected branch
4076
 *	@offsets: offsets of pointers in that branch (see ext4_block_to_path)
4077 4078 4079
 *	@chain:	  place to store the pointers to partial indirect blocks
 *	@top:	  place to the (detached) top of branch
 *
4080
 *	This is a helper function used by ext4_truncate().
4081 4082 4083 4084 4085 4086 4087
 *
 *	When we do truncate() we may have to clean the ends of several
 *	indirect blocks but leave the blocks themselves alive. Block is
 *	partially truncated if some data below the new i_size is refered
 *	from it (and it is on the path to the first completely truncated
 *	data block, indeed).  We have to free the top of that path along
 *	with everything to the right of the path. Since no allocation
4088
 *	past the truncation point is possible until ext4_truncate()
4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106
 *	finishes, we may safely do the latter, but top of branch may
 *	require special attention - pageout below the truncation point
 *	might try to populate it.
 *
 *	We atomically detach the top of branch from the tree, store the
 *	block number of its root in *@top, pointers to buffer_heads of
 *	partially truncated blocks - in @chain[].bh and pointers to
 *	their last elements that should not be removed - in
 *	@chain[].p. Return value is the pointer to last filled element
 *	of @chain.
 *
 *	The work left to caller to do the actual freeing of subtrees:
 *		a) free the subtree starting from *@top
 *		b) free the subtrees whose roots are stored in
 *			(@chain[i].p+1 .. end of @chain[i].bh->b_data)
 *		c) free the subtrees growing from the inode past the @chain[0].
 *			(no partially truncated stuff there).  */

4107
static Indirect *ext4_find_shared(struct inode *inode, int depth,
4108 4109
				  ext4_lblk_t offsets[4], Indirect chain[4],
				  __le32 *top)
4110 4111 4112 4113 4114
{
	Indirect *partial, *p;
	int k, err;

	*top = 0;
4115
	/* Make k index the deepest non-null offset + 1 */
4116 4117
	for (k = depth; k > 1 && !offsets[k-1]; k--)
		;
4118
	partial = ext4_get_branch(inode, k, offsets, chain, &err);
4119 4120 4121 4122 4123 4124 4125 4126 4127 4128
	/* Writer: pointers */
	if (!partial)
		partial = chain + k-1;
	/*
	 * If the branch acquired continuation since we've looked at it -
	 * fine, it should all survive and (new) top doesn't belong to us.
	 */
	if (!partial->key && *partial->p)
		/* Writer: end */
		goto no_top;
4129
	for (p = partial; (p > chain) && all_zeroes((__le32 *) p->bh->b_data, p->p); p--)
4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140
		;
	/*
	 * OK, we've found the last block that must survive. The rest of our
	 * branch should be detached before unlocking. However, if that rest
	 * of branch is all ours and does not grow immediately from the inode
	 * it's easier to cheat and just decrement partial->p.
	 */
	if (p == chain + k - 1 && p > chain) {
		p->p--;
	} else {
		*top = *p->p;
4141
		/* Nope, don't do this in ext4.  Must leave the tree intact */
4142 4143 4144 4145 4146 4147
#if 0
		*p->p = 0;
#endif
	}
	/* Writer: end */

4148
	while (partial > p) {
4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163
		brelse(partial->bh);
		partial--;
	}
no_top:
	return partial;
}

/*
 * Zero a number of block pointers in either an inode or an indirect block.
 * If we restart the transaction we must again get write access to the
 * indirect block for further modification.
 *
 * We release `count' blocks on disk, but (last - first) may be greater
 * than `count' because there can be holes in there.
 */
4164 4165 4166 4167 4168
static int ext4_clear_blocks(handle_t *handle, struct inode *inode,
			     struct buffer_head *bh,
			     ext4_fsblk_t block_to_free,
			     unsigned long count, __le32 *first,
			     __le32 *last)
4169 4170
{
	__le32 *p;
4171
	int	flags = EXT4_FREE_BLOCKS_FORGET | EXT4_FREE_BLOCKS_VALIDATED;
4172 4173 4174

	if (S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode))
		flags |= EXT4_FREE_BLOCKS_METADATA;
4175

4176 4177
	if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), block_to_free,
				   count)) {
4178 4179 4180
		EXT4_ERROR_INODE(inode, "attempt to clear invalid "
				 "blocks %llu len %lu",
				 (unsigned long long) block_to_free, count);
4181 4182 4183
		return 1;
	}

4184 4185
	if (try_to_extend_transaction(handle, inode)) {
		if (bh) {
4186 4187
			BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
			ext4_handle_dirty_metadata(handle, inode, bh);
4188
		}
4189
		ext4_mark_inode_dirty(handle, inode);
4190 4191
		ext4_truncate_restart_trans(handle, inode,
					    blocks_for_truncate(inode));
4192 4193
		if (bh) {
			BUFFER_TRACE(bh, "retaking write access");
4194
			ext4_journal_get_write_access(handle, bh);
4195 4196 4197
		}
	}

4198 4199
	for (p = first; p < last; p++)
		*p = 0;
4200

4201
	ext4_free_blocks(handle, inode, 0, block_to_free, count, flags);
4202
	return 0;
4203 4204 4205
}

/**
4206
 * ext4_free_data - free a list of data blocks
4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223
 * @handle:	handle for this transaction
 * @inode:	inode we are dealing with
 * @this_bh:	indirect buffer_head which contains *@first and *@last
 * @first:	array of block numbers
 * @last:	points immediately past the end of array
 *
 * We are freeing all blocks refered from that array (numbers are stored as
 * little-endian 32-bit) and updating @inode->i_blocks appropriately.
 *
 * We accumulate contiguous runs of blocks to free.  Conveniently, if these
 * blocks are contiguous then releasing them at one time will only affect one
 * or two bitmap blocks (+ group descriptor(s) and superblock) and we won't
 * actually use a lot of journal space.
 *
 * @this_bh will be %NULL if @first and @last point into the inode's direct
 * block pointers.
 */
4224
static void ext4_free_data(handle_t *handle, struct inode *inode,
4225 4226 4227
			   struct buffer_head *this_bh,
			   __le32 *first, __le32 *last)
{
4228
	ext4_fsblk_t block_to_free = 0;    /* Starting block # of a run */
4229 4230 4231 4232
	unsigned long count = 0;	    /* Number of blocks in the run */
	__le32 *block_to_free_p = NULL;	    /* Pointer into inode/ind
					       corresponding to
					       block_to_free */
4233
	ext4_fsblk_t nr;		    /* Current block # */
4234 4235 4236 4237 4238 4239
	__le32 *p;			    /* Pointer into inode/ind
					       for current block */
	int err;

	if (this_bh) {				/* For indirect block */
		BUFFER_TRACE(this_bh, "get_write_access");
4240
		err = ext4_journal_get_write_access(handle, this_bh);
4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257
		/* Important: if we can't update the indirect pointers
		 * to the blocks, we can't free them. */
		if (err)
			return;
	}

	for (p = first; p < last; p++) {
		nr = le32_to_cpu(*p);
		if (nr) {
			/* accumulate blocks to free if they're contiguous */
			if (count == 0) {
				block_to_free = nr;
				block_to_free_p = p;
				count = 1;
			} else if (nr == block_to_free + count) {
				count++;
			} else {
4258 4259 4260 4261
				if (ext4_clear_blocks(handle, inode, this_bh,
						      block_to_free, count,
						      block_to_free_p, p))
					break;
4262 4263 4264 4265 4266 4267 4268 4269
				block_to_free = nr;
				block_to_free_p = p;
				count = 1;
			}
		}
	}

	if (count > 0)
4270
		ext4_clear_blocks(handle, inode, this_bh, block_to_free,
4271 4272 4273
				  count, block_to_free_p, p);

	if (this_bh) {
4274
		BUFFER_TRACE(this_bh, "call ext4_handle_dirty_metadata");
4275 4276 4277 4278 4279 4280 4281

		/*
		 * The buffer head should have an attached journal head at this
		 * point. However, if the data is corrupted and an indirect
		 * block pointed to itself, it would have been detached when
		 * the block was cleared. Check for this instead of OOPSing.
		 */
4282
		if ((EXT4_JOURNAL(inode) == NULL) || bh2jh(this_bh))
4283
			ext4_handle_dirty_metadata(handle, inode, this_bh);
4284
		else
4285 4286 4287 4288
			EXT4_ERROR_INODE(inode,
					 "circular indirect block detected at "
					 "block %llu",
				(unsigned long long) this_bh->b_blocknr);
4289 4290 4291 4292
	}
}

/**
4293
 *	ext4_free_branches - free an array of branches
4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304
 *	@handle: JBD handle for this transaction
 *	@inode:	inode we are dealing with
 *	@parent_bh: the buffer_head which contains *@first and *@last
 *	@first:	array of block numbers
 *	@last:	pointer immediately past the end of array
 *	@depth:	depth of the branches to free
 *
 *	We are freeing all blocks refered from these branches (numbers are
 *	stored as little-endian 32-bit) and updating @inode->i_blocks
 *	appropriately.
 */
4305
static void ext4_free_branches(handle_t *handle, struct inode *inode,
4306 4307 4308
			       struct buffer_head *parent_bh,
			       __le32 *first, __le32 *last, int depth)
{
4309
	ext4_fsblk_t nr;
4310 4311
	__le32 *p;

4312
	if (ext4_handle_is_aborted(handle))
4313 4314 4315 4316
		return;

	if (depth--) {
		struct buffer_head *bh;
4317
		int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
4318 4319 4320 4321 4322 4323
		p = last;
		while (--p >= first) {
			nr = le32_to_cpu(*p);
			if (!nr)
				continue;		/* A hole */

4324 4325
			if (!ext4_data_block_valid(EXT4_SB(inode->i_sb),
						   nr, 1)) {
4326 4327 4328 4329
				EXT4_ERROR_INODE(inode,
						 "invalid indirect mapped "
						 "block %lu (level %d)",
						 (unsigned long) nr, depth);
4330 4331 4332
				break;
			}

4333 4334 4335 4336 4337 4338 4339 4340
			/* Go read the buffer for the next level down */
			bh = sb_bread(inode->i_sb, nr);

			/*
			 * A read failure? Report error and clear slot
			 * (should be rare).
			 */
			if (!bh) {
4341 4342
				EXT4_ERROR_INODE_BLOCK(inode, nr,
						       "Read failure");
4343 4344 4345 4346 4347
				continue;
			}

			/* This zaps the entire block.  Bottom up. */
			BUFFER_TRACE(bh, "free child branches");
4348
			ext4_free_branches(handle, inode, bh,
4349 4350 4351
					(__le32 *) bh->b_data,
					(__le32 *) bh->b_data + addr_per_block,
					depth);
4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368

			/*
			 * Everything below this this pointer has been
			 * released.  Now let this top-of-subtree go.
			 *
			 * We want the freeing of this indirect block to be
			 * atomic in the journal with the updating of the
			 * bitmap block which owns it.  So make some room in
			 * the journal.
			 *
			 * We zero the parent pointer *after* freeing its
			 * pointee in the bitmaps, so if extend_transaction()
			 * for some reason fails to put the bitmap changes and
			 * the release into the same transaction, recovery
			 * will merely complain about releasing a free block,
			 * rather than leaking blocks.
			 */
4369
			if (ext4_handle_is_aborted(handle))
4370 4371
				return;
			if (try_to_extend_transaction(handle, inode)) {
4372
				ext4_mark_inode_dirty(handle, inode);
4373 4374
				ext4_truncate_restart_trans(handle, inode,
					    blocks_for_truncate(inode));
4375 4376
			}

4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387
			/*
			 * The forget flag here is critical because if
			 * we are journaling (and not doing data
			 * journaling), we have to make sure a revoke
			 * record is written to prevent the journal
			 * replay from overwriting the (former)
			 * indirect block if it gets reallocated as a
			 * data block.  This must happen in the same
			 * transaction where the data blocks are
			 * actually freed.
			 */
4388
			ext4_free_blocks(handle, inode, 0, nr, 1,
4389 4390
					 EXT4_FREE_BLOCKS_METADATA|
					 EXT4_FREE_BLOCKS_FORGET);
4391 4392 4393 4394 4395 4396 4397

			if (parent_bh) {
				/*
				 * The block which we have just freed is
				 * pointed to by an indirect block: journal it
				 */
				BUFFER_TRACE(parent_bh, "get_write_access");
4398
				if (!ext4_journal_get_write_access(handle,
4399 4400 4401
								   parent_bh)){
					*p = 0;
					BUFFER_TRACE(parent_bh,
4402 4403 4404 4405
					"call ext4_handle_dirty_metadata");
					ext4_handle_dirty_metadata(handle,
								   inode,
								   parent_bh);
4406 4407 4408 4409 4410 4411
				}
			}
		}
	} else {
		/* We have reached the bottom of the tree. */
		BUFFER_TRACE(parent_bh, "free data blocks");
4412
		ext4_free_data(handle, inode, parent_bh, first, last);
4413 4414 4415
	}
}

4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428
int ext4_can_truncate(struct inode *inode)
{
	if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
		return 0;
	if (S_ISREG(inode->i_mode))
		return 1;
	if (S_ISDIR(inode->i_mode))
		return 1;
	if (S_ISLNK(inode->i_mode))
		return !ext4_inode_is_fast_symlink(inode);
	return 0;
}

4429
/*
4430
 * ext4_truncate()
4431
 *
4432 4433
 * We block out ext4_get_block() block instantiations across the entire
 * transaction, and VFS/VM ensures that ext4_truncate() cannot run
4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449
 * simultaneously on behalf of the same inode.
 *
 * As we work through the truncate and commmit bits of it to the journal there
 * is one core, guiding principle: the file's tree must always be consistent on
 * disk.  We must be able to restart the truncate after a crash.
 *
 * The file's tree may be transiently inconsistent in memory (although it
 * probably isn't), but whenever we close off and commit a journal transaction,
 * the contents of (the filesystem + the journal) must be consistent and
 * restartable.  It's pretty simple, really: bottom up, right to left (although
 * left-to-right works OK too).
 *
 * Note that at recovery time, journal replay occurs *before* the restart of
 * truncate against the orphan inode list.
 *
 * The committed inode has the new, desired i_size (which is the same as
4450
 * i_disksize in this case).  After a crash, ext4_orphan_cleanup() will see
4451
 * that this inode's truncate did not complete and it will again call
4452 4453
 * ext4_truncate() to have another go.  So there will be instantiated blocks
 * to the right of the truncation point in a crashed ext4 filesystem.  But
4454
 * that's fine - as long as they are linked from the inode, the post-crash
4455
 * ext4_truncate() run will find them and release them.
4456
 */
4457
void ext4_truncate(struct inode *inode)
4458 4459
{
	handle_t *handle;
4460
	struct ext4_inode_info *ei = EXT4_I(inode);
4461
	__le32 *i_data = ei->i_data;
4462
	int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
4463
	struct address_space *mapping = inode->i_mapping;
A
Aneesh Kumar K.V 已提交
4464
	ext4_lblk_t offsets[4];
4465 4466 4467 4468
	Indirect chain[4];
	Indirect *partial;
	__le32 nr = 0;
	int n;
A
Aneesh Kumar K.V 已提交
4469
	ext4_lblk_t last_block;
4470 4471
	unsigned blocksize = inode->i_sb->s_blocksize;

4472
	if (!ext4_can_truncate(inode))
4473 4474
		return;

4475
	ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
4476

4477
	if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
4478
		ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
4479

4480
	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
4481
		ext4_ext_truncate(inode);
A
Aneesh Kumar K.V 已提交
4482 4483
		return;
	}
A
Alex Tomas 已提交
4484

4485
	handle = start_transaction(inode);
4486
	if (IS_ERR(handle))
4487 4488 4489
		return;		/* AKPM: return what? */

	last_block = (inode->i_size + blocksize-1)
4490
					>> EXT4_BLOCK_SIZE_BITS(inode->i_sb);
4491

4492 4493 4494
	if (inode->i_size & (blocksize - 1))
		if (ext4_block_truncate_page(handle, mapping, inode->i_size))
			goto out_stop;
4495

4496
	n = ext4_block_to_path(inode, last_block, offsets, NULL);
4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508
	if (n == 0)
		goto out_stop;	/* error */

	/*
	 * OK.  This truncate is going to happen.  We add the inode to the
	 * orphan list, so that if this truncate spans multiple transactions,
	 * and we crash, we will resume the truncate when the filesystem
	 * recovers.  It also marks the inode dirty, to catch the new size.
	 *
	 * Implication: the file must always be in a sane, consistent
	 * truncatable state while each transaction commits.
	 */
4509
	if (ext4_orphan_add(handle, inode))
4510 4511
		goto out_stop;

4512 4513 4514 4515 4516
	/*
	 * From here we block out all ext4_get_block() callers who want to
	 * modify the block allocation tree.
	 */
	down_write(&ei->i_data_sem);
4517

4518
	ext4_discard_preallocations(inode);
4519

4520 4521 4522 4523 4524
	/*
	 * The orphan list entry will now protect us from any crash which
	 * occurs before the truncate completes, so it is now safe to propagate
	 * the new, shorter inode size (held for now in i_size) into the
	 * on-disk inode. We do this via i_disksize, which is the value which
4525
	 * ext4 *really* writes onto the disk inode.
4526 4527 4528 4529
	 */
	ei->i_disksize = inode->i_size;

	if (n == 1) {		/* direct blocks */
4530 4531
		ext4_free_data(handle, inode, NULL, i_data+offsets[0],
			       i_data + EXT4_NDIR_BLOCKS);
4532 4533 4534
		goto do_indirects;
	}

4535
	partial = ext4_find_shared(inode, n, offsets, chain, &nr);
4536 4537 4538 4539
	/* Kill the top of shared branch (not detached) */
	if (nr) {
		if (partial == chain) {
			/* Shared branch grows from the inode */
4540
			ext4_free_branches(handle, inode, NULL,
4541 4542 4543 4544 4545 4546 4547 4548 4549
					   &nr, &nr+1, (chain+n-1) - partial);
			*partial->p = 0;
			/*
			 * We mark the inode dirty prior to restart,
			 * and prior to stop.  No need for it here.
			 */
		} else {
			/* Shared branch grows from an indirect block */
			BUFFER_TRACE(partial->bh, "get_write_access");
4550
			ext4_free_branches(handle, inode, partial->bh,
4551 4552 4553 4554 4555 4556
					partial->p,
					partial->p+1, (chain+n-1) - partial);
		}
	}
	/* Clear the ends of indirect blocks on the shared branch */
	while (partial > chain) {
4557
		ext4_free_branches(handle, inode, partial->bh, partial->p + 1,
4558 4559 4560
				   (__le32*)partial->bh->b_data+addr_per_block,
				   (chain+n-1) - partial);
		BUFFER_TRACE(partial->bh, "call brelse");
4561
		brelse(partial->bh);
4562 4563 4564 4565 4566 4567
		partial--;
	}
do_indirects:
	/* Kill the remaining (whole) subtrees */
	switch (offsets[0]) {
	default:
4568
		nr = i_data[EXT4_IND_BLOCK];
4569
		if (nr) {
4570 4571
			ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 1);
			i_data[EXT4_IND_BLOCK] = 0;
4572
		}
4573 4574
	case EXT4_IND_BLOCK:
		nr = i_data[EXT4_DIND_BLOCK];
4575
		if (nr) {
4576 4577
			ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 2);
			i_data[EXT4_DIND_BLOCK] = 0;
4578
		}
4579 4580
	case EXT4_DIND_BLOCK:
		nr = i_data[EXT4_TIND_BLOCK];
4581
		if (nr) {
4582 4583
			ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 3);
			i_data[EXT4_TIND_BLOCK] = 0;
4584
		}
4585
	case EXT4_TIND_BLOCK:
4586 4587 4588
		;
	}

4589
	up_write(&ei->i_data_sem);
K
Kalpak Shah 已提交
4590
	inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
4591
	ext4_mark_inode_dirty(handle, inode);
4592 4593 4594 4595 4596 4597

	/*
	 * In a multi-transaction truncate, we only make the final transaction
	 * synchronous
	 */
	if (IS_SYNC(inode))
4598
		ext4_handle_sync(handle);
4599 4600 4601 4602 4603
out_stop:
	/*
	 * If this was a simple ftruncate(), and the file will remain alive
	 * then we need to clear up the orphan record which we created above.
	 * However, if this was a real unlink then we were called by
4604
	 * ext4_delete_inode(), and we allow that function to clean up the
4605 4606 4607
	 * orphan info for us.
	 */
	if (inode->i_nlink)
4608
		ext4_orphan_del(handle, inode);
4609

4610
	ext4_journal_stop(handle);
4611 4612 4613
}

/*
4614
 * ext4_get_inode_loc returns with an extra refcount against the inode's
4615 4616 4617 4618
 * underlying buffer_head on success. If 'in_mem' is true, we have all
 * data in memory that is needed to recreate the on-disk version of this
 * inode.
 */
4619 4620
static int __ext4_get_inode_loc(struct inode *inode,
				struct ext4_iloc *iloc, int in_mem)
4621
{
4622 4623 4624 4625 4626 4627
	struct ext4_group_desc	*gdp;
	struct buffer_head	*bh;
	struct super_block	*sb = inode->i_sb;
	ext4_fsblk_t		block;
	int			inodes_per_block, inode_offset;

A
Aneesh Kumar K.V 已提交
4628
	iloc->bh = NULL;
4629 4630
	if (!ext4_valid_inum(sb, inode->i_ino))
		return -EIO;
4631

4632 4633 4634
	iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb);
	gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
	if (!gdp)
4635 4636
		return -EIO;

4637 4638 4639 4640 4641 4642 4643 4644 4645 4646
	/*
	 * Figure out the offset within the block group inode table
	 */
	inodes_per_block = (EXT4_BLOCK_SIZE(sb) / EXT4_INODE_SIZE(sb));
	inode_offset = ((inode->i_ino - 1) %
			EXT4_INODES_PER_GROUP(sb));
	block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
	iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);

	bh = sb_getblk(sb, block);
4647
	if (!bh) {
4648 4649
		EXT4_ERROR_INODE_BLOCK(inode, block,
				       "unable to read itable block");
4650 4651 4652 4653
		return -EIO;
	}
	if (!buffer_uptodate(bh)) {
		lock_buffer(bh);
4654 4655 4656 4657 4658 4659 4660 4661 4662 4663

		/*
		 * If the buffer has the write error flag, we have failed
		 * to write out another inode in the same block.  In this
		 * case, we don't have to read the block because we may
		 * read the old inode data successfully.
		 */
		if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
			set_buffer_uptodate(bh);

4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676
		if (buffer_uptodate(bh)) {
			/* someone brought it uptodate while we waited */
			unlock_buffer(bh);
			goto has_buffer;
		}

		/*
		 * If we have all information of the inode in memory and this
		 * is the only valid inode in the block, we need not read the
		 * block.
		 */
		if (in_mem) {
			struct buffer_head *bitmap_bh;
4677
			int i, start;
4678

4679
			start = inode_offset & ~(inodes_per_block - 1);
4680

4681 4682
			/* Is the inode bitmap in cache? */
			bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694
			if (!bitmap_bh)
				goto make_io;

			/*
			 * If the inode bitmap isn't in cache then the
			 * optimisation may end up performing two reads instead
			 * of one, so skip it.
			 */
			if (!buffer_uptodate(bitmap_bh)) {
				brelse(bitmap_bh);
				goto make_io;
			}
4695
			for (i = start; i < start + inodes_per_block; i++) {
4696 4697
				if (i == inode_offset)
					continue;
4698
				if (ext4_test_bit(i, bitmap_bh->b_data))
4699 4700 4701
					break;
			}
			brelse(bitmap_bh);
4702
			if (i == start + inodes_per_block) {
4703 4704 4705 4706 4707 4708 4709 4710 4711
				/* all other inodes are free, so skip I/O */
				memset(bh->b_data, 0, bh->b_size);
				set_buffer_uptodate(bh);
				unlock_buffer(bh);
				goto has_buffer;
			}
		}

make_io:
4712 4713 4714 4715 4716 4717 4718 4719 4720
		/*
		 * If we need to do any I/O, try to pre-readahead extra
		 * blocks from the inode table.
		 */
		if (EXT4_SB(sb)->s_inode_readahead_blks) {
			ext4_fsblk_t b, end, table;
			unsigned num;

			table = ext4_inode_table(sb, gdp);
T
Theodore Ts'o 已提交
4721
			/* s_inode_readahead_blks is always a power of 2 */
4722 4723 4724 4725 4726 4727 4728
			b = block & ~(EXT4_SB(sb)->s_inode_readahead_blks-1);
			if (table > b)
				b = table;
			end = b + EXT4_SB(sb)->s_inode_readahead_blks;
			num = EXT4_INODES_PER_GROUP(sb);
			if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
				       EXT4_FEATURE_RO_COMPAT_GDT_CSUM))
4729
				num -= ext4_itable_unused_count(sb, gdp);
4730 4731 4732 4733 4734 4735 4736
			table += num / inodes_per_block;
			if (end > table)
				end = table;
			while (b <= end)
				sb_breadahead(sb, b++);
		}

4737 4738 4739 4740 4741 4742 4743 4744 4745 4746
		/*
		 * There are other valid inodes in the buffer, this inode
		 * has in-inode xattrs, or we don't have this inode in memory.
		 * Read the block from disk.
		 */
		get_bh(bh);
		bh->b_end_io = end_buffer_read_sync;
		submit_bh(READ_META, bh);
		wait_on_buffer(bh);
		if (!buffer_uptodate(bh)) {
4747 4748
			EXT4_ERROR_INODE_BLOCK(inode, block,
					       "unable to read itable block");
4749 4750 4751 4752 4753 4754 4755 4756 4757
			brelse(bh);
			return -EIO;
		}
	}
has_buffer:
	iloc->bh = bh;
	return 0;
}

4758
int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
4759 4760
{
	/* We have all inode data except xattrs in memory here. */
4761
	return __ext4_get_inode_loc(inode, iloc,
4762
		!ext4_test_inode_state(inode, EXT4_STATE_XATTR));
4763 4764
}

4765
void ext4_set_inode_flags(struct inode *inode)
4766
{
4767
	unsigned int flags = EXT4_I(inode)->i_flags;
4768 4769

	inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC);
4770
	if (flags & EXT4_SYNC_FL)
4771
		inode->i_flags |= S_SYNC;
4772
	if (flags & EXT4_APPEND_FL)
4773
		inode->i_flags |= S_APPEND;
4774
	if (flags & EXT4_IMMUTABLE_FL)
4775
		inode->i_flags |= S_IMMUTABLE;
4776
	if (flags & EXT4_NOATIME_FL)
4777
		inode->i_flags |= S_NOATIME;
4778
	if (flags & EXT4_DIRSYNC_FL)
4779 4780 4781
		inode->i_flags |= S_DIRSYNC;
}

4782 4783 4784
/* Propagate flags from i_flags to EXT4_I(inode)->i_flags */
void ext4_get_inode_flags(struct ext4_inode_info *ei)
{
4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804
	unsigned int vfs_fl;
	unsigned long old_fl, new_fl;

	do {
		vfs_fl = ei->vfs_inode.i_flags;
		old_fl = ei->i_flags;
		new_fl = old_fl & ~(EXT4_SYNC_FL|EXT4_APPEND_FL|
				EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL|
				EXT4_DIRSYNC_FL);
		if (vfs_fl & S_SYNC)
			new_fl |= EXT4_SYNC_FL;
		if (vfs_fl & S_APPEND)
			new_fl |= EXT4_APPEND_FL;
		if (vfs_fl & S_IMMUTABLE)
			new_fl |= EXT4_IMMUTABLE_FL;
		if (vfs_fl & S_NOATIME)
			new_fl |= EXT4_NOATIME_FL;
		if (vfs_fl & S_DIRSYNC)
			new_fl |= EXT4_DIRSYNC_FL;
	} while (cmpxchg(&ei->i_flags, old_fl, new_fl) != old_fl);
4805
}
4806

4807
static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
4808
				  struct ext4_inode_info *ei)
4809 4810
{
	blkcnt_t i_blocks ;
A
Aneesh Kumar K.V 已提交
4811 4812
	struct inode *inode = &(ei->vfs_inode);
	struct super_block *sb = inode->i_sb;
4813 4814 4815 4816 4817 4818

	if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
				EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) {
		/* we are using combined 48 bit field */
		i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
					le32_to_cpu(raw_inode->i_blocks_lo);
4819
		if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) {
A
Aneesh Kumar K.V 已提交
4820 4821 4822 4823 4824
			/* i_blocks represent file system block size */
			return i_blocks  << (inode->i_blkbits - 9);
		} else {
			return i_blocks;
		}
4825 4826 4827 4828
	} else {
		return le32_to_cpu(raw_inode->i_blocks_lo);
	}
}
4829

4830
struct inode *ext4_iget(struct super_block *sb, unsigned long ino)
4831
{
4832 4833
	struct ext4_iloc iloc;
	struct ext4_inode *raw_inode;
4834 4835
	struct ext4_inode_info *ei;
	struct inode *inode;
4836
	journal_t *journal = EXT4_SB(sb)->s_journal;
4837
	long ret;
4838 4839
	int block;

4840 4841 4842 4843 4844 4845 4846
	inode = iget_locked(sb, ino);
	if (!inode)
		return ERR_PTR(-ENOMEM);
	if (!(inode->i_state & I_NEW))
		return inode;

	ei = EXT4_I(inode);
4847
	iloc.bh = 0;
4848

4849 4850
	ret = __ext4_get_inode_loc(inode, &iloc, 0);
	if (ret < 0)
4851
		goto bad_inode;
4852
	raw_inode = ext4_raw_inode(&iloc);
4853 4854 4855
	inode->i_mode = le16_to_cpu(raw_inode->i_mode);
	inode->i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
	inode->i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
4856
	if (!(test_opt(inode->i_sb, NO_UID32))) {
4857 4858 4859 4860 4861
		inode->i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
		inode->i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
	}
	inode->i_nlink = le16_to_cpu(raw_inode->i_links_count);

4862
	ei->i_state_flags = 0;
4863 4864 4865 4866 4867 4868 4869 4870 4871
	ei->i_dir_start_lookup = 0;
	ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
	/* We now have enough fields to check if the inode was active or not.
	 * This is needed because nfsd might try to access dead inodes
	 * the test is that same one that e2fsck uses
	 * NeilBrown 1999oct15
	 */
	if (inode->i_nlink == 0) {
		if (inode->i_mode == 0 ||
4872
		    !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) {
4873
			/* this inode is deleted */
4874
			ret = -ESTALE;
4875 4876 4877 4878 4879 4880 4881 4882
			goto bad_inode;
		}
		/* The only unlinked inodes we let through here have
		 * valid i_mode and are being read by the orphan
		 * recovery code: that's fine, we're about to complete
		 * the process of deleting those. */
	}
	ei->i_flags = le32_to_cpu(raw_inode->i_flags);
4883
	inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
4884
	ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
4885
	if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT))
B
Badari Pulavarty 已提交
4886 4887
		ei->i_file_acl |=
			((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
4888
	inode->i_size = ext4_isize(raw_inode);
4889
	ei->i_disksize = inode->i_size;
4890 4891 4892
#ifdef CONFIG_QUOTA
	ei->i_reserved_quota = 0;
#endif
4893 4894
	inode->i_generation = le32_to_cpu(raw_inode->i_generation);
	ei->i_block_group = iloc.block_group;
4895
	ei->i_last_alloc_group = ~0;
4896 4897 4898 4899
	/*
	 * NOTE! The in-memory inode i_data array is in little-endian order
	 * even on big-endian machines: we do NOT byteswap the block numbers!
	 */
4900
	for (block = 0; block < EXT4_N_BLOCKS; block++)
4901 4902 4903
		ei->i_data[block] = raw_inode->i_block[block];
	INIT_LIST_HEAD(&ei->i_orphan);

4904 4905 4906 4907 4908 4909 4910 4911 4912 4913 4914
	/*
	 * Set transaction id's of transactions that have to be committed
	 * to finish f[data]sync. We set them to currently running transaction
	 * as we cannot be sure that the inode or some of its metadata isn't
	 * part of the transaction - the inode could have been reclaimed and
	 * now it is reread from disk.
	 */
	if (journal) {
		transaction_t *transaction;
		tid_t tid;

4915
		read_lock(&journal->j_state_lock);
4916 4917 4918 4919 4920 4921 4922 4923
		if (journal->j_running_transaction)
			transaction = journal->j_running_transaction;
		else
			transaction = journal->j_committing_transaction;
		if (transaction)
			tid = transaction->t_tid;
		else
			tid = journal->j_commit_sequence;
4924
		read_unlock(&journal->j_state_lock);
4925 4926 4927 4928
		ei->i_sync_tid = tid;
		ei->i_datasync_tid = tid;
	}

4929
	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4930
		ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
4931
		if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
4932
		    EXT4_INODE_SIZE(inode->i_sb)) {
4933
			ret = -EIO;
4934
			goto bad_inode;
4935
		}
4936 4937
		if (ei->i_extra_isize == 0) {
			/* The extra space is currently unused. Use it. */
4938 4939
			ei->i_extra_isize = sizeof(struct ext4_inode) -
					    EXT4_GOOD_OLD_INODE_SIZE;
4940 4941
		} else {
			__le32 *magic = (void *)raw_inode +
4942
					EXT4_GOOD_OLD_INODE_SIZE +
4943
					ei->i_extra_isize;
4944
			if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC))
4945
				ext4_set_inode_state(inode, EXT4_STATE_XATTR);
4946 4947 4948 4949
		}
	} else
		ei->i_extra_isize = 0;

K
Kalpak Shah 已提交
4950 4951 4952 4953 4954
	EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
	EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
	EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
	EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);

4955 4956 4957 4958 4959 4960 4961
	inode->i_version = le32_to_cpu(raw_inode->i_disk_version);
	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
		if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
			inode->i_version |=
			(__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
	}

4962
	ret = 0;
4963
	if (ei->i_file_acl &&
4964
	    !ext4_data_block_valid(EXT4_SB(sb), ei->i_file_acl, 1)) {
4965 4966
		EXT4_ERROR_INODE(inode, "bad extended attribute block %llu",
				 ei->i_file_acl);
4967 4968
		ret = -EIO;
		goto bad_inode;
4969
	} else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
4970 4971 4972 4973 4974
		if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
		    (S_ISLNK(inode->i_mode) &&
		     !ext4_inode_is_fast_symlink(inode)))
			/* Validate extent which is part of inode */
			ret = ext4_ext_check_inode(inode);
4975
	} else if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4976 4977
		   (S_ISLNK(inode->i_mode) &&
		    !ext4_inode_is_fast_symlink(inode))) {
4978
		/* Validate block references which are part of inode */
4979 4980
		ret = ext4_check_inode_blockref(inode);
	}
4981
	if (ret)
4982
		goto bad_inode;
4983

4984
	if (S_ISREG(inode->i_mode)) {
4985 4986 4987
		inode->i_op = &ext4_file_inode_operations;
		inode->i_fop = &ext4_file_operations;
		ext4_set_aops(inode);
4988
	} else if (S_ISDIR(inode->i_mode)) {
4989 4990
		inode->i_op = &ext4_dir_inode_operations;
		inode->i_fop = &ext4_dir_operations;
4991
	} else if (S_ISLNK(inode->i_mode)) {
4992
		if (ext4_inode_is_fast_symlink(inode)) {
4993
			inode->i_op = &ext4_fast_symlink_inode_operations;
4994 4995 4996
			nd_terminate_link(ei->i_data, inode->i_size,
				sizeof(ei->i_data) - 1);
		} else {
4997 4998
			inode->i_op = &ext4_symlink_inode_operations;
			ext4_set_aops(inode);
4999
		}
5000 5001
	} else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
	      S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
5002
		inode->i_op = &ext4_special_inode_operations;
5003 5004 5005 5006 5007 5008
		if (raw_inode->i_block[0])
			init_special_inode(inode, inode->i_mode,
			   old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
		else
			init_special_inode(inode, inode->i_mode,
			   new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
5009 5010
	} else {
		ret = -EIO;
5011
		EXT4_ERROR_INODE(inode, "bogus i_mode (%o)", inode->i_mode);
5012
		goto bad_inode;
5013
	}
5014
	brelse(iloc.bh);
5015
	ext4_set_inode_flags(inode);
5016 5017
	unlock_new_inode(inode);
	return inode;
5018 5019

bad_inode:
5020
	brelse(iloc.bh);
5021 5022
	iget_failed(inode);
	return ERR_PTR(ret);
5023 5024
}

5025 5026 5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037
static int ext4_inode_blocks_set(handle_t *handle,
				struct ext4_inode *raw_inode,
				struct ext4_inode_info *ei)
{
	struct inode *inode = &(ei->vfs_inode);
	u64 i_blocks = inode->i_blocks;
	struct super_block *sb = inode->i_sb;

	if (i_blocks <= ~0U) {
		/*
		 * i_blocks can be represnted in a 32 bit variable
		 * as multiple of 512 bytes
		 */
A
Aneesh Kumar K.V 已提交
5038
		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
5039
		raw_inode->i_blocks_high = 0;
5040
		ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
5041 5042 5043 5044 5045 5046
		return 0;
	}
	if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_HUGE_FILE))
		return -EFBIG;

	if (i_blocks <= 0xffffffffffffULL) {
5047 5048 5049 5050
		/*
		 * i_blocks can be represented in a 48 bit variable
		 * as multiple of 512 bytes
		 */
A
Aneesh Kumar K.V 已提交
5051
		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
5052
		raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
5053
		ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
5054
	} else {
5055
		ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE);
A
Aneesh Kumar K.V 已提交
5056 5057 5058 5059
		/* i_block is stored in file system block size */
		i_blocks = i_blocks >> (inode->i_blkbits - 9);
		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
		raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
5060
	}
5061
	return 0;
5062 5063
}

5064 5065 5066 5067 5068 5069 5070
/*
 * Post the struct inode info into an on-disk inode location in the
 * buffer-cache.  This gobbles the caller's reference to the
 * buffer_head in the inode location struct.
 *
 * The caller must have write access to iloc->bh.
 */
5071
static int ext4_do_update_inode(handle_t *handle,
5072
				struct inode *inode,
5073
				struct ext4_iloc *iloc)
5074
{
5075 5076
	struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
	struct ext4_inode_info *ei = EXT4_I(inode);
5077 5078 5079 5080 5081
	struct buffer_head *bh = iloc->bh;
	int err = 0, rc, block;

	/* For fields not not tracking in the in-memory inode,
	 * initialise them to zero for new inodes. */
5082
	if (ext4_test_inode_state(inode, EXT4_STATE_NEW))
5083
		memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
5084

5085
	ext4_get_inode_flags(ei);
5086
	raw_inode->i_mode = cpu_to_le16(inode->i_mode);
5087
	if (!(test_opt(inode->i_sb, NO_UID32))) {
5088 5089 5090 5091 5092 5093
		raw_inode->i_uid_low = cpu_to_le16(low_16_bits(inode->i_uid));
		raw_inode->i_gid_low = cpu_to_le16(low_16_bits(inode->i_gid));
/*
 * Fix up interoperability with old kernels. Otherwise, old inodes get
 * re-used with the upper 16 bits of the uid/gid intact
 */
5094
		if (!ei->i_dtime) {
5095 5096 5097 5098 5099 5100 5101 5102 5103 5104 5105 5106 5107 5108 5109 5110 5111
			raw_inode->i_uid_high =
				cpu_to_le16(high_16_bits(inode->i_uid));
			raw_inode->i_gid_high =
				cpu_to_le16(high_16_bits(inode->i_gid));
		} else {
			raw_inode->i_uid_high = 0;
			raw_inode->i_gid_high = 0;
		}
	} else {
		raw_inode->i_uid_low =
			cpu_to_le16(fs_high2lowuid(inode->i_uid));
		raw_inode->i_gid_low =
			cpu_to_le16(fs_high2lowgid(inode->i_gid));
		raw_inode->i_uid_high = 0;
		raw_inode->i_gid_high = 0;
	}
	raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
K
Kalpak Shah 已提交
5112 5113 5114 5115 5116 5117

	EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
	EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
	EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
	EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);

5118 5119
	if (ext4_inode_blocks_set(handle, raw_inode, ei))
		goto out_brelse;
5120
	raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
5121
	raw_inode->i_flags = cpu_to_le32(ei->i_flags);
5122 5123
	if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
	    cpu_to_le32(EXT4_OS_HURD))
B
Badari Pulavarty 已提交
5124 5125
		raw_inode->i_file_acl_high =
			cpu_to_le16(ei->i_file_acl >> 32);
5126
	raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
5127 5128 5129 5130 5131 5132 5133 5134 5135 5136 5137 5138 5139 5140 5141 5142
	ext4_isize_set(raw_inode, ei->i_disksize);
	if (ei->i_disksize > 0x7fffffffULL) {
		struct super_block *sb = inode->i_sb;
		if (!EXT4_HAS_RO_COMPAT_FEATURE(sb,
				EXT4_FEATURE_RO_COMPAT_LARGE_FILE) ||
				EXT4_SB(sb)->s_es->s_rev_level ==
				cpu_to_le32(EXT4_GOOD_OLD_REV)) {
			/* If this is the first large file
			 * created, add a flag to the superblock.
			 */
			err = ext4_journal_get_write_access(handle,
					EXT4_SB(sb)->s_sbh);
			if (err)
				goto out_brelse;
			ext4_update_dynamic_rev(sb);
			EXT4_SET_RO_COMPAT_FEATURE(sb,
5143
					EXT4_FEATURE_RO_COMPAT_LARGE_FILE);
5144
			sb->s_dirt = 1;
5145
			ext4_handle_sync(handle);
5146
			err = ext4_handle_dirty_metadata(handle, NULL,
5147
					EXT4_SB(sb)->s_sbh);
5148 5149 5150 5151 5152 5153 5154 5155 5156 5157 5158 5159 5160 5161
		}
	}
	raw_inode->i_generation = cpu_to_le32(inode->i_generation);
	if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
		if (old_valid_dev(inode->i_rdev)) {
			raw_inode->i_block[0] =
				cpu_to_le32(old_encode_dev(inode->i_rdev));
			raw_inode->i_block[1] = 0;
		} else {
			raw_inode->i_block[0] = 0;
			raw_inode->i_block[1] =
				cpu_to_le32(new_encode_dev(inode->i_rdev));
			raw_inode->i_block[2] = 0;
		}
5162 5163 5164
	} else
		for (block = 0; block < EXT4_N_BLOCKS; block++)
			raw_inode->i_block[block] = ei->i_data[block];
5165

5166 5167 5168 5169 5170
	raw_inode->i_disk_version = cpu_to_le32(inode->i_version);
	if (ei->i_extra_isize) {
		if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
			raw_inode->i_version_hi =
			cpu_to_le32(inode->i_version >> 32);
5171
		raw_inode->i_extra_isize = cpu_to_le16(ei->i_extra_isize);
5172 5173
	}

5174
	BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
5175
	rc = ext4_handle_dirty_metadata(handle, NULL, bh);
5176 5177
	if (!err)
		err = rc;
5178
	ext4_clear_inode_state(inode, EXT4_STATE_NEW);
5179

5180
	ext4_update_inode_fsync_trans(handle, inode, 0);
5181
out_brelse:
5182
	brelse(bh);
5183
	ext4_std_error(inode->i_sb, err);
5184 5185 5186 5187
	return err;
}

/*
5188
 * ext4_write_inode()
5189 5190 5191 5192 5193 5194 5195 5196 5197 5198 5199 5200 5201 5202 5203 5204
 *
 * We are called from a few places:
 *
 * - Within generic_file_write() for O_SYNC files.
 *   Here, there will be no transaction running. We wait for any running
 *   trasnaction to commit.
 *
 * - Within sys_sync(), kupdate and such.
 *   We wait on commit, if tol to.
 *
 * - Within prune_icache() (PF_MEMALLOC == true)
 *   Here we simply return.  We can't afford to block kswapd on the
 *   journal commit.
 *
 * In all cases it is actually safe for us to return without doing anything,
 * because the inode has been copied into a raw inode buffer in
5205
 * ext4_mark_inode_dirty().  This is a correctness thing for O_SYNC and for
5206 5207 5208 5209 5210 5211 5212 5213 5214 5215 5216 5217 5218 5219 5220 5221
 * knfsd.
 *
 * Note that we are absolutely dependent upon all inode dirtiers doing the
 * right thing: they *must* call mark_inode_dirty() after dirtying info in
 * which we are interested.
 *
 * It would be a bug for them to not do this.  The code:
 *
 *	mark_inode_dirty(inode)
 *	stuff();
 *	inode->i_size = expr;
 *
 * is in error because a kswapd-driven write_inode() could occur while
 * `stuff()' is running, and the new i_size will be lost.  Plus the inode
 * will no longer be on the superblock's dirty inode list.
 */
5222
int ext4_write_inode(struct inode *inode, struct writeback_control *wbc)
5223
{
5224 5225
	int err;

5226 5227 5228
	if (current->flags & PF_MEMALLOC)
		return 0;

5229 5230 5231 5232 5233 5234
	if (EXT4_SB(inode->i_sb)->s_journal) {
		if (ext4_journal_current_handle()) {
			jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
			dump_stack();
			return -EIO;
		}
5235

5236
		if (wbc->sync_mode != WB_SYNC_ALL)
5237 5238 5239 5240 5241
			return 0;

		err = ext4_force_commit(inode->i_sb);
	} else {
		struct ext4_iloc iloc;
5242

5243
		err = __ext4_get_inode_loc(inode, &iloc, 0);
5244 5245
		if (err)
			return err;
5246
		if (wbc->sync_mode == WB_SYNC_ALL)
5247 5248
			sync_dirty_buffer(iloc.bh);
		if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) {
5249 5250
			EXT4_ERROR_INODE_BLOCK(inode, iloc.bh->b_blocknr,
					 "IO error syncing inode");
5251 5252
			err = -EIO;
		}
5253
		brelse(iloc.bh);
5254 5255
	}
	return err;
5256 5257 5258
}

/*
5259
 * ext4_setattr()
5260 5261 5262 5263 5264 5265 5266 5267 5268 5269 5270 5271 5272
 *
 * Called from notify_change.
 *
 * We want to trap VFS attempts to truncate the file as soon as
 * possible.  In particular, we want to make sure that when the VFS
 * shrinks i_size, we put the inode on the orphan list and modify
 * i_disksize immediately, so that during the subsequent flushing of
 * dirty pages and freeing of disk blocks, we can guarantee that any
 * commit will leave the blocks being flushed in an unused state on
 * disk.  (On recovery, the inode will get truncated and the blocks will
 * be freed, so we have a strong guarantee that no future commit will
 * leave these blocks visible to the user.)
 *
5273 5274 5275 5276 5277 5278 5279 5280
 * Another thing we have to assure is that if we are in ordered mode
 * and inode is still attached to the committing transaction, we must
 * we start writeout of all the dirty pages which are being truncated.
 * This way we are sure that all the data written in the previous
 * transaction are already on disk (truncate waits for pages under
 * writeback).
 *
 * Called with inode->i_mutex down.
5281
 */
5282
int ext4_setattr(struct dentry *dentry, struct iattr *attr)
5283 5284 5285
{
	struct inode *inode = dentry->d_inode;
	int error, rc = 0;
5286
	int orphan = 0;
5287 5288 5289 5290 5291 5292
	const unsigned int ia_valid = attr->ia_valid;

	error = inode_change_ok(inode, attr);
	if (error)
		return error;

5293
	if (is_quota_modification(inode, attr))
5294
		dquot_initialize(inode);
5295 5296 5297 5298 5299 5300
	if ((ia_valid & ATTR_UID && attr->ia_uid != inode->i_uid) ||
		(ia_valid & ATTR_GID && attr->ia_gid != inode->i_gid)) {
		handle_t *handle;

		/* (user+group)*(old+new) structure, inode write (sb,
		 * inode block, ? - but truncate inode update has it) */
D
Dmitry Monakhov 已提交
5301
		handle = ext4_journal_start(inode, (EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb)+
5302
					EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb))+3);
5303 5304 5305 5306
		if (IS_ERR(handle)) {
			error = PTR_ERR(handle);
			goto err_out;
		}
5307
		error = dquot_transfer(inode, attr);
5308
		if (error) {
5309
			ext4_journal_stop(handle);
5310 5311 5312 5313 5314 5315 5316 5317
			return error;
		}
		/* Update corresponding info in inode so that everything is in
		 * one transaction */
		if (attr->ia_valid & ATTR_UID)
			inode->i_uid = attr->ia_uid;
		if (attr->ia_valid & ATTR_GID)
			inode->i_gid = attr->ia_gid;
5318 5319
		error = ext4_mark_inode_dirty(handle, inode);
		ext4_journal_stop(handle);
5320 5321
	}

5322
	if (attr->ia_valid & ATTR_SIZE) {
5323
		if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
5324 5325
			struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);

5326 5327
			if (attr->ia_size > sbi->s_bitmap_maxbytes)
				return -EFBIG;
5328 5329 5330
		}
	}

5331
	if (S_ISREG(inode->i_mode) &&
5332 5333
	    attr->ia_valid & ATTR_SIZE &&
	    (attr->ia_size < inode->i_size ||
5334
	     (ext4_test_inode_flag(inode, EXT4_INODE_EOFBLOCKS)))) {
5335 5336
		handle_t *handle;

5337
		handle = ext4_journal_start(inode, 3);
5338 5339 5340 5341
		if (IS_ERR(handle)) {
			error = PTR_ERR(handle);
			goto err_out;
		}
5342 5343 5344 5345
		if (ext4_handle_valid(handle)) {
			error = ext4_orphan_add(handle, inode);
			orphan = 1;
		}
5346 5347
		EXT4_I(inode)->i_disksize = attr->ia_size;
		rc = ext4_mark_inode_dirty(handle, inode);
5348 5349
		if (!error)
			error = rc;
5350
		ext4_journal_stop(handle);
5351 5352 5353 5354 5355 5356 5357 5358 5359 5360 5361 5362

		if (ext4_should_order_data(inode)) {
			error = ext4_begin_ordered_truncate(inode,
							    attr->ia_size);
			if (error) {
				/* Do as much error cleanup as possible */
				handle = ext4_journal_start(inode, 3);
				if (IS_ERR(handle)) {
					ext4_orphan_del(NULL, inode);
					goto err_out;
				}
				ext4_orphan_del(handle, inode);
5363
				orphan = 0;
5364 5365 5366 5367
				ext4_journal_stop(handle);
				goto err_out;
			}
		}
5368
		/* ext4_truncate will clear the flag */
5369
		if ((ext4_test_inode_flag(inode, EXT4_INODE_EOFBLOCKS)))
5370
			ext4_truncate(inode);
5371 5372
	}

C
Christoph Hellwig 已提交
5373 5374 5375
	if ((attr->ia_valid & ATTR_SIZE) &&
	    attr->ia_size != i_size_read(inode))
		rc = vmtruncate(inode, attr->ia_size);
5376

C
Christoph Hellwig 已提交
5377 5378 5379 5380 5381 5382 5383 5384 5385
	if (!rc) {
		setattr_copy(inode, attr);
		mark_inode_dirty(inode);
	}

	/*
	 * If the call to ext4_truncate failed to get a transaction handle at
	 * all, we need to clean up the in-core orphan list manually.
	 */
5386
	if (orphan && inode->i_nlink)
5387
		ext4_orphan_del(NULL, inode);
5388 5389

	if (!rc && (ia_valid & ATTR_MODE))
5390
		rc = ext4_acl_chmod(inode);
5391 5392

err_out:
5393
	ext4_std_error(inode->i_sb, error);
5394 5395 5396 5397 5398
	if (!error)
		error = rc;
	return error;
}

5399 5400 5401 5402 5403 5404 5405 5406 5407 5408 5409 5410 5411 5412 5413 5414 5415 5416 5417 5418 5419 5420 5421 5422
int ext4_getattr(struct vfsmount *mnt, struct dentry *dentry,
		 struct kstat *stat)
{
	struct inode *inode;
	unsigned long delalloc_blocks;

	inode = dentry->d_inode;
	generic_fillattr(inode, stat);

	/*
	 * We can't update i_blocks if the block allocation is delayed
	 * otherwise in the case of system crash before the real block
	 * allocation is done, we will have i_blocks inconsistent with
	 * on-disk file blocks.
	 * We always keep i_blocks updated together with real
	 * allocation. But to not confuse with user, stat
	 * will return the blocks that include the delayed allocation
	 * blocks for this file.
	 */
	delalloc_blocks = EXT4_I(inode)->i_reserved_data_blocks;

	stat->blocks += (delalloc_blocks << inode->i_sb->s_blocksize_bits)>>9;
	return 0;
}
5423

5424 5425 5426 5427 5428 5429 5430 5431 5432 5433 5434 5435 5436 5437 5438 5439 5440 5441 5442 5443 5444 5445 5446 5447 5448 5449 5450
static int ext4_indirect_trans_blocks(struct inode *inode, int nrblocks,
				      int chunk)
{
	int indirects;

	/* if nrblocks are contiguous */
	if (chunk) {
		/*
		 * With N contiguous data blocks, it need at most
		 * N/EXT4_ADDR_PER_BLOCK(inode->i_sb) indirect blocks
		 * 2 dindirect blocks
		 * 1 tindirect block
		 */
		indirects = nrblocks / EXT4_ADDR_PER_BLOCK(inode->i_sb);
		return indirects + 3;
	}
	/*
	 * if nrblocks are not contiguous, worse case, each block touch
	 * a indirect block, and each indirect block touch a double indirect
	 * block, plus a triple indirect block
	 */
	indirects = nrblocks * 2 + 1;
	return indirects;
}

static int ext4_index_trans_blocks(struct inode *inode, int nrblocks, int chunk)
{
5451
	if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
5452 5453
		return ext4_indirect_trans_blocks(inode, nrblocks, chunk);
	return ext4_ext_index_trans_blocks(inode, nrblocks, chunk);
5454
}
5455

5456
/*
5457 5458 5459
 * Account for index blocks, block groups bitmaps and block group
 * descriptor blocks if modify datablocks and index blocks
 * worse case, the indexs blocks spread over different block groups
5460
 *
5461
 * If datablocks are discontiguous, they are possible to spread over
5462
 * different block groups too. If they are contiuguous, with flexbg,
5463
 * they could still across block group boundary.
5464
 *
5465 5466
 * Also account for superblock, inode, quota and xattr blocks
 */
5467
static int ext4_meta_trans_blocks(struct inode *inode, int nrblocks, int chunk)
5468
{
5469 5470
	ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
	int gdpblocks;
5471 5472 5473 5474 5475 5476 5477 5478 5479 5480 5481 5482 5483 5484 5485 5486 5487 5488 5489 5490 5491 5492 5493 5494 5495 5496
	int idxblocks;
	int ret = 0;

	/*
	 * How many index blocks need to touch to modify nrblocks?
	 * The "Chunk" flag indicating whether the nrblocks is
	 * physically contiguous on disk
	 *
	 * For Direct IO and fallocate, they calls get_block to allocate
	 * one single extent at a time, so they could set the "Chunk" flag
	 */
	idxblocks = ext4_index_trans_blocks(inode, nrblocks, chunk);

	ret = idxblocks;

	/*
	 * Now let's see how many group bitmaps and group descriptors need
	 * to account
	 */
	groups = idxblocks;
	if (chunk)
		groups += 1;
	else
		groups += nrblocks;

	gdpblocks = groups;
5497 5498
	if (groups > ngroups)
		groups = ngroups;
5499 5500 5501 5502 5503 5504 5505 5506 5507 5508 5509 5510 5511 5512
	if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
		gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;

	/* bitmaps and block group descriptor blocks */
	ret += groups + gdpblocks;

	/* Blocks for super block, inode, quota and xattr blocks */
	ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);

	return ret;
}

/*
 * Calulate the total number of credits to reserve to fit
5513 5514
 * the modification of a single pages into a single transaction,
 * which may include multiple chunks of block allocations.
5515
 *
5516
 * This could be called via ext4_write_begin()
5517
 *
5518
 * We need to consider the worse case, when
5519
 * one new block per extent.
5520
 */
A
Alex Tomas 已提交
5521
int ext4_writepage_trans_blocks(struct inode *inode)
5522
{
5523
	int bpp = ext4_journal_blocks_per_page(inode);
5524 5525
	int ret;

5526
	ret = ext4_meta_trans_blocks(inode, bpp, 0);
A
Alex Tomas 已提交
5527

5528
	/* Account for data blocks for journalled mode */
5529
	if (ext4_should_journal_data(inode))
5530
		ret += bpp;
5531 5532
	return ret;
}
5533 5534 5535 5536 5537

/*
 * Calculate the journal credits for a chunk of data modification.
 *
 * This is called from DIO, fallocate or whoever calling
5538
 * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks.
5539 5540 5541 5542 5543 5544 5545 5546 5547
 *
 * journal buffers for data blocks are not included here, as DIO
 * and fallocate do no need to journal data buffers.
 */
int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
{
	return ext4_meta_trans_blocks(inode, nrblocks, 1);
}

5548
/*
5549
 * The caller must have previously called ext4_reserve_inode_write().
5550 5551
 * Give this, we know that the caller already has write access to iloc->bh.
 */
5552
int ext4_mark_iloc_dirty(handle_t *handle,
5553
			 struct inode *inode, struct ext4_iloc *iloc)
5554 5555 5556
{
	int err = 0;

5557 5558 5559
	if (test_opt(inode->i_sb, I_VERSION))
		inode_inc_iversion(inode);

5560 5561 5562
	/* the do_update_inode consumes one bh->b_count */
	get_bh(iloc->bh);

5563
	/* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
5564
	err = ext4_do_update_inode(handle, inode, iloc);
5565 5566 5567 5568 5569 5570 5571 5572 5573 5574
	put_bh(iloc->bh);
	return err;
}

/*
 * On success, We end up with an outstanding reference count against
 * iloc->bh.  This _must_ be cleaned up later.
 */

int
5575 5576
ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
			 struct ext4_iloc *iloc)
5577
{
5578 5579 5580 5581 5582 5583 5584 5585 5586
	int err;

	err = ext4_get_inode_loc(inode, iloc);
	if (!err) {
		BUFFER_TRACE(iloc->bh, "get_write_access");
		err = ext4_journal_get_write_access(handle, iloc->bh);
		if (err) {
			brelse(iloc->bh);
			iloc->bh = NULL;
5587 5588
		}
	}
5589
	ext4_std_error(inode->i_sb, err);
5590 5591 5592
	return err;
}

5593 5594 5595 5596
/*
 * Expand an inode by new_extra_isize bytes.
 * Returns 0 on success or negative error number on failure.
 */
A
Aneesh Kumar K.V 已提交
5597 5598 5599 5600
static int ext4_expand_extra_isize(struct inode *inode,
				   unsigned int new_extra_isize,
				   struct ext4_iloc iloc,
				   handle_t *handle)
5601 5602 5603 5604 5605 5606 5607 5608 5609 5610 5611 5612
{
	struct ext4_inode *raw_inode;
	struct ext4_xattr_ibody_header *header;

	if (EXT4_I(inode)->i_extra_isize >= new_extra_isize)
		return 0;

	raw_inode = ext4_raw_inode(&iloc);

	header = IHDR(inode, raw_inode);

	/* No extended attributes present */
5613 5614
	if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
	    header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
5615 5616 5617 5618 5619 5620 5621 5622 5623 5624 5625
		memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0,
			new_extra_isize);
		EXT4_I(inode)->i_extra_isize = new_extra_isize;
		return 0;
	}

	/* try to expand with EAs present */
	return ext4_expand_extra_isize_ea(inode, new_extra_isize,
					  raw_inode, handle);
}

5626 5627 5628 5629 5630 5631 5632 5633 5634 5635 5636 5637 5638 5639 5640 5641 5642 5643 5644 5645 5646
/*
 * What we do here is to mark the in-core inode as clean with respect to inode
 * dirtiness (it may still be data-dirty).
 * This means that the in-core inode may be reaped by prune_icache
 * without having to perform any I/O.  This is a very good thing,
 * because *any* task may call prune_icache - even ones which
 * have a transaction open against a different journal.
 *
 * Is this cheating?  Not really.  Sure, we haven't written the
 * inode out, but prune_icache isn't a user-visible syncing function.
 * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
 * we start and wait on commits.
 *
 * Is this efficient/effective?  Well, we're being nice to the system
 * by cleaning up our inodes proactively so they can be reaped
 * without I/O.  But we are potentially leaving up to five seconds'
 * worth of inodes floating about which prune_icache wants us to
 * write out.  One way to fix that would be to get prune_icache()
 * to do a write_super() to free up some memory.  It has the desired
 * effect.
 */
5647
int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
5648
{
5649
	struct ext4_iloc iloc;
5650 5651 5652
	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
	static unsigned int mnt_count;
	int err, ret;
5653 5654

	might_sleep();
5655
	trace_ext4_mark_inode_dirty(inode, _RET_IP_);
5656
	err = ext4_reserve_inode_write(handle, inode, &iloc);
5657 5658
	if (ext4_handle_valid(handle) &&
	    EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize &&
5659
	    !ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) {
5660 5661 5662 5663 5664 5665 5666 5667 5668 5669 5670 5671 5672
		/*
		 * We need extra buffer credits since we may write into EA block
		 * with this same handle. If journal_extend fails, then it will
		 * only result in a minor loss of functionality for that inode.
		 * If this is felt to be critical, then e2fsck should be run to
		 * force a large enough s_min_extra_isize.
		 */
		if ((jbd2_journal_extend(handle,
			     EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) {
			ret = ext4_expand_extra_isize(inode,
						      sbi->s_want_extra_isize,
						      iloc, handle);
			if (ret) {
5673 5674
				ext4_set_inode_state(inode,
						     EXT4_STATE_NO_EXPAND);
A
Aneesh Kumar K.V 已提交
5675 5676
				if (mnt_count !=
					le16_to_cpu(sbi->s_es->s_mnt_count)) {
5677
					ext4_warning(inode->i_sb,
5678 5679 5680
					"Unable to expand inode %lu. Delete"
					" some EAs or run e2fsck.",
					inode->i_ino);
A
Aneesh Kumar K.V 已提交
5681 5682
					mnt_count =
					  le16_to_cpu(sbi->s_es->s_mnt_count);
5683 5684 5685 5686
				}
			}
		}
	}
5687
	if (!err)
5688
		err = ext4_mark_iloc_dirty(handle, inode, &iloc);
5689 5690 5691 5692
	return err;
}

/*
5693
 * ext4_dirty_inode() is called from __mark_inode_dirty()
5694 5695 5696 5697 5698
 *
 * We're really interested in the case where a file is being extended.
 * i_size has been changed by generic_commit_write() and we thus need
 * to include the updated inode in the current transaction.
 *
5699
 * Also, dquot_alloc_block() will always dirty the inode when blocks
5700 5701 5702 5703 5704 5705
 * are allocated to the file.
 *
 * If the inode is marked synchronous, we don't honour that here - doing
 * so would cause a commit on atime updates, which we don't bother doing.
 * We handle synchronous inodes at the highest possible level.
 */
5706
void ext4_dirty_inode(struct inode *inode)
5707 5708 5709
{
	handle_t *handle;

5710
	handle = ext4_journal_start(inode, 2);
5711 5712
	if (IS_ERR(handle))
		goto out;
5713 5714 5715

	ext4_mark_inode_dirty(handle, inode);

5716
	ext4_journal_stop(handle);
5717 5718 5719 5720 5721 5722 5723 5724
out:
	return;
}

#if 0
/*
 * Bind an inode's backing buffer_head into this transaction, to prevent
 * it from being flushed to disk early.  Unlike
5725
 * ext4_reserve_inode_write, this leaves behind no bh reference and
5726 5727 5728
 * returns no iloc structure, so the caller needs to repeat the iloc
 * lookup to mark the inode dirty later.
 */
5729
static int ext4_pin_inode(handle_t *handle, struct inode *inode)
5730
{
5731
	struct ext4_iloc iloc;
5732 5733 5734

	int err = 0;
	if (handle) {
5735
		err = ext4_get_inode_loc(inode, &iloc);
5736 5737
		if (!err) {
			BUFFER_TRACE(iloc.bh, "get_write_access");
5738
			err = jbd2_journal_get_write_access(handle, iloc.bh);
5739
			if (!err)
5740
				err = ext4_handle_dirty_metadata(handle,
5741
								 NULL,
5742
								 iloc.bh);
5743 5744 5745
			brelse(iloc.bh);
		}
	}
5746
	ext4_std_error(inode->i_sb, err);
5747 5748 5749 5750
	return err;
}
#endif

5751
int ext4_change_inode_journal_flag(struct inode *inode, int val)
5752 5753 5754 5755 5756 5757 5758 5759 5760 5761 5762 5763 5764 5765 5766
{
	journal_t *journal;
	handle_t *handle;
	int err;

	/*
	 * We have to be very careful here: changing a data block's
	 * journaling status dynamically is dangerous.  If we write a
	 * data block to the journal, change the status and then delete
	 * that block, we risk forgetting to revoke the old log record
	 * from the journal and so a subsequent replay can corrupt data.
	 * So, first we make sure that the journal is empty and that
	 * nobody is changing anything.
	 */

5767
	journal = EXT4_JOURNAL(inode);
5768 5769
	if (!journal)
		return 0;
5770
	if (is_journal_aborted(journal))
5771 5772
		return -EROFS;

5773 5774
	jbd2_journal_lock_updates(journal);
	jbd2_journal_flush(journal);
5775 5776 5777 5778 5779 5780 5781 5782 5783 5784

	/*
	 * OK, there are no updates running now, and all cached data is
	 * synced to disk.  We are now in a completely consistent state
	 * which doesn't have anything in the journal, and we know that
	 * no filesystem updates are running, so it is safe to modify
	 * the inode's in-core data-journaling state flag now.
	 */

	if (val)
5785
		ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
5786
	else
5787
		ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
5788
	ext4_set_aops(inode);
5789

5790
	jbd2_journal_unlock_updates(journal);
5791 5792 5793

	/* Finally we can mark the inode as dirty. */

5794
	handle = ext4_journal_start(inode, 1);
5795 5796 5797
	if (IS_ERR(handle))
		return PTR_ERR(handle);

5798
	err = ext4_mark_inode_dirty(handle, inode);
5799
	ext4_handle_sync(handle);
5800 5801
	ext4_journal_stop(handle);
	ext4_std_error(inode->i_sb, err);
5802 5803 5804

	return err;
}
5805 5806 5807 5808 5809 5810

static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
{
	return !buffer_mapped(bh);
}

5811
int ext4_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
5812
{
5813
	struct page *page = vmf->page;
5814 5815 5816
	loff_t size;
	unsigned long len;
	int ret = -EINVAL;
5817
	void *fsdata;
5818 5819 5820 5821 5822 5823 5824 5825 5826 5827 5828 5829 5830 5831 5832 5833 5834 5835 5836 5837 5838 5839 5840 5841
	struct file *file = vma->vm_file;
	struct inode *inode = file->f_path.dentry->d_inode;
	struct address_space *mapping = inode->i_mapping;

	/*
	 * Get i_alloc_sem to stop truncates messing with the inode. We cannot
	 * get i_mutex because we are already holding mmap_sem.
	 */
	down_read(&inode->i_alloc_sem);
	size = i_size_read(inode);
	if (page->mapping != mapping || size <= page_offset(page)
	    || !PageUptodate(page)) {
		/* page got truncated from under us? */
		goto out_unlock;
	}
	ret = 0;
	if (PageMappedToDisk(page))
		goto out_unlock;

	if (page->index == size >> PAGE_CACHE_SHIFT)
		len = size & ~PAGE_CACHE_MASK;
	else
		len = PAGE_CACHE_SIZE;

5842 5843 5844 5845 5846 5847 5848
	lock_page(page);
	/*
	 * return if we have all the buffers mapped. This avoid
	 * the need to call write_begin/write_end which does a
	 * journal_start/journal_stop which can block and take
	 * long time
	 */
5849 5850
	if (page_has_buffers(page)) {
		if (!walk_page_buffers(NULL, page_buffers(page), 0, len, NULL,
5851 5852
					ext4_bh_unmapped)) {
			unlock_page(page);
5853
			goto out_unlock;
5854
		}
5855
	}
5856
	unlock_page(page);
5857 5858 5859 5860 5861 5862 5863 5864
	/*
	 * OK, we need to fill the hole... Do write_begin write_end
	 * to do block allocation/reservation.We are not holding
	 * inode.i__mutex here. That allow * parallel write_begin,
	 * write_end call. lock_page prevent this from happening
	 * on the same page though
	 */
	ret = mapping->a_ops->write_begin(file, mapping, page_offset(page),
5865
			len, AOP_FLAG_UNINTERRUPTIBLE, &page, &fsdata);
5866 5867 5868
	if (ret < 0)
		goto out_unlock;
	ret = mapping->a_ops->write_end(file, mapping, page_offset(page),
5869
			len, len, page, fsdata);
5870 5871 5872 5873
	if (ret < 0)
		goto out_unlock;
	ret = 0;
out_unlock:
5874 5875
	if (ret)
		ret = VM_FAULT_SIGBUS;
5876 5877 5878
	up_read(&inode->i_alloc_sem);
	return ret;
}