vmscan.c 80.8 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
/*
 *  linux/mm/vmscan.c
 *
 *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
 *
 *  Swap reorganised 29.12.95, Stephen Tweedie.
 *  kswapd added: 7.1.96  sct
 *  Removed kswapd_ctl limits, and swap out as many pages as needed
 *  to bring the system back to freepages.high: 2.4.97, Rik van Riel.
 *  Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
 *  Multiqueue VM started 5.8.00, Rik van Riel.
 */

#include <linux/mm.h>
#include <linux/module.h>
16
#include <linux/gfp.h>
L
Linus Torvalds 已提交
17 18 19 20 21
#include <linux/kernel_stat.h>
#include <linux/swap.h>
#include <linux/pagemap.h>
#include <linux/init.h>
#include <linux/highmem.h>
22
#include <linux/vmstat.h>
L
Linus Torvalds 已提交
23 24 25 26 27 28 29 30 31 32 33 34 35 36
#include <linux/file.h>
#include <linux/writeback.h>
#include <linux/blkdev.h>
#include <linux/buffer_head.h>	/* for try_to_release_page(),
					buffer_heads_over_limit */
#include <linux/mm_inline.h>
#include <linux/pagevec.h>
#include <linux/backing-dev.h>
#include <linux/rmap.h>
#include <linux/topology.h>
#include <linux/cpu.h>
#include <linux/cpuset.h>
#include <linux/notifier.h>
#include <linux/rwsem.h>
37
#include <linux/delay.h>
38
#include <linux/kthread.h>
39
#include <linux/freezer.h>
40
#include <linux/memcontrol.h>
41
#include <linux/delayacct.h>
42
#include <linux/sysctl.h>
L
Linus Torvalds 已提交
43 44 45 46 47 48

#include <asm/tlbflush.h>
#include <asm/div64.h>

#include <linux/swapops.h>

49 50
#include "internal.h"

51 52 53
#define CREATE_TRACE_POINTS
#include <trace/events/vmscan.h>

L
Linus Torvalds 已提交
54 55 56 57
struct scan_control {
	/* Incremented by the number of inactive pages that were scanned */
	unsigned long nr_scanned;

58 59 60
	/* Number of pages freed so far during a call to shrink_zones() */
	unsigned long nr_reclaimed;

61 62 63
	/* How many pages shrink_list() should reclaim */
	unsigned long nr_to_reclaim;

64 65
	unsigned long hibernation_mode;

L
Linus Torvalds 已提交
66
	/* This context's GFP mask */
A
Al Viro 已提交
67
	gfp_t gfp_mask;
L
Linus Torvalds 已提交
68 69 70

	int may_writepage;

71 72
	/* Can mapped pages be reclaimed? */
	int may_unmap;
73

74 75 76
	/* Can pages be swapped as part of reclaim? */
	int may_swap;

77
	int swappiness;
78

A
Andy Whitcroft 已提交
79
	int order;
80

81 82 83 84 85 86
	/*
	 * Intend to reclaim enough contenious memory rather than to reclaim
	 * enough amount memory. I.e, it's the mode for high order allocation.
	 */
	bool lumpy_reclaim_mode;

87 88 89
	/* Which cgroup do we reclaim from */
	struct mem_cgroup *mem_cgroup;

90 91 92 93 94
	/*
	 * Nodemask of nodes allowed by the caller. If NULL, all nodes
	 * are scanned.
	 */
	nodemask_t	*nodemask;
L
Linus Torvalds 已提交
95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130
};

#define lru_to_page(_head) (list_entry((_head)->prev, struct page, lru))

#ifdef ARCH_HAS_PREFETCH
#define prefetch_prev_lru_page(_page, _base, _field)			\
	do {								\
		if ((_page)->lru.prev != _base) {			\
			struct page *prev;				\
									\
			prev = lru_to_page(&(_page->lru));		\
			prefetch(&prev->_field);			\
		}							\
	} while (0)
#else
#define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
#endif

#ifdef ARCH_HAS_PREFETCHW
#define prefetchw_prev_lru_page(_page, _base, _field)			\
	do {								\
		if ((_page)->lru.prev != _base) {			\
			struct page *prev;				\
									\
			prev = lru_to_page(&(_page->lru));		\
			prefetchw(&prev->_field);			\
		}							\
	} while (0)
#else
#define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
#endif

/*
 * From 0 .. 100.  Higher means more swappy.
 */
int vm_swappiness = 60;
131
long vm_total_pages;	/* The total number of pages which the VM controls */
L
Linus Torvalds 已提交
132 133 134 135

static LIST_HEAD(shrinker_list);
static DECLARE_RWSEM(shrinker_rwsem);

136
#ifdef CONFIG_CGROUP_MEM_RES_CTLR
137
#define scanning_global_lru(sc)	(!(sc)->mem_cgroup)
138
#else
139
#define scanning_global_lru(sc)	(1)
140 141
#endif

142 143 144
static struct zone_reclaim_stat *get_reclaim_stat(struct zone *zone,
						  struct scan_control *sc)
{
145
	if (!scanning_global_lru(sc))
K
KOSAKI Motohiro 已提交
146 147
		return mem_cgroup_get_reclaim_stat(sc->mem_cgroup, zone);

148 149 150
	return &zone->reclaim_stat;
}

151 152
static unsigned long zone_nr_lru_pages(struct zone *zone,
				struct scan_control *sc, enum lru_list lru)
153
{
154
	if (!scanning_global_lru(sc))
155 156
		return mem_cgroup_zone_nr_pages(sc->mem_cgroup, zone, lru);

157 158 159 160
	return zone_page_state(zone, NR_LRU_BASE + lru);
}


L
Linus Torvalds 已提交
161 162 163
/*
 * Add a shrinker callback to be called from the vm
 */
164
void register_shrinker(struct shrinker *shrinker)
L
Linus Torvalds 已提交
165
{
166 167 168 169
	shrinker->nr = 0;
	down_write(&shrinker_rwsem);
	list_add_tail(&shrinker->list, &shrinker_list);
	up_write(&shrinker_rwsem);
L
Linus Torvalds 已提交
170
}
171
EXPORT_SYMBOL(register_shrinker);
L
Linus Torvalds 已提交
172 173 174 175

/*
 * Remove one
 */
176
void unregister_shrinker(struct shrinker *shrinker)
L
Linus Torvalds 已提交
177 178 179 180 181
{
	down_write(&shrinker_rwsem);
	list_del(&shrinker->list);
	up_write(&shrinker_rwsem);
}
182
EXPORT_SYMBOL(unregister_shrinker);
L
Linus Torvalds 已提交
183 184 185 186 187 188 189 190 191 192

#define SHRINK_BATCH 128
/*
 * Call the shrink functions to age shrinkable caches
 *
 * Here we assume it costs one seek to replace a lru page and that it also
 * takes a seek to recreate a cache object.  With this in mind we age equal
 * percentages of the lru and ageable caches.  This should balance the seeks
 * generated by these structures.
 *
S
Simon Arlott 已提交
193
 * If the vm encountered mapped pages on the LRU it increase the pressure on
L
Linus Torvalds 已提交
194 195 196 197 198 199 200
 * slab to avoid swapping.
 *
 * We do weird things to avoid (scanned*seeks*entries) overflowing 32 bits.
 *
 * `lru_pages' represents the number of on-LRU pages in all the zones which
 * are eligible for the caller's allocation attempt.  It is used for balancing
 * slab reclaim versus page reclaim.
201 202
 *
 * Returns the number of slab objects which we shrunk.
L
Linus Torvalds 已提交
203
 */
204 205
unsigned long shrink_slab(unsigned long scanned, gfp_t gfp_mask,
			unsigned long lru_pages)
L
Linus Torvalds 已提交
206 207
{
	struct shrinker *shrinker;
208
	unsigned long ret = 0;
L
Linus Torvalds 已提交
209 210 211 212 213

	if (scanned == 0)
		scanned = SWAP_CLUSTER_MAX;

	if (!down_read_trylock(&shrinker_rwsem))
214
		return 1;	/* Assume we'll be able to shrink next time */
L
Linus Torvalds 已提交
215 216 217 218

	list_for_each_entry(shrinker, &shrinker_list, list) {
		unsigned long long delta;
		unsigned long total_scan;
219
		unsigned long max_pass;
L
Linus Torvalds 已提交
220

221
		max_pass = (*shrinker->shrink)(shrinker, 0, gfp_mask);
L
Linus Torvalds 已提交
222
		delta = (4 * scanned) / shrinker->seeks;
223
		delta *= max_pass;
L
Linus Torvalds 已提交
224 225
		do_div(delta, lru_pages + 1);
		shrinker->nr += delta;
226
		if (shrinker->nr < 0) {
227 228 229
			printk(KERN_ERR "shrink_slab: %pF negative objects to "
			       "delete nr=%ld\n",
			       shrinker->shrink, shrinker->nr);
230 231 232 233 234 235 236 237 238 239
			shrinker->nr = max_pass;
		}

		/*
		 * Avoid risking looping forever due to too large nr value:
		 * never try to free more than twice the estimate number of
		 * freeable entries.
		 */
		if (shrinker->nr > max_pass * 2)
			shrinker->nr = max_pass * 2;
L
Linus Torvalds 已提交
240 241 242 243 244 245 246

		total_scan = shrinker->nr;
		shrinker->nr = 0;

		while (total_scan >= SHRINK_BATCH) {
			long this_scan = SHRINK_BATCH;
			int shrink_ret;
247
			int nr_before;
L
Linus Torvalds 已提交
248

249 250 251
			nr_before = (*shrinker->shrink)(shrinker, 0, gfp_mask);
			shrink_ret = (*shrinker->shrink)(shrinker, this_scan,
								gfp_mask);
L
Linus Torvalds 已提交
252 253
			if (shrink_ret == -1)
				break;
254 255
			if (shrink_ret < nr_before)
				ret += nr_before - shrink_ret;
256
			count_vm_events(SLABS_SCANNED, this_scan);
L
Linus Torvalds 已提交
257 258 259 260 261 262 263 264
			total_scan -= this_scan;

			cond_resched();
		}

		shrinker->nr += total_scan;
	}
	up_read(&shrinker_rwsem);
265
	return ret;
L
Linus Torvalds 已提交
266 267 268 269
}

static inline int is_page_cache_freeable(struct page *page)
{
270 271 272 273 274
	/*
	 * A freeable page cache page is referenced only by the caller
	 * that isolated the page, the page cache radix tree and
	 * optional buffer heads at page->private.
	 */
275
	return page_count(page) - page_has_private(page) == 2;
L
Linus Torvalds 已提交
276 277 278 279
}

static int may_write_to_queue(struct backing_dev_info *bdi)
{
280
	if (current->flags & PF_SWAPWRITE)
L
Linus Torvalds 已提交
281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303
		return 1;
	if (!bdi_write_congested(bdi))
		return 1;
	if (bdi == current->backing_dev_info)
		return 1;
	return 0;
}

/*
 * We detected a synchronous write error writing a page out.  Probably
 * -ENOSPC.  We need to propagate that into the address_space for a subsequent
 * fsync(), msync() or close().
 *
 * The tricky part is that after writepage we cannot touch the mapping: nothing
 * prevents it from being freed up.  But we have a ref on the page and once
 * that page is locked, the mapping is pinned.
 *
 * We're allowed to run sleeping lock_page() here because we know the caller has
 * __GFP_FS.
 */
static void handle_write_error(struct address_space *mapping,
				struct page *page, int error)
{
304
	lock_page_nosync(page);
305 306
	if (page_mapping(page) == mapping)
		mapping_set_error(mapping, error);
L
Linus Torvalds 已提交
307 308 309
	unlock_page(page);
}

310 311 312 313 314 315
/* Request for sync pageout. */
enum pageout_io {
	PAGEOUT_IO_ASYNC,
	PAGEOUT_IO_SYNC,
};

316 317 318 319 320 321 322 323 324 325 326 327
/* possible outcome of pageout() */
typedef enum {
	/* failed to write page out, page is locked */
	PAGE_KEEP,
	/* move page to the active list, page is locked */
	PAGE_ACTIVATE,
	/* page has been sent to the disk successfully, page is unlocked */
	PAGE_SUCCESS,
	/* page is clean and locked */
	PAGE_CLEAN,
} pageout_t;

L
Linus Torvalds 已提交
328
/*
A
Andrew Morton 已提交
329 330
 * pageout is called by shrink_page_list() for each dirty page.
 * Calls ->writepage().
L
Linus Torvalds 已提交
331
 */
332 333
static pageout_t pageout(struct page *page, struct address_space *mapping,
						enum pageout_io sync_writeback)
L
Linus Torvalds 已提交
334 335 336 337 338 339 340 341
{
	/*
	 * If the page is dirty, only perform writeback if that write
	 * will be non-blocking.  To prevent this allocation from being
	 * stalled by pagecache activity.  But note that there may be
	 * stalls if we need to run get_block().  We could test
	 * PagePrivate for that.
	 *
342
	 * If this process is currently in __generic_file_aio_write() against
L
Linus Torvalds 已提交
343 344 345 346 347 348 349 350 351 352 353 354 355 356 357
	 * this page's queue, we can perform writeback even if that
	 * will block.
	 *
	 * If the page is swapcache, write it back even if that would
	 * block, for some throttling. This happens by accident, because
	 * swap_backing_dev_info is bust: it doesn't reflect the
	 * congestion state of the swapdevs.  Easy to fix, if needed.
	 */
	if (!is_page_cache_freeable(page))
		return PAGE_KEEP;
	if (!mapping) {
		/*
		 * Some data journaling orphaned pages can have
		 * page->mapping == NULL while being dirty with clean buffers.
		 */
358
		if (page_has_private(page)) {
L
Linus Torvalds 已提交
359 360
			if (try_to_free_buffers(page)) {
				ClearPageDirty(page);
361
				printk("%s: orphaned page\n", __func__);
L
Linus Torvalds 已提交
362 363 364 365 366 367 368 369 370 371 372 373 374 375 376
				return PAGE_CLEAN;
			}
		}
		return PAGE_KEEP;
	}
	if (mapping->a_ops->writepage == NULL)
		return PAGE_ACTIVATE;
	if (!may_write_to_queue(mapping->backing_dev_info))
		return PAGE_KEEP;

	if (clear_page_dirty_for_io(page)) {
		int res;
		struct writeback_control wbc = {
			.sync_mode = WB_SYNC_NONE,
			.nr_to_write = SWAP_CLUSTER_MAX,
377 378
			.range_start = 0,
			.range_end = LLONG_MAX,
L
Linus Torvalds 已提交
379 380 381 382 383 384 385 386
			.nonblocking = 1,
			.for_reclaim = 1,
		};

		SetPageReclaim(page);
		res = mapping->a_ops->writepage(page, &wbc);
		if (res < 0)
			handle_write_error(mapping, page, res);
387
		if (res == AOP_WRITEPAGE_ACTIVATE) {
L
Linus Torvalds 已提交
388 389 390
			ClearPageReclaim(page);
			return PAGE_ACTIVATE;
		}
391 392 393 394 395 396 397 398 399

		/*
		 * Wait on writeback if requested to. This happens when
		 * direct reclaiming a large contiguous area and the
		 * first attempt to free a range of pages fails.
		 */
		if (PageWriteback(page) && sync_writeback == PAGEOUT_IO_SYNC)
			wait_on_page_writeback(page);

L
Linus Torvalds 已提交
400 401 402 403
		if (!PageWriteback(page)) {
			/* synchronous write or broken a_ops? */
			ClearPageReclaim(page);
		}
404
		inc_zone_page_state(page, NR_VMSCAN_WRITE);
L
Linus Torvalds 已提交
405 406 407 408 409 410
		return PAGE_SUCCESS;
	}

	return PAGE_CLEAN;
}

411
/*
N
Nick Piggin 已提交
412 413
 * Same as remove_mapping, but if the page is removed from the mapping, it
 * gets returned with a refcount of 0.
414
 */
N
Nick Piggin 已提交
415
static int __remove_mapping(struct address_space *mapping, struct page *page)
416
{
417 418
	BUG_ON(!PageLocked(page));
	BUG_ON(mapping != page_mapping(page));
419

N
Nick Piggin 已提交
420
	spin_lock_irq(&mapping->tree_lock);
421
	/*
N
Nick Piggin 已提交
422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444
	 * The non racy check for a busy page.
	 *
	 * Must be careful with the order of the tests. When someone has
	 * a ref to the page, it may be possible that they dirty it then
	 * drop the reference. So if PageDirty is tested before page_count
	 * here, then the following race may occur:
	 *
	 * get_user_pages(&page);
	 * [user mapping goes away]
	 * write_to(page);
	 *				!PageDirty(page)    [good]
	 * SetPageDirty(page);
	 * put_page(page);
	 *				!page_count(page)   [good, discard it]
	 *
	 * [oops, our write_to data is lost]
	 *
	 * Reversing the order of the tests ensures such a situation cannot
	 * escape unnoticed. The smp_rmb is needed to ensure the page->flags
	 * load is not satisfied before that of page->_count.
	 *
	 * Note that if SetPageDirty is always performed via set_page_dirty,
	 * and thus under tree_lock, then this ordering is not required.
445
	 */
N
Nick Piggin 已提交
446
	if (!page_freeze_refs(page, 2))
447
		goto cannot_free;
N
Nick Piggin 已提交
448 449 450
	/* note: atomic_cmpxchg in page_freeze_refs provides the smp_rmb */
	if (unlikely(PageDirty(page))) {
		page_unfreeze_refs(page, 2);
451
		goto cannot_free;
N
Nick Piggin 已提交
452
	}
453 454 455 456

	if (PageSwapCache(page)) {
		swp_entry_t swap = { .val = page_private(page) };
		__delete_from_swap_cache(page);
N
Nick Piggin 已提交
457
		spin_unlock_irq(&mapping->tree_lock);
458
		swapcache_free(swap, page);
N
Nick Piggin 已提交
459 460
	} else {
		__remove_from_page_cache(page);
N
Nick Piggin 已提交
461
		spin_unlock_irq(&mapping->tree_lock);
462
		mem_cgroup_uncharge_cache_page(page);
463 464 465 466 467
	}

	return 1;

cannot_free:
N
Nick Piggin 已提交
468
	spin_unlock_irq(&mapping->tree_lock);
469 470 471
	return 0;
}

N
Nick Piggin 已提交
472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491
/*
 * Attempt to detach a locked page from its ->mapping.  If it is dirty or if
 * someone else has a ref on the page, abort and return 0.  If it was
 * successfully detached, return 1.  Assumes the caller has a single ref on
 * this page.
 */
int remove_mapping(struct address_space *mapping, struct page *page)
{
	if (__remove_mapping(mapping, page)) {
		/*
		 * Unfreezing the refcount with 1 rather than 2 effectively
		 * drops the pagecache ref for us without requiring another
		 * atomic operation.
		 */
		page_unfreeze_refs(page, 1);
		return 1;
	}
	return 0;
}

L
Lee Schermerhorn 已提交
492 493 494 495 496 497 498 499 500 501 502 503 504
/**
 * putback_lru_page - put previously isolated page onto appropriate LRU list
 * @page: page to be put back to appropriate lru list
 *
 * Add previously isolated @page to appropriate LRU list.
 * Page may still be unevictable for other reasons.
 *
 * lru_lock must not be held, interrupts must be enabled.
 */
void putback_lru_page(struct page *page)
{
	int lru;
	int active = !!TestClearPageActive(page);
505
	int was_unevictable = PageUnevictable(page);
L
Lee Schermerhorn 已提交
506 507 508 509 510 511 512 513 514 515 516 517 518

	VM_BUG_ON(PageLRU(page));

redo:
	ClearPageUnevictable(page);

	if (page_evictable(page, NULL)) {
		/*
		 * For evictable pages, we can use the cache.
		 * In event of a race, worst case is we end up with an
		 * unevictable page on [in]active list.
		 * We know how to handle that.
		 */
519
		lru = active + page_lru_base_type(page);
L
Lee Schermerhorn 已提交
520 521 522 523 524 525 526 527
		lru_cache_add_lru(page, lru);
	} else {
		/*
		 * Put unevictable pages directly on zone's unevictable
		 * list.
		 */
		lru = LRU_UNEVICTABLE;
		add_page_to_unevictable_list(page);
528 529 530 531 532 533 534 535 536 537
		/*
		 * When racing with an mlock clearing (page is
		 * unlocked), make sure that if the other thread does
		 * not observe our setting of PG_lru and fails
		 * isolation, we see PG_mlocked cleared below and move
		 * the page back to the evictable list.
		 *
		 * The other side is TestClearPageMlocked().
		 */
		smp_mb();
L
Lee Schermerhorn 已提交
538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555
	}

	/*
	 * page's status can change while we move it among lru. If an evictable
	 * page is on unevictable list, it never be freed. To avoid that,
	 * check after we added it to the list, again.
	 */
	if (lru == LRU_UNEVICTABLE && page_evictable(page, NULL)) {
		if (!isolate_lru_page(page)) {
			put_page(page);
			goto redo;
		}
		/* This means someone else dropped this page from LRU
		 * So, it will be freed or putback to LRU again. There is
		 * nothing to do here.
		 */
	}

556 557 558 559 560
	if (was_unevictable && lru != LRU_UNEVICTABLE)
		count_vm_event(UNEVICTABLE_PGRESCUED);
	else if (!was_unevictable && lru == LRU_UNEVICTABLE)
		count_vm_event(UNEVICTABLE_PGCULLED);

L
Lee Schermerhorn 已提交
561 562 563
	put_page(page);		/* drop ref from isolate */
}

564 565 566
enum page_references {
	PAGEREF_RECLAIM,
	PAGEREF_RECLAIM_CLEAN,
567
	PAGEREF_KEEP,
568 569 570 571 572 573
	PAGEREF_ACTIVATE,
};

static enum page_references page_check_references(struct page *page,
						  struct scan_control *sc)
{
574
	int referenced_ptes, referenced_page;
575 576
	unsigned long vm_flags;

577 578
	referenced_ptes = page_referenced(page, 1, sc->mem_cgroup, &vm_flags);
	referenced_page = TestClearPageReferenced(page);
579 580

	/* Lumpy reclaim - ignore references */
581
	if (sc->lumpy_reclaim_mode)
582 583 584 585 586 587 588 589 590
		return PAGEREF_RECLAIM;

	/*
	 * Mlock lost the isolation race with us.  Let try_to_unmap()
	 * move the page to the unevictable list.
	 */
	if (vm_flags & VM_LOCKED)
		return PAGEREF_RECLAIM;

591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614
	if (referenced_ptes) {
		if (PageAnon(page))
			return PAGEREF_ACTIVATE;
		/*
		 * All mapped pages start out with page table
		 * references from the instantiating fault, so we need
		 * to look twice if a mapped file page is used more
		 * than once.
		 *
		 * Mark it and spare it for another trip around the
		 * inactive list.  Another page table reference will
		 * lead to its activation.
		 *
		 * Note: the mark is set for activated pages as well
		 * so that recently deactivated but used pages are
		 * quickly recovered.
		 */
		SetPageReferenced(page);

		if (referenced_page)
			return PAGEREF_ACTIVATE;

		return PAGEREF_KEEP;
	}
615 616

	/* Reclaim if clean, defer dirty pages to writeback */
617 618 619 620
	if (referenced_page)
		return PAGEREF_RECLAIM_CLEAN;

	return PAGEREF_RECLAIM;
621 622
}

L
Linus Torvalds 已提交
623
/*
A
Andrew Morton 已提交
624
 * shrink_page_list() returns the number of reclaimed pages
L
Linus Torvalds 已提交
625
 */
A
Andrew Morton 已提交
626
static unsigned long shrink_page_list(struct list_head *page_list,
627 628
					struct scan_control *sc,
					enum pageout_io sync_writeback)
L
Linus Torvalds 已提交
629 630 631 632
{
	LIST_HEAD(ret_pages);
	struct pagevec freed_pvec;
	int pgactivate = 0;
633
	unsigned long nr_reclaimed = 0;
L
Linus Torvalds 已提交
634 635 636 637 638

	cond_resched();

	pagevec_init(&freed_pvec, 1);
	while (!list_empty(page_list)) {
639
		enum page_references references;
L
Linus Torvalds 已提交
640 641 642 643 644 645 646 647 648
		struct address_space *mapping;
		struct page *page;
		int may_enter_fs;

		cond_resched();

		page = lru_to_page(page_list);
		list_del(&page->lru);

N
Nick Piggin 已提交
649
		if (!trylock_page(page))
L
Linus Torvalds 已提交
650 651
			goto keep;

N
Nick Piggin 已提交
652
		VM_BUG_ON(PageActive(page));
L
Linus Torvalds 已提交
653 654

		sc->nr_scanned++;
655

N
Nick Piggin 已提交
656 657
		if (unlikely(!page_evictable(page, NULL)))
			goto cull_mlocked;
L
Lee Schermerhorn 已提交
658

659
		if (!sc->may_unmap && page_mapped(page))
660 661
			goto keep_locked;

L
Linus Torvalds 已提交
662 663 664 665
		/* Double the slab pressure for mapped and swapcache pages */
		if (page_mapped(page) || PageSwapCache(page))
			sc->nr_scanned++;

666 667 668 669 670 671 672 673 674 675 676 677 678 679
		may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
			(PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));

		if (PageWriteback(page)) {
			/*
			 * Synchronous reclaim is performed in two passes,
			 * first an asynchronous pass over the list to
			 * start parallel writeback, and a second synchronous
			 * pass to wait for the IO to complete.  Wait here
			 * for any page for which writeback has already
			 * started.
			 */
			if (sync_writeback == PAGEOUT_IO_SYNC && may_enter_fs)
				wait_on_page_writeback(page);
680
			else
681 682
				goto keep_locked;
		}
L
Linus Torvalds 已提交
683

684 685 686
		references = page_check_references(page, sc);
		switch (references) {
		case PAGEREF_ACTIVATE:
L
Linus Torvalds 已提交
687
			goto activate_locked;
688 689
		case PAGEREF_KEEP:
			goto keep_locked;
690 691 692 693
		case PAGEREF_RECLAIM:
		case PAGEREF_RECLAIM_CLEAN:
			; /* try to reclaim the page below */
		}
L
Linus Torvalds 已提交
694 695 696 697 698

		/*
		 * Anonymous process memory has backing store?
		 * Try to allocate it some swap space here.
		 */
N
Nick Piggin 已提交
699
		if (PageAnon(page) && !PageSwapCache(page)) {
700 701
			if (!(sc->gfp_mask & __GFP_IO))
				goto keep_locked;
702
			if (!add_to_swap(page))
L
Linus Torvalds 已提交
703
				goto activate_locked;
704
			may_enter_fs = 1;
N
Nick Piggin 已提交
705
		}
L
Linus Torvalds 已提交
706 707 708 709 710 711 712 713

		mapping = page_mapping(page);

		/*
		 * The page is mapped into the page tables of one or more
		 * processes. Try to unmap it here.
		 */
		if (page_mapped(page) && mapping) {
714
			switch (try_to_unmap(page, TTU_UNMAP)) {
L
Linus Torvalds 已提交
715 716 717 718
			case SWAP_FAIL:
				goto activate_locked;
			case SWAP_AGAIN:
				goto keep_locked;
N
Nick Piggin 已提交
719 720
			case SWAP_MLOCK:
				goto cull_mlocked;
L
Linus Torvalds 已提交
721 722 723 724 725 726
			case SWAP_SUCCESS:
				; /* try to free the page below */
			}
		}

		if (PageDirty(page)) {
727
			if (references == PAGEREF_RECLAIM_CLEAN)
L
Linus Torvalds 已提交
728
				goto keep_locked;
729
			if (!may_enter_fs)
L
Linus Torvalds 已提交
730
				goto keep_locked;
731
			if (!sc->may_writepage)
L
Linus Torvalds 已提交
732 733 734
				goto keep_locked;

			/* Page is dirty, try to write it out here */
735
			switch (pageout(page, mapping, sync_writeback)) {
L
Linus Torvalds 已提交
736 737 738 739 740
			case PAGE_KEEP:
				goto keep_locked;
			case PAGE_ACTIVATE:
				goto activate_locked;
			case PAGE_SUCCESS:
741
				if (PageWriteback(page) || PageDirty(page))
L
Linus Torvalds 已提交
742 743 744 745 746
					goto keep;
				/*
				 * A synchronous write - probably a ramdisk.  Go
				 * ahead and try to reclaim the page.
				 */
N
Nick Piggin 已提交
747
				if (!trylock_page(page))
L
Linus Torvalds 已提交
748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766
					goto keep;
				if (PageDirty(page) || PageWriteback(page))
					goto keep_locked;
				mapping = page_mapping(page);
			case PAGE_CLEAN:
				; /* try to free the page below */
			}
		}

		/*
		 * If the page has buffers, try to free the buffer mappings
		 * associated with this page. If we succeed we try to free
		 * the page as well.
		 *
		 * We do this even if the page is PageDirty().
		 * try_to_release_page() does not perform I/O, but it is
		 * possible for a page to have PageDirty set, but it is actually
		 * clean (all its buffers are clean).  This happens if the
		 * buffers were written out directly, with submit_bh(). ext3
L
Lee Schermerhorn 已提交
767
		 * will do this, as well as the blockdev mapping.
L
Linus Torvalds 已提交
768 769 770 771 772 773 774 775 776 777
		 * try_to_release_page() will discover that cleanness and will
		 * drop the buffers and mark the page clean - it can be freed.
		 *
		 * Rarely, pages can have buffers and no ->mapping.  These are
		 * the pages which were not successfully invalidated in
		 * truncate_complete_page().  We try to drop those buffers here
		 * and if that worked, and the page is no longer mapped into
		 * process address space (page_count == 1) it can be freed.
		 * Otherwise, leave the page on the LRU so it is swappable.
		 */
778
		if (page_has_private(page)) {
L
Linus Torvalds 已提交
779 780
			if (!try_to_release_page(page, sc->gfp_mask))
				goto activate_locked;
N
Nick Piggin 已提交
781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796
			if (!mapping && page_count(page) == 1) {
				unlock_page(page);
				if (put_page_testzero(page))
					goto free_it;
				else {
					/*
					 * rare race with speculative reference.
					 * the speculative reference will free
					 * this page shortly, so we may
					 * increment nr_reclaimed here (and
					 * leave it off the LRU).
					 */
					nr_reclaimed++;
					continue;
				}
			}
L
Linus Torvalds 已提交
797 798
		}

N
Nick Piggin 已提交
799
		if (!mapping || !__remove_mapping(mapping, page))
800
			goto keep_locked;
L
Linus Torvalds 已提交
801

N
Nick Piggin 已提交
802 803 804 805 806 807 808 809
		/*
		 * At this point, we have no other references and there is
		 * no way to pick any more up (removed from LRU, removed
		 * from pagecache). Can use non-atomic bitops now (and
		 * we obviously don't have to worry about waking up a process
		 * waiting on the page lock, because there are no references.
		 */
		__clear_page_locked(page);
N
Nick Piggin 已提交
810
free_it:
811
		nr_reclaimed++;
N
Nick Piggin 已提交
812 813 814 815
		if (!pagevec_add(&freed_pvec, page)) {
			__pagevec_free(&freed_pvec);
			pagevec_reinit(&freed_pvec);
		}
L
Linus Torvalds 已提交
816 817
		continue;

N
Nick Piggin 已提交
818
cull_mlocked:
819 820
		if (PageSwapCache(page))
			try_to_free_swap(page);
N
Nick Piggin 已提交
821 822 823 824
		unlock_page(page);
		putback_lru_page(page);
		continue;

L
Linus Torvalds 已提交
825
activate_locked:
826 827
		/* Not a candidate for swapping, so reclaim swap space. */
		if (PageSwapCache(page) && vm_swap_full())
828
			try_to_free_swap(page);
L
Lee Schermerhorn 已提交
829
		VM_BUG_ON(PageActive(page));
L
Linus Torvalds 已提交
830 831 832 833 834 835
		SetPageActive(page);
		pgactivate++;
keep_locked:
		unlock_page(page);
keep:
		list_add(&page->lru, &ret_pages);
N
Nick Piggin 已提交
836
		VM_BUG_ON(PageLRU(page) || PageUnevictable(page));
L
Linus Torvalds 已提交
837 838 839
	}
	list_splice(&ret_pages, page_list);
	if (pagevec_count(&freed_pvec))
N
Nick Piggin 已提交
840
		__pagevec_free(&freed_pvec);
841
	count_vm_events(PGACTIVATE, pgactivate);
842
	return nr_reclaimed;
L
Linus Torvalds 已提交
843 844
}

A
Andy Whitcroft 已提交
845 846 847 848 849 850 851 852 853 854
/*
 * Attempt to remove the specified page from its LRU.  Only take this page
 * if it is of the appropriate PageActive status.  Pages which are being
 * freed elsewhere are also ignored.
 *
 * page:	page to consider
 * mode:	one of the LRU isolation modes defined above
 *
 * returns 0 on success, -ve errno on failure.
 */
855
int __isolate_lru_page(struct page *page, int mode, int file)
A
Andy Whitcroft 已提交
856 857 858 859 860 861 862 863 864 865 866 867 868 869 870
{
	int ret = -EINVAL;

	/* Only take pages on the LRU. */
	if (!PageLRU(page))
		return ret;

	/*
	 * When checking the active state, we need to be sure we are
	 * dealing with comparible boolean values.  Take the logical not
	 * of each.
	 */
	if (mode != ISOLATE_BOTH && (!PageActive(page) != !mode))
		return ret;

871
	if (mode != ISOLATE_BOTH && page_is_file_cache(page) != file)
872 873
		return ret;

L
Lee Schermerhorn 已提交
874 875 876 877 878 879 880 881
	/*
	 * When this function is being called for lumpy reclaim, we
	 * initially look into all LRU pages, active, inactive and
	 * unevictable; only give shrink_page_list evictable pages.
	 */
	if (PageUnevictable(page))
		return ret;

A
Andy Whitcroft 已提交
882
	ret = -EBUSY;
K
KAMEZAWA Hiroyuki 已提交
883

A
Andy Whitcroft 已提交
884 885 886 887 888 889 890 891 892 893 894 895 896
	if (likely(get_page_unless_zero(page))) {
		/*
		 * Be careful not to clear PageLRU until after we're
		 * sure the page is not being freed elsewhere -- the
		 * page release code relies on it.
		 */
		ClearPageLRU(page);
		ret = 0;
	}

	return ret;
}

L
Linus Torvalds 已提交
897 898 899 900 901 902 903 904 905 906 907 908 909 910
/*
 * zone->lru_lock is heavily contended.  Some of the functions that
 * shrink the lists perform better by taking out a batch of pages
 * and working on them outside the LRU lock.
 *
 * For pagecache intensive workloads, this function is the hottest
 * spot in the kernel (apart from copy_*_user functions).
 *
 * Appropriate locks must be held before calling this function.
 *
 * @nr_to_scan:	The number of pages to look through on the list.
 * @src:	The LRU list to pull pages off.
 * @dst:	The temp list to put pages on to.
 * @scanned:	The number of pages that were scanned.
A
Andy Whitcroft 已提交
911 912
 * @order:	The caller's attempted allocation order
 * @mode:	One of the LRU isolation modes
913
 * @file:	True [1] if isolating file [!anon] pages
L
Linus Torvalds 已提交
914 915 916
 *
 * returns how many pages were moved onto *@dst.
 */
917 918
static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
		struct list_head *src, struct list_head *dst,
919
		unsigned long *scanned, int order, int mode, int file)
L
Linus Torvalds 已提交
920
{
921
	unsigned long nr_taken = 0;
922
	unsigned long scan;
L
Linus Torvalds 已提交
923

924
	for (scan = 0; scan < nr_to_scan && !list_empty(src); scan++) {
A
Andy Whitcroft 已提交
925 926 927 928 929 930
		struct page *page;
		unsigned long pfn;
		unsigned long end_pfn;
		unsigned long page_pfn;
		int zone_id;

L
Linus Torvalds 已提交
931 932 933
		page = lru_to_page(src);
		prefetchw_prev_lru_page(page, src, flags);

N
Nick Piggin 已提交
934
		VM_BUG_ON(!PageLRU(page));
N
Nick Piggin 已提交
935

936
		switch (__isolate_lru_page(page, mode, file)) {
A
Andy Whitcroft 已提交
937 938
		case 0:
			list_move(&page->lru, dst);
939
			mem_cgroup_del_lru(page);
940
			nr_taken++;
A
Andy Whitcroft 已提交
941 942 943 944 945
			break;

		case -EBUSY:
			/* else it is being freed elsewhere */
			list_move(&page->lru, src);
946
			mem_cgroup_rotate_lru_list(page, page_lru(page));
A
Andy Whitcroft 已提交
947
			continue;
948

A
Andy Whitcroft 已提交
949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980
		default:
			BUG();
		}

		if (!order)
			continue;

		/*
		 * Attempt to take all pages in the order aligned region
		 * surrounding the tag page.  Only take those pages of
		 * the same active state as that tag page.  We may safely
		 * round the target page pfn down to the requested order
		 * as the mem_map is guarenteed valid out to MAX_ORDER,
		 * where that page is in a different zone we will detect
		 * it from its zone id and abort this block scan.
		 */
		zone_id = page_zone_id(page);
		page_pfn = page_to_pfn(page);
		pfn = page_pfn & ~((1 << order) - 1);
		end_pfn = pfn + (1 << order);
		for (; pfn < end_pfn; pfn++) {
			struct page *cursor_page;

			/* The target page is in the block, ignore it. */
			if (unlikely(pfn == page_pfn))
				continue;

			/* Avoid holes within the zone. */
			if (unlikely(!pfn_valid_within(pfn)))
				break;

			cursor_page = pfn_to_page(pfn);
981

A
Andy Whitcroft 已提交
982 983 984
			/* Check that we have not crossed a zone boundary. */
			if (unlikely(page_zone_id(cursor_page) != zone_id))
				continue;
985 986 987 988 989 990 991 992 993 994

			/*
			 * If we don't have enough swap space, reclaiming of
			 * anon page which don't already have a swap slot is
			 * pointless.
			 */
			if (nr_swap_pages <= 0 && PageAnon(cursor_page) &&
					!PageSwapCache(cursor_page))
				continue;

995
			if (__isolate_lru_page(cursor_page, mode, file) == 0) {
A
Andy Whitcroft 已提交
996
				list_move(&cursor_page->lru, dst);
997
				mem_cgroup_del_lru(cursor_page);
A
Andy Whitcroft 已提交
998 999 1000 1001
				nr_taken++;
				scan++;
			}
		}
L
Linus Torvalds 已提交
1002 1003 1004 1005 1006 1007
	}

	*scanned = scan;
	return nr_taken;
}

1008 1009 1010 1011
static unsigned long isolate_pages_global(unsigned long nr,
					struct list_head *dst,
					unsigned long *scanned, int order,
					int mode, struct zone *z,
1012
					int active, int file)
1013
{
1014
	int lru = LRU_BASE;
1015
	if (active)
1016 1017 1018 1019
		lru += LRU_ACTIVE;
	if (file)
		lru += LRU_FILE;
	return isolate_lru_pages(nr, &z->lru[lru].list, dst, scanned, order,
1020
								mode, file);
1021 1022
}

A
Andy Whitcroft 已提交
1023 1024 1025 1026
/*
 * clear_active_flags() is a helper for shrink_active_list(), clearing
 * any active bits from the pages in the list.
 */
1027 1028
static unsigned long clear_active_flags(struct list_head *page_list,
					unsigned int *count)
A
Andy Whitcroft 已提交
1029 1030
{
	int nr_active = 0;
1031
	int lru;
A
Andy Whitcroft 已提交
1032 1033
	struct page *page;

1034
	list_for_each_entry(page, page_list, lru) {
1035
		lru = page_lru_base_type(page);
A
Andy Whitcroft 已提交
1036
		if (PageActive(page)) {
1037
			lru += LRU_ACTIVE;
A
Andy Whitcroft 已提交
1038 1039 1040
			ClearPageActive(page);
			nr_active++;
		}
1041 1042
		count[lru]++;
	}
A
Andy Whitcroft 已提交
1043 1044 1045 1046

	return nr_active;
}

1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057
/**
 * isolate_lru_page - tries to isolate a page from its LRU list
 * @page: page to isolate from its LRU list
 *
 * Isolates a @page from an LRU list, clears PageLRU and adjusts the
 * vmstat statistic corresponding to whatever LRU list the page was on.
 *
 * Returns 0 if the page was removed from an LRU list.
 * Returns -EBUSY if the page was not on an LRU list.
 *
 * The returned page will have PageLRU() cleared.  If it was found on
L
Lee Schermerhorn 已提交
1058 1059 1060
 * the active list, it will have PageActive set.  If it was found on
 * the unevictable list, it will have the PageUnevictable bit set. That flag
 * may need to be cleared by the caller before letting the page go.
1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080
 *
 * The vmstat statistic corresponding to the list on which the page was
 * found will be decremented.
 *
 * Restrictions:
 * (1) Must be called with an elevated refcount on the page. This is a
 *     fundamentnal difference from isolate_lru_pages (which is called
 *     without a stable reference).
 * (2) the lru_lock must not be held.
 * (3) interrupts must be enabled.
 */
int isolate_lru_page(struct page *page)
{
	int ret = -EBUSY;

	if (PageLRU(page)) {
		struct zone *zone = page_zone(page);

		spin_lock_irq(&zone->lru_lock);
		if (PageLRU(page) && get_page_unless_zero(page)) {
L
Lee Schermerhorn 已提交
1081
			int lru = page_lru(page);
1082 1083
			ret = 0;
			ClearPageLRU(page);
1084 1085

			del_page_from_lru_list(zone, page, lru);
1086 1087 1088 1089 1090 1091
		}
		spin_unlock_irq(&zone->lru_lock);
	}
	return ret;
}

1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116
/*
 * Are there way too many processes in the direct reclaim path already?
 */
static int too_many_isolated(struct zone *zone, int file,
		struct scan_control *sc)
{
	unsigned long inactive, isolated;

	if (current_is_kswapd())
		return 0;

	if (!scanning_global_lru(sc))
		return 0;

	if (file) {
		inactive = zone_page_state(zone, NR_INACTIVE_FILE);
		isolated = zone_page_state(zone, NR_ISOLATED_FILE);
	} else {
		inactive = zone_page_state(zone, NR_INACTIVE_ANON);
		isolated = zone_page_state(zone, NR_ISOLATED_ANON);
	}

	return isolated > inactive;
}

L
Linus Torvalds 已提交
1117
/*
A
Andrew Morton 已提交
1118 1119
 * shrink_inactive_list() is a helper for shrink_zone().  It returns the number
 * of reclaimed pages
L
Linus Torvalds 已提交
1120
 */
A
Andrew Morton 已提交
1121
static unsigned long shrink_inactive_list(unsigned long max_scan,
R
Rik van Riel 已提交
1122 1123
			struct zone *zone, struct scan_control *sc,
			int priority, int file)
L
Linus Torvalds 已提交
1124 1125 1126
{
	LIST_HEAD(page_list);
	struct pagevec pvec;
1127
	unsigned long nr_scanned = 0;
1128
	unsigned long nr_reclaimed = 0;
1129
	struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(zone, sc);
1130

1131
	while (unlikely(too_many_isolated(zone, file, sc))) {
1132
		congestion_wait(BLK_RW_ASYNC, HZ/10);
1133 1134 1135 1136 1137 1138

		/* We are about to die and free our memory. Return now. */
		if (fatal_signal_pending(current))
			return SWAP_CLUSTER_MAX;
	}

L
Linus Torvalds 已提交
1139 1140 1141 1142 1143

	pagevec_init(&pvec, 1);

	lru_add_drain();
	spin_lock_irq(&zone->lru_lock);
1144
	do {
L
Linus Torvalds 已提交
1145
		struct page *page;
1146 1147 1148
		unsigned long nr_taken;
		unsigned long nr_scan;
		unsigned long nr_freed;
A
Andy Whitcroft 已提交
1149
		unsigned long nr_active;
1150
		unsigned int count[NR_LRU_LISTS] = { 0, };
1151
		int mode = sc->lumpy_reclaim_mode ? ISOLATE_BOTH : ISOLATE_INACTIVE;
K
KOSAKI Motohiro 已提交
1152 1153
		unsigned long nr_anon;
		unsigned long nr_file;
L
Linus Torvalds 已提交
1154

1155
		if (scanning_global_lru(sc)) {
1156 1157 1158 1159
			nr_taken = isolate_pages_global(SWAP_CLUSTER_MAX,
							&page_list, &nr_scan,
							sc->order, mode,
							zone, 0, file);
1160 1161 1162 1163 1164 1165 1166
			zone->pages_scanned += nr_scan;
			if (current_is_kswapd())
				__count_zone_vm_events(PGSCAN_KSWAPD, zone,
						       nr_scan);
			else
				__count_zone_vm_events(PGSCAN_DIRECT, zone,
						       nr_scan);
1167 1168 1169 1170 1171 1172 1173 1174 1175 1176
		} else {
			nr_taken = mem_cgroup_isolate_pages(SWAP_CLUSTER_MAX,
							&page_list, &nr_scan,
							sc->order, mode,
							zone, sc->mem_cgroup,
							0, file);
			/*
			 * mem_cgroup_isolate_pages() keeps track of
			 * scanned pages on its own.
			 */
1177 1178 1179 1180 1181
		}

		if (nr_taken == 0)
			goto done;

1182
		nr_active = clear_active_flags(&page_list, count);
1183
		__count_vm_events(PGDEACTIVATE, nr_active);
A
Andy Whitcroft 已提交
1184

1185 1186 1187 1188 1189 1190 1191 1192 1193
		__mod_zone_page_state(zone, NR_ACTIVE_FILE,
						-count[LRU_ACTIVE_FILE]);
		__mod_zone_page_state(zone, NR_INACTIVE_FILE,
						-count[LRU_INACTIVE_FILE]);
		__mod_zone_page_state(zone, NR_ACTIVE_ANON,
						-count[LRU_ACTIVE_ANON]);
		__mod_zone_page_state(zone, NR_INACTIVE_ANON,
						-count[LRU_INACTIVE_ANON]);

K
KOSAKI Motohiro 已提交
1194 1195 1196 1197
		nr_anon = count[LRU_ACTIVE_ANON] + count[LRU_INACTIVE_ANON];
		nr_file = count[LRU_ACTIVE_FILE] + count[LRU_INACTIVE_FILE];
		__mod_zone_page_state(zone, NR_ISOLATED_ANON, nr_anon);
		__mod_zone_page_state(zone, NR_ISOLATED_FILE, nr_file);
K
KOSAKI Motohiro 已提交
1198

H
Huang Shijie 已提交
1199 1200
		reclaim_stat->recent_scanned[0] += nr_anon;
		reclaim_stat->recent_scanned[1] += nr_file;
K
KOSAKI Motohiro 已提交
1201

L
Linus Torvalds 已提交
1202 1203
		spin_unlock_irq(&zone->lru_lock);

1204
		nr_scanned += nr_scan;
1205 1206 1207 1208 1209 1210 1211 1212 1213
		nr_freed = shrink_page_list(&page_list, sc, PAGEOUT_IO_ASYNC);

		/*
		 * If we are direct reclaiming for contiguous pages and we do
		 * not reclaim everything in the list, try again and wait
		 * for IO to complete. This will stall high-order allocations
		 * but that should be acceptable to the caller
		 */
		if (nr_freed < nr_taken && !current_is_kswapd() &&
1214
		    sc->lumpy_reclaim_mode) {
1215
			congestion_wait(BLK_RW_ASYNC, HZ/10);
1216 1217 1218 1219 1220

			/*
			 * The attempt at page out may have made some
			 * of the pages active, mark them inactive again.
			 */
1221
			nr_active = clear_active_flags(&page_list, count);
1222 1223 1224 1225 1226 1227
			count_vm_events(PGDEACTIVATE, nr_active);

			nr_freed += shrink_page_list(&page_list, sc,
							PAGEOUT_IO_SYNC);
		}

1228
		nr_reclaimed += nr_freed;
1229

N
Nick Piggin 已提交
1230
		local_irq_disable();
1231
		if (current_is_kswapd())
1232
			__count_vm_events(KSWAPD_STEAL, nr_freed);
S
Shantanu Goel 已提交
1233
		__count_zone_vm_events(PGSTEAL, zone, nr_freed);
N
Nick Piggin 已提交
1234 1235

		spin_lock(&zone->lru_lock);
L
Linus Torvalds 已提交
1236 1237 1238 1239
		/*
		 * Put back any unfreeable pages.
		 */
		while (!list_empty(&page_list)) {
L
Lee Schermerhorn 已提交
1240
			int lru;
L
Linus Torvalds 已提交
1241
			page = lru_to_page(&page_list);
N
Nick Piggin 已提交
1242
			VM_BUG_ON(PageLRU(page));
L
Linus Torvalds 已提交
1243
			list_del(&page->lru);
L
Lee Schermerhorn 已提交
1244 1245 1246 1247 1248 1249 1250 1251 1252
			if (unlikely(!page_evictable(page, NULL))) {
				spin_unlock_irq(&zone->lru_lock);
				putback_lru_page(page);
				spin_lock_irq(&zone->lru_lock);
				continue;
			}
			SetPageLRU(page);
			lru = page_lru(page);
			add_page_to_lru_list(zone, page, lru);
1253
			if (is_active_lru(lru)) {
1254
				int file = is_file_lru(lru);
1255
				reclaim_stat->recent_rotated[file]++;
1256
			}
L
Linus Torvalds 已提交
1257 1258 1259 1260 1261 1262
			if (!pagevec_add(&pvec, page)) {
				spin_unlock_irq(&zone->lru_lock);
				__pagevec_release(&pvec);
				spin_lock_irq(&zone->lru_lock);
			}
		}
K
KOSAKI Motohiro 已提交
1263 1264 1265
		__mod_zone_page_state(zone, NR_ISOLATED_ANON, -nr_anon);
		__mod_zone_page_state(zone, NR_ISOLATED_FILE, -nr_file);

1266
  	} while (nr_scanned < max_scan);
1267

L
Linus Torvalds 已提交
1268
done:
1269
	spin_unlock_irq(&zone->lru_lock);
L
Linus Torvalds 已提交
1270
	pagevec_release(&pvec);
1271
	return nr_reclaimed;
L
Linus Torvalds 已提交
1272 1273
}

1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287
/*
 * We are about to scan this zone at a certain priority level.  If that priority
 * level is smaller (ie: more urgent) than the previous priority, then note
 * that priority level within the zone.  This is done so that when the next
 * process comes in to scan this zone, it will immediately start out at this
 * priority level rather than having to build up its own scanning priority.
 * Here, this priority affects only the reclaim-mapped threshold.
 */
static inline void note_zone_scanning_priority(struct zone *zone, int priority)
{
	if (priority < zone->prev_priority)
		zone->prev_priority = priority;
}

L
Linus Torvalds 已提交
1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304
/*
 * This moves pages from the active list to the inactive list.
 *
 * We move them the other way if the page is referenced by one or more
 * processes, from rmap.
 *
 * If the pages are mostly unmapped, the processing is fast and it is
 * appropriate to hold zone->lru_lock across the whole operation.  But if
 * the pages are mapped, the processing is slow (page_referenced()) so we
 * should drop zone->lru_lock around each page.  It's impossible to balance
 * this, so instead we remove the pages from the LRU while processing them.
 * It is safe to rely on PG_active against the non-LRU pages in here because
 * nobody will play with that bit on a non-LRU page.
 *
 * The downside is that we have to touch page->_count against each page.
 * But we had to alter page->flags anyway.
 */
1305

1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337
static void move_active_pages_to_lru(struct zone *zone,
				     struct list_head *list,
				     enum lru_list lru)
{
	unsigned long pgmoved = 0;
	struct pagevec pvec;
	struct page *page;

	pagevec_init(&pvec, 1);

	while (!list_empty(list)) {
		page = lru_to_page(list);

		VM_BUG_ON(PageLRU(page));
		SetPageLRU(page);

		list_move(&page->lru, &zone->lru[lru].list);
		mem_cgroup_add_lru_list(page, lru);
		pgmoved++;

		if (!pagevec_add(&pvec, page) || list_empty(list)) {
			spin_unlock_irq(&zone->lru_lock);
			if (buffer_heads_over_limit)
				pagevec_strip(&pvec);
			__pagevec_release(&pvec);
			spin_lock_irq(&zone->lru_lock);
		}
	}
	__mod_zone_page_state(zone, NR_LRU_BASE + lru, pgmoved);
	if (!is_active_lru(lru))
		__count_vm_events(PGDEACTIVATE, pgmoved);
}
1338

A
Andrew Morton 已提交
1339
static void shrink_active_list(unsigned long nr_pages, struct zone *zone,
1340
			struct scan_control *sc, int priority, int file)
L
Linus Torvalds 已提交
1341
{
1342
	unsigned long nr_taken;
1343
	unsigned long pgscanned;
1344
	unsigned long vm_flags;
L
Linus Torvalds 已提交
1345
	LIST_HEAD(l_hold);	/* The pages which were snipped off */
1346
	LIST_HEAD(l_active);
1347
	LIST_HEAD(l_inactive);
L
Linus Torvalds 已提交
1348
	struct page *page;
1349
	struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(zone, sc);
1350
	unsigned long nr_rotated = 0;
L
Linus Torvalds 已提交
1351 1352 1353

	lru_add_drain();
	spin_lock_irq(&zone->lru_lock);
1354
	if (scanning_global_lru(sc)) {
1355 1356 1357 1358
		nr_taken = isolate_pages_global(nr_pages, &l_hold,
						&pgscanned, sc->order,
						ISOLATE_ACTIVE, zone,
						1, file);
1359
		zone->pages_scanned += pgscanned;
1360 1361 1362 1363 1364 1365 1366 1367 1368
	} else {
		nr_taken = mem_cgroup_isolate_pages(nr_pages, &l_hold,
						&pgscanned, sc->order,
						ISOLATE_ACTIVE, zone,
						sc->mem_cgroup, 1, file);
		/*
		 * mem_cgroup_isolate_pages() keeps track of
		 * scanned pages on its own.
		 */
1369
	}
1370

1371
	reclaim_stat->recent_scanned[file] += nr_taken;
1372

1373
	__count_zone_vm_events(PGREFILL, zone, pgscanned);
1374
	if (file)
1375
		__mod_zone_page_state(zone, NR_ACTIVE_FILE, -nr_taken);
1376
	else
1377
		__mod_zone_page_state(zone, NR_ACTIVE_ANON, -nr_taken);
K
KOSAKI Motohiro 已提交
1378
	__mod_zone_page_state(zone, NR_ISOLATED_ANON + file, nr_taken);
L
Linus Torvalds 已提交
1379 1380 1381 1382 1383 1384
	spin_unlock_irq(&zone->lru_lock);

	while (!list_empty(&l_hold)) {
		cond_resched();
		page = lru_to_page(&l_hold);
		list_del(&page->lru);
1385

L
Lee Schermerhorn 已提交
1386 1387 1388 1389 1390
		if (unlikely(!page_evictable(page, NULL))) {
			putback_lru_page(page);
			continue;
		}

1391
		if (page_referenced(page, 0, sc->mem_cgroup, &vm_flags)) {
1392
			nr_rotated++;
1393 1394 1395 1396 1397 1398 1399 1400 1401
			/*
			 * Identify referenced, file-backed active pages and
			 * give them one more trip around the active list. So
			 * that executable code get better chances to stay in
			 * memory under moderate memory pressure.  Anon pages
			 * are not likely to be evicted by use-once streaming
			 * IO, plus JVM can create lots of anon VM_EXEC pages,
			 * so we ignore them here.
			 */
1402
			if ((vm_flags & VM_EXEC) && page_is_file_cache(page)) {
1403 1404 1405 1406
				list_add(&page->lru, &l_active);
				continue;
			}
		}
1407

1408
		ClearPageActive(page);	/* we are de-activating */
L
Linus Torvalds 已提交
1409 1410 1411
		list_add(&page->lru, &l_inactive);
	}

1412
	/*
1413
	 * Move pages back to the lru list.
1414
	 */
1415
	spin_lock_irq(&zone->lru_lock);
1416
	/*
1417 1418 1419 1420
	 * Count referenced pages from currently used mappings as rotated,
	 * even though only some of them are actually re-activated.  This
	 * helps balance scan pressure between file and anonymous pages in
	 * get_scan_ratio.
1421
	 */
1422
	reclaim_stat->recent_rotated[file] += nr_rotated;
1423

1424 1425 1426 1427
	move_active_pages_to_lru(zone, &l_active,
						LRU_ACTIVE + file * LRU_FILE);
	move_active_pages_to_lru(zone, &l_inactive,
						LRU_BASE   + file * LRU_FILE);
K
KOSAKI Motohiro 已提交
1428
	__mod_zone_page_state(zone, NR_ISOLATED_ANON + file, -nr_taken);
1429
	spin_unlock_irq(&zone->lru_lock);
L
Linus Torvalds 已提交
1430 1431
}

1432
static int inactive_anon_is_low_global(struct zone *zone)
1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444
{
	unsigned long active, inactive;

	active = zone_page_state(zone, NR_ACTIVE_ANON);
	inactive = zone_page_state(zone, NR_INACTIVE_ANON);

	if (inactive * zone->inactive_ratio < active)
		return 1;

	return 0;
}

1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456
/**
 * inactive_anon_is_low - check if anonymous pages need to be deactivated
 * @zone: zone to check
 * @sc:   scan control of this context
 *
 * Returns true if the zone does not have enough inactive anon pages,
 * meaning some active anon pages need to be deactivated.
 */
static int inactive_anon_is_low(struct zone *zone, struct scan_control *sc)
{
	int low;

1457
	if (scanning_global_lru(sc))
1458 1459
		low = inactive_anon_is_low_global(zone);
	else
1460
		low = mem_cgroup_inactive_anon_is_low(sc->mem_cgroup);
1461 1462 1463
	return low;
}

1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499
static int inactive_file_is_low_global(struct zone *zone)
{
	unsigned long active, inactive;

	active = zone_page_state(zone, NR_ACTIVE_FILE);
	inactive = zone_page_state(zone, NR_INACTIVE_FILE);

	return (active > inactive);
}

/**
 * inactive_file_is_low - check if file pages need to be deactivated
 * @zone: zone to check
 * @sc:   scan control of this context
 *
 * When the system is doing streaming IO, memory pressure here
 * ensures that active file pages get deactivated, until more
 * than half of the file pages are on the inactive list.
 *
 * Once we get to that situation, protect the system's working
 * set from being evicted by disabling active file page aging.
 *
 * This uses a different ratio than the anonymous pages, because
 * the page cache uses a use-once replacement algorithm.
 */
static int inactive_file_is_low(struct zone *zone, struct scan_control *sc)
{
	int low;

	if (scanning_global_lru(sc))
		low = inactive_file_is_low_global(zone);
	else
		low = mem_cgroup_inactive_file_is_low(sc->mem_cgroup);
	return low;
}

1500 1501 1502 1503 1504 1505 1506 1507 1508
static int inactive_list_is_low(struct zone *zone, struct scan_control *sc,
				int file)
{
	if (file)
		return inactive_file_is_low(zone, sc);
	else
		return inactive_anon_is_low(zone, sc);
}

1509
static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
1510 1511
	struct zone *zone, struct scan_control *sc, int priority)
{
1512 1513
	int file = is_file_lru(lru);

1514 1515 1516
	if (is_active_lru(lru)) {
		if (inactive_list_is_low(zone, sc, file))
		    shrink_active_list(nr_to_scan, zone, sc, priority, file);
1517 1518 1519
		return 0;
	}

R
Rik van Riel 已提交
1520
	return shrink_inactive_list(nr_to_scan, zone, sc, priority, file);
1521 1522
}

1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542
/*
 * Smallish @nr_to_scan's are deposited in @nr_saved_scan,
 * until we collected @swap_cluster_max pages to scan.
 */
static unsigned long nr_scan_try_batch(unsigned long nr_to_scan,
				       unsigned long *nr_saved_scan)
{
	unsigned long nr;

	*nr_saved_scan += nr_to_scan;
	nr = *nr_saved_scan;

	if (nr >= SWAP_CLUSTER_MAX)
		*nr_saved_scan = 0;
	else
		nr = 0;

	return nr;
}

1543 1544 1545 1546 1547 1548
/*
 * Determine how aggressively the anon and file LRU lists should be
 * scanned.  The relative value of each set of LRU lists is determined
 * by looking at the fraction of the pages scanned we did rotate back
 * onto the active list instead of evict.
 *
1549
 * nr[0] = anon pages to scan; nr[1] = file pages to scan
1550
 */
1551 1552
static void get_scan_count(struct zone *zone, struct scan_control *sc,
					unsigned long *nr, int priority)
1553 1554 1555 1556
{
	unsigned long anon, file, free;
	unsigned long anon_prio, file_prio;
	unsigned long ap, fp;
1557
	struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(zone, sc);
1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569
	u64 fraction[2], denominator;
	enum lru_list l;
	int noswap = 0;

	/* If we have no swap space, do not bother scanning anon pages. */
	if (!sc->may_swap || (nr_swap_pages <= 0)) {
		noswap = 1;
		fraction[0] = 0;
		fraction[1] = 1;
		denominator = 1;
		goto out;
	}
1570

1571 1572 1573 1574
	anon  = zone_nr_lru_pages(zone, sc, LRU_ACTIVE_ANON) +
		zone_nr_lru_pages(zone, sc, LRU_INACTIVE_ANON);
	file  = zone_nr_lru_pages(zone, sc, LRU_ACTIVE_FILE) +
		zone_nr_lru_pages(zone, sc, LRU_INACTIVE_FILE);
1575

1576
	if (scanning_global_lru(sc)) {
1577 1578 1579
		free  = zone_page_state(zone, NR_FREE_PAGES);
		/* If we have very few page cache pages,
		   force-scan anon pages. */
1580
		if (unlikely(file + free <= high_wmark_pages(zone))) {
1581 1582 1583 1584
			fraction[0] = 1;
			fraction[1] = 0;
			denominator = 1;
			goto out;
1585
		}
1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598
	}

	/*
	 * OK, so we have swap space and a fair amount of page cache
	 * pages.  We use the recently rotated / recently scanned
	 * ratios to determine how valuable each cache is.
	 *
	 * Because workloads change over time (and to avoid overflow)
	 * we keep these statistics as a floating average, which ends
	 * up weighing recent references more than old ones.
	 *
	 * anon in [0], file in [1]
	 */
1599
	if (unlikely(reclaim_stat->recent_scanned[0] > anon / 4)) {
1600
		spin_lock_irq(&zone->lru_lock);
1601 1602
		reclaim_stat->recent_scanned[0] /= 2;
		reclaim_stat->recent_rotated[0] /= 2;
1603 1604 1605
		spin_unlock_irq(&zone->lru_lock);
	}

1606
	if (unlikely(reclaim_stat->recent_scanned[1] > file / 4)) {
1607
		spin_lock_irq(&zone->lru_lock);
1608 1609
		reclaim_stat->recent_scanned[1] /= 2;
		reclaim_stat->recent_rotated[1] /= 2;
1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620
		spin_unlock_irq(&zone->lru_lock);
	}

	/*
	 * With swappiness at 100, anonymous and file have the same priority.
	 * This scanning priority is essentially the inverse of IO cost.
	 */
	anon_prio = sc->swappiness;
	file_prio = 200 - sc->swappiness;

	/*
1621 1622 1623
	 * The amount of pressure on anon vs file pages is inversely
	 * proportional to the fraction of recently scanned pages on
	 * each list that were recently referenced and in active use.
1624
	 */
1625 1626
	ap = (anon_prio + 1) * (reclaim_stat->recent_scanned[0] + 1);
	ap /= reclaim_stat->recent_rotated[0] + 1;
1627

1628 1629
	fp = (file_prio + 1) * (reclaim_stat->recent_scanned[1] + 1);
	fp /= reclaim_stat->recent_rotated[1] + 1;
1630

1631 1632 1633 1634 1635 1636 1637
	fraction[0] = ap;
	fraction[1] = fp;
	denominator = ap + fp + 1;
out:
	for_each_evictable_lru(l) {
		int file = is_file_lru(l);
		unsigned long scan;
1638

1639 1640 1641 1642 1643 1644 1645 1646
		scan = zone_nr_lru_pages(zone, sc, l);
		if (priority || noswap) {
			scan >>= priority;
			scan = div64_u64(scan * fraction[file], denominator);
		}
		nr[l] = nr_scan_try_batch(scan,
					  &reclaim_stat->nr_saved_scan[l]);
	}
1647
}
1648

1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663
static void set_lumpy_reclaim_mode(int priority, struct scan_control *sc)
{
	/*
	 * If we need a large contiguous chunk of memory, or have
	 * trouble getting a small set of contiguous pages, we
	 * will reclaim both active and inactive pages.
	 */
	if (sc->order > PAGE_ALLOC_COSTLY_ORDER)
		sc->lumpy_reclaim_mode = 1;
	else if (sc->order && priority < DEF_PRIORITY - 2)
		sc->lumpy_reclaim_mode = 1;
	else
		sc->lumpy_reclaim_mode = 0;
}

L
Linus Torvalds 已提交
1664 1665 1666
/*
 * This is a basic per-zone page freer.  Used by both kswapd and direct reclaim.
 */
1667
static void shrink_zone(int priority, struct zone *zone,
1668
				struct scan_control *sc)
L
Linus Torvalds 已提交
1669
{
1670
	unsigned long nr[NR_LRU_LISTS];
1671
	unsigned long nr_to_scan;
1672
	enum lru_list l;
1673
	unsigned long nr_reclaimed = sc->nr_reclaimed;
1674
	unsigned long nr_to_reclaim = sc->nr_to_reclaim;
1675

1676
	get_scan_count(zone, sc, nr, priority);
L
Linus Torvalds 已提交
1677

1678 1679
	set_lumpy_reclaim_mode(priority, sc);

1680 1681
	while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
					nr[LRU_INACTIVE_FILE]) {
L
Lee Schermerhorn 已提交
1682
		for_each_evictable_lru(l) {
1683
			if (nr[l]) {
K
KOSAKI Motohiro 已提交
1684 1685
				nr_to_scan = min_t(unsigned long,
						   nr[l], SWAP_CLUSTER_MAX);
1686
				nr[l] -= nr_to_scan;
L
Linus Torvalds 已提交
1687

1688 1689
				nr_reclaimed += shrink_list(l, nr_to_scan,
							    zone, sc, priority);
1690
			}
L
Linus Torvalds 已提交
1691
		}
1692 1693 1694 1695 1696 1697 1698 1699
		/*
		 * On large memory systems, scan >> priority can become
		 * really large. This is fine for the starting priority;
		 * we want to put equal scanning pressure on each zone.
		 * However, if the VM has a harder time of freeing pages,
		 * with multiple processes reclaiming pages, the total
		 * freeing target can get unreasonably large.
		 */
1700
		if (nr_reclaimed >= nr_to_reclaim && priority < DEF_PRIORITY)
1701
			break;
L
Linus Torvalds 已提交
1702 1703
	}

1704 1705
	sc->nr_reclaimed = nr_reclaimed;

1706 1707 1708 1709
	/*
	 * Even if we did not try to evict anon pages at all, we want to
	 * rebalance the anon lru active/inactive ratio.
	 */
1710
	if (inactive_anon_is_low(zone, sc) && nr_swap_pages > 0)
1711 1712
		shrink_active_list(SWAP_CLUSTER_MAX, zone, sc, priority, 0);

1713
	throttle_vm_writeout(sc->gfp_mask);
L
Linus Torvalds 已提交
1714 1715 1716 1717 1718 1719 1720
}

/*
 * This is the direct reclaim path, for page-allocating processes.  We only
 * try to reclaim pages from zones which will satisfy the caller's allocation
 * request.
 *
1721 1722
 * We reclaim from a zone even if that zone is over high_wmark_pages(zone).
 * Because:
L
Linus Torvalds 已提交
1723 1724
 * a) The caller may be trying to free *extra* pages to satisfy a higher-order
 *    allocation or
1725 1726 1727
 * b) The target zone may be at high_wmark_pages(zone) but the lower zones
 *    must go *over* high_wmark_pages(zone) to satisfy the `incremental min'
 *    zone defense algorithm.
L
Linus Torvalds 已提交
1728 1729 1730 1731
 *
 * If a zone is deemed to be full of pinned pages then just give it a light
 * scan then give up on it.
 */
1732
static bool shrink_zones(int priority, struct zonelist *zonelist,
1733
					struct scan_control *sc)
L
Linus Torvalds 已提交
1734
{
1735
	enum zone_type high_zoneidx = gfp_zone(sc->gfp_mask);
1736
	struct zoneref *z;
1737
	struct zone *zone;
1738
	bool all_unreclaimable = true;
1739

1740 1741
	for_each_zone_zonelist_nodemask(zone, z, zonelist, high_zoneidx,
					sc->nodemask) {
1742
		if (!populated_zone(zone))
L
Linus Torvalds 已提交
1743
			continue;
1744 1745 1746 1747
		/*
		 * Take care memory controller reclaiming has small influence
		 * to global LRU.
		 */
1748
		if (scanning_global_lru(sc)) {
1749 1750 1751
			if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
				continue;
			note_zone_scanning_priority(zone, priority);
L
Linus Torvalds 已提交
1752

1753
			if (zone->all_unreclaimable && priority != DEF_PRIORITY)
1754 1755 1756 1757 1758 1759 1760 1761 1762
				continue;	/* Let kswapd poll it */
		} else {
			/*
			 * Ignore cpuset limitation here. We just want to reduce
			 * # of used pages by us regardless of memory shortage.
			 */
			mem_cgroup_note_reclaim_priority(sc->mem_cgroup,
							priority);
		}
1763

1764
		shrink_zone(priority, zone, sc);
1765
		all_unreclaimable = false;
L
Linus Torvalds 已提交
1766
	}
1767
	return all_unreclaimable;
L
Linus Torvalds 已提交
1768
}
1769

L
Linus Torvalds 已提交
1770 1771 1772 1773 1774 1775 1776 1777
/*
 * This is the main entry point to direct page reclaim.
 *
 * If a full scan of the inactive list fails to free enough memory then we
 * are "out of memory" and something needs to be killed.
 *
 * If the caller is !__GFP_FS then the probability of a failure is reasonably
 * high - the zone may be full of dirty or under-writeback pages, which this
1778 1779 1780 1781
 * caller can't do much about.  We kick the writeback threads and take explicit
 * naps in the hope that some of these pages can be written.  But if the
 * allocating task holds filesystem locks which prevent writeout this might not
 * work, and the allocation attempt will fail.
1782 1783 1784
 *
 * returns:	0, if no pages reclaimed
 * 		else, the number of pages reclaimed
L
Linus Torvalds 已提交
1785
 */
1786
static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
1787
					struct scan_control *sc)
L
Linus Torvalds 已提交
1788 1789
{
	int priority;
1790
	bool all_unreclaimable;
1791
	unsigned long total_scanned = 0;
L
Linus Torvalds 已提交
1792
	struct reclaim_state *reclaim_state = current->reclaim_state;
1793
	struct zoneref *z;
1794
	struct zone *zone;
1795
	enum zone_type high_zoneidx = gfp_zone(sc->gfp_mask);
1796
	unsigned long writeback_threshold;
L
Linus Torvalds 已提交
1797

1798
	get_mems_allowed();
1799 1800
	delayacct_freepages_start();

1801
	if (scanning_global_lru(sc))
1802
		count_vm_event(ALLOCSTALL);
L
Linus Torvalds 已提交
1803 1804

	for (priority = DEF_PRIORITY; priority >= 0; priority--) {
1805
		sc->nr_scanned = 0;
1806 1807
		if (!priority)
			disable_swap_token();
1808
		all_unreclaimable = shrink_zones(priority, zonelist, sc);
1809 1810 1811 1812
		/*
		 * Don't shrink slabs when reclaiming memory from
		 * over limit cgroups
		 */
1813
		if (scanning_global_lru(sc)) {
1814 1815 1816 1817 1818 1819 1820 1821
			unsigned long lru_pages = 0;
			for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
				if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
					continue;

				lru_pages += zone_reclaimable_pages(zone);
			}

1822
			shrink_slab(sc->nr_scanned, sc->gfp_mask, lru_pages);
1823
			if (reclaim_state) {
1824
				sc->nr_reclaimed += reclaim_state->reclaimed_slab;
1825 1826
				reclaim_state->reclaimed_slab = 0;
			}
L
Linus Torvalds 已提交
1827
		}
1828
		total_scanned += sc->nr_scanned;
1829
		if (sc->nr_reclaimed >= sc->nr_to_reclaim)
L
Linus Torvalds 已提交
1830 1831 1832 1833 1834 1835 1836 1837 1838
			goto out;

		/*
		 * Try to write back as many pages as we just scanned.  This
		 * tends to cause slow streaming writers to write data to the
		 * disk smoothly, at the dirtying rate, which is nice.   But
		 * that's undesirable in laptop mode, where we *want* lumpy
		 * writeout.  So in laptop mode, write out the whole world.
		 */
1839 1840
		writeback_threshold = sc->nr_to_reclaim + sc->nr_to_reclaim / 2;
		if (total_scanned > writeback_threshold) {
1841
			wakeup_flusher_threads(laptop_mode ? 0 : total_scanned);
1842
			sc->may_writepage = 1;
L
Linus Torvalds 已提交
1843 1844 1845
		}

		/* Take a nap, wait for some writeback to complete */
1846 1847
		if (!sc->hibernation_mode && sc->nr_scanned &&
		    priority < DEF_PRIORITY - 2)
1848
			congestion_wait(BLK_RW_ASYNC, HZ/10);
L
Linus Torvalds 已提交
1849
	}
1850

L
Linus Torvalds 已提交
1851
out:
1852 1853 1854 1855 1856 1857 1858 1859 1860
	/*
	 * Now that we've scanned all the zones at this priority level, note
	 * that level within the zone so that the next thread which performs
	 * scanning of this zone will immediately start out at this priority
	 * level.  This affects only the decision whether or not to bring
	 * mapped pages onto the inactive list.
	 */
	if (priority < 0)
		priority = 0;
L
Linus Torvalds 已提交
1861

1862
	if (scanning_global_lru(sc)) {
1863
		for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
1864 1865 1866 1867 1868 1869 1870 1871

			if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
				continue;

			zone->prev_priority = priority;
		}
	} else
		mem_cgroup_record_reclaim_priority(sc->mem_cgroup, priority);
L
Linus Torvalds 已提交
1872

1873
	delayacct_freepages_end();
1874
	put_mems_allowed();
1875

1876 1877 1878 1879 1880 1881 1882 1883
	if (sc->nr_reclaimed)
		return sc->nr_reclaimed;

	/* top priority shrink_zones still had more to do? don't OOM, then */
	if (scanning_global_lru(sc) && !all_unreclaimable)
		return 1;

	return 0;
L
Linus Torvalds 已提交
1884 1885
}

1886
unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
1887
				gfp_t gfp_mask, nodemask_t *nodemask)
1888
{
1889
	unsigned long nr_reclaimed;
1890 1891 1892
	struct scan_control sc = {
		.gfp_mask = gfp_mask,
		.may_writepage = !laptop_mode,
1893
		.nr_to_reclaim = SWAP_CLUSTER_MAX,
1894
		.may_unmap = 1,
1895
		.may_swap = 1,
1896 1897 1898
		.swappiness = vm_swappiness,
		.order = order,
		.mem_cgroup = NULL,
1899
		.nodemask = nodemask,
1900 1901
	};

1902 1903 1904 1905 1906 1907 1908 1909 1910
	trace_mm_vmscan_direct_reclaim_begin(order,
				sc.may_writepage,
				gfp_mask);

	nr_reclaimed = do_try_to_free_pages(zonelist, &sc);

	trace_mm_vmscan_direct_reclaim_end(nr_reclaimed);

	return nr_reclaimed;
1911 1912
}

1913
#ifdef CONFIG_CGROUP_MEM_RES_CTLR
1914

1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945
unsigned long mem_cgroup_shrink_node_zone(struct mem_cgroup *mem,
						gfp_t gfp_mask, bool noswap,
						unsigned int swappiness,
						struct zone *zone, int nid)
{
	struct scan_control sc = {
		.may_writepage = !laptop_mode,
		.may_unmap = 1,
		.may_swap = !noswap,
		.swappiness = swappiness,
		.order = 0,
		.mem_cgroup = mem,
	};
	nodemask_t nm  = nodemask_of_node(nid);

	sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
			(GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
	sc.nodemask = &nm;
	sc.nr_reclaimed = 0;
	sc.nr_scanned = 0;
	/*
	 * NOTE: Although we can get the priority field, using it
	 * here is not a good idea, since it limits the pages we can scan.
	 * if we don't reclaim here, the shrink_zone from balance_pgdat
	 * will pick up pages from other mem cgroup's as well. We hack
	 * the priority and make it zero.
	 */
	shrink_zone(0, zone, &sc);
	return sc.nr_reclaimed;
}

1946
unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *mem_cont,
K
KOSAKI Motohiro 已提交
1947 1948 1949
					   gfp_t gfp_mask,
					   bool noswap,
					   unsigned int swappiness)
1950
{
1951
	struct zonelist *zonelist;
1952 1953
	struct scan_control sc = {
		.may_writepage = !laptop_mode,
1954
		.may_unmap = 1,
1955
		.may_swap = !noswap,
1956
		.nr_to_reclaim = SWAP_CLUSTER_MAX,
K
KOSAKI Motohiro 已提交
1957
		.swappiness = swappiness,
1958 1959
		.order = 0,
		.mem_cgroup = mem_cont,
1960
		.nodemask = NULL, /* we don't care the placement */
1961 1962
	};

1963 1964 1965 1966
	sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
			(GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
	zonelist = NODE_DATA(numa_node_id())->node_zonelists;
	return do_try_to_free_pages(zonelist, &sc);
1967 1968 1969
}
#endif

1970
/* is kswapd sleeping prematurely? */
1971
static int sleeping_prematurely(pg_data_t *pgdat, int order, long remaining)
1972
{
1973
	int i;
1974 1975 1976 1977 1978 1979

	/* If a direct reclaimer woke kswapd within HZ/10, it's premature */
	if (remaining)
		return 1;

	/* If after HZ/10, a zone is below the high mark, it's premature */
1980 1981 1982 1983 1984 1985
	for (i = 0; i < pgdat->nr_zones; i++) {
		struct zone *zone = pgdat->node_zones + i;

		if (!populated_zone(zone))
			continue;

1986
		if (zone->all_unreclaimable)
1987 1988
			continue;

1989 1990 1991
		if (!zone_watermark_ok(zone, order, high_wmark_pages(zone),
								0, 0))
			return 1;
1992
	}
1993 1994 1995 1996

	return 0;
}

L
Linus Torvalds 已提交
1997 1998
/*
 * For kswapd, balance_pgdat() will work across all this node's zones until
1999
 * they are all at high_wmark_pages(zone).
L
Linus Torvalds 已提交
2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011
 *
 * Returns the number of pages which were actually freed.
 *
 * There is special handling here for zones which are full of pinned pages.
 * This can happen if the pages are all mlocked, or if they are all used by
 * device drivers (say, ZONE_DMA).  Or if they are all in use by hugetlb.
 * What we do is to detect the case where all pages in the zone have been
 * scanned twice and there has been zero successful reclaim.  Mark the zone as
 * dead and from now on, only perform a short scan.  Basically we're polling
 * the zone for when the problem goes away.
 *
 * kswapd scans the zones in the highmem->normal->dma direction.  It skips
2012 2013 2014 2015 2016
 * zones which have free_pages > high_wmark_pages(zone), but once a zone is
 * found to have free_pages <= high_wmark_pages(zone), we scan that zone and the
 * lower zones regardless of the number of free pages in the lower zones. This
 * interoperates with the page allocator fallback scheme to ensure that aging
 * of pages is balanced across the zones.
L
Linus Torvalds 已提交
2017
 */
2018
static unsigned long balance_pgdat(pg_data_t *pgdat, int order)
L
Linus Torvalds 已提交
2019 2020 2021 2022
{
	int all_zones_ok;
	int priority;
	int i;
2023
	unsigned long total_scanned;
L
Linus Torvalds 已提交
2024
	struct reclaim_state *reclaim_state = current->reclaim_state;
2025 2026
	struct scan_control sc = {
		.gfp_mask = GFP_KERNEL,
2027
		.may_unmap = 1,
2028
		.may_swap = 1,
2029 2030 2031 2032 2033
		/*
		 * kswapd doesn't want to be bailed out while reclaim. because
		 * we want to put equal scanning pressure on each zone.
		 */
		.nr_to_reclaim = ULONG_MAX,
2034
		.swappiness = vm_swappiness,
A
Andy Whitcroft 已提交
2035
		.order = order,
2036
		.mem_cgroup = NULL,
2037
	};
2038 2039
	/*
	 * temp_priority is used to remember the scanning priority at which
2040 2041
	 * this zone was successfully refilled to
	 * free_pages == high_wmark_pages(zone).
2042 2043
	 */
	int temp_priority[MAX_NR_ZONES];
L
Linus Torvalds 已提交
2044 2045 2046

loop_again:
	total_scanned = 0;
2047
	sc.nr_reclaimed = 0;
C
Christoph Lameter 已提交
2048
	sc.may_writepage = !laptop_mode;
2049
	count_vm_event(PAGEOUTRUN);
L
Linus Torvalds 已提交
2050

2051 2052
	for (i = 0; i < pgdat->nr_zones; i++)
		temp_priority[i] = DEF_PRIORITY;
L
Linus Torvalds 已提交
2053 2054 2055 2056

	for (priority = DEF_PRIORITY; priority >= 0; priority--) {
		int end_zone = 0;	/* Inclusive.  0 = ZONE_DMA */
		unsigned long lru_pages = 0;
2057
		int has_under_min_watermark_zone = 0;
L
Linus Torvalds 已提交
2058

2059 2060 2061 2062
		/* The swap token gets in the way of swapout... */
		if (!priority)
			disable_swap_token();

L
Linus Torvalds 已提交
2063 2064
		all_zones_ok = 1;

2065 2066 2067 2068 2069 2070
		/*
		 * Scan in the highmem->dma direction for the highest
		 * zone which needs scanning
		 */
		for (i = pgdat->nr_zones - 1; i >= 0; i--) {
			struct zone *zone = pgdat->node_zones + i;
L
Linus Torvalds 已提交
2071

2072 2073
			if (!populated_zone(zone))
				continue;
L
Linus Torvalds 已提交
2074

2075
			if (zone->all_unreclaimable && priority != DEF_PRIORITY)
2076
				continue;
L
Linus Torvalds 已提交
2077

2078 2079 2080 2081
			/*
			 * Do some background aging of the anon list, to give
			 * pages a chance to be referenced before reclaiming.
			 */
2082
			if (inactive_anon_is_low(zone, &sc))
2083 2084 2085
				shrink_active_list(SWAP_CLUSTER_MAX, zone,
							&sc, priority, 0);

2086 2087
			if (!zone_watermark_ok(zone, order,
					high_wmark_pages(zone), 0, 0)) {
2088
				end_zone = i;
A
Andrew Morton 已提交
2089
				break;
L
Linus Torvalds 已提交
2090 2091
			}
		}
A
Andrew Morton 已提交
2092 2093 2094
		if (i < 0)
			goto out;

L
Linus Torvalds 已提交
2095 2096 2097
		for (i = 0; i <= end_zone; i++) {
			struct zone *zone = pgdat->node_zones + i;

2098
			lru_pages += zone_reclaimable_pages(zone);
L
Linus Torvalds 已提交
2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111
		}

		/*
		 * Now scan the zone in the dma->highmem direction, stopping
		 * at the last zone which needs scanning.
		 *
		 * We do this because the page allocator works in the opposite
		 * direction.  This prevents the page allocator from allocating
		 * pages behind kswapd's direction of progress, which would
		 * cause too much scanning of the lower zones.
		 */
		for (i = 0; i <= end_zone; i++) {
			struct zone *zone = pgdat->node_zones + i;
2112
			int nr_slab;
2113
			int nid, zid;
L
Linus Torvalds 已提交
2114

2115
			if (!populated_zone(zone))
L
Linus Torvalds 已提交
2116 2117
				continue;

2118
			if (zone->all_unreclaimable && priority != DEF_PRIORITY)
L
Linus Torvalds 已提交
2119 2120
				continue;

2121
			temp_priority[i] = priority;
L
Linus Torvalds 已提交
2122
			sc.nr_scanned = 0;
2123
			note_zone_scanning_priority(zone, priority);
2124 2125 2126 2127 2128 2129 2130 2131 2132

			nid = pgdat->node_id;
			zid = zone_idx(zone);
			/*
			 * Call soft limit reclaim before calling shrink_zone.
			 * For now we ignore the return value
			 */
			mem_cgroup_soft_limit_reclaim(zone, order, sc.gfp_mask,
							nid, zid);
2133 2134 2135 2136
			/*
			 * We put equal pressure on every zone, unless one
			 * zone has way too many pages free already.
			 */
2137 2138
			if (!zone_watermark_ok(zone, order,
					8*high_wmark_pages(zone), end_zone, 0))
2139
				shrink_zone(priority, zone, &sc);
L
Linus Torvalds 已提交
2140
			reclaim_state->reclaimed_slab = 0;
2141 2142
			nr_slab = shrink_slab(sc.nr_scanned, GFP_KERNEL,
						lru_pages);
2143
			sc.nr_reclaimed += reclaim_state->reclaimed_slab;
L
Linus Torvalds 已提交
2144
			total_scanned += sc.nr_scanned;
2145
			if (zone->all_unreclaimable)
L
Linus Torvalds 已提交
2146
				continue;
2147 2148 2149
			if (nr_slab == 0 &&
			    zone->pages_scanned >= (zone_reclaimable_pages(zone) * 6))
				zone->all_unreclaimable = 1;
L
Linus Torvalds 已提交
2150 2151 2152 2153 2154 2155
			/*
			 * If we've done a decent amount of scanning and
			 * the reclaim ratio is low, start doing writepage
			 * even in laptop mode
			 */
			if (total_scanned > SWAP_CLUSTER_MAX * 2 &&
2156
			    total_scanned > sc.nr_reclaimed + sc.nr_reclaimed / 2)
L
Linus Torvalds 已提交
2157
				sc.may_writepage = 1;
2158

2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170
			if (!zone_watermark_ok(zone, order,
					high_wmark_pages(zone), end_zone, 0)) {
				all_zones_ok = 0;
				/*
				 * We are still under min water mark.  This
				 * means that we have a GFP_ATOMIC allocation
				 * failure risk. Hurry up!
				 */
				if (!zone_watermark_ok(zone, order,
					    min_wmark_pages(zone), end_zone, 0))
					has_under_min_watermark_zone = 1;
			}
2171

L
Linus Torvalds 已提交
2172 2173 2174 2175 2176 2177 2178
		}
		if (all_zones_ok)
			break;		/* kswapd: all done */
		/*
		 * OK, kswapd is getting into trouble.  Take a nap, then take
		 * another pass across the zones.
		 */
2179 2180 2181 2182 2183 2184
		if (total_scanned && (priority < DEF_PRIORITY - 2)) {
			if (has_under_min_watermark_zone)
				count_vm_event(KSWAPD_SKIP_CONGESTION_WAIT);
			else
				congestion_wait(BLK_RW_ASYNC, HZ/10);
		}
L
Linus Torvalds 已提交
2185 2186 2187 2188 2189 2190 2191

		/*
		 * We do this so kswapd doesn't build up large priorities for
		 * example when it is freeing in parallel with allocators. It
		 * matches the direct reclaim path behaviour in terms of impact
		 * on zone->*_priority.
		 */
2192
		if (sc.nr_reclaimed >= SWAP_CLUSTER_MAX)
L
Linus Torvalds 已提交
2193 2194 2195
			break;
	}
out:
2196 2197 2198 2199 2200
	/*
	 * Note within each zone the priority level at which this zone was
	 * brought into a happy state.  So that the next thread which scans this
	 * zone will start out at that priority level.
	 */
L
Linus Torvalds 已提交
2201 2202 2203
	for (i = 0; i < pgdat->nr_zones; i++) {
		struct zone *zone = pgdat->node_zones + i;

2204
		zone->prev_priority = temp_priority[i];
L
Linus Torvalds 已提交
2205 2206 2207
	}
	if (!all_zones_ok) {
		cond_resched();
2208 2209 2210

		try_to_freeze();

2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227
		/*
		 * Fragmentation may mean that the system cannot be
		 * rebalanced for high-order allocations in all zones.
		 * At this point, if nr_reclaimed < SWAP_CLUSTER_MAX,
		 * it means the zones have been fully scanned and are still
		 * not balanced. For high-order allocations, there is
		 * little point trying all over again as kswapd may
		 * infinite loop.
		 *
		 * Instead, recheck all watermarks at order-0 as they
		 * are the most important. If watermarks are ok, kswapd will go
		 * back to sleep. High-order users can still perform direct
		 * reclaim if they wish.
		 */
		if (sc.nr_reclaimed < SWAP_CLUSTER_MAX)
			order = sc.order = 0;

L
Linus Torvalds 已提交
2228 2229 2230
		goto loop_again;
	}

2231
	return sc.nr_reclaimed;
L
Linus Torvalds 已提交
2232 2233 2234 2235
}

/*
 * The background pageout daemon, started as a kernel thread
2236
 * from the init process.
L
Linus Torvalds 已提交
2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255
 *
 * This basically trickles out pages so that we have _some_
 * free memory available even if there is no other activity
 * that frees anything up. This is needed for things like routing
 * etc, where we otherwise might have all activity going on in
 * asynchronous contexts that cannot page things out.
 *
 * If there are applications that are active memory-allocators
 * (most normal use), this basically shouldn't matter.
 */
static int kswapd(void *p)
{
	unsigned long order;
	pg_data_t *pgdat = (pg_data_t*)p;
	struct task_struct *tsk = current;
	DEFINE_WAIT(wait);
	struct reclaim_state reclaim_state = {
		.reclaimed_slab = 0,
	};
2256
	const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
L
Linus Torvalds 已提交
2257

2258 2259
	lockdep_set_current_reclaim_state(GFP_KERNEL);

R
Rusty Russell 已提交
2260
	if (!cpumask_empty(cpumask))
2261
		set_cpus_allowed_ptr(tsk, cpumask);
L
Linus Torvalds 已提交
2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275
	current->reclaim_state = &reclaim_state;

	/*
	 * Tell the memory management that we're a "memory allocator",
	 * and that if we need more memory we should get access to it
	 * regardless (see "__alloc_pages()"). "kswapd" should
	 * never get caught in the normal page freeing logic.
	 *
	 * (Kswapd normally doesn't need memory anyway, but sometimes
	 * you need a small amount of memory in order to be able to
	 * page out something else, and this flag essentially protects
	 * us from recursively trying to free more memory as we're
	 * trying to free the first piece of memory in the first place).
	 */
2276
	tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
2277
	set_freezable();
L
Linus Torvalds 已提交
2278 2279 2280 2281

	order = 0;
	for ( ; ; ) {
		unsigned long new_order;
2282
		int ret;
2283

L
Linus Torvalds 已提交
2284 2285 2286 2287 2288 2289 2290 2291 2292 2293
		prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
		new_order = pgdat->kswapd_max_order;
		pgdat->kswapd_max_order = 0;
		if (order < new_order) {
			/*
			 * Don't sleep if someone wants a larger 'order'
			 * allocation
			 */
			order = new_order;
		} else {
2294 2295 2296 2297
			if (!freezing(current) && !kthread_should_stop()) {
				long remaining = 0;

				/* Try to sleep for a short interval */
2298
				if (!sleeping_prematurely(pgdat, order, remaining)) {
2299 2300 2301 2302 2303 2304 2305 2306 2307 2308
					remaining = schedule_timeout(HZ/10);
					finish_wait(&pgdat->kswapd_wait, &wait);
					prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
				}

				/*
				 * After a short sleep, check if it was a
				 * premature sleep. If not, then go fully
				 * to sleep until explicitly woken up
				 */
2309 2310
				if (!sleeping_prematurely(pgdat, order, remaining)) {
					trace_mm_vmscan_kswapd_sleep(pgdat->node_id);
2311
					schedule();
2312
				} else {
2313
					if (remaining)
2314
						count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
2315
					else
2316
						count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
2317 2318
				}
			}
2319

L
Linus Torvalds 已提交
2320 2321 2322 2323
			order = pgdat->kswapd_max_order;
		}
		finish_wait(&pgdat->kswapd_wait, &wait);

2324 2325 2326 2327 2328 2329 2330 2331
		ret = try_to_freeze();
		if (kthread_should_stop())
			break;

		/*
		 * We can speed up thawing tasks if we don't call balance_pgdat
		 * after returning from the refrigerator
		 */
2332 2333
		if (!ret) {
			trace_mm_vmscan_kswapd_wake(pgdat->node_id, order);
2334
			balance_pgdat(pgdat, order);
2335
		}
L
Linus Torvalds 已提交
2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346
	}
	return 0;
}

/*
 * A zone is low on free memory, so wake its kswapd task to service it.
 */
void wakeup_kswapd(struct zone *zone, int order)
{
	pg_data_t *pgdat;

2347
	if (!populated_zone(zone))
L
Linus Torvalds 已提交
2348 2349 2350
		return;

	pgdat = zone->zone_pgdat;
2351
	if (zone_watermark_ok(zone, order, low_wmark_pages(zone), 0, 0))
L
Linus Torvalds 已提交
2352 2353 2354
		return;
	if (pgdat->kswapd_max_order < order)
		pgdat->kswapd_max_order = order;
2355
	trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, zone_idx(zone), order);
2356
	if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
L
Linus Torvalds 已提交
2357
		return;
2358
	if (!waitqueue_active(&pgdat->kswapd_wait))
L
Linus Torvalds 已提交
2359
		return;
2360
	wake_up_interruptible(&pgdat->kswapd_wait);
L
Linus Torvalds 已提交
2361 2362
}

2363 2364 2365 2366 2367 2368 2369 2370
/*
 * The reclaimable count would be mostly accurate.
 * The less reclaimable pages may be
 * - mlocked pages, which will be moved to unevictable list when encountered
 * - mapped pages, which may require several travels to be reclaimed
 * - dirty pages, which is not "instantly" reclaimable
 */
unsigned long global_reclaimable_pages(void)
2371
{
2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395
	int nr;

	nr = global_page_state(NR_ACTIVE_FILE) +
	     global_page_state(NR_INACTIVE_FILE);

	if (nr_swap_pages > 0)
		nr += global_page_state(NR_ACTIVE_ANON) +
		      global_page_state(NR_INACTIVE_ANON);

	return nr;
}

unsigned long zone_reclaimable_pages(struct zone *zone)
{
	int nr;

	nr = zone_page_state(zone, NR_ACTIVE_FILE) +
	     zone_page_state(zone, NR_INACTIVE_FILE);

	if (nr_swap_pages > 0)
		nr += zone_page_state(zone, NR_ACTIVE_ANON) +
		      zone_page_state(zone, NR_INACTIVE_ANON);

	return nr;
2396 2397
}

2398
#ifdef CONFIG_HIBERNATION
L
Linus Torvalds 已提交
2399
/*
2400
 * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
2401 2402 2403 2404 2405
 * freed pages.
 *
 * Rather than trying to age LRUs the aim is to preserve the overall
 * LRU order by reclaiming preferentially
 * inactive > active > active referenced > active mapped
L
Linus Torvalds 已提交
2406
 */
2407
unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
L
Linus Torvalds 已提交
2408
{
2409 2410
	struct reclaim_state reclaim_state;
	struct scan_control sc = {
2411 2412 2413
		.gfp_mask = GFP_HIGHUSER_MOVABLE,
		.may_swap = 1,
		.may_unmap = 1,
2414
		.may_writepage = 1,
2415 2416 2417 2418
		.nr_to_reclaim = nr_to_reclaim,
		.hibernation_mode = 1,
		.swappiness = vm_swappiness,
		.order = 0,
L
Linus Torvalds 已提交
2419
	};
2420 2421 2422
	struct zonelist * zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
	struct task_struct *p = current;
	unsigned long nr_reclaimed;
L
Linus Torvalds 已提交
2423

2424 2425 2426 2427
	p->flags |= PF_MEMALLOC;
	lockdep_set_current_reclaim_state(sc.gfp_mask);
	reclaim_state.reclaimed_slab = 0;
	p->reclaim_state = &reclaim_state;
2428

2429
	nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
2430

2431 2432 2433
	p->reclaim_state = NULL;
	lockdep_clear_current_reclaim_state();
	p->flags &= ~PF_MEMALLOC;
2434

2435
	return nr_reclaimed;
L
Linus Torvalds 已提交
2436
}
2437
#endif /* CONFIG_HIBERNATION */
L
Linus Torvalds 已提交
2438 2439 2440 2441 2442

/* It's optimal to keep kswapds on the same CPUs as their memory, but
   not required for correctness.  So if the last cpu in a node goes
   away, we get changed to run anywhere: as the first one comes back,
   restore their cpu bindings. */
2443
static int __devinit cpu_callback(struct notifier_block *nfb,
2444
				  unsigned long action, void *hcpu)
L
Linus Torvalds 已提交
2445
{
2446
	int nid;
L
Linus Torvalds 已提交
2447

2448
	if (action == CPU_ONLINE || action == CPU_ONLINE_FROZEN) {
2449
		for_each_node_state(nid, N_HIGH_MEMORY) {
2450
			pg_data_t *pgdat = NODE_DATA(nid);
2451 2452 2453
			const struct cpumask *mask;

			mask = cpumask_of_node(pgdat->node_id);
2454

2455
			if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
L
Linus Torvalds 已提交
2456
				/* One of our CPUs online: restore mask */
2457
				set_cpus_allowed_ptr(pgdat->kswapd, mask);
L
Linus Torvalds 已提交
2458 2459 2460 2461 2462
		}
	}
	return NOTIFY_OK;
}

2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484
/*
 * This kswapd start function will be called by init and node-hot-add.
 * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
 */
int kswapd_run(int nid)
{
	pg_data_t *pgdat = NODE_DATA(nid);
	int ret = 0;

	if (pgdat->kswapd)
		return 0;

	pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
	if (IS_ERR(pgdat->kswapd)) {
		/* failure at boot is fatal */
		BUG_ON(system_state == SYSTEM_BOOTING);
		printk("Failed to start kswapd on node %d\n",nid);
		ret = -1;
	}
	return ret;
}

2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495
/*
 * Called by memory hotplug when all memory in a node is offlined.
 */
void kswapd_stop(int nid)
{
	struct task_struct *kswapd = NODE_DATA(nid)->kswapd;

	if (kswapd)
		kthread_stop(kswapd);
}

L
Linus Torvalds 已提交
2496 2497
static int __init kswapd_init(void)
{
2498
	int nid;
2499

L
Linus Torvalds 已提交
2500
	swap_setup();
2501
	for_each_node_state(nid, N_HIGH_MEMORY)
2502
 		kswapd_run(nid);
L
Linus Torvalds 已提交
2503 2504 2505 2506 2507
	hotcpu_notifier(cpu_callback, 0);
	return 0;
}

module_init(kswapd_init)
2508 2509 2510 2511 2512 2513 2514 2515 2516 2517

#ifdef CONFIG_NUMA
/*
 * Zone reclaim mode
 *
 * If non-zero call zone_reclaim when the number of free pages falls below
 * the watermarks.
 */
int zone_reclaim_mode __read_mostly;

2518
#define RECLAIM_OFF 0
2519
#define RECLAIM_ZONE (1<<0)	/* Run shrink_inactive_list on the zone */
2520 2521 2522
#define RECLAIM_WRITE (1<<1)	/* Writeout pages during reclaim */
#define RECLAIM_SWAP (1<<2)	/* Swap pages out during reclaim */

2523 2524 2525 2526 2527 2528 2529
/*
 * Priority for ZONE_RECLAIM. This determines the fraction of pages
 * of a node considered for each zone_reclaim. 4 scans 1/16th of
 * a zone.
 */
#define ZONE_RECLAIM_PRIORITY 4

2530 2531 2532 2533 2534 2535
/*
 * Percentage of pages in a zone that must be unmapped for zone_reclaim to
 * occur.
 */
int sysctl_min_unmapped_ratio = 1;

2536 2537 2538 2539 2540 2541
/*
 * If the number of slab pages in a zone grows beyond this percentage then
 * slab reclaim needs to occur.
 */
int sysctl_min_slab_ratio = 5;

2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583
static inline unsigned long zone_unmapped_file_pages(struct zone *zone)
{
	unsigned long file_mapped = zone_page_state(zone, NR_FILE_MAPPED);
	unsigned long file_lru = zone_page_state(zone, NR_INACTIVE_FILE) +
		zone_page_state(zone, NR_ACTIVE_FILE);

	/*
	 * It's possible for there to be more file mapped pages than
	 * accounted for by the pages on the file LRU lists because
	 * tmpfs pages accounted for as ANON can also be FILE_MAPPED
	 */
	return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
}

/* Work out how many page cache pages we can reclaim in this reclaim_mode */
static long zone_pagecache_reclaimable(struct zone *zone)
{
	long nr_pagecache_reclaimable;
	long delta = 0;

	/*
	 * If RECLAIM_SWAP is set, then all file pages are considered
	 * potentially reclaimable. Otherwise, we have to worry about
	 * pages like swapcache and zone_unmapped_file_pages() provides
	 * a better estimate
	 */
	if (zone_reclaim_mode & RECLAIM_SWAP)
		nr_pagecache_reclaimable = zone_page_state(zone, NR_FILE_PAGES);
	else
		nr_pagecache_reclaimable = zone_unmapped_file_pages(zone);

	/* If we can't clean pages, remove dirty pages from consideration */
	if (!(zone_reclaim_mode & RECLAIM_WRITE))
		delta += zone_page_state(zone, NR_FILE_DIRTY);

	/* Watch for any possible underflows due to delta */
	if (unlikely(delta > nr_pagecache_reclaimable))
		delta = nr_pagecache_reclaimable;

	return nr_pagecache_reclaimable - delta;
}

2584 2585 2586
/*
 * Try to free up some pages from this zone through reclaim.
 */
2587
static int __zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
2588
{
2589
	/* Minimum pages needed in order to stay on node */
2590
	const unsigned long nr_pages = 1 << order;
2591 2592
	struct task_struct *p = current;
	struct reclaim_state reclaim_state;
2593
	int priority;
2594 2595
	struct scan_control sc = {
		.may_writepage = !!(zone_reclaim_mode & RECLAIM_WRITE),
2596
		.may_unmap = !!(zone_reclaim_mode & RECLAIM_SWAP),
2597
		.may_swap = 1,
2598 2599
		.nr_to_reclaim = max_t(unsigned long, nr_pages,
				       SWAP_CLUSTER_MAX),
2600
		.gfp_mask = gfp_mask,
2601
		.swappiness = vm_swappiness,
2602
		.order = order,
2603
	};
2604
	unsigned long slab_reclaimable;
2605 2606

	cond_resched();
2607 2608 2609 2610 2611 2612
	/*
	 * We need to be able to allocate from the reserves for RECLAIM_SWAP
	 * and we also need to be able to write out pages for RECLAIM_WRITE
	 * and RECLAIM_SWAP.
	 */
	p->flags |= PF_MEMALLOC | PF_SWAPWRITE;
2613
	lockdep_set_current_reclaim_state(gfp_mask);
2614 2615
	reclaim_state.reclaimed_slab = 0;
	p->reclaim_state = &reclaim_state;
2616

2617
	if (zone_pagecache_reclaimable(zone) > zone->min_unmapped_pages) {
2618 2619 2620 2621 2622 2623
		/*
		 * Free memory by calling shrink zone with increasing
		 * priorities until we have enough memory freed.
		 */
		priority = ZONE_RECLAIM_PRIORITY;
		do {
2624
			note_zone_scanning_priority(zone, priority);
2625
			shrink_zone(priority, zone, &sc);
2626
			priority--;
2627
		} while (priority >= 0 && sc.nr_reclaimed < nr_pages);
2628
	}
2629

2630 2631
	slab_reclaimable = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
	if (slab_reclaimable > zone->min_slab_pages) {
2632
		/*
2633
		 * shrink_slab() does not currently allow us to determine how
2634 2635 2636 2637
		 * many pages were freed in this zone. So we take the current
		 * number of slab pages and shake the slab until it is reduced
		 * by the same nr_pages that we used for reclaiming unmapped
		 * pages.
2638
		 *
2639 2640
		 * Note that shrink_slab will free memory on all zones and may
		 * take a long time.
2641
		 */
2642
		while (shrink_slab(sc.nr_scanned, gfp_mask, order) &&
2643 2644
			zone_page_state(zone, NR_SLAB_RECLAIMABLE) >
				slab_reclaimable - nr_pages)
2645
			;
2646 2647 2648 2649 2650

		/*
		 * Update nr_reclaimed by the number of slab pages we
		 * reclaimed from this zone.
		 */
2651
		sc.nr_reclaimed += slab_reclaimable -
2652
			zone_page_state(zone, NR_SLAB_RECLAIMABLE);
2653 2654
	}

2655
	p->reclaim_state = NULL;
2656
	current->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE);
2657
	lockdep_clear_current_reclaim_state();
2658
	return sc.nr_reclaimed >= nr_pages;
2659
}
2660 2661 2662 2663

int zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
{
	int node_id;
2664
	int ret;
2665 2666

	/*
2667 2668
	 * Zone reclaim reclaims unmapped file backed pages and
	 * slab pages if we are over the defined limits.
2669
	 *
2670 2671 2672 2673 2674
	 * A small portion of unmapped file backed pages is needed for
	 * file I/O otherwise pages read by file I/O will be immediately
	 * thrown out if the zone is overallocated. So we do not reclaim
	 * if less than a specified percentage of the zone is used by
	 * unmapped file backed pages.
2675
	 */
2676 2677
	if (zone_pagecache_reclaimable(zone) <= zone->min_unmapped_pages &&
	    zone_page_state(zone, NR_SLAB_RECLAIMABLE) <= zone->min_slab_pages)
2678
		return ZONE_RECLAIM_FULL;
2679

2680
	if (zone->all_unreclaimable)
2681
		return ZONE_RECLAIM_FULL;
2682

2683
	/*
2684
	 * Do not scan if the allocation should not be delayed.
2685
	 */
2686
	if (!(gfp_mask & __GFP_WAIT) || (current->flags & PF_MEMALLOC))
2687
		return ZONE_RECLAIM_NOSCAN;
2688 2689 2690 2691 2692 2693 2694

	/*
	 * Only run zone reclaim on the local zone or on zones that do not
	 * have associated processors. This will favor the local processor
	 * over remote processors and spread off node memory allocations
	 * as wide as possible.
	 */
2695
	node_id = zone_to_nid(zone);
2696
	if (node_state(node_id, N_CPU) && node_id != numa_node_id())
2697
		return ZONE_RECLAIM_NOSCAN;
2698 2699

	if (zone_test_and_set_flag(zone, ZONE_RECLAIM_LOCKED))
2700 2701
		return ZONE_RECLAIM_NOSCAN;

2702 2703 2704
	ret = __zone_reclaim(zone, gfp_mask, order);
	zone_clear_flag(zone, ZONE_RECLAIM_LOCKED);

2705 2706 2707
	if (!ret)
		count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);

2708
	return ret;
2709
}
2710
#endif
L
Lee Schermerhorn 已提交
2711 2712 2713 2714 2715 2716 2717

/*
 * page_evictable - test whether a page is evictable
 * @page: the page to test
 * @vma: the VMA in which the page is or will be mapped, may be NULL
 *
 * Test whether page is evictable--i.e., should be placed on active/inactive
N
Nick Piggin 已提交
2718 2719
 * lists vs unevictable list.  The vma argument is !NULL when called from the
 * fault path to determine how to instantate a new page.
L
Lee Schermerhorn 已提交
2720 2721
 *
 * Reasons page might not be evictable:
2722
 * (1) page's mapping marked unevictable
N
Nick Piggin 已提交
2723
 * (2) page is part of an mlocked VMA
2724
 *
L
Lee Schermerhorn 已提交
2725 2726 2727 2728
 */
int page_evictable(struct page *page, struct vm_area_struct *vma)
{

2729 2730 2731
	if (mapping_unevictable(page_mapping(page)))
		return 0;

N
Nick Piggin 已提交
2732 2733
	if (PageMlocked(page) || (vma && is_mlocked_vma(vma, page)))
		return 0;
L
Lee Schermerhorn 已提交
2734 2735 2736

	return 1;
}
2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755

/**
 * check_move_unevictable_page - check page for evictability and move to appropriate zone lru list
 * @page: page to check evictability and move to appropriate lru list
 * @zone: zone page is in
 *
 * Checks a page for evictability and moves the page to the appropriate
 * zone lru list.
 *
 * Restrictions: zone->lru_lock must be held, page must be on LRU and must
 * have PageUnevictable set.
 */
static void check_move_unevictable_page(struct page *page, struct zone *zone)
{
	VM_BUG_ON(PageActive(page));

retry:
	ClearPageUnevictable(page);
	if (page_evictable(page, NULL)) {
2756
		enum lru_list l = page_lru_base_type(page);
2757

2758 2759
		__dec_zone_state(zone, NR_UNEVICTABLE);
		list_move(&page->lru, &zone->lru[l].list);
K
KAMEZAWA Hiroyuki 已提交
2760
		mem_cgroup_move_lists(page, LRU_UNEVICTABLE, l);
2761 2762 2763 2764 2765 2766 2767 2768
		__inc_zone_state(zone, NR_INACTIVE_ANON + l);
		__count_vm_event(UNEVICTABLE_PGRESCUED);
	} else {
		/*
		 * rotate unevictable list
		 */
		SetPageUnevictable(page);
		list_move(&page->lru, &zone->lru[LRU_UNEVICTABLE].list);
K
KAMEZAWA Hiroyuki 已提交
2769
		mem_cgroup_rotate_lru_list(page, LRU_UNEVICTABLE);
2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828
		if (page_evictable(page, NULL))
			goto retry;
	}
}

/**
 * scan_mapping_unevictable_pages - scan an address space for evictable pages
 * @mapping: struct address_space to scan for evictable pages
 *
 * Scan all pages in mapping.  Check unevictable pages for
 * evictability and move them to the appropriate zone lru list.
 */
void scan_mapping_unevictable_pages(struct address_space *mapping)
{
	pgoff_t next = 0;
	pgoff_t end   = (i_size_read(mapping->host) + PAGE_CACHE_SIZE - 1) >>
			 PAGE_CACHE_SHIFT;
	struct zone *zone;
	struct pagevec pvec;

	if (mapping->nrpages == 0)
		return;

	pagevec_init(&pvec, 0);
	while (next < end &&
		pagevec_lookup(&pvec, mapping, next, PAGEVEC_SIZE)) {
		int i;
		int pg_scanned = 0;

		zone = NULL;

		for (i = 0; i < pagevec_count(&pvec); i++) {
			struct page *page = pvec.pages[i];
			pgoff_t page_index = page->index;
			struct zone *pagezone = page_zone(page);

			pg_scanned++;
			if (page_index > next)
				next = page_index;
			next++;

			if (pagezone != zone) {
				if (zone)
					spin_unlock_irq(&zone->lru_lock);
				zone = pagezone;
				spin_lock_irq(&zone->lru_lock);
			}

			if (PageLRU(page) && PageUnevictable(page))
				check_move_unevictable_page(page, zone);
		}
		if (zone)
			spin_unlock_irq(&zone->lru_lock);
		pagevec_release(&pvec);

		count_vm_events(UNEVICTABLE_PGSCANNED, pg_scanned);
	}

}
2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840

/**
 * scan_zone_unevictable_pages - check unevictable list for evictable pages
 * @zone - zone of which to scan the unevictable list
 *
 * Scan @zone's unevictable LRU lists to check for pages that have become
 * evictable.  Move those that have to @zone's inactive list where they
 * become candidates for reclaim, unless shrink_inactive_zone() decides
 * to reactivate them.  Pages that are still unevictable are rotated
 * back onto @zone's unevictable list.
 */
#define SCAN_UNEVICTABLE_BATCH_SIZE 16UL /* arbitrary lock hold batch size */
2841
static void scan_zone_unevictable_pages(struct zone *zone)
2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882
{
	struct list_head *l_unevictable = &zone->lru[LRU_UNEVICTABLE].list;
	unsigned long scan;
	unsigned long nr_to_scan = zone_page_state(zone, NR_UNEVICTABLE);

	while (nr_to_scan > 0) {
		unsigned long batch_size = min(nr_to_scan,
						SCAN_UNEVICTABLE_BATCH_SIZE);

		spin_lock_irq(&zone->lru_lock);
		for (scan = 0;  scan < batch_size; scan++) {
			struct page *page = lru_to_page(l_unevictable);

			if (!trylock_page(page))
				continue;

			prefetchw_prev_lru_page(page, l_unevictable, flags);

			if (likely(PageLRU(page) && PageUnevictable(page)))
				check_move_unevictable_page(page, zone);

			unlock_page(page);
		}
		spin_unlock_irq(&zone->lru_lock);

		nr_to_scan -= batch_size;
	}
}


/**
 * scan_all_zones_unevictable_pages - scan all unevictable lists for evictable pages
 *
 * A really big hammer:  scan all zones' unevictable LRU lists to check for
 * pages that have become evictable.  Move those back to the zones'
 * inactive list where they become candidates for reclaim.
 * This occurs when, e.g., we have unswappable pages on the unevictable lists,
 * and we add swap to the system.  As such, it runs in the context of a task
 * that has possibly/probably made some previously unevictable pages
 * evictable.
 */
2883
static void scan_all_zones_unevictable_pages(void)
2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898
{
	struct zone *zone;

	for_each_zone(zone) {
		scan_zone_unevictable_pages(zone);
	}
}

/*
 * scan_unevictable_pages [vm] sysctl handler.  On demand re-scan of
 * all nodes' unevictable lists for evictable pages
 */
unsigned long scan_unevictable_pages;

int scan_unevictable_handler(struct ctl_table *table, int write,
2899
			   void __user *buffer,
2900 2901
			   size_t *length, loff_t *ppos)
{
2902
	proc_doulongvec_minmax(table, write, buffer, length, ppos);
2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957

	if (write && *(unsigned long *)table->data)
		scan_all_zones_unevictable_pages();

	scan_unevictable_pages = 0;
	return 0;
}

/*
 * per node 'scan_unevictable_pages' attribute.  On demand re-scan of
 * a specified node's per zone unevictable lists for evictable pages.
 */

static ssize_t read_scan_unevictable_node(struct sys_device *dev,
					  struct sysdev_attribute *attr,
					  char *buf)
{
	return sprintf(buf, "0\n");	/* always zero; should fit... */
}

static ssize_t write_scan_unevictable_node(struct sys_device *dev,
					   struct sysdev_attribute *attr,
					const char *buf, size_t count)
{
	struct zone *node_zones = NODE_DATA(dev->id)->node_zones;
	struct zone *zone;
	unsigned long res;
	unsigned long req = strict_strtoul(buf, 10, &res);

	if (!req)
		return 1;	/* zero is no-op */

	for (zone = node_zones; zone - node_zones < MAX_NR_ZONES; ++zone) {
		if (!populated_zone(zone))
			continue;
		scan_zone_unevictable_pages(zone);
	}
	return 1;
}


static SYSDEV_ATTR(scan_unevictable_pages, S_IRUGO | S_IWUSR,
			read_scan_unevictable_node,
			write_scan_unevictable_node);

int scan_unevictable_register_node(struct node *node)
{
	return sysdev_create_file(&node->sysdev, &attr_scan_unevictable_pages);
}

void scan_unevictable_unregister_node(struct node *node)
{
	sysdev_remove_file(&node->sysdev, &attr_scan_unevictable_pages);
}