vmscan.c 91.9 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
/*
 *  linux/mm/vmscan.c
 *
 *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
 *
 *  Swap reorganised 29.12.95, Stephen Tweedie.
 *  kswapd added: 7.1.96  sct
 *  Removed kswapd_ctl limits, and swap out as many pages as needed
 *  to bring the system back to freepages.high: 2.4.97, Rik van Riel.
 *  Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
 *  Multiqueue VM started 5.8.00, Rik van Riel.
 */

#include <linux/mm.h>
#include <linux/module.h>
16
#include <linux/gfp.h>
L
Linus Torvalds 已提交
17 18 19 20 21
#include <linux/kernel_stat.h>
#include <linux/swap.h>
#include <linux/pagemap.h>
#include <linux/init.h>
#include <linux/highmem.h>
22
#include <linux/vmstat.h>
L
Linus Torvalds 已提交
23 24 25 26 27 28 29 30 31 32 33 34
#include <linux/file.h>
#include <linux/writeback.h>
#include <linux/blkdev.h>
#include <linux/buffer_head.h>	/* for try_to_release_page(),
					buffer_heads_over_limit */
#include <linux/mm_inline.h>
#include <linux/pagevec.h>
#include <linux/backing-dev.h>
#include <linux/rmap.h>
#include <linux/topology.h>
#include <linux/cpu.h>
#include <linux/cpuset.h>
35
#include <linux/compaction.h>
L
Linus Torvalds 已提交
36 37
#include <linux/notifier.h>
#include <linux/rwsem.h>
38
#include <linux/delay.h>
39
#include <linux/kthread.h>
40
#include <linux/freezer.h>
41
#include <linux/memcontrol.h>
42
#include <linux/delayacct.h>
43
#include <linux/sysctl.h>
44
#include <linux/compaction.h>
L
Linus Torvalds 已提交
45 46 47 48 49 50

#include <asm/tlbflush.h>
#include <asm/div64.h>

#include <linux/swapops.h>

51 52
#include "internal.h"

53 54 55
#define CREATE_TRACE_POINTS
#include <trace/events/vmscan.h>

56
/*
57 58 59 60 61
 * reclaim_mode determines how the inactive list is shrunk
 * RECLAIM_MODE_SINGLE: Reclaim only order-0 pages
 * RECLAIM_MODE_ASYNC:  Do not block
 * RECLAIM_MODE_SYNC:   Allow blocking e.g. call wait_on_page_writeback
 * RECLAIM_MODE_LUMPYRECLAIM: For high-order allocations, take a reference
62 63
 *			page from the LRU and reclaim all pages within a
 *			naturally aligned range
64
 * RECLAIM_MODE_COMPACTION: For high-order allocations, reclaim a number of
65
 *			order-0 pages and then compact the zone
66
 */
67 68 69 70 71 72
typedef unsigned __bitwise__ reclaim_mode_t;
#define RECLAIM_MODE_SINGLE		((__force reclaim_mode_t)0x01u)
#define RECLAIM_MODE_ASYNC		((__force reclaim_mode_t)0x02u)
#define RECLAIM_MODE_SYNC		((__force reclaim_mode_t)0x04u)
#define RECLAIM_MODE_LUMPYRECLAIM	((__force reclaim_mode_t)0x08u)
#define RECLAIM_MODE_COMPACTION		((__force reclaim_mode_t)0x10u)
73

L
Linus Torvalds 已提交
74 75 76 77
struct scan_control {
	/* Incremented by the number of inactive pages that were scanned */
	unsigned long nr_scanned;

78 79 80
	/* Number of pages freed so far during a call to shrink_zones() */
	unsigned long nr_reclaimed;

81 82 83
	/* How many pages shrink_list() should reclaim */
	unsigned long nr_to_reclaim;

84 85
	unsigned long hibernation_mode;

L
Linus Torvalds 已提交
86
	/* This context's GFP mask */
A
Al Viro 已提交
87
	gfp_t gfp_mask;
L
Linus Torvalds 已提交
88 89 90

	int may_writepage;

91 92
	/* Can mapped pages be reclaimed? */
	int may_unmap;
93

94 95 96
	/* Can pages be swapped as part of reclaim? */
	int may_swap;

97
	int swappiness;
98

A
Andy Whitcroft 已提交
99
	int order;
100

101
	/*
102 103
	 * Intend to reclaim enough continuous memory rather than reclaim
	 * enough amount of memory. i.e, mode for high order allocation.
104
	 */
105
	reclaim_mode_t reclaim_mode;
106

107 108 109
	/* Which cgroup do we reclaim from */
	struct mem_cgroup *mem_cgroup;

110 111 112 113 114
	/*
	 * Nodemask of nodes allowed by the caller. If NULL, all nodes
	 * are scanned.
	 */
	nodemask_t	*nodemask;
L
Linus Torvalds 已提交
115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150
};

#define lru_to_page(_head) (list_entry((_head)->prev, struct page, lru))

#ifdef ARCH_HAS_PREFETCH
#define prefetch_prev_lru_page(_page, _base, _field)			\
	do {								\
		if ((_page)->lru.prev != _base) {			\
			struct page *prev;				\
									\
			prev = lru_to_page(&(_page->lru));		\
			prefetch(&prev->_field);			\
		}							\
	} while (0)
#else
#define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
#endif

#ifdef ARCH_HAS_PREFETCHW
#define prefetchw_prev_lru_page(_page, _base, _field)			\
	do {								\
		if ((_page)->lru.prev != _base) {			\
			struct page *prev;				\
									\
			prev = lru_to_page(&(_page->lru));		\
			prefetchw(&prev->_field);			\
		}							\
	} while (0)
#else
#define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
#endif

/*
 * From 0 .. 100.  Higher means more swappy.
 */
int vm_swappiness = 60;
151
long vm_total_pages;	/* The total number of pages which the VM controls */
L
Linus Torvalds 已提交
152 153 154 155

static LIST_HEAD(shrinker_list);
static DECLARE_RWSEM(shrinker_rwsem);

156
#ifdef CONFIG_CGROUP_MEM_RES_CTLR
157
#define scanning_global_lru(sc)	(!(sc)->mem_cgroup)
158
#else
159
#define scanning_global_lru(sc)	(1)
160 161
#endif

162 163 164
static struct zone_reclaim_stat *get_reclaim_stat(struct zone *zone,
						  struct scan_control *sc)
{
165
	if (!scanning_global_lru(sc))
K
KOSAKI Motohiro 已提交
166 167
		return mem_cgroup_get_reclaim_stat(sc->mem_cgroup, zone);

168 169 170
	return &zone->reclaim_stat;
}

171 172
static unsigned long zone_nr_lru_pages(struct zone *zone,
				struct scan_control *sc, enum lru_list lru)
173
{
174
	if (!scanning_global_lru(sc))
175 176
		return mem_cgroup_zone_nr_pages(sc->mem_cgroup, zone, lru);

177 178 179 180
	return zone_page_state(zone, NR_LRU_BASE + lru);
}


L
Linus Torvalds 已提交
181 182 183
/*
 * Add a shrinker callback to be called from the vm
 */
184
void register_shrinker(struct shrinker *shrinker)
L
Linus Torvalds 已提交
185
{
186 187 188 189
	shrinker->nr = 0;
	down_write(&shrinker_rwsem);
	list_add_tail(&shrinker->list, &shrinker_list);
	up_write(&shrinker_rwsem);
L
Linus Torvalds 已提交
190
}
191
EXPORT_SYMBOL(register_shrinker);
L
Linus Torvalds 已提交
192 193 194 195

/*
 * Remove one
 */
196
void unregister_shrinker(struct shrinker *shrinker)
L
Linus Torvalds 已提交
197 198 199 200 201
{
	down_write(&shrinker_rwsem);
	list_del(&shrinker->list);
	up_write(&shrinker_rwsem);
}
202
EXPORT_SYMBOL(unregister_shrinker);
L
Linus Torvalds 已提交
203 204 205 206 207 208 209 210 211 212

#define SHRINK_BATCH 128
/*
 * Call the shrink functions to age shrinkable caches
 *
 * Here we assume it costs one seek to replace a lru page and that it also
 * takes a seek to recreate a cache object.  With this in mind we age equal
 * percentages of the lru and ageable caches.  This should balance the seeks
 * generated by these structures.
 *
S
Simon Arlott 已提交
213
 * If the vm encountered mapped pages on the LRU it increase the pressure on
L
Linus Torvalds 已提交
214 215 216 217 218 219 220
 * slab to avoid swapping.
 *
 * We do weird things to avoid (scanned*seeks*entries) overflowing 32 bits.
 *
 * `lru_pages' represents the number of on-LRU pages in all the zones which
 * are eligible for the caller's allocation attempt.  It is used for balancing
 * slab reclaim versus page reclaim.
221 222
 *
 * Returns the number of slab objects which we shrunk.
L
Linus Torvalds 已提交
223
 */
224 225
unsigned long shrink_slab(unsigned long scanned, gfp_t gfp_mask,
			unsigned long lru_pages)
L
Linus Torvalds 已提交
226 227
{
	struct shrinker *shrinker;
228
	unsigned long ret = 0;
L
Linus Torvalds 已提交
229 230 231 232 233

	if (scanned == 0)
		scanned = SWAP_CLUSTER_MAX;

	if (!down_read_trylock(&shrinker_rwsem))
234
		return 1;	/* Assume we'll be able to shrink next time */
L
Linus Torvalds 已提交
235 236 237 238

	list_for_each_entry(shrinker, &shrinker_list, list) {
		unsigned long long delta;
		unsigned long total_scan;
239
		unsigned long max_pass;
L
Linus Torvalds 已提交
240

241
		max_pass = (*shrinker->shrink)(shrinker, 0, gfp_mask);
L
Linus Torvalds 已提交
242
		delta = (4 * scanned) / shrinker->seeks;
243
		delta *= max_pass;
L
Linus Torvalds 已提交
244 245
		do_div(delta, lru_pages + 1);
		shrinker->nr += delta;
246
		if (shrinker->nr < 0) {
247 248 249
			printk(KERN_ERR "shrink_slab: %pF negative objects to "
			       "delete nr=%ld\n",
			       shrinker->shrink, shrinker->nr);
250 251 252 253 254 255 256 257 258 259
			shrinker->nr = max_pass;
		}

		/*
		 * Avoid risking looping forever due to too large nr value:
		 * never try to free more than twice the estimate number of
		 * freeable entries.
		 */
		if (shrinker->nr > max_pass * 2)
			shrinker->nr = max_pass * 2;
L
Linus Torvalds 已提交
260 261 262 263 264 265 266

		total_scan = shrinker->nr;
		shrinker->nr = 0;

		while (total_scan >= SHRINK_BATCH) {
			long this_scan = SHRINK_BATCH;
			int shrink_ret;
267
			int nr_before;
L
Linus Torvalds 已提交
268

269 270 271
			nr_before = (*shrinker->shrink)(shrinker, 0, gfp_mask);
			shrink_ret = (*shrinker->shrink)(shrinker, this_scan,
								gfp_mask);
L
Linus Torvalds 已提交
272 273
			if (shrink_ret == -1)
				break;
274 275
			if (shrink_ret < nr_before)
				ret += nr_before - shrink_ret;
276
			count_vm_events(SLABS_SCANNED, this_scan);
L
Linus Torvalds 已提交
277 278 279 280 281 282 283 284
			total_scan -= this_scan;

			cond_resched();
		}

		shrinker->nr += total_scan;
	}
	up_read(&shrinker_rwsem);
285
	return ret;
L
Linus Torvalds 已提交
286 287
}

288
static void set_reclaim_mode(int priority, struct scan_control *sc,
289 290
				   bool sync)
{
291
	reclaim_mode_t syncmode = sync ? RECLAIM_MODE_SYNC : RECLAIM_MODE_ASYNC;
292 293

	/*
294 295 296
	 * Initially assume we are entering either lumpy reclaim or
	 * reclaim/compaction.Depending on the order, we will either set the
	 * sync mode or just reclaim order-0 pages later.
297
	 */
298
	if (COMPACTION_BUILD)
299
		sc->reclaim_mode = RECLAIM_MODE_COMPACTION;
300
	else
301
		sc->reclaim_mode = RECLAIM_MODE_LUMPYRECLAIM;
302 303

	/*
304 305 306
	 * Avoid using lumpy reclaim or reclaim/compaction if possible by
	 * restricting when its set to either costly allocations or when
	 * under memory pressure
307 308
	 */
	if (sc->order > PAGE_ALLOC_COSTLY_ORDER)
309
		sc->reclaim_mode |= syncmode;
310
	else if (sc->order && priority < DEF_PRIORITY - 2)
311
		sc->reclaim_mode |= syncmode;
312
	else
313
		sc->reclaim_mode = RECLAIM_MODE_SINGLE | RECLAIM_MODE_ASYNC;
314 315
}

316
static void reset_reclaim_mode(struct scan_control *sc)
317
{
318
	sc->reclaim_mode = RECLAIM_MODE_SINGLE | RECLAIM_MODE_ASYNC;
319 320
}

L
Linus Torvalds 已提交
321 322
static inline int is_page_cache_freeable(struct page *page)
{
323 324 325 326 327
	/*
	 * A freeable page cache page is referenced only by the caller
	 * that isolated the page, the page cache radix tree and
	 * optional buffer heads at page->private.
	 */
328
	return page_count(page) - page_has_private(page) == 2;
L
Linus Torvalds 已提交
329 330
}

331 332
static int may_write_to_queue(struct backing_dev_info *bdi,
			      struct scan_control *sc)
L
Linus Torvalds 已提交
333
{
334
	if (current->flags & PF_SWAPWRITE)
L
Linus Torvalds 已提交
335 336 337 338 339
		return 1;
	if (!bdi_write_congested(bdi))
		return 1;
	if (bdi == current->backing_dev_info)
		return 1;
340 341 342 343

	/* lumpy reclaim for hugepage often need a lot of write */
	if (sc->order > PAGE_ALLOC_COSTLY_ORDER)
		return 1;
L
Linus Torvalds 已提交
344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361
	return 0;
}

/*
 * We detected a synchronous write error writing a page out.  Probably
 * -ENOSPC.  We need to propagate that into the address_space for a subsequent
 * fsync(), msync() or close().
 *
 * The tricky part is that after writepage we cannot touch the mapping: nothing
 * prevents it from being freed up.  But we have a ref on the page and once
 * that page is locked, the mapping is pinned.
 *
 * We're allowed to run sleeping lock_page() here because we know the caller has
 * __GFP_FS.
 */
static void handle_write_error(struct address_space *mapping,
				struct page *page, int error)
{
362
	lock_page_nosync(page);
363 364
	if (page_mapping(page) == mapping)
		mapping_set_error(mapping, error);
L
Linus Torvalds 已提交
365 366 367
	unlock_page(page);
}

368 369 370 371 372 373 374 375 376 377 378 379
/* possible outcome of pageout() */
typedef enum {
	/* failed to write page out, page is locked */
	PAGE_KEEP,
	/* move page to the active list, page is locked */
	PAGE_ACTIVATE,
	/* page has been sent to the disk successfully, page is unlocked */
	PAGE_SUCCESS,
	/* page is clean and locked */
	PAGE_CLEAN,
} pageout_t;

L
Linus Torvalds 已提交
380
/*
A
Andrew Morton 已提交
381 382
 * pageout is called by shrink_page_list() for each dirty page.
 * Calls ->writepage().
L
Linus Torvalds 已提交
383
 */
384
static pageout_t pageout(struct page *page, struct address_space *mapping,
385
			 struct scan_control *sc)
L
Linus Torvalds 已提交
386 387 388 389 390 391 392 393
{
	/*
	 * If the page is dirty, only perform writeback if that write
	 * will be non-blocking.  To prevent this allocation from being
	 * stalled by pagecache activity.  But note that there may be
	 * stalls if we need to run get_block().  We could test
	 * PagePrivate for that.
	 *
394
	 * If this process is currently in __generic_file_aio_write() against
L
Linus Torvalds 已提交
395 396 397 398 399 400 401 402 403 404 405 406 407 408 409
	 * this page's queue, we can perform writeback even if that
	 * will block.
	 *
	 * If the page is swapcache, write it back even if that would
	 * block, for some throttling. This happens by accident, because
	 * swap_backing_dev_info is bust: it doesn't reflect the
	 * congestion state of the swapdevs.  Easy to fix, if needed.
	 */
	if (!is_page_cache_freeable(page))
		return PAGE_KEEP;
	if (!mapping) {
		/*
		 * Some data journaling orphaned pages can have
		 * page->mapping == NULL while being dirty with clean buffers.
		 */
410
		if (page_has_private(page)) {
L
Linus Torvalds 已提交
411 412
			if (try_to_free_buffers(page)) {
				ClearPageDirty(page);
413
				printk("%s: orphaned page\n", __func__);
L
Linus Torvalds 已提交
414 415 416 417 418 419 420
				return PAGE_CLEAN;
			}
		}
		return PAGE_KEEP;
	}
	if (mapping->a_ops->writepage == NULL)
		return PAGE_ACTIVATE;
421
	if (!may_write_to_queue(mapping->backing_dev_info, sc))
L
Linus Torvalds 已提交
422 423 424 425 426 427 428
		return PAGE_KEEP;

	if (clear_page_dirty_for_io(page)) {
		int res;
		struct writeback_control wbc = {
			.sync_mode = WB_SYNC_NONE,
			.nr_to_write = SWAP_CLUSTER_MAX,
429 430
			.range_start = 0,
			.range_end = LLONG_MAX,
L
Linus Torvalds 已提交
431 432 433 434 435 436 437
			.for_reclaim = 1,
		};

		SetPageReclaim(page);
		res = mapping->a_ops->writepage(page, &wbc);
		if (res < 0)
			handle_write_error(mapping, page, res);
438
		if (res == AOP_WRITEPAGE_ACTIVATE) {
L
Linus Torvalds 已提交
439 440 441
			ClearPageReclaim(page);
			return PAGE_ACTIVATE;
		}
442 443 444 445 446 447

		/*
		 * Wait on writeback if requested to. This happens when
		 * direct reclaiming a large contiguous area and the
		 * first attempt to free a range of pages fails.
		 */
448
		if (PageWriteback(page) &&
449
		    (sc->reclaim_mode & RECLAIM_MODE_SYNC))
450 451
			wait_on_page_writeback(page);

L
Linus Torvalds 已提交
452 453 454 455
		if (!PageWriteback(page)) {
			/* synchronous write or broken a_ops? */
			ClearPageReclaim(page);
		}
456
		trace_mm_vmscan_writepage(page,
457
			trace_reclaim_flags(page, sc->reclaim_mode));
458
		inc_zone_page_state(page, NR_VMSCAN_WRITE);
L
Linus Torvalds 已提交
459 460 461 462 463 464
		return PAGE_SUCCESS;
	}

	return PAGE_CLEAN;
}

465
/*
N
Nick Piggin 已提交
466 467
 * Same as remove_mapping, but if the page is removed from the mapping, it
 * gets returned with a refcount of 0.
468
 */
N
Nick Piggin 已提交
469
static int __remove_mapping(struct address_space *mapping, struct page *page)
470
{
471 472
	BUG_ON(!PageLocked(page));
	BUG_ON(mapping != page_mapping(page));
473

N
Nick Piggin 已提交
474
	spin_lock_irq(&mapping->tree_lock);
475
	/*
N
Nick Piggin 已提交
476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498
	 * The non racy check for a busy page.
	 *
	 * Must be careful with the order of the tests. When someone has
	 * a ref to the page, it may be possible that they dirty it then
	 * drop the reference. So if PageDirty is tested before page_count
	 * here, then the following race may occur:
	 *
	 * get_user_pages(&page);
	 * [user mapping goes away]
	 * write_to(page);
	 *				!PageDirty(page)    [good]
	 * SetPageDirty(page);
	 * put_page(page);
	 *				!page_count(page)   [good, discard it]
	 *
	 * [oops, our write_to data is lost]
	 *
	 * Reversing the order of the tests ensures such a situation cannot
	 * escape unnoticed. The smp_rmb is needed to ensure the page->flags
	 * load is not satisfied before that of page->_count.
	 *
	 * Note that if SetPageDirty is always performed via set_page_dirty,
	 * and thus under tree_lock, then this ordering is not required.
499
	 */
N
Nick Piggin 已提交
500
	if (!page_freeze_refs(page, 2))
501
		goto cannot_free;
N
Nick Piggin 已提交
502 503 504
	/* note: atomic_cmpxchg in page_freeze_refs provides the smp_rmb */
	if (unlikely(PageDirty(page))) {
		page_unfreeze_refs(page, 2);
505
		goto cannot_free;
N
Nick Piggin 已提交
506
	}
507 508 509 510

	if (PageSwapCache(page)) {
		swp_entry_t swap = { .val = page_private(page) };
		__delete_from_swap_cache(page);
N
Nick Piggin 已提交
511
		spin_unlock_irq(&mapping->tree_lock);
512
		swapcache_free(swap, page);
N
Nick Piggin 已提交
513
	} else {
514 515 516 517
		void (*freepage)(struct page *);

		freepage = mapping->a_ops->freepage;

N
Nick Piggin 已提交
518
		__remove_from_page_cache(page);
N
Nick Piggin 已提交
519
		spin_unlock_irq(&mapping->tree_lock);
520
		mem_cgroup_uncharge_cache_page(page);
521 522 523

		if (freepage != NULL)
			freepage(page);
524 525 526 527 528
	}

	return 1;

cannot_free:
N
Nick Piggin 已提交
529
	spin_unlock_irq(&mapping->tree_lock);
530 531 532
	return 0;
}

N
Nick Piggin 已提交
533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552
/*
 * Attempt to detach a locked page from its ->mapping.  If it is dirty or if
 * someone else has a ref on the page, abort and return 0.  If it was
 * successfully detached, return 1.  Assumes the caller has a single ref on
 * this page.
 */
int remove_mapping(struct address_space *mapping, struct page *page)
{
	if (__remove_mapping(mapping, page)) {
		/*
		 * Unfreezing the refcount with 1 rather than 2 effectively
		 * drops the pagecache ref for us without requiring another
		 * atomic operation.
		 */
		page_unfreeze_refs(page, 1);
		return 1;
	}
	return 0;
}

L
Lee Schermerhorn 已提交
553 554 555 556 557 558 559 560 561 562 563 564 565
/**
 * putback_lru_page - put previously isolated page onto appropriate LRU list
 * @page: page to be put back to appropriate lru list
 *
 * Add previously isolated @page to appropriate LRU list.
 * Page may still be unevictable for other reasons.
 *
 * lru_lock must not be held, interrupts must be enabled.
 */
void putback_lru_page(struct page *page)
{
	int lru;
	int active = !!TestClearPageActive(page);
566
	int was_unevictable = PageUnevictable(page);
L
Lee Schermerhorn 已提交
567 568 569 570 571 572 573 574 575 576 577 578 579

	VM_BUG_ON(PageLRU(page));

redo:
	ClearPageUnevictable(page);

	if (page_evictable(page, NULL)) {
		/*
		 * For evictable pages, we can use the cache.
		 * In event of a race, worst case is we end up with an
		 * unevictable page on [in]active list.
		 * We know how to handle that.
		 */
580
		lru = active + page_lru_base_type(page);
L
Lee Schermerhorn 已提交
581 582 583 584 585 586 587 588
		lru_cache_add_lru(page, lru);
	} else {
		/*
		 * Put unevictable pages directly on zone's unevictable
		 * list.
		 */
		lru = LRU_UNEVICTABLE;
		add_page_to_unevictable_list(page);
589 590 591 592 593 594 595 596 597 598
		/*
		 * When racing with an mlock clearing (page is
		 * unlocked), make sure that if the other thread does
		 * not observe our setting of PG_lru and fails
		 * isolation, we see PG_mlocked cleared below and move
		 * the page back to the evictable list.
		 *
		 * The other side is TestClearPageMlocked().
		 */
		smp_mb();
L
Lee Schermerhorn 已提交
599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616
	}

	/*
	 * page's status can change while we move it among lru. If an evictable
	 * page is on unevictable list, it never be freed. To avoid that,
	 * check after we added it to the list, again.
	 */
	if (lru == LRU_UNEVICTABLE && page_evictable(page, NULL)) {
		if (!isolate_lru_page(page)) {
			put_page(page);
			goto redo;
		}
		/* This means someone else dropped this page from LRU
		 * So, it will be freed or putback to LRU again. There is
		 * nothing to do here.
		 */
	}

617 618 619 620 621
	if (was_unevictable && lru != LRU_UNEVICTABLE)
		count_vm_event(UNEVICTABLE_PGRESCUED);
	else if (!was_unevictable && lru == LRU_UNEVICTABLE)
		count_vm_event(UNEVICTABLE_PGCULLED);

L
Lee Schermerhorn 已提交
622 623 624
	put_page(page);		/* drop ref from isolate */
}

625 626 627
enum page_references {
	PAGEREF_RECLAIM,
	PAGEREF_RECLAIM_CLEAN,
628
	PAGEREF_KEEP,
629 630 631 632 633 634
	PAGEREF_ACTIVATE,
};

static enum page_references page_check_references(struct page *page,
						  struct scan_control *sc)
{
635
	int referenced_ptes, referenced_page;
636 637
	unsigned long vm_flags;

638 639
	referenced_ptes = page_referenced(page, 1, sc->mem_cgroup, &vm_flags);
	referenced_page = TestClearPageReferenced(page);
640 641

	/* Lumpy reclaim - ignore references */
642
	if (sc->reclaim_mode & RECLAIM_MODE_LUMPYRECLAIM)
643 644 645 646 647 648 649 650 651
		return PAGEREF_RECLAIM;

	/*
	 * Mlock lost the isolation race with us.  Let try_to_unmap()
	 * move the page to the unevictable list.
	 */
	if (vm_flags & VM_LOCKED)
		return PAGEREF_RECLAIM;

652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675
	if (referenced_ptes) {
		if (PageAnon(page))
			return PAGEREF_ACTIVATE;
		/*
		 * All mapped pages start out with page table
		 * references from the instantiating fault, so we need
		 * to look twice if a mapped file page is used more
		 * than once.
		 *
		 * Mark it and spare it for another trip around the
		 * inactive list.  Another page table reference will
		 * lead to its activation.
		 *
		 * Note: the mark is set for activated pages as well
		 * so that recently deactivated but used pages are
		 * quickly recovered.
		 */
		SetPageReferenced(page);

		if (referenced_page)
			return PAGEREF_ACTIVATE;

		return PAGEREF_KEEP;
	}
676 677

	/* Reclaim if clean, defer dirty pages to writeback */
678
	if (referenced_page && !PageSwapBacked(page))
679 680 681
		return PAGEREF_RECLAIM_CLEAN;

	return PAGEREF_RECLAIM;
682 683
}

684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701
static noinline_for_stack void free_page_list(struct list_head *free_pages)
{
	struct pagevec freed_pvec;
	struct page *page, *tmp;

	pagevec_init(&freed_pvec, 1);

	list_for_each_entry_safe(page, tmp, free_pages, lru) {
		list_del(&page->lru);
		if (!pagevec_add(&freed_pvec, page)) {
			__pagevec_free(&freed_pvec);
			pagevec_reinit(&freed_pvec);
		}
	}

	pagevec_free(&freed_pvec);
}

L
Linus Torvalds 已提交
702
/*
A
Andrew Morton 已提交
703
 * shrink_page_list() returns the number of reclaimed pages
L
Linus Torvalds 已提交
704
 */
A
Andrew Morton 已提交
705
static unsigned long shrink_page_list(struct list_head *page_list,
706
				      struct zone *zone,
707
				      struct scan_control *sc)
L
Linus Torvalds 已提交
708 709
{
	LIST_HEAD(ret_pages);
710
	LIST_HEAD(free_pages);
L
Linus Torvalds 已提交
711
	int pgactivate = 0;
712 713
	unsigned long nr_dirty = 0;
	unsigned long nr_congested = 0;
714
	unsigned long nr_reclaimed = 0;
L
Linus Torvalds 已提交
715 716 717 718

	cond_resched();

	while (!list_empty(page_list)) {
719
		enum page_references references;
L
Linus Torvalds 已提交
720 721 722 723 724 725 726 727 728
		struct address_space *mapping;
		struct page *page;
		int may_enter_fs;

		cond_resched();

		page = lru_to_page(page_list);
		list_del(&page->lru);

N
Nick Piggin 已提交
729
		if (!trylock_page(page))
L
Linus Torvalds 已提交
730 731
			goto keep;

N
Nick Piggin 已提交
732
		VM_BUG_ON(PageActive(page));
733
		VM_BUG_ON(page_zone(page) != zone);
L
Linus Torvalds 已提交
734 735

		sc->nr_scanned++;
736

N
Nick Piggin 已提交
737 738
		if (unlikely(!page_evictable(page, NULL)))
			goto cull_mlocked;
L
Lee Schermerhorn 已提交
739

740
		if (!sc->may_unmap && page_mapped(page))
741 742
			goto keep_locked;

L
Linus Torvalds 已提交
743 744 745 746
		/* Double the slab pressure for mapped and swapcache pages */
		if (page_mapped(page) || PageSwapCache(page))
			sc->nr_scanned++;

747 748 749 750 751 752 753 754 755 756 757 758
		may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
			(PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));

		if (PageWriteback(page)) {
			/*
			 * Synchronous reclaim is performed in two passes,
			 * first an asynchronous pass over the list to
			 * start parallel writeback, and a second synchronous
			 * pass to wait for the IO to complete.  Wait here
			 * for any page for which writeback has already
			 * started.
			 */
759
			if ((sc->reclaim_mode & RECLAIM_MODE_SYNC) &&
760
			    may_enter_fs)
761
				wait_on_page_writeback(page);
762 763 764 765
			else {
				unlock_page(page);
				goto keep_lumpy;
			}
766
		}
L
Linus Torvalds 已提交
767

768 769 770
		references = page_check_references(page, sc);
		switch (references) {
		case PAGEREF_ACTIVATE:
L
Linus Torvalds 已提交
771
			goto activate_locked;
772 773
		case PAGEREF_KEEP:
			goto keep_locked;
774 775 776 777
		case PAGEREF_RECLAIM:
		case PAGEREF_RECLAIM_CLEAN:
			; /* try to reclaim the page below */
		}
L
Linus Torvalds 已提交
778 779 780 781 782

		/*
		 * Anonymous process memory has backing store?
		 * Try to allocate it some swap space here.
		 */
N
Nick Piggin 已提交
783
		if (PageAnon(page) && !PageSwapCache(page)) {
784 785
			if (!(sc->gfp_mask & __GFP_IO))
				goto keep_locked;
786
			if (!add_to_swap(page))
L
Linus Torvalds 已提交
787
				goto activate_locked;
788
			may_enter_fs = 1;
N
Nick Piggin 已提交
789
		}
L
Linus Torvalds 已提交
790 791 792 793 794 795 796 797

		mapping = page_mapping(page);

		/*
		 * The page is mapped into the page tables of one or more
		 * processes. Try to unmap it here.
		 */
		if (page_mapped(page) && mapping) {
798
			switch (try_to_unmap(page, TTU_UNMAP)) {
L
Linus Torvalds 已提交
799 800 801 802
			case SWAP_FAIL:
				goto activate_locked;
			case SWAP_AGAIN:
				goto keep_locked;
N
Nick Piggin 已提交
803 804
			case SWAP_MLOCK:
				goto cull_mlocked;
L
Linus Torvalds 已提交
805 806 807 808 809 810
			case SWAP_SUCCESS:
				; /* try to free the page below */
			}
		}

		if (PageDirty(page)) {
811 812
			nr_dirty++;

813
			if (references == PAGEREF_RECLAIM_CLEAN)
L
Linus Torvalds 已提交
814
				goto keep_locked;
815
			if (!may_enter_fs)
L
Linus Torvalds 已提交
816
				goto keep_locked;
817
			if (!sc->may_writepage)
L
Linus Torvalds 已提交
818 819 820
				goto keep_locked;

			/* Page is dirty, try to write it out here */
821
			switch (pageout(page, mapping, sc)) {
L
Linus Torvalds 已提交
822
			case PAGE_KEEP:
823
				nr_congested++;
L
Linus Torvalds 已提交
824 825 826 827
				goto keep_locked;
			case PAGE_ACTIVATE:
				goto activate_locked;
			case PAGE_SUCCESS:
828 829 830
				if (PageWriteback(page))
					goto keep_lumpy;
				if (PageDirty(page))
L
Linus Torvalds 已提交
831
					goto keep;
832

L
Linus Torvalds 已提交
833 834 835 836
				/*
				 * A synchronous write - probably a ramdisk.  Go
				 * ahead and try to reclaim the page.
				 */
N
Nick Piggin 已提交
837
				if (!trylock_page(page))
L
Linus Torvalds 已提交
838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856
					goto keep;
				if (PageDirty(page) || PageWriteback(page))
					goto keep_locked;
				mapping = page_mapping(page);
			case PAGE_CLEAN:
				; /* try to free the page below */
			}
		}

		/*
		 * If the page has buffers, try to free the buffer mappings
		 * associated with this page. If we succeed we try to free
		 * the page as well.
		 *
		 * We do this even if the page is PageDirty().
		 * try_to_release_page() does not perform I/O, but it is
		 * possible for a page to have PageDirty set, but it is actually
		 * clean (all its buffers are clean).  This happens if the
		 * buffers were written out directly, with submit_bh(). ext3
L
Lee Schermerhorn 已提交
857
		 * will do this, as well as the blockdev mapping.
L
Linus Torvalds 已提交
858 859 860 861 862 863 864 865 866 867
		 * try_to_release_page() will discover that cleanness and will
		 * drop the buffers and mark the page clean - it can be freed.
		 *
		 * Rarely, pages can have buffers and no ->mapping.  These are
		 * the pages which were not successfully invalidated in
		 * truncate_complete_page().  We try to drop those buffers here
		 * and if that worked, and the page is no longer mapped into
		 * process address space (page_count == 1) it can be freed.
		 * Otherwise, leave the page on the LRU so it is swappable.
		 */
868
		if (page_has_private(page)) {
L
Linus Torvalds 已提交
869 870
			if (!try_to_release_page(page, sc->gfp_mask))
				goto activate_locked;
N
Nick Piggin 已提交
871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886
			if (!mapping && page_count(page) == 1) {
				unlock_page(page);
				if (put_page_testzero(page))
					goto free_it;
				else {
					/*
					 * rare race with speculative reference.
					 * the speculative reference will free
					 * this page shortly, so we may
					 * increment nr_reclaimed here (and
					 * leave it off the LRU).
					 */
					nr_reclaimed++;
					continue;
				}
			}
L
Linus Torvalds 已提交
887 888
		}

N
Nick Piggin 已提交
889
		if (!mapping || !__remove_mapping(mapping, page))
890
			goto keep_locked;
L
Linus Torvalds 已提交
891

N
Nick Piggin 已提交
892 893 894 895 896 897 898 899
		/*
		 * At this point, we have no other references and there is
		 * no way to pick any more up (removed from LRU, removed
		 * from pagecache). Can use non-atomic bitops now (and
		 * we obviously don't have to worry about waking up a process
		 * waiting on the page lock, because there are no references.
		 */
		__clear_page_locked(page);
N
Nick Piggin 已提交
900
free_it:
901
		nr_reclaimed++;
902 903 904 905 906 907

		/*
		 * Is there need to periodically free_page_list? It would
		 * appear not as the counts should be low
		 */
		list_add(&page->lru, &free_pages);
L
Linus Torvalds 已提交
908 909
		continue;

N
Nick Piggin 已提交
910
cull_mlocked:
911 912
		if (PageSwapCache(page))
			try_to_free_swap(page);
N
Nick Piggin 已提交
913 914
		unlock_page(page);
		putback_lru_page(page);
915
		reset_reclaim_mode(sc);
N
Nick Piggin 已提交
916 917
		continue;

L
Linus Torvalds 已提交
918
activate_locked:
919 920
		/* Not a candidate for swapping, so reclaim swap space. */
		if (PageSwapCache(page) && vm_swap_full())
921
			try_to_free_swap(page);
L
Lee Schermerhorn 已提交
922
		VM_BUG_ON(PageActive(page));
L
Linus Torvalds 已提交
923 924 925 926 927
		SetPageActive(page);
		pgactivate++;
keep_locked:
		unlock_page(page);
keep:
928
		reset_reclaim_mode(sc);
929
keep_lumpy:
L
Linus Torvalds 已提交
930
		list_add(&page->lru, &ret_pages);
N
Nick Piggin 已提交
931
		VM_BUG_ON(PageLRU(page) || PageUnevictable(page));
L
Linus Torvalds 已提交
932
	}
933

934 935 936 937 938 939
	/*
	 * Tag a zone as congested if all the dirty pages encountered were
	 * backed by a congested BDI. In this case, reclaimers should just
	 * back off and wait for congestion to clear because further reclaim
	 * will encounter the same problem
	 */
940
	if (nr_dirty == nr_congested && nr_dirty != 0)
941 942
		zone_set_flag(zone, ZONE_CONGESTED);

943 944
	free_page_list(&free_pages);

L
Linus Torvalds 已提交
945
	list_splice(&ret_pages, page_list);
946
	count_vm_events(PGACTIVATE, pgactivate);
947
	return nr_reclaimed;
L
Linus Torvalds 已提交
948 949
}

A
Andy Whitcroft 已提交
950 951 952 953 954 955 956 957 958 959
/*
 * Attempt to remove the specified page from its LRU.  Only take this page
 * if it is of the appropriate PageActive status.  Pages which are being
 * freed elsewhere are also ignored.
 *
 * page:	page to consider
 * mode:	one of the LRU isolation modes defined above
 *
 * returns 0 on success, -ve errno on failure.
 */
960
int __isolate_lru_page(struct page *page, int mode, int file)
A
Andy Whitcroft 已提交
961 962 963 964 965 966 967 968 969 970 971 972 973 974 975
{
	int ret = -EINVAL;

	/* Only take pages on the LRU. */
	if (!PageLRU(page))
		return ret;

	/*
	 * When checking the active state, we need to be sure we are
	 * dealing with comparible boolean values.  Take the logical not
	 * of each.
	 */
	if (mode != ISOLATE_BOTH && (!PageActive(page) != !mode))
		return ret;

976
	if (mode != ISOLATE_BOTH && page_is_file_cache(page) != file)
977 978
		return ret;

L
Lee Schermerhorn 已提交
979 980 981 982 983 984 985 986
	/*
	 * When this function is being called for lumpy reclaim, we
	 * initially look into all LRU pages, active, inactive and
	 * unevictable; only give shrink_page_list evictable pages.
	 */
	if (PageUnevictable(page))
		return ret;

A
Andy Whitcroft 已提交
987
	ret = -EBUSY;
K
KAMEZAWA Hiroyuki 已提交
988

A
Andy Whitcroft 已提交
989 990 991 992 993 994 995 996 997 998 999 1000 1001
	if (likely(get_page_unless_zero(page))) {
		/*
		 * Be careful not to clear PageLRU until after we're
		 * sure the page is not being freed elsewhere -- the
		 * page release code relies on it.
		 */
		ClearPageLRU(page);
		ret = 0;
	}

	return ret;
}

L
Linus Torvalds 已提交
1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015
/*
 * zone->lru_lock is heavily contended.  Some of the functions that
 * shrink the lists perform better by taking out a batch of pages
 * and working on them outside the LRU lock.
 *
 * For pagecache intensive workloads, this function is the hottest
 * spot in the kernel (apart from copy_*_user functions).
 *
 * Appropriate locks must be held before calling this function.
 *
 * @nr_to_scan:	The number of pages to look through on the list.
 * @src:	The LRU list to pull pages off.
 * @dst:	The temp list to put pages on to.
 * @scanned:	The number of pages that were scanned.
A
Andy Whitcroft 已提交
1016 1017
 * @order:	The caller's attempted allocation order
 * @mode:	One of the LRU isolation modes
1018
 * @file:	True [1] if isolating file [!anon] pages
L
Linus Torvalds 已提交
1019 1020 1021
 *
 * returns how many pages were moved onto *@dst.
 */
1022 1023
static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
		struct list_head *src, struct list_head *dst,
1024
		unsigned long *scanned, int order, int mode, int file)
L
Linus Torvalds 已提交
1025
{
1026
	unsigned long nr_taken = 0;
1027 1028 1029
	unsigned long nr_lumpy_taken = 0;
	unsigned long nr_lumpy_dirty = 0;
	unsigned long nr_lumpy_failed = 0;
1030
	unsigned long scan;
L
Linus Torvalds 已提交
1031

1032
	for (scan = 0; scan < nr_to_scan && !list_empty(src); scan++) {
A
Andy Whitcroft 已提交
1033 1034 1035 1036 1037 1038
		struct page *page;
		unsigned long pfn;
		unsigned long end_pfn;
		unsigned long page_pfn;
		int zone_id;

L
Linus Torvalds 已提交
1039 1040 1041
		page = lru_to_page(src);
		prefetchw_prev_lru_page(page, src, flags);

N
Nick Piggin 已提交
1042
		VM_BUG_ON(!PageLRU(page));
N
Nick Piggin 已提交
1043

1044
		switch (__isolate_lru_page(page, mode, file)) {
A
Andy Whitcroft 已提交
1045 1046
		case 0:
			list_move(&page->lru, dst);
1047
			mem_cgroup_del_lru(page);
1048
			nr_taken++;
A
Andy Whitcroft 已提交
1049 1050 1051 1052 1053
			break;

		case -EBUSY:
			/* else it is being freed elsewhere */
			list_move(&page->lru, src);
1054
			mem_cgroup_rotate_lru_list(page, page_lru(page));
A
Andy Whitcroft 已提交
1055
			continue;
1056

A
Andy Whitcroft 已提交
1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088
		default:
			BUG();
		}

		if (!order)
			continue;

		/*
		 * Attempt to take all pages in the order aligned region
		 * surrounding the tag page.  Only take those pages of
		 * the same active state as that tag page.  We may safely
		 * round the target page pfn down to the requested order
		 * as the mem_map is guarenteed valid out to MAX_ORDER,
		 * where that page is in a different zone we will detect
		 * it from its zone id and abort this block scan.
		 */
		zone_id = page_zone_id(page);
		page_pfn = page_to_pfn(page);
		pfn = page_pfn & ~((1 << order) - 1);
		end_pfn = pfn + (1 << order);
		for (; pfn < end_pfn; pfn++) {
			struct page *cursor_page;

			/* The target page is in the block, ignore it. */
			if (unlikely(pfn == page_pfn))
				continue;

			/* Avoid holes within the zone. */
			if (unlikely(!pfn_valid_within(pfn)))
				break;

			cursor_page = pfn_to_page(pfn);
1089

A
Andy Whitcroft 已提交
1090 1091
			/* Check that we have not crossed a zone boundary. */
			if (unlikely(page_zone_id(cursor_page) != zone_id))
1092
				break;
1093 1094 1095 1096 1097 1098 1099

			/*
			 * If we don't have enough swap space, reclaiming of
			 * anon page which don't already have a swap slot is
			 * pointless.
			 */
			if (nr_swap_pages <= 0 && PageAnon(cursor_page) &&
1100 1101
			    !PageSwapCache(cursor_page))
				break;
1102

1103
			if (__isolate_lru_page(cursor_page, mode, file) == 0) {
A
Andy Whitcroft 已提交
1104
				list_move(&cursor_page->lru, dst);
1105
				mem_cgroup_del_lru(cursor_page);
A
Andy Whitcroft 已提交
1106
				nr_taken++;
1107 1108 1109
				nr_lumpy_taken++;
				if (PageDirty(cursor_page))
					nr_lumpy_dirty++;
A
Andy Whitcroft 已提交
1110
				scan++;
1111
			} else {
1112 1113 1114 1115
				/* the page is freed already. */
				if (!page_count(cursor_page))
					continue;
				break;
A
Andy Whitcroft 已提交
1116 1117
			}
		}
1118 1119 1120 1121

		/* If we break out of the loop above, lumpy reclaim failed */
		if (pfn < end_pfn)
			nr_lumpy_failed++;
L
Linus Torvalds 已提交
1122 1123 1124
	}

	*scanned = scan;
1125 1126 1127 1128 1129 1130

	trace_mm_vmscan_lru_isolate(order,
			nr_to_scan, scan,
			nr_taken,
			nr_lumpy_taken, nr_lumpy_dirty, nr_lumpy_failed,
			mode);
L
Linus Torvalds 已提交
1131 1132 1133
	return nr_taken;
}

1134 1135 1136 1137
static unsigned long isolate_pages_global(unsigned long nr,
					struct list_head *dst,
					unsigned long *scanned, int order,
					int mode, struct zone *z,
1138
					int active, int file)
1139
{
1140
	int lru = LRU_BASE;
1141
	if (active)
1142 1143 1144 1145
		lru += LRU_ACTIVE;
	if (file)
		lru += LRU_FILE;
	return isolate_lru_pages(nr, &z->lru[lru].list, dst, scanned, order,
1146
								mode, file);
1147 1148
}

A
Andy Whitcroft 已提交
1149 1150 1151 1152
/*
 * clear_active_flags() is a helper for shrink_active_list(), clearing
 * any active bits from the pages in the list.
 */
1153 1154
static unsigned long clear_active_flags(struct list_head *page_list,
					unsigned int *count)
A
Andy Whitcroft 已提交
1155 1156
{
	int nr_active = 0;
1157
	int lru;
A
Andy Whitcroft 已提交
1158 1159
	struct page *page;

1160
	list_for_each_entry(page, page_list, lru) {
1161
		lru = page_lru_base_type(page);
A
Andy Whitcroft 已提交
1162
		if (PageActive(page)) {
1163
			lru += LRU_ACTIVE;
A
Andy Whitcroft 已提交
1164 1165 1166
			ClearPageActive(page);
			nr_active++;
		}
1167 1168
		if (count)
			count[lru]++;
1169
	}
A
Andy Whitcroft 已提交
1170 1171 1172 1173

	return nr_active;
}

1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184
/**
 * isolate_lru_page - tries to isolate a page from its LRU list
 * @page: page to isolate from its LRU list
 *
 * Isolates a @page from an LRU list, clears PageLRU and adjusts the
 * vmstat statistic corresponding to whatever LRU list the page was on.
 *
 * Returns 0 if the page was removed from an LRU list.
 * Returns -EBUSY if the page was not on an LRU list.
 *
 * The returned page will have PageLRU() cleared.  If it was found on
L
Lee Schermerhorn 已提交
1185 1186 1187
 * the active list, it will have PageActive set.  If it was found on
 * the unevictable list, it will have the PageUnevictable bit set. That flag
 * may need to be cleared by the caller before letting the page go.
1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207
 *
 * The vmstat statistic corresponding to the list on which the page was
 * found will be decremented.
 *
 * Restrictions:
 * (1) Must be called with an elevated refcount on the page. This is a
 *     fundamentnal difference from isolate_lru_pages (which is called
 *     without a stable reference).
 * (2) the lru_lock must not be held.
 * (3) interrupts must be enabled.
 */
int isolate_lru_page(struct page *page)
{
	int ret = -EBUSY;

	if (PageLRU(page)) {
		struct zone *zone = page_zone(page);

		spin_lock_irq(&zone->lru_lock);
		if (PageLRU(page) && get_page_unless_zero(page)) {
L
Lee Schermerhorn 已提交
1208
			int lru = page_lru(page);
1209 1210
			ret = 0;
			ClearPageLRU(page);
1211 1212

			del_page_from_lru_list(zone, page, lru);
1213 1214 1215 1216 1217 1218
		}
		spin_unlock_irq(&zone->lru_lock);
	}
	return ret;
}

1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243
/*
 * Are there way too many processes in the direct reclaim path already?
 */
static int too_many_isolated(struct zone *zone, int file,
		struct scan_control *sc)
{
	unsigned long inactive, isolated;

	if (current_is_kswapd())
		return 0;

	if (!scanning_global_lru(sc))
		return 0;

	if (file) {
		inactive = zone_page_state(zone, NR_INACTIVE_FILE);
		isolated = zone_page_state(zone, NR_ISOLATED_FILE);
	} else {
		inactive = zone_page_state(zone, NR_INACTIVE_ANON);
		isolated = zone_page_state(zone, NR_ISOLATED_ANON);
	}

	return isolated > inactive;
}

1244 1245 1246 1247
/*
 * TODO: Try merging with migrations version of putback_lru_pages
 */
static noinline_for_stack void
1248
putback_lru_pages(struct zone *zone, struct scan_control *sc,
1249 1250 1251 1252 1253
				unsigned long nr_anon, unsigned long nr_file,
				struct list_head *page_list)
{
	struct page *page;
	struct pagevec pvec;
1254
	struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(zone, sc);
1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292

	pagevec_init(&pvec, 1);

	/*
	 * Put back any unfreeable pages.
	 */
	spin_lock(&zone->lru_lock);
	while (!list_empty(page_list)) {
		int lru;
		page = lru_to_page(page_list);
		VM_BUG_ON(PageLRU(page));
		list_del(&page->lru);
		if (unlikely(!page_evictable(page, NULL))) {
			spin_unlock_irq(&zone->lru_lock);
			putback_lru_page(page);
			spin_lock_irq(&zone->lru_lock);
			continue;
		}
		SetPageLRU(page);
		lru = page_lru(page);
		add_page_to_lru_list(zone, page, lru);
		if (is_active_lru(lru)) {
			int file = is_file_lru(lru);
			reclaim_stat->recent_rotated[file]++;
		}
		if (!pagevec_add(&pvec, page)) {
			spin_unlock_irq(&zone->lru_lock);
			__pagevec_release(&pvec);
			spin_lock_irq(&zone->lru_lock);
		}
	}
	__mod_zone_page_state(zone, NR_ISOLATED_ANON, -nr_anon);
	__mod_zone_page_state(zone, NR_ISOLATED_FILE, -nr_file);

	spin_unlock_irq(&zone->lru_lock);
	pagevec_release(&pvec);
}

1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323
static noinline_for_stack void update_isolated_counts(struct zone *zone,
					struct scan_control *sc,
					unsigned long *nr_anon,
					unsigned long *nr_file,
					struct list_head *isolated_list)
{
	unsigned long nr_active;
	unsigned int count[NR_LRU_LISTS] = { 0, };
	struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(zone, sc);

	nr_active = clear_active_flags(isolated_list, count);
	__count_vm_events(PGDEACTIVATE, nr_active);

	__mod_zone_page_state(zone, NR_ACTIVE_FILE,
			      -count[LRU_ACTIVE_FILE]);
	__mod_zone_page_state(zone, NR_INACTIVE_FILE,
			      -count[LRU_INACTIVE_FILE]);
	__mod_zone_page_state(zone, NR_ACTIVE_ANON,
			      -count[LRU_ACTIVE_ANON]);
	__mod_zone_page_state(zone, NR_INACTIVE_ANON,
			      -count[LRU_INACTIVE_ANON]);

	*nr_anon = count[LRU_ACTIVE_ANON] + count[LRU_INACTIVE_ANON];
	*nr_file = count[LRU_ACTIVE_FILE] + count[LRU_INACTIVE_FILE];
	__mod_zone_page_state(zone, NR_ISOLATED_ANON, *nr_anon);
	__mod_zone_page_state(zone, NR_ISOLATED_FILE, *nr_file);

	reclaim_stat->recent_scanned[0] += *nr_anon;
	reclaim_stat->recent_scanned[1] += *nr_file;
}

1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343
/*
 * Returns true if the caller should wait to clean dirty/writeback pages.
 *
 * If we are direct reclaiming for contiguous pages and we do not reclaim
 * everything in the list, try again and wait for writeback IO to complete.
 * This will stall high-order allocations noticeably. Only do that when really
 * need to free the pages under high memory pressure.
 */
static inline bool should_reclaim_stall(unsigned long nr_taken,
					unsigned long nr_freed,
					int priority,
					struct scan_control *sc)
{
	int lumpy_stall_priority;

	/* kswapd should not stall on sync IO */
	if (current_is_kswapd())
		return false;

	/* Only stall on lumpy reclaim */
1344
	if (sc->reclaim_mode & RECLAIM_MODE_SINGLE)
1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364
		return false;

	/* If we have relaimed everything on the isolated list, no stall */
	if (nr_freed == nr_taken)
		return false;

	/*
	 * For high-order allocations, there are two stall thresholds.
	 * High-cost allocations stall immediately where as lower
	 * order allocations such as stacks require the scanning
	 * priority to be much higher before stalling.
	 */
	if (sc->order > PAGE_ALLOC_COSTLY_ORDER)
		lumpy_stall_priority = DEF_PRIORITY;
	else
		lumpy_stall_priority = DEF_PRIORITY / 3;

	return priority <= lumpy_stall_priority;
}

L
Linus Torvalds 已提交
1365
/*
A
Andrew Morton 已提交
1366 1367
 * shrink_inactive_list() is a helper for shrink_zone().  It returns the number
 * of reclaimed pages
L
Linus Torvalds 已提交
1368
 */
1369 1370 1371
static noinline_for_stack unsigned long
shrink_inactive_list(unsigned long nr_to_scan, struct zone *zone,
			struct scan_control *sc, int priority, int file)
L
Linus Torvalds 已提交
1372 1373
{
	LIST_HEAD(page_list);
1374
	unsigned long nr_scanned;
1375
	unsigned long nr_reclaimed = 0;
1376 1377 1378
	unsigned long nr_taken;
	unsigned long nr_anon;
	unsigned long nr_file;
1379

1380
	while (unlikely(too_many_isolated(zone, file, sc))) {
1381
		congestion_wait(BLK_RW_ASYNC, HZ/10);
1382 1383 1384 1385 1386 1387

		/* We are about to die and free our memory. Return now. */
		if (fatal_signal_pending(current))
			return SWAP_CLUSTER_MAX;
	}

1388
	set_reclaim_mode(priority, sc, false);
L
Linus Torvalds 已提交
1389 1390
	lru_add_drain();
	spin_lock_irq(&zone->lru_lock);
1391

1392 1393 1394
	if (scanning_global_lru(sc)) {
		nr_taken = isolate_pages_global(nr_to_scan,
			&page_list, &nr_scanned, sc->order,
1395
			sc->reclaim_mode & RECLAIM_MODE_LUMPYRECLAIM ?
1396
					ISOLATE_BOTH : ISOLATE_INACTIVE,
1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407
			zone, 0, file);
		zone->pages_scanned += nr_scanned;
		if (current_is_kswapd())
			__count_zone_vm_events(PGSCAN_KSWAPD, zone,
					       nr_scanned);
		else
			__count_zone_vm_events(PGSCAN_DIRECT, zone,
					       nr_scanned);
	} else {
		nr_taken = mem_cgroup_isolate_pages(nr_to_scan,
			&page_list, &nr_scanned, sc->order,
1408
			sc->reclaim_mode & RECLAIM_MODE_LUMPYRECLAIM ?
1409
					ISOLATE_BOTH : ISOLATE_INACTIVE,
1410 1411 1412 1413 1414 1415 1416
			zone, sc->mem_cgroup,
			0, file);
		/*
		 * mem_cgroup_isolate_pages() keeps track of
		 * scanned pages on its own.
		 */
	}
1417

1418 1419 1420 1421
	if (nr_taken == 0) {
		spin_unlock_irq(&zone->lru_lock);
		return 0;
	}
A
Andy Whitcroft 已提交
1422

1423
	update_isolated_counts(zone, sc, &nr_anon, &nr_file, &page_list);
L
Linus Torvalds 已提交
1424

1425
	spin_unlock_irq(&zone->lru_lock);
1426

1427
	nr_reclaimed = shrink_page_list(&page_list, zone, sc);
1428

1429 1430
	/* Check if we should syncronously wait for writeback */
	if (should_reclaim_stall(nr_taken, nr_reclaimed, priority, sc)) {
1431
		set_reclaim_mode(priority, sc, true);
1432
		nr_reclaimed += shrink_page_list(&page_list, zone, sc);
1433
	}
1434

1435 1436 1437 1438
	local_irq_disable();
	if (current_is_kswapd())
		__count_vm_events(KSWAPD_STEAL, nr_reclaimed);
	__count_zone_vm_events(PGSTEAL, zone, nr_reclaimed);
N
Nick Piggin 已提交
1439

1440
	putback_lru_pages(zone, sc, nr_anon, nr_file, &page_list);
1441 1442 1443 1444 1445

	trace_mm_vmscan_lru_shrink_inactive(zone->zone_pgdat->node_id,
		zone_idx(zone),
		nr_scanned, nr_reclaimed,
		priority,
1446
		trace_shrink_flags(file, sc->reclaim_mode));
1447
	return nr_reclaimed;
L
Linus Torvalds 已提交
1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466
}

/*
 * This moves pages from the active list to the inactive list.
 *
 * We move them the other way if the page is referenced by one or more
 * processes, from rmap.
 *
 * If the pages are mostly unmapped, the processing is fast and it is
 * appropriate to hold zone->lru_lock across the whole operation.  But if
 * the pages are mapped, the processing is slow (page_referenced()) so we
 * should drop zone->lru_lock around each page.  It's impossible to balance
 * this, so instead we remove the pages from the LRU while processing them.
 * It is safe to rely on PG_active against the non-LRU pages in here because
 * nobody will play with that bit on a non-LRU page.
 *
 * The downside is that we have to touch page->_count against each page.
 * But we had to alter page->flags anyway.
 */
1467

1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499
static void move_active_pages_to_lru(struct zone *zone,
				     struct list_head *list,
				     enum lru_list lru)
{
	unsigned long pgmoved = 0;
	struct pagevec pvec;
	struct page *page;

	pagevec_init(&pvec, 1);

	while (!list_empty(list)) {
		page = lru_to_page(list);

		VM_BUG_ON(PageLRU(page));
		SetPageLRU(page);

		list_move(&page->lru, &zone->lru[lru].list);
		mem_cgroup_add_lru_list(page, lru);
		pgmoved++;

		if (!pagevec_add(&pvec, page) || list_empty(list)) {
			spin_unlock_irq(&zone->lru_lock);
			if (buffer_heads_over_limit)
				pagevec_strip(&pvec);
			__pagevec_release(&pvec);
			spin_lock_irq(&zone->lru_lock);
		}
	}
	__mod_zone_page_state(zone, NR_LRU_BASE + lru, pgmoved);
	if (!is_active_lru(lru))
		__count_vm_events(PGDEACTIVATE, pgmoved);
}
1500

A
Andrew Morton 已提交
1501
static void shrink_active_list(unsigned long nr_pages, struct zone *zone,
1502
			struct scan_control *sc, int priority, int file)
L
Linus Torvalds 已提交
1503
{
1504
	unsigned long nr_taken;
1505
	unsigned long pgscanned;
1506
	unsigned long vm_flags;
L
Linus Torvalds 已提交
1507
	LIST_HEAD(l_hold);	/* The pages which were snipped off */
1508
	LIST_HEAD(l_active);
1509
	LIST_HEAD(l_inactive);
L
Linus Torvalds 已提交
1510
	struct page *page;
1511
	struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(zone, sc);
1512
	unsigned long nr_rotated = 0;
L
Linus Torvalds 已提交
1513 1514 1515

	lru_add_drain();
	spin_lock_irq(&zone->lru_lock);
1516
	if (scanning_global_lru(sc)) {
1517 1518 1519 1520
		nr_taken = isolate_pages_global(nr_pages, &l_hold,
						&pgscanned, sc->order,
						ISOLATE_ACTIVE, zone,
						1, file);
1521
		zone->pages_scanned += pgscanned;
1522 1523 1524 1525 1526 1527 1528 1529 1530
	} else {
		nr_taken = mem_cgroup_isolate_pages(nr_pages, &l_hold,
						&pgscanned, sc->order,
						ISOLATE_ACTIVE, zone,
						sc->mem_cgroup, 1, file);
		/*
		 * mem_cgroup_isolate_pages() keeps track of
		 * scanned pages on its own.
		 */
1531
	}
1532

1533
	reclaim_stat->recent_scanned[file] += nr_taken;
1534

1535
	__count_zone_vm_events(PGREFILL, zone, pgscanned);
1536
	if (file)
1537
		__mod_zone_page_state(zone, NR_ACTIVE_FILE, -nr_taken);
1538
	else
1539
		__mod_zone_page_state(zone, NR_ACTIVE_ANON, -nr_taken);
K
KOSAKI Motohiro 已提交
1540
	__mod_zone_page_state(zone, NR_ISOLATED_ANON + file, nr_taken);
L
Linus Torvalds 已提交
1541 1542 1543 1544 1545 1546
	spin_unlock_irq(&zone->lru_lock);

	while (!list_empty(&l_hold)) {
		cond_resched();
		page = lru_to_page(&l_hold);
		list_del(&page->lru);
1547

L
Lee Schermerhorn 已提交
1548 1549 1550 1551 1552
		if (unlikely(!page_evictable(page, NULL))) {
			putback_lru_page(page);
			continue;
		}

1553
		if (page_referenced(page, 0, sc->mem_cgroup, &vm_flags)) {
1554
			nr_rotated++;
1555 1556 1557 1558 1559 1560 1561 1562 1563
			/*
			 * Identify referenced, file-backed active pages and
			 * give them one more trip around the active list. So
			 * that executable code get better chances to stay in
			 * memory under moderate memory pressure.  Anon pages
			 * are not likely to be evicted by use-once streaming
			 * IO, plus JVM can create lots of anon VM_EXEC pages,
			 * so we ignore them here.
			 */
1564
			if ((vm_flags & VM_EXEC) && page_is_file_cache(page)) {
1565 1566 1567 1568
				list_add(&page->lru, &l_active);
				continue;
			}
		}
1569

1570
		ClearPageActive(page);	/* we are de-activating */
L
Linus Torvalds 已提交
1571 1572 1573
		list_add(&page->lru, &l_inactive);
	}

1574
	/*
1575
	 * Move pages back to the lru list.
1576
	 */
1577
	spin_lock_irq(&zone->lru_lock);
1578
	/*
1579 1580 1581 1582
	 * Count referenced pages from currently used mappings as rotated,
	 * even though only some of them are actually re-activated.  This
	 * helps balance scan pressure between file and anonymous pages in
	 * get_scan_ratio.
1583
	 */
1584
	reclaim_stat->recent_rotated[file] += nr_rotated;
1585

1586 1587 1588 1589
	move_active_pages_to_lru(zone, &l_active,
						LRU_ACTIVE + file * LRU_FILE);
	move_active_pages_to_lru(zone, &l_inactive,
						LRU_BASE   + file * LRU_FILE);
K
KOSAKI Motohiro 已提交
1590
	__mod_zone_page_state(zone, NR_ISOLATED_ANON + file, -nr_taken);
1591
	spin_unlock_irq(&zone->lru_lock);
L
Linus Torvalds 已提交
1592 1593
}

1594
#ifdef CONFIG_SWAP
1595
static int inactive_anon_is_low_global(struct zone *zone)
1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607
{
	unsigned long active, inactive;

	active = zone_page_state(zone, NR_ACTIVE_ANON);
	inactive = zone_page_state(zone, NR_INACTIVE_ANON);

	if (inactive * zone->inactive_ratio < active)
		return 1;

	return 0;
}

1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619
/**
 * inactive_anon_is_low - check if anonymous pages need to be deactivated
 * @zone: zone to check
 * @sc:   scan control of this context
 *
 * Returns true if the zone does not have enough inactive anon pages,
 * meaning some active anon pages need to be deactivated.
 */
static int inactive_anon_is_low(struct zone *zone, struct scan_control *sc)
{
	int low;

1620 1621 1622 1623 1624 1625 1626
	/*
	 * If we don't have swap space, anonymous page deactivation
	 * is pointless.
	 */
	if (!total_swap_pages)
		return 0;

1627
	if (scanning_global_lru(sc))
1628 1629
		low = inactive_anon_is_low_global(zone);
	else
1630
		low = mem_cgroup_inactive_anon_is_low(sc->mem_cgroup);
1631 1632
	return low;
}
1633 1634 1635 1636 1637 1638 1639
#else
static inline int inactive_anon_is_low(struct zone *zone,
					struct scan_control *sc)
{
	return 0;
}
#endif
1640

1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676
static int inactive_file_is_low_global(struct zone *zone)
{
	unsigned long active, inactive;

	active = zone_page_state(zone, NR_ACTIVE_FILE);
	inactive = zone_page_state(zone, NR_INACTIVE_FILE);

	return (active > inactive);
}

/**
 * inactive_file_is_low - check if file pages need to be deactivated
 * @zone: zone to check
 * @sc:   scan control of this context
 *
 * When the system is doing streaming IO, memory pressure here
 * ensures that active file pages get deactivated, until more
 * than half of the file pages are on the inactive list.
 *
 * Once we get to that situation, protect the system's working
 * set from being evicted by disabling active file page aging.
 *
 * This uses a different ratio than the anonymous pages, because
 * the page cache uses a use-once replacement algorithm.
 */
static int inactive_file_is_low(struct zone *zone, struct scan_control *sc)
{
	int low;

	if (scanning_global_lru(sc))
		low = inactive_file_is_low_global(zone);
	else
		low = mem_cgroup_inactive_file_is_low(sc->mem_cgroup);
	return low;
}

1677 1678 1679 1680 1681 1682 1683 1684 1685
static int inactive_list_is_low(struct zone *zone, struct scan_control *sc,
				int file)
{
	if (file)
		return inactive_file_is_low(zone, sc);
	else
		return inactive_anon_is_low(zone, sc);
}

1686
static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
1687 1688
	struct zone *zone, struct scan_control *sc, int priority)
{
1689 1690
	int file = is_file_lru(lru);

1691 1692 1693
	if (is_active_lru(lru)) {
		if (inactive_list_is_low(zone, sc, file))
		    shrink_active_list(nr_to_scan, zone, sc, priority, file);
1694 1695 1696
		return 0;
	}

R
Rik van Riel 已提交
1697
	return shrink_inactive_list(nr_to_scan, zone, sc, priority, file);
1698 1699
}

1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719
/*
 * Smallish @nr_to_scan's are deposited in @nr_saved_scan,
 * until we collected @swap_cluster_max pages to scan.
 */
static unsigned long nr_scan_try_batch(unsigned long nr_to_scan,
				       unsigned long *nr_saved_scan)
{
	unsigned long nr;

	*nr_saved_scan += nr_to_scan;
	nr = *nr_saved_scan;

	if (nr >= SWAP_CLUSTER_MAX)
		*nr_saved_scan = 0;
	else
		nr = 0;

	return nr;
}

1720 1721 1722 1723 1724 1725
/*
 * Determine how aggressively the anon and file LRU lists should be
 * scanned.  The relative value of each set of LRU lists is determined
 * by looking at the fraction of the pages scanned we did rotate back
 * onto the active list instead of evict.
 *
1726
 * nr[0] = anon pages to scan; nr[1] = file pages to scan
1727
 */
1728 1729
static void get_scan_count(struct zone *zone, struct scan_control *sc,
					unsigned long *nr, int priority)
1730 1731 1732 1733
{
	unsigned long anon, file, free;
	unsigned long anon_prio, file_prio;
	unsigned long ap, fp;
1734
	struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(zone, sc);
1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746
	u64 fraction[2], denominator;
	enum lru_list l;
	int noswap = 0;

	/* If we have no swap space, do not bother scanning anon pages. */
	if (!sc->may_swap || (nr_swap_pages <= 0)) {
		noswap = 1;
		fraction[0] = 0;
		fraction[1] = 1;
		denominator = 1;
		goto out;
	}
1747

1748 1749 1750 1751
	anon  = zone_nr_lru_pages(zone, sc, LRU_ACTIVE_ANON) +
		zone_nr_lru_pages(zone, sc, LRU_INACTIVE_ANON);
	file  = zone_nr_lru_pages(zone, sc, LRU_ACTIVE_FILE) +
		zone_nr_lru_pages(zone, sc, LRU_INACTIVE_FILE);
1752

1753
	if (scanning_global_lru(sc)) {
1754 1755 1756
		free  = zone_page_state(zone, NR_FREE_PAGES);
		/* If we have very few page cache pages,
		   force-scan anon pages. */
1757
		if (unlikely(file + free <= high_wmark_pages(zone))) {
1758 1759 1760 1761
			fraction[0] = 1;
			fraction[1] = 0;
			denominator = 1;
			goto out;
1762
		}
1763 1764
	}

1765 1766 1767 1768 1769 1770 1771
	/*
	 * With swappiness at 100, anonymous and file have the same priority.
	 * This scanning priority is essentially the inverse of IO cost.
	 */
	anon_prio = sc->swappiness;
	file_prio = 200 - sc->swappiness;

1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782
	/*
	 * OK, so we have swap space and a fair amount of page cache
	 * pages.  We use the recently rotated / recently scanned
	 * ratios to determine how valuable each cache is.
	 *
	 * Because workloads change over time (and to avoid overflow)
	 * we keep these statistics as a floating average, which ends
	 * up weighing recent references more than old ones.
	 *
	 * anon in [0], file in [1]
	 */
1783
	spin_lock_irq(&zone->lru_lock);
1784 1785 1786
	if (unlikely(reclaim_stat->recent_scanned[0] > anon / 4)) {
		reclaim_stat->recent_scanned[0] /= 2;
		reclaim_stat->recent_rotated[0] /= 2;
1787 1788
	}

1789 1790 1791
	if (unlikely(reclaim_stat->recent_scanned[1] > file / 4)) {
		reclaim_stat->recent_scanned[1] /= 2;
		reclaim_stat->recent_rotated[1] /= 2;
1792 1793 1794
	}

	/*
1795 1796 1797
	 * The amount of pressure on anon vs file pages is inversely
	 * proportional to the fraction of recently scanned pages on
	 * each list that were recently referenced and in active use.
1798
	 */
1799 1800
	ap = (anon_prio + 1) * (reclaim_stat->recent_scanned[0] + 1);
	ap /= reclaim_stat->recent_rotated[0] + 1;
1801

1802 1803
	fp = (file_prio + 1) * (reclaim_stat->recent_scanned[1] + 1);
	fp /= reclaim_stat->recent_rotated[1] + 1;
1804
	spin_unlock_irq(&zone->lru_lock);
1805

1806 1807 1808 1809 1810 1811 1812
	fraction[0] = ap;
	fraction[1] = fp;
	denominator = ap + fp + 1;
out:
	for_each_evictable_lru(l) {
		int file = is_file_lru(l);
		unsigned long scan;
1813

1814 1815 1816 1817 1818 1819 1820 1821
		scan = zone_nr_lru_pages(zone, sc, l);
		if (priority || noswap) {
			scan >>= priority;
			scan = div64_u64(scan * fraction[file], denominator);
		}
		nr[l] = nr_scan_try_batch(scan,
					  &reclaim_stat->nr_saved_scan[l]);
	}
1822
}
1823

1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839
/*
 * Reclaim/compaction depends on a number of pages being freed. To avoid
 * disruption to the system, a small number of order-0 pages continue to be
 * rotated and reclaimed in the normal fashion. However, by the time we get
 * back to the allocator and call try_to_compact_zone(), we ensure that
 * there are enough free pages for it to be likely successful
 */
static inline bool should_continue_reclaim(struct zone *zone,
					unsigned long nr_reclaimed,
					unsigned long nr_scanned,
					struct scan_control *sc)
{
	unsigned long pages_for_compaction;
	unsigned long inactive_lru_pages;

	/* If not in reclaim/compaction mode, stop */
1840
	if (!(sc->reclaim_mode & RECLAIM_MODE_COMPACTION))
1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874
		return false;

	/*
	 * If we failed to reclaim and have scanned the full list, stop.
	 * NOTE: Checking just nr_reclaimed would exit reclaim/compaction far
	 *       faster but obviously would be less likely to succeed
	 *       allocation. If this is desirable, use GFP_REPEAT to decide
	 *       if both reclaimed and scanned should be checked or just
	 *       reclaimed
	 */
	if (!nr_reclaimed && !nr_scanned)
		return false;

	/*
	 * If we have not reclaimed enough pages for compaction and the
	 * inactive lists are large enough, continue reclaiming
	 */
	pages_for_compaction = (2UL << sc->order);
	inactive_lru_pages = zone_nr_lru_pages(zone, sc, LRU_INACTIVE_ANON) +
				zone_nr_lru_pages(zone, sc, LRU_INACTIVE_FILE);
	if (sc->nr_reclaimed < pages_for_compaction &&
			inactive_lru_pages > pages_for_compaction)
		return true;

	/* If compaction would go ahead or the allocation would succeed, stop */
	switch (compaction_suitable(zone, sc->order)) {
	case COMPACT_PARTIAL:
	case COMPACT_CONTINUE:
		return false;
	default:
		return true;
	}
}

L
Linus Torvalds 已提交
1875 1876 1877
/*
 * This is a basic per-zone page freer.  Used by both kswapd and direct reclaim.
 */
1878
static void shrink_zone(int priority, struct zone *zone,
1879
				struct scan_control *sc)
L
Linus Torvalds 已提交
1880
{
1881
	unsigned long nr[NR_LRU_LISTS];
1882
	unsigned long nr_to_scan;
1883
	enum lru_list l;
1884
	unsigned long nr_reclaimed;
1885
	unsigned long nr_to_reclaim = sc->nr_to_reclaim;
1886
	unsigned long nr_scanned = sc->nr_scanned;
1887

1888 1889
restart:
	nr_reclaimed = 0;
1890
	get_scan_count(zone, sc, nr, priority);
L
Linus Torvalds 已提交
1891

1892 1893
	while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
					nr[LRU_INACTIVE_FILE]) {
L
Lee Schermerhorn 已提交
1894
		for_each_evictable_lru(l) {
1895
			if (nr[l]) {
K
KOSAKI Motohiro 已提交
1896 1897
				nr_to_scan = min_t(unsigned long,
						   nr[l], SWAP_CLUSTER_MAX);
1898
				nr[l] -= nr_to_scan;
L
Linus Torvalds 已提交
1899

1900 1901
				nr_reclaimed += shrink_list(l, nr_to_scan,
							    zone, sc, priority);
1902
			}
L
Linus Torvalds 已提交
1903
		}
1904 1905 1906 1907 1908 1909 1910 1911
		/*
		 * On large memory systems, scan >> priority can become
		 * really large. This is fine for the starting priority;
		 * we want to put equal scanning pressure on each zone.
		 * However, if the VM has a harder time of freeing pages,
		 * with multiple processes reclaiming pages, the total
		 * freeing target can get unreasonably large.
		 */
1912
		if (nr_reclaimed >= nr_to_reclaim && priority < DEF_PRIORITY)
1913
			break;
L
Linus Torvalds 已提交
1914
	}
1915
	sc->nr_reclaimed += nr_reclaimed;
1916

1917 1918 1919 1920
	/*
	 * Even if we did not try to evict anon pages at all, we want to
	 * rebalance the anon lru active/inactive ratio.
	 */
1921
	if (inactive_anon_is_low(zone, sc))
1922 1923
		shrink_active_list(SWAP_CLUSTER_MAX, zone, sc, priority, 0);

1924 1925 1926 1927 1928
	/* reclaim/compaction might need reclaim to continue */
	if (should_continue_reclaim(zone, nr_reclaimed,
					sc->nr_scanned - nr_scanned, sc))
		goto restart;

1929
	throttle_vm_writeout(sc->gfp_mask);
L
Linus Torvalds 已提交
1930 1931 1932 1933 1934 1935 1936
}

/*
 * This is the direct reclaim path, for page-allocating processes.  We only
 * try to reclaim pages from zones which will satisfy the caller's allocation
 * request.
 *
1937 1938
 * We reclaim from a zone even if that zone is over high_wmark_pages(zone).
 * Because:
L
Linus Torvalds 已提交
1939 1940
 * a) The caller may be trying to free *extra* pages to satisfy a higher-order
 *    allocation or
1941 1942 1943
 * b) The target zone may be at high_wmark_pages(zone) but the lower zones
 *    must go *over* high_wmark_pages(zone) to satisfy the `incremental min'
 *    zone defense algorithm.
L
Linus Torvalds 已提交
1944 1945 1946 1947
 *
 * If a zone is deemed to be full of pinned pages then just give it a light
 * scan then give up on it.
 */
1948
static void shrink_zones(int priority, struct zonelist *zonelist,
1949
					struct scan_control *sc)
L
Linus Torvalds 已提交
1950
{
1951
	struct zoneref *z;
1952
	struct zone *zone;
1953

1954 1955
	for_each_zone_zonelist_nodemask(zone, z, zonelist,
					gfp_zone(sc->gfp_mask), sc->nodemask) {
1956
		if (!populated_zone(zone))
L
Linus Torvalds 已提交
1957
			continue;
1958 1959 1960 1961
		/*
		 * Take care memory controller reclaiming has small influence
		 * to global LRU.
		 */
1962
		if (scanning_global_lru(sc)) {
1963 1964
			if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
				continue;
1965
			if (zone->all_unreclaimable && priority != DEF_PRIORITY)
1966 1967
				continue;	/* Let kswapd poll it */
		}
1968

1969
		shrink_zone(priority, zone, sc);
L
Linus Torvalds 已提交
1970
	}
1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001
}

static bool zone_reclaimable(struct zone *zone)
{
	return zone->pages_scanned < zone_reclaimable_pages(zone) * 6;
}

/*
 * As hibernation is going on, kswapd is freezed so that it can't mark
 * the zone into all_unreclaimable. It can't handle OOM during hibernation.
 * So let's check zone's unreclaimable in direct reclaim as well as kswapd.
 */
static bool all_unreclaimable(struct zonelist *zonelist,
		struct scan_control *sc)
{
	struct zoneref *z;
	struct zone *zone;
	bool all_unreclaimable = true;

	for_each_zone_zonelist_nodemask(zone, z, zonelist,
			gfp_zone(sc->gfp_mask), sc->nodemask) {
		if (!populated_zone(zone))
			continue;
		if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
			continue;
		if (zone_reclaimable(zone)) {
			all_unreclaimable = false;
			break;
		}
	}

2002
	return all_unreclaimable;
L
Linus Torvalds 已提交
2003
}
2004

L
Linus Torvalds 已提交
2005 2006 2007 2008 2009 2010 2011 2012
/*
 * This is the main entry point to direct page reclaim.
 *
 * If a full scan of the inactive list fails to free enough memory then we
 * are "out of memory" and something needs to be killed.
 *
 * If the caller is !__GFP_FS then the probability of a failure is reasonably
 * high - the zone may be full of dirty or under-writeback pages, which this
2013 2014 2015 2016
 * caller can't do much about.  We kick the writeback threads and take explicit
 * naps in the hope that some of these pages can be written.  But if the
 * allocating task holds filesystem locks which prevent writeout this might not
 * work, and the allocation attempt will fail.
2017 2018 2019
 *
 * returns:	0, if no pages reclaimed
 * 		else, the number of pages reclaimed
L
Linus Torvalds 已提交
2020
 */
2021
static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
2022
					struct scan_control *sc)
L
Linus Torvalds 已提交
2023 2024
{
	int priority;
2025
	unsigned long total_scanned = 0;
L
Linus Torvalds 已提交
2026
	struct reclaim_state *reclaim_state = current->reclaim_state;
2027
	struct zoneref *z;
2028
	struct zone *zone;
2029
	unsigned long writeback_threshold;
L
Linus Torvalds 已提交
2030

2031
	get_mems_allowed();
2032 2033
	delayacct_freepages_start();

2034
	if (scanning_global_lru(sc))
2035
		count_vm_event(ALLOCSTALL);
L
Linus Torvalds 已提交
2036 2037

	for (priority = DEF_PRIORITY; priority >= 0; priority--) {
2038
		sc->nr_scanned = 0;
2039 2040
		if (!priority)
			disable_swap_token();
2041
		shrink_zones(priority, zonelist, sc);
2042 2043 2044 2045
		/*
		 * Don't shrink slabs when reclaiming memory from
		 * over limit cgroups
		 */
2046
		if (scanning_global_lru(sc)) {
2047
			unsigned long lru_pages = 0;
2048 2049
			for_each_zone_zonelist(zone, z, zonelist,
					gfp_zone(sc->gfp_mask)) {
2050 2051 2052 2053 2054 2055
				if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
					continue;

				lru_pages += zone_reclaimable_pages(zone);
			}

2056
			shrink_slab(sc->nr_scanned, sc->gfp_mask, lru_pages);
2057
			if (reclaim_state) {
2058
				sc->nr_reclaimed += reclaim_state->reclaimed_slab;
2059 2060
				reclaim_state->reclaimed_slab = 0;
			}
L
Linus Torvalds 已提交
2061
		}
2062
		total_scanned += sc->nr_scanned;
2063
		if (sc->nr_reclaimed >= sc->nr_to_reclaim)
L
Linus Torvalds 已提交
2064 2065 2066 2067 2068 2069 2070 2071 2072
			goto out;

		/*
		 * Try to write back as many pages as we just scanned.  This
		 * tends to cause slow streaming writers to write data to the
		 * disk smoothly, at the dirtying rate, which is nice.   But
		 * that's undesirable in laptop mode, where we *want* lumpy
		 * writeout.  So in laptop mode, write out the whole world.
		 */
2073 2074
		writeback_threshold = sc->nr_to_reclaim + sc->nr_to_reclaim / 2;
		if (total_scanned > writeback_threshold) {
2075
			wakeup_flusher_threads(laptop_mode ? 0 : total_scanned);
2076
			sc->may_writepage = 1;
L
Linus Torvalds 已提交
2077 2078 2079
		}

		/* Take a nap, wait for some writeback to complete */
2080
		if (!sc->hibernation_mode && sc->nr_scanned &&
2081 2082 2083 2084 2085 2086 2087
		    priority < DEF_PRIORITY - 2) {
			struct zone *preferred_zone;

			first_zones_zonelist(zonelist, gfp_zone(sc->gfp_mask),
							NULL, &preferred_zone);
			wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/10);
		}
L
Linus Torvalds 已提交
2088
	}
2089

L
Linus Torvalds 已提交
2090
out:
2091
	delayacct_freepages_end();
2092
	put_mems_allowed();
2093

2094 2095 2096 2097
	if (sc->nr_reclaimed)
		return sc->nr_reclaimed;

	/* top priority shrink_zones still had more to do? don't OOM, then */
2098
	if (scanning_global_lru(sc) && !all_unreclaimable(zonelist, sc))
2099 2100 2101
		return 1;

	return 0;
L
Linus Torvalds 已提交
2102 2103
}

2104
unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
2105
				gfp_t gfp_mask, nodemask_t *nodemask)
2106
{
2107
	unsigned long nr_reclaimed;
2108 2109 2110
	struct scan_control sc = {
		.gfp_mask = gfp_mask,
		.may_writepage = !laptop_mode,
2111
		.nr_to_reclaim = SWAP_CLUSTER_MAX,
2112
		.may_unmap = 1,
2113
		.may_swap = 1,
2114 2115 2116
		.swappiness = vm_swappiness,
		.order = order,
		.mem_cgroup = NULL,
2117
		.nodemask = nodemask,
2118 2119
	};

2120 2121 2122 2123 2124 2125 2126 2127 2128
	trace_mm_vmscan_direct_reclaim_begin(order,
				sc.may_writepage,
				gfp_mask);

	nr_reclaimed = do_try_to_free_pages(zonelist, &sc);

	trace_mm_vmscan_direct_reclaim_end(nr_reclaimed);

	return nr_reclaimed;
2129 2130
}

2131
#ifdef CONFIG_CGROUP_MEM_RES_CTLR
2132

2133 2134 2135
unsigned long mem_cgroup_shrink_node_zone(struct mem_cgroup *mem,
						gfp_t gfp_mask, bool noswap,
						unsigned int swappiness,
2136
						struct zone *zone)
2137 2138
{
	struct scan_control sc = {
2139
		.nr_to_reclaim = SWAP_CLUSTER_MAX,
2140 2141 2142 2143 2144 2145 2146 2147 2148
		.may_writepage = !laptop_mode,
		.may_unmap = 1,
		.may_swap = !noswap,
		.swappiness = swappiness,
		.order = 0,
		.mem_cgroup = mem,
	};
	sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
			(GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
2149 2150 2151 2152 2153

	trace_mm_vmscan_memcg_softlimit_reclaim_begin(0,
						      sc.may_writepage,
						      sc.gfp_mask);

2154 2155 2156 2157 2158 2159 2160 2161
	/*
	 * NOTE: Although we can get the priority field, using it
	 * here is not a good idea, since it limits the pages we can scan.
	 * if we don't reclaim here, the shrink_zone from balance_pgdat
	 * will pick up pages from other mem cgroup's as well. We hack
	 * the priority and make it zero.
	 */
	shrink_zone(0, zone, &sc);
2162 2163 2164

	trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed);

2165 2166 2167
	return sc.nr_reclaimed;
}

2168
unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *mem_cont,
K
KOSAKI Motohiro 已提交
2169 2170 2171
					   gfp_t gfp_mask,
					   bool noswap,
					   unsigned int swappiness)
2172
{
2173
	struct zonelist *zonelist;
2174
	unsigned long nr_reclaimed;
2175 2176
	struct scan_control sc = {
		.may_writepage = !laptop_mode,
2177
		.may_unmap = 1,
2178
		.may_swap = !noswap,
2179
		.nr_to_reclaim = SWAP_CLUSTER_MAX,
K
KOSAKI Motohiro 已提交
2180
		.swappiness = swappiness,
2181 2182
		.order = 0,
		.mem_cgroup = mem_cont,
2183
		.nodemask = NULL, /* we don't care the placement */
2184 2185
	};

2186 2187 2188
	sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
			(GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
	zonelist = NODE_DATA(numa_node_id())->node_zonelists;
2189 2190 2191 2192 2193 2194 2195 2196 2197 2198

	trace_mm_vmscan_memcg_reclaim_begin(0,
					    sc.may_writepage,
					    sc.gfp_mask);

	nr_reclaimed = do_try_to_free_pages(zonelist, &sc);

	trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed);

	return nr_reclaimed;
2199 2200 2201
}
#endif

2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229
/*
 * pgdat_balanced is used when checking if a node is balanced for high-order
 * allocations. Only zones that meet watermarks and are in a zone allowed
 * by the callers classzone_idx are added to balanced_pages. The total of
 * balanced pages must be at least 25% of the zones allowed by classzone_idx
 * for the node to be considered balanced. Forcing all zones to be balanced
 * for high orders can cause excessive reclaim when there are imbalanced zones.
 * The choice of 25% is due to
 *   o a 16M DMA zone that is balanced will not balance a zone on any
 *     reasonable sized machine
 *   o On all other machines, the top zone must be at least a reasonable
 *     precentage of the middle zones. For example, on 32-bit x86, highmem
 *     would need to be at least 256M for it to be balance a whole node.
 *     Similarly, on x86-64 the Normal zone would need to be at least 1G
 *     to balance a node on its own. These seemed like reasonable ratios.
 */
static bool pgdat_balanced(pg_data_t *pgdat, unsigned long balanced_pages,
						int classzone_idx)
{
	unsigned long present_pages = 0;
	int i;

	for (i = 0; i <= classzone_idx; i++)
		present_pages += pgdat->node_zones[i].present_pages;

	return balanced_pages > (present_pages >> 2);
}

2230
/* is kswapd sleeping prematurely? */
2231 2232
static bool sleeping_prematurely(pg_data_t *pgdat, int order, long remaining,
					int classzone_idx)
2233
{
2234
	int i;
2235 2236
	unsigned long balanced = 0;
	bool all_zones_ok = true;
2237 2238 2239

	/* If a direct reclaimer woke kswapd within HZ/10, it's premature */
	if (remaining)
2240
		return true;
2241

2242
	/* Check the watermark levels */
2243 2244 2245 2246 2247 2248
	for (i = 0; i < pgdat->nr_zones; i++) {
		struct zone *zone = pgdat->node_zones + i;

		if (!populated_zone(zone))
			continue;

2249 2250 2251 2252 2253 2254 2255 2256
		/*
		 * balance_pgdat() skips over all_unreclaimable after
		 * DEF_PRIORITY. Effectively, it considers them balanced so
		 * they must be considered balanced here as well if kswapd
		 * is to sleep
		 */
		if (zone->all_unreclaimable) {
			balanced += zone->present_pages;
2257
			continue;
2258
		}
2259

2260
		if (!zone_watermark_ok_safe(zone, order, high_wmark_pages(zone),
2261
							classzone_idx, 0))
2262 2263 2264
			all_zones_ok = false;
		else
			balanced += zone->present_pages;
2265
	}
2266

2267 2268 2269 2270 2271 2272
	/*
	 * For high-order requests, the balanced zones must contain at least
	 * 25% of the nodes pages for kswapd to sleep. For order-0, all zones
	 * must be balanced
	 */
	if (order)
2273
		return pgdat_balanced(pgdat, balanced, classzone_idx);
2274 2275
	else
		return !all_zones_ok;
2276 2277
}

L
Linus Torvalds 已提交
2278 2279
/*
 * For kswapd, balance_pgdat() will work across all this node's zones until
2280
 * they are all at high_wmark_pages(zone).
L
Linus Torvalds 已提交
2281
 *
2282
 * Returns the final order kswapd was reclaiming at
L
Linus Torvalds 已提交
2283 2284 2285 2286 2287 2288 2289 2290 2291 2292
 *
 * There is special handling here for zones which are full of pinned pages.
 * This can happen if the pages are all mlocked, or if they are all used by
 * device drivers (say, ZONE_DMA).  Or if they are all in use by hugetlb.
 * What we do is to detect the case where all pages in the zone have been
 * scanned twice and there has been zero successful reclaim.  Mark the zone as
 * dead and from now on, only perform a short scan.  Basically we're polling
 * the zone for when the problem goes away.
 *
 * kswapd scans the zones in the highmem->normal->dma direction.  It skips
2293 2294 2295 2296 2297
 * zones which have free_pages > high_wmark_pages(zone), but once a zone is
 * found to have free_pages <= high_wmark_pages(zone), we scan that zone and the
 * lower zones regardless of the number of free pages in the lower zones. This
 * interoperates with the page allocator fallback scheme to ensure that aging
 * of pages is balanced across the zones.
L
Linus Torvalds 已提交
2298
 */
2299
static unsigned long balance_pgdat(pg_data_t *pgdat, int order,
2300
							int *classzone_idx)
L
Linus Torvalds 已提交
2301 2302
{
	int all_zones_ok;
2303
	unsigned long balanced;
L
Linus Torvalds 已提交
2304 2305
	int priority;
	int i;
2306
	int end_zone = 0;	/* Inclusive.  0 = ZONE_DMA */
2307
	unsigned long total_scanned;
L
Linus Torvalds 已提交
2308
	struct reclaim_state *reclaim_state = current->reclaim_state;
2309 2310
	struct scan_control sc = {
		.gfp_mask = GFP_KERNEL,
2311
		.may_unmap = 1,
2312
		.may_swap = 1,
2313 2314 2315 2316 2317
		/*
		 * kswapd doesn't want to be bailed out while reclaim. because
		 * we want to put equal scanning pressure on each zone.
		 */
		.nr_to_reclaim = ULONG_MAX,
2318
		.swappiness = vm_swappiness,
A
Andy Whitcroft 已提交
2319
		.order = order,
2320
		.mem_cgroup = NULL,
2321
	};
L
Linus Torvalds 已提交
2322 2323
loop_again:
	total_scanned = 0;
2324
	sc.nr_reclaimed = 0;
C
Christoph Lameter 已提交
2325
	sc.may_writepage = !laptop_mode;
2326
	count_vm_event(PAGEOUTRUN);
L
Linus Torvalds 已提交
2327 2328 2329

	for (priority = DEF_PRIORITY; priority >= 0; priority--) {
		unsigned long lru_pages = 0;
2330
		int has_under_min_watermark_zone = 0;
L
Linus Torvalds 已提交
2331

2332 2333 2334 2335
		/* The swap token gets in the way of swapout... */
		if (!priority)
			disable_swap_token();

L
Linus Torvalds 已提交
2336
		all_zones_ok = 1;
2337
		balanced = 0;
L
Linus Torvalds 已提交
2338

2339 2340 2341 2342 2343 2344
		/*
		 * Scan in the highmem->dma direction for the highest
		 * zone which needs scanning
		 */
		for (i = pgdat->nr_zones - 1; i >= 0; i--) {
			struct zone *zone = pgdat->node_zones + i;
L
Linus Torvalds 已提交
2345

2346 2347
			if (!populated_zone(zone))
				continue;
L
Linus Torvalds 已提交
2348

2349
			if (zone->all_unreclaimable && priority != DEF_PRIORITY)
2350
				continue;
L
Linus Torvalds 已提交
2351

2352 2353 2354 2355
			/*
			 * Do some background aging of the anon list, to give
			 * pages a chance to be referenced before reclaiming.
			 */
2356
			if (inactive_anon_is_low(zone, &sc))
2357 2358 2359
				shrink_active_list(SWAP_CLUSTER_MAX, zone,
							&sc, priority, 0);

2360
			if (!zone_watermark_ok_safe(zone, order,
2361
					high_wmark_pages(zone), 0, 0)) {
2362
				end_zone = i;
2363
				*classzone_idx = i;
A
Andrew Morton 已提交
2364
				break;
L
Linus Torvalds 已提交
2365 2366
			}
		}
A
Andrew Morton 已提交
2367 2368 2369
		if (i < 0)
			goto out;

L
Linus Torvalds 已提交
2370 2371 2372
		for (i = 0; i <= end_zone; i++) {
			struct zone *zone = pgdat->node_zones + i;

2373
			lru_pages += zone_reclaimable_pages(zone);
L
Linus Torvalds 已提交
2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385
		}

		/*
		 * Now scan the zone in the dma->highmem direction, stopping
		 * at the last zone which needs scanning.
		 *
		 * We do this because the page allocator works in the opposite
		 * direction.  This prevents the page allocator from allocating
		 * pages behind kswapd's direction of progress, which would
		 * cause too much scanning of the lower zones.
		 */
		for (i = 0; i <= end_zone; i++) {
2386
			int compaction;
L
Linus Torvalds 已提交
2387
			struct zone *zone = pgdat->node_zones + i;
2388
			int nr_slab;
L
Linus Torvalds 已提交
2389

2390
			if (!populated_zone(zone))
L
Linus Torvalds 已提交
2391 2392
				continue;

2393
			if (zone->all_unreclaimable && priority != DEF_PRIORITY)
L
Linus Torvalds 已提交
2394 2395 2396
				continue;

			sc.nr_scanned = 0;
2397 2398 2399 2400 2401

			/*
			 * Call soft limit reclaim before calling shrink_zone.
			 * For now we ignore the return value
			 */
2402 2403
			mem_cgroup_soft_limit_reclaim(zone, order, sc.gfp_mask);

2404 2405 2406 2407
			/*
			 * We put equal pressure on every zone, unless one
			 * zone has way too many pages free already.
			 */
2408
			if (!zone_watermark_ok_safe(zone, order,
2409
					8*high_wmark_pages(zone), end_zone, 0))
2410
				shrink_zone(priority, zone, &sc);
L
Linus Torvalds 已提交
2411
			reclaim_state->reclaimed_slab = 0;
2412 2413
			nr_slab = shrink_slab(sc.nr_scanned, GFP_KERNEL,
						lru_pages);
2414
			sc.nr_reclaimed += reclaim_state->reclaimed_slab;
L
Linus Torvalds 已提交
2415
			total_scanned += sc.nr_scanned;
2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431

			compaction = 0;
			if (order &&
			    zone_watermark_ok(zone, 0,
					       high_wmark_pages(zone),
					      end_zone, 0) &&
			    !zone_watermark_ok(zone, order,
					       high_wmark_pages(zone),
					       end_zone, 0)) {
				compact_zone_order(zone,
						   order,
						   sc.gfp_mask, false,
						   COMPACT_MODE_KSWAPD);
				compaction = 1;
			}

2432
			if (zone->all_unreclaimable)
L
Linus Torvalds 已提交
2433
				continue;
2434 2435
			if (!compaction && nr_slab == 0 &&
			    !zone_reclaimable(zone))
2436
				zone->all_unreclaimable = 1;
L
Linus Torvalds 已提交
2437 2438 2439 2440 2441 2442
			/*
			 * If we've done a decent amount of scanning and
			 * the reclaim ratio is low, start doing writepage
			 * even in laptop mode
			 */
			if (total_scanned > SWAP_CLUSTER_MAX * 2 &&
2443
			    total_scanned > sc.nr_reclaimed + sc.nr_reclaimed / 2)
L
Linus Torvalds 已提交
2444
				sc.may_writepage = 1;
2445

2446
			if (!zone_watermark_ok_safe(zone, order,
2447 2448 2449 2450 2451 2452 2453
					high_wmark_pages(zone), end_zone, 0)) {
				all_zones_ok = 0;
				/*
				 * We are still under min water mark.  This
				 * means that we have a GFP_ATOMIC allocation
				 * failure risk. Hurry up!
				 */
2454
				if (!zone_watermark_ok_safe(zone, order,
2455 2456
					    min_wmark_pages(zone), end_zone, 0))
					has_under_min_watermark_zone = 1;
2457 2458 2459 2460 2461 2462 2463 2464 2465
			} else {
				/*
				 * If a zone reaches its high watermark,
				 * consider it to be no longer congested. It's
				 * possible there are dirty pages backed by
				 * congested BDIs but as pressure is relieved,
				 * spectulatively avoid congestion waits
				 */
				zone_clear_flag(zone, ZONE_CONGESTED);
2466
				if (i <= *classzone_idx)
2467
					balanced += zone->present_pages;
2468
			}
2469

L
Linus Torvalds 已提交
2470
		}
2471
		if (all_zones_ok || (order && pgdat_balanced(pgdat, balanced, *classzone_idx)))
L
Linus Torvalds 已提交
2472 2473 2474 2475 2476
			break;		/* kswapd: all done */
		/*
		 * OK, kswapd is getting into trouble.  Take a nap, then take
		 * another pass across the zones.
		 */
2477 2478 2479 2480 2481 2482
		if (total_scanned && (priority < DEF_PRIORITY - 2)) {
			if (has_under_min_watermark_zone)
				count_vm_event(KSWAPD_SKIP_CONGESTION_WAIT);
			else
				congestion_wait(BLK_RW_ASYNC, HZ/10);
		}
L
Linus Torvalds 已提交
2483 2484 2485 2486 2487 2488 2489

		/*
		 * We do this so kswapd doesn't build up large priorities for
		 * example when it is freeing in parallel with allocators. It
		 * matches the direct reclaim path behaviour in terms of impact
		 * on zone->*_priority.
		 */
2490
		if (sc.nr_reclaimed >= SWAP_CLUSTER_MAX)
L
Linus Torvalds 已提交
2491 2492 2493
			break;
	}
out:
2494 2495 2496

	/*
	 * order-0: All zones must meet high watermark for a balanced node
2497 2498
	 * high-order: Balanced zones must make up at least 25% of the node
	 *             for the node to be balanced
2499
	 */
2500
	if (!(all_zones_ok || (order && pgdat_balanced(pgdat, balanced, *classzone_idx)))) {
L
Linus Torvalds 已提交
2501
		cond_resched();
2502 2503 2504

		try_to_freeze();

2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521
		/*
		 * Fragmentation may mean that the system cannot be
		 * rebalanced for high-order allocations in all zones.
		 * At this point, if nr_reclaimed < SWAP_CLUSTER_MAX,
		 * it means the zones have been fully scanned and are still
		 * not balanced. For high-order allocations, there is
		 * little point trying all over again as kswapd may
		 * infinite loop.
		 *
		 * Instead, recheck all watermarks at order-0 as they
		 * are the most important. If watermarks are ok, kswapd will go
		 * back to sleep. High-order users can still perform direct
		 * reclaim if they wish.
		 */
		if (sc.nr_reclaimed < SWAP_CLUSTER_MAX)
			order = sc.order = 0;

L
Linus Torvalds 已提交
2522 2523 2524
		goto loop_again;
	}

2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554
	/*
	 * If kswapd was reclaiming at a higher order, it has the option of
	 * sleeping without all zones being balanced. Before it does, it must
	 * ensure that the watermarks for order-0 on *all* zones are met and
	 * that the congestion flags are cleared. The congestion flag must
	 * be cleared as kswapd is the only mechanism that clears the flag
	 * and it is potentially going to sleep here.
	 */
	if (order) {
		for (i = 0; i <= end_zone; i++) {
			struct zone *zone = pgdat->node_zones + i;

			if (!populated_zone(zone))
				continue;

			if (zone->all_unreclaimable && priority != DEF_PRIORITY)
				continue;

			/* Confirm the zone is balanced for order-0 */
			if (!zone_watermark_ok(zone, 0,
					high_wmark_pages(zone), 0, 0)) {
				order = sc.order = 0;
				goto loop_again;
			}

			/* If balanced, clear the congested flag */
			zone_clear_flag(zone, ZONE_CONGESTED);
		}
	}

2555 2556 2557 2558 2559 2560
	/*
	 * Return the order we were reclaiming at so sleeping_prematurely()
	 * makes a decision on the order we were last reclaiming at. However,
	 * if another caller entered the allocator slow path while kswapd
	 * was awake, order will remain at the higher level
	 */
2561
	*classzone_idx = end_zone;
2562
	return order;
L
Linus Torvalds 已提交
2563 2564
}

2565
static void kswapd_try_to_sleep(pg_data_t *pgdat, int order, int classzone_idx)
2566 2567 2568 2569 2570 2571 2572 2573 2574 2575
{
	long remaining = 0;
	DEFINE_WAIT(wait);

	if (freezing(current) || kthread_should_stop())
		return;

	prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);

	/* Try to sleep for a short interval */
2576
	if (!sleeping_prematurely(pgdat, order, remaining, classzone_idx)) {
2577 2578 2579 2580 2581 2582 2583 2584 2585
		remaining = schedule_timeout(HZ/10);
		finish_wait(&pgdat->kswapd_wait, &wait);
		prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
	}

	/*
	 * After a short sleep, check if it was a premature sleep. If not, then
	 * go fully to sleep until explicitly woken up.
	 */
2586
	if (!sleeping_prematurely(pgdat, order, remaining, classzone_idx)) {
2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608
		trace_mm_vmscan_kswapd_sleep(pgdat->node_id);

		/*
		 * vmstat counters are not perfectly accurate and the estimated
		 * value for counters such as NR_FREE_PAGES can deviate from the
		 * true value by nr_online_cpus * threshold. To avoid the zone
		 * watermarks being breached while under pressure, we reduce the
		 * per-cpu vmstat threshold while kswapd is awake and restore
		 * them before going back to sleep.
		 */
		set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold);
		schedule();
		set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold);
	} else {
		if (remaining)
			count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
		else
			count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
	}
	finish_wait(&pgdat->kswapd_wait, &wait);
}

L
Linus Torvalds 已提交
2609 2610
/*
 * The background pageout daemon, started as a kernel thread
2611
 * from the init process.
L
Linus Torvalds 已提交
2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624
 *
 * This basically trickles out pages so that we have _some_
 * free memory available even if there is no other activity
 * that frees anything up. This is needed for things like routing
 * etc, where we otherwise might have all activity going on in
 * asynchronous contexts that cannot page things out.
 *
 * If there are applications that are active memory-allocators
 * (most normal use), this basically shouldn't matter.
 */
static int kswapd(void *p)
{
	unsigned long order;
2625
	int classzone_idx;
L
Linus Torvalds 已提交
2626 2627
	pg_data_t *pgdat = (pg_data_t*)p;
	struct task_struct *tsk = current;
2628

L
Linus Torvalds 已提交
2629 2630 2631
	struct reclaim_state reclaim_state = {
		.reclaimed_slab = 0,
	};
2632
	const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
L
Linus Torvalds 已提交
2633

2634 2635
	lockdep_set_current_reclaim_state(GFP_KERNEL);

R
Rusty Russell 已提交
2636
	if (!cpumask_empty(cpumask))
2637
		set_cpus_allowed_ptr(tsk, cpumask);
L
Linus Torvalds 已提交
2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651
	current->reclaim_state = &reclaim_state;

	/*
	 * Tell the memory management that we're a "memory allocator",
	 * and that if we need more memory we should get access to it
	 * regardless (see "__alloc_pages()"). "kswapd" should
	 * never get caught in the normal page freeing logic.
	 *
	 * (Kswapd normally doesn't need memory anyway, but sometimes
	 * you need a small amount of memory in order to be able to
	 * page out something else, and this flag essentially protects
	 * us from recursively trying to free more memory as we're
	 * trying to free the first piece of memory in the first place).
	 */
2652
	tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
2653
	set_freezable();
L
Linus Torvalds 已提交
2654 2655

	order = 0;
2656
	classzone_idx = MAX_NR_ZONES - 1;
L
Linus Torvalds 已提交
2657 2658
	for ( ; ; ) {
		unsigned long new_order;
2659
		int new_classzone_idx;
2660
		int ret;
2661

L
Linus Torvalds 已提交
2662
		new_order = pgdat->kswapd_max_order;
2663
		new_classzone_idx = pgdat->classzone_idx;
L
Linus Torvalds 已提交
2664
		pgdat->kswapd_max_order = 0;
2665 2666
		pgdat->classzone_idx = MAX_NR_ZONES - 1;
		if (order < new_order || classzone_idx > new_classzone_idx) {
L
Linus Torvalds 已提交
2667 2668
			/*
			 * Don't sleep if someone wants a larger 'order'
2669
			 * allocation or has tigher zone constraints
L
Linus Torvalds 已提交
2670 2671
			 */
			order = new_order;
2672
			classzone_idx = new_classzone_idx;
L
Linus Torvalds 已提交
2673
		} else {
2674
			kswapd_try_to_sleep(pgdat, order, classzone_idx);
L
Linus Torvalds 已提交
2675
			order = pgdat->kswapd_max_order;
2676
			classzone_idx = pgdat->classzone_idx;
2677 2678
			pgdat->kswapd_max_order = 0;
			pgdat->classzone_idx = MAX_NR_ZONES - 1;
L
Linus Torvalds 已提交
2679 2680
		}

2681 2682 2683 2684 2685 2686 2687 2688
		ret = try_to_freeze();
		if (kthread_should_stop())
			break;

		/*
		 * We can speed up thawing tasks if we don't call balance_pgdat
		 * after returning from the refrigerator
		 */
2689 2690
		if (!ret) {
			trace_mm_vmscan_kswapd_wake(pgdat->node_id, order);
2691
			order = balance_pgdat(pgdat, order, &classzone_idx);
2692
		}
L
Linus Torvalds 已提交
2693 2694 2695 2696 2697 2698 2699
	}
	return 0;
}

/*
 * A zone is low on free memory, so wake its kswapd task to service it.
 */
2700
void wakeup_kswapd(struct zone *zone, int order, enum zone_type classzone_idx)
L
Linus Torvalds 已提交
2701 2702 2703
{
	pg_data_t *pgdat;

2704
	if (!populated_zone(zone))
L
Linus Torvalds 已提交
2705 2706
		return;

2707
	if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
L
Linus Torvalds 已提交
2708
		return;
2709
	pgdat = zone->zone_pgdat;
2710
	if (pgdat->kswapd_max_order < order) {
L
Linus Torvalds 已提交
2711
		pgdat->kswapd_max_order = order;
2712 2713
		pgdat->classzone_idx = min(pgdat->classzone_idx, classzone_idx);
	}
2714
	if (!waitqueue_active(&pgdat->kswapd_wait))
L
Linus Torvalds 已提交
2715
		return;
2716 2717 2718 2719
	if (zone_watermark_ok_safe(zone, order, low_wmark_pages(zone), 0, 0))
		return;

	trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, zone_idx(zone), order);
2720
	wake_up_interruptible(&pgdat->kswapd_wait);
L
Linus Torvalds 已提交
2721 2722
}

2723 2724 2725 2726 2727 2728 2729 2730
/*
 * The reclaimable count would be mostly accurate.
 * The less reclaimable pages may be
 * - mlocked pages, which will be moved to unevictable list when encountered
 * - mapped pages, which may require several travels to be reclaimed
 * - dirty pages, which is not "instantly" reclaimable
 */
unsigned long global_reclaimable_pages(void)
2731
{
2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755
	int nr;

	nr = global_page_state(NR_ACTIVE_FILE) +
	     global_page_state(NR_INACTIVE_FILE);

	if (nr_swap_pages > 0)
		nr += global_page_state(NR_ACTIVE_ANON) +
		      global_page_state(NR_INACTIVE_ANON);

	return nr;
}

unsigned long zone_reclaimable_pages(struct zone *zone)
{
	int nr;

	nr = zone_page_state(zone, NR_ACTIVE_FILE) +
	     zone_page_state(zone, NR_INACTIVE_FILE);

	if (nr_swap_pages > 0)
		nr += zone_page_state(zone, NR_ACTIVE_ANON) +
		      zone_page_state(zone, NR_INACTIVE_ANON);

	return nr;
2756 2757
}

2758
#ifdef CONFIG_HIBERNATION
L
Linus Torvalds 已提交
2759
/*
2760
 * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
2761 2762 2763 2764 2765
 * freed pages.
 *
 * Rather than trying to age LRUs the aim is to preserve the overall
 * LRU order by reclaiming preferentially
 * inactive > active > active referenced > active mapped
L
Linus Torvalds 已提交
2766
 */
2767
unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
L
Linus Torvalds 已提交
2768
{
2769 2770
	struct reclaim_state reclaim_state;
	struct scan_control sc = {
2771 2772 2773
		.gfp_mask = GFP_HIGHUSER_MOVABLE,
		.may_swap = 1,
		.may_unmap = 1,
2774
		.may_writepage = 1,
2775 2776 2777 2778
		.nr_to_reclaim = nr_to_reclaim,
		.hibernation_mode = 1,
		.swappiness = vm_swappiness,
		.order = 0,
L
Linus Torvalds 已提交
2779
	};
2780 2781 2782
	struct zonelist * zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
	struct task_struct *p = current;
	unsigned long nr_reclaimed;
L
Linus Torvalds 已提交
2783

2784 2785 2786 2787
	p->flags |= PF_MEMALLOC;
	lockdep_set_current_reclaim_state(sc.gfp_mask);
	reclaim_state.reclaimed_slab = 0;
	p->reclaim_state = &reclaim_state;
2788

2789
	nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
2790

2791 2792 2793
	p->reclaim_state = NULL;
	lockdep_clear_current_reclaim_state();
	p->flags &= ~PF_MEMALLOC;
2794

2795
	return nr_reclaimed;
L
Linus Torvalds 已提交
2796
}
2797
#endif /* CONFIG_HIBERNATION */
L
Linus Torvalds 已提交
2798 2799 2800 2801 2802

/* It's optimal to keep kswapds on the same CPUs as their memory, but
   not required for correctness.  So if the last cpu in a node goes
   away, we get changed to run anywhere: as the first one comes back,
   restore their cpu bindings. */
2803
static int __devinit cpu_callback(struct notifier_block *nfb,
2804
				  unsigned long action, void *hcpu)
L
Linus Torvalds 已提交
2805
{
2806
	int nid;
L
Linus Torvalds 已提交
2807

2808
	if (action == CPU_ONLINE || action == CPU_ONLINE_FROZEN) {
2809
		for_each_node_state(nid, N_HIGH_MEMORY) {
2810
			pg_data_t *pgdat = NODE_DATA(nid);
2811 2812 2813
			const struct cpumask *mask;

			mask = cpumask_of_node(pgdat->node_id);
2814

2815
			if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
L
Linus Torvalds 已提交
2816
				/* One of our CPUs online: restore mask */
2817
				set_cpus_allowed_ptr(pgdat->kswapd, mask);
L
Linus Torvalds 已提交
2818 2819 2820 2821 2822
		}
	}
	return NOTIFY_OK;
}

2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844
/*
 * This kswapd start function will be called by init and node-hot-add.
 * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
 */
int kswapd_run(int nid)
{
	pg_data_t *pgdat = NODE_DATA(nid);
	int ret = 0;

	if (pgdat->kswapd)
		return 0;

	pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
	if (IS_ERR(pgdat->kswapd)) {
		/* failure at boot is fatal */
		BUG_ON(system_state == SYSTEM_BOOTING);
		printk("Failed to start kswapd on node %d\n",nid);
		ret = -1;
	}
	return ret;
}

2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855
/*
 * Called by memory hotplug when all memory in a node is offlined.
 */
void kswapd_stop(int nid)
{
	struct task_struct *kswapd = NODE_DATA(nid)->kswapd;

	if (kswapd)
		kthread_stop(kswapd);
}

L
Linus Torvalds 已提交
2856 2857
static int __init kswapd_init(void)
{
2858
	int nid;
2859

L
Linus Torvalds 已提交
2860
	swap_setup();
2861
	for_each_node_state(nid, N_HIGH_MEMORY)
2862
 		kswapd_run(nid);
L
Linus Torvalds 已提交
2863 2864 2865 2866 2867
	hotcpu_notifier(cpu_callback, 0);
	return 0;
}

module_init(kswapd_init)
2868 2869 2870 2871 2872 2873 2874 2875 2876 2877

#ifdef CONFIG_NUMA
/*
 * Zone reclaim mode
 *
 * If non-zero call zone_reclaim when the number of free pages falls below
 * the watermarks.
 */
int zone_reclaim_mode __read_mostly;

2878
#define RECLAIM_OFF 0
2879
#define RECLAIM_ZONE (1<<0)	/* Run shrink_inactive_list on the zone */
2880 2881 2882
#define RECLAIM_WRITE (1<<1)	/* Writeout pages during reclaim */
#define RECLAIM_SWAP (1<<2)	/* Swap pages out during reclaim */

2883 2884 2885 2886 2887 2888 2889
/*
 * Priority for ZONE_RECLAIM. This determines the fraction of pages
 * of a node considered for each zone_reclaim. 4 scans 1/16th of
 * a zone.
 */
#define ZONE_RECLAIM_PRIORITY 4

2890 2891 2892 2893 2894 2895
/*
 * Percentage of pages in a zone that must be unmapped for zone_reclaim to
 * occur.
 */
int sysctl_min_unmapped_ratio = 1;

2896 2897 2898 2899 2900 2901
/*
 * If the number of slab pages in a zone grows beyond this percentage then
 * slab reclaim needs to occur.
 */
int sysctl_min_slab_ratio = 5;

2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943
static inline unsigned long zone_unmapped_file_pages(struct zone *zone)
{
	unsigned long file_mapped = zone_page_state(zone, NR_FILE_MAPPED);
	unsigned long file_lru = zone_page_state(zone, NR_INACTIVE_FILE) +
		zone_page_state(zone, NR_ACTIVE_FILE);

	/*
	 * It's possible for there to be more file mapped pages than
	 * accounted for by the pages on the file LRU lists because
	 * tmpfs pages accounted for as ANON can also be FILE_MAPPED
	 */
	return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
}

/* Work out how many page cache pages we can reclaim in this reclaim_mode */
static long zone_pagecache_reclaimable(struct zone *zone)
{
	long nr_pagecache_reclaimable;
	long delta = 0;

	/*
	 * If RECLAIM_SWAP is set, then all file pages are considered
	 * potentially reclaimable. Otherwise, we have to worry about
	 * pages like swapcache and zone_unmapped_file_pages() provides
	 * a better estimate
	 */
	if (zone_reclaim_mode & RECLAIM_SWAP)
		nr_pagecache_reclaimable = zone_page_state(zone, NR_FILE_PAGES);
	else
		nr_pagecache_reclaimable = zone_unmapped_file_pages(zone);

	/* If we can't clean pages, remove dirty pages from consideration */
	if (!(zone_reclaim_mode & RECLAIM_WRITE))
		delta += zone_page_state(zone, NR_FILE_DIRTY);

	/* Watch for any possible underflows due to delta */
	if (unlikely(delta > nr_pagecache_reclaimable))
		delta = nr_pagecache_reclaimable;

	return nr_pagecache_reclaimable - delta;
}

2944 2945 2946
/*
 * Try to free up some pages from this zone through reclaim.
 */
2947
static int __zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
2948
{
2949
	/* Minimum pages needed in order to stay on node */
2950
	const unsigned long nr_pages = 1 << order;
2951 2952
	struct task_struct *p = current;
	struct reclaim_state reclaim_state;
2953
	int priority;
2954 2955
	struct scan_control sc = {
		.may_writepage = !!(zone_reclaim_mode & RECLAIM_WRITE),
2956
		.may_unmap = !!(zone_reclaim_mode & RECLAIM_SWAP),
2957
		.may_swap = 1,
2958 2959
		.nr_to_reclaim = max_t(unsigned long, nr_pages,
				       SWAP_CLUSTER_MAX),
2960
		.gfp_mask = gfp_mask,
2961
		.swappiness = vm_swappiness,
2962
		.order = order,
2963
	};
2964
	unsigned long nr_slab_pages0, nr_slab_pages1;
2965 2966

	cond_resched();
2967 2968 2969 2970 2971 2972
	/*
	 * We need to be able to allocate from the reserves for RECLAIM_SWAP
	 * and we also need to be able to write out pages for RECLAIM_WRITE
	 * and RECLAIM_SWAP.
	 */
	p->flags |= PF_MEMALLOC | PF_SWAPWRITE;
2973
	lockdep_set_current_reclaim_state(gfp_mask);
2974 2975
	reclaim_state.reclaimed_slab = 0;
	p->reclaim_state = &reclaim_state;
2976

2977
	if (zone_pagecache_reclaimable(zone) > zone->min_unmapped_pages) {
2978 2979 2980 2981 2982 2983
		/*
		 * Free memory by calling shrink zone with increasing
		 * priorities until we have enough memory freed.
		 */
		priority = ZONE_RECLAIM_PRIORITY;
		do {
2984
			shrink_zone(priority, zone, &sc);
2985
			priority--;
2986
		} while (priority >= 0 && sc.nr_reclaimed < nr_pages);
2987
	}
2988

2989 2990
	nr_slab_pages0 = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
	if (nr_slab_pages0 > zone->min_slab_pages) {
2991
		/*
2992
		 * shrink_slab() does not currently allow us to determine how
2993 2994 2995 2996
		 * many pages were freed in this zone. So we take the current
		 * number of slab pages and shake the slab until it is reduced
		 * by the same nr_pages that we used for reclaiming unmapped
		 * pages.
2997
		 *
2998 2999
		 * Note that shrink_slab will free memory on all zones and may
		 * take a long time.
3000
		 */
3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013
		for (;;) {
			unsigned long lru_pages = zone_reclaimable_pages(zone);

			/* No reclaimable slab or very low memory pressure */
			if (!shrink_slab(sc.nr_scanned, gfp_mask, lru_pages))
				break;

			/* Freed enough memory */
			nr_slab_pages1 = zone_page_state(zone,
							NR_SLAB_RECLAIMABLE);
			if (nr_slab_pages1 + nr_pages <= nr_slab_pages0)
				break;
		}
3014 3015 3016 3017 3018

		/*
		 * Update nr_reclaimed by the number of slab pages we
		 * reclaimed from this zone.
		 */
3019 3020 3021
		nr_slab_pages1 = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
		if (nr_slab_pages1 < nr_slab_pages0)
			sc.nr_reclaimed += nr_slab_pages0 - nr_slab_pages1;
3022 3023
	}

3024
	p->reclaim_state = NULL;
3025
	current->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE);
3026
	lockdep_clear_current_reclaim_state();
3027
	return sc.nr_reclaimed >= nr_pages;
3028
}
3029 3030 3031 3032

int zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
{
	int node_id;
3033
	int ret;
3034 3035

	/*
3036 3037
	 * Zone reclaim reclaims unmapped file backed pages and
	 * slab pages if we are over the defined limits.
3038
	 *
3039 3040 3041 3042 3043
	 * A small portion of unmapped file backed pages is needed for
	 * file I/O otherwise pages read by file I/O will be immediately
	 * thrown out if the zone is overallocated. So we do not reclaim
	 * if less than a specified percentage of the zone is used by
	 * unmapped file backed pages.
3044
	 */
3045 3046
	if (zone_pagecache_reclaimable(zone) <= zone->min_unmapped_pages &&
	    zone_page_state(zone, NR_SLAB_RECLAIMABLE) <= zone->min_slab_pages)
3047
		return ZONE_RECLAIM_FULL;
3048

3049
	if (zone->all_unreclaimable)
3050
		return ZONE_RECLAIM_FULL;
3051

3052
	/*
3053
	 * Do not scan if the allocation should not be delayed.
3054
	 */
3055
	if (!(gfp_mask & __GFP_WAIT) || (current->flags & PF_MEMALLOC))
3056
		return ZONE_RECLAIM_NOSCAN;
3057 3058 3059 3060 3061 3062 3063

	/*
	 * Only run zone reclaim on the local zone or on zones that do not
	 * have associated processors. This will favor the local processor
	 * over remote processors and spread off node memory allocations
	 * as wide as possible.
	 */
3064
	node_id = zone_to_nid(zone);
3065
	if (node_state(node_id, N_CPU) && node_id != numa_node_id())
3066
		return ZONE_RECLAIM_NOSCAN;
3067 3068

	if (zone_test_and_set_flag(zone, ZONE_RECLAIM_LOCKED))
3069 3070
		return ZONE_RECLAIM_NOSCAN;

3071 3072 3073
	ret = __zone_reclaim(zone, gfp_mask, order);
	zone_clear_flag(zone, ZONE_RECLAIM_LOCKED);

3074 3075 3076
	if (!ret)
		count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);

3077
	return ret;
3078
}
3079
#endif
L
Lee Schermerhorn 已提交
3080 3081 3082 3083 3084 3085 3086

/*
 * page_evictable - test whether a page is evictable
 * @page: the page to test
 * @vma: the VMA in which the page is or will be mapped, may be NULL
 *
 * Test whether page is evictable--i.e., should be placed on active/inactive
N
Nick Piggin 已提交
3087 3088
 * lists vs unevictable list.  The vma argument is !NULL when called from the
 * fault path to determine how to instantate a new page.
L
Lee Schermerhorn 已提交
3089 3090
 *
 * Reasons page might not be evictable:
3091
 * (1) page's mapping marked unevictable
N
Nick Piggin 已提交
3092
 * (2) page is part of an mlocked VMA
3093
 *
L
Lee Schermerhorn 已提交
3094 3095 3096 3097
 */
int page_evictable(struct page *page, struct vm_area_struct *vma)
{

3098 3099 3100
	if (mapping_unevictable(page_mapping(page)))
		return 0;

N
Nick Piggin 已提交
3101 3102
	if (PageMlocked(page) || (vma && is_mlocked_vma(vma, page)))
		return 0;
L
Lee Schermerhorn 已提交
3103 3104 3105

	return 1;
}
3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124

/**
 * check_move_unevictable_page - check page for evictability and move to appropriate zone lru list
 * @page: page to check evictability and move to appropriate lru list
 * @zone: zone page is in
 *
 * Checks a page for evictability and moves the page to the appropriate
 * zone lru list.
 *
 * Restrictions: zone->lru_lock must be held, page must be on LRU and must
 * have PageUnevictable set.
 */
static void check_move_unevictable_page(struct page *page, struct zone *zone)
{
	VM_BUG_ON(PageActive(page));

retry:
	ClearPageUnevictable(page);
	if (page_evictable(page, NULL)) {
3125
		enum lru_list l = page_lru_base_type(page);
3126

3127 3128
		__dec_zone_state(zone, NR_UNEVICTABLE);
		list_move(&page->lru, &zone->lru[l].list);
K
KAMEZAWA Hiroyuki 已提交
3129
		mem_cgroup_move_lists(page, LRU_UNEVICTABLE, l);
3130 3131 3132 3133 3134 3135 3136 3137
		__inc_zone_state(zone, NR_INACTIVE_ANON + l);
		__count_vm_event(UNEVICTABLE_PGRESCUED);
	} else {
		/*
		 * rotate unevictable list
		 */
		SetPageUnevictable(page);
		list_move(&page->lru, &zone->lru[LRU_UNEVICTABLE].list);
K
KAMEZAWA Hiroyuki 已提交
3138
		mem_cgroup_rotate_lru_list(page, LRU_UNEVICTABLE);
3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197
		if (page_evictable(page, NULL))
			goto retry;
	}
}

/**
 * scan_mapping_unevictable_pages - scan an address space for evictable pages
 * @mapping: struct address_space to scan for evictable pages
 *
 * Scan all pages in mapping.  Check unevictable pages for
 * evictability and move them to the appropriate zone lru list.
 */
void scan_mapping_unevictable_pages(struct address_space *mapping)
{
	pgoff_t next = 0;
	pgoff_t end   = (i_size_read(mapping->host) + PAGE_CACHE_SIZE - 1) >>
			 PAGE_CACHE_SHIFT;
	struct zone *zone;
	struct pagevec pvec;

	if (mapping->nrpages == 0)
		return;

	pagevec_init(&pvec, 0);
	while (next < end &&
		pagevec_lookup(&pvec, mapping, next, PAGEVEC_SIZE)) {
		int i;
		int pg_scanned = 0;

		zone = NULL;

		for (i = 0; i < pagevec_count(&pvec); i++) {
			struct page *page = pvec.pages[i];
			pgoff_t page_index = page->index;
			struct zone *pagezone = page_zone(page);

			pg_scanned++;
			if (page_index > next)
				next = page_index;
			next++;

			if (pagezone != zone) {
				if (zone)
					spin_unlock_irq(&zone->lru_lock);
				zone = pagezone;
				spin_lock_irq(&zone->lru_lock);
			}

			if (PageLRU(page) && PageUnevictable(page))
				check_move_unevictable_page(page, zone);
		}
		if (zone)
			spin_unlock_irq(&zone->lru_lock);
		pagevec_release(&pvec);

		count_vm_events(UNEVICTABLE_PGSCANNED, pg_scanned);
	}

}
3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209

/**
 * scan_zone_unevictable_pages - check unevictable list for evictable pages
 * @zone - zone of which to scan the unevictable list
 *
 * Scan @zone's unevictable LRU lists to check for pages that have become
 * evictable.  Move those that have to @zone's inactive list where they
 * become candidates for reclaim, unless shrink_inactive_zone() decides
 * to reactivate them.  Pages that are still unevictable are rotated
 * back onto @zone's unevictable list.
 */
#define SCAN_UNEVICTABLE_BATCH_SIZE 16UL /* arbitrary lock hold batch size */
3210
static void scan_zone_unevictable_pages(struct zone *zone)
3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251
{
	struct list_head *l_unevictable = &zone->lru[LRU_UNEVICTABLE].list;
	unsigned long scan;
	unsigned long nr_to_scan = zone_page_state(zone, NR_UNEVICTABLE);

	while (nr_to_scan > 0) {
		unsigned long batch_size = min(nr_to_scan,
						SCAN_UNEVICTABLE_BATCH_SIZE);

		spin_lock_irq(&zone->lru_lock);
		for (scan = 0;  scan < batch_size; scan++) {
			struct page *page = lru_to_page(l_unevictable);

			if (!trylock_page(page))
				continue;

			prefetchw_prev_lru_page(page, l_unevictable, flags);

			if (likely(PageLRU(page) && PageUnevictable(page)))
				check_move_unevictable_page(page, zone);

			unlock_page(page);
		}
		spin_unlock_irq(&zone->lru_lock);

		nr_to_scan -= batch_size;
	}
}


/**
 * scan_all_zones_unevictable_pages - scan all unevictable lists for evictable pages
 *
 * A really big hammer:  scan all zones' unevictable LRU lists to check for
 * pages that have become evictable.  Move those back to the zones'
 * inactive list where they become candidates for reclaim.
 * This occurs when, e.g., we have unswappable pages on the unevictable lists,
 * and we add swap to the system.  As such, it runs in the context of a task
 * that has possibly/probably made some previously unevictable pages
 * evictable.
 */
3252
static void scan_all_zones_unevictable_pages(void)
3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267
{
	struct zone *zone;

	for_each_zone(zone) {
		scan_zone_unevictable_pages(zone);
	}
}

/*
 * scan_unevictable_pages [vm] sysctl handler.  On demand re-scan of
 * all nodes' unevictable lists for evictable pages
 */
unsigned long scan_unevictable_pages;

int scan_unevictable_handler(struct ctl_table *table, int write,
3268
			   void __user *buffer,
3269 3270
			   size_t *length, loff_t *ppos)
{
3271
	proc_doulongvec_minmax(table, write, buffer, length, ppos);
3272 3273 3274 3275 3276 3277 3278 3279

	if (write && *(unsigned long *)table->data)
		scan_all_zones_unevictable_pages();

	scan_unevictable_pages = 0;
	return 0;
}

3280
#ifdef CONFIG_NUMA
3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326
/*
 * per node 'scan_unevictable_pages' attribute.  On demand re-scan of
 * a specified node's per zone unevictable lists for evictable pages.
 */

static ssize_t read_scan_unevictable_node(struct sys_device *dev,
					  struct sysdev_attribute *attr,
					  char *buf)
{
	return sprintf(buf, "0\n");	/* always zero; should fit... */
}

static ssize_t write_scan_unevictable_node(struct sys_device *dev,
					   struct sysdev_attribute *attr,
					const char *buf, size_t count)
{
	struct zone *node_zones = NODE_DATA(dev->id)->node_zones;
	struct zone *zone;
	unsigned long res;
	unsigned long req = strict_strtoul(buf, 10, &res);

	if (!req)
		return 1;	/* zero is no-op */

	for (zone = node_zones; zone - node_zones < MAX_NR_ZONES; ++zone) {
		if (!populated_zone(zone))
			continue;
		scan_zone_unevictable_pages(zone);
	}
	return 1;
}


static SYSDEV_ATTR(scan_unevictable_pages, S_IRUGO | S_IWUSR,
			read_scan_unevictable_node,
			write_scan_unevictable_node);

int scan_unevictable_register_node(struct node *node)
{
	return sysdev_create_file(&node->sysdev, &attr_scan_unevictable_pages);
}

void scan_unevictable_unregister_node(struct node *node)
{
	sysdev_remove_file(&node->sysdev, &attr_scan_unevictable_pages);
}
3327
#endif