memcontrol.c 180.3 KB
Newer Older
B
Balbir Singh 已提交
1 2 3 4 5
/* memcontrol.c - Memory Controller
 *
 * Copyright IBM Corporation, 2007
 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
 *
6 7 8
 * Copyright 2007 OpenVZ SWsoft Inc
 * Author: Pavel Emelianov <xemul@openvz.org>
 *
9 10 11 12
 * Memory thresholds
 * Copyright (C) 2009 Nokia Corporation
 * Author: Kirill A. Shutemov
 *
13 14 15 16
 * Kernel Memory Controller
 * Copyright (C) 2012 Parallels Inc. and Google Inc.
 * Authors: Glauber Costa and Suleiman Souhlal
 *
B
Balbir Singh 已提交
17 18 19 20 21 22 23 24 25 26 27 28 29 30
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 */

#include <linux/res_counter.h>
#include <linux/memcontrol.h>
#include <linux/cgroup.h>
31
#include <linux/mm.h>
32
#include <linux/hugetlb.h>
K
KAMEZAWA Hiroyuki 已提交
33
#include <linux/pagemap.h>
34
#include <linux/smp.h>
35
#include <linux/page-flags.h>
36
#include <linux/backing-dev.h>
37 38
#include <linux/bit_spinlock.h>
#include <linux/rcupdate.h>
39
#include <linux/limits.h>
40
#include <linux/export.h>
41
#include <linux/mutex.h>
42
#include <linux/rbtree.h>
43
#include <linux/slab.h>
44
#include <linux/swap.h>
45
#include <linux/swapops.h>
46
#include <linux/spinlock.h>
47 48
#include <linux/eventfd.h>
#include <linux/sort.h>
49
#include <linux/fs.h>
50
#include <linux/seq_file.h>
51
#include <linux/vmalloc.h>
52
#include <linux/mm_inline.h>
53
#include <linux/page_cgroup.h>
54
#include <linux/cpu.h>
55
#include <linux/oom.h>
K
KAMEZAWA Hiroyuki 已提交
56
#include "internal.h"
G
Glauber Costa 已提交
57
#include <net/sock.h>
M
Michal Hocko 已提交
58
#include <net/ip.h>
G
Glauber Costa 已提交
59
#include <net/tcp_memcontrol.h>
B
Balbir Singh 已提交
60

61 62
#include <asm/uaccess.h>

63 64
#include <trace/events/vmscan.h>

65
struct cgroup_subsys mem_cgroup_subsys __read_mostly;
66 67
EXPORT_SYMBOL(mem_cgroup_subsys);

68
#define MEM_CGROUP_RECLAIM_RETRIES	5
69
static struct mem_cgroup *root_mem_cgroup __read_mostly;
B
Balbir Singh 已提交
70

A
Andrew Morton 已提交
71
#ifdef CONFIG_MEMCG_SWAP
L
Li Zefan 已提交
72
/* Turned on only when memory cgroup is enabled && really_do_swap_account = 1 */
73
int do_swap_account __read_mostly;
74 75

/* for remember boot option*/
A
Andrew Morton 已提交
76
#ifdef CONFIG_MEMCG_SWAP_ENABLED
77 78 79 80 81
static int really_do_swap_account __initdata = 1;
#else
static int really_do_swap_account __initdata = 0;
#endif

82
#else
83
#define do_swap_account		0
84 85 86
#endif


87 88 89 90 91 92 93 94
/*
 * Statistics for memory cgroup.
 */
enum mem_cgroup_stat_index {
	/*
	 * For MEM_CONTAINER_TYPE_ALL, usage = pagecache + rss.
	 */
	MEM_CGROUP_STAT_CACHE, 	   /* # of pages charged as cache */
95
	MEM_CGROUP_STAT_RSS,	   /* # of pages charged as anon rss */
96
	MEM_CGROUP_STAT_FILE_MAPPED,  /* # of pages charged as file rss */
97
	MEM_CGROUP_STAT_SWAP, /* # of pages, swapped out */
98 99 100
	MEM_CGROUP_STAT_NSTATS,
};

101 102 103 104 105 106 107
static const char * const mem_cgroup_stat_names[] = {
	"cache",
	"rss",
	"mapped_file",
	"swap",
};

108 109 110
enum mem_cgroup_events_index {
	MEM_CGROUP_EVENTS_PGPGIN,	/* # of pages paged in */
	MEM_CGROUP_EVENTS_PGPGOUT,	/* # of pages paged out */
111 112
	MEM_CGROUP_EVENTS_PGFAULT,	/* # of page-faults */
	MEM_CGROUP_EVENTS_PGMAJFAULT,	/* # of major page-faults */
113 114
	MEM_CGROUP_EVENTS_NSTATS,
};
115 116 117 118 119 120 121 122

static const char * const mem_cgroup_events_names[] = {
	"pgpgin",
	"pgpgout",
	"pgfault",
	"pgmajfault",
};

123 124 125 126 127 128 129 130
static const char * const mem_cgroup_lru_names[] = {
	"inactive_anon",
	"active_anon",
	"inactive_file",
	"active_file",
	"unevictable",
};

131 132 133 134 135 136 137 138 139
/*
 * Per memcg event counter is incremented at every pagein/pageout. With THP,
 * it will be incremated by the number of pages. This counter is used for
 * for trigger some periodic events. This is straightforward and better
 * than using jiffies etc. to handle periodic memcg event.
 */
enum mem_cgroup_events_target {
	MEM_CGROUP_TARGET_THRESH,
	MEM_CGROUP_TARGET_SOFTLIMIT,
140
	MEM_CGROUP_TARGET_NUMAINFO,
141 142
	MEM_CGROUP_NTARGETS,
};
143 144 145
#define THRESHOLDS_EVENTS_TARGET 128
#define SOFTLIMIT_EVENTS_TARGET 1024
#define NUMAINFO_EVENTS_TARGET	1024
146

147
struct mem_cgroup_stat_cpu {
148
	long count[MEM_CGROUP_STAT_NSTATS];
149
	unsigned long events[MEM_CGROUP_EVENTS_NSTATS];
150
	unsigned long nr_page_events;
151
	unsigned long targets[MEM_CGROUP_NTARGETS];
152 153
};

154 155 156 157 158 159 160
struct mem_cgroup_reclaim_iter {
	/* css_id of the last scanned hierarchy member */
	int position;
	/* scan generation, increased every round-trip */
	unsigned int generation;
};

161 162 163 164
/*
 * per-zone information in memory controller.
 */
struct mem_cgroup_per_zone {
165
	struct lruvec		lruvec;
166
	unsigned long		lru_size[NR_LRU_LISTS];
K
KOSAKI Motohiro 已提交
167

168 169
	struct mem_cgroup_reclaim_iter reclaim_iter[DEF_PRIORITY + 1];

170 171 172 173
	struct rb_node		tree_node;	/* RB tree node */
	unsigned long long	usage_in_excess;/* Set to the value by which */
						/* the soft limit is exceeded*/
	bool			on_tree;
174
	struct mem_cgroup	*memcg;		/* Back pointer, we cannot */
175
						/* use container_of	   */
176 177 178 179 180 181 182
};

struct mem_cgroup_per_node {
	struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
};

struct mem_cgroup_lru_info {
183
	struct mem_cgroup_per_node *nodeinfo[0];
184 185
};

186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205
/*
 * Cgroups above their limits are maintained in a RB-Tree, independent of
 * their hierarchy representation
 */

struct mem_cgroup_tree_per_zone {
	struct rb_root rb_root;
	spinlock_t lock;
};

struct mem_cgroup_tree_per_node {
	struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
};

struct mem_cgroup_tree {
	struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
};

static struct mem_cgroup_tree soft_limit_tree __read_mostly;

206 207 208 209 210
struct mem_cgroup_threshold {
	struct eventfd_ctx *eventfd;
	u64 threshold;
};

K
KAMEZAWA Hiroyuki 已提交
211
/* For threshold */
212
struct mem_cgroup_threshold_ary {
213
	/* An array index points to threshold just below or equal to usage. */
214
	int current_threshold;
215 216 217 218 219
	/* Size of entries[] */
	unsigned int size;
	/* Array of thresholds */
	struct mem_cgroup_threshold entries[0];
};
220 221 222 223 224 225 226 227 228 229 230 231

struct mem_cgroup_thresholds {
	/* Primary thresholds array */
	struct mem_cgroup_threshold_ary *primary;
	/*
	 * Spare threshold array.
	 * This is needed to make mem_cgroup_unregister_event() "never fail".
	 * It must be able to store at least primary->size - 1 entries.
	 */
	struct mem_cgroup_threshold_ary *spare;
};

K
KAMEZAWA Hiroyuki 已提交
232 233 234 235 236
/* for OOM */
struct mem_cgroup_eventfd_list {
	struct list_head list;
	struct eventfd_ctx *eventfd;
};
237

238 239
static void mem_cgroup_threshold(struct mem_cgroup *memcg);
static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
240

B
Balbir Singh 已提交
241 242 243 244 245 246 247
/*
 * The memory controller data structure. The memory controller controls both
 * page cache and RSS per cgroup. We would eventually like to provide
 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
 * to help the administrator determine what knobs to tune.
 *
 * TODO: Add a water mark for the memory controller. Reclaim will begin when
248 249 250
 * we hit the water mark. May be even add a low water mark, such that
 * no reclaim occurs from a cgroup at it's low water mark, this is
 * a feature that will be implemented much later in the future.
B
Balbir Singh 已提交
251 252 253 254 255 256 257
 */
struct mem_cgroup {
	struct cgroup_subsys_state css;
	/*
	 * the counter to account for memory usage
	 */
	struct res_counter res;
258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275

	union {
		/*
		 * the counter to account for mem+swap usage.
		 */
		struct res_counter memsw;

		/*
		 * rcu_freeing is used only when freeing struct mem_cgroup,
		 * so put it into a union to avoid wasting more memory.
		 * It must be disjoint from the css field.  It could be
		 * in a union with the res field, but res plays a much
		 * larger part in mem_cgroup life than memsw, and might
		 * be of interest, even at time of free, when debugging.
		 * So share rcu_head with the less interesting memsw.
		 */
		struct rcu_head rcu_freeing;
		/*
276 277
		 * We also need some space for a worker in deferred freeing.
		 * By the time we call it, rcu_freeing is no longer in use.
278 279 280 281
		 */
		struct work_struct work_freeing;
	};

282 283 284 285
	/*
	 * the counter to account for kernel memory usage.
	 */
	struct res_counter kmem;
286 287 288 289
	/*
	 * Should the accounting and control be hierarchical, per subtree?
	 */
	bool use_hierarchy;
290
	unsigned long kmem_account_flags; /* See KMEM_ACCOUNTED_*, below */
291 292 293 294

	bool		oom_lock;
	atomic_t	under_oom;

295
	atomic_t	refcnt;
296

297
	int	swappiness;
298 299
	/* OOM-Killer disable */
	int		oom_kill_disable;
K
KOSAKI Motohiro 已提交
300

301 302 303
	/* set when res.limit == memsw.limit */
	bool		memsw_is_minimum;

304 305 306 307
	/* protect arrays of thresholds */
	struct mutex thresholds_lock;

	/* thresholds for memory usage. RCU-protected */
308
	struct mem_cgroup_thresholds thresholds;
309

310
	/* thresholds for mem+swap usage. RCU-protected */
311
	struct mem_cgroup_thresholds memsw_thresholds;
312

K
KAMEZAWA Hiroyuki 已提交
313 314
	/* For oom notifier event fd */
	struct list_head oom_notify;
315

316 317 318 319 320
	/*
	 * Should we move charges of a task when a task is moved into this
	 * mem_cgroup ? And what type of charges should we move ?
	 */
	unsigned long 	move_charge_at_immigrate;
321 322 323 324
	/*
	 * set > 0 if pages under this cgroup are moving to other cgroup.
	 */
	atomic_t	moving_account;
325 326
	/* taken only while moving_account > 0 */
	spinlock_t	move_lock;
327
	/*
328
	 * percpu counter.
329
	 */
330
	struct mem_cgroup_stat_cpu __percpu *stat;
331 332 333 334 335 336
	/*
	 * used when a cpu is offlined or other synchronizations
	 * See mem_cgroup_read_stat().
	 */
	struct mem_cgroup_stat_cpu nocpu_base;
	spinlock_t pcp_counter_lock;
G
Glauber Costa 已提交
337

M
Michal Hocko 已提交
338
#if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_INET)
G
Glauber Costa 已提交
339 340
	struct tcp_memcontrol tcp_mem;
#endif
341 342 343 344 345 346 347 348
#if defined(CONFIG_MEMCG_KMEM)
	/* analogous to slab_common's slab_caches list. per-memcg */
	struct list_head memcg_slab_caches;
	/* Not a spinlock, we can take a lot of time walking the list */
	struct mutex slab_caches_mutex;
        /* Index in the kmem_cache->memcg_params->memcg_caches array */
	int kmemcg_id;
#endif
349 350 351 352 353 354 355 356 357 358 359 360 361 362 363

	int last_scanned_node;
#if MAX_NUMNODES > 1
	nodemask_t	scan_nodes;
	atomic_t	numainfo_events;
	atomic_t	numainfo_updating;
#endif
	/*
	 * Per cgroup active and inactive list, similar to the
	 * per zone LRU lists.
	 *
	 * WARNING: This has to be the last element of the struct. Don't
	 * add new fields after this point.
	 */
	struct mem_cgroup_lru_info info;
B
Balbir Singh 已提交
364 365
};

366 367 368 369 370 371
static size_t memcg_size(void)
{
	return sizeof(struct mem_cgroup) +
		nr_node_ids * sizeof(struct mem_cgroup_per_node);
}

372 373 374
/* internal only representation about the status of kmem accounting. */
enum {
	KMEM_ACCOUNTED_ACTIVE = 0, /* accounted by this cgroup itself */
375
	KMEM_ACCOUNTED_ACTIVATED, /* static key enabled. */
376
	KMEM_ACCOUNTED_DEAD, /* dead memcg with pending kmem charges */
377 378
};

379 380 381
/* We account when limit is on, but only after call sites are patched */
#define KMEM_ACCOUNTED_MASK \
		((1 << KMEM_ACCOUNTED_ACTIVE) | (1 << KMEM_ACCOUNTED_ACTIVATED))
382 383 384 385 386 387

#ifdef CONFIG_MEMCG_KMEM
static inline void memcg_kmem_set_active(struct mem_cgroup *memcg)
{
	set_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags);
}
388 389 390 391 392 393

static bool memcg_kmem_is_active(struct mem_cgroup *memcg)
{
	return test_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags);
}

394 395 396 397 398
static void memcg_kmem_set_activated(struct mem_cgroup *memcg)
{
	set_bit(KMEM_ACCOUNTED_ACTIVATED, &memcg->kmem_account_flags);
}

399 400 401 402 403
static void memcg_kmem_clear_activated(struct mem_cgroup *memcg)
{
	clear_bit(KMEM_ACCOUNTED_ACTIVATED, &memcg->kmem_account_flags);
}

404 405 406 407 408 409 410 411 412 413 414
static void memcg_kmem_mark_dead(struct mem_cgroup *memcg)
{
	if (test_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags))
		set_bit(KMEM_ACCOUNTED_DEAD, &memcg->kmem_account_flags);
}

static bool memcg_kmem_test_and_clear_dead(struct mem_cgroup *memcg)
{
	return test_and_clear_bit(KMEM_ACCOUNTED_DEAD,
				  &memcg->kmem_account_flags);
}
415 416
#endif

417 418
/* Stuffs for move charges at task migration. */
/*
419 420
 * Types of charges to be moved. "move_charge_at_immitgrate" and
 * "immigrate_flags" are treated as a left-shifted bitmap of these types.
421 422
 */
enum move_type {
423
	MOVE_CHARGE_TYPE_ANON,	/* private anonymous page and swap of it */
424
	MOVE_CHARGE_TYPE_FILE,	/* file page(including tmpfs) and swap of it */
425 426 427
	NR_MOVE_TYPE,
};

428 429
/* "mc" and its members are protected by cgroup_mutex */
static struct move_charge_struct {
430
	spinlock_t	  lock; /* for from, to */
431 432
	struct mem_cgroup *from;
	struct mem_cgroup *to;
433
	unsigned long immigrate_flags;
434
	unsigned long precharge;
435
	unsigned long moved_charge;
436
	unsigned long moved_swap;
437 438 439
	struct task_struct *moving_task;	/* a task moving charges */
	wait_queue_head_t waitq;		/* a waitq for other context */
} mc = {
440
	.lock = __SPIN_LOCK_UNLOCKED(mc.lock),
441 442
	.waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
};
443

D
Daisuke Nishimura 已提交
444 445
static bool move_anon(void)
{
446
	return test_bit(MOVE_CHARGE_TYPE_ANON, &mc.immigrate_flags);
D
Daisuke Nishimura 已提交
447 448
}

449 450
static bool move_file(void)
{
451
	return test_bit(MOVE_CHARGE_TYPE_FILE, &mc.immigrate_flags);
452 453
}

454 455 456 457
/*
 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
 * limit reclaim to prevent infinite loops, if they ever occur.
 */
458 459
#define	MEM_CGROUP_MAX_RECLAIM_LOOPS		100
#define	MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS	2
460

461 462
enum charge_type {
	MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
463
	MEM_CGROUP_CHARGE_TYPE_ANON,
K
KAMEZAWA Hiroyuki 已提交
464
	MEM_CGROUP_CHARGE_TYPE_SWAPOUT,	/* for accounting swapcache */
K
KAMEZAWA Hiroyuki 已提交
465
	MEM_CGROUP_CHARGE_TYPE_DROP,	/* a page was unused swap cache */
466 467 468
	NR_CHARGE_TYPE,
};

469
/* for encoding cft->private value on file */
G
Glauber Costa 已提交
470 471 472 473
enum res_type {
	_MEM,
	_MEMSWAP,
	_OOM_TYPE,
474
	_KMEM,
G
Glauber Costa 已提交
475 476
};

477 478
#define MEMFILE_PRIVATE(x, val)	((x) << 16 | (val))
#define MEMFILE_TYPE(val)	((val) >> 16 & 0xffff)
479
#define MEMFILE_ATTR(val)	((val) & 0xffff)
K
KAMEZAWA Hiroyuki 已提交
480 481
/* Used for OOM nofiier */
#define OOM_CONTROL		(0)
482

483 484 485 486 487 488 489 490
/*
 * Reclaim flags for mem_cgroup_hierarchical_reclaim
 */
#define MEM_CGROUP_RECLAIM_NOSWAP_BIT	0x0
#define MEM_CGROUP_RECLAIM_NOSWAP	(1 << MEM_CGROUP_RECLAIM_NOSWAP_BIT)
#define MEM_CGROUP_RECLAIM_SHRINK_BIT	0x1
#define MEM_CGROUP_RECLAIM_SHRINK	(1 << MEM_CGROUP_RECLAIM_SHRINK_BIT)

491 492 493 494 495 496 497
/*
 * The memcg_create_mutex will be held whenever a new cgroup is created.
 * As a consequence, any change that needs to protect against new child cgroups
 * appearing has to hold it as well.
 */
static DEFINE_MUTEX(memcg_create_mutex);

498 499
static void mem_cgroup_get(struct mem_cgroup *memcg);
static void mem_cgroup_put(struct mem_cgroup *memcg);
G
Glauber Costa 已提交
500

501 502 503 504 505 506
static inline
struct mem_cgroup *mem_cgroup_from_css(struct cgroup_subsys_state *s)
{
	return container_of(s, struct mem_cgroup, css);
}

507 508 509 510 511
static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
{
	return (memcg == root_mem_cgroup);
}

G
Glauber Costa 已提交
512
/* Writing them here to avoid exposing memcg's inner layout */
M
Michal Hocko 已提交
513
#if defined(CONFIG_INET) && defined(CONFIG_MEMCG_KMEM)
G
Glauber Costa 已提交
514 515 516

void sock_update_memcg(struct sock *sk)
{
517
	if (mem_cgroup_sockets_enabled) {
G
Glauber Costa 已提交
518
		struct mem_cgroup *memcg;
519
		struct cg_proto *cg_proto;
G
Glauber Costa 已提交
520 521 522

		BUG_ON(!sk->sk_prot->proto_cgroup);

523 524 525 526 527 528 529 530 531 532 533 534 535 536
		/* Socket cloning can throw us here with sk_cgrp already
		 * filled. It won't however, necessarily happen from
		 * process context. So the test for root memcg given
		 * the current task's memcg won't help us in this case.
		 *
		 * Respecting the original socket's memcg is a better
		 * decision in this case.
		 */
		if (sk->sk_cgrp) {
			BUG_ON(mem_cgroup_is_root(sk->sk_cgrp->memcg));
			mem_cgroup_get(sk->sk_cgrp->memcg);
			return;
		}

G
Glauber Costa 已提交
537 538
		rcu_read_lock();
		memcg = mem_cgroup_from_task(current);
539 540
		cg_proto = sk->sk_prot->proto_cgroup(memcg);
		if (!mem_cgroup_is_root(memcg) && memcg_proto_active(cg_proto)) {
G
Glauber Costa 已提交
541
			mem_cgroup_get(memcg);
542
			sk->sk_cgrp = cg_proto;
G
Glauber Costa 已提交
543 544 545 546 547 548 549 550
		}
		rcu_read_unlock();
	}
}
EXPORT_SYMBOL(sock_update_memcg);

void sock_release_memcg(struct sock *sk)
{
551
	if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
G
Glauber Costa 已提交
552 553 554 555 556 557
		struct mem_cgroup *memcg;
		WARN_ON(!sk->sk_cgrp->memcg);
		memcg = sk->sk_cgrp->memcg;
		mem_cgroup_put(memcg);
	}
}
G
Glauber Costa 已提交
558 559 560 561 562 563 564 565 566

struct cg_proto *tcp_proto_cgroup(struct mem_cgroup *memcg)
{
	if (!memcg || mem_cgroup_is_root(memcg))
		return NULL;

	return &memcg->tcp_mem.cg_proto;
}
EXPORT_SYMBOL(tcp_proto_cgroup);
G
Glauber Costa 已提交
567

568 569 570 571 572 573 574 575 576 577 578 579
static void disarm_sock_keys(struct mem_cgroup *memcg)
{
	if (!memcg_proto_activated(&memcg->tcp_mem.cg_proto))
		return;
	static_key_slow_dec(&memcg_socket_limit_enabled);
}
#else
static void disarm_sock_keys(struct mem_cgroup *memcg)
{
}
#endif

580
#ifdef CONFIG_MEMCG_KMEM
581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598
/*
 * This will be the memcg's index in each cache's ->memcg_params->memcg_caches.
 * There are two main reasons for not using the css_id for this:
 *  1) this works better in sparse environments, where we have a lot of memcgs,
 *     but only a few kmem-limited. Or also, if we have, for instance, 200
 *     memcgs, and none but the 200th is kmem-limited, we'd have to have a
 *     200 entry array for that.
 *
 *  2) In order not to violate the cgroup API, we would like to do all memory
 *     allocation in ->create(). At that point, we haven't yet allocated the
 *     css_id. Having a separate index prevents us from messing with the cgroup
 *     core for this
 *
 * The current size of the caches array is stored in
 * memcg_limited_groups_array_size.  It will double each time we have to
 * increase it.
 */
static DEFINE_IDA(kmem_limited_groups);
599 600
int memcg_limited_groups_array_size;

601 602 603 604 605 606 607 608 609 610 611 612 613 614 615
/*
 * MIN_SIZE is different than 1, because we would like to avoid going through
 * the alloc/free process all the time. In a small machine, 4 kmem-limited
 * cgroups is a reasonable guess. In the future, it could be a parameter or
 * tunable, but that is strictly not necessary.
 *
 * MAX_SIZE should be as large as the number of css_ids. Ideally, we could get
 * this constant directly from cgroup, but it is understandable that this is
 * better kept as an internal representation in cgroup.c. In any case, the
 * css_id space is not getting any smaller, and we don't have to necessarily
 * increase ours as well if it increases.
 */
#define MEMCG_CACHES_MIN_SIZE 4
#define MEMCG_CACHES_MAX_SIZE 65535

616 617 618 619 620 621
/*
 * A lot of the calls to the cache allocation functions are expected to be
 * inlined by the compiler. Since the calls to memcg_kmem_get_cache are
 * conditional to this static branch, we'll have to allow modules that does
 * kmem_cache_alloc and the such to see this symbol as well
 */
622
struct static_key memcg_kmem_enabled_key;
623
EXPORT_SYMBOL(memcg_kmem_enabled_key);
624 625 626

static void disarm_kmem_keys(struct mem_cgroup *memcg)
{
627
	if (memcg_kmem_is_active(memcg)) {
628
		static_key_slow_dec(&memcg_kmem_enabled_key);
629 630
		ida_simple_remove(&kmem_limited_groups, memcg->kmemcg_id);
	}
631 632 633 634 635
	/*
	 * This check can't live in kmem destruction function,
	 * since the charges will outlive the cgroup
	 */
	WARN_ON(res_counter_read_u64(&memcg->kmem, RES_USAGE) != 0);
636 637 638 639 640 641 642 643 644 645 646 647 648
}
#else
static void disarm_kmem_keys(struct mem_cgroup *memcg)
{
}
#endif /* CONFIG_MEMCG_KMEM */

static void disarm_static_keys(struct mem_cgroup *memcg)
{
	disarm_sock_keys(memcg);
	disarm_kmem_keys(memcg);
}

649
static void drain_all_stock_async(struct mem_cgroup *memcg);
650

651
static struct mem_cgroup_per_zone *
652
mem_cgroup_zoneinfo(struct mem_cgroup *memcg, int nid, int zid)
653
{
654
	VM_BUG_ON((unsigned)nid >= nr_node_ids);
655
	return &memcg->info.nodeinfo[nid]->zoneinfo[zid];
656 657
}

658
struct cgroup_subsys_state *mem_cgroup_css(struct mem_cgroup *memcg)
659
{
660
	return &memcg->css;
661 662
}

663
static struct mem_cgroup_per_zone *
664
page_cgroup_zoneinfo(struct mem_cgroup *memcg, struct page *page)
665
{
666 667
	int nid = page_to_nid(page);
	int zid = page_zonenum(page);
668

669
	return mem_cgroup_zoneinfo(memcg, nid, zid);
670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687
}

static struct mem_cgroup_tree_per_zone *
soft_limit_tree_node_zone(int nid, int zid)
{
	return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
}

static struct mem_cgroup_tree_per_zone *
soft_limit_tree_from_page(struct page *page)
{
	int nid = page_to_nid(page);
	int zid = page_zonenum(page);

	return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
}

static void
688
__mem_cgroup_insert_exceeded(struct mem_cgroup *memcg,
689
				struct mem_cgroup_per_zone *mz,
690 691
				struct mem_cgroup_tree_per_zone *mctz,
				unsigned long long new_usage_in_excess)
692 693 694 695 696 697 698 699
{
	struct rb_node **p = &mctz->rb_root.rb_node;
	struct rb_node *parent = NULL;
	struct mem_cgroup_per_zone *mz_node;

	if (mz->on_tree)
		return;

700 701 702
	mz->usage_in_excess = new_usage_in_excess;
	if (!mz->usage_in_excess)
		return;
703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718
	while (*p) {
		parent = *p;
		mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
					tree_node);
		if (mz->usage_in_excess < mz_node->usage_in_excess)
			p = &(*p)->rb_left;
		/*
		 * We can't avoid mem cgroups that are over their soft
		 * limit by the same amount
		 */
		else if (mz->usage_in_excess >= mz_node->usage_in_excess)
			p = &(*p)->rb_right;
	}
	rb_link_node(&mz->tree_node, parent, p);
	rb_insert_color(&mz->tree_node, &mctz->rb_root);
	mz->on_tree = true;
719 720 721
}

static void
722
__mem_cgroup_remove_exceeded(struct mem_cgroup *memcg,
723 724 725 726 727 728 729 730 731
				struct mem_cgroup_per_zone *mz,
				struct mem_cgroup_tree_per_zone *mctz)
{
	if (!mz->on_tree)
		return;
	rb_erase(&mz->tree_node, &mctz->rb_root);
	mz->on_tree = false;
}

732
static void
733
mem_cgroup_remove_exceeded(struct mem_cgroup *memcg,
734 735 736 737
				struct mem_cgroup_per_zone *mz,
				struct mem_cgroup_tree_per_zone *mctz)
{
	spin_lock(&mctz->lock);
738
	__mem_cgroup_remove_exceeded(memcg, mz, mctz);
739 740 741 742
	spin_unlock(&mctz->lock);
}


743
static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
744
{
745
	unsigned long long excess;
746 747
	struct mem_cgroup_per_zone *mz;
	struct mem_cgroup_tree_per_zone *mctz;
748 749
	int nid = page_to_nid(page);
	int zid = page_zonenum(page);
750 751 752
	mctz = soft_limit_tree_from_page(page);

	/*
753 754
	 * Necessary to update all ancestors when hierarchy is used.
	 * because their event counter is not touched.
755
	 */
756 757 758
	for (; memcg; memcg = parent_mem_cgroup(memcg)) {
		mz = mem_cgroup_zoneinfo(memcg, nid, zid);
		excess = res_counter_soft_limit_excess(&memcg->res);
759 760 761 762
		/*
		 * We have to update the tree if mz is on RB-tree or
		 * mem is over its softlimit.
		 */
763
		if (excess || mz->on_tree) {
764 765 766
			spin_lock(&mctz->lock);
			/* if on-tree, remove it */
			if (mz->on_tree)
767
				__mem_cgroup_remove_exceeded(memcg, mz, mctz);
768
			/*
769 770
			 * Insert again. mz->usage_in_excess will be updated.
			 * If excess is 0, no tree ops.
771
			 */
772
			__mem_cgroup_insert_exceeded(memcg, mz, mctz, excess);
773 774
			spin_unlock(&mctz->lock);
		}
775 776 777
	}
}

778
static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
779 780 781 782 783
{
	int node, zone;
	struct mem_cgroup_per_zone *mz;
	struct mem_cgroup_tree_per_zone *mctz;

B
Bob Liu 已提交
784
	for_each_node(node) {
785
		for (zone = 0; zone < MAX_NR_ZONES; zone++) {
786
			mz = mem_cgroup_zoneinfo(memcg, node, zone);
787
			mctz = soft_limit_tree_node_zone(node, zone);
788
			mem_cgroup_remove_exceeded(memcg, mz, mctz);
789 790 791 792
		}
	}
}

793 794 795 796
static struct mem_cgroup_per_zone *
__mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
{
	struct rb_node *rightmost = NULL;
797
	struct mem_cgroup_per_zone *mz;
798 799

retry:
800
	mz = NULL;
801 802 803 804 805 806 807 808 809 810
	rightmost = rb_last(&mctz->rb_root);
	if (!rightmost)
		goto done;		/* Nothing to reclaim from */

	mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
	/*
	 * Remove the node now but someone else can add it back,
	 * we will to add it back at the end of reclaim to its correct
	 * position in the tree.
	 */
811 812 813
	__mem_cgroup_remove_exceeded(mz->memcg, mz, mctz);
	if (!res_counter_soft_limit_excess(&mz->memcg->res) ||
		!css_tryget(&mz->memcg->css))
814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829
		goto retry;
done:
	return mz;
}

static struct mem_cgroup_per_zone *
mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
{
	struct mem_cgroup_per_zone *mz;

	spin_lock(&mctz->lock);
	mz = __mem_cgroup_largest_soft_limit_node(mctz);
	spin_unlock(&mctz->lock);
	return mz;
}

830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848
/*
 * Implementation Note: reading percpu statistics for memcg.
 *
 * Both of vmstat[] and percpu_counter has threshold and do periodic
 * synchronization to implement "quick" read. There are trade-off between
 * reading cost and precision of value. Then, we may have a chance to implement
 * a periodic synchronizion of counter in memcg's counter.
 *
 * But this _read() function is used for user interface now. The user accounts
 * memory usage by memory cgroup and he _always_ requires exact value because
 * he accounts memory. Even if we provide quick-and-fuzzy read, we always
 * have to visit all online cpus and make sum. So, for now, unnecessary
 * synchronization is not implemented. (just implemented for cpu hotplug)
 *
 * If there are kernel internal actions which can make use of some not-exact
 * value, and reading all cpu value can be performance bottleneck in some
 * common workload, threashold and synchonization as vmstat[] should be
 * implemented.
 */
849
static long mem_cgroup_read_stat(struct mem_cgroup *memcg,
850
				 enum mem_cgroup_stat_index idx)
851
{
852
	long val = 0;
853 854
	int cpu;

855 856
	get_online_cpus();
	for_each_online_cpu(cpu)
857
		val += per_cpu(memcg->stat->count[idx], cpu);
858
#ifdef CONFIG_HOTPLUG_CPU
859 860 861
	spin_lock(&memcg->pcp_counter_lock);
	val += memcg->nocpu_base.count[idx];
	spin_unlock(&memcg->pcp_counter_lock);
862 863
#endif
	put_online_cpus();
864 865 866
	return val;
}

867
static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg,
868 869 870
					 bool charge)
{
	int val = (charge) ? 1 : -1;
871
	this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_SWAP], val);
872 873
}

874
static unsigned long mem_cgroup_read_events(struct mem_cgroup *memcg,
875 876 877 878 879 880
					    enum mem_cgroup_events_index idx)
{
	unsigned long val = 0;
	int cpu;

	for_each_online_cpu(cpu)
881
		val += per_cpu(memcg->stat->events[idx], cpu);
882
#ifdef CONFIG_HOTPLUG_CPU
883 884 885
	spin_lock(&memcg->pcp_counter_lock);
	val += memcg->nocpu_base.events[idx];
	spin_unlock(&memcg->pcp_counter_lock);
886 887 888 889
#endif
	return val;
}

890
static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
891
					 bool anon, int nr_pages)
892
{
893 894
	preempt_disable();

895 896 897 898 899 900
	/*
	 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
	 * counted as CACHE even if it's on ANON LRU.
	 */
	if (anon)
		__this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS],
901
				nr_pages);
902
	else
903
		__this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_CACHE],
904
				nr_pages);
905

906 907
	/* pagein of a big page is an event. So, ignore page size */
	if (nr_pages > 0)
908
		__this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGIN]);
909
	else {
910
		__this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]);
911 912
		nr_pages = -nr_pages; /* for event */
	}
913

914
	__this_cpu_add(memcg->stat->nr_page_events, nr_pages);
915

916
	preempt_enable();
917 918
}

919
unsigned long
920
mem_cgroup_get_lru_size(struct lruvec *lruvec, enum lru_list lru)
921 922 923 924 925 926 927 928
{
	struct mem_cgroup_per_zone *mz;

	mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
	return mz->lru_size[lru];
}

static unsigned long
929
mem_cgroup_zone_nr_lru_pages(struct mem_cgroup *memcg, int nid, int zid,
930
			unsigned int lru_mask)
931 932
{
	struct mem_cgroup_per_zone *mz;
H
Hugh Dickins 已提交
933
	enum lru_list lru;
934 935
	unsigned long ret = 0;

936
	mz = mem_cgroup_zoneinfo(memcg, nid, zid);
937

H
Hugh Dickins 已提交
938 939 940
	for_each_lru(lru) {
		if (BIT(lru) & lru_mask)
			ret += mz->lru_size[lru];
941 942 943 944 945
	}
	return ret;
}

static unsigned long
946
mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
947 948
			int nid, unsigned int lru_mask)
{
949 950 951
	u64 total = 0;
	int zid;

952
	for (zid = 0; zid < MAX_NR_ZONES; zid++)
953 954
		total += mem_cgroup_zone_nr_lru_pages(memcg,
						nid, zid, lru_mask);
955

956 957
	return total;
}
958

959
static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
960
			unsigned int lru_mask)
961
{
962
	int nid;
963 964
	u64 total = 0;

965
	for_each_node_state(nid, N_MEMORY)
966
		total += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask);
967
	return total;
968 969
}

970 971
static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
				       enum mem_cgroup_events_target target)
972 973 974
{
	unsigned long val, next;

975
	val = __this_cpu_read(memcg->stat->nr_page_events);
976
	next = __this_cpu_read(memcg->stat->targets[target]);
977
	/* from time_after() in jiffies.h */
978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993
	if ((long)next - (long)val < 0) {
		switch (target) {
		case MEM_CGROUP_TARGET_THRESH:
			next = val + THRESHOLDS_EVENTS_TARGET;
			break;
		case MEM_CGROUP_TARGET_SOFTLIMIT:
			next = val + SOFTLIMIT_EVENTS_TARGET;
			break;
		case MEM_CGROUP_TARGET_NUMAINFO:
			next = val + NUMAINFO_EVENTS_TARGET;
			break;
		default:
			break;
		}
		__this_cpu_write(memcg->stat->targets[target], next);
		return true;
994
	}
995
	return false;
996 997 998 999 1000 1001
}

/*
 * Check events in order.
 *
 */
1002
static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
1003
{
1004
	preempt_disable();
1005
	/* threshold event is triggered in finer grain than soft limit */
1006 1007
	if (unlikely(mem_cgroup_event_ratelimit(memcg,
						MEM_CGROUP_TARGET_THRESH))) {
1008 1009
		bool do_softlimit;
		bool do_numainfo __maybe_unused;
1010 1011 1012 1013 1014 1015 1016 1017 1018

		do_softlimit = mem_cgroup_event_ratelimit(memcg,
						MEM_CGROUP_TARGET_SOFTLIMIT);
#if MAX_NUMNODES > 1
		do_numainfo = mem_cgroup_event_ratelimit(memcg,
						MEM_CGROUP_TARGET_NUMAINFO);
#endif
		preempt_enable();

1019
		mem_cgroup_threshold(memcg);
1020
		if (unlikely(do_softlimit))
1021
			mem_cgroup_update_tree(memcg, page);
1022
#if MAX_NUMNODES > 1
1023
		if (unlikely(do_numainfo))
1024
			atomic_inc(&memcg->numainfo_events);
1025
#endif
1026 1027
	} else
		preempt_enable();
1028 1029
}

G
Glauber Costa 已提交
1030
struct mem_cgroup *mem_cgroup_from_cont(struct cgroup *cont)
B
Balbir Singh 已提交
1031
{
1032 1033
	return mem_cgroup_from_css(
		cgroup_subsys_state(cont, mem_cgroup_subsys_id));
B
Balbir Singh 已提交
1034 1035
}

1036
struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
1037
{
1038 1039 1040 1041 1042 1043 1044 1045
	/*
	 * mm_update_next_owner() may clear mm->owner to NULL
	 * if it races with swapoff, page migration, etc.
	 * So this can be called with p == NULL.
	 */
	if (unlikely(!p))
		return NULL;

1046
	return mem_cgroup_from_css(task_subsys_state(p, mem_cgroup_subsys_id));
1047 1048
}

1049
struct mem_cgroup *try_get_mem_cgroup_from_mm(struct mm_struct *mm)
1050
{
1051
	struct mem_cgroup *memcg = NULL;
1052 1053 1054

	if (!mm)
		return NULL;
1055 1056 1057 1058 1059 1060 1061
	/*
	 * Because we have no locks, mm->owner's may be being moved to other
	 * cgroup. We use css_tryget() here even if this looks
	 * pessimistic (rather than adding locks here).
	 */
	rcu_read_lock();
	do {
1062 1063
		memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
		if (unlikely(!memcg))
1064
			break;
1065
	} while (!css_tryget(&memcg->css));
1066
	rcu_read_unlock();
1067
	return memcg;
1068 1069
}

1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089
/**
 * mem_cgroup_iter - iterate over memory cgroup hierarchy
 * @root: hierarchy root
 * @prev: previously returned memcg, NULL on first invocation
 * @reclaim: cookie for shared reclaim walks, NULL for full walks
 *
 * Returns references to children of the hierarchy below @root, or
 * @root itself, or %NULL after a full round-trip.
 *
 * Caller must pass the return value in @prev on subsequent
 * invocations for reference counting, or use mem_cgroup_iter_break()
 * to cancel a hierarchy walk before the round-trip is complete.
 *
 * Reclaimers can specify a zone and a priority level in @reclaim to
 * divide up the memcgs in the hierarchy among all concurrent
 * reclaimers operating on the same zone and priority.
 */
struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
				   struct mem_cgroup *prev,
				   struct mem_cgroup_reclaim_cookie *reclaim)
K
KAMEZAWA Hiroyuki 已提交
1090
{
1091 1092
	struct mem_cgroup *memcg = NULL;
	int id = 0;
1093

1094 1095 1096
	if (mem_cgroup_disabled())
		return NULL;

1097 1098
	if (!root)
		root = root_mem_cgroup;
K
KAMEZAWA Hiroyuki 已提交
1099

1100 1101
	if (prev && !reclaim)
		id = css_id(&prev->css);
K
KAMEZAWA Hiroyuki 已提交
1102

1103 1104
	if (prev && prev != root)
		css_put(&prev->css);
K
KAMEZAWA Hiroyuki 已提交
1105

1106 1107 1108 1109 1110
	if (!root->use_hierarchy && root != root_mem_cgroup) {
		if (prev)
			return NULL;
		return root;
	}
K
KAMEZAWA Hiroyuki 已提交
1111

1112
	while (!memcg) {
1113
		struct mem_cgroup_reclaim_iter *uninitialized_var(iter);
1114
		struct cgroup_subsys_state *css;
1115

1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126
		if (reclaim) {
			int nid = zone_to_nid(reclaim->zone);
			int zid = zone_idx(reclaim->zone);
			struct mem_cgroup_per_zone *mz;

			mz = mem_cgroup_zoneinfo(root, nid, zid);
			iter = &mz->reclaim_iter[reclaim->priority];
			if (prev && reclaim->generation != iter->generation)
				return NULL;
			id = iter->position;
		}
K
KAMEZAWA Hiroyuki 已提交
1127

1128 1129 1130 1131
		rcu_read_lock();
		css = css_get_next(&mem_cgroup_subsys, id + 1, &root->css, &id);
		if (css) {
			if (css == &root->css || css_tryget(css))
1132
				memcg = mem_cgroup_from_css(css);
1133 1134
		} else
			id = 0;
K
KAMEZAWA Hiroyuki 已提交
1135 1136
		rcu_read_unlock();

1137 1138 1139 1140 1141 1142 1143
		if (reclaim) {
			iter->position = id;
			if (!css)
				iter->generation++;
			else if (!prev && memcg)
				reclaim->generation = iter->generation;
		}
1144 1145 1146 1147 1148

		if (prev && !css)
			return NULL;
	}
	return memcg;
K
KAMEZAWA Hiroyuki 已提交
1149
}
K
KAMEZAWA Hiroyuki 已提交
1150

1151 1152 1153 1154 1155 1156 1157
/**
 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
 * @root: hierarchy root
 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
 */
void mem_cgroup_iter_break(struct mem_cgroup *root,
			   struct mem_cgroup *prev)
1158 1159 1160 1161 1162 1163
{
	if (!root)
		root = root_mem_cgroup;
	if (prev && prev != root)
		css_put(&prev->css);
}
K
KAMEZAWA Hiroyuki 已提交
1164

1165 1166 1167 1168 1169 1170
/*
 * Iteration constructs for visiting all cgroups (under a tree).  If
 * loops are exited prematurely (break), mem_cgroup_iter_break() must
 * be used for reference counting.
 */
#define for_each_mem_cgroup_tree(iter, root)		\
1171
	for (iter = mem_cgroup_iter(root, NULL, NULL);	\
1172
	     iter != NULL;				\
1173
	     iter = mem_cgroup_iter(root, iter, NULL))
1174

1175
#define for_each_mem_cgroup(iter)			\
1176
	for (iter = mem_cgroup_iter(NULL, NULL, NULL);	\
1177
	     iter != NULL;				\
1178
	     iter = mem_cgroup_iter(NULL, iter, NULL))
K
KAMEZAWA Hiroyuki 已提交
1179

1180
void __mem_cgroup_count_vm_event(struct mm_struct *mm, enum vm_event_item idx)
1181
{
1182
	struct mem_cgroup *memcg;
1183 1184

	rcu_read_lock();
1185 1186
	memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
	if (unlikely(!memcg))
1187 1188 1189 1190
		goto out;

	switch (idx) {
	case PGFAULT:
1191 1192 1193 1194
		this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGFAULT]);
		break;
	case PGMAJFAULT:
		this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGMAJFAULT]);
1195 1196 1197 1198 1199 1200 1201
		break;
	default:
		BUG();
	}
out:
	rcu_read_unlock();
}
1202
EXPORT_SYMBOL(__mem_cgroup_count_vm_event);
1203

1204 1205 1206
/**
 * mem_cgroup_zone_lruvec - get the lru list vector for a zone and memcg
 * @zone: zone of the wanted lruvec
1207
 * @memcg: memcg of the wanted lruvec
1208 1209 1210 1211 1212 1213 1214 1215 1216
 *
 * Returns the lru list vector holding pages for the given @zone and
 * @mem.  This can be the global zone lruvec, if the memory controller
 * is disabled.
 */
struct lruvec *mem_cgroup_zone_lruvec(struct zone *zone,
				      struct mem_cgroup *memcg)
{
	struct mem_cgroup_per_zone *mz;
1217
	struct lruvec *lruvec;
1218

1219 1220 1221 1222
	if (mem_cgroup_disabled()) {
		lruvec = &zone->lruvec;
		goto out;
	}
1223 1224

	mz = mem_cgroup_zoneinfo(memcg, zone_to_nid(zone), zone_idx(zone));
1225 1226 1227 1228 1229 1230 1231 1232 1233 1234
	lruvec = &mz->lruvec;
out:
	/*
	 * Since a node can be onlined after the mem_cgroup was created,
	 * we have to be prepared to initialize lruvec->zone here;
	 * and if offlined then reonlined, we need to reinitialize it.
	 */
	if (unlikely(lruvec->zone != zone))
		lruvec->zone = zone;
	return lruvec;
1235 1236
}

K
KAMEZAWA Hiroyuki 已提交
1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249
/*
 * Following LRU functions are allowed to be used without PCG_LOCK.
 * Operations are called by routine of global LRU independently from memcg.
 * What we have to take care of here is validness of pc->mem_cgroup.
 *
 * Changes to pc->mem_cgroup happens when
 * 1. charge
 * 2. moving account
 * In typical case, "charge" is done before add-to-lru. Exception is SwapCache.
 * It is added to LRU before charge.
 * If PCG_USED bit is not set, page_cgroup is not added to this private LRU.
 * When moving account, the page is not on LRU. It's isolated.
 */
1250

1251
/**
1252
 * mem_cgroup_page_lruvec - return lruvec for adding an lru page
1253
 * @page: the page
1254
 * @zone: zone of the page
1255
 */
1256
struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct zone *zone)
K
KAMEZAWA Hiroyuki 已提交
1257 1258
{
	struct mem_cgroup_per_zone *mz;
1259 1260
	struct mem_cgroup *memcg;
	struct page_cgroup *pc;
1261
	struct lruvec *lruvec;
1262

1263 1264 1265 1266
	if (mem_cgroup_disabled()) {
		lruvec = &zone->lruvec;
		goto out;
	}
1267

K
KAMEZAWA Hiroyuki 已提交
1268
	pc = lookup_page_cgroup(page);
1269
	memcg = pc->mem_cgroup;
1270 1271

	/*
1272
	 * Surreptitiously switch any uncharged offlist page to root:
1273 1274 1275 1276 1277 1278 1279
	 * an uncharged page off lru does nothing to secure
	 * its former mem_cgroup from sudden removal.
	 *
	 * Our caller holds lru_lock, and PageCgroupUsed is updated
	 * under page_cgroup lock: between them, they make all uses
	 * of pc->mem_cgroup safe.
	 */
1280
	if (!PageLRU(page) && !PageCgroupUsed(pc) && memcg != root_mem_cgroup)
1281 1282
		pc->mem_cgroup = memcg = root_mem_cgroup;

1283
	mz = page_cgroup_zoneinfo(memcg, page);
1284 1285 1286 1287 1288 1289 1290 1291 1292 1293
	lruvec = &mz->lruvec;
out:
	/*
	 * Since a node can be onlined after the mem_cgroup was created,
	 * we have to be prepared to initialize lruvec->zone here;
	 * and if offlined then reonlined, we need to reinitialize it.
	 */
	if (unlikely(lruvec->zone != zone))
		lruvec->zone = zone;
	return lruvec;
K
KAMEZAWA Hiroyuki 已提交
1294
}
1295

1296
/**
1297 1298 1299 1300
 * mem_cgroup_update_lru_size - account for adding or removing an lru page
 * @lruvec: mem_cgroup per zone lru vector
 * @lru: index of lru list the page is sitting on
 * @nr_pages: positive when adding or negative when removing
1301
 *
1302 1303
 * This function must be called when a page is added to or removed from an
 * lru list.
1304
 */
1305 1306
void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
				int nr_pages)
1307 1308
{
	struct mem_cgroup_per_zone *mz;
1309
	unsigned long *lru_size;
1310 1311 1312 1313

	if (mem_cgroup_disabled())
		return;

1314 1315 1316 1317
	mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
	lru_size = mz->lru_size + lru;
	*lru_size += nr_pages;
	VM_BUG_ON((long)(*lru_size) < 0);
K
KAMEZAWA Hiroyuki 已提交
1318
}
1319

1320
/*
1321
 * Checks whether given mem is same or in the root_mem_cgroup's
1322 1323
 * hierarchy subtree
 */
1324 1325
bool __mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg,
				  struct mem_cgroup *memcg)
1326
{
1327 1328
	if (root_memcg == memcg)
		return true;
1329
	if (!root_memcg->use_hierarchy || !memcg)
1330
		return false;
1331 1332 1333 1334 1335 1336 1337 1338
	return css_is_ancestor(&memcg->css, &root_memcg->css);
}

static bool mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg,
				       struct mem_cgroup *memcg)
{
	bool ret;

1339
	rcu_read_lock();
1340
	ret = __mem_cgroup_same_or_subtree(root_memcg, memcg);
1341 1342
	rcu_read_unlock();
	return ret;
1343 1344
}

1345
int task_in_mem_cgroup(struct task_struct *task, const struct mem_cgroup *memcg)
1346 1347
{
	int ret;
1348
	struct mem_cgroup *curr = NULL;
1349
	struct task_struct *p;
1350

1351
	p = find_lock_task_mm(task);
1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366
	if (p) {
		curr = try_get_mem_cgroup_from_mm(p->mm);
		task_unlock(p);
	} else {
		/*
		 * All threads may have already detached their mm's, but the oom
		 * killer still needs to detect if they have already been oom
		 * killed to prevent needlessly killing additional tasks.
		 */
		task_lock(task);
		curr = mem_cgroup_from_task(task);
		if (curr)
			css_get(&curr->css);
		task_unlock(task);
	}
1367 1368
	if (!curr)
		return 0;
1369
	/*
1370
	 * We should check use_hierarchy of "memcg" not "curr". Because checking
1371
	 * use_hierarchy of "curr" here make this function true if hierarchy is
1372 1373
	 * enabled in "curr" and "curr" is a child of "memcg" in *cgroup*
	 * hierarchy(even if use_hierarchy is disabled in "memcg").
1374
	 */
1375
	ret = mem_cgroup_same_or_subtree(memcg, curr);
1376
	css_put(&curr->css);
1377 1378 1379
	return ret;
}

1380
int mem_cgroup_inactive_anon_is_low(struct lruvec *lruvec)
1381
{
1382
	unsigned long inactive_ratio;
1383
	unsigned long inactive;
1384
	unsigned long active;
1385
	unsigned long gb;
1386

1387 1388
	inactive = mem_cgroup_get_lru_size(lruvec, LRU_INACTIVE_ANON);
	active = mem_cgroup_get_lru_size(lruvec, LRU_ACTIVE_ANON);
1389

1390 1391 1392 1393 1394 1395
	gb = (inactive + active) >> (30 - PAGE_SHIFT);
	if (gb)
		inactive_ratio = int_sqrt(10 * gb);
	else
		inactive_ratio = 1;

1396
	return inactive * inactive_ratio < active;
1397 1398
}

1399 1400 1401
#define mem_cgroup_from_res_counter(counter, member)	\
	container_of(counter, struct mem_cgroup, member)

1402
/**
1403
 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
W
Wanpeng Li 已提交
1404
 * @memcg: the memory cgroup
1405
 *
1406
 * Returns the maximum amount of memory @mem can be charged with, in
1407
 * pages.
1408
 */
1409
static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1410
{
1411 1412
	unsigned long long margin;

1413
	margin = res_counter_margin(&memcg->res);
1414
	if (do_swap_account)
1415
		margin = min(margin, res_counter_margin(&memcg->memsw));
1416
	return margin >> PAGE_SHIFT;
1417 1418
}

1419
int mem_cgroup_swappiness(struct mem_cgroup *memcg)
K
KOSAKI Motohiro 已提交
1420 1421 1422 1423 1424 1425 1426
{
	struct cgroup *cgrp = memcg->css.cgroup;

	/* root ? */
	if (cgrp->parent == NULL)
		return vm_swappiness;

1427
	return memcg->swappiness;
K
KOSAKI Motohiro 已提交
1428 1429
}

1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443
/*
 * memcg->moving_account is used for checking possibility that some thread is
 * calling move_account(). When a thread on CPU-A starts moving pages under
 * a memcg, other threads should check memcg->moving_account under
 * rcu_read_lock(), like this:
 *
 *         CPU-A                                    CPU-B
 *                                              rcu_read_lock()
 *         memcg->moving_account+1              if (memcg->mocing_account)
 *                                                   take heavy locks.
 *         synchronize_rcu()                    update something.
 *                                              rcu_read_unlock()
 *         start move here.
 */
1444 1445 1446 1447

/* for quick checking without looking up memcg */
atomic_t memcg_moving __read_mostly;

1448
static void mem_cgroup_start_move(struct mem_cgroup *memcg)
1449
{
1450
	atomic_inc(&memcg_moving);
1451
	atomic_inc(&memcg->moving_account);
1452 1453 1454
	synchronize_rcu();
}

1455
static void mem_cgroup_end_move(struct mem_cgroup *memcg)
1456
{
1457 1458 1459 1460
	/*
	 * Now, mem_cgroup_clear_mc() may call this function with NULL.
	 * We check NULL in callee rather than caller.
	 */
1461 1462
	if (memcg) {
		atomic_dec(&memcg_moving);
1463
		atomic_dec(&memcg->moving_account);
1464
	}
1465
}
1466

1467 1468 1469
/*
 * 2 routines for checking "mem" is under move_account() or not.
 *
1470 1471
 * mem_cgroup_stolen() -  checking whether a cgroup is mc.from or not. This
 *			  is used for avoiding races in accounting.  If true,
1472 1473 1474 1475 1476 1477 1478
 *			  pc->mem_cgroup may be overwritten.
 *
 * mem_cgroup_under_move() - checking a cgroup is mc.from or mc.to or
 *			  under hierarchy of moving cgroups. This is for
 *			  waiting at hith-memory prressure caused by "move".
 */

1479
static bool mem_cgroup_stolen(struct mem_cgroup *memcg)
1480 1481
{
	VM_BUG_ON(!rcu_read_lock_held());
1482
	return atomic_read(&memcg->moving_account) > 0;
1483
}
1484

1485
static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
1486
{
1487 1488
	struct mem_cgroup *from;
	struct mem_cgroup *to;
1489
	bool ret = false;
1490 1491 1492 1493 1494 1495 1496 1497 1498
	/*
	 * Unlike task_move routines, we access mc.to, mc.from not under
	 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
	 */
	spin_lock(&mc.lock);
	from = mc.from;
	to = mc.to;
	if (!from)
		goto unlock;
1499

1500 1501
	ret = mem_cgroup_same_or_subtree(memcg, from)
		|| mem_cgroup_same_or_subtree(memcg, to);
1502 1503
unlock:
	spin_unlock(&mc.lock);
1504 1505 1506
	return ret;
}

1507
static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1508 1509
{
	if (mc.moving_task && current != mc.moving_task) {
1510
		if (mem_cgroup_under_move(memcg)) {
1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522
			DEFINE_WAIT(wait);
			prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
			/* moving charge context might have finished. */
			if (mc.moving_task)
				schedule();
			finish_wait(&mc.waitq, &wait);
			return true;
		}
	}
	return false;
}

1523 1524 1525 1526
/*
 * Take this lock when
 * - a code tries to modify page's memcg while it's USED.
 * - a code tries to modify page state accounting in a memcg.
1527
 * see mem_cgroup_stolen(), too.
1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540
 */
static void move_lock_mem_cgroup(struct mem_cgroup *memcg,
				  unsigned long *flags)
{
	spin_lock_irqsave(&memcg->move_lock, *flags);
}

static void move_unlock_mem_cgroup(struct mem_cgroup *memcg,
				unsigned long *flags)
{
	spin_unlock_irqrestore(&memcg->move_lock, *flags);
}

1541
#define K(x) ((x) << (PAGE_SHIFT-10))
1542
/**
1543
 * mem_cgroup_print_oom_info: Print OOM information relevant to memory controller.
1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560
 * @memcg: The memory cgroup that went over limit
 * @p: Task that is going to be killed
 *
 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
 * enabled
 */
void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
{
	struct cgroup *task_cgrp;
	struct cgroup *mem_cgrp;
	/*
	 * Need a buffer in BSS, can't rely on allocations. The code relies
	 * on the assumption that OOM is serialized for memory controller.
	 * If this assumption is broken, revisit this code.
	 */
	static char memcg_name[PATH_MAX];
	int ret;
1561 1562
	struct mem_cgroup *iter;
	unsigned int i;
1563

1564
	if (!p)
1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582
		return;

	rcu_read_lock();

	mem_cgrp = memcg->css.cgroup;
	task_cgrp = task_cgroup(p, mem_cgroup_subsys_id);

	ret = cgroup_path(task_cgrp, memcg_name, PATH_MAX);
	if (ret < 0) {
		/*
		 * Unfortunately, we are unable to convert to a useful name
		 * But we'll still print out the usage information
		 */
		rcu_read_unlock();
		goto done;
	}
	rcu_read_unlock();

1583
	pr_info("Task in %s killed", memcg_name);
1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595

	rcu_read_lock();
	ret = cgroup_path(mem_cgrp, memcg_name, PATH_MAX);
	if (ret < 0) {
		rcu_read_unlock();
		goto done;
	}
	rcu_read_unlock();

	/*
	 * Continues from above, so we don't need an KERN_ level
	 */
1596
	pr_cont(" as a result of limit of %s\n", memcg_name);
1597 1598
done:

1599
	pr_info("memory: usage %llukB, limit %llukB, failcnt %llu\n",
1600 1601 1602
		res_counter_read_u64(&memcg->res, RES_USAGE) >> 10,
		res_counter_read_u64(&memcg->res, RES_LIMIT) >> 10,
		res_counter_read_u64(&memcg->res, RES_FAILCNT));
1603
	pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %llu\n",
1604 1605 1606
		res_counter_read_u64(&memcg->memsw, RES_USAGE) >> 10,
		res_counter_read_u64(&memcg->memsw, RES_LIMIT) >> 10,
		res_counter_read_u64(&memcg->memsw, RES_FAILCNT));
1607
	pr_info("kmem: usage %llukB, limit %llukB, failcnt %llu\n",
1608 1609 1610
		res_counter_read_u64(&memcg->kmem, RES_USAGE) >> 10,
		res_counter_read_u64(&memcg->kmem, RES_LIMIT) >> 10,
		res_counter_read_u64(&memcg->kmem, RES_FAILCNT));
1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634

	for_each_mem_cgroup_tree(iter, memcg) {
		pr_info("Memory cgroup stats");

		rcu_read_lock();
		ret = cgroup_path(iter->css.cgroup, memcg_name, PATH_MAX);
		if (!ret)
			pr_cont(" for %s", memcg_name);
		rcu_read_unlock();
		pr_cont(":");

		for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
			if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
				continue;
			pr_cont(" %s:%ldKB", mem_cgroup_stat_names[i],
				K(mem_cgroup_read_stat(iter, i)));
		}

		for (i = 0; i < NR_LRU_LISTS; i++)
			pr_cont(" %s:%luKB", mem_cgroup_lru_names[i],
				K(mem_cgroup_nr_lru_pages(iter, BIT(i))));

		pr_cont("\n");
	}
1635 1636
}

1637 1638 1639 1640
/*
 * This function returns the number of memcg under hierarchy tree. Returns
 * 1(self count) if no children.
 */
1641
static int mem_cgroup_count_children(struct mem_cgroup *memcg)
1642 1643
{
	int num = 0;
K
KAMEZAWA Hiroyuki 已提交
1644 1645
	struct mem_cgroup *iter;

1646
	for_each_mem_cgroup_tree(iter, memcg)
K
KAMEZAWA Hiroyuki 已提交
1647
		num++;
1648 1649 1650
	return num;
}

D
David Rientjes 已提交
1651 1652 1653
/*
 * Return the memory (and swap, if configured) limit for a memcg.
 */
1654
static u64 mem_cgroup_get_limit(struct mem_cgroup *memcg)
D
David Rientjes 已提交
1655 1656 1657
{
	u64 limit;

1658 1659
	limit = res_counter_read_u64(&memcg->res, RES_LIMIT);

D
David Rientjes 已提交
1660
	/*
1661
	 * Do not consider swap space if we cannot swap due to swappiness
D
David Rientjes 已提交
1662
	 */
1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676
	if (mem_cgroup_swappiness(memcg)) {
		u64 memsw;

		limit += total_swap_pages << PAGE_SHIFT;
		memsw = res_counter_read_u64(&memcg->memsw, RES_LIMIT);

		/*
		 * If memsw is finite and limits the amount of swap space
		 * available to this memcg, return that limit.
		 */
		limit = min(limit, memsw);
	}

	return limit;
D
David Rientjes 已提交
1677 1678
}

1679 1680
static void mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
				     int order)
1681 1682 1683 1684 1685 1686 1687
{
	struct mem_cgroup *iter;
	unsigned long chosen_points = 0;
	unsigned long totalpages;
	unsigned int points = 0;
	struct task_struct *chosen = NULL;

1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698
	/*
	 * If current has a pending SIGKILL, then automatically select it.  The
	 * goal is to allow it to allocate so that it may quickly exit and free
	 * its memory.
	 */
	if (fatal_signal_pending(current)) {
		set_thread_flag(TIF_MEMDIE);
		return;
	}

	check_panic_on_oom(CONSTRAINT_MEMCG, gfp_mask, order, NULL);
1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745
	totalpages = mem_cgroup_get_limit(memcg) >> PAGE_SHIFT ? : 1;
	for_each_mem_cgroup_tree(iter, memcg) {
		struct cgroup *cgroup = iter->css.cgroup;
		struct cgroup_iter it;
		struct task_struct *task;

		cgroup_iter_start(cgroup, &it);
		while ((task = cgroup_iter_next(cgroup, &it))) {
			switch (oom_scan_process_thread(task, totalpages, NULL,
							false)) {
			case OOM_SCAN_SELECT:
				if (chosen)
					put_task_struct(chosen);
				chosen = task;
				chosen_points = ULONG_MAX;
				get_task_struct(chosen);
				/* fall through */
			case OOM_SCAN_CONTINUE:
				continue;
			case OOM_SCAN_ABORT:
				cgroup_iter_end(cgroup, &it);
				mem_cgroup_iter_break(memcg, iter);
				if (chosen)
					put_task_struct(chosen);
				return;
			case OOM_SCAN_OK:
				break;
			};
			points = oom_badness(task, memcg, NULL, totalpages);
			if (points > chosen_points) {
				if (chosen)
					put_task_struct(chosen);
				chosen = task;
				chosen_points = points;
				get_task_struct(chosen);
			}
		}
		cgroup_iter_end(cgroup, &it);
	}

	if (!chosen)
		return;
	points = chosen_points * 1000 / totalpages;
	oom_kill_process(chosen, gfp_mask, order, points, totalpages, memcg,
			 NULL, "Memory cgroup out of memory");
}

1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781
static unsigned long mem_cgroup_reclaim(struct mem_cgroup *memcg,
					gfp_t gfp_mask,
					unsigned long flags)
{
	unsigned long total = 0;
	bool noswap = false;
	int loop;

	if (flags & MEM_CGROUP_RECLAIM_NOSWAP)
		noswap = true;
	if (!(flags & MEM_CGROUP_RECLAIM_SHRINK) && memcg->memsw_is_minimum)
		noswap = true;

	for (loop = 0; loop < MEM_CGROUP_MAX_RECLAIM_LOOPS; loop++) {
		if (loop)
			drain_all_stock_async(memcg);
		total += try_to_free_mem_cgroup_pages(memcg, gfp_mask, noswap);
		/*
		 * Allow limit shrinkers, which are triggered directly
		 * by userspace, to catch signals and stop reclaim
		 * after minimal progress, regardless of the margin.
		 */
		if (total && (flags & MEM_CGROUP_RECLAIM_SHRINK))
			break;
		if (mem_cgroup_margin(memcg))
			break;
		/*
		 * If nothing was reclaimed after two attempts, there
		 * may be no reclaimable pages in this hierarchy.
		 */
		if (loop && !total)
			break;
	}
	return total;
}

1782 1783
/**
 * test_mem_cgroup_node_reclaimable
W
Wanpeng Li 已提交
1784
 * @memcg: the target memcg
1785 1786 1787 1788 1789 1790 1791
 * @nid: the node ID to be checked.
 * @noswap : specify true here if the user wants flle only information.
 *
 * This function returns whether the specified memcg contains any
 * reclaimable pages on a node. Returns true if there are any reclaimable
 * pages in the node.
 */
1792
static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
1793 1794
		int nid, bool noswap)
{
1795
	if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE))
1796 1797 1798
		return true;
	if (noswap || !total_swap_pages)
		return false;
1799
	if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON))
1800 1801 1802 1803
		return true;
	return false;

}
1804 1805 1806 1807 1808 1809 1810 1811
#if MAX_NUMNODES > 1

/*
 * Always updating the nodemask is not very good - even if we have an empty
 * list or the wrong list here, we can start from some node and traverse all
 * nodes based on the zonelist. So update the list loosely once per 10 secs.
 *
 */
1812
static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
1813 1814
{
	int nid;
1815 1816 1817 1818
	/*
	 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
	 * pagein/pageout changes since the last update.
	 */
1819
	if (!atomic_read(&memcg->numainfo_events))
1820
		return;
1821
	if (atomic_inc_return(&memcg->numainfo_updating) > 1)
1822 1823 1824
		return;

	/* make a nodemask where this memcg uses memory from */
1825
	memcg->scan_nodes = node_states[N_MEMORY];
1826

1827
	for_each_node_mask(nid, node_states[N_MEMORY]) {
1828

1829 1830
		if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
			node_clear(nid, memcg->scan_nodes);
1831
	}
1832

1833 1834
	atomic_set(&memcg->numainfo_events, 0);
	atomic_set(&memcg->numainfo_updating, 0);
1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848
}

/*
 * Selecting a node where we start reclaim from. Because what we need is just
 * reducing usage counter, start from anywhere is O,K. Considering
 * memory reclaim from current node, there are pros. and cons.
 *
 * Freeing memory from current node means freeing memory from a node which
 * we'll use or we've used. So, it may make LRU bad. And if several threads
 * hit limits, it will see a contention on a node. But freeing from remote
 * node means more costs for memory reclaim because of memory latency.
 *
 * Now, we use round-robin. Better algorithm is welcomed.
 */
1849
int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1850 1851 1852
{
	int node;

1853 1854
	mem_cgroup_may_update_nodemask(memcg);
	node = memcg->last_scanned_node;
1855

1856
	node = next_node(node, memcg->scan_nodes);
1857
	if (node == MAX_NUMNODES)
1858
		node = first_node(memcg->scan_nodes);
1859 1860 1861 1862 1863 1864 1865 1866 1867
	/*
	 * We call this when we hit limit, not when pages are added to LRU.
	 * No LRU may hold pages because all pages are UNEVICTABLE or
	 * memcg is too small and all pages are not on LRU. In that case,
	 * we use curret node.
	 */
	if (unlikely(node == MAX_NUMNODES))
		node = numa_node_id();

1868
	memcg->last_scanned_node = node;
1869 1870 1871
	return node;
}

1872 1873 1874 1875 1876 1877
/*
 * Check all nodes whether it contains reclaimable pages or not.
 * For quick scan, we make use of scan_nodes. This will allow us to skip
 * unused nodes. But scan_nodes is lazily updated and may not cotain
 * enough new information. We need to do double check.
 */
1878
static bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap)
1879 1880 1881 1882 1883 1884 1885
{
	int nid;

	/*
	 * quick check...making use of scan_node.
	 * We can skip unused nodes.
	 */
1886 1887
	if (!nodes_empty(memcg->scan_nodes)) {
		for (nid = first_node(memcg->scan_nodes);
1888
		     nid < MAX_NUMNODES;
1889
		     nid = next_node(nid, memcg->scan_nodes)) {
1890

1891
			if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap))
1892 1893 1894 1895 1896 1897
				return true;
		}
	}
	/*
	 * Check rest of nodes.
	 */
1898
	for_each_node_state(nid, N_MEMORY) {
1899
		if (node_isset(nid, memcg->scan_nodes))
1900
			continue;
1901
		if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap))
1902 1903 1904 1905 1906
			return true;
	}
	return false;
}

1907
#else
1908
int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1909 1910 1911
{
	return 0;
}
1912

1913
static bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap)
1914
{
1915
	return test_mem_cgroup_node_reclaimable(memcg, 0, noswap);
1916
}
1917 1918
#endif

1919 1920 1921 1922
static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
				   struct zone *zone,
				   gfp_t gfp_mask,
				   unsigned long *total_scanned)
1923
{
1924
	struct mem_cgroup *victim = NULL;
1925
	int total = 0;
K
KAMEZAWA Hiroyuki 已提交
1926
	int loop = 0;
1927
	unsigned long excess;
1928
	unsigned long nr_scanned;
1929 1930 1931 1932
	struct mem_cgroup_reclaim_cookie reclaim = {
		.zone = zone,
		.priority = 0,
	};
1933

1934
	excess = res_counter_soft_limit_excess(&root_memcg->res) >> PAGE_SHIFT;
K
KAMEZAWA Hiroyuki 已提交
1935

1936
	while (1) {
1937
		victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
1938
		if (!victim) {
K
KAMEZAWA Hiroyuki 已提交
1939
			loop++;
1940 1941 1942 1943 1944 1945
			if (loop >= 2) {
				/*
				 * If we have not been able to reclaim
				 * anything, it might because there are
				 * no reclaimable pages under this hierarchy
				 */
1946
				if (!total)
1947 1948
					break;
				/*
L
Lucas De Marchi 已提交
1949
				 * We want to do more targeted reclaim.
1950 1951 1952 1953 1954
				 * excess >> 2 is not to excessive so as to
				 * reclaim too much, nor too less that we keep
				 * coming back to reclaim from this cgroup
				 */
				if (total >= (excess >> 2) ||
1955
					(loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
1956 1957
					break;
			}
1958
			continue;
1959
		}
1960
		if (!mem_cgroup_reclaimable(victim, false))
1961
			continue;
1962 1963 1964 1965
		total += mem_cgroup_shrink_node_zone(victim, gfp_mask, false,
						     zone, &nr_scanned);
		*total_scanned += nr_scanned;
		if (!res_counter_soft_limit_excess(&root_memcg->res))
1966
			break;
1967
	}
1968
	mem_cgroup_iter_break(root_memcg, victim);
K
KAMEZAWA Hiroyuki 已提交
1969
	return total;
1970 1971
}

K
KAMEZAWA Hiroyuki 已提交
1972 1973 1974
/*
 * Check OOM-Killer is already running under our hierarchy.
 * If someone is running, return false.
1975
 * Has to be called with memcg_oom_lock
K
KAMEZAWA Hiroyuki 已提交
1976
 */
1977
static bool mem_cgroup_oom_lock(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
1978
{
1979
	struct mem_cgroup *iter, *failed = NULL;
1980

1981
	for_each_mem_cgroup_tree(iter, memcg) {
1982
		if (iter->oom_lock) {
1983 1984 1985 1986 1987
			/*
			 * this subtree of our hierarchy is already locked
			 * so we cannot give a lock.
			 */
			failed = iter;
1988 1989
			mem_cgroup_iter_break(memcg, iter);
			break;
1990 1991
		} else
			iter->oom_lock = true;
K
KAMEZAWA Hiroyuki 已提交
1992
	}
K
KAMEZAWA Hiroyuki 已提交
1993

1994
	if (!failed)
1995
		return true;
1996 1997 1998 1999 2000

	/*
	 * OK, we failed to lock the whole subtree so we have to clean up
	 * what we set up to the failing subtree
	 */
2001
	for_each_mem_cgroup_tree(iter, memcg) {
2002
		if (iter == failed) {
2003 2004
			mem_cgroup_iter_break(memcg, iter);
			break;
2005 2006 2007
		}
		iter->oom_lock = false;
	}
2008
	return false;
2009
}
2010

2011
/*
2012
 * Has to be called with memcg_oom_lock
2013
 */
2014
static int mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
2015
{
K
KAMEZAWA Hiroyuki 已提交
2016 2017
	struct mem_cgroup *iter;

2018
	for_each_mem_cgroup_tree(iter, memcg)
2019 2020 2021 2022
		iter->oom_lock = false;
	return 0;
}

2023
static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
2024 2025 2026
{
	struct mem_cgroup *iter;

2027
	for_each_mem_cgroup_tree(iter, memcg)
2028 2029 2030
		atomic_inc(&iter->under_oom);
}

2031
static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
2032 2033 2034
{
	struct mem_cgroup *iter;

K
KAMEZAWA Hiroyuki 已提交
2035 2036 2037 2038 2039
	/*
	 * When a new child is created while the hierarchy is under oom,
	 * mem_cgroup_oom_lock() may not be called. We have to use
	 * atomic_add_unless() here.
	 */
2040
	for_each_mem_cgroup_tree(iter, memcg)
2041
		atomic_add_unless(&iter->under_oom, -1, 0);
2042 2043
}

2044
static DEFINE_SPINLOCK(memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
2045 2046
static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);

K
KAMEZAWA Hiroyuki 已提交
2047
struct oom_wait_info {
2048
	struct mem_cgroup *memcg;
K
KAMEZAWA Hiroyuki 已提交
2049 2050 2051 2052 2053 2054
	wait_queue_t	wait;
};

static int memcg_oom_wake_function(wait_queue_t *wait,
	unsigned mode, int sync, void *arg)
{
2055 2056
	struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
	struct mem_cgroup *oom_wait_memcg;
K
KAMEZAWA Hiroyuki 已提交
2057 2058 2059
	struct oom_wait_info *oom_wait_info;

	oom_wait_info = container_of(wait, struct oom_wait_info, wait);
2060
	oom_wait_memcg = oom_wait_info->memcg;
K
KAMEZAWA Hiroyuki 已提交
2061 2062

	/*
2063
	 * Both of oom_wait_info->memcg and wake_memcg are stable under us.
K
KAMEZAWA Hiroyuki 已提交
2064 2065
	 * Then we can use css_is_ancestor without taking care of RCU.
	 */
2066 2067
	if (!mem_cgroup_same_or_subtree(oom_wait_memcg, wake_memcg)
		&& !mem_cgroup_same_or_subtree(wake_memcg, oom_wait_memcg))
K
KAMEZAWA Hiroyuki 已提交
2068 2069 2070 2071
		return 0;
	return autoremove_wake_function(wait, mode, sync, arg);
}

2072
static void memcg_wakeup_oom(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
2073
{
2074 2075
	/* for filtering, pass "memcg" as argument. */
	__wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
K
KAMEZAWA Hiroyuki 已提交
2076 2077
}

2078
static void memcg_oom_recover(struct mem_cgroup *memcg)
2079
{
2080 2081
	if (memcg && atomic_read(&memcg->under_oom))
		memcg_wakeup_oom(memcg);
2082 2083
}

K
KAMEZAWA Hiroyuki 已提交
2084 2085 2086
/*
 * try to call OOM killer. returns false if we should exit memory-reclaim loop.
 */
2087 2088
static bool mem_cgroup_handle_oom(struct mem_cgroup *memcg, gfp_t mask,
				  int order)
2089
{
K
KAMEZAWA Hiroyuki 已提交
2090
	struct oom_wait_info owait;
2091
	bool locked, need_to_kill;
K
KAMEZAWA Hiroyuki 已提交
2092

2093
	owait.memcg = memcg;
K
KAMEZAWA Hiroyuki 已提交
2094 2095 2096 2097
	owait.wait.flags = 0;
	owait.wait.func = memcg_oom_wake_function;
	owait.wait.private = current;
	INIT_LIST_HEAD(&owait.wait.task_list);
2098
	need_to_kill = true;
2099
	mem_cgroup_mark_under_oom(memcg);
2100

2101
	/* At first, try to OOM lock hierarchy under memcg.*/
2102
	spin_lock(&memcg_oom_lock);
2103
	locked = mem_cgroup_oom_lock(memcg);
K
KAMEZAWA Hiroyuki 已提交
2104 2105 2106 2107 2108
	/*
	 * Even if signal_pending(), we can't quit charge() loop without
	 * accounting. So, UNINTERRUPTIBLE is appropriate. But SIGKILL
	 * under OOM is always welcomed, use TASK_KILLABLE here.
	 */
2109
	prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
2110
	if (!locked || memcg->oom_kill_disable)
2111 2112
		need_to_kill = false;
	if (locked)
2113
		mem_cgroup_oom_notify(memcg);
2114
	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
2115

2116 2117
	if (need_to_kill) {
		finish_wait(&memcg_oom_waitq, &owait.wait);
2118
		mem_cgroup_out_of_memory(memcg, mask, order);
2119
	} else {
K
KAMEZAWA Hiroyuki 已提交
2120
		schedule();
K
KAMEZAWA Hiroyuki 已提交
2121
		finish_wait(&memcg_oom_waitq, &owait.wait);
K
KAMEZAWA Hiroyuki 已提交
2122
	}
2123
	spin_lock(&memcg_oom_lock);
2124
	if (locked)
2125 2126
		mem_cgroup_oom_unlock(memcg);
	memcg_wakeup_oom(memcg);
2127
	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
2128

2129
	mem_cgroup_unmark_under_oom(memcg);
2130

K
KAMEZAWA Hiroyuki 已提交
2131 2132 2133
	if (test_thread_flag(TIF_MEMDIE) || fatal_signal_pending(current))
		return false;
	/* Give chance to dying process */
2134
	schedule_timeout_uninterruptible(1);
K
KAMEZAWA Hiroyuki 已提交
2135
	return true;
2136 2137
}

2138 2139 2140
/*
 * Currently used to update mapped file statistics, but the routine can be
 * generalized to update other statistics as well.
2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157
 *
 * Notes: Race condition
 *
 * We usually use page_cgroup_lock() for accessing page_cgroup member but
 * it tends to be costly. But considering some conditions, we doesn't need
 * to do so _always_.
 *
 * Considering "charge", lock_page_cgroup() is not required because all
 * file-stat operations happen after a page is attached to radix-tree. There
 * are no race with "charge".
 *
 * Considering "uncharge", we know that memcg doesn't clear pc->mem_cgroup
 * at "uncharge" intentionally. So, we always see valid pc->mem_cgroup even
 * if there are race with "uncharge". Statistics itself is properly handled
 * by flags.
 *
 * Considering "move", this is an only case we see a race. To make the race
2158 2159
 * small, we check mm->moving_account and detect there are possibility of race
 * If there is, we take a lock.
2160
 */
2161

2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174
void __mem_cgroup_begin_update_page_stat(struct page *page,
				bool *locked, unsigned long *flags)
{
	struct mem_cgroup *memcg;
	struct page_cgroup *pc;

	pc = lookup_page_cgroup(page);
again:
	memcg = pc->mem_cgroup;
	if (unlikely(!memcg || !PageCgroupUsed(pc)))
		return;
	/*
	 * If this memory cgroup is not under account moving, we don't
2175
	 * need to take move_lock_mem_cgroup(). Because we already hold
2176
	 * rcu_read_lock(), any calls to move_account will be delayed until
2177
	 * rcu_read_unlock() if mem_cgroup_stolen() == true.
2178
	 */
2179
	if (!mem_cgroup_stolen(memcg))
2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196
		return;

	move_lock_mem_cgroup(memcg, flags);
	if (memcg != pc->mem_cgroup || !PageCgroupUsed(pc)) {
		move_unlock_mem_cgroup(memcg, flags);
		goto again;
	}
	*locked = true;
}

void __mem_cgroup_end_update_page_stat(struct page *page, unsigned long *flags)
{
	struct page_cgroup *pc = lookup_page_cgroup(page);

	/*
	 * It's guaranteed that pc->mem_cgroup never changes while
	 * lock is held because a routine modifies pc->mem_cgroup
2197
	 * should take move_lock_mem_cgroup().
2198 2199 2200 2201
	 */
	move_unlock_mem_cgroup(pc->mem_cgroup, flags);
}

2202 2203
void mem_cgroup_update_page_stat(struct page *page,
				 enum mem_cgroup_page_stat_item idx, int val)
2204
{
2205
	struct mem_cgroup *memcg;
2206
	struct page_cgroup *pc = lookup_page_cgroup(page);
2207
	unsigned long uninitialized_var(flags);
2208

2209
	if (mem_cgroup_disabled())
2210
		return;
2211

2212 2213
	memcg = pc->mem_cgroup;
	if (unlikely(!memcg || !PageCgroupUsed(pc)))
2214
		return;
2215 2216

	switch (idx) {
2217 2218
	case MEMCG_NR_FILE_MAPPED:
		idx = MEM_CGROUP_STAT_FILE_MAPPED;
2219 2220 2221
		break;
	default:
		BUG();
2222
	}
2223

2224
	this_cpu_add(memcg->stat->count[idx], val);
2225
}
2226

2227 2228 2229 2230
/*
 * size of first charge trial. "32" comes from vmscan.c's magic value.
 * TODO: maybe necessary to use big numbers in big irons.
 */
2231
#define CHARGE_BATCH	32U
2232 2233
struct memcg_stock_pcp {
	struct mem_cgroup *cached; /* this never be root cgroup */
2234
	unsigned int nr_pages;
2235
	struct work_struct work;
2236
	unsigned long flags;
2237
#define FLUSHING_CACHED_CHARGE	0
2238 2239
};
static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
2240
static DEFINE_MUTEX(percpu_charge_mutex);
2241

2242 2243 2244 2245 2246 2247 2248 2249 2250 2251
/**
 * consume_stock: Try to consume stocked charge on this cpu.
 * @memcg: memcg to consume from.
 * @nr_pages: how many pages to charge.
 *
 * The charges will only happen if @memcg matches the current cpu's memcg
 * stock, and at least @nr_pages are available in that stock.  Failure to
 * service an allocation will refill the stock.
 *
 * returns true if successful, false otherwise.
2252
 */
2253
static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2254 2255 2256 2257
{
	struct memcg_stock_pcp *stock;
	bool ret = true;

2258 2259 2260
	if (nr_pages > CHARGE_BATCH)
		return false;

2261
	stock = &get_cpu_var(memcg_stock);
2262 2263
	if (memcg == stock->cached && stock->nr_pages >= nr_pages)
		stock->nr_pages -= nr_pages;
2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276
	else /* need to call res_counter_charge */
		ret = false;
	put_cpu_var(memcg_stock);
	return ret;
}

/*
 * Returns stocks cached in percpu to res_counter and reset cached information.
 */
static void drain_stock(struct memcg_stock_pcp *stock)
{
	struct mem_cgroup *old = stock->cached;

2277 2278 2279 2280
	if (stock->nr_pages) {
		unsigned long bytes = stock->nr_pages * PAGE_SIZE;

		res_counter_uncharge(&old->res, bytes);
2281
		if (do_swap_account)
2282 2283
			res_counter_uncharge(&old->memsw, bytes);
		stock->nr_pages = 0;
2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295
	}
	stock->cached = NULL;
}

/*
 * This must be called under preempt disabled or must be called by
 * a thread which is pinned to local cpu.
 */
static void drain_local_stock(struct work_struct *dummy)
{
	struct memcg_stock_pcp *stock = &__get_cpu_var(memcg_stock);
	drain_stock(stock);
2296
	clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
2297 2298
}

2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309
static void __init memcg_stock_init(void)
{
	int cpu;

	for_each_possible_cpu(cpu) {
		struct memcg_stock_pcp *stock =
					&per_cpu(memcg_stock, cpu);
		INIT_WORK(&stock->work, drain_local_stock);
	}
}

2310 2311
/*
 * Cache charges(val) which is from res_counter, to local per_cpu area.
2312
 * This will be consumed by consume_stock() function, later.
2313
 */
2314
static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2315 2316 2317
{
	struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);

2318
	if (stock->cached != memcg) { /* reset if necessary */
2319
		drain_stock(stock);
2320
		stock->cached = memcg;
2321
	}
2322
	stock->nr_pages += nr_pages;
2323 2324 2325 2326
	put_cpu_var(memcg_stock);
}

/*
2327
 * Drains all per-CPU charge caches for given root_memcg resp. subtree
2328 2329
 * of the hierarchy under it. sync flag says whether we should block
 * until the work is done.
2330
 */
2331
static void drain_all_stock(struct mem_cgroup *root_memcg, bool sync)
2332
{
2333
	int cpu, curcpu;
2334

2335 2336
	/* Notify other cpus that system-wide "drain" is running */
	get_online_cpus();
2337
	curcpu = get_cpu();
2338 2339
	for_each_online_cpu(cpu) {
		struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2340
		struct mem_cgroup *memcg;
2341

2342 2343
		memcg = stock->cached;
		if (!memcg || !stock->nr_pages)
2344
			continue;
2345
		if (!mem_cgroup_same_or_subtree(root_memcg, memcg))
2346
			continue;
2347 2348 2349 2350 2351 2352
		if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
			if (cpu == curcpu)
				drain_local_stock(&stock->work);
			else
				schedule_work_on(cpu, &stock->work);
		}
2353
	}
2354
	put_cpu();
2355 2356 2357 2358 2359 2360

	if (!sync)
		goto out;

	for_each_online_cpu(cpu) {
		struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2361
		if (test_bit(FLUSHING_CACHED_CHARGE, &stock->flags))
2362 2363 2364
			flush_work(&stock->work);
	}
out:
2365
 	put_online_cpus();
2366 2367 2368 2369 2370 2371 2372 2373
}

/*
 * Tries to drain stocked charges in other cpus. This function is asynchronous
 * and just put a work per cpu for draining localy on each cpu. Caller can
 * expects some charges will be back to res_counter later but cannot wait for
 * it.
 */
2374
static void drain_all_stock_async(struct mem_cgroup *root_memcg)
2375
{
2376 2377 2378 2379 2380
	/*
	 * If someone calls draining, avoid adding more kworker runs.
	 */
	if (!mutex_trylock(&percpu_charge_mutex))
		return;
2381
	drain_all_stock(root_memcg, false);
2382
	mutex_unlock(&percpu_charge_mutex);
2383 2384 2385
}

/* This is a synchronous drain interface. */
2386
static void drain_all_stock_sync(struct mem_cgroup *root_memcg)
2387 2388
{
	/* called when force_empty is called */
2389
	mutex_lock(&percpu_charge_mutex);
2390
	drain_all_stock(root_memcg, true);
2391
	mutex_unlock(&percpu_charge_mutex);
2392 2393
}

2394 2395 2396 2397
/*
 * This function drains percpu counter value from DEAD cpu and
 * move it to local cpu. Note that this function can be preempted.
 */
2398
static void mem_cgroup_drain_pcp_counter(struct mem_cgroup *memcg, int cpu)
2399 2400 2401
{
	int i;

2402
	spin_lock(&memcg->pcp_counter_lock);
2403
	for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
2404
		long x = per_cpu(memcg->stat->count[i], cpu);
2405

2406 2407
		per_cpu(memcg->stat->count[i], cpu) = 0;
		memcg->nocpu_base.count[i] += x;
2408
	}
2409
	for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
2410
		unsigned long x = per_cpu(memcg->stat->events[i], cpu);
2411

2412 2413
		per_cpu(memcg->stat->events[i], cpu) = 0;
		memcg->nocpu_base.events[i] += x;
2414
	}
2415
	spin_unlock(&memcg->pcp_counter_lock);
2416 2417 2418
}

static int __cpuinit memcg_cpu_hotplug_callback(struct notifier_block *nb,
2419 2420 2421 2422 2423
					unsigned long action,
					void *hcpu)
{
	int cpu = (unsigned long)hcpu;
	struct memcg_stock_pcp *stock;
2424
	struct mem_cgroup *iter;
2425

2426
	if (action == CPU_ONLINE)
2427 2428
		return NOTIFY_OK;

2429
	if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
2430
		return NOTIFY_OK;
2431

2432
	for_each_mem_cgroup(iter)
2433 2434
		mem_cgroup_drain_pcp_counter(iter, cpu);

2435 2436 2437 2438 2439
	stock = &per_cpu(memcg_stock, cpu);
	drain_stock(stock);
	return NOTIFY_OK;
}

2440 2441 2442 2443 2444 2445 2446 2447 2448 2449

/* See __mem_cgroup_try_charge() for details */
enum {
	CHARGE_OK,		/* success */
	CHARGE_RETRY,		/* need to retry but retry is not bad */
	CHARGE_NOMEM,		/* we can't do more. return -ENOMEM */
	CHARGE_WOULDBLOCK,	/* GFP_WAIT wasn't set and no enough res. */
	CHARGE_OOM_DIE,		/* the current is killed because of OOM */
};

2450
static int mem_cgroup_do_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
2451 2452
				unsigned int nr_pages, unsigned int min_pages,
				bool oom_check)
2453
{
2454
	unsigned long csize = nr_pages * PAGE_SIZE;
2455 2456 2457 2458 2459
	struct mem_cgroup *mem_over_limit;
	struct res_counter *fail_res;
	unsigned long flags = 0;
	int ret;

2460
	ret = res_counter_charge(&memcg->res, csize, &fail_res);
2461 2462 2463 2464

	if (likely(!ret)) {
		if (!do_swap_account)
			return CHARGE_OK;
2465
		ret = res_counter_charge(&memcg->memsw, csize, &fail_res);
2466 2467 2468
		if (likely(!ret))
			return CHARGE_OK;

2469
		res_counter_uncharge(&memcg->res, csize);
2470 2471 2472 2473
		mem_over_limit = mem_cgroup_from_res_counter(fail_res, memsw);
		flags |= MEM_CGROUP_RECLAIM_NOSWAP;
	} else
		mem_over_limit = mem_cgroup_from_res_counter(fail_res, res);
2474 2475 2476 2477
	/*
	 * Never reclaim on behalf of optional batching, retry with a
	 * single page instead.
	 */
2478
	if (nr_pages > min_pages)
2479 2480 2481 2482 2483
		return CHARGE_RETRY;

	if (!(gfp_mask & __GFP_WAIT))
		return CHARGE_WOULDBLOCK;

2484 2485 2486
	if (gfp_mask & __GFP_NORETRY)
		return CHARGE_NOMEM;

2487
	ret = mem_cgroup_reclaim(mem_over_limit, gfp_mask, flags);
2488
	if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
2489
		return CHARGE_RETRY;
2490
	/*
2491 2492 2493 2494 2495 2496 2497
	 * Even though the limit is exceeded at this point, reclaim
	 * may have been able to free some pages.  Retry the charge
	 * before killing the task.
	 *
	 * Only for regular pages, though: huge pages are rather
	 * unlikely to succeed so close to the limit, and we fall back
	 * to regular pages anyway in case of failure.
2498
	 */
2499
	if (nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER) && ret)
2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512
		return CHARGE_RETRY;

	/*
	 * At task move, charge accounts can be doubly counted. So, it's
	 * better to wait until the end of task_move if something is going on.
	 */
	if (mem_cgroup_wait_acct_move(mem_over_limit))
		return CHARGE_RETRY;

	/* If we don't need to call oom-killer at el, return immediately */
	if (!oom_check)
		return CHARGE_NOMEM;
	/* check OOM */
2513
	if (!mem_cgroup_handle_oom(mem_over_limit, gfp_mask, get_order(csize)))
2514 2515 2516 2517 2518
		return CHARGE_OOM_DIE;

	return CHARGE_RETRY;
}

2519
/*
2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538
 * __mem_cgroup_try_charge() does
 * 1. detect memcg to be charged against from passed *mm and *ptr,
 * 2. update res_counter
 * 3. call memory reclaim if necessary.
 *
 * In some special case, if the task is fatal, fatal_signal_pending() or
 * has TIF_MEMDIE, this function returns -EINTR while writing root_mem_cgroup
 * to *ptr. There are two reasons for this. 1: fatal threads should quit as soon
 * as possible without any hazards. 2: all pages should have a valid
 * pc->mem_cgroup. If mm is NULL and the caller doesn't pass a valid memcg
 * pointer, that is treated as a charge to root_mem_cgroup.
 *
 * So __mem_cgroup_try_charge() will return
 *  0       ...  on success, filling *ptr with a valid memcg pointer.
 *  -ENOMEM ...  charge failure because of resource limits.
 *  -EINTR  ...  if thread is fatal. *ptr is filled with root_mem_cgroup.
 *
 * Unlike the exported interface, an "oom" parameter is added. if oom==true,
 * the oom-killer can be invoked.
2539
 */
2540
static int __mem_cgroup_try_charge(struct mm_struct *mm,
A
Andrea Arcangeli 已提交
2541
				   gfp_t gfp_mask,
2542
				   unsigned int nr_pages,
2543
				   struct mem_cgroup **ptr,
2544
				   bool oom)
2545
{
2546
	unsigned int batch = max(CHARGE_BATCH, nr_pages);
2547
	int nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
2548
	struct mem_cgroup *memcg = NULL;
2549
	int ret;
2550

K
KAMEZAWA Hiroyuki 已提交
2551 2552 2553 2554 2555 2556 2557 2558
	/*
	 * Unlike gloval-vm's OOM-kill, we're not in memory shortage
	 * in system level. So, allow to go ahead dying process in addition to
	 * MEMDIE process.
	 */
	if (unlikely(test_thread_flag(TIF_MEMDIE)
		     || fatal_signal_pending(current)))
		goto bypass;
2559

2560
	/*
2561 2562
	 * We always charge the cgroup the mm_struct belongs to.
	 * The mm_struct's mem_cgroup changes on task migration if the
2563
	 * thread group leader migrates. It's possible that mm is not
2564
	 * set, if so charge the root memcg (happens for pagecache usage).
2565
	 */
2566
	if (!*ptr && !mm)
2567
		*ptr = root_mem_cgroup;
K
KAMEZAWA Hiroyuki 已提交
2568
again:
2569 2570 2571
	if (*ptr) { /* css should be a valid one */
		memcg = *ptr;
		if (mem_cgroup_is_root(memcg))
K
KAMEZAWA Hiroyuki 已提交
2572
			goto done;
2573
		if (consume_stock(memcg, nr_pages))
K
KAMEZAWA Hiroyuki 已提交
2574
			goto done;
2575
		css_get(&memcg->css);
2576
	} else {
K
KAMEZAWA Hiroyuki 已提交
2577
		struct task_struct *p;
2578

K
KAMEZAWA Hiroyuki 已提交
2579 2580 2581
		rcu_read_lock();
		p = rcu_dereference(mm->owner);
		/*
2582
		 * Because we don't have task_lock(), "p" can exit.
2583
		 * In that case, "memcg" can point to root or p can be NULL with
2584 2585 2586 2587 2588 2589
		 * race with swapoff. Then, we have small risk of mis-accouning.
		 * But such kind of mis-account by race always happens because
		 * we don't have cgroup_mutex(). It's overkill and we allo that
		 * small race, here.
		 * (*) swapoff at el will charge against mm-struct not against
		 * task-struct. So, mm->owner can be NULL.
K
KAMEZAWA Hiroyuki 已提交
2590
		 */
2591
		memcg = mem_cgroup_from_task(p);
2592 2593 2594
		if (!memcg)
			memcg = root_mem_cgroup;
		if (mem_cgroup_is_root(memcg)) {
K
KAMEZAWA Hiroyuki 已提交
2595 2596 2597
			rcu_read_unlock();
			goto done;
		}
2598
		if (consume_stock(memcg, nr_pages)) {
K
KAMEZAWA Hiroyuki 已提交
2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610
			/*
			 * It seems dagerous to access memcg without css_get().
			 * But considering how consume_stok works, it's not
			 * necessary. If consume_stock success, some charges
			 * from this memcg are cached on this cpu. So, we
			 * don't need to call css_get()/css_tryget() before
			 * calling consume_stock().
			 */
			rcu_read_unlock();
			goto done;
		}
		/* after here, we may be blocked. we need to get refcnt */
2611
		if (!css_tryget(&memcg->css)) {
K
KAMEZAWA Hiroyuki 已提交
2612 2613 2614 2615 2616
			rcu_read_unlock();
			goto again;
		}
		rcu_read_unlock();
	}
2617

2618 2619
	do {
		bool oom_check;
2620

2621
		/* If killed, bypass charge */
K
KAMEZAWA Hiroyuki 已提交
2622
		if (fatal_signal_pending(current)) {
2623
			css_put(&memcg->css);
2624
			goto bypass;
K
KAMEZAWA Hiroyuki 已提交
2625
		}
2626

2627 2628 2629 2630
		oom_check = false;
		if (oom && !nr_oom_retries) {
			oom_check = true;
			nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
2631
		}
2632

2633 2634
		ret = mem_cgroup_do_charge(memcg, gfp_mask, batch, nr_pages,
		    oom_check);
2635 2636 2637 2638
		switch (ret) {
		case CHARGE_OK:
			break;
		case CHARGE_RETRY: /* not in OOM situation but retry */
2639
			batch = nr_pages;
2640 2641
			css_put(&memcg->css);
			memcg = NULL;
K
KAMEZAWA Hiroyuki 已提交
2642
			goto again;
2643
		case CHARGE_WOULDBLOCK: /* !__GFP_WAIT */
2644
			css_put(&memcg->css);
2645 2646
			goto nomem;
		case CHARGE_NOMEM: /* OOM routine works */
K
KAMEZAWA Hiroyuki 已提交
2647
			if (!oom) {
2648
				css_put(&memcg->css);
K
KAMEZAWA Hiroyuki 已提交
2649
				goto nomem;
K
KAMEZAWA Hiroyuki 已提交
2650
			}
2651 2652 2653 2654
			/* If oom, we never return -ENOMEM */
			nr_oom_retries--;
			break;
		case CHARGE_OOM_DIE: /* Killed by OOM Killer */
2655
			css_put(&memcg->css);
K
KAMEZAWA Hiroyuki 已提交
2656
			goto bypass;
2657
		}
2658 2659
	} while (ret != CHARGE_OK);

2660
	if (batch > nr_pages)
2661 2662
		refill_stock(memcg, batch - nr_pages);
	css_put(&memcg->css);
2663
done:
2664
	*ptr = memcg;
2665 2666
	return 0;
nomem:
2667
	*ptr = NULL;
2668
	return -ENOMEM;
K
KAMEZAWA Hiroyuki 已提交
2669
bypass:
2670 2671
	*ptr = root_mem_cgroup;
	return -EINTR;
2672
}
2673

2674 2675 2676 2677 2678
/*
 * Somemtimes we have to undo a charge we got by try_charge().
 * This function is for that and do uncharge, put css's refcnt.
 * gotten by try_charge().
 */
2679
static void __mem_cgroup_cancel_charge(struct mem_cgroup *memcg,
2680
				       unsigned int nr_pages)
2681
{
2682
	if (!mem_cgroup_is_root(memcg)) {
2683 2684
		unsigned long bytes = nr_pages * PAGE_SIZE;

2685
		res_counter_uncharge(&memcg->res, bytes);
2686
		if (do_swap_account)
2687
			res_counter_uncharge(&memcg->memsw, bytes);
2688
	}
2689 2690
}

2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708
/*
 * Cancel chrages in this cgroup....doesn't propagate to parent cgroup.
 * This is useful when moving usage to parent cgroup.
 */
static void __mem_cgroup_cancel_local_charge(struct mem_cgroup *memcg,
					unsigned int nr_pages)
{
	unsigned long bytes = nr_pages * PAGE_SIZE;

	if (mem_cgroup_is_root(memcg))
		return;

	res_counter_uncharge_until(&memcg->res, memcg->res.parent, bytes);
	if (do_swap_account)
		res_counter_uncharge_until(&memcg->memsw,
						memcg->memsw.parent, bytes);
}

2709 2710
/*
 * A helper function to get mem_cgroup from ID. must be called under
T
Tejun Heo 已提交
2711 2712 2713
 * rcu_read_lock().  The caller is responsible for calling css_tryget if
 * the mem_cgroup is used for charging. (dropping refcnt from swap can be
 * called against removed memcg.)
2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724
 */
static struct mem_cgroup *mem_cgroup_lookup(unsigned short id)
{
	struct cgroup_subsys_state *css;

	/* ID 0 is unused ID */
	if (!id)
		return NULL;
	css = css_lookup(&mem_cgroup_subsys, id);
	if (!css)
		return NULL;
2725
	return mem_cgroup_from_css(css);
2726 2727
}

2728
struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page)
2729
{
2730
	struct mem_cgroup *memcg = NULL;
2731
	struct page_cgroup *pc;
2732
	unsigned short id;
2733 2734
	swp_entry_t ent;

2735 2736 2737
	VM_BUG_ON(!PageLocked(page));

	pc = lookup_page_cgroup(page);
2738
	lock_page_cgroup(pc);
2739
	if (PageCgroupUsed(pc)) {
2740 2741 2742
		memcg = pc->mem_cgroup;
		if (memcg && !css_tryget(&memcg->css))
			memcg = NULL;
2743
	} else if (PageSwapCache(page)) {
2744
		ent.val = page_private(page);
2745
		id = lookup_swap_cgroup_id(ent);
2746
		rcu_read_lock();
2747 2748 2749
		memcg = mem_cgroup_lookup(id);
		if (memcg && !css_tryget(&memcg->css))
			memcg = NULL;
2750
		rcu_read_unlock();
2751
	}
2752
	unlock_page_cgroup(pc);
2753
	return memcg;
2754 2755
}

2756
static void __mem_cgroup_commit_charge(struct mem_cgroup *memcg,
2757
				       struct page *page,
2758
				       unsigned int nr_pages,
2759 2760
				       enum charge_type ctype,
				       bool lrucare)
2761
{
2762
	struct page_cgroup *pc = lookup_page_cgroup(page);
2763
	struct zone *uninitialized_var(zone);
2764
	struct lruvec *lruvec;
2765
	bool was_on_lru = false;
2766
	bool anon;
2767

2768
	lock_page_cgroup(pc);
2769
	VM_BUG_ON(PageCgroupUsed(pc));
2770 2771 2772 2773
	/*
	 * we don't need page_cgroup_lock about tail pages, becase they are not
	 * accessed by any other context at this point.
	 */
2774 2775 2776 2777 2778 2779 2780 2781 2782

	/*
	 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
	 * may already be on some other mem_cgroup's LRU.  Take care of it.
	 */
	if (lrucare) {
		zone = page_zone(page);
		spin_lock_irq(&zone->lru_lock);
		if (PageLRU(page)) {
2783
			lruvec = mem_cgroup_zone_lruvec(zone, pc->mem_cgroup);
2784
			ClearPageLRU(page);
2785
			del_page_from_lru_list(page, lruvec, page_lru(page));
2786 2787 2788 2789
			was_on_lru = true;
		}
	}

2790
	pc->mem_cgroup = memcg;
2791 2792 2793 2794 2795 2796 2797
	/*
	 * We access a page_cgroup asynchronously without lock_page_cgroup().
	 * Especially when a page_cgroup is taken from a page, pc->mem_cgroup
	 * is accessed after testing USED bit. To make pc->mem_cgroup visible
	 * before USED bit, we need memory barrier here.
	 * See mem_cgroup_add_lru_list(), etc.
 	 */
K
KAMEZAWA Hiroyuki 已提交
2798
	smp_wmb();
2799
	SetPageCgroupUsed(pc);
2800

2801 2802
	if (lrucare) {
		if (was_on_lru) {
2803
			lruvec = mem_cgroup_zone_lruvec(zone, pc->mem_cgroup);
2804 2805
			VM_BUG_ON(PageLRU(page));
			SetPageLRU(page);
2806
			add_page_to_lru_list(page, lruvec, page_lru(page));
2807 2808 2809 2810
		}
		spin_unlock_irq(&zone->lru_lock);
	}

2811
	if (ctype == MEM_CGROUP_CHARGE_TYPE_ANON)
2812 2813 2814 2815 2816
		anon = true;
	else
		anon = false;

	mem_cgroup_charge_statistics(memcg, anon, nr_pages);
2817
	unlock_page_cgroup(pc);
2818

2819 2820 2821 2822 2823
	/*
	 * "charge_statistics" updated event counter. Then, check it.
	 * Insert ancestor (and ancestor's ancestors), to softlimit RB-tree.
	 * if they exceeds softlimit.
	 */
2824
	memcg_check_events(memcg, page);
2825
}
2826

2827 2828
static DEFINE_MUTEX(set_limit_mutex);

2829 2830 2831 2832 2833 2834 2835
#ifdef CONFIG_MEMCG_KMEM
static inline bool memcg_can_account_kmem(struct mem_cgroup *memcg)
{
	return !mem_cgroup_disabled() && !mem_cgroup_is_root(memcg) &&
		(memcg->kmem_account_flags & KMEM_ACCOUNTED_MASK);
}

G
Glauber Costa 已提交
2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848
/*
 * This is a bit cumbersome, but it is rarely used and avoids a backpointer
 * in the memcg_cache_params struct.
 */
static struct kmem_cache *memcg_params_to_cache(struct memcg_cache_params *p)
{
	struct kmem_cache *cachep;

	VM_BUG_ON(p->is_root_cache);
	cachep = p->root_cache;
	return cachep->memcg_params->memcg_caches[memcg_cache_id(p->memcg)];
}

2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869
#ifdef CONFIG_SLABINFO
static int mem_cgroup_slabinfo_read(struct cgroup *cont, struct cftype *cft,
					struct seq_file *m)
{
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
	struct memcg_cache_params *params;

	if (!memcg_can_account_kmem(memcg))
		return -EIO;

	print_slabinfo_header(m);

	mutex_lock(&memcg->slab_caches_mutex);
	list_for_each_entry(params, &memcg->memcg_slab_caches, list)
		cache_show(memcg_params_to_cache(params), m);
	mutex_unlock(&memcg->slab_caches_mutex);

	return 0;
}
#endif

2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922
static int memcg_charge_kmem(struct mem_cgroup *memcg, gfp_t gfp, u64 size)
{
	struct res_counter *fail_res;
	struct mem_cgroup *_memcg;
	int ret = 0;
	bool may_oom;

	ret = res_counter_charge(&memcg->kmem, size, &fail_res);
	if (ret)
		return ret;

	/*
	 * Conditions under which we can wait for the oom_killer. Those are
	 * the same conditions tested by the core page allocator
	 */
	may_oom = (gfp & __GFP_FS) && !(gfp & __GFP_NORETRY);

	_memcg = memcg;
	ret = __mem_cgroup_try_charge(NULL, gfp, size >> PAGE_SHIFT,
				      &_memcg, may_oom);

	if (ret == -EINTR)  {
		/*
		 * __mem_cgroup_try_charge() chosed to bypass to root due to
		 * OOM kill or fatal signal.  Since our only options are to
		 * either fail the allocation or charge it to this cgroup, do
		 * it as a temporary condition. But we can't fail. From a
		 * kmem/slab perspective, the cache has already been selected,
		 * by mem_cgroup_kmem_get_cache(), so it is too late to change
		 * our minds.
		 *
		 * This condition will only trigger if the task entered
		 * memcg_charge_kmem in a sane state, but was OOM-killed during
		 * __mem_cgroup_try_charge() above. Tasks that were already
		 * dying when the allocation triggers should have been already
		 * directed to the root cgroup in memcontrol.h
		 */
		res_counter_charge_nofail(&memcg->res, size, &fail_res);
		if (do_swap_account)
			res_counter_charge_nofail(&memcg->memsw, size,
						  &fail_res);
		ret = 0;
	} else if (ret)
		res_counter_uncharge(&memcg->kmem, size);

	return ret;
}

static void memcg_uncharge_kmem(struct mem_cgroup *memcg, u64 size)
{
	res_counter_uncharge(&memcg->res, size);
	if (do_swap_account)
		res_counter_uncharge(&memcg->memsw, size);
2923 2924 2925 2926 2927 2928 2929

	/* Not down to 0 */
	if (res_counter_uncharge(&memcg->kmem, size))
		return;

	if (memcg_kmem_test_and_clear_dead(memcg))
		mem_cgroup_put(memcg);
2930 2931
}

2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951
void memcg_cache_list_add(struct mem_cgroup *memcg, struct kmem_cache *cachep)
{
	if (!memcg)
		return;

	mutex_lock(&memcg->slab_caches_mutex);
	list_add(&cachep->memcg_params->list, &memcg->memcg_slab_caches);
	mutex_unlock(&memcg->slab_caches_mutex);
}

/*
 * helper for acessing a memcg's index. It will be used as an index in the
 * child cache array in kmem_cache, and also to derive its name. This function
 * will return -1 when this is not a kmem-limited memcg.
 */
int memcg_cache_id(struct mem_cgroup *memcg)
{
	return memcg ? memcg->kmemcg_id : -1;
}

2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065
/*
 * This ends up being protected by the set_limit mutex, during normal
 * operation, because that is its main call site.
 *
 * But when we create a new cache, we can call this as well if its parent
 * is kmem-limited. That will have to hold set_limit_mutex as well.
 */
int memcg_update_cache_sizes(struct mem_cgroup *memcg)
{
	int num, ret;

	num = ida_simple_get(&kmem_limited_groups,
				0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
	if (num < 0)
		return num;
	/*
	 * After this point, kmem_accounted (that we test atomically in
	 * the beginning of this conditional), is no longer 0. This
	 * guarantees only one process will set the following boolean
	 * to true. We don't need test_and_set because we're protected
	 * by the set_limit_mutex anyway.
	 */
	memcg_kmem_set_activated(memcg);

	ret = memcg_update_all_caches(num+1);
	if (ret) {
		ida_simple_remove(&kmem_limited_groups, num);
		memcg_kmem_clear_activated(memcg);
		return ret;
	}

	memcg->kmemcg_id = num;
	INIT_LIST_HEAD(&memcg->memcg_slab_caches);
	mutex_init(&memcg->slab_caches_mutex);
	return 0;
}

static size_t memcg_caches_array_size(int num_groups)
{
	ssize_t size;
	if (num_groups <= 0)
		return 0;

	size = 2 * num_groups;
	if (size < MEMCG_CACHES_MIN_SIZE)
		size = MEMCG_CACHES_MIN_SIZE;
	else if (size > MEMCG_CACHES_MAX_SIZE)
		size = MEMCG_CACHES_MAX_SIZE;

	return size;
}

/*
 * We should update the current array size iff all caches updates succeed. This
 * can only be done from the slab side. The slab mutex needs to be held when
 * calling this.
 */
void memcg_update_array_size(int num)
{
	if (num > memcg_limited_groups_array_size)
		memcg_limited_groups_array_size = memcg_caches_array_size(num);
}

int memcg_update_cache_size(struct kmem_cache *s, int num_groups)
{
	struct memcg_cache_params *cur_params = s->memcg_params;

	VM_BUG_ON(s->memcg_params && !s->memcg_params->is_root_cache);

	if (num_groups > memcg_limited_groups_array_size) {
		int i;
		ssize_t size = memcg_caches_array_size(num_groups);

		size *= sizeof(void *);
		size += sizeof(struct memcg_cache_params);

		s->memcg_params = kzalloc(size, GFP_KERNEL);
		if (!s->memcg_params) {
			s->memcg_params = cur_params;
			return -ENOMEM;
		}

		s->memcg_params->is_root_cache = true;

		/*
		 * There is the chance it will be bigger than
		 * memcg_limited_groups_array_size, if we failed an allocation
		 * in a cache, in which case all caches updated before it, will
		 * have a bigger array.
		 *
		 * But if that is the case, the data after
		 * memcg_limited_groups_array_size is certainly unused
		 */
		for (i = 0; i < memcg_limited_groups_array_size; i++) {
			if (!cur_params->memcg_caches[i])
				continue;
			s->memcg_params->memcg_caches[i] =
						cur_params->memcg_caches[i];
		}

		/*
		 * Ideally, we would wait until all caches succeed, and only
		 * then free the old one. But this is not worth the extra
		 * pointer per-cache we'd have to have for this.
		 *
		 * It is not a big deal if some caches are left with a size
		 * bigger than the others. And all updates will reset this
		 * anyway.
		 */
		kfree(cur_params);
	}
	return 0;
}

G
Glauber Costa 已提交
3066 3067
int memcg_register_cache(struct mem_cgroup *memcg, struct kmem_cache *s,
			 struct kmem_cache *root_cache)
3068 3069 3070 3071 3072 3073
{
	size_t size = sizeof(struct memcg_cache_params);

	if (!memcg_kmem_enabled())
		return 0;

3074 3075 3076
	if (!memcg)
		size += memcg_limited_groups_array_size * sizeof(void *);

3077 3078 3079 3080
	s->memcg_params = kzalloc(size, GFP_KERNEL);
	if (!s->memcg_params)
		return -ENOMEM;

G
Glauber Costa 已提交
3081
	if (memcg) {
3082
		s->memcg_params->memcg = memcg;
G
Glauber Costa 已提交
3083
		s->memcg_params->root_cache = root_cache;
3084 3085 3086
	} else
		s->memcg_params->is_root_cache = true;

3087 3088 3089 3090 3091
	return 0;
}

void memcg_release_cache(struct kmem_cache *s)
{
3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117
	struct kmem_cache *root;
	struct mem_cgroup *memcg;
	int id;

	/*
	 * This happens, for instance, when a root cache goes away before we
	 * add any memcg.
	 */
	if (!s->memcg_params)
		return;

	if (s->memcg_params->is_root_cache)
		goto out;

	memcg = s->memcg_params->memcg;
	id  = memcg_cache_id(memcg);

	root = s->memcg_params->root_cache;
	root->memcg_params->memcg_caches[id] = NULL;
	mem_cgroup_put(memcg);

	mutex_lock(&memcg->slab_caches_mutex);
	list_del(&s->memcg_params->list);
	mutex_unlock(&memcg->slab_caches_mutex);

out:
3118 3119 3120
	kfree(s->memcg_params);
}

3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151
/*
 * During the creation a new cache, we need to disable our accounting mechanism
 * altogether. This is true even if we are not creating, but rather just
 * enqueing new caches to be created.
 *
 * This is because that process will trigger allocations; some visible, like
 * explicit kmallocs to auxiliary data structures, name strings and internal
 * cache structures; some well concealed, like INIT_WORK() that can allocate
 * objects during debug.
 *
 * If any allocation happens during memcg_kmem_get_cache, we will recurse back
 * to it. This may not be a bounded recursion: since the first cache creation
 * failed to complete (waiting on the allocation), we'll just try to create the
 * cache again, failing at the same point.
 *
 * memcg_kmem_get_cache is prepared to abort after seeing a positive count of
 * memcg_kmem_skip_account. So we enclose anything that might allocate memory
 * inside the following two functions.
 */
static inline void memcg_stop_kmem_account(void)
{
	VM_BUG_ON(!current->mm);
	current->memcg_kmem_skip_account++;
}

static inline void memcg_resume_kmem_account(void)
{
	VM_BUG_ON(!current->mm);
	current->memcg_kmem_skip_account--;
}

G
Glauber Costa 已提交
3152 3153 3154 3155 3156 3157 3158 3159 3160
static void kmem_cache_destroy_work_func(struct work_struct *w)
{
	struct kmem_cache *cachep;
	struct memcg_cache_params *p;

	p = container_of(w, struct memcg_cache_params, destroy);

	cachep = memcg_params_to_cache(p);

G
Glauber Costa 已提交
3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181
	/*
	 * If we get down to 0 after shrink, we could delete right away.
	 * However, memcg_release_pages() already puts us back in the workqueue
	 * in that case. If we proceed deleting, we'll get a dangling
	 * reference, and removing the object from the workqueue in that case
	 * is unnecessary complication. We are not a fast path.
	 *
	 * Note that this case is fundamentally different from racing with
	 * shrink_slab(): if memcg_cgroup_destroy_cache() is called in
	 * kmem_cache_shrink, not only we would be reinserting a dead cache
	 * into the queue, but doing so from inside the worker racing to
	 * destroy it.
	 *
	 * So if we aren't down to zero, we'll just schedule a worker and try
	 * again
	 */
	if (atomic_read(&cachep->memcg_params->nr_pages) != 0) {
		kmem_cache_shrink(cachep);
		if (atomic_read(&cachep->memcg_params->nr_pages) == 0)
			return;
	} else
G
Glauber Costa 已提交
3182 3183 3184 3185 3186 3187 3188 3189
		kmem_cache_destroy(cachep);
}

void mem_cgroup_destroy_cache(struct kmem_cache *cachep)
{
	if (!cachep->memcg_params->dead)
		return;

G
Glauber Costa 已提交
3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209
	/*
	 * There are many ways in which we can get here.
	 *
	 * We can get to a memory-pressure situation while the delayed work is
	 * still pending to run. The vmscan shrinkers can then release all
	 * cache memory and get us to destruction. If this is the case, we'll
	 * be executed twice, which is a bug (the second time will execute over
	 * bogus data). In this case, cancelling the work should be fine.
	 *
	 * But we can also get here from the worker itself, if
	 * kmem_cache_shrink is enough to shake all the remaining objects and
	 * get the page count to 0. In this case, we'll deadlock if we try to
	 * cancel the work (the worker runs with an internal lock held, which
	 * is the same lock we would hold for cancel_work_sync().)
	 *
	 * Since we can't possibly know who got us here, just refrain from
	 * running if there is already work pending
	 */
	if (work_pending(&cachep->memcg_params->destroy))
		return;
G
Glauber Costa 已提交
3210 3211 3212 3213 3214 3215 3216
	/*
	 * We have to defer the actual destroying to a workqueue, because
	 * we might currently be in a context that cannot sleep.
	 */
	schedule_work(&cachep->memcg_params->destroy);
}

3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244
static char *memcg_cache_name(struct mem_cgroup *memcg, struct kmem_cache *s)
{
	char *name;
	struct dentry *dentry;

	rcu_read_lock();
	dentry = rcu_dereference(memcg->css.cgroup->dentry);
	rcu_read_unlock();

	BUG_ON(dentry == NULL);

	name = kasprintf(GFP_KERNEL, "%s(%d:%s)", s->name,
			 memcg_cache_id(memcg), dentry->d_name.name);

	return name;
}

static struct kmem_cache *kmem_cache_dup(struct mem_cgroup *memcg,
					 struct kmem_cache *s)
{
	char *name;
	struct kmem_cache *new;

	name = memcg_cache_name(memcg, s);
	if (!name)
		return NULL;

	new = kmem_cache_create_memcg(memcg, name, s->object_size, s->align,
G
Glauber Costa 已提交
3245
				      (s->flags & ~SLAB_PANIC), s->ctor, s);
3246

3247 3248 3249
	if (new)
		new->allocflags |= __GFP_KMEMCG;

3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284
	kfree(name);
	return new;
}

/*
 * This lock protects updaters, not readers. We want readers to be as fast as
 * they can, and they will either see NULL or a valid cache value. Our model
 * allow them to see NULL, in which case the root memcg will be selected.
 *
 * We need this lock because multiple allocations to the same cache from a non
 * will span more than one worker. Only one of them can create the cache.
 */
static DEFINE_MUTEX(memcg_cache_mutex);
static struct kmem_cache *memcg_create_kmem_cache(struct mem_cgroup *memcg,
						  struct kmem_cache *cachep)
{
	struct kmem_cache *new_cachep;
	int idx;

	BUG_ON(!memcg_can_account_kmem(memcg));

	idx = memcg_cache_id(memcg);

	mutex_lock(&memcg_cache_mutex);
	new_cachep = cachep->memcg_params->memcg_caches[idx];
	if (new_cachep)
		goto out;

	new_cachep = kmem_cache_dup(memcg, cachep);
	if (new_cachep == NULL) {
		new_cachep = cachep;
		goto out;
	}

	mem_cgroup_get(memcg);
G
Glauber Costa 已提交
3285
	atomic_set(&new_cachep->memcg_params->nr_pages , 0);
3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297

	cachep->memcg_params->memcg_caches[idx] = new_cachep;
	/*
	 * the readers won't lock, make sure everybody sees the updated value,
	 * so they won't put stuff in the queue again for no reason
	 */
	wmb();
out:
	mutex_unlock(&memcg_cache_mutex);
	return new_cachep;
}

3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336
void kmem_cache_destroy_memcg_children(struct kmem_cache *s)
{
	struct kmem_cache *c;
	int i;

	if (!s->memcg_params)
		return;
	if (!s->memcg_params->is_root_cache)
		return;

	/*
	 * If the cache is being destroyed, we trust that there is no one else
	 * requesting objects from it. Even if there are, the sanity checks in
	 * kmem_cache_destroy should caught this ill-case.
	 *
	 * Still, we don't want anyone else freeing memcg_caches under our
	 * noses, which can happen if a new memcg comes to life. As usual,
	 * we'll take the set_limit_mutex to protect ourselves against this.
	 */
	mutex_lock(&set_limit_mutex);
	for (i = 0; i < memcg_limited_groups_array_size; i++) {
		c = s->memcg_params->memcg_caches[i];
		if (!c)
			continue;

		/*
		 * We will now manually delete the caches, so to avoid races
		 * we need to cancel all pending destruction workers and
		 * proceed with destruction ourselves.
		 *
		 * kmem_cache_destroy() will call kmem_cache_shrink internally,
		 * and that could spawn the workers again: it is likely that
		 * the cache still have active pages until this very moment.
		 * This would lead us back to mem_cgroup_destroy_cache.
		 *
		 * But that will not execute at all if the "dead" flag is not
		 * set, so flip it down to guarantee we are in control.
		 */
		c->memcg_params->dead = false;
G
Glauber Costa 已提交
3337
		cancel_work_sync(&c->memcg_params->destroy);
3338 3339 3340 3341 3342
		kmem_cache_destroy(c);
	}
	mutex_unlock(&set_limit_mutex);
}

3343 3344 3345 3346 3347 3348
struct create_work {
	struct mem_cgroup *memcg;
	struct kmem_cache *cachep;
	struct work_struct work;
};

G
Glauber Costa 已提交
3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361
static void mem_cgroup_destroy_all_caches(struct mem_cgroup *memcg)
{
	struct kmem_cache *cachep;
	struct memcg_cache_params *params;

	if (!memcg_kmem_is_active(memcg))
		return;

	mutex_lock(&memcg->slab_caches_mutex);
	list_for_each_entry(params, &memcg->memcg_slab_caches, list) {
		cachep = memcg_params_to_cache(params);
		cachep->memcg_params->dead = true;
		INIT_WORK(&cachep->memcg_params->destroy,
G
Glauber Costa 已提交
3362
				  kmem_cache_destroy_work_func);
G
Glauber Costa 已提交
3363 3364 3365 3366 3367
		schedule_work(&cachep->memcg_params->destroy);
	}
	mutex_unlock(&memcg->slab_caches_mutex);
}

3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382
static void memcg_create_cache_work_func(struct work_struct *w)
{
	struct create_work *cw;

	cw = container_of(w, struct create_work, work);
	memcg_create_kmem_cache(cw->memcg, cw->cachep);
	/* Drop the reference gotten when we enqueued. */
	css_put(&cw->memcg->css);
	kfree(cw);
}

/*
 * Enqueue the creation of a per-memcg kmem_cache.
 * Called with rcu_read_lock.
 */
3383 3384
static void __memcg_create_cache_enqueue(struct mem_cgroup *memcg,
					 struct kmem_cache *cachep)
3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404
{
	struct create_work *cw;

	cw = kmalloc(sizeof(struct create_work), GFP_NOWAIT);
	if (cw == NULL)
		return;

	/* The corresponding put will be done in the workqueue. */
	if (!css_tryget(&memcg->css)) {
		kfree(cw);
		return;
	}

	cw->memcg = memcg;
	cw->cachep = cachep;

	INIT_WORK(&cw->work, memcg_create_cache_work_func);
	schedule_work(&cw->work);
}

3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422
static void memcg_create_cache_enqueue(struct mem_cgroup *memcg,
				       struct kmem_cache *cachep)
{
	/*
	 * We need to stop accounting when we kmalloc, because if the
	 * corresponding kmalloc cache is not yet created, the first allocation
	 * in __memcg_create_cache_enqueue will recurse.
	 *
	 * However, it is better to enclose the whole function. Depending on
	 * the debugging options enabled, INIT_WORK(), for instance, can
	 * trigger an allocation. This too, will make us recurse. Because at
	 * this point we can't allow ourselves back into memcg_kmem_get_cache,
	 * the safest choice is to do it like this, wrapping the whole function.
	 */
	memcg_stop_kmem_account();
	__memcg_create_cache_enqueue(memcg, cachep);
	memcg_resume_kmem_account();
}
3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444
/*
 * Return the kmem_cache we're supposed to use for a slab allocation.
 * We try to use the current memcg's version of the cache.
 *
 * If the cache does not exist yet, if we are the first user of it,
 * we either create it immediately, if possible, or create it asynchronously
 * in a workqueue.
 * In the latter case, we will let the current allocation go through with
 * the original cache.
 *
 * Can't be called in interrupt context or from kernel threads.
 * This function needs to be called with rcu_read_lock() held.
 */
struct kmem_cache *__memcg_kmem_get_cache(struct kmem_cache *cachep,
					  gfp_t gfp)
{
	struct mem_cgroup *memcg;
	int idx;

	VM_BUG_ON(!cachep->memcg_params);
	VM_BUG_ON(!cachep->memcg_params->is_root_cache);

3445 3446 3447
	if (!current->mm || current->memcg_kmem_skip_account)
		return cachep;

3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487
	rcu_read_lock();
	memcg = mem_cgroup_from_task(rcu_dereference(current->mm->owner));
	rcu_read_unlock();

	if (!memcg_can_account_kmem(memcg))
		return cachep;

	idx = memcg_cache_id(memcg);

	/*
	 * barrier to mare sure we're always seeing the up to date value.  The
	 * code updating memcg_caches will issue a write barrier to match this.
	 */
	read_barrier_depends();
	if (unlikely(cachep->memcg_params->memcg_caches[idx] == NULL)) {
		/*
		 * If we are in a safe context (can wait, and not in interrupt
		 * context), we could be be predictable and return right away.
		 * This would guarantee that the allocation being performed
		 * already belongs in the new cache.
		 *
		 * However, there are some clashes that can arrive from locking.
		 * For instance, because we acquire the slab_mutex while doing
		 * kmem_cache_dup, this means no further allocation could happen
		 * with the slab_mutex held.
		 *
		 * Also, because cache creation issue get_online_cpus(), this
		 * creates a lock chain: memcg_slab_mutex -> cpu_hotplug_mutex,
		 * that ends up reversed during cpu hotplug. (cpuset allocates
		 * a bunch of GFP_KERNEL memory during cpuup). Due to all that,
		 * better to defer everything.
		 */
		memcg_create_cache_enqueue(memcg, cachep);
		return cachep;
	}

	return cachep->memcg_params->memcg_caches[idx];
}
EXPORT_SYMBOL(__memcg_kmem_get_cache);

3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582
/*
 * We need to verify if the allocation against current->mm->owner's memcg is
 * possible for the given order. But the page is not allocated yet, so we'll
 * need a further commit step to do the final arrangements.
 *
 * It is possible for the task to switch cgroups in this mean time, so at
 * commit time, we can't rely on task conversion any longer.  We'll then use
 * the handle argument to return to the caller which cgroup we should commit
 * against. We could also return the memcg directly and avoid the pointer
 * passing, but a boolean return value gives better semantics considering
 * the compiled-out case as well.
 *
 * Returning true means the allocation is possible.
 */
bool
__memcg_kmem_newpage_charge(gfp_t gfp, struct mem_cgroup **_memcg, int order)
{
	struct mem_cgroup *memcg;
	int ret;

	*_memcg = NULL;
	memcg = try_get_mem_cgroup_from_mm(current->mm);

	/*
	 * very rare case described in mem_cgroup_from_task. Unfortunately there
	 * isn't much we can do without complicating this too much, and it would
	 * be gfp-dependent anyway. Just let it go
	 */
	if (unlikely(!memcg))
		return true;

	if (!memcg_can_account_kmem(memcg)) {
		css_put(&memcg->css);
		return true;
	}

	ret = memcg_charge_kmem(memcg, gfp, PAGE_SIZE << order);
	if (!ret)
		*_memcg = memcg;

	css_put(&memcg->css);
	return (ret == 0);
}

void __memcg_kmem_commit_charge(struct page *page, struct mem_cgroup *memcg,
			      int order)
{
	struct page_cgroup *pc;

	VM_BUG_ON(mem_cgroup_is_root(memcg));

	/* The page allocation failed. Revert */
	if (!page) {
		memcg_uncharge_kmem(memcg, PAGE_SIZE << order);
		return;
	}

	pc = lookup_page_cgroup(page);
	lock_page_cgroup(pc);
	pc->mem_cgroup = memcg;
	SetPageCgroupUsed(pc);
	unlock_page_cgroup(pc);
}

void __memcg_kmem_uncharge_pages(struct page *page, int order)
{
	struct mem_cgroup *memcg = NULL;
	struct page_cgroup *pc;


	pc = lookup_page_cgroup(page);
	/*
	 * Fast unlocked return. Theoretically might have changed, have to
	 * check again after locking.
	 */
	if (!PageCgroupUsed(pc))
		return;

	lock_page_cgroup(pc);
	if (PageCgroupUsed(pc)) {
		memcg = pc->mem_cgroup;
		ClearPageCgroupUsed(pc);
	}
	unlock_page_cgroup(pc);

	/*
	 * We trust that only if there is a memcg associated with the page, it
	 * is a valid allocation
	 */
	if (!memcg)
		return;

	VM_BUG_ON(mem_cgroup_is_root(memcg));
	memcg_uncharge_kmem(memcg, PAGE_SIZE << order);
}
G
Glauber Costa 已提交
3583 3584 3585 3586
#else
static inline void mem_cgroup_destroy_all_caches(struct mem_cgroup *memcg)
{
}
3587 3588
#endif /* CONFIG_MEMCG_KMEM */

3589 3590
#ifdef CONFIG_TRANSPARENT_HUGEPAGE

3591
#define PCGF_NOCOPY_AT_SPLIT (1 << PCG_LOCK | 1 << PCG_MIGRATION)
3592 3593
/*
 * Because tail pages are not marked as "used", set it. We're under
3594 3595 3596
 * zone->lru_lock, 'splitting on pmd' and compound_lock.
 * charge/uncharge will be never happen and move_account() is done under
 * compound_lock(), so we don't have to take care of races.
3597
 */
3598
void mem_cgroup_split_huge_fixup(struct page *head)
3599 3600
{
	struct page_cgroup *head_pc = lookup_page_cgroup(head);
3601 3602
	struct page_cgroup *pc;
	int i;
3603

3604 3605
	if (mem_cgroup_disabled())
		return;
3606 3607 3608 3609 3610 3611
	for (i = 1; i < HPAGE_PMD_NR; i++) {
		pc = head_pc + i;
		pc->mem_cgroup = head_pc->mem_cgroup;
		smp_wmb();/* see __commit_charge() */
		pc->flags = head_pc->flags & ~PCGF_NOCOPY_AT_SPLIT;
	}
3612
}
3613
#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
3614

3615
/**
3616
 * mem_cgroup_move_account - move account of the page
3617
 * @page: the page
3618
 * @nr_pages: number of regular pages (>1 for huge pages)
3619 3620 3621 3622 3623
 * @pc:	page_cgroup of the page.
 * @from: mem_cgroup which the page is moved from.
 * @to:	mem_cgroup which the page is moved to. @from != @to.
 *
 * The caller must confirm following.
K
KAMEZAWA Hiroyuki 已提交
3624
 * - page is not on LRU (isolate_page() is useful.)
3625
 * - compound_lock is held when nr_pages > 1
3626
 *
3627 3628
 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
 * from old cgroup.
3629
 */
3630 3631 3632 3633
static int mem_cgroup_move_account(struct page *page,
				   unsigned int nr_pages,
				   struct page_cgroup *pc,
				   struct mem_cgroup *from,
3634
				   struct mem_cgroup *to)
3635
{
3636 3637
	unsigned long flags;
	int ret;
3638
	bool anon = PageAnon(page);
3639

3640
	VM_BUG_ON(from == to);
3641
	VM_BUG_ON(PageLRU(page));
3642 3643 3644 3645 3646 3647 3648
	/*
	 * The page is isolated from LRU. So, collapse function
	 * will not handle this page. But page splitting can happen.
	 * Do this check under compound_page_lock(). The caller should
	 * hold it.
	 */
	ret = -EBUSY;
3649
	if (nr_pages > 1 && !PageTransHuge(page))
3650 3651 3652 3653 3654 3655 3656 3657
		goto out;

	lock_page_cgroup(pc);

	ret = -EINVAL;
	if (!PageCgroupUsed(pc) || pc->mem_cgroup != from)
		goto unlock;

3658
	move_lock_mem_cgroup(from, &flags);
3659

3660
	if (!anon && page_mapped(page)) {
3661 3662 3663 3664 3665
		/* Update mapped_file data for mem_cgroup */
		preempt_disable();
		__this_cpu_dec(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
		__this_cpu_inc(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
		preempt_enable();
3666
	}
3667
	mem_cgroup_charge_statistics(from, anon, -nr_pages);
3668

3669
	/* caller should have done css_get */
K
KAMEZAWA Hiroyuki 已提交
3670
	pc->mem_cgroup = to;
3671
	mem_cgroup_charge_statistics(to, anon, nr_pages);
3672
	move_unlock_mem_cgroup(from, &flags);
3673 3674
	ret = 0;
unlock:
3675
	unlock_page_cgroup(pc);
3676 3677 3678
	/*
	 * check events
	 */
3679 3680
	memcg_check_events(to, page);
	memcg_check_events(from, page);
3681
out:
3682 3683 3684
	return ret;
}

3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704
/**
 * mem_cgroup_move_parent - moves page to the parent group
 * @page: the page to move
 * @pc: page_cgroup of the page
 * @child: page's cgroup
 *
 * move charges to its parent or the root cgroup if the group has no
 * parent (aka use_hierarchy==0).
 * Although this might fail (get_page_unless_zero, isolate_lru_page or
 * mem_cgroup_move_account fails) the failure is always temporary and
 * it signals a race with a page removal/uncharge or migration. In the
 * first case the page is on the way out and it will vanish from the LRU
 * on the next attempt and the call should be retried later.
 * Isolation from the LRU fails only if page has been isolated from
 * the LRU since we looked at it and that usually means either global
 * reclaim or migration going on. The page will either get back to the
 * LRU or vanish.
 * Finaly mem_cgroup_move_account fails only if the page got uncharged
 * (!PageCgroupUsed) or moved to a different group. The page will
 * disappear in the next attempt.
3705
 */
3706 3707
static int mem_cgroup_move_parent(struct page *page,
				  struct page_cgroup *pc,
3708
				  struct mem_cgroup *child)
3709 3710
{
	struct mem_cgroup *parent;
3711
	unsigned int nr_pages;
3712
	unsigned long uninitialized_var(flags);
3713 3714
	int ret;

3715
	VM_BUG_ON(mem_cgroup_is_root(child));
3716

3717 3718 3719 3720 3721
	ret = -EBUSY;
	if (!get_page_unless_zero(page))
		goto out;
	if (isolate_lru_page(page))
		goto put;
3722

3723
	nr_pages = hpage_nr_pages(page);
K
KAMEZAWA Hiroyuki 已提交
3724

3725 3726 3727 3728 3729 3730
	parent = parent_mem_cgroup(child);
	/*
	 * If no parent, move charges to root cgroup.
	 */
	if (!parent)
		parent = root_mem_cgroup;
3731

3732 3733
	if (nr_pages > 1) {
		VM_BUG_ON(!PageTransHuge(page));
3734
		flags = compound_lock_irqsave(page);
3735
	}
3736

3737
	ret = mem_cgroup_move_account(page, nr_pages,
3738
				pc, child, parent);
3739 3740
	if (!ret)
		__mem_cgroup_cancel_local_charge(child, nr_pages);
3741

3742
	if (nr_pages > 1)
3743
		compound_unlock_irqrestore(page, flags);
K
KAMEZAWA Hiroyuki 已提交
3744
	putback_lru_page(page);
3745
put:
3746
	put_page(page);
3747
out:
3748 3749 3750
	return ret;
}

3751 3752 3753 3754 3755 3756 3757
/*
 * Charge the memory controller for page usage.
 * Return
 * 0 if the charge was successful
 * < 0 if the cgroup is over its limit
 */
static int mem_cgroup_charge_common(struct page *page, struct mm_struct *mm,
3758
				gfp_t gfp_mask, enum charge_type ctype)
3759
{
3760
	struct mem_cgroup *memcg = NULL;
3761
	unsigned int nr_pages = 1;
3762
	bool oom = true;
3763
	int ret;
A
Andrea Arcangeli 已提交
3764

A
Andrea Arcangeli 已提交
3765
	if (PageTransHuge(page)) {
3766
		nr_pages <<= compound_order(page);
A
Andrea Arcangeli 已提交
3767
		VM_BUG_ON(!PageTransHuge(page));
3768 3769 3770 3771 3772
		/*
		 * Never OOM-kill a process for a huge page.  The
		 * fault handler will fall back to regular pages.
		 */
		oom = false;
A
Andrea Arcangeli 已提交
3773
	}
3774

3775
	ret = __mem_cgroup_try_charge(mm, gfp_mask, nr_pages, &memcg, oom);
3776
	if (ret == -ENOMEM)
3777
		return ret;
3778
	__mem_cgroup_commit_charge(memcg, page, nr_pages, ctype, false);
3779 3780 3781
	return 0;
}

3782 3783
int mem_cgroup_newpage_charge(struct page *page,
			      struct mm_struct *mm, gfp_t gfp_mask)
3784
{
3785
	if (mem_cgroup_disabled())
3786
		return 0;
3787 3788 3789
	VM_BUG_ON(page_mapped(page));
	VM_BUG_ON(page->mapping && !PageAnon(page));
	VM_BUG_ON(!mm);
3790
	return mem_cgroup_charge_common(page, mm, gfp_mask,
3791
					MEM_CGROUP_CHARGE_TYPE_ANON);
3792 3793
}

3794 3795 3796
/*
 * While swap-in, try_charge -> commit or cancel, the page is locked.
 * And when try_charge() successfully returns, one refcnt to memcg without
3797
 * struct page_cgroup is acquired. This refcnt will be consumed by
3798 3799
 * "commit()" or removed by "cancel()"
 */
3800 3801 3802 3803
static int __mem_cgroup_try_charge_swapin(struct mm_struct *mm,
					  struct page *page,
					  gfp_t mask,
					  struct mem_cgroup **memcgp)
3804
{
3805
	struct mem_cgroup *memcg;
3806
	struct page_cgroup *pc;
3807
	int ret;
3808

3809 3810 3811 3812 3813 3814 3815 3816 3817 3818
	pc = lookup_page_cgroup(page);
	/*
	 * Every swap fault against a single page tries to charge the
	 * page, bail as early as possible.  shmem_unuse() encounters
	 * already charged pages, too.  The USED bit is protected by
	 * the page lock, which serializes swap cache removal, which
	 * in turn serializes uncharging.
	 */
	if (PageCgroupUsed(pc))
		return 0;
3819 3820
	if (!do_swap_account)
		goto charge_cur_mm;
3821 3822
	memcg = try_get_mem_cgroup_from_page(page);
	if (!memcg)
3823
		goto charge_cur_mm;
3824 3825
	*memcgp = memcg;
	ret = __mem_cgroup_try_charge(NULL, mask, 1, memcgp, true);
3826
	css_put(&memcg->css);
3827 3828
	if (ret == -EINTR)
		ret = 0;
3829
	return ret;
3830
charge_cur_mm:
3831 3832 3833 3834
	ret = __mem_cgroup_try_charge(mm, mask, 1, memcgp, true);
	if (ret == -EINTR)
		ret = 0;
	return ret;
3835 3836
}

3837 3838 3839 3840 3841 3842
int mem_cgroup_try_charge_swapin(struct mm_struct *mm, struct page *page,
				 gfp_t gfp_mask, struct mem_cgroup **memcgp)
{
	*memcgp = NULL;
	if (mem_cgroup_disabled())
		return 0;
3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856
	/*
	 * A racing thread's fault, or swapoff, may have already
	 * updated the pte, and even removed page from swap cache: in
	 * those cases unuse_pte()'s pte_same() test will fail; but
	 * there's also a KSM case which does need to charge the page.
	 */
	if (!PageSwapCache(page)) {
		int ret;

		ret = __mem_cgroup_try_charge(mm, gfp_mask, 1, memcgp, true);
		if (ret == -EINTR)
			ret = 0;
		return ret;
	}
3857 3858 3859
	return __mem_cgroup_try_charge_swapin(mm, page, gfp_mask, memcgp);
}

3860 3861 3862 3863 3864 3865 3866 3867 3868
void mem_cgroup_cancel_charge_swapin(struct mem_cgroup *memcg)
{
	if (mem_cgroup_disabled())
		return;
	if (!memcg)
		return;
	__mem_cgroup_cancel_charge(memcg, 1);
}

D
Daisuke Nishimura 已提交
3869
static void
3870
__mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *memcg,
D
Daisuke Nishimura 已提交
3871
					enum charge_type ctype)
3872
{
3873
	if (mem_cgroup_disabled())
3874
		return;
3875
	if (!memcg)
3876
		return;
3877

3878
	__mem_cgroup_commit_charge(memcg, page, 1, ctype, true);
3879 3880 3881
	/*
	 * Now swap is on-memory. This means this page may be
	 * counted both as mem and swap....double count.
3882 3883 3884
	 * Fix it by uncharging from memsw. Basically, this SwapCache is stable
	 * under lock_page(). But in do_swap_page()::memory.c, reuse_swap_page()
	 * may call delete_from_swap_cache() before reach here.
3885
	 */
3886
	if (do_swap_account && PageSwapCache(page)) {
3887
		swp_entry_t ent = {.val = page_private(page)};
3888
		mem_cgroup_uncharge_swap(ent);
3889
	}
3890 3891
}

3892 3893
void mem_cgroup_commit_charge_swapin(struct page *page,
				     struct mem_cgroup *memcg)
D
Daisuke Nishimura 已提交
3894
{
3895
	__mem_cgroup_commit_charge_swapin(page, memcg,
3896
					  MEM_CGROUP_CHARGE_TYPE_ANON);
D
Daisuke Nishimura 已提交
3897 3898
}

3899 3900
int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm,
				gfp_t gfp_mask)
3901
{
3902 3903 3904 3905
	struct mem_cgroup *memcg = NULL;
	enum charge_type type = MEM_CGROUP_CHARGE_TYPE_CACHE;
	int ret;

3906
	if (mem_cgroup_disabled())
3907 3908 3909 3910 3911 3912 3913
		return 0;
	if (PageCompound(page))
		return 0;

	if (!PageSwapCache(page))
		ret = mem_cgroup_charge_common(page, mm, gfp_mask, type);
	else { /* page is swapcache/shmem */
3914 3915
		ret = __mem_cgroup_try_charge_swapin(mm, page,
						     gfp_mask, &memcg);
3916 3917 3918 3919
		if (!ret)
			__mem_cgroup_commit_charge_swapin(page, memcg, type);
	}
	return ret;
3920 3921
}

3922
static void mem_cgroup_do_uncharge(struct mem_cgroup *memcg,
3923 3924
				   unsigned int nr_pages,
				   const enum charge_type ctype)
3925 3926 3927
{
	struct memcg_batch_info *batch = NULL;
	bool uncharge_memsw = true;
3928

3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939
	/* If swapout, usage of swap doesn't decrease */
	if (!do_swap_account || ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT)
		uncharge_memsw = false;

	batch = &current->memcg_batch;
	/*
	 * In usual, we do css_get() when we remember memcg pointer.
	 * But in this case, we keep res->usage until end of a series of
	 * uncharges. Then, it's ok to ignore memcg's refcnt.
	 */
	if (!batch->memcg)
3940
		batch->memcg = memcg;
3941 3942
	/*
	 * do_batch > 0 when unmapping pages or inode invalidate/truncate.
L
Lucas De Marchi 已提交
3943
	 * In those cases, all pages freed continuously can be expected to be in
3944 3945 3946 3947 3948 3949 3950 3951
	 * the same cgroup and we have chance to coalesce uncharges.
	 * But we do uncharge one by one if this is killed by OOM(TIF_MEMDIE)
	 * because we want to do uncharge as soon as possible.
	 */

	if (!batch->do_batch || test_thread_flag(TIF_MEMDIE))
		goto direct_uncharge;

3952
	if (nr_pages > 1)
A
Andrea Arcangeli 已提交
3953 3954
		goto direct_uncharge;

3955 3956 3957 3958 3959
	/*
	 * In typical case, batch->memcg == mem. This means we can
	 * merge a series of uncharges to an uncharge of res_counter.
	 * If not, we uncharge res_counter ony by one.
	 */
3960
	if (batch->memcg != memcg)
3961 3962
		goto direct_uncharge;
	/* remember freed charge and uncharge it later */
3963
	batch->nr_pages++;
3964
	if (uncharge_memsw)
3965
		batch->memsw_nr_pages++;
3966 3967
	return;
direct_uncharge:
3968
	res_counter_uncharge(&memcg->res, nr_pages * PAGE_SIZE);
3969
	if (uncharge_memsw)
3970 3971 3972
		res_counter_uncharge(&memcg->memsw, nr_pages * PAGE_SIZE);
	if (unlikely(batch->memcg != memcg))
		memcg_oom_recover(memcg);
3973
}
3974

3975
/*
3976
 * uncharge if !page_mapped(page)
3977
 */
3978
static struct mem_cgroup *
3979 3980
__mem_cgroup_uncharge_common(struct page *page, enum charge_type ctype,
			     bool end_migration)
3981
{
3982
	struct mem_cgroup *memcg = NULL;
3983 3984
	unsigned int nr_pages = 1;
	struct page_cgroup *pc;
3985
	bool anon;
3986

3987
	if (mem_cgroup_disabled())
3988
		return NULL;
3989

3990
	VM_BUG_ON(PageSwapCache(page));
K
KAMEZAWA Hiroyuki 已提交
3991

A
Andrea Arcangeli 已提交
3992
	if (PageTransHuge(page)) {
3993
		nr_pages <<= compound_order(page);
A
Andrea Arcangeli 已提交
3994 3995
		VM_BUG_ON(!PageTransHuge(page));
	}
3996
	/*
3997
	 * Check if our page_cgroup is valid
3998
	 */
3999
	pc = lookup_page_cgroup(page);
4000
	if (unlikely(!PageCgroupUsed(pc)))
4001
		return NULL;
4002

4003
	lock_page_cgroup(pc);
K
KAMEZAWA Hiroyuki 已提交
4004

4005
	memcg = pc->mem_cgroup;
4006

K
KAMEZAWA Hiroyuki 已提交
4007 4008 4009
	if (!PageCgroupUsed(pc))
		goto unlock_out;

4010 4011
	anon = PageAnon(page);

K
KAMEZAWA Hiroyuki 已提交
4012
	switch (ctype) {
4013
	case MEM_CGROUP_CHARGE_TYPE_ANON:
4014 4015 4016 4017 4018
		/*
		 * Generally PageAnon tells if it's the anon statistics to be
		 * updated; but sometimes e.g. mem_cgroup_uncharge_page() is
		 * used before page reached the stage of being marked PageAnon.
		 */
4019 4020
		anon = true;
		/* fallthrough */
K
KAMEZAWA Hiroyuki 已提交
4021
	case MEM_CGROUP_CHARGE_TYPE_DROP:
4022
		/* See mem_cgroup_prepare_migration() */
4023 4024 4025 4026 4027 4028 4029 4030 4031 4032
		if (page_mapped(page))
			goto unlock_out;
		/*
		 * Pages under migration may not be uncharged.  But
		 * end_migration() /must/ be the one uncharging the
		 * unused post-migration page and so it has to call
		 * here with the migration bit still set.  See the
		 * res_counter handling below.
		 */
		if (!end_migration && PageCgroupMigration(pc))
K
KAMEZAWA Hiroyuki 已提交
4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043
			goto unlock_out;
		break;
	case MEM_CGROUP_CHARGE_TYPE_SWAPOUT:
		if (!PageAnon(page)) {	/* Shared memory */
			if (page->mapping && !page_is_file_cache(page))
				goto unlock_out;
		} else if (page_mapped(page)) /* Anon */
				goto unlock_out;
		break;
	default:
		break;
4044
	}
K
KAMEZAWA Hiroyuki 已提交
4045

4046
	mem_cgroup_charge_statistics(memcg, anon, -nr_pages);
K
KAMEZAWA Hiroyuki 已提交
4047

4048
	ClearPageCgroupUsed(pc);
4049 4050 4051 4052 4053 4054
	/*
	 * pc->mem_cgroup is not cleared here. It will be accessed when it's
	 * freed from LRU. This is safe because uncharged page is expected not
	 * to be reused (freed soon). Exception is SwapCache, it's handled by
	 * special functions.
	 */
4055

4056
	unlock_page_cgroup(pc);
K
KAMEZAWA Hiroyuki 已提交
4057
	/*
4058
	 * even after unlock, we have memcg->res.usage here and this memcg
K
KAMEZAWA Hiroyuki 已提交
4059 4060
	 * will never be freed.
	 */
4061
	memcg_check_events(memcg, page);
K
KAMEZAWA Hiroyuki 已提交
4062
	if (do_swap_account && ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT) {
4063 4064
		mem_cgroup_swap_statistics(memcg, true);
		mem_cgroup_get(memcg);
K
KAMEZAWA Hiroyuki 已提交
4065
	}
4066 4067 4068 4069 4070 4071
	/*
	 * Migration does not charge the res_counter for the
	 * replacement page, so leave it alone when phasing out the
	 * page that is unused after the migration.
	 */
	if (!end_migration && !mem_cgroup_is_root(memcg))
4072
		mem_cgroup_do_uncharge(memcg, nr_pages, ctype);
4073

4074
	return memcg;
K
KAMEZAWA Hiroyuki 已提交
4075 4076 4077

unlock_out:
	unlock_page_cgroup(pc);
4078
	return NULL;
4079 4080
}

4081 4082
void mem_cgroup_uncharge_page(struct page *page)
{
4083 4084 4085
	/* early check. */
	if (page_mapped(page))
		return;
4086
	VM_BUG_ON(page->mapping && !PageAnon(page));
4087 4088
	if (PageSwapCache(page))
		return;
4089
	__mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_ANON, false);
4090 4091 4092 4093 4094
}

void mem_cgroup_uncharge_cache_page(struct page *page)
{
	VM_BUG_ON(page_mapped(page));
4095
	VM_BUG_ON(page->mapping);
4096
	__mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_CACHE, false);
4097 4098
}

4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112
/*
 * Batch_start/batch_end is called in unmap_page_range/invlidate/trucate.
 * In that cases, pages are freed continuously and we can expect pages
 * are in the same memcg. All these calls itself limits the number of
 * pages freed at once, then uncharge_start/end() is called properly.
 * This may be called prural(2) times in a context,
 */

void mem_cgroup_uncharge_start(void)
{
	current->memcg_batch.do_batch++;
	/* We can do nest. */
	if (current->memcg_batch.do_batch == 1) {
		current->memcg_batch.memcg = NULL;
4113 4114
		current->memcg_batch.nr_pages = 0;
		current->memcg_batch.memsw_nr_pages = 0;
4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134
	}
}

void mem_cgroup_uncharge_end(void)
{
	struct memcg_batch_info *batch = &current->memcg_batch;

	if (!batch->do_batch)
		return;

	batch->do_batch--;
	if (batch->do_batch) /* If stacked, do nothing. */
		return;

	if (!batch->memcg)
		return;
	/*
	 * This "batch->memcg" is valid without any css_get/put etc...
	 * bacause we hide charges behind us.
	 */
4135 4136 4137 4138 4139 4140
	if (batch->nr_pages)
		res_counter_uncharge(&batch->memcg->res,
				     batch->nr_pages * PAGE_SIZE);
	if (batch->memsw_nr_pages)
		res_counter_uncharge(&batch->memcg->memsw,
				     batch->memsw_nr_pages * PAGE_SIZE);
4141
	memcg_oom_recover(batch->memcg);
4142 4143 4144 4145
	/* forget this pointer (for sanity check) */
	batch->memcg = NULL;
}

4146
#ifdef CONFIG_SWAP
4147
/*
4148
 * called after __delete_from_swap_cache() and drop "page" account.
4149 4150
 * memcg information is recorded to swap_cgroup of "ent"
 */
K
KAMEZAWA Hiroyuki 已提交
4151 4152
void
mem_cgroup_uncharge_swapcache(struct page *page, swp_entry_t ent, bool swapout)
4153 4154
{
	struct mem_cgroup *memcg;
K
KAMEZAWA Hiroyuki 已提交
4155 4156 4157 4158 4159
	int ctype = MEM_CGROUP_CHARGE_TYPE_SWAPOUT;

	if (!swapout) /* this was a swap cache but the swap is unused ! */
		ctype = MEM_CGROUP_CHARGE_TYPE_DROP;

4160
	memcg = __mem_cgroup_uncharge_common(page, ctype, false);
4161

K
KAMEZAWA Hiroyuki 已提交
4162 4163 4164 4165 4166
	/*
	 * record memcg information,  if swapout && memcg != NULL,
	 * mem_cgroup_get() was called in uncharge().
	 */
	if (do_swap_account && swapout && memcg)
4167
		swap_cgroup_record(ent, css_id(&memcg->css));
4168
}
4169
#endif
4170

A
Andrew Morton 已提交
4171
#ifdef CONFIG_MEMCG_SWAP
4172 4173 4174 4175 4176
/*
 * called from swap_entry_free(). remove record in swap_cgroup and
 * uncharge "memsw" account.
 */
void mem_cgroup_uncharge_swap(swp_entry_t ent)
K
KAMEZAWA Hiroyuki 已提交
4177
{
4178
	struct mem_cgroup *memcg;
4179
	unsigned short id;
4180 4181 4182 4183

	if (!do_swap_account)
		return;

4184 4185 4186
	id = swap_cgroup_record(ent, 0);
	rcu_read_lock();
	memcg = mem_cgroup_lookup(id);
4187
	if (memcg) {
4188 4189 4190 4191
		/*
		 * We uncharge this because swap is freed.
		 * This memcg can be obsolete one. We avoid calling css_tryget
		 */
4192
		if (!mem_cgroup_is_root(memcg))
4193
			res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
4194
		mem_cgroup_swap_statistics(memcg, false);
4195 4196
		mem_cgroup_put(memcg);
	}
4197
	rcu_read_unlock();
K
KAMEZAWA Hiroyuki 已提交
4198
}
4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214

/**
 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
 * @entry: swap entry to be moved
 * @from:  mem_cgroup which the entry is moved from
 * @to:  mem_cgroup which the entry is moved to
 *
 * It succeeds only when the swap_cgroup's record for this entry is the same
 * as the mem_cgroup's id of @from.
 *
 * Returns 0 on success, -EINVAL on failure.
 *
 * The caller must have charged to @to, IOW, called res_counter_charge() about
 * both res and memsw, and called css_get().
 */
static int mem_cgroup_move_swap_account(swp_entry_t entry,
4215
				struct mem_cgroup *from, struct mem_cgroup *to)
4216 4217 4218 4219 4220 4221 4222 4223
{
	unsigned short old_id, new_id;

	old_id = css_id(&from->css);
	new_id = css_id(&to->css);

	if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
		mem_cgroup_swap_statistics(from, false);
4224
		mem_cgroup_swap_statistics(to, true);
4225
		/*
4226 4227 4228 4229 4230 4231
		 * This function is only called from task migration context now.
		 * It postpones res_counter and refcount handling till the end
		 * of task migration(mem_cgroup_clear_mc()) for performance
		 * improvement. But we cannot postpone mem_cgroup_get(to)
		 * because if the process that has been moved to @to does
		 * swap-in, the refcount of @to might be decreased to 0.
4232 4233 4234 4235 4236 4237 4238 4239
		 */
		mem_cgroup_get(to);
		return 0;
	}
	return -EINVAL;
}
#else
static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
4240
				struct mem_cgroup *from, struct mem_cgroup *to)
4241 4242 4243
{
	return -EINVAL;
}
4244
#endif
K
KAMEZAWA Hiroyuki 已提交
4245

4246
/*
4247 4248
 * Before starting migration, account PAGE_SIZE to mem_cgroup that the old
 * page belongs to.
4249
 */
4250 4251
void mem_cgroup_prepare_migration(struct page *page, struct page *newpage,
				  struct mem_cgroup **memcgp)
4252
{
4253
	struct mem_cgroup *memcg = NULL;
4254
	unsigned int nr_pages = 1;
4255
	struct page_cgroup *pc;
4256
	enum charge_type ctype;
4257

4258
	*memcgp = NULL;
4259

4260
	if (mem_cgroup_disabled())
4261
		return;
4262

4263 4264 4265
	if (PageTransHuge(page))
		nr_pages <<= compound_order(page);

4266 4267 4268
	pc = lookup_page_cgroup(page);
	lock_page_cgroup(pc);
	if (PageCgroupUsed(pc)) {
4269 4270
		memcg = pc->mem_cgroup;
		css_get(&memcg->css);
4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301
		/*
		 * At migrating an anonymous page, its mapcount goes down
		 * to 0 and uncharge() will be called. But, even if it's fully
		 * unmapped, migration may fail and this page has to be
		 * charged again. We set MIGRATION flag here and delay uncharge
		 * until end_migration() is called
		 *
		 * Corner Case Thinking
		 * A)
		 * When the old page was mapped as Anon and it's unmap-and-freed
		 * while migration was ongoing.
		 * If unmap finds the old page, uncharge() of it will be delayed
		 * until end_migration(). If unmap finds a new page, it's
		 * uncharged when it make mapcount to be 1->0. If unmap code
		 * finds swap_migration_entry, the new page will not be mapped
		 * and end_migration() will find it(mapcount==0).
		 *
		 * B)
		 * When the old page was mapped but migraion fails, the kernel
		 * remaps it. A charge for it is kept by MIGRATION flag even
		 * if mapcount goes down to 0. We can do remap successfully
		 * without charging it again.
		 *
		 * C)
		 * The "old" page is under lock_page() until the end of
		 * migration, so, the old page itself will not be swapped-out.
		 * If the new page is swapped out before end_migraton, our
		 * hook to usual swap-out path will catch the event.
		 */
		if (PageAnon(page))
			SetPageCgroupMigration(pc);
4302
	}
4303
	unlock_page_cgroup(pc);
4304 4305 4306 4307
	/*
	 * If the page is not charged at this point,
	 * we return here.
	 */
4308
	if (!memcg)
4309
		return;
4310

4311
	*memcgp = memcg;
4312 4313 4314 4315 4316 4317 4318
	/*
	 * We charge new page before it's used/mapped. So, even if unlock_page()
	 * is called before end_migration, we can catch all events on this new
	 * page. In the case new page is migrated but not remapped, new page's
	 * mapcount will be finally 0 and we call uncharge in end_migration().
	 */
	if (PageAnon(page))
4319
		ctype = MEM_CGROUP_CHARGE_TYPE_ANON;
4320
	else
4321
		ctype = MEM_CGROUP_CHARGE_TYPE_CACHE;
4322 4323 4324 4325 4326
	/*
	 * The page is committed to the memcg, but it's not actually
	 * charged to the res_counter since we plan on replacing the
	 * old one and only one page is going to be left afterwards.
	 */
4327
	__mem_cgroup_commit_charge(memcg, newpage, nr_pages, ctype, false);
4328
}
4329

4330
/* remove redundant charge if migration failed*/
4331
void mem_cgroup_end_migration(struct mem_cgroup *memcg,
4332
	struct page *oldpage, struct page *newpage, bool migration_ok)
4333
{
4334
	struct page *used, *unused;
4335
	struct page_cgroup *pc;
4336
	bool anon;
4337

4338
	if (!memcg)
4339
		return;
4340

4341
	if (!migration_ok) {
4342 4343
		used = oldpage;
		unused = newpage;
4344
	} else {
4345
		used = newpage;
4346 4347
		unused = oldpage;
	}
4348
	anon = PageAnon(used);
4349 4350 4351 4352
	__mem_cgroup_uncharge_common(unused,
				     anon ? MEM_CGROUP_CHARGE_TYPE_ANON
				     : MEM_CGROUP_CHARGE_TYPE_CACHE,
				     true);
4353
	css_put(&memcg->css);
4354
	/*
4355 4356 4357
	 * We disallowed uncharge of pages under migration because mapcount
	 * of the page goes down to zero, temporarly.
	 * Clear the flag and check the page should be charged.
4358
	 */
4359 4360 4361 4362 4363
	pc = lookup_page_cgroup(oldpage);
	lock_page_cgroup(pc);
	ClearPageCgroupMigration(pc);
	unlock_page_cgroup(pc);

4364
	/*
4365 4366 4367 4368 4369 4370
	 * If a page is a file cache, radix-tree replacement is very atomic
	 * and we can skip this check. When it was an Anon page, its mapcount
	 * goes down to 0. But because we added MIGRATION flage, it's not
	 * uncharged yet. There are several case but page->mapcount check
	 * and USED bit check in mem_cgroup_uncharge_page() will do enough
	 * check. (see prepare_charge() also)
4371
	 */
4372
	if (anon)
4373
		mem_cgroup_uncharge_page(used);
4374
}
4375

4376 4377 4378 4379 4380 4381 4382 4383
/*
 * At replace page cache, newpage is not under any memcg but it's on
 * LRU. So, this function doesn't touch res_counter but handles LRU
 * in correct way. Both pages are locked so we cannot race with uncharge.
 */
void mem_cgroup_replace_page_cache(struct page *oldpage,
				  struct page *newpage)
{
4384
	struct mem_cgroup *memcg = NULL;
4385 4386 4387 4388 4389 4390 4391 4392 4393
	struct page_cgroup *pc;
	enum charge_type type = MEM_CGROUP_CHARGE_TYPE_CACHE;

	if (mem_cgroup_disabled())
		return;

	pc = lookup_page_cgroup(oldpage);
	/* fix accounting on old pages */
	lock_page_cgroup(pc);
4394 4395 4396 4397 4398
	if (PageCgroupUsed(pc)) {
		memcg = pc->mem_cgroup;
		mem_cgroup_charge_statistics(memcg, false, -1);
		ClearPageCgroupUsed(pc);
	}
4399 4400
	unlock_page_cgroup(pc);

4401 4402 4403 4404 4405 4406
	/*
	 * When called from shmem_replace_page(), in some cases the
	 * oldpage has already been charged, and in some cases not.
	 */
	if (!memcg)
		return;
4407 4408 4409 4410 4411
	/*
	 * Even if newpage->mapping was NULL before starting replacement,
	 * the newpage may be on LRU(or pagevec for LRU) already. We lock
	 * LRU while we overwrite pc->mem_cgroup.
	 */
4412
	__mem_cgroup_commit_charge(memcg, newpage, 1, type, true);
4413 4414
}

4415 4416 4417 4418 4419 4420
#ifdef CONFIG_DEBUG_VM
static struct page_cgroup *lookup_page_cgroup_used(struct page *page)
{
	struct page_cgroup *pc;

	pc = lookup_page_cgroup(page);
4421 4422 4423 4424 4425
	/*
	 * Can be NULL while feeding pages into the page allocator for
	 * the first time, i.e. during boot or memory hotplug;
	 * or when mem_cgroup_disabled().
	 */
4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444
	if (likely(pc) && PageCgroupUsed(pc))
		return pc;
	return NULL;
}

bool mem_cgroup_bad_page_check(struct page *page)
{
	if (mem_cgroup_disabled())
		return false;

	return lookup_page_cgroup_used(page) != NULL;
}

void mem_cgroup_print_bad_page(struct page *page)
{
	struct page_cgroup *pc;

	pc = lookup_page_cgroup_used(page);
	if (pc) {
4445 4446
		pr_alert("pc:%p pc->flags:%lx pc->mem_cgroup:%p\n",
			 pc, pc->flags, pc->mem_cgroup);
4447 4448 4449 4450
	}
}
#endif

4451
static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
4452
				unsigned long long val)
4453
{
4454
	int retry_count;
4455
	u64 memswlimit, memlimit;
4456
	int ret = 0;
4457 4458
	int children = mem_cgroup_count_children(memcg);
	u64 curusage, oldusage;
4459
	int enlarge;
4460 4461 4462 4463 4464 4465 4466 4467 4468

	/*
	 * For keeping hierarchical_reclaim simple, how long we should retry
	 * is depends on callers. We set our retry-count to be function
	 * of # of children which we should visit in this loop.
	 */
	retry_count = MEM_CGROUP_RECLAIM_RETRIES * children;

	oldusage = res_counter_read_u64(&memcg->res, RES_USAGE);
4469

4470
	enlarge = 0;
4471
	while (retry_count) {
4472 4473 4474 4475
		if (signal_pending(current)) {
			ret = -EINTR;
			break;
		}
4476 4477 4478
		/*
		 * Rather than hide all in some function, I do this in
		 * open coded manner. You see what this really does.
4479
		 * We have to guarantee memcg->res.limit <= memcg->memsw.limit.
4480 4481 4482 4483 4484 4485
		 */
		mutex_lock(&set_limit_mutex);
		memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
		if (memswlimit < val) {
			ret = -EINVAL;
			mutex_unlock(&set_limit_mutex);
4486 4487
			break;
		}
4488 4489 4490 4491 4492

		memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
		if (memlimit < val)
			enlarge = 1;

4493
		ret = res_counter_set_limit(&memcg->res, val);
4494 4495 4496 4497 4498 4499
		if (!ret) {
			if (memswlimit == val)
				memcg->memsw_is_minimum = true;
			else
				memcg->memsw_is_minimum = false;
		}
4500 4501 4502 4503 4504
		mutex_unlock(&set_limit_mutex);

		if (!ret)
			break;

4505 4506
		mem_cgroup_reclaim(memcg, GFP_KERNEL,
				   MEM_CGROUP_RECLAIM_SHRINK);
4507 4508 4509 4510 4511 4512
		curusage = res_counter_read_u64(&memcg->res, RES_USAGE);
		/* Usage is reduced ? */
  		if (curusage >= oldusage)
			retry_count--;
		else
			oldusage = curusage;
4513
	}
4514 4515
	if (!ret && enlarge)
		memcg_oom_recover(memcg);
4516

4517 4518 4519
	return ret;
}

L
Li Zefan 已提交
4520 4521
static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
					unsigned long long val)
4522
{
4523
	int retry_count;
4524
	u64 memlimit, memswlimit, oldusage, curusage;
4525 4526
	int children = mem_cgroup_count_children(memcg);
	int ret = -EBUSY;
4527
	int enlarge = 0;
4528

4529 4530 4531
	/* see mem_cgroup_resize_res_limit */
 	retry_count = children * MEM_CGROUP_RECLAIM_RETRIES;
	oldusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
4532 4533 4534 4535 4536 4537 4538 4539
	while (retry_count) {
		if (signal_pending(current)) {
			ret = -EINTR;
			break;
		}
		/*
		 * Rather than hide all in some function, I do this in
		 * open coded manner. You see what this really does.
4540
		 * We have to guarantee memcg->res.limit <= memcg->memsw.limit.
4541 4542 4543 4544 4545 4546 4547 4548
		 */
		mutex_lock(&set_limit_mutex);
		memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
		if (memlimit > val) {
			ret = -EINVAL;
			mutex_unlock(&set_limit_mutex);
			break;
		}
4549 4550 4551
		memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
		if (memswlimit < val)
			enlarge = 1;
4552
		ret = res_counter_set_limit(&memcg->memsw, val);
4553 4554 4555 4556 4557 4558
		if (!ret) {
			if (memlimit == val)
				memcg->memsw_is_minimum = true;
			else
				memcg->memsw_is_minimum = false;
		}
4559 4560 4561 4562 4563
		mutex_unlock(&set_limit_mutex);

		if (!ret)
			break;

4564 4565 4566
		mem_cgroup_reclaim(memcg, GFP_KERNEL,
				   MEM_CGROUP_RECLAIM_NOSWAP |
				   MEM_CGROUP_RECLAIM_SHRINK);
4567
		curusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
4568
		/* Usage is reduced ? */
4569
		if (curusage >= oldusage)
4570
			retry_count--;
4571 4572
		else
			oldusage = curusage;
4573
	}
4574 4575
	if (!ret && enlarge)
		memcg_oom_recover(memcg);
4576 4577 4578
	return ret;
}

4579
unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
4580 4581
					    gfp_t gfp_mask,
					    unsigned long *total_scanned)
4582 4583 4584 4585 4586 4587
{
	unsigned long nr_reclaimed = 0;
	struct mem_cgroup_per_zone *mz, *next_mz = NULL;
	unsigned long reclaimed;
	int loop = 0;
	struct mem_cgroup_tree_per_zone *mctz;
4588
	unsigned long long excess;
4589
	unsigned long nr_scanned;
4590 4591 4592 4593

	if (order > 0)
		return 0;

4594
	mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone));
4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607
	/*
	 * This loop can run a while, specially if mem_cgroup's continuously
	 * keep exceeding their soft limit and putting the system under
	 * pressure
	 */
	do {
		if (next_mz)
			mz = next_mz;
		else
			mz = mem_cgroup_largest_soft_limit_node(mctz);
		if (!mz)
			break;

4608
		nr_scanned = 0;
4609
		reclaimed = mem_cgroup_soft_reclaim(mz->memcg, zone,
4610
						    gfp_mask, &nr_scanned);
4611
		nr_reclaimed += reclaimed;
4612
		*total_scanned += nr_scanned;
4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634
		spin_lock(&mctz->lock);

		/*
		 * If we failed to reclaim anything from this memory cgroup
		 * it is time to move on to the next cgroup
		 */
		next_mz = NULL;
		if (!reclaimed) {
			do {
				/*
				 * Loop until we find yet another one.
				 *
				 * By the time we get the soft_limit lock
				 * again, someone might have aded the
				 * group back on the RB tree. Iterate to
				 * make sure we get a different mem.
				 * mem_cgroup_largest_soft_limit_node returns
				 * NULL if no other cgroup is present on
				 * the tree
				 */
				next_mz =
				__mem_cgroup_largest_soft_limit_node(mctz);
4635
				if (next_mz == mz)
4636
					css_put(&next_mz->memcg->css);
4637
				else /* next_mz == NULL or other memcg */
4638 4639 4640
					break;
			} while (1);
		}
4641 4642
		__mem_cgroup_remove_exceeded(mz->memcg, mz, mctz);
		excess = res_counter_soft_limit_excess(&mz->memcg->res);
4643 4644 4645 4646 4647 4648 4649 4650
		/*
		 * One school of thought says that we should not add
		 * back the node to the tree if reclaim returns 0.
		 * But our reclaim could return 0, simply because due
		 * to priority we are exposing a smaller subset of
		 * memory to reclaim from. Consider this as a longer
		 * term TODO.
		 */
4651
		/* If excess == 0, no tree ops */
4652
		__mem_cgroup_insert_exceeded(mz->memcg, mz, mctz, excess);
4653
		spin_unlock(&mctz->lock);
4654
		css_put(&mz->memcg->css);
4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666
		loop++;
		/*
		 * Could not reclaim anything and there are no more
		 * mem cgroups to try or we seem to be looping without
		 * reclaiming anything.
		 */
		if (!nr_reclaimed &&
			(next_mz == NULL ||
			loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
			break;
	} while (!nr_reclaimed);
	if (next_mz)
4667
		css_put(&next_mz->memcg->css);
4668 4669 4670
	return nr_reclaimed;
}

4671 4672 4673 4674 4675 4676 4677
/**
 * mem_cgroup_force_empty_list - clears LRU of a group
 * @memcg: group to clear
 * @node: NUMA node
 * @zid: zone id
 * @lru: lru to to clear
 *
4678
 * Traverse a specified page_cgroup list and try to drop them all.  This doesn't
4679 4680
 * reclaim the pages page themselves - pages are moved to the parent (or root)
 * group.
4681
 */
4682
static void mem_cgroup_force_empty_list(struct mem_cgroup *memcg,
K
KAMEZAWA Hiroyuki 已提交
4683
				int node, int zid, enum lru_list lru)
4684
{
4685
	struct lruvec *lruvec;
4686
	unsigned long flags;
4687
	struct list_head *list;
4688 4689
	struct page *busy;
	struct zone *zone;
4690

K
KAMEZAWA Hiroyuki 已提交
4691
	zone = &NODE_DATA(node)->node_zones[zid];
4692 4693
	lruvec = mem_cgroup_zone_lruvec(zone, memcg);
	list = &lruvec->lists[lru];
4694

4695
	busy = NULL;
4696
	do {
4697
		struct page_cgroup *pc;
4698 4699
		struct page *page;

K
KAMEZAWA Hiroyuki 已提交
4700
		spin_lock_irqsave(&zone->lru_lock, flags);
4701
		if (list_empty(list)) {
K
KAMEZAWA Hiroyuki 已提交
4702
			spin_unlock_irqrestore(&zone->lru_lock, flags);
4703
			break;
4704
		}
4705 4706 4707
		page = list_entry(list->prev, struct page, lru);
		if (busy == page) {
			list_move(&page->lru, list);
4708
			busy = NULL;
K
KAMEZAWA Hiroyuki 已提交
4709
			spin_unlock_irqrestore(&zone->lru_lock, flags);
4710 4711
			continue;
		}
K
KAMEZAWA Hiroyuki 已提交
4712
		spin_unlock_irqrestore(&zone->lru_lock, flags);
4713

4714
		pc = lookup_page_cgroup(page);
4715

4716
		if (mem_cgroup_move_parent(page, pc, memcg)) {
4717
			/* found lock contention or "pc" is obsolete. */
4718
			busy = page;
4719 4720 4721
			cond_resched();
		} else
			busy = NULL;
4722
	} while (!list_empty(list));
4723 4724 4725
}

/*
4726 4727
 * make mem_cgroup's charge to be 0 if there is no task by moving
 * all the charges and pages to the parent.
4728
 * This enables deleting this mem_cgroup.
4729 4730
 *
 * Caller is responsible for holding css reference on the memcg.
4731
 */
4732
static void mem_cgroup_reparent_charges(struct mem_cgroup *memcg)
4733
{
4734
	int node, zid;
4735
	u64 usage;
4736

4737
	do {
4738 4739
		/* This is for making all *used* pages to be on LRU. */
		lru_add_drain_all();
4740 4741
		drain_all_stock_sync(memcg);
		mem_cgroup_start_move(memcg);
4742
		for_each_node_state(node, N_MEMORY) {
4743
			for (zid = 0; zid < MAX_NR_ZONES; zid++) {
H
Hugh Dickins 已提交
4744 4745
				enum lru_list lru;
				for_each_lru(lru) {
4746
					mem_cgroup_force_empty_list(memcg,
H
Hugh Dickins 已提交
4747
							node, zid, lru);
4748
				}
4749
			}
4750
		}
4751 4752
		mem_cgroup_end_move(memcg);
		memcg_oom_recover(memcg);
4753
		cond_resched();
4754

4755
		/*
4756 4757 4758 4759 4760
		 * Kernel memory may not necessarily be trackable to a specific
		 * process. So they are not migrated, and therefore we can't
		 * expect their value to drop to 0 here.
		 * Having res filled up with kmem only is enough.
		 *
4761 4762 4763 4764 4765 4766
		 * This is a safety check because mem_cgroup_force_empty_list
		 * could have raced with mem_cgroup_replace_page_cache callers
		 * so the lru seemed empty but the page could have been added
		 * right after the check. RES_USAGE should be safe as we always
		 * charge before adding to the LRU.
		 */
4767 4768 4769
		usage = res_counter_read_u64(&memcg->res, RES_USAGE) -
			res_counter_read_u64(&memcg->kmem, RES_USAGE);
	} while (usage > 0);
4770 4771
}

4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787
/*
 * This mainly exists for tests during the setting of set of use_hierarchy.
 * Since this is the very setting we are changing, the current hierarchy value
 * is meaningless
 */
static inline bool __memcg_has_children(struct mem_cgroup *memcg)
{
	struct cgroup *pos;

	/* bounce at first found */
	cgroup_for_each_child(pos, memcg->css.cgroup)
		return true;
	return false;
}

/*
4788 4789
 * Must be called with memcg_create_mutex held, unless the cgroup is guaranteed
 * to be already dead (as in mem_cgroup_force_empty, for instance).  This is
4790 4791 4792 4793 4794 4795 4796 4797 4798
 * from mem_cgroup_count_children(), in the sense that we don't really care how
 * many children we have; we only need to know if we have any.  It also counts
 * any memcg without hierarchy as infertile.
 */
static inline bool memcg_has_children(struct mem_cgroup *memcg)
{
	return memcg->use_hierarchy && __memcg_has_children(memcg);
}

4799 4800 4801 4802 4803 4804 4805 4806 4807 4808
/*
 * Reclaims as many pages from the given memcg as possible and moves
 * the rest to the parent.
 *
 * Caller is responsible for holding css reference for memcg.
 */
static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
{
	int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
	struct cgroup *cgrp = memcg->css.cgroup;
4809

4810
	/* returns EBUSY if there is a task or if we come here twice. */
4811 4812 4813
	if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children))
		return -EBUSY;

4814 4815
	/* we call try-to-free pages for make this cgroup empty */
	lru_add_drain_all();
4816
	/* try to free all pages in this cgroup */
4817
	while (nr_retries && res_counter_read_u64(&memcg->res, RES_USAGE) > 0) {
4818
		int progress;
4819

4820 4821 4822
		if (signal_pending(current))
			return -EINTR;

4823
		progress = try_to_free_mem_cgroup_pages(memcg, GFP_KERNEL,
4824
						false);
4825
		if (!progress) {
4826
			nr_retries--;
4827
			/* maybe some writeback is necessary */
4828
			congestion_wait(BLK_RW_ASYNC, HZ/10);
4829
		}
4830 4831

	}
K
KAMEZAWA Hiroyuki 已提交
4832
	lru_add_drain();
4833 4834 4835
	mem_cgroup_reparent_charges(memcg);

	return 0;
4836 4837
}

4838
static int mem_cgroup_force_empty_write(struct cgroup *cont, unsigned int event)
4839
{
4840 4841 4842
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
	int ret;

4843 4844
	if (mem_cgroup_is_root(memcg))
		return -EINVAL;
4845 4846 4847 4848 4849
	css_get(&memcg->css);
	ret = mem_cgroup_force_empty(memcg);
	css_put(&memcg->css);

	return ret;
4850 4851 4852
}


4853 4854 4855 4856 4857 4858 4859 4860 4861
static u64 mem_cgroup_hierarchy_read(struct cgroup *cont, struct cftype *cft)
{
	return mem_cgroup_from_cont(cont)->use_hierarchy;
}

static int mem_cgroup_hierarchy_write(struct cgroup *cont, struct cftype *cft,
					u64 val)
{
	int retval = 0;
4862
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
4863
	struct cgroup *parent = cont->parent;
4864
	struct mem_cgroup *parent_memcg = NULL;
4865 4866

	if (parent)
4867
		parent_memcg = mem_cgroup_from_cont(parent);
4868

4869
	mutex_lock(&memcg_create_mutex);
4870 4871 4872 4873

	if (memcg->use_hierarchy == val)
		goto out;

4874
	/*
4875
	 * If parent's use_hierarchy is set, we can't make any modifications
4876 4877 4878 4879 4880 4881
	 * in the child subtrees. If it is unset, then the change can
	 * occur, provided the current cgroup has no children.
	 *
	 * For the root cgroup, parent_mem is NULL, we allow value to be
	 * set if there are no children.
	 */
4882
	if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
4883
				(val == 1 || val == 0)) {
4884
		if (!__memcg_has_children(memcg))
4885
			memcg->use_hierarchy = val;
4886 4887 4888 4889
		else
			retval = -EBUSY;
	} else
		retval = -EINVAL;
4890 4891

out:
4892
	mutex_unlock(&memcg_create_mutex);
4893 4894 4895 4896

	return retval;
}

4897

4898
static unsigned long mem_cgroup_recursive_stat(struct mem_cgroup *memcg,
4899
					       enum mem_cgroup_stat_index idx)
4900
{
K
KAMEZAWA Hiroyuki 已提交
4901
	struct mem_cgroup *iter;
4902
	long val = 0;
4903

4904
	/* Per-cpu values can be negative, use a signed accumulator */
4905
	for_each_mem_cgroup_tree(iter, memcg)
K
KAMEZAWA Hiroyuki 已提交
4906 4907 4908 4909 4910
		val += mem_cgroup_read_stat(iter, idx);

	if (val < 0) /* race ? */
		val = 0;
	return val;
4911 4912
}

4913
static inline u64 mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
4914
{
K
KAMEZAWA Hiroyuki 已提交
4915
	u64 val;
4916

4917
	if (!mem_cgroup_is_root(memcg)) {
4918
		if (!swap)
4919
			return res_counter_read_u64(&memcg->res, RES_USAGE);
4920
		else
4921
			return res_counter_read_u64(&memcg->memsw, RES_USAGE);
4922 4923
	}

4924 4925
	val = mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_CACHE);
	val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_RSS);
4926

K
KAMEZAWA Hiroyuki 已提交
4927
	if (swap)
4928
		val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_SWAP);
4929 4930 4931 4932

	return val << PAGE_SHIFT;
}

4933 4934 4935
static ssize_t mem_cgroup_read(struct cgroup *cont, struct cftype *cft,
			       struct file *file, char __user *buf,
			       size_t nbytes, loff_t *ppos)
B
Balbir Singh 已提交
4936
{
4937
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
4938
	char str[64];
4939
	u64 val;
G
Glauber Costa 已提交
4940 4941
	int name, len;
	enum res_type type;
4942 4943 4944

	type = MEMFILE_TYPE(cft->private);
	name = MEMFILE_ATTR(cft->private);
4945 4946 4947 4948

	if (!do_swap_account && type == _MEMSWAP)
		return -EOPNOTSUPP;

4949 4950
	switch (type) {
	case _MEM:
4951
		if (name == RES_USAGE)
4952
			val = mem_cgroup_usage(memcg, false);
4953
		else
4954
			val = res_counter_read_u64(&memcg->res, name);
4955 4956
		break;
	case _MEMSWAP:
4957
		if (name == RES_USAGE)
4958
			val = mem_cgroup_usage(memcg, true);
4959
		else
4960
			val = res_counter_read_u64(&memcg->memsw, name);
4961
		break;
4962 4963 4964
	case _KMEM:
		val = res_counter_read_u64(&memcg->kmem, name);
		break;
4965 4966 4967
	default:
		BUG();
	}
4968 4969 4970

	len = scnprintf(str, sizeof(str), "%llu\n", (unsigned long long)val);
	return simple_read_from_buffer(buf, nbytes, ppos, str, len);
B
Balbir Singh 已提交
4971
}
4972 4973 4974 4975 4976 4977 4978 4979 4980 4981 4982 4983 4984 4985 4986 4987 4988 4989

static int memcg_update_kmem_limit(struct cgroup *cont, u64 val)
{
	int ret = -EINVAL;
#ifdef CONFIG_MEMCG_KMEM
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
	/*
	 * For simplicity, we won't allow this to be disabled.  It also can't
	 * be changed if the cgroup has children already, or if tasks had
	 * already joined.
	 *
	 * If tasks join before we set the limit, a person looking at
	 * kmem.usage_in_bytes will have no way to determine when it took
	 * place, which makes the value quite meaningless.
	 *
	 * After it first became limited, changes in the value of the limit are
	 * of course permitted.
	 */
4990
	mutex_lock(&memcg_create_mutex);
4991 4992
	mutex_lock(&set_limit_mutex);
	if (!memcg->kmem_account_flags && val != RESOURCE_MAX) {
4993
		if (cgroup_task_count(cont) || memcg_has_children(memcg)) {
4994 4995 4996 4997 4998 4999
			ret = -EBUSY;
			goto out;
		}
		ret = res_counter_set_limit(&memcg->kmem, val);
		VM_BUG_ON(ret);

5000 5001 5002 5003 5004
		ret = memcg_update_cache_sizes(memcg);
		if (ret) {
			res_counter_set_limit(&memcg->kmem, RESOURCE_MAX);
			goto out;
		}
5005 5006 5007 5008 5009 5010 5011
		static_key_slow_inc(&memcg_kmem_enabled_key);
		/*
		 * setting the active bit after the inc will guarantee no one
		 * starts accounting before all call sites are patched
		 */
		memcg_kmem_set_active(memcg);

5012 5013 5014 5015 5016 5017 5018
		/*
		 * kmem charges can outlive the cgroup. In the case of slab
		 * pages, for instance, a page contain objects from various
		 * processes, so it is unfeasible to migrate them away. We
		 * need to reference count the memcg because of that.
		 */
		mem_cgroup_get(memcg);
5019 5020 5021 5022
	} else
		ret = res_counter_set_limit(&memcg->kmem, val);
out:
	mutex_unlock(&set_limit_mutex);
5023
	mutex_unlock(&memcg_create_mutex);
5024 5025 5026 5027
#endif
	return ret;
}

5028
static int memcg_propagate_kmem(struct mem_cgroup *memcg)
5029
{
5030
	int ret = 0;
5031 5032
	struct mem_cgroup *parent = parent_mem_cgroup(memcg);
	if (!parent)
5033 5034
		goto out;

5035
	memcg->kmem_account_flags = parent->kmem_account_flags;
5036
#ifdef CONFIG_MEMCG_KMEM
5037 5038 5039 5040 5041 5042 5043 5044 5045 5046
	/*
	 * When that happen, we need to disable the static branch only on those
	 * memcgs that enabled it. To achieve this, we would be forced to
	 * complicate the code by keeping track of which memcgs were the ones
	 * that actually enabled limits, and which ones got it from its
	 * parents.
	 *
	 * It is a lot simpler just to do static_key_slow_inc() on every child
	 * that is accounted.
	 */
5047 5048 5049 5050 5051 5052 5053 5054 5055 5056 5057 5058 5059 5060 5061
	if (!memcg_kmem_is_active(memcg))
		goto out;

	/*
	 * destroy(), called if we fail, will issue static_key_slow_inc() and
	 * mem_cgroup_put() if kmem is enabled. We have to either call them
	 * unconditionally, or clear the KMEM_ACTIVE flag. I personally find
	 * this more consistent, since it always leads to the same destroy path
	 */
	mem_cgroup_get(memcg);
	static_key_slow_inc(&memcg_kmem_enabled_key);

	mutex_lock(&set_limit_mutex);
	ret = memcg_update_cache_sizes(memcg);
	mutex_unlock(&set_limit_mutex);
5062
#endif
5063 5064
out:
	return ret;
5065 5066
}

5067 5068 5069 5070
/*
 * The user of this function is...
 * RES_LIMIT.
 */
5071 5072
static int mem_cgroup_write(struct cgroup *cont, struct cftype *cft,
			    const char *buffer)
B
Balbir Singh 已提交
5073
{
5074
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
G
Glauber Costa 已提交
5075 5076
	enum res_type type;
	int name;
5077 5078 5079
	unsigned long long val;
	int ret;

5080 5081
	type = MEMFILE_TYPE(cft->private);
	name = MEMFILE_ATTR(cft->private);
5082 5083 5084 5085

	if (!do_swap_account && type == _MEMSWAP)
		return -EOPNOTSUPP;

5086
	switch (name) {
5087
	case RES_LIMIT:
5088 5089 5090 5091
		if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
			ret = -EINVAL;
			break;
		}
5092 5093
		/* This function does all necessary parse...reuse it */
		ret = res_counter_memparse_write_strategy(buffer, &val);
5094 5095 5096
		if (ret)
			break;
		if (type == _MEM)
5097
			ret = mem_cgroup_resize_limit(memcg, val);
5098
		else if (type == _MEMSWAP)
5099
			ret = mem_cgroup_resize_memsw_limit(memcg, val);
5100 5101 5102 5103
		else if (type == _KMEM)
			ret = memcg_update_kmem_limit(cont, val);
		else
			return -EINVAL;
5104
		break;
5105 5106 5107 5108 5109 5110 5111 5112 5113 5114 5115 5116 5117 5118
	case RES_SOFT_LIMIT:
		ret = res_counter_memparse_write_strategy(buffer, &val);
		if (ret)
			break;
		/*
		 * For memsw, soft limits are hard to implement in terms
		 * of semantics, for now, we support soft limits for
		 * control without swap
		 */
		if (type == _MEM)
			ret = res_counter_set_soft_limit(&memcg->res, val);
		else
			ret = -EINVAL;
		break;
5119 5120 5121 5122 5123
	default:
		ret = -EINVAL; /* should be BUG() ? */
		break;
	}
	return ret;
B
Balbir Singh 已提交
5124 5125
}

5126 5127 5128 5129 5130 5131 5132 5133 5134 5135 5136 5137 5138 5139 5140 5141 5142 5143 5144 5145 5146 5147 5148 5149 5150 5151 5152
static void memcg_get_hierarchical_limit(struct mem_cgroup *memcg,
		unsigned long long *mem_limit, unsigned long long *memsw_limit)
{
	struct cgroup *cgroup;
	unsigned long long min_limit, min_memsw_limit, tmp;

	min_limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
	min_memsw_limit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
	cgroup = memcg->css.cgroup;
	if (!memcg->use_hierarchy)
		goto out;

	while (cgroup->parent) {
		cgroup = cgroup->parent;
		memcg = mem_cgroup_from_cont(cgroup);
		if (!memcg->use_hierarchy)
			break;
		tmp = res_counter_read_u64(&memcg->res, RES_LIMIT);
		min_limit = min(min_limit, tmp);
		tmp = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
		min_memsw_limit = min(min_memsw_limit, tmp);
	}
out:
	*mem_limit = min_limit;
	*memsw_limit = min_memsw_limit;
}

5153
static int mem_cgroup_reset(struct cgroup *cont, unsigned int event)
5154
{
5155
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
G
Glauber Costa 已提交
5156 5157
	int name;
	enum res_type type;
5158

5159 5160
	type = MEMFILE_TYPE(event);
	name = MEMFILE_ATTR(event);
5161 5162 5163 5164

	if (!do_swap_account && type == _MEMSWAP)
		return -EOPNOTSUPP;

5165
	switch (name) {
5166
	case RES_MAX_USAGE:
5167
		if (type == _MEM)
5168
			res_counter_reset_max(&memcg->res);
5169
		else if (type == _MEMSWAP)
5170
			res_counter_reset_max(&memcg->memsw);
5171 5172 5173 5174
		else if (type == _KMEM)
			res_counter_reset_max(&memcg->kmem);
		else
			return -EINVAL;
5175 5176
		break;
	case RES_FAILCNT:
5177
		if (type == _MEM)
5178
			res_counter_reset_failcnt(&memcg->res);
5179
		else if (type == _MEMSWAP)
5180
			res_counter_reset_failcnt(&memcg->memsw);
5181 5182 5183 5184
		else if (type == _KMEM)
			res_counter_reset_failcnt(&memcg->kmem);
		else
			return -EINVAL;
5185 5186
		break;
	}
5187

5188
	return 0;
5189 5190
}

5191 5192 5193 5194 5195 5196
static u64 mem_cgroup_move_charge_read(struct cgroup *cgrp,
					struct cftype *cft)
{
	return mem_cgroup_from_cont(cgrp)->move_charge_at_immigrate;
}

5197
#ifdef CONFIG_MMU
5198 5199 5200
static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
					struct cftype *cft, u64 val)
{
5201
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
5202 5203 5204

	if (val >= (1 << NR_MOVE_TYPE))
		return -EINVAL;
5205

5206
	/*
5207 5208 5209 5210
	 * No kind of locking is needed in here, because ->can_attach() will
	 * check this value once in the beginning of the process, and then carry
	 * on with stale data. This means that changes to this value will only
	 * affect task migrations starting after the change.
5211
	 */
5212
	memcg->move_charge_at_immigrate = val;
5213 5214
	return 0;
}
5215 5216 5217 5218 5219 5220 5221
#else
static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
					struct cftype *cft, u64 val)
{
	return -ENOSYS;
}
#endif
5222

5223
#ifdef CONFIG_NUMA
5224
static int memcg_numa_stat_show(struct cgroup *cont, struct cftype *cft,
5225
				      struct seq_file *m)
5226 5227 5228 5229
{
	int nid;
	unsigned long total_nr, file_nr, anon_nr, unevictable_nr;
	unsigned long node_nr;
5230
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
5231

5232
	total_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL);
5233
	seq_printf(m, "total=%lu", total_nr);
5234
	for_each_node_state(nid, N_MEMORY) {
5235
		node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL);
5236 5237 5238 5239
		seq_printf(m, " N%d=%lu", nid, node_nr);
	}
	seq_putc(m, '\n');

5240
	file_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL_FILE);
5241
	seq_printf(m, "file=%lu", file_nr);
5242
	for_each_node_state(nid, N_MEMORY) {
5243
		node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
5244
				LRU_ALL_FILE);
5245 5246 5247 5248
		seq_printf(m, " N%d=%lu", nid, node_nr);
	}
	seq_putc(m, '\n');

5249
	anon_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL_ANON);
5250
	seq_printf(m, "anon=%lu", anon_nr);
5251
	for_each_node_state(nid, N_MEMORY) {
5252
		node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
5253
				LRU_ALL_ANON);
5254 5255 5256 5257
		seq_printf(m, " N%d=%lu", nid, node_nr);
	}
	seq_putc(m, '\n');

5258
	unevictable_nr = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_UNEVICTABLE));
5259
	seq_printf(m, "unevictable=%lu", unevictable_nr);
5260
	for_each_node_state(nid, N_MEMORY) {
5261
		node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
5262
				BIT(LRU_UNEVICTABLE));
5263 5264 5265 5266 5267 5268 5269
		seq_printf(m, " N%d=%lu", nid, node_nr);
	}
	seq_putc(m, '\n');
	return 0;
}
#endif /* CONFIG_NUMA */

5270 5271 5272 5273 5274
static inline void mem_cgroup_lru_names_not_uptodate(void)
{
	BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS);
}

5275
static int memcg_stat_show(struct cgroup *cont, struct cftype *cft,
5276
				 struct seq_file *m)
5277
{
5278
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
5279 5280
	struct mem_cgroup *mi;
	unsigned int i;
5281

5282
	for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
5283
		if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
5284
			continue;
5285 5286
		seq_printf(m, "%s %ld\n", mem_cgroup_stat_names[i],
			   mem_cgroup_read_stat(memcg, i) * PAGE_SIZE);
5287
	}
L
Lee Schermerhorn 已提交
5288

5289 5290 5291 5292 5293 5294 5295 5296
	for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++)
		seq_printf(m, "%s %lu\n", mem_cgroup_events_names[i],
			   mem_cgroup_read_events(memcg, i));

	for (i = 0; i < NR_LRU_LISTS; i++)
		seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i],
			   mem_cgroup_nr_lru_pages(memcg, BIT(i)) * PAGE_SIZE);

K
KAMEZAWA Hiroyuki 已提交
5297
	/* Hierarchical information */
5298 5299
	{
		unsigned long long limit, memsw_limit;
5300
		memcg_get_hierarchical_limit(memcg, &limit, &memsw_limit);
5301
		seq_printf(m, "hierarchical_memory_limit %llu\n", limit);
5302
		if (do_swap_account)
5303 5304
			seq_printf(m, "hierarchical_memsw_limit %llu\n",
				   memsw_limit);
5305
	}
K
KOSAKI Motohiro 已提交
5306

5307 5308 5309
	for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
		long long val = 0;

5310
		if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
5311
			continue;
5312 5313 5314 5315 5316 5317 5318 5319 5320 5321 5322 5323 5324 5325 5326 5327 5328 5329 5330 5331
		for_each_mem_cgroup_tree(mi, memcg)
			val += mem_cgroup_read_stat(mi, i) * PAGE_SIZE;
		seq_printf(m, "total_%s %lld\n", mem_cgroup_stat_names[i], val);
	}

	for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
		unsigned long long val = 0;

		for_each_mem_cgroup_tree(mi, memcg)
			val += mem_cgroup_read_events(mi, i);
		seq_printf(m, "total_%s %llu\n",
			   mem_cgroup_events_names[i], val);
	}

	for (i = 0; i < NR_LRU_LISTS; i++) {
		unsigned long long val = 0;

		for_each_mem_cgroup_tree(mi, memcg)
			val += mem_cgroup_nr_lru_pages(mi, BIT(i)) * PAGE_SIZE;
		seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i], val);
5332
	}
K
KAMEZAWA Hiroyuki 已提交
5333

K
KOSAKI Motohiro 已提交
5334 5335 5336 5337
#ifdef CONFIG_DEBUG_VM
	{
		int nid, zid;
		struct mem_cgroup_per_zone *mz;
5338
		struct zone_reclaim_stat *rstat;
K
KOSAKI Motohiro 已提交
5339 5340 5341 5342 5343
		unsigned long recent_rotated[2] = {0, 0};
		unsigned long recent_scanned[2] = {0, 0};

		for_each_online_node(nid)
			for (zid = 0; zid < MAX_NR_ZONES; zid++) {
5344
				mz = mem_cgroup_zoneinfo(memcg, nid, zid);
5345
				rstat = &mz->lruvec.reclaim_stat;
K
KOSAKI Motohiro 已提交
5346

5347 5348 5349 5350
				recent_rotated[0] += rstat->recent_rotated[0];
				recent_rotated[1] += rstat->recent_rotated[1];
				recent_scanned[0] += rstat->recent_scanned[0];
				recent_scanned[1] += rstat->recent_scanned[1];
K
KOSAKI Motohiro 已提交
5351
			}
5352 5353 5354 5355
		seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]);
		seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]);
		seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]);
		seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]);
K
KOSAKI Motohiro 已提交
5356 5357 5358
	}
#endif

5359 5360 5361
	return 0;
}

K
KOSAKI Motohiro 已提交
5362 5363 5364 5365
static u64 mem_cgroup_swappiness_read(struct cgroup *cgrp, struct cftype *cft)
{
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);

5366
	return mem_cgroup_swappiness(memcg);
K
KOSAKI Motohiro 已提交
5367 5368 5369 5370 5371 5372 5373
}

static int mem_cgroup_swappiness_write(struct cgroup *cgrp, struct cftype *cft,
				       u64 val)
{
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
	struct mem_cgroup *parent;
5374

K
KOSAKI Motohiro 已提交
5375 5376 5377 5378 5379 5380 5381
	if (val > 100)
		return -EINVAL;

	if (cgrp->parent == NULL)
		return -EINVAL;

	parent = mem_cgroup_from_cont(cgrp->parent);
5382

5383
	mutex_lock(&memcg_create_mutex);
5384

K
KOSAKI Motohiro 已提交
5385
	/* If under hierarchy, only empty-root can set this value */
5386
	if ((parent->use_hierarchy) || memcg_has_children(memcg)) {
5387
		mutex_unlock(&memcg_create_mutex);
K
KOSAKI Motohiro 已提交
5388
		return -EINVAL;
5389
	}
K
KOSAKI Motohiro 已提交
5390 5391 5392

	memcg->swappiness = val;

5393
	mutex_unlock(&memcg_create_mutex);
5394

K
KOSAKI Motohiro 已提交
5395 5396 5397
	return 0;
}

5398 5399 5400 5401 5402 5403 5404 5405
static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
{
	struct mem_cgroup_threshold_ary *t;
	u64 usage;
	int i;

	rcu_read_lock();
	if (!swap)
5406
		t = rcu_dereference(memcg->thresholds.primary);
5407
	else
5408
		t = rcu_dereference(memcg->memsw_thresholds.primary);
5409 5410 5411 5412 5413 5414 5415

	if (!t)
		goto unlock;

	usage = mem_cgroup_usage(memcg, swap);

	/*
5416
	 * current_threshold points to threshold just below or equal to usage.
5417 5418 5419
	 * If it's not true, a threshold was crossed after last
	 * call of __mem_cgroup_threshold().
	 */
5420
	i = t->current_threshold;
5421 5422 5423 5424 5425 5426 5427 5428 5429 5430 5431 5432 5433 5434 5435 5436 5437 5438 5439 5440 5441 5442 5443

	/*
	 * Iterate backward over array of thresholds starting from
	 * current_threshold and check if a threshold is crossed.
	 * If none of thresholds below usage is crossed, we read
	 * only one element of the array here.
	 */
	for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
		eventfd_signal(t->entries[i].eventfd, 1);

	/* i = current_threshold + 1 */
	i++;

	/*
	 * Iterate forward over array of thresholds starting from
	 * current_threshold+1 and check if a threshold is crossed.
	 * If none of thresholds above usage is crossed, we read
	 * only one element of the array here.
	 */
	for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
		eventfd_signal(t->entries[i].eventfd, 1);

	/* Update current_threshold */
5444
	t->current_threshold = i - 1;
5445 5446 5447 5448 5449 5450
unlock:
	rcu_read_unlock();
}

static void mem_cgroup_threshold(struct mem_cgroup *memcg)
{
5451 5452 5453 5454 5455 5456 5457
	while (memcg) {
		__mem_cgroup_threshold(memcg, false);
		if (do_swap_account)
			__mem_cgroup_threshold(memcg, true);

		memcg = parent_mem_cgroup(memcg);
	}
5458 5459 5460 5461 5462 5463 5464 5465 5466 5467
}

static int compare_thresholds(const void *a, const void *b)
{
	const struct mem_cgroup_threshold *_a = a;
	const struct mem_cgroup_threshold *_b = b;

	return _a->threshold - _b->threshold;
}

5468
static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
5469 5470 5471
{
	struct mem_cgroup_eventfd_list *ev;

5472
	list_for_each_entry(ev, &memcg->oom_notify, list)
K
KAMEZAWA Hiroyuki 已提交
5473 5474 5475 5476
		eventfd_signal(ev->eventfd, 1);
	return 0;
}

5477
static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
5478
{
K
KAMEZAWA Hiroyuki 已提交
5479 5480
	struct mem_cgroup *iter;

5481
	for_each_mem_cgroup_tree(iter, memcg)
K
KAMEZAWA Hiroyuki 已提交
5482
		mem_cgroup_oom_notify_cb(iter);
K
KAMEZAWA Hiroyuki 已提交
5483 5484 5485 5486
}

static int mem_cgroup_usage_register_event(struct cgroup *cgrp,
	struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
5487 5488
{
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
5489 5490
	struct mem_cgroup_thresholds *thresholds;
	struct mem_cgroup_threshold_ary *new;
G
Glauber Costa 已提交
5491
	enum res_type type = MEMFILE_TYPE(cft->private);
5492
	u64 threshold, usage;
5493
	int i, size, ret;
5494 5495 5496 5497 5498 5499

	ret = res_counter_memparse_write_strategy(args, &threshold);
	if (ret)
		return ret;

	mutex_lock(&memcg->thresholds_lock);
5500

5501
	if (type == _MEM)
5502
		thresholds = &memcg->thresholds;
5503
	else if (type == _MEMSWAP)
5504
		thresholds = &memcg->memsw_thresholds;
5505 5506 5507 5508 5509 5510
	else
		BUG();

	usage = mem_cgroup_usage(memcg, type == _MEMSWAP);

	/* Check if a threshold crossed before adding a new one */
5511
	if (thresholds->primary)
5512 5513
		__mem_cgroup_threshold(memcg, type == _MEMSWAP);

5514
	size = thresholds->primary ? thresholds->primary->size + 1 : 1;
5515 5516

	/* Allocate memory for new array of thresholds */
5517
	new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
5518
			GFP_KERNEL);
5519
	if (!new) {
5520 5521 5522
		ret = -ENOMEM;
		goto unlock;
	}
5523
	new->size = size;
5524 5525

	/* Copy thresholds (if any) to new array */
5526 5527
	if (thresholds->primary) {
		memcpy(new->entries, thresholds->primary->entries, (size - 1) *
5528
				sizeof(struct mem_cgroup_threshold));
5529 5530
	}

5531
	/* Add new threshold */
5532 5533
	new->entries[size - 1].eventfd = eventfd;
	new->entries[size - 1].threshold = threshold;
5534 5535

	/* Sort thresholds. Registering of new threshold isn't time-critical */
5536
	sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
5537 5538 5539
			compare_thresholds, NULL);

	/* Find current threshold */
5540
	new->current_threshold = -1;
5541
	for (i = 0; i < size; i++) {
5542
		if (new->entries[i].threshold <= usage) {
5543
			/*
5544 5545
			 * new->current_threshold will not be used until
			 * rcu_assign_pointer(), so it's safe to increment
5546 5547
			 * it here.
			 */
5548
			++new->current_threshold;
5549 5550
		} else
			break;
5551 5552
	}

5553 5554 5555 5556 5557
	/* Free old spare buffer and save old primary buffer as spare */
	kfree(thresholds->spare);
	thresholds->spare = thresholds->primary;

	rcu_assign_pointer(thresholds->primary, new);
5558

5559
	/* To be sure that nobody uses thresholds */
5560 5561 5562 5563 5564 5565 5566 5567
	synchronize_rcu();

unlock:
	mutex_unlock(&memcg->thresholds_lock);

	return ret;
}

5568
static void mem_cgroup_usage_unregister_event(struct cgroup *cgrp,
K
KAMEZAWA Hiroyuki 已提交
5569
	struct cftype *cft, struct eventfd_ctx *eventfd)
5570 5571
{
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
5572 5573
	struct mem_cgroup_thresholds *thresholds;
	struct mem_cgroup_threshold_ary *new;
G
Glauber Costa 已提交
5574
	enum res_type type = MEMFILE_TYPE(cft->private);
5575
	u64 usage;
5576
	int i, j, size;
5577 5578 5579

	mutex_lock(&memcg->thresholds_lock);
	if (type == _MEM)
5580
		thresholds = &memcg->thresholds;
5581
	else if (type == _MEMSWAP)
5582
		thresholds = &memcg->memsw_thresholds;
5583 5584 5585
	else
		BUG();

5586 5587 5588
	if (!thresholds->primary)
		goto unlock;

5589 5590 5591 5592 5593 5594
	usage = mem_cgroup_usage(memcg, type == _MEMSWAP);

	/* Check if a threshold crossed before removing */
	__mem_cgroup_threshold(memcg, type == _MEMSWAP);

	/* Calculate new number of threshold */
5595 5596 5597
	size = 0;
	for (i = 0; i < thresholds->primary->size; i++) {
		if (thresholds->primary->entries[i].eventfd != eventfd)
5598 5599 5600
			size++;
	}

5601
	new = thresholds->spare;
5602

5603 5604
	/* Set thresholds array to NULL if we don't have thresholds */
	if (!size) {
5605 5606
		kfree(new);
		new = NULL;
5607
		goto swap_buffers;
5608 5609
	}

5610
	new->size = size;
5611 5612

	/* Copy thresholds and find current threshold */
5613 5614 5615
	new->current_threshold = -1;
	for (i = 0, j = 0; i < thresholds->primary->size; i++) {
		if (thresholds->primary->entries[i].eventfd == eventfd)
5616 5617
			continue;

5618
		new->entries[j] = thresholds->primary->entries[i];
5619
		if (new->entries[j].threshold <= usage) {
5620
			/*
5621
			 * new->current_threshold will not be used
5622 5623 5624
			 * until rcu_assign_pointer(), so it's safe to increment
			 * it here.
			 */
5625
			++new->current_threshold;
5626 5627 5628 5629
		}
		j++;
	}

5630
swap_buffers:
5631 5632
	/* Swap primary and spare array */
	thresholds->spare = thresholds->primary;
5633 5634 5635 5636 5637 5638
	/* If all events are unregistered, free the spare array */
	if (!new) {
		kfree(thresholds->spare);
		thresholds->spare = NULL;
	}

5639
	rcu_assign_pointer(thresholds->primary, new);
5640

5641
	/* To be sure that nobody uses thresholds */
5642
	synchronize_rcu();
5643
unlock:
5644 5645
	mutex_unlock(&memcg->thresholds_lock);
}
5646

K
KAMEZAWA Hiroyuki 已提交
5647 5648 5649 5650 5651
static int mem_cgroup_oom_register_event(struct cgroup *cgrp,
	struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
{
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
	struct mem_cgroup_eventfd_list *event;
G
Glauber Costa 已提交
5652
	enum res_type type = MEMFILE_TYPE(cft->private);
K
KAMEZAWA Hiroyuki 已提交
5653 5654 5655 5656 5657 5658

	BUG_ON(type != _OOM_TYPE);
	event = kmalloc(sizeof(*event),	GFP_KERNEL);
	if (!event)
		return -ENOMEM;

5659
	spin_lock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
5660 5661 5662 5663 5664

	event->eventfd = eventfd;
	list_add(&event->list, &memcg->oom_notify);

	/* already in OOM ? */
5665
	if (atomic_read(&memcg->under_oom))
K
KAMEZAWA Hiroyuki 已提交
5666
		eventfd_signal(eventfd, 1);
5667
	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
5668 5669 5670 5671

	return 0;
}

5672
static void mem_cgroup_oom_unregister_event(struct cgroup *cgrp,
K
KAMEZAWA Hiroyuki 已提交
5673 5674
	struct cftype *cft, struct eventfd_ctx *eventfd)
{
5675
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
K
KAMEZAWA Hiroyuki 已提交
5676
	struct mem_cgroup_eventfd_list *ev, *tmp;
G
Glauber Costa 已提交
5677
	enum res_type type = MEMFILE_TYPE(cft->private);
K
KAMEZAWA Hiroyuki 已提交
5678 5679 5680

	BUG_ON(type != _OOM_TYPE);

5681
	spin_lock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
5682

5683
	list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
K
KAMEZAWA Hiroyuki 已提交
5684 5685 5686 5687 5688 5689
		if (ev->eventfd == eventfd) {
			list_del(&ev->list);
			kfree(ev);
		}
	}

5690
	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
5691 5692
}

5693 5694 5695
static int mem_cgroup_oom_control_read(struct cgroup *cgrp,
	struct cftype *cft,  struct cgroup_map_cb *cb)
{
5696
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
5697

5698
	cb->fill(cb, "oom_kill_disable", memcg->oom_kill_disable);
5699

5700
	if (atomic_read(&memcg->under_oom))
5701 5702 5703 5704 5705 5706 5707 5708 5709
		cb->fill(cb, "under_oom", 1);
	else
		cb->fill(cb, "under_oom", 0);
	return 0;
}

static int mem_cgroup_oom_control_write(struct cgroup *cgrp,
	struct cftype *cft, u64 val)
{
5710
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
5711 5712 5713 5714 5715 5716 5717 5718
	struct mem_cgroup *parent;

	/* cannot set to root cgroup and only 0 and 1 are allowed */
	if (!cgrp->parent || !((val == 0) || (val == 1)))
		return -EINVAL;

	parent = mem_cgroup_from_cont(cgrp->parent);

5719
	mutex_lock(&memcg_create_mutex);
5720
	/* oom-kill-disable is a flag for subhierarchy. */
5721
	if ((parent->use_hierarchy) || memcg_has_children(memcg)) {
5722
		mutex_unlock(&memcg_create_mutex);
5723 5724
		return -EINVAL;
	}
5725
	memcg->oom_kill_disable = val;
5726
	if (!val)
5727
		memcg_oom_recover(memcg);
5728
	mutex_unlock(&memcg_create_mutex);
5729 5730 5731
	return 0;
}

A
Andrew Morton 已提交
5732
#ifdef CONFIG_MEMCG_KMEM
5733
static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
5734
{
5735 5736
	int ret;

5737
	memcg->kmemcg_id = -1;
5738 5739 5740
	ret = memcg_propagate_kmem(memcg);
	if (ret)
		return ret;
5741

5742
	return mem_cgroup_sockets_init(memcg, ss);
5743 5744
};

5745
static void kmem_cgroup_destroy(struct mem_cgroup *memcg)
G
Glauber Costa 已提交
5746
{
5747
	mem_cgroup_sockets_destroy(memcg);
5748 5749 5750 5751 5752 5753 5754 5755 5756 5757 5758 5759 5760 5761

	memcg_kmem_mark_dead(memcg);

	if (res_counter_read_u64(&memcg->kmem, RES_USAGE) != 0)
		return;

	/*
	 * Charges already down to 0, undo mem_cgroup_get() done in the charge
	 * path here, being careful not to race with memcg_uncharge_kmem: it is
	 * possible that the charges went down to 0 between mark_dead and the
	 * res_counter read, so in that case, we don't need the put
	 */
	if (memcg_kmem_test_and_clear_dead(memcg))
		mem_cgroup_put(memcg);
G
Glauber Costa 已提交
5762
}
5763
#else
5764
static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
5765 5766 5767
{
	return 0;
}
G
Glauber Costa 已提交
5768

5769
static void kmem_cgroup_destroy(struct mem_cgroup *memcg)
G
Glauber Costa 已提交
5770 5771
{
}
5772 5773
#endif

B
Balbir Singh 已提交
5774 5775
static struct cftype mem_cgroup_files[] = {
	{
5776
		.name = "usage_in_bytes",
5777
		.private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
5778
		.read = mem_cgroup_read,
K
KAMEZAWA Hiroyuki 已提交
5779 5780
		.register_event = mem_cgroup_usage_register_event,
		.unregister_event = mem_cgroup_usage_unregister_event,
B
Balbir Singh 已提交
5781
	},
5782 5783
	{
		.name = "max_usage_in_bytes",
5784
		.private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
5785
		.trigger = mem_cgroup_reset,
5786
		.read = mem_cgroup_read,
5787
	},
B
Balbir Singh 已提交
5788
	{
5789
		.name = "limit_in_bytes",
5790
		.private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
5791
		.write_string = mem_cgroup_write,
5792
		.read = mem_cgroup_read,
B
Balbir Singh 已提交
5793
	},
5794 5795 5796 5797
	{
		.name = "soft_limit_in_bytes",
		.private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
		.write_string = mem_cgroup_write,
5798
		.read = mem_cgroup_read,
5799
	},
B
Balbir Singh 已提交
5800 5801
	{
		.name = "failcnt",
5802
		.private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
5803
		.trigger = mem_cgroup_reset,
5804
		.read = mem_cgroup_read,
B
Balbir Singh 已提交
5805
	},
5806 5807
	{
		.name = "stat",
5808
		.read_seq_string = memcg_stat_show,
5809
	},
5810 5811 5812 5813
	{
		.name = "force_empty",
		.trigger = mem_cgroup_force_empty_write,
	},
5814 5815 5816 5817 5818
	{
		.name = "use_hierarchy",
		.write_u64 = mem_cgroup_hierarchy_write,
		.read_u64 = mem_cgroup_hierarchy_read,
	},
K
KOSAKI Motohiro 已提交
5819 5820 5821 5822 5823
	{
		.name = "swappiness",
		.read_u64 = mem_cgroup_swappiness_read,
		.write_u64 = mem_cgroup_swappiness_write,
	},
5824 5825 5826 5827 5828
	{
		.name = "move_charge_at_immigrate",
		.read_u64 = mem_cgroup_move_charge_read,
		.write_u64 = mem_cgroup_move_charge_write,
	},
K
KAMEZAWA Hiroyuki 已提交
5829 5830
	{
		.name = "oom_control",
5831 5832
		.read_map = mem_cgroup_oom_control_read,
		.write_u64 = mem_cgroup_oom_control_write,
K
KAMEZAWA Hiroyuki 已提交
5833 5834 5835 5836
		.register_event = mem_cgroup_oom_register_event,
		.unregister_event = mem_cgroup_oom_unregister_event,
		.private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
	},
5837 5838 5839
#ifdef CONFIG_NUMA
	{
		.name = "numa_stat",
5840
		.read_seq_string = memcg_numa_stat_show,
5841 5842
	},
#endif
5843 5844 5845 5846 5847 5848 5849 5850 5851 5852 5853 5854 5855 5856 5857 5858 5859 5860 5861 5862 5863 5864 5865 5866
#ifdef CONFIG_MEMCG_KMEM
	{
		.name = "kmem.limit_in_bytes",
		.private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
		.write_string = mem_cgroup_write,
		.read = mem_cgroup_read,
	},
	{
		.name = "kmem.usage_in_bytes",
		.private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
		.read = mem_cgroup_read,
	},
	{
		.name = "kmem.failcnt",
		.private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
		.trigger = mem_cgroup_reset,
		.read = mem_cgroup_read,
	},
	{
		.name = "kmem.max_usage_in_bytes",
		.private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
		.trigger = mem_cgroup_reset,
		.read = mem_cgroup_read,
	},
5867 5868 5869 5870 5871 5872
#ifdef CONFIG_SLABINFO
	{
		.name = "kmem.slabinfo",
		.read_seq_string = mem_cgroup_slabinfo_read,
	},
#endif
5873
#endif
5874
	{ },	/* terminate */
5875
};
5876

5877 5878 5879 5880 5881 5882 5883 5884 5885 5886 5887 5888 5889 5890 5891 5892 5893 5894 5895 5896 5897 5898 5899 5900 5901 5902 5903 5904 5905 5906
#ifdef CONFIG_MEMCG_SWAP
static struct cftype memsw_cgroup_files[] = {
	{
		.name = "memsw.usage_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
		.read = mem_cgroup_read,
		.register_event = mem_cgroup_usage_register_event,
		.unregister_event = mem_cgroup_usage_unregister_event,
	},
	{
		.name = "memsw.max_usage_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
		.trigger = mem_cgroup_reset,
		.read = mem_cgroup_read,
	},
	{
		.name = "memsw.limit_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
		.write_string = mem_cgroup_write,
		.read = mem_cgroup_read,
	},
	{
		.name = "memsw.failcnt",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
		.trigger = mem_cgroup_reset,
		.read = mem_cgroup_read,
	},
	{ },	/* terminate */
};
#endif
5907
static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
5908 5909
{
	struct mem_cgroup_per_node *pn;
5910
	struct mem_cgroup_per_zone *mz;
5911
	int zone, tmp = node;
5912 5913 5914 5915 5916 5917 5918 5919
	/*
	 * This routine is called against possible nodes.
	 * But it's BUG to call kmalloc() against offline node.
	 *
	 * TODO: this routine can waste much memory for nodes which will
	 *       never be onlined. It's better to use memory hotplug callback
	 *       function.
	 */
5920 5921
	if (!node_state(node, N_NORMAL_MEMORY))
		tmp = -1;
5922
	pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
5923 5924
	if (!pn)
		return 1;
5925 5926 5927

	for (zone = 0; zone < MAX_NR_ZONES; zone++) {
		mz = &pn->zoneinfo[zone];
5928
		lruvec_init(&mz->lruvec);
5929
		mz->usage_in_excess = 0;
5930
		mz->on_tree = false;
5931
		mz->memcg = memcg;
5932
	}
5933
	memcg->info.nodeinfo[node] = pn;
5934 5935 5936
	return 0;
}

5937
static void free_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
5938
{
5939
	kfree(memcg->info.nodeinfo[node]);
5940 5941
}

5942 5943
static struct mem_cgroup *mem_cgroup_alloc(void)
{
5944
	struct mem_cgroup *memcg;
5945
	size_t size = memcg_size();
5946

5947
	/* Can be very big if nr_node_ids is very big */
5948
	if (size < PAGE_SIZE)
5949
		memcg = kzalloc(size, GFP_KERNEL);
5950
	else
5951
		memcg = vzalloc(size);
5952

5953
	if (!memcg)
5954 5955
		return NULL;

5956 5957
	memcg->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
	if (!memcg->stat)
5958
		goto out_free;
5959 5960
	spin_lock_init(&memcg->pcp_counter_lock);
	return memcg;
5961 5962 5963

out_free:
	if (size < PAGE_SIZE)
5964
		kfree(memcg);
5965
	else
5966
		vfree(memcg);
5967
	return NULL;
5968 5969
}

5970
/*
5971 5972 5973 5974 5975 5976 5977 5978
 * At destroying mem_cgroup, references from swap_cgroup can remain.
 * (scanning all at force_empty is too costly...)
 *
 * Instead of clearing all references at force_empty, we remember
 * the number of reference from swap_cgroup and free mem_cgroup when
 * it goes down to 0.
 *
 * Removal of cgroup itself succeeds regardless of refs from swap.
5979
 */
5980 5981

static void __mem_cgroup_free(struct mem_cgroup *memcg)
5982
{
5983
	int node;
5984
	size_t size = memcg_size();
5985

5986 5987 5988 5989 5990 5991 5992 5993
	mem_cgroup_remove_from_trees(memcg);
	free_css_id(&mem_cgroup_subsys, &memcg->css);

	for_each_node(node)
		free_mem_cgroup_per_zone_info(memcg, node);

	free_percpu(memcg->stat);

5994 5995 5996 5997 5998 5999 6000 6001 6002 6003 6004
	/*
	 * We need to make sure that (at least for now), the jump label
	 * destruction code runs outside of the cgroup lock. This is because
	 * get_online_cpus(), which is called from the static_branch update,
	 * can't be called inside the cgroup_lock. cpusets are the ones
	 * enforcing this dependency, so if they ever change, we might as well.
	 *
	 * schedule_work() will guarantee this happens. Be careful if you need
	 * to move this code around, and make sure it is outside
	 * the cgroup_lock.
	 */
6005
	disarm_static_keys(memcg);
6006 6007 6008 6009
	if (size < PAGE_SIZE)
		kfree(memcg);
	else
		vfree(memcg);
6010
}
6011

6012

6013
/*
6014 6015 6016
 * Helpers for freeing a kmalloc()ed/vzalloc()ed mem_cgroup by RCU,
 * but in process context.  The work_freeing structure is overlaid
 * on the rcu_freeing structure, which itself is overlaid on memsw.
6017
 */
6018
static void free_work(struct work_struct *work)
6019
{
6020
	struct mem_cgroup *memcg;
K
KAMEZAWA Hiroyuki 已提交
6021

6022 6023 6024
	memcg = container_of(work, struct mem_cgroup, work_freeing);
	__mem_cgroup_free(memcg);
}
K
KAMEZAWA Hiroyuki 已提交
6025

6026 6027 6028
static void free_rcu(struct rcu_head *rcu_head)
{
	struct mem_cgroup *memcg;
K
KAMEZAWA Hiroyuki 已提交
6029

6030 6031 6032
	memcg = container_of(rcu_head, struct mem_cgroup, rcu_freeing);
	INIT_WORK(&memcg->work_freeing, free_work);
	schedule_work(&memcg->work_freeing);
6033 6034
}

6035
static void mem_cgroup_get(struct mem_cgroup *memcg)
6036
{
6037
	atomic_inc(&memcg->refcnt);
6038 6039
}

6040
static void __mem_cgroup_put(struct mem_cgroup *memcg, int count)
6041
{
6042 6043
	if (atomic_sub_and_test(count, &memcg->refcnt)) {
		struct mem_cgroup *parent = parent_mem_cgroup(memcg);
6044
		call_rcu(&memcg->rcu_freeing, free_rcu);
6045 6046 6047
		if (parent)
			mem_cgroup_put(parent);
	}
6048 6049
}

6050
static void mem_cgroup_put(struct mem_cgroup *memcg)
6051
{
6052
	__mem_cgroup_put(memcg, 1);
6053 6054
}

6055 6056 6057
/*
 * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
 */
G
Glauber Costa 已提交
6058
struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg)
6059
{
6060
	if (!memcg->res.parent)
6061
		return NULL;
6062
	return mem_cgroup_from_res_counter(memcg->res.parent, res);
6063
}
G
Glauber Costa 已提交
6064
EXPORT_SYMBOL(parent_mem_cgroup);
6065

6066
static void __init mem_cgroup_soft_limit_tree_init(void)
6067 6068 6069 6070 6071
{
	struct mem_cgroup_tree_per_node *rtpn;
	struct mem_cgroup_tree_per_zone *rtpz;
	int tmp, node, zone;

B
Bob Liu 已提交
6072
	for_each_node(node) {
6073 6074 6075 6076
		tmp = node;
		if (!node_state(node, N_NORMAL_MEMORY))
			tmp = -1;
		rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, tmp);
6077
		BUG_ON(!rtpn);
6078 6079 6080 6081 6082 6083 6084 6085 6086 6087 6088

		soft_limit_tree.rb_tree_per_node[node] = rtpn;

		for (zone = 0; zone < MAX_NR_ZONES; zone++) {
			rtpz = &rtpn->rb_tree_per_zone[zone];
			rtpz->rb_root = RB_ROOT;
			spin_lock_init(&rtpz->lock);
		}
	}
}

L
Li Zefan 已提交
6089
static struct cgroup_subsys_state * __ref
6090
mem_cgroup_css_alloc(struct cgroup *cont)
B
Balbir Singh 已提交
6091
{
6092
	struct mem_cgroup *memcg;
K
KAMEZAWA Hiroyuki 已提交
6093
	long error = -ENOMEM;
6094
	int node;
B
Balbir Singh 已提交
6095

6096 6097
	memcg = mem_cgroup_alloc();
	if (!memcg)
K
KAMEZAWA Hiroyuki 已提交
6098
		return ERR_PTR(error);
6099

B
Bob Liu 已提交
6100
	for_each_node(node)
6101
		if (alloc_mem_cgroup_per_zone_info(memcg, node))
6102
			goto free_out;
6103

6104
	/* root ? */
6105
	if (cont->parent == NULL) {
6106
		root_mem_cgroup = memcg;
6107 6108 6109
		res_counter_init(&memcg->res, NULL);
		res_counter_init(&memcg->memsw, NULL);
		res_counter_init(&memcg->kmem, NULL);
6110
	}
6111

6112 6113 6114 6115 6116 6117 6118 6119 6120 6121 6122 6123 6124 6125 6126 6127 6128 6129 6130 6131 6132 6133 6134
	memcg->last_scanned_node = MAX_NUMNODES;
	INIT_LIST_HEAD(&memcg->oom_notify);
	atomic_set(&memcg->refcnt, 1);
	memcg->move_charge_at_immigrate = 0;
	mutex_init(&memcg->thresholds_lock);
	spin_lock_init(&memcg->move_lock);

	return &memcg->css;

free_out:
	__mem_cgroup_free(memcg);
	return ERR_PTR(error);
}

static int
mem_cgroup_css_online(struct cgroup *cont)
{
	struct mem_cgroup *memcg, *parent;
	int error = 0;

	if (!cont->parent)
		return 0;

6135
	mutex_lock(&memcg_create_mutex);
6136 6137 6138 6139 6140 6141 6142 6143
	memcg = mem_cgroup_from_cont(cont);
	parent = mem_cgroup_from_cont(cont->parent);

	memcg->use_hierarchy = parent->use_hierarchy;
	memcg->oom_kill_disable = parent->oom_kill_disable;
	memcg->swappiness = mem_cgroup_swappiness(parent);

	if (parent->use_hierarchy) {
6144 6145
		res_counter_init(&memcg->res, &parent->res);
		res_counter_init(&memcg->memsw, &parent->memsw);
6146
		res_counter_init(&memcg->kmem, &parent->kmem);
6147

6148 6149 6150 6151 6152 6153 6154
		/*
		 * We increment refcnt of the parent to ensure that we can
		 * safely access it on res_counter_charge/uncharge.
		 * This refcnt will be decremented when freeing this
		 * mem_cgroup(see mem_cgroup_put).
		 */
		mem_cgroup_get(parent);
6155
	} else {
6156 6157
		res_counter_init(&memcg->res, NULL);
		res_counter_init(&memcg->memsw, NULL);
6158
		res_counter_init(&memcg->kmem, NULL);
6159 6160 6161 6162 6163
		/*
		 * Deeper hierachy with use_hierarchy == false doesn't make
		 * much sense so let cgroup subsystem know about this
		 * unfortunate state in our controller.
		 */
6164
		if (parent != root_mem_cgroup)
6165
			mem_cgroup_subsys.broken_hierarchy = true;
6166
	}
6167 6168

	error = memcg_init_kmem(memcg, &mem_cgroup_subsys);
6169
	mutex_unlock(&memcg_create_mutex);
6170 6171 6172 6173 6174 6175 6176
	if (error) {
		/*
		 * We call put now because our (and parent's) refcnts
		 * are already in place. mem_cgroup_put() will internally
		 * call __mem_cgroup_free, so return directly
		 */
		mem_cgroup_put(memcg);
6177 6178
		if (parent->use_hierarchy)
			mem_cgroup_put(parent);
6179
	}
6180
	return error;
B
Balbir Singh 已提交
6181 6182
}

6183
static void mem_cgroup_css_offline(struct cgroup *cont)
6184
{
6185
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
6186

6187
	mem_cgroup_reparent_charges(memcg);
G
Glauber Costa 已提交
6188
	mem_cgroup_destroy_all_caches(memcg);
6189 6190
}

6191
static void mem_cgroup_css_free(struct cgroup *cont)
B
Balbir Singh 已提交
6192
{
6193
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
6194

6195
	kmem_cgroup_destroy(memcg);
G
Glauber Costa 已提交
6196

6197
	mem_cgroup_put(memcg);
B
Balbir Singh 已提交
6198 6199
}

6200
#ifdef CONFIG_MMU
6201
/* Handlers for move charge at task migration. */
6202 6203
#define PRECHARGE_COUNT_AT_ONCE	256
static int mem_cgroup_do_precharge(unsigned long count)
6204
{
6205 6206
	int ret = 0;
	int batch_count = PRECHARGE_COUNT_AT_ONCE;
6207
	struct mem_cgroup *memcg = mc.to;
6208

6209
	if (mem_cgroup_is_root(memcg)) {
6210 6211 6212 6213 6214 6215 6216 6217
		mc.precharge += count;
		/* we don't need css_get for root */
		return ret;
	}
	/* try to charge at once */
	if (count > 1) {
		struct res_counter *dummy;
		/*
6218
		 * "memcg" cannot be under rmdir() because we've already checked
6219 6220 6221 6222
		 * by cgroup_lock_live_cgroup() that it is not removed and we
		 * are still under the same cgroup_mutex. So we can postpone
		 * css_get().
		 */
6223
		if (res_counter_charge(&memcg->res, PAGE_SIZE * count, &dummy))
6224
			goto one_by_one;
6225
		if (do_swap_account && res_counter_charge(&memcg->memsw,
6226
						PAGE_SIZE * count, &dummy)) {
6227
			res_counter_uncharge(&memcg->res, PAGE_SIZE * count);
6228 6229 6230 6231 6232 6233 6234 6235 6236 6237 6238 6239 6240 6241 6242 6243
			goto one_by_one;
		}
		mc.precharge += count;
		return ret;
	}
one_by_one:
	/* fall back to one by one charge */
	while (count--) {
		if (signal_pending(current)) {
			ret = -EINTR;
			break;
		}
		if (!batch_count--) {
			batch_count = PRECHARGE_COUNT_AT_ONCE;
			cond_resched();
		}
6244 6245
		ret = __mem_cgroup_try_charge(NULL,
					GFP_KERNEL, 1, &memcg, false);
6246
		if (ret)
6247
			/* mem_cgroup_clear_mc() will do uncharge later */
6248
			return ret;
6249 6250
		mc.precharge++;
	}
6251 6252 6253 6254
	return ret;
}

/**
6255
 * get_mctgt_type - get target type of moving charge
6256 6257 6258
 * @vma: the vma the pte to be checked belongs
 * @addr: the address corresponding to the pte to be checked
 * @ptent: the pte to be checked
6259
 * @target: the pointer the target page or swap ent will be stored(can be NULL)
6260 6261 6262 6263 6264 6265
 *
 * Returns
 *   0(MC_TARGET_NONE): if the pte is not a target for move charge.
 *   1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
 *     move charge. if @target is not NULL, the page is stored in target->page
 *     with extra refcnt got(Callers should handle it).
6266 6267 6268
 *   2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
 *     target for charge migration. if @target is not NULL, the entry is stored
 *     in target->ent.
6269 6270 6271 6272 6273
 *
 * Called with pte lock held.
 */
union mc_target {
	struct page	*page;
6274
	swp_entry_t	ent;
6275 6276 6277
};

enum mc_target_type {
6278
	MC_TARGET_NONE = 0,
6279
	MC_TARGET_PAGE,
6280
	MC_TARGET_SWAP,
6281 6282
};

D
Daisuke Nishimura 已提交
6283 6284
static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
						unsigned long addr, pte_t ptent)
6285
{
D
Daisuke Nishimura 已提交
6286
	struct page *page = vm_normal_page(vma, addr, ptent);
6287

D
Daisuke Nishimura 已提交
6288 6289 6290 6291
	if (!page || !page_mapped(page))
		return NULL;
	if (PageAnon(page)) {
		/* we don't move shared anon */
6292
		if (!move_anon())
D
Daisuke Nishimura 已提交
6293
			return NULL;
6294 6295
	} else if (!move_file())
		/* we ignore mapcount for file pages */
D
Daisuke Nishimura 已提交
6296 6297 6298 6299 6300 6301 6302
		return NULL;
	if (!get_page_unless_zero(page))
		return NULL;

	return page;
}

6303
#ifdef CONFIG_SWAP
D
Daisuke Nishimura 已提交
6304 6305 6306 6307 6308 6309 6310 6311
static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
			unsigned long addr, pte_t ptent, swp_entry_t *entry)
{
	struct page *page = NULL;
	swp_entry_t ent = pte_to_swp_entry(ptent);

	if (!move_anon() || non_swap_entry(ent))
		return NULL;
6312 6313 6314 6315
	/*
	 * Because lookup_swap_cache() updates some statistics counter,
	 * we call find_get_page() with swapper_space directly.
	 */
6316
	page = find_get_page(swap_address_space(ent), ent.val);
D
Daisuke Nishimura 已提交
6317 6318 6319 6320 6321
	if (do_swap_account)
		entry->val = ent.val;

	return page;
}
6322 6323 6324 6325 6326 6327 6328
#else
static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
			unsigned long addr, pte_t ptent, swp_entry_t *entry)
{
	return NULL;
}
#endif
D
Daisuke Nishimura 已提交
6329

6330 6331 6332 6333 6334 6335 6336 6337 6338 6339 6340 6341 6342 6343 6344 6345 6346 6347 6348
static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
			unsigned long addr, pte_t ptent, swp_entry_t *entry)
{
	struct page *page = NULL;
	struct address_space *mapping;
	pgoff_t pgoff;

	if (!vma->vm_file) /* anonymous vma */
		return NULL;
	if (!move_file())
		return NULL;

	mapping = vma->vm_file->f_mapping;
	if (pte_none(ptent))
		pgoff = linear_page_index(vma, addr);
	else /* pte_file(ptent) is true */
		pgoff = pte_to_pgoff(ptent);

	/* page is moved even if it's not RSS of this task(page-faulted). */
6349 6350 6351 6352 6353 6354
	page = find_get_page(mapping, pgoff);

#ifdef CONFIG_SWAP
	/* shmem/tmpfs may report page out on swap: account for that too. */
	if (radix_tree_exceptional_entry(page)) {
		swp_entry_t swap = radix_to_swp_entry(page);
6355
		if (do_swap_account)
6356
			*entry = swap;
6357
		page = find_get_page(swap_address_space(swap), swap.val);
6358
	}
6359
#endif
6360 6361 6362
	return page;
}

6363
static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
D
Daisuke Nishimura 已提交
6364 6365 6366 6367
		unsigned long addr, pte_t ptent, union mc_target *target)
{
	struct page *page = NULL;
	struct page_cgroup *pc;
6368
	enum mc_target_type ret = MC_TARGET_NONE;
D
Daisuke Nishimura 已提交
6369 6370 6371 6372 6373 6374
	swp_entry_t ent = { .val = 0 };

	if (pte_present(ptent))
		page = mc_handle_present_pte(vma, addr, ptent);
	else if (is_swap_pte(ptent))
		page = mc_handle_swap_pte(vma, addr, ptent, &ent);
6375 6376
	else if (pte_none(ptent) || pte_file(ptent))
		page = mc_handle_file_pte(vma, addr, ptent, &ent);
D
Daisuke Nishimura 已提交
6377 6378

	if (!page && !ent.val)
6379
		return ret;
6380 6381 6382 6383 6384 6385 6386 6387 6388 6389 6390 6391 6392 6393 6394
	if (page) {
		pc = lookup_page_cgroup(page);
		/*
		 * Do only loose check w/o page_cgroup lock.
		 * mem_cgroup_move_account() checks the pc is valid or not under
		 * the lock.
		 */
		if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
			ret = MC_TARGET_PAGE;
			if (target)
				target->page = page;
		}
		if (!ret || !target)
			put_page(page);
	}
D
Daisuke Nishimura 已提交
6395 6396
	/* There is a swap entry and a page doesn't exist or isn't charged */
	if (ent.val && !ret &&
6397
			css_id(&mc.from->css) == lookup_swap_cgroup_id(ent)) {
6398 6399 6400
		ret = MC_TARGET_SWAP;
		if (target)
			target->ent = ent;
6401 6402 6403 6404
	}
	return ret;
}

6405 6406 6407 6408 6409 6410 6411 6412 6413 6414 6415 6416 6417 6418 6419 6420 6421 6422 6423 6424 6425 6426 6427 6428 6429 6430 6431 6432 6433 6434 6435 6436 6437 6438 6439
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
/*
 * We don't consider swapping or file mapped pages because THP does not
 * support them for now.
 * Caller should make sure that pmd_trans_huge(pmd) is true.
 */
static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
		unsigned long addr, pmd_t pmd, union mc_target *target)
{
	struct page *page = NULL;
	struct page_cgroup *pc;
	enum mc_target_type ret = MC_TARGET_NONE;

	page = pmd_page(pmd);
	VM_BUG_ON(!page || !PageHead(page));
	if (!move_anon())
		return ret;
	pc = lookup_page_cgroup(page);
	if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
		ret = MC_TARGET_PAGE;
		if (target) {
			get_page(page);
			target->page = page;
		}
	}
	return ret;
}
#else
static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
		unsigned long addr, pmd_t pmd, union mc_target *target)
{
	return MC_TARGET_NONE;
}
#endif

6440 6441 6442 6443 6444 6445 6446 6447
static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
					unsigned long addr, unsigned long end,
					struct mm_walk *walk)
{
	struct vm_area_struct *vma = walk->private;
	pte_t *pte;
	spinlock_t *ptl;

6448 6449 6450 6451
	if (pmd_trans_huge_lock(pmd, vma) == 1) {
		if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
			mc.precharge += HPAGE_PMD_NR;
		spin_unlock(&vma->vm_mm->page_table_lock);
6452
		return 0;
6453
	}
6454

6455 6456
	if (pmd_trans_unstable(pmd))
		return 0;
6457 6458
	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
	for (; addr != end; pte++, addr += PAGE_SIZE)
6459
		if (get_mctgt_type(vma, addr, *pte, NULL))
6460 6461 6462 6463
			mc.precharge++;	/* increment precharge temporarily */
	pte_unmap_unlock(pte - 1, ptl);
	cond_resched();

6464 6465 6466
	return 0;
}

6467 6468 6469 6470 6471
static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
{
	unsigned long precharge;
	struct vm_area_struct *vma;

6472
	down_read(&mm->mmap_sem);
6473 6474 6475 6476 6477 6478 6479 6480 6481 6482 6483
	for (vma = mm->mmap; vma; vma = vma->vm_next) {
		struct mm_walk mem_cgroup_count_precharge_walk = {
			.pmd_entry = mem_cgroup_count_precharge_pte_range,
			.mm = mm,
			.private = vma,
		};
		if (is_vm_hugetlb_page(vma))
			continue;
		walk_page_range(vma->vm_start, vma->vm_end,
					&mem_cgroup_count_precharge_walk);
	}
6484
	up_read(&mm->mmap_sem);
6485 6486 6487 6488 6489 6490 6491 6492 6493

	precharge = mc.precharge;
	mc.precharge = 0;

	return precharge;
}

static int mem_cgroup_precharge_mc(struct mm_struct *mm)
{
6494 6495 6496 6497 6498
	unsigned long precharge = mem_cgroup_count_precharge(mm);

	VM_BUG_ON(mc.moving_task);
	mc.moving_task = current;
	return mem_cgroup_do_precharge(precharge);
6499 6500
}

6501 6502
/* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
static void __mem_cgroup_clear_mc(void)
6503
{
6504 6505 6506
	struct mem_cgroup *from = mc.from;
	struct mem_cgroup *to = mc.to;

6507
	/* we must uncharge all the leftover precharges from mc.to */
6508 6509 6510 6511 6512 6513 6514 6515 6516 6517 6518
	if (mc.precharge) {
		__mem_cgroup_cancel_charge(mc.to, mc.precharge);
		mc.precharge = 0;
	}
	/*
	 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
	 * we must uncharge here.
	 */
	if (mc.moved_charge) {
		__mem_cgroup_cancel_charge(mc.from, mc.moved_charge);
		mc.moved_charge = 0;
6519
	}
6520 6521 6522 6523 6524 6525 6526 6527 6528 6529 6530 6531 6532 6533 6534 6535 6536 6537 6538
	/* we must fixup refcnts and charges */
	if (mc.moved_swap) {
		/* uncharge swap account from the old cgroup */
		if (!mem_cgroup_is_root(mc.from))
			res_counter_uncharge(&mc.from->memsw,
						PAGE_SIZE * mc.moved_swap);
		__mem_cgroup_put(mc.from, mc.moved_swap);

		if (!mem_cgroup_is_root(mc.to)) {
			/*
			 * we charged both to->res and to->memsw, so we should
			 * uncharge to->res.
			 */
			res_counter_uncharge(&mc.to->res,
						PAGE_SIZE * mc.moved_swap);
		}
		/* we've already done mem_cgroup_get(mc.to) */
		mc.moved_swap = 0;
	}
6539 6540 6541 6542 6543 6544 6545 6546 6547 6548 6549 6550 6551 6552 6553
	memcg_oom_recover(from);
	memcg_oom_recover(to);
	wake_up_all(&mc.waitq);
}

static void mem_cgroup_clear_mc(void)
{
	struct mem_cgroup *from = mc.from;

	/*
	 * we must clear moving_task before waking up waiters at the end of
	 * task migration.
	 */
	mc.moving_task = NULL;
	__mem_cgroup_clear_mc();
6554
	spin_lock(&mc.lock);
6555 6556
	mc.from = NULL;
	mc.to = NULL;
6557
	spin_unlock(&mc.lock);
6558
	mem_cgroup_end_move(from);
6559 6560
}

6561 6562
static int mem_cgroup_can_attach(struct cgroup *cgroup,
				 struct cgroup_taskset *tset)
6563
{
6564
	struct task_struct *p = cgroup_taskset_first(tset);
6565
	int ret = 0;
6566
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgroup);
6567
	unsigned long move_charge_at_immigrate;
6568

6569 6570 6571 6572 6573 6574 6575
	/*
	 * We are now commited to this value whatever it is. Changes in this
	 * tunable will only affect upcoming migrations, not the current one.
	 * So we need to save it, and keep it going.
	 */
	move_charge_at_immigrate  = memcg->move_charge_at_immigrate;
	if (move_charge_at_immigrate) {
6576 6577 6578
		struct mm_struct *mm;
		struct mem_cgroup *from = mem_cgroup_from_task(p);

6579
		VM_BUG_ON(from == memcg);
6580 6581 6582 6583 6584

		mm = get_task_mm(p);
		if (!mm)
			return 0;
		/* We move charges only when we move a owner of the mm */
6585 6586 6587 6588
		if (mm->owner == p) {
			VM_BUG_ON(mc.from);
			VM_BUG_ON(mc.to);
			VM_BUG_ON(mc.precharge);
6589
			VM_BUG_ON(mc.moved_charge);
6590
			VM_BUG_ON(mc.moved_swap);
6591
			mem_cgroup_start_move(from);
6592
			spin_lock(&mc.lock);
6593
			mc.from = from;
6594
			mc.to = memcg;
6595
			mc.immigrate_flags = move_charge_at_immigrate;
6596
			spin_unlock(&mc.lock);
6597
			/* We set mc.moving_task later */
6598 6599 6600 6601

			ret = mem_cgroup_precharge_mc(mm);
			if (ret)
				mem_cgroup_clear_mc();
6602 6603
		}
		mmput(mm);
6604 6605 6606 6607
	}
	return ret;
}

6608 6609
static void mem_cgroup_cancel_attach(struct cgroup *cgroup,
				     struct cgroup_taskset *tset)
6610
{
6611
	mem_cgroup_clear_mc();
6612 6613
}

6614 6615 6616
static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
				unsigned long addr, unsigned long end,
				struct mm_walk *walk)
6617
{
6618 6619 6620 6621
	int ret = 0;
	struct vm_area_struct *vma = walk->private;
	pte_t *pte;
	spinlock_t *ptl;
6622 6623 6624 6625
	enum mc_target_type target_type;
	union mc_target target;
	struct page *page;
	struct page_cgroup *pc;
6626

6627 6628 6629 6630 6631 6632 6633 6634 6635 6636 6637
	/*
	 * We don't take compound_lock() here but no race with splitting thp
	 * happens because:
	 *  - if pmd_trans_huge_lock() returns 1, the relevant thp is not
	 *    under splitting, which means there's no concurrent thp split,
	 *  - if another thread runs into split_huge_page() just after we
	 *    entered this if-block, the thread must wait for page table lock
	 *    to be unlocked in __split_huge_page_splitting(), where the main
	 *    part of thp split is not executed yet.
	 */
	if (pmd_trans_huge_lock(pmd, vma) == 1) {
6638
		if (mc.precharge < HPAGE_PMD_NR) {
6639 6640 6641 6642 6643 6644 6645 6646 6647
			spin_unlock(&vma->vm_mm->page_table_lock);
			return 0;
		}
		target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
		if (target_type == MC_TARGET_PAGE) {
			page = target.page;
			if (!isolate_lru_page(page)) {
				pc = lookup_page_cgroup(page);
				if (!mem_cgroup_move_account(page, HPAGE_PMD_NR,
6648
							pc, mc.from, mc.to)) {
6649 6650 6651 6652 6653 6654 6655 6656
					mc.precharge -= HPAGE_PMD_NR;
					mc.moved_charge += HPAGE_PMD_NR;
				}
				putback_lru_page(page);
			}
			put_page(page);
		}
		spin_unlock(&vma->vm_mm->page_table_lock);
6657
		return 0;
6658 6659
	}

6660 6661
	if (pmd_trans_unstable(pmd))
		return 0;
6662 6663 6664 6665
retry:
	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
	for (; addr != end; addr += PAGE_SIZE) {
		pte_t ptent = *(pte++);
6666
		swp_entry_t ent;
6667 6668 6669 6670

		if (!mc.precharge)
			break;

6671
		switch (get_mctgt_type(vma, addr, ptent, &target)) {
6672 6673 6674 6675 6676
		case MC_TARGET_PAGE:
			page = target.page;
			if (isolate_lru_page(page))
				goto put;
			pc = lookup_page_cgroup(page);
6677
			if (!mem_cgroup_move_account(page, 1, pc,
6678
						     mc.from, mc.to)) {
6679
				mc.precharge--;
6680 6681
				/* we uncharge from mc.from later. */
				mc.moved_charge++;
6682 6683
			}
			putback_lru_page(page);
6684
put:			/* get_mctgt_type() gets the page */
6685 6686
			put_page(page);
			break;
6687 6688
		case MC_TARGET_SWAP:
			ent = target.ent;
6689
			if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
6690
				mc.precharge--;
6691 6692 6693
				/* we fixup refcnts and charges later. */
				mc.moved_swap++;
			}
6694
			break;
6695 6696 6697 6698 6699 6700 6701 6702 6703 6704 6705 6706 6707 6708
		default:
			break;
		}
	}
	pte_unmap_unlock(pte - 1, ptl);
	cond_resched();

	if (addr != end) {
		/*
		 * We have consumed all precharges we got in can_attach().
		 * We try charge one by one, but don't do any additional
		 * charges to mc.to if we have failed in charge once in attach()
		 * phase.
		 */
6709
		ret = mem_cgroup_do_precharge(1);
6710 6711 6712 6713 6714 6715 6716 6717 6718 6719 6720 6721
		if (!ret)
			goto retry;
	}

	return ret;
}

static void mem_cgroup_move_charge(struct mm_struct *mm)
{
	struct vm_area_struct *vma;

	lru_add_drain_all();
6722 6723 6724 6725 6726 6727 6728 6729 6730 6731 6732 6733 6734
retry:
	if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
		/*
		 * Someone who are holding the mmap_sem might be waiting in
		 * waitq. So we cancel all extra charges, wake up all waiters,
		 * and retry. Because we cancel precharges, we might not be able
		 * to move enough charges, but moving charge is a best-effort
		 * feature anyway, so it wouldn't be a big problem.
		 */
		__mem_cgroup_clear_mc();
		cond_resched();
		goto retry;
	}
6735 6736 6737 6738 6739 6740 6741 6742 6743 6744 6745 6746 6747 6748 6749 6750 6751 6752
	for (vma = mm->mmap; vma; vma = vma->vm_next) {
		int ret;
		struct mm_walk mem_cgroup_move_charge_walk = {
			.pmd_entry = mem_cgroup_move_charge_pte_range,
			.mm = mm,
			.private = vma,
		};
		if (is_vm_hugetlb_page(vma))
			continue;
		ret = walk_page_range(vma->vm_start, vma->vm_end,
						&mem_cgroup_move_charge_walk);
		if (ret)
			/*
			 * means we have consumed all precharges and failed in
			 * doing additional charge. Just abandon here.
			 */
			break;
	}
6753
	up_read(&mm->mmap_sem);
6754 6755
}

6756 6757
static void mem_cgroup_move_task(struct cgroup *cont,
				 struct cgroup_taskset *tset)
B
Balbir Singh 已提交
6758
{
6759
	struct task_struct *p = cgroup_taskset_first(tset);
6760
	struct mm_struct *mm = get_task_mm(p);
6761 6762

	if (mm) {
6763 6764
		if (mc.to)
			mem_cgroup_move_charge(mm);
6765 6766
		mmput(mm);
	}
6767 6768
	if (mc.to)
		mem_cgroup_clear_mc();
B
Balbir Singh 已提交
6769
}
6770
#else	/* !CONFIG_MMU */
6771 6772
static int mem_cgroup_can_attach(struct cgroup *cgroup,
				 struct cgroup_taskset *tset)
6773 6774 6775
{
	return 0;
}
6776 6777
static void mem_cgroup_cancel_attach(struct cgroup *cgroup,
				     struct cgroup_taskset *tset)
6778 6779
{
}
6780 6781
static void mem_cgroup_move_task(struct cgroup *cont,
				 struct cgroup_taskset *tset)
6782 6783 6784
{
}
#endif
B
Balbir Singh 已提交
6785

B
Balbir Singh 已提交
6786 6787 6788
struct cgroup_subsys mem_cgroup_subsys = {
	.name = "memory",
	.subsys_id = mem_cgroup_subsys_id,
6789
	.css_alloc = mem_cgroup_css_alloc,
6790
	.css_online = mem_cgroup_css_online,
6791 6792
	.css_offline = mem_cgroup_css_offline,
	.css_free = mem_cgroup_css_free,
6793 6794
	.can_attach = mem_cgroup_can_attach,
	.cancel_attach = mem_cgroup_cancel_attach,
B
Balbir Singh 已提交
6795
	.attach = mem_cgroup_move_task,
6796
	.base_cftypes = mem_cgroup_files,
6797
	.early_init = 0,
K
KAMEZAWA Hiroyuki 已提交
6798
	.use_id = 1,
B
Balbir Singh 已提交
6799
};
6800

A
Andrew Morton 已提交
6801
#ifdef CONFIG_MEMCG_SWAP
6802 6803 6804
static int __init enable_swap_account(char *s)
{
	/* consider enabled if no parameter or 1 is given */
6805
	if (!strcmp(s, "1"))
6806
		really_do_swap_account = 1;
6807
	else if (!strcmp(s, "0"))
6808 6809 6810
		really_do_swap_account = 0;
	return 1;
}
6811
__setup("swapaccount=", enable_swap_account);
6812

6813 6814
static void __init memsw_file_init(void)
{
6815 6816 6817 6818 6819 6820 6821 6822 6823
	WARN_ON(cgroup_add_cftypes(&mem_cgroup_subsys, memsw_cgroup_files));
}

static void __init enable_swap_cgroup(void)
{
	if (!mem_cgroup_disabled() && really_do_swap_account) {
		do_swap_account = 1;
		memsw_file_init();
	}
6824
}
6825

6826
#else
6827
static void __init enable_swap_cgroup(void)
6828 6829
{
}
6830
#endif
6831 6832

/*
6833 6834 6835 6836 6837 6838
 * subsys_initcall() for memory controller.
 *
 * Some parts like hotcpu_notifier() have to be initialized from this context
 * because of lock dependencies (cgroup_lock -> cpu hotplug) but basically
 * everything that doesn't depend on a specific mem_cgroup structure should
 * be initialized from here.
6839 6840 6841 6842
 */
static int __init mem_cgroup_init(void)
{
	hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
6843
	enable_swap_cgroup();
6844
	mem_cgroup_soft_limit_tree_init();
6845
	memcg_stock_init();
6846 6847 6848
	return 0;
}
subsys_initcall(mem_cgroup_init);