memcontrol.c 142.1 KB
Newer Older
B
Balbir Singh 已提交
1 2 3 4 5
/* memcontrol.c - Memory Controller
 *
 * Copyright IBM Corporation, 2007
 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
 *
6 7 8
 * Copyright 2007 OpenVZ SWsoft Inc
 * Author: Pavel Emelianov <xemul@openvz.org>
 *
9 10 11 12
 * Memory thresholds
 * Copyright (C) 2009 Nokia Corporation
 * Author: Kirill A. Shutemov
 *
B
Balbir Singh 已提交
13 14 15 16 17 18 19 20 21 22 23 24 25 26
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 */

#include <linux/res_counter.h>
#include <linux/memcontrol.h>
#include <linux/cgroup.h>
27
#include <linux/mm.h>
28
#include <linux/hugetlb.h>
K
KAMEZAWA Hiroyuki 已提交
29
#include <linux/pagemap.h>
30
#include <linux/smp.h>
31
#include <linux/page-flags.h>
32
#include <linux/backing-dev.h>
33 34
#include <linux/bit_spinlock.h>
#include <linux/rcupdate.h>
35
#include <linux/limits.h>
36
#include <linux/mutex.h>
37
#include <linux/rbtree.h>
38
#include <linux/slab.h>
39
#include <linux/swap.h>
40
#include <linux/swapops.h>
41
#include <linux/spinlock.h>
42 43
#include <linux/eventfd.h>
#include <linux/sort.h>
44
#include <linux/fs.h>
45
#include <linux/seq_file.h>
46
#include <linux/vmalloc.h>
47
#include <linux/mm_inline.h>
48
#include <linux/page_cgroup.h>
49
#include <linux/cpu.h>
50
#include <linux/oom.h>
K
KAMEZAWA Hiroyuki 已提交
51
#include "internal.h"
B
Balbir Singh 已提交
52

53 54
#include <asm/uaccess.h>

55 56
#include <trace/events/vmscan.h>

57 58
struct cgroup_subsys mem_cgroup_subsys __read_mostly;
#define MEM_CGROUP_RECLAIM_RETRIES	5
59
struct mem_cgroup *root_mem_cgroup __read_mostly;
B
Balbir Singh 已提交
60

61
#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
L
Li Zefan 已提交
62
/* Turned on only when memory cgroup is enabled && really_do_swap_account = 1 */
63
int do_swap_account __read_mostly;
64 65 66 67 68 69 70 71

/* for remember boot option*/
#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP_ENABLED
static int really_do_swap_account __initdata = 1;
#else
static int really_do_swap_account __initdata = 0;
#endif

72 73 74 75 76
#else
#define do_swap_account		(0)
#endif


77 78 79 80 81 82 83 84
/*
 * Statistics for memory cgroup.
 */
enum mem_cgroup_stat_index {
	/*
	 * For MEM_CONTAINER_TYPE_ALL, usage = pagecache + rss.
	 */
	MEM_CGROUP_STAT_CACHE, 	   /* # of pages charged as cache */
85
	MEM_CGROUP_STAT_RSS,	   /* # of pages charged as anon rss */
86
	MEM_CGROUP_STAT_FILE_MAPPED,  /* # of pages charged as file rss */
87
	MEM_CGROUP_STAT_SWAPOUT, /* # of pages, swapped out */
88
	MEM_CGROUP_STAT_DATA, /* end of data requires synchronization */
89
	MEM_CGROUP_ON_MOVE,	/* someone is moving account between groups */
90 91 92
	MEM_CGROUP_STAT_NSTATS,
};

93 94 95 96
enum mem_cgroup_events_index {
	MEM_CGROUP_EVENTS_PGPGIN,	/* # of pages paged in */
	MEM_CGROUP_EVENTS_PGPGOUT,	/* # of pages paged out */
	MEM_CGROUP_EVENTS_COUNT,	/* # of pages paged in/out */
97 98
	MEM_CGROUP_EVENTS_PGFAULT,	/* # of page-faults */
	MEM_CGROUP_EVENTS_PGMAJFAULT,	/* # of major page-faults */
99 100
	MEM_CGROUP_EVENTS_NSTATS,
};
101 102 103 104 105 106 107 108 109
/*
 * Per memcg event counter is incremented at every pagein/pageout. With THP,
 * it will be incremated by the number of pages. This counter is used for
 * for trigger some periodic events. This is straightforward and better
 * than using jiffies etc. to handle periodic memcg event.
 */
enum mem_cgroup_events_target {
	MEM_CGROUP_TARGET_THRESH,
	MEM_CGROUP_TARGET_SOFTLIMIT,
110
	MEM_CGROUP_TARGET_NUMAINFO,
111 112 113 114
	MEM_CGROUP_NTARGETS,
};
#define THRESHOLDS_EVENTS_TARGET (128)
#define SOFTLIMIT_EVENTS_TARGET (1024)
115
#define NUMAINFO_EVENTS_TARGET	(1024)
116

117
struct mem_cgroup_stat_cpu {
118
	long count[MEM_CGROUP_STAT_NSTATS];
119
	unsigned long events[MEM_CGROUP_EVENTS_NSTATS];
120
	unsigned long targets[MEM_CGROUP_NTARGETS];
121 122
};

123 124 125 126
/*
 * per-zone information in memory controller.
 */
struct mem_cgroup_per_zone {
127 128 129
	/*
	 * spin_lock to protect the per cgroup LRU
	 */
130 131
	struct list_head	lists[NR_LRU_LISTS];
	unsigned long		count[NR_LRU_LISTS];
K
KOSAKI Motohiro 已提交
132 133

	struct zone_reclaim_stat reclaim_stat;
134 135 136 137
	struct rb_node		tree_node;	/* RB tree node */
	unsigned long long	usage_in_excess;/* Set to the value by which */
						/* the soft limit is exceeded*/
	bool			on_tree;
138 139
	struct mem_cgroup	*mem;		/* Back pointer, we cannot */
						/* use container_of	   */
140 141 142 143 144 145 146 147 148 149 150 151
};
/* Macro for accessing counter */
#define MEM_CGROUP_ZSTAT(mz, idx)	((mz)->count[(idx)])

struct mem_cgroup_per_node {
	struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
};

struct mem_cgroup_lru_info {
	struct mem_cgroup_per_node *nodeinfo[MAX_NUMNODES];
};

152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171
/*
 * Cgroups above their limits are maintained in a RB-Tree, independent of
 * their hierarchy representation
 */

struct mem_cgroup_tree_per_zone {
	struct rb_root rb_root;
	spinlock_t lock;
};

struct mem_cgroup_tree_per_node {
	struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
};

struct mem_cgroup_tree {
	struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
};

static struct mem_cgroup_tree soft_limit_tree __read_mostly;

172 173 174 175 176
struct mem_cgroup_threshold {
	struct eventfd_ctx *eventfd;
	u64 threshold;
};

K
KAMEZAWA Hiroyuki 已提交
177
/* For threshold */
178 179
struct mem_cgroup_threshold_ary {
	/* An array index points to threshold just below usage. */
180
	int current_threshold;
181 182 183 184 185
	/* Size of entries[] */
	unsigned int size;
	/* Array of thresholds */
	struct mem_cgroup_threshold entries[0];
};
186 187 188 189 190 191 192 193 194 195 196 197

struct mem_cgroup_thresholds {
	/* Primary thresholds array */
	struct mem_cgroup_threshold_ary *primary;
	/*
	 * Spare threshold array.
	 * This is needed to make mem_cgroup_unregister_event() "never fail".
	 * It must be able to store at least primary->size - 1 entries.
	 */
	struct mem_cgroup_threshold_ary *spare;
};

K
KAMEZAWA Hiroyuki 已提交
198 199 200 201 202
/* for OOM */
struct mem_cgroup_eventfd_list {
	struct list_head list;
	struct eventfd_ctx *eventfd;
};
203

204 205
static void mem_cgroup_threshold(struct mem_cgroup *memcg);
static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
206

B
Balbir Singh 已提交
207 208 209 210 211 212 213
/*
 * The memory controller data structure. The memory controller controls both
 * page cache and RSS per cgroup. We would eventually like to provide
 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
 * to help the administrator determine what knobs to tune.
 *
 * TODO: Add a water mark for the memory controller. Reclaim will begin when
214 215 216
 * we hit the water mark. May be even add a low water mark, such that
 * no reclaim occurs from a cgroup at it's low water mark, this is
 * a feature that will be implemented much later in the future.
B
Balbir Singh 已提交
217 218 219 220 221 222 223
 */
struct mem_cgroup {
	struct cgroup_subsys_state css;
	/*
	 * the counter to account for memory usage
	 */
	struct res_counter res;
224 225 226 227
	/*
	 * the counter to account for mem+swap usage.
	 */
	struct res_counter memsw;
228 229 230 231
	/*
	 * Per cgroup active and inactive list, similar to the
	 * per zone LRU lists.
	 */
232
	struct mem_cgroup_lru_info info;
233
	/*
234
	 * While reclaiming in a hierarchy, we cache the last child we
K
KAMEZAWA Hiroyuki 已提交
235
	 * reclaimed from.
236
	 */
K
KAMEZAWA Hiroyuki 已提交
237
	int last_scanned_child;
238 239 240
	int last_scanned_node;
#if MAX_NUMNODES > 1
	nodemask_t	scan_nodes;
241 242
	atomic_t	numainfo_events;
	atomic_t	numainfo_updating;
243
#endif
244 245 246 247
	/*
	 * Should the accounting and control be hierarchical, per subtree?
	 */
	bool use_hierarchy;
248 249 250 251

	bool		oom_lock;
	atomic_t	under_oom;

252
	atomic_t	refcnt;
253

254
	int	swappiness;
255 256
	/* OOM-Killer disable */
	int		oom_kill_disable;
K
KOSAKI Motohiro 已提交
257

258 259 260
	/* set when res.limit == memsw.limit */
	bool		memsw_is_minimum;

261 262 263 264
	/* protect arrays of thresholds */
	struct mutex thresholds_lock;

	/* thresholds for memory usage. RCU-protected */
265
	struct mem_cgroup_thresholds thresholds;
266

267
	/* thresholds for mem+swap usage. RCU-protected */
268
	struct mem_cgroup_thresholds memsw_thresholds;
269

K
KAMEZAWA Hiroyuki 已提交
270 271
	/* For oom notifier event fd */
	struct list_head oom_notify;
272

273 274 275 276 277
	/*
	 * Should we move charges of a task when a task is moved into this
	 * mem_cgroup ? And what type of charges should we move ?
	 */
	unsigned long 	move_charge_at_immigrate;
278
	/*
279
	 * percpu counter.
280
	 */
281
	struct mem_cgroup_stat_cpu *stat;
282 283 284 285 286 287
	/*
	 * used when a cpu is offlined or other synchronizations
	 * See mem_cgroup_read_stat().
	 */
	struct mem_cgroup_stat_cpu nocpu_base;
	spinlock_t pcp_counter_lock;
B
Balbir Singh 已提交
288 289
};

290 291 292 293 294 295
/* Stuffs for move charges at task migration. */
/*
 * Types of charges to be moved. "move_charge_at_immitgrate" is treated as a
 * left-shifted bitmap of these types.
 */
enum move_type {
296
	MOVE_CHARGE_TYPE_ANON,	/* private anonymous page and swap of it */
297
	MOVE_CHARGE_TYPE_FILE,	/* file page(including tmpfs) and swap of it */
298 299 300
	NR_MOVE_TYPE,
};

301 302
/* "mc" and its members are protected by cgroup_mutex */
static struct move_charge_struct {
303
	spinlock_t	  lock; /* for from, to */
304 305 306
	struct mem_cgroup *from;
	struct mem_cgroup *to;
	unsigned long precharge;
307
	unsigned long moved_charge;
308
	unsigned long moved_swap;
309 310 311
	struct task_struct *moving_task;	/* a task moving charges */
	wait_queue_head_t waitq;		/* a waitq for other context */
} mc = {
312
	.lock = __SPIN_LOCK_UNLOCKED(mc.lock),
313 314
	.waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
};
315

D
Daisuke Nishimura 已提交
316 317 318 319 320 321
static bool move_anon(void)
{
	return test_bit(MOVE_CHARGE_TYPE_ANON,
					&mc.to->move_charge_at_immigrate);
}

322 323 324 325 326 327
static bool move_file(void)
{
	return test_bit(MOVE_CHARGE_TYPE_FILE,
					&mc.to->move_charge_at_immigrate);
}

328 329 330 331 332 333 334
/*
 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
 * limit reclaim to prevent infinite loops, if they ever occur.
 */
#define	MEM_CGROUP_MAX_RECLAIM_LOOPS		(100)
#define	MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS	(2)

335 336 337
enum charge_type {
	MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
	MEM_CGROUP_CHARGE_TYPE_MAPPED,
338
	MEM_CGROUP_CHARGE_TYPE_SHMEM,	/* used by page migration of shmem */
339
	MEM_CGROUP_CHARGE_TYPE_FORCE,	/* used by force_empty */
K
KAMEZAWA Hiroyuki 已提交
340
	MEM_CGROUP_CHARGE_TYPE_SWAPOUT,	/* for accounting swapcache */
K
KAMEZAWA Hiroyuki 已提交
341
	MEM_CGROUP_CHARGE_TYPE_DROP,	/* a page was unused swap cache */
342 343 344
	NR_CHARGE_TYPE,
};

345 346 347
/* for encoding cft->private value on file */
#define _MEM			(0)
#define _MEMSWAP		(1)
K
KAMEZAWA Hiroyuki 已提交
348
#define _OOM_TYPE		(2)
349 350 351
#define MEMFILE_PRIVATE(x, val)	(((x) << 16) | (val))
#define MEMFILE_TYPE(val)	(((val) >> 16) & 0xffff)
#define MEMFILE_ATTR(val)	((val) & 0xffff)
K
KAMEZAWA Hiroyuki 已提交
352 353
/* Used for OOM nofiier */
#define OOM_CONTROL		(0)
354

355 356 357 358 359 360 361
/*
 * Reclaim flags for mem_cgroup_hierarchical_reclaim
 */
#define MEM_CGROUP_RECLAIM_NOSWAP_BIT	0x0
#define MEM_CGROUP_RECLAIM_NOSWAP	(1 << MEM_CGROUP_RECLAIM_NOSWAP_BIT)
#define MEM_CGROUP_RECLAIM_SHRINK_BIT	0x1
#define MEM_CGROUP_RECLAIM_SHRINK	(1 << MEM_CGROUP_RECLAIM_SHRINK_BIT)
362 363
#define MEM_CGROUP_RECLAIM_SOFT_BIT	0x2
#define MEM_CGROUP_RECLAIM_SOFT		(1 << MEM_CGROUP_RECLAIM_SOFT_BIT)
364

365 366 367 368
static void mem_cgroup_get(struct mem_cgroup *memcg);
static void mem_cgroup_put(struct mem_cgroup *memcg);
static struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg);
static void drain_all_stock_async(struct mem_cgroup *memcg);
369

370
static struct mem_cgroup_per_zone *
371
mem_cgroup_zoneinfo(struct mem_cgroup *memcg, int nid, int zid)
372
{
373
	return &memcg->info.nodeinfo[nid]->zoneinfo[zid];
374 375
}

376
struct cgroup_subsys_state *mem_cgroup_css(struct mem_cgroup *memcg)
377
{
378
	return &memcg->css;
379 380
}

381
static struct mem_cgroup_per_zone *
382
page_cgroup_zoneinfo(struct mem_cgroup *memcg, struct page *page)
383
{
384 385
	int nid = page_to_nid(page);
	int zid = page_zonenum(page);
386

387
	return mem_cgroup_zoneinfo(memcg, nid, zid);
388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405
}

static struct mem_cgroup_tree_per_zone *
soft_limit_tree_node_zone(int nid, int zid)
{
	return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
}

static struct mem_cgroup_tree_per_zone *
soft_limit_tree_from_page(struct page *page)
{
	int nid = page_to_nid(page);
	int zid = page_zonenum(page);

	return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
}

static void
406
__mem_cgroup_insert_exceeded(struct mem_cgroup *memcg,
407
				struct mem_cgroup_per_zone *mz,
408 409
				struct mem_cgroup_tree_per_zone *mctz,
				unsigned long long new_usage_in_excess)
410 411 412 413 414 415 416 417
{
	struct rb_node **p = &mctz->rb_root.rb_node;
	struct rb_node *parent = NULL;
	struct mem_cgroup_per_zone *mz_node;

	if (mz->on_tree)
		return;

418 419 420
	mz->usage_in_excess = new_usage_in_excess;
	if (!mz->usage_in_excess)
		return;
421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436
	while (*p) {
		parent = *p;
		mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
					tree_node);
		if (mz->usage_in_excess < mz_node->usage_in_excess)
			p = &(*p)->rb_left;
		/*
		 * We can't avoid mem cgroups that are over their soft
		 * limit by the same amount
		 */
		else if (mz->usage_in_excess >= mz_node->usage_in_excess)
			p = &(*p)->rb_right;
	}
	rb_link_node(&mz->tree_node, parent, p);
	rb_insert_color(&mz->tree_node, &mctz->rb_root);
	mz->on_tree = true;
437 438 439
}

static void
440
__mem_cgroup_remove_exceeded(struct mem_cgroup *memcg,
441 442 443 444 445 446 447 448 449
				struct mem_cgroup_per_zone *mz,
				struct mem_cgroup_tree_per_zone *mctz)
{
	if (!mz->on_tree)
		return;
	rb_erase(&mz->tree_node, &mctz->rb_root);
	mz->on_tree = false;
}

450
static void
451
mem_cgroup_remove_exceeded(struct mem_cgroup *memcg,
452 453 454 455
				struct mem_cgroup_per_zone *mz,
				struct mem_cgroup_tree_per_zone *mctz)
{
	spin_lock(&mctz->lock);
456
	__mem_cgroup_remove_exceeded(memcg, mz, mctz);
457 458 459 460
	spin_unlock(&mctz->lock);
}


461
static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
462
{
463
	unsigned long long excess;
464 465
	struct mem_cgroup_per_zone *mz;
	struct mem_cgroup_tree_per_zone *mctz;
466 467
	int nid = page_to_nid(page);
	int zid = page_zonenum(page);
468 469 470
	mctz = soft_limit_tree_from_page(page);

	/*
471 472
	 * Necessary to update all ancestors when hierarchy is used.
	 * because their event counter is not touched.
473
	 */
474 475 476
	for (; memcg; memcg = parent_mem_cgroup(memcg)) {
		mz = mem_cgroup_zoneinfo(memcg, nid, zid);
		excess = res_counter_soft_limit_excess(&memcg->res);
477 478 479 480
		/*
		 * We have to update the tree if mz is on RB-tree or
		 * mem is over its softlimit.
		 */
481
		if (excess || mz->on_tree) {
482 483 484
			spin_lock(&mctz->lock);
			/* if on-tree, remove it */
			if (mz->on_tree)
485
				__mem_cgroup_remove_exceeded(memcg, mz, mctz);
486
			/*
487 488
			 * Insert again. mz->usage_in_excess will be updated.
			 * If excess is 0, no tree ops.
489
			 */
490
			__mem_cgroup_insert_exceeded(memcg, mz, mctz, excess);
491 492
			spin_unlock(&mctz->lock);
		}
493 494 495
	}
}

496
static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
497 498 499 500 501 502 503
{
	int node, zone;
	struct mem_cgroup_per_zone *mz;
	struct mem_cgroup_tree_per_zone *mctz;

	for_each_node_state(node, N_POSSIBLE) {
		for (zone = 0; zone < MAX_NR_ZONES; zone++) {
504
			mz = mem_cgroup_zoneinfo(memcg, node, zone);
505
			mctz = soft_limit_tree_node_zone(node, zone);
506
			mem_cgroup_remove_exceeded(memcg, mz, mctz);
507 508 509 510
		}
	}
}

511 512 513 514
static struct mem_cgroup_per_zone *
__mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
{
	struct rb_node *rightmost = NULL;
515
	struct mem_cgroup_per_zone *mz;
516 517

retry:
518
	mz = NULL;
519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547
	rightmost = rb_last(&mctz->rb_root);
	if (!rightmost)
		goto done;		/* Nothing to reclaim from */

	mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
	/*
	 * Remove the node now but someone else can add it back,
	 * we will to add it back at the end of reclaim to its correct
	 * position in the tree.
	 */
	__mem_cgroup_remove_exceeded(mz->mem, mz, mctz);
	if (!res_counter_soft_limit_excess(&mz->mem->res) ||
		!css_tryget(&mz->mem->css))
		goto retry;
done:
	return mz;
}

static struct mem_cgroup_per_zone *
mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
{
	struct mem_cgroup_per_zone *mz;

	spin_lock(&mctz->lock);
	mz = __mem_cgroup_largest_soft_limit_node(mctz);
	spin_unlock(&mctz->lock);
	return mz;
}

548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566
/*
 * Implementation Note: reading percpu statistics for memcg.
 *
 * Both of vmstat[] and percpu_counter has threshold and do periodic
 * synchronization to implement "quick" read. There are trade-off between
 * reading cost and precision of value. Then, we may have a chance to implement
 * a periodic synchronizion of counter in memcg's counter.
 *
 * But this _read() function is used for user interface now. The user accounts
 * memory usage by memory cgroup and he _always_ requires exact value because
 * he accounts memory. Even if we provide quick-and-fuzzy read, we always
 * have to visit all online cpus and make sum. So, for now, unnecessary
 * synchronization is not implemented. (just implemented for cpu hotplug)
 *
 * If there are kernel internal actions which can make use of some not-exact
 * value, and reading all cpu value can be performance bottleneck in some
 * common workload, threashold and synchonization as vmstat[] should be
 * implemented.
 */
567
static long mem_cgroup_read_stat(struct mem_cgroup *memcg,
568
				 enum mem_cgroup_stat_index idx)
569
{
570
	long val = 0;
571 572
	int cpu;

573 574
	get_online_cpus();
	for_each_online_cpu(cpu)
575
		val += per_cpu(memcg->stat->count[idx], cpu);
576
#ifdef CONFIG_HOTPLUG_CPU
577 578 579
	spin_lock(&memcg->pcp_counter_lock);
	val += memcg->nocpu_base.count[idx];
	spin_unlock(&memcg->pcp_counter_lock);
580 581
#endif
	put_online_cpus();
582 583 584
	return val;
}

585
static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg,
586 587 588
					 bool charge)
{
	int val = (charge) ? 1 : -1;
589
	this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_SWAPOUT], val);
590 591
}

592
void mem_cgroup_pgfault(struct mem_cgroup *memcg, int val)
593
{
594
	this_cpu_add(memcg->stat->events[MEM_CGROUP_EVENTS_PGFAULT], val);
595 596
}

597
void mem_cgroup_pgmajfault(struct mem_cgroup *memcg, int val)
598
{
599
	this_cpu_add(memcg->stat->events[MEM_CGROUP_EVENTS_PGMAJFAULT], val);
600 601
}

602
static unsigned long mem_cgroup_read_events(struct mem_cgroup *memcg,
603 604 605 606 607 608
					    enum mem_cgroup_events_index idx)
{
	unsigned long val = 0;
	int cpu;

	for_each_online_cpu(cpu)
609
		val += per_cpu(memcg->stat->events[idx], cpu);
610
#ifdef CONFIG_HOTPLUG_CPU
611 612 613
	spin_lock(&memcg->pcp_counter_lock);
	val += memcg->nocpu_base.events[idx];
	spin_unlock(&memcg->pcp_counter_lock);
614 615 616 617
#endif
	return val;
}

618
static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
619
					 bool file, int nr_pages)
620
{
621 622
	preempt_disable();

623
	if (file)
624 625
		__this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_CACHE],
				nr_pages);
626
	else
627 628
		__this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS],
				nr_pages);
629

630 631
	/* pagein of a big page is an event. So, ignore page size */
	if (nr_pages > 0)
632
		__this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGIN]);
633
	else {
634
		__this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]);
635 636
		nr_pages = -nr_pages; /* for event */
	}
637

638
	__this_cpu_add(memcg->stat->events[MEM_CGROUP_EVENTS_COUNT], nr_pages);
639

640
	preempt_enable();
641 642
}

643
unsigned long
644
mem_cgroup_zone_nr_lru_pages(struct mem_cgroup *memcg, int nid, int zid,
645
			unsigned int lru_mask)
646 647
{
	struct mem_cgroup_per_zone *mz;
648 649 650
	enum lru_list l;
	unsigned long ret = 0;

651
	mz = mem_cgroup_zoneinfo(memcg, nid, zid);
652 653 654 655 656 657 658 659 660

	for_each_lru(l) {
		if (BIT(l) & lru_mask)
			ret += MEM_CGROUP_ZSTAT(mz, l);
	}
	return ret;
}

static unsigned long
661
mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
662 663
			int nid, unsigned int lru_mask)
{
664 665 666
	u64 total = 0;
	int zid;

667
	for (zid = 0; zid < MAX_NR_ZONES; zid++)
668 669
		total += mem_cgroup_zone_nr_lru_pages(memcg,
						nid, zid, lru_mask);
670

671 672
	return total;
}
673

674
static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
675
			unsigned int lru_mask)
676
{
677
	int nid;
678 679
	u64 total = 0;

680
	for_each_node_state(nid, N_HIGH_MEMORY)
681
		total += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask);
682
	return total;
683 684
}

685
static bool __memcg_event_check(struct mem_cgroup *memcg, int target)
686 687 688
{
	unsigned long val, next;

689 690
	val = this_cpu_read(memcg->stat->events[MEM_CGROUP_EVENTS_COUNT]);
	next = this_cpu_read(memcg->stat->targets[target]);
691 692 693 694
	/* from time_after() in jiffies.h */
	return ((long)next - (long)val < 0);
}

695
static void __mem_cgroup_target_update(struct mem_cgroup *memcg, int target)
696
{
697
	unsigned long val, next;
698

699
	val = this_cpu_read(memcg->stat->events[MEM_CGROUP_EVENTS_COUNT]);
700

701 702 703 704 705 706 707
	switch (target) {
	case MEM_CGROUP_TARGET_THRESH:
		next = val + THRESHOLDS_EVENTS_TARGET;
		break;
	case MEM_CGROUP_TARGET_SOFTLIMIT:
		next = val + SOFTLIMIT_EVENTS_TARGET;
		break;
708 709 710
	case MEM_CGROUP_TARGET_NUMAINFO:
		next = val + NUMAINFO_EVENTS_TARGET;
		break;
711 712 713 714
	default:
		return;
	}

715
	this_cpu_write(memcg->stat->targets[target], next);
716 717 718 719 720 721
}

/*
 * Check events in order.
 *
 */
722
static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
723 724
{
	/* threshold event is triggered in finer grain than soft limit */
725 726 727 728
	if (unlikely(__memcg_event_check(memcg, MEM_CGROUP_TARGET_THRESH))) {
		mem_cgroup_threshold(memcg);
		__mem_cgroup_target_update(memcg, MEM_CGROUP_TARGET_THRESH);
		if (unlikely(__memcg_event_check(memcg,
729
			     MEM_CGROUP_TARGET_SOFTLIMIT))) {
730 731
			mem_cgroup_update_tree(memcg, page);
			__mem_cgroup_target_update(memcg,
732 733 734
						   MEM_CGROUP_TARGET_SOFTLIMIT);
		}
#if MAX_NUMNODES > 1
735
		if (unlikely(__memcg_event_check(memcg,
736
			MEM_CGROUP_TARGET_NUMAINFO))) {
737 738
			atomic_inc(&memcg->numainfo_events);
			__mem_cgroup_target_update(memcg,
739
				MEM_CGROUP_TARGET_NUMAINFO);
740
		}
741
#endif
742 743 744
	}
}

745
static struct mem_cgroup *mem_cgroup_from_cont(struct cgroup *cont)
B
Balbir Singh 已提交
746 747 748 749 750 751
{
	return container_of(cgroup_subsys_state(cont,
				mem_cgroup_subsys_id), struct mem_cgroup,
				css);
}

752
struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
753
{
754 755 756 757 758 759 760 761
	/*
	 * mm_update_next_owner() may clear mm->owner to NULL
	 * if it races with swapoff, page migration, etc.
	 * So this can be called with p == NULL.
	 */
	if (unlikely(!p))
		return NULL;

762 763 764 765
	return container_of(task_subsys_state(p, mem_cgroup_subsys_id),
				struct mem_cgroup, css);
}

766
struct mem_cgroup *try_get_mem_cgroup_from_mm(struct mm_struct *mm)
767
{
768
	struct mem_cgroup *memcg = NULL;
769 770 771

	if (!mm)
		return NULL;
772 773 774 775 776 777 778
	/*
	 * Because we have no locks, mm->owner's may be being moved to other
	 * cgroup. We use css_tryget() here even if this looks
	 * pessimistic (rather than adding locks here).
	 */
	rcu_read_lock();
	do {
779 780
		memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
		if (unlikely(!memcg))
781
			break;
782
	} while (!css_tryget(&memcg->css));
783
	rcu_read_unlock();
784
	return memcg;
785 786
}

K
KAMEZAWA Hiroyuki 已提交
787
/* The caller has to guarantee "mem" exists before calling this */
788
static struct mem_cgroup *mem_cgroup_start_loop(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
789
{
790 791 792
	struct cgroup_subsys_state *css;
	int found;

793
	if (!memcg) /* ROOT cgroup has the smallest ID */
794
		return root_mem_cgroup; /*css_put/get against root is ignored*/
795 796 797
	if (!memcg->use_hierarchy) {
		if (css_tryget(&memcg->css))
			return memcg;
798 799 800 801 802 803 804
		return NULL;
	}
	rcu_read_lock();
	/*
	 * searching a memory cgroup which has the smallest ID under given
	 * ROOT cgroup. (ID >= 1)
	 */
805
	css = css_get_next(&mem_cgroup_subsys, 1, &memcg->css, &found);
806
	if (css && css_tryget(css))
807
		memcg = container_of(css, struct mem_cgroup, css);
808
	else
809
		memcg = NULL;
810
	rcu_read_unlock();
811
	return memcg;
K
KAMEZAWA Hiroyuki 已提交
812 813 814 815 816 817 818 819 820
}

static struct mem_cgroup *mem_cgroup_get_next(struct mem_cgroup *iter,
					struct mem_cgroup *root,
					bool cond)
{
	int nextid = css_id(&iter->css) + 1;
	int found;
	int hierarchy_used;
K
KAMEZAWA Hiroyuki 已提交
821 822
	struct cgroup_subsys_state *css;

K
KAMEZAWA Hiroyuki 已提交
823
	hierarchy_used = iter->use_hierarchy;
K
KAMEZAWA Hiroyuki 已提交
824

K
KAMEZAWA Hiroyuki 已提交
825
	css_put(&iter->css);
826 827
	/* If no ROOT, walk all, ignore hierarchy */
	if (!cond || (root && !hierarchy_used))
K
KAMEZAWA Hiroyuki 已提交
828
		return NULL;
K
KAMEZAWA Hiroyuki 已提交
829

830 831 832
	if (!root)
		root = root_mem_cgroup;

K
KAMEZAWA Hiroyuki 已提交
833 834
	do {
		iter = NULL;
K
KAMEZAWA Hiroyuki 已提交
835
		rcu_read_lock();
K
KAMEZAWA Hiroyuki 已提交
836 837 838

		css = css_get_next(&mem_cgroup_subsys, nextid,
				&root->css, &found);
K
KAMEZAWA Hiroyuki 已提交
839
		if (css && css_tryget(css))
K
KAMEZAWA Hiroyuki 已提交
840
			iter = container_of(css, struct mem_cgroup, css);
K
KAMEZAWA Hiroyuki 已提交
841
		rcu_read_unlock();
K
KAMEZAWA Hiroyuki 已提交
842
		/* If css is NULL, no more cgroups will be found */
K
KAMEZAWA Hiroyuki 已提交
843
		nextid = found + 1;
K
KAMEZAWA Hiroyuki 已提交
844
	} while (css && !iter);
K
KAMEZAWA Hiroyuki 已提交
845

K
KAMEZAWA Hiroyuki 已提交
846
	return iter;
K
KAMEZAWA Hiroyuki 已提交
847
}
K
KAMEZAWA Hiroyuki 已提交
848 849 850 851 852 853 854 855 856 857 858 859 860
/*
 * for_eacn_mem_cgroup_tree() for visiting all cgroup under tree. Please
 * be careful that "break" loop is not allowed. We have reference count.
 * Instead of that modify "cond" to be false and "continue" to exit the loop.
 */
#define for_each_mem_cgroup_tree_cond(iter, root, cond)	\
	for (iter = mem_cgroup_start_loop(root);\
	     iter != NULL;\
	     iter = mem_cgroup_get_next(iter, root, cond))

#define for_each_mem_cgroup_tree(iter, root) \
	for_each_mem_cgroup_tree_cond(iter, root, true)

861 862 863
#define for_each_mem_cgroup_all(iter) \
	for_each_mem_cgroup_tree_cond(iter, NULL, true)

K
KAMEZAWA Hiroyuki 已提交
864

865
static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
866
{
867
	return (memcg == root_mem_cgroup);
868 869
}

870 871
void mem_cgroup_count_vm_event(struct mm_struct *mm, enum vm_event_item idx)
{
872
	struct mem_cgroup *memcg;
873 874 875 876 877

	if (!mm)
		return;

	rcu_read_lock();
878 879
	memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
	if (unlikely(!memcg))
880 881 882 883
		goto out;

	switch (idx) {
	case PGMAJFAULT:
884
		mem_cgroup_pgmajfault(memcg, 1);
885 886
		break;
	case PGFAULT:
887
		mem_cgroup_pgfault(memcg, 1);
888 889 890 891 892 893 894 895 896
		break;
	default:
		BUG();
	}
out:
	rcu_read_unlock();
}
EXPORT_SYMBOL(mem_cgroup_count_vm_event);

K
KAMEZAWA Hiroyuki 已提交
897 898 899 900 901 902 903 904 905 906 907 908 909
/*
 * Following LRU functions are allowed to be used without PCG_LOCK.
 * Operations are called by routine of global LRU independently from memcg.
 * What we have to take care of here is validness of pc->mem_cgroup.
 *
 * Changes to pc->mem_cgroup happens when
 * 1. charge
 * 2. moving account
 * In typical case, "charge" is done before add-to-lru. Exception is SwapCache.
 * It is added to LRU before charge.
 * If PCG_USED bit is not set, page_cgroup is not added to this private LRU.
 * When moving account, the page is not on LRU. It's isolated.
 */
910

K
KAMEZAWA Hiroyuki 已提交
911 912 913 914
void mem_cgroup_del_lru_list(struct page *page, enum lru_list lru)
{
	struct page_cgroup *pc;
	struct mem_cgroup_per_zone *mz;
915

916
	if (mem_cgroup_disabled())
K
KAMEZAWA Hiroyuki 已提交
917 918 919
		return;
	pc = lookup_page_cgroup(page);
	/* can happen while we handle swapcache. */
920
	if (!TestClearPageCgroupAcctLRU(pc))
K
KAMEZAWA Hiroyuki 已提交
921
		return;
922
	VM_BUG_ON(!pc->mem_cgroup);
923 924 925 926
	/*
	 * We don't check PCG_USED bit. It's cleared when the "page" is finally
	 * removed from global LRU.
	 */
927
	mz = page_cgroup_zoneinfo(pc->mem_cgroup, page);
928 929
	/* huge page split is done under lru_lock. so, we have no races. */
	MEM_CGROUP_ZSTAT(mz, lru) -= 1 << compound_order(page);
930 931 932
	if (mem_cgroup_is_root(pc->mem_cgroup))
		return;
	VM_BUG_ON(list_empty(&pc->lru));
K
KAMEZAWA Hiroyuki 已提交
933
	list_del_init(&pc->lru);
934 935
}

K
KAMEZAWA Hiroyuki 已提交
936
void mem_cgroup_del_lru(struct page *page)
937
{
K
KAMEZAWA Hiroyuki 已提交
938 939
	mem_cgroup_del_lru_list(page, page_lru(page));
}
940

941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962
/*
 * Writeback is about to end against a page which has been marked for immediate
 * reclaim.  If it still appears to be reclaimable, move it to the tail of the
 * inactive list.
 */
void mem_cgroup_rotate_reclaimable_page(struct page *page)
{
	struct mem_cgroup_per_zone *mz;
	struct page_cgroup *pc;
	enum lru_list lru = page_lru(page);

	if (mem_cgroup_disabled())
		return;

	pc = lookup_page_cgroup(page);
	/* unused or root page is not rotated. */
	if (!PageCgroupUsed(pc))
		return;
	/* Ensure pc->mem_cgroup is visible after reading PCG_USED. */
	smp_rmb();
	if (mem_cgroup_is_root(pc->mem_cgroup))
		return;
963
	mz = page_cgroup_zoneinfo(pc->mem_cgroup, page);
964 965 966
	list_move_tail(&pc->lru, &mz->lists[lru]);
}

K
KAMEZAWA Hiroyuki 已提交
967 968 969 970
void mem_cgroup_rotate_lru_list(struct page *page, enum lru_list lru)
{
	struct mem_cgroup_per_zone *mz;
	struct page_cgroup *pc;
971

972
	if (mem_cgroup_disabled())
K
KAMEZAWA Hiroyuki 已提交
973
		return;
974

K
KAMEZAWA Hiroyuki 已提交
975
	pc = lookup_page_cgroup(page);
976
	/* unused or root page is not rotated. */
977 978 979 980 981
	if (!PageCgroupUsed(pc))
		return;
	/* Ensure pc->mem_cgroup is visible after reading PCG_USED. */
	smp_rmb();
	if (mem_cgroup_is_root(pc->mem_cgroup))
K
KAMEZAWA Hiroyuki 已提交
982
		return;
983
	mz = page_cgroup_zoneinfo(pc->mem_cgroup, page);
K
KAMEZAWA Hiroyuki 已提交
984
	list_move(&pc->lru, &mz->lists[lru]);
985 986
}

K
KAMEZAWA Hiroyuki 已提交
987
void mem_cgroup_add_lru_list(struct page *page, enum lru_list lru)
988
{
K
KAMEZAWA Hiroyuki 已提交
989 990
	struct page_cgroup *pc;
	struct mem_cgroup_per_zone *mz;
991

992
	if (mem_cgroup_disabled())
K
KAMEZAWA Hiroyuki 已提交
993 994
		return;
	pc = lookup_page_cgroup(page);
995
	VM_BUG_ON(PageCgroupAcctLRU(pc));
K
KAMEZAWA Hiroyuki 已提交
996
	if (!PageCgroupUsed(pc))
L
Lee Schermerhorn 已提交
997
		return;
998 999
	/* Ensure pc->mem_cgroup is visible after reading PCG_USED. */
	smp_rmb();
1000
	mz = page_cgroup_zoneinfo(pc->mem_cgroup, page);
1001 1002
	/* huge page split is done under lru_lock. so, we have no races. */
	MEM_CGROUP_ZSTAT(mz, lru) += 1 << compound_order(page);
1003 1004 1005
	SetPageCgroupAcctLRU(pc);
	if (mem_cgroup_is_root(pc->mem_cgroup))
		return;
K
KAMEZAWA Hiroyuki 已提交
1006 1007
	list_add(&pc->lru, &mz->lists[lru]);
}
1008

K
KAMEZAWA Hiroyuki 已提交
1009
/*
1010 1011 1012 1013
 * At handling SwapCache and other FUSE stuff, pc->mem_cgroup may be changed
 * while it's linked to lru because the page may be reused after it's fully
 * uncharged. To handle that, unlink page_cgroup from LRU when charge it again.
 * It's done under lock_page and expected that zone->lru_lock isnever held.
K
KAMEZAWA Hiroyuki 已提交
1014
 */
1015
static void mem_cgroup_lru_del_before_commit(struct page *page)
K
KAMEZAWA Hiroyuki 已提交
1016
{
1017 1018 1019 1020
	unsigned long flags;
	struct zone *zone = page_zone(page);
	struct page_cgroup *pc = lookup_page_cgroup(page);

1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031
	/*
	 * Doing this check without taking ->lru_lock seems wrong but this
	 * is safe. Because if page_cgroup's USED bit is unset, the page
	 * will not be added to any memcg's LRU. If page_cgroup's USED bit is
	 * set, the commit after this will fail, anyway.
	 * This all charge/uncharge is done under some mutual execustion.
	 * So, we don't need to taking care of changes in USED bit.
	 */
	if (likely(!PageLRU(page)))
		return;

1032 1033 1034 1035 1036 1037 1038 1039
	spin_lock_irqsave(&zone->lru_lock, flags);
	/*
	 * Forget old LRU when this page_cgroup is *not* used. This Used bit
	 * is guarded by lock_page() because the page is SwapCache.
	 */
	if (!PageCgroupUsed(pc))
		mem_cgroup_del_lru_list(page, page_lru(page));
	spin_unlock_irqrestore(&zone->lru_lock, flags);
K
KAMEZAWA Hiroyuki 已提交
1040 1041
}

1042
static void mem_cgroup_lru_add_after_commit(struct page *page)
1043 1044 1045 1046 1047
{
	unsigned long flags;
	struct zone *zone = page_zone(page);
	struct page_cgroup *pc = lookup_page_cgroup(page);

1048 1049 1050
	/* taking care of that the page is added to LRU while we commit it */
	if (likely(!PageLRU(page)))
		return;
1051 1052
	spin_lock_irqsave(&zone->lru_lock, flags);
	/* link when the page is linked to LRU but page_cgroup isn't */
1053
	if (PageLRU(page) && !PageCgroupAcctLRU(pc))
1054 1055 1056 1057 1058
		mem_cgroup_add_lru_list(page, page_lru(page));
	spin_unlock_irqrestore(&zone->lru_lock, flags);
}


K
KAMEZAWA Hiroyuki 已提交
1059 1060 1061
void mem_cgroup_move_lists(struct page *page,
			   enum lru_list from, enum lru_list to)
{
1062
	if (mem_cgroup_disabled())
K
KAMEZAWA Hiroyuki 已提交
1063 1064 1065
		return;
	mem_cgroup_del_lru_list(page, from);
	mem_cgroup_add_lru_list(page, to);
1066 1067
}

1068
/*
1069
 * Checks whether given mem is same or in the root_mem_cgroup's
1070 1071
 * hierarchy subtree
 */
1072 1073
static bool mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg,
		struct mem_cgroup *memcg)
1074
{
1075 1076 1077
	if (root_memcg != memcg) {
		return (root_memcg->use_hierarchy &&
			css_is_ancestor(&memcg->css, &root_memcg->css));
1078 1079 1080 1081 1082
	}

	return true;
}

1083
int task_in_mem_cgroup(struct task_struct *task, const struct mem_cgroup *memcg)
1084 1085
{
	int ret;
1086
	struct mem_cgroup *curr = NULL;
1087
	struct task_struct *p;
1088

1089 1090 1091 1092 1093
	p = find_lock_task_mm(task);
	if (!p)
		return 0;
	curr = try_get_mem_cgroup_from_mm(p->mm);
	task_unlock(p);
1094 1095
	if (!curr)
		return 0;
1096
	/*
1097
	 * We should check use_hierarchy of "memcg" not "curr". Because checking
1098
	 * use_hierarchy of "curr" here make this function true if hierarchy is
1099 1100
	 * enabled in "curr" and "curr" is a child of "memcg" in *cgroup*
	 * hierarchy(even if use_hierarchy is disabled in "memcg").
1101
	 */
1102
	ret = mem_cgroup_same_or_subtree(memcg, curr);
1103
	css_put(&curr->css);
1104 1105 1106
	return ret;
}

1107
static int calc_inactive_ratio(struct mem_cgroup *memcg, unsigned long *present_pages)
1108 1109 1110
{
	unsigned long active;
	unsigned long inactive;
1111 1112
	unsigned long gb;
	unsigned long inactive_ratio;
1113

1114 1115
	inactive = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_INACTIVE_ANON));
	active = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_ACTIVE_ANON));
1116

1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143
	gb = (inactive + active) >> (30 - PAGE_SHIFT);
	if (gb)
		inactive_ratio = int_sqrt(10 * gb);
	else
		inactive_ratio = 1;

	if (present_pages) {
		present_pages[0] = inactive;
		present_pages[1] = active;
	}

	return inactive_ratio;
}

int mem_cgroup_inactive_anon_is_low(struct mem_cgroup *memcg)
{
	unsigned long active;
	unsigned long inactive;
	unsigned long present_pages[2];
	unsigned long inactive_ratio;

	inactive_ratio = calc_inactive_ratio(memcg, present_pages);

	inactive = present_pages[0];
	active = present_pages[1];

	if (inactive * inactive_ratio < active)
1144 1145 1146 1147 1148
		return 1;

	return 0;
}

1149 1150 1151 1152 1153
int mem_cgroup_inactive_file_is_low(struct mem_cgroup *memcg)
{
	unsigned long active;
	unsigned long inactive;

1154 1155
	inactive = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_INACTIVE_FILE));
	active = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_ACTIVE_FILE));
1156 1157 1158 1159

	return (active > inactive);
}

K
KOSAKI Motohiro 已提交
1160 1161 1162
struct zone_reclaim_stat *mem_cgroup_get_reclaim_stat(struct mem_cgroup *memcg,
						      struct zone *zone)
{
1163
	int nid = zone_to_nid(zone);
K
KOSAKI Motohiro 已提交
1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179
	int zid = zone_idx(zone);
	struct mem_cgroup_per_zone *mz = mem_cgroup_zoneinfo(memcg, nid, zid);

	return &mz->reclaim_stat;
}

struct zone_reclaim_stat *
mem_cgroup_get_reclaim_stat_from_page(struct page *page)
{
	struct page_cgroup *pc;
	struct mem_cgroup_per_zone *mz;

	if (mem_cgroup_disabled())
		return NULL;

	pc = lookup_page_cgroup(page);
1180 1181
	if (!PageCgroupUsed(pc))
		return NULL;
1182 1183
	/* Ensure pc->mem_cgroup is visible after reading PCG_USED. */
	smp_rmb();
1184
	mz = page_cgroup_zoneinfo(pc->mem_cgroup, page);
K
KOSAKI Motohiro 已提交
1185 1186 1187
	return &mz->reclaim_stat;
}

1188 1189 1190
unsigned long mem_cgroup_isolate_pages(unsigned long nr_to_scan,
					struct list_head *dst,
					unsigned long *scanned, int order,
1191 1192
					isolate_mode_t mode,
					struct zone *z,
1193
					struct mem_cgroup *mem_cont,
1194
					int active, int file)
1195 1196 1197 1198 1199 1200
{
	unsigned long nr_taken = 0;
	struct page *page;
	unsigned long scan;
	LIST_HEAD(pc_list);
	struct list_head *src;
1201
	struct page_cgroup *pc, *tmp;
1202
	int nid = zone_to_nid(z);
1203 1204
	int zid = zone_idx(z);
	struct mem_cgroup_per_zone *mz;
1205
	int lru = LRU_FILE * file + active;
1206
	int ret;
1207

1208
	BUG_ON(!mem_cont);
1209
	mz = mem_cgroup_zoneinfo(mem_cont, nid, zid);
1210
	src = &mz->lists[lru];
1211

1212 1213
	scan = 0;
	list_for_each_entry_safe_reverse(pc, tmp, src, lru) {
H
Hugh Dickins 已提交
1214
		if (scan >= nr_to_scan)
1215
			break;
K
KAMEZAWA Hiroyuki 已提交
1216

1217 1218
		if (unlikely(!PageCgroupUsed(pc)))
			continue;
1219

1220
		page = lookup_cgroup_page(pc);
1221

H
Hugh Dickins 已提交
1222
		if (unlikely(!PageLRU(page)))
1223 1224
			continue;

H
Hugh Dickins 已提交
1225
		scan++;
1226 1227 1228
		ret = __isolate_lru_page(page, mode, file);
		switch (ret) {
		case 0:
1229
			list_move(&page->lru, dst);
1230
			mem_cgroup_del_lru(page);
1231
			nr_taken += hpage_nr_pages(page);
1232 1233 1234 1235 1236 1237 1238
			break;
		case -EBUSY:
			/* we don't affect global LRU but rotate in our LRU */
			mem_cgroup_rotate_lru_list(page, page_lru(page));
			break;
		default:
			break;
1239 1240 1241 1242
		}
	}

	*scanned = scan;
1243 1244 1245 1246

	trace_mm_vmscan_memcg_isolate(0, nr_to_scan, scan, nr_taken,
				      0, 0, 0, mode);

1247 1248 1249
	return nr_taken;
}

1250 1251 1252
#define mem_cgroup_from_res_counter(counter, member)	\
	container_of(counter, struct mem_cgroup, member)

1253
/**
1254 1255
 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
 * @mem: the memory cgroup
1256
 *
1257
 * Returns the maximum amount of memory @mem can be charged with, in
1258
 * pages.
1259
 */
1260
static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1261
{
1262 1263
	unsigned long long margin;

1264
	margin = res_counter_margin(&memcg->res);
1265
	if (do_swap_account)
1266
		margin = min(margin, res_counter_margin(&memcg->memsw));
1267
	return margin >> PAGE_SHIFT;
1268 1269
}

1270
int mem_cgroup_swappiness(struct mem_cgroup *memcg)
K
KOSAKI Motohiro 已提交
1271 1272 1273 1274 1275 1276 1277
{
	struct cgroup *cgrp = memcg->css.cgroup;

	/* root ? */
	if (cgrp->parent == NULL)
		return vm_swappiness;

1278
	return memcg->swappiness;
K
KOSAKI Motohiro 已提交
1279 1280
}

1281
static void mem_cgroup_start_move(struct mem_cgroup *memcg)
1282 1283
{
	int cpu;
1284 1285

	get_online_cpus();
1286
	spin_lock(&memcg->pcp_counter_lock);
1287
	for_each_online_cpu(cpu)
1288 1289 1290
		per_cpu(memcg->stat->count[MEM_CGROUP_ON_MOVE], cpu) += 1;
	memcg->nocpu_base.count[MEM_CGROUP_ON_MOVE] += 1;
	spin_unlock(&memcg->pcp_counter_lock);
1291
	put_online_cpus();
1292 1293 1294 1295

	synchronize_rcu();
}

1296
static void mem_cgroup_end_move(struct mem_cgroup *memcg)
1297 1298 1299
{
	int cpu;

1300
	if (!memcg)
1301
		return;
1302
	get_online_cpus();
1303
	spin_lock(&memcg->pcp_counter_lock);
1304
	for_each_online_cpu(cpu)
1305 1306 1307
		per_cpu(memcg->stat->count[MEM_CGROUP_ON_MOVE], cpu) -= 1;
	memcg->nocpu_base.count[MEM_CGROUP_ON_MOVE] -= 1;
	spin_unlock(&memcg->pcp_counter_lock);
1308
	put_online_cpus();
1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321
}
/*
 * 2 routines for checking "mem" is under move_account() or not.
 *
 * mem_cgroup_stealed() - checking a cgroup is mc.from or not. This is used
 *			  for avoiding race in accounting. If true,
 *			  pc->mem_cgroup may be overwritten.
 *
 * mem_cgroup_under_move() - checking a cgroup is mc.from or mc.to or
 *			  under hierarchy of moving cgroups. This is for
 *			  waiting at hith-memory prressure caused by "move".
 */

1322
static bool mem_cgroup_stealed(struct mem_cgroup *memcg)
1323 1324
{
	VM_BUG_ON(!rcu_read_lock_held());
1325
	return this_cpu_read(memcg->stat->count[MEM_CGROUP_ON_MOVE]) > 0;
1326
}
1327

1328
static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
1329
{
1330 1331
	struct mem_cgroup *from;
	struct mem_cgroup *to;
1332
	bool ret = false;
1333 1334 1335 1336 1337 1338 1339 1340 1341
	/*
	 * Unlike task_move routines, we access mc.to, mc.from not under
	 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
	 */
	spin_lock(&mc.lock);
	from = mc.from;
	to = mc.to;
	if (!from)
		goto unlock;
1342

1343 1344
	ret = mem_cgroup_same_or_subtree(memcg, from)
		|| mem_cgroup_same_or_subtree(memcg, to);
1345 1346
unlock:
	spin_unlock(&mc.lock);
1347 1348 1349
	return ret;
}

1350
static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1351 1352
{
	if (mc.moving_task && current != mc.moving_task) {
1353
		if (mem_cgroup_under_move(memcg)) {
1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365
			DEFINE_WAIT(wait);
			prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
			/* moving charge context might have finished. */
			if (mc.moving_task)
				schedule();
			finish_wait(&mc.waitq, &wait);
			return true;
		}
	}
	return false;
}

1366
/**
1367
 * mem_cgroup_print_oom_info: Called from OOM with tasklist_lock held in read mode.
1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385
 * @memcg: The memory cgroup that went over limit
 * @p: Task that is going to be killed
 *
 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
 * enabled
 */
void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
{
	struct cgroup *task_cgrp;
	struct cgroup *mem_cgrp;
	/*
	 * Need a buffer in BSS, can't rely on allocations. The code relies
	 * on the assumption that OOM is serialized for memory controller.
	 * If this assumption is broken, revisit this code.
	 */
	static char memcg_name[PATH_MAX];
	int ret;

1386
	if (!memcg || !p)
1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432
		return;


	rcu_read_lock();

	mem_cgrp = memcg->css.cgroup;
	task_cgrp = task_cgroup(p, mem_cgroup_subsys_id);

	ret = cgroup_path(task_cgrp, memcg_name, PATH_MAX);
	if (ret < 0) {
		/*
		 * Unfortunately, we are unable to convert to a useful name
		 * But we'll still print out the usage information
		 */
		rcu_read_unlock();
		goto done;
	}
	rcu_read_unlock();

	printk(KERN_INFO "Task in %s killed", memcg_name);

	rcu_read_lock();
	ret = cgroup_path(mem_cgrp, memcg_name, PATH_MAX);
	if (ret < 0) {
		rcu_read_unlock();
		goto done;
	}
	rcu_read_unlock();

	/*
	 * Continues from above, so we don't need an KERN_ level
	 */
	printk(KERN_CONT " as a result of limit of %s\n", memcg_name);
done:

	printk(KERN_INFO "memory: usage %llukB, limit %llukB, failcnt %llu\n",
		res_counter_read_u64(&memcg->res, RES_USAGE) >> 10,
		res_counter_read_u64(&memcg->res, RES_LIMIT) >> 10,
		res_counter_read_u64(&memcg->res, RES_FAILCNT));
	printk(KERN_INFO "memory+swap: usage %llukB, limit %llukB, "
		"failcnt %llu\n",
		res_counter_read_u64(&memcg->memsw, RES_USAGE) >> 10,
		res_counter_read_u64(&memcg->memsw, RES_LIMIT) >> 10,
		res_counter_read_u64(&memcg->memsw, RES_FAILCNT));
}

1433 1434 1435 1436
/*
 * This function returns the number of memcg under hierarchy tree. Returns
 * 1(self count) if no children.
 */
1437
static int mem_cgroup_count_children(struct mem_cgroup *memcg)
1438 1439
{
	int num = 0;
K
KAMEZAWA Hiroyuki 已提交
1440 1441
	struct mem_cgroup *iter;

1442
	for_each_mem_cgroup_tree(iter, memcg)
K
KAMEZAWA Hiroyuki 已提交
1443
		num++;
1444 1445 1446
	return num;
}

D
David Rientjes 已提交
1447 1448 1449 1450 1451 1452 1453 1454
/*
 * Return the memory (and swap, if configured) limit for a memcg.
 */
u64 mem_cgroup_get_limit(struct mem_cgroup *memcg)
{
	u64 limit;
	u64 memsw;

1455 1456 1457
	limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
	limit += total_swap_pages << PAGE_SHIFT;

D
David Rientjes 已提交
1458 1459 1460 1461 1462 1463 1464 1465
	memsw = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
	/*
	 * If memsw is finite and limits the amount of swap space available
	 * to this memcg, return that limit.
	 */
	return min(limit, memsw);
}

1466
/*
K
KAMEZAWA Hiroyuki 已提交
1467 1468 1469 1470 1471
 * Visit the first child (need not be the first child as per the ordering
 * of the cgroup list, since we track last_scanned_child) of @mem and use
 * that to reclaim free pages from.
 */
static struct mem_cgroup *
1472
mem_cgroup_select_victim(struct mem_cgroup *root_memcg)
K
KAMEZAWA Hiroyuki 已提交
1473 1474 1475 1476 1477
{
	struct mem_cgroup *ret = NULL;
	struct cgroup_subsys_state *css;
	int nextid, found;

1478 1479 1480
	if (!root_memcg->use_hierarchy) {
		css_get(&root_memcg->css);
		ret = root_memcg;
K
KAMEZAWA Hiroyuki 已提交
1481 1482 1483 1484
	}

	while (!ret) {
		rcu_read_lock();
1485 1486
		nextid = root_memcg->last_scanned_child + 1;
		css = css_get_next(&mem_cgroup_subsys, nextid, &root_memcg->css,
K
KAMEZAWA Hiroyuki 已提交
1487 1488 1489 1490 1491 1492 1493 1494
				   &found);
		if (css && css_tryget(css))
			ret = container_of(css, struct mem_cgroup, css);

		rcu_read_unlock();
		/* Updates scanning parameter */
		if (!css) {
			/* this means start scan from ID:1 */
1495
			root_memcg->last_scanned_child = 0;
K
KAMEZAWA Hiroyuki 已提交
1496
		} else
1497
			root_memcg->last_scanned_child = found;
K
KAMEZAWA Hiroyuki 已提交
1498 1499 1500 1501 1502
	}

	return ret;
}

1503 1504 1505 1506 1507 1508 1509 1510 1511 1512
/**
 * test_mem_cgroup_node_reclaimable
 * @mem: the target memcg
 * @nid: the node ID to be checked.
 * @noswap : specify true here if the user wants flle only information.
 *
 * This function returns whether the specified memcg contains any
 * reclaimable pages on a node. Returns true if there are any reclaimable
 * pages in the node.
 */
1513
static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
1514 1515
		int nid, bool noswap)
{
1516
	if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE))
1517 1518 1519
		return true;
	if (noswap || !total_swap_pages)
		return false;
1520
	if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON))
1521 1522 1523 1524
		return true;
	return false;

}
1525 1526 1527 1528 1529 1530 1531 1532
#if MAX_NUMNODES > 1

/*
 * Always updating the nodemask is not very good - even if we have an empty
 * list or the wrong list here, we can start from some node and traverse all
 * nodes based on the zonelist. So update the list loosely once per 10 secs.
 *
 */
1533
static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
1534 1535
{
	int nid;
1536 1537 1538 1539
	/*
	 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
	 * pagein/pageout changes since the last update.
	 */
1540
	if (!atomic_read(&memcg->numainfo_events))
1541
		return;
1542
	if (atomic_inc_return(&memcg->numainfo_updating) > 1)
1543 1544 1545
		return;

	/* make a nodemask where this memcg uses memory from */
1546
	memcg->scan_nodes = node_states[N_HIGH_MEMORY];
1547 1548 1549

	for_each_node_mask(nid, node_states[N_HIGH_MEMORY]) {

1550 1551
		if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
			node_clear(nid, memcg->scan_nodes);
1552
	}
1553

1554 1555
	atomic_set(&memcg->numainfo_events, 0);
	atomic_set(&memcg->numainfo_updating, 0);
1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569
}

/*
 * Selecting a node where we start reclaim from. Because what we need is just
 * reducing usage counter, start from anywhere is O,K. Considering
 * memory reclaim from current node, there are pros. and cons.
 *
 * Freeing memory from current node means freeing memory from a node which
 * we'll use or we've used. So, it may make LRU bad. And if several threads
 * hit limits, it will see a contention on a node. But freeing from remote
 * node means more costs for memory reclaim because of memory latency.
 *
 * Now, we use round-robin. Better algorithm is welcomed.
 */
1570
int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1571 1572 1573
{
	int node;

1574 1575
	mem_cgroup_may_update_nodemask(memcg);
	node = memcg->last_scanned_node;
1576

1577
	node = next_node(node, memcg->scan_nodes);
1578
	if (node == MAX_NUMNODES)
1579
		node = first_node(memcg->scan_nodes);
1580 1581 1582 1583 1584 1585 1586 1587 1588
	/*
	 * We call this when we hit limit, not when pages are added to LRU.
	 * No LRU may hold pages because all pages are UNEVICTABLE or
	 * memcg is too small and all pages are not on LRU. In that case,
	 * we use curret node.
	 */
	if (unlikely(node == MAX_NUMNODES))
		node = numa_node_id();

1589
	memcg->last_scanned_node = node;
1590 1591 1592
	return node;
}

1593 1594 1595 1596 1597 1598
/*
 * Check all nodes whether it contains reclaimable pages or not.
 * For quick scan, we make use of scan_nodes. This will allow us to skip
 * unused nodes. But scan_nodes is lazily updated and may not cotain
 * enough new information. We need to do double check.
 */
1599
bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap)
1600 1601 1602 1603 1604 1605 1606
{
	int nid;

	/*
	 * quick check...making use of scan_node.
	 * We can skip unused nodes.
	 */
1607 1608
	if (!nodes_empty(memcg->scan_nodes)) {
		for (nid = first_node(memcg->scan_nodes);
1609
		     nid < MAX_NUMNODES;
1610
		     nid = next_node(nid, memcg->scan_nodes)) {
1611

1612
			if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap))
1613 1614 1615 1616 1617 1618 1619
				return true;
		}
	}
	/*
	 * Check rest of nodes.
	 */
	for_each_node_state(nid, N_HIGH_MEMORY) {
1620
		if (node_isset(nid, memcg->scan_nodes))
1621
			continue;
1622
		if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap))
1623 1624 1625 1626 1627
			return true;
	}
	return false;
}

1628
#else
1629
int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1630 1631 1632
{
	return 0;
}
1633

1634
bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap)
1635
{
1636
	return test_mem_cgroup_node_reclaimable(memcg, 0, noswap);
1637
}
1638 1639
#endif

K
KAMEZAWA Hiroyuki 已提交
1640 1641 1642 1643
/*
 * Scan the hierarchy if needed to reclaim memory. We remember the last child
 * we reclaimed from, so that we don't end up penalizing one child extensively
 * based on its position in the children list.
1644
 *
1645
 * root_memcg is the original ancestor that we've been reclaim from.
K
KAMEZAWA Hiroyuki 已提交
1646
 *
1647
 * We give up and return to the caller when we visit root_memcg twice.
K
KAMEZAWA Hiroyuki 已提交
1648
 * (other groups can be removed while we're walking....)
1649 1650
 *
 * If shrink==true, for avoiding to free too much, this returns immedieately.
1651
 */
1652
static int mem_cgroup_hierarchical_reclaim(struct mem_cgroup *root_memcg,
1653
						struct zone *zone,
1654
						gfp_t gfp_mask,
1655 1656
						unsigned long reclaim_options,
						unsigned long *total_scanned)
1657
{
K
KAMEZAWA Hiroyuki 已提交
1658 1659 1660
	struct mem_cgroup *victim;
	int ret, total = 0;
	int loop = 0;
1661 1662
	bool noswap = reclaim_options & MEM_CGROUP_RECLAIM_NOSWAP;
	bool shrink = reclaim_options & MEM_CGROUP_RECLAIM_SHRINK;
1663
	bool check_soft = reclaim_options & MEM_CGROUP_RECLAIM_SOFT;
1664
	unsigned long excess;
1665
	unsigned long nr_scanned;
1666

1667
	excess = res_counter_soft_limit_excess(&root_memcg->res) >> PAGE_SHIFT;
K
KAMEZAWA Hiroyuki 已提交
1668

1669
	/* If memsw_is_minimum==1, swap-out is of-no-use. */
1670
	if (!check_soft && !shrink && root_memcg->memsw_is_minimum)
1671 1672
		noswap = true;

1673
	while (1) {
1674 1675
		victim = mem_cgroup_select_victim(root_memcg);
		if (victim == root_memcg) {
K
KAMEZAWA Hiroyuki 已提交
1676
			loop++;
1677 1678 1679 1680 1681 1682 1683
			/*
			 * We are not draining per cpu cached charges during
			 * soft limit reclaim  because global reclaim doesn't
			 * care about charges. It tries to free some memory and
			 * charges will not give any.
			 */
			if (!check_soft && loop >= 1)
1684
				drain_all_stock_async(root_memcg);
1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695
			if (loop >= 2) {
				/*
				 * If we have not been able to reclaim
				 * anything, it might because there are
				 * no reclaimable pages under this hierarchy
				 */
				if (!check_soft || !total) {
					css_put(&victim->css);
					break;
				}
				/*
L
Lucas De Marchi 已提交
1696
				 * We want to do more targeted reclaim.
1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707
				 * excess >> 2 is not to excessive so as to
				 * reclaim too much, nor too less that we keep
				 * coming back to reclaim from this cgroup
				 */
				if (total >= (excess >> 2) ||
					(loop > MEM_CGROUP_MAX_RECLAIM_LOOPS)) {
					css_put(&victim->css);
					break;
				}
			}
		}
1708
		if (!mem_cgroup_reclaimable(victim, noswap)) {
K
KAMEZAWA Hiroyuki 已提交
1709 1710
			/* this cgroup's local usage == 0 */
			css_put(&victim->css);
1711 1712
			continue;
		}
K
KAMEZAWA Hiroyuki 已提交
1713
		/* we use swappiness of local cgroup */
1714
		if (check_soft) {
1715
			ret = mem_cgroup_shrink_node_zone(victim, gfp_mask,
1716 1717
				noswap, zone, &nr_scanned);
			*total_scanned += nr_scanned;
1718
		} else
1719
			ret = try_to_free_mem_cgroup_pages(victim, gfp_mask,
1720
						noswap);
K
KAMEZAWA Hiroyuki 已提交
1721
		css_put(&victim->css);
1722 1723 1724 1725 1726 1727 1728
		/*
		 * At shrinking usage, we can't check we should stop here or
		 * reclaim more. It's depends on callers. last_scanned_child
		 * will work enough for keeping fairness under tree.
		 */
		if (shrink)
			return ret;
K
KAMEZAWA Hiroyuki 已提交
1729
		total += ret;
1730
		if (check_soft) {
1731
			if (!res_counter_soft_limit_excess(&root_memcg->res))
1732
				return total;
1733
		} else if (mem_cgroup_margin(root_memcg))
1734
			return total;
1735
	}
K
KAMEZAWA Hiroyuki 已提交
1736
	return total;
1737 1738
}

K
KAMEZAWA Hiroyuki 已提交
1739 1740 1741
/*
 * Check OOM-Killer is already running under our hierarchy.
 * If someone is running, return false.
1742
 * Has to be called with memcg_oom_lock
K
KAMEZAWA Hiroyuki 已提交
1743
 */
1744
static bool mem_cgroup_oom_lock(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
1745
{
1746 1747
	struct mem_cgroup *iter, *failed = NULL;
	bool cond = true;
1748

1749
	for_each_mem_cgroup_tree_cond(iter, memcg, cond) {
1750
		if (iter->oom_lock) {
1751 1752 1753 1754 1755 1756
			/*
			 * this subtree of our hierarchy is already locked
			 * so we cannot give a lock.
			 */
			failed = iter;
			cond = false;
1757 1758
		} else
			iter->oom_lock = true;
K
KAMEZAWA Hiroyuki 已提交
1759
	}
K
KAMEZAWA Hiroyuki 已提交
1760

1761
	if (!failed)
1762
		return true;
1763 1764 1765 1766 1767 1768

	/*
	 * OK, we failed to lock the whole subtree so we have to clean up
	 * what we set up to the failing subtree
	 */
	cond = true;
1769
	for_each_mem_cgroup_tree_cond(iter, memcg, cond) {
1770 1771 1772 1773 1774 1775
		if (iter == failed) {
			cond = false;
			continue;
		}
		iter->oom_lock = false;
	}
1776
	return false;
1777
}
1778

1779
/*
1780
 * Has to be called with memcg_oom_lock
1781
 */
1782
static int mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
1783
{
K
KAMEZAWA Hiroyuki 已提交
1784 1785
	struct mem_cgroup *iter;

1786
	for_each_mem_cgroup_tree(iter, memcg)
1787 1788 1789 1790
		iter->oom_lock = false;
	return 0;
}

1791
static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
1792 1793 1794
{
	struct mem_cgroup *iter;

1795
	for_each_mem_cgroup_tree(iter, memcg)
1796 1797 1798
		atomic_inc(&iter->under_oom);
}

1799
static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
1800 1801 1802
{
	struct mem_cgroup *iter;

K
KAMEZAWA Hiroyuki 已提交
1803 1804 1805 1806 1807
	/*
	 * When a new child is created while the hierarchy is under oom,
	 * mem_cgroup_oom_lock() may not be called. We have to use
	 * atomic_add_unless() here.
	 */
1808
	for_each_mem_cgroup_tree(iter, memcg)
1809
		atomic_add_unless(&iter->under_oom, -1, 0);
1810 1811
}

1812
static DEFINE_SPINLOCK(memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
1813 1814
static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);

K
KAMEZAWA Hiroyuki 已提交
1815 1816 1817 1818 1819 1820 1821 1822
struct oom_wait_info {
	struct mem_cgroup *mem;
	wait_queue_t	wait;
};

static int memcg_oom_wake_function(wait_queue_t *wait,
	unsigned mode, int sync, void *arg)
{
1823 1824
	struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg,
			  *oom_wait_memcg;
K
KAMEZAWA Hiroyuki 已提交
1825 1826 1827
	struct oom_wait_info *oom_wait_info;

	oom_wait_info = container_of(wait, struct oom_wait_info, wait);
1828
	oom_wait_memcg = oom_wait_info->mem;
K
KAMEZAWA Hiroyuki 已提交
1829 1830 1831 1832 1833

	/*
	 * Both of oom_wait_info->mem and wake_mem are stable under us.
	 * Then we can use css_is_ancestor without taking care of RCU.
	 */
1834 1835
	if (!mem_cgroup_same_or_subtree(oom_wait_memcg, wake_memcg)
		&& !mem_cgroup_same_or_subtree(wake_memcg, oom_wait_memcg))
K
KAMEZAWA Hiroyuki 已提交
1836 1837 1838 1839
		return 0;
	return autoremove_wake_function(wait, mode, sync, arg);
}

1840
static void memcg_wakeup_oom(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
1841
{
1842 1843
	/* for filtering, pass "memcg" as argument. */
	__wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
K
KAMEZAWA Hiroyuki 已提交
1844 1845
}

1846
static void memcg_oom_recover(struct mem_cgroup *memcg)
1847
{
1848 1849
	if (memcg && atomic_read(&memcg->under_oom))
		memcg_wakeup_oom(memcg);
1850 1851
}

K
KAMEZAWA Hiroyuki 已提交
1852 1853 1854
/*
 * try to call OOM killer. returns false if we should exit memory-reclaim loop.
 */
1855
bool mem_cgroup_handle_oom(struct mem_cgroup *memcg, gfp_t mask)
1856
{
K
KAMEZAWA Hiroyuki 已提交
1857
	struct oom_wait_info owait;
1858
	bool locked, need_to_kill;
K
KAMEZAWA Hiroyuki 已提交
1859

1860
	owait.mem = memcg;
K
KAMEZAWA Hiroyuki 已提交
1861 1862 1863 1864
	owait.wait.flags = 0;
	owait.wait.func = memcg_oom_wake_function;
	owait.wait.private = current;
	INIT_LIST_HEAD(&owait.wait.task_list);
1865
	need_to_kill = true;
1866
	mem_cgroup_mark_under_oom(memcg);
1867

1868
	/* At first, try to OOM lock hierarchy under memcg.*/
1869
	spin_lock(&memcg_oom_lock);
1870
	locked = mem_cgroup_oom_lock(memcg);
K
KAMEZAWA Hiroyuki 已提交
1871 1872 1873 1874 1875
	/*
	 * Even if signal_pending(), we can't quit charge() loop without
	 * accounting. So, UNINTERRUPTIBLE is appropriate. But SIGKILL
	 * under OOM is always welcomed, use TASK_KILLABLE here.
	 */
1876
	prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
1877
	if (!locked || memcg->oom_kill_disable)
1878 1879
		need_to_kill = false;
	if (locked)
1880
		mem_cgroup_oom_notify(memcg);
1881
	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
1882

1883 1884
	if (need_to_kill) {
		finish_wait(&memcg_oom_waitq, &owait.wait);
1885
		mem_cgroup_out_of_memory(memcg, mask);
1886
	} else {
K
KAMEZAWA Hiroyuki 已提交
1887
		schedule();
K
KAMEZAWA Hiroyuki 已提交
1888
		finish_wait(&memcg_oom_waitq, &owait.wait);
K
KAMEZAWA Hiroyuki 已提交
1889
	}
1890
	spin_lock(&memcg_oom_lock);
1891
	if (locked)
1892 1893
		mem_cgroup_oom_unlock(memcg);
	memcg_wakeup_oom(memcg);
1894
	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
1895

1896
	mem_cgroup_unmark_under_oom(memcg);
1897

K
KAMEZAWA Hiroyuki 已提交
1898 1899 1900
	if (test_thread_flag(TIF_MEMDIE) || fatal_signal_pending(current))
		return false;
	/* Give chance to dying process */
1901
	schedule_timeout_uninterruptible(1);
K
KAMEZAWA Hiroyuki 已提交
1902
	return true;
1903 1904
}

1905 1906 1907
/*
 * Currently used to update mapped file statistics, but the routine can be
 * generalized to update other statistics as well.
1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926
 *
 * Notes: Race condition
 *
 * We usually use page_cgroup_lock() for accessing page_cgroup member but
 * it tends to be costly. But considering some conditions, we doesn't need
 * to do so _always_.
 *
 * Considering "charge", lock_page_cgroup() is not required because all
 * file-stat operations happen after a page is attached to radix-tree. There
 * are no race with "charge".
 *
 * Considering "uncharge", we know that memcg doesn't clear pc->mem_cgroup
 * at "uncharge" intentionally. So, we always see valid pc->mem_cgroup even
 * if there are race with "uncharge". Statistics itself is properly handled
 * by flags.
 *
 * Considering "move", this is an only case we see a race. To make the race
 * small, we check MEM_CGROUP_ON_MOVE percpu value and detect there are
 * possibility of race condition. If there is, we take a lock.
1927
 */
1928

1929 1930
void mem_cgroup_update_page_stat(struct page *page,
				 enum mem_cgroup_page_stat_item idx, int val)
1931
{
1932
	struct mem_cgroup *memcg;
1933 1934
	struct page_cgroup *pc = lookup_page_cgroup(page);
	bool need_unlock = false;
1935
	unsigned long uninitialized_var(flags);
1936 1937 1938 1939

	if (unlikely(!pc))
		return;

1940
	rcu_read_lock();
1941 1942
	memcg = pc->mem_cgroup;
	if (unlikely(!memcg || !PageCgroupUsed(pc)))
1943 1944
		goto out;
	/* pc->mem_cgroup is unstable ? */
1945
	if (unlikely(mem_cgroup_stealed(memcg)) || PageTransHuge(page)) {
1946
		/* take a lock against to access pc->mem_cgroup */
1947
		move_lock_page_cgroup(pc, &flags);
1948
		need_unlock = true;
1949 1950
		memcg = pc->mem_cgroup;
		if (!memcg || !PageCgroupUsed(pc))
1951 1952
			goto out;
	}
1953 1954

	switch (idx) {
1955
	case MEMCG_NR_FILE_MAPPED:
1956 1957 1958
		if (val > 0)
			SetPageCgroupFileMapped(pc);
		else if (!page_mapped(page))
1959
			ClearPageCgroupFileMapped(pc);
1960
		idx = MEM_CGROUP_STAT_FILE_MAPPED;
1961 1962 1963
		break;
	default:
		BUG();
1964
	}
1965

1966
	this_cpu_add(memcg->stat->count[idx], val);
1967

1968 1969
out:
	if (unlikely(need_unlock))
1970
		move_unlock_page_cgroup(pc, &flags);
1971 1972
	rcu_read_unlock();
	return;
1973
}
1974
EXPORT_SYMBOL(mem_cgroup_update_page_stat);
1975

1976 1977 1978 1979
/*
 * size of first charge trial. "32" comes from vmscan.c's magic value.
 * TODO: maybe necessary to use big numbers in big irons.
 */
1980
#define CHARGE_BATCH	32U
1981 1982
struct memcg_stock_pcp {
	struct mem_cgroup *cached; /* this never be root cgroup */
1983
	unsigned int nr_pages;
1984
	struct work_struct work;
1985 1986
	unsigned long flags;
#define FLUSHING_CACHED_CHARGE	(0)
1987 1988
};
static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
1989
static DEFINE_MUTEX(percpu_charge_mutex);
1990 1991

/*
1992
 * Try to consume stocked charge on this cpu. If success, one page is consumed
1993 1994 1995 1996
 * from local stock and true is returned. If the stock is 0 or charges from a
 * cgroup which is not current target, returns false. This stock will be
 * refilled.
 */
1997
static bool consume_stock(struct mem_cgroup *memcg)
1998 1999 2000 2001 2002
{
	struct memcg_stock_pcp *stock;
	bool ret = true;

	stock = &get_cpu_var(memcg_stock);
2003
	if (memcg == stock->cached && stock->nr_pages)
2004
		stock->nr_pages--;
2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017
	else /* need to call res_counter_charge */
		ret = false;
	put_cpu_var(memcg_stock);
	return ret;
}

/*
 * Returns stocks cached in percpu to res_counter and reset cached information.
 */
static void drain_stock(struct memcg_stock_pcp *stock)
{
	struct mem_cgroup *old = stock->cached;

2018 2019 2020 2021
	if (stock->nr_pages) {
		unsigned long bytes = stock->nr_pages * PAGE_SIZE;

		res_counter_uncharge(&old->res, bytes);
2022
		if (do_swap_account)
2023 2024
			res_counter_uncharge(&old->memsw, bytes);
		stock->nr_pages = 0;
2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036
	}
	stock->cached = NULL;
}

/*
 * This must be called under preempt disabled or must be called by
 * a thread which is pinned to local cpu.
 */
static void drain_local_stock(struct work_struct *dummy)
{
	struct memcg_stock_pcp *stock = &__get_cpu_var(memcg_stock);
	drain_stock(stock);
2037
	clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
2038 2039 2040 2041
}

/*
 * Cache charges(val) which is from res_counter, to local per_cpu area.
2042
 * This will be consumed by consume_stock() function, later.
2043
 */
2044
static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2045 2046 2047
{
	struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);

2048
	if (stock->cached != memcg) { /* reset if necessary */
2049
		drain_stock(stock);
2050
		stock->cached = memcg;
2051
	}
2052
	stock->nr_pages += nr_pages;
2053 2054 2055 2056
	put_cpu_var(memcg_stock);
}

/*
2057
 * Drains all per-CPU charge caches for given root_memcg resp. subtree
2058 2059
 * of the hierarchy under it. sync flag says whether we should block
 * until the work is done.
2060
 */
2061
static void drain_all_stock(struct mem_cgroup *root_memcg, bool sync)
2062
{
2063
	int cpu, curcpu;
2064

2065 2066
	/* Notify other cpus that system-wide "drain" is running */
	get_online_cpus();
2067
	curcpu = get_cpu();
2068 2069
	for_each_online_cpu(cpu) {
		struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2070
		struct mem_cgroup *memcg;
2071

2072 2073
		memcg = stock->cached;
		if (!memcg || !stock->nr_pages)
2074
			continue;
2075
		if (!mem_cgroup_same_or_subtree(root_memcg, memcg))
2076
			continue;
2077 2078 2079 2080 2081 2082
		if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
			if (cpu == curcpu)
				drain_local_stock(&stock->work);
			else
				schedule_work_on(cpu, &stock->work);
		}
2083
	}
2084
	put_cpu();
2085 2086 2087 2088 2089 2090

	if (!sync)
		goto out;

	for_each_online_cpu(cpu) {
		struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2091
		if (test_bit(FLUSHING_CACHED_CHARGE, &stock->flags))
2092 2093 2094
			flush_work(&stock->work);
	}
out:
2095
 	put_online_cpus();
2096 2097 2098 2099 2100 2101 2102 2103
}

/*
 * Tries to drain stocked charges in other cpus. This function is asynchronous
 * and just put a work per cpu for draining localy on each cpu. Caller can
 * expects some charges will be back to res_counter later but cannot wait for
 * it.
 */
2104
static void drain_all_stock_async(struct mem_cgroup *root_memcg)
2105
{
2106 2107 2108 2109 2110
	/*
	 * If someone calls draining, avoid adding more kworker runs.
	 */
	if (!mutex_trylock(&percpu_charge_mutex))
		return;
2111
	drain_all_stock(root_memcg, false);
2112
	mutex_unlock(&percpu_charge_mutex);
2113 2114 2115
}

/* This is a synchronous drain interface. */
2116
static void drain_all_stock_sync(struct mem_cgroup *root_memcg)
2117 2118
{
	/* called when force_empty is called */
2119
	mutex_lock(&percpu_charge_mutex);
2120
	drain_all_stock(root_memcg, true);
2121
	mutex_unlock(&percpu_charge_mutex);
2122 2123
}

2124 2125 2126 2127
/*
 * This function drains percpu counter value from DEAD cpu and
 * move it to local cpu. Note that this function can be preempted.
 */
2128
static void mem_cgroup_drain_pcp_counter(struct mem_cgroup *memcg, int cpu)
2129 2130 2131
{
	int i;

2132
	spin_lock(&memcg->pcp_counter_lock);
2133
	for (i = 0; i < MEM_CGROUP_STAT_DATA; i++) {
2134
		long x = per_cpu(memcg->stat->count[i], cpu);
2135

2136 2137
		per_cpu(memcg->stat->count[i], cpu) = 0;
		memcg->nocpu_base.count[i] += x;
2138
	}
2139
	for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
2140
		unsigned long x = per_cpu(memcg->stat->events[i], cpu);
2141

2142 2143
		per_cpu(memcg->stat->events[i], cpu) = 0;
		memcg->nocpu_base.events[i] += x;
2144
	}
2145
	/* need to clear ON_MOVE value, works as a kind of lock. */
2146 2147
	per_cpu(memcg->stat->count[MEM_CGROUP_ON_MOVE], cpu) = 0;
	spin_unlock(&memcg->pcp_counter_lock);
2148 2149
}

2150
static void synchronize_mem_cgroup_on_move(struct mem_cgroup *memcg, int cpu)
2151 2152 2153
{
	int idx = MEM_CGROUP_ON_MOVE;

2154 2155 2156
	spin_lock(&memcg->pcp_counter_lock);
	per_cpu(memcg->stat->count[idx], cpu) = memcg->nocpu_base.count[idx];
	spin_unlock(&memcg->pcp_counter_lock);
2157 2158 2159
}

static int __cpuinit memcg_cpu_hotplug_callback(struct notifier_block *nb,
2160 2161 2162 2163 2164
					unsigned long action,
					void *hcpu)
{
	int cpu = (unsigned long)hcpu;
	struct memcg_stock_pcp *stock;
2165
	struct mem_cgroup *iter;
2166

2167 2168 2169 2170 2171 2172
	if ((action == CPU_ONLINE)) {
		for_each_mem_cgroup_all(iter)
			synchronize_mem_cgroup_on_move(iter, cpu);
		return NOTIFY_OK;
	}

2173
	if ((action != CPU_DEAD) || action != CPU_DEAD_FROZEN)
2174
		return NOTIFY_OK;
2175 2176 2177 2178

	for_each_mem_cgroup_all(iter)
		mem_cgroup_drain_pcp_counter(iter, cpu);

2179 2180 2181 2182 2183
	stock = &per_cpu(memcg_stock, cpu);
	drain_stock(stock);
	return NOTIFY_OK;
}

2184 2185 2186 2187 2188 2189 2190 2191 2192 2193

/* See __mem_cgroup_try_charge() for details */
enum {
	CHARGE_OK,		/* success */
	CHARGE_RETRY,		/* need to retry but retry is not bad */
	CHARGE_NOMEM,		/* we can't do more. return -ENOMEM */
	CHARGE_WOULDBLOCK,	/* GFP_WAIT wasn't set and no enough res. */
	CHARGE_OOM_DIE,		/* the current is killed because of OOM */
};

2194
static int mem_cgroup_do_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
2195
				unsigned int nr_pages, bool oom_check)
2196
{
2197
	unsigned long csize = nr_pages * PAGE_SIZE;
2198 2199 2200 2201 2202
	struct mem_cgroup *mem_over_limit;
	struct res_counter *fail_res;
	unsigned long flags = 0;
	int ret;

2203
	ret = res_counter_charge(&memcg->res, csize, &fail_res);
2204 2205 2206 2207

	if (likely(!ret)) {
		if (!do_swap_account)
			return CHARGE_OK;
2208
		ret = res_counter_charge(&memcg->memsw, csize, &fail_res);
2209 2210 2211
		if (likely(!ret))
			return CHARGE_OK;

2212
		res_counter_uncharge(&memcg->res, csize);
2213 2214 2215 2216
		mem_over_limit = mem_cgroup_from_res_counter(fail_res, memsw);
		flags |= MEM_CGROUP_RECLAIM_NOSWAP;
	} else
		mem_over_limit = mem_cgroup_from_res_counter(fail_res, res);
2217
	/*
2218 2219
	 * nr_pages can be either a huge page (HPAGE_PMD_NR), a batch
	 * of regular pages (CHARGE_BATCH), or a single regular page (1).
2220 2221 2222 2223
	 *
	 * Never reclaim on behalf of optional batching, retry with a
	 * single page instead.
	 */
2224
	if (nr_pages == CHARGE_BATCH)
2225 2226 2227 2228 2229 2230
		return CHARGE_RETRY;

	if (!(gfp_mask & __GFP_WAIT))
		return CHARGE_WOULDBLOCK;

	ret = mem_cgroup_hierarchical_reclaim(mem_over_limit, NULL,
2231
					      gfp_mask, flags, NULL);
2232
	if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
2233
		return CHARGE_RETRY;
2234
	/*
2235 2236 2237 2238 2239 2240 2241
	 * Even though the limit is exceeded at this point, reclaim
	 * may have been able to free some pages.  Retry the charge
	 * before killing the task.
	 *
	 * Only for regular pages, though: huge pages are rather
	 * unlikely to succeed so close to the limit, and we fall back
	 * to regular pages anyway in case of failure.
2242
	 */
2243
	if (nr_pages == 1 && ret)
2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262
		return CHARGE_RETRY;

	/*
	 * At task move, charge accounts can be doubly counted. So, it's
	 * better to wait until the end of task_move if something is going on.
	 */
	if (mem_cgroup_wait_acct_move(mem_over_limit))
		return CHARGE_RETRY;

	/* If we don't need to call oom-killer at el, return immediately */
	if (!oom_check)
		return CHARGE_NOMEM;
	/* check OOM */
	if (!mem_cgroup_handle_oom(mem_over_limit, gfp_mask))
		return CHARGE_OOM_DIE;

	return CHARGE_RETRY;
}

2263 2264 2265
/*
 * Unlike exported interface, "oom" parameter is added. if oom==true,
 * oom-killer can be invoked.
2266
 */
2267
static int __mem_cgroup_try_charge(struct mm_struct *mm,
A
Andrea Arcangeli 已提交
2268
				   gfp_t gfp_mask,
2269
				   unsigned int nr_pages,
2270
				   struct mem_cgroup **ptr,
2271
				   bool oom)
2272
{
2273
	unsigned int batch = max(CHARGE_BATCH, nr_pages);
2274
	int nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
2275
	struct mem_cgroup *memcg = NULL;
2276
	int ret;
2277

K
KAMEZAWA Hiroyuki 已提交
2278 2279 2280 2281 2282 2283 2284 2285
	/*
	 * Unlike gloval-vm's OOM-kill, we're not in memory shortage
	 * in system level. So, allow to go ahead dying process in addition to
	 * MEMDIE process.
	 */
	if (unlikely(test_thread_flag(TIF_MEMDIE)
		     || fatal_signal_pending(current)))
		goto bypass;
2286

2287
	/*
2288 2289
	 * We always charge the cgroup the mm_struct belongs to.
	 * The mm_struct's mem_cgroup changes on task migration if the
2290 2291 2292
	 * thread group leader migrates. It's possible that mm is not
	 * set, if so charge the init_mm (happens for pagecache usage).
	 */
2293
	if (!*ptr && !mm)
K
KAMEZAWA Hiroyuki 已提交
2294 2295
		goto bypass;
again:
2296 2297 2298 2299
	if (*ptr) { /* css should be a valid one */
		memcg = *ptr;
		VM_BUG_ON(css_is_removed(&memcg->css));
		if (mem_cgroup_is_root(memcg))
K
KAMEZAWA Hiroyuki 已提交
2300
			goto done;
2301
		if (nr_pages == 1 && consume_stock(memcg))
K
KAMEZAWA Hiroyuki 已提交
2302
			goto done;
2303
		css_get(&memcg->css);
2304
	} else {
K
KAMEZAWA Hiroyuki 已提交
2305
		struct task_struct *p;
2306

K
KAMEZAWA Hiroyuki 已提交
2307 2308 2309
		rcu_read_lock();
		p = rcu_dereference(mm->owner);
		/*
2310
		 * Because we don't have task_lock(), "p" can exit.
2311
		 * In that case, "memcg" can point to root or p can be NULL with
2312 2313 2314 2315 2316 2317
		 * race with swapoff. Then, we have small risk of mis-accouning.
		 * But such kind of mis-account by race always happens because
		 * we don't have cgroup_mutex(). It's overkill and we allo that
		 * small race, here.
		 * (*) swapoff at el will charge against mm-struct not against
		 * task-struct. So, mm->owner can be NULL.
K
KAMEZAWA Hiroyuki 已提交
2318
		 */
2319 2320
		memcg = mem_cgroup_from_task(p);
		if (!memcg || mem_cgroup_is_root(memcg)) {
K
KAMEZAWA Hiroyuki 已提交
2321 2322 2323
			rcu_read_unlock();
			goto done;
		}
2324
		if (nr_pages == 1 && consume_stock(memcg)) {
K
KAMEZAWA Hiroyuki 已提交
2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336
			/*
			 * It seems dagerous to access memcg without css_get().
			 * But considering how consume_stok works, it's not
			 * necessary. If consume_stock success, some charges
			 * from this memcg are cached on this cpu. So, we
			 * don't need to call css_get()/css_tryget() before
			 * calling consume_stock().
			 */
			rcu_read_unlock();
			goto done;
		}
		/* after here, we may be blocked. we need to get refcnt */
2337
		if (!css_tryget(&memcg->css)) {
K
KAMEZAWA Hiroyuki 已提交
2338 2339 2340 2341 2342
			rcu_read_unlock();
			goto again;
		}
		rcu_read_unlock();
	}
2343

2344 2345
	do {
		bool oom_check;
2346

2347
		/* If killed, bypass charge */
K
KAMEZAWA Hiroyuki 已提交
2348
		if (fatal_signal_pending(current)) {
2349
			css_put(&memcg->css);
2350
			goto bypass;
K
KAMEZAWA Hiroyuki 已提交
2351
		}
2352

2353 2354 2355 2356
		oom_check = false;
		if (oom && !nr_oom_retries) {
			oom_check = true;
			nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
2357
		}
2358

2359
		ret = mem_cgroup_do_charge(memcg, gfp_mask, batch, oom_check);
2360 2361 2362 2363
		switch (ret) {
		case CHARGE_OK:
			break;
		case CHARGE_RETRY: /* not in OOM situation but retry */
2364
			batch = nr_pages;
2365 2366
			css_put(&memcg->css);
			memcg = NULL;
K
KAMEZAWA Hiroyuki 已提交
2367
			goto again;
2368
		case CHARGE_WOULDBLOCK: /* !__GFP_WAIT */
2369
			css_put(&memcg->css);
2370 2371
			goto nomem;
		case CHARGE_NOMEM: /* OOM routine works */
K
KAMEZAWA Hiroyuki 已提交
2372
			if (!oom) {
2373
				css_put(&memcg->css);
K
KAMEZAWA Hiroyuki 已提交
2374
				goto nomem;
K
KAMEZAWA Hiroyuki 已提交
2375
			}
2376 2377 2378 2379
			/* If oom, we never return -ENOMEM */
			nr_oom_retries--;
			break;
		case CHARGE_OOM_DIE: /* Killed by OOM Killer */
2380
			css_put(&memcg->css);
K
KAMEZAWA Hiroyuki 已提交
2381
			goto bypass;
2382
		}
2383 2384
	} while (ret != CHARGE_OK);

2385
	if (batch > nr_pages)
2386 2387
		refill_stock(memcg, batch - nr_pages);
	css_put(&memcg->css);
2388
done:
2389
	*ptr = memcg;
2390 2391
	return 0;
nomem:
2392
	*ptr = NULL;
2393
	return -ENOMEM;
K
KAMEZAWA Hiroyuki 已提交
2394
bypass:
2395
	*ptr = NULL;
K
KAMEZAWA Hiroyuki 已提交
2396
	return 0;
2397
}
2398

2399 2400 2401 2402 2403
/*
 * Somemtimes we have to undo a charge we got by try_charge().
 * This function is for that and do uncharge, put css's refcnt.
 * gotten by try_charge().
 */
2404
static void __mem_cgroup_cancel_charge(struct mem_cgroup *memcg,
2405
				       unsigned int nr_pages)
2406
{
2407
	if (!mem_cgroup_is_root(memcg)) {
2408 2409
		unsigned long bytes = nr_pages * PAGE_SIZE;

2410
		res_counter_uncharge(&memcg->res, bytes);
2411
		if (do_swap_account)
2412
			res_counter_uncharge(&memcg->memsw, bytes);
2413
	}
2414 2415
}

2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434
/*
 * A helper function to get mem_cgroup from ID. must be called under
 * rcu_read_lock(). The caller must check css_is_removed() or some if
 * it's concern. (dropping refcnt from swap can be called against removed
 * memcg.)
 */
static struct mem_cgroup *mem_cgroup_lookup(unsigned short id)
{
	struct cgroup_subsys_state *css;

	/* ID 0 is unused ID */
	if (!id)
		return NULL;
	css = css_lookup(&mem_cgroup_subsys, id);
	if (!css)
		return NULL;
	return container_of(css, struct mem_cgroup, css);
}

2435
struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page)
2436
{
2437
	struct mem_cgroup *memcg = NULL;
2438
	struct page_cgroup *pc;
2439
	unsigned short id;
2440 2441
	swp_entry_t ent;

2442 2443 2444
	VM_BUG_ON(!PageLocked(page));

	pc = lookup_page_cgroup(page);
2445
	lock_page_cgroup(pc);
2446
	if (PageCgroupUsed(pc)) {
2447 2448 2449
		memcg = pc->mem_cgroup;
		if (memcg && !css_tryget(&memcg->css))
			memcg = NULL;
2450
	} else if (PageSwapCache(page)) {
2451
		ent.val = page_private(page);
2452 2453
		id = lookup_swap_cgroup(ent);
		rcu_read_lock();
2454 2455 2456
		memcg = mem_cgroup_lookup(id);
		if (memcg && !css_tryget(&memcg->css))
			memcg = NULL;
2457
		rcu_read_unlock();
2458
	}
2459
	unlock_page_cgroup(pc);
2460
	return memcg;
2461 2462
}

2463
static void __mem_cgroup_commit_charge(struct mem_cgroup *memcg,
2464
				       struct page *page,
2465
				       unsigned int nr_pages,
2466
				       struct page_cgroup *pc,
2467
				       enum charge_type ctype)
2468
{
2469 2470 2471
	lock_page_cgroup(pc);
	if (unlikely(PageCgroupUsed(pc))) {
		unlock_page_cgroup(pc);
2472
		__mem_cgroup_cancel_charge(memcg, nr_pages);
2473 2474 2475 2476 2477 2478
		return;
	}
	/*
	 * we don't need page_cgroup_lock about tail pages, becase they are not
	 * accessed by any other context at this point.
	 */
2479
	pc->mem_cgroup = memcg;
2480 2481 2482 2483 2484 2485 2486
	/*
	 * We access a page_cgroup asynchronously without lock_page_cgroup().
	 * Especially when a page_cgroup is taken from a page, pc->mem_cgroup
	 * is accessed after testing USED bit. To make pc->mem_cgroup visible
	 * before USED bit, we need memory barrier here.
	 * See mem_cgroup_add_lru_list(), etc.
 	 */
K
KAMEZAWA Hiroyuki 已提交
2487
	smp_wmb();
2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500
	switch (ctype) {
	case MEM_CGROUP_CHARGE_TYPE_CACHE:
	case MEM_CGROUP_CHARGE_TYPE_SHMEM:
		SetPageCgroupCache(pc);
		SetPageCgroupUsed(pc);
		break;
	case MEM_CGROUP_CHARGE_TYPE_MAPPED:
		ClearPageCgroupCache(pc);
		SetPageCgroupUsed(pc);
		break;
	default:
		break;
	}
2501

2502
	mem_cgroup_charge_statistics(memcg, PageCgroupCache(pc), nr_pages);
2503
	unlock_page_cgroup(pc);
2504 2505 2506 2507 2508
	/*
	 * "charge_statistics" updated event counter. Then, check it.
	 * Insert ancestor (and ancestor's ancestors), to softlimit RB-tree.
	 * if they exceeds softlimit.
	 */
2509
	memcg_check_events(memcg, page);
2510
}
2511

2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525
#ifdef CONFIG_TRANSPARENT_HUGEPAGE

#define PCGF_NOCOPY_AT_SPLIT ((1 << PCG_LOCK) | (1 << PCG_MOVE_LOCK) |\
			(1 << PCG_ACCT_LRU) | (1 << PCG_MIGRATION))
/*
 * Because tail pages are not marked as "used", set it. We're under
 * zone->lru_lock, 'splitting on pmd' and compund_lock.
 */
void mem_cgroup_split_huge_fixup(struct page *head, struct page *tail)
{
	struct page_cgroup *head_pc = lookup_page_cgroup(head);
	struct page_cgroup *tail_pc = lookup_page_cgroup(tail);
	unsigned long flags;

2526 2527
	if (mem_cgroup_disabled())
		return;
2528
	/*
2529
	 * We have no races with charge/uncharge but will have races with
2530 2531 2532 2533 2534 2535
	 * page state accounting.
	 */
	move_lock_page_cgroup(head_pc, &flags);

	tail_pc->mem_cgroup = head_pc->mem_cgroup;
	smp_wmb(); /* see __commit_charge() */
2536 2537 2538 2539 2540 2541 2542 2543 2544 2545
	if (PageCgroupAcctLRU(head_pc)) {
		enum lru_list lru;
		struct mem_cgroup_per_zone *mz;

		/*
		 * LRU flags cannot be copied because we need to add tail
		 *.page to LRU by generic call and our hook will be called.
		 * We hold lru_lock, then, reduce counter directly.
		 */
		lru = page_lru(head);
2546
		mz = page_cgroup_zoneinfo(head_pc->mem_cgroup, head);
2547 2548
		MEM_CGROUP_ZSTAT(mz, lru) -= 1;
	}
2549 2550 2551 2552 2553
	tail_pc->flags = head_pc->flags & ~PCGF_NOCOPY_AT_SPLIT;
	move_unlock_page_cgroup(head_pc, &flags);
}
#endif

2554
/**
2555
 * mem_cgroup_move_account - move account of the page
2556
 * @page: the page
2557
 * @nr_pages: number of regular pages (>1 for huge pages)
2558 2559 2560
 * @pc:	page_cgroup of the page.
 * @from: mem_cgroup which the page is moved from.
 * @to:	mem_cgroup which the page is moved to. @from != @to.
2561
 * @uncharge: whether we should call uncharge and css_put against @from.
2562 2563
 *
 * The caller must confirm following.
K
KAMEZAWA Hiroyuki 已提交
2564
 * - page is not on LRU (isolate_page() is useful.)
2565
 * - compound_lock is held when nr_pages > 1
2566
 *
2567
 * This function doesn't do "charge" nor css_get to new cgroup. It should be
L
Lucas De Marchi 已提交
2568
 * done by a caller(__mem_cgroup_try_charge would be useful). If @uncharge is
2569 2570
 * true, this function does "uncharge" from old cgroup, but it doesn't if
 * @uncharge is false, so a caller should do "uncharge".
2571
 */
2572 2573 2574 2575 2576 2577
static int mem_cgroup_move_account(struct page *page,
				   unsigned int nr_pages,
				   struct page_cgroup *pc,
				   struct mem_cgroup *from,
				   struct mem_cgroup *to,
				   bool uncharge)
2578
{
2579 2580
	unsigned long flags;
	int ret;
2581

2582
	VM_BUG_ON(from == to);
2583
	VM_BUG_ON(PageLRU(page));
2584 2585 2586 2587 2588 2589 2590
	/*
	 * The page is isolated from LRU. So, collapse function
	 * will not handle this page. But page splitting can happen.
	 * Do this check under compound_page_lock(). The caller should
	 * hold it.
	 */
	ret = -EBUSY;
2591
	if (nr_pages > 1 && !PageTransHuge(page))
2592 2593 2594 2595 2596 2597 2598 2599 2600
		goto out;

	lock_page_cgroup(pc);

	ret = -EINVAL;
	if (!PageCgroupUsed(pc) || pc->mem_cgroup != from)
		goto unlock;

	move_lock_page_cgroup(pc, &flags);
2601

2602
	if (PageCgroupFileMapped(pc)) {
2603 2604 2605 2606 2607
		/* Update mapped_file data for mem_cgroup */
		preempt_disable();
		__this_cpu_dec(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
		__this_cpu_inc(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
		preempt_enable();
2608
	}
2609
	mem_cgroup_charge_statistics(from, PageCgroupCache(pc), -nr_pages);
2610 2611
	if (uncharge)
		/* This is not "cancel", but cancel_charge does all we need. */
2612
		__mem_cgroup_cancel_charge(from, nr_pages);
2613

2614
	/* caller should have done css_get */
K
KAMEZAWA Hiroyuki 已提交
2615
	pc->mem_cgroup = to;
2616
	mem_cgroup_charge_statistics(to, PageCgroupCache(pc), nr_pages);
2617 2618 2619
	/*
	 * We charges against "to" which may not have any tasks. Then, "to"
	 * can be under rmdir(). But in current implementation, caller of
2620
	 * this function is just force_empty() and move charge, so it's
L
Lucas De Marchi 已提交
2621
	 * guaranteed that "to" is never removed. So, we don't check rmdir
2622
	 * status here.
2623
	 */
2624 2625 2626
	move_unlock_page_cgroup(pc, &flags);
	ret = 0;
unlock:
2627
	unlock_page_cgroup(pc);
2628 2629 2630
	/*
	 * check events
	 */
2631 2632
	memcg_check_events(to, page);
	memcg_check_events(from, page);
2633
out:
2634 2635 2636 2637 2638 2639 2640
	return ret;
}

/*
 * move charges to its parent.
 */

2641 2642
static int mem_cgroup_move_parent(struct page *page,
				  struct page_cgroup *pc,
2643 2644 2645 2646 2647 2648
				  struct mem_cgroup *child,
				  gfp_t gfp_mask)
{
	struct cgroup *cg = child->css.cgroup;
	struct cgroup *pcg = cg->parent;
	struct mem_cgroup *parent;
2649
	unsigned int nr_pages;
2650
	unsigned long uninitialized_var(flags);
2651 2652 2653 2654 2655 2656
	int ret;

	/* Is ROOT ? */
	if (!pcg)
		return -EINVAL;

2657 2658 2659 2660 2661
	ret = -EBUSY;
	if (!get_page_unless_zero(page))
		goto out;
	if (isolate_lru_page(page))
		goto put;
2662

2663
	nr_pages = hpage_nr_pages(page);
K
KAMEZAWA Hiroyuki 已提交
2664

2665
	parent = mem_cgroup_from_cont(pcg);
2666
	ret = __mem_cgroup_try_charge(NULL, gfp_mask, nr_pages, &parent, false);
2667
	if (ret || !parent)
2668
		goto put_back;
2669

2670
	if (nr_pages > 1)
2671 2672
		flags = compound_lock_irqsave(page);

2673
	ret = mem_cgroup_move_account(page, nr_pages, pc, child, parent, true);
2674
	if (ret)
2675
		__mem_cgroup_cancel_charge(parent, nr_pages);
2676

2677
	if (nr_pages > 1)
2678
		compound_unlock_irqrestore(page, flags);
2679
put_back:
K
KAMEZAWA Hiroyuki 已提交
2680
	putback_lru_page(page);
2681
put:
2682
	put_page(page);
2683
out:
2684 2685 2686
	return ret;
}

2687 2688 2689 2690 2691 2692 2693
/*
 * Charge the memory controller for page usage.
 * Return
 * 0 if the charge was successful
 * < 0 if the cgroup is over its limit
 */
static int mem_cgroup_charge_common(struct page *page, struct mm_struct *mm,
2694
				gfp_t gfp_mask, enum charge_type ctype)
2695
{
2696
	struct mem_cgroup *memcg = NULL;
2697
	unsigned int nr_pages = 1;
2698
	struct page_cgroup *pc;
2699
	bool oom = true;
2700
	int ret;
A
Andrea Arcangeli 已提交
2701

A
Andrea Arcangeli 已提交
2702
	if (PageTransHuge(page)) {
2703
		nr_pages <<= compound_order(page);
A
Andrea Arcangeli 已提交
2704
		VM_BUG_ON(!PageTransHuge(page));
2705 2706 2707 2708 2709
		/*
		 * Never OOM-kill a process for a huge page.  The
		 * fault handler will fall back to regular pages.
		 */
		oom = false;
A
Andrea Arcangeli 已提交
2710
	}
2711 2712

	pc = lookup_page_cgroup(page);
2713
	BUG_ON(!pc); /* XXX: remove this and move pc lookup into commit */
2714

2715 2716
	ret = __mem_cgroup_try_charge(mm, gfp_mask, nr_pages, &memcg, oom);
	if (ret || !memcg)
2717 2718
		return ret;

2719
	__mem_cgroup_commit_charge(memcg, page, nr_pages, pc, ctype);
2720 2721 2722
	return 0;
}

2723 2724
int mem_cgroup_newpage_charge(struct page *page,
			      struct mm_struct *mm, gfp_t gfp_mask)
2725
{
2726
	if (mem_cgroup_disabled())
2727
		return 0;
2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738
	/*
	 * If already mapped, we don't have to account.
	 * If page cache, page->mapping has address_space.
	 * But page->mapping may have out-of-use anon_vma pointer,
	 * detecit it by PageAnon() check. newly-mapped-anon's page->mapping
	 * is NULL.
  	 */
	if (page_mapped(page) || (page->mapping && !PageAnon(page)))
		return 0;
	if (unlikely(!mm))
		mm = &init_mm;
2739
	return mem_cgroup_charge_common(page, mm, gfp_mask,
2740
				MEM_CGROUP_CHARGE_TYPE_MAPPED);
2741 2742
}

D
Daisuke Nishimura 已提交
2743 2744 2745 2746
static void
__mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr,
					enum charge_type ctype);

2747
static void
2748
__mem_cgroup_commit_charge_lrucare(struct page *page, struct mem_cgroup *memcg,
2749 2750 2751 2752 2753 2754 2755 2756 2757
					enum charge_type ctype)
{
	struct page_cgroup *pc = lookup_page_cgroup(page);
	/*
	 * In some case, SwapCache, FUSE(splice_buf->radixtree), the page
	 * is already on LRU. It means the page may on some other page_cgroup's
	 * LRU. Take care of it.
	 */
	mem_cgroup_lru_del_before_commit(page);
2758
	__mem_cgroup_commit_charge(memcg, page, 1, pc, ctype);
2759 2760 2761 2762
	mem_cgroup_lru_add_after_commit(page);
	return;
}

2763 2764
int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm,
				gfp_t gfp_mask)
2765
{
2766
	struct mem_cgroup *memcg = NULL;
2767 2768
	int ret;

2769
	if (mem_cgroup_disabled())
2770
		return 0;
2771 2772
	if (PageCompound(page))
		return 0;
2773

2774
	if (unlikely(!mm))
2775
		mm = &init_mm;
2776

2777
	if (page_is_file_cache(page)) {
2778 2779
		ret = __mem_cgroup_try_charge(mm, gfp_mask, 1, &memcg, true);
		if (ret || !memcg)
2780
			return ret;
2781

2782 2783 2784 2785 2786
		/*
		 * FUSE reuses pages without going through the final
		 * put that would remove them from the LRU list, make
		 * sure that they get relinked properly.
		 */
2787
		__mem_cgroup_commit_charge_lrucare(page, memcg,
2788 2789 2790
					MEM_CGROUP_CHARGE_TYPE_CACHE);
		return ret;
	}
D
Daisuke Nishimura 已提交
2791 2792
	/* shmem */
	if (PageSwapCache(page)) {
2793
		ret = mem_cgroup_try_charge_swapin(mm, page, gfp_mask, &memcg);
D
Daisuke Nishimura 已提交
2794
		if (!ret)
2795
			__mem_cgroup_commit_charge_swapin(page, memcg,
D
Daisuke Nishimura 已提交
2796 2797 2798
					MEM_CGROUP_CHARGE_TYPE_SHMEM);
	} else
		ret = mem_cgroup_charge_common(page, mm, gfp_mask,
2799
					MEM_CGROUP_CHARGE_TYPE_SHMEM);
2800 2801

	return ret;
2802 2803
}

2804 2805 2806
/*
 * While swap-in, try_charge -> commit or cancel, the page is locked.
 * And when try_charge() successfully returns, one refcnt to memcg without
2807
 * struct page_cgroup is acquired. This refcnt will be consumed by
2808 2809
 * "commit()" or removed by "cancel()"
 */
2810 2811 2812 2813
int mem_cgroup_try_charge_swapin(struct mm_struct *mm,
				 struct page *page,
				 gfp_t mask, struct mem_cgroup **ptr)
{
2814
	struct mem_cgroup *memcg;
2815
	int ret;
2816

2817 2818
	*ptr = NULL;

2819
	if (mem_cgroup_disabled())
2820 2821 2822 2823 2824 2825
		return 0;

	if (!do_swap_account)
		goto charge_cur_mm;
	/*
	 * A racing thread's fault, or swapoff, may have already updated
H
Hugh Dickins 已提交
2826 2827 2828
	 * the pte, and even removed page from swap cache: in those cases
	 * do_swap_page()'s pte_same() test will fail; but there's also a
	 * KSM case which does need to charge the page.
2829 2830
	 */
	if (!PageSwapCache(page))
H
Hugh Dickins 已提交
2831
		goto charge_cur_mm;
2832 2833
	memcg = try_get_mem_cgroup_from_page(page);
	if (!memcg)
2834
		goto charge_cur_mm;
2835
	*ptr = memcg;
2836
	ret = __mem_cgroup_try_charge(NULL, mask, 1, ptr, true);
2837
	css_put(&memcg->css);
2838
	return ret;
2839 2840 2841
charge_cur_mm:
	if (unlikely(!mm))
		mm = &init_mm;
2842
	return __mem_cgroup_try_charge(mm, mask, 1, ptr, true);
2843 2844
}

D
Daisuke Nishimura 已提交
2845 2846 2847
static void
__mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr,
					enum charge_type ctype)
2848
{
2849
	if (mem_cgroup_disabled())
2850 2851 2852
		return;
	if (!ptr)
		return;
2853
	cgroup_exclude_rmdir(&ptr->css);
2854 2855

	__mem_cgroup_commit_charge_lrucare(page, ptr, ctype);
2856 2857 2858
	/*
	 * Now swap is on-memory. This means this page may be
	 * counted both as mem and swap....double count.
2859 2860 2861
	 * Fix it by uncharging from memsw. Basically, this SwapCache is stable
	 * under lock_page(). But in do_swap_page()::memory.c, reuse_swap_page()
	 * may call delete_from_swap_cache() before reach here.
2862
	 */
2863
	if (do_swap_account && PageSwapCache(page)) {
2864
		swp_entry_t ent = {.val = page_private(page)};
2865
		unsigned short id;
2866
		struct mem_cgroup *memcg;
2867 2868 2869 2870

		id = swap_cgroup_record(ent, 0);
		rcu_read_lock();
		memcg = mem_cgroup_lookup(id);
2871
		if (memcg) {
2872 2873 2874 2875
			/*
			 * This recorded memcg can be obsolete one. So, avoid
			 * calling css_tryget
			 */
2876
			if (!mem_cgroup_is_root(memcg))
2877
				res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
2878
			mem_cgroup_swap_statistics(memcg, false);
2879 2880
			mem_cgroup_put(memcg);
		}
2881
		rcu_read_unlock();
2882
	}
2883 2884 2885 2886 2887 2888
	/*
	 * At swapin, we may charge account against cgroup which has no tasks.
	 * So, rmdir()->pre_destroy() can be called while we do this charge.
	 * In that case, we need to call pre_destroy() again. check it here.
	 */
	cgroup_release_and_wakeup_rmdir(&ptr->css);
2889 2890
}

D
Daisuke Nishimura 已提交
2891 2892 2893 2894 2895 2896
void mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr)
{
	__mem_cgroup_commit_charge_swapin(page, ptr,
					MEM_CGROUP_CHARGE_TYPE_MAPPED);
}

2897
void mem_cgroup_cancel_charge_swapin(struct mem_cgroup *memcg)
2898
{
2899
	if (mem_cgroup_disabled())
2900
		return;
2901
	if (!memcg)
2902
		return;
2903
	__mem_cgroup_cancel_charge(memcg, 1);
2904 2905
}

2906
static void mem_cgroup_do_uncharge(struct mem_cgroup *memcg,
2907 2908
				   unsigned int nr_pages,
				   const enum charge_type ctype)
2909 2910 2911
{
	struct memcg_batch_info *batch = NULL;
	bool uncharge_memsw = true;
2912

2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923
	/* If swapout, usage of swap doesn't decrease */
	if (!do_swap_account || ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT)
		uncharge_memsw = false;

	batch = &current->memcg_batch;
	/*
	 * In usual, we do css_get() when we remember memcg pointer.
	 * But in this case, we keep res->usage until end of a series of
	 * uncharges. Then, it's ok to ignore memcg's refcnt.
	 */
	if (!batch->memcg)
2924
		batch->memcg = memcg;
2925 2926
	/*
	 * do_batch > 0 when unmapping pages or inode invalidate/truncate.
L
Lucas De Marchi 已提交
2927
	 * In those cases, all pages freed continuously can be expected to be in
2928 2929 2930 2931 2932 2933 2934 2935
	 * the same cgroup and we have chance to coalesce uncharges.
	 * But we do uncharge one by one if this is killed by OOM(TIF_MEMDIE)
	 * because we want to do uncharge as soon as possible.
	 */

	if (!batch->do_batch || test_thread_flag(TIF_MEMDIE))
		goto direct_uncharge;

2936
	if (nr_pages > 1)
A
Andrea Arcangeli 已提交
2937 2938
		goto direct_uncharge;

2939 2940 2941 2942 2943
	/*
	 * In typical case, batch->memcg == mem. This means we can
	 * merge a series of uncharges to an uncharge of res_counter.
	 * If not, we uncharge res_counter ony by one.
	 */
2944
	if (batch->memcg != memcg)
2945 2946
		goto direct_uncharge;
	/* remember freed charge and uncharge it later */
2947
	batch->nr_pages++;
2948
	if (uncharge_memsw)
2949
		batch->memsw_nr_pages++;
2950 2951
	return;
direct_uncharge:
2952
	res_counter_uncharge(&memcg->res, nr_pages * PAGE_SIZE);
2953
	if (uncharge_memsw)
2954 2955 2956
		res_counter_uncharge(&memcg->memsw, nr_pages * PAGE_SIZE);
	if (unlikely(batch->memcg != memcg))
		memcg_oom_recover(memcg);
2957 2958
	return;
}
2959

2960
/*
2961
 * uncharge if !page_mapped(page)
2962
 */
2963
static struct mem_cgroup *
2964
__mem_cgroup_uncharge_common(struct page *page, enum charge_type ctype)
2965
{
2966
	struct mem_cgroup *memcg = NULL;
2967 2968
	unsigned int nr_pages = 1;
	struct page_cgroup *pc;
2969

2970
	if (mem_cgroup_disabled())
2971
		return NULL;
2972

K
KAMEZAWA Hiroyuki 已提交
2973
	if (PageSwapCache(page))
2974
		return NULL;
K
KAMEZAWA Hiroyuki 已提交
2975

A
Andrea Arcangeli 已提交
2976
	if (PageTransHuge(page)) {
2977
		nr_pages <<= compound_order(page);
A
Andrea Arcangeli 已提交
2978 2979
		VM_BUG_ON(!PageTransHuge(page));
	}
2980
	/*
2981
	 * Check if our page_cgroup is valid
2982
	 */
2983 2984
	pc = lookup_page_cgroup(page);
	if (unlikely(!pc || !PageCgroupUsed(pc)))
2985
		return NULL;
2986

2987
	lock_page_cgroup(pc);
K
KAMEZAWA Hiroyuki 已提交
2988

2989
	memcg = pc->mem_cgroup;
2990

K
KAMEZAWA Hiroyuki 已提交
2991 2992 2993 2994 2995
	if (!PageCgroupUsed(pc))
		goto unlock_out;

	switch (ctype) {
	case MEM_CGROUP_CHARGE_TYPE_MAPPED:
K
KAMEZAWA Hiroyuki 已提交
2996
	case MEM_CGROUP_CHARGE_TYPE_DROP:
2997 2998
		/* See mem_cgroup_prepare_migration() */
		if (page_mapped(page) || PageCgroupMigration(pc))
K
KAMEZAWA Hiroyuki 已提交
2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009
			goto unlock_out;
		break;
	case MEM_CGROUP_CHARGE_TYPE_SWAPOUT:
		if (!PageAnon(page)) {	/* Shared memory */
			if (page->mapping && !page_is_file_cache(page))
				goto unlock_out;
		} else if (page_mapped(page)) /* Anon */
				goto unlock_out;
		break;
	default:
		break;
3010
	}
K
KAMEZAWA Hiroyuki 已提交
3011

3012
	mem_cgroup_charge_statistics(memcg, PageCgroupCache(pc), -nr_pages);
K
KAMEZAWA Hiroyuki 已提交
3013

3014
	ClearPageCgroupUsed(pc);
3015 3016 3017 3018 3019 3020
	/*
	 * pc->mem_cgroup is not cleared here. It will be accessed when it's
	 * freed from LRU. This is safe because uncharged page is expected not
	 * to be reused (freed soon). Exception is SwapCache, it's handled by
	 * special functions.
	 */
3021

3022
	unlock_page_cgroup(pc);
K
KAMEZAWA Hiroyuki 已提交
3023
	/*
3024
	 * even after unlock, we have memcg->res.usage here and this memcg
K
KAMEZAWA Hiroyuki 已提交
3025 3026
	 * will never be freed.
	 */
3027
	memcg_check_events(memcg, page);
K
KAMEZAWA Hiroyuki 已提交
3028
	if (do_swap_account && ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT) {
3029 3030
		mem_cgroup_swap_statistics(memcg, true);
		mem_cgroup_get(memcg);
K
KAMEZAWA Hiroyuki 已提交
3031
	}
3032 3033
	if (!mem_cgroup_is_root(memcg))
		mem_cgroup_do_uncharge(memcg, nr_pages, ctype);
3034

3035
	return memcg;
K
KAMEZAWA Hiroyuki 已提交
3036 3037 3038

unlock_out:
	unlock_page_cgroup(pc);
3039
	return NULL;
3040 3041
}

3042 3043
void mem_cgroup_uncharge_page(struct page *page)
{
3044 3045 3046 3047 3048
	/* early check. */
	if (page_mapped(page))
		return;
	if (page->mapping && !PageAnon(page))
		return;
3049 3050 3051 3052 3053 3054
	__mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_MAPPED);
}

void mem_cgroup_uncharge_cache_page(struct page *page)
{
	VM_BUG_ON(page_mapped(page));
3055
	VM_BUG_ON(page->mapping);
3056 3057 3058
	__mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_CACHE);
}

3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072
/*
 * Batch_start/batch_end is called in unmap_page_range/invlidate/trucate.
 * In that cases, pages are freed continuously and we can expect pages
 * are in the same memcg. All these calls itself limits the number of
 * pages freed at once, then uncharge_start/end() is called properly.
 * This may be called prural(2) times in a context,
 */

void mem_cgroup_uncharge_start(void)
{
	current->memcg_batch.do_batch++;
	/* We can do nest. */
	if (current->memcg_batch.do_batch == 1) {
		current->memcg_batch.memcg = NULL;
3073 3074
		current->memcg_batch.nr_pages = 0;
		current->memcg_batch.memsw_nr_pages = 0;
3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094
	}
}

void mem_cgroup_uncharge_end(void)
{
	struct memcg_batch_info *batch = &current->memcg_batch;

	if (!batch->do_batch)
		return;

	batch->do_batch--;
	if (batch->do_batch) /* If stacked, do nothing. */
		return;

	if (!batch->memcg)
		return;
	/*
	 * This "batch->memcg" is valid without any css_get/put etc...
	 * bacause we hide charges behind us.
	 */
3095 3096 3097 3098 3099 3100
	if (batch->nr_pages)
		res_counter_uncharge(&batch->memcg->res,
				     batch->nr_pages * PAGE_SIZE);
	if (batch->memsw_nr_pages)
		res_counter_uncharge(&batch->memcg->memsw,
				     batch->memsw_nr_pages * PAGE_SIZE);
3101
	memcg_oom_recover(batch->memcg);
3102 3103 3104 3105
	/* forget this pointer (for sanity check) */
	batch->memcg = NULL;
}

3106
#ifdef CONFIG_SWAP
3107
/*
3108
 * called after __delete_from_swap_cache() and drop "page" account.
3109 3110
 * memcg information is recorded to swap_cgroup of "ent"
 */
K
KAMEZAWA Hiroyuki 已提交
3111 3112
void
mem_cgroup_uncharge_swapcache(struct page *page, swp_entry_t ent, bool swapout)
3113 3114
{
	struct mem_cgroup *memcg;
K
KAMEZAWA Hiroyuki 已提交
3115 3116 3117 3118 3119 3120
	int ctype = MEM_CGROUP_CHARGE_TYPE_SWAPOUT;

	if (!swapout) /* this was a swap cache but the swap is unused ! */
		ctype = MEM_CGROUP_CHARGE_TYPE_DROP;

	memcg = __mem_cgroup_uncharge_common(page, ctype);
3121

K
KAMEZAWA Hiroyuki 已提交
3122 3123 3124 3125 3126
	/*
	 * record memcg information,  if swapout && memcg != NULL,
	 * mem_cgroup_get() was called in uncharge().
	 */
	if (do_swap_account && swapout && memcg)
3127
		swap_cgroup_record(ent, css_id(&memcg->css));
3128
}
3129
#endif
3130 3131 3132 3133 3134 3135 3136

#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
/*
 * called from swap_entry_free(). remove record in swap_cgroup and
 * uncharge "memsw" account.
 */
void mem_cgroup_uncharge_swap(swp_entry_t ent)
K
KAMEZAWA Hiroyuki 已提交
3137
{
3138
	struct mem_cgroup *memcg;
3139
	unsigned short id;
3140 3141 3142 3143

	if (!do_swap_account)
		return;

3144 3145 3146
	id = swap_cgroup_record(ent, 0);
	rcu_read_lock();
	memcg = mem_cgroup_lookup(id);
3147
	if (memcg) {
3148 3149 3150 3151
		/*
		 * We uncharge this because swap is freed.
		 * This memcg can be obsolete one. We avoid calling css_tryget
		 */
3152
		if (!mem_cgroup_is_root(memcg))
3153
			res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
3154
		mem_cgroup_swap_statistics(memcg, false);
3155 3156
		mem_cgroup_put(memcg);
	}
3157
	rcu_read_unlock();
K
KAMEZAWA Hiroyuki 已提交
3158
}
3159 3160 3161 3162 3163 3164

/**
 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
 * @entry: swap entry to be moved
 * @from:  mem_cgroup which the entry is moved from
 * @to:  mem_cgroup which the entry is moved to
3165
 * @need_fixup: whether we should fixup res_counters and refcounts.
3166 3167 3168 3169 3170 3171 3172 3173 3174 3175
 *
 * It succeeds only when the swap_cgroup's record for this entry is the same
 * as the mem_cgroup's id of @from.
 *
 * Returns 0 on success, -EINVAL on failure.
 *
 * The caller must have charged to @to, IOW, called res_counter_charge() about
 * both res and memsw, and called css_get().
 */
static int mem_cgroup_move_swap_account(swp_entry_t entry,
3176
		struct mem_cgroup *from, struct mem_cgroup *to, bool need_fixup)
3177 3178 3179 3180 3181 3182 3183 3184
{
	unsigned short old_id, new_id;

	old_id = css_id(&from->css);
	new_id = css_id(&to->css);

	if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
		mem_cgroup_swap_statistics(from, false);
3185
		mem_cgroup_swap_statistics(to, true);
3186
		/*
3187 3188 3189 3190 3191 3192
		 * This function is only called from task migration context now.
		 * It postpones res_counter and refcount handling till the end
		 * of task migration(mem_cgroup_clear_mc()) for performance
		 * improvement. But we cannot postpone mem_cgroup_get(to)
		 * because if the process that has been moved to @to does
		 * swap-in, the refcount of @to might be decreased to 0.
3193 3194
		 */
		mem_cgroup_get(to);
3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205
		if (need_fixup) {
			if (!mem_cgroup_is_root(from))
				res_counter_uncharge(&from->memsw, PAGE_SIZE);
			mem_cgroup_put(from);
			/*
			 * we charged both to->res and to->memsw, so we should
			 * uncharge to->res.
			 */
			if (!mem_cgroup_is_root(to))
				res_counter_uncharge(&to->res, PAGE_SIZE);
		}
3206 3207 3208 3209 3210 3211
		return 0;
	}
	return -EINVAL;
}
#else
static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
3212
		struct mem_cgroup *from, struct mem_cgroup *to, bool need_fixup)
3213 3214 3215
{
	return -EINVAL;
}
3216
#endif
K
KAMEZAWA Hiroyuki 已提交
3217

3218
/*
3219 3220
 * Before starting migration, account PAGE_SIZE to mem_cgroup that the old
 * page belongs to.
3221
 */
3222
int mem_cgroup_prepare_migration(struct page *page,
3223
	struct page *newpage, struct mem_cgroup **ptr, gfp_t gfp_mask)
3224
{
3225
	struct mem_cgroup *memcg = NULL;
3226
	struct page_cgroup *pc;
3227
	enum charge_type ctype;
3228
	int ret = 0;
3229

3230 3231
	*ptr = NULL;

A
Andrea Arcangeli 已提交
3232
	VM_BUG_ON(PageTransHuge(page));
3233
	if (mem_cgroup_disabled())
3234 3235
		return 0;

3236 3237 3238
	pc = lookup_page_cgroup(page);
	lock_page_cgroup(pc);
	if (PageCgroupUsed(pc)) {
3239 3240
		memcg = pc->mem_cgroup;
		css_get(&memcg->css);
3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271
		/*
		 * At migrating an anonymous page, its mapcount goes down
		 * to 0 and uncharge() will be called. But, even if it's fully
		 * unmapped, migration may fail and this page has to be
		 * charged again. We set MIGRATION flag here and delay uncharge
		 * until end_migration() is called
		 *
		 * Corner Case Thinking
		 * A)
		 * When the old page was mapped as Anon and it's unmap-and-freed
		 * while migration was ongoing.
		 * If unmap finds the old page, uncharge() of it will be delayed
		 * until end_migration(). If unmap finds a new page, it's
		 * uncharged when it make mapcount to be 1->0. If unmap code
		 * finds swap_migration_entry, the new page will not be mapped
		 * and end_migration() will find it(mapcount==0).
		 *
		 * B)
		 * When the old page was mapped but migraion fails, the kernel
		 * remaps it. A charge for it is kept by MIGRATION flag even
		 * if mapcount goes down to 0. We can do remap successfully
		 * without charging it again.
		 *
		 * C)
		 * The "old" page is under lock_page() until the end of
		 * migration, so, the old page itself will not be swapped-out.
		 * If the new page is swapped out before end_migraton, our
		 * hook to usual swap-out path will catch the event.
		 */
		if (PageAnon(page))
			SetPageCgroupMigration(pc);
3272
	}
3273
	unlock_page_cgroup(pc);
3274 3275 3276 3277
	/*
	 * If the page is not charged at this point,
	 * we return here.
	 */
3278
	if (!memcg)
3279
		return 0;
3280

3281
	*ptr = memcg;
3282
	ret = __mem_cgroup_try_charge(NULL, gfp_mask, 1, ptr, false);
3283
	css_put(&memcg->css);/* drop extra refcnt */
3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294
	if (ret || *ptr == NULL) {
		if (PageAnon(page)) {
			lock_page_cgroup(pc);
			ClearPageCgroupMigration(pc);
			unlock_page_cgroup(pc);
			/*
			 * The old page may be fully unmapped while we kept it.
			 */
			mem_cgroup_uncharge_page(page);
		}
		return -ENOMEM;
3295
	}
3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308
	/*
	 * We charge new page before it's used/mapped. So, even if unlock_page()
	 * is called before end_migration, we can catch all events on this new
	 * page. In the case new page is migrated but not remapped, new page's
	 * mapcount will be finally 0 and we call uncharge in end_migration().
	 */
	pc = lookup_page_cgroup(newpage);
	if (PageAnon(page))
		ctype = MEM_CGROUP_CHARGE_TYPE_MAPPED;
	else if (page_is_file_cache(page))
		ctype = MEM_CGROUP_CHARGE_TYPE_CACHE;
	else
		ctype = MEM_CGROUP_CHARGE_TYPE_SHMEM;
3309
	__mem_cgroup_commit_charge(memcg, page, 1, pc, ctype);
3310
	return ret;
3311
}
3312

3313
/* remove redundant charge if migration failed*/
3314
void mem_cgroup_end_migration(struct mem_cgroup *memcg,
3315
	struct page *oldpage, struct page *newpage, bool migration_ok)
3316
{
3317
	struct page *used, *unused;
3318 3319
	struct page_cgroup *pc;

3320
	if (!memcg)
3321
		return;
3322
	/* blocks rmdir() */
3323
	cgroup_exclude_rmdir(&memcg->css);
3324
	if (!migration_ok) {
3325 3326
		used = oldpage;
		unused = newpage;
3327
	} else {
3328
		used = newpage;
3329 3330
		unused = oldpage;
	}
3331
	/*
3332 3333 3334
	 * We disallowed uncharge of pages under migration because mapcount
	 * of the page goes down to zero, temporarly.
	 * Clear the flag and check the page should be charged.
3335
	 */
3336 3337 3338 3339
	pc = lookup_page_cgroup(oldpage);
	lock_page_cgroup(pc);
	ClearPageCgroupMigration(pc);
	unlock_page_cgroup(pc);
3340

3341 3342
	__mem_cgroup_uncharge_common(unused, MEM_CGROUP_CHARGE_TYPE_FORCE);

3343
	/*
3344 3345 3346 3347 3348 3349
	 * If a page is a file cache, radix-tree replacement is very atomic
	 * and we can skip this check. When it was an Anon page, its mapcount
	 * goes down to 0. But because we added MIGRATION flage, it's not
	 * uncharged yet. There are several case but page->mapcount check
	 * and USED bit check in mem_cgroup_uncharge_page() will do enough
	 * check. (see prepare_charge() also)
3350
	 */
3351 3352
	if (PageAnon(used))
		mem_cgroup_uncharge_page(used);
3353
	/*
3354 3355
	 * At migration, we may charge account against cgroup which has no
	 * tasks.
3356 3357 3358
	 * So, rmdir()->pre_destroy() can be called while we do this charge.
	 * In that case, we need to call pre_destroy() again. check it here.
	 */
3359
	cgroup_release_and_wakeup_rmdir(&memcg->css);
3360
}
3361

3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407
#ifdef CONFIG_DEBUG_VM
static struct page_cgroup *lookup_page_cgroup_used(struct page *page)
{
	struct page_cgroup *pc;

	pc = lookup_page_cgroup(page);
	if (likely(pc) && PageCgroupUsed(pc))
		return pc;
	return NULL;
}

bool mem_cgroup_bad_page_check(struct page *page)
{
	if (mem_cgroup_disabled())
		return false;

	return lookup_page_cgroup_used(page) != NULL;
}

void mem_cgroup_print_bad_page(struct page *page)
{
	struct page_cgroup *pc;

	pc = lookup_page_cgroup_used(page);
	if (pc) {
		int ret = -1;
		char *path;

		printk(KERN_ALERT "pc:%p pc->flags:%lx pc->mem_cgroup:%p",
		       pc, pc->flags, pc->mem_cgroup);

		path = kmalloc(PATH_MAX, GFP_KERNEL);
		if (path) {
			rcu_read_lock();
			ret = cgroup_path(pc->mem_cgroup->css.cgroup,
							path, PATH_MAX);
			rcu_read_unlock();
		}

		printk(KERN_CONT "(%s)\n",
				(ret < 0) ? "cannot get the path" : path);
		kfree(path);
	}
}
#endif

3408 3409
static DEFINE_MUTEX(set_limit_mutex);

3410
static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
3411
				unsigned long long val)
3412
{
3413
	int retry_count;
3414
	u64 memswlimit, memlimit;
3415
	int ret = 0;
3416 3417
	int children = mem_cgroup_count_children(memcg);
	u64 curusage, oldusage;
3418
	int enlarge;
3419 3420 3421 3422 3423 3424 3425 3426 3427

	/*
	 * For keeping hierarchical_reclaim simple, how long we should retry
	 * is depends on callers. We set our retry-count to be function
	 * of # of children which we should visit in this loop.
	 */
	retry_count = MEM_CGROUP_RECLAIM_RETRIES * children;

	oldusage = res_counter_read_u64(&memcg->res, RES_USAGE);
3428

3429
	enlarge = 0;
3430
	while (retry_count) {
3431 3432 3433 3434
		if (signal_pending(current)) {
			ret = -EINTR;
			break;
		}
3435 3436 3437
		/*
		 * Rather than hide all in some function, I do this in
		 * open coded manner. You see what this really does.
3438
		 * We have to guarantee memcg->res.limit < memcg->memsw.limit.
3439 3440 3441 3442 3443 3444
		 */
		mutex_lock(&set_limit_mutex);
		memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
		if (memswlimit < val) {
			ret = -EINVAL;
			mutex_unlock(&set_limit_mutex);
3445 3446
			break;
		}
3447 3448 3449 3450 3451

		memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
		if (memlimit < val)
			enlarge = 1;

3452
		ret = res_counter_set_limit(&memcg->res, val);
3453 3454 3455 3456 3457 3458
		if (!ret) {
			if (memswlimit == val)
				memcg->memsw_is_minimum = true;
			else
				memcg->memsw_is_minimum = false;
		}
3459 3460 3461 3462 3463
		mutex_unlock(&set_limit_mutex);

		if (!ret)
			break;

3464
		mem_cgroup_hierarchical_reclaim(memcg, NULL, GFP_KERNEL,
3465 3466
						MEM_CGROUP_RECLAIM_SHRINK,
						NULL);
3467 3468 3469 3470 3471 3472
		curusage = res_counter_read_u64(&memcg->res, RES_USAGE);
		/* Usage is reduced ? */
  		if (curusage >= oldusage)
			retry_count--;
		else
			oldusage = curusage;
3473
	}
3474 3475
	if (!ret && enlarge)
		memcg_oom_recover(memcg);
3476

3477 3478 3479
	return ret;
}

L
Li Zefan 已提交
3480 3481
static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
					unsigned long long val)
3482
{
3483
	int retry_count;
3484
	u64 memlimit, memswlimit, oldusage, curusage;
3485 3486
	int children = mem_cgroup_count_children(memcg);
	int ret = -EBUSY;
3487
	int enlarge = 0;
3488

3489 3490 3491
	/* see mem_cgroup_resize_res_limit */
 	retry_count = children * MEM_CGROUP_RECLAIM_RETRIES;
	oldusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
3492 3493 3494 3495 3496 3497 3498 3499
	while (retry_count) {
		if (signal_pending(current)) {
			ret = -EINTR;
			break;
		}
		/*
		 * Rather than hide all in some function, I do this in
		 * open coded manner. You see what this really does.
3500
		 * We have to guarantee memcg->res.limit < memcg->memsw.limit.
3501 3502 3503 3504 3505 3506 3507 3508
		 */
		mutex_lock(&set_limit_mutex);
		memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
		if (memlimit > val) {
			ret = -EINVAL;
			mutex_unlock(&set_limit_mutex);
			break;
		}
3509 3510 3511
		memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
		if (memswlimit < val)
			enlarge = 1;
3512
		ret = res_counter_set_limit(&memcg->memsw, val);
3513 3514 3515 3516 3517 3518
		if (!ret) {
			if (memlimit == val)
				memcg->memsw_is_minimum = true;
			else
				memcg->memsw_is_minimum = false;
		}
3519 3520 3521 3522 3523
		mutex_unlock(&set_limit_mutex);

		if (!ret)
			break;

3524
		mem_cgroup_hierarchical_reclaim(memcg, NULL, GFP_KERNEL,
3525
						MEM_CGROUP_RECLAIM_NOSWAP |
3526 3527
						MEM_CGROUP_RECLAIM_SHRINK,
						NULL);
3528
		curusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
3529
		/* Usage is reduced ? */
3530
		if (curusage >= oldusage)
3531
			retry_count--;
3532 3533
		else
			oldusage = curusage;
3534
	}
3535 3536
	if (!ret && enlarge)
		memcg_oom_recover(memcg);
3537 3538 3539
	return ret;
}

3540
unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
3541 3542
					    gfp_t gfp_mask,
					    unsigned long *total_scanned)
3543 3544 3545 3546 3547 3548
{
	unsigned long nr_reclaimed = 0;
	struct mem_cgroup_per_zone *mz, *next_mz = NULL;
	unsigned long reclaimed;
	int loop = 0;
	struct mem_cgroup_tree_per_zone *mctz;
3549
	unsigned long long excess;
3550
	unsigned long nr_scanned;
3551 3552 3553 3554

	if (order > 0)
		return 0;

3555
	mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone));
3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568
	/*
	 * This loop can run a while, specially if mem_cgroup's continuously
	 * keep exceeding their soft limit and putting the system under
	 * pressure
	 */
	do {
		if (next_mz)
			mz = next_mz;
		else
			mz = mem_cgroup_largest_soft_limit_node(mctz);
		if (!mz)
			break;

3569
		nr_scanned = 0;
3570 3571
		reclaimed = mem_cgroup_hierarchical_reclaim(mz->mem, zone,
						gfp_mask,
3572 3573
						MEM_CGROUP_RECLAIM_SOFT,
						&nr_scanned);
3574
		nr_reclaimed += reclaimed;
3575
		*total_scanned += nr_scanned;
3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597
		spin_lock(&mctz->lock);

		/*
		 * If we failed to reclaim anything from this memory cgroup
		 * it is time to move on to the next cgroup
		 */
		next_mz = NULL;
		if (!reclaimed) {
			do {
				/*
				 * Loop until we find yet another one.
				 *
				 * By the time we get the soft_limit lock
				 * again, someone might have aded the
				 * group back on the RB tree. Iterate to
				 * make sure we get a different mem.
				 * mem_cgroup_largest_soft_limit_node returns
				 * NULL if no other cgroup is present on
				 * the tree
				 */
				next_mz =
				__mem_cgroup_largest_soft_limit_node(mctz);
3598
				if (next_mz == mz)
3599
					css_put(&next_mz->mem->css);
3600
				else /* next_mz == NULL or other memcg */
3601 3602 3603 3604
					break;
			} while (1);
		}
		__mem_cgroup_remove_exceeded(mz->mem, mz, mctz);
3605
		excess = res_counter_soft_limit_excess(&mz->mem->res);
3606 3607 3608 3609 3610 3611 3612 3613
		/*
		 * One school of thought says that we should not add
		 * back the node to the tree if reclaim returns 0.
		 * But our reclaim could return 0, simply because due
		 * to priority we are exposing a smaller subset of
		 * memory to reclaim from. Consider this as a longer
		 * term TODO.
		 */
3614 3615
		/* If excess == 0, no tree ops */
		__mem_cgroup_insert_exceeded(mz->mem, mz, mctz, excess);
3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633
		spin_unlock(&mctz->lock);
		css_put(&mz->mem->css);
		loop++;
		/*
		 * Could not reclaim anything and there are no more
		 * mem cgroups to try or we seem to be looping without
		 * reclaiming anything.
		 */
		if (!nr_reclaimed &&
			(next_mz == NULL ||
			loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
			break;
	} while (!nr_reclaimed);
	if (next_mz)
		css_put(&next_mz->mem->css);
	return nr_reclaimed;
}

3634 3635 3636 3637
/*
 * This routine traverse page_cgroup in given list and drop them all.
 * *And* this routine doesn't reclaim page itself, just removes page_cgroup.
 */
3638
static int mem_cgroup_force_empty_list(struct mem_cgroup *memcg,
K
KAMEZAWA Hiroyuki 已提交
3639
				int node, int zid, enum lru_list lru)
3640
{
K
KAMEZAWA Hiroyuki 已提交
3641 3642
	struct zone *zone;
	struct mem_cgroup_per_zone *mz;
3643
	struct page_cgroup *pc, *busy;
K
KAMEZAWA Hiroyuki 已提交
3644
	unsigned long flags, loop;
3645
	struct list_head *list;
3646
	int ret = 0;
3647

K
KAMEZAWA Hiroyuki 已提交
3648
	zone = &NODE_DATA(node)->node_zones[zid];
3649
	mz = mem_cgroup_zoneinfo(memcg, node, zid);
3650
	list = &mz->lists[lru];
3651

3652 3653 3654 3655 3656
	loop = MEM_CGROUP_ZSTAT(mz, lru);
	/* give some margin against EBUSY etc...*/
	loop += 256;
	busy = NULL;
	while (loop--) {
3657 3658
		struct page *page;

3659
		ret = 0;
K
KAMEZAWA Hiroyuki 已提交
3660
		spin_lock_irqsave(&zone->lru_lock, flags);
3661
		if (list_empty(list)) {
K
KAMEZAWA Hiroyuki 已提交
3662
			spin_unlock_irqrestore(&zone->lru_lock, flags);
3663
			break;
3664 3665 3666 3667
		}
		pc = list_entry(list->prev, struct page_cgroup, lru);
		if (busy == pc) {
			list_move(&pc->lru, list);
3668
			busy = NULL;
K
KAMEZAWA Hiroyuki 已提交
3669
			spin_unlock_irqrestore(&zone->lru_lock, flags);
3670 3671
			continue;
		}
K
KAMEZAWA Hiroyuki 已提交
3672
		spin_unlock_irqrestore(&zone->lru_lock, flags);
3673

3674
		page = lookup_cgroup_page(pc);
3675

3676
		ret = mem_cgroup_move_parent(page, pc, memcg, GFP_KERNEL);
3677
		if (ret == -ENOMEM)
3678
			break;
3679 3680 3681 3682 3683 3684 3685

		if (ret == -EBUSY || ret == -EINVAL) {
			/* found lock contention or "pc" is obsolete. */
			busy = pc;
			cond_resched();
		} else
			busy = NULL;
3686
	}
K
KAMEZAWA Hiroyuki 已提交
3687

3688 3689 3690
	if (!ret && !list_empty(list))
		return -EBUSY;
	return ret;
3691 3692 3693 3694 3695 3696
}

/*
 * make mem_cgroup's charge to be 0 if there is no task.
 * This enables deleting this mem_cgroup.
 */
3697
static int mem_cgroup_force_empty(struct mem_cgroup *memcg, bool free_all)
3698
{
3699 3700 3701
	int ret;
	int node, zid, shrink;
	int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
3702
	struct cgroup *cgrp = memcg->css.cgroup;
3703

3704
	css_get(&memcg->css);
3705 3706

	shrink = 0;
3707 3708 3709
	/* should free all ? */
	if (free_all)
		goto try_to_free;
3710
move_account:
3711
	do {
3712
		ret = -EBUSY;
3713 3714 3715 3716
		if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children))
			goto out;
		ret = -EINTR;
		if (signal_pending(current))
3717
			goto out;
3718 3719
		/* This is for making all *used* pages to be on LRU. */
		lru_add_drain_all();
3720
		drain_all_stock_sync(memcg);
3721
		ret = 0;
3722
		mem_cgroup_start_move(memcg);
3723
		for_each_node_state(node, N_HIGH_MEMORY) {
3724
			for (zid = 0; !ret && zid < MAX_NR_ZONES; zid++) {
3725
				enum lru_list l;
3726
				for_each_lru(l) {
3727
					ret = mem_cgroup_force_empty_list(memcg,
K
KAMEZAWA Hiroyuki 已提交
3728
							node, zid, l);
3729 3730 3731
					if (ret)
						break;
				}
3732
			}
3733 3734 3735
			if (ret)
				break;
		}
3736 3737
		mem_cgroup_end_move(memcg);
		memcg_oom_recover(memcg);
3738 3739 3740
		/* it seems parent cgroup doesn't have enough mem */
		if (ret == -ENOMEM)
			goto try_to_free;
3741
		cond_resched();
3742
	/* "ret" should also be checked to ensure all lists are empty. */
3743
	} while (memcg->res.usage > 0 || ret);
3744
out:
3745
	css_put(&memcg->css);
3746
	return ret;
3747 3748

try_to_free:
3749 3750
	/* returns EBUSY if there is a task or if we come here twice. */
	if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children) || shrink) {
3751 3752 3753
		ret = -EBUSY;
		goto out;
	}
3754 3755
	/* we call try-to-free pages for make this cgroup empty */
	lru_add_drain_all();
3756 3757
	/* try to free all pages in this cgroup */
	shrink = 1;
3758
	while (nr_retries && memcg->res.usage > 0) {
3759
		int progress;
3760 3761 3762 3763 3764

		if (signal_pending(current)) {
			ret = -EINTR;
			goto out;
		}
3765
		progress = try_to_free_mem_cgroup_pages(memcg, GFP_KERNEL,
3766
						false);
3767
		if (!progress) {
3768
			nr_retries--;
3769
			/* maybe some writeback is necessary */
3770
			congestion_wait(BLK_RW_ASYNC, HZ/10);
3771
		}
3772 3773

	}
K
KAMEZAWA Hiroyuki 已提交
3774
	lru_add_drain();
3775
	/* try move_account...there may be some *locked* pages. */
3776
	goto move_account;
3777 3778
}

3779 3780 3781 3782 3783 3784
int mem_cgroup_force_empty_write(struct cgroup *cont, unsigned int event)
{
	return mem_cgroup_force_empty(mem_cgroup_from_cont(cont), true);
}


3785 3786 3787 3788 3789 3790 3791 3792 3793
static u64 mem_cgroup_hierarchy_read(struct cgroup *cont, struct cftype *cft)
{
	return mem_cgroup_from_cont(cont)->use_hierarchy;
}

static int mem_cgroup_hierarchy_write(struct cgroup *cont, struct cftype *cft,
					u64 val)
{
	int retval = 0;
3794
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
3795
	struct cgroup *parent = cont->parent;
3796
	struct mem_cgroup *parent_memcg = NULL;
3797 3798

	if (parent)
3799
		parent_memcg = mem_cgroup_from_cont(parent);
3800 3801 3802

	cgroup_lock();
	/*
3803
	 * If parent's use_hierarchy is set, we can't make any modifications
3804 3805 3806 3807 3808 3809
	 * in the child subtrees. If it is unset, then the change can
	 * occur, provided the current cgroup has no children.
	 *
	 * For the root cgroup, parent_mem is NULL, we allow value to be
	 * set if there are no children.
	 */
3810
	if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
3811 3812
				(val == 1 || val == 0)) {
		if (list_empty(&cont->children))
3813
			memcg->use_hierarchy = val;
3814 3815 3816 3817 3818 3819 3820 3821 3822
		else
			retval = -EBUSY;
	} else
		retval = -EINVAL;
	cgroup_unlock();

	return retval;
}

3823

3824
static unsigned long mem_cgroup_recursive_stat(struct mem_cgroup *memcg,
3825
					       enum mem_cgroup_stat_index idx)
3826
{
K
KAMEZAWA Hiroyuki 已提交
3827
	struct mem_cgroup *iter;
3828
	long val = 0;
3829

3830
	/* Per-cpu values can be negative, use a signed accumulator */
3831
	for_each_mem_cgroup_tree(iter, memcg)
K
KAMEZAWA Hiroyuki 已提交
3832 3833 3834 3835 3836
		val += mem_cgroup_read_stat(iter, idx);

	if (val < 0) /* race ? */
		val = 0;
	return val;
3837 3838
}

3839
static inline u64 mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
3840
{
K
KAMEZAWA Hiroyuki 已提交
3841
	u64 val;
3842

3843
	if (!mem_cgroup_is_root(memcg)) {
3844
		if (!swap)
3845
			return res_counter_read_u64(&memcg->res, RES_USAGE);
3846
		else
3847
			return res_counter_read_u64(&memcg->memsw, RES_USAGE);
3848 3849
	}

3850 3851
	val = mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_CACHE);
	val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_RSS);
3852

K
KAMEZAWA Hiroyuki 已提交
3853
	if (swap)
3854
		val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_SWAPOUT);
3855 3856 3857 3858

	return val << PAGE_SHIFT;
}

3859
static u64 mem_cgroup_read(struct cgroup *cont, struct cftype *cft)
B
Balbir Singh 已提交
3860
{
3861
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
3862
	u64 val;
3863 3864 3865 3866 3867 3868
	int type, name;

	type = MEMFILE_TYPE(cft->private);
	name = MEMFILE_ATTR(cft->private);
	switch (type) {
	case _MEM:
3869
		if (name == RES_USAGE)
3870
			val = mem_cgroup_usage(memcg, false);
3871
		else
3872
			val = res_counter_read_u64(&memcg->res, name);
3873 3874
		break;
	case _MEMSWAP:
3875
		if (name == RES_USAGE)
3876
			val = mem_cgroup_usage(memcg, true);
3877
		else
3878
			val = res_counter_read_u64(&memcg->memsw, name);
3879 3880 3881 3882 3883 3884
		break;
	default:
		BUG();
		break;
	}
	return val;
B
Balbir Singh 已提交
3885
}
3886 3887 3888 3889
/*
 * The user of this function is...
 * RES_LIMIT.
 */
3890 3891
static int mem_cgroup_write(struct cgroup *cont, struct cftype *cft,
			    const char *buffer)
B
Balbir Singh 已提交
3892
{
3893
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
3894
	int type, name;
3895 3896 3897
	unsigned long long val;
	int ret;

3898 3899 3900
	type = MEMFILE_TYPE(cft->private);
	name = MEMFILE_ATTR(cft->private);
	switch (name) {
3901
	case RES_LIMIT:
3902 3903 3904 3905
		if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
			ret = -EINVAL;
			break;
		}
3906 3907
		/* This function does all necessary parse...reuse it */
		ret = res_counter_memparse_write_strategy(buffer, &val);
3908 3909 3910
		if (ret)
			break;
		if (type == _MEM)
3911
			ret = mem_cgroup_resize_limit(memcg, val);
3912 3913
		else
			ret = mem_cgroup_resize_memsw_limit(memcg, val);
3914
		break;
3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928
	case RES_SOFT_LIMIT:
		ret = res_counter_memparse_write_strategy(buffer, &val);
		if (ret)
			break;
		/*
		 * For memsw, soft limits are hard to implement in terms
		 * of semantics, for now, we support soft limits for
		 * control without swap
		 */
		if (type == _MEM)
			ret = res_counter_set_soft_limit(&memcg->res, val);
		else
			ret = -EINVAL;
		break;
3929 3930 3931 3932 3933
	default:
		ret = -EINVAL; /* should be BUG() ? */
		break;
	}
	return ret;
B
Balbir Singh 已提交
3934 3935
}

3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963
static void memcg_get_hierarchical_limit(struct mem_cgroup *memcg,
		unsigned long long *mem_limit, unsigned long long *memsw_limit)
{
	struct cgroup *cgroup;
	unsigned long long min_limit, min_memsw_limit, tmp;

	min_limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
	min_memsw_limit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
	cgroup = memcg->css.cgroup;
	if (!memcg->use_hierarchy)
		goto out;

	while (cgroup->parent) {
		cgroup = cgroup->parent;
		memcg = mem_cgroup_from_cont(cgroup);
		if (!memcg->use_hierarchy)
			break;
		tmp = res_counter_read_u64(&memcg->res, RES_LIMIT);
		min_limit = min(min_limit, tmp);
		tmp = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
		min_memsw_limit = min(min_memsw_limit, tmp);
	}
out:
	*mem_limit = min_limit;
	*memsw_limit = min_memsw_limit;
	return;
}

3964
static int mem_cgroup_reset(struct cgroup *cont, unsigned int event)
3965
{
3966
	struct mem_cgroup *memcg;
3967
	int type, name;
3968

3969
	memcg = mem_cgroup_from_cont(cont);
3970 3971 3972
	type = MEMFILE_TYPE(event);
	name = MEMFILE_ATTR(event);
	switch (name) {
3973
	case RES_MAX_USAGE:
3974
		if (type == _MEM)
3975
			res_counter_reset_max(&memcg->res);
3976
		else
3977
			res_counter_reset_max(&memcg->memsw);
3978 3979
		break;
	case RES_FAILCNT:
3980
		if (type == _MEM)
3981
			res_counter_reset_failcnt(&memcg->res);
3982
		else
3983
			res_counter_reset_failcnt(&memcg->memsw);
3984 3985
		break;
	}
3986

3987
	return 0;
3988 3989
}

3990 3991 3992 3993 3994 3995
static u64 mem_cgroup_move_charge_read(struct cgroup *cgrp,
					struct cftype *cft)
{
	return mem_cgroup_from_cont(cgrp)->move_charge_at_immigrate;
}

3996
#ifdef CONFIG_MMU
3997 3998 3999
static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
					struct cftype *cft, u64 val)
{
4000
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4001 4002 4003 4004 4005 4006 4007 4008 4009

	if (val >= (1 << NR_MOVE_TYPE))
		return -EINVAL;
	/*
	 * We check this value several times in both in can_attach() and
	 * attach(), so we need cgroup lock to prevent this value from being
	 * inconsistent.
	 */
	cgroup_lock();
4010
	memcg->move_charge_at_immigrate = val;
4011 4012 4013 4014
	cgroup_unlock();

	return 0;
}
4015 4016 4017 4018 4019 4020 4021
#else
static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
					struct cftype *cft, u64 val)
{
	return -ENOSYS;
}
#endif
4022

K
KAMEZAWA Hiroyuki 已提交
4023 4024 4025 4026 4027

/* For read statistics */
enum {
	MCS_CACHE,
	MCS_RSS,
4028
	MCS_FILE_MAPPED,
K
KAMEZAWA Hiroyuki 已提交
4029 4030
	MCS_PGPGIN,
	MCS_PGPGOUT,
4031
	MCS_SWAP,
4032 4033
	MCS_PGFAULT,
	MCS_PGMAJFAULT,
K
KAMEZAWA Hiroyuki 已提交
4034 4035 4036 4037 4038 4039 4040 4041 4042 4043
	MCS_INACTIVE_ANON,
	MCS_ACTIVE_ANON,
	MCS_INACTIVE_FILE,
	MCS_ACTIVE_FILE,
	MCS_UNEVICTABLE,
	NR_MCS_STAT,
};

struct mcs_total_stat {
	s64 stat[NR_MCS_STAT];
4044 4045
};

K
KAMEZAWA Hiroyuki 已提交
4046 4047 4048 4049 4050 4051
struct {
	char *local_name;
	char *total_name;
} memcg_stat_strings[NR_MCS_STAT] = {
	{"cache", "total_cache"},
	{"rss", "total_rss"},
4052
	{"mapped_file", "total_mapped_file"},
K
KAMEZAWA Hiroyuki 已提交
4053 4054
	{"pgpgin", "total_pgpgin"},
	{"pgpgout", "total_pgpgout"},
4055
	{"swap", "total_swap"},
4056 4057
	{"pgfault", "total_pgfault"},
	{"pgmajfault", "total_pgmajfault"},
K
KAMEZAWA Hiroyuki 已提交
4058 4059 4060 4061 4062 4063 4064 4065
	{"inactive_anon", "total_inactive_anon"},
	{"active_anon", "total_active_anon"},
	{"inactive_file", "total_inactive_file"},
	{"active_file", "total_active_file"},
	{"unevictable", "total_unevictable"}
};


K
KAMEZAWA Hiroyuki 已提交
4066
static void
4067
mem_cgroup_get_local_stat(struct mem_cgroup *memcg, struct mcs_total_stat *s)
K
KAMEZAWA Hiroyuki 已提交
4068 4069 4070 4071
{
	s64 val;

	/* per cpu stat */
4072
	val = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_CACHE);
K
KAMEZAWA Hiroyuki 已提交
4073
	s->stat[MCS_CACHE] += val * PAGE_SIZE;
4074
	val = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_RSS);
K
KAMEZAWA Hiroyuki 已提交
4075
	s->stat[MCS_RSS] += val * PAGE_SIZE;
4076
	val = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_FILE_MAPPED);
4077
	s->stat[MCS_FILE_MAPPED] += val * PAGE_SIZE;
4078
	val = mem_cgroup_read_events(memcg, MEM_CGROUP_EVENTS_PGPGIN);
K
KAMEZAWA Hiroyuki 已提交
4079
	s->stat[MCS_PGPGIN] += val;
4080
	val = mem_cgroup_read_events(memcg, MEM_CGROUP_EVENTS_PGPGOUT);
K
KAMEZAWA Hiroyuki 已提交
4081
	s->stat[MCS_PGPGOUT] += val;
4082
	if (do_swap_account) {
4083
		val = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_SWAPOUT);
4084 4085
		s->stat[MCS_SWAP] += val * PAGE_SIZE;
	}
4086
	val = mem_cgroup_read_events(memcg, MEM_CGROUP_EVENTS_PGFAULT);
4087
	s->stat[MCS_PGFAULT] += val;
4088
	val = mem_cgroup_read_events(memcg, MEM_CGROUP_EVENTS_PGMAJFAULT);
4089
	s->stat[MCS_PGMAJFAULT] += val;
K
KAMEZAWA Hiroyuki 已提交
4090 4091

	/* per zone stat */
4092
	val = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_INACTIVE_ANON));
K
KAMEZAWA Hiroyuki 已提交
4093
	s->stat[MCS_INACTIVE_ANON] += val * PAGE_SIZE;
4094
	val = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_ACTIVE_ANON));
K
KAMEZAWA Hiroyuki 已提交
4095
	s->stat[MCS_ACTIVE_ANON] += val * PAGE_SIZE;
4096
	val = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_INACTIVE_FILE));
K
KAMEZAWA Hiroyuki 已提交
4097
	s->stat[MCS_INACTIVE_FILE] += val * PAGE_SIZE;
4098
	val = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_ACTIVE_FILE));
K
KAMEZAWA Hiroyuki 已提交
4099
	s->stat[MCS_ACTIVE_FILE] += val * PAGE_SIZE;
4100
	val = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_UNEVICTABLE));
K
KAMEZAWA Hiroyuki 已提交
4101 4102 4103 4104
	s->stat[MCS_UNEVICTABLE] += val * PAGE_SIZE;
}

static void
4105
mem_cgroup_get_total_stat(struct mem_cgroup *memcg, struct mcs_total_stat *s)
K
KAMEZAWA Hiroyuki 已提交
4106
{
K
KAMEZAWA Hiroyuki 已提交
4107 4108
	struct mem_cgroup *iter;

4109
	for_each_mem_cgroup_tree(iter, memcg)
K
KAMEZAWA Hiroyuki 已提交
4110
		mem_cgroup_get_local_stat(iter, s);
K
KAMEZAWA Hiroyuki 已提交
4111 4112
}

4113 4114 4115 4116 4117 4118 4119 4120 4121
#ifdef CONFIG_NUMA
static int mem_control_numa_stat_show(struct seq_file *m, void *arg)
{
	int nid;
	unsigned long total_nr, file_nr, anon_nr, unevictable_nr;
	unsigned long node_nr;
	struct cgroup *cont = m->private;
	struct mem_cgroup *mem_cont = mem_cgroup_from_cont(cont);

4122
	total_nr = mem_cgroup_nr_lru_pages(mem_cont, LRU_ALL);
4123 4124
	seq_printf(m, "total=%lu", total_nr);
	for_each_node_state(nid, N_HIGH_MEMORY) {
4125
		node_nr = mem_cgroup_node_nr_lru_pages(mem_cont, nid, LRU_ALL);
4126 4127 4128 4129
		seq_printf(m, " N%d=%lu", nid, node_nr);
	}
	seq_putc(m, '\n');

4130
	file_nr = mem_cgroup_nr_lru_pages(mem_cont, LRU_ALL_FILE);
4131 4132
	seq_printf(m, "file=%lu", file_nr);
	for_each_node_state(nid, N_HIGH_MEMORY) {
4133 4134
		node_nr = mem_cgroup_node_nr_lru_pages(mem_cont, nid,
				LRU_ALL_FILE);
4135 4136 4137 4138
		seq_printf(m, " N%d=%lu", nid, node_nr);
	}
	seq_putc(m, '\n');

4139
	anon_nr = mem_cgroup_nr_lru_pages(mem_cont, LRU_ALL_ANON);
4140 4141
	seq_printf(m, "anon=%lu", anon_nr);
	for_each_node_state(nid, N_HIGH_MEMORY) {
4142 4143
		node_nr = mem_cgroup_node_nr_lru_pages(mem_cont, nid,
				LRU_ALL_ANON);
4144 4145 4146 4147
		seq_printf(m, " N%d=%lu", nid, node_nr);
	}
	seq_putc(m, '\n');

4148
	unevictable_nr = mem_cgroup_nr_lru_pages(mem_cont, BIT(LRU_UNEVICTABLE));
4149 4150
	seq_printf(m, "unevictable=%lu", unevictable_nr);
	for_each_node_state(nid, N_HIGH_MEMORY) {
4151 4152
		node_nr = mem_cgroup_node_nr_lru_pages(mem_cont, nid,
				BIT(LRU_UNEVICTABLE));
4153 4154 4155 4156 4157 4158 4159
		seq_printf(m, " N%d=%lu", nid, node_nr);
	}
	seq_putc(m, '\n');
	return 0;
}
#endif /* CONFIG_NUMA */

4160 4161
static int mem_control_stat_show(struct cgroup *cont, struct cftype *cft,
				 struct cgroup_map_cb *cb)
4162 4163
{
	struct mem_cgroup *mem_cont = mem_cgroup_from_cont(cont);
K
KAMEZAWA Hiroyuki 已提交
4164
	struct mcs_total_stat mystat;
4165 4166
	int i;

K
KAMEZAWA Hiroyuki 已提交
4167 4168
	memset(&mystat, 0, sizeof(mystat));
	mem_cgroup_get_local_stat(mem_cont, &mystat);
4169

4170

4171 4172 4173
	for (i = 0; i < NR_MCS_STAT; i++) {
		if (i == MCS_SWAP && !do_swap_account)
			continue;
K
KAMEZAWA Hiroyuki 已提交
4174
		cb->fill(cb, memcg_stat_strings[i].local_name, mystat.stat[i]);
4175
	}
L
Lee Schermerhorn 已提交
4176

K
KAMEZAWA Hiroyuki 已提交
4177
	/* Hierarchical information */
4178 4179 4180 4181 4182 4183 4184
	{
		unsigned long long limit, memsw_limit;
		memcg_get_hierarchical_limit(mem_cont, &limit, &memsw_limit);
		cb->fill(cb, "hierarchical_memory_limit", limit);
		if (do_swap_account)
			cb->fill(cb, "hierarchical_memsw_limit", memsw_limit);
	}
K
KOSAKI Motohiro 已提交
4185

K
KAMEZAWA Hiroyuki 已提交
4186 4187
	memset(&mystat, 0, sizeof(mystat));
	mem_cgroup_get_total_stat(mem_cont, &mystat);
4188 4189 4190
	for (i = 0; i < NR_MCS_STAT; i++) {
		if (i == MCS_SWAP && !do_swap_account)
			continue;
K
KAMEZAWA Hiroyuki 已提交
4191
		cb->fill(cb, memcg_stat_strings[i].total_name, mystat.stat[i]);
4192
	}
K
KAMEZAWA Hiroyuki 已提交
4193

K
KOSAKI Motohiro 已提交
4194
#ifdef CONFIG_DEBUG_VM
4195
	cb->fill(cb, "inactive_ratio", calc_inactive_ratio(mem_cont, NULL));
K
KOSAKI Motohiro 已提交
4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222

	{
		int nid, zid;
		struct mem_cgroup_per_zone *mz;
		unsigned long recent_rotated[2] = {0, 0};
		unsigned long recent_scanned[2] = {0, 0};

		for_each_online_node(nid)
			for (zid = 0; zid < MAX_NR_ZONES; zid++) {
				mz = mem_cgroup_zoneinfo(mem_cont, nid, zid);

				recent_rotated[0] +=
					mz->reclaim_stat.recent_rotated[0];
				recent_rotated[1] +=
					mz->reclaim_stat.recent_rotated[1];
				recent_scanned[0] +=
					mz->reclaim_stat.recent_scanned[0];
				recent_scanned[1] +=
					mz->reclaim_stat.recent_scanned[1];
			}
		cb->fill(cb, "recent_rotated_anon", recent_rotated[0]);
		cb->fill(cb, "recent_rotated_file", recent_rotated[1]);
		cb->fill(cb, "recent_scanned_anon", recent_scanned[0]);
		cb->fill(cb, "recent_scanned_file", recent_scanned[1]);
	}
#endif

4223 4224 4225
	return 0;
}

K
KOSAKI Motohiro 已提交
4226 4227 4228 4229
static u64 mem_cgroup_swappiness_read(struct cgroup *cgrp, struct cftype *cft)
{
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);

4230
	return mem_cgroup_swappiness(memcg);
K
KOSAKI Motohiro 已提交
4231 4232 4233 4234 4235 4236 4237
}

static int mem_cgroup_swappiness_write(struct cgroup *cgrp, struct cftype *cft,
				       u64 val)
{
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
	struct mem_cgroup *parent;
4238

K
KOSAKI Motohiro 已提交
4239 4240 4241 4242 4243 4244 4245
	if (val > 100)
		return -EINVAL;

	if (cgrp->parent == NULL)
		return -EINVAL;

	parent = mem_cgroup_from_cont(cgrp->parent);
4246 4247 4248

	cgroup_lock();

K
KOSAKI Motohiro 已提交
4249 4250
	/* If under hierarchy, only empty-root can set this value */
	if ((parent->use_hierarchy) ||
4251 4252
	    (memcg->use_hierarchy && !list_empty(&cgrp->children))) {
		cgroup_unlock();
K
KOSAKI Motohiro 已提交
4253
		return -EINVAL;
4254
	}
K
KOSAKI Motohiro 已提交
4255 4256 4257

	memcg->swappiness = val;

4258 4259
	cgroup_unlock();

K
KOSAKI Motohiro 已提交
4260 4261 4262
	return 0;
}

4263 4264 4265 4266 4267 4268 4269 4270
static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
{
	struct mem_cgroup_threshold_ary *t;
	u64 usage;
	int i;

	rcu_read_lock();
	if (!swap)
4271
		t = rcu_dereference(memcg->thresholds.primary);
4272
	else
4273
		t = rcu_dereference(memcg->memsw_thresholds.primary);
4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284

	if (!t)
		goto unlock;

	usage = mem_cgroup_usage(memcg, swap);

	/*
	 * current_threshold points to threshold just below usage.
	 * If it's not true, a threshold was crossed after last
	 * call of __mem_cgroup_threshold().
	 */
4285
	i = t->current_threshold;
4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308

	/*
	 * Iterate backward over array of thresholds starting from
	 * current_threshold and check if a threshold is crossed.
	 * If none of thresholds below usage is crossed, we read
	 * only one element of the array here.
	 */
	for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
		eventfd_signal(t->entries[i].eventfd, 1);

	/* i = current_threshold + 1 */
	i++;

	/*
	 * Iterate forward over array of thresholds starting from
	 * current_threshold+1 and check if a threshold is crossed.
	 * If none of thresholds above usage is crossed, we read
	 * only one element of the array here.
	 */
	for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
		eventfd_signal(t->entries[i].eventfd, 1);

	/* Update current_threshold */
4309
	t->current_threshold = i - 1;
4310 4311 4312 4313 4314 4315
unlock:
	rcu_read_unlock();
}

static void mem_cgroup_threshold(struct mem_cgroup *memcg)
{
4316 4317 4318 4319 4320 4321 4322
	while (memcg) {
		__mem_cgroup_threshold(memcg, false);
		if (do_swap_account)
			__mem_cgroup_threshold(memcg, true);

		memcg = parent_mem_cgroup(memcg);
	}
4323 4324 4325 4326 4327 4328 4329 4330 4331 4332
}

static int compare_thresholds(const void *a, const void *b)
{
	const struct mem_cgroup_threshold *_a = a;
	const struct mem_cgroup_threshold *_b = b;

	return _a->threshold - _b->threshold;
}

4333
static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
4334 4335 4336
{
	struct mem_cgroup_eventfd_list *ev;

4337
	list_for_each_entry(ev, &memcg->oom_notify, list)
K
KAMEZAWA Hiroyuki 已提交
4338 4339 4340 4341
		eventfd_signal(ev->eventfd, 1);
	return 0;
}

4342
static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
4343
{
K
KAMEZAWA Hiroyuki 已提交
4344 4345
	struct mem_cgroup *iter;

4346
	for_each_mem_cgroup_tree(iter, memcg)
K
KAMEZAWA Hiroyuki 已提交
4347
		mem_cgroup_oom_notify_cb(iter);
K
KAMEZAWA Hiroyuki 已提交
4348 4349 4350 4351
}

static int mem_cgroup_usage_register_event(struct cgroup *cgrp,
	struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
4352 4353
{
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4354 4355
	struct mem_cgroup_thresholds *thresholds;
	struct mem_cgroup_threshold_ary *new;
4356 4357
	int type = MEMFILE_TYPE(cft->private);
	u64 threshold, usage;
4358
	int i, size, ret;
4359 4360 4361 4362 4363 4364

	ret = res_counter_memparse_write_strategy(args, &threshold);
	if (ret)
		return ret;

	mutex_lock(&memcg->thresholds_lock);
4365

4366
	if (type == _MEM)
4367
		thresholds = &memcg->thresholds;
4368
	else if (type == _MEMSWAP)
4369
		thresholds = &memcg->memsw_thresholds;
4370 4371 4372 4373 4374 4375
	else
		BUG();

	usage = mem_cgroup_usage(memcg, type == _MEMSWAP);

	/* Check if a threshold crossed before adding a new one */
4376
	if (thresholds->primary)
4377 4378
		__mem_cgroup_threshold(memcg, type == _MEMSWAP);

4379
	size = thresholds->primary ? thresholds->primary->size + 1 : 1;
4380 4381

	/* Allocate memory for new array of thresholds */
4382
	new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
4383
			GFP_KERNEL);
4384
	if (!new) {
4385 4386 4387
		ret = -ENOMEM;
		goto unlock;
	}
4388
	new->size = size;
4389 4390

	/* Copy thresholds (if any) to new array */
4391 4392
	if (thresholds->primary) {
		memcpy(new->entries, thresholds->primary->entries, (size - 1) *
4393
				sizeof(struct mem_cgroup_threshold));
4394 4395
	}

4396
	/* Add new threshold */
4397 4398
	new->entries[size - 1].eventfd = eventfd;
	new->entries[size - 1].threshold = threshold;
4399 4400

	/* Sort thresholds. Registering of new threshold isn't time-critical */
4401
	sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
4402 4403 4404
			compare_thresholds, NULL);

	/* Find current threshold */
4405
	new->current_threshold = -1;
4406
	for (i = 0; i < size; i++) {
4407
		if (new->entries[i].threshold < usage) {
4408
			/*
4409 4410
			 * new->current_threshold will not be used until
			 * rcu_assign_pointer(), so it's safe to increment
4411 4412
			 * it here.
			 */
4413
			++new->current_threshold;
4414 4415 4416
		}
	}

4417 4418 4419 4420 4421
	/* Free old spare buffer and save old primary buffer as spare */
	kfree(thresholds->spare);
	thresholds->spare = thresholds->primary;

	rcu_assign_pointer(thresholds->primary, new);
4422

4423
	/* To be sure that nobody uses thresholds */
4424 4425 4426 4427 4428 4429 4430 4431
	synchronize_rcu();

unlock:
	mutex_unlock(&memcg->thresholds_lock);

	return ret;
}

4432
static void mem_cgroup_usage_unregister_event(struct cgroup *cgrp,
K
KAMEZAWA Hiroyuki 已提交
4433
	struct cftype *cft, struct eventfd_ctx *eventfd)
4434 4435
{
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4436 4437
	struct mem_cgroup_thresholds *thresholds;
	struct mem_cgroup_threshold_ary *new;
4438 4439
	int type = MEMFILE_TYPE(cft->private);
	u64 usage;
4440
	int i, j, size;
4441 4442 4443

	mutex_lock(&memcg->thresholds_lock);
	if (type == _MEM)
4444
		thresholds = &memcg->thresholds;
4445
	else if (type == _MEMSWAP)
4446
		thresholds = &memcg->memsw_thresholds;
4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461
	else
		BUG();

	/*
	 * Something went wrong if we trying to unregister a threshold
	 * if we don't have thresholds
	 */
	BUG_ON(!thresholds);

	usage = mem_cgroup_usage(memcg, type == _MEMSWAP);

	/* Check if a threshold crossed before removing */
	__mem_cgroup_threshold(memcg, type == _MEMSWAP);

	/* Calculate new number of threshold */
4462 4463 4464
	size = 0;
	for (i = 0; i < thresholds->primary->size; i++) {
		if (thresholds->primary->entries[i].eventfd != eventfd)
4465 4466 4467
			size++;
	}

4468
	new = thresholds->spare;
4469

4470 4471
	/* Set thresholds array to NULL if we don't have thresholds */
	if (!size) {
4472 4473
		kfree(new);
		new = NULL;
4474
		goto swap_buffers;
4475 4476
	}

4477
	new->size = size;
4478 4479

	/* Copy thresholds and find current threshold */
4480 4481 4482
	new->current_threshold = -1;
	for (i = 0, j = 0; i < thresholds->primary->size; i++) {
		if (thresholds->primary->entries[i].eventfd == eventfd)
4483 4484
			continue;

4485 4486
		new->entries[j] = thresholds->primary->entries[i];
		if (new->entries[j].threshold < usage) {
4487
			/*
4488
			 * new->current_threshold will not be used
4489 4490 4491
			 * until rcu_assign_pointer(), so it's safe to increment
			 * it here.
			 */
4492
			++new->current_threshold;
4493 4494 4495 4496
		}
		j++;
	}

4497
swap_buffers:
4498 4499 4500
	/* Swap primary and spare array */
	thresholds->spare = thresholds->primary;
	rcu_assign_pointer(thresholds->primary, new);
4501

4502
	/* To be sure that nobody uses thresholds */
4503 4504 4505 4506
	synchronize_rcu();

	mutex_unlock(&memcg->thresholds_lock);
}
4507

K
KAMEZAWA Hiroyuki 已提交
4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519
static int mem_cgroup_oom_register_event(struct cgroup *cgrp,
	struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
{
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
	struct mem_cgroup_eventfd_list *event;
	int type = MEMFILE_TYPE(cft->private);

	BUG_ON(type != _OOM_TYPE);
	event = kmalloc(sizeof(*event),	GFP_KERNEL);
	if (!event)
		return -ENOMEM;

4520
	spin_lock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
4521 4522 4523 4524 4525

	event->eventfd = eventfd;
	list_add(&event->list, &memcg->oom_notify);

	/* already in OOM ? */
4526
	if (atomic_read(&memcg->under_oom))
K
KAMEZAWA Hiroyuki 已提交
4527
		eventfd_signal(eventfd, 1);
4528
	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
4529 4530 4531 4532

	return 0;
}

4533
static void mem_cgroup_oom_unregister_event(struct cgroup *cgrp,
K
KAMEZAWA Hiroyuki 已提交
4534 4535
	struct cftype *cft, struct eventfd_ctx *eventfd)
{
4536
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
K
KAMEZAWA Hiroyuki 已提交
4537 4538 4539 4540 4541
	struct mem_cgroup_eventfd_list *ev, *tmp;
	int type = MEMFILE_TYPE(cft->private);

	BUG_ON(type != _OOM_TYPE);

4542
	spin_lock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
4543

4544
	list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
K
KAMEZAWA Hiroyuki 已提交
4545 4546 4547 4548 4549 4550
		if (ev->eventfd == eventfd) {
			list_del(&ev->list);
			kfree(ev);
		}
	}

4551
	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
4552 4553
}

4554 4555 4556
static int mem_cgroup_oom_control_read(struct cgroup *cgrp,
	struct cftype *cft,  struct cgroup_map_cb *cb)
{
4557
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4558

4559
	cb->fill(cb, "oom_kill_disable", memcg->oom_kill_disable);
4560

4561
	if (atomic_read(&memcg->under_oom))
4562 4563 4564 4565 4566 4567 4568 4569 4570
		cb->fill(cb, "under_oom", 1);
	else
		cb->fill(cb, "under_oom", 0);
	return 0;
}

static int mem_cgroup_oom_control_write(struct cgroup *cgrp,
	struct cftype *cft, u64 val)
{
4571
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582
	struct mem_cgroup *parent;

	/* cannot set to root cgroup and only 0 and 1 are allowed */
	if (!cgrp->parent || !((val == 0) || (val == 1)))
		return -EINVAL;

	parent = mem_cgroup_from_cont(cgrp->parent);

	cgroup_lock();
	/* oom-kill-disable is a flag for subhierarchy. */
	if ((parent->use_hierarchy) ||
4583
	    (memcg->use_hierarchy && !list_empty(&cgrp->children))) {
4584 4585 4586
		cgroup_unlock();
		return -EINVAL;
	}
4587
	memcg->oom_kill_disable = val;
4588
	if (!val)
4589
		memcg_oom_recover(memcg);
4590 4591 4592 4593
	cgroup_unlock();
	return 0;
}

4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609
#ifdef CONFIG_NUMA
static const struct file_operations mem_control_numa_stat_file_operations = {
	.read = seq_read,
	.llseek = seq_lseek,
	.release = single_release,
};

static int mem_control_numa_stat_open(struct inode *unused, struct file *file)
{
	struct cgroup *cont = file->f_dentry->d_parent->d_fsdata;

	file->f_op = &mem_control_numa_stat_file_operations;
	return single_open(file, mem_control_numa_stat_show, cont);
}
#endif /* CONFIG_NUMA */

B
Balbir Singh 已提交
4610 4611
static struct cftype mem_cgroup_files[] = {
	{
4612
		.name = "usage_in_bytes",
4613
		.private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
4614
		.read_u64 = mem_cgroup_read,
K
KAMEZAWA Hiroyuki 已提交
4615 4616
		.register_event = mem_cgroup_usage_register_event,
		.unregister_event = mem_cgroup_usage_unregister_event,
B
Balbir Singh 已提交
4617
	},
4618 4619
	{
		.name = "max_usage_in_bytes",
4620
		.private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
4621
		.trigger = mem_cgroup_reset,
4622 4623
		.read_u64 = mem_cgroup_read,
	},
B
Balbir Singh 已提交
4624
	{
4625
		.name = "limit_in_bytes",
4626
		.private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
4627
		.write_string = mem_cgroup_write,
4628
		.read_u64 = mem_cgroup_read,
B
Balbir Singh 已提交
4629
	},
4630 4631 4632 4633 4634 4635
	{
		.name = "soft_limit_in_bytes",
		.private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
		.write_string = mem_cgroup_write,
		.read_u64 = mem_cgroup_read,
	},
B
Balbir Singh 已提交
4636 4637
	{
		.name = "failcnt",
4638
		.private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
4639
		.trigger = mem_cgroup_reset,
4640
		.read_u64 = mem_cgroup_read,
B
Balbir Singh 已提交
4641
	},
4642 4643
	{
		.name = "stat",
4644
		.read_map = mem_control_stat_show,
4645
	},
4646 4647 4648 4649
	{
		.name = "force_empty",
		.trigger = mem_cgroup_force_empty_write,
	},
4650 4651 4652 4653 4654
	{
		.name = "use_hierarchy",
		.write_u64 = mem_cgroup_hierarchy_write,
		.read_u64 = mem_cgroup_hierarchy_read,
	},
K
KOSAKI Motohiro 已提交
4655 4656 4657 4658 4659
	{
		.name = "swappiness",
		.read_u64 = mem_cgroup_swappiness_read,
		.write_u64 = mem_cgroup_swappiness_write,
	},
4660 4661 4662 4663 4664
	{
		.name = "move_charge_at_immigrate",
		.read_u64 = mem_cgroup_move_charge_read,
		.write_u64 = mem_cgroup_move_charge_write,
	},
K
KAMEZAWA Hiroyuki 已提交
4665 4666
	{
		.name = "oom_control",
4667 4668
		.read_map = mem_cgroup_oom_control_read,
		.write_u64 = mem_cgroup_oom_control_write,
K
KAMEZAWA Hiroyuki 已提交
4669 4670 4671 4672
		.register_event = mem_cgroup_oom_register_event,
		.unregister_event = mem_cgroup_oom_unregister_event,
		.private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
	},
4673 4674 4675 4676
#ifdef CONFIG_NUMA
	{
		.name = "numa_stat",
		.open = mem_control_numa_stat_open,
4677
		.mode = S_IRUGO,
4678 4679
	},
#endif
B
Balbir Singh 已提交
4680 4681
};

4682 4683 4684 4685 4686 4687
#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
static struct cftype memsw_cgroup_files[] = {
	{
		.name = "memsw.usage_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
		.read_u64 = mem_cgroup_read,
K
KAMEZAWA Hiroyuki 已提交
4688 4689
		.register_event = mem_cgroup_usage_register_event,
		.unregister_event = mem_cgroup_usage_unregister_event,
4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724
	},
	{
		.name = "memsw.max_usage_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
		.trigger = mem_cgroup_reset,
		.read_u64 = mem_cgroup_read,
	},
	{
		.name = "memsw.limit_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
		.write_string = mem_cgroup_write,
		.read_u64 = mem_cgroup_read,
	},
	{
		.name = "memsw.failcnt",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
		.trigger = mem_cgroup_reset,
		.read_u64 = mem_cgroup_read,
	},
};

static int register_memsw_files(struct cgroup *cont, struct cgroup_subsys *ss)
{
	if (!do_swap_account)
		return 0;
	return cgroup_add_files(cont, ss, memsw_cgroup_files,
				ARRAY_SIZE(memsw_cgroup_files));
};
#else
static int register_memsw_files(struct cgroup *cont, struct cgroup_subsys *ss)
{
	return 0;
}
#endif

4725
static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
4726 4727
{
	struct mem_cgroup_per_node *pn;
4728
	struct mem_cgroup_per_zone *mz;
4729
	enum lru_list l;
4730
	int zone, tmp = node;
4731 4732 4733 4734 4735 4736 4737 4738
	/*
	 * This routine is called against possible nodes.
	 * But it's BUG to call kmalloc() against offline node.
	 *
	 * TODO: this routine can waste much memory for nodes which will
	 *       never be onlined. It's better to use memory hotplug callback
	 *       function.
	 */
4739 4740
	if (!node_state(node, N_NORMAL_MEMORY))
		tmp = -1;
4741
	pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
4742 4743
	if (!pn)
		return 1;
4744

4745
	memcg->info.nodeinfo[node] = pn;
4746 4747
	for (zone = 0; zone < MAX_NR_ZONES; zone++) {
		mz = &pn->zoneinfo[zone];
4748 4749
		for_each_lru(l)
			INIT_LIST_HEAD(&mz->lists[l]);
4750
		mz->usage_in_excess = 0;
4751
		mz->on_tree = false;
4752
		mz->mem = memcg;
4753
	}
4754 4755 4756
	return 0;
}

4757
static void free_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
4758
{
4759
	kfree(memcg->info.nodeinfo[node]);
4760 4761
}

4762 4763 4764
static struct mem_cgroup *mem_cgroup_alloc(void)
{
	struct mem_cgroup *mem;
4765
	int size = sizeof(struct mem_cgroup);
4766

4767
	/* Can be very big if MAX_NUMNODES is very big */
4768
	if (size < PAGE_SIZE)
4769
		mem = kzalloc(size, GFP_KERNEL);
4770
	else
4771
		mem = vzalloc(size);
4772

4773 4774 4775
	if (!mem)
		return NULL;

4776
	mem->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
4777 4778
	if (!mem->stat)
		goto out_free;
4779
	spin_lock_init(&mem->pcp_counter_lock);
4780
	return mem;
4781 4782 4783 4784 4785 4786 4787

out_free:
	if (size < PAGE_SIZE)
		kfree(mem);
	else
		vfree(mem);
	return NULL;
4788 4789
}

4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800
/*
 * At destroying mem_cgroup, references from swap_cgroup can remain.
 * (scanning all at force_empty is too costly...)
 *
 * Instead of clearing all references at force_empty, we remember
 * the number of reference from swap_cgroup and free mem_cgroup when
 * it goes down to 0.
 *
 * Removal of cgroup itself succeeds regardless of refs from swap.
 */

4801
static void __mem_cgroup_free(struct mem_cgroup *memcg)
4802
{
K
KAMEZAWA Hiroyuki 已提交
4803 4804
	int node;

4805 4806
	mem_cgroup_remove_from_trees(memcg);
	free_css_id(&mem_cgroup_subsys, &memcg->css);
K
KAMEZAWA Hiroyuki 已提交
4807

K
KAMEZAWA Hiroyuki 已提交
4808
	for_each_node_state(node, N_POSSIBLE)
4809
		free_mem_cgroup_per_zone_info(memcg, node);
K
KAMEZAWA Hiroyuki 已提交
4810

4811
	free_percpu(memcg->stat);
4812
	if (sizeof(struct mem_cgroup) < PAGE_SIZE)
4813
		kfree(memcg);
4814
	else
4815
		vfree(memcg);
4816 4817
}

4818
static void mem_cgroup_get(struct mem_cgroup *memcg)
4819
{
4820
	atomic_inc(&memcg->refcnt);
4821 4822
}

4823
static void __mem_cgroup_put(struct mem_cgroup *memcg, int count)
4824
{
4825 4826 4827
	if (atomic_sub_and_test(count, &memcg->refcnt)) {
		struct mem_cgroup *parent = parent_mem_cgroup(memcg);
		__mem_cgroup_free(memcg);
4828 4829 4830
		if (parent)
			mem_cgroup_put(parent);
	}
4831 4832
}

4833
static void mem_cgroup_put(struct mem_cgroup *memcg)
4834
{
4835
	__mem_cgroup_put(memcg, 1);
4836 4837
}

4838 4839 4840
/*
 * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
 */
4841
static struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg)
4842
{
4843
	if (!memcg->res.parent)
4844
		return NULL;
4845
	return mem_cgroup_from_res_counter(memcg->res.parent, res);
4846
}
4847

4848 4849 4850
#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
static void __init enable_swap_cgroup(void)
{
4851
	if (!mem_cgroup_disabled() && really_do_swap_account)
4852 4853 4854 4855 4856 4857 4858 4859
		do_swap_account = 1;
}
#else
static void __init enable_swap_cgroup(void)
{
}
#endif

4860 4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884
static int mem_cgroup_soft_limit_tree_init(void)
{
	struct mem_cgroup_tree_per_node *rtpn;
	struct mem_cgroup_tree_per_zone *rtpz;
	int tmp, node, zone;

	for_each_node_state(node, N_POSSIBLE) {
		tmp = node;
		if (!node_state(node, N_NORMAL_MEMORY))
			tmp = -1;
		rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, tmp);
		if (!rtpn)
			return 1;

		soft_limit_tree.rb_tree_per_node[node] = rtpn;

		for (zone = 0; zone < MAX_NR_ZONES; zone++) {
			rtpz = &rtpn->rb_tree_per_zone[zone];
			rtpz->rb_root = RB_ROOT;
			spin_lock_init(&rtpz->lock);
		}
	}
	return 0;
}

L
Li Zefan 已提交
4885
static struct cgroup_subsys_state * __ref
B
Balbir Singh 已提交
4886 4887
mem_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cont)
{
4888
	struct mem_cgroup *memcg, *parent;
K
KAMEZAWA Hiroyuki 已提交
4889
	long error = -ENOMEM;
4890
	int node;
B
Balbir Singh 已提交
4891

4892 4893
	memcg = mem_cgroup_alloc();
	if (!memcg)
K
KAMEZAWA Hiroyuki 已提交
4894
		return ERR_PTR(error);
4895

4896
	for_each_node_state(node, N_POSSIBLE)
4897
		if (alloc_mem_cgroup_per_zone_info(memcg, node))
4898
			goto free_out;
4899

4900
	/* root ? */
4901
	if (cont->parent == NULL) {
4902
		int cpu;
4903
		enable_swap_cgroup();
4904
		parent = NULL;
4905
		root_mem_cgroup = memcg;
4906 4907
		if (mem_cgroup_soft_limit_tree_init())
			goto free_out;
4908 4909 4910 4911 4912
		for_each_possible_cpu(cpu) {
			struct memcg_stock_pcp *stock =
						&per_cpu(memcg_stock, cpu);
			INIT_WORK(&stock->work, drain_local_stock);
		}
4913
		hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
4914
	} else {
4915
		parent = mem_cgroup_from_cont(cont->parent);
4916 4917
		memcg->use_hierarchy = parent->use_hierarchy;
		memcg->oom_kill_disable = parent->oom_kill_disable;
4918
	}
4919

4920
	if (parent && parent->use_hierarchy) {
4921 4922
		res_counter_init(&memcg->res, &parent->res);
		res_counter_init(&memcg->memsw, &parent->memsw);
4923 4924 4925 4926 4927 4928 4929
		/*
		 * We increment refcnt of the parent to ensure that we can
		 * safely access it on res_counter_charge/uncharge.
		 * This refcnt will be decremented when freeing this
		 * mem_cgroup(see mem_cgroup_put).
		 */
		mem_cgroup_get(parent);
4930
	} else {
4931 4932
		res_counter_init(&memcg->res, NULL);
		res_counter_init(&memcg->memsw, NULL);
4933
	}
4934 4935 4936
	memcg->last_scanned_child = 0;
	memcg->last_scanned_node = MAX_NUMNODES;
	INIT_LIST_HEAD(&memcg->oom_notify);
4937

K
KOSAKI Motohiro 已提交
4938
	if (parent)
4939 4940 4941 4942 4943
		memcg->swappiness = mem_cgroup_swappiness(parent);
	atomic_set(&memcg->refcnt, 1);
	memcg->move_charge_at_immigrate = 0;
	mutex_init(&memcg->thresholds_lock);
	return &memcg->css;
4944
free_out:
4945
	__mem_cgroup_free(memcg);
4946
	root_mem_cgroup = NULL;
K
KAMEZAWA Hiroyuki 已提交
4947
	return ERR_PTR(error);
B
Balbir Singh 已提交
4948 4949
}

4950
static int mem_cgroup_pre_destroy(struct cgroup_subsys *ss,
4951 4952
					struct cgroup *cont)
{
4953
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
4954

4955
	return mem_cgroup_force_empty(memcg, false);
4956 4957
}

B
Balbir Singh 已提交
4958 4959 4960
static void mem_cgroup_destroy(struct cgroup_subsys *ss,
				struct cgroup *cont)
{
4961
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
4962

4963
	mem_cgroup_put(memcg);
B
Balbir Singh 已提交
4964 4965 4966 4967 4968
}

static int mem_cgroup_populate(struct cgroup_subsys *ss,
				struct cgroup *cont)
{
4969 4970 4971 4972 4973 4974 4975 4976
	int ret;

	ret = cgroup_add_files(cont, ss, mem_cgroup_files,
				ARRAY_SIZE(mem_cgroup_files));

	if (!ret)
		ret = register_memsw_files(cont, ss);
	return ret;
B
Balbir Singh 已提交
4977 4978
}

4979
#ifdef CONFIG_MMU
4980
/* Handlers for move charge at task migration. */
4981 4982
#define PRECHARGE_COUNT_AT_ONCE	256
static int mem_cgroup_do_precharge(unsigned long count)
4983
{
4984 4985
	int ret = 0;
	int batch_count = PRECHARGE_COUNT_AT_ONCE;
4986
	struct mem_cgroup *memcg = mc.to;
4987

4988
	if (mem_cgroup_is_root(memcg)) {
4989 4990 4991 4992 4993 4994 4995 4996
		mc.precharge += count;
		/* we don't need css_get for root */
		return ret;
	}
	/* try to charge at once */
	if (count > 1) {
		struct res_counter *dummy;
		/*
4997
		 * "memcg" cannot be under rmdir() because we've already checked
4998 4999 5000 5001
		 * by cgroup_lock_live_cgroup() that it is not removed and we
		 * are still under the same cgroup_mutex. So we can postpone
		 * css_get().
		 */
5002
		if (res_counter_charge(&memcg->res, PAGE_SIZE * count, &dummy))
5003
			goto one_by_one;
5004
		if (do_swap_account && res_counter_charge(&memcg->memsw,
5005
						PAGE_SIZE * count, &dummy)) {
5006
			res_counter_uncharge(&memcg->res, PAGE_SIZE * count);
5007 5008 5009 5010 5011 5012 5013 5014 5015 5016 5017 5018 5019 5020 5021 5022
			goto one_by_one;
		}
		mc.precharge += count;
		return ret;
	}
one_by_one:
	/* fall back to one by one charge */
	while (count--) {
		if (signal_pending(current)) {
			ret = -EINTR;
			break;
		}
		if (!batch_count--) {
			batch_count = PRECHARGE_COUNT_AT_ONCE;
			cond_resched();
		}
5023 5024 5025
		ret = __mem_cgroup_try_charge(NULL,
					GFP_KERNEL, 1, &memcg, false);
		if (ret || !memcg)
5026 5027 5028 5029
			/* mem_cgroup_clear_mc() will do uncharge later */
			return -ENOMEM;
		mc.precharge++;
	}
5030 5031 5032 5033 5034 5035 5036 5037
	return ret;
}

/**
 * is_target_pte_for_mc - check a pte whether it is valid for move charge
 * @vma: the vma the pte to be checked belongs
 * @addr: the address corresponding to the pte to be checked
 * @ptent: the pte to be checked
5038
 * @target: the pointer the target page or swap ent will be stored(can be NULL)
5039 5040 5041 5042 5043 5044
 *
 * Returns
 *   0(MC_TARGET_NONE): if the pte is not a target for move charge.
 *   1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
 *     move charge. if @target is not NULL, the page is stored in target->page
 *     with extra refcnt got(Callers should handle it).
5045 5046 5047
 *   2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
 *     target for charge migration. if @target is not NULL, the entry is stored
 *     in target->ent.
5048 5049 5050 5051 5052
 *
 * Called with pte lock held.
 */
union mc_target {
	struct page	*page;
5053
	swp_entry_t	ent;
5054 5055 5056 5057 5058
};

enum mc_target_type {
	MC_TARGET_NONE,	/* not used */
	MC_TARGET_PAGE,
5059
	MC_TARGET_SWAP,
5060 5061
};

D
Daisuke Nishimura 已提交
5062 5063
static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
						unsigned long addr, pte_t ptent)
5064
{
D
Daisuke Nishimura 已提交
5065
	struct page *page = vm_normal_page(vma, addr, ptent);
5066

D
Daisuke Nishimura 已提交
5067 5068 5069 5070 5071 5072
	if (!page || !page_mapped(page))
		return NULL;
	if (PageAnon(page)) {
		/* we don't move shared anon */
		if (!move_anon() || page_mapcount(page) > 2)
			return NULL;
5073 5074
	} else if (!move_file())
		/* we ignore mapcount for file pages */
D
Daisuke Nishimura 已提交
5075 5076 5077 5078 5079 5080 5081 5082 5083 5084 5085 5086 5087 5088 5089 5090 5091 5092
		return NULL;
	if (!get_page_unless_zero(page))
		return NULL;

	return page;
}

static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
			unsigned long addr, pte_t ptent, swp_entry_t *entry)
{
	int usage_count;
	struct page *page = NULL;
	swp_entry_t ent = pte_to_swp_entry(ptent);

	if (!move_anon() || non_swap_entry(ent))
		return NULL;
	usage_count = mem_cgroup_count_swap_user(ent, &page);
	if (usage_count > 1) { /* we don't move shared anon */
5093 5094
		if (page)
			put_page(page);
D
Daisuke Nishimura 已提交
5095
		return NULL;
5096
	}
D
Daisuke Nishimura 已提交
5097 5098 5099 5100 5101 5102
	if (do_swap_account)
		entry->val = ent.val;

	return page;
}

5103 5104 5105 5106 5107 5108 5109 5110 5111 5112 5113 5114 5115 5116 5117 5118 5119 5120 5121 5122 5123
static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
			unsigned long addr, pte_t ptent, swp_entry_t *entry)
{
	struct page *page = NULL;
	struct inode *inode;
	struct address_space *mapping;
	pgoff_t pgoff;

	if (!vma->vm_file) /* anonymous vma */
		return NULL;
	if (!move_file())
		return NULL;

	inode = vma->vm_file->f_path.dentry->d_inode;
	mapping = vma->vm_file->f_mapping;
	if (pte_none(ptent))
		pgoff = linear_page_index(vma, addr);
	else /* pte_file(ptent) is true */
		pgoff = pte_to_pgoff(ptent);

	/* page is moved even if it's not RSS of this task(page-faulted). */
5124 5125 5126 5127 5128 5129
	page = find_get_page(mapping, pgoff);

#ifdef CONFIG_SWAP
	/* shmem/tmpfs may report page out on swap: account for that too. */
	if (radix_tree_exceptional_entry(page)) {
		swp_entry_t swap = radix_to_swp_entry(page);
5130
		if (do_swap_account)
5131 5132
			*entry = swap;
		page = find_get_page(&swapper_space, swap.val);
5133
	}
5134
#endif
5135 5136 5137
	return page;
}

D
Daisuke Nishimura 已提交
5138 5139 5140 5141 5142 5143 5144 5145 5146 5147 5148 5149
static int is_target_pte_for_mc(struct vm_area_struct *vma,
		unsigned long addr, pte_t ptent, union mc_target *target)
{
	struct page *page = NULL;
	struct page_cgroup *pc;
	int ret = 0;
	swp_entry_t ent = { .val = 0 };

	if (pte_present(ptent))
		page = mc_handle_present_pte(vma, addr, ptent);
	else if (is_swap_pte(ptent))
		page = mc_handle_swap_pte(vma, addr, ptent, &ent);
5150 5151
	else if (pte_none(ptent) || pte_file(ptent))
		page = mc_handle_file_pte(vma, addr, ptent, &ent);
D
Daisuke Nishimura 已提交
5152 5153 5154

	if (!page && !ent.val)
		return 0;
5155 5156 5157 5158 5159 5160 5161 5162 5163 5164 5165 5166 5167 5168 5169
	if (page) {
		pc = lookup_page_cgroup(page);
		/*
		 * Do only loose check w/o page_cgroup lock.
		 * mem_cgroup_move_account() checks the pc is valid or not under
		 * the lock.
		 */
		if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
			ret = MC_TARGET_PAGE;
			if (target)
				target->page = page;
		}
		if (!ret || !target)
			put_page(page);
	}
D
Daisuke Nishimura 已提交
5170 5171
	/* There is a swap entry and a page doesn't exist or isn't charged */
	if (ent.val && !ret &&
5172 5173 5174 5175
			css_id(&mc.from->css) == lookup_swap_cgroup(ent)) {
		ret = MC_TARGET_SWAP;
		if (target)
			target->ent = ent;
5176 5177 5178 5179 5180 5181 5182 5183 5184 5185 5186 5187
	}
	return ret;
}

static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
					unsigned long addr, unsigned long end,
					struct mm_walk *walk)
{
	struct vm_area_struct *vma = walk->private;
	pte_t *pte;
	spinlock_t *ptl;

5188 5189
	split_huge_page_pmd(walk->mm, pmd);

5190 5191 5192 5193 5194 5195 5196
	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
	for (; addr != end; pte++, addr += PAGE_SIZE)
		if (is_target_pte_for_mc(vma, addr, *pte, NULL))
			mc.precharge++;	/* increment precharge temporarily */
	pte_unmap_unlock(pte - 1, ptl);
	cond_resched();

5197 5198 5199
	return 0;
}

5200 5201 5202 5203 5204
static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
{
	unsigned long precharge;
	struct vm_area_struct *vma;

5205
	down_read(&mm->mmap_sem);
5206 5207 5208 5209 5210 5211 5212 5213 5214 5215 5216
	for (vma = mm->mmap; vma; vma = vma->vm_next) {
		struct mm_walk mem_cgroup_count_precharge_walk = {
			.pmd_entry = mem_cgroup_count_precharge_pte_range,
			.mm = mm,
			.private = vma,
		};
		if (is_vm_hugetlb_page(vma))
			continue;
		walk_page_range(vma->vm_start, vma->vm_end,
					&mem_cgroup_count_precharge_walk);
	}
5217
	up_read(&mm->mmap_sem);
5218 5219 5220 5221 5222 5223 5224 5225 5226

	precharge = mc.precharge;
	mc.precharge = 0;

	return precharge;
}

static int mem_cgroup_precharge_mc(struct mm_struct *mm)
{
5227 5228 5229 5230 5231
	unsigned long precharge = mem_cgroup_count_precharge(mm);

	VM_BUG_ON(mc.moving_task);
	mc.moving_task = current;
	return mem_cgroup_do_precharge(precharge);
5232 5233
}

5234 5235
/* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
static void __mem_cgroup_clear_mc(void)
5236
{
5237 5238 5239
	struct mem_cgroup *from = mc.from;
	struct mem_cgroup *to = mc.to;

5240
	/* we must uncharge all the leftover precharges from mc.to */
5241 5242 5243 5244 5245 5246 5247 5248 5249 5250 5251
	if (mc.precharge) {
		__mem_cgroup_cancel_charge(mc.to, mc.precharge);
		mc.precharge = 0;
	}
	/*
	 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
	 * we must uncharge here.
	 */
	if (mc.moved_charge) {
		__mem_cgroup_cancel_charge(mc.from, mc.moved_charge);
		mc.moved_charge = 0;
5252
	}
5253 5254 5255 5256 5257 5258 5259 5260 5261 5262 5263 5264 5265 5266 5267 5268 5269 5270 5271
	/* we must fixup refcnts and charges */
	if (mc.moved_swap) {
		/* uncharge swap account from the old cgroup */
		if (!mem_cgroup_is_root(mc.from))
			res_counter_uncharge(&mc.from->memsw,
						PAGE_SIZE * mc.moved_swap);
		__mem_cgroup_put(mc.from, mc.moved_swap);

		if (!mem_cgroup_is_root(mc.to)) {
			/*
			 * we charged both to->res and to->memsw, so we should
			 * uncharge to->res.
			 */
			res_counter_uncharge(&mc.to->res,
						PAGE_SIZE * mc.moved_swap);
		}
		/* we've already done mem_cgroup_get(mc.to) */
		mc.moved_swap = 0;
	}
5272 5273 5274 5275 5276 5277 5278 5279 5280 5281 5282 5283 5284 5285 5286
	memcg_oom_recover(from);
	memcg_oom_recover(to);
	wake_up_all(&mc.waitq);
}

static void mem_cgroup_clear_mc(void)
{
	struct mem_cgroup *from = mc.from;

	/*
	 * we must clear moving_task before waking up waiters at the end of
	 * task migration.
	 */
	mc.moving_task = NULL;
	__mem_cgroup_clear_mc();
5287
	spin_lock(&mc.lock);
5288 5289
	mc.from = NULL;
	mc.to = NULL;
5290
	spin_unlock(&mc.lock);
5291
	mem_cgroup_end_move(from);
5292 5293
}

5294 5295
static int mem_cgroup_can_attach(struct cgroup_subsys *ss,
				struct cgroup *cgroup,
5296
				struct task_struct *p)
5297 5298
{
	int ret = 0;
5299
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgroup);
5300

5301
	if (memcg->move_charge_at_immigrate) {
5302 5303 5304
		struct mm_struct *mm;
		struct mem_cgroup *from = mem_cgroup_from_task(p);

5305
		VM_BUG_ON(from == memcg);
5306 5307 5308 5309 5310

		mm = get_task_mm(p);
		if (!mm)
			return 0;
		/* We move charges only when we move a owner of the mm */
5311 5312 5313 5314
		if (mm->owner == p) {
			VM_BUG_ON(mc.from);
			VM_BUG_ON(mc.to);
			VM_BUG_ON(mc.precharge);
5315
			VM_BUG_ON(mc.moved_charge);
5316
			VM_BUG_ON(mc.moved_swap);
5317
			mem_cgroup_start_move(from);
5318
			spin_lock(&mc.lock);
5319
			mc.from = from;
5320
			mc.to = memcg;
5321
			spin_unlock(&mc.lock);
5322
			/* We set mc.moving_task later */
5323 5324 5325 5326

			ret = mem_cgroup_precharge_mc(mm);
			if (ret)
				mem_cgroup_clear_mc();
5327 5328
		}
		mmput(mm);
5329 5330 5331 5332 5333 5334
	}
	return ret;
}

static void mem_cgroup_cancel_attach(struct cgroup_subsys *ss,
				struct cgroup *cgroup,
5335
				struct task_struct *p)
5336
{
5337
	mem_cgroup_clear_mc();
5338 5339
}

5340 5341 5342
static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
				unsigned long addr, unsigned long end,
				struct mm_walk *walk)
5343
{
5344 5345 5346 5347 5348
	int ret = 0;
	struct vm_area_struct *vma = walk->private;
	pte_t *pte;
	spinlock_t *ptl;

5349
	split_huge_page_pmd(walk->mm, pmd);
5350 5351 5352 5353 5354 5355 5356 5357
retry:
	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
	for (; addr != end; addr += PAGE_SIZE) {
		pte_t ptent = *(pte++);
		union mc_target target;
		int type;
		struct page *page;
		struct page_cgroup *pc;
5358
		swp_entry_t ent;
5359 5360 5361 5362 5363 5364 5365 5366 5367 5368 5369

		if (!mc.precharge)
			break;

		type = is_target_pte_for_mc(vma, addr, ptent, &target);
		switch (type) {
		case MC_TARGET_PAGE:
			page = target.page;
			if (isolate_lru_page(page))
				goto put;
			pc = lookup_page_cgroup(page);
5370 5371
			if (!mem_cgroup_move_account(page, 1, pc,
						     mc.from, mc.to, false)) {
5372
				mc.precharge--;
5373 5374
				/* we uncharge from mc.from later. */
				mc.moved_charge++;
5375 5376 5377 5378 5379
			}
			putback_lru_page(page);
put:			/* is_target_pte_for_mc() gets the page */
			put_page(page);
			break;
5380 5381
		case MC_TARGET_SWAP:
			ent = target.ent;
5382 5383
			if (!mem_cgroup_move_swap_account(ent,
						mc.from, mc.to, false)) {
5384
				mc.precharge--;
5385 5386 5387
				/* we fixup refcnts and charges later. */
				mc.moved_swap++;
			}
5388
			break;
5389 5390 5391 5392 5393 5394 5395 5396 5397 5398 5399 5400 5401 5402
		default:
			break;
		}
	}
	pte_unmap_unlock(pte - 1, ptl);
	cond_resched();

	if (addr != end) {
		/*
		 * We have consumed all precharges we got in can_attach().
		 * We try charge one by one, but don't do any additional
		 * charges to mc.to if we have failed in charge once in attach()
		 * phase.
		 */
5403
		ret = mem_cgroup_do_precharge(1);
5404 5405 5406 5407 5408 5409 5410 5411 5412 5413 5414 5415
		if (!ret)
			goto retry;
	}

	return ret;
}

static void mem_cgroup_move_charge(struct mm_struct *mm)
{
	struct vm_area_struct *vma;

	lru_add_drain_all();
5416 5417 5418 5419 5420 5421 5422 5423 5424 5425 5426 5427 5428
retry:
	if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
		/*
		 * Someone who are holding the mmap_sem might be waiting in
		 * waitq. So we cancel all extra charges, wake up all waiters,
		 * and retry. Because we cancel precharges, we might not be able
		 * to move enough charges, but moving charge is a best-effort
		 * feature anyway, so it wouldn't be a big problem.
		 */
		__mem_cgroup_clear_mc();
		cond_resched();
		goto retry;
	}
5429 5430 5431 5432 5433 5434 5435 5436 5437 5438 5439 5440 5441 5442 5443 5444 5445 5446
	for (vma = mm->mmap; vma; vma = vma->vm_next) {
		int ret;
		struct mm_walk mem_cgroup_move_charge_walk = {
			.pmd_entry = mem_cgroup_move_charge_pte_range,
			.mm = mm,
			.private = vma,
		};
		if (is_vm_hugetlb_page(vma))
			continue;
		ret = walk_page_range(vma->vm_start, vma->vm_end,
						&mem_cgroup_move_charge_walk);
		if (ret)
			/*
			 * means we have consumed all precharges and failed in
			 * doing additional charge. Just abandon here.
			 */
			break;
	}
5447
	up_read(&mm->mmap_sem);
5448 5449
}

B
Balbir Singh 已提交
5450 5451 5452
static void mem_cgroup_move_task(struct cgroup_subsys *ss,
				struct cgroup *cont,
				struct cgroup *old_cont,
5453
				struct task_struct *p)
B
Balbir Singh 已提交
5454
{
5455
	struct mm_struct *mm = get_task_mm(p);
5456 5457

	if (mm) {
5458 5459 5460
		if (mc.to)
			mem_cgroup_move_charge(mm);
		put_swap_token(mm);
5461 5462
		mmput(mm);
	}
5463 5464
	if (mc.to)
		mem_cgroup_clear_mc();
B
Balbir Singh 已提交
5465
}
5466 5467 5468
#else	/* !CONFIG_MMU */
static int mem_cgroup_can_attach(struct cgroup_subsys *ss,
				struct cgroup *cgroup,
5469
				struct task_struct *p)
5470 5471 5472 5473 5474
{
	return 0;
}
static void mem_cgroup_cancel_attach(struct cgroup_subsys *ss,
				struct cgroup *cgroup,
5475
				struct task_struct *p)
5476 5477 5478 5479 5480
{
}
static void mem_cgroup_move_task(struct cgroup_subsys *ss,
				struct cgroup *cont,
				struct cgroup *old_cont,
5481
				struct task_struct *p)
5482 5483 5484
{
}
#endif
B
Balbir Singh 已提交
5485

B
Balbir Singh 已提交
5486 5487 5488 5489
struct cgroup_subsys mem_cgroup_subsys = {
	.name = "memory",
	.subsys_id = mem_cgroup_subsys_id,
	.create = mem_cgroup_create,
5490
	.pre_destroy = mem_cgroup_pre_destroy,
B
Balbir Singh 已提交
5491 5492
	.destroy = mem_cgroup_destroy,
	.populate = mem_cgroup_populate,
5493 5494
	.can_attach = mem_cgroup_can_attach,
	.cancel_attach = mem_cgroup_cancel_attach,
B
Balbir Singh 已提交
5495
	.attach = mem_cgroup_move_task,
5496
	.early_init = 0,
K
KAMEZAWA Hiroyuki 已提交
5497
	.use_id = 1,
B
Balbir Singh 已提交
5498
};
5499 5500

#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
5501 5502 5503
static int __init enable_swap_account(char *s)
{
	/* consider enabled if no parameter or 1 is given */
5504
	if (!strcmp(s, "1"))
5505
		really_do_swap_account = 1;
5506
	else if (!strcmp(s, "0"))
5507 5508 5509
		really_do_swap_account = 0;
	return 1;
}
5510
__setup("swapaccount=", enable_swap_account);
5511 5512

#endif