cgroup.c 142.1 KB
Newer Older
1 2 3 4 5 6
/*
 *  Generic process-grouping system.
 *
 *  Based originally on the cpuset system, extracted by Paul Menage
 *  Copyright (C) 2006 Google, Inc
 *
7 8 9 10
 *  Notifications support
 *  Copyright (C) 2009 Nokia Corporation
 *  Author: Kirill A. Shutemov
 *
11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29
 *  Copyright notices from the original cpuset code:
 *  --------------------------------------------------
 *  Copyright (C) 2003 BULL SA.
 *  Copyright (C) 2004-2006 Silicon Graphics, Inc.
 *
 *  Portions derived from Patrick Mochel's sysfs code.
 *  sysfs is Copyright (c) 2001-3 Patrick Mochel
 *
 *  2003-10-10 Written by Simon Derr.
 *  2003-10-22 Updates by Stephen Hemminger.
 *  2004 May-July Rework by Paul Jackson.
 *  ---------------------------------------------------
 *
 *  This file is subject to the terms and conditions of the GNU General Public
 *  License.  See the file COPYING in the main directory of the Linux
 *  distribution for more details.
 */

#include <linux/cgroup.h>
30
#include <linux/cred.h>
31
#include <linux/ctype.h>
32
#include <linux/errno.h>
33
#include <linux/init_task.h>
34 35 36 37 38 39
#include <linux/kernel.h>
#include <linux/list.h>
#include <linux/mm.h>
#include <linux/mutex.h>
#include <linux/mount.h>
#include <linux/pagemap.h>
40
#include <linux/proc_fs.h>
41 42
#include <linux/rcupdate.h>
#include <linux/sched.h>
43
#include <linux/backing-dev.h>
44 45 46 47
#include <linux/slab.h>
#include <linux/magic.h>
#include <linux/spinlock.h>
#include <linux/string.h>
48
#include <linux/sort.h>
49
#include <linux/kmod.h>
B
Balbir Singh 已提交
50 51
#include <linux/delayacct.h>
#include <linux/cgroupstats.h>
52
#include <linux/hashtable.h>
53
#include <linux/namei.h>
L
Li Zefan 已提交
54
#include <linux/pid_namespace.h>
55
#include <linux/idr.h>
56
#include <linux/vmalloc.h> /* TODO: replace with more sophisticated array */
57
#include <linux/flex_array.h> /* used in cgroup_attach_task */
58
#include <linux/kthread.h>
B
Balbir Singh 已提交
59

A
Arun Sharma 已提交
60
#include <linux/atomic.h>
61

62 63 64 65 66 67 68 69
/*
 * pidlists linger the following amount before being destroyed.  The goal
 * is avoiding frequent destruction in the middle of consecutive read calls
 * Expiring in the middle is a performance problem not a correctness one.
 * 1 sec should be enough.
 */
#define CGROUP_PIDLIST_DESTROY_DELAY	HZ

T
Tejun Heo 已提交
70 71 72
#define CGROUP_FILE_NAME_MAX		(MAX_CGROUP_TYPE_NAMELEN +	\
					 MAX_CFTYPE_NAME + 2)

T
Tejun Heo 已提交
73 74 75 76 77 78 79 80 81
/*
 * cgroup_tree_mutex nests above cgroup_mutex and protects cftypes, file
 * creation/removal and hierarchy changing operations including cgroup
 * creation, removal, css association and controller rebinding.  This outer
 * lock is needed mainly to resolve the circular dependency between kernfs
 * active ref and cgroup_mutex.  cgroup_tree_mutex nests above both.
 */
static DEFINE_MUTEX(cgroup_tree_mutex);

T
Tejun Heo 已提交
82 83 84 85
/*
 * cgroup_mutex is the master lock.  Any modification to cgroup or its
 * hierarchy must be performed while holding it.
 */
T
Tejun Heo 已提交
86 87
#ifdef CONFIG_PROVE_RCU
DEFINE_MUTEX(cgroup_mutex);
88
EXPORT_SYMBOL_GPL(cgroup_mutex);	/* only for lockdep */
T
Tejun Heo 已提交
89
#else
90
static DEFINE_MUTEX(cgroup_mutex);
T
Tejun Heo 已提交
91 92
#endif

93 94 95 96 97 98
/*
 * Protects cgroup_subsys->release_agent_path.  Modifying it also requires
 * cgroup_mutex.  Reading requires either cgroup_mutex or this spinlock.
 */
static DEFINE_SPINLOCK(release_agent_path_lock);

T
Tejun Heo 已提交
99
#define cgroup_assert_mutexes_or_rcu_locked()				\
100
	rcu_lockdep_assert(rcu_read_lock_held() ||			\
T
Tejun Heo 已提交
101
			   lockdep_is_held(&cgroup_tree_mutex) ||	\
102
			   lockdep_is_held(&cgroup_mutex),		\
T
Tejun Heo 已提交
103
			   "cgroup_[tree_]mutex or RCU read lock required");
104

105 106 107 108 109 110 111 112
/*
 * cgroup destruction makes heavy use of work items and there can be a lot
 * of concurrent destructions.  Use a separate workqueue so that cgroup
 * destruction work items don't end up filling up max_active of system_wq
 * which may lead to deadlock.
 */
static struct workqueue_struct *cgroup_destroy_wq;

113 114 115 116 117 118
/*
 * pidlist destructions need to be flushed on cgroup destruction.  Use a
 * separate workqueue as flush domain.
 */
static struct workqueue_struct *cgroup_pidlist_destroy_wq;

T
Tejun Heo 已提交
119
/* generate an array of cgroup subsystem pointers */
120
#define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys,
T
Tejun Heo 已提交
121
static struct cgroup_subsys *cgroup_subsys[] = {
122 123
#include <linux/cgroup_subsys.h>
};
124 125 126 127 128 129 130 131
#undef SUBSYS

/* array of cgroup subsystem names */
#define SUBSYS(_x) [_x ## _cgrp_id] = #_x,
static const char *cgroup_subsys_name[] = {
#include <linux/cgroup_subsys.h>
};
#undef SUBSYS
132 133

/*
134 135 136
 * The dummy hierarchy, reserved for the subsystems that are otherwise
 * unattached - it never has more than a single cgroup, and all tasks are
 * part of that cgroup.
137
 */
138 139 140 141
static struct cgroupfs_root cgroup_dummy_root;

/* dummy_top is a shorthand for the dummy hierarchy's top cgroup */
static struct cgroup * const cgroup_dummy_top = &cgroup_dummy_root.top_cgroup;
142 143 144

/* The list of hierarchy roots */

145 146
static LIST_HEAD(cgroup_roots);
static int cgroup_root_count;
147

T
Tejun Heo 已提交
148
/* hierarchy ID allocation and mapping, protected by cgroup_mutex */
149
static DEFINE_IDR(cgroup_hierarchy_idr);
150

151 152
static struct cgroup_name root_cgroup_name = { .name = "/" };

153 154 155 156 157
/*
 * Assign a monotonically increasing serial number to cgroups.  It
 * guarantees cgroups with bigger numbers are newer than those with smaller
 * numbers.  Also, as cgroups are always appended to the parent's
 * ->children list, it guarantees that sibling cgroups are always sorted in
158 159
 * the ascending serial number order on the list.  Protected by
 * cgroup_mutex.
160
 */
161
static u64 cgroup_serial_nr_next = 1;
162

163
/* This flag indicates whether tasks in the fork and exit paths should
L
Li Zefan 已提交
164 165 166
 * check for fork/exit handlers to call. This avoids us having to do
 * extra work in the fork/exit path if none of the subsystems need to
 * be called.
167
 */
168
static int need_forkexit_callback __read_mostly;
169

170 171
static struct cftype cgroup_base_files[];

172
static void cgroup_put(struct cgroup *cgrp);
173 174
static int rebind_subsystems(struct cgroupfs_root *root,
			     unsigned long added_mask, unsigned removed_mask);
175
static void cgroup_destroy_css_killed(struct cgroup *cgrp);
176
static int cgroup_destroy_locked(struct cgroup *cgrp);
177 178
static int cgroup_addrm_files(struct cgroup *cgrp, struct cftype cfts[],
			      bool is_add);
179
static int cgroup_file_release(struct inode *inode, struct file *file);
180
static void cgroup_pidlist_destroy_all(struct cgroup *cgrp);
181

T
Tejun Heo 已提交
182 183 184
/**
 * cgroup_css - obtain a cgroup's css for the specified subsystem
 * @cgrp: the cgroup of interest
185
 * @ss: the subsystem of interest (%NULL returns the dummy_css)
T
Tejun Heo 已提交
186
 *
187 188 189 190 191
 * Return @cgrp's css (cgroup_subsys_state) associated with @ss.  This
 * function must be called either under cgroup_mutex or rcu_read_lock() and
 * the caller is responsible for pinning the returned css if it wants to
 * keep accessing it outside the said locks.  This function may return
 * %NULL if @cgrp doesn't have @subsys_id enabled.
T
Tejun Heo 已提交
192 193
 */
static struct cgroup_subsys_state *cgroup_css(struct cgroup *cgrp,
194
					      struct cgroup_subsys *ss)
T
Tejun Heo 已提交
195
{
196
	if (ss)
197
		return rcu_dereference_check(cgrp->subsys[ss->id],
T
Tejun Heo 已提交
198 199
					lockdep_is_held(&cgroup_tree_mutex) ||
					lockdep_is_held(&cgroup_mutex));
200 201
	else
		return &cgrp->dummy_css;
T
Tejun Heo 已提交
202
}
203

204
/* convenient tests for these bits */
205
static inline bool cgroup_is_dead(const struct cgroup *cgrp)
206
{
207
	return test_bit(CGRP_DEAD, &cgrp->flags);
208 209
}

210 211 212 213 214 215 216
struct cgroup_subsys_state *seq_css(struct seq_file *seq)
{
	struct cgroup_open_file *of = seq->private;
	return of->cfe->css;
}
EXPORT_SYMBOL_GPL(seq_css);

217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235
/**
 * cgroup_is_descendant - test ancestry
 * @cgrp: the cgroup to be tested
 * @ancestor: possible ancestor of @cgrp
 *
 * Test whether @cgrp is a descendant of @ancestor.  It also returns %true
 * if @cgrp == @ancestor.  This function is safe to call as long as @cgrp
 * and @ancestor are accessible.
 */
bool cgroup_is_descendant(struct cgroup *cgrp, struct cgroup *ancestor)
{
	while (cgrp) {
		if (cgrp == ancestor)
			return true;
		cgrp = cgrp->parent;
	}
	return false;
}
EXPORT_SYMBOL_GPL(cgroup_is_descendant);
236

237
static int cgroup_is_releasable(const struct cgroup *cgrp)
238 239
{
	const int bits =
240 241 242
		(1 << CGRP_RELEASABLE) |
		(1 << CGRP_NOTIFY_ON_RELEASE);
	return (cgrp->flags & bits) == bits;
243 244
}

245
static int notify_on_release(const struct cgroup *cgrp)
246
{
247
	return test_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
248 249
}

T
Tejun Heo 已提交
250 251 252 253 254 255 256 257 258 259 260 261
/**
 * for_each_css - iterate all css's of a cgroup
 * @css: the iteration cursor
 * @ssid: the index of the subsystem, CGROUP_SUBSYS_COUNT after reaching the end
 * @cgrp: the target cgroup to iterate css's of
 *
 * Should be called under cgroup_mutex.
 */
#define for_each_css(css, ssid, cgrp)					\
	for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT; (ssid)++)	\
		if (!((css) = rcu_dereference_check(			\
				(cgrp)->subsys[(ssid)],			\
T
Tejun Heo 已提交
262
				lockdep_is_held(&cgroup_tree_mutex) ||	\
T
Tejun Heo 已提交
263 264 265
				lockdep_is_held(&cgroup_mutex)))) { }	\
		else

266
/**
T
Tejun Heo 已提交
267
 * for_each_subsys - iterate all enabled cgroup subsystems
268
 * @ss: the iteration cursor
269
 * @ssid: the index of @ss, CGROUP_SUBSYS_COUNT after reaching the end
270
 */
271
#define for_each_subsys(ss, ssid)					\
T
Tejun Heo 已提交
272 273
	for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT &&		\
	     (((ss) = cgroup_subsys[ssid]) || true); (ssid)++)
274

275 276 277
/* iterate across the active hierarchies */
#define for_each_active_root(root)					\
	list_for_each_entry((root), &cgroup_roots, root_list)
278

279 280 281 282 283
static inline struct cgroup *__d_cgrp(struct dentry *dentry)
{
	return dentry->d_fsdata;
}

T
Tejun Heo 已提交
284
static inline struct cfent *__d_cfe(struct dentry *dentry)
285 286 287 288
{
	return dentry->d_fsdata;
}

T
Tejun Heo 已提交
289 290 291 292 293
static inline struct cftype *__d_cft(struct dentry *dentry)
{
	return __d_cfe(dentry)->type;
}

294 295 296 297
/**
 * cgroup_lock_live_group - take cgroup_mutex and check that cgrp is alive.
 * @cgrp: the cgroup to be checked for liveness
 *
T
Tejun Heo 已提交
298 299
 * On success, returns true; the mutex should be later unlocked.  On
 * failure returns false with no lock held.
300
 */
301
static bool cgroup_lock_live_group(struct cgroup *cgrp)
302 303
{
	mutex_lock(&cgroup_mutex);
304
	if (cgroup_is_dead(cgrp)) {
305 306 307 308 309 310
		mutex_unlock(&cgroup_mutex);
		return false;
	}
	return true;
}

311 312 313
/* the list of cgroups eligible for automatic release. Protected by
 * release_list_lock */
static LIST_HEAD(release_list);
314
static DEFINE_RAW_SPINLOCK(release_list_lock);
315 316
static void cgroup_release_agent(struct work_struct *work);
static DECLARE_WORK(release_agent_work, cgroup_release_agent);
317
static void check_for_release(struct cgroup *cgrp);
318

319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336
/*
 * A cgroup can be associated with multiple css_sets as different tasks may
 * belong to different cgroups on different hierarchies.  In the other
 * direction, a css_set is naturally associated with multiple cgroups.
 * This M:N relationship is represented by the following link structure
 * which exists for each association and allows traversing the associations
 * from both sides.
 */
struct cgrp_cset_link {
	/* the cgroup and css_set this link associates */
	struct cgroup		*cgrp;
	struct css_set		*cset;

	/* list of cgrp_cset_links anchored at cgrp->cset_links */
	struct list_head	cset_link;

	/* list of cgrp_cset_links anchored at css_set->cgrp_links */
	struct list_head	cgrp_link;
337 338 339 340 341 342 343 344 345 346
};

/* The default css_set - used by init and its children prior to any
 * hierarchies being mounted. It contains a pointer to the root state
 * for each subsystem. Also used to anchor the list of css_sets. Not
 * reference-counted, to improve performance when child cgroups
 * haven't been created.
 */

static struct css_set init_css_set;
347
static struct cgrp_cset_link init_cgrp_cset_link;
348

349 350 351
/*
 * css_set_lock protects the list of css_set objects, and the chain of
 * tasks off each css_set.  Nests outside task->alloc_lock due to
352
 * css_task_iter_start().
353
 */
354 355 356
static DEFINE_RWLOCK(css_set_lock);
static int css_set_count;

357 358 359 360 361
/*
 * hash table for cgroup groups. This improves the performance to find
 * an existing css_set. This hash doesn't (currently) take into
 * account cgroups in empty hierarchies.
 */
362
#define CSS_SET_HASH_BITS	7
363
static DEFINE_HASHTABLE(css_set_table, CSS_SET_HASH_BITS);
364

365
static unsigned long css_set_hash(struct cgroup_subsys_state *css[])
366
{
367
	unsigned long key = 0UL;
368 369
	struct cgroup_subsys *ss;
	int i;
370

371
	for_each_subsys(ss, i)
372 373
		key += (unsigned long)css[i];
	key = (key >> 16) ^ key;
374

375
	return key;
376 377
}

378 379
/*
 * We don't maintain the lists running through each css_set to its task
380 381 382
 * until after the first call to css_task_iter_start().  This reduces the
 * fork()/exit() overhead for people who have cgroups compiled into their
 * kernel but not actually in use.
383
 */
384
static int use_task_css_set_links __read_mostly;
385

386
static void __put_css_set(struct css_set *cset, int taskexit)
387
{
388
	struct cgrp_cset_link *link, *tmp_link;
389

390 391 392 393 394
	/*
	 * Ensure that the refcount doesn't hit zero while any readers
	 * can see it. Similar to atomic_dec_and_lock(), but for an
	 * rwlock
	 */
395
	if (atomic_add_unless(&cset->refcount, -1, 1))
396 397
		return;
	write_lock(&css_set_lock);
398
	if (!atomic_dec_and_test(&cset->refcount)) {
399 400 401
		write_unlock(&css_set_lock);
		return;
	}
402

403
	/* This css_set is dead. unlink it and release cgroup refcounts */
404
	hash_del(&cset->hlist);
405 406
	css_set_count--;

407
	list_for_each_entry_safe(link, tmp_link, &cset->cgrp_links, cgrp_link) {
408
		struct cgroup *cgrp = link->cgrp;
409

410 411
		list_del(&link->cset_link);
		list_del(&link->cgrp_link);
L
Li Zefan 已提交
412

413
		/* @cgrp can't go away while we're holding css_set_lock */
T
Tejun Heo 已提交
414
		if (list_empty(&cgrp->cset_links) && notify_on_release(cgrp)) {
415
			if (taskexit)
416 417
				set_bit(CGRP_RELEASABLE, &cgrp->flags);
			check_for_release(cgrp);
418
		}
419 420

		kfree(link);
421
	}
422 423

	write_unlock(&css_set_lock);
424
	kfree_rcu(cset, rcu_head);
425 426
}

427 428 429
/*
 * refcounted get/put for css_set objects
 */
430
static inline void get_css_set(struct css_set *cset)
431
{
432
	atomic_inc(&cset->refcount);
433 434
}

435
static inline void put_css_set(struct css_set *cset)
436
{
437
	__put_css_set(cset, 0);
438 439
}

440
static inline void put_css_set_taskexit(struct css_set *cset)
441
{
442
	__put_css_set(cset, 1);
443 444
}

445
/**
446
 * compare_css_sets - helper function for find_existing_css_set().
447 448
 * @cset: candidate css_set being tested
 * @old_cset: existing css_set for a task
449 450 451
 * @new_cgrp: cgroup that's being entered by the task
 * @template: desired set of css pointers in css_set (pre-calculated)
 *
L
Li Zefan 已提交
452
 * Returns true if "cset" matches "old_cset" except for the hierarchy
453 454
 * which "new_cgrp" belongs to, for which it should match "new_cgrp".
 */
455 456
static bool compare_css_sets(struct css_set *cset,
			     struct css_set *old_cset,
457 458 459 460 461
			     struct cgroup *new_cgrp,
			     struct cgroup_subsys_state *template[])
{
	struct list_head *l1, *l2;

462
	if (memcmp(template, cset->subsys, sizeof(cset->subsys))) {
463 464 465 466 467 468 469 470 471 472 473 474 475
		/* Not all subsystems matched */
		return false;
	}

	/*
	 * Compare cgroup pointers in order to distinguish between
	 * different cgroups in heirarchies with no subsystems. We
	 * could get by with just this check alone (and skip the
	 * memcmp above) but on most setups the memcmp check will
	 * avoid the need for this more expensive check on almost all
	 * candidates.
	 */

476 477
	l1 = &cset->cgrp_links;
	l2 = &old_cset->cgrp_links;
478
	while (1) {
479
		struct cgrp_cset_link *link1, *link2;
480
		struct cgroup *cgrp1, *cgrp2;
481 482 483 484

		l1 = l1->next;
		l2 = l2->next;
		/* See if we reached the end - both lists are equal length. */
485 486
		if (l1 == &cset->cgrp_links) {
			BUG_ON(l2 != &old_cset->cgrp_links);
487 488
			break;
		} else {
489
			BUG_ON(l2 == &old_cset->cgrp_links);
490 491
		}
		/* Locate the cgroups associated with these links. */
492 493 494 495
		link1 = list_entry(l1, struct cgrp_cset_link, cgrp_link);
		link2 = list_entry(l2, struct cgrp_cset_link, cgrp_link);
		cgrp1 = link1->cgrp;
		cgrp2 = link2->cgrp;
496
		/* Hierarchies should be linked in the same order. */
497
		BUG_ON(cgrp1->root != cgrp2->root);
498 499 500 501 502 503 504 505

		/*
		 * If this hierarchy is the hierarchy of the cgroup
		 * that's changing, then we need to check that this
		 * css_set points to the new cgroup; if it's any other
		 * hierarchy, then this css_set should point to the
		 * same cgroup as the old css_set.
		 */
506 507
		if (cgrp1->root == new_cgrp->root) {
			if (cgrp1 != new_cgrp)
508 509
				return false;
		} else {
510
			if (cgrp1 != cgrp2)
511 512 513 514 515 516
				return false;
		}
	}
	return true;
}

517 518 519 520 521
/**
 * find_existing_css_set - init css array and find the matching css_set
 * @old_cset: the css_set that we're using before the cgroup transition
 * @cgrp: the cgroup that we're moving into
 * @template: out param for the new set of csses, should be clear on entry
522
 */
523 524 525
static struct css_set *find_existing_css_set(struct css_set *old_cset,
					struct cgroup *cgrp,
					struct cgroup_subsys_state *template[])
526
{
527
	struct cgroupfs_root *root = cgrp->root;
528
	struct cgroup_subsys *ss;
529
	struct css_set *cset;
530
	unsigned long key;
531
	int i;
532

B
Ben Blum 已提交
533 534 535 536 537
	/*
	 * Build the set of subsystem state objects that we want to see in the
	 * new css_set. while subsystems can change globally, the entries here
	 * won't change, so no need for locking.
	 */
538
	for_each_subsys(ss, i) {
539
		if (root->subsys_mask & (1UL << i)) {
540 541 542
			/* Subsystem is in this hierarchy. So we want
			 * the subsystem state from the new
			 * cgroup */
543
			template[i] = cgroup_css(cgrp, ss);
544 545 546
		} else {
			/* Subsystem is not in this hierarchy, so we
			 * don't want to change the subsystem state */
547
			template[i] = old_cset->subsys[i];
548 549 550
		}
	}

551
	key = css_set_hash(template);
552 553
	hash_for_each_possible(css_set_table, cset, hlist, key) {
		if (!compare_css_sets(cset, old_cset, cgrp, template))
554 555 556
			continue;

		/* This css_set matches what we need */
557
		return cset;
558
	}
559 560 561 562 563

	/* No existing cgroup group matched */
	return NULL;
}

564
static void free_cgrp_cset_links(struct list_head *links_to_free)
565
{
566
	struct cgrp_cset_link *link, *tmp_link;
567

568 569
	list_for_each_entry_safe(link, tmp_link, links_to_free, cset_link) {
		list_del(&link->cset_link);
570 571 572 573
		kfree(link);
	}
}

574 575 576 577 578 579 580
/**
 * allocate_cgrp_cset_links - allocate cgrp_cset_links
 * @count: the number of links to allocate
 * @tmp_links: list_head the allocated links are put on
 *
 * Allocate @count cgrp_cset_link structures and chain them on @tmp_links
 * through ->cset_link.  Returns 0 on success or -errno.
581
 */
582
static int allocate_cgrp_cset_links(int count, struct list_head *tmp_links)
583
{
584
	struct cgrp_cset_link *link;
585
	int i;
586 587 588

	INIT_LIST_HEAD(tmp_links);

589
	for (i = 0; i < count; i++) {
590
		link = kzalloc(sizeof(*link), GFP_KERNEL);
591
		if (!link) {
592
			free_cgrp_cset_links(tmp_links);
593 594
			return -ENOMEM;
		}
595
		list_add(&link->cset_link, tmp_links);
596 597 598 599
	}
	return 0;
}

600 601
/**
 * link_css_set - a helper function to link a css_set to a cgroup
602
 * @tmp_links: cgrp_cset_link objects allocated by allocate_cgrp_cset_links()
603
 * @cset: the css_set to be linked
604 605
 * @cgrp: the destination cgroup
 */
606 607
static void link_css_set(struct list_head *tmp_links, struct css_set *cset,
			 struct cgroup *cgrp)
608
{
609
	struct cgrp_cset_link *link;
610

611 612 613
	BUG_ON(list_empty(tmp_links));
	link = list_first_entry(tmp_links, struct cgrp_cset_link, cset_link);
	link->cset = cset;
614
	link->cgrp = cgrp;
615
	list_move(&link->cset_link, &cgrp->cset_links);
616 617 618 619
	/*
	 * Always add links to the tail of the list so that the list
	 * is sorted by order of hierarchy creation
	 */
620
	list_add_tail(&link->cgrp_link, &cset->cgrp_links);
621 622
}

623 624 625 626 627 628 629
/**
 * find_css_set - return a new css_set with one cgroup updated
 * @old_cset: the baseline css_set
 * @cgrp: the cgroup to be updated
 *
 * Return a new css_set that's equivalent to @old_cset, but with @cgrp
 * substituted into the appropriate hierarchy.
630
 */
631 632
static struct css_set *find_css_set(struct css_set *old_cset,
				    struct cgroup *cgrp)
633
{
634
	struct cgroup_subsys_state *template[CGROUP_SUBSYS_COUNT] = { };
635
	struct css_set *cset;
636 637
	struct list_head tmp_links;
	struct cgrp_cset_link *link;
638
	unsigned long key;
639

640 641
	lockdep_assert_held(&cgroup_mutex);

642 643
	/* First see if we already have a cgroup group that matches
	 * the desired set */
644
	read_lock(&css_set_lock);
645 646 647
	cset = find_existing_css_set(old_cset, cgrp, template);
	if (cset)
		get_css_set(cset);
648
	read_unlock(&css_set_lock);
649

650 651
	if (cset)
		return cset;
652

653
	cset = kzalloc(sizeof(*cset), GFP_KERNEL);
654
	if (!cset)
655 656
		return NULL;

657
	/* Allocate all the cgrp_cset_link objects that we'll need */
658
	if (allocate_cgrp_cset_links(cgroup_root_count, &tmp_links) < 0) {
659
		kfree(cset);
660 661 662
		return NULL;
	}

663
	atomic_set(&cset->refcount, 1);
664
	INIT_LIST_HEAD(&cset->cgrp_links);
665 666
	INIT_LIST_HEAD(&cset->tasks);
	INIT_HLIST_NODE(&cset->hlist);
667 668 669

	/* Copy the set of subsystem state objects generated in
	 * find_existing_css_set() */
670
	memcpy(cset->subsys, template, sizeof(cset->subsys));
671 672 673

	write_lock(&css_set_lock);
	/* Add reference counts and links from the new css_set. */
674
	list_for_each_entry(link, &old_cset->cgrp_links, cgrp_link) {
675
		struct cgroup *c = link->cgrp;
676

677 678
		if (c->root == cgrp->root)
			c = cgrp;
679
		link_css_set(&tmp_links, cset, c);
680
	}
681

682
	BUG_ON(!list_empty(&tmp_links));
683 684

	css_set_count++;
685 686

	/* Add this cgroup group to the hash table */
687 688
	key = css_set_hash(cset->subsys);
	hash_add(css_set_table, &cset->hlist, key);
689

690 691
	write_unlock(&css_set_lock);

692
	return cset;
693 694
}

695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730
static int cgroup_init_root_id(struct cgroupfs_root *root, int start, int end)
{
	int id;

	lockdep_assert_held(&cgroup_mutex);

	id = idr_alloc_cyclic(&cgroup_hierarchy_idr, root, start, end,
			      GFP_KERNEL);
	if (id < 0)
		return id;

	root->hierarchy_id = id;
	return 0;
}

static void cgroup_exit_root_id(struct cgroupfs_root *root)
{
	lockdep_assert_held(&cgroup_mutex);

	if (root->hierarchy_id) {
		idr_remove(&cgroup_hierarchy_idr, root->hierarchy_id);
		root->hierarchy_id = 0;
	}
}

static void cgroup_free_root(struct cgroupfs_root *root)
{
	if (root) {
		/* hierarhcy ID shoulid already have been released */
		WARN_ON_ONCE(root->hierarchy_id);

		idr_destroy(&root->cgroup_idr);
		kfree(root);
	}
}

731 732 733 734 735 736 737 738 739 740
static void cgroup_get_root(struct cgroupfs_root *root)
{
	atomic_inc(&root->sb->s_active);
}

static void cgroup_put_root(struct cgroupfs_root *root)
{
	deactivate_super(root->sb);
}

741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793
static void cgroup_kill_sb(struct super_block *sb)
{
	struct cgroupfs_root *root = sb->s_fs_info;
	struct cgroup *cgrp = &root->top_cgroup;
	struct cgrp_cset_link *link, *tmp_link;
	int ret;

	BUG_ON(!root);

	BUG_ON(root->number_of_cgroups != 1);
	BUG_ON(!list_empty(&cgrp->children));

	mutex_lock(&cgrp->dentry->d_inode->i_mutex);
	mutex_lock(&cgroup_tree_mutex);
	mutex_lock(&cgroup_mutex);

	/* Rebind all subsystems back to the default hierarchy */
	if (root->flags & CGRP_ROOT_SUBSYS_BOUND) {
		ret = rebind_subsystems(root, 0, root->subsys_mask);
		/* Shouldn't be able to fail ... */
		BUG_ON(ret);
	}

	/*
	 * Release all the links from cset_links to this hierarchy's
	 * root cgroup
	 */
	write_lock(&css_set_lock);

	list_for_each_entry_safe(link, tmp_link, &cgrp->cset_links, cset_link) {
		list_del(&link->cset_link);
		list_del(&link->cgrp_link);
		kfree(link);
	}
	write_unlock(&css_set_lock);

	if (!list_empty(&root->root_list)) {
		list_del(&root->root_list);
		cgroup_root_count--;
	}

	cgroup_exit_root_id(root);

	mutex_unlock(&cgroup_mutex);
	mutex_unlock(&cgroup_tree_mutex);
	mutex_unlock(&cgrp->dentry->d_inode->i_mutex);

	simple_xattrs_free(&cgrp->xattrs);

	kill_litter_super(sb);
	cgroup_free_root(root);
}

794 795 796 797 798 799 800
/*
 * Return the cgroup for "task" from the given hierarchy. Must be
 * called with cgroup_mutex held.
 */
static struct cgroup *task_cgroup_from_root(struct task_struct *task,
					    struct cgroupfs_root *root)
{
801
	struct css_set *cset;
802 803 804 805 806 807 808 809 810
	struct cgroup *res = NULL;

	BUG_ON(!mutex_is_locked(&cgroup_mutex));
	read_lock(&css_set_lock);
	/*
	 * No need to lock the task - since we hold cgroup_mutex the
	 * task can't change groups, so the only thing that can happen
	 * is that it exits and its css is set back to init_css_set.
	 */
811
	cset = task_css_set(task);
812
	if (cset == &init_css_set) {
813 814
		res = &root->top_cgroup;
	} else {
815 816 817
		struct cgrp_cset_link *link;

		list_for_each_entry(link, &cset->cgrp_links, cgrp_link) {
818
			struct cgroup *c = link->cgrp;
819

820 821 822 823 824 825 826 827 828 829 830
			if (c->root == root) {
				res = c;
				break;
			}
		}
	}
	read_unlock(&css_set_lock);
	BUG_ON(!res);
	return res;
}

831 832 833 834 835 836 837 838 839 840
/*
 * There is one global cgroup mutex. We also require taking
 * task_lock() when dereferencing a task's cgroup subsys pointers.
 * See "The task_lock() exception", at the end of this comment.
 *
 * A task must hold cgroup_mutex to modify cgroups.
 *
 * Any task can increment and decrement the count field without lock.
 * So in general, code holding cgroup_mutex can't rely on the count
 * field not changing.  However, if the count goes to zero, then only
841
 * cgroup_attach_task() can increment it again.  Because a count of zero
842 843 844 845 846 847 848 849 850 851 852 853 854
 * means that no tasks are currently attached, therefore there is no
 * way a task attached to that cgroup can fork (the other way to
 * increment the count).  So code holding cgroup_mutex can safely
 * assume that if the count is zero, it will stay zero. Similarly, if
 * a task holds cgroup_mutex on a cgroup with zero count, it
 * knows that the cgroup won't be removed, as cgroup_rmdir()
 * needs that mutex.
 *
 * The fork and exit callbacks cgroup_fork() and cgroup_exit(), don't
 * (usually) take cgroup_mutex.  These are the two most performance
 * critical pieces of code here.  The exception occurs on cgroup_exit(),
 * when a task in a notify_on_release cgroup exits.  Then cgroup_mutex
 * is taken, and if the cgroup count is zero, a usermode call made
L
Li Zefan 已提交
855 856
 * to the release agent with the name of the cgroup (path relative to
 * the root of cgroup file system) as the argument.
857 858 859 860 861 862 863 864 865 866 867
 *
 * A cgroup can only be deleted if both its 'count' of using tasks
 * is zero, and its list of 'children' cgroups is empty.  Since all
 * tasks in the system use _some_ cgroup, and since there is always at
 * least one task in the system (init, pid == 1), therefore, top_cgroup
 * always has either children cgroups and/or using tasks.  So we don't
 * need a special hack to ensure that top_cgroup cannot be deleted.
 *
 *	The task_lock() exception
 *
 * The need for this exception arises from the action of
868
 * cgroup_attach_task(), which overwrites one task's cgroup pointer with
L
Li Zefan 已提交
869
 * another.  It does so using cgroup_mutex, however there are
870 871 872
 * several performance critical places that need to reference
 * task->cgroup without the expense of grabbing a system global
 * mutex.  Therefore except as noted below, when dereferencing or, as
873
 * in cgroup_attach_task(), modifying a task's cgroup pointer we use
874 875 876 877
 * task_lock(), which acts on a spinlock (task->alloc_lock) already in
 * the task_struct routinely used for such matters.
 *
 * P.S.  One more locking exception.  RCU is used to guard the
878
 * update of a tasks cgroup pointer by cgroup_attach_task()
879 880 881 882 883 884 885 886 887
 */

/*
 * A couple of forward declarations required, due to cyclic reference loop:
 * cgroup_mkdir -> cgroup_create -> cgroup_populate_dir ->
 * cgroup_add_file -> cgroup_create_file -> cgroup_dir_inode_operations
 * -> cgroup_mkdir.
 */

888
static int cgroup_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode);
889
static int cgroup_rmdir(struct inode *unused_dir, struct dentry *dentry);
890
static int cgroup_populate_dir(struct cgroup *cgrp, unsigned long subsys_mask);
891
static const struct inode_operations cgroup_dir_inode_operations;
892
static const struct file_operations proc_cgroupstats_operations;
893 894

static struct backing_dev_info cgroup_backing_dev_info = {
895
	.name		= "cgroup",
896
	.capabilities	= BDI_CAP_NO_ACCT_AND_WRITEBACK,
897
};
898

A
Al Viro 已提交
899
static struct inode *cgroup_new_inode(umode_t mode, struct super_block *sb)
900 901 902 903
{
	struct inode *inode = new_inode(sb);

	if (inode) {
T
Tejun Heo 已提交
904 905 906 907
		do {
			/* ino 0 is reserved for dummy_root */
			inode->i_ino = get_next_ino();
		} while (!inode->i_ino);
908
		inode->i_mode = mode;
909 910
		inode->i_uid = current_fsuid();
		inode->i_gid = current_fsgid();
911 912 913 914 915 916
		inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
		inode->i_mapping->backing_dev_info = &cgroup_backing_dev_info;
	}
	return inode;
}

T
Tejun Heo 已提交
917
static struct cgroup_name *cgroup_alloc_name(const char *name_str)
918 919 920
{
	struct cgroup_name *name;

T
Tejun Heo 已提交
921
	name = kmalloc(sizeof(*name) + strlen(name_str) + 1, GFP_KERNEL);
922 923
	if (!name)
		return NULL;
T
Tejun Heo 已提交
924
	strcpy(name->name, name_str);
925 926 927
	return name;
}

T
Tejun Heo 已提交
928 929 930 931 932 933 934 935 936 937 938 939
static char *cgroup_file_name(struct cgroup *cgrp, const struct cftype *cft,
			      char *buf)
{
	if (cft->ss && !(cft->flags & CFTYPE_NO_PREFIX) &&
	    !(cgrp->root->flags & CGRP_ROOT_NOPREFIX))
		snprintf(buf, CGROUP_FILE_NAME_MAX, "%s.%s",
			 cft->ss->name, cft->name);
	else
		strncpy(buf, cft->name, CGROUP_FILE_NAME_MAX);
	return buf;
}

940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965
/**
 * cgroup_file_mode - deduce file mode of a control file
 * @cft: the control file in question
 *
 * returns cft->mode if ->mode is not 0
 * returns S_IRUGO|S_IWUSR if it has both a read and a write handler
 * returns S_IRUGO if it has only a read handler
 * returns S_IWUSR if it has only a write hander
 */
static umode_t cgroup_file_mode(const struct cftype *cft)
{
	umode_t mode = 0;

	if (cft->mode)
		return cft->mode;

	if (cft->read_u64 || cft->read_s64 || cft->seq_show)
		mode |= S_IRUGO;

	if (cft->write_u64 || cft->write_s64 || cft->write_string ||
	    cft->trigger)
		mode |= S_IWUSR;

	return mode;
}

966 967
static void cgroup_free_fn(struct work_struct *work)
{
968
	struct cgroup *cgrp = container_of(work, struct cgroup, destroy_work);
969 970 971 972 973

	mutex_lock(&cgroup_mutex);
	cgrp->root->number_of_cgroups--;
	mutex_unlock(&cgroup_mutex);

974
	/*
975 976 977
	 * We get a ref to the parent, and put the ref when this cgroup is
	 * being freed, so it's guaranteed that the parent won't be
	 * destroyed before its children.
978
	 */
979
	cgroup_put(cgrp->parent);
980

981 982
	/* put the root reference that we took when we created the cgroup */
	cgroup_put_root(cgrp->root);
983

984
	cgroup_pidlist_destroy_all(cgrp);
985 986 987

	simple_xattrs_free(&cgrp->xattrs);

988
	kfree(rcu_dereference_raw(cgrp->name));
989 990 991 992 993 994 995
	kfree(cgrp);
}

static void cgroup_free_rcu(struct rcu_head *head)
{
	struct cgroup *cgrp = container_of(head, struct cgroup, rcu_head);

996
	INIT_WORK(&cgrp->destroy_work, cgroup_free_fn);
997
	queue_work(cgroup_destroy_wq, &cgrp->destroy_work);
998 999
}

1000 1001 1002 1003 1004
static void cgroup_get(struct cgroup *cgrp)
{
	dget(cgrp->dentry);
}

1005 1006 1007 1008
static void cgroup_diput(struct dentry *dentry, struct inode *inode)
{
	/* is dentry a directory ? if so, kfree() associated cgroup */
	if (S_ISDIR(inode->i_mode)) {
1009
		struct cgroup *cgrp = dentry->d_fsdata;
1010

1011
		BUG_ON(!(cgroup_is_dead(cgrp)));
1012 1013 1014 1015 1016 1017 1018

		/*
		 * XXX: cgrp->id is only used to look up css's.  As cgroup
		 * and css's lifetimes will be decoupled, it should be made
		 * per-subsystem and moved to css->id so that lookups are
		 * successful until the target css is released.
		 */
1019
		mutex_lock(&cgroup_mutex);
1020
		idr_remove(&cgrp->root->cgroup_idr, cgrp->id);
1021
		mutex_unlock(&cgroup_mutex);
1022 1023
		cgrp->id = -1;

1024
		call_rcu(&cgrp->rcu_head, cgroup_free_rcu);
T
Tejun Heo 已提交
1025 1026 1027 1028 1029 1030 1031
	} else {
		struct cfent *cfe = __d_cfe(dentry);
		struct cgroup *cgrp = dentry->d_parent->d_fsdata;

		WARN_ONCE(!list_empty(&cfe->node) &&
			  cgrp != &cgrp->root->top_cgroup,
			  "cfe still linked for %s\n", cfe->type->name);
L
Li Zefan 已提交
1032
		simple_xattrs_free(&cfe->xattrs);
T
Tejun Heo 已提交
1033
		kfree(cfe);
1034 1035 1036 1037
	}
	iput(inode);
}

1038 1039 1040 1041 1042
static void cgroup_put(struct cgroup *cgrp)
{
	dput(cgrp->dentry);
}

1043 1044 1045 1046 1047 1048 1049 1050 1051
static void remove_dir(struct dentry *d)
{
	struct dentry *parent = dget(d->d_parent);

	d_delete(d);
	simple_rmdir(parent->d_inode, d);
	dput(parent);
}

1052
static void cgroup_rm_file(struct cgroup *cgrp, const struct cftype *cft)
T
Tejun Heo 已提交
1053 1054 1055 1056
{
	struct cfent *cfe;

	lockdep_assert_held(&cgrp->dentry->d_inode->i_mutex);
T
Tejun Heo 已提交
1057
	lockdep_assert_held(&cgroup_tree_mutex);
T
Tejun Heo 已提交
1058

1059 1060 1061 1062
	/*
	 * If we're doing cleanup due to failure of cgroup_create(),
	 * the corresponding @cfe may not exist.
	 */
T
Tejun Heo 已提交
1063 1064 1065 1066 1067 1068 1069 1070
	list_for_each_entry(cfe, &cgrp->files, node) {
		struct dentry *d = cfe->dentry;

		if (cft && cfe->type != cft)
			continue;

		dget(d);
		d_delete(d);
1071
		simple_unlink(cgrp->dentry->d_inode, d);
T
Tejun Heo 已提交
1072 1073 1074
		list_del_init(&cfe->node);
		dput(d);

1075
		break;
1076
	}
T
Tejun Heo 已提交
1077 1078
}

1079
/**
1080
 * cgroup_clear_dir - remove subsys files in a cgroup directory
1081
 * @cgrp: target cgroup
1082 1083
 * @subsys_mask: mask of the subsystem ids whose files should be removed
 */
1084
static void cgroup_clear_dir(struct cgroup *cgrp, unsigned long subsys_mask)
T
Tejun Heo 已提交
1085
{
1086
	struct cgroup_subsys *ss;
1087
	int i;
T
Tejun Heo 已提交
1088

1089
	for_each_subsys(ss, i) {
1090
		struct cftype_set *set;
1091 1092

		if (!test_bit(i, &subsys_mask))
1093 1094
			continue;
		list_for_each_entry(set, &ss->cftsets, node)
1095
			cgroup_addrm_files(cgrp, set->cfts, false);
1096
	}
1097 1098 1099 1100 1101 1102 1103
}

/*
 * NOTE : the dentry must have been dget()'ed
 */
static void cgroup_d_remove_dir(struct dentry *dentry)
{
N
Nick Piggin 已提交
1104
	struct dentry *parent;
1105

N
Nick Piggin 已提交
1106 1107
	parent = dentry->d_parent;
	spin_lock(&parent->d_lock);
1108
	spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
1109
	list_del_init(&dentry->d_u.d_child);
N
Nick Piggin 已提交
1110 1111
	spin_unlock(&dentry->d_lock);
	spin_unlock(&parent->d_lock);
1112 1113 1114 1115
	remove_dir(dentry);
}

static int rebind_subsystems(struct cgroupfs_root *root,
1116
			     unsigned long added_mask, unsigned removed_mask)
1117
{
1118
	struct cgroup *cgrp = &root->top_cgroup;
1119
	struct cgroup_subsys *ss;
1120
	int i, ret;
1121

T
Tejun Heo 已提交
1122 1123
	lockdep_assert_held(&cgroup_tree_mutex);
	lockdep_assert_held(&cgroup_mutex);
B
Ben Blum 已提交
1124

1125
	/* Check that any added subsystems are currently free */
T
Tejun Heo 已提交
1126 1127 1128
	for_each_subsys(ss, i)
		if ((added_mask & (1 << i)) && ss->root != &cgroup_dummy_root)
			return -EBUSY;
1129

1130 1131
	ret = cgroup_populate_dir(cgrp, added_mask);
	if (ret)
T
Tejun Heo 已提交
1132
		return ret;
1133 1134 1135 1136 1137

	/*
	 * Nothing can fail from this point on.  Remove files for the
	 * removed subsystems and rebind each subsystem.
	 */
1138
	mutex_unlock(&cgroup_mutex);
1139
	cgroup_clear_dir(cgrp, removed_mask);
1140
	mutex_lock(&cgroup_mutex);
1141

1142
	for_each_subsys(ss, i) {
1143
		unsigned long bit = 1UL << i;
1144

1145
		if (bit & added_mask) {
1146
			/* We're binding this subsystem to this hierarchy */
1147 1148 1149
			BUG_ON(cgroup_css(cgrp, ss));
			BUG_ON(!cgroup_css(cgroup_dummy_top, ss));
			BUG_ON(cgroup_css(cgroup_dummy_top, ss)->cgroup != cgroup_dummy_top);
1150

1151
			rcu_assign_pointer(cgrp->subsys[i],
1152 1153
					   cgroup_css(cgroup_dummy_top, ss));
			cgroup_css(cgrp, ss)->cgroup = cgrp;
1154

1155
			ss->root = root;
1156
			if (ss->bind)
1157
				ss->bind(cgroup_css(cgrp, ss));
1158

B
Ben Blum 已提交
1159
			/* refcount was already taken, and we're keeping it */
1160
			root->subsys_mask |= bit;
1161
		} else if (bit & removed_mask) {
1162
			/* We're removing this subsystem */
1163 1164
			BUG_ON(cgroup_css(cgrp, ss) != cgroup_css(cgroup_dummy_top, ss));
			BUG_ON(cgroup_css(cgrp, ss)->cgroup != cgrp);
1165

1166
			if (ss->bind)
1167
				ss->bind(cgroup_css(cgroup_dummy_top, ss));
1168

1169
			cgroup_css(cgroup_dummy_top, ss)->cgroup = cgroup_dummy_top;
1170 1171
			RCU_INIT_POINTER(cgrp->subsys[i], NULL);

1172
			cgroup_subsys[i]->root = &cgroup_dummy_root;
1173
			root->subsys_mask &= ~bit;
1174 1175 1176
		}
	}

1177 1178 1179 1180 1181 1182
	/*
	 * Mark @root has finished binding subsystems.  @root->subsys_mask
	 * now matches the bound subsystems.
	 */
	root->flags |= CGRP_ROOT_SUBSYS_BOUND;

1183 1184 1185
	return 0;
}

1186
static int cgroup_show_options(struct seq_file *seq, struct dentry *dentry)
1187
{
1188
	struct cgroupfs_root *root = dentry->d_sb->s_fs_info;
1189
	struct cgroup_subsys *ss;
T
Tejun Heo 已提交
1190
	int ssid;
1191

T
Tejun Heo 已提交
1192 1193 1194
	for_each_subsys(ss, ssid)
		if (root->subsys_mask & (1 << ssid))
			seq_printf(seq, ",%s", ss->name);
1195 1196
	if (root->flags & CGRP_ROOT_SANE_BEHAVIOR)
		seq_puts(seq, ",sane_behavior");
1197
	if (root->flags & CGRP_ROOT_NOPREFIX)
1198
		seq_puts(seq, ",noprefix");
1199
	if (root->flags & CGRP_ROOT_XATTR)
A
Aristeu Rozanski 已提交
1200
		seq_puts(seq, ",xattr");
1201 1202

	spin_lock(&release_agent_path_lock);
1203 1204
	if (strlen(root->release_agent_path))
		seq_printf(seq, ",release_agent=%s", root->release_agent_path);
1205 1206
	spin_unlock(&release_agent_path_lock);

1207
	if (test_bit(CGRP_CPUSET_CLONE_CHILDREN, &root->top_cgroup.flags))
1208
		seq_puts(seq, ",clone_children");
1209 1210
	if (strlen(root->name))
		seq_printf(seq, ",name=%s", root->name);
1211 1212 1213 1214
	return 0;
}

struct cgroup_sb_opts {
1215
	unsigned long subsys_mask;
1216
	unsigned long flags;
1217
	char *release_agent;
1218
	bool cpuset_clone_children;
1219
	char *name;
1220 1221
	/* User explicitly requested empty subsystem */
	bool none;
1222 1223

	struct cgroupfs_root *new_root;
1224

1225 1226
};

B
Ben Blum 已提交
1227
/*
1228 1229 1230 1231
 * Convert a hierarchy specifier into a bitmask of subsystems and
 * flags. Call with cgroup_mutex held to protect the cgroup_subsys[]
 * array. This function takes refcounts on subsystems to be used, unless it
 * returns error, in which case no refcounts are taken.
B
Ben Blum 已提交
1232
 */
B
Ben Blum 已提交
1233
static int parse_cgroupfs_options(char *data, struct cgroup_sb_opts *opts)
1234
{
1235 1236
	char *token, *o = data;
	bool all_ss = false, one_ss = false;
1237
	unsigned long mask = (unsigned long)-1;
1238 1239
	struct cgroup_subsys *ss;
	int i;
1240

B
Ben Blum 已提交
1241 1242
	BUG_ON(!mutex_is_locked(&cgroup_mutex));

1243
#ifdef CONFIG_CPUSETS
1244
	mask = ~(1UL << cpuset_cgrp_id);
1245
#endif
1246

1247
	memset(opts, 0, sizeof(*opts));
1248 1249 1250 1251

	while ((token = strsep(&o, ",")) != NULL) {
		if (!*token)
			return -EINVAL;
1252
		if (!strcmp(token, "none")) {
1253 1254
			/* Explicitly have no subsystems */
			opts->none = true;
1255 1256 1257 1258 1259 1260 1261 1262 1263
			continue;
		}
		if (!strcmp(token, "all")) {
			/* Mutually exclusive option 'all' + subsystem name */
			if (one_ss)
				return -EINVAL;
			all_ss = true;
			continue;
		}
1264 1265 1266 1267
		if (!strcmp(token, "__DEVEL__sane_behavior")) {
			opts->flags |= CGRP_ROOT_SANE_BEHAVIOR;
			continue;
		}
1268
		if (!strcmp(token, "noprefix")) {
1269
			opts->flags |= CGRP_ROOT_NOPREFIX;
1270 1271 1272
			continue;
		}
		if (!strcmp(token, "clone_children")) {
1273
			opts->cpuset_clone_children = true;
1274 1275
			continue;
		}
A
Aristeu Rozanski 已提交
1276
		if (!strcmp(token, "xattr")) {
1277
			opts->flags |= CGRP_ROOT_XATTR;
A
Aristeu Rozanski 已提交
1278 1279
			continue;
		}
1280
		if (!strncmp(token, "release_agent=", 14)) {
1281 1282 1283
			/* Specifying two release agents is forbidden */
			if (opts->release_agent)
				return -EINVAL;
1284
			opts->release_agent =
1285
				kstrndup(token + 14, PATH_MAX - 1, GFP_KERNEL);
1286 1287
			if (!opts->release_agent)
				return -ENOMEM;
1288 1289 1290
			continue;
		}
		if (!strncmp(token, "name=", 5)) {
1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307
			const char *name = token + 5;
			/* Can't specify an empty name */
			if (!strlen(name))
				return -EINVAL;
			/* Must match [\w.-]+ */
			for (i = 0; i < strlen(name); i++) {
				char c = name[i];
				if (isalnum(c))
					continue;
				if ((c == '.') || (c == '-') || (c == '_'))
					continue;
				return -EINVAL;
			}
			/* Specifying two names is forbidden */
			if (opts->name)
				return -EINVAL;
			opts->name = kstrndup(name,
1308
					      MAX_CGROUP_ROOT_NAMELEN - 1,
1309 1310 1311
					      GFP_KERNEL);
			if (!opts->name)
				return -ENOMEM;
1312 1313 1314 1315

			continue;
		}

1316
		for_each_subsys(ss, i) {
1317 1318 1319 1320 1321 1322 1323 1324
			if (strcmp(token, ss->name))
				continue;
			if (ss->disabled)
				continue;

			/* Mutually exclusive option 'all' + subsystem name */
			if (all_ss)
				return -EINVAL;
1325
			set_bit(i, &opts->subsys_mask);
1326 1327 1328 1329 1330 1331 1332 1333 1334 1335
			one_ss = true;

			break;
		}
		if (i == CGROUP_SUBSYS_COUNT)
			return -ENOENT;
	}

	/*
	 * If the 'all' option was specified select all the subsystems,
1336 1337
	 * otherwise if 'none', 'name=' and a subsystem name options
	 * were not specified, let's default to 'all'
1338
	 */
1339 1340 1341 1342
	if (all_ss || (!one_ss && !opts->none && !opts->name))
		for_each_subsys(ss, i)
			if (!ss->disabled)
				set_bit(i, &opts->subsys_mask);
1343

1344 1345
	/* Consistency checks */

1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359
	if (opts->flags & CGRP_ROOT_SANE_BEHAVIOR) {
		pr_warning("cgroup: sane_behavior: this is still under development and its behaviors will change, proceed at your own risk\n");

		if (opts->flags & CGRP_ROOT_NOPREFIX) {
			pr_err("cgroup: sane_behavior: noprefix is not allowed\n");
			return -EINVAL;
		}

		if (opts->cpuset_clone_children) {
			pr_err("cgroup: sane_behavior: clone_children is not allowed\n");
			return -EINVAL;
		}
	}

1360 1361 1362 1363 1364
	/*
	 * Option noprefix was introduced just for backward compatibility
	 * with the old cpuset, so we allow noprefix only if mounting just
	 * the cpuset subsystem.
	 */
1365
	if ((opts->flags & CGRP_ROOT_NOPREFIX) && (opts->subsys_mask & mask))
1366 1367
		return -EINVAL;

1368 1369

	/* Can't specify "none" and some subsystems */
1370
	if (opts->subsys_mask && opts->none)
1371 1372 1373 1374 1375 1376
		return -EINVAL;

	/*
	 * We either have to specify by name or by subsystems. (So all
	 * empty hierarchies must have a name).
	 */
1377
	if (!opts->subsys_mask && !opts->name)
1378 1379 1380 1381 1382 1383 1384 1385 1386
		return -EINVAL;

	return 0;
}

static int cgroup_remount(struct super_block *sb, int *flags, char *data)
{
	int ret = 0;
	struct cgroupfs_root *root = sb->s_fs_info;
1387
	struct cgroup *cgrp = &root->top_cgroup;
1388
	struct cgroup_sb_opts opts;
1389
	unsigned long added_mask, removed_mask;
1390

1391 1392 1393 1394 1395
	if (root->flags & CGRP_ROOT_SANE_BEHAVIOR) {
		pr_err("cgroup: sane_behavior: remount is not allowed\n");
		return -EINVAL;
	}

1396
	mutex_lock(&cgrp->dentry->d_inode->i_mutex);
T
Tejun Heo 已提交
1397
	mutex_lock(&cgroup_tree_mutex);
1398 1399 1400 1401 1402 1403 1404
	mutex_lock(&cgroup_mutex);

	/* See what subsystems are wanted */
	ret = parse_cgroupfs_options(data, &opts);
	if (ret)
		goto out_unlock;

1405
	if (opts.subsys_mask != root->subsys_mask || opts.release_agent)
1406 1407 1408
		pr_warning("cgroup: option changes via remount are deprecated (pid=%d comm=%s)\n",
			   task_tgid_nr(current), current->comm);

1409 1410
	added_mask = opts.subsys_mask & ~root->subsys_mask;
	removed_mask = root->subsys_mask & ~opts.subsys_mask;
1411

B
Ben Blum 已提交
1412
	/* Don't allow flags or name to change at remount */
1413
	if (((opts.flags ^ root->flags) & CGRP_ROOT_OPTION_MASK) ||
B
Ben Blum 已提交
1414
	    (opts.name && strcmp(opts.name, root->name))) {
1415 1416 1417
		pr_err("cgroup: option or name mismatch, new: 0x%lx \"%s\", old: 0x%lx \"%s\"\n",
		       opts.flags & CGRP_ROOT_OPTION_MASK, opts.name ?: "",
		       root->flags & CGRP_ROOT_OPTION_MASK, root->name);
1418 1419 1420 1421
		ret = -EINVAL;
		goto out_unlock;
	}

1422 1423 1424
	/* remounting is not allowed for populated hierarchies */
	if (root->number_of_cgroups > 1) {
		ret = -EBUSY;
1425
		goto out_unlock;
B
Ben Blum 已提交
1426
	}
1427

1428
	ret = rebind_subsystems(root, added_mask, removed_mask);
1429
	if (ret)
1430
		goto out_unlock;
1431

1432 1433
	if (opts.release_agent) {
		spin_lock(&release_agent_path_lock);
1434
		strcpy(root->release_agent_path, opts.release_agent);
1435 1436
		spin_unlock(&release_agent_path_lock);
	}
1437
 out_unlock:
1438
	kfree(opts.release_agent);
1439
	kfree(opts.name);
1440
	mutex_unlock(&cgroup_mutex);
T
Tejun Heo 已提交
1441
	mutex_unlock(&cgroup_tree_mutex);
1442
	mutex_unlock(&cgrp->dentry->d_inode->i_mutex);
1443 1444 1445
	return ret;
}

1446
static const struct super_operations cgroup_ops = {
1447 1448 1449 1450 1451 1452
	.statfs = simple_statfs,
	.drop_inode = generic_delete_inode,
	.show_options = cgroup_show_options,
	.remount_fs = cgroup_remount,
};

1453 1454 1455 1456
static void init_cgroup_housekeeping(struct cgroup *cgrp)
{
	INIT_LIST_HEAD(&cgrp->sibling);
	INIT_LIST_HEAD(&cgrp->children);
T
Tejun Heo 已提交
1457
	INIT_LIST_HEAD(&cgrp->files);
1458
	INIT_LIST_HEAD(&cgrp->cset_links);
1459
	INIT_LIST_HEAD(&cgrp->release_list);
1460 1461
	INIT_LIST_HEAD(&cgrp->pidlists);
	mutex_init(&cgrp->pidlist_mutex);
T
Tejun Heo 已提交
1462
	cgrp->dummy_css.cgroup = cgrp;
A
Aristeu Rozanski 已提交
1463
	simple_xattrs_init(&cgrp->xattrs);
1464
}
1465

1466 1467
static void init_cgroup_root(struct cgroupfs_root *root)
{
1468
	struct cgroup *cgrp = &root->top_cgroup;
1469

1470 1471
	INIT_LIST_HEAD(&root->root_list);
	root->number_of_cgroups = 1;
1472
	cgrp->root = root;
1473
	RCU_INIT_POINTER(cgrp->name, &root_cgroup_name);
1474
	init_cgroup_housekeeping(cgrp);
1475
	idr_init(&root->cgroup_idr);
1476 1477 1478 1479
}

static int cgroup_test_super(struct super_block *sb, void *data)
{
1480
	struct cgroup_sb_opts *opts = data;
1481 1482
	struct cgroupfs_root *root = sb->s_fs_info;

1483 1484 1485
	/* If we asked for a name then it must match */
	if (opts->name && strcmp(opts->name, root->name))
		return 0;
1486

1487 1488 1489 1490
	/*
	 * If we asked for subsystems (or explicitly for no
	 * subsystems) then they must match
	 */
1491 1492
	if ((opts->subsys_mask || opts->none)
	    && (opts->subsys_mask != root->subsys_mask))
1493 1494 1495 1496 1497
		return 0;

	return 1;
}

1498 1499 1500 1501
static struct cgroupfs_root *cgroup_root_from_opts(struct cgroup_sb_opts *opts)
{
	struct cgroupfs_root *root;

1502
	if (!opts->subsys_mask && !opts->none)
1503 1504 1505 1506 1507 1508 1509
		return NULL;

	root = kzalloc(sizeof(*root), GFP_KERNEL);
	if (!root)
		return ERR_PTR(-ENOMEM);

	init_cgroup_root(root);
1510

1511 1512 1513 1514 1515 1516 1517 1518
	/*
	 * We need to set @root->subsys_mask now so that @root can be
	 * matched by cgroup_test_super() before it finishes
	 * initialization; otherwise, competing mounts with the same
	 * options may try to bind the same subsystems instead of waiting
	 * for the first one leading to unexpected mount errors.
	 * SUBSYS_BOUND will be set once actual binding is complete.
	 */
1519
	root->subsys_mask = opts->subsys_mask;
1520 1521 1522 1523 1524
	root->flags = opts->flags;
	if (opts->release_agent)
		strcpy(root->release_agent_path, opts->release_agent);
	if (opts->name)
		strcpy(root->name, opts->name);
1525 1526
	if (opts->cpuset_clone_children)
		set_bit(CGRP_CPUSET_CLONE_CHILDREN, &root->top_cgroup.flags);
1527 1528 1529
	return root;
}

1530 1531 1532
static int cgroup_set_super(struct super_block *sb, void *data)
{
	int ret;
1533 1534 1535 1536 1537 1538
	struct cgroup_sb_opts *opts = data;

	/* If we don't have a new root, we can't set up a new sb */
	if (!opts->new_root)
		return -EINVAL;

1539
	BUG_ON(!opts->subsys_mask && !opts->none);
1540 1541 1542 1543 1544

	ret = set_anon_super(sb, NULL);
	if (ret)
		return ret;

1545 1546
	sb->s_fs_info = opts->new_root;
	opts->new_root->sb = sb;
1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557

	sb->s_blocksize = PAGE_CACHE_SIZE;
	sb->s_blocksize_bits = PAGE_CACHE_SHIFT;
	sb->s_magic = CGROUP_SUPER_MAGIC;
	sb->s_op = &cgroup_ops;

	return 0;
}

static int cgroup_get_rootdir(struct super_block *sb)
{
A
Al Viro 已提交
1558 1559
	static const struct dentry_operations cgroup_dops = {
		.d_iput = cgroup_diput,
1560
		.d_delete = always_delete_dentry,
A
Al Viro 已提交
1561 1562
	};

1563 1564 1565 1566 1567 1568 1569 1570 1571 1572
	struct inode *inode =
		cgroup_new_inode(S_IFDIR | S_IRUGO | S_IXUGO | S_IWUSR, sb);

	if (!inode)
		return -ENOMEM;

	inode->i_fop = &simple_dir_operations;
	inode->i_op = &cgroup_dir_inode_operations;
	/* directories start off with i_nlink == 2 (for "." entry) */
	inc_nlink(inode);
1573 1574
	sb->s_root = d_make_root(inode);
	if (!sb->s_root)
1575
		return -ENOMEM;
A
Al Viro 已提交
1576 1577
	/* for everything else we want ->d_op set */
	sb->s_d_op = &cgroup_dops;
1578 1579 1580
	return 0;
}

1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692
static int cgroup_setup_root(struct cgroupfs_root *root)
{
	LIST_HEAD(tmp_links);
	struct super_block *sb = root->sb;
	struct cgroup *root_cgrp = &root->top_cgroup;
	struct cgroupfs_root *existing_root;
	struct css_set *cset;
	struct inode *inode;
	const struct cred *cred;
	int i, ret;

	lockdep_assert_held(&cgroup_tree_mutex);
	lockdep_assert_held(&cgroup_mutex);
	BUG_ON(sb->s_root != NULL);

	mutex_unlock(&cgroup_mutex);
	mutex_unlock(&cgroup_tree_mutex);

	ret = cgroup_get_rootdir(sb);
	if (ret) {
		mutex_lock(&cgroup_tree_mutex);
		mutex_lock(&cgroup_mutex);
		return ret;
	}
	inode = sb->s_root->d_inode;

	mutex_lock(&inode->i_mutex);
	mutex_lock(&cgroup_tree_mutex);
	mutex_lock(&cgroup_mutex);

	ret = idr_alloc(&root->cgroup_idr, root_cgrp, 0, 1, GFP_KERNEL);
	if (ret < 0)
		goto out_unlock;
	root_cgrp->id = ret;

	/* check for name clashes with existing mounts */
	ret = -EBUSY;
	if (strlen(root->name))
		for_each_active_root(existing_root)
			if (!strcmp(existing_root->name, root->name))
				goto out_unlock;

	/*
	 * We're accessing css_set_count without locking css_set_lock here,
	 * but that's OK - it can only be increased by someone holding
	 * cgroup_lock, and that's us. The worst that can happen is that we
	 * have some link structures left over
	 */
	ret = allocate_cgrp_cset_links(css_set_count, &tmp_links);
	if (ret)
		goto out_unlock;

	/* ID 0 is reserved for dummy root, 1 for unified hierarchy */
	ret = cgroup_init_root_id(root, 2, 0);
	if (ret)
		goto out_unlock;

	sb->s_root->d_fsdata = root_cgrp;
	root_cgrp->dentry = sb->s_root;

	/*
	 * We're inside get_sb() and will call lookup_one_len() to create
	 * the root files, which doesn't work if SELinux is in use.  The
	 * following cred dancing somehow works around it.  See 2ce9738ba
	 * ("cgroupfs: use init_cred when populating new cgroupfs mount")
	 * for more details.
	 */
	cred = override_creds(&init_cred);

	ret = cgroup_addrm_files(root_cgrp, cgroup_base_files, true);
	if (ret)
		goto rm_base_files;

	ret = rebind_subsystems(root, root->subsys_mask, 0);
	if (ret)
		goto rm_base_files;

	revert_creds(cred);

	/*
	 * There must be no failure case after here, since rebinding takes
	 * care of subsystems' refcounts, which are explicitly dropped in
	 * the failure exit path.
	 */
	list_add(&root->root_list, &cgroup_roots);
	cgroup_root_count++;

	/*
	 * Link the top cgroup in this hierarchy into all the css_set
	 * objects.
	 */
	write_lock(&css_set_lock);
	hash_for_each(css_set_table, i, cset, hlist)
		link_css_set(&tmp_links, cset, root_cgrp);
	write_unlock(&css_set_lock);

	BUG_ON(!list_empty(&root_cgrp->children));
	BUG_ON(root->number_of_cgroups != 1);

	ret = 0;
	goto out_unlock;

rm_base_files:
	cgroup_addrm_files(&root->top_cgroup, cgroup_base_files, false);
	revert_creds(cred);
	cgroup_exit_root_id(root);
out_unlock:
	mutex_unlock(&inode->i_mutex);
	free_cgrp_cset_links(&tmp_links);
	return ret;
}

A
Al Viro 已提交
1693
static struct dentry *cgroup_mount(struct file_system_type *fs_type,
1694
			 int flags, const char *unused_dev_name,
A
Al Viro 已提交
1695
			 void *data)
1696
{
1697 1698
	struct super_block *sb = NULL;
	struct cgroupfs_root *root = NULL;
1699
	struct cgroup_sb_opts opts;
1700
	struct cgroupfs_root *new_root;
1701
	int ret;
1702

1703
	mutex_lock(&cgroup_tree_mutex);
B
Ben Blum 已提交
1704
	mutex_lock(&cgroup_mutex);
1705 1706

	/* First find the desired set of subsystems */
1707
	ret = parse_cgroupfs_options(data, &opts);
1708
	if (ret)
1709
		goto out_unlock;
1710

1711 1712 1713 1714 1715 1716 1717
	/*
	 * Allocate a new cgroup root. We may not need it if we're
	 * reusing an existing hierarchy.
	 */
	new_root = cgroup_root_from_opts(&opts);
	if (IS_ERR(new_root)) {
		ret = PTR_ERR(new_root);
1718
		goto out_unlock;
1719
	}
1720
	opts.new_root = new_root;
1721

1722
	/* Locate an existing or new sb for this hierarchy */
1723 1724
	mutex_unlock(&cgroup_mutex);
	mutex_unlock(&cgroup_tree_mutex);
D
David Howells 已提交
1725
	sb = sget(fs_type, cgroup_test_super, cgroup_set_super, 0, &opts);
1726 1727
	mutex_lock(&cgroup_tree_mutex);
	mutex_lock(&cgroup_mutex);
1728
	if (IS_ERR(sb)) {
1729
		ret = PTR_ERR(sb);
1730
		cgroup_free_root(opts.new_root);
1731
		goto out_unlock;
1732 1733
	}

1734 1735 1736
	root = sb->s_fs_info;
	BUG_ON(!root);
	if (root == opts.new_root) {
1737
		ret = cgroup_setup_root(root);
1738
		if (ret)
1739
			goto out_unlock;
1740 1741 1742 1743 1744
	} else {
		/*
		 * We re-used an existing hierarchy - the new root (if
		 * any) is not needed
		 */
1745
		cgroup_free_root(opts.new_root);
1746

1747
		if ((root->flags ^ opts.flags) & CGRP_ROOT_OPTION_MASK) {
1748 1749 1750
			if ((root->flags | opts.flags) & CGRP_ROOT_SANE_BEHAVIOR) {
				pr_err("cgroup: sane_behavior: new mount options should match the existing superblock\n");
				ret = -EINVAL;
1751
				goto out_unlock;
1752 1753 1754
			} else {
				pr_warning("cgroup: new mount options do not match the existing superblock, will be ignored\n");
			}
1755
		}
1756 1757
	}

1758 1759
	ret = 0;
out_unlock:
T
Tejun Heo 已提交
1760
	mutex_unlock(&cgroup_mutex);
T
Tejun Heo 已提交
1761
	mutex_unlock(&cgroup_tree_mutex);
1762 1763 1764 1765

	if (ret && !IS_ERR_OR_NULL(sb))
		deactivate_locked_super(sb);

1766 1767
	kfree(opts.release_agent);
	kfree(opts.name);
1768 1769 1770 1771 1772

	if (!ret)
		return dget(sb->s_root);
	else
		return ERR_PTR(ret);
1773 1774 1775 1776
}

static struct file_system_type cgroup_fs_type = {
	.name = "cgroup",
A
Al Viro 已提交
1777
	.mount = cgroup_mount,
1778 1779 1780
	.kill_sb = cgroup_kill_sb,
};

1781 1782
static struct kobject *cgroup_kobj;

L
Li Zefan 已提交
1783 1784 1785 1786 1787 1788
/**
 * cgroup_path - generate the path of a cgroup
 * @cgrp: the cgroup in question
 * @buf: the buffer to write the path into
 * @buflen: the length of the buffer
 *
1789 1790 1791 1792 1793 1794
 * Writes path of cgroup into buf.  Returns 0 on success, -errno on error.
 *
 * We can't generate cgroup path using dentry->d_name, as accessing
 * dentry->name must be protected by irq-unsafe dentry->d_lock or parent
 * inode's i_mutex, while on the other hand cgroup_path() can be called
 * with some irq-safe spinlocks held.
1795
 */
1796
int cgroup_path(const struct cgroup *cgrp, char *buf, int buflen)
1797
{
1798
	int ret = -ENAMETOOLONG;
1799
	char *start;
1800

1801 1802 1803
	if (!cgrp->parent) {
		if (strlcpy(buf, "/", buflen) >= buflen)
			return -ENAMETOOLONG;
1804 1805 1806
		return 0;
	}

1807 1808
	start = buf + buflen - 1;
	*start = '\0';
1809

1810
	rcu_read_lock();
1811
	do {
1812 1813 1814 1815
		const char *name = cgroup_name(cgrp);
		int len;

		len = strlen(name);
1816
		if ((start -= len) < buf)
1817 1818
			goto out;
		memcpy(start, name, len);
1819

1820
		if (--start < buf)
1821
			goto out;
1822
		*start = '/';
1823 1824

		cgrp = cgrp->parent;
1825
	} while (cgrp->parent);
1826
	ret = 0;
1827
	memmove(buf, start, buf + buflen - start);
1828 1829 1830
out:
	rcu_read_unlock();
	return ret;
1831
}
B
Ben Blum 已提交
1832
EXPORT_SYMBOL_GPL(cgroup_path);
1833

1834
/**
1835
 * task_cgroup_path - cgroup path of a task in the first cgroup hierarchy
1836 1837 1838 1839
 * @task: target task
 * @buf: the buffer to write the path into
 * @buflen: the length of the buffer
 *
1840 1841 1842 1843 1844 1845
 * Determine @task's cgroup on the first (the one with the lowest non-zero
 * hierarchy_id) cgroup hierarchy and copy its path into @buf.  This
 * function grabs cgroup_mutex and shouldn't be used inside locks used by
 * cgroup controller callbacks.
 *
 * Returns 0 on success, fails with -%ENAMETOOLONG if @buflen is too short.
1846
 */
1847
int task_cgroup_path(struct task_struct *task, char *buf, size_t buflen)
1848 1849
{
	struct cgroupfs_root *root;
1850 1851 1852 1853 1854
	struct cgroup *cgrp;
	int hierarchy_id = 1, ret = 0;

	if (buflen < 2)
		return -ENAMETOOLONG;
1855 1856 1857

	mutex_lock(&cgroup_mutex);

1858 1859
	root = idr_get_next(&cgroup_hierarchy_idr, &hierarchy_id);

1860 1861 1862
	if (root) {
		cgrp = task_cgroup_from_root(task, root);
		ret = cgroup_path(cgrp, buf, buflen);
1863 1864 1865
	} else {
		/* if no hierarchy exists, everyone is in "/" */
		memcpy(buf, "/", 2);
1866 1867 1868 1869 1870
	}

	mutex_unlock(&cgroup_mutex);
	return ret;
}
1871
EXPORT_SYMBOL_GPL(task_cgroup_path);
1872

1873 1874 1875
/*
 * Control Group taskset
 */
1876 1877 1878
struct task_and_cgroup {
	struct task_struct	*task;
	struct cgroup		*cgrp;
L
Li Zefan 已提交
1879
	struct css_set		*cset;
1880 1881
};

1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928
struct cgroup_taskset {
	struct task_and_cgroup	single;
	struct flex_array	*tc_array;
	int			tc_array_len;
	int			idx;
	struct cgroup		*cur_cgrp;
};

/**
 * cgroup_taskset_first - reset taskset and return the first task
 * @tset: taskset of interest
 *
 * @tset iteration is initialized and the first task is returned.
 */
struct task_struct *cgroup_taskset_first(struct cgroup_taskset *tset)
{
	if (tset->tc_array) {
		tset->idx = 0;
		return cgroup_taskset_next(tset);
	} else {
		tset->cur_cgrp = tset->single.cgrp;
		return tset->single.task;
	}
}
EXPORT_SYMBOL_GPL(cgroup_taskset_first);

/**
 * cgroup_taskset_next - iterate to the next task in taskset
 * @tset: taskset of interest
 *
 * Return the next task in @tset.  Iteration must have been initialized
 * with cgroup_taskset_first().
 */
struct task_struct *cgroup_taskset_next(struct cgroup_taskset *tset)
{
	struct task_and_cgroup *tc;

	if (!tset->tc_array || tset->idx >= tset->tc_array_len)
		return NULL;

	tc = flex_array_get(tset->tc_array, tset->idx++);
	tset->cur_cgrp = tc->cgrp;
	return tc->task;
}
EXPORT_SYMBOL_GPL(cgroup_taskset_next);

/**
1929
 * cgroup_taskset_cur_css - return the matching css for the current task
1930
 * @tset: taskset of interest
1931
 * @subsys_id: the ID of the target subsystem
1932
 *
1933 1934 1935
 * Return the css for the current (last returned) task of @tset for
 * subsystem specified by @subsys_id.  This function must be preceded by
 * either cgroup_taskset_first() or cgroup_taskset_next().
1936
 */
1937 1938
struct cgroup_subsys_state *cgroup_taskset_cur_css(struct cgroup_taskset *tset,
						   int subsys_id)
1939
{
1940
	return cgroup_css(tset->cur_cgrp, cgroup_subsys[subsys_id]);
1941
}
1942
EXPORT_SYMBOL_GPL(cgroup_taskset_cur_css);
1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954

/**
 * cgroup_taskset_size - return the number of tasks in taskset
 * @tset: taskset of interest
 */
int cgroup_taskset_size(struct cgroup_taskset *tset)
{
	return tset->tc_array ? tset->tc_array_len : 1;
}
EXPORT_SYMBOL_GPL(cgroup_taskset_size);


B
Ben Blum 已提交
1955 1956 1957
/*
 * cgroup_task_migrate - move a task from one cgroup to another.
 *
1958
 * Must be called with cgroup_mutex and threadgroup locked.
B
Ben Blum 已提交
1959
 */
1960 1961 1962
static void cgroup_task_migrate(struct cgroup *old_cgrp,
				struct task_struct *tsk,
				struct css_set *new_cset)
B
Ben Blum 已提交
1963
{
1964
	struct css_set *old_cset;
B
Ben Blum 已提交
1965 1966

	/*
1967 1968 1969
	 * We are synchronized through threadgroup_lock() against PF_EXITING
	 * setting such that we can't race against cgroup_exit() changing the
	 * css_set to init_css_set and dropping the old one.
B
Ben Blum 已提交
1970
	 */
1971
	WARN_ON_ONCE(tsk->flags & PF_EXITING);
1972
	old_cset = task_css_set(tsk);
B
Ben Blum 已提交
1973 1974

	task_lock(tsk);
1975
	rcu_assign_pointer(tsk->cgroups, new_cset);
B
Ben Blum 已提交
1976 1977 1978 1979 1980
	task_unlock(tsk);

	/* Update the css_set linked lists if we're using them */
	write_lock(&css_set_lock);
	if (!list_empty(&tsk->cg_list))
1981
		list_move(&tsk->cg_list, &new_cset->tasks);
B
Ben Blum 已提交
1982 1983 1984
	write_unlock(&css_set_lock);

	/*
1985 1986 1987
	 * We just gained a reference on old_cset by taking it from the
	 * task. As trading it for new_cset is protected by cgroup_mutex,
	 * we're safe to drop it here; it will be freed under RCU.
B
Ben Blum 已提交
1988
	 */
1989 1990
	set_bit(CGRP_RELEASABLE, &old_cgrp->flags);
	put_css_set(old_cset);
B
Ben Blum 已提交
1991 1992
}

L
Li Zefan 已提交
1993
/**
1994
 * cgroup_attach_task - attach a task or a whole threadgroup to a cgroup
B
Ben Blum 已提交
1995
 * @cgrp: the cgroup to attach to
1996 1997
 * @tsk: the task or the leader of the threadgroup to be attached
 * @threadgroup: attach the whole threadgroup?
B
Ben Blum 已提交
1998
 *
1999
 * Call holding cgroup_mutex and the group_rwsem of the leader. Will take
2000
 * task_lock of @tsk or each thread in the threadgroup individually in turn.
B
Ben Blum 已提交
2001
 */
T
Tejun Heo 已提交
2002 2003
static int cgroup_attach_task(struct cgroup *cgrp, struct task_struct *tsk,
			      bool threadgroup)
B
Ben Blum 已提交
2004 2005 2006
{
	int retval, i, group_size;
	struct cgroupfs_root *root = cgrp->root;
T
Tejun Heo 已提交
2007
	struct cgroup_subsys_state *css, *failed_css = NULL;
B
Ben Blum 已提交
2008
	/* threadgroup list cursor and array */
2009
	struct task_struct *leader = tsk;
2010
	struct task_and_cgroup *tc;
2011
	struct flex_array *group;
2012
	struct cgroup_taskset tset = { };
B
Ben Blum 已提交
2013 2014 2015 2016 2017

	/*
	 * step 0: in order to do expensive, possibly blocking operations for
	 * every thread, we cannot iterate the thread group list, since it needs
	 * rcu or tasklist locked. instead, build an array of all threads in the
2018 2019
	 * group - group_rwsem prevents new threads from appearing, and if
	 * threads exit, this will just be an over-estimate.
B
Ben Blum 已提交
2020
	 */
2021 2022 2023 2024
	if (threadgroup)
		group_size = get_nr_threads(tsk);
	else
		group_size = 1;
2025
	/* flex_array supports very large thread-groups better than kmalloc. */
2026
	group = flex_array_alloc(sizeof(*tc), group_size, GFP_KERNEL);
B
Ben Blum 已提交
2027 2028
	if (!group)
		return -ENOMEM;
2029
	/* pre-allocate to guarantee space while iterating in rcu read-side. */
2030
	retval = flex_array_prealloc(group, 0, group_size, GFP_KERNEL);
2031 2032
	if (retval)
		goto out_free_group_list;
B
Ben Blum 已提交
2033 2034

	i = 0;
2035 2036 2037 2038 2039 2040
	/*
	 * Prevent freeing of tasks while we take a snapshot. Tasks that are
	 * already PF_EXITING could be freed from underneath us unless we
	 * take an rcu_read_lock.
	 */
	rcu_read_lock();
B
Ben Blum 已提交
2041
	do {
2042 2043
		struct task_and_cgroup ent;

2044 2045
		/* @tsk either already exited or can't exit until the end */
		if (tsk->flags & PF_EXITING)
2046
			goto next;
2047

B
Ben Blum 已提交
2048 2049
		/* as per above, nr_threads may decrease, but not increase. */
		BUG_ON(i >= group_size);
2050 2051
		ent.task = tsk;
		ent.cgrp = task_cgroup_from_root(tsk, root);
2052 2053
		/* nothing to do if this task is already in the cgroup */
		if (ent.cgrp == cgrp)
2054
			goto next;
2055 2056 2057 2058
		/*
		 * saying GFP_ATOMIC has no effect here because we did prealloc
		 * earlier, but it's good form to communicate our expectations.
		 */
2059
		retval = flex_array_put(group, i, &ent, GFP_ATOMIC);
2060
		BUG_ON(retval != 0);
B
Ben Blum 已提交
2061
		i++;
2062
	next:
2063 2064
		if (!threadgroup)
			break;
B
Ben Blum 已提交
2065
	} while_each_thread(leader, tsk);
2066
	rcu_read_unlock();
B
Ben Blum 已提交
2067 2068
	/* remember the number of threads in the array for later. */
	group_size = i;
2069 2070
	tset.tc_array = group;
	tset.tc_array_len = group_size;
B
Ben Blum 已提交
2071

2072 2073
	/* methods shouldn't be called if no task is actually migrating */
	retval = 0;
2074
	if (!group_size)
2075
		goto out_free_group_list;
2076

B
Ben Blum 已提交
2077 2078 2079
	/*
	 * step 1: check that we can legitimately attach to the cgroup.
	 */
T
Tejun Heo 已提交
2080 2081 2082
	for_each_css(css, i, cgrp) {
		if (css->ss->can_attach) {
			retval = css->ss->can_attach(css, &tset);
B
Ben Blum 已提交
2083
			if (retval) {
T
Tejun Heo 已提交
2084
				failed_css = css;
B
Ben Blum 已提交
2085 2086 2087 2088 2089 2090 2091 2092 2093 2094
				goto out_cancel_attach;
			}
		}
	}

	/*
	 * step 2: make sure css_sets exist for all threads to be migrated.
	 * we use find_css_set, which allocates a new one if necessary.
	 */
	for (i = 0; i < group_size; i++) {
2095 2096
		struct css_set *old_cset;

2097
		tc = flex_array_get(group, i);
2098
		old_cset = task_css_set(tc->task);
L
Li Zefan 已提交
2099 2100
		tc->cset = find_css_set(old_cset, cgrp);
		if (!tc->cset) {
2101 2102
			retval = -ENOMEM;
			goto out_put_css_set_refs;
B
Ben Blum 已提交
2103 2104 2105 2106
		}
	}

	/*
2107 2108 2109
	 * step 3: now that we're guaranteed success wrt the css_sets,
	 * proceed to move all tasks to the new cgroup.  There are no
	 * failure cases after here, so this is the commit point.
B
Ben Blum 已提交
2110 2111
	 */
	for (i = 0; i < group_size; i++) {
2112
		tc = flex_array_get(group, i);
L
Li Zefan 已提交
2113
		cgroup_task_migrate(tc->cgrp, tc->task, tc->cset);
B
Ben Blum 已提交
2114 2115 2116 2117
	}
	/* nothing is sensitive to fork() after this point. */

	/*
2118
	 * step 4: do subsystem attach callbacks.
B
Ben Blum 已提交
2119
	 */
T
Tejun Heo 已提交
2120 2121 2122
	for_each_css(css, i, cgrp)
		if (css->ss->attach)
			css->ss->attach(css, &tset);
B
Ben Blum 已提交
2123 2124 2125 2126 2127

	/*
	 * step 5: success! and cleanup
	 */
	retval = 0;
2128 2129 2130 2131
out_put_css_set_refs:
	if (retval) {
		for (i = 0; i < group_size; i++) {
			tc = flex_array_get(group, i);
L
Li Zefan 已提交
2132
			if (!tc->cset)
2133
				break;
L
Li Zefan 已提交
2134
			put_css_set(tc->cset);
2135
		}
B
Ben Blum 已提交
2136 2137 2138
	}
out_cancel_attach:
	if (retval) {
T
Tejun Heo 已提交
2139 2140
		for_each_css(css, i, cgrp) {
			if (css == failed_css)
B
Ben Blum 已提交
2141
				break;
T
Tejun Heo 已提交
2142 2143
			if (css->ss->cancel_attach)
				css->ss->cancel_attach(css, &tset);
B
Ben Blum 已提交
2144 2145 2146
		}
	}
out_free_group_list:
2147
	flex_array_free(group);
B
Ben Blum 已提交
2148 2149 2150 2151 2152
	return retval;
}

/*
 * Find the task_struct of the task to attach by vpid and pass it along to the
2153 2154
 * function to attach either it or all tasks in its threadgroup. Will lock
 * cgroup_mutex and threadgroup; may take task_lock of task.
2155
 */
B
Ben Blum 已提交
2156
static int attach_task_by_pid(struct cgroup *cgrp, u64 pid, bool threadgroup)
2157 2158
{
	struct task_struct *tsk;
2159
	const struct cred *cred = current_cred(), *tcred;
2160 2161
	int ret;

B
Ben Blum 已提交
2162 2163 2164
	if (!cgroup_lock_live_group(cgrp))
		return -ENODEV;

2165 2166
retry_find_task:
	rcu_read_lock();
2167
	if (pid) {
2168
		tsk = find_task_by_vpid(pid);
B
Ben Blum 已提交
2169 2170
		if (!tsk) {
			rcu_read_unlock();
S
SeongJae Park 已提交
2171
			ret = -ESRCH;
2172
			goto out_unlock_cgroup;
2173
		}
B
Ben Blum 已提交
2174 2175 2176 2177
		/*
		 * even if we're attaching all tasks in the thread group, we
		 * only need to check permissions on one of them.
		 */
2178
		tcred = __task_cred(tsk);
2179 2180 2181
		if (!uid_eq(cred->euid, GLOBAL_ROOT_UID) &&
		    !uid_eq(cred->euid, tcred->uid) &&
		    !uid_eq(cred->euid, tcred->suid)) {
2182
			rcu_read_unlock();
2183 2184
			ret = -EACCES;
			goto out_unlock_cgroup;
2185
		}
2186 2187
	} else
		tsk = current;
2188 2189

	if (threadgroup)
2190
		tsk = tsk->group_leader;
2191 2192

	/*
2193
	 * Workqueue threads may acquire PF_NO_SETAFFINITY and become
2194 2195 2196
	 * trapped in a cpuset, or RT worker may be born in a cgroup
	 * with no rt_runtime allocated.  Just say no.
	 */
2197
	if (tsk == kthreadd_task || (tsk->flags & PF_NO_SETAFFINITY)) {
2198 2199 2200 2201 2202
		ret = -EINVAL;
		rcu_read_unlock();
		goto out_unlock_cgroup;
	}

2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219
	get_task_struct(tsk);
	rcu_read_unlock();

	threadgroup_lock(tsk);
	if (threadgroup) {
		if (!thread_group_leader(tsk)) {
			/*
			 * a race with de_thread from another thread's exec()
			 * may strip us of our leadership, if this happens,
			 * there is no choice but to throw this task away and
			 * try again; this is
			 * "double-double-toil-and-trouble-check locking".
			 */
			threadgroup_unlock(tsk);
			put_task_struct(tsk);
			goto retry_find_task;
		}
2220 2221 2222 2223
	}

	ret = cgroup_attach_task(cgrp, tsk, threadgroup);

2224 2225
	threadgroup_unlock(tsk);

2226
	put_task_struct(tsk);
2227
out_unlock_cgroup:
T
Tejun Heo 已提交
2228
	mutex_unlock(&cgroup_mutex);
2229 2230 2231
	return ret;
}

2232 2233 2234 2235 2236 2237 2238 2239 2240 2241
/**
 * cgroup_attach_task_all - attach task 'tsk' to all cgroups of task 'from'
 * @from: attach to all cgroups of a given task
 * @tsk: the task to be attached
 */
int cgroup_attach_task_all(struct task_struct *from, struct task_struct *tsk)
{
	struct cgroupfs_root *root;
	int retval = 0;

T
Tejun Heo 已提交
2242
	mutex_lock(&cgroup_mutex);
2243
	for_each_active_root(root) {
L
Li Zefan 已提交
2244
		struct cgroup *from_cgrp = task_cgroup_from_root(from, root);
2245

L
Li Zefan 已提交
2246
		retval = cgroup_attach_task(from_cgrp, tsk, false);
2247 2248 2249
		if (retval)
			break;
	}
T
Tejun Heo 已提交
2250
	mutex_unlock(&cgroup_mutex);
2251 2252 2253 2254 2255

	return retval;
}
EXPORT_SYMBOL_GPL(cgroup_attach_task_all);

2256 2257
static int cgroup_tasks_write(struct cgroup_subsys_state *css,
			      struct cftype *cft, u64 pid)
B
Ben Blum 已提交
2258
{
2259
	return attach_task_by_pid(css->cgroup, pid, false);
B
Ben Blum 已提交
2260 2261
}

2262 2263
static int cgroup_procs_write(struct cgroup_subsys_state *css,
			      struct cftype *cft, u64 tgid)
2264
{
2265
	return attach_task_by_pid(css->cgroup, tgid, true);
2266 2267
}

2268 2269
static int cgroup_release_agent_write(struct cgroup_subsys_state *css,
				      struct cftype *cft, const char *buffer)
2270
{
2271 2272 2273
	struct cgroupfs_root *root = css->cgroup->root;

	BUILD_BUG_ON(sizeof(root->release_agent_path) < PATH_MAX);
2274
	if (!cgroup_lock_live_group(css->cgroup))
2275
		return -ENODEV;
2276
	spin_lock(&release_agent_path_lock);
2277 2278
	strlcpy(root->release_agent_path, buffer,
		sizeof(root->release_agent_path));
2279
	spin_unlock(&release_agent_path_lock);
T
Tejun Heo 已提交
2280
	mutex_unlock(&cgroup_mutex);
2281 2282 2283
	return 0;
}

2284
static int cgroup_release_agent_show(struct seq_file *seq, void *v)
2285
{
2286
	struct cgroup *cgrp = seq_css(seq)->cgroup;
2287

2288 2289 2290 2291
	if (!cgroup_lock_live_group(cgrp))
		return -ENODEV;
	seq_puts(seq, cgrp->root->release_agent_path);
	seq_putc(seq, '\n');
T
Tejun Heo 已提交
2292
	mutex_unlock(&cgroup_mutex);
2293 2294 2295
	return 0;
}

2296
static int cgroup_sane_behavior_show(struct seq_file *seq, void *v)
2297
{
2298 2299 2300
	struct cgroup *cgrp = seq_css(seq)->cgroup;

	seq_printf(seq, "%d\n", cgroup_sane_behavior(cgrp));
2301 2302 2303
	return 0;
}

2304 2305
static ssize_t cgroup_file_write(struct file *file, const char __user *userbuf,
				 size_t nbytes, loff_t *ppos)
2306
{
2307 2308 2309
	struct cfent *cfe = __d_cfe(file->f_dentry);
	struct cftype *cft = __d_cft(file->f_dentry);
	struct cgroup_subsys_state *css = cfe->css;
2310
	size_t max_bytes = max(cft->max_write_len, PAGE_SIZE);
2311 2312
	char *buf;
	int ret;
2313

2314
	if (nbytes > max_bytes)
2315 2316
		return -E2BIG;

2317 2318 2319
	buf = kmalloc(nbytes + 1, GFP_KERNEL);
	if (!buf)
		return -ENOMEM;
2320

2321 2322 2323 2324
	if (copy_from_user(buf, userbuf, nbytes)) {
		ret = -EFAULT;
		goto out_free;
	}
2325

2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341
	buf[nbytes] = '\0';

	if (cft->write_string) {
		ret = cft->write_string(css, cft, strstrip(buf));
	} else if (cft->write_u64) {
		unsigned long long v;
		ret = kstrtoull(buf, 0, &v);
		if (!ret)
			ret = cft->write_u64(css, cft, v);
	} else if (cft->write_s64) {
		long long v;
		ret = kstrtoll(buf, 0, &v);
		if (!ret)
			ret = cft->write_s64(css, cft, v);
	} else if (cft->trigger) {
		ret = cft->trigger(css, (unsigned int)cft->private);
2342
	} else {
2343
		ret = -EINVAL;
2344
	}
2345 2346 2347
out_free:
	kfree(buf);
	return ret ?: nbytes;
2348 2349
}

2350 2351 2352 2353 2354
/*
 * seqfile ops/methods for returning structured data. Currently just
 * supports string->u64 maps, but can be extended in future.
 */

2355
static void *cgroup_seqfile_start(struct seq_file *seq, loff_t *ppos)
2356
{
2357
	struct cftype *cft = seq_cft(seq);
2358

2359 2360 2361 2362 2363 2364 2365 2366
	if (cft->seq_start) {
		return cft->seq_start(seq, ppos);
	} else {
		/*
		 * The same behavior and code as single_open().  Returns
		 * !NULL if pos is at the beginning; otherwise, NULL.
		 */
		return NULL + !*ppos;
L
Li Zefan 已提交
2367
	}
2368 2369
}

2370
static void *cgroup_seqfile_next(struct seq_file *seq, void *v, loff_t *ppos)
2371
{
2372
	struct cftype *cft = seq_cft(seq);
2373

2374 2375 2376 2377 2378 2379 2380 2381 2382
	if (cft->seq_next) {
		return cft->seq_next(seq, v, ppos);
	} else {
		/*
		 * The same behavior and code as single_open(), always
		 * terminate after the initial read.
		 */
		++*ppos;
		return NULL;
2383
	}
2384 2385
}

2386
static void cgroup_seqfile_stop(struct seq_file *seq, void *v)
2387
{
2388
	struct cftype *cft = seq_cft(seq);
2389

2390 2391
	if (cft->seq_stop)
		cft->seq_stop(seq, v);
2392 2393
}

2394
static int cgroup_seqfile_show(struct seq_file *m, void *arg)
2395
{
2396 2397
	struct cftype *cft = seq_cft(m);
	struct cgroup_subsys_state *css = seq_css(m);
2398

2399 2400
	if (cft->seq_show)
		return cft->seq_show(m, arg);
2401

2402
	if (cft->read_u64)
2403 2404 2405 2406 2407 2408
		seq_printf(m, "%llu\n", cft->read_u64(css, cft));
	else if (cft->read_s64)
		seq_printf(m, "%lld\n", cft->read_s64(css, cft));
	else
		return -EINVAL;
	return 0;
2409 2410
}

2411 2412 2413 2414 2415
static struct seq_operations cgroup_seq_operations = {
	.start		= cgroup_seqfile_start,
	.next		= cgroup_seqfile_next,
	.stop		= cgroup_seqfile_stop,
	.show		= cgroup_seqfile_show,
2416 2417
};

2418 2419
static int cgroup_file_open(struct inode *inode, struct file *file)
{
2420 2421
	struct cfent *cfe = __d_cfe(file->f_dentry);
	struct cftype *cft = __d_cft(file->f_dentry);
2422 2423
	struct cgroup *cgrp = __d_cgrp(cfe->dentry->d_parent);
	struct cgroup_subsys_state *css;
2424
	struct cgroup_open_file *of;
2425 2426 2427 2428 2429
	int err;

	err = generic_file_open(inode, file);
	if (err)
		return err;
2430

2431 2432 2433 2434 2435
	/*
	 * If the file belongs to a subsystem, pin the css.  Will be
	 * unpinned either on open failure or release.  This ensures that
	 * @css stays alive for all file operations.
	 */
2436
	rcu_read_lock();
2437 2438 2439
	css = cgroup_css(cgrp, cft->ss);
	if (cft->ss && !css_tryget(css))
		css = NULL;
2440
	rcu_read_unlock();
2441

2442
	if (!css)
2443
		return -ENODEV;
2444

2445 2446 2447 2448 2449 2450 2451 2452
	/*
	 * @cfe->css is used by read/write/close to determine the
	 * associated css.  @file->private_data would be a better place but
	 * that's already used by seqfile.  Multiple accessors may use it
	 * simultaneously which is okay as the association never changes.
	 */
	WARN_ON_ONCE(cfe->css && cfe->css != css);
	cfe->css = css;
2453

2454 2455 2456 2457 2458
	of = __seq_open_private(file, &cgroup_seq_operations,
				sizeof(struct cgroup_open_file));
	if (of) {
		of->cfe = cfe;
		return 0;
2459
	}
2460

2461
	if (css->ss)
2462
		css_put(css);
2463
	return -ENOMEM;
2464 2465 2466 2467
}

static int cgroup_file_release(struct inode *inode, struct file *file)
{
2468
	struct cfent *cfe = __d_cfe(file->f_dentry);
2469
	struct cgroup_subsys_state *css = cfe->css;
2470

T
Tejun Heo 已提交
2471
	if (css->ss)
2472
		css_put(css);
2473
	return seq_release_private(inode, file);
2474 2475 2476 2477 2478 2479 2480 2481
}

/*
 * cgroup_rename - Only allow simple rename of directories in place.
 */
static int cgroup_rename(struct inode *old_dir, struct dentry *old_dentry,
			    struct inode *new_dir, struct dentry *new_dentry)
{
2482 2483 2484 2485 2486 2487 2488 2489 2490 2491
	int ret;
	struct cgroup_name *name, *old_name;
	struct cgroup *cgrp;

	/*
	 * It's convinient to use parent dir's i_mutex to protected
	 * cgrp->name.
	 */
	lockdep_assert_held(&old_dir->i_mutex);

2492 2493 2494 2495 2496 2497
	if (!S_ISDIR(old_dentry->d_inode->i_mode))
		return -ENOTDIR;
	if (new_dentry->d_inode)
		return -EEXIST;
	if (old_dir != new_dir)
		return -EIO;
2498 2499 2500

	cgrp = __d_cgrp(old_dentry);

2501 2502 2503 2504 2505 2506 2507
	/*
	 * This isn't a proper migration and its usefulness is very
	 * limited.  Disallow if sane_behavior.
	 */
	if (cgroup_sane_behavior(cgrp))
		return -EPERM;

T
Tejun Heo 已提交
2508
	name = cgroup_alloc_name(new_dentry->d_name.name);
2509 2510 2511 2512 2513 2514 2515 2516 2517
	if (!name)
		return -ENOMEM;

	ret = simple_rename(old_dir, old_dentry, new_dir, new_dentry);
	if (ret) {
		kfree(name);
		return ret;
	}

2518
	old_name = rcu_dereference_protected(cgrp->name, true);
2519 2520 2521 2522
	rcu_assign_pointer(cgrp->name, name);

	kfree_rcu(old_name, rcu_head);
	return 0;
2523 2524
}

A
Aristeu Rozanski 已提交
2525 2526 2527 2528 2529
static struct simple_xattrs *__d_xattrs(struct dentry *dentry)
{
	if (S_ISDIR(dentry->d_inode->i_mode))
		return &__d_cgrp(dentry)->xattrs;
	else
L
Li Zefan 已提交
2530
		return &__d_cfe(dentry)->xattrs;
A
Aristeu Rozanski 已提交
2531 2532 2533 2534 2535
}

static inline int xattr_enabled(struct dentry *dentry)
{
	struct cgroupfs_root *root = dentry->d_sb->s_fs_info;
2536
	return root->flags & CGRP_ROOT_XATTR;
A
Aristeu Rozanski 已提交
2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582
}

static bool is_valid_xattr(const char *name)
{
	if (!strncmp(name, XATTR_TRUSTED_PREFIX, XATTR_TRUSTED_PREFIX_LEN) ||
	    !strncmp(name, XATTR_SECURITY_PREFIX, XATTR_SECURITY_PREFIX_LEN))
		return true;
	return false;
}

static int cgroup_setxattr(struct dentry *dentry, const char *name,
			   const void *val, size_t size, int flags)
{
	if (!xattr_enabled(dentry))
		return -EOPNOTSUPP;
	if (!is_valid_xattr(name))
		return -EINVAL;
	return simple_xattr_set(__d_xattrs(dentry), name, val, size, flags);
}

static int cgroup_removexattr(struct dentry *dentry, const char *name)
{
	if (!xattr_enabled(dentry))
		return -EOPNOTSUPP;
	if (!is_valid_xattr(name))
		return -EINVAL;
	return simple_xattr_remove(__d_xattrs(dentry), name);
}

static ssize_t cgroup_getxattr(struct dentry *dentry, const char *name,
			       void *buf, size_t size)
{
	if (!xattr_enabled(dentry))
		return -EOPNOTSUPP;
	if (!is_valid_xattr(name))
		return -EINVAL;
	return simple_xattr_get(__d_xattrs(dentry), name, buf, size);
}

static ssize_t cgroup_listxattr(struct dentry *dentry, char *buf, size_t size)
{
	if (!xattr_enabled(dentry))
		return -EOPNOTSUPP;
	return simple_xattr_list(__d_xattrs(dentry), buf, size);
}

2583
static const struct file_operations cgroup_file_operations = {
2584
	.read = seq_read,
2585 2586 2587 2588 2589 2590
	.write = cgroup_file_write,
	.llseek = generic_file_llseek,
	.open = cgroup_file_open,
	.release = cgroup_file_release,
};

A
Aristeu Rozanski 已提交
2591 2592 2593 2594 2595 2596 2597
static const struct inode_operations cgroup_file_inode_operations = {
	.setxattr = cgroup_setxattr,
	.getxattr = cgroup_getxattr,
	.listxattr = cgroup_listxattr,
	.removexattr = cgroup_removexattr,
};

2598
static const struct inode_operations cgroup_dir_inode_operations = {
A
Al Viro 已提交
2599
	.lookup = simple_lookup,
2600 2601 2602
	.mkdir = cgroup_mkdir,
	.rmdir = cgroup_rmdir,
	.rename = cgroup_rename,
A
Aristeu Rozanski 已提交
2603 2604 2605 2606
	.setxattr = cgroup_setxattr,
	.getxattr = cgroup_getxattr,
	.listxattr = cgroup_listxattr,
	.removexattr = cgroup_removexattr,
2607 2608
};

A
Al Viro 已提交
2609
static int cgroup_create_file(struct dentry *dentry, umode_t mode,
2610 2611
				struct super_block *sb)
{
2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628
	struct inode *inode;

	if (!dentry)
		return -ENOENT;
	if (dentry->d_inode)
		return -EEXIST;

	inode = cgroup_new_inode(mode, sb);
	if (!inode)
		return -ENOMEM;

	if (S_ISDIR(mode)) {
		inode->i_op = &cgroup_dir_inode_operations;
		inode->i_fop = &simple_dir_operations;

		/* start off with i_nlink == 2 (for "." entry) */
		inc_nlink(inode);
T
Tejun Heo 已提交
2629
		inc_nlink(dentry->d_parent->d_inode);
2630

2631 2632 2633 2634 2635 2636 2637 2638 2639
		/*
		 * Control reaches here with cgroup_mutex held.
		 * @inode->i_mutex should nest outside cgroup_mutex but we
		 * want to populate it immediately without releasing
		 * cgroup_mutex.  As @inode isn't visible to anyone else
		 * yet, trylock will always succeed without affecting
		 * lockdep checks.
		 */
		WARN_ON_ONCE(!mutex_trylock(&inode->i_mutex));
2640 2641 2642
	} else if (S_ISREG(mode)) {
		inode->i_size = 0;
		inode->i_fop = &cgroup_file_operations;
A
Aristeu Rozanski 已提交
2643
		inode->i_op = &cgroup_file_inode_operations;
2644 2645 2646 2647 2648 2649
	}
	d_instantiate(dentry, inode);
	dget(dentry);	/* Extra count - pin the dentry in core */
	return 0;
}

2650
static int cgroup_add_file(struct cgroup *cgrp, struct cftype *cft)
2651
{
2652
	struct dentry *dir = cgrp->dentry;
T
Tejun Heo 已提交
2653
	struct cgroup *parent = __d_cgrp(dir);
2654
	struct dentry *dentry;
T
Tejun Heo 已提交
2655
	struct cfent *cfe;
2656
	int error;
A
Al Viro 已提交
2657
	umode_t mode;
T
Tejun Heo 已提交
2658
	char name[CGROUP_FILE_NAME_MAX];
T
Tejun Heo 已提交
2659

2660
	BUG_ON(!mutex_is_locked(&dir->d_inode->i_mutex));
T
Tejun Heo 已提交
2661 2662 2663 2664 2665

	cfe = kzalloc(sizeof(*cfe), GFP_KERNEL);
	if (!cfe)
		return -ENOMEM;

T
Tejun Heo 已提交
2666
	cgroup_file_name(cgrp, cft, name);
2667
	dentry = lookup_one_len(name, dir, strlen(name));
T
Tejun Heo 已提交
2668
	if (IS_ERR(dentry)) {
2669
		error = PTR_ERR(dentry);
T
Tejun Heo 已提交
2670 2671 2672
		goto out;
	}

2673 2674 2675 2676 2677
	cfe->type = (void *)cft;
	cfe->dentry = dentry;
	dentry->d_fsdata = cfe;
	simple_xattrs_init(&cfe->xattrs);

T
Tejun Heo 已提交
2678 2679 2680 2681 2682 2683 2684 2685 2686
	mode = cgroup_file_mode(cft);
	error = cgroup_create_file(dentry, mode | S_IFREG, cgrp->root->sb);
	if (!error) {
		list_add_tail(&cfe->node, &parent->files);
		cfe = NULL;
	}
	dput(dentry);
out:
	kfree(cfe);
2687 2688 2689
	return error;
}

2690 2691 2692 2693 2694 2695 2696
/**
 * cgroup_addrm_files - add or remove files to a cgroup directory
 * @cgrp: the target cgroup
 * @cfts: array of cftypes to be added
 * @is_add: whether to add or remove
 *
 * Depending on @is_add, add or remove files defined by @cfts on @cgrp.
2697 2698 2699
 * For removals, this function never fails.  If addition fails, this
 * function doesn't remove files already added.  The caller is responsible
 * for cleaning up.
2700
 */
2701 2702
static int cgroup_addrm_files(struct cgroup *cgrp, struct cftype cfts[],
			      bool is_add)
2703
{
A
Aristeu Rozanski 已提交
2704
	struct cftype *cft;
2705 2706 2707
	int ret;

	lockdep_assert_held(&cgrp->dentry->d_inode->i_mutex);
T
Tejun Heo 已提交
2708
	lockdep_assert_held(&cgroup_tree_mutex);
T
Tejun Heo 已提交
2709 2710

	for (cft = cfts; cft->name[0] != '\0'; cft++) {
2711
		/* does cft->flags tell us to skip this file on @cgrp? */
2712 2713
		if ((cft->flags & CFTYPE_INSANE) && cgroup_sane_behavior(cgrp))
			continue;
2714 2715 2716 2717 2718
		if ((cft->flags & CFTYPE_NOT_ON_ROOT) && !cgrp->parent)
			continue;
		if ((cft->flags & CFTYPE_ONLY_ON_ROOT) && cgrp->parent)
			continue;

2719
		if (is_add) {
2720
			ret = cgroup_add_file(cgrp, cft);
2721
			if (ret) {
2722
				pr_warn("cgroup_addrm_files: failed to add %s, err=%d\n",
2723 2724 2725
					cft->name, ret);
				return ret;
			}
2726 2727
		} else {
			cgroup_rm_file(cgrp, cft);
T
Tejun Heo 已提交
2728
		}
2729
	}
2730
	return 0;
2731 2732
}

2733
static void cgroup_cfts_prepare(void)
2734
	__acquires(&cgroup_mutex)
2735 2736 2737 2738
{
	/*
	 * Thanks to the entanglement with vfs inode locking, we can't walk
	 * the existing cgroups under cgroup_mutex and create files.
2739 2740
	 * Instead, we use css_for_each_descendant_pre() and drop RCU read
	 * lock before calling cgroup_addrm_files().
2741
	 */
T
Tejun Heo 已提交
2742
	mutex_lock(&cgroup_tree_mutex);
2743 2744 2745
	mutex_lock(&cgroup_mutex);
}

2746
static int cgroup_cfts_commit(struct cftype *cfts, bool is_add)
2747
	__releases(&cgroup_mutex)
2748 2749
{
	LIST_HEAD(pending);
2750
	struct cgroup_subsys *ss = cfts[0].ss;
2751
	struct cgroup *root = &ss->root->top_cgroup;
2752
	struct super_block *sb = ss->root->sb;
2753
	struct cgroup *prev = NULL;
2754
	struct inode *inode;
2755
	struct cgroup_subsys_state *css;
2756
	u64 update_before;
2757
	int ret = 0;
2758

2759 2760
	mutex_unlock(&cgroup_mutex);

2761
	/* %NULL @cfts indicates abort and don't bother if @ss isn't attached */
2762
	if (!cfts || ss->root == &cgroup_dummy_root ||
2763
	    !atomic_inc_not_zero(&sb->s_active)) {
T
Tejun Heo 已提交
2764
		mutex_unlock(&cgroup_tree_mutex);
2765
		return 0;
2766 2767 2768
	}

	/*
2769 2770
	 * All cgroups which are created after we drop cgroup_mutex will
	 * have the updated set of files, so we only need to update the
2771
	 * cgroups created before the current @cgroup_serial_nr_next.
2772
	 */
2773
	update_before = cgroup_serial_nr_next;
2774 2775

	/* add/rm files for all cgroups created before */
2776
	css_for_each_descendant_pre(css, cgroup_css(root, ss)) {
2777 2778
		struct cgroup *cgrp = css->cgroup;

2779 2780 2781 2782
		if (cgroup_is_dead(cgrp))
			continue;

		inode = cgrp->dentry->d_inode;
2783 2784 2785 2786
		cgroup_get(cgrp);
		if (prev)
			cgroup_put(prev);
		prev = cgrp;
2787

T
Tejun Heo 已提交
2788
		mutex_unlock(&cgroup_tree_mutex);
2789
		mutex_lock(&inode->i_mutex);
T
Tejun Heo 已提交
2790
		mutex_lock(&cgroup_tree_mutex);
2791
		if (cgrp->serial_nr < update_before && !cgroup_is_dead(cgrp))
2792
			ret = cgroup_addrm_files(cgrp, cfts, is_add);
2793
		mutex_unlock(&inode->i_mutex);
2794 2795
		if (ret)
			break;
2796
	}
T
Tejun Heo 已提交
2797
	mutex_unlock(&cgroup_tree_mutex);
2798 2799
	cgroup_put(prev);
	cgroup_put_root(ss->root);
2800
	return ret;
2801 2802
}

2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818
static void cgroup_exit_cftypes(struct cftype *cfts)
{
	struct cftype *cft;

	for (cft = cfts; cft->name[0] != '\0'; cft++)
		cft->ss = NULL;
}

static void cgroup_init_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
{
	struct cftype *cft;

	for (cft = cfts; cft->name[0] != '\0'; cft++)
		cft->ss = ss;
}

2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832
/**
 * cgroup_add_cftypes - add an array of cftypes to a subsystem
 * @ss: target cgroup subsystem
 * @cfts: zero-length name terminated array of cftypes
 *
 * Register @cfts to @ss.  Files described by @cfts are created for all
 * existing cgroups to which @ss is attached and all future cgroups will
 * have them too.  This function can be called anytime whether @ss is
 * attached or not.
 *
 * Returns 0 on successful registration, -errno on failure.  Note that this
 * function currently returns 0 as long as @cfts registration is successful
 * even if some file creation attempts on existing cgroups fail.
 */
A
Aristeu Rozanski 已提交
2833
int cgroup_add_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
2834 2835
{
	struct cftype_set *set;
2836
	int ret;
2837 2838 2839 2840 2841

	set = kzalloc(sizeof(*set), GFP_KERNEL);
	if (!set)
		return -ENOMEM;

2842
	cgroup_init_cftypes(ss, cfts);
2843

2844 2845 2846
	cgroup_cfts_prepare();
	set->cfts = cfts;
	list_add_tail(&set->node, &ss->cftsets);
2847
	ret = cgroup_cfts_commit(cfts, true);
2848
	if (ret)
2849
		cgroup_rm_cftypes(cfts);
2850
	return ret;
2851 2852 2853
}
EXPORT_SYMBOL_GPL(cgroup_add_cftypes);

2854 2855 2856 2857
/**
 * cgroup_rm_cftypes - remove an array of cftypes from a subsystem
 * @cfts: zero-length name terminated array of cftypes
 *
2858 2859 2860
 * Unregister @cfts.  Files described by @cfts are removed from all
 * existing cgroups and all future cgroups won't have them either.  This
 * function can be called anytime whether @cfts' subsys is attached or not.
2861 2862
 *
 * Returns 0 on successful unregistration, -ENOENT if @cfts is not
2863
 * registered.
2864
 */
2865
int cgroup_rm_cftypes(struct cftype *cfts)
2866
{
2867
	struct cftype *found = NULL;
2868 2869
	struct cftype_set *set;

2870 2871 2872
	if (!cfts || !cfts[0].ss)
		return -ENOENT;

2873 2874
	cgroup_cfts_prepare();

2875
	list_for_each_entry(set, &cfts[0].ss->cftsets, node) {
2876
		if (set->cfts == cfts) {
2877 2878
			list_del(&set->node);
			kfree(set);
2879 2880
			found = cfts;
			break;
2881 2882 2883
		}
	}

2884 2885 2886
	cgroup_cfts_commit(found, false);
	cgroup_exit_cftypes(cfts);
	return found ? 0 : -ENOENT;
2887 2888
}

L
Li Zefan 已提交
2889 2890 2891 2892 2893 2894
/**
 * cgroup_task_count - count the number of tasks in a cgroup.
 * @cgrp: the cgroup in question
 *
 * Return the number of tasks in the cgroup.
 */
2895
int cgroup_task_count(const struct cgroup *cgrp)
2896 2897
{
	int count = 0;
2898
	struct cgrp_cset_link *link;
2899 2900

	read_lock(&css_set_lock);
2901 2902
	list_for_each_entry(link, &cgrp->cset_links, cset_link)
		count += atomic_read(&link->cset->refcount);
2903
	read_unlock(&css_set_lock);
2904 2905 2906
	return count;
}

2907
/*
2908 2909 2910
 * To reduce the fork() overhead for systems that are not actually using
 * their cgroups capability, we don't maintain the lists running through
 * each css_set to its tasks until we see the list actually used - in other
2911
 * words after the first call to css_task_iter_start().
2912
 */
2913
static void cgroup_enable_task_cg_lists(void)
2914 2915 2916 2917
{
	struct task_struct *p, *g;
	write_lock(&css_set_lock);
	use_task_css_set_links = 1;
2918 2919 2920 2921 2922 2923 2924 2925
	/*
	 * We need tasklist_lock because RCU is not safe against
	 * while_each_thread(). Besides, a forking task that has passed
	 * cgroup_post_fork() without seeing use_task_css_set_links = 1
	 * is not guaranteed to have its child immediately visible in the
	 * tasklist if we walk through it with RCU.
	 */
	read_lock(&tasklist_lock);
2926 2927
	do_each_thread(g, p) {
		task_lock(p);
2928 2929 2930 2931 2932 2933
		/*
		 * We should check if the process is exiting, otherwise
		 * it will race with cgroup_exit() in that the list
		 * entry won't be deleted though the process has exited.
		 */
		if (!(p->flags & PF_EXITING) && list_empty(&p->cg_list))
2934
			list_add(&p->cg_list, &task_css_set(p)->tasks);
2935 2936
		task_unlock(p);
	} while_each_thread(g, p);
2937
	read_unlock(&tasklist_lock);
2938 2939 2940
	write_unlock(&css_set_lock);
}

2941
/**
2942 2943 2944
 * css_next_child - find the next child of a given css
 * @pos_css: the current position (%NULL to initiate traversal)
 * @parent_css: css whose children to walk
2945
 *
2946
 * This function returns the next child of @parent_css and should be called
2947 2948 2949
 * under either cgroup_mutex or RCU read lock.  The only requirement is
 * that @parent_css and @pos_css are accessible.  The next sibling is
 * guaranteed to be returned regardless of their states.
2950
 */
2951 2952 2953
struct cgroup_subsys_state *
css_next_child(struct cgroup_subsys_state *pos_css,
	       struct cgroup_subsys_state *parent_css)
2954
{
2955 2956
	struct cgroup *pos = pos_css ? pos_css->cgroup : NULL;
	struct cgroup *cgrp = parent_css->cgroup;
2957 2958
	struct cgroup *next;

T
Tejun Heo 已提交
2959
	cgroup_assert_mutexes_or_rcu_locked();
2960 2961 2962 2963

	/*
	 * @pos could already have been removed.  Once a cgroup is removed,
	 * its ->sibling.next is no longer updated when its next sibling
2964 2965 2966 2967 2968 2969 2970
	 * changes.  As CGRP_DEAD assertion is serialized and happens
	 * before the cgroup is taken off the ->sibling list, if we see it
	 * unasserted, it's guaranteed that the next sibling hasn't
	 * finished its grace period even if it's already removed, and thus
	 * safe to dereference from this RCU critical section.  If
	 * ->sibling.next is inaccessible, cgroup_is_dead() is guaranteed
	 * to be visible as %true here.
2971 2972 2973 2974 2975 2976 2977 2978
	 *
	 * If @pos is dead, its next pointer can't be dereferenced;
	 * however, as each cgroup is given a monotonically increasing
	 * unique serial number and always appended to the sibling list,
	 * the next one can be found by walking the parent's children until
	 * we see a cgroup with higher serial number than @pos's.  While
	 * this path can be slower, it's taken only when either the current
	 * cgroup is removed or iteration and removal race.
2979
	 */
2980 2981 2982
	if (!pos) {
		next = list_entry_rcu(cgrp->children.next, struct cgroup, sibling);
	} else if (likely(!cgroup_is_dead(pos))) {
2983
		next = list_entry_rcu(pos->sibling.next, struct cgroup, sibling);
2984 2985 2986 2987
	} else {
		list_for_each_entry_rcu(next, &cgrp->children, sibling)
			if (next->serial_nr > pos->serial_nr)
				break;
2988 2989
	}

2990 2991 2992
	if (&next->sibling == &cgrp->children)
		return NULL;

2993
	return cgroup_css(next, parent_css->ss);
2994
}
2995
EXPORT_SYMBOL_GPL(css_next_child);
2996

2997
/**
2998
 * css_next_descendant_pre - find the next descendant for pre-order walk
2999
 * @pos: the current position (%NULL to initiate traversal)
3000
 * @root: css whose descendants to walk
3001
 *
3002
 * To be used by css_for_each_descendant_pre().  Find the next descendant
3003 3004
 * to visit for pre-order traversal of @root's descendants.  @root is
 * included in the iteration and the first node to be visited.
3005
 *
3006 3007 3008 3009
 * While this function requires cgroup_mutex or RCU read locking, it
 * doesn't require the whole traversal to be contained in a single critical
 * section.  This function will return the correct next descendant as long
 * as both @pos and @root are accessible and @pos is a descendant of @root.
3010
 */
3011 3012 3013
struct cgroup_subsys_state *
css_next_descendant_pre(struct cgroup_subsys_state *pos,
			struct cgroup_subsys_state *root)
3014
{
3015
	struct cgroup_subsys_state *next;
3016

T
Tejun Heo 已提交
3017
	cgroup_assert_mutexes_or_rcu_locked();
3018

3019
	/* if first iteration, visit @root */
3020
	if (!pos)
3021
		return root;
3022 3023

	/* visit the first child if exists */
3024
	next = css_next_child(NULL, pos);
3025 3026 3027 3028
	if (next)
		return next;

	/* no child, visit my or the closest ancestor's next sibling */
3029 3030
	while (pos != root) {
		next = css_next_child(pos, css_parent(pos));
3031
		if (next)
3032
			return next;
3033
		pos = css_parent(pos);
3034
	}
3035 3036 3037

	return NULL;
}
3038
EXPORT_SYMBOL_GPL(css_next_descendant_pre);
3039

3040
/**
3041 3042
 * css_rightmost_descendant - return the rightmost descendant of a css
 * @pos: css of interest
3043
 *
3044 3045
 * Return the rightmost descendant of @pos.  If there's no descendant, @pos
 * is returned.  This can be used during pre-order traversal to skip
3046
 * subtree of @pos.
3047
 *
3048 3049 3050 3051
 * While this function requires cgroup_mutex or RCU read locking, it
 * doesn't require the whole traversal to be contained in a single critical
 * section.  This function will return the correct rightmost descendant as
 * long as @pos is accessible.
3052
 */
3053 3054
struct cgroup_subsys_state *
css_rightmost_descendant(struct cgroup_subsys_state *pos)
3055
{
3056
	struct cgroup_subsys_state *last, *tmp;
3057

T
Tejun Heo 已提交
3058
	cgroup_assert_mutexes_or_rcu_locked();
3059 3060 3061 3062 3063

	do {
		last = pos;
		/* ->prev isn't RCU safe, walk ->next till the end */
		pos = NULL;
3064
		css_for_each_child(tmp, last)
3065 3066 3067 3068 3069
			pos = tmp;
	} while (pos);

	return last;
}
3070
EXPORT_SYMBOL_GPL(css_rightmost_descendant);
3071

3072 3073
static struct cgroup_subsys_state *
css_leftmost_descendant(struct cgroup_subsys_state *pos)
3074
{
3075
	struct cgroup_subsys_state *last;
3076 3077 3078

	do {
		last = pos;
3079
		pos = css_next_child(NULL, pos);
3080 3081 3082 3083 3084 3085
	} while (pos);

	return last;
}

/**
3086
 * css_next_descendant_post - find the next descendant for post-order walk
3087
 * @pos: the current position (%NULL to initiate traversal)
3088
 * @root: css whose descendants to walk
3089
 *
3090
 * To be used by css_for_each_descendant_post().  Find the next descendant
3091 3092
 * to visit for post-order traversal of @root's descendants.  @root is
 * included in the iteration and the last node to be visited.
3093
 *
3094 3095 3096 3097 3098
 * While this function requires cgroup_mutex or RCU read locking, it
 * doesn't require the whole traversal to be contained in a single critical
 * section.  This function will return the correct next descendant as long
 * as both @pos and @cgroup are accessible and @pos is a descendant of
 * @cgroup.
3099
 */
3100 3101 3102
struct cgroup_subsys_state *
css_next_descendant_post(struct cgroup_subsys_state *pos,
			 struct cgroup_subsys_state *root)
3103
{
3104
	struct cgroup_subsys_state *next;
3105

T
Tejun Heo 已提交
3106
	cgroup_assert_mutexes_or_rcu_locked();
3107

3108 3109 3110
	/* if first iteration, visit leftmost descendant which may be @root */
	if (!pos)
		return css_leftmost_descendant(root);
3111

3112 3113 3114 3115
	/* if we visited @root, we're done */
	if (pos == root)
		return NULL;

3116
	/* if there's an unvisited sibling, visit its leftmost descendant */
3117
	next = css_next_child(pos, css_parent(pos));
3118
	if (next)
3119
		return css_leftmost_descendant(next);
3120 3121

	/* no sibling left, visit parent */
3122
	return css_parent(pos);
3123
}
3124
EXPORT_SYMBOL_GPL(css_next_descendant_post);
3125

3126
/**
3127
 * css_advance_task_iter - advance a task itererator to the next css_set
3128 3129 3130
 * @it: the iterator to advance
 *
 * Advance @it to the next css_set to walk.
3131
 */
3132
static void css_advance_task_iter(struct css_task_iter *it)
3133 3134 3135 3136 3137 3138 3139 3140
{
	struct list_head *l = it->cset_link;
	struct cgrp_cset_link *link;
	struct css_set *cset;

	/* Advance to the next non-empty css_set */
	do {
		l = l->next;
3141
		if (l == &it->origin_css->cgroup->cset_links) {
3142 3143 3144 3145 3146 3147 3148 3149 3150 3151
			it->cset_link = NULL;
			return;
		}
		link = list_entry(l, struct cgrp_cset_link, cset_link);
		cset = link->cset;
	} while (list_empty(&cset->tasks));
	it->cset_link = l;
	it->task = cset->tasks.next;
}

3152
/**
3153 3154
 * css_task_iter_start - initiate task iteration
 * @css: the css to walk tasks of
3155 3156
 * @it: the task iterator to use
 *
3157 3158 3159 3160
 * Initiate iteration through the tasks of @css.  The caller can call
 * css_task_iter_next() to walk through the tasks until the function
 * returns NULL.  On completion of iteration, css_task_iter_end() must be
 * called.
3161 3162 3163 3164 3165
 *
 * Note that this function acquires a lock which is released when the
 * iteration finishes.  The caller can't sleep while iteration is in
 * progress.
 */
3166 3167
void css_task_iter_start(struct cgroup_subsys_state *css,
			 struct css_task_iter *it)
3168
	__acquires(css_set_lock)
3169 3170
{
	/*
3171 3172 3173
	 * The first time anyone tries to iterate across a css, we need to
	 * enable the list linking each css_set to its tasks, and fix up
	 * all existing tasks.
3174
	 */
3175 3176 3177
	if (!use_task_css_set_links)
		cgroup_enable_task_cg_lists();

3178
	read_lock(&css_set_lock);
3179

3180 3181
	it->origin_css = css;
	it->cset_link = &css->cgroup->cset_links;
3182

3183
	css_advance_task_iter(it);
3184 3185
}

3186
/**
3187
 * css_task_iter_next - return the next task for the iterator
3188 3189 3190
 * @it: the task iterator being iterated
 *
 * The "next" function for task iteration.  @it should have been
3191 3192
 * initialized via css_task_iter_start().  Returns NULL when the iteration
 * reaches the end.
3193
 */
3194
struct task_struct *css_task_iter_next(struct css_task_iter *it)
3195 3196 3197
{
	struct task_struct *res;
	struct list_head *l = it->task;
3198
	struct cgrp_cset_link *link;
3199 3200

	/* If the iterator cg is NULL, we have no tasks */
3201
	if (!it->cset_link)
3202 3203 3204 3205
		return NULL;
	res = list_entry(l, struct task_struct, cg_list);
	/* Advance iterator to find next entry */
	l = l->next;
3206 3207
	link = list_entry(it->cset_link, struct cgrp_cset_link, cset_link);
	if (l == &link->cset->tasks) {
3208 3209 3210 3211
		/*
		 * We reached the end of this task list - move on to the
		 * next cgrp_cset_link.
		 */
3212
		css_advance_task_iter(it);
3213 3214 3215 3216 3217 3218
	} else {
		it->task = l;
	}
	return res;
}

3219
/**
3220
 * css_task_iter_end - finish task iteration
3221 3222
 * @it: the task iterator to finish
 *
3223
 * Finish task iteration started by css_task_iter_start().
3224
 */
3225
void css_task_iter_end(struct css_task_iter *it)
3226
	__releases(css_set_lock)
3227 3228 3229 3230
{
	read_unlock(&css_set_lock);
}

3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265
static inline int started_after_time(struct task_struct *t1,
				     struct timespec *time,
				     struct task_struct *t2)
{
	int start_diff = timespec_compare(&t1->start_time, time);
	if (start_diff > 0) {
		return 1;
	} else if (start_diff < 0) {
		return 0;
	} else {
		/*
		 * Arbitrarily, if two processes started at the same
		 * time, we'll say that the lower pointer value
		 * started first. Note that t2 may have exited by now
		 * so this may not be a valid pointer any longer, but
		 * that's fine - it still serves to distinguish
		 * between two tasks started (effectively) simultaneously.
		 */
		return t1 > t2;
	}
}

/*
 * This function is a callback from heap_insert() and is used to order
 * the heap.
 * In this case we order the heap in descending task start time.
 */
static inline int started_after(void *p1, void *p2)
{
	struct task_struct *t1 = p1;
	struct task_struct *t2 = p2;
	return started_after_time(t1, &t2->start_time, t2);
}

/**
3266 3267
 * css_scan_tasks - iterate though all the tasks in a css
 * @css: the css to iterate tasks of
T
Tejun Heo 已提交
3268 3269 3270 3271
 * @test: optional test callback
 * @process: process callback
 * @data: data passed to @test and @process
 * @heap: optional pre-allocated heap used for task iteration
3272
 *
3273 3274
 * Iterate through all the tasks in @css, calling @test for each, and if it
 * returns %true, call @process for it also.
3275
 *
T
Tejun Heo 已提交
3276
 * @test may be NULL, meaning always true (select all tasks), which
3277
 * effectively duplicates css_task_iter_{start,next,end}() but does not
T
Tejun Heo 已提交
3278 3279 3280
 * lock css_set_lock for the call to @process.
 *
 * It is guaranteed that @process will act on every task that is a member
3281 3282 3283
 * of @css for the duration of this call.  This function may or may not
 * call @process for tasks that exit or move to a different css during the
 * call, or are forked or move into the css during the call.
3284
 *
T
Tejun Heo 已提交
3285 3286 3287
 * Note that @test may be called with locks held, and may in some
 * situations be called multiple times for the same task, so it should be
 * cheap.
3288
 *
T
Tejun Heo 已提交
3289 3290 3291 3292
 * If @heap is non-NULL, a heap has been pre-allocated and will be used for
 * heap operations (and its "gt" member will be overwritten), else a
 * temporary heap will be used (allocation of which may cause this function
 * to fail).
3293
 */
3294 3295 3296 3297
int css_scan_tasks(struct cgroup_subsys_state *css,
		   bool (*test)(struct task_struct *, void *),
		   void (*process)(struct task_struct *, void *),
		   void *data, struct ptr_heap *heap)
3298 3299
{
	int retval, i;
3300
	struct css_task_iter it;
3301 3302 3303 3304 3305 3306
	struct task_struct *p, *dropped;
	/* Never dereference latest_task, since it's not refcounted */
	struct task_struct *latest_task = NULL;
	struct ptr_heap tmp_heap;
	struct timespec latest_time = { 0, 0 };

T
Tejun Heo 已提交
3307
	if (heap) {
3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320
		/* The caller supplied our heap and pre-allocated its memory */
		heap->gt = &started_after;
	} else {
		/* We need to allocate our own heap memory */
		heap = &tmp_heap;
		retval = heap_init(heap, PAGE_SIZE, GFP_KERNEL, &started_after);
		if (retval)
			/* cannot allocate the heap */
			return retval;
	}

 again:
	/*
3321
	 * Scan tasks in the css, using the @test callback to determine
T
Tejun Heo 已提交
3322 3323 3324 3325 3326 3327 3328
	 * which are of interest, and invoking @process callback on the
	 * ones which need an update.  Since we don't want to hold any
	 * locks during the task updates, gather tasks to be processed in a
	 * heap structure.  The heap is sorted by descending task start
	 * time.  If the statically-sized heap fills up, we overflow tasks
	 * that started later, and in future iterations only consider tasks
	 * that started after the latest task in the previous pass. This
3329 3330 3331
	 * guarantees forward progress and that we don't miss any tasks.
	 */
	heap->size = 0;
3332 3333
	css_task_iter_start(css, &it);
	while ((p = css_task_iter_next(&it))) {
3334 3335 3336 3337
		/*
		 * Only affect tasks that qualify per the caller's callback,
		 * if he provided one
		 */
T
Tejun Heo 已提交
3338
		if (test && !test(p, data))
3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365
			continue;
		/*
		 * Only process tasks that started after the last task
		 * we processed
		 */
		if (!started_after_time(p, &latest_time, latest_task))
			continue;
		dropped = heap_insert(heap, p);
		if (dropped == NULL) {
			/*
			 * The new task was inserted; the heap wasn't
			 * previously full
			 */
			get_task_struct(p);
		} else if (dropped != p) {
			/*
			 * The new task was inserted, and pushed out a
			 * different task
			 */
			get_task_struct(p);
			put_task_struct(dropped);
		}
		/*
		 * Else the new task was newer than anything already in
		 * the heap and wasn't inserted
		 */
	}
3366
	css_task_iter_end(&it);
3367 3368 3369

	if (heap->size) {
		for (i = 0; i < heap->size; i++) {
3370
			struct task_struct *q = heap->ptrs[i];
3371
			if (i == 0) {
3372 3373
				latest_time = q->start_time;
				latest_task = q;
3374 3375
			}
			/* Process the task per the caller's callback */
T
Tejun Heo 已提交
3376
			process(q, data);
3377
			put_task_struct(q);
3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392
		}
		/*
		 * If we had to process any tasks at all, scan again
		 * in case some of them were in the middle of forking
		 * children that didn't get processed.
		 * Not the most efficient way to do it, but it avoids
		 * having to take callback_mutex in the fork path
		 */
		goto again;
	}
	if (heap == &tmp_heap)
		heap_free(&tmp_heap);
	return 0;
}

T
Tejun Heo 已提交
3393
static void cgroup_transfer_one_task(struct task_struct *task, void *data)
3394
{
T
Tejun Heo 已提交
3395
	struct cgroup *new_cgroup = data;
3396

T
Tejun Heo 已提交
3397
	mutex_lock(&cgroup_mutex);
3398
	cgroup_attach_task(new_cgroup, task, false);
T
Tejun Heo 已提交
3399
	mutex_unlock(&cgroup_mutex);
3400 3401 3402 3403 3404 3405 3406 3407 3408
}

/**
 * cgroup_trasnsfer_tasks - move tasks from one cgroup to another
 * @to: cgroup to which the tasks will be moved
 * @from: cgroup in which the tasks currently reside
 */
int cgroup_transfer_tasks(struct cgroup *to, struct cgroup *from)
{
3409 3410
	return css_scan_tasks(&from->dummy_css, NULL, cgroup_transfer_one_task,
			      to, NULL);
3411 3412
}

3413
/*
3414
 * Stuff for reading the 'tasks'/'procs' files.
3415 3416 3417 3418 3419 3420 3421 3422
 *
 * Reading this file can return large amounts of data if a cgroup has
 * *lots* of attached tasks. So it may need several calls to read(),
 * but we cannot guarantee that the information we produce is correct
 * unless we produce it entirely atomically.
 *
 */

3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448
/* which pidlist file are we talking about? */
enum cgroup_filetype {
	CGROUP_FILE_PROCS,
	CGROUP_FILE_TASKS,
};

/*
 * A pidlist is a list of pids that virtually represents the contents of one
 * of the cgroup files ("procs" or "tasks"). We keep a list of such pidlists,
 * a pair (one each for procs, tasks) for each pid namespace that's relevant
 * to the cgroup.
 */
struct cgroup_pidlist {
	/*
	 * used to find which pidlist is wanted. doesn't change as long as
	 * this particular list stays in the list.
	*/
	struct { enum cgroup_filetype type; struct pid_namespace *ns; } key;
	/* array of xids */
	pid_t *list;
	/* how many elements the above list has */
	int length;
	/* each of these stored in a list by its cgroup */
	struct list_head links;
	/* pointer to the cgroup we belong to, for list removal purposes */
	struct cgroup *owner;
3449 3450
	/* for delayed destruction */
	struct delayed_work destroy_dwork;
3451 3452
};

3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465
/*
 * The following two functions "fix" the issue where there are more pids
 * than kmalloc will give memory for; in such cases, we use vmalloc/vfree.
 * TODO: replace with a kernel-wide solution to this problem
 */
#define PIDLIST_TOO_LARGE(c) ((c) * sizeof(pid_t) > (PAGE_SIZE * 2))
static void *pidlist_allocate(int count)
{
	if (PIDLIST_TOO_LARGE(count))
		return vmalloc(count * sizeof(pid_t));
	else
		return kmalloc(count * sizeof(pid_t), GFP_KERNEL);
}
3466

3467 3468 3469 3470 3471 3472 3473 3474
static void pidlist_free(void *p)
{
	if (is_vmalloc_addr(p))
		vfree(p);
	else
		kfree(p);
}

3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501
/*
 * Used to destroy all pidlists lingering waiting for destroy timer.  None
 * should be left afterwards.
 */
static void cgroup_pidlist_destroy_all(struct cgroup *cgrp)
{
	struct cgroup_pidlist *l, *tmp_l;

	mutex_lock(&cgrp->pidlist_mutex);
	list_for_each_entry_safe(l, tmp_l, &cgrp->pidlists, links)
		mod_delayed_work(cgroup_pidlist_destroy_wq, &l->destroy_dwork, 0);
	mutex_unlock(&cgrp->pidlist_mutex);

	flush_workqueue(cgroup_pidlist_destroy_wq);
	BUG_ON(!list_empty(&cgrp->pidlists));
}

static void cgroup_pidlist_destroy_work_fn(struct work_struct *work)
{
	struct delayed_work *dwork = to_delayed_work(work);
	struct cgroup_pidlist *l = container_of(dwork, struct cgroup_pidlist,
						destroy_dwork);
	struct cgroup_pidlist *tofree = NULL;

	mutex_lock(&l->owner->pidlist_mutex);

	/*
3502 3503
	 * Destroy iff we didn't get queued again.  The state won't change
	 * as destroy_dwork can only be queued while locked.
3504
	 */
3505
	if (!delayed_work_pending(dwork)) {
3506 3507 3508 3509 3510 3511 3512 3513 3514 3515
		list_del(&l->links);
		pidlist_free(l->list);
		put_pid_ns(l->key.ns);
		tofree = l;
	}

	mutex_unlock(&l->owner->pidlist_mutex);
	kfree(tofree);
}

3516
/*
3517
 * pidlist_uniq - given a kmalloc()ed list, strip out all duplicate entries
3518
 * Returns the number of unique elements.
3519
 */
3520
static int pidlist_uniq(pid_t *list, int length)
3521
{
3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545
	int src, dest = 1;

	/*
	 * we presume the 0th element is unique, so i starts at 1. trivial
	 * edge cases first; no work needs to be done for either
	 */
	if (length == 0 || length == 1)
		return length;
	/* src and dest walk down the list; dest counts unique elements */
	for (src = 1; src < length; src++) {
		/* find next unique element */
		while (list[src] == list[src-1]) {
			src++;
			if (src == length)
				goto after;
		}
		/* dest always points to where the next unique element goes */
		list[dest] = list[src];
		dest++;
	}
after:
	return dest;
}

3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578
/*
 * The two pid files - task and cgroup.procs - guaranteed that the result
 * is sorted, which forced this whole pidlist fiasco.  As pid order is
 * different per namespace, each namespace needs differently sorted list,
 * making it impossible to use, for example, single rbtree of member tasks
 * sorted by task pointer.  As pidlists can be fairly large, allocating one
 * per open file is dangerous, so cgroup had to implement shared pool of
 * pidlists keyed by cgroup and namespace.
 *
 * All this extra complexity was caused by the original implementation
 * committing to an entirely unnecessary property.  In the long term, we
 * want to do away with it.  Explicitly scramble sort order if
 * sane_behavior so that no such expectation exists in the new interface.
 *
 * Scrambling is done by swapping every two consecutive bits, which is
 * non-identity one-to-one mapping which disturbs sort order sufficiently.
 */
static pid_t pid_fry(pid_t pid)
{
	unsigned a = pid & 0x55555555;
	unsigned b = pid & 0xAAAAAAAA;

	return (a << 1) | (b >> 1);
}

static pid_t cgroup_pid_fry(struct cgroup *cgrp, pid_t pid)
{
	if (cgroup_sane_behavior(cgrp))
		return pid_fry(pid);
	else
		return pid;
}

3579 3580 3581 3582 3583
static int cmppid(const void *a, const void *b)
{
	return *(pid_t *)a - *(pid_t *)b;
}

3584 3585 3586 3587 3588
static int fried_cmppid(const void *a, const void *b)
{
	return pid_fry(*(pid_t *)a) - pid_fry(*(pid_t *)b);
}

T
Tejun Heo 已提交
3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603
static struct cgroup_pidlist *cgroup_pidlist_find(struct cgroup *cgrp,
						  enum cgroup_filetype type)
{
	struct cgroup_pidlist *l;
	/* don't need task_nsproxy() if we're looking at ourself */
	struct pid_namespace *ns = task_active_pid_ns(current);

	lockdep_assert_held(&cgrp->pidlist_mutex);

	list_for_each_entry(l, &cgrp->pidlists, links)
		if (l->key.type == type && l->key.ns == ns)
			return l;
	return NULL;
}

3604 3605 3606 3607 3608 3609
/*
 * find the appropriate pidlist for our purpose (given procs vs tasks)
 * returns with the lock on that pidlist already held, and takes care
 * of the use count, or returns NULL with no locks held if we're out of
 * memory.
 */
T
Tejun Heo 已提交
3610 3611
static struct cgroup_pidlist *cgroup_pidlist_find_create(struct cgroup *cgrp,
						enum cgroup_filetype type)
3612 3613
{
	struct cgroup_pidlist *l;
3614

T
Tejun Heo 已提交
3615 3616 3617 3618 3619 3620
	lockdep_assert_held(&cgrp->pidlist_mutex);

	l = cgroup_pidlist_find(cgrp, type);
	if (l)
		return l;

3621
	/* entry not found; create a new one */
3622
	l = kzalloc(sizeof(struct cgroup_pidlist), GFP_KERNEL);
T
Tejun Heo 已提交
3623
	if (!l)
3624
		return l;
T
Tejun Heo 已提交
3625

3626
	INIT_DELAYED_WORK(&l->destroy_dwork, cgroup_pidlist_destroy_work_fn);
3627
	l->key.type = type;
T
Tejun Heo 已提交
3628 3629
	/* don't need task_nsproxy() if we're looking at ourself */
	l->key.ns = get_pid_ns(task_active_pid_ns(current));
3630 3631 3632 3633 3634
	l->owner = cgrp;
	list_add(&l->links, &cgrp->pidlists);
	return l;
}

3635 3636 3637
/*
 * Load a cgroup's pidarray with either procs' tgids or tasks' pids
 */
3638 3639
static int pidlist_array_load(struct cgroup *cgrp, enum cgroup_filetype type,
			      struct cgroup_pidlist **lp)
3640 3641 3642 3643
{
	pid_t *array;
	int length;
	int pid, n = 0; /* used for populating the array */
3644
	struct css_task_iter it;
3645
	struct task_struct *tsk;
3646 3647
	struct cgroup_pidlist *l;

3648 3649
	lockdep_assert_held(&cgrp->pidlist_mutex);

3650 3651 3652 3653 3654 3655 3656
	/*
	 * If cgroup gets more users after we read count, we won't have
	 * enough space - tough.  This race is indistinguishable to the
	 * caller from the case that the additional cgroup users didn't
	 * show up until sometime later on.
	 */
	length = cgroup_task_count(cgrp);
3657
	array = pidlist_allocate(length);
3658 3659 3660
	if (!array)
		return -ENOMEM;
	/* now, populate the array */
3661 3662
	css_task_iter_start(&cgrp->dummy_css, &it);
	while ((tsk = css_task_iter_next(&it))) {
3663
		if (unlikely(n == length))
3664
			break;
3665
		/* get tgid or pid for procs or tasks file respectively */
3666 3667 3668 3669
		if (type == CGROUP_FILE_PROCS)
			pid = task_tgid_vnr(tsk);
		else
			pid = task_pid_vnr(tsk);
3670 3671
		if (pid > 0) /* make sure to only use valid results */
			array[n++] = pid;
3672
	}
3673
	css_task_iter_end(&it);
3674 3675
	length = n;
	/* now sort & (if procs) strip out duplicates */
3676 3677 3678 3679
	if (cgroup_sane_behavior(cgrp))
		sort(array, length, sizeof(pid_t), fried_cmppid, NULL);
	else
		sort(array, length, sizeof(pid_t), cmppid, NULL);
3680
	if (type == CGROUP_FILE_PROCS)
3681
		length = pidlist_uniq(array, length);
T
Tejun Heo 已提交
3682 3683

	l = cgroup_pidlist_find_create(cgrp, type);
3684
	if (!l) {
T
Tejun Heo 已提交
3685
		mutex_unlock(&cgrp->pidlist_mutex);
3686
		pidlist_free(array);
3687
		return -ENOMEM;
3688
	}
T
Tejun Heo 已提交
3689 3690

	/* store array, freeing old if necessary */
3691
	pidlist_free(l->list);
3692 3693
	l->list = array;
	l->length = length;
3694
	*lp = l;
3695
	return 0;
3696 3697
}

B
Balbir Singh 已提交
3698
/**
L
Li Zefan 已提交
3699
 * cgroupstats_build - build and fill cgroupstats
B
Balbir Singh 已提交
3700 3701 3702
 * @stats: cgroupstats to fill information into
 * @dentry: A dentry entry belonging to the cgroup for which stats have
 * been requested.
L
Li Zefan 已提交
3703 3704 3705
 *
 * Build and fill cgroupstats so that taskstats can export it to user
 * space.
B
Balbir Singh 已提交
3706 3707 3708 3709
 */
int cgroupstats_build(struct cgroupstats *stats, struct dentry *dentry)
{
	int ret = -EINVAL;
3710
	struct cgroup *cgrp;
3711
	struct css_task_iter it;
B
Balbir Singh 已提交
3712
	struct task_struct *tsk;
3713

B
Balbir Singh 已提交
3714
	/*
3715 3716
	 * Validate dentry by checking the superblock operations,
	 * and make sure it's a directory.
B
Balbir Singh 已提交
3717
	 */
3718 3719
	if (dentry->d_sb->s_op != &cgroup_ops ||
	    !S_ISDIR(dentry->d_inode->i_mode))
B
Balbir Singh 已提交
3720 3721 3722
		 goto err;

	ret = 0;
3723
	cgrp = dentry->d_fsdata;
B
Balbir Singh 已提交
3724

3725 3726
	css_task_iter_start(&cgrp->dummy_css, &it);
	while ((tsk = css_task_iter_next(&it))) {
B
Balbir Singh 已提交
3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745
		switch (tsk->state) {
		case TASK_RUNNING:
			stats->nr_running++;
			break;
		case TASK_INTERRUPTIBLE:
			stats->nr_sleeping++;
			break;
		case TASK_UNINTERRUPTIBLE:
			stats->nr_uninterruptible++;
			break;
		case TASK_STOPPED:
			stats->nr_stopped++;
			break;
		default:
			if (delayacct_is_task_waiting_on_io(tsk))
				stats->nr_io_wait++;
			break;
		}
	}
3746
	css_task_iter_end(&it);
B
Balbir Singh 已提交
3747 3748 3749 3750 3751

err:
	return ret;
}

3752

3753
/*
3754
 * seq_file methods for the tasks/procs files. The seq_file position is the
3755
 * next pid to display; the seq_file iterator is a pointer to the pid
3756
 * in the cgroup->l->list array.
3757
 */
3758

3759
static void *cgroup_pidlist_start(struct seq_file *s, loff_t *pos)
3760
{
3761 3762 3763 3764 3765 3766
	/*
	 * Initially we receive a position value that corresponds to
	 * one more than the last pid shown (or 0 on the first call or
	 * after a seek to the start). Use a binary-search to find the
	 * next pid to display, if any
	 */
3767
	struct cgroup_open_file *of = s->private;
3768
	struct cgroup *cgrp = seq_css(s)->cgroup;
3769
	struct cgroup_pidlist *l;
3770
	enum cgroup_filetype type = seq_cft(s)->private;
3771
	int index = 0, pid = *pos;
3772 3773 3774 3775 3776
	int *iter, ret;

	mutex_lock(&cgrp->pidlist_mutex);

	/*
3777
	 * !NULL @of->priv indicates that this isn't the first start()
3778
	 * after open.  If the matching pidlist is around, we can use that.
3779
	 * Look for it.  Note that @of->priv can't be used directly.  It
3780 3781
	 * could already have been destroyed.
	 */
3782 3783
	if (of->priv)
		of->priv = cgroup_pidlist_find(cgrp, type);
3784 3785 3786 3787 3788

	/*
	 * Either this is the first start() after open or the matching
	 * pidlist has been destroyed inbetween.  Create a new one.
	 */
3789 3790 3791
	if (!of->priv) {
		ret = pidlist_array_load(cgrp, type,
					 (struct cgroup_pidlist **)&of->priv);
3792 3793 3794
		if (ret)
			return ERR_PTR(ret);
	}
3795
	l = of->priv;
3796 3797

	if (pid) {
3798
		int end = l->length;
S
Stephen Rothwell 已提交
3799

3800 3801
		while (index < end) {
			int mid = (index + end) / 2;
3802
			if (cgroup_pid_fry(cgrp, l->list[mid]) == pid) {
3803 3804
				index = mid;
				break;
3805
			} else if (cgroup_pid_fry(cgrp, l->list[mid]) <= pid)
3806 3807 3808 3809 3810 3811
				index = mid + 1;
			else
				end = mid;
		}
	}
	/* If we're off the end of the array, we're done */
3812
	if (index >= l->length)
3813 3814
		return NULL;
	/* Update the abstract position to be the actual pid that we found */
3815
	iter = l->list + index;
3816
	*pos = cgroup_pid_fry(cgrp, *iter);
3817 3818 3819
	return iter;
}

3820
static void cgroup_pidlist_stop(struct seq_file *s, void *v)
3821
{
3822 3823
	struct cgroup_open_file *of = s->private;
	struct cgroup_pidlist *l = of->priv;
3824

3825 3826
	if (l)
		mod_delayed_work(cgroup_pidlist_destroy_wq, &l->destroy_dwork,
3827
				 CGROUP_PIDLIST_DESTROY_DELAY);
3828
	mutex_unlock(&seq_css(s)->cgroup->pidlist_mutex);
3829 3830
}

3831
static void *cgroup_pidlist_next(struct seq_file *s, void *v, loff_t *pos)
3832
{
3833 3834
	struct cgroup_open_file *of = s->private;
	struct cgroup_pidlist *l = of->priv;
3835 3836
	pid_t *p = v;
	pid_t *end = l->list + l->length;
3837 3838 3839 3840 3841 3842 3843 3844
	/*
	 * Advance to the next pid in the array. If this goes off the
	 * end, we're done
	 */
	p++;
	if (p >= end) {
		return NULL;
	} else {
3845
		*pos = cgroup_pid_fry(seq_css(s)->cgroup, *p);
3846 3847 3848 3849
		return p;
	}
}

3850
static int cgroup_pidlist_show(struct seq_file *s, void *v)
3851 3852 3853
{
	return seq_printf(s, "%d\n", *(int *)v);
}
3854

3855 3856 3857 3858 3859 3860 3861 3862 3863
/*
 * seq_operations functions for iterating on pidlists through seq_file -
 * independent of whether it's tasks or procs
 */
static const struct seq_operations cgroup_pidlist_seq_operations = {
	.start = cgroup_pidlist_start,
	.stop = cgroup_pidlist_stop,
	.next = cgroup_pidlist_next,
	.show = cgroup_pidlist_show,
3864 3865
};

3866 3867
static u64 cgroup_read_notify_on_release(struct cgroup_subsys_state *css,
					 struct cftype *cft)
3868
{
3869
	return notify_on_release(css->cgroup);
3870 3871
}

3872 3873
static int cgroup_write_notify_on_release(struct cgroup_subsys_state *css,
					  struct cftype *cft, u64 val)
3874
{
3875
	clear_bit(CGRP_RELEASABLE, &css->cgroup->flags);
3876
	if (val)
3877
		set_bit(CGRP_NOTIFY_ON_RELEASE, &css->cgroup->flags);
3878
	else
3879
		clear_bit(CGRP_NOTIFY_ON_RELEASE, &css->cgroup->flags);
3880 3881 3882
	return 0;
}

3883 3884 3885 3886 3887 3888 3889 3890 3891 3892
/*
 * When dput() is called asynchronously, if umount has been done and
 * then deactivate_super() in cgroup_free_fn() kills the superblock,
 * there's a small window that vfs will see the root dentry with non-zero
 * refcnt and trigger BUG().
 *
 * That's why we hold a reference before dput() and drop it right after.
 */
static void cgroup_dput(struct cgroup *cgrp)
{
3893 3894 3895
	cgroup_get_root(cgrp->root);
	cgroup_put(cgrp);
	cgroup_put_root(cgrp->root);
3896 3897
}

3898 3899
static u64 cgroup_clone_children_read(struct cgroup_subsys_state *css,
				      struct cftype *cft)
3900
{
3901
	return test_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags);
3902 3903
}

3904 3905
static int cgroup_clone_children_write(struct cgroup_subsys_state *css,
				       struct cftype *cft, u64 val)
3906 3907
{
	if (val)
3908
		set_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags);
3909
	else
3910
		clear_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags);
3911 3912 3913
	return 0;
}

3914
static struct cftype cgroup_base_files[] = {
3915
	{
3916
		.name = "cgroup.procs",
3917 3918 3919 3920
		.seq_start = cgroup_pidlist_start,
		.seq_next = cgroup_pidlist_next,
		.seq_stop = cgroup_pidlist_stop,
		.seq_show = cgroup_pidlist_show,
3921
		.private = CGROUP_FILE_PROCS,
B
Ben Blum 已提交
3922 3923
		.write_u64 = cgroup_procs_write,
		.mode = S_IRUGO | S_IWUSR,
3924
	},
3925 3926
	{
		.name = "cgroup.clone_children",
3927
		.flags = CFTYPE_INSANE,
3928 3929 3930
		.read_u64 = cgroup_clone_children_read,
		.write_u64 = cgroup_clone_children_write,
	},
3931 3932 3933
	{
		.name = "cgroup.sane_behavior",
		.flags = CFTYPE_ONLY_ON_ROOT,
3934
		.seq_show = cgroup_sane_behavior_show,
3935
	},
3936 3937 3938 3939 3940 3941 3942 3943 3944

	/*
	 * Historical crazy stuff.  These don't have "cgroup."  prefix and
	 * don't exist if sane_behavior.  If you're depending on these, be
	 * prepared to be burned.
	 */
	{
		.name = "tasks",
		.flags = CFTYPE_INSANE,		/* use "procs" instead */
3945 3946 3947 3948
		.seq_start = cgroup_pidlist_start,
		.seq_next = cgroup_pidlist_next,
		.seq_stop = cgroup_pidlist_stop,
		.seq_show = cgroup_pidlist_show,
3949
		.private = CGROUP_FILE_TASKS,
3950 3951 3952 3953 3954 3955 3956 3957 3958
		.write_u64 = cgroup_tasks_write,
		.mode = S_IRUGO | S_IWUSR,
	},
	{
		.name = "notify_on_release",
		.flags = CFTYPE_INSANE,
		.read_u64 = cgroup_read_notify_on_release,
		.write_u64 = cgroup_write_notify_on_release,
	},
3959 3960
	{
		.name = "release_agent",
3961
		.flags = CFTYPE_INSANE | CFTYPE_ONLY_ON_ROOT,
3962
		.seq_show = cgroup_release_agent_show,
3963
		.write_string = cgroup_release_agent_write,
3964
		.max_write_len = PATH_MAX - 1,
3965
	},
T
Tejun Heo 已提交
3966
	{ }	/* terminate */
3967 3968
};

3969
/**
3970
 * cgroup_populate_dir - create subsys files in a cgroup directory
3971 3972
 * @cgrp: target cgroup
 * @subsys_mask: mask of the subsystem ids whose files should be added
3973 3974
 *
 * On failure, no file is added.
3975
 */
3976
static int cgroup_populate_dir(struct cgroup *cgrp, unsigned long subsys_mask)
3977 3978
{
	struct cgroup_subsys *ss;
3979
	int i, ret = 0;
3980

3981
	/* process cftsets of each subsystem */
3982
	for_each_subsys(ss, i) {
3983
		struct cftype_set *set;
3984 3985

		if (!test_bit(i, &subsys_mask))
3986
			continue;
3987

3988
		list_for_each_entry(set, &ss->cftsets, node) {
3989
			ret = cgroup_addrm_files(cgrp, set->cfts, true);
3990 3991 3992
			if (ret < 0)
				goto err;
		}
3993 3994
	}
	return 0;
3995 3996 3997
err:
	cgroup_clear_dir(cgrp, subsys_mask);
	return ret;
3998 3999
}

4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021
/*
 * css destruction is four-stage process.
 *
 * 1. Destruction starts.  Killing of the percpu_ref is initiated.
 *    Implemented in kill_css().
 *
 * 2. When the percpu_ref is confirmed to be visible as killed on all CPUs
 *    and thus css_tryget() is guaranteed to fail, the css can be offlined
 *    by invoking offline_css().  After offlining, the base ref is put.
 *    Implemented in css_killed_work_fn().
 *
 * 3. When the percpu_ref reaches zero, the only possible remaining
 *    accessors are inside RCU read sections.  css_release() schedules the
 *    RCU callback.
 *
 * 4. After the grace period, the css can be freed.  Implemented in
 *    css_free_work_fn().
 *
 * It is actually hairier because both step 2 and 4 require process context
 * and thus involve punting to css->destroy_work adding two additional
 * steps to the already complex sequence.
 */
4022
static void css_free_work_fn(struct work_struct *work)
4023 4024
{
	struct cgroup_subsys_state *css =
4025
		container_of(work, struct cgroup_subsys_state, destroy_work);
4026
	struct cgroup *cgrp = css->cgroup;
4027

4028 4029 4030
	if (css->parent)
		css_put(css->parent);

4031 4032
	css->ss->css_free(css);
	cgroup_dput(cgrp);
4033 4034
}

4035
static void css_free_rcu_fn(struct rcu_head *rcu_head)
4036 4037
{
	struct cgroup_subsys_state *css =
4038
		container_of(rcu_head, struct cgroup_subsys_state, rcu_head);
4039

4040 4041
	/*
	 * css holds an extra ref to @cgrp->dentry which is put on the last
4042
	 * css_put().  dput() requires process context which we don't have.
4043 4044
	 */
	INIT_WORK(&css->destroy_work, css_free_work_fn);
4045
	queue_work(cgroup_destroy_wq, &css->destroy_work);
4046 4047
}

4048 4049 4050 4051 4052
static void css_release(struct percpu_ref *ref)
{
	struct cgroup_subsys_state *css =
		container_of(ref, struct cgroup_subsys_state, refcnt);

4053
	rcu_assign_pointer(css->cgroup->subsys[css->ss->id], NULL);
4054
	call_rcu(&css->rcu_head, css_free_rcu_fn);
4055 4056
}

4057 4058
static void init_css(struct cgroup_subsys_state *css, struct cgroup_subsys *ss,
		     struct cgroup *cgrp)
4059
{
4060
	css->cgroup = cgrp;
4061
	css->ss = ss;
4062
	css->flags = 0;
4063 4064

	if (cgrp->parent)
4065
		css->parent = cgroup_css(cgrp->parent, ss);
4066
	else
4067
		css->flags |= CSS_ROOT;
4068

4069
	BUG_ON(cgroup_css(cgrp, ss));
4070 4071
}

4072
/* invoke ->css_online() on a new CSS and mark it online if successful */
4073
static int online_css(struct cgroup_subsys_state *css)
4074
{
4075
	struct cgroup_subsys *ss = css->ss;
T
Tejun Heo 已提交
4076 4077
	int ret = 0;

T
Tejun Heo 已提交
4078
	lockdep_assert_held(&cgroup_tree_mutex);
4079 4080
	lockdep_assert_held(&cgroup_mutex);

4081
	if (ss->css_online)
4082
		ret = ss->css_online(css);
4083
	if (!ret) {
4084
		css->flags |= CSS_ONLINE;
4085
		css->cgroup->nr_css++;
4086
		rcu_assign_pointer(css->cgroup->subsys[ss->id], css);
4087
	}
T
Tejun Heo 已提交
4088
	return ret;
4089 4090
}

4091
/* if the CSS is online, invoke ->css_offline() on it and mark it offline */
4092
static void offline_css(struct cgroup_subsys_state *css)
4093
{
4094
	struct cgroup_subsys *ss = css->ss;
4095

T
Tejun Heo 已提交
4096
	lockdep_assert_held(&cgroup_tree_mutex);
4097 4098 4099 4100 4101
	lockdep_assert_held(&cgroup_mutex);

	if (!(css->flags & CSS_ONLINE))
		return;

4102
	if (ss->css_offline)
4103
		ss->css_offline(css);
4104

4105
	css->flags &= ~CSS_ONLINE;
4106
	css->cgroup->nr_css--;
4107
	RCU_INIT_POINTER(css->cgroup->subsys[ss->id], css);
4108 4109
}

4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137
/**
 * create_css - create a cgroup_subsys_state
 * @cgrp: the cgroup new css will be associated with
 * @ss: the subsys of new css
 *
 * Create a new css associated with @cgrp - @ss pair.  On success, the new
 * css is online and installed in @cgrp with all interface files created.
 * Returns 0 on success, -errno on failure.
 */
static int create_css(struct cgroup *cgrp, struct cgroup_subsys *ss)
{
	struct cgroup *parent = cgrp->parent;
	struct cgroup_subsys_state *css;
	int err;

	lockdep_assert_held(&cgrp->dentry->d_inode->i_mutex);
	lockdep_assert_held(&cgroup_mutex);

	css = ss->css_alloc(cgroup_css(parent, ss));
	if (IS_ERR(css))
		return PTR_ERR(css);

	err = percpu_ref_init(&css->refcnt, css_release);
	if (err)
		goto err_free;

	init_css(css, ss, cgrp);

4138
	err = cgroup_populate_dir(cgrp, 1 << ss->id);
4139 4140 4141 4142 4143 4144 4145
	if (err)
		goto err_free;

	err = online_css(css);
	if (err)
		goto err_free;

4146
	cgroup_get(cgrp);
4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165
	css_get(css->parent);

	if (ss->broken_hierarchy && !ss->warned_broken_hierarchy &&
	    parent->parent) {
		pr_warning("cgroup: %s (%d) created nested cgroup for controller \"%s\" which has incomplete hierarchy support. Nested cgroups may change behavior in the future.\n",
			   current->comm, current->pid, ss->name);
		if (!strcmp(ss->name, "memory"))
			pr_warning("cgroup: \"memory\" requires setting use_hierarchy to 1 on the root.\n");
		ss->warned_broken_hierarchy = true;
	}

	return 0;

err_free:
	percpu_ref_cancel_init(&css->refcnt);
	ss->css_free(css);
	return err;
}

4166
/*
L
Li Zefan 已提交
4167 4168 4169 4170
 * cgroup_create - create a cgroup
 * @parent: cgroup that will be parent of the new cgroup
 * @dentry: dentry of the new cgroup
 * @mode: mode to set on new inode
4171
 *
L
Li Zefan 已提交
4172
 * Must be called with the mutex on the parent inode held
4173 4174
 */
static long cgroup_create(struct cgroup *parent, struct dentry *dentry,
A
Al Viro 已提交
4175
			     umode_t mode)
4176
{
4177
	struct cgroup *cgrp;
4178
	struct cgroup_name *name;
4179
	struct cgroupfs_root *root = parent->root;
4180
	int ssid, err;
4181 4182 4183
	struct cgroup_subsys *ss;
	struct super_block *sb = root->sb;

T
Tejun Heo 已提交
4184
	/* allocate the cgroup and its ID, 0 is reserved for the root */
4185 4186
	cgrp = kzalloc(sizeof(*cgrp), GFP_KERNEL);
	if (!cgrp)
4187 4188
		return -ENOMEM;

T
Tejun Heo 已提交
4189
	name = cgroup_alloc_name(dentry->d_name.name);
4190 4191
	if (!name) {
		err = -ENOMEM;
4192
		goto err_free_cgrp;
4193
	}
4194 4195
	rcu_assign_pointer(cgrp->name, name);

T
Tejun Heo 已提交
4196 4197
	mutex_lock(&cgroup_tree_mutex);

4198 4199 4200 4201 4202 4203 4204 4205 4206
	/*
	 * Only live parents can have children.  Note that the liveliness
	 * check isn't strictly necessary because cgroup_mkdir() and
	 * cgroup_rmdir() are fully synchronized by i_mutex; however, do it
	 * anyway so that locking is contained inside cgroup proper and we
	 * don't get nasty surprises if we ever grow another caller.
	 */
	if (!cgroup_lock_live_group(parent)) {
		err = -ENODEV;
T
Tejun Heo 已提交
4207
		goto err_unlock_tree;
4208 4209 4210 4211 4212 4213 4214 4215 4216 4217
	}

	/*
	 * Temporarily set the pointer to NULL, so idr_find() won't return
	 * a half-baked cgroup.
	 */
	cgrp->id = idr_alloc(&root->cgroup_idr, NULL, 1, 0, GFP_KERNEL);
	if (cgrp->id < 0) {
		err = -ENOMEM;
		goto err_unlock;
4218 4219
	}

4220 4221 4222 4223 4224
	/* Grab a reference on the superblock so the hierarchy doesn't
	 * get deleted on unmount if there are child cgroups.  This
	 * can be done outside cgroup_mutex, since the sb can't
	 * disappear while someone has an open control file on the
	 * fs */
4225
	cgroup_get_root(root);
4226

4227
	init_cgroup_housekeeping(cgrp);
4228

4229 4230 4231
	dentry->d_fsdata = cgrp;
	cgrp->dentry = dentry;

4232
	cgrp->parent = parent;
4233
	cgrp->dummy_css.parent = &parent->dummy_css;
4234
	cgrp->root = parent->root;
4235

4236 4237 4238
	if (notify_on_release(parent))
		set_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);

4239 4240
	if (test_bit(CGRP_CPUSET_CLONE_CHILDREN, &parent->flags))
		set_bit(CGRP_CPUSET_CLONE_CHILDREN, &cgrp->flags);
4241

4242 4243 4244 4245 4246
	/*
	 * Create directory.  cgroup_create_file() returns with the new
	 * directory locked on success so that it can be populated without
	 * dropping cgroup_mutex.
	 */
T
Tejun Heo 已提交
4247
	err = cgroup_create_file(dentry, S_IFDIR | mode, sb);
4248
	if (err < 0)
4249
		goto err_free_id;
4250
	lockdep_assert_held(&dentry->d_inode->i_mutex);
4251

4252
	cgrp->serial_nr = cgroup_serial_nr_next++;
4253

4254 4255 4256
	/* allocation complete, commit to creation */
	list_add_tail_rcu(&cgrp->sibling, &cgrp->parent->children);
	root->number_of_cgroups++;
T
Tejun Heo 已提交
4257

4258
	/* hold a ref to the parent's dentry */
4259
	cgroup_get(parent);
4260

4261 4262 4263 4264
	/*
	 * @cgrp is now fully operational.  If something fails after this
	 * point, it'll be released via the normal destruction path.
	 */
4265 4266
	idr_replace(&root->cgroup_idr, cgrp, cgrp->id);

4267
	err = cgroup_addrm_files(cgrp, cgroup_base_files, true);
4268 4269 4270
	if (err)
		goto err_destroy;

4271
	/* let's create and online css's */
T
Tejun Heo 已提交
4272 4273 4274 4275 4276 4277
	for_each_subsys(ss, ssid) {
		if (root->subsys_mask & (1 << ssid)) {
			err = create_css(cgrp, ss);
			if (err)
				goto err_destroy;
		}
4278
	}
4279 4280

	mutex_unlock(&cgroup_mutex);
T
Tejun Heo 已提交
4281
	mutex_unlock(&cgroup_tree_mutex);
4282
	mutex_unlock(&cgrp->dentry->d_inode->i_mutex);
4283 4284 4285

	return 0;

T
Tejun Heo 已提交
4286
err_free_id:
4287
	idr_remove(&root->cgroup_idr, cgrp->id);
4288
	/* Release the reference count that we took on the superblock */
4289
	cgroup_put_root(root);
4290 4291
err_unlock:
	mutex_unlock(&cgroup_mutex);
T
Tejun Heo 已提交
4292 4293
err_unlock_tree:
	mutex_unlock(&cgroup_tree_mutex);
4294
	kfree(rcu_dereference_raw(cgrp->name));
4295
err_free_cgrp:
4296
	kfree(cgrp);
4297
	return err;
4298 4299 4300 4301

err_destroy:
	cgroup_destroy_locked(cgrp);
	mutex_unlock(&cgroup_mutex);
T
Tejun Heo 已提交
4302
	mutex_unlock(&cgroup_tree_mutex);
4303 4304
	mutex_unlock(&dentry->d_inode->i_mutex);
	return err;
4305 4306
}

4307
static int cgroup_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
4308 4309 4310 4311 4312 4313 4314
{
	struct cgroup *c_parent = dentry->d_parent->d_fsdata;

	/* the vfs holds inode->i_mutex already */
	return cgroup_create(c_parent, dentry, mode | S_IFDIR);
}

4315 4316 4317 4318 4319
/*
 * This is called when the refcnt of a css is confirmed to be killed.
 * css_tryget() is now guaranteed to fail.
 */
static void css_killed_work_fn(struct work_struct *work)
4320
{
4321 4322 4323
	struct cgroup_subsys_state *css =
		container_of(work, struct cgroup_subsys_state, destroy_work);
	struct cgroup *cgrp = css->cgroup;
4324

T
Tejun Heo 已提交
4325
	mutex_lock(&cgroup_tree_mutex);
4326 4327
	mutex_lock(&cgroup_mutex);

4328 4329 4330 4331 4332 4333
	/*
	 * css_tryget() is guaranteed to fail now.  Tell subsystems to
	 * initate destruction.
	 */
	offline_css(css);

4334 4335 4336 4337 4338
	/*
	 * If @cgrp is marked dead, it's waiting for refs of all css's to
	 * be disabled before proceeding to the second phase of cgroup
	 * destruction.  If we are the last one, kick it off.
	 */
4339
	if (!cgrp->nr_css && cgroup_is_dead(cgrp))
4340 4341 4342
		cgroup_destroy_css_killed(cgrp);

	mutex_unlock(&cgroup_mutex);
T
Tejun Heo 已提交
4343
	mutex_unlock(&cgroup_tree_mutex);
4344 4345 4346 4347 4348 4349 4350 4351 4352

	/*
	 * Put the css refs from kill_css().  Each css holds an extra
	 * reference to the cgroup's dentry and cgroup removal proceeds
	 * regardless of css refs.  On the last put of each css, whenever
	 * that may be, the extra dentry ref is put so that dentry
	 * destruction happens only after all css's are released.
	 */
	css_put(css);
4353 4354
}

4355 4356
/* css kill confirmation processing requires process context, bounce */
static void css_killed_ref_fn(struct percpu_ref *ref)
4357 4358 4359 4360
{
	struct cgroup_subsys_state *css =
		container_of(ref, struct cgroup_subsys_state, refcnt);

4361
	INIT_WORK(&css->destroy_work, css_killed_work_fn);
4362
	queue_work(cgroup_destroy_wq, &css->destroy_work);
4363 4364
}

T
Tejun Heo 已提交
4365 4366 4367 4368
/**
 * kill_css - destroy a css
 * @css: css to destroy
 *
4369 4370 4371 4372
 * This function initiates destruction of @css by removing cgroup interface
 * files and putting its base reference.  ->css_offline() will be invoked
 * asynchronously once css_tryget() is guaranteed to fail and when the
 * reference count reaches zero, @css will be released.
T
Tejun Heo 已提交
4373 4374 4375
 */
static void kill_css(struct cgroup_subsys_state *css)
{
4376
	cgroup_clear_dir(css->cgroup, 1 << css->ss->id);
4377

T
Tejun Heo 已提交
4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394
	/*
	 * Killing would put the base ref, but we need to keep it alive
	 * until after ->css_offline().
	 */
	css_get(css);

	/*
	 * cgroup core guarantees that, by the time ->css_offline() is
	 * invoked, no new css reference will be given out via
	 * css_tryget().  We can't simply call percpu_ref_kill() and
	 * proceed to offlining css's because percpu_ref_kill() doesn't
	 * guarantee that the ref is seen as killed on all CPUs on return.
	 *
	 * Use percpu_ref_kill_and_confirm() to get notifications as each
	 * css is confirmed to be seen as killed on all CPUs.
	 */
	percpu_ref_kill_and_confirm(&css->refcnt, css_killed_ref_fn);
4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420
}

/**
 * cgroup_destroy_locked - the first stage of cgroup destruction
 * @cgrp: cgroup to be destroyed
 *
 * css's make use of percpu refcnts whose killing latency shouldn't be
 * exposed to userland and are RCU protected.  Also, cgroup core needs to
 * guarantee that css_tryget() won't succeed by the time ->css_offline() is
 * invoked.  To satisfy all the requirements, destruction is implemented in
 * the following two steps.
 *
 * s1. Verify @cgrp can be destroyed and mark it dying.  Remove all
 *     userland visible parts and start killing the percpu refcnts of
 *     css's.  Set up so that the next stage will be kicked off once all
 *     the percpu refcnts are confirmed to be killed.
 *
 * s2. Invoke ->css_offline(), mark the cgroup dead and proceed with the
 *     rest of destruction.  Once all cgroup references are gone, the
 *     cgroup is RCU-freed.
 *
 * This function implements s1.  After this step, @cgrp is gone as far as
 * the userland is concerned and a new cgroup with the same name may be
 * created.  As cgroup doesn't care about the names internally, this
 * doesn't cause any problem.
 */
4421 4422
static int cgroup_destroy_locked(struct cgroup *cgrp)
	__releases(&cgroup_mutex) __acquires(&cgroup_mutex)
4423
{
4424
	struct dentry *d = cgrp->dentry;
T
Tejun Heo 已提交
4425
	struct cgroup_subsys_state *css;
4426
	struct cgroup *child;
4427
	bool empty;
T
Tejun Heo 已提交
4428
	int ssid;
4429

4430
	lockdep_assert_held(&d->d_inode->i_mutex);
T
Tejun Heo 已提交
4431
	lockdep_assert_held(&cgroup_tree_mutex);
4432 4433
	lockdep_assert_held(&cgroup_mutex);

4434
	/*
T
Tejun Heo 已提交
4435 4436
	 * css_set_lock synchronizes access to ->cset_links and prevents
	 * @cgrp from being removed while __put_css_set() is in progress.
4437 4438
	 */
	read_lock(&css_set_lock);
4439
	empty = list_empty(&cgrp->cset_links);
4440 4441
	read_unlock(&css_set_lock);
	if (!empty)
4442
		return -EBUSY;
L
Li Zefan 已提交
4443

4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459
	/*
	 * Make sure there's no live children.  We can't test ->children
	 * emptiness as dead children linger on it while being destroyed;
	 * otherwise, "rmdir parent/child parent" may fail with -EBUSY.
	 */
	empty = true;
	rcu_read_lock();
	list_for_each_entry_rcu(child, &cgrp->children, sibling) {
		empty = cgroup_is_dead(child);
		if (!empty)
			break;
	}
	rcu_read_unlock();
	if (!empty)
		return -EBUSY;

4460
	/*
T
Tejun Heo 已提交
4461 4462
	 * Initiate massacre of all css's.  cgroup_destroy_css_killed()
	 * will be invoked to perform the rest of destruction once the
4463 4464
	 * percpu refs of all css's are confirmed to be killed.  This
	 * involves removing the subsystem's files, drop cgroup_mutex.
4465
	 */
4466
	mutex_unlock(&cgroup_mutex);
T
Tejun Heo 已提交
4467 4468
	for_each_css(css, ssid, cgrp)
		kill_css(css);
4469
	mutex_lock(&cgroup_mutex);
4470 4471 4472 4473

	/*
	 * Mark @cgrp dead.  This prevents further task migration and child
	 * creation by disabling cgroup_lock_live_group().  Note that
4474
	 * CGRP_DEAD assertion is depended upon by css_next_child() to
4475
	 * resume iteration after dropping RCU read lock.  See
4476
	 * css_next_child() for details.
4477
	 */
4478
	set_bit(CGRP_DEAD, &cgrp->flags);
4479

4480 4481 4482 4483 4484 4485 4486
	/* CGRP_DEAD is set, remove from ->release_list for the last time */
	raw_spin_lock(&release_list_lock);
	if (!list_empty(&cgrp->release_list))
		list_del_init(&cgrp->release_list);
	raw_spin_unlock(&release_list_lock);

	/*
4487 4488 4489 4490 4491 4492 4493 4494
	 * If @cgrp has css's attached, the second stage of cgroup
	 * destruction is kicked off from css_killed_work_fn() after the
	 * refs of all attached css's are killed.  If @cgrp doesn't have
	 * any css, we kick it off here.
	 */
	if (!cgrp->nr_css)
		cgroup_destroy_css_killed(cgrp);

4495
	/*
4496 4497 4498
	 * Clear the base files and remove @cgrp directory.  The removal
	 * puts the base ref but we aren't quite done with @cgrp yet, so
	 * hold onto it.
4499
	 */
4500
	mutex_unlock(&cgroup_mutex);
4501
	cgroup_addrm_files(cgrp, cgroup_base_files, false);
4502 4503
	dget(d);
	cgroup_d_remove_dir(d);
4504
	mutex_lock(&cgroup_mutex);
4505

4506 4507 4508
	return 0;
};

4509
/**
4510
 * cgroup_destroy_css_killed - the second step of cgroup destruction
4511 4512 4513
 * @work: cgroup->destroy_free_work
 *
 * This function is invoked from a work item for a cgroup which is being
4514 4515 4516
 * destroyed after all css's are offlined and performs the rest of
 * destruction.  This is the second step of destruction described in the
 * comment above cgroup_destroy_locked().
4517
 */
4518
static void cgroup_destroy_css_killed(struct cgroup *cgrp)
4519 4520 4521
{
	struct cgroup *parent = cgrp->parent;

T
Tejun Heo 已提交
4522
	lockdep_assert_held(&cgroup_tree_mutex);
4523
	lockdep_assert_held(&cgroup_mutex);
4524

4525
	/* delete this cgroup from parent->children */
4526
	list_del_rcu(&cgrp->sibling);
4527

4528
	cgroup_put(cgrp);
4529

4530
	set_bit(CGRP_RELEASABLE, &parent->flags);
4531
	check_for_release(parent);
4532 4533
}

4534 4535 4536 4537
static int cgroup_rmdir(struct inode *unused_dir, struct dentry *dentry)
{
	int ret;

T
Tejun Heo 已提交
4538
	mutex_lock(&cgroup_tree_mutex);
4539 4540 4541
	mutex_lock(&cgroup_mutex);
	ret = cgroup_destroy_locked(dentry->d_fsdata);
	mutex_unlock(&cgroup_mutex);
T
Tejun Heo 已提交
4542
	mutex_unlock(&cgroup_tree_mutex);
4543 4544 4545 4546

	return ret;
}

4547
static void __init cgroup_init_subsys(struct cgroup_subsys *ss)
4548 4549
{
	struct cgroup_subsys_state *css;
D
Diego Calleja 已提交
4550 4551

	printk(KERN_INFO "Initializing cgroup subsys %s\n", ss->name);
4552

T
Tejun Heo 已提交
4553
	mutex_lock(&cgroup_tree_mutex);
4554 4555
	mutex_lock(&cgroup_mutex);

4556
	INIT_LIST_HEAD(&ss->cftsets);
4557

4558
	/* Create the top cgroup state for this subsystem */
4559
	ss->root = &cgroup_dummy_root;
4560
	css = ss->css_alloc(cgroup_css(cgroup_dummy_top, ss));
4561 4562
	/* We don't handle early failures gracefully */
	BUG_ON(IS_ERR(css));
4563
	init_css(css, ss, cgroup_dummy_top);
4564

L
Li Zefan 已提交
4565
	/* Update the init_css_set to contain a subsys
4566
	 * pointer to this state - since the subsystem is
L
Li Zefan 已提交
4567 4568
	 * newly registered, all tasks and hence the
	 * init_css_set is in the subsystem's top cgroup. */
4569
	init_css_set.subsys[ss->id] = css;
4570 4571 4572

	need_forkexit_callback |= ss->fork || ss->exit;

L
Li Zefan 已提交
4573 4574 4575 4576 4577
	/* At system boot, before all subsystems have been
	 * registered, no tasks have been forked, so we don't
	 * need to invoke fork callbacks here. */
	BUG_ON(!list_empty(&init_task.tasks));

4578
	BUG_ON(online_css(css));
4579

4580
	mutex_unlock(&cgroup_mutex);
T
Tejun Heo 已提交
4581
	mutex_unlock(&cgroup_tree_mutex);
4582 4583
}

4584
/**
L
Li Zefan 已提交
4585 4586 4587 4588
 * cgroup_init_early - cgroup initialization at system boot
 *
 * Initialize cgroups at system boot, and initialize any
 * subsystems that request early init.
4589 4590 4591
 */
int __init cgroup_init_early(void)
{
4592
	struct cgroup_subsys *ss;
4593
	int i;
4594

4595
	atomic_set(&init_css_set.refcount, 1);
4596
	INIT_LIST_HEAD(&init_css_set.cgrp_links);
4597
	INIT_LIST_HEAD(&init_css_set.tasks);
4598
	INIT_HLIST_NODE(&init_css_set.hlist);
4599
	css_set_count = 1;
4600 4601
	init_cgroup_root(&cgroup_dummy_root);
	cgroup_root_count = 1;
4602
	RCU_INIT_POINTER(init_task.cgroups, &init_css_set);
4603

4604
	init_cgrp_cset_link.cset = &init_css_set;
4605 4606
	init_cgrp_cset_link.cgrp = cgroup_dummy_top;
	list_add(&init_cgrp_cset_link.cset_link, &cgroup_dummy_top->cset_links);
4607
	list_add(&init_cgrp_cset_link.cgrp_link, &init_css_set.cgrp_links);
4608

T
Tejun Heo 已提交
4609
	for_each_subsys(ss, i) {
4610
		WARN(!ss->css_alloc || !ss->css_free || ss->name || ss->id,
4611 4612
		     "invalid cgroup_subsys %d:%s css_alloc=%p css_free=%p name:id=%d:%s\n",
		     i, cgroup_subsys_name[i], ss->css_alloc, ss->css_free,
4613
		     ss->id, ss->name);
4614 4615 4616
		WARN(strlen(cgroup_subsys_name[i]) > MAX_CGROUP_TYPE_NAMELEN,
		     "cgroup_subsys_name %s too long\n", cgroup_subsys_name[i]);

4617
		ss->id = i;
4618
		ss->name = cgroup_subsys_name[i];
4619 4620 4621 4622 4623 4624 4625 4626

		if (ss->early_init)
			cgroup_init_subsys(ss);
	}
	return 0;
}

/**
L
Li Zefan 已提交
4627 4628 4629 4630
 * cgroup_init - cgroup initialization
 *
 * Register cgroup filesystem and /proc file, and initialize
 * any subsystems that didn't request early init.
4631 4632 4633
 */
int __init cgroup_init(void)
{
4634
	struct cgroup_subsys *ss;
4635
	unsigned long key;
4636
	int i, err;
4637 4638 4639 4640

	err = bdi_init(&cgroup_backing_dev_info);
	if (err)
		return err;
4641

4642 4643
	cgroup_init_cftypes(NULL, cgroup_base_files);

T
Tejun Heo 已提交
4644
	for_each_subsys(ss, i) {
4645 4646
		if (!ss->early_init)
			cgroup_init_subsys(ss);
4647 4648 4649 4650 4651 4652 4653

		/*
		 * cftype registration needs kmalloc and can't be done
		 * during early_init.  Register base cftypes separately.
		 */
		if (ss->base_cftypes)
			WARN_ON(cgroup_add_cftypes(ss, ss->base_cftypes));
4654 4655
	}

4656
	/* allocate id for the dummy hierarchy */
T
Tejun Heo 已提交
4657 4658
	mutex_lock(&cgroup_mutex);

4659 4660 4661 4662
	/* Add init_css_set to the hash table */
	key = css_set_hash(init_css_set.subsys);
	hash_add(css_set_table, &init_css_set.hlist, key);

4663
	BUG_ON(cgroup_init_root_id(&cgroup_dummy_root, 0, 1));
4664

4665 4666 4667 4668
	err = idr_alloc(&cgroup_dummy_root.cgroup_idr, cgroup_dummy_top,
			0, 1, GFP_KERNEL);
	BUG_ON(err < 0);

T
Tejun Heo 已提交
4669 4670
	mutex_unlock(&cgroup_mutex);

4671 4672 4673 4674 4675 4676
	cgroup_kobj = kobject_create_and_add("cgroup", fs_kobj);
	if (!cgroup_kobj) {
		err = -ENOMEM;
		goto out;
	}

4677
	err = register_filesystem(&cgroup_fs_type);
4678 4679
	if (err < 0) {
		kobject_put(cgroup_kobj);
4680
		goto out;
4681
	}
4682

L
Li Zefan 已提交
4683
	proc_create("cgroups", 0, NULL, &proc_cgroupstats_operations);
4684

4685
out:
4686 4687 4688
	if (err)
		bdi_destroy(&cgroup_backing_dev_info);

4689 4690
	return err;
}
4691

4692 4693 4694 4695 4696
static int __init cgroup_wq_init(void)
{
	/*
	 * There isn't much point in executing destruction path in
	 * parallel.  Good chunk is serialized with cgroup_mutex anyway.
4697 4698 4699 4700 4701
	 *
	 * XXX: Must be ordered to make sure parent is offlined after
	 * children.  The ordering requirement is for memcg where a
	 * parent's offline may wait for a child's leading to deadlock.  In
	 * the long term, this should be fixed from memcg side.
4702 4703 4704 4705
	 *
	 * We would prefer to do this in cgroup_init() above, but that
	 * is called before init_workqueues(): so leave this until after.
	 */
4706
	cgroup_destroy_wq = alloc_ordered_workqueue("cgroup_destroy", 0);
4707
	BUG_ON(!cgroup_destroy_wq);
4708 4709 4710 4711 4712 4713 4714 4715 4716

	/*
	 * Used to destroy pidlists and separate to serve as flush domain.
	 * Cap @max_active to 1 too.
	 */
	cgroup_pidlist_destroy_wq = alloc_workqueue("cgroup_pidlist_destroy",
						    0, 1);
	BUG_ON(!cgroup_pidlist_destroy_wq);

4717 4718 4719 4720
	return 0;
}
core_initcall(cgroup_wq_init);

4721 4722 4723 4724 4725 4726
/*
 * proc_cgroup_show()
 *  - Print task's cgroup paths into seq_file, one line for each hierarchy
 *  - Used for /proc/<pid>/cgroup.
 *  - No need to task_lock(tsk) on this tsk->cgroup reference, as it
 *    doesn't really matter if tsk->cgroup changes after we read it,
4727
 *    and we take cgroup_mutex, keeping cgroup_attach_task() from changing it
4728 4729 4730 4731 4732 4733
 *    anyway.  No need to check that tsk->cgroup != NULL, thanks to
 *    the_top_cgroup_hack in cgroup_exit(), which sets an exiting tasks
 *    cgroup to top_cgroup.
 */

/* TODO: Use a proper seq_file iterator */
4734
int proc_cgroup_show(struct seq_file *m, void *v)
4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756
{
	struct pid *pid;
	struct task_struct *tsk;
	char *buf;
	int retval;
	struct cgroupfs_root *root;

	retval = -ENOMEM;
	buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
	if (!buf)
		goto out;

	retval = -ESRCH;
	pid = m->private;
	tsk = get_pid_task(pid, PIDTYPE_PID);
	if (!tsk)
		goto out_free;

	retval = 0;

	mutex_lock(&cgroup_mutex);

4757
	for_each_active_root(root) {
4758
		struct cgroup_subsys *ss;
4759
		struct cgroup *cgrp;
T
Tejun Heo 已提交
4760
		int ssid, count = 0;
4761

4762
		seq_printf(m, "%d:", root->hierarchy_id);
T
Tejun Heo 已提交
4763 4764 4765
		for_each_subsys(ss, ssid)
			if (root->subsys_mask & (1 << ssid))
				seq_printf(m, "%s%s", count++ ? "," : "", ss->name);
4766 4767 4768
		if (strlen(root->name))
			seq_printf(m, "%sname=%s", count ? "," : "",
				   root->name);
4769
		seq_putc(m, ':');
4770
		cgrp = task_cgroup_from_root(tsk, root);
4771
		retval = cgroup_path(cgrp, buf, PAGE_SIZE);
4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789
		if (retval < 0)
			goto out_unlock;
		seq_puts(m, buf);
		seq_putc(m, '\n');
	}

out_unlock:
	mutex_unlock(&cgroup_mutex);
	put_task_struct(tsk);
out_free:
	kfree(buf);
out:
	return retval;
}

/* Display information about each subsystem and each hierarchy */
static int proc_cgroupstats_show(struct seq_file *m, void *v)
{
4790
	struct cgroup_subsys *ss;
4791 4792
	int i;

4793
	seq_puts(m, "#subsys_name\thierarchy\tnum_cgroups\tenabled\n");
B
Ben Blum 已提交
4794 4795 4796 4797 4798
	/*
	 * ideally we don't want subsystems moving around while we do this.
	 * cgroup_mutex is also necessary to guarantee an atomic snapshot of
	 * subsys/hierarchy state.
	 */
4799
	mutex_lock(&cgroup_mutex);
4800 4801

	for_each_subsys(ss, i)
4802 4803
		seq_printf(m, "%s\t%d\t%d\t%d\n",
			   ss->name, ss->root->hierarchy_id,
4804
			   ss->root->number_of_cgroups, !ss->disabled);
4805

4806 4807 4808 4809 4810 4811
	mutex_unlock(&cgroup_mutex);
	return 0;
}

static int cgroupstats_open(struct inode *inode, struct file *file)
{
A
Al Viro 已提交
4812
	return single_open(file, proc_cgroupstats_show, NULL);
4813 4814
}

4815
static const struct file_operations proc_cgroupstats_operations = {
4816 4817 4818 4819 4820 4821
	.open = cgroupstats_open,
	.read = seq_read,
	.llseek = seq_lseek,
	.release = single_release,
};

4822 4823
/**
 * cgroup_fork - attach newly forked task to its parents cgroup.
L
Li Zefan 已提交
4824
 * @child: pointer to task_struct of forking parent process.
4825 4826 4827 4828 4829
 *
 * Description: A task inherits its parent's cgroup at fork().
 *
 * A pointer to the shared css_set was automatically copied in
 * fork.c by dup_task_struct().  However, we ignore that copy, since
4830 4831 4832 4833
 * it was not made under the protection of RCU or cgroup_mutex, so
 * might no longer be a valid cgroup pointer.  cgroup_attach_task() might
 * have already changed current->cgroups, allowing the previously
 * referenced cgroup group to be removed and freed.
4834 4835 4836 4837 4838 4839
 *
 * At the point that cgroup_fork() is called, 'current' is the parent
 * task, and the passed argument 'child' points to the child task.
 */
void cgroup_fork(struct task_struct *child)
{
4840
	task_lock(current);
4841
	get_css_set(task_css_set(current));
4842
	child->cgroups = current->cgroups;
4843
	task_unlock(current);
4844
	INIT_LIST_HEAD(&child->cg_list);
4845 4846
}

4847
/**
L
Li Zefan 已提交
4848 4849 4850
 * cgroup_post_fork - called on a new task after adding it to the task list
 * @child: the task in question
 *
4851 4852 4853
 * Adds the task to the list running through its css_set if necessary and
 * call the subsystem fork() callbacks.  Has to be after the task is
 * visible on the task list in case we race with the first call to
4854
 * cgroup_task_iter_start() - to guarantee that the new task ends up on its
4855
 * list.
L
Li Zefan 已提交
4856
 */
4857 4858
void cgroup_post_fork(struct task_struct *child)
{
4859
	struct cgroup_subsys *ss;
4860 4861
	int i;

4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872
	/*
	 * use_task_css_set_links is set to 1 before we walk the tasklist
	 * under the tasklist_lock and we read it here after we added the child
	 * to the tasklist under the tasklist_lock as well. If the child wasn't
	 * yet in the tasklist when we walked through it from
	 * cgroup_enable_task_cg_lists(), then use_task_css_set_links value
	 * should be visible now due to the paired locking and barriers implied
	 * by LOCK/UNLOCK: it is written before the tasklist_lock unlock
	 * in cgroup_enable_task_cg_lists() and read here after the tasklist_lock
	 * lock on fork.
	 */
4873 4874
	if (use_task_css_set_links) {
		write_lock(&css_set_lock);
4875 4876
		task_lock(child);
		if (list_empty(&child->cg_list))
4877
			list_add(&child->cg_list, &task_css_set(child)->tasks);
4878
		task_unlock(child);
4879 4880
		write_unlock(&css_set_lock);
	}
4881 4882 4883 4884 4885 4886 4887

	/*
	 * Call ss->fork().  This must happen after @child is linked on
	 * css_set; otherwise, @child might change state between ->fork()
	 * and addition to css_set.
	 */
	if (need_forkexit_callback) {
T
Tejun Heo 已提交
4888
		for_each_subsys(ss, i)
4889 4890 4891
			if (ss->fork)
				ss->fork(child);
	}
4892
}
4893

4894 4895 4896
/**
 * cgroup_exit - detach cgroup from exiting task
 * @tsk: pointer to task_struct of exiting process
L
Li Zefan 已提交
4897
 * @run_callback: run exit callbacks?
4898 4899 4900 4901 4902 4903 4904 4905 4906 4907 4908 4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923 4924 4925
 *
 * Description: Detach cgroup from @tsk and release it.
 *
 * Note that cgroups marked notify_on_release force every task in
 * them to take the global cgroup_mutex mutex when exiting.
 * This could impact scaling on very large systems.  Be reluctant to
 * use notify_on_release cgroups where very high task exit scaling
 * is required on large systems.
 *
 * the_top_cgroup_hack:
 *
 *    Set the exiting tasks cgroup to the root cgroup (top_cgroup).
 *
 *    We call cgroup_exit() while the task is still competent to
 *    handle notify_on_release(), then leave the task attached to the
 *    root cgroup in each hierarchy for the remainder of its exit.
 *
 *    To do this properly, we would increment the reference count on
 *    top_cgroup, and near the very end of the kernel/exit.c do_exit()
 *    code we would add a second cgroup function call, to drop that
 *    reference.  This would just create an unnecessary hot spot on
 *    the top_cgroup reference count, to no avail.
 *
 *    Normally, holding a reference to a cgroup without bumping its
 *    count is unsafe.   The cgroup could go away, or someone could
 *    attach us to a different cgroup, decrementing the count on
 *    the first cgroup that we never incremented.  But in this case,
 *    top_cgroup isn't going away, and either task has PF_EXITING set,
4926 4927
 *    which wards off any cgroup_attach_task() attempts, or task is a failed
 *    fork, never visible to cgroup_attach_task.
4928 4929 4930
 */
void cgroup_exit(struct task_struct *tsk, int run_callbacks)
{
4931
	struct cgroup_subsys *ss;
4932
	struct css_set *cset;
4933
	int i;
4934 4935 4936 4937 4938 4939 4940 4941 4942

	/*
	 * Unlink from the css_set task list if necessary.
	 * Optimistically check cg_list before taking
	 * css_set_lock
	 */
	if (!list_empty(&tsk->cg_list)) {
		write_lock(&css_set_lock);
		if (!list_empty(&tsk->cg_list))
4943
			list_del_init(&tsk->cg_list);
4944 4945 4946
		write_unlock(&css_set_lock);
	}

4947 4948
	/* Reassign the task to the init_css_set. */
	task_lock(tsk);
4949 4950
	cset = task_css_set(tsk);
	RCU_INIT_POINTER(tsk->cgroups, &init_css_set);
4951 4952

	if (run_callbacks && need_forkexit_callback) {
T
Tejun Heo 已提交
4953 4954
		/* see cgroup_post_fork() for details */
		for_each_subsys(ss, i) {
4955
			if (ss->exit) {
4956 4957
				struct cgroup_subsys_state *old_css = cset->subsys[i];
				struct cgroup_subsys_state *css = task_css(tsk, i);
4958

4959
				ss->exit(css, old_css, tsk);
4960 4961 4962
			}
		}
	}
4963
	task_unlock(tsk);
4964

4965
	put_css_set_taskexit(cset);
4966
}
4967

4968
static void check_for_release(struct cgroup *cgrp)
4969
{
4970
	if (cgroup_is_releasable(cgrp) &&
T
Tejun Heo 已提交
4971
	    list_empty(&cgrp->cset_links) && list_empty(&cgrp->children)) {
4972 4973
		/*
		 * Control Group is currently removeable. If it's not
4974
		 * already queued for a userspace notification, queue
4975 4976
		 * it now
		 */
4977
		int need_schedule_work = 0;
4978

4979
		raw_spin_lock(&release_list_lock);
4980
		if (!cgroup_is_dead(cgrp) &&
4981 4982
		    list_empty(&cgrp->release_list)) {
			list_add(&cgrp->release_list, &release_list);
4983 4984
			need_schedule_work = 1;
		}
4985
		raw_spin_unlock(&release_list_lock);
4986 4987 4988 4989 4990 4991 4992 4993 4994 4995 4996 4997 4998 4999 5000 5001 5002 5003 5004 5005 5006 5007 5008 5009 5010 5011 5012 5013 5014 5015 5016 5017
		if (need_schedule_work)
			schedule_work(&release_agent_work);
	}
}

/*
 * Notify userspace when a cgroup is released, by running the
 * configured release agent with the name of the cgroup (path
 * relative to the root of cgroup file system) as the argument.
 *
 * Most likely, this user command will try to rmdir this cgroup.
 *
 * This races with the possibility that some other task will be
 * attached to this cgroup before it is removed, or that some other
 * user task will 'mkdir' a child cgroup of this cgroup.  That's ok.
 * The presumed 'rmdir' will fail quietly if this cgroup is no longer
 * unused, and this cgroup will be reprieved from its death sentence,
 * to continue to serve a useful existence.  Next time it's released,
 * we will get notified again, if it still has 'notify_on_release' set.
 *
 * The final arg to call_usermodehelper() is UMH_WAIT_EXEC, which
 * means only wait until the task is successfully execve()'d.  The
 * separate release agent task is forked by call_usermodehelper(),
 * then control in this thread returns here, without waiting for the
 * release agent task.  We don't bother to wait because the caller of
 * this routine has no use for the exit status of the release agent
 * task, so no sense holding our caller up for that.
 */
static void cgroup_release_agent(struct work_struct *work)
{
	BUG_ON(work != &release_agent_work);
	mutex_lock(&cgroup_mutex);
5018
	raw_spin_lock(&release_list_lock);
5019 5020 5021
	while (!list_empty(&release_list)) {
		char *argv[3], *envp[3];
		int i;
5022
		char *pathbuf = NULL, *agentbuf = NULL;
5023
		struct cgroup *cgrp = list_entry(release_list.next,
5024 5025
						    struct cgroup,
						    release_list);
5026
		list_del_init(&cgrp->release_list);
5027
		raw_spin_unlock(&release_list_lock);
5028
		pathbuf = kmalloc(PAGE_SIZE, GFP_KERNEL);
5029 5030 5031 5032 5033 5034 5035
		if (!pathbuf)
			goto continue_free;
		if (cgroup_path(cgrp, pathbuf, PAGE_SIZE) < 0)
			goto continue_free;
		agentbuf = kstrdup(cgrp->root->release_agent_path, GFP_KERNEL);
		if (!agentbuf)
			goto continue_free;
5036 5037

		i = 0;
5038 5039
		argv[i++] = agentbuf;
		argv[i++] = pathbuf;
5040 5041 5042 5043 5044 5045 5046 5047 5048 5049 5050 5051 5052 5053
		argv[i] = NULL;

		i = 0;
		/* minimal command environment */
		envp[i++] = "HOME=/";
		envp[i++] = "PATH=/sbin:/bin:/usr/sbin:/usr/bin";
		envp[i] = NULL;

		/* Drop the lock while we invoke the usermode helper,
		 * since the exec could involve hitting disk and hence
		 * be a slow process */
		mutex_unlock(&cgroup_mutex);
		call_usermodehelper(argv[0], argv, envp, UMH_WAIT_EXEC);
		mutex_lock(&cgroup_mutex);
5054 5055 5056
 continue_free:
		kfree(pathbuf);
		kfree(agentbuf);
5057
		raw_spin_lock(&release_list_lock);
5058
	}
5059
	raw_spin_unlock(&release_list_lock);
5060 5061
	mutex_unlock(&cgroup_mutex);
}
5062 5063 5064

static int __init cgroup_disable(char *str)
{
5065
	struct cgroup_subsys *ss;
5066
	char *token;
5067
	int i;
5068 5069 5070 5071

	while ((token = strsep(&str, ",")) != NULL) {
		if (!*token)
			continue;
5072

T
Tejun Heo 已提交
5073
		for_each_subsys(ss, i) {
5074 5075 5076 5077 5078 5079 5080 5081 5082 5083 5084
			if (!strcmp(token, ss->name)) {
				ss->disabled = 1;
				printk(KERN_INFO "Disabling %s control group"
					" subsystem\n", ss->name);
				break;
			}
		}
	}
	return 1;
}
__setup("cgroup_disable=", cgroup_disable);
K
KAMEZAWA Hiroyuki 已提交
5085

5086
/**
5087
 * css_tryget_from_dir - get corresponding css from the dentry of a cgroup dir
5088 5089
 * @dentry: directory dentry of interest
 * @ss: subsystem of interest
5090
 *
5091 5092 5093
 * If @dentry is a directory for a cgroup which has @ss enabled on it, try
 * to get the corresponding css and return it.  If such css doesn't exist
 * or can't be pinned, an ERR_PTR value is returned.
S
Stephane Eranian 已提交
5094
 */
5095 5096
struct cgroup_subsys_state *css_tryget_from_dir(struct dentry *dentry,
						struct cgroup_subsys *ss)
S
Stephane Eranian 已提交
5097 5098
{
	struct cgroup *cgrp;
5099
	struct cgroup_subsys_state *css;
5100

5101 5102 5103
	/* is @dentry a cgroup dir? */
	if (!dentry->d_inode ||
	    dentry->d_inode->i_op != &cgroup_dir_inode_operations)
S
Stephane Eranian 已提交
5104 5105
		return ERR_PTR(-EBADF);

5106 5107
	rcu_read_lock();

5108
	cgrp = __d_cgrp(dentry);
5109 5110 5111 5112 5113 5114 5115
	css = cgroup_css(cgrp, ss);

	if (!css || !css_tryget(css))
		css = ERR_PTR(-ENOENT);

	rcu_read_unlock();
	return css;
S
Stephane Eranian 已提交
5116 5117
}

5118 5119 5120 5121 5122 5123 5124 5125 5126 5127 5128 5129
/**
 * css_from_id - lookup css by id
 * @id: the cgroup id
 * @ss: cgroup subsys to be looked into
 *
 * Returns the css if there's valid one with @id, otherwise returns NULL.
 * Should be called under rcu_read_lock().
 */
struct cgroup_subsys_state *css_from_id(int id, struct cgroup_subsys *ss)
{
	struct cgroup *cgrp;

T
Tejun Heo 已提交
5130
	cgroup_assert_mutexes_or_rcu_locked();
5131 5132 5133

	cgrp = idr_find(&ss->root->cgroup_idr, id);
	if (cgrp)
5134
		return cgroup_css(cgrp, ss);
5135
	return NULL;
S
Stephane Eranian 已提交
5136 5137
}

5138
#ifdef CONFIG_CGROUP_DEBUG
5139 5140
static struct cgroup_subsys_state *
debug_css_alloc(struct cgroup_subsys_state *parent_css)
5141 5142 5143 5144 5145 5146 5147 5148 5149
{
	struct cgroup_subsys_state *css = kzalloc(sizeof(*css), GFP_KERNEL);

	if (!css)
		return ERR_PTR(-ENOMEM);

	return css;
}

5150
static void debug_css_free(struct cgroup_subsys_state *css)
5151
{
5152
	kfree(css);
5153 5154
}

5155 5156
static u64 debug_taskcount_read(struct cgroup_subsys_state *css,
				struct cftype *cft)
5157
{
5158
	return cgroup_task_count(css->cgroup);
5159 5160
}

5161 5162
static u64 current_css_set_read(struct cgroup_subsys_state *css,
				struct cftype *cft)
5163 5164 5165 5166
{
	return (u64)(unsigned long)current->cgroups;
}

5167
static u64 current_css_set_refcount_read(struct cgroup_subsys_state *css,
L
Li Zefan 已提交
5168
					 struct cftype *cft)
5169 5170 5171 5172
{
	u64 count;

	rcu_read_lock();
5173
	count = atomic_read(&task_css_set(current)->refcount);
5174 5175 5176 5177
	rcu_read_unlock();
	return count;
}

5178
static int current_css_set_cg_links_read(struct seq_file *seq, void *v)
5179
{
5180
	struct cgrp_cset_link *link;
5181
	struct css_set *cset;
5182 5183 5184

	read_lock(&css_set_lock);
	rcu_read_lock();
5185
	cset = rcu_dereference(current->cgroups);
5186
	list_for_each_entry(link, &cset->cgrp_links, cgrp_link) {
5187
		struct cgroup *c = link->cgrp;
5188 5189 5190 5191
		const char *name = "?";

		if (c != cgroup_dummy_top)
			name = cgroup_name(c);
5192

5193 5194
		seq_printf(seq, "Root %d group %s\n",
			   c->root->hierarchy_id, name);
5195 5196 5197 5198 5199 5200 5201
	}
	rcu_read_unlock();
	read_unlock(&css_set_lock);
	return 0;
}

#define MAX_TASKS_SHOWN_PER_CSS 25
5202
static int cgroup_css_links_read(struct seq_file *seq, void *v)
5203
{
5204
	struct cgroup_subsys_state *css = seq_css(seq);
5205
	struct cgrp_cset_link *link;
5206 5207

	read_lock(&css_set_lock);
5208
	list_for_each_entry(link, &css->cgroup->cset_links, cset_link) {
5209
		struct css_set *cset = link->cset;
5210 5211
		struct task_struct *task;
		int count = 0;
5212 5213
		seq_printf(seq, "css_set %p\n", cset);
		list_for_each_entry(task, &cset->tasks, cg_list) {
5214 5215 5216 5217 5218 5219 5220 5221 5222 5223 5224 5225 5226
			if (count++ > MAX_TASKS_SHOWN_PER_CSS) {
				seq_puts(seq, "  ...\n");
				break;
			} else {
				seq_printf(seq, "  task %d\n",
					   task_pid_vnr(task));
			}
		}
	}
	read_unlock(&css_set_lock);
	return 0;
}

5227
static u64 releasable_read(struct cgroup_subsys_state *css, struct cftype *cft)
5228
{
5229
	return test_bit(CGRP_RELEASABLE, &css->cgroup->flags);
5230 5231 5232 5233 5234 5235 5236 5237 5238 5239 5240 5241 5242 5243 5244 5245 5246 5247
}

static struct cftype debug_files[] =  {
	{
		.name = "taskcount",
		.read_u64 = debug_taskcount_read,
	},

	{
		.name = "current_css_set",
		.read_u64 = current_css_set_read,
	},

	{
		.name = "current_css_set_refcount",
		.read_u64 = current_css_set_refcount_read,
	},

5248 5249
	{
		.name = "current_css_set_cg_links",
5250
		.seq_show = current_css_set_cg_links_read,
5251 5252 5253 5254
	},

	{
		.name = "cgroup_css_links",
5255
		.seq_show = cgroup_css_links_read,
5256 5257
	},

5258 5259 5260 5261 5262
	{
		.name = "releasable",
		.read_u64 = releasable_read,
	},

5263 5264
	{ }	/* terminate */
};
5265

5266
struct cgroup_subsys debug_cgrp_subsys = {
5267 5268
	.css_alloc = debug_css_alloc,
	.css_free = debug_css_free,
5269
	.base_cftypes = debug_files,
5270 5271
};
#endif /* CONFIG_CGROUP_DEBUG */