cgroup.c 152.9 KB
Newer Older
1 2 3 4 5 6
/*
 *  Generic process-grouping system.
 *
 *  Based originally on the cpuset system, extracted by Paul Menage
 *  Copyright (C) 2006 Google, Inc
 *
7 8 9 10
 *  Notifications support
 *  Copyright (C) 2009 Nokia Corporation
 *  Author: Kirill A. Shutemov
 *
11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29
 *  Copyright notices from the original cpuset code:
 *  --------------------------------------------------
 *  Copyright (C) 2003 BULL SA.
 *  Copyright (C) 2004-2006 Silicon Graphics, Inc.
 *
 *  Portions derived from Patrick Mochel's sysfs code.
 *  sysfs is Copyright (c) 2001-3 Patrick Mochel
 *
 *  2003-10-10 Written by Simon Derr.
 *  2003-10-22 Updates by Stephen Hemminger.
 *  2004 May-July Rework by Paul Jackson.
 *  ---------------------------------------------------
 *
 *  This file is subject to the terms and conditions of the GNU General Public
 *  License.  See the file COPYING in the main directory of the Linux
 *  distribution for more details.
 */

#include <linux/cgroup.h>
30
#include <linux/cred.h>
31
#include <linux/ctype.h>
32
#include <linux/errno.h>
33
#include <linux/init_task.h>
34 35 36 37 38 39
#include <linux/kernel.h>
#include <linux/list.h>
#include <linux/mm.h>
#include <linux/mutex.h>
#include <linux/mount.h>
#include <linux/pagemap.h>
40
#include <linux/proc_fs.h>
41 42
#include <linux/rcupdate.h>
#include <linux/sched.h>
43
#include <linux/backing-dev.h>
44 45 46 47 48
#include <linux/seq_file.h>
#include <linux/slab.h>
#include <linux/magic.h>
#include <linux/spinlock.h>
#include <linux/string.h>
49
#include <linux/sort.h>
50
#include <linux/kmod.h>
51
#include <linux/module.h>
B
Balbir Singh 已提交
52 53
#include <linux/delayacct.h>
#include <linux/cgroupstats.h>
54
#include <linux/hashtable.h>
55
#include <linux/namei.h>
L
Li Zefan 已提交
56
#include <linux/pid_namespace.h>
57
#include <linux/idr.h>
58
#include <linux/vmalloc.h> /* TODO: replace with more sophisticated array */
59 60
#include <linux/eventfd.h>
#include <linux/poll.h>
61
#include <linux/flex_array.h> /* used in cgroup_attach_task */
62
#include <linux/kthread.h>
63
#include <linux/file.h>
B
Balbir Singh 已提交
64

A
Arun Sharma 已提交
65
#include <linux/atomic.h>
66

T
Tejun Heo 已提交
67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82
/*
 * cgroup_mutex is the master lock.  Any modification to cgroup or its
 * hierarchy must be performed while holding it.
 *
 * cgroup_root_mutex nests inside cgroup_mutex and should be held to modify
 * cgroupfs_root of any cgroup hierarchy - subsys list, flags,
 * release_agent_path and so on.  Modifying requires both cgroup_mutex and
 * cgroup_root_mutex.  Readers can acquire either of the two.  This is to
 * break the following locking order cycle.
 *
 *  A. cgroup_mutex -> cred_guard_mutex -> s_type->i_mutex_key -> namespace_sem
 *  B. namespace_sem -> cgroup_mutex
 *
 * B happens only through cgroup_show_options() and using cgroup_root_mutex
 * breaks it.
 */
T
Tejun Heo 已提交
83 84
#ifdef CONFIG_PROVE_RCU
DEFINE_MUTEX(cgroup_mutex);
85
EXPORT_SYMBOL_GPL(cgroup_mutex);	/* only for lockdep */
T
Tejun Heo 已提交
86
#else
87
static DEFINE_MUTEX(cgroup_mutex);
T
Tejun Heo 已提交
88 89
#endif

T
Tejun Heo 已提交
90
static DEFINE_MUTEX(cgroup_root_mutex);
91

92 93 94 95 96 97 98 99
/*
 * cgroup destruction makes heavy use of work items and there can be a lot
 * of concurrent destructions.  Use a separate workqueue so that cgroup
 * destruction work items don't end up filling up max_active of system_wq
 * which may lead to deadlock.
 */
static struct workqueue_struct *cgroup_destroy_wq;

B
Ben Blum 已提交
100 101
/*
 * Generate an array of cgroup subsystem pointers. At boot time, this is
102
 * populated with the built in subsystems, and modular subsystems are
B
Ben Blum 已提交
103 104 105
 * registered after that. The mutable section of this array is protected by
 * cgroup_mutex.
 */
106
#define SUBSYS(_x) [_x ## _subsys_id] = &_x ## _subsys,
107
#define IS_SUBSYS_ENABLED(option) IS_BUILTIN(option)
108
static struct cgroup_subsys *cgroup_subsys[CGROUP_SUBSYS_COUNT] = {
109 110 111 112
#include <linux/cgroup_subsys.h>
};

/*
113 114 115
 * The dummy hierarchy, reserved for the subsystems that are otherwise
 * unattached - it never has more than a single cgroup, and all tasks are
 * part of that cgroup.
116
 */
117 118 119 120
static struct cgroupfs_root cgroup_dummy_root;

/* dummy_top is a shorthand for the dummy hierarchy's top cgroup */
static struct cgroup * const cgroup_dummy_top = &cgroup_dummy_root.top_cgroup;
121

T
Tejun Heo 已提交
122 123 124 125 126 127 128
/*
 * cgroupfs file entry, pointed to from leaf dentry->d_fsdata.
 */
struct cfent {
	struct list_head		node;
	struct dentry			*dentry;
	struct cftype			*type;
129
	struct cgroup_subsys_state	*css;
L
Li Zefan 已提交
130 131 132

	/* file xattrs */
	struct simple_xattrs		xattrs;
T
Tejun Heo 已提交
133 134
};

135
/*
L
Lucas De Marchi 已提交
136
 * cgroup_event represents events which userspace want to receive.
137 138 139
 */
struct cgroup_event {
	/*
140
	 * css which the event belongs to.
141
	 */
142
	struct cgroup_subsys_state *css;
143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163
	/*
	 * Control file which the event associated.
	 */
	struct cftype *cft;
	/*
	 * eventfd to signal userspace about the event.
	 */
	struct eventfd_ctx *eventfd;
	/*
	 * Each of these stored in a list by the cgroup.
	 */
	struct list_head list;
	/*
	 * All fields below needed to unregister event when
	 * userspace closes eventfd.
	 */
	poll_table pt;
	wait_queue_head_t *wqh;
	wait_queue_t wait;
	struct work_struct remove;
};
K
KAMEZAWA Hiroyuki 已提交
164

165 166
/* The list of hierarchy roots */

167 168
static LIST_HEAD(cgroup_roots);
static int cgroup_root_count;
169

T
Tejun Heo 已提交
170 171 172 173 174
/*
 * Hierarchy ID allocation and mapping.  It follows the same exclusion
 * rules as other root ops - both cgroup_mutex and cgroup_root_mutex for
 * writes, either for reads.
 */
175
static DEFINE_IDR(cgroup_hierarchy_idr);
176

177 178
static struct cgroup_name root_cgroup_name = { .name = "/" };

179 180 181 182 183
/*
 * Assign a monotonically increasing serial number to cgroups.  It
 * guarantees cgroups with bigger numbers are newer than those with smaller
 * numbers.  Also, as cgroups are always appended to the parent's
 * ->children list, it guarantees that sibling cgroups are always sorted in
184 185
 * the ascending serial number order on the list.  Protected by
 * cgroup_mutex.
186
 */
187
static u64 cgroup_serial_nr_next = 1;
188

189
/* This flag indicates whether tasks in the fork and exit paths should
L
Li Zefan 已提交
190 191 192
 * check for fork/exit handlers to call. This avoids us having to do
 * extra work in the fork/exit path if none of the subsystems need to
 * be called.
193
 */
194
static int need_forkexit_callback __read_mostly;
195

196 197
static struct cftype cgroup_base_files[];

198
static void cgroup_destroy_css_killed(struct cgroup *cgrp);
199
static int cgroup_destroy_locked(struct cgroup *cgrp);
200 201
static int cgroup_addrm_files(struct cgroup *cgrp, struct cftype cfts[],
			      bool is_add);
202
static int cgroup_file_release(struct inode *inode, struct file *file);
203

T
Tejun Heo 已提交
204 205 206
/**
 * cgroup_css - obtain a cgroup's css for the specified subsystem
 * @cgrp: the cgroup of interest
207
 * @ss: the subsystem of interest (%NULL returns the dummy_css)
T
Tejun Heo 已提交
208
 *
209 210 211 212 213
 * Return @cgrp's css (cgroup_subsys_state) associated with @ss.  This
 * function must be called either under cgroup_mutex or rcu_read_lock() and
 * the caller is responsible for pinning the returned css if it wants to
 * keep accessing it outside the said locks.  This function may return
 * %NULL if @cgrp doesn't have @subsys_id enabled.
T
Tejun Heo 已提交
214 215
 */
static struct cgroup_subsys_state *cgroup_css(struct cgroup *cgrp,
216
					      struct cgroup_subsys *ss)
T
Tejun Heo 已提交
217
{
218 219 220 221 222
	if (ss)
		return rcu_dereference_check(cgrp->subsys[ss->subsys_id],
					     lockdep_is_held(&cgroup_mutex));
	else
		return &cgrp->dummy_css;
T
Tejun Heo 已提交
223
}
224

225
/* convenient tests for these bits */
226
static inline bool cgroup_is_dead(const struct cgroup *cgrp)
227
{
228
	return test_bit(CGRP_DEAD, &cgrp->flags);
229 230
}

231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249
/**
 * cgroup_is_descendant - test ancestry
 * @cgrp: the cgroup to be tested
 * @ancestor: possible ancestor of @cgrp
 *
 * Test whether @cgrp is a descendant of @ancestor.  It also returns %true
 * if @cgrp == @ancestor.  This function is safe to call as long as @cgrp
 * and @ancestor are accessible.
 */
bool cgroup_is_descendant(struct cgroup *cgrp, struct cgroup *ancestor)
{
	while (cgrp) {
		if (cgrp == ancestor)
			return true;
		cgrp = cgrp->parent;
	}
	return false;
}
EXPORT_SYMBOL_GPL(cgroup_is_descendant);
250

251
static int cgroup_is_releasable(const struct cgroup *cgrp)
252 253
{
	const int bits =
254 255 256
		(1 << CGRP_RELEASABLE) |
		(1 << CGRP_NOTIFY_ON_RELEASE);
	return (cgrp->flags & bits) == bits;
257 258
}

259
static int notify_on_release(const struct cgroup *cgrp)
260
{
261
	return test_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
262 263
}

264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288
/**
 * for_each_subsys - iterate all loaded cgroup subsystems
 * @ss: the iteration cursor
 * @i: the index of @ss, CGROUP_SUBSYS_COUNT after reaching the end
 *
 * Should be called under cgroup_mutex.
 */
#define for_each_subsys(ss, i)						\
	for ((i) = 0; (i) < CGROUP_SUBSYS_COUNT; (i)++)			\
		if (({ lockdep_assert_held(&cgroup_mutex);		\
		       !((ss) = cgroup_subsys[i]); })) { }		\
		else

/**
 * for_each_builtin_subsys - iterate all built-in cgroup subsystems
 * @ss: the iteration cursor
 * @i: the index of @ss, CGROUP_BUILTIN_SUBSYS_COUNT after reaching the end
 *
 * Bulit-in subsystems are always present and iteration itself doesn't
 * require any synchronization.
 */
#define for_each_builtin_subsys(ss, i)					\
	for ((i) = 0; (i) < CGROUP_BUILTIN_SUBSYS_COUNT &&		\
	     (((ss) = cgroup_subsys[i]) || true); (i)++)

289 290 291
/* iterate each subsystem attached to a hierarchy */
#define for_each_root_subsys(root, ss)					\
	list_for_each_entry((ss), &(root)->subsys_list, sibling)
292

293 294 295
/* iterate across the active hierarchies */
#define for_each_active_root(root)					\
	list_for_each_entry((root), &cgroup_roots, root_list)
296

297 298 299 300 301
static inline struct cgroup *__d_cgrp(struct dentry *dentry)
{
	return dentry->d_fsdata;
}

T
Tejun Heo 已提交
302
static inline struct cfent *__d_cfe(struct dentry *dentry)
303 304 305 306
{
	return dentry->d_fsdata;
}

T
Tejun Heo 已提交
307 308 309 310 311
static inline struct cftype *__d_cft(struct dentry *dentry)
{
	return __d_cfe(dentry)->type;
}

312 313 314 315
/**
 * cgroup_lock_live_group - take cgroup_mutex and check that cgrp is alive.
 * @cgrp: the cgroup to be checked for liveness
 *
T
Tejun Heo 已提交
316 317
 * On success, returns true; the mutex should be later unlocked.  On
 * failure returns false with no lock held.
318
 */
319
static bool cgroup_lock_live_group(struct cgroup *cgrp)
320 321
{
	mutex_lock(&cgroup_mutex);
322
	if (cgroup_is_dead(cgrp)) {
323 324 325 326 327 328
		mutex_unlock(&cgroup_mutex);
		return false;
	}
	return true;
}

329 330 331
/* the list of cgroups eligible for automatic release. Protected by
 * release_list_lock */
static LIST_HEAD(release_list);
332
static DEFINE_RAW_SPINLOCK(release_list_lock);
333 334
static void cgroup_release_agent(struct work_struct *work);
static DECLARE_WORK(release_agent_work, cgroup_release_agent);
335
static void check_for_release(struct cgroup *cgrp);
336

337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354
/*
 * A cgroup can be associated with multiple css_sets as different tasks may
 * belong to different cgroups on different hierarchies.  In the other
 * direction, a css_set is naturally associated with multiple cgroups.
 * This M:N relationship is represented by the following link structure
 * which exists for each association and allows traversing the associations
 * from both sides.
 */
struct cgrp_cset_link {
	/* the cgroup and css_set this link associates */
	struct cgroup		*cgrp;
	struct css_set		*cset;

	/* list of cgrp_cset_links anchored at cgrp->cset_links */
	struct list_head	cset_link;

	/* list of cgrp_cset_links anchored at css_set->cgrp_links */
	struct list_head	cgrp_link;
355 356 357 358 359 360 361 362 363 364
};

/* The default css_set - used by init and its children prior to any
 * hierarchies being mounted. It contains a pointer to the root state
 * for each subsystem. Also used to anchor the list of css_sets. Not
 * reference-counted, to improve performance when child cgroups
 * haven't been created.
 */

static struct css_set init_css_set;
365
static struct cgrp_cset_link init_cgrp_cset_link;
366

367 368 369
/*
 * css_set_lock protects the list of css_set objects, and the chain of
 * tasks off each css_set.  Nests outside task->alloc_lock due to
370
 * css_task_iter_start().
371
 */
372 373 374
static DEFINE_RWLOCK(css_set_lock);
static int css_set_count;

375 376 377 378 379
/*
 * hash table for cgroup groups. This improves the performance to find
 * an existing css_set. This hash doesn't (currently) take into
 * account cgroups in empty hierarchies.
 */
380
#define CSS_SET_HASH_BITS	7
381
static DEFINE_HASHTABLE(css_set_table, CSS_SET_HASH_BITS);
382

383
static unsigned long css_set_hash(struct cgroup_subsys_state *css[])
384
{
385
	unsigned long key = 0UL;
386 387
	struct cgroup_subsys *ss;
	int i;
388

389
	for_each_subsys(ss, i)
390 391
		key += (unsigned long)css[i];
	key = (key >> 16) ^ key;
392

393
	return key;
394 395
}

396 397
/*
 * We don't maintain the lists running through each css_set to its task
398 399 400
 * until after the first call to css_task_iter_start().  This reduces the
 * fork()/exit() overhead for people who have cgroups compiled into their
 * kernel but not actually in use.
401
 */
402
static int use_task_css_set_links __read_mostly;
403

404
static void __put_css_set(struct css_set *cset, int taskexit)
405
{
406
	struct cgrp_cset_link *link, *tmp_link;
407

408 409 410 411 412
	/*
	 * Ensure that the refcount doesn't hit zero while any readers
	 * can see it. Similar to atomic_dec_and_lock(), but for an
	 * rwlock
	 */
413
	if (atomic_add_unless(&cset->refcount, -1, 1))
414 415
		return;
	write_lock(&css_set_lock);
416
	if (!atomic_dec_and_test(&cset->refcount)) {
417 418 419
		write_unlock(&css_set_lock);
		return;
	}
420

421
	/* This css_set is dead. unlink it and release cgroup refcounts */
422
	hash_del(&cset->hlist);
423 424
	css_set_count--;

425
	list_for_each_entry_safe(link, tmp_link, &cset->cgrp_links, cgrp_link) {
426
		struct cgroup *cgrp = link->cgrp;
427

428 429
		list_del(&link->cset_link);
		list_del(&link->cgrp_link);
L
Li Zefan 已提交
430

431
		/* @cgrp can't go away while we're holding css_set_lock */
T
Tejun Heo 已提交
432
		if (list_empty(&cgrp->cset_links) && notify_on_release(cgrp)) {
433
			if (taskexit)
434 435
				set_bit(CGRP_RELEASABLE, &cgrp->flags);
			check_for_release(cgrp);
436
		}
437 438

		kfree(link);
439
	}
440 441

	write_unlock(&css_set_lock);
442
	kfree_rcu(cset, rcu_head);
443 444
}

445 446 447
/*
 * refcounted get/put for css_set objects
 */
448
static inline void get_css_set(struct css_set *cset)
449
{
450
	atomic_inc(&cset->refcount);
451 452
}

453
static inline void put_css_set(struct css_set *cset)
454
{
455
	__put_css_set(cset, 0);
456 457
}

458
static inline void put_css_set_taskexit(struct css_set *cset)
459
{
460
	__put_css_set(cset, 1);
461 462
}

463
/**
464
 * compare_css_sets - helper function for find_existing_css_set().
465 466
 * @cset: candidate css_set being tested
 * @old_cset: existing css_set for a task
467 468 469
 * @new_cgrp: cgroup that's being entered by the task
 * @template: desired set of css pointers in css_set (pre-calculated)
 *
L
Li Zefan 已提交
470
 * Returns true if "cset" matches "old_cset" except for the hierarchy
471 472
 * which "new_cgrp" belongs to, for which it should match "new_cgrp".
 */
473 474
static bool compare_css_sets(struct css_set *cset,
			     struct css_set *old_cset,
475 476 477 478 479
			     struct cgroup *new_cgrp,
			     struct cgroup_subsys_state *template[])
{
	struct list_head *l1, *l2;

480
	if (memcmp(template, cset->subsys, sizeof(cset->subsys))) {
481 482 483 484 485 486 487 488 489 490 491 492 493
		/* Not all subsystems matched */
		return false;
	}

	/*
	 * Compare cgroup pointers in order to distinguish between
	 * different cgroups in heirarchies with no subsystems. We
	 * could get by with just this check alone (and skip the
	 * memcmp above) but on most setups the memcmp check will
	 * avoid the need for this more expensive check on almost all
	 * candidates.
	 */

494 495
	l1 = &cset->cgrp_links;
	l2 = &old_cset->cgrp_links;
496
	while (1) {
497
		struct cgrp_cset_link *link1, *link2;
498
		struct cgroup *cgrp1, *cgrp2;
499 500 501 502

		l1 = l1->next;
		l2 = l2->next;
		/* See if we reached the end - both lists are equal length. */
503 504
		if (l1 == &cset->cgrp_links) {
			BUG_ON(l2 != &old_cset->cgrp_links);
505 506
			break;
		} else {
507
			BUG_ON(l2 == &old_cset->cgrp_links);
508 509
		}
		/* Locate the cgroups associated with these links. */
510 511 512 513
		link1 = list_entry(l1, struct cgrp_cset_link, cgrp_link);
		link2 = list_entry(l2, struct cgrp_cset_link, cgrp_link);
		cgrp1 = link1->cgrp;
		cgrp2 = link2->cgrp;
514
		/* Hierarchies should be linked in the same order. */
515
		BUG_ON(cgrp1->root != cgrp2->root);
516 517 518 519 520 521 522 523

		/*
		 * If this hierarchy is the hierarchy of the cgroup
		 * that's changing, then we need to check that this
		 * css_set points to the new cgroup; if it's any other
		 * hierarchy, then this css_set should point to the
		 * same cgroup as the old css_set.
		 */
524 525
		if (cgrp1->root == new_cgrp->root) {
			if (cgrp1 != new_cgrp)
526 527
				return false;
		} else {
528
			if (cgrp1 != cgrp2)
529 530 531 532 533 534
				return false;
		}
	}
	return true;
}

535 536 537 538 539
/**
 * find_existing_css_set - init css array and find the matching css_set
 * @old_cset: the css_set that we're using before the cgroup transition
 * @cgrp: the cgroup that we're moving into
 * @template: out param for the new set of csses, should be clear on entry
540
 */
541 542 543
static struct css_set *find_existing_css_set(struct css_set *old_cset,
					struct cgroup *cgrp,
					struct cgroup_subsys_state *template[])
544
{
545
	struct cgroupfs_root *root = cgrp->root;
546
	struct cgroup_subsys *ss;
547
	struct css_set *cset;
548
	unsigned long key;
549
	int i;
550

B
Ben Blum 已提交
551 552 553 554 555
	/*
	 * Build the set of subsystem state objects that we want to see in the
	 * new css_set. while subsystems can change globally, the entries here
	 * won't change, so no need for locking.
	 */
556
	for_each_subsys(ss, i) {
557
		if (root->subsys_mask & (1UL << i)) {
558 559 560
			/* Subsystem is in this hierarchy. So we want
			 * the subsystem state from the new
			 * cgroup */
561
			template[i] = cgroup_css(cgrp, ss);
562 563 564
		} else {
			/* Subsystem is not in this hierarchy, so we
			 * don't want to change the subsystem state */
565
			template[i] = old_cset->subsys[i];
566 567 568
		}
	}

569
	key = css_set_hash(template);
570 571
	hash_for_each_possible(css_set_table, cset, hlist, key) {
		if (!compare_css_sets(cset, old_cset, cgrp, template))
572 573 574
			continue;

		/* This css_set matches what we need */
575
		return cset;
576
	}
577 578 579 580 581

	/* No existing cgroup group matched */
	return NULL;
}

582
static void free_cgrp_cset_links(struct list_head *links_to_free)
583
{
584
	struct cgrp_cset_link *link, *tmp_link;
585

586 587
	list_for_each_entry_safe(link, tmp_link, links_to_free, cset_link) {
		list_del(&link->cset_link);
588 589 590 591
		kfree(link);
	}
}

592 593 594 595 596 597 598
/**
 * allocate_cgrp_cset_links - allocate cgrp_cset_links
 * @count: the number of links to allocate
 * @tmp_links: list_head the allocated links are put on
 *
 * Allocate @count cgrp_cset_link structures and chain them on @tmp_links
 * through ->cset_link.  Returns 0 on success or -errno.
599
 */
600
static int allocate_cgrp_cset_links(int count, struct list_head *tmp_links)
601
{
602
	struct cgrp_cset_link *link;
603
	int i;
604 605 606

	INIT_LIST_HEAD(tmp_links);

607
	for (i = 0; i < count; i++) {
608
		link = kzalloc(sizeof(*link), GFP_KERNEL);
609
		if (!link) {
610
			free_cgrp_cset_links(tmp_links);
611 612
			return -ENOMEM;
		}
613
		list_add(&link->cset_link, tmp_links);
614 615 616 617
	}
	return 0;
}

618 619
/**
 * link_css_set - a helper function to link a css_set to a cgroup
620
 * @tmp_links: cgrp_cset_link objects allocated by allocate_cgrp_cset_links()
621
 * @cset: the css_set to be linked
622 623
 * @cgrp: the destination cgroup
 */
624 625
static void link_css_set(struct list_head *tmp_links, struct css_set *cset,
			 struct cgroup *cgrp)
626
{
627
	struct cgrp_cset_link *link;
628

629 630 631
	BUG_ON(list_empty(tmp_links));
	link = list_first_entry(tmp_links, struct cgrp_cset_link, cset_link);
	link->cset = cset;
632
	link->cgrp = cgrp;
633
	list_move(&link->cset_link, &cgrp->cset_links);
634 635 636 637
	/*
	 * Always add links to the tail of the list so that the list
	 * is sorted by order of hierarchy creation
	 */
638
	list_add_tail(&link->cgrp_link, &cset->cgrp_links);
639 640
}

641 642 643 644 645 646 647
/**
 * find_css_set - return a new css_set with one cgroup updated
 * @old_cset: the baseline css_set
 * @cgrp: the cgroup to be updated
 *
 * Return a new css_set that's equivalent to @old_cset, but with @cgrp
 * substituted into the appropriate hierarchy.
648
 */
649 650
static struct css_set *find_css_set(struct css_set *old_cset,
				    struct cgroup *cgrp)
651
{
652
	struct cgroup_subsys_state *template[CGROUP_SUBSYS_COUNT] = { };
653
	struct css_set *cset;
654 655
	struct list_head tmp_links;
	struct cgrp_cset_link *link;
656
	unsigned long key;
657

658 659
	lockdep_assert_held(&cgroup_mutex);

660 661
	/* First see if we already have a cgroup group that matches
	 * the desired set */
662
	read_lock(&css_set_lock);
663 664 665
	cset = find_existing_css_set(old_cset, cgrp, template);
	if (cset)
		get_css_set(cset);
666
	read_unlock(&css_set_lock);
667

668 669
	if (cset)
		return cset;
670

671
	cset = kzalloc(sizeof(*cset), GFP_KERNEL);
672
	if (!cset)
673 674
		return NULL;

675
	/* Allocate all the cgrp_cset_link objects that we'll need */
676
	if (allocate_cgrp_cset_links(cgroup_root_count, &tmp_links) < 0) {
677
		kfree(cset);
678 679 680
		return NULL;
	}

681
	atomic_set(&cset->refcount, 1);
682
	INIT_LIST_HEAD(&cset->cgrp_links);
683 684
	INIT_LIST_HEAD(&cset->tasks);
	INIT_HLIST_NODE(&cset->hlist);
685 686 687

	/* Copy the set of subsystem state objects generated in
	 * find_existing_css_set() */
688
	memcpy(cset->subsys, template, sizeof(cset->subsys));
689 690 691

	write_lock(&css_set_lock);
	/* Add reference counts and links from the new css_set. */
692
	list_for_each_entry(link, &old_cset->cgrp_links, cgrp_link) {
693
		struct cgroup *c = link->cgrp;
694

695 696
		if (c->root == cgrp->root)
			c = cgrp;
697
		link_css_set(&tmp_links, cset, c);
698
	}
699

700
	BUG_ON(!list_empty(&tmp_links));
701 702

	css_set_count++;
703 704

	/* Add this cgroup group to the hash table */
705 706
	key = css_set_hash(cset->subsys);
	hash_add(css_set_table, &cset->hlist, key);
707

708 709
	write_unlock(&css_set_lock);

710
	return cset;
711 712
}

713 714 715 716 717 718 719
/*
 * Return the cgroup for "task" from the given hierarchy. Must be
 * called with cgroup_mutex held.
 */
static struct cgroup *task_cgroup_from_root(struct task_struct *task,
					    struct cgroupfs_root *root)
{
720
	struct css_set *cset;
721 722 723 724 725 726 727 728 729
	struct cgroup *res = NULL;

	BUG_ON(!mutex_is_locked(&cgroup_mutex));
	read_lock(&css_set_lock);
	/*
	 * No need to lock the task - since we hold cgroup_mutex the
	 * task can't change groups, so the only thing that can happen
	 * is that it exits and its css is set back to init_css_set.
	 */
730
	cset = task_css_set(task);
731
	if (cset == &init_css_set) {
732 733
		res = &root->top_cgroup;
	} else {
734 735 736
		struct cgrp_cset_link *link;

		list_for_each_entry(link, &cset->cgrp_links, cgrp_link) {
737
			struct cgroup *c = link->cgrp;
738

739 740 741 742 743 744 745 746 747 748 749
			if (c->root == root) {
				res = c;
				break;
			}
		}
	}
	read_unlock(&css_set_lock);
	BUG_ON(!res);
	return res;
}

750 751 752 753 754 755 756 757 758 759
/*
 * There is one global cgroup mutex. We also require taking
 * task_lock() when dereferencing a task's cgroup subsys pointers.
 * See "The task_lock() exception", at the end of this comment.
 *
 * A task must hold cgroup_mutex to modify cgroups.
 *
 * Any task can increment and decrement the count field without lock.
 * So in general, code holding cgroup_mutex can't rely on the count
 * field not changing.  However, if the count goes to zero, then only
760
 * cgroup_attach_task() can increment it again.  Because a count of zero
761 762 763 764 765 766 767 768 769 770 771 772 773
 * means that no tasks are currently attached, therefore there is no
 * way a task attached to that cgroup can fork (the other way to
 * increment the count).  So code holding cgroup_mutex can safely
 * assume that if the count is zero, it will stay zero. Similarly, if
 * a task holds cgroup_mutex on a cgroup with zero count, it
 * knows that the cgroup won't be removed, as cgroup_rmdir()
 * needs that mutex.
 *
 * The fork and exit callbacks cgroup_fork() and cgroup_exit(), don't
 * (usually) take cgroup_mutex.  These are the two most performance
 * critical pieces of code here.  The exception occurs on cgroup_exit(),
 * when a task in a notify_on_release cgroup exits.  Then cgroup_mutex
 * is taken, and if the cgroup count is zero, a usermode call made
L
Li Zefan 已提交
774 775
 * to the release agent with the name of the cgroup (path relative to
 * the root of cgroup file system) as the argument.
776 777 778 779 780 781 782 783 784 785 786
 *
 * A cgroup can only be deleted if both its 'count' of using tasks
 * is zero, and its list of 'children' cgroups is empty.  Since all
 * tasks in the system use _some_ cgroup, and since there is always at
 * least one task in the system (init, pid == 1), therefore, top_cgroup
 * always has either children cgroups and/or using tasks.  So we don't
 * need a special hack to ensure that top_cgroup cannot be deleted.
 *
 *	The task_lock() exception
 *
 * The need for this exception arises from the action of
787
 * cgroup_attach_task(), which overwrites one task's cgroup pointer with
L
Li Zefan 已提交
788
 * another.  It does so using cgroup_mutex, however there are
789 790 791
 * several performance critical places that need to reference
 * task->cgroup without the expense of grabbing a system global
 * mutex.  Therefore except as noted below, when dereferencing or, as
792
 * in cgroup_attach_task(), modifying a task's cgroup pointer we use
793 794 795 796
 * task_lock(), which acts on a spinlock (task->alloc_lock) already in
 * the task_struct routinely used for such matters.
 *
 * P.S.  One more locking exception.  RCU is used to guard the
797
 * update of a tasks cgroup pointer by cgroup_attach_task()
798 799 800 801 802 803 804 805 806
 */

/*
 * A couple of forward declarations required, due to cyclic reference loop:
 * cgroup_mkdir -> cgroup_create -> cgroup_populate_dir ->
 * cgroup_add_file -> cgroup_create_file -> cgroup_dir_inode_operations
 * -> cgroup_mkdir.
 */

807
static int cgroup_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode);
808
static int cgroup_rmdir(struct inode *unused_dir, struct dentry *dentry);
809
static int cgroup_populate_dir(struct cgroup *cgrp, unsigned long subsys_mask);
810
static const struct inode_operations cgroup_dir_inode_operations;
811
static const struct file_operations proc_cgroupstats_operations;
812 813

static struct backing_dev_info cgroup_backing_dev_info = {
814
	.name		= "cgroup",
815
	.capabilities	= BDI_CAP_NO_ACCT_AND_WRITEBACK,
816
};
817

A
Al Viro 已提交
818
static struct inode *cgroup_new_inode(umode_t mode, struct super_block *sb)
819 820 821 822
{
	struct inode *inode = new_inode(sb);

	if (inode) {
823
		inode->i_ino = get_next_ino();
824
		inode->i_mode = mode;
825 826
		inode->i_uid = current_fsuid();
		inode->i_gid = current_fsgid();
827 828 829 830 831 832
		inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
		inode->i_mapping->backing_dev_info = &cgroup_backing_dev_info;
	}
	return inode;
}

833 834 835 836 837 838 839 840 841 842 843
static struct cgroup_name *cgroup_alloc_name(struct dentry *dentry)
{
	struct cgroup_name *name;

	name = kmalloc(sizeof(*name) + dentry->d_name.len + 1, GFP_KERNEL);
	if (!name)
		return NULL;
	strcpy(name->name, dentry->d_name.name);
	return name;
}

844 845
static void cgroup_free_fn(struct work_struct *work)
{
846
	struct cgroup *cgrp = container_of(work, struct cgroup, destroy_work);
847 848 849 850 851

	mutex_lock(&cgroup_mutex);
	cgrp->root->number_of_cgroups--;
	mutex_unlock(&cgroup_mutex);

852 853 854 855 856 857 858
	/*
	 * We get a ref to the parent's dentry, and put the ref when
	 * this cgroup is being freed, so it's guaranteed that the
	 * parent won't be destroyed before its children.
	 */
	dput(cgrp->parent->dentry);

859 860
	/*
	 * Drop the active superblock reference that we took when we
861 862
	 * created the cgroup. This will free cgrp->root, if we are
	 * holding the last reference to @sb.
863 864 865 866 867 868 869 870 871 872 873
	 */
	deactivate_super(cgrp->root->sb);

	/*
	 * if we're getting rid of the cgroup, refcount should ensure
	 * that there are no pidlists left.
	 */
	BUG_ON(!list_empty(&cgrp->pidlists));

	simple_xattrs_free(&cgrp->xattrs);

874
	kfree(rcu_dereference_raw(cgrp->name));
875 876 877 878 879 880 881
	kfree(cgrp);
}

static void cgroup_free_rcu(struct rcu_head *head)
{
	struct cgroup *cgrp = container_of(head, struct cgroup, rcu_head);

882
	INIT_WORK(&cgrp->destroy_work, cgroup_free_fn);
883
	queue_work(cgroup_destroy_wq, &cgrp->destroy_work);
884 885
}

886 887 888 889
static void cgroup_diput(struct dentry *dentry, struct inode *inode)
{
	/* is dentry a directory ? if so, kfree() associated cgroup */
	if (S_ISDIR(inode->i_mode)) {
890
		struct cgroup *cgrp = dentry->d_fsdata;
891

892
		BUG_ON(!(cgroup_is_dead(cgrp)));
893
		call_rcu(&cgrp->rcu_head, cgroup_free_rcu);
T
Tejun Heo 已提交
894 895 896 897 898 899 900
	} else {
		struct cfent *cfe = __d_cfe(dentry);
		struct cgroup *cgrp = dentry->d_parent->d_fsdata;

		WARN_ONCE(!list_empty(&cfe->node) &&
			  cgrp != &cgrp->root->top_cgroup,
			  "cfe still linked for %s\n", cfe->type->name);
L
Li Zefan 已提交
901
		simple_xattrs_free(&cfe->xattrs);
T
Tejun Heo 已提交
902
		kfree(cfe);
903 904 905 906 907 908 909 910 911 912 913 914 915
	}
	iput(inode);
}

static void remove_dir(struct dentry *d)
{
	struct dentry *parent = dget(d->d_parent);

	d_delete(d);
	simple_rmdir(parent->d_inode, d);
	dput(parent);
}

916
static void cgroup_rm_file(struct cgroup *cgrp, const struct cftype *cft)
T
Tejun Heo 已提交
917 918 919 920 921 922
{
	struct cfent *cfe;

	lockdep_assert_held(&cgrp->dentry->d_inode->i_mutex);
	lockdep_assert_held(&cgroup_mutex);

923 924 925 926
	/*
	 * If we're doing cleanup due to failure of cgroup_create(),
	 * the corresponding @cfe may not exist.
	 */
T
Tejun Heo 已提交
927 928 929 930 931 932 933 934
	list_for_each_entry(cfe, &cgrp->files, node) {
		struct dentry *d = cfe->dentry;

		if (cft && cfe->type != cft)
			continue;

		dget(d);
		d_delete(d);
935
		simple_unlink(cgrp->dentry->d_inode, d);
T
Tejun Heo 已提交
936 937 938
		list_del_init(&cfe->node);
		dput(d);

939
		break;
940
	}
T
Tejun Heo 已提交
941 942
}

943
/**
944
 * cgroup_clear_dir - remove subsys files in a cgroup directory
945
 * @cgrp: target cgroup
946 947
 * @subsys_mask: mask of the subsystem ids whose files should be removed
 */
948
static void cgroup_clear_dir(struct cgroup *cgrp, unsigned long subsys_mask)
T
Tejun Heo 已提交
949
{
950
	struct cgroup_subsys *ss;
951
	int i;
T
Tejun Heo 已提交
952

953
	for_each_subsys(ss, i) {
954
		struct cftype_set *set;
955 956

		if (!test_bit(i, &subsys_mask))
957 958
			continue;
		list_for_each_entry(set, &ss->cftsets, node)
959
			cgroup_addrm_files(cgrp, set->cfts, false);
960
	}
961 962 963 964 965 966 967
}

/*
 * NOTE : the dentry must have been dget()'ed
 */
static void cgroup_d_remove_dir(struct dentry *dentry)
{
N
Nick Piggin 已提交
968
	struct dentry *parent;
969

N
Nick Piggin 已提交
970 971
	parent = dentry->d_parent;
	spin_lock(&parent->d_lock);
972
	spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
973
	list_del_init(&dentry->d_u.d_child);
N
Nick Piggin 已提交
974 975
	spin_unlock(&dentry->d_lock);
	spin_unlock(&parent->d_lock);
976 977 978
	remove_dir(dentry);
}

B
Ben Blum 已提交
979
/*
B
Ben Blum 已提交
980 981 982
 * Call with cgroup_mutex held. Drops reference counts on modules, including
 * any duplicate ones that parse_cgroupfs_options took. If this function
 * returns an error, no reference counts are touched.
B
Ben Blum 已提交
983
 */
984
static int rebind_subsystems(struct cgroupfs_root *root,
985
			     unsigned long added_mask, unsigned removed_mask)
986
{
987
	struct cgroup *cgrp = &root->top_cgroup;
988
	struct cgroup_subsys *ss;
989
	unsigned long pinned = 0;
990
	int i, ret;
991

B
Ben Blum 已提交
992
	BUG_ON(!mutex_is_locked(&cgroup_mutex));
T
Tejun Heo 已提交
993
	BUG_ON(!mutex_is_locked(&cgroup_root_mutex));
B
Ben Blum 已提交
994

995
	/* Check that any added subsystems are currently free */
996
	for_each_subsys(ss, i) {
997
		if (!(added_mask & (1 << i)))
998
			continue;
999

1000
		/* is the subsystem mounted elsewhere? */
1001
		if (ss->root != &cgroup_dummy_root) {
1002 1003 1004 1005 1006 1007 1008 1009
			ret = -EBUSY;
			goto out_put;
		}

		/* pin the module */
		if (!try_module_get(ss->module)) {
			ret = -ENOENT;
			goto out_put;
1010
		}
1011
		pinned |= 1 << i;
1012 1013
	}

1014 1015 1016 1017
	/* subsys could be missing if unloaded between parsing and here */
	if (added_mask != pinned) {
		ret = -ENOENT;
		goto out_put;
1018 1019
	}

1020 1021
	ret = cgroup_populate_dir(cgrp, added_mask);
	if (ret)
1022
		goto out_put;
1023 1024 1025 1026 1027 1028

	/*
	 * Nothing can fail from this point on.  Remove files for the
	 * removed subsystems and rebind each subsystem.
	 */
	cgroup_clear_dir(cgrp, removed_mask);
1029

1030
	for_each_subsys(ss, i) {
1031
		unsigned long bit = 1UL << i;
1032

1033
		if (bit & added_mask) {
1034
			/* We're binding this subsystem to this hierarchy */
1035 1036 1037
			BUG_ON(cgroup_css(cgrp, ss));
			BUG_ON(!cgroup_css(cgroup_dummy_top, ss));
			BUG_ON(cgroup_css(cgroup_dummy_top, ss)->cgroup != cgroup_dummy_top);
1038

1039
			rcu_assign_pointer(cgrp->subsys[i],
1040 1041
					   cgroup_css(cgroup_dummy_top, ss));
			cgroup_css(cgrp, ss)->cgroup = cgrp;
1042

1043
			list_move(&ss->sibling, &root->subsys_list);
1044
			ss->root = root;
1045
			if (ss->bind)
1046
				ss->bind(cgroup_css(cgrp, ss));
1047

B
Ben Blum 已提交
1048
			/* refcount was already taken, and we're keeping it */
1049
			root->subsys_mask |= bit;
1050
		} else if (bit & removed_mask) {
1051
			/* We're removing this subsystem */
1052 1053
			BUG_ON(cgroup_css(cgrp, ss) != cgroup_css(cgroup_dummy_top, ss));
			BUG_ON(cgroup_css(cgrp, ss)->cgroup != cgrp);
1054

1055
			if (ss->bind)
1056
				ss->bind(cgroup_css(cgroup_dummy_top, ss));
1057

1058
			cgroup_css(cgroup_dummy_top, ss)->cgroup = cgroup_dummy_top;
1059 1060
			RCU_INIT_POINTER(cgrp->subsys[i], NULL);

1061 1062
			cgroup_subsys[i]->root = &cgroup_dummy_root;
			list_move(&ss->sibling, &cgroup_dummy_root.subsys_list);
1063

B
Ben Blum 已提交
1064 1065
			/* subsystem is now free - drop reference on module */
			module_put(ss->module);
1066
			root->subsys_mask &= ~bit;
1067 1068 1069
		}
	}

1070 1071 1072 1073 1074 1075
	/*
	 * Mark @root has finished binding subsystems.  @root->subsys_mask
	 * now matches the bound subsystems.
	 */
	root->flags |= CGRP_ROOT_SUBSYS_BOUND;

1076
	return 0;
1077 1078 1079 1080 1081 1082

out_put:
	for_each_subsys(ss, i)
		if (pinned & (1 << i))
			module_put(ss->module);
	return ret;
1083 1084
}

1085
static int cgroup_show_options(struct seq_file *seq, struct dentry *dentry)
1086
{
1087
	struct cgroupfs_root *root = dentry->d_sb->s_fs_info;
1088 1089
	struct cgroup_subsys *ss;

T
Tejun Heo 已提交
1090
	mutex_lock(&cgroup_root_mutex);
1091
	for_each_root_subsys(root, ss)
1092
		seq_printf(seq, ",%s", ss->name);
1093 1094
	if (root->flags & CGRP_ROOT_SANE_BEHAVIOR)
		seq_puts(seq, ",sane_behavior");
1095
	if (root->flags & CGRP_ROOT_NOPREFIX)
1096
		seq_puts(seq, ",noprefix");
1097
	if (root->flags & CGRP_ROOT_XATTR)
A
Aristeu Rozanski 已提交
1098
		seq_puts(seq, ",xattr");
1099 1100
	if (strlen(root->release_agent_path))
		seq_printf(seq, ",release_agent=%s", root->release_agent_path);
1101
	if (test_bit(CGRP_CPUSET_CLONE_CHILDREN, &root->top_cgroup.flags))
1102
		seq_puts(seq, ",clone_children");
1103 1104
	if (strlen(root->name))
		seq_printf(seq, ",name=%s", root->name);
T
Tejun Heo 已提交
1105
	mutex_unlock(&cgroup_root_mutex);
1106 1107 1108 1109
	return 0;
}

struct cgroup_sb_opts {
1110
	unsigned long subsys_mask;
1111
	unsigned long flags;
1112
	char *release_agent;
1113
	bool cpuset_clone_children;
1114
	char *name;
1115 1116
	/* User explicitly requested empty subsystem */
	bool none;
1117 1118

	struct cgroupfs_root *new_root;
1119

1120 1121
};

B
Ben Blum 已提交
1122
/*
1123 1124 1125 1126
 * Convert a hierarchy specifier into a bitmask of subsystems and
 * flags. Call with cgroup_mutex held to protect the cgroup_subsys[]
 * array. This function takes refcounts on subsystems to be used, unless it
 * returns error, in which case no refcounts are taken.
B
Ben Blum 已提交
1127
 */
B
Ben Blum 已提交
1128
static int parse_cgroupfs_options(char *data, struct cgroup_sb_opts *opts)
1129
{
1130 1131
	char *token, *o = data;
	bool all_ss = false, one_ss = false;
1132
	unsigned long mask = (unsigned long)-1;
1133 1134
	struct cgroup_subsys *ss;
	int i;
1135

B
Ben Blum 已提交
1136 1137
	BUG_ON(!mutex_is_locked(&cgroup_mutex));

1138 1139 1140
#ifdef CONFIG_CPUSETS
	mask = ~(1UL << cpuset_subsys_id);
#endif
1141

1142
	memset(opts, 0, sizeof(*opts));
1143 1144 1145 1146

	while ((token = strsep(&o, ",")) != NULL) {
		if (!*token)
			return -EINVAL;
1147
		if (!strcmp(token, "none")) {
1148 1149
			/* Explicitly have no subsystems */
			opts->none = true;
1150 1151 1152 1153 1154 1155 1156 1157 1158
			continue;
		}
		if (!strcmp(token, "all")) {
			/* Mutually exclusive option 'all' + subsystem name */
			if (one_ss)
				return -EINVAL;
			all_ss = true;
			continue;
		}
1159 1160 1161 1162
		if (!strcmp(token, "__DEVEL__sane_behavior")) {
			opts->flags |= CGRP_ROOT_SANE_BEHAVIOR;
			continue;
		}
1163
		if (!strcmp(token, "noprefix")) {
1164
			opts->flags |= CGRP_ROOT_NOPREFIX;
1165 1166 1167
			continue;
		}
		if (!strcmp(token, "clone_children")) {
1168
			opts->cpuset_clone_children = true;
1169 1170
			continue;
		}
A
Aristeu Rozanski 已提交
1171
		if (!strcmp(token, "xattr")) {
1172
			opts->flags |= CGRP_ROOT_XATTR;
A
Aristeu Rozanski 已提交
1173 1174
			continue;
		}
1175
		if (!strncmp(token, "release_agent=", 14)) {
1176 1177 1178
			/* Specifying two release agents is forbidden */
			if (opts->release_agent)
				return -EINVAL;
1179
			opts->release_agent =
1180
				kstrndup(token + 14, PATH_MAX - 1, GFP_KERNEL);
1181 1182
			if (!opts->release_agent)
				return -ENOMEM;
1183 1184 1185
			continue;
		}
		if (!strncmp(token, "name=", 5)) {
1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202
			const char *name = token + 5;
			/* Can't specify an empty name */
			if (!strlen(name))
				return -EINVAL;
			/* Must match [\w.-]+ */
			for (i = 0; i < strlen(name); i++) {
				char c = name[i];
				if (isalnum(c))
					continue;
				if ((c == '.') || (c == '-') || (c == '_'))
					continue;
				return -EINVAL;
			}
			/* Specifying two names is forbidden */
			if (opts->name)
				return -EINVAL;
			opts->name = kstrndup(name,
1203
					      MAX_CGROUP_ROOT_NAMELEN - 1,
1204 1205 1206
					      GFP_KERNEL);
			if (!opts->name)
				return -ENOMEM;
1207 1208 1209 1210

			continue;
		}

1211
		for_each_subsys(ss, i) {
1212 1213 1214 1215 1216 1217 1218 1219
			if (strcmp(token, ss->name))
				continue;
			if (ss->disabled)
				continue;

			/* Mutually exclusive option 'all' + subsystem name */
			if (all_ss)
				return -EINVAL;
1220
			set_bit(i, &opts->subsys_mask);
1221 1222 1223 1224 1225 1226 1227 1228 1229 1230
			one_ss = true;

			break;
		}
		if (i == CGROUP_SUBSYS_COUNT)
			return -ENOENT;
	}

	/*
	 * If the 'all' option was specified select all the subsystems,
1231 1232
	 * otherwise if 'none', 'name=' and a subsystem name options
	 * were not specified, let's default to 'all'
1233
	 */
1234 1235 1236 1237
	if (all_ss || (!one_ss && !opts->none && !opts->name))
		for_each_subsys(ss, i)
			if (!ss->disabled)
				set_bit(i, &opts->subsys_mask);
1238

1239 1240
	/* Consistency checks */

1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254
	if (opts->flags & CGRP_ROOT_SANE_BEHAVIOR) {
		pr_warning("cgroup: sane_behavior: this is still under development and its behaviors will change, proceed at your own risk\n");

		if (opts->flags & CGRP_ROOT_NOPREFIX) {
			pr_err("cgroup: sane_behavior: noprefix is not allowed\n");
			return -EINVAL;
		}

		if (opts->cpuset_clone_children) {
			pr_err("cgroup: sane_behavior: clone_children is not allowed\n");
			return -EINVAL;
		}
	}

1255 1256 1257 1258 1259
	/*
	 * Option noprefix was introduced just for backward compatibility
	 * with the old cpuset, so we allow noprefix only if mounting just
	 * the cpuset subsystem.
	 */
1260
	if ((opts->flags & CGRP_ROOT_NOPREFIX) && (opts->subsys_mask & mask))
1261 1262
		return -EINVAL;

1263 1264

	/* Can't specify "none" and some subsystems */
1265
	if (opts->subsys_mask && opts->none)
1266 1267 1268 1269 1270 1271
		return -EINVAL;

	/*
	 * We either have to specify by name or by subsystems. (So all
	 * empty hierarchies must have a name).
	 */
1272
	if (!opts->subsys_mask && !opts->name)
1273 1274 1275 1276 1277 1278 1279 1280 1281
		return -EINVAL;

	return 0;
}

static int cgroup_remount(struct super_block *sb, int *flags, char *data)
{
	int ret = 0;
	struct cgroupfs_root *root = sb->s_fs_info;
1282
	struct cgroup *cgrp = &root->top_cgroup;
1283
	struct cgroup_sb_opts opts;
1284
	unsigned long added_mask, removed_mask;
1285

1286 1287 1288 1289 1290
	if (root->flags & CGRP_ROOT_SANE_BEHAVIOR) {
		pr_err("cgroup: sane_behavior: remount is not allowed\n");
		return -EINVAL;
	}

1291
	mutex_lock(&cgrp->dentry->d_inode->i_mutex);
1292
	mutex_lock(&cgroup_mutex);
T
Tejun Heo 已提交
1293
	mutex_lock(&cgroup_root_mutex);
1294 1295 1296 1297 1298 1299

	/* See what subsystems are wanted */
	ret = parse_cgroupfs_options(data, &opts);
	if (ret)
		goto out_unlock;

1300
	if (opts.subsys_mask != root->subsys_mask || opts.release_agent)
1301 1302 1303
		pr_warning("cgroup: option changes via remount are deprecated (pid=%d comm=%s)\n",
			   task_tgid_nr(current), current->comm);

1304 1305
	added_mask = opts.subsys_mask & ~root->subsys_mask;
	removed_mask = root->subsys_mask & ~opts.subsys_mask;
1306

B
Ben Blum 已提交
1307
	/* Don't allow flags or name to change at remount */
1308
	if (((opts.flags ^ root->flags) & CGRP_ROOT_OPTION_MASK) ||
B
Ben Blum 已提交
1309
	    (opts.name && strcmp(opts.name, root->name))) {
1310 1311 1312
		pr_err("cgroup: option or name mismatch, new: 0x%lx \"%s\", old: 0x%lx \"%s\"\n",
		       opts.flags & CGRP_ROOT_OPTION_MASK, opts.name ?: "",
		       root->flags & CGRP_ROOT_OPTION_MASK, root->name);
1313 1314 1315 1316
		ret = -EINVAL;
		goto out_unlock;
	}

1317 1318 1319
	/* remounting is not allowed for populated hierarchies */
	if (root->number_of_cgroups > 1) {
		ret = -EBUSY;
1320
		goto out_unlock;
B
Ben Blum 已提交
1321
	}
1322

1323
	ret = rebind_subsystems(root, added_mask, removed_mask);
1324
	if (ret)
1325
		goto out_unlock;
1326

1327 1328
	if (opts.release_agent)
		strcpy(root->release_agent_path, opts.release_agent);
1329
 out_unlock:
1330
	kfree(opts.release_agent);
1331
	kfree(opts.name);
T
Tejun Heo 已提交
1332
	mutex_unlock(&cgroup_root_mutex);
1333
	mutex_unlock(&cgroup_mutex);
1334
	mutex_unlock(&cgrp->dentry->d_inode->i_mutex);
1335 1336 1337
	return ret;
}

1338
static const struct super_operations cgroup_ops = {
1339 1340 1341 1342 1343 1344
	.statfs = simple_statfs,
	.drop_inode = generic_delete_inode,
	.show_options = cgroup_show_options,
	.remount_fs = cgroup_remount,
};

1345 1346 1347 1348
static void init_cgroup_housekeeping(struct cgroup *cgrp)
{
	INIT_LIST_HEAD(&cgrp->sibling);
	INIT_LIST_HEAD(&cgrp->children);
T
Tejun Heo 已提交
1349
	INIT_LIST_HEAD(&cgrp->files);
1350
	INIT_LIST_HEAD(&cgrp->cset_links);
1351
	INIT_LIST_HEAD(&cgrp->release_list);
1352 1353
	INIT_LIST_HEAD(&cgrp->pidlists);
	mutex_init(&cgrp->pidlist_mutex);
T
Tejun Heo 已提交
1354
	cgrp->dummy_css.cgroup = cgrp;
1355 1356
	INIT_LIST_HEAD(&cgrp->event_list);
	spin_lock_init(&cgrp->event_list_lock);
A
Aristeu Rozanski 已提交
1357
	simple_xattrs_init(&cgrp->xattrs);
1358
}
1359

1360 1361
static void init_cgroup_root(struct cgroupfs_root *root)
{
1362
	struct cgroup *cgrp = &root->top_cgroup;
1363

1364 1365 1366
	INIT_LIST_HEAD(&root->subsys_list);
	INIT_LIST_HEAD(&root->root_list);
	root->number_of_cgroups = 1;
1367
	cgrp->root = root;
1368
	RCU_INIT_POINTER(cgrp->name, &root_cgroup_name);
1369
	init_cgroup_housekeeping(cgrp);
1370
	idr_init(&root->cgroup_idr);
1371 1372
}

1373
static int cgroup_init_root_id(struct cgroupfs_root *root, int start, int end)
1374
{
1375
	int id;
1376

T
Tejun Heo 已提交
1377 1378 1379
	lockdep_assert_held(&cgroup_mutex);
	lockdep_assert_held(&cgroup_root_mutex);

1380 1381
	id = idr_alloc_cyclic(&cgroup_hierarchy_idr, root, start, end,
			      GFP_KERNEL);
1382 1383 1384 1385
	if (id < 0)
		return id;

	root->hierarchy_id = id;
1386 1387 1388 1389 1390
	return 0;
}

static void cgroup_exit_root_id(struct cgroupfs_root *root)
{
T
Tejun Heo 已提交
1391 1392 1393
	lockdep_assert_held(&cgroup_mutex);
	lockdep_assert_held(&cgroup_root_mutex);

1394
	if (root->hierarchy_id) {
1395
		idr_remove(&cgroup_hierarchy_idr, root->hierarchy_id);
1396 1397
		root->hierarchy_id = 0;
	}
1398 1399
}

1400 1401
static int cgroup_test_super(struct super_block *sb, void *data)
{
1402
	struct cgroup_sb_opts *opts = data;
1403 1404
	struct cgroupfs_root *root = sb->s_fs_info;

1405 1406 1407
	/* If we asked for a name then it must match */
	if (opts->name && strcmp(opts->name, root->name))
		return 0;
1408

1409 1410 1411 1412
	/*
	 * If we asked for subsystems (or explicitly for no
	 * subsystems) then they must match
	 */
1413 1414
	if ((opts->subsys_mask || opts->none)
	    && (opts->subsys_mask != root->subsys_mask))
1415 1416 1417 1418 1419
		return 0;

	return 1;
}

1420 1421 1422 1423
static struct cgroupfs_root *cgroup_root_from_opts(struct cgroup_sb_opts *opts)
{
	struct cgroupfs_root *root;

1424
	if (!opts->subsys_mask && !opts->none)
1425 1426 1427 1428 1429 1430 1431
		return NULL;

	root = kzalloc(sizeof(*root), GFP_KERNEL);
	if (!root)
		return ERR_PTR(-ENOMEM);

	init_cgroup_root(root);
1432

1433 1434 1435 1436 1437 1438 1439 1440
	/*
	 * We need to set @root->subsys_mask now so that @root can be
	 * matched by cgroup_test_super() before it finishes
	 * initialization; otherwise, competing mounts with the same
	 * options may try to bind the same subsystems instead of waiting
	 * for the first one leading to unexpected mount errors.
	 * SUBSYS_BOUND will be set once actual binding is complete.
	 */
1441
	root->subsys_mask = opts->subsys_mask;
1442 1443 1444 1445 1446
	root->flags = opts->flags;
	if (opts->release_agent)
		strcpy(root->release_agent_path, opts->release_agent);
	if (opts->name)
		strcpy(root->name, opts->name);
1447 1448
	if (opts->cpuset_clone_children)
		set_bit(CGRP_CPUSET_CLONE_CHILDREN, &root->top_cgroup.flags);
1449 1450 1451
	return root;
}

1452
static void cgroup_free_root(struct cgroupfs_root *root)
1453
{
1454 1455 1456
	if (root) {
		/* hierarhcy ID shoulid already have been released */
		WARN_ON_ONCE(root->hierarchy_id);
1457

1458
		idr_destroy(&root->cgroup_idr);
1459 1460
		kfree(root);
	}
1461 1462
}

1463 1464 1465
static int cgroup_set_super(struct super_block *sb, void *data)
{
	int ret;
1466 1467 1468 1469 1470 1471
	struct cgroup_sb_opts *opts = data;

	/* If we don't have a new root, we can't set up a new sb */
	if (!opts->new_root)
		return -EINVAL;

1472
	BUG_ON(!opts->subsys_mask && !opts->none);
1473 1474 1475 1476 1477

	ret = set_anon_super(sb, NULL);
	if (ret)
		return ret;

1478 1479
	sb->s_fs_info = opts->new_root;
	opts->new_root->sb = sb;
1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490

	sb->s_blocksize = PAGE_CACHE_SIZE;
	sb->s_blocksize_bits = PAGE_CACHE_SHIFT;
	sb->s_magic = CGROUP_SUPER_MAGIC;
	sb->s_op = &cgroup_ops;

	return 0;
}

static int cgroup_get_rootdir(struct super_block *sb)
{
A
Al Viro 已提交
1491 1492
	static const struct dentry_operations cgroup_dops = {
		.d_iput = cgroup_diput,
1493
		.d_delete = always_delete_dentry,
A
Al Viro 已提交
1494 1495
	};

1496 1497 1498 1499 1500 1501 1502 1503 1504 1505
	struct inode *inode =
		cgroup_new_inode(S_IFDIR | S_IRUGO | S_IXUGO | S_IWUSR, sb);

	if (!inode)
		return -ENOMEM;

	inode->i_fop = &simple_dir_operations;
	inode->i_op = &cgroup_dir_inode_operations;
	/* directories start off with i_nlink == 2 (for "." entry) */
	inc_nlink(inode);
1506 1507
	sb->s_root = d_make_root(inode);
	if (!sb->s_root)
1508
		return -ENOMEM;
A
Al Viro 已提交
1509 1510
	/* for everything else we want ->d_op set */
	sb->s_d_op = &cgroup_dops;
1511 1512 1513
	return 0;
}

A
Al Viro 已提交
1514
static struct dentry *cgroup_mount(struct file_system_type *fs_type,
1515
			 int flags, const char *unused_dev_name,
A
Al Viro 已提交
1516
			 void *data)
1517 1518
{
	struct cgroup_sb_opts opts;
1519
	struct cgroupfs_root *root;
1520 1521
	int ret = 0;
	struct super_block *sb;
1522
	struct cgroupfs_root *new_root;
1523
	struct list_head tmp_links;
T
Tejun Heo 已提交
1524
	struct inode *inode;
1525
	const struct cred *cred;
1526 1527

	/* First find the desired set of subsystems */
B
Ben Blum 已提交
1528
	mutex_lock(&cgroup_mutex);
1529
	ret = parse_cgroupfs_options(data, &opts);
B
Ben Blum 已提交
1530
	mutex_unlock(&cgroup_mutex);
1531 1532
	if (ret)
		goto out_err;
1533

1534 1535 1536 1537 1538 1539 1540
	/*
	 * Allocate a new cgroup root. We may not need it if we're
	 * reusing an existing hierarchy.
	 */
	new_root = cgroup_root_from_opts(&opts);
	if (IS_ERR(new_root)) {
		ret = PTR_ERR(new_root);
1541
		goto out_err;
1542
	}
1543
	opts.new_root = new_root;
1544

1545
	/* Locate an existing or new sb for this hierarchy */
D
David Howells 已提交
1546
	sb = sget(fs_type, cgroup_test_super, cgroup_set_super, 0, &opts);
1547
	if (IS_ERR(sb)) {
1548
		ret = PTR_ERR(sb);
1549
		cgroup_free_root(opts.new_root);
1550
		goto out_err;
1551 1552
	}

1553 1554 1555 1556
	root = sb->s_fs_info;
	BUG_ON(!root);
	if (root == opts.new_root) {
		/* We used the new root structure, so this is a new hierarchy */
1557
		struct cgroup *root_cgrp = &root->top_cgroup;
1558
		struct cgroupfs_root *existing_root;
1559
		int i;
1560
		struct css_set *cset;
1561 1562 1563 1564 1565 1566

		BUG_ON(sb->s_root != NULL);

		ret = cgroup_get_rootdir(sb);
		if (ret)
			goto drop_new_super;
1567
		inode = sb->s_root->d_inode;
1568

1569
		mutex_lock(&inode->i_mutex);
1570
		mutex_lock(&cgroup_mutex);
T
Tejun Heo 已提交
1571
		mutex_lock(&cgroup_root_mutex);
1572

1573 1574 1575 1576 1577
		root_cgrp->id = idr_alloc(&root->cgroup_idr, root_cgrp,
					   0, 1, GFP_KERNEL);
		if (root_cgrp->id < 0)
			goto unlock_drop;

T
Tejun Heo 已提交
1578 1579 1580 1581 1582 1583
		/* Check for name clashes with existing mounts */
		ret = -EBUSY;
		if (strlen(root->name))
			for_each_active_root(existing_root)
				if (!strcmp(existing_root->name, root->name))
					goto unlock_drop;
1584

1585 1586 1587 1588 1589 1590 1591
		/*
		 * We're accessing css_set_count without locking
		 * css_set_lock here, but that's OK - it can only be
		 * increased by someone holding cgroup_lock, and
		 * that's us. The worst that can happen is that we
		 * have some link structures left over
		 */
1592
		ret = allocate_cgrp_cset_links(css_set_count, &tmp_links);
T
Tejun Heo 已提交
1593 1594
		if (ret)
			goto unlock_drop;
1595

1596 1597
		/* ID 0 is reserved for dummy root, 1 for unified hierarchy */
		ret = cgroup_init_root_id(root, 2, 0);
1598 1599 1600
		if (ret)
			goto unlock_drop;

1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612
		sb->s_root->d_fsdata = root_cgrp;
		root_cgrp->dentry = sb->s_root;

		/*
		 * We're inside get_sb() and will call lookup_one_len() to
		 * create the root files, which doesn't work if SELinux is
		 * in use.  The following cred dancing somehow works around
		 * it.  See 2ce9738ba ("cgroupfs: use init_cred when
		 * populating new cgroupfs mount") for more details.
		 */
		cred = override_creds(&init_cred);

1613
		ret = cgroup_addrm_files(root_cgrp, cgroup_base_files, true);
1614 1615 1616
		if (ret)
			goto rm_base_files;

1617
		ret = rebind_subsystems(root, root->subsys_mask, 0);
1618 1619 1620 1621 1622
		if (ret)
			goto rm_base_files;

		revert_creds(cred);

B
Ben Blum 已提交
1623 1624 1625 1626 1627
		/*
		 * There must be no failure case after here, since rebinding
		 * takes care of subsystems' refcounts, which are explicitly
		 * dropped in the failure exit path.
		 */
1628

1629 1630
		list_add(&root->root_list, &cgroup_roots);
		cgroup_root_count++;
1631

1632 1633 1634
		/* Link the top cgroup in this hierarchy into all
		 * the css_set objects */
		write_lock(&css_set_lock);
1635
		hash_for_each(css_set_table, i, cset, hlist)
1636
			link_css_set(&tmp_links, cset, root_cgrp);
1637 1638
		write_unlock(&css_set_lock);

1639
		free_cgrp_cset_links(&tmp_links);
1640

1641
		BUG_ON(!list_empty(&root_cgrp->children));
1642 1643
		BUG_ON(root->number_of_cgroups != 1);

T
Tejun Heo 已提交
1644
		mutex_unlock(&cgroup_root_mutex);
1645
		mutex_unlock(&cgroup_mutex);
1646
		mutex_unlock(&inode->i_mutex);
1647 1648 1649 1650 1651
	} else {
		/*
		 * We re-used an existing hierarchy - the new root (if
		 * any) is not needed
		 */
1652
		cgroup_free_root(opts.new_root);
1653

1654
		if ((root->flags ^ opts.flags) & CGRP_ROOT_OPTION_MASK) {
1655 1656 1657 1658 1659 1660 1661
			if ((root->flags | opts.flags) & CGRP_ROOT_SANE_BEHAVIOR) {
				pr_err("cgroup: sane_behavior: new mount options should match the existing superblock\n");
				ret = -EINVAL;
				goto drop_new_super;
			} else {
				pr_warning("cgroup: new mount options do not match the existing superblock, will be ignored\n");
			}
1662
		}
1663 1664
	}

1665 1666
	kfree(opts.release_agent);
	kfree(opts.name);
A
Al Viro 已提交
1667
	return dget(sb->s_root);
1668

1669 1670
 rm_base_files:
	free_cgrp_cset_links(&tmp_links);
1671
	cgroup_addrm_files(&root->top_cgroup, cgroup_base_files, false);
1672
	revert_creds(cred);
T
Tejun Heo 已提交
1673
 unlock_drop:
1674
	cgroup_exit_root_id(root);
T
Tejun Heo 已提交
1675 1676 1677
	mutex_unlock(&cgroup_root_mutex);
	mutex_unlock(&cgroup_mutex);
	mutex_unlock(&inode->i_mutex);
1678
 drop_new_super:
1679
	deactivate_locked_super(sb);
1680 1681 1682
 out_err:
	kfree(opts.release_agent);
	kfree(opts.name);
A
Al Viro 已提交
1683
	return ERR_PTR(ret);
1684 1685 1686 1687
}

static void cgroup_kill_sb(struct super_block *sb) {
	struct cgroupfs_root *root = sb->s_fs_info;
1688
	struct cgroup *cgrp = &root->top_cgroup;
1689
	struct cgrp_cset_link *link, *tmp_link;
1690 1691 1692 1693 1694
	int ret;

	BUG_ON(!root);

	BUG_ON(root->number_of_cgroups != 1);
1695
	BUG_ON(!list_empty(&cgrp->children));
1696

1697
	mutex_lock(&cgrp->dentry->d_inode->i_mutex);
1698
	mutex_lock(&cgroup_mutex);
T
Tejun Heo 已提交
1699
	mutex_lock(&cgroup_root_mutex);
1700 1701

	/* Rebind all subsystems back to the default hierarchy */
1702 1703 1704 1705 1706
	if (root->flags & CGRP_ROOT_SUBSYS_BOUND) {
		ret = rebind_subsystems(root, 0, root->subsys_mask);
		/* Shouldn't be able to fail ... */
		BUG_ON(ret);
	}
1707

1708
	/*
1709
	 * Release all the links from cset_links to this hierarchy's
1710 1711 1712
	 * root cgroup
	 */
	write_lock(&css_set_lock);
K
KOSAKI Motohiro 已提交
1713

1714 1715 1716
	list_for_each_entry_safe(link, tmp_link, &cgrp->cset_links, cset_link) {
		list_del(&link->cset_link);
		list_del(&link->cgrp_link);
1717 1718 1719 1720
		kfree(link);
	}
	write_unlock(&css_set_lock);

1721 1722
	if (!list_empty(&root->root_list)) {
		list_del(&root->root_list);
1723
		cgroup_root_count--;
1724
	}
1725

1726 1727
	cgroup_exit_root_id(root);

T
Tejun Heo 已提交
1728
	mutex_unlock(&cgroup_root_mutex);
1729
	mutex_unlock(&cgroup_mutex);
1730
	mutex_unlock(&cgrp->dentry->d_inode->i_mutex);
1731

A
Aristeu Rozanski 已提交
1732 1733
	simple_xattrs_free(&cgrp->xattrs);

1734
	kill_litter_super(sb);
1735
	cgroup_free_root(root);
1736 1737 1738 1739
}

static struct file_system_type cgroup_fs_type = {
	.name = "cgroup",
A
Al Viro 已提交
1740
	.mount = cgroup_mount,
1741 1742 1743
	.kill_sb = cgroup_kill_sb,
};

1744 1745
static struct kobject *cgroup_kobj;

L
Li Zefan 已提交
1746 1747 1748 1749 1750 1751
/**
 * cgroup_path - generate the path of a cgroup
 * @cgrp: the cgroup in question
 * @buf: the buffer to write the path into
 * @buflen: the length of the buffer
 *
1752 1753 1754 1755 1756 1757
 * Writes path of cgroup into buf.  Returns 0 on success, -errno on error.
 *
 * We can't generate cgroup path using dentry->d_name, as accessing
 * dentry->name must be protected by irq-unsafe dentry->d_lock or parent
 * inode's i_mutex, while on the other hand cgroup_path() can be called
 * with some irq-safe spinlocks held.
1758
 */
1759
int cgroup_path(const struct cgroup *cgrp, char *buf, int buflen)
1760
{
1761
	int ret = -ENAMETOOLONG;
1762
	char *start;
1763

1764 1765 1766
	if (!cgrp->parent) {
		if (strlcpy(buf, "/", buflen) >= buflen)
			return -ENAMETOOLONG;
1767 1768 1769
		return 0;
	}

1770 1771
	start = buf + buflen - 1;
	*start = '\0';
1772

1773
	rcu_read_lock();
1774
	do {
1775 1776 1777 1778
		const char *name = cgroup_name(cgrp);
		int len;

		len = strlen(name);
1779
		if ((start -= len) < buf)
1780 1781
			goto out;
		memcpy(start, name, len);
1782

1783
		if (--start < buf)
1784
			goto out;
1785
		*start = '/';
1786 1787

		cgrp = cgrp->parent;
1788
	} while (cgrp->parent);
1789
	ret = 0;
1790
	memmove(buf, start, buf + buflen - start);
1791 1792 1793
out:
	rcu_read_unlock();
	return ret;
1794
}
B
Ben Blum 已提交
1795
EXPORT_SYMBOL_GPL(cgroup_path);
1796

1797
/**
1798
 * task_cgroup_path - cgroup path of a task in the first cgroup hierarchy
1799 1800 1801 1802
 * @task: target task
 * @buf: the buffer to write the path into
 * @buflen: the length of the buffer
 *
1803 1804 1805 1806 1807 1808
 * Determine @task's cgroup on the first (the one with the lowest non-zero
 * hierarchy_id) cgroup hierarchy and copy its path into @buf.  This
 * function grabs cgroup_mutex and shouldn't be used inside locks used by
 * cgroup controller callbacks.
 *
 * Returns 0 on success, fails with -%ENAMETOOLONG if @buflen is too short.
1809
 */
1810
int task_cgroup_path(struct task_struct *task, char *buf, size_t buflen)
1811 1812
{
	struct cgroupfs_root *root;
1813 1814 1815 1816 1817
	struct cgroup *cgrp;
	int hierarchy_id = 1, ret = 0;

	if (buflen < 2)
		return -ENAMETOOLONG;
1818 1819 1820

	mutex_lock(&cgroup_mutex);

1821 1822
	root = idr_get_next(&cgroup_hierarchy_idr, &hierarchy_id);

1823 1824 1825
	if (root) {
		cgrp = task_cgroup_from_root(task, root);
		ret = cgroup_path(cgrp, buf, buflen);
1826 1827 1828
	} else {
		/* if no hierarchy exists, everyone is in "/" */
		memcpy(buf, "/", 2);
1829 1830 1831 1832 1833
	}

	mutex_unlock(&cgroup_mutex);
	return ret;
}
1834
EXPORT_SYMBOL_GPL(task_cgroup_path);
1835

1836 1837 1838
/*
 * Control Group taskset
 */
1839 1840 1841
struct task_and_cgroup {
	struct task_struct	*task;
	struct cgroup		*cgrp;
L
Li Zefan 已提交
1842
	struct css_set		*cset;
1843 1844
};

1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891
struct cgroup_taskset {
	struct task_and_cgroup	single;
	struct flex_array	*tc_array;
	int			tc_array_len;
	int			idx;
	struct cgroup		*cur_cgrp;
};

/**
 * cgroup_taskset_first - reset taskset and return the first task
 * @tset: taskset of interest
 *
 * @tset iteration is initialized and the first task is returned.
 */
struct task_struct *cgroup_taskset_first(struct cgroup_taskset *tset)
{
	if (tset->tc_array) {
		tset->idx = 0;
		return cgroup_taskset_next(tset);
	} else {
		tset->cur_cgrp = tset->single.cgrp;
		return tset->single.task;
	}
}
EXPORT_SYMBOL_GPL(cgroup_taskset_first);

/**
 * cgroup_taskset_next - iterate to the next task in taskset
 * @tset: taskset of interest
 *
 * Return the next task in @tset.  Iteration must have been initialized
 * with cgroup_taskset_first().
 */
struct task_struct *cgroup_taskset_next(struct cgroup_taskset *tset)
{
	struct task_and_cgroup *tc;

	if (!tset->tc_array || tset->idx >= tset->tc_array_len)
		return NULL;

	tc = flex_array_get(tset->tc_array, tset->idx++);
	tset->cur_cgrp = tc->cgrp;
	return tc->task;
}
EXPORT_SYMBOL_GPL(cgroup_taskset_next);

/**
1892
 * cgroup_taskset_cur_css - return the matching css for the current task
1893
 * @tset: taskset of interest
1894
 * @subsys_id: the ID of the target subsystem
1895
 *
1896 1897 1898
 * Return the css for the current (last returned) task of @tset for
 * subsystem specified by @subsys_id.  This function must be preceded by
 * either cgroup_taskset_first() or cgroup_taskset_next().
1899
 */
1900 1901
struct cgroup_subsys_state *cgroup_taskset_cur_css(struct cgroup_taskset *tset,
						   int subsys_id)
1902
{
1903
	return cgroup_css(tset->cur_cgrp, cgroup_subsys[subsys_id]);
1904
}
1905
EXPORT_SYMBOL_GPL(cgroup_taskset_cur_css);
1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917

/**
 * cgroup_taskset_size - return the number of tasks in taskset
 * @tset: taskset of interest
 */
int cgroup_taskset_size(struct cgroup_taskset *tset)
{
	return tset->tc_array ? tset->tc_array_len : 1;
}
EXPORT_SYMBOL_GPL(cgroup_taskset_size);


B
Ben Blum 已提交
1918 1919 1920
/*
 * cgroup_task_migrate - move a task from one cgroup to another.
 *
1921
 * Must be called with cgroup_mutex and threadgroup locked.
B
Ben Blum 已提交
1922
 */
1923 1924 1925
static void cgroup_task_migrate(struct cgroup *old_cgrp,
				struct task_struct *tsk,
				struct css_set *new_cset)
B
Ben Blum 已提交
1926
{
1927
	struct css_set *old_cset;
B
Ben Blum 已提交
1928 1929

	/*
1930 1931 1932
	 * We are synchronized through threadgroup_lock() against PF_EXITING
	 * setting such that we can't race against cgroup_exit() changing the
	 * css_set to init_css_set and dropping the old one.
B
Ben Blum 已提交
1933
	 */
1934
	WARN_ON_ONCE(tsk->flags & PF_EXITING);
1935
	old_cset = task_css_set(tsk);
B
Ben Blum 已提交
1936 1937

	task_lock(tsk);
1938
	rcu_assign_pointer(tsk->cgroups, new_cset);
B
Ben Blum 已提交
1939 1940 1941 1942 1943
	task_unlock(tsk);

	/* Update the css_set linked lists if we're using them */
	write_lock(&css_set_lock);
	if (!list_empty(&tsk->cg_list))
1944
		list_move(&tsk->cg_list, &new_cset->tasks);
B
Ben Blum 已提交
1945 1946 1947
	write_unlock(&css_set_lock);

	/*
1948 1949 1950
	 * We just gained a reference on old_cset by taking it from the
	 * task. As trading it for new_cset is protected by cgroup_mutex,
	 * we're safe to drop it here; it will be freed under RCU.
B
Ben Blum 已提交
1951
	 */
1952 1953
	set_bit(CGRP_RELEASABLE, &old_cgrp->flags);
	put_css_set(old_cset);
B
Ben Blum 已提交
1954 1955
}

L
Li Zefan 已提交
1956
/**
1957
 * cgroup_attach_task - attach a task or a whole threadgroup to a cgroup
B
Ben Blum 已提交
1958
 * @cgrp: the cgroup to attach to
1959 1960
 * @tsk: the task or the leader of the threadgroup to be attached
 * @threadgroup: attach the whole threadgroup?
B
Ben Blum 已提交
1961
 *
1962
 * Call holding cgroup_mutex and the group_rwsem of the leader. Will take
1963
 * task_lock of @tsk or each thread in the threadgroup individually in turn.
B
Ben Blum 已提交
1964
 */
T
Tejun Heo 已提交
1965 1966
static int cgroup_attach_task(struct cgroup *cgrp, struct task_struct *tsk,
			      bool threadgroup)
B
Ben Blum 已提交
1967 1968 1969 1970 1971
{
	int retval, i, group_size;
	struct cgroup_subsys *ss, *failed_ss = NULL;
	struct cgroupfs_root *root = cgrp->root;
	/* threadgroup list cursor and array */
1972
	struct task_struct *leader = tsk;
1973
	struct task_and_cgroup *tc;
1974
	struct flex_array *group;
1975
	struct cgroup_taskset tset = { };
B
Ben Blum 已提交
1976 1977 1978 1979 1980

	/*
	 * step 0: in order to do expensive, possibly blocking operations for
	 * every thread, we cannot iterate the thread group list, since it needs
	 * rcu or tasklist locked. instead, build an array of all threads in the
1981 1982
	 * group - group_rwsem prevents new threads from appearing, and if
	 * threads exit, this will just be an over-estimate.
B
Ben Blum 已提交
1983
	 */
1984 1985 1986 1987
	if (threadgroup)
		group_size = get_nr_threads(tsk);
	else
		group_size = 1;
1988
	/* flex_array supports very large thread-groups better than kmalloc. */
1989
	group = flex_array_alloc(sizeof(*tc), group_size, GFP_KERNEL);
B
Ben Blum 已提交
1990 1991
	if (!group)
		return -ENOMEM;
1992
	/* pre-allocate to guarantee space while iterating in rcu read-side. */
1993
	retval = flex_array_prealloc(group, 0, group_size, GFP_KERNEL);
1994 1995
	if (retval)
		goto out_free_group_list;
B
Ben Blum 已提交
1996 1997

	i = 0;
1998 1999 2000 2001 2002 2003
	/*
	 * Prevent freeing of tasks while we take a snapshot. Tasks that are
	 * already PF_EXITING could be freed from underneath us unless we
	 * take an rcu_read_lock.
	 */
	rcu_read_lock();
B
Ben Blum 已提交
2004
	do {
2005 2006
		struct task_and_cgroup ent;

2007 2008
		/* @tsk either already exited or can't exit until the end */
		if (tsk->flags & PF_EXITING)
2009
			goto next;
2010

B
Ben Blum 已提交
2011 2012
		/* as per above, nr_threads may decrease, but not increase. */
		BUG_ON(i >= group_size);
2013 2014
		ent.task = tsk;
		ent.cgrp = task_cgroup_from_root(tsk, root);
2015 2016
		/* nothing to do if this task is already in the cgroup */
		if (ent.cgrp == cgrp)
2017
			goto next;
2018 2019 2020 2021
		/*
		 * saying GFP_ATOMIC has no effect here because we did prealloc
		 * earlier, but it's good form to communicate our expectations.
		 */
2022
		retval = flex_array_put(group, i, &ent, GFP_ATOMIC);
2023
		BUG_ON(retval != 0);
B
Ben Blum 已提交
2024
		i++;
2025
	next:
2026 2027
		if (!threadgroup)
			break;
B
Ben Blum 已提交
2028
	} while_each_thread(leader, tsk);
2029
	rcu_read_unlock();
B
Ben Blum 已提交
2030 2031
	/* remember the number of threads in the array for later. */
	group_size = i;
2032 2033
	tset.tc_array = group;
	tset.tc_array_len = group_size;
B
Ben Blum 已提交
2034

2035 2036
	/* methods shouldn't be called if no task is actually migrating */
	retval = 0;
2037
	if (!group_size)
2038
		goto out_free_group_list;
2039

B
Ben Blum 已提交
2040 2041 2042
	/*
	 * step 1: check that we can legitimately attach to the cgroup.
	 */
2043
	for_each_root_subsys(root, ss) {
2044
		struct cgroup_subsys_state *css = cgroup_css(cgrp, ss);
2045

B
Ben Blum 已提交
2046
		if (ss->can_attach) {
2047
			retval = ss->can_attach(css, &tset);
B
Ben Blum 已提交
2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059
			if (retval) {
				failed_ss = ss;
				goto out_cancel_attach;
			}
		}
	}

	/*
	 * step 2: make sure css_sets exist for all threads to be migrated.
	 * we use find_css_set, which allocates a new one if necessary.
	 */
	for (i = 0; i < group_size; i++) {
2060 2061
		struct css_set *old_cset;

2062
		tc = flex_array_get(group, i);
2063
		old_cset = task_css_set(tc->task);
L
Li Zefan 已提交
2064 2065
		tc->cset = find_css_set(old_cset, cgrp);
		if (!tc->cset) {
2066 2067
			retval = -ENOMEM;
			goto out_put_css_set_refs;
B
Ben Blum 已提交
2068 2069 2070 2071
		}
	}

	/*
2072 2073 2074
	 * step 3: now that we're guaranteed success wrt the css_sets,
	 * proceed to move all tasks to the new cgroup.  There are no
	 * failure cases after here, so this is the commit point.
B
Ben Blum 已提交
2075 2076
	 */
	for (i = 0; i < group_size; i++) {
2077
		tc = flex_array_get(group, i);
L
Li Zefan 已提交
2078
		cgroup_task_migrate(tc->cgrp, tc->task, tc->cset);
B
Ben Blum 已提交
2079 2080 2081 2082
	}
	/* nothing is sensitive to fork() after this point. */

	/*
2083
	 * step 4: do subsystem attach callbacks.
B
Ben Blum 已提交
2084
	 */
2085
	for_each_root_subsys(root, ss) {
2086
		struct cgroup_subsys_state *css = cgroup_css(cgrp, ss);
2087

B
Ben Blum 已提交
2088
		if (ss->attach)
2089
			ss->attach(css, &tset);
B
Ben Blum 已提交
2090 2091 2092 2093 2094 2095
	}

	/*
	 * step 5: success! and cleanup
	 */
	retval = 0;
2096 2097 2098 2099
out_put_css_set_refs:
	if (retval) {
		for (i = 0; i < group_size; i++) {
			tc = flex_array_get(group, i);
L
Li Zefan 已提交
2100
			if (!tc->cset)
2101
				break;
L
Li Zefan 已提交
2102
			put_css_set(tc->cset);
2103
		}
B
Ben Blum 已提交
2104 2105 2106
	}
out_cancel_attach:
	if (retval) {
2107
		for_each_root_subsys(root, ss) {
2108
			struct cgroup_subsys_state *css = cgroup_css(cgrp, ss);
2109

2110
			if (ss == failed_ss)
B
Ben Blum 已提交
2111 2112
				break;
			if (ss->cancel_attach)
2113
				ss->cancel_attach(css, &tset);
B
Ben Blum 已提交
2114 2115 2116
		}
	}
out_free_group_list:
2117
	flex_array_free(group);
B
Ben Blum 已提交
2118 2119 2120 2121 2122
	return retval;
}

/*
 * Find the task_struct of the task to attach by vpid and pass it along to the
2123 2124
 * function to attach either it or all tasks in its threadgroup. Will lock
 * cgroup_mutex and threadgroup; may take task_lock of task.
2125
 */
B
Ben Blum 已提交
2126
static int attach_task_by_pid(struct cgroup *cgrp, u64 pid, bool threadgroup)
2127 2128
{
	struct task_struct *tsk;
2129
	const struct cred *cred = current_cred(), *tcred;
2130 2131
	int ret;

B
Ben Blum 已提交
2132 2133 2134
	if (!cgroup_lock_live_group(cgrp))
		return -ENODEV;

2135 2136
retry_find_task:
	rcu_read_lock();
2137
	if (pid) {
2138
		tsk = find_task_by_vpid(pid);
B
Ben Blum 已提交
2139 2140
		if (!tsk) {
			rcu_read_unlock();
2141 2142
			ret= -ESRCH;
			goto out_unlock_cgroup;
2143
		}
B
Ben Blum 已提交
2144 2145 2146 2147
		/*
		 * even if we're attaching all tasks in the thread group, we
		 * only need to check permissions on one of them.
		 */
2148
		tcred = __task_cred(tsk);
2149 2150 2151
		if (!uid_eq(cred->euid, GLOBAL_ROOT_UID) &&
		    !uid_eq(cred->euid, tcred->uid) &&
		    !uid_eq(cred->euid, tcred->suid)) {
2152
			rcu_read_unlock();
2153 2154
			ret = -EACCES;
			goto out_unlock_cgroup;
2155
		}
2156 2157
	} else
		tsk = current;
2158 2159

	if (threadgroup)
2160
		tsk = tsk->group_leader;
2161 2162

	/*
2163
	 * Workqueue threads may acquire PF_NO_SETAFFINITY and become
2164 2165 2166
	 * trapped in a cpuset, or RT worker may be born in a cgroup
	 * with no rt_runtime allocated.  Just say no.
	 */
2167
	if (tsk == kthreadd_task || (tsk->flags & PF_NO_SETAFFINITY)) {
2168 2169 2170 2171 2172
		ret = -EINVAL;
		rcu_read_unlock();
		goto out_unlock_cgroup;
	}

2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189
	get_task_struct(tsk);
	rcu_read_unlock();

	threadgroup_lock(tsk);
	if (threadgroup) {
		if (!thread_group_leader(tsk)) {
			/*
			 * a race with de_thread from another thread's exec()
			 * may strip us of our leadership, if this happens,
			 * there is no choice but to throw this task away and
			 * try again; this is
			 * "double-double-toil-and-trouble-check locking".
			 */
			threadgroup_unlock(tsk);
			put_task_struct(tsk);
			goto retry_find_task;
		}
2190 2191 2192 2193
	}

	ret = cgroup_attach_task(cgrp, tsk, threadgroup);

2194 2195
	threadgroup_unlock(tsk);

2196
	put_task_struct(tsk);
2197
out_unlock_cgroup:
T
Tejun Heo 已提交
2198
	mutex_unlock(&cgroup_mutex);
2199 2200 2201
	return ret;
}

2202 2203 2204 2205 2206 2207 2208 2209 2210 2211
/**
 * cgroup_attach_task_all - attach task 'tsk' to all cgroups of task 'from'
 * @from: attach to all cgroups of a given task
 * @tsk: the task to be attached
 */
int cgroup_attach_task_all(struct task_struct *from, struct task_struct *tsk)
{
	struct cgroupfs_root *root;
	int retval = 0;

T
Tejun Heo 已提交
2212
	mutex_lock(&cgroup_mutex);
2213
	for_each_active_root(root) {
L
Li Zefan 已提交
2214
		struct cgroup *from_cgrp = task_cgroup_from_root(from, root);
2215

L
Li Zefan 已提交
2216
		retval = cgroup_attach_task(from_cgrp, tsk, false);
2217 2218 2219
		if (retval)
			break;
	}
T
Tejun Heo 已提交
2220
	mutex_unlock(&cgroup_mutex);
2221 2222 2223 2224 2225

	return retval;
}
EXPORT_SYMBOL_GPL(cgroup_attach_task_all);

2226 2227
static int cgroup_tasks_write(struct cgroup_subsys_state *css,
			      struct cftype *cft, u64 pid)
B
Ben Blum 已提交
2228
{
2229
	return attach_task_by_pid(css->cgroup, pid, false);
B
Ben Blum 已提交
2230 2231
}

2232 2233
static int cgroup_procs_write(struct cgroup_subsys_state *css,
			      struct cftype *cft, u64 tgid)
2234
{
2235
	return attach_task_by_pid(css->cgroup, tgid, true);
2236 2237
}

2238 2239
static int cgroup_release_agent_write(struct cgroup_subsys_state *css,
				      struct cftype *cft, const char *buffer)
2240
{
2241
	BUILD_BUG_ON(sizeof(css->cgroup->root->release_agent_path) < PATH_MAX);
2242 2243
	if (strlen(buffer) >= PATH_MAX)
		return -EINVAL;
2244
	if (!cgroup_lock_live_group(css->cgroup))
2245
		return -ENODEV;
T
Tejun Heo 已提交
2246
	mutex_lock(&cgroup_root_mutex);
2247
	strcpy(css->cgroup->root->release_agent_path, buffer);
T
Tejun Heo 已提交
2248
	mutex_unlock(&cgroup_root_mutex);
T
Tejun Heo 已提交
2249
	mutex_unlock(&cgroup_mutex);
2250 2251 2252
	return 0;
}

2253 2254
static int cgroup_release_agent_show(struct cgroup_subsys_state *css,
				     struct cftype *cft, struct seq_file *seq)
2255
{
2256 2257
	struct cgroup *cgrp = css->cgroup;

2258 2259 2260 2261
	if (!cgroup_lock_live_group(cgrp))
		return -ENODEV;
	seq_puts(seq, cgrp->root->release_agent_path);
	seq_putc(seq, '\n');
T
Tejun Heo 已提交
2262
	mutex_unlock(&cgroup_mutex);
2263 2264 2265
	return 0;
}

2266 2267
static int cgroup_sane_behavior_show(struct cgroup_subsys_state *css,
				     struct cftype *cft, struct seq_file *seq)
2268
{
2269
	seq_printf(seq, "%d\n", cgroup_sane_behavior(css->cgroup));
2270 2271 2272
	return 0;
}

2273 2274 2275
/* A buffer size big enough for numbers or short strings */
#define CGROUP_LOCAL_BUFFER_SIZE 64

2276 2277 2278 2279
static ssize_t cgroup_write_X64(struct cgroup_subsys_state *css,
				struct cftype *cft, struct file *file,
				const char __user *userbuf, size_t nbytes,
				loff_t *unused_ppos)
2280
{
2281
	char buffer[CGROUP_LOCAL_BUFFER_SIZE];
2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292
	int retval = 0;
	char *end;

	if (!nbytes)
		return -EINVAL;
	if (nbytes >= sizeof(buffer))
		return -E2BIG;
	if (copy_from_user(buffer, userbuf, nbytes))
		return -EFAULT;

	buffer[nbytes] = 0;     /* nul-terminate */
2293
	if (cft->write_u64) {
K
KOSAKI Motohiro 已提交
2294
		u64 val = simple_strtoull(strstrip(buffer), &end, 0);
2295 2296
		if (*end)
			return -EINVAL;
2297
		retval = cft->write_u64(css, cft, val);
2298
	} else {
K
KOSAKI Motohiro 已提交
2299
		s64 val = simple_strtoll(strstrip(buffer), &end, 0);
2300 2301
		if (*end)
			return -EINVAL;
2302
		retval = cft->write_s64(css, cft, val);
2303
	}
2304 2305 2306 2307 2308
	if (!retval)
		retval = nbytes;
	return retval;
}

2309 2310 2311 2312
static ssize_t cgroup_write_string(struct cgroup_subsys_state *css,
				   struct cftype *cft, struct file *file,
				   const char __user *userbuf, size_t nbytes,
				   loff_t *unused_ppos)
2313
{
2314
	char local_buffer[CGROUP_LOCAL_BUFFER_SIZE];
2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328
	int retval = 0;
	size_t max_bytes = cft->max_write_len;
	char *buffer = local_buffer;

	if (!max_bytes)
		max_bytes = sizeof(local_buffer) - 1;
	if (nbytes >= max_bytes)
		return -E2BIG;
	/* Allocate a dynamic buffer if we need one */
	if (nbytes >= sizeof(local_buffer)) {
		buffer = kmalloc(nbytes + 1, GFP_KERNEL);
		if (buffer == NULL)
			return -ENOMEM;
	}
L
Li Zefan 已提交
2329 2330 2331 2332
	if (nbytes && copy_from_user(buffer, userbuf, nbytes)) {
		retval = -EFAULT;
		goto out;
	}
2333 2334

	buffer[nbytes] = 0;     /* nul-terminate */
2335
	retval = cft->write_string(css, cft, strstrip(buffer));
2336 2337
	if (!retval)
		retval = nbytes;
L
Li Zefan 已提交
2338
out:
2339 2340 2341 2342 2343
	if (buffer != local_buffer)
		kfree(buffer);
	return retval;
}

2344
static ssize_t cgroup_file_write(struct file *file, const char __user *buf,
2345
				 size_t nbytes, loff_t *ppos)
2346
{
2347
	struct cfent *cfe = __d_cfe(file->f_dentry);
2348
	struct cftype *cft = __d_cft(file->f_dentry);
2349
	struct cgroup_subsys_state *css = cfe->css;
2350

2351
	if (cft->write)
2352
		return cft->write(css, cft, file, buf, nbytes, ppos);
2353
	if (cft->write_u64 || cft->write_s64)
2354
		return cgroup_write_X64(css, cft, file, buf, nbytes, ppos);
2355
	if (cft->write_string)
2356
		return cgroup_write_string(css, cft, file, buf, nbytes, ppos);
2357
	if (cft->trigger) {
2358
		int ret = cft->trigger(css, (unsigned int)cft->private);
2359 2360
		return ret ? ret : nbytes;
	}
2361
	return -EINVAL;
2362 2363
}

2364 2365 2366
static ssize_t cgroup_read_u64(struct cgroup_subsys_state *css,
			       struct cftype *cft, struct file *file,
			       char __user *buf, size_t nbytes, loff_t *ppos)
2367
{
2368
	char tmp[CGROUP_LOCAL_BUFFER_SIZE];
2369
	u64 val = cft->read_u64(css, cft);
2370 2371 2372 2373 2374
	int len = sprintf(tmp, "%llu\n", (unsigned long long) val);

	return simple_read_from_buffer(buf, nbytes, ppos, tmp, len);
}

2375 2376 2377
static ssize_t cgroup_read_s64(struct cgroup_subsys_state *css,
			       struct cftype *cft, struct file *file,
			       char __user *buf, size_t nbytes, loff_t *ppos)
2378
{
2379
	char tmp[CGROUP_LOCAL_BUFFER_SIZE];
2380
	s64 val = cft->read_s64(css, cft);
2381 2382 2383 2384 2385
	int len = sprintf(tmp, "%lld\n", (long long) val);

	return simple_read_from_buffer(buf, nbytes, ppos, tmp, len);
}

2386
static ssize_t cgroup_file_read(struct file *file, char __user *buf,
2387
				size_t nbytes, loff_t *ppos)
2388
{
2389
	struct cfent *cfe = __d_cfe(file->f_dentry);
2390
	struct cftype *cft = __d_cft(file->f_dentry);
2391
	struct cgroup_subsys_state *css = cfe->css;
2392 2393

	if (cft->read)
2394
		return cft->read(css, cft, file, buf, nbytes, ppos);
2395
	if (cft->read_u64)
2396
		return cgroup_read_u64(css, cft, file, buf, nbytes, ppos);
2397
	if (cft->read_s64)
2398
		return cgroup_read_s64(css, cft, file, buf, nbytes, ppos);
2399 2400 2401
	return -EINVAL;
}

2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414
/*
 * seqfile ops/methods for returning structured data. Currently just
 * supports string->u64 maps, but can be extended in future.
 */

static int cgroup_map_add(struct cgroup_map_cb *cb, const char *key, u64 value)
{
	struct seq_file *sf = cb->state;
	return seq_printf(sf, "%s %llu\n", key, (unsigned long long)value);
}

static int cgroup_seqfile_show(struct seq_file *m, void *arg)
{
2415 2416
	struct cfent *cfe = m->private;
	struct cftype *cft = cfe->type;
2417
	struct cgroup_subsys_state *css = cfe->css;
2418

2419 2420 2421 2422 2423
	if (cft->read_map) {
		struct cgroup_map_cb cb = {
			.fill = cgroup_map_add,
			.state = m,
		};
2424
		return cft->read_map(css, cft, &cb);
2425
	}
2426
	return cft->read_seq_string(css, cft, m);
2427 2428
}

2429
static const struct file_operations cgroup_seqfile_operations = {
2430
	.read = seq_read,
2431
	.write = cgroup_file_write,
2432
	.llseek = seq_lseek,
2433
	.release = cgroup_file_release,
2434 2435
};

2436 2437
static int cgroup_file_open(struct inode *inode, struct file *file)
{
2438 2439
	struct cfent *cfe = __d_cfe(file->f_dentry);
	struct cftype *cft = __d_cft(file->f_dentry);
2440 2441
	struct cgroup *cgrp = __d_cgrp(cfe->dentry->d_parent);
	struct cgroup_subsys_state *css;
2442 2443 2444 2445 2446
	int err;

	err = generic_file_open(inode, file);
	if (err)
		return err;
2447

2448 2449 2450 2451 2452
	/*
	 * If the file belongs to a subsystem, pin the css.  Will be
	 * unpinned either on open failure or release.  This ensures that
	 * @css stays alive for all file operations.
	 */
2453
	rcu_read_lock();
2454 2455 2456
	css = cgroup_css(cgrp, cft->ss);
	if (cft->ss && !css_tryget(css))
		css = NULL;
2457
	rcu_read_unlock();
2458

2459
	if (!css)
2460
		return -ENODEV;
2461

2462 2463 2464 2465 2466 2467 2468 2469
	/*
	 * @cfe->css is used by read/write/close to determine the
	 * associated css.  @file->private_data would be a better place but
	 * that's already used by seqfile.  Multiple accessors may use it
	 * simultaneously which is okay as the association never changes.
	 */
	WARN_ON_ONCE(cfe->css && cfe->css != css);
	cfe->css = css;
2470

2471
	if (cft->read_map || cft->read_seq_string) {
2472
		file->f_op = &cgroup_seqfile_operations;
2473 2474
		err = single_open(file, cgroup_seqfile_show, cfe);
	} else if (cft->open) {
2475
		err = cft->open(inode, file);
2476
	}
2477

T
Tejun Heo 已提交
2478
	if (css->ss && err)
2479
		css_put(css);
2480 2481 2482 2483 2484
	return err;
}

static int cgroup_file_release(struct inode *inode, struct file *file)
{
2485
	struct cfent *cfe = __d_cfe(file->f_dentry);
2486
	struct cftype *cft = __d_cft(file->f_dentry);
2487
	struct cgroup_subsys_state *css = cfe->css;
2488 2489
	int ret = 0;

2490
	if (cft->release)
2491
		ret = cft->release(inode, file);
T
Tejun Heo 已提交
2492
	if (css->ss)
2493
		css_put(css);
2494 2495
	if (file->f_op == &cgroup_seqfile_operations)
		single_release(inode, file);
2496
	return ret;
2497 2498 2499 2500 2501 2502 2503 2504
}

/*
 * cgroup_rename - Only allow simple rename of directories in place.
 */
static int cgroup_rename(struct inode *old_dir, struct dentry *old_dentry,
			    struct inode *new_dir, struct dentry *new_dentry)
{
2505 2506 2507 2508 2509 2510 2511 2512 2513 2514
	int ret;
	struct cgroup_name *name, *old_name;
	struct cgroup *cgrp;

	/*
	 * It's convinient to use parent dir's i_mutex to protected
	 * cgrp->name.
	 */
	lockdep_assert_held(&old_dir->i_mutex);

2515 2516 2517 2518 2519 2520
	if (!S_ISDIR(old_dentry->d_inode->i_mode))
		return -ENOTDIR;
	if (new_dentry->d_inode)
		return -EEXIST;
	if (old_dir != new_dir)
		return -EIO;
2521 2522 2523

	cgrp = __d_cgrp(old_dentry);

2524 2525 2526 2527 2528 2529 2530
	/*
	 * This isn't a proper migration and its usefulness is very
	 * limited.  Disallow if sane_behavior.
	 */
	if (cgroup_sane_behavior(cgrp))
		return -EPERM;

2531 2532 2533 2534 2535 2536 2537 2538 2539 2540
	name = cgroup_alloc_name(new_dentry);
	if (!name)
		return -ENOMEM;

	ret = simple_rename(old_dir, old_dentry, new_dir, new_dentry);
	if (ret) {
		kfree(name);
		return ret;
	}

2541
	old_name = rcu_dereference_protected(cgrp->name, true);
2542 2543 2544 2545
	rcu_assign_pointer(cgrp->name, name);

	kfree_rcu(old_name, rcu_head);
	return 0;
2546 2547
}

A
Aristeu Rozanski 已提交
2548 2549 2550 2551 2552
static struct simple_xattrs *__d_xattrs(struct dentry *dentry)
{
	if (S_ISDIR(dentry->d_inode->i_mode))
		return &__d_cgrp(dentry)->xattrs;
	else
L
Li Zefan 已提交
2553
		return &__d_cfe(dentry)->xattrs;
A
Aristeu Rozanski 已提交
2554 2555 2556 2557 2558
}

static inline int xattr_enabled(struct dentry *dentry)
{
	struct cgroupfs_root *root = dentry->d_sb->s_fs_info;
2559
	return root->flags & CGRP_ROOT_XATTR;
A
Aristeu Rozanski 已提交
2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605
}

static bool is_valid_xattr(const char *name)
{
	if (!strncmp(name, XATTR_TRUSTED_PREFIX, XATTR_TRUSTED_PREFIX_LEN) ||
	    !strncmp(name, XATTR_SECURITY_PREFIX, XATTR_SECURITY_PREFIX_LEN))
		return true;
	return false;
}

static int cgroup_setxattr(struct dentry *dentry, const char *name,
			   const void *val, size_t size, int flags)
{
	if (!xattr_enabled(dentry))
		return -EOPNOTSUPP;
	if (!is_valid_xattr(name))
		return -EINVAL;
	return simple_xattr_set(__d_xattrs(dentry), name, val, size, flags);
}

static int cgroup_removexattr(struct dentry *dentry, const char *name)
{
	if (!xattr_enabled(dentry))
		return -EOPNOTSUPP;
	if (!is_valid_xattr(name))
		return -EINVAL;
	return simple_xattr_remove(__d_xattrs(dentry), name);
}

static ssize_t cgroup_getxattr(struct dentry *dentry, const char *name,
			       void *buf, size_t size)
{
	if (!xattr_enabled(dentry))
		return -EOPNOTSUPP;
	if (!is_valid_xattr(name))
		return -EINVAL;
	return simple_xattr_get(__d_xattrs(dentry), name, buf, size);
}

static ssize_t cgroup_listxattr(struct dentry *dentry, char *buf, size_t size)
{
	if (!xattr_enabled(dentry))
		return -EOPNOTSUPP;
	return simple_xattr_list(__d_xattrs(dentry), buf, size);
}

2606
static const struct file_operations cgroup_file_operations = {
2607 2608 2609 2610 2611 2612 2613
	.read = cgroup_file_read,
	.write = cgroup_file_write,
	.llseek = generic_file_llseek,
	.open = cgroup_file_open,
	.release = cgroup_file_release,
};

A
Aristeu Rozanski 已提交
2614 2615 2616 2617 2618 2619 2620
static const struct inode_operations cgroup_file_inode_operations = {
	.setxattr = cgroup_setxattr,
	.getxattr = cgroup_getxattr,
	.listxattr = cgroup_listxattr,
	.removexattr = cgroup_removexattr,
};

2621
static const struct inode_operations cgroup_dir_inode_operations = {
A
Al Viro 已提交
2622
	.lookup = simple_lookup,
2623 2624 2625
	.mkdir = cgroup_mkdir,
	.rmdir = cgroup_rmdir,
	.rename = cgroup_rename,
A
Aristeu Rozanski 已提交
2626 2627 2628 2629
	.setxattr = cgroup_setxattr,
	.getxattr = cgroup_getxattr,
	.listxattr = cgroup_listxattr,
	.removexattr = cgroup_removexattr,
2630 2631
};

2632 2633 2634 2635 2636
/*
 * Check if a file is a control file
 */
static inline struct cftype *__file_cft(struct file *file)
{
A
Al Viro 已提交
2637
	if (file_inode(file)->i_fop != &cgroup_file_operations)
2638 2639 2640 2641
		return ERR_PTR(-EINVAL);
	return __d_cft(file->f_dentry);
}

A
Al Viro 已提交
2642
static int cgroup_create_file(struct dentry *dentry, umode_t mode,
2643 2644
				struct super_block *sb)
{
2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661
	struct inode *inode;

	if (!dentry)
		return -ENOENT;
	if (dentry->d_inode)
		return -EEXIST;

	inode = cgroup_new_inode(mode, sb);
	if (!inode)
		return -ENOMEM;

	if (S_ISDIR(mode)) {
		inode->i_op = &cgroup_dir_inode_operations;
		inode->i_fop = &simple_dir_operations;

		/* start off with i_nlink == 2 (for "." entry) */
		inc_nlink(inode);
T
Tejun Heo 已提交
2662
		inc_nlink(dentry->d_parent->d_inode);
2663

2664 2665 2666 2667 2668 2669 2670 2671 2672
		/*
		 * Control reaches here with cgroup_mutex held.
		 * @inode->i_mutex should nest outside cgroup_mutex but we
		 * want to populate it immediately without releasing
		 * cgroup_mutex.  As @inode isn't visible to anyone else
		 * yet, trylock will always succeed without affecting
		 * lockdep checks.
		 */
		WARN_ON_ONCE(!mutex_trylock(&inode->i_mutex));
2673 2674 2675
	} else if (S_ISREG(mode)) {
		inode->i_size = 0;
		inode->i_fop = &cgroup_file_operations;
A
Aristeu Rozanski 已提交
2676
		inode->i_op = &cgroup_file_inode_operations;
2677 2678 2679 2680 2681 2682
	}
	d_instantiate(dentry, inode);
	dget(dentry);	/* Extra count - pin the dentry in core */
	return 0;
}

L
Li Zefan 已提交
2683 2684 2685 2686 2687 2688 2689 2690 2691
/**
 * cgroup_file_mode - deduce file mode of a control file
 * @cft: the control file in question
 *
 * returns cft->mode if ->mode is not 0
 * returns S_IRUGO|S_IWUSR if it has both a read and a write handler
 * returns S_IRUGO if it has only a read handler
 * returns S_IWUSR if it has only a write hander
 */
A
Al Viro 已提交
2692
static umode_t cgroup_file_mode(const struct cftype *cft)
L
Li Zefan 已提交
2693
{
A
Al Viro 已提交
2694
	umode_t mode = 0;
L
Li Zefan 已提交
2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709

	if (cft->mode)
		return cft->mode;

	if (cft->read || cft->read_u64 || cft->read_s64 ||
	    cft->read_map || cft->read_seq_string)
		mode |= S_IRUGO;

	if (cft->write || cft->write_u64 || cft->write_s64 ||
	    cft->write_string || cft->trigger)
		mode |= S_IWUSR;

	return mode;
}

2710
static int cgroup_add_file(struct cgroup *cgrp, struct cftype *cft)
2711
{
2712
	struct dentry *dir = cgrp->dentry;
T
Tejun Heo 已提交
2713
	struct cgroup *parent = __d_cgrp(dir);
2714
	struct dentry *dentry;
T
Tejun Heo 已提交
2715
	struct cfent *cfe;
2716
	int error;
A
Al Viro 已提交
2717
	umode_t mode;
2718
	char name[MAX_CGROUP_TYPE_NAMELEN + MAX_CFTYPE_NAME + 2] = { 0 };
2719

T
Tejun Heo 已提交
2720 2721
	if (cft->ss && !(cft->flags & CFTYPE_NO_PREFIX) &&
	    !(cgrp->root->flags & CGRP_ROOT_NOPREFIX)) {
2722
		strcpy(name, cft->ss->name);
2723 2724 2725
		strcat(name, ".");
	}
	strcat(name, cft->name);
T
Tejun Heo 已提交
2726

2727
	BUG_ON(!mutex_is_locked(&dir->d_inode->i_mutex));
T
Tejun Heo 已提交
2728 2729 2730 2731 2732

	cfe = kzalloc(sizeof(*cfe), GFP_KERNEL);
	if (!cfe)
		return -ENOMEM;

2733
	dentry = lookup_one_len(name, dir, strlen(name));
T
Tejun Heo 已提交
2734
	if (IS_ERR(dentry)) {
2735
		error = PTR_ERR(dentry);
T
Tejun Heo 已提交
2736 2737 2738
		goto out;
	}

2739 2740 2741 2742 2743
	cfe->type = (void *)cft;
	cfe->dentry = dentry;
	dentry->d_fsdata = cfe;
	simple_xattrs_init(&cfe->xattrs);

T
Tejun Heo 已提交
2744 2745 2746 2747 2748 2749 2750 2751 2752
	mode = cgroup_file_mode(cft);
	error = cgroup_create_file(dentry, mode | S_IFREG, cgrp->root->sb);
	if (!error) {
		list_add_tail(&cfe->node, &parent->files);
		cfe = NULL;
	}
	dput(dentry);
out:
	kfree(cfe);
2753 2754 2755
	return error;
}

2756 2757 2758 2759 2760 2761 2762
/**
 * cgroup_addrm_files - add or remove files to a cgroup directory
 * @cgrp: the target cgroup
 * @cfts: array of cftypes to be added
 * @is_add: whether to add or remove
 *
 * Depending on @is_add, add or remove files defined by @cfts on @cgrp.
2763 2764 2765
 * For removals, this function never fails.  If addition fails, this
 * function doesn't remove files already added.  The caller is responsible
 * for cleaning up.
2766
 */
2767 2768
static int cgroup_addrm_files(struct cgroup *cgrp, struct cftype cfts[],
			      bool is_add)
2769
{
A
Aristeu Rozanski 已提交
2770
	struct cftype *cft;
2771 2772 2773 2774
	int ret;

	lockdep_assert_held(&cgrp->dentry->d_inode->i_mutex);
	lockdep_assert_held(&cgroup_mutex);
T
Tejun Heo 已提交
2775 2776

	for (cft = cfts; cft->name[0] != '\0'; cft++) {
2777
		/* does cft->flags tell us to skip this file on @cgrp? */
2778 2779
		if ((cft->flags & CFTYPE_INSANE) && cgroup_sane_behavior(cgrp))
			continue;
2780 2781 2782 2783 2784
		if ((cft->flags & CFTYPE_NOT_ON_ROOT) && !cgrp->parent)
			continue;
		if ((cft->flags & CFTYPE_ONLY_ON_ROOT) && cgrp->parent)
			continue;

2785
		if (is_add) {
2786
			ret = cgroup_add_file(cgrp, cft);
2787
			if (ret) {
2788
				pr_warn("cgroup_addrm_files: failed to add %s, err=%d\n",
2789 2790 2791
					cft->name, ret);
				return ret;
			}
2792 2793
		} else {
			cgroup_rm_file(cgrp, cft);
T
Tejun Heo 已提交
2794
		}
2795
	}
2796
	return 0;
2797 2798
}

2799
static void cgroup_cfts_prepare(void)
2800
	__acquires(&cgroup_mutex)
2801 2802 2803 2804
{
	/*
	 * Thanks to the entanglement with vfs inode locking, we can't walk
	 * the existing cgroups under cgroup_mutex and create files.
2805 2806
	 * Instead, we use css_for_each_descendant_pre() and drop RCU read
	 * lock before calling cgroup_addrm_files().
2807 2808 2809 2810
	 */
	mutex_lock(&cgroup_mutex);
}

2811
static int cgroup_cfts_commit(struct cftype *cfts, bool is_add)
2812
	__releases(&cgroup_mutex)
2813 2814
{
	LIST_HEAD(pending);
2815
	struct cgroup_subsys *ss = cfts[0].ss;
2816
	struct cgroup *root = &ss->root->top_cgroup;
2817
	struct super_block *sb = ss->root->sb;
2818 2819
	struct dentry *prev = NULL;
	struct inode *inode;
2820
	struct cgroup_subsys_state *css;
2821
	u64 update_before;
2822
	int ret = 0;
2823 2824

	/* %NULL @cfts indicates abort and don't bother if @ss isn't attached */
2825
	if (!cfts || ss->root == &cgroup_dummy_root ||
2826 2827
	    !atomic_inc_not_zero(&sb->s_active)) {
		mutex_unlock(&cgroup_mutex);
2828
		return 0;
2829 2830 2831
	}

	/*
2832 2833
	 * All cgroups which are created after we drop cgroup_mutex will
	 * have the updated set of files, so we only need to update the
2834
	 * cgroups created before the current @cgroup_serial_nr_next.
2835
	 */
2836
	update_before = cgroup_serial_nr_next;
2837 2838 2839 2840 2841

	mutex_unlock(&cgroup_mutex);

	/* add/rm files for all cgroups created before */
	rcu_read_lock();
2842
	css_for_each_descendant_pre(css, cgroup_css(root, ss)) {
2843 2844
		struct cgroup *cgrp = css->cgroup;

2845 2846 2847 2848 2849 2850 2851 2852 2853
		if (cgroup_is_dead(cgrp))
			continue;

		inode = cgrp->dentry->d_inode;
		dget(cgrp->dentry);
		rcu_read_unlock();

		dput(prev);
		prev = cgrp->dentry;
2854 2855 2856

		mutex_lock(&inode->i_mutex);
		mutex_lock(&cgroup_mutex);
2857
		if (cgrp->serial_nr < update_before && !cgroup_is_dead(cgrp))
2858
			ret = cgroup_addrm_files(cgrp, cfts, is_add);
2859 2860 2861
		mutex_unlock(&cgroup_mutex);
		mutex_unlock(&inode->i_mutex);

2862
		rcu_read_lock();
2863 2864
		if (ret)
			break;
2865
	}
2866 2867 2868
	rcu_read_unlock();
	dput(prev);
	deactivate_super(sb);
2869
	return ret;
2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885
}

/**
 * cgroup_add_cftypes - add an array of cftypes to a subsystem
 * @ss: target cgroup subsystem
 * @cfts: zero-length name terminated array of cftypes
 *
 * Register @cfts to @ss.  Files described by @cfts are created for all
 * existing cgroups to which @ss is attached and all future cgroups will
 * have them too.  This function can be called anytime whether @ss is
 * attached or not.
 *
 * Returns 0 on successful registration, -errno on failure.  Note that this
 * function currently returns 0 as long as @cfts registration is successful
 * even if some file creation attempts on existing cgroups fail.
 */
A
Aristeu Rozanski 已提交
2886
int cgroup_add_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
2887 2888
{
	struct cftype_set *set;
2889
	struct cftype *cft;
2890
	int ret;
2891 2892 2893 2894 2895

	set = kzalloc(sizeof(*set), GFP_KERNEL);
	if (!set)
		return -ENOMEM;

2896 2897 2898
	for (cft = cfts; cft->name[0] != '\0'; cft++)
		cft->ss = ss;

2899 2900 2901
	cgroup_cfts_prepare();
	set->cfts = cfts;
	list_add_tail(&set->node, &ss->cftsets);
2902
	ret = cgroup_cfts_commit(cfts, true);
2903
	if (ret)
2904
		cgroup_rm_cftypes(cfts);
2905
	return ret;
2906 2907 2908
}
EXPORT_SYMBOL_GPL(cgroup_add_cftypes);

2909 2910 2911 2912
/**
 * cgroup_rm_cftypes - remove an array of cftypes from a subsystem
 * @cfts: zero-length name terminated array of cftypes
 *
2913 2914 2915
 * Unregister @cfts.  Files described by @cfts are removed from all
 * existing cgroups and all future cgroups won't have them either.  This
 * function can be called anytime whether @cfts' subsys is attached or not.
2916 2917
 *
 * Returns 0 on successful unregistration, -ENOENT if @cfts is not
2918
 * registered.
2919
 */
2920
int cgroup_rm_cftypes(struct cftype *cfts)
2921 2922 2923
{
	struct cftype_set *set;

2924 2925 2926
	if (!cfts || !cfts[0].ss)
		return -ENOENT;

2927 2928
	cgroup_cfts_prepare();

2929
	list_for_each_entry(set, &cfts[0].ss->cftsets, node) {
2930
		if (set->cfts == cfts) {
2931 2932
			list_del(&set->node);
			kfree(set);
2933
			cgroup_cfts_commit(cfts, false);
2934 2935 2936 2937
			return 0;
		}
	}

2938
	cgroup_cfts_commit(NULL, false);
2939 2940 2941
	return -ENOENT;
}

L
Li Zefan 已提交
2942 2943 2944 2945 2946 2947
/**
 * cgroup_task_count - count the number of tasks in a cgroup.
 * @cgrp: the cgroup in question
 *
 * Return the number of tasks in the cgroup.
 */
2948
int cgroup_task_count(const struct cgroup *cgrp)
2949 2950
{
	int count = 0;
2951
	struct cgrp_cset_link *link;
2952 2953

	read_lock(&css_set_lock);
2954 2955
	list_for_each_entry(link, &cgrp->cset_links, cset_link)
		count += atomic_read(&link->cset->refcount);
2956
	read_unlock(&css_set_lock);
2957 2958 2959
	return count;
}

2960
/*
2961 2962 2963
 * To reduce the fork() overhead for systems that are not actually using
 * their cgroups capability, we don't maintain the lists running through
 * each css_set to its tasks until we see the list actually used - in other
2964
 * words after the first call to css_task_iter_start().
2965
 */
2966
static void cgroup_enable_task_cg_lists(void)
2967 2968 2969 2970
{
	struct task_struct *p, *g;
	write_lock(&css_set_lock);
	use_task_css_set_links = 1;
2971 2972 2973 2974 2975 2976 2977 2978
	/*
	 * We need tasklist_lock because RCU is not safe against
	 * while_each_thread(). Besides, a forking task that has passed
	 * cgroup_post_fork() without seeing use_task_css_set_links = 1
	 * is not guaranteed to have its child immediately visible in the
	 * tasklist if we walk through it with RCU.
	 */
	read_lock(&tasklist_lock);
2979 2980
	do_each_thread(g, p) {
		task_lock(p);
2981 2982 2983 2984 2985 2986
		/*
		 * We should check if the process is exiting, otherwise
		 * it will race with cgroup_exit() in that the list
		 * entry won't be deleted though the process has exited.
		 */
		if (!(p->flags & PF_EXITING) && list_empty(&p->cg_list))
2987
			list_add(&p->cg_list, &task_css_set(p)->tasks);
2988 2989
		task_unlock(p);
	} while_each_thread(g, p);
2990
	read_unlock(&tasklist_lock);
2991 2992 2993
	write_unlock(&css_set_lock);
}

2994
/**
2995 2996 2997
 * css_next_child - find the next child of a given css
 * @pos_css: the current position (%NULL to initiate traversal)
 * @parent_css: css whose children to walk
2998
 *
2999 3000 3001 3002
 * This function returns the next child of @parent_css and should be called
 * under RCU read lock.  The only requirement is that @parent_css and
 * @pos_css are accessible.  The next sibling is guaranteed to be returned
 * regardless of their states.
3003
 */
3004 3005 3006
struct cgroup_subsys_state *
css_next_child(struct cgroup_subsys_state *pos_css,
	       struct cgroup_subsys_state *parent_css)
3007
{
3008 3009
	struct cgroup *pos = pos_css ? pos_css->cgroup : NULL;
	struct cgroup *cgrp = parent_css->cgroup;
3010 3011 3012 3013 3014 3015 3016
	struct cgroup *next;

	WARN_ON_ONCE(!rcu_read_lock_held());

	/*
	 * @pos could already have been removed.  Once a cgroup is removed,
	 * its ->sibling.next is no longer updated when its next sibling
3017 3018 3019 3020 3021 3022 3023
	 * changes.  As CGRP_DEAD assertion is serialized and happens
	 * before the cgroup is taken off the ->sibling list, if we see it
	 * unasserted, it's guaranteed that the next sibling hasn't
	 * finished its grace period even if it's already removed, and thus
	 * safe to dereference from this RCU critical section.  If
	 * ->sibling.next is inaccessible, cgroup_is_dead() is guaranteed
	 * to be visible as %true here.
3024 3025 3026 3027 3028 3029 3030 3031
	 *
	 * If @pos is dead, its next pointer can't be dereferenced;
	 * however, as each cgroup is given a monotonically increasing
	 * unique serial number and always appended to the sibling list,
	 * the next one can be found by walking the parent's children until
	 * we see a cgroup with higher serial number than @pos's.  While
	 * this path can be slower, it's taken only when either the current
	 * cgroup is removed or iteration and removal race.
3032
	 */
3033 3034 3035
	if (!pos) {
		next = list_entry_rcu(cgrp->children.next, struct cgroup, sibling);
	} else if (likely(!cgroup_is_dead(pos))) {
3036
		next = list_entry_rcu(pos->sibling.next, struct cgroup, sibling);
3037 3038 3039 3040
	} else {
		list_for_each_entry_rcu(next, &cgrp->children, sibling)
			if (next->serial_nr > pos->serial_nr)
				break;
3041 3042
	}

3043 3044 3045
	if (&next->sibling == &cgrp->children)
		return NULL;

3046
	return cgroup_css(next, parent_css->ss);
3047
}
3048
EXPORT_SYMBOL_GPL(css_next_child);
3049

3050
/**
3051
 * css_next_descendant_pre - find the next descendant for pre-order walk
3052
 * @pos: the current position (%NULL to initiate traversal)
3053
 * @root: css whose descendants to walk
3054
 *
3055
 * To be used by css_for_each_descendant_pre().  Find the next descendant
3056 3057
 * to visit for pre-order traversal of @root's descendants.  @root is
 * included in the iteration and the first node to be visited.
3058 3059 3060 3061
 *
 * While this function requires RCU read locking, it doesn't require the
 * whole traversal to be contained in a single RCU critical section.  This
 * function will return the correct next descendant as long as both @pos
3062
 * and @root are accessible and @pos is a descendant of @root.
3063
 */
3064 3065 3066
struct cgroup_subsys_state *
css_next_descendant_pre(struct cgroup_subsys_state *pos,
			struct cgroup_subsys_state *root)
3067
{
3068
	struct cgroup_subsys_state *next;
3069 3070 3071

	WARN_ON_ONCE(!rcu_read_lock_held());

3072
	/* if first iteration, visit @root */
3073
	if (!pos)
3074
		return root;
3075 3076

	/* visit the first child if exists */
3077
	next = css_next_child(NULL, pos);
3078 3079 3080 3081
	if (next)
		return next;

	/* no child, visit my or the closest ancestor's next sibling */
3082 3083
	while (pos != root) {
		next = css_next_child(pos, css_parent(pos));
3084
		if (next)
3085
			return next;
3086
		pos = css_parent(pos);
3087
	}
3088 3089 3090

	return NULL;
}
3091
EXPORT_SYMBOL_GPL(css_next_descendant_pre);
3092

3093
/**
3094 3095
 * css_rightmost_descendant - return the rightmost descendant of a css
 * @pos: css of interest
3096
 *
3097 3098
 * Return the rightmost descendant of @pos.  If there's no descendant, @pos
 * is returned.  This can be used during pre-order traversal to skip
3099
 * subtree of @pos.
3100 3101 3102 3103 3104
 *
 * While this function requires RCU read locking, it doesn't require the
 * whole traversal to be contained in a single RCU critical section.  This
 * function will return the correct rightmost descendant as long as @pos is
 * accessible.
3105
 */
3106 3107
struct cgroup_subsys_state *
css_rightmost_descendant(struct cgroup_subsys_state *pos)
3108
{
3109
	struct cgroup_subsys_state *last, *tmp;
3110 3111 3112 3113 3114 3115 3116

	WARN_ON_ONCE(!rcu_read_lock_held());

	do {
		last = pos;
		/* ->prev isn't RCU safe, walk ->next till the end */
		pos = NULL;
3117
		css_for_each_child(tmp, last)
3118 3119 3120 3121 3122
			pos = tmp;
	} while (pos);

	return last;
}
3123
EXPORT_SYMBOL_GPL(css_rightmost_descendant);
3124

3125 3126
static struct cgroup_subsys_state *
css_leftmost_descendant(struct cgroup_subsys_state *pos)
3127
{
3128
	struct cgroup_subsys_state *last;
3129 3130 3131

	do {
		last = pos;
3132
		pos = css_next_child(NULL, pos);
3133 3134 3135 3136 3137 3138
	} while (pos);

	return last;
}

/**
3139
 * css_next_descendant_post - find the next descendant for post-order walk
3140
 * @pos: the current position (%NULL to initiate traversal)
3141
 * @root: css whose descendants to walk
3142
 *
3143
 * To be used by css_for_each_descendant_post().  Find the next descendant
3144 3145
 * to visit for post-order traversal of @root's descendants.  @root is
 * included in the iteration and the last node to be visited.
3146 3147 3148 3149 3150
 *
 * While this function requires RCU read locking, it doesn't require the
 * whole traversal to be contained in a single RCU critical section.  This
 * function will return the correct next descendant as long as both @pos
 * and @cgroup are accessible and @pos is a descendant of @cgroup.
3151
 */
3152 3153 3154
struct cgroup_subsys_state *
css_next_descendant_post(struct cgroup_subsys_state *pos,
			 struct cgroup_subsys_state *root)
3155
{
3156
	struct cgroup_subsys_state *next;
3157 3158 3159

	WARN_ON_ONCE(!rcu_read_lock_held());

3160 3161 3162
	/* if first iteration, visit leftmost descendant which may be @root */
	if (!pos)
		return css_leftmost_descendant(root);
3163

3164 3165 3166 3167
	/* if we visited @root, we're done */
	if (pos == root)
		return NULL;

3168
	/* if there's an unvisited sibling, visit its leftmost descendant */
3169
	next = css_next_child(pos, css_parent(pos));
3170
	if (next)
3171
		return css_leftmost_descendant(next);
3172 3173

	/* no sibling left, visit parent */
3174
	return css_parent(pos);
3175
}
3176
EXPORT_SYMBOL_GPL(css_next_descendant_post);
3177

3178
/**
3179
 * css_advance_task_iter - advance a task itererator to the next css_set
3180 3181 3182
 * @it: the iterator to advance
 *
 * Advance @it to the next css_set to walk.
3183
 */
3184
static void css_advance_task_iter(struct css_task_iter *it)
3185 3186 3187 3188 3189 3190 3191 3192
{
	struct list_head *l = it->cset_link;
	struct cgrp_cset_link *link;
	struct css_set *cset;

	/* Advance to the next non-empty css_set */
	do {
		l = l->next;
3193
		if (l == &it->origin_css->cgroup->cset_links) {
3194 3195 3196 3197 3198 3199 3200 3201 3202 3203
			it->cset_link = NULL;
			return;
		}
		link = list_entry(l, struct cgrp_cset_link, cset_link);
		cset = link->cset;
	} while (list_empty(&cset->tasks));
	it->cset_link = l;
	it->task = cset->tasks.next;
}

3204
/**
3205 3206
 * css_task_iter_start - initiate task iteration
 * @css: the css to walk tasks of
3207 3208
 * @it: the task iterator to use
 *
3209 3210 3211 3212
 * Initiate iteration through the tasks of @css.  The caller can call
 * css_task_iter_next() to walk through the tasks until the function
 * returns NULL.  On completion of iteration, css_task_iter_end() must be
 * called.
3213 3214 3215 3216 3217
 *
 * Note that this function acquires a lock which is released when the
 * iteration finishes.  The caller can't sleep while iteration is in
 * progress.
 */
3218 3219
void css_task_iter_start(struct cgroup_subsys_state *css,
			 struct css_task_iter *it)
3220
	__acquires(css_set_lock)
3221 3222
{
	/*
3223 3224 3225
	 * The first time anyone tries to iterate across a css, we need to
	 * enable the list linking each css_set to its tasks, and fix up
	 * all existing tasks.
3226
	 */
3227 3228 3229
	if (!use_task_css_set_links)
		cgroup_enable_task_cg_lists();

3230
	read_lock(&css_set_lock);
3231

3232 3233
	it->origin_css = css;
	it->cset_link = &css->cgroup->cset_links;
3234

3235
	css_advance_task_iter(it);
3236 3237
}

3238
/**
3239
 * css_task_iter_next - return the next task for the iterator
3240 3241 3242
 * @it: the task iterator being iterated
 *
 * The "next" function for task iteration.  @it should have been
3243 3244
 * initialized via css_task_iter_start().  Returns NULL when the iteration
 * reaches the end.
3245
 */
3246
struct task_struct *css_task_iter_next(struct css_task_iter *it)
3247 3248 3249
{
	struct task_struct *res;
	struct list_head *l = it->task;
3250
	struct cgrp_cset_link *link;
3251 3252

	/* If the iterator cg is NULL, we have no tasks */
3253
	if (!it->cset_link)
3254 3255 3256 3257
		return NULL;
	res = list_entry(l, struct task_struct, cg_list);
	/* Advance iterator to find next entry */
	l = l->next;
3258 3259
	link = list_entry(it->cset_link, struct cgrp_cset_link, cset_link);
	if (l == &link->cset->tasks) {
3260 3261 3262 3263
		/*
		 * We reached the end of this task list - move on to the
		 * next cgrp_cset_link.
		 */
3264
		css_advance_task_iter(it);
3265 3266 3267 3268 3269 3270
	} else {
		it->task = l;
	}
	return res;
}

3271
/**
3272
 * css_task_iter_end - finish task iteration
3273 3274
 * @it: the task iterator to finish
 *
3275
 * Finish task iteration started by css_task_iter_start().
3276
 */
3277
void css_task_iter_end(struct css_task_iter *it)
3278
	__releases(css_set_lock)
3279 3280 3281 3282
{
	read_unlock(&css_set_lock);
}

3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317
static inline int started_after_time(struct task_struct *t1,
				     struct timespec *time,
				     struct task_struct *t2)
{
	int start_diff = timespec_compare(&t1->start_time, time);
	if (start_diff > 0) {
		return 1;
	} else if (start_diff < 0) {
		return 0;
	} else {
		/*
		 * Arbitrarily, if two processes started at the same
		 * time, we'll say that the lower pointer value
		 * started first. Note that t2 may have exited by now
		 * so this may not be a valid pointer any longer, but
		 * that's fine - it still serves to distinguish
		 * between two tasks started (effectively) simultaneously.
		 */
		return t1 > t2;
	}
}

/*
 * This function is a callback from heap_insert() and is used to order
 * the heap.
 * In this case we order the heap in descending task start time.
 */
static inline int started_after(void *p1, void *p2)
{
	struct task_struct *t1 = p1;
	struct task_struct *t2 = p2;
	return started_after_time(t1, &t2->start_time, t2);
}

/**
3318 3319
 * css_scan_tasks - iterate though all the tasks in a css
 * @css: the css to iterate tasks of
T
Tejun Heo 已提交
3320 3321 3322 3323
 * @test: optional test callback
 * @process: process callback
 * @data: data passed to @test and @process
 * @heap: optional pre-allocated heap used for task iteration
3324
 *
3325 3326
 * Iterate through all the tasks in @css, calling @test for each, and if it
 * returns %true, call @process for it also.
3327
 *
T
Tejun Heo 已提交
3328
 * @test may be NULL, meaning always true (select all tasks), which
3329
 * effectively duplicates css_task_iter_{start,next,end}() but does not
T
Tejun Heo 已提交
3330 3331 3332
 * lock css_set_lock for the call to @process.
 *
 * It is guaranteed that @process will act on every task that is a member
3333 3334 3335
 * of @css for the duration of this call.  This function may or may not
 * call @process for tasks that exit or move to a different css during the
 * call, or are forked or move into the css during the call.
3336
 *
T
Tejun Heo 已提交
3337 3338 3339
 * Note that @test may be called with locks held, and may in some
 * situations be called multiple times for the same task, so it should be
 * cheap.
3340
 *
T
Tejun Heo 已提交
3341 3342 3343 3344
 * If @heap is non-NULL, a heap has been pre-allocated and will be used for
 * heap operations (and its "gt" member will be overwritten), else a
 * temporary heap will be used (allocation of which may cause this function
 * to fail).
3345
 */
3346 3347 3348 3349
int css_scan_tasks(struct cgroup_subsys_state *css,
		   bool (*test)(struct task_struct *, void *),
		   void (*process)(struct task_struct *, void *),
		   void *data, struct ptr_heap *heap)
3350 3351
{
	int retval, i;
3352
	struct css_task_iter it;
3353 3354 3355 3356 3357 3358
	struct task_struct *p, *dropped;
	/* Never dereference latest_task, since it's not refcounted */
	struct task_struct *latest_task = NULL;
	struct ptr_heap tmp_heap;
	struct timespec latest_time = { 0, 0 };

T
Tejun Heo 已提交
3359
	if (heap) {
3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372
		/* The caller supplied our heap and pre-allocated its memory */
		heap->gt = &started_after;
	} else {
		/* We need to allocate our own heap memory */
		heap = &tmp_heap;
		retval = heap_init(heap, PAGE_SIZE, GFP_KERNEL, &started_after);
		if (retval)
			/* cannot allocate the heap */
			return retval;
	}

 again:
	/*
3373
	 * Scan tasks in the css, using the @test callback to determine
T
Tejun Heo 已提交
3374 3375 3376 3377 3378 3379 3380
	 * which are of interest, and invoking @process callback on the
	 * ones which need an update.  Since we don't want to hold any
	 * locks during the task updates, gather tasks to be processed in a
	 * heap structure.  The heap is sorted by descending task start
	 * time.  If the statically-sized heap fills up, we overflow tasks
	 * that started later, and in future iterations only consider tasks
	 * that started after the latest task in the previous pass. This
3381 3382 3383
	 * guarantees forward progress and that we don't miss any tasks.
	 */
	heap->size = 0;
3384 3385
	css_task_iter_start(css, &it);
	while ((p = css_task_iter_next(&it))) {
3386 3387 3388 3389
		/*
		 * Only affect tasks that qualify per the caller's callback,
		 * if he provided one
		 */
T
Tejun Heo 已提交
3390
		if (test && !test(p, data))
3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417
			continue;
		/*
		 * Only process tasks that started after the last task
		 * we processed
		 */
		if (!started_after_time(p, &latest_time, latest_task))
			continue;
		dropped = heap_insert(heap, p);
		if (dropped == NULL) {
			/*
			 * The new task was inserted; the heap wasn't
			 * previously full
			 */
			get_task_struct(p);
		} else if (dropped != p) {
			/*
			 * The new task was inserted, and pushed out a
			 * different task
			 */
			get_task_struct(p);
			put_task_struct(dropped);
		}
		/*
		 * Else the new task was newer than anything already in
		 * the heap and wasn't inserted
		 */
	}
3418
	css_task_iter_end(&it);
3419 3420 3421

	if (heap->size) {
		for (i = 0; i < heap->size; i++) {
3422
			struct task_struct *q = heap->ptrs[i];
3423
			if (i == 0) {
3424 3425
				latest_time = q->start_time;
				latest_task = q;
3426 3427
			}
			/* Process the task per the caller's callback */
T
Tejun Heo 已提交
3428
			process(q, data);
3429
			put_task_struct(q);
3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444
		}
		/*
		 * If we had to process any tasks at all, scan again
		 * in case some of them were in the middle of forking
		 * children that didn't get processed.
		 * Not the most efficient way to do it, but it avoids
		 * having to take callback_mutex in the fork path
		 */
		goto again;
	}
	if (heap == &tmp_heap)
		heap_free(&tmp_heap);
	return 0;
}

T
Tejun Heo 已提交
3445
static void cgroup_transfer_one_task(struct task_struct *task, void *data)
3446
{
T
Tejun Heo 已提交
3447
	struct cgroup *new_cgroup = data;
3448

T
Tejun Heo 已提交
3449
	mutex_lock(&cgroup_mutex);
3450
	cgroup_attach_task(new_cgroup, task, false);
T
Tejun Heo 已提交
3451
	mutex_unlock(&cgroup_mutex);
3452 3453 3454 3455 3456 3457 3458 3459 3460
}

/**
 * cgroup_trasnsfer_tasks - move tasks from one cgroup to another
 * @to: cgroup to which the tasks will be moved
 * @from: cgroup in which the tasks currently reside
 */
int cgroup_transfer_tasks(struct cgroup *to, struct cgroup *from)
{
3461 3462
	return css_scan_tasks(&from->dummy_css, NULL, cgroup_transfer_one_task,
			      to, NULL);
3463 3464
}

3465
/*
3466
 * Stuff for reading the 'tasks'/'procs' files.
3467 3468 3469 3470 3471 3472 3473 3474
 *
 * Reading this file can return large amounts of data if a cgroup has
 * *lots* of attached tasks. So it may need several calls to read(),
 * but we cannot guarantee that the information we produce is correct
 * unless we produce it entirely atomically.
 *
 */

3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503
/* which pidlist file are we talking about? */
enum cgroup_filetype {
	CGROUP_FILE_PROCS,
	CGROUP_FILE_TASKS,
};

/*
 * A pidlist is a list of pids that virtually represents the contents of one
 * of the cgroup files ("procs" or "tasks"). We keep a list of such pidlists,
 * a pair (one each for procs, tasks) for each pid namespace that's relevant
 * to the cgroup.
 */
struct cgroup_pidlist {
	/*
	 * used to find which pidlist is wanted. doesn't change as long as
	 * this particular list stays in the list.
	*/
	struct { enum cgroup_filetype type; struct pid_namespace *ns; } key;
	/* array of xids */
	pid_t *list;
	/* how many elements the above list has */
	int length;
	/* how many files are using the current array */
	int use_count;
	/* each of these stored in a list by its cgroup */
	struct list_head links;
	/* pointer to the cgroup we belong to, for list removal purposes */
	struct cgroup *owner;
	/* protects the other fields */
L
Li Zefan 已提交
3504
	struct rw_semaphore rwsem;
3505 3506
};

3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527
/*
 * The following two functions "fix" the issue where there are more pids
 * than kmalloc will give memory for; in such cases, we use vmalloc/vfree.
 * TODO: replace with a kernel-wide solution to this problem
 */
#define PIDLIST_TOO_LARGE(c) ((c) * sizeof(pid_t) > (PAGE_SIZE * 2))
static void *pidlist_allocate(int count)
{
	if (PIDLIST_TOO_LARGE(count))
		return vmalloc(count * sizeof(pid_t));
	else
		return kmalloc(count * sizeof(pid_t), GFP_KERNEL);
}
static void pidlist_free(void *p)
{
	if (is_vmalloc_addr(p))
		vfree(p);
	else
		kfree(p);
}

3528
/*
3529
 * pidlist_uniq - given a kmalloc()ed list, strip out all duplicate entries
3530
 * Returns the number of unique elements.
3531
 */
3532
static int pidlist_uniq(pid_t *list, int length)
3533
{
3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562
	int src, dest = 1;

	/*
	 * we presume the 0th element is unique, so i starts at 1. trivial
	 * edge cases first; no work needs to be done for either
	 */
	if (length == 0 || length == 1)
		return length;
	/* src and dest walk down the list; dest counts unique elements */
	for (src = 1; src < length; src++) {
		/* find next unique element */
		while (list[src] == list[src-1]) {
			src++;
			if (src == length)
				goto after;
		}
		/* dest always points to where the next unique element goes */
		list[dest] = list[src];
		dest++;
	}
after:
	return dest;
}

static int cmppid(const void *a, const void *b)
{
	return *(pid_t *)a - *(pid_t *)b;
}

3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573
/*
 * find the appropriate pidlist for our purpose (given procs vs tasks)
 * returns with the lock on that pidlist already held, and takes care
 * of the use count, or returns NULL with no locks held if we're out of
 * memory.
 */
static struct cgroup_pidlist *cgroup_pidlist_find(struct cgroup *cgrp,
						  enum cgroup_filetype type)
{
	struct cgroup_pidlist *l;
	/* don't need task_nsproxy() if we're looking at ourself */
3574
	struct pid_namespace *ns = task_active_pid_ns(current);
3575

3576
	/*
L
Li Zefan 已提交
3577
	 * We can't drop the pidlist_mutex before taking the l->rwsem in case
3578 3579 3580 3581 3582 3583 3584 3585
	 * the last ref-holder is trying to remove l from the list at the same
	 * time. Holding the pidlist_mutex precludes somebody taking whichever
	 * list we find out from under us - compare release_pid_array().
	 */
	mutex_lock(&cgrp->pidlist_mutex);
	list_for_each_entry(l, &cgrp->pidlists, links) {
		if (l->key.type == type && l->key.ns == ns) {
			/* make sure l doesn't vanish out from under us */
L
Li Zefan 已提交
3586
			down_write(&l->rwsem);
3587 3588 3589 3590 3591
			mutex_unlock(&cgrp->pidlist_mutex);
			return l;
		}
	}
	/* entry not found; create a new one */
3592
	l = kzalloc(sizeof(struct cgroup_pidlist), GFP_KERNEL);
3593 3594 3595 3596
	if (!l) {
		mutex_unlock(&cgrp->pidlist_mutex);
		return l;
	}
L
Li Zefan 已提交
3597 3598
	init_rwsem(&l->rwsem);
	down_write(&l->rwsem);
3599
	l->key.type = type;
3600
	l->key.ns = get_pid_ns(ns);
3601 3602 3603 3604 3605 3606
	l->owner = cgrp;
	list_add(&l->links, &cgrp->pidlists);
	mutex_unlock(&cgrp->pidlist_mutex);
	return l;
}

3607 3608 3609
/*
 * Load a cgroup's pidarray with either procs' tgids or tasks' pids
 */
3610 3611
static int pidlist_array_load(struct cgroup *cgrp, enum cgroup_filetype type,
			      struct cgroup_pidlist **lp)
3612 3613 3614 3615
{
	pid_t *array;
	int length;
	int pid, n = 0; /* used for populating the array */
3616
	struct css_task_iter it;
3617
	struct task_struct *tsk;
3618 3619 3620 3621 3622 3623 3624 3625 3626
	struct cgroup_pidlist *l;

	/*
	 * If cgroup gets more users after we read count, we won't have
	 * enough space - tough.  This race is indistinguishable to the
	 * caller from the case that the additional cgroup users didn't
	 * show up until sometime later on.
	 */
	length = cgroup_task_count(cgrp);
3627
	array = pidlist_allocate(length);
3628 3629 3630
	if (!array)
		return -ENOMEM;
	/* now, populate the array */
3631 3632
	css_task_iter_start(&cgrp->dummy_css, &it);
	while ((tsk = css_task_iter_next(&it))) {
3633
		if (unlikely(n == length))
3634
			break;
3635
		/* get tgid or pid for procs or tasks file respectively */
3636 3637 3638 3639
		if (type == CGROUP_FILE_PROCS)
			pid = task_tgid_vnr(tsk);
		else
			pid = task_pid_vnr(tsk);
3640 3641
		if (pid > 0) /* make sure to only use valid results */
			array[n++] = pid;
3642
	}
3643
	css_task_iter_end(&it);
3644 3645 3646
	length = n;
	/* now sort & (if procs) strip out duplicates */
	sort(array, length, sizeof(pid_t), cmppid, NULL);
3647
	if (type == CGROUP_FILE_PROCS)
3648
		length = pidlist_uniq(array, length);
3649 3650
	l = cgroup_pidlist_find(cgrp, type);
	if (!l) {
3651
		pidlist_free(array);
3652
		return -ENOMEM;
3653
	}
3654
	/* store array, freeing old if necessary - lock already held */
3655
	pidlist_free(l->list);
3656 3657 3658
	l->list = array;
	l->length = length;
	l->use_count++;
L
Li Zefan 已提交
3659
	up_write(&l->rwsem);
3660
	*lp = l;
3661
	return 0;
3662 3663
}

B
Balbir Singh 已提交
3664
/**
L
Li Zefan 已提交
3665
 * cgroupstats_build - build and fill cgroupstats
B
Balbir Singh 已提交
3666 3667 3668
 * @stats: cgroupstats to fill information into
 * @dentry: A dentry entry belonging to the cgroup for which stats have
 * been requested.
L
Li Zefan 已提交
3669 3670 3671
 *
 * Build and fill cgroupstats so that taskstats can export it to user
 * space.
B
Balbir Singh 已提交
3672 3673 3674 3675
 */
int cgroupstats_build(struct cgroupstats *stats, struct dentry *dentry)
{
	int ret = -EINVAL;
3676
	struct cgroup *cgrp;
3677
	struct css_task_iter it;
B
Balbir Singh 已提交
3678
	struct task_struct *tsk;
3679

B
Balbir Singh 已提交
3680
	/*
3681 3682
	 * Validate dentry by checking the superblock operations,
	 * and make sure it's a directory.
B
Balbir Singh 已提交
3683
	 */
3684 3685
	if (dentry->d_sb->s_op != &cgroup_ops ||
	    !S_ISDIR(dentry->d_inode->i_mode))
B
Balbir Singh 已提交
3686 3687 3688
		 goto err;

	ret = 0;
3689
	cgrp = dentry->d_fsdata;
B
Balbir Singh 已提交
3690

3691 3692
	css_task_iter_start(&cgrp->dummy_css, &it);
	while ((tsk = css_task_iter_next(&it))) {
B
Balbir Singh 已提交
3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711
		switch (tsk->state) {
		case TASK_RUNNING:
			stats->nr_running++;
			break;
		case TASK_INTERRUPTIBLE:
			stats->nr_sleeping++;
			break;
		case TASK_UNINTERRUPTIBLE:
			stats->nr_uninterruptible++;
			break;
		case TASK_STOPPED:
			stats->nr_stopped++;
			break;
		default:
			if (delayacct_is_task_waiting_on_io(tsk))
				stats->nr_io_wait++;
			break;
		}
	}
3712
	css_task_iter_end(&it);
B
Balbir Singh 已提交
3713 3714 3715 3716 3717

err:
	return ret;
}

3718

3719
/*
3720
 * seq_file methods for the tasks/procs files. The seq_file position is the
3721
 * next pid to display; the seq_file iterator is a pointer to the pid
3722
 * in the cgroup->l->list array.
3723
 */
3724

3725
static void *cgroup_pidlist_start(struct seq_file *s, loff_t *pos)
3726
{
3727 3728 3729 3730 3731 3732
	/*
	 * Initially we receive a position value that corresponds to
	 * one more than the last pid shown (or 0 on the first call or
	 * after a seek to the start). Use a binary-search to find the
	 * next pid to display, if any
	 */
3733
	struct cgroup_pidlist *l = s->private;
3734 3735 3736
	int index = 0, pid = *pos;
	int *iter;

L
Li Zefan 已提交
3737
	down_read(&l->rwsem);
3738
	if (pid) {
3739
		int end = l->length;
S
Stephen Rothwell 已提交
3740

3741 3742
		while (index < end) {
			int mid = (index + end) / 2;
3743
			if (l->list[mid] == pid) {
3744 3745
				index = mid;
				break;
3746
			} else if (l->list[mid] <= pid)
3747 3748 3749 3750 3751 3752
				index = mid + 1;
			else
				end = mid;
		}
	}
	/* If we're off the end of the array, we're done */
3753
	if (index >= l->length)
3754 3755
		return NULL;
	/* Update the abstract position to be the actual pid that we found */
3756
	iter = l->list + index;
3757 3758 3759 3760
	*pos = *iter;
	return iter;
}

3761
static void cgroup_pidlist_stop(struct seq_file *s, void *v)
3762
{
3763
	struct cgroup_pidlist *l = s->private;
L
Li Zefan 已提交
3764
	up_read(&l->rwsem);
3765 3766
}

3767
static void *cgroup_pidlist_next(struct seq_file *s, void *v, loff_t *pos)
3768
{
3769 3770 3771
	struct cgroup_pidlist *l = s->private;
	pid_t *p = v;
	pid_t *end = l->list + l->length;
3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784
	/*
	 * Advance to the next pid in the array. If this goes off the
	 * end, we're done
	 */
	p++;
	if (p >= end) {
		return NULL;
	} else {
		*pos = *p;
		return p;
	}
}

3785
static int cgroup_pidlist_show(struct seq_file *s, void *v)
3786 3787 3788
{
	return seq_printf(s, "%d\n", *(int *)v);
}
3789

3790 3791 3792 3793 3794 3795 3796 3797 3798
/*
 * seq_operations functions for iterating on pidlists through seq_file -
 * independent of whether it's tasks or procs
 */
static const struct seq_operations cgroup_pidlist_seq_operations = {
	.start = cgroup_pidlist_start,
	.stop = cgroup_pidlist_stop,
	.next = cgroup_pidlist_next,
	.show = cgroup_pidlist_show,
3799 3800
};

3801
static void cgroup_release_pid_array(struct cgroup_pidlist *l)
3802
{
3803 3804 3805 3806 3807 3808 3809
	/*
	 * the case where we're the last user of this particular pidlist will
	 * have us remove it from the cgroup's list, which entails taking the
	 * mutex. since in pidlist_find the pidlist->lock depends on cgroup->
	 * pidlist_mutex, we have to take pidlist_mutex first.
	 */
	mutex_lock(&l->owner->pidlist_mutex);
L
Li Zefan 已提交
3810
	down_write(&l->rwsem);
3811 3812
	BUG_ON(!l->use_count);
	if (!--l->use_count) {
3813 3814 3815
		/* we're the last user if refcount is 0; remove and free */
		list_del(&l->links);
		mutex_unlock(&l->owner->pidlist_mutex);
3816
		pidlist_free(l->list);
3817
		put_pid_ns(l->key.ns);
L
Li Zefan 已提交
3818
		up_write(&l->rwsem);
3819 3820
		kfree(l);
		return;
3821
	}
3822
	mutex_unlock(&l->owner->pidlist_mutex);
L
Li Zefan 已提交
3823
	up_write(&l->rwsem);
3824 3825
}

3826
static int cgroup_pidlist_release(struct inode *inode, struct file *file)
3827
{
3828
	struct cgroup_pidlist *l;
3829 3830
	if (!(file->f_mode & FMODE_READ))
		return 0;
3831 3832 3833 3834 3835 3836
	/*
	 * the seq_file will only be initialized if the file was opened for
	 * reading; hence we check if it's not null only in that case.
	 */
	l = ((struct seq_file *)file->private_data)->private;
	cgroup_release_pid_array(l);
3837 3838 3839
	return seq_release(inode, file);
}

3840
static const struct file_operations cgroup_pidlist_operations = {
3841 3842 3843
	.read = seq_read,
	.llseek = seq_lseek,
	.write = cgroup_file_write,
3844
	.release = cgroup_pidlist_release,
3845 3846
};

3847
/*
3848 3849 3850
 * The following functions handle opens on a file that displays a pidlist
 * (tasks or procs). Prepare an array of the process/thread IDs of whoever's
 * in the cgroup.
3851
 */
3852
/* helper function for the two below it */
3853
static int cgroup_pidlist_open(struct file *file, enum cgroup_filetype type)
3854
{
3855
	struct cgroup *cgrp = __d_cgrp(file->f_dentry->d_parent);
3856
	struct cgroup_pidlist *l;
3857
	int retval;
3858

3859
	/* Nothing to do for write-only files */
3860 3861 3862
	if (!(file->f_mode & FMODE_READ))
		return 0;

3863
	/* have the array populated */
3864
	retval = pidlist_array_load(cgrp, type, &l);
3865 3866 3867 3868
	if (retval)
		return retval;
	/* configure file information */
	file->f_op = &cgroup_pidlist_operations;
3869

3870
	retval = seq_open(file, &cgroup_pidlist_seq_operations);
3871
	if (retval) {
3872
		cgroup_release_pid_array(l);
3873
		return retval;
3874
	}
3875
	((struct seq_file *)file->private_data)->private = l;
3876 3877
	return 0;
}
3878 3879
static int cgroup_tasks_open(struct inode *unused, struct file *file)
{
3880
	return cgroup_pidlist_open(file, CGROUP_FILE_TASKS);
3881 3882 3883
}
static int cgroup_procs_open(struct inode *unused, struct file *file)
{
3884
	return cgroup_pidlist_open(file, CGROUP_FILE_PROCS);
3885
}
3886

3887 3888
static u64 cgroup_read_notify_on_release(struct cgroup_subsys_state *css,
					 struct cftype *cft)
3889
{
3890
	return notify_on_release(css->cgroup);
3891 3892
}

3893 3894
static int cgroup_write_notify_on_release(struct cgroup_subsys_state *css,
					  struct cftype *cft, u64 val)
3895
{
3896
	clear_bit(CGRP_RELEASABLE, &css->cgroup->flags);
3897
	if (val)
3898
		set_bit(CGRP_NOTIFY_ON_RELEASE, &css->cgroup->flags);
3899
	else
3900
		clear_bit(CGRP_NOTIFY_ON_RELEASE, &css->cgroup->flags);
3901 3902 3903
	return 0;
}

3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920
/*
 * When dput() is called asynchronously, if umount has been done and
 * then deactivate_super() in cgroup_free_fn() kills the superblock,
 * there's a small window that vfs will see the root dentry with non-zero
 * refcnt and trigger BUG().
 *
 * That's why we hold a reference before dput() and drop it right after.
 */
static void cgroup_dput(struct cgroup *cgrp)
{
	struct super_block *sb = cgrp->root->sb;

	atomic_inc(&sb->s_active);
	dput(cgrp->dentry);
	deactivate_super(sb);
}

3921 3922 3923 3924 3925 3926 3927 3928 3929
/*
 * Unregister event and free resources.
 *
 * Gets called from workqueue.
 */
static void cgroup_event_remove(struct work_struct *work)
{
	struct cgroup_event *event = container_of(work, struct cgroup_event,
			remove);
3930
	struct cgroup_subsys_state *css = event->css;
3931

3932 3933
	remove_wait_queue(event->wqh, &event->wait);

3934
	event->cft->unregister_event(css, event->cft, event->eventfd);
3935

3936 3937 3938
	/* Notify userspace the event is going away. */
	eventfd_signal(event->eventfd, 1);

3939 3940
	eventfd_ctx_put(event->eventfd);
	kfree(event);
3941
	css_put(css);
3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953
}

/*
 * Gets called on POLLHUP on eventfd when user closes it.
 *
 * Called with wqh->lock held and interrupts disabled.
 */
static int cgroup_event_wake(wait_queue_t *wait, unsigned mode,
		int sync, void *key)
{
	struct cgroup_event *event = container_of(wait,
			struct cgroup_event, wait);
3954
	struct cgroup *cgrp = event->css->cgroup;
3955 3956 3957 3958
	unsigned long flags = (unsigned long)key;

	if (flags & POLLHUP) {
		/*
3959 3960 3961 3962 3963 3964 3965
		 * If the event has been detached at cgroup removal, we
		 * can simply return knowing the other side will cleanup
		 * for us.
		 *
		 * We can't race against event freeing since the other
		 * side will require wqh->lock via remove_wait_queue(),
		 * which we hold.
3966
		 */
3967 3968 3969 3970 3971 3972 3973 3974 3975 3976
		spin_lock(&cgrp->event_list_lock);
		if (!list_empty(&event->list)) {
			list_del_init(&event->list);
			/*
			 * We are in atomic context, but cgroup_event_remove()
			 * may sleep, so we have to call it in workqueue.
			 */
			schedule_work(&event->remove);
		}
		spin_unlock(&cgrp->event_list_lock);
3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997
	}

	return 0;
}

static void cgroup_event_ptable_queue_proc(struct file *file,
		wait_queue_head_t *wqh, poll_table *pt)
{
	struct cgroup_event *event = container_of(pt,
			struct cgroup_event, pt);

	event->wqh = wqh;
	add_wait_queue(wqh, &event->wait);
}

/*
 * Parse input and register new cgroup event handler.
 *
 * Input must be in format '<event_fd> <control_fd> <args>'.
 * Interpretation of args is defined by control file implementation.
 */
3998
static int cgroup_write_event_control(struct cgroup_subsys_state *dummy_css,
3999
				      struct cftype *cft, const char *buffer)
4000
{
4001
	struct cgroup *cgrp = dummy_css->cgroup;
4002
	struct cgroup_event *event;
4003
	struct cgroup_subsys_state *cfile_css;
4004
	unsigned int efd, cfd;
4005 4006
	struct fd efile;
	struct fd cfile;
4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022
	char *endp;
	int ret;

	efd = simple_strtoul(buffer, &endp, 10);
	if (*endp != ' ')
		return -EINVAL;
	buffer = endp + 1;

	cfd = simple_strtoul(buffer, &endp, 10);
	if ((*endp != ' ') && (*endp != '\0'))
		return -EINVAL;
	buffer = endp + 1;

	event = kzalloc(sizeof(*event), GFP_KERNEL);
	if (!event)
		return -ENOMEM;
4023

4024 4025 4026 4027 4028
	INIT_LIST_HEAD(&event->list);
	init_poll_funcptr(&event->pt, cgroup_event_ptable_queue_proc);
	init_waitqueue_func_entry(&event->wait, cgroup_event_wake);
	INIT_WORK(&event->remove, cgroup_event_remove);

4029 4030 4031
	efile = fdget(efd);
	if (!efile.file) {
		ret = -EBADF;
4032
		goto out_kfree;
4033 4034
	}

4035
	event->eventfd = eventfd_ctx_fileget(efile.file);
4036 4037
	if (IS_ERR(event->eventfd)) {
		ret = PTR_ERR(event->eventfd);
4038
		goto out_put_efile;
4039 4040
	}

4041 4042
	cfile = fdget(cfd);
	if (!cfile.file) {
4043
		ret = -EBADF;
4044
		goto out_put_eventfd;
4045 4046 4047
	}

	/* the process need read permission on control file */
A
Al Viro 已提交
4048
	/* AV: shouldn't we check that it's been opened for read instead? */
4049
	ret = inode_permission(file_inode(cfile.file), MAY_READ);
4050
	if (ret < 0)
4051
		goto out_put_cfile;
4052

4053
	event->cft = __file_cft(cfile.file);
4054 4055
	if (IS_ERR(event->cft)) {
		ret = PTR_ERR(event->cft);
4056
		goto out_put_cfile;
4057 4058
	}

4059 4060 4061
	if (!event->cft->ss) {
		ret = -EBADF;
		goto out_put_cfile;
4062 4063
	}

4064
	/*
4065 4066
	 * Determine the css of @cfile, verify it belongs to the same
	 * cgroup as cgroup.event_control, and associate @event with it.
4067 4068
	 * Remaining events are automatically removed on cgroup destruction
	 * but the removal is asynchronous, so take an extra ref.
4069
	 */
4070 4071 4072
	rcu_read_lock();

	ret = -EINVAL;
4073
	event->css = cgroup_css(cgrp, event->cft->ss);
4074
	cfile_css = css_from_dir(cfile.file->f_dentry->d_parent, event->cft->ss);
4075
	if (event->css && event->css == cfile_css && css_tryget(event->css))
4076 4077 4078 4079 4080
		ret = 0;

	rcu_read_unlock();
	if (ret)
		goto out_put_cfile;
4081

4082 4083
	if (!event->cft->register_event || !event->cft->unregister_event) {
		ret = -EINVAL;
4084
		goto out_put_css;
4085 4086
	}

4087
	ret = event->cft->register_event(event->css, event->cft,
4088 4089
			event->eventfd, buffer);
	if (ret)
4090
		goto out_put_css;
4091

4092
	efile.file->f_op->poll(efile.file, &event->pt);
4093 4094 4095 4096 4097

	spin_lock(&cgrp->event_list_lock);
	list_add(&event->list, &cgrp->event_list);
	spin_unlock(&cgrp->event_list_lock);

4098 4099
	fdput(cfile);
	fdput(efile);
4100 4101 4102

	return 0;

4103 4104
out_put_css:
	css_put(event->css);
4105
out_put_cfile:
4106
	fdput(cfile);
4107 4108 4109
out_put_eventfd:
	eventfd_ctx_put(event->eventfd);
out_put_efile:
4110
	fdput(efile);
4111
out_kfree:
4112 4113 4114 4115 4116
	kfree(event);

	return ret;
}

4117 4118
static u64 cgroup_clone_children_read(struct cgroup_subsys_state *css,
				      struct cftype *cft)
4119
{
4120
	return test_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags);
4121 4122
}

4123 4124
static int cgroup_clone_children_write(struct cgroup_subsys_state *css,
				       struct cftype *cft, u64 val)
4125 4126
{
	if (val)
4127
		set_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags);
4128
	else
4129
		clear_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags);
4130 4131 4132
	return 0;
}

4133
static struct cftype cgroup_base_files[] = {
4134
	{
4135
		.name = "cgroup.procs",
4136
		.open = cgroup_procs_open,
B
Ben Blum 已提交
4137
		.write_u64 = cgroup_procs_write,
4138
		.release = cgroup_pidlist_release,
B
Ben Blum 已提交
4139
		.mode = S_IRUGO | S_IWUSR,
4140
	},
4141
	{
4142
		.name = "cgroup.event_control",
4143 4144 4145
		.write_string = cgroup_write_event_control,
		.mode = S_IWUGO,
	},
4146 4147
	{
		.name = "cgroup.clone_children",
4148
		.flags = CFTYPE_INSANE,
4149 4150 4151
		.read_u64 = cgroup_clone_children_read,
		.write_u64 = cgroup_clone_children_write,
	},
4152 4153 4154 4155 4156
	{
		.name = "cgroup.sane_behavior",
		.flags = CFTYPE_ONLY_ON_ROOT,
		.read_seq_string = cgroup_sane_behavior_show,
	},
4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176

	/*
	 * Historical crazy stuff.  These don't have "cgroup."  prefix and
	 * don't exist if sane_behavior.  If you're depending on these, be
	 * prepared to be burned.
	 */
	{
		.name = "tasks",
		.flags = CFTYPE_INSANE,		/* use "procs" instead */
		.open = cgroup_tasks_open,
		.write_u64 = cgroup_tasks_write,
		.release = cgroup_pidlist_release,
		.mode = S_IRUGO | S_IWUSR,
	},
	{
		.name = "notify_on_release",
		.flags = CFTYPE_INSANE,
		.read_u64 = cgroup_read_notify_on_release,
		.write_u64 = cgroup_write_notify_on_release,
	},
4177 4178
	{
		.name = "release_agent",
4179
		.flags = CFTYPE_INSANE | CFTYPE_ONLY_ON_ROOT,
4180 4181 4182 4183
		.read_seq_string = cgroup_release_agent_show,
		.write_string = cgroup_release_agent_write,
		.max_write_len = PATH_MAX,
	},
T
Tejun Heo 已提交
4184
	{ }	/* terminate */
4185 4186
};

4187
/**
4188
 * cgroup_populate_dir - create subsys files in a cgroup directory
4189 4190
 * @cgrp: target cgroup
 * @subsys_mask: mask of the subsystem ids whose files should be added
4191 4192
 *
 * On failure, no file is added.
4193
 */
4194
static int cgroup_populate_dir(struct cgroup *cgrp, unsigned long subsys_mask)
4195 4196
{
	struct cgroup_subsys *ss;
4197
	int i, ret = 0;
4198

4199
	/* process cftsets of each subsystem */
4200
	for_each_subsys(ss, i) {
4201
		struct cftype_set *set;
4202 4203

		if (!test_bit(i, &subsys_mask))
4204
			continue;
4205

4206
		list_for_each_entry(set, &ss->cftsets, node) {
4207
			ret = cgroup_addrm_files(cgrp, set->cfts, true);
4208 4209 4210
			if (ret < 0)
				goto err;
		}
4211 4212
	}
	return 0;
4213 4214 4215
err:
	cgroup_clear_dir(cgrp, subsys_mask);
	return ret;
4216 4217
}

4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239
/*
 * css destruction is four-stage process.
 *
 * 1. Destruction starts.  Killing of the percpu_ref is initiated.
 *    Implemented in kill_css().
 *
 * 2. When the percpu_ref is confirmed to be visible as killed on all CPUs
 *    and thus css_tryget() is guaranteed to fail, the css can be offlined
 *    by invoking offline_css().  After offlining, the base ref is put.
 *    Implemented in css_killed_work_fn().
 *
 * 3. When the percpu_ref reaches zero, the only possible remaining
 *    accessors are inside RCU read sections.  css_release() schedules the
 *    RCU callback.
 *
 * 4. After the grace period, the css can be freed.  Implemented in
 *    css_free_work_fn().
 *
 * It is actually hairier because both step 2 and 4 require process context
 * and thus involve punting to css->destroy_work adding two additional
 * steps to the already complex sequence.
 */
4240
static void css_free_work_fn(struct work_struct *work)
4241 4242
{
	struct cgroup_subsys_state *css =
4243
		container_of(work, struct cgroup_subsys_state, destroy_work);
4244
	struct cgroup *cgrp = css->cgroup;
4245

4246 4247 4248
	if (css->parent)
		css_put(css->parent);

4249 4250
	css->ss->css_free(css);
	cgroup_dput(cgrp);
4251 4252
}

4253
static void css_free_rcu_fn(struct rcu_head *rcu_head)
4254 4255
{
	struct cgroup_subsys_state *css =
4256
		container_of(rcu_head, struct cgroup_subsys_state, rcu_head);
4257

4258 4259
	/*
	 * css holds an extra ref to @cgrp->dentry which is put on the last
4260
	 * css_put().  dput() requires process context which we don't have.
4261 4262
	 */
	INIT_WORK(&css->destroy_work, css_free_work_fn);
4263
	queue_work(cgroup_destroy_wq, &css->destroy_work);
4264 4265
}

4266 4267 4268 4269 4270
static void css_release(struct percpu_ref *ref)
{
	struct cgroup_subsys_state *css =
		container_of(ref, struct cgroup_subsys_state, refcnt);

4271
	call_rcu(&css->rcu_head, css_free_rcu_fn);
4272 4273
}

4274 4275
static void init_css(struct cgroup_subsys_state *css, struct cgroup_subsys *ss,
		     struct cgroup *cgrp)
4276
{
4277
	css->cgroup = cgrp;
4278
	css->ss = ss;
4279
	css->flags = 0;
4280 4281

	if (cgrp->parent)
4282
		css->parent = cgroup_css(cgrp->parent, ss);
4283
	else
4284
		css->flags |= CSS_ROOT;
4285

4286
	BUG_ON(cgroup_css(cgrp, ss));
4287 4288
}

4289
/* invoke ->css_online() on a new CSS and mark it online if successful */
4290
static int online_css(struct cgroup_subsys_state *css)
4291
{
4292
	struct cgroup_subsys *ss = css->ss;
T
Tejun Heo 已提交
4293 4294
	int ret = 0;

4295 4296
	lockdep_assert_held(&cgroup_mutex);

4297
	if (ss->css_online)
4298
		ret = ss->css_online(css);
4299
	if (!ret) {
4300
		css->flags |= CSS_ONLINE;
4301
		css->cgroup->nr_css++;
4302 4303
		rcu_assign_pointer(css->cgroup->subsys[ss->subsys_id], css);
	}
T
Tejun Heo 已提交
4304
	return ret;
4305 4306
}

4307
/* if the CSS is online, invoke ->css_offline() on it and mark it offline */
4308
static void offline_css(struct cgroup_subsys_state *css)
4309
{
4310
	struct cgroup_subsys *ss = css->ss;
4311 4312 4313 4314 4315 4316

	lockdep_assert_held(&cgroup_mutex);

	if (!(css->flags & CSS_ONLINE))
		return;

4317
	if (ss->css_offline)
4318
		ss->css_offline(css);
4319

4320
	css->flags &= ~CSS_ONLINE;
4321
	css->cgroup->nr_css--;
4322
	RCU_INIT_POINTER(css->cgroup->subsys[ss->subsys_id], css);
4323 4324
}

4325
/*
L
Li Zefan 已提交
4326 4327 4328 4329
 * cgroup_create - create a cgroup
 * @parent: cgroup that will be parent of the new cgroup
 * @dentry: dentry of the new cgroup
 * @mode: mode to set on new inode
4330
 *
L
Li Zefan 已提交
4331
 * Must be called with the mutex on the parent inode held
4332 4333
 */
static long cgroup_create(struct cgroup *parent, struct dentry *dentry,
A
Al Viro 已提交
4334
			     umode_t mode)
4335
{
4336
	struct cgroup_subsys_state *css_ar[CGROUP_SUBSYS_COUNT] = { };
4337
	struct cgroup *cgrp;
4338
	struct cgroup_name *name;
4339 4340 4341 4342 4343
	struct cgroupfs_root *root = parent->root;
	int err = 0;
	struct cgroup_subsys *ss;
	struct super_block *sb = root->sb;

T
Tejun Heo 已提交
4344
	/* allocate the cgroup and its ID, 0 is reserved for the root */
4345 4346
	cgrp = kzalloc(sizeof(*cgrp), GFP_KERNEL);
	if (!cgrp)
4347 4348
		return -ENOMEM;

4349 4350 4351 4352 4353
	name = cgroup_alloc_name(dentry);
	if (!name)
		goto err_free_cgrp;
	rcu_assign_pointer(cgrp->name, name);

4354 4355 4356 4357 4358
	/*
	 * Temporarily set the pointer to NULL, so idr_find() won't return
	 * a half-baked cgroup.
	 */
	cgrp->id = idr_alloc(&root->cgroup_idr, NULL, 1, 0, GFP_KERNEL);
T
Tejun Heo 已提交
4359
	if (cgrp->id < 0)
4360
		goto err_free_name;
T
Tejun Heo 已提交
4361

4362 4363 4364 4365 4366 4367 4368 4369 4370
	/*
	 * Only live parents can have children.  Note that the liveliness
	 * check isn't strictly necessary because cgroup_mkdir() and
	 * cgroup_rmdir() are fully synchronized by i_mutex; however, do it
	 * anyway so that locking is contained inside cgroup proper and we
	 * don't get nasty surprises if we ever grow another caller.
	 */
	if (!cgroup_lock_live_group(parent)) {
		err = -ENODEV;
T
Tejun Heo 已提交
4371
		goto err_free_id;
4372 4373
	}

4374 4375 4376 4377 4378 4379 4380
	/* Grab a reference on the superblock so the hierarchy doesn't
	 * get deleted on unmount if there are child cgroups.  This
	 * can be done outside cgroup_mutex, since the sb can't
	 * disappear while someone has an open control file on the
	 * fs */
	atomic_inc(&sb->s_active);

4381
	init_cgroup_housekeeping(cgrp);
4382

4383 4384 4385
	dentry->d_fsdata = cgrp;
	cgrp->dentry = dentry;

4386
	cgrp->parent = parent;
4387
	cgrp->dummy_css.parent = &parent->dummy_css;
4388
	cgrp->root = parent->root;
4389

4390 4391 4392
	if (notify_on_release(parent))
		set_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);

4393 4394
	if (test_bit(CGRP_CPUSET_CLONE_CHILDREN, &parent->flags))
		set_bit(CGRP_CPUSET_CLONE_CHILDREN, &cgrp->flags);
4395

4396
	for_each_root_subsys(root, ss) {
4397
		struct cgroup_subsys_state *css;
4398

4399
		css = ss->css_alloc(cgroup_css(parent, ss));
4400 4401
		if (IS_ERR(css)) {
			err = PTR_ERR(css);
4402
			goto err_free_all;
4403
		}
4404
		css_ar[ss->subsys_id] = css;
4405 4406

		err = percpu_ref_init(&css->refcnt, css_release);
4407
		if (err)
4408 4409
			goto err_free_all;

4410
		init_css(css, ss, cgrp);
4411 4412
	}

4413 4414 4415 4416 4417
	/*
	 * Create directory.  cgroup_create_file() returns with the new
	 * directory locked on success so that it can be populated without
	 * dropping cgroup_mutex.
	 */
T
Tejun Heo 已提交
4418
	err = cgroup_create_file(dentry, S_IFDIR | mode, sb);
4419
	if (err < 0)
4420
		goto err_free_all;
4421
	lockdep_assert_held(&dentry->d_inode->i_mutex);
4422

4423
	cgrp->serial_nr = cgroup_serial_nr_next++;
4424

4425 4426 4427
	/* allocation complete, commit to creation */
	list_add_tail_rcu(&cgrp->sibling, &cgrp->parent->children);
	root->number_of_cgroups++;
T
Tejun Heo 已提交
4428

4429 4430 4431
	/* hold a ref to the parent's dentry */
	dget(parent->dentry);

T
Tejun Heo 已提交
4432
	/* creation succeeded, notify subsystems */
4433
	for_each_root_subsys(root, ss) {
4434
		struct cgroup_subsys_state *css = css_ar[ss->subsys_id];
4435 4436

		err = online_css(css);
T
Tejun Heo 已提交
4437 4438
		if (err)
			goto err_destroy;
4439

4440 4441 4442 4443 4444 4445 4446
		/* each css holds a ref to the cgroup's dentry and parent css */
		dget(dentry);
		css_get(css->parent);

		/* mark it consumed for error path */
		css_ar[ss->subsys_id] = NULL;

4447 4448 4449 4450 4451 4452 4453 4454
		if (ss->broken_hierarchy && !ss->warned_broken_hierarchy &&
		    parent->parent) {
			pr_warning("cgroup: %s (%d) created nested cgroup for controller \"%s\" which has incomplete hierarchy support. Nested cgroups may change behavior in the future.\n",
				   current->comm, current->pid, ss->name);
			if (!strcmp(ss->name, "memory"))
				pr_warning("cgroup: \"memory\" requires setting use_hierarchy to 1 on the root.\n");
			ss->warned_broken_hierarchy = true;
		}
4455 4456
	}

4457 4458
	idr_replace(&root->cgroup_idr, cgrp, cgrp->id);

4459
	err = cgroup_addrm_files(cgrp, cgroup_base_files, true);
4460 4461 4462 4463
	if (err)
		goto err_destroy;

	err = cgroup_populate_dir(cgrp, root->subsys_mask);
4464 4465
	if (err)
		goto err_destroy;
4466 4467

	mutex_unlock(&cgroup_mutex);
4468
	mutex_unlock(&cgrp->dentry->d_inode->i_mutex);
4469 4470 4471

	return 0;

4472
err_free_all:
4473
	for_each_root_subsys(root, ss) {
4474
		struct cgroup_subsys_state *css = css_ar[ss->subsys_id];
4475 4476 4477

		if (css) {
			percpu_ref_cancel_init(&css->refcnt);
4478
			ss->css_free(css);
4479
		}
4480 4481 4482 4483
	}
	mutex_unlock(&cgroup_mutex);
	/* Release the reference count that we took on the superblock */
	deactivate_super(sb);
T
Tejun Heo 已提交
4484
err_free_id:
4485
	idr_remove(&root->cgroup_idr, cgrp->id);
4486 4487
err_free_name:
	kfree(rcu_dereference_raw(cgrp->name));
4488
err_free_cgrp:
4489
	kfree(cgrp);
4490
	return err;
4491 4492

err_destroy:
4493 4494 4495 4496 4497 4498 4499 4500
	for_each_root_subsys(root, ss) {
		struct cgroup_subsys_state *css = css_ar[ss->subsys_id];

		if (css) {
			percpu_ref_cancel_init(&css->refcnt);
			ss->css_free(css);
		}
	}
4501 4502 4503 4504
	cgroup_destroy_locked(cgrp);
	mutex_unlock(&cgroup_mutex);
	mutex_unlock(&dentry->d_inode->i_mutex);
	return err;
4505 4506
}

4507
static int cgroup_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
4508 4509 4510 4511 4512 4513 4514
{
	struct cgroup *c_parent = dentry->d_parent->d_fsdata;

	/* the vfs holds inode->i_mutex already */
	return cgroup_create(c_parent, dentry, mode | S_IFDIR);
}

4515 4516 4517 4518 4519
/*
 * This is called when the refcnt of a css is confirmed to be killed.
 * css_tryget() is now guaranteed to fail.
 */
static void css_killed_work_fn(struct work_struct *work)
4520
{
4521 4522 4523
	struct cgroup_subsys_state *css =
		container_of(work, struct cgroup_subsys_state, destroy_work);
	struct cgroup *cgrp = css->cgroup;
4524

4525 4526
	mutex_lock(&cgroup_mutex);

4527 4528 4529 4530 4531 4532
	/*
	 * css_tryget() is guaranteed to fail now.  Tell subsystems to
	 * initate destruction.
	 */
	offline_css(css);

4533 4534 4535 4536 4537
	/*
	 * If @cgrp is marked dead, it's waiting for refs of all css's to
	 * be disabled before proceeding to the second phase of cgroup
	 * destruction.  If we are the last one, kick it off.
	 */
4538
	if (!cgrp->nr_css && cgroup_is_dead(cgrp))
4539 4540 4541
		cgroup_destroy_css_killed(cgrp);

	mutex_unlock(&cgroup_mutex);
4542 4543 4544 4545 4546 4547 4548 4549 4550

	/*
	 * Put the css refs from kill_css().  Each css holds an extra
	 * reference to the cgroup's dentry and cgroup removal proceeds
	 * regardless of css refs.  On the last put of each css, whenever
	 * that may be, the extra dentry ref is put so that dentry
	 * destruction happens only after all css's are released.
	 */
	css_put(css);
4551 4552
}

4553 4554
/* css kill confirmation processing requires process context, bounce */
static void css_killed_ref_fn(struct percpu_ref *ref)
4555 4556 4557 4558
{
	struct cgroup_subsys_state *css =
		container_of(ref, struct cgroup_subsys_state, refcnt);

4559
	INIT_WORK(&css->destroy_work, css_killed_work_fn);
4560
	queue_work(cgroup_destroy_wq, &css->destroy_work);
4561 4562
}

T
Tejun Heo 已提交
4563 4564 4565 4566
/**
 * kill_css - destroy a css
 * @css: css to destroy
 *
4567 4568 4569 4570
 * This function initiates destruction of @css by removing cgroup interface
 * files and putting its base reference.  ->css_offline() will be invoked
 * asynchronously once css_tryget() is guaranteed to fail and when the
 * reference count reaches zero, @css will be released.
T
Tejun Heo 已提交
4571 4572 4573
 */
static void kill_css(struct cgroup_subsys_state *css)
{
4574 4575
	cgroup_clear_dir(css->cgroup, 1 << css->ss->subsys_id);

T
Tejun Heo 已提交
4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592
	/*
	 * Killing would put the base ref, but we need to keep it alive
	 * until after ->css_offline().
	 */
	css_get(css);

	/*
	 * cgroup core guarantees that, by the time ->css_offline() is
	 * invoked, no new css reference will be given out via
	 * css_tryget().  We can't simply call percpu_ref_kill() and
	 * proceed to offlining css's because percpu_ref_kill() doesn't
	 * guarantee that the ref is seen as killed on all CPUs on return.
	 *
	 * Use percpu_ref_kill_and_confirm() to get notifications as each
	 * css is confirmed to be seen as killed on all CPUs.
	 */
	percpu_ref_kill_and_confirm(&css->refcnt, css_killed_ref_fn);
4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618
}

/**
 * cgroup_destroy_locked - the first stage of cgroup destruction
 * @cgrp: cgroup to be destroyed
 *
 * css's make use of percpu refcnts whose killing latency shouldn't be
 * exposed to userland and are RCU protected.  Also, cgroup core needs to
 * guarantee that css_tryget() won't succeed by the time ->css_offline() is
 * invoked.  To satisfy all the requirements, destruction is implemented in
 * the following two steps.
 *
 * s1. Verify @cgrp can be destroyed and mark it dying.  Remove all
 *     userland visible parts and start killing the percpu refcnts of
 *     css's.  Set up so that the next stage will be kicked off once all
 *     the percpu refcnts are confirmed to be killed.
 *
 * s2. Invoke ->css_offline(), mark the cgroup dead and proceed with the
 *     rest of destruction.  Once all cgroup references are gone, the
 *     cgroup is RCU-freed.
 *
 * This function implements s1.  After this step, @cgrp is gone as far as
 * the userland is concerned and a new cgroup with the same name may be
 * created.  As cgroup doesn't care about the names internally, this
 * doesn't cause any problem.
 */
4619 4620
static int cgroup_destroy_locked(struct cgroup *cgrp)
	__releases(&cgroup_mutex) __acquires(&cgroup_mutex)
4621
{
4622
	struct dentry *d = cgrp->dentry;
4623
	struct cgroup_event *event, *tmp;
4624
	struct cgroup_subsys *ss;
4625
	struct cgroup *child;
4626
	bool empty;
4627

4628 4629 4630
	lockdep_assert_held(&d->d_inode->i_mutex);
	lockdep_assert_held(&cgroup_mutex);

4631
	/*
T
Tejun Heo 已提交
4632 4633
	 * css_set_lock synchronizes access to ->cset_links and prevents
	 * @cgrp from being removed while __put_css_set() is in progress.
4634 4635
	 */
	read_lock(&css_set_lock);
4636
	empty = list_empty(&cgrp->cset_links);
4637 4638
	read_unlock(&css_set_lock);
	if (!empty)
4639
		return -EBUSY;
L
Li Zefan 已提交
4640

4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656
	/*
	 * Make sure there's no live children.  We can't test ->children
	 * emptiness as dead children linger on it while being destroyed;
	 * otherwise, "rmdir parent/child parent" may fail with -EBUSY.
	 */
	empty = true;
	rcu_read_lock();
	list_for_each_entry_rcu(child, &cgrp->children, sibling) {
		empty = cgroup_is_dead(child);
		if (!empty)
			break;
	}
	rcu_read_unlock();
	if (!empty)
		return -EBUSY;

4657
	/*
T
Tejun Heo 已提交
4658 4659 4660
	 * Initiate massacre of all css's.  cgroup_destroy_css_killed()
	 * will be invoked to perform the rest of destruction once the
	 * percpu refs of all css's are confirmed to be killed.
4661
	 */
4662 4663 4664 4665 4666 4667
	for_each_root_subsys(cgrp->root, ss) {
		struct cgroup_subsys_state *css = cgroup_css(cgrp, ss);

		if (css)
			kill_css(css);
	}
4668 4669 4670 4671

	/*
	 * Mark @cgrp dead.  This prevents further task migration and child
	 * creation by disabling cgroup_lock_live_group().  Note that
4672
	 * CGRP_DEAD assertion is depended upon by css_next_child() to
4673
	 * resume iteration after dropping RCU read lock.  See
4674
	 * css_next_child() for details.
4675
	 */
4676
	set_bit(CGRP_DEAD, &cgrp->flags);
4677

4678 4679 4680 4681 4682 4683 4684
	/* CGRP_DEAD is set, remove from ->release_list for the last time */
	raw_spin_lock(&release_list_lock);
	if (!list_empty(&cgrp->release_list))
		list_del_init(&cgrp->release_list);
	raw_spin_unlock(&release_list_lock);

	/*
4685 4686 4687 4688 4689 4690 4691 4692
	 * If @cgrp has css's attached, the second stage of cgroup
	 * destruction is kicked off from css_killed_work_fn() after the
	 * refs of all attached css's are killed.  If @cgrp doesn't have
	 * any css, we kick it off here.
	 */
	if (!cgrp->nr_css)
		cgroup_destroy_css_killed(cgrp);

4693
	/*
4694 4695 4696
	 * Clear the base files and remove @cgrp directory.  The removal
	 * puts the base ref but we aren't quite done with @cgrp yet, so
	 * hold onto it.
4697
	 */
4698
	cgroup_addrm_files(cgrp, cgroup_base_files, false);
4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713
	dget(d);
	cgroup_d_remove_dir(d);

	/*
	 * Unregister events and notify userspace.
	 * Notify userspace about cgroup removing only after rmdir of cgroup
	 * directory to avoid race between userspace and kernelspace.
	 */
	spin_lock(&cgrp->event_list_lock);
	list_for_each_entry_safe(event, tmp, &cgrp->event_list, list) {
		list_del_init(&event->list);
		schedule_work(&event->remove);
	}
	spin_unlock(&cgrp->event_list_lock);

4714 4715 4716
	return 0;
};

4717
/**
4718
 * cgroup_destroy_css_killed - the second step of cgroup destruction
4719 4720 4721
 * @work: cgroup->destroy_free_work
 *
 * This function is invoked from a work item for a cgroup which is being
4722 4723 4724
 * destroyed after all css's are offlined and performs the rest of
 * destruction.  This is the second step of destruction described in the
 * comment above cgroup_destroy_locked().
4725
 */
4726
static void cgroup_destroy_css_killed(struct cgroup *cgrp)
4727 4728 4729 4730
{
	struct cgroup *parent = cgrp->parent;
	struct dentry *d = cgrp->dentry;

4731
	lockdep_assert_held(&cgroup_mutex);
4732

4733
	/* delete this cgroup from parent->children */
4734
	list_del_rcu(&cgrp->sibling);
4735 4736

	/*
4737 4738 4739
	 * We should remove the cgroup object from idr before its grace
	 * period starts, so we won't be looking up a cgroup while the
	 * cgroup is being freed.
4740
	 */
4741 4742
	idr_remove(&cgrp->root->cgroup_idr, cgrp->id);
	cgrp->id = -1;
4743

4744 4745
	dput(d);

4746
	set_bit(CGRP_RELEASABLE, &parent->flags);
4747
	check_for_release(parent);
4748 4749
}

4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760
static int cgroup_rmdir(struct inode *unused_dir, struct dentry *dentry)
{
	int ret;

	mutex_lock(&cgroup_mutex);
	ret = cgroup_destroy_locked(dentry->d_fsdata);
	mutex_unlock(&cgroup_mutex);

	return ret;
}

4761 4762 4763 4764 4765 4766 4767 4768 4769
static void __init_or_module cgroup_init_cftsets(struct cgroup_subsys *ss)
{
	INIT_LIST_HEAD(&ss->cftsets);

	/*
	 * base_cftset is embedded in subsys itself, no need to worry about
	 * deregistration.
	 */
	if (ss->base_cftypes) {
4770 4771 4772 4773 4774
		struct cftype *cft;

		for (cft = ss->base_cftypes; cft->name[0] != '\0'; cft++)
			cft->ss = ss;

4775 4776 4777 4778 4779
		ss->base_cftset.cfts = ss->base_cftypes;
		list_add_tail(&ss->base_cftset.node, &ss->cftsets);
	}
}

4780
static void __init cgroup_init_subsys(struct cgroup_subsys *ss)
4781 4782
{
	struct cgroup_subsys_state *css;
D
Diego Calleja 已提交
4783 4784

	printk(KERN_INFO "Initializing cgroup subsys %s\n", ss->name);
4785

4786 4787
	mutex_lock(&cgroup_mutex);

4788 4789 4790
	/* init base cftset */
	cgroup_init_cftsets(ss);

4791
	/* Create the top cgroup state for this subsystem */
4792 4793
	list_add(&ss->sibling, &cgroup_dummy_root.subsys_list);
	ss->root = &cgroup_dummy_root;
4794
	css = ss->css_alloc(cgroup_css(cgroup_dummy_top, ss));
4795 4796
	/* We don't handle early failures gracefully */
	BUG_ON(IS_ERR(css));
4797
	init_css(css, ss, cgroup_dummy_top);
4798

L
Li Zefan 已提交
4799
	/* Update the init_css_set to contain a subsys
4800
	 * pointer to this state - since the subsystem is
L
Li Zefan 已提交
4801 4802
	 * newly registered, all tasks and hence the
	 * init_css_set is in the subsystem's top cgroup. */
4803
	init_css_set.subsys[ss->subsys_id] = css;
4804 4805 4806

	need_forkexit_callback |= ss->fork || ss->exit;

L
Li Zefan 已提交
4807 4808 4809 4810 4811
	/* At system boot, before all subsystems have been
	 * registered, no tasks have been forked, so we don't
	 * need to invoke fork callbacks here. */
	BUG_ON(!list_empty(&init_task.tasks));

4812
	BUG_ON(online_css(css));
4813

4814 4815
	mutex_unlock(&cgroup_mutex);

4816 4817 4818 4819 4820 4821 4822 4823 4824 4825
	/* this function shouldn't be used with modular subsystems, since they
	 * need to register a subsys_id, among other things */
	BUG_ON(ss->module);
}

/**
 * cgroup_load_subsys: load and register a modular subsystem at runtime
 * @ss: the subsystem to load
 *
 * This function should be called in a modular subsystem's initcall. If the
T
Thomas Weber 已提交
4826
 * subsystem is built as a module, it will be assigned a new subsys_id and set
4827 4828 4829 4830 4831 4832
 * up for use. If the subsystem is built-in anyway, work is delegated to the
 * simpler cgroup_init_subsys.
 */
int __init_or_module cgroup_load_subsys(struct cgroup_subsys *ss)
{
	struct cgroup_subsys_state *css;
4833
	int i, ret;
4834
	struct hlist_node *tmp;
4835
	struct css_set *cset;
4836
	unsigned long key;
4837 4838 4839

	/* check name and function validity */
	if (ss->name == NULL || strlen(ss->name) > MAX_CGROUP_TYPE_NAMELEN ||
4840
	    ss->css_alloc == NULL || ss->css_free == NULL)
4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856
		return -EINVAL;

	/*
	 * we don't support callbacks in modular subsystems. this check is
	 * before the ss->module check for consistency; a subsystem that could
	 * be a module should still have no callbacks even if the user isn't
	 * compiling it as one.
	 */
	if (ss->fork || ss->exit)
		return -EINVAL;

	/*
	 * an optionally modular subsystem is built-in: we want to do nothing,
	 * since cgroup_init_subsys will have already taken care of it.
	 */
	if (ss->module == NULL) {
4857
		/* a sanity check */
4858
		BUG_ON(cgroup_subsys[ss->subsys_id] != ss);
4859 4860 4861
		return 0;
	}

4862 4863 4864
	/* init base cftset */
	cgroup_init_cftsets(ss);

4865
	mutex_lock(&cgroup_mutex);
4866
	cgroup_subsys[ss->subsys_id] = ss;
4867 4868

	/*
4869
	 * no ss->css_alloc seems to need anything important in the ss
4870
	 * struct, so this can happen first (i.e. before the dummy root
4871
	 * attachment).
4872
	 */
4873
	css = ss->css_alloc(cgroup_css(cgroup_dummy_top, ss));
4874
	if (IS_ERR(css)) {
4875 4876
		/* failure case - need to deassign the cgroup_subsys[] slot. */
		cgroup_subsys[ss->subsys_id] = NULL;
4877 4878 4879 4880
		mutex_unlock(&cgroup_mutex);
		return PTR_ERR(css);
	}

4881 4882
	list_add(&ss->sibling, &cgroup_dummy_root.subsys_list);
	ss->root = &cgroup_dummy_root;
4883 4884

	/* our new subsystem will be attached to the dummy hierarchy. */
4885
	init_css(css, ss, cgroup_dummy_top);
4886 4887 4888 4889 4890 4891 4892 4893 4894 4895

	/*
	 * Now we need to entangle the css into the existing css_sets. unlike
	 * in cgroup_init_subsys, there are now multiple css_sets, so each one
	 * will need a new pointer to it; done by iterating the css_set_table.
	 * furthermore, modifying the existing css_sets will corrupt the hash
	 * table state, so each changed css_set will need its hash recomputed.
	 * this is all done under the css_set_lock.
	 */
	write_lock(&css_set_lock);
4896
	hash_for_each_safe(css_set_table, i, tmp, cset, hlist) {
4897
		/* skip entries that we already rehashed */
4898
		if (cset->subsys[ss->subsys_id])
4899 4900
			continue;
		/* remove existing entry */
4901
		hash_del(&cset->hlist);
4902
		/* set new value */
4903
		cset->subsys[ss->subsys_id] = css;
4904
		/* recompute hash and restore entry */
4905 4906
		key = css_set_hash(cset->subsys);
		hash_add(css_set_table, &cset->hlist, key);
4907 4908 4909
	}
	write_unlock(&css_set_lock);

4910
	ret = online_css(css);
T
Tejun Heo 已提交
4911 4912
	if (ret)
		goto err_unload;
4913

4914 4915 4916
	/* success! */
	mutex_unlock(&cgroup_mutex);
	return 0;
4917 4918 4919 4920 4921 4922

err_unload:
	mutex_unlock(&cgroup_mutex);
	/* @ss can't be mounted here as try_module_get() would fail */
	cgroup_unload_subsys(ss);
	return ret;
4923
}
4924
EXPORT_SYMBOL_GPL(cgroup_load_subsys);
4925

B
Ben Blum 已提交
4926 4927 4928 4929 4930 4931 4932 4933 4934 4935
/**
 * cgroup_unload_subsys: unload a modular subsystem
 * @ss: the subsystem to unload
 *
 * This function should be called in a modular subsystem's exitcall. When this
 * function is invoked, the refcount on the subsystem's module will be 0, so
 * the subsystem will not be attached to any hierarchy.
 */
void cgroup_unload_subsys(struct cgroup_subsys *ss)
{
4936
	struct cgrp_cset_link *link;
B
Ben Blum 已提交
4937 4938 4939 4940 4941

	BUG_ON(ss->module == NULL);

	/*
	 * we shouldn't be called if the subsystem is in use, and the use of
4942
	 * try_module_get() in rebind_subsystems() should ensure that it
B
Ben Blum 已提交
4943 4944
	 * doesn't start being used while we're killing it off.
	 */
4945
	BUG_ON(ss->root != &cgroup_dummy_root);
B
Ben Blum 已提交
4946 4947

	mutex_lock(&cgroup_mutex);
4948

4949
	offline_css(cgroup_css(cgroup_dummy_top, ss));
4950

B
Ben Blum 已提交
4951
	/* deassign the subsys_id */
4952
	cgroup_subsys[ss->subsys_id] = NULL;
B
Ben Blum 已提交
4953

4954
	/* remove subsystem from the dummy root's list of subsystems */
4955
	list_del_init(&ss->sibling);
B
Ben Blum 已提交
4956 4957

	/*
4958 4959 4960
	 * disentangle the css from all css_sets attached to the dummy
	 * top. as in loading, we need to pay our respects to the hashtable
	 * gods.
B
Ben Blum 已提交
4961 4962
	 */
	write_lock(&css_set_lock);
4963
	list_for_each_entry(link, &cgroup_dummy_top->cset_links, cset_link) {
4964
		struct css_set *cset = link->cset;
4965
		unsigned long key;
B
Ben Blum 已提交
4966

4967 4968 4969 4970
		hash_del(&cset->hlist);
		cset->subsys[ss->subsys_id] = NULL;
		key = css_set_hash(cset->subsys);
		hash_add(css_set_table, &cset->hlist, key);
B
Ben Blum 已提交
4971 4972 4973 4974
	}
	write_unlock(&css_set_lock);

	/*
4975 4976
	 * remove subsystem's css from the cgroup_dummy_top and free it -
	 * need to free before marking as null because ss->css_free needs
L
Li Zefan 已提交
4977
	 * the cgrp->subsys pointer to find their state.
B
Ben Blum 已提交
4978
	 */
4979
	ss->css_free(cgroup_css(cgroup_dummy_top, ss));
4980
	RCU_INIT_POINTER(cgroup_dummy_top->subsys[ss->subsys_id], NULL);
B
Ben Blum 已提交
4981 4982 4983 4984 4985

	mutex_unlock(&cgroup_mutex);
}
EXPORT_SYMBOL_GPL(cgroup_unload_subsys);

4986
/**
L
Li Zefan 已提交
4987 4988 4989 4990
 * cgroup_init_early - cgroup initialization at system boot
 *
 * Initialize cgroups at system boot, and initialize any
 * subsystems that request early init.
4991 4992 4993
 */
int __init cgroup_init_early(void)
{
4994
	struct cgroup_subsys *ss;
4995
	int i;
4996

4997
	atomic_set(&init_css_set.refcount, 1);
4998
	INIT_LIST_HEAD(&init_css_set.cgrp_links);
4999
	INIT_LIST_HEAD(&init_css_set.tasks);
5000
	INIT_HLIST_NODE(&init_css_set.hlist);
5001
	css_set_count = 1;
5002 5003
	init_cgroup_root(&cgroup_dummy_root);
	cgroup_root_count = 1;
5004
	RCU_INIT_POINTER(init_task.cgroups, &init_css_set);
5005

5006
	init_cgrp_cset_link.cset = &init_css_set;
5007 5008
	init_cgrp_cset_link.cgrp = cgroup_dummy_top;
	list_add(&init_cgrp_cset_link.cset_link, &cgroup_dummy_top->cset_links);
5009
	list_add(&init_cgrp_cset_link.cgrp_link, &init_css_set.cgrp_links);
5010

5011 5012
	/* at bootup time, we don't worry about modular subsystems */
	for_each_builtin_subsys(ss, i) {
5013 5014
		BUG_ON(!ss->name);
		BUG_ON(strlen(ss->name) > MAX_CGROUP_TYPE_NAMELEN);
5015 5016
		BUG_ON(!ss->css_alloc);
		BUG_ON(!ss->css_free);
5017
		if (ss->subsys_id != i) {
D
Diego Calleja 已提交
5018
			printk(KERN_ERR "cgroup: Subsys %s id == %d\n",
5019 5020 5021 5022 5023 5024 5025 5026 5027 5028 5029
			       ss->name, ss->subsys_id);
			BUG();
		}

		if (ss->early_init)
			cgroup_init_subsys(ss);
	}
	return 0;
}

/**
L
Li Zefan 已提交
5030 5031 5032 5033
 * cgroup_init - cgroup initialization
 *
 * Register cgroup filesystem and /proc file, and initialize
 * any subsystems that didn't request early init.
5034 5035 5036
 */
int __init cgroup_init(void)
{
5037
	struct cgroup_subsys *ss;
5038
	unsigned long key;
5039
	int i, err;
5040 5041 5042 5043

	err = bdi_init(&cgroup_backing_dev_info);
	if (err)
		return err;
5044

5045
	for_each_builtin_subsys(ss, i) {
5046 5047 5048 5049
		if (!ss->early_init)
			cgroup_init_subsys(ss);
	}

5050
	/* allocate id for the dummy hierarchy */
T
Tejun Heo 已提交
5051 5052 5053
	mutex_lock(&cgroup_mutex);
	mutex_lock(&cgroup_root_mutex);

5054 5055 5056 5057
	/* Add init_css_set to the hash table */
	key = css_set_hash(init_css_set.subsys);
	hash_add(css_set_table, &init_css_set.hlist, key);

5058
	BUG_ON(cgroup_init_root_id(&cgroup_dummy_root, 0, 1));
5059

5060 5061 5062 5063
	err = idr_alloc(&cgroup_dummy_root.cgroup_idr, cgroup_dummy_top,
			0, 1, GFP_KERNEL);
	BUG_ON(err < 0);

T
Tejun Heo 已提交
5064 5065 5066
	mutex_unlock(&cgroup_root_mutex);
	mutex_unlock(&cgroup_mutex);

5067 5068 5069 5070 5071 5072
	cgroup_kobj = kobject_create_and_add("cgroup", fs_kobj);
	if (!cgroup_kobj) {
		err = -ENOMEM;
		goto out;
	}

5073
	err = register_filesystem(&cgroup_fs_type);
5074 5075
	if (err < 0) {
		kobject_put(cgroup_kobj);
5076
		goto out;
5077
	}
5078

L
Li Zefan 已提交
5079
	proc_create("cgroups", 0, NULL, &proc_cgroupstats_operations);
5080

5081
out:
5082 5083 5084
	if (err)
		bdi_destroy(&cgroup_backing_dev_info);

5085 5086
	return err;
}
5087

5088 5089 5090 5091 5092 5093 5094 5095 5096 5097 5098 5099 5100 5101 5102 5103
static int __init cgroup_wq_init(void)
{
	/*
	 * There isn't much point in executing destruction path in
	 * parallel.  Good chunk is serialized with cgroup_mutex anyway.
	 * Use 1 for @max_active.
	 *
	 * We would prefer to do this in cgroup_init() above, but that
	 * is called before init_workqueues(): so leave this until after.
	 */
	cgroup_destroy_wq = alloc_workqueue("cgroup_destroy", 0, 1);
	BUG_ON(!cgroup_destroy_wq);
	return 0;
}
core_initcall(cgroup_wq_init);

5104 5105 5106 5107 5108 5109
/*
 * proc_cgroup_show()
 *  - Print task's cgroup paths into seq_file, one line for each hierarchy
 *  - Used for /proc/<pid>/cgroup.
 *  - No need to task_lock(tsk) on this tsk->cgroup reference, as it
 *    doesn't really matter if tsk->cgroup changes after we read it,
5110
 *    and we take cgroup_mutex, keeping cgroup_attach_task() from changing it
5111 5112 5113 5114 5115 5116
 *    anyway.  No need to check that tsk->cgroup != NULL, thanks to
 *    the_top_cgroup_hack in cgroup_exit(), which sets an exiting tasks
 *    cgroup to top_cgroup.
 */

/* TODO: Use a proper seq_file iterator */
5117
int proc_cgroup_show(struct seq_file *m, void *v)
5118 5119 5120 5121 5122 5123 5124 5125 5126 5127 5128 5129 5130 5131 5132 5133 5134 5135 5136 5137 5138 5139
{
	struct pid *pid;
	struct task_struct *tsk;
	char *buf;
	int retval;
	struct cgroupfs_root *root;

	retval = -ENOMEM;
	buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
	if (!buf)
		goto out;

	retval = -ESRCH;
	pid = m->private;
	tsk = get_pid_task(pid, PIDTYPE_PID);
	if (!tsk)
		goto out_free;

	retval = 0;

	mutex_lock(&cgroup_mutex);

5140
	for_each_active_root(root) {
5141
		struct cgroup_subsys *ss;
5142
		struct cgroup *cgrp;
5143 5144
		int count = 0;

5145
		seq_printf(m, "%d:", root->hierarchy_id);
5146
		for_each_root_subsys(root, ss)
5147
			seq_printf(m, "%s%s", count++ ? "," : "", ss->name);
5148 5149 5150
		if (strlen(root->name))
			seq_printf(m, "%sname=%s", count ? "," : "",
				   root->name);
5151
		seq_putc(m, ':');
5152
		cgrp = task_cgroup_from_root(tsk, root);
5153
		retval = cgroup_path(cgrp, buf, PAGE_SIZE);
5154 5155 5156 5157 5158 5159 5160 5161 5162 5163 5164 5165 5166 5167 5168 5169 5170 5171
		if (retval < 0)
			goto out_unlock;
		seq_puts(m, buf);
		seq_putc(m, '\n');
	}

out_unlock:
	mutex_unlock(&cgroup_mutex);
	put_task_struct(tsk);
out_free:
	kfree(buf);
out:
	return retval;
}

/* Display information about each subsystem and each hierarchy */
static int proc_cgroupstats_show(struct seq_file *m, void *v)
{
5172
	struct cgroup_subsys *ss;
5173 5174
	int i;

5175
	seq_puts(m, "#subsys_name\thierarchy\tnum_cgroups\tenabled\n");
B
Ben Blum 已提交
5176 5177 5178 5179 5180
	/*
	 * ideally we don't want subsystems moving around while we do this.
	 * cgroup_mutex is also necessary to guarantee an atomic snapshot of
	 * subsys/hierarchy state.
	 */
5181
	mutex_lock(&cgroup_mutex);
5182 5183

	for_each_subsys(ss, i)
5184 5185
		seq_printf(m, "%s\t%d\t%d\t%d\n",
			   ss->name, ss->root->hierarchy_id,
5186
			   ss->root->number_of_cgroups, !ss->disabled);
5187

5188 5189 5190 5191 5192 5193
	mutex_unlock(&cgroup_mutex);
	return 0;
}

static int cgroupstats_open(struct inode *inode, struct file *file)
{
A
Al Viro 已提交
5194
	return single_open(file, proc_cgroupstats_show, NULL);
5195 5196
}

5197
static const struct file_operations proc_cgroupstats_operations = {
5198 5199 5200 5201 5202 5203
	.open = cgroupstats_open,
	.read = seq_read,
	.llseek = seq_lseek,
	.release = single_release,
};

5204 5205
/**
 * cgroup_fork - attach newly forked task to its parents cgroup.
L
Li Zefan 已提交
5206
 * @child: pointer to task_struct of forking parent process.
5207 5208 5209 5210 5211
 *
 * Description: A task inherits its parent's cgroup at fork().
 *
 * A pointer to the shared css_set was automatically copied in
 * fork.c by dup_task_struct().  However, we ignore that copy, since
5212 5213 5214 5215
 * it was not made under the protection of RCU or cgroup_mutex, so
 * might no longer be a valid cgroup pointer.  cgroup_attach_task() might
 * have already changed current->cgroups, allowing the previously
 * referenced cgroup group to be removed and freed.
5216 5217 5218 5219 5220 5221
 *
 * At the point that cgroup_fork() is called, 'current' is the parent
 * task, and the passed argument 'child' points to the child task.
 */
void cgroup_fork(struct task_struct *child)
{
5222
	task_lock(current);
5223
	get_css_set(task_css_set(current));
5224
	child->cgroups = current->cgroups;
5225
	task_unlock(current);
5226
	INIT_LIST_HEAD(&child->cg_list);
5227 5228
}

5229
/**
L
Li Zefan 已提交
5230 5231 5232
 * cgroup_post_fork - called on a new task after adding it to the task list
 * @child: the task in question
 *
5233 5234 5235
 * Adds the task to the list running through its css_set if necessary and
 * call the subsystem fork() callbacks.  Has to be after the task is
 * visible on the task list in case we race with the first call to
5236
 * cgroup_task_iter_start() - to guarantee that the new task ends up on its
5237
 * list.
L
Li Zefan 已提交
5238
 */
5239 5240
void cgroup_post_fork(struct task_struct *child)
{
5241
	struct cgroup_subsys *ss;
5242 5243
	int i;

5244 5245 5246 5247 5248 5249 5250 5251 5252 5253 5254
	/*
	 * use_task_css_set_links is set to 1 before we walk the tasklist
	 * under the tasklist_lock and we read it here after we added the child
	 * to the tasklist under the tasklist_lock as well. If the child wasn't
	 * yet in the tasklist when we walked through it from
	 * cgroup_enable_task_cg_lists(), then use_task_css_set_links value
	 * should be visible now due to the paired locking and barriers implied
	 * by LOCK/UNLOCK: it is written before the tasklist_lock unlock
	 * in cgroup_enable_task_cg_lists() and read here after the tasklist_lock
	 * lock on fork.
	 */
5255 5256
	if (use_task_css_set_links) {
		write_lock(&css_set_lock);
5257 5258
		task_lock(child);
		if (list_empty(&child->cg_list))
5259
			list_add(&child->cg_list, &task_css_set(child)->tasks);
5260
		task_unlock(child);
5261 5262
		write_unlock(&css_set_lock);
	}
5263 5264 5265 5266 5267 5268 5269

	/*
	 * Call ss->fork().  This must happen after @child is linked on
	 * css_set; otherwise, @child might change state between ->fork()
	 * and addition to css_set.
	 */
	if (need_forkexit_callback) {
5270 5271 5272 5273 5274 5275 5276 5277
		/*
		 * fork/exit callbacks are supported only for builtin
		 * subsystems, and the builtin section of the subsys
		 * array is immutable, so we don't need to lock the
		 * subsys array here. On the other hand, modular section
		 * of the array can be freed at module unload, so we
		 * can't touch that.
		 */
5278
		for_each_builtin_subsys(ss, i)
5279 5280 5281
			if (ss->fork)
				ss->fork(child);
	}
5282
}
5283

5284 5285 5286
/**
 * cgroup_exit - detach cgroup from exiting task
 * @tsk: pointer to task_struct of exiting process
L
Li Zefan 已提交
5287
 * @run_callback: run exit callbacks?
5288 5289 5290 5291 5292 5293 5294 5295 5296 5297 5298 5299 5300 5301 5302 5303 5304 5305 5306 5307 5308 5309 5310 5311 5312 5313 5314 5315
 *
 * Description: Detach cgroup from @tsk and release it.
 *
 * Note that cgroups marked notify_on_release force every task in
 * them to take the global cgroup_mutex mutex when exiting.
 * This could impact scaling on very large systems.  Be reluctant to
 * use notify_on_release cgroups where very high task exit scaling
 * is required on large systems.
 *
 * the_top_cgroup_hack:
 *
 *    Set the exiting tasks cgroup to the root cgroup (top_cgroup).
 *
 *    We call cgroup_exit() while the task is still competent to
 *    handle notify_on_release(), then leave the task attached to the
 *    root cgroup in each hierarchy for the remainder of its exit.
 *
 *    To do this properly, we would increment the reference count on
 *    top_cgroup, and near the very end of the kernel/exit.c do_exit()
 *    code we would add a second cgroup function call, to drop that
 *    reference.  This would just create an unnecessary hot spot on
 *    the top_cgroup reference count, to no avail.
 *
 *    Normally, holding a reference to a cgroup without bumping its
 *    count is unsafe.   The cgroup could go away, or someone could
 *    attach us to a different cgroup, decrementing the count on
 *    the first cgroup that we never incremented.  But in this case,
 *    top_cgroup isn't going away, and either task has PF_EXITING set,
5316 5317
 *    which wards off any cgroup_attach_task() attempts, or task is a failed
 *    fork, never visible to cgroup_attach_task.
5318 5319 5320
 */
void cgroup_exit(struct task_struct *tsk, int run_callbacks)
{
5321
	struct cgroup_subsys *ss;
5322
	struct css_set *cset;
5323
	int i;
5324 5325 5326 5327 5328 5329 5330 5331 5332

	/*
	 * Unlink from the css_set task list if necessary.
	 * Optimistically check cg_list before taking
	 * css_set_lock
	 */
	if (!list_empty(&tsk->cg_list)) {
		write_lock(&css_set_lock);
		if (!list_empty(&tsk->cg_list))
5333
			list_del_init(&tsk->cg_list);
5334 5335 5336
		write_unlock(&css_set_lock);
	}

5337 5338
	/* Reassign the task to the init_css_set. */
	task_lock(tsk);
5339 5340
	cset = task_css_set(tsk);
	RCU_INIT_POINTER(tsk->cgroups, &init_css_set);
5341 5342

	if (run_callbacks && need_forkexit_callback) {
5343 5344 5345 5346
		/*
		 * fork/exit callbacks are supported only for builtin
		 * subsystems, see cgroup_post_fork() for details.
		 */
5347
		for_each_builtin_subsys(ss, i) {
5348
			if (ss->exit) {
5349 5350
				struct cgroup_subsys_state *old_css = cset->subsys[i];
				struct cgroup_subsys_state *css = task_css(tsk, i);
5351

5352
				ss->exit(css, old_css, tsk);
5353 5354 5355
			}
		}
	}
5356
	task_unlock(tsk);
5357

5358
	put_css_set_taskexit(cset);
5359
}
5360

5361
static void check_for_release(struct cgroup *cgrp)
5362
{
5363
	if (cgroup_is_releasable(cgrp) &&
T
Tejun Heo 已提交
5364
	    list_empty(&cgrp->cset_links) && list_empty(&cgrp->children)) {
5365 5366
		/*
		 * Control Group is currently removeable. If it's not
5367
		 * already queued for a userspace notification, queue
5368 5369
		 * it now
		 */
5370
		int need_schedule_work = 0;
5371

5372
		raw_spin_lock(&release_list_lock);
5373
		if (!cgroup_is_dead(cgrp) &&
5374 5375
		    list_empty(&cgrp->release_list)) {
			list_add(&cgrp->release_list, &release_list);
5376 5377
			need_schedule_work = 1;
		}
5378
		raw_spin_unlock(&release_list_lock);
5379 5380 5381 5382 5383 5384 5385 5386 5387 5388 5389 5390 5391 5392 5393 5394 5395 5396 5397 5398 5399 5400 5401 5402 5403 5404 5405 5406 5407 5408 5409 5410
		if (need_schedule_work)
			schedule_work(&release_agent_work);
	}
}

/*
 * Notify userspace when a cgroup is released, by running the
 * configured release agent with the name of the cgroup (path
 * relative to the root of cgroup file system) as the argument.
 *
 * Most likely, this user command will try to rmdir this cgroup.
 *
 * This races with the possibility that some other task will be
 * attached to this cgroup before it is removed, or that some other
 * user task will 'mkdir' a child cgroup of this cgroup.  That's ok.
 * The presumed 'rmdir' will fail quietly if this cgroup is no longer
 * unused, and this cgroup will be reprieved from its death sentence,
 * to continue to serve a useful existence.  Next time it's released,
 * we will get notified again, if it still has 'notify_on_release' set.
 *
 * The final arg to call_usermodehelper() is UMH_WAIT_EXEC, which
 * means only wait until the task is successfully execve()'d.  The
 * separate release agent task is forked by call_usermodehelper(),
 * then control in this thread returns here, without waiting for the
 * release agent task.  We don't bother to wait because the caller of
 * this routine has no use for the exit status of the release agent
 * task, so no sense holding our caller up for that.
 */
static void cgroup_release_agent(struct work_struct *work)
{
	BUG_ON(work != &release_agent_work);
	mutex_lock(&cgroup_mutex);
5411
	raw_spin_lock(&release_list_lock);
5412 5413 5414
	while (!list_empty(&release_list)) {
		char *argv[3], *envp[3];
		int i;
5415
		char *pathbuf = NULL, *agentbuf = NULL;
5416
		struct cgroup *cgrp = list_entry(release_list.next,
5417 5418
						    struct cgroup,
						    release_list);
5419
		list_del_init(&cgrp->release_list);
5420
		raw_spin_unlock(&release_list_lock);
5421
		pathbuf = kmalloc(PAGE_SIZE, GFP_KERNEL);
5422 5423 5424 5425 5426 5427 5428
		if (!pathbuf)
			goto continue_free;
		if (cgroup_path(cgrp, pathbuf, PAGE_SIZE) < 0)
			goto continue_free;
		agentbuf = kstrdup(cgrp->root->release_agent_path, GFP_KERNEL);
		if (!agentbuf)
			goto continue_free;
5429 5430

		i = 0;
5431 5432
		argv[i++] = agentbuf;
		argv[i++] = pathbuf;
5433 5434 5435 5436 5437 5438 5439 5440 5441 5442 5443 5444 5445 5446
		argv[i] = NULL;

		i = 0;
		/* minimal command environment */
		envp[i++] = "HOME=/";
		envp[i++] = "PATH=/sbin:/bin:/usr/sbin:/usr/bin";
		envp[i] = NULL;

		/* Drop the lock while we invoke the usermode helper,
		 * since the exec could involve hitting disk and hence
		 * be a slow process */
		mutex_unlock(&cgroup_mutex);
		call_usermodehelper(argv[0], argv, envp, UMH_WAIT_EXEC);
		mutex_lock(&cgroup_mutex);
5447 5448 5449
 continue_free:
		kfree(pathbuf);
		kfree(agentbuf);
5450
		raw_spin_lock(&release_list_lock);
5451
	}
5452
	raw_spin_unlock(&release_list_lock);
5453 5454
	mutex_unlock(&cgroup_mutex);
}
5455 5456 5457

static int __init cgroup_disable(char *str)
{
5458
	struct cgroup_subsys *ss;
5459
	char *token;
5460
	int i;
5461 5462 5463 5464

	while ((token = strsep(&str, ",")) != NULL) {
		if (!*token)
			continue;
5465

5466 5467 5468 5469 5470
		/*
		 * cgroup_disable, being at boot time, can't know about
		 * module subsystems, so we don't worry about them.
		 */
		for_each_builtin_subsys(ss, i) {
5471 5472 5473 5474 5475 5476 5477 5478 5479 5480 5481
			if (!strcmp(token, ss->name)) {
				ss->disabled = 1;
				printk(KERN_INFO "Disabling %s control group"
					" subsystem\n", ss->name);
				break;
			}
		}
	}
	return 1;
}
__setup("cgroup_disable=", cgroup_disable);
K
KAMEZAWA Hiroyuki 已提交
5482

5483
/**
5484 5485 5486
 * css_from_dir - get corresponding css from the dentry of a cgroup dir
 * @dentry: directory dentry of interest
 * @ss: subsystem of interest
5487 5488 5489 5490
 *
 * Must be called under RCU read lock.  The caller is responsible for
 * pinning the returned css if it needs to be accessed outside the RCU
 * critical section.
S
Stephane Eranian 已提交
5491
 */
5492 5493
struct cgroup_subsys_state *css_from_dir(struct dentry *dentry,
					 struct cgroup_subsys *ss)
S
Stephane Eranian 已提交
5494 5495 5496
{
	struct cgroup *cgrp;

5497 5498
	WARN_ON_ONCE(!rcu_read_lock_held());

5499 5500 5501
	/* is @dentry a cgroup dir? */
	if (!dentry->d_inode ||
	    dentry->d_inode->i_op != &cgroup_dir_inode_operations)
S
Stephane Eranian 已提交
5502 5503
		return ERR_PTR(-EBADF);

5504
	cgrp = __d_cgrp(dentry);
5505
	return cgroup_css(cgrp, ss) ?: ERR_PTR(-ENOENT);
S
Stephane Eranian 已提交
5506 5507
}

5508 5509 5510 5511 5512 5513 5514 5515 5516 5517 5518 5519 5520 5521 5522 5523 5524 5525
/**
 * css_from_id - lookup css by id
 * @id: the cgroup id
 * @ss: cgroup subsys to be looked into
 *
 * Returns the css if there's valid one with @id, otherwise returns NULL.
 * Should be called under rcu_read_lock().
 */
struct cgroup_subsys_state *css_from_id(int id, struct cgroup_subsys *ss)
{
	struct cgroup *cgrp;

	rcu_lockdep_assert(rcu_read_lock_held() ||
			   lockdep_is_held(&cgroup_mutex),
			   "css_from_id() needs proper protection");

	cgrp = idr_find(&ss->root->cgroup_idr, id);
	if (cgrp)
5526
		return cgroup_css(cgrp, ss);
5527
	return NULL;
S
Stephane Eranian 已提交
5528 5529
}

5530
#ifdef CONFIG_CGROUP_DEBUG
5531 5532
static struct cgroup_subsys_state *
debug_css_alloc(struct cgroup_subsys_state *parent_css)
5533 5534 5535 5536 5537 5538 5539 5540 5541
{
	struct cgroup_subsys_state *css = kzalloc(sizeof(*css), GFP_KERNEL);

	if (!css)
		return ERR_PTR(-ENOMEM);

	return css;
}

5542
static void debug_css_free(struct cgroup_subsys_state *css)
5543
{
5544
	kfree(css);
5545 5546
}

5547 5548
static u64 debug_taskcount_read(struct cgroup_subsys_state *css,
				struct cftype *cft)
5549
{
5550
	return cgroup_task_count(css->cgroup);
5551 5552
}

5553 5554
static u64 current_css_set_read(struct cgroup_subsys_state *css,
				struct cftype *cft)
5555 5556 5557 5558
{
	return (u64)(unsigned long)current->cgroups;
}

5559
static u64 current_css_set_refcount_read(struct cgroup_subsys_state *css,
L
Li Zefan 已提交
5560
					 struct cftype *cft)
5561 5562 5563 5564
{
	u64 count;

	rcu_read_lock();
5565
	count = atomic_read(&task_css_set(current)->refcount);
5566 5567 5568 5569
	rcu_read_unlock();
	return count;
}

5570
static int current_css_set_cg_links_read(struct cgroup_subsys_state *css,
5571 5572 5573
					 struct cftype *cft,
					 struct seq_file *seq)
{
5574
	struct cgrp_cset_link *link;
5575
	struct css_set *cset;
5576 5577 5578

	read_lock(&css_set_lock);
	rcu_read_lock();
5579
	cset = rcu_dereference(current->cgroups);
5580
	list_for_each_entry(link, &cset->cgrp_links, cgrp_link) {
5581 5582 5583 5584 5585 5586 5587
		struct cgroup *c = link->cgrp;
		const char *name;

		if (c->dentry)
			name = c->dentry->d_name.name;
		else
			name = "?";
5588 5589
		seq_printf(seq, "Root %d group %s\n",
			   c->root->hierarchy_id, name);
5590 5591 5592 5593 5594 5595 5596
	}
	rcu_read_unlock();
	read_unlock(&css_set_lock);
	return 0;
}

#define MAX_TASKS_SHOWN_PER_CSS 25
5597 5598
static int cgroup_css_links_read(struct cgroup_subsys_state *css,
				 struct cftype *cft, struct seq_file *seq)
5599
{
5600
	struct cgrp_cset_link *link;
5601 5602

	read_lock(&css_set_lock);
5603
	list_for_each_entry(link, &css->cgroup->cset_links, cset_link) {
5604
		struct css_set *cset = link->cset;
5605 5606
		struct task_struct *task;
		int count = 0;
5607 5608
		seq_printf(seq, "css_set %p\n", cset);
		list_for_each_entry(task, &cset->tasks, cg_list) {
5609 5610 5611 5612 5613 5614 5615 5616 5617 5618 5619 5620 5621
			if (count++ > MAX_TASKS_SHOWN_PER_CSS) {
				seq_puts(seq, "  ...\n");
				break;
			} else {
				seq_printf(seq, "  task %d\n",
					   task_pid_vnr(task));
			}
		}
	}
	read_unlock(&css_set_lock);
	return 0;
}

5622
static u64 releasable_read(struct cgroup_subsys_state *css, struct cftype *cft)
5623
{
5624
	return test_bit(CGRP_RELEASABLE, &css->cgroup->flags);
5625 5626 5627 5628 5629 5630 5631 5632 5633 5634 5635 5636 5637 5638 5639 5640 5641 5642
}

static struct cftype debug_files[] =  {
	{
		.name = "taskcount",
		.read_u64 = debug_taskcount_read,
	},

	{
		.name = "current_css_set",
		.read_u64 = current_css_set_read,
	},

	{
		.name = "current_css_set_refcount",
		.read_u64 = current_css_set_refcount_read,
	},

5643 5644 5645 5646 5647 5648 5649 5650 5651 5652
	{
		.name = "current_css_set_cg_links",
		.read_seq_string = current_css_set_cg_links_read,
	},

	{
		.name = "cgroup_css_links",
		.read_seq_string = cgroup_css_links_read,
	},

5653 5654 5655 5656 5657
	{
		.name = "releasable",
		.read_u64 = releasable_read,
	},

5658 5659
	{ }	/* terminate */
};
5660 5661 5662

struct cgroup_subsys debug_subsys = {
	.name = "debug",
5663 5664
	.css_alloc = debug_css_alloc,
	.css_free = debug_css_free,
5665
	.subsys_id = debug_subsys_id,
5666
	.base_cftypes = debug_files,
5667 5668
};
#endif /* CONFIG_CGROUP_DEBUG */