cgroup.c 141.9 KB
Newer Older
1 2 3 4 5 6
/*
 *  Generic process-grouping system.
 *
 *  Based originally on the cpuset system, extracted by Paul Menage
 *  Copyright (C) 2006 Google, Inc
 *
7 8 9 10
 *  Notifications support
 *  Copyright (C) 2009 Nokia Corporation
 *  Author: Kirill A. Shutemov
 *
11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29
 *  Copyright notices from the original cpuset code:
 *  --------------------------------------------------
 *  Copyright (C) 2003 BULL SA.
 *  Copyright (C) 2004-2006 Silicon Graphics, Inc.
 *
 *  Portions derived from Patrick Mochel's sysfs code.
 *  sysfs is Copyright (c) 2001-3 Patrick Mochel
 *
 *  2003-10-10 Written by Simon Derr.
 *  2003-10-22 Updates by Stephen Hemminger.
 *  2004 May-July Rework by Paul Jackson.
 *  ---------------------------------------------------
 *
 *  This file is subject to the terms and conditions of the GNU General Public
 *  License.  See the file COPYING in the main directory of the Linux
 *  distribution for more details.
 */

#include <linux/cgroup.h>
30
#include <linux/cred.h>
31
#include <linux/ctype.h>
32 33
#include <linux/errno.h>
#include <linux/fs.h>
34
#include <linux/init_task.h>
35 36 37 38 39 40
#include <linux/kernel.h>
#include <linux/list.h>
#include <linux/mm.h>
#include <linux/mutex.h>
#include <linux/mount.h>
#include <linux/pagemap.h>
41
#include <linux/proc_fs.h>
42 43
#include <linux/rcupdate.h>
#include <linux/sched.h>
44
#include <linux/backing-dev.h>
45 46 47 48 49
#include <linux/seq_file.h>
#include <linux/slab.h>
#include <linux/magic.h>
#include <linux/spinlock.h>
#include <linux/string.h>
50
#include <linux/sort.h>
51
#include <linux/kmod.h>
52
#include <linux/module.h>
B
Balbir Singh 已提交
53 54
#include <linux/delayacct.h>
#include <linux/cgroupstats.h>
55
#include <linux/hash.h>
56
#include <linux/namei.h>
L
Li Zefan 已提交
57
#include <linux/pid_namespace.h>
58
#include <linux/idr.h>
59
#include <linux/vmalloc.h> /* TODO: replace with more sophisticated array */
60 61
#include <linux/eventfd.h>
#include <linux/poll.h>
62
#include <linux/flex_array.h> /* used in cgroup_attach_proc */
B
Balbir Singh 已提交
63

A
Arun Sharma 已提交
64
#include <linux/atomic.h>
65

T
Tejun Heo 已提交
66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81
/*
 * cgroup_mutex is the master lock.  Any modification to cgroup or its
 * hierarchy must be performed while holding it.
 *
 * cgroup_root_mutex nests inside cgroup_mutex and should be held to modify
 * cgroupfs_root of any cgroup hierarchy - subsys list, flags,
 * release_agent_path and so on.  Modifying requires both cgroup_mutex and
 * cgroup_root_mutex.  Readers can acquire either of the two.  This is to
 * break the following locking order cycle.
 *
 *  A. cgroup_mutex -> cred_guard_mutex -> s_type->i_mutex_key -> namespace_sem
 *  B. namespace_sem -> cgroup_mutex
 *
 * B happens only through cgroup_show_options() and using cgroup_root_mutex
 * breaks it.
 */
82
static DEFINE_MUTEX(cgroup_mutex);
T
Tejun Heo 已提交
83
static DEFINE_MUTEX(cgroup_root_mutex);
84

B
Ben Blum 已提交
85 86 87 88 89 90
/*
 * Generate an array of cgroup subsystem pointers. At boot time, this is
 * populated up to CGROUP_BUILTIN_SUBSYS_COUNT, and modular subsystems are
 * registered after that. The mutable section of this array is protected by
 * cgroup_mutex.
 */
91
#define SUBSYS(_x) &_x ## _subsys,
B
Ben Blum 已提交
92
static struct cgroup_subsys *subsys[CGROUP_SUBSYS_COUNT] = {
93 94 95
#include <linux/cgroup_subsys.h>
};

96 97
#define MAX_CGROUP_ROOT_NAMELEN 64

98 99 100 101 102 103 104 105 106 107 108 109 110 111
/*
 * A cgroupfs_root represents the root of a cgroup hierarchy,
 * and may be associated with a superblock to form an active
 * hierarchy
 */
struct cgroupfs_root {
	struct super_block *sb;

	/*
	 * The bitmask of subsystems intended to be attached to this
	 * hierarchy
	 */
	unsigned long subsys_bits;

112 113 114
	/* Unique id for this hierarchy. */
	int hierarchy_id;

115 116 117 118 119 120 121 122 123 124 125 126
	/* The bitmask of subsystems currently attached to this hierarchy */
	unsigned long actual_subsys_bits;

	/* A list running through the attached subsystems */
	struct list_head subsys_list;

	/* The root cgroup for this hierarchy */
	struct cgroup top_cgroup;

	/* Tracks how many cgroups are currently defined in hierarchy.*/
	int number_of_cgroups;

127
	/* A list running through the active hierarchies */
128 129
	struct list_head root_list;

130 131 132
	/* All cgroups on this root, cgroup_mutex protected */
	struct list_head allcg_list;

133 134
	/* Hierarchy-specific flags */
	unsigned long flags;
135

136
	/* The path to use for release notifications. */
137
	char release_agent_path[PATH_MAX];
138 139 140

	/* The name for this hierarchy - may be empty */
	char name[MAX_CGROUP_ROOT_NAMELEN];
141 142 143 144 145 146 147 148 149
};

/*
 * The "rootnode" hierarchy is the "dummy hierarchy", reserved for the
 * subsystems that are otherwise unattached - it never has more than a
 * single cgroup, and all tasks are part of that cgroup.
 */
static struct cgroupfs_root rootnode;

T
Tejun Heo 已提交
150 151 152 153 154 155 156 157 158
/*
 * cgroupfs file entry, pointed to from leaf dentry->d_fsdata.
 */
struct cfent {
	struct list_head		node;
	struct dentry			*dentry;
	struct cftype			*type;
};

K
KAMEZAWA Hiroyuki 已提交
159 160 161 162 163 164 165 166 167 168 169 170 171
/*
 * CSS ID -- ID per subsys's Cgroup Subsys State(CSS). used only when
 * cgroup_subsys->use_id != 0.
 */
#define CSS_ID_MAX	(65535)
struct css_id {
	/*
	 * The css to which this ID points. This pointer is set to valid value
	 * after cgroup is populated. If cgroup is removed, this will be NULL.
	 * This pointer is expected to be RCU-safe because destroy()
	 * is called after synchronize_rcu(). But for safe use, css_is_removed()
	 * css_tryget() should be used for avoiding race.
	 */
A
Arnd Bergmann 已提交
172
	struct cgroup_subsys_state __rcu *css;
K
KAMEZAWA Hiroyuki 已提交
173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190
	/*
	 * ID of this css.
	 */
	unsigned short id;
	/*
	 * Depth in hierarchy which this ID belongs to.
	 */
	unsigned short depth;
	/*
	 * ID is freed by RCU. (and lookup routine is RCU safe.)
	 */
	struct rcu_head rcu_head;
	/*
	 * Hierarchy of CSS ID belongs to.
	 */
	unsigned short stack[0]; /* Array of Length (depth+1) */
};

191
/*
L
Lucas De Marchi 已提交
192
 * cgroup_event represents events which userspace want to receive.
193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219
 */
struct cgroup_event {
	/*
	 * Cgroup which the event belongs to.
	 */
	struct cgroup *cgrp;
	/*
	 * Control file which the event associated.
	 */
	struct cftype *cft;
	/*
	 * eventfd to signal userspace about the event.
	 */
	struct eventfd_ctx *eventfd;
	/*
	 * Each of these stored in a list by the cgroup.
	 */
	struct list_head list;
	/*
	 * All fields below needed to unregister event when
	 * userspace closes eventfd.
	 */
	poll_table pt;
	wait_queue_head_t *wqh;
	wait_queue_t wait;
	struct work_struct remove;
};
K
KAMEZAWA Hiroyuki 已提交
220

221 222 223
/* The list of hierarchy roots */

static LIST_HEAD(roots);
224
static int root_count;
225

226 227 228 229
static DEFINE_IDA(hierarchy_ida);
static int next_hierarchy_id;
static DEFINE_SPINLOCK(hierarchy_id_lock);

230 231 232 233
/* dummytop is a shorthand for the dummy hierarchy's top cgroup */
#define dummytop (&rootnode.top_cgroup)

/* This flag indicates whether tasks in the fork and exit paths should
L
Li Zefan 已提交
234 235 236
 * check for fork/exit handlers to call. This avoids us having to do
 * extra work in the fork/exit path if none of the subsystems need to
 * be called.
237
 */
238
static int need_forkexit_callback __read_mostly;
239

240 241 242 243 244 245 246 247 248 249 250 251 252 253
#ifdef CONFIG_PROVE_LOCKING
int cgroup_lock_is_held(void)
{
	return lockdep_is_held(&cgroup_mutex);
}
#else /* #ifdef CONFIG_PROVE_LOCKING */
int cgroup_lock_is_held(void)
{
	return mutex_is_locked(&cgroup_mutex);
}
#endif /* #else #ifdef CONFIG_PROVE_LOCKING */

EXPORT_SYMBOL_GPL(cgroup_lock_is_held);

254
/* convenient tests for these bits */
255
inline int cgroup_is_removed(const struct cgroup *cgrp)
256
{
257
	return test_bit(CGRP_REMOVED, &cgrp->flags);
258 259 260 261 262 263 264
}

/* bits in struct cgroupfs_root flags field */
enum {
	ROOT_NOPREFIX, /* mounted subsystems have no named prefix */
};

265
static int cgroup_is_releasable(const struct cgroup *cgrp)
266 267
{
	const int bits =
268 269 270
		(1 << CGRP_RELEASABLE) |
		(1 << CGRP_NOTIFY_ON_RELEASE);
	return (cgrp->flags & bits) == bits;
271 272
}

273
static int notify_on_release(const struct cgroup *cgrp)
274
{
275
	return test_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
276 277
}

278 279 280 281 282
static int clone_children(const struct cgroup *cgrp)
{
	return test_bit(CGRP_CLONE_CHILDREN, &cgrp->flags);
}

283 284 285 286 287 288 289
/*
 * for_each_subsys() allows you to iterate on each subsystem attached to
 * an active hierarchy
 */
#define for_each_subsys(_root, _ss) \
list_for_each_entry(_ss, &_root->subsys_list, sibling)

290 291
/* for_each_active_root() allows you to iterate across the active hierarchies */
#define for_each_active_root(_root) \
292 293
list_for_each_entry(_root, &roots, root_list)

294 295 296 297 298
static inline struct cgroup *__d_cgrp(struct dentry *dentry)
{
	return dentry->d_fsdata;
}

T
Tejun Heo 已提交
299
static inline struct cfent *__d_cfe(struct dentry *dentry)
300 301 302 303
{
	return dentry->d_fsdata;
}

T
Tejun Heo 已提交
304 305 306 307 308
static inline struct cftype *__d_cft(struct dentry *dentry)
{
	return __d_cfe(dentry)->type;
}

309 310 311
/* the list of cgroups eligible for automatic release. Protected by
 * release_list_lock */
static LIST_HEAD(release_list);
312
static DEFINE_RAW_SPINLOCK(release_list_lock);
313 314
static void cgroup_release_agent(struct work_struct *work);
static DECLARE_WORK(release_agent_work, cgroup_release_agent);
315
static void check_for_release(struct cgroup *cgrp);
316

317 318 319 320 321 322
/* Link structure for associating css_set objects with cgroups */
struct cg_cgroup_link {
	/*
	 * List running through cg_cgroup_links associated with a
	 * cgroup, anchored on cgroup->css_sets
	 */
323
	struct list_head cgrp_link_list;
324
	struct cgroup *cgrp;
325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342
	/*
	 * List running through cg_cgroup_links pointing at a
	 * single css_set object, anchored on css_set->cg_links
	 */
	struct list_head cg_link_list;
	struct css_set *cg;
};

/* The default css_set - used by init and its children prior to any
 * hierarchies being mounted. It contains a pointer to the root state
 * for each subsystem. Also used to anchor the list of css_sets. Not
 * reference-counted, to improve performance when child cgroups
 * haven't been created.
 */

static struct css_set init_css_set;
static struct cg_cgroup_link init_css_set_link;

343 344
static int cgroup_init_idr(struct cgroup_subsys *ss,
			   struct cgroup_subsys_state *css);
K
KAMEZAWA Hiroyuki 已提交
345

346 347 348 349 350 351
/* css_set_lock protects the list of css_set objects, and the
 * chain of tasks off each css_set.  Nests outside task->alloc_lock
 * due to cgroup_iter_start() */
static DEFINE_RWLOCK(css_set_lock);
static int css_set_count;

352 353 354 355 356
/*
 * hash table for cgroup groups. This improves the performance to find
 * an existing css_set. This hash doesn't (currently) take into
 * account cgroups in empty hierarchies.
 */
357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375
#define CSS_SET_HASH_BITS	7
#define CSS_SET_TABLE_SIZE	(1 << CSS_SET_HASH_BITS)
static struct hlist_head css_set_table[CSS_SET_TABLE_SIZE];

static struct hlist_head *css_set_hash(struct cgroup_subsys_state *css[])
{
	int i;
	int index;
	unsigned long tmp = 0UL;

	for (i = 0; i < CGROUP_SUBSYS_COUNT; i++)
		tmp += (unsigned long)css[i];
	tmp = (tmp >> 16) ^ tmp;

	index = hash_long(tmp, CSS_SET_HASH_BITS);

	return &css_set_table[index];
}

376 377 378 379
/* We don't maintain the lists running through each css_set to its
 * task until after the first call to cgroup_iter_start(). This
 * reduces the fork()/exit() overhead for people who have cgroups
 * compiled into their kernel but not actually in use */
380
static int use_task_css_set_links __read_mostly;
381

382
static void __put_css_set(struct css_set *cg, int taskexit)
383
{
K
KOSAKI Motohiro 已提交
384 385
	struct cg_cgroup_link *link;
	struct cg_cgroup_link *saved_link;
386 387 388 389 390 391 392 393 394 395 396 397
	/*
	 * Ensure that the refcount doesn't hit zero while any readers
	 * can see it. Similar to atomic_dec_and_lock(), but for an
	 * rwlock
	 */
	if (atomic_add_unless(&cg->refcount, -1, 1))
		return;
	write_lock(&css_set_lock);
	if (!atomic_dec_and_test(&cg->refcount)) {
		write_unlock(&css_set_lock);
		return;
	}
398

399 400 401 402 403 404 405 406 407
	/* This css_set is dead. unlink it and release cgroup refcounts */
	hlist_del(&cg->hlist);
	css_set_count--;

	list_for_each_entry_safe(link, saved_link, &cg->cg_links,
				 cg_link_list) {
		struct cgroup *cgrp = link->cgrp;
		list_del(&link->cg_link_list);
		list_del(&link->cgrp_link_list);
408 409
		if (atomic_dec_and_test(&cgrp->count) &&
		    notify_on_release(cgrp)) {
410
			if (taskexit)
411 412
				set_bit(CGRP_RELEASABLE, &cgrp->flags);
			check_for_release(cgrp);
413
		}
414 415

		kfree(link);
416
	}
417 418

	write_unlock(&css_set_lock);
419
	kfree_rcu(cg, rcu_head);
420 421
}

422 423 424 425 426
/*
 * refcounted get/put for css_set objects
 */
static inline void get_css_set(struct css_set *cg)
{
427
	atomic_inc(&cg->refcount);
428 429 430 431
}

static inline void put_css_set(struct css_set *cg)
{
432
	__put_css_set(cg, 0);
433 434
}

435 436
static inline void put_css_set_taskexit(struct css_set *cg)
{
437
	__put_css_set(cg, 1);
438 439
}

440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511
/*
 * compare_css_sets - helper function for find_existing_css_set().
 * @cg: candidate css_set being tested
 * @old_cg: existing css_set for a task
 * @new_cgrp: cgroup that's being entered by the task
 * @template: desired set of css pointers in css_set (pre-calculated)
 *
 * Returns true if "cg" matches "old_cg" except for the hierarchy
 * which "new_cgrp" belongs to, for which it should match "new_cgrp".
 */
static bool compare_css_sets(struct css_set *cg,
			     struct css_set *old_cg,
			     struct cgroup *new_cgrp,
			     struct cgroup_subsys_state *template[])
{
	struct list_head *l1, *l2;

	if (memcmp(template, cg->subsys, sizeof(cg->subsys))) {
		/* Not all subsystems matched */
		return false;
	}

	/*
	 * Compare cgroup pointers in order to distinguish between
	 * different cgroups in heirarchies with no subsystems. We
	 * could get by with just this check alone (and skip the
	 * memcmp above) but on most setups the memcmp check will
	 * avoid the need for this more expensive check on almost all
	 * candidates.
	 */

	l1 = &cg->cg_links;
	l2 = &old_cg->cg_links;
	while (1) {
		struct cg_cgroup_link *cgl1, *cgl2;
		struct cgroup *cg1, *cg2;

		l1 = l1->next;
		l2 = l2->next;
		/* See if we reached the end - both lists are equal length. */
		if (l1 == &cg->cg_links) {
			BUG_ON(l2 != &old_cg->cg_links);
			break;
		} else {
			BUG_ON(l2 == &old_cg->cg_links);
		}
		/* Locate the cgroups associated with these links. */
		cgl1 = list_entry(l1, struct cg_cgroup_link, cg_link_list);
		cgl2 = list_entry(l2, struct cg_cgroup_link, cg_link_list);
		cg1 = cgl1->cgrp;
		cg2 = cgl2->cgrp;
		/* Hierarchies should be linked in the same order. */
		BUG_ON(cg1->root != cg2->root);

		/*
		 * If this hierarchy is the hierarchy of the cgroup
		 * that's changing, then we need to check that this
		 * css_set points to the new cgroup; if it's any other
		 * hierarchy, then this css_set should point to the
		 * same cgroup as the old css_set.
		 */
		if (cg1->root == new_cgrp->root) {
			if (cg1 != new_cgrp)
				return false;
		} else {
			if (cg1 != cg2)
				return false;
		}
	}
	return true;
}

512 513 514
/*
 * find_existing_css_set() is a helper for
 * find_css_set(), and checks to see whether an existing
515
 * css_set is suitable.
516 517 518 519
 *
 * oldcg: the cgroup group that we're using before the cgroup
 * transition
 *
520
 * cgrp: the cgroup that we're moving into
521 522 523 524 525 526
 *
 * template: location in which to build the desired set of subsystem
 * state objects for the new cgroup group
 */
static struct css_set *find_existing_css_set(
	struct css_set *oldcg,
527
	struct cgroup *cgrp,
528
	struct cgroup_subsys_state *template[])
529 530
{
	int i;
531
	struct cgroupfs_root *root = cgrp->root;
532 533 534
	struct hlist_head *hhead;
	struct hlist_node *node;
	struct css_set *cg;
535

B
Ben Blum 已提交
536 537 538 539 540
	/*
	 * Build the set of subsystem state objects that we want to see in the
	 * new css_set. while subsystems can change globally, the entries here
	 * won't change, so no need for locking.
	 */
541
	for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
L
Li Zefan 已提交
542
		if (root->subsys_bits & (1UL << i)) {
543 544 545
			/* Subsystem is in this hierarchy. So we want
			 * the subsystem state from the new
			 * cgroup */
546
			template[i] = cgrp->subsys[i];
547 548 549 550 551 552 553
		} else {
			/* Subsystem is not in this hierarchy, so we
			 * don't want to change the subsystem state */
			template[i] = oldcg->subsys[i];
		}
	}

554 555
	hhead = css_set_hash(template);
	hlist_for_each_entry(cg, node, hhead, hlist) {
556 557 558 559 560
		if (!compare_css_sets(cg, oldcg, cgrp, template))
			continue;

		/* This css_set matches what we need */
		return cg;
561
	}
562 563 564 565 566

	/* No existing cgroup group matched */
	return NULL;
}

567 568 569 570 571 572 573 574 575 576 577
static void free_cg_links(struct list_head *tmp)
{
	struct cg_cgroup_link *link;
	struct cg_cgroup_link *saved_link;

	list_for_each_entry_safe(link, saved_link, tmp, cgrp_link_list) {
		list_del(&link->cgrp_link_list);
		kfree(link);
	}
}

578 579
/*
 * allocate_cg_links() allocates "count" cg_cgroup_link structures
580
 * and chains them on tmp through their cgrp_link_list fields. Returns 0 on
581 582 583 584 585 586 587 588 589 590
 * success or a negative error
 */
static int allocate_cg_links(int count, struct list_head *tmp)
{
	struct cg_cgroup_link *link;
	int i;
	INIT_LIST_HEAD(tmp);
	for (i = 0; i < count; i++) {
		link = kmalloc(sizeof(*link), GFP_KERNEL);
		if (!link) {
591
			free_cg_links(tmp);
592 593
			return -ENOMEM;
		}
594
		list_add(&link->cgrp_link_list, tmp);
595 596 597 598
	}
	return 0;
}

599 600 601 602 603 604 605 606 607 608 609 610 611 612 613
/**
 * link_css_set - a helper function to link a css_set to a cgroup
 * @tmp_cg_links: cg_cgroup_link objects allocated by allocate_cg_links()
 * @cg: the css_set to be linked
 * @cgrp: the destination cgroup
 */
static void link_css_set(struct list_head *tmp_cg_links,
			 struct css_set *cg, struct cgroup *cgrp)
{
	struct cg_cgroup_link *link;

	BUG_ON(list_empty(tmp_cg_links));
	link = list_first_entry(tmp_cg_links, struct cg_cgroup_link,
				cgrp_link_list);
	link->cg = cg;
614
	link->cgrp = cgrp;
615
	atomic_inc(&cgrp->count);
616
	list_move(&link->cgrp_link_list, &cgrp->css_sets);
617 618 619 620 621
	/*
	 * Always add links to the tail of the list so that the list
	 * is sorted by order of hierarchy creation
	 */
	list_add_tail(&link->cg_link_list, &cg->cg_links);
622 623
}

624 625 626 627 628 629 630 631
/*
 * find_css_set() takes an existing cgroup group and a
 * cgroup object, and returns a css_set object that's
 * equivalent to the old group, but with the given cgroup
 * substituted into the appropriate hierarchy. Must be called with
 * cgroup_mutex held
 */
static struct css_set *find_css_set(
632
	struct css_set *oldcg, struct cgroup *cgrp)
633 634 635 636 637 638
{
	struct css_set *res;
	struct cgroup_subsys_state *template[CGROUP_SUBSYS_COUNT];

	struct list_head tmp_cg_links;

639
	struct hlist_head *hhead;
640
	struct cg_cgroup_link *link;
641

642 643
	/* First see if we already have a cgroup group that matches
	 * the desired set */
644
	read_lock(&css_set_lock);
645
	res = find_existing_css_set(oldcg, cgrp, template);
646 647
	if (res)
		get_css_set(res);
648
	read_unlock(&css_set_lock);
649 650 651 652 653 654 655 656 657 658 659 660 661 662

	if (res)
		return res;

	res = kmalloc(sizeof(*res), GFP_KERNEL);
	if (!res)
		return NULL;

	/* Allocate all the cg_cgroup_link objects that we'll need */
	if (allocate_cg_links(root_count, &tmp_cg_links) < 0) {
		kfree(res);
		return NULL;
	}

663
	atomic_set(&res->refcount, 1);
664 665
	INIT_LIST_HEAD(&res->cg_links);
	INIT_LIST_HEAD(&res->tasks);
666
	INIT_HLIST_NODE(&res->hlist);
667 668 669 670 671 672 673

	/* Copy the set of subsystem state objects generated in
	 * find_existing_css_set() */
	memcpy(res->subsys, template, sizeof(res->subsys));

	write_lock(&css_set_lock);
	/* Add reference counts and links from the new css_set. */
674 675 676 677 678 679
	list_for_each_entry(link, &oldcg->cg_links, cg_link_list) {
		struct cgroup *c = link->cgrp;
		if (c->root == cgrp->root)
			c = cgrp;
		link_css_set(&tmp_cg_links, res, c);
	}
680 681 682 683

	BUG_ON(!list_empty(&tmp_cg_links));

	css_set_count++;
684 685 686 687 688

	/* Add this cgroup group to the hash table */
	hhead = css_set_hash(res->subsys);
	hlist_add_head(&res->hlist, hhead);

689 690 691
	write_unlock(&css_set_lock);

	return res;
692 693
}

694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728
/*
 * Return the cgroup for "task" from the given hierarchy. Must be
 * called with cgroup_mutex held.
 */
static struct cgroup *task_cgroup_from_root(struct task_struct *task,
					    struct cgroupfs_root *root)
{
	struct css_set *css;
	struct cgroup *res = NULL;

	BUG_ON(!mutex_is_locked(&cgroup_mutex));
	read_lock(&css_set_lock);
	/*
	 * No need to lock the task - since we hold cgroup_mutex the
	 * task can't change groups, so the only thing that can happen
	 * is that it exits and its css is set back to init_css_set.
	 */
	css = task->cgroups;
	if (css == &init_css_set) {
		res = &root->top_cgroup;
	} else {
		struct cg_cgroup_link *link;
		list_for_each_entry(link, &css->cg_links, cg_link_list) {
			struct cgroup *c = link->cgrp;
			if (c->root == root) {
				res = c;
				break;
			}
		}
	}
	read_unlock(&css_set_lock);
	BUG_ON(!res);
	return res;
}

729 730 731 732 733 734 735 736 737 738
/*
 * There is one global cgroup mutex. We also require taking
 * task_lock() when dereferencing a task's cgroup subsys pointers.
 * See "The task_lock() exception", at the end of this comment.
 *
 * A task must hold cgroup_mutex to modify cgroups.
 *
 * Any task can increment and decrement the count field without lock.
 * So in general, code holding cgroup_mutex can't rely on the count
 * field not changing.  However, if the count goes to zero, then only
739
 * cgroup_attach_task() can increment it again.  Because a count of zero
740 741 742 743 744 745 746 747 748 749 750 751 752
 * means that no tasks are currently attached, therefore there is no
 * way a task attached to that cgroup can fork (the other way to
 * increment the count).  So code holding cgroup_mutex can safely
 * assume that if the count is zero, it will stay zero. Similarly, if
 * a task holds cgroup_mutex on a cgroup with zero count, it
 * knows that the cgroup won't be removed, as cgroup_rmdir()
 * needs that mutex.
 *
 * The fork and exit callbacks cgroup_fork() and cgroup_exit(), don't
 * (usually) take cgroup_mutex.  These are the two most performance
 * critical pieces of code here.  The exception occurs on cgroup_exit(),
 * when a task in a notify_on_release cgroup exits.  Then cgroup_mutex
 * is taken, and if the cgroup count is zero, a usermode call made
L
Li Zefan 已提交
753 754
 * to the release agent with the name of the cgroup (path relative to
 * the root of cgroup file system) as the argument.
755 756 757 758 759 760 761 762 763 764 765
 *
 * A cgroup can only be deleted if both its 'count' of using tasks
 * is zero, and its list of 'children' cgroups is empty.  Since all
 * tasks in the system use _some_ cgroup, and since there is always at
 * least one task in the system (init, pid == 1), therefore, top_cgroup
 * always has either children cgroups and/or using tasks.  So we don't
 * need a special hack to ensure that top_cgroup cannot be deleted.
 *
 *	The task_lock() exception
 *
 * The need for this exception arises from the action of
766
 * cgroup_attach_task(), which overwrites one tasks cgroup pointer with
L
Li Zefan 已提交
767
 * another.  It does so using cgroup_mutex, however there are
768 769 770
 * several performance critical places that need to reference
 * task->cgroup without the expense of grabbing a system global
 * mutex.  Therefore except as noted below, when dereferencing or, as
771
 * in cgroup_attach_task(), modifying a task'ss cgroup pointer we use
772 773 774 775
 * task_lock(), which acts on a spinlock (task->alloc_lock) already in
 * the task_struct routinely used for such matters.
 *
 * P.S.  One more locking exception.  RCU is used to guard the
776
 * update of a tasks cgroup pointer by cgroup_attach_task()
777 778 779 780 781 782 783 784 785 786
 */

/**
 * cgroup_lock - lock out any changes to cgroup structures
 *
 */
void cgroup_lock(void)
{
	mutex_lock(&cgroup_mutex);
}
B
Ben Blum 已提交
787
EXPORT_SYMBOL_GPL(cgroup_lock);
788 789 790 791 792 793 794 795 796 797

/**
 * cgroup_unlock - release lock on cgroup changes
 *
 * Undo the lock taken in a previous cgroup_lock() call.
 */
void cgroup_unlock(void)
{
	mutex_unlock(&cgroup_mutex);
}
B
Ben Blum 已提交
798
EXPORT_SYMBOL_GPL(cgroup_unlock);
799 800 801 802 803 804 805 806

/*
 * A couple of forward declarations required, due to cyclic reference loop:
 * cgroup_mkdir -> cgroup_create -> cgroup_populate_dir ->
 * cgroup_add_file -> cgroup_create_file -> cgroup_dir_inode_operations
 * -> cgroup_mkdir.
 */

807
static int cgroup_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode);
808
static struct dentry *cgroup_lookup(struct inode *, struct dentry *, struct nameidata *);
809
static int cgroup_rmdir(struct inode *unused_dir, struct dentry *dentry);
810
static int cgroup_populate_dir(struct cgroup *cgrp);
811
static const struct inode_operations cgroup_dir_inode_operations;
812
static const struct file_operations proc_cgroupstats_operations;
813 814

static struct backing_dev_info cgroup_backing_dev_info = {
815
	.name		= "cgroup",
816
	.capabilities	= BDI_CAP_NO_ACCT_AND_WRITEBACK,
817
};
818

K
KAMEZAWA Hiroyuki 已提交
819 820 821
static int alloc_css_id(struct cgroup_subsys *ss,
			struct cgroup *parent, struct cgroup *child);

A
Al Viro 已提交
822
static struct inode *cgroup_new_inode(umode_t mode, struct super_block *sb)
823 824 825 826
{
	struct inode *inode = new_inode(sb);

	if (inode) {
827
		inode->i_ino = get_next_ino();
828
		inode->i_mode = mode;
829 830
		inode->i_uid = current_fsuid();
		inode->i_gid = current_fsgid();
831 832 833 834 835 836
		inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
		inode->i_mapping->backing_dev_info = &cgroup_backing_dev_info;
	}
	return inode;
}

837 838 839 840
/*
 * Call subsys's pre_destroy handler.
 * This is called before css refcnt check.
 */
841
static int cgroup_call_pre_destroy(struct cgroup *cgrp)
842 843
{
	struct cgroup_subsys *ss;
844 845
	int ret = 0;

846
	for_each_subsys(cgrp->root, ss)
847
		if (ss->pre_destroy) {
848
			ret = ss->pre_destroy(cgrp);
849
			if (ret)
850
				break;
851
		}
852

853
	return ret;
854 855
}

856 857 858 859
static void cgroup_diput(struct dentry *dentry, struct inode *inode)
{
	/* is dentry a directory ? if so, kfree() associated cgroup */
	if (S_ISDIR(inode->i_mode)) {
860
		struct cgroup *cgrp = dentry->d_fsdata;
861
		struct cgroup_subsys *ss;
862
		BUG_ON(!(cgroup_is_removed(cgrp)));
863 864 865 866 867 868 869
		/* It's possible for external users to be holding css
		 * reference counts on a cgroup; css_put() needs to
		 * be able to access the cgroup after decrementing
		 * the reference count in order to know if it needs to
		 * queue the cgroup to be handled by the release
		 * agent */
		synchronize_rcu();
870 871 872 873 874

		mutex_lock(&cgroup_mutex);
		/*
		 * Release the subsystem state objects.
		 */
875
		for_each_subsys(cgrp->root, ss)
876
			ss->destroy(cgrp);
877 878 879 880

		cgrp->root->number_of_cgroups--;
		mutex_unlock(&cgroup_mutex);

881 882 883 884
		/*
		 * Drop the active superblock reference that we took when we
		 * created the cgroup
		 */
885 886
		deactivate_super(cgrp->root->sb);

887 888 889 890 891 892
		/*
		 * if we're getting rid of the cgroup, refcount should ensure
		 * that there are no pidlists left.
		 */
		BUG_ON(!list_empty(&cgrp->pidlists));

893
		kfree_rcu(cgrp, rcu_head);
T
Tejun Heo 已提交
894 895 896 897 898 899 900 901
	} else {
		struct cfent *cfe = __d_cfe(dentry);
		struct cgroup *cgrp = dentry->d_parent->d_fsdata;

		WARN_ONCE(!list_empty(&cfe->node) &&
			  cgrp != &cgrp->root->top_cgroup,
			  "cfe still linked for %s\n", cfe->type->name);
		kfree(cfe);
902 903 904 905
	}
	iput(inode);
}

906 907 908 909 910
static int cgroup_delete(const struct dentry *d)
{
	return 1;
}

911 912 913 914 915 916 917 918 919
static void remove_dir(struct dentry *d)
{
	struct dentry *parent = dget(d->d_parent);

	d_delete(d);
	simple_rmdir(parent->d_inode, d);
	dput(parent);
}

T
Tejun Heo 已提交
920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939
static int cgroup_rm_file(struct cgroup *cgrp, const struct cftype *cft)
{
	struct cfent *cfe;

	lockdep_assert_held(&cgrp->dentry->d_inode->i_mutex);
	lockdep_assert_held(&cgroup_mutex);

	list_for_each_entry(cfe, &cgrp->files, node) {
		struct dentry *d = cfe->dentry;

		if (cft && cfe->type != cft)
			continue;

		dget(d);
		d_delete(d);
		simple_unlink(d->d_inode, d);
		list_del_init(&cfe->node);
		dput(d);

		return 0;
940
	}
T
Tejun Heo 已提交
941 942 943 944 945 946 947 948 949
	return -ENOENT;
}

static void cgroup_clear_directory(struct dentry *dir)
{
	struct cgroup *cgrp = __d_cgrp(dir);

	while (!list_empty(&cgrp->files))
		cgroup_rm_file(cgrp, NULL);
950 951 952 953 954 955 956
}

/*
 * NOTE : the dentry must have been dget()'ed
 */
static void cgroup_d_remove_dir(struct dentry *dentry)
{
N
Nick Piggin 已提交
957 958
	struct dentry *parent;

959 960
	cgroup_clear_directory(dentry);

N
Nick Piggin 已提交
961 962
	parent = dentry->d_parent;
	spin_lock(&parent->d_lock);
963
	spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
964
	list_del_init(&dentry->d_u.d_child);
N
Nick Piggin 已提交
965 966
	spin_unlock(&dentry->d_lock);
	spin_unlock(&parent->d_lock);
967 968 969
	remove_dir(dentry);
}

970 971 972 973 974 975
/*
 * A queue for waiters to do rmdir() cgroup. A tasks will sleep when
 * cgroup->count == 0 && list_empty(&cgroup->children) && subsys has some
 * reference to css->refcnt. In general, this refcnt is expected to goes down
 * to zero, soon.
 *
976
 * CGRP_WAIT_ON_RMDIR flag is set under cgroup's inode->i_mutex;
977
 */
978
static DECLARE_WAIT_QUEUE_HEAD(cgroup_rmdir_waitq);
979

980
static void cgroup_wakeup_rmdir_waiter(struct cgroup *cgrp)
981
{
982
	if (unlikely(test_and_clear_bit(CGRP_WAIT_ON_RMDIR, &cgrp->flags)))
983 984 985
		wake_up_all(&cgroup_rmdir_waitq);
}

986 987 988 989 990 991 992 993 994 995 996
void cgroup_exclude_rmdir(struct cgroup_subsys_state *css)
{
	css_get(css);
}

void cgroup_release_and_wakeup_rmdir(struct cgroup_subsys_state *css)
{
	cgroup_wakeup_rmdir_waiter(css->cgroup);
	css_put(css);
}

B
Ben Blum 已提交
997
/*
B
Ben Blum 已提交
998 999 1000
 * Call with cgroup_mutex held. Drops reference counts on modules, including
 * any duplicate ones that parse_cgroupfs_options took. If this function
 * returns an error, no reference counts are touched.
B
Ben Blum 已提交
1001
 */
1002 1003 1004 1005
static int rebind_subsystems(struct cgroupfs_root *root,
			      unsigned long final_bits)
{
	unsigned long added_bits, removed_bits;
1006
	struct cgroup *cgrp = &root->top_cgroup;
1007 1008
	int i;

B
Ben Blum 已提交
1009
	BUG_ON(!mutex_is_locked(&cgroup_mutex));
T
Tejun Heo 已提交
1010
	BUG_ON(!mutex_is_locked(&cgroup_root_mutex));
B
Ben Blum 已提交
1011

1012 1013 1014 1015
	removed_bits = root->actual_subsys_bits & ~final_bits;
	added_bits = final_bits & ~root->actual_subsys_bits;
	/* Check that any added subsystems are currently free */
	for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
L
Li Zefan 已提交
1016
		unsigned long bit = 1UL << i;
1017 1018 1019
		struct cgroup_subsys *ss = subsys[i];
		if (!(bit & added_bits))
			continue;
B
Ben Blum 已提交
1020 1021 1022 1023 1024 1025
		/*
		 * Nobody should tell us to do a subsys that doesn't exist:
		 * parse_cgroupfs_options should catch that case and refcounts
		 * ensure that subsystems won't disappear once selected.
		 */
		BUG_ON(ss == NULL);
1026 1027 1028 1029 1030 1031 1032 1033 1034 1035
		if (ss->root != &rootnode) {
			/* Subsystem isn't free */
			return -EBUSY;
		}
	}

	/* Currently we don't handle adding/removing subsystems when
	 * any child cgroups exist. This is theoretically supportable
	 * but involves complex error handling, so it's being left until
	 * later */
1036
	if (root->number_of_cgroups > 1)
1037 1038 1039 1040 1041 1042 1043 1044
		return -EBUSY;

	/* Process each subsystem */
	for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
		struct cgroup_subsys *ss = subsys[i];
		unsigned long bit = 1UL << i;
		if (bit & added_bits) {
			/* We're binding this subsystem to this hierarchy */
B
Ben Blum 已提交
1045
			BUG_ON(ss == NULL);
1046
			BUG_ON(cgrp->subsys[i]);
1047 1048
			BUG_ON(!dummytop->subsys[i]);
			BUG_ON(dummytop->subsys[i]->cgroup != dummytop);
1049
			mutex_lock(&ss->hierarchy_mutex);
1050 1051
			cgrp->subsys[i] = dummytop->subsys[i];
			cgrp->subsys[i]->cgroup = cgrp;
1052
			list_move(&ss->sibling, &root->subsys_list);
1053
			ss->root = root;
1054
			if (ss->bind)
1055
				ss->bind(cgrp);
1056
			mutex_unlock(&ss->hierarchy_mutex);
B
Ben Blum 已提交
1057
			/* refcount was already taken, and we're keeping it */
1058 1059
		} else if (bit & removed_bits) {
			/* We're removing this subsystem */
B
Ben Blum 已提交
1060
			BUG_ON(ss == NULL);
1061 1062
			BUG_ON(cgrp->subsys[i] != dummytop->subsys[i]);
			BUG_ON(cgrp->subsys[i]->cgroup != cgrp);
1063
			mutex_lock(&ss->hierarchy_mutex);
1064
			if (ss->bind)
1065
				ss->bind(dummytop);
1066
			dummytop->subsys[i]->cgroup = dummytop;
1067
			cgrp->subsys[i] = NULL;
1068
			subsys[i]->root = &rootnode;
1069
			list_move(&ss->sibling, &rootnode.subsys_list);
1070
			mutex_unlock(&ss->hierarchy_mutex);
B
Ben Blum 已提交
1071 1072
			/* subsystem is now free - drop reference on module */
			module_put(ss->module);
1073 1074
		} else if (bit & final_bits) {
			/* Subsystem state should already exist */
B
Ben Blum 已提交
1075
			BUG_ON(ss == NULL);
1076
			BUG_ON(!cgrp->subsys[i]);
B
Ben Blum 已提交
1077 1078 1079 1080 1081 1082 1083 1084
			/*
			 * a refcount was taken, but we already had one, so
			 * drop the extra reference.
			 */
			module_put(ss->module);
#ifdef CONFIG_MODULE_UNLOAD
			BUG_ON(ss->module && !module_refcount(ss->module));
#endif
1085 1086
		} else {
			/* Subsystem state shouldn't exist */
1087
			BUG_ON(cgrp->subsys[i]);
1088 1089 1090 1091 1092 1093 1094 1095
		}
	}
	root->subsys_bits = root->actual_subsys_bits = final_bits;
	synchronize_rcu();

	return 0;
}

1096
static int cgroup_show_options(struct seq_file *seq, struct dentry *dentry)
1097
{
1098
	struct cgroupfs_root *root = dentry->d_sb->s_fs_info;
1099 1100
	struct cgroup_subsys *ss;

T
Tejun Heo 已提交
1101
	mutex_lock(&cgroup_root_mutex);
1102 1103 1104 1105
	for_each_subsys(root, ss)
		seq_printf(seq, ",%s", ss->name);
	if (test_bit(ROOT_NOPREFIX, &root->flags))
		seq_puts(seq, ",noprefix");
1106 1107
	if (strlen(root->release_agent_path))
		seq_printf(seq, ",release_agent=%s", root->release_agent_path);
1108 1109
	if (clone_children(&root->top_cgroup))
		seq_puts(seq, ",clone_children");
1110 1111
	if (strlen(root->name))
		seq_printf(seq, ",name=%s", root->name);
T
Tejun Heo 已提交
1112
	mutex_unlock(&cgroup_root_mutex);
1113 1114 1115 1116 1117 1118
	return 0;
}

struct cgroup_sb_opts {
	unsigned long subsys_bits;
	unsigned long flags;
1119
	char *release_agent;
1120
	bool clone_children;
1121
	char *name;
1122 1123
	/* User explicitly requested empty subsystem */
	bool none;
1124 1125

	struct cgroupfs_root *new_root;
1126

1127 1128
};

B
Ben Blum 已提交
1129 1130
/*
 * Convert a hierarchy specifier into a bitmask of subsystems and flags. Call
B
Ben Blum 已提交
1131 1132 1133
 * with cgroup_mutex held to protect the subsys[] array. This function takes
 * refcounts on subsystems to be used, unless it returns error, in which case
 * no refcounts are taken.
B
Ben Blum 已提交
1134
 */
B
Ben Blum 已提交
1135
static int parse_cgroupfs_options(char *data, struct cgroup_sb_opts *opts)
1136
{
1137 1138
	char *token, *o = data;
	bool all_ss = false, one_ss = false;
1139
	unsigned long mask = (unsigned long)-1;
B
Ben Blum 已提交
1140 1141
	int i;
	bool module_pin_failed = false;
1142

B
Ben Blum 已提交
1143 1144
	BUG_ON(!mutex_is_locked(&cgroup_mutex));

1145 1146 1147
#ifdef CONFIG_CPUSETS
	mask = ~(1UL << cpuset_subsys_id);
#endif
1148

1149
	memset(opts, 0, sizeof(*opts));
1150 1151 1152 1153

	while ((token = strsep(&o, ",")) != NULL) {
		if (!*token)
			return -EINVAL;
1154
		if (!strcmp(token, "none")) {
1155 1156
			/* Explicitly have no subsystems */
			opts->none = true;
1157 1158 1159 1160 1161 1162 1163 1164 1165 1166
			continue;
		}
		if (!strcmp(token, "all")) {
			/* Mutually exclusive option 'all' + subsystem name */
			if (one_ss)
				return -EINVAL;
			all_ss = true;
			continue;
		}
		if (!strcmp(token, "noprefix")) {
1167
			set_bit(ROOT_NOPREFIX, &opts->flags);
1168 1169 1170
			continue;
		}
		if (!strcmp(token, "clone_children")) {
1171
			opts->clone_children = true;
1172 1173 1174
			continue;
		}
		if (!strncmp(token, "release_agent=", 14)) {
1175 1176 1177
			/* Specifying two release agents is forbidden */
			if (opts->release_agent)
				return -EINVAL;
1178
			opts->release_agent =
1179
				kstrndup(token + 14, PATH_MAX - 1, GFP_KERNEL);
1180 1181
			if (!opts->release_agent)
				return -ENOMEM;
1182 1183 1184
			continue;
		}
		if (!strncmp(token, "name=", 5)) {
1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201
			const char *name = token + 5;
			/* Can't specify an empty name */
			if (!strlen(name))
				return -EINVAL;
			/* Must match [\w.-]+ */
			for (i = 0; i < strlen(name); i++) {
				char c = name[i];
				if (isalnum(c))
					continue;
				if ((c == '.') || (c == '-') || (c == '_'))
					continue;
				return -EINVAL;
			}
			/* Specifying two names is forbidden */
			if (opts->name)
				return -EINVAL;
			opts->name = kstrndup(name,
1202
					      MAX_CGROUP_ROOT_NAMELEN - 1,
1203 1204 1205
					      GFP_KERNEL);
			if (!opts->name)
				return -ENOMEM;
1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232

			continue;
		}

		for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
			struct cgroup_subsys *ss = subsys[i];
			if (ss == NULL)
				continue;
			if (strcmp(token, ss->name))
				continue;
			if (ss->disabled)
				continue;

			/* Mutually exclusive option 'all' + subsystem name */
			if (all_ss)
				return -EINVAL;
			set_bit(i, &opts->subsys_bits);
			one_ss = true;

			break;
		}
		if (i == CGROUP_SUBSYS_COUNT)
			return -ENOENT;
	}

	/*
	 * If the 'all' option was specified select all the subsystems,
1233 1234
	 * otherwise if 'none', 'name=' and a subsystem name options
	 * were not specified, let's default to 'all'
1235
	 */
1236
	if (all_ss || (!one_ss && !opts->none && !opts->name)) {
1237 1238 1239 1240 1241 1242 1243
		for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
			struct cgroup_subsys *ss = subsys[i];
			if (ss == NULL)
				continue;
			if (ss->disabled)
				continue;
			set_bit(i, &opts->subsys_bits);
1244 1245 1246
		}
	}

1247 1248
	/* Consistency checks */

1249 1250 1251 1252 1253 1254 1255 1256 1257
	/*
	 * Option noprefix was introduced just for backward compatibility
	 * with the old cpuset, so we allow noprefix only if mounting just
	 * the cpuset subsystem.
	 */
	if (test_bit(ROOT_NOPREFIX, &opts->flags) &&
	    (opts->subsys_bits & mask))
		return -EINVAL;

1258 1259 1260 1261 1262 1263 1264 1265 1266

	/* Can't specify "none" and some subsystems */
	if (opts->subsys_bits && opts->none)
		return -EINVAL;

	/*
	 * We either have to specify by name or by subsystems. (So all
	 * empty hierarchies must have a name).
	 */
1267
	if (!opts->subsys_bits && !opts->name)
1268 1269
		return -EINVAL;

B
Ben Blum 已提交
1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302
	/*
	 * Grab references on all the modules we'll need, so the subsystems
	 * don't dance around before rebind_subsystems attaches them. This may
	 * take duplicate reference counts on a subsystem that's already used,
	 * but rebind_subsystems handles this case.
	 */
	for (i = CGROUP_BUILTIN_SUBSYS_COUNT; i < CGROUP_SUBSYS_COUNT; i++) {
		unsigned long bit = 1UL << i;

		if (!(bit & opts->subsys_bits))
			continue;
		if (!try_module_get(subsys[i]->module)) {
			module_pin_failed = true;
			break;
		}
	}
	if (module_pin_failed) {
		/*
		 * oops, one of the modules was going away. this means that we
		 * raced with a module_delete call, and to the user this is
		 * essentially a "subsystem doesn't exist" case.
		 */
		for (i--; i >= CGROUP_BUILTIN_SUBSYS_COUNT; i--) {
			/* drop refcounts only on the ones we took */
			unsigned long bit = 1UL << i;

			if (!(bit & opts->subsys_bits))
				continue;
			module_put(subsys[i]->module);
		}
		return -ENOENT;
	}

1303 1304 1305
	return 0;
}

B
Ben Blum 已提交
1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317
static void drop_parsed_module_refcounts(unsigned long subsys_bits)
{
	int i;
	for (i = CGROUP_BUILTIN_SUBSYS_COUNT; i < CGROUP_SUBSYS_COUNT; i++) {
		unsigned long bit = 1UL << i;

		if (!(bit & subsys_bits))
			continue;
		module_put(subsys[i]->module);
	}
}

1318 1319 1320 1321
static int cgroup_remount(struct super_block *sb, int *flags, char *data)
{
	int ret = 0;
	struct cgroupfs_root *root = sb->s_fs_info;
1322
	struct cgroup *cgrp = &root->top_cgroup;
1323 1324
	struct cgroup_sb_opts opts;

1325
	mutex_lock(&cgrp->dentry->d_inode->i_mutex);
1326
	mutex_lock(&cgroup_mutex);
T
Tejun Heo 已提交
1327
	mutex_lock(&cgroup_root_mutex);
1328 1329 1330 1331 1332 1333

	/* See what subsystems are wanted */
	ret = parse_cgroupfs_options(data, &opts);
	if (ret)
		goto out_unlock;

1334 1335 1336 1337 1338
	/* See feature-removal-schedule.txt */
	if (opts.subsys_bits != root->actual_subsys_bits || opts.release_agent)
		pr_warning("cgroup: option changes via remount are deprecated (pid=%d comm=%s)\n",
			   task_tgid_nr(current), current->comm);

B
Ben Blum 已提交
1339 1340 1341
	/* Don't allow flags or name to change at remount */
	if (opts.flags != root->flags ||
	    (opts.name && strcmp(opts.name, root->name))) {
1342
		ret = -EINVAL;
B
Ben Blum 已提交
1343
		drop_parsed_module_refcounts(opts.subsys_bits);
1344 1345 1346
		goto out_unlock;
	}

1347
	ret = rebind_subsystems(root, opts.subsys_bits);
B
Ben Blum 已提交
1348 1349
	if (ret) {
		drop_parsed_module_refcounts(opts.subsys_bits);
1350
		goto out_unlock;
B
Ben Blum 已提交
1351
	}
1352

1353 1354
	/* clear out any existing files and repopulate subsystem files */
	cgroup_clear_directory(cgrp->dentry);
1355
	cgroup_populate_dir(cgrp);
1356

1357 1358
	if (opts.release_agent)
		strcpy(root->release_agent_path, opts.release_agent);
1359
 out_unlock:
1360
	kfree(opts.release_agent);
1361
	kfree(opts.name);
T
Tejun Heo 已提交
1362
	mutex_unlock(&cgroup_root_mutex);
1363
	mutex_unlock(&cgroup_mutex);
1364
	mutex_unlock(&cgrp->dentry->d_inode->i_mutex);
1365 1366 1367
	return ret;
}

1368
static const struct super_operations cgroup_ops = {
1369 1370 1371 1372 1373 1374
	.statfs = simple_statfs,
	.drop_inode = generic_delete_inode,
	.show_options = cgroup_show_options,
	.remount_fs = cgroup_remount,
};

1375 1376 1377 1378
static void init_cgroup_housekeeping(struct cgroup *cgrp)
{
	INIT_LIST_HEAD(&cgrp->sibling);
	INIT_LIST_HEAD(&cgrp->children);
T
Tejun Heo 已提交
1379
	INIT_LIST_HEAD(&cgrp->files);
1380 1381
	INIT_LIST_HEAD(&cgrp->css_sets);
	INIT_LIST_HEAD(&cgrp->release_list);
1382 1383
	INIT_LIST_HEAD(&cgrp->pidlists);
	mutex_init(&cgrp->pidlist_mutex);
1384 1385
	INIT_LIST_HEAD(&cgrp->event_list);
	spin_lock_init(&cgrp->event_list_lock);
1386
}
1387

1388 1389
static void init_cgroup_root(struct cgroupfs_root *root)
{
1390
	struct cgroup *cgrp = &root->top_cgroup;
1391

1392 1393
	INIT_LIST_HEAD(&root->subsys_list);
	INIT_LIST_HEAD(&root->root_list);
1394
	INIT_LIST_HEAD(&root->allcg_list);
1395
	root->number_of_cgroups = 1;
1396 1397
	cgrp->root = root;
	cgrp->top_cgroup = cgrp;
1398
	list_add_tail(&cgrp->allcg_node, &root->allcg_list);
1399
	init_cgroup_housekeeping(cgrp);
1400 1401
}

1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426
static bool init_root_id(struct cgroupfs_root *root)
{
	int ret = 0;

	do {
		if (!ida_pre_get(&hierarchy_ida, GFP_KERNEL))
			return false;
		spin_lock(&hierarchy_id_lock);
		/* Try to allocate the next unused ID */
		ret = ida_get_new_above(&hierarchy_ida, next_hierarchy_id,
					&root->hierarchy_id);
		if (ret == -ENOSPC)
			/* Try again starting from 0 */
			ret = ida_get_new(&hierarchy_ida, &root->hierarchy_id);
		if (!ret) {
			next_hierarchy_id = root->hierarchy_id + 1;
		} else if (ret != -EAGAIN) {
			/* Can only get here if the 31-bit IDR is full ... */
			BUG_ON(ret);
		}
		spin_unlock(&hierarchy_id_lock);
	} while (ret);
	return true;
}

1427 1428
static int cgroup_test_super(struct super_block *sb, void *data)
{
1429
	struct cgroup_sb_opts *opts = data;
1430 1431
	struct cgroupfs_root *root = sb->s_fs_info;

1432 1433 1434
	/* If we asked for a name then it must match */
	if (opts->name && strcmp(opts->name, root->name))
		return 0;
1435

1436 1437 1438 1439 1440 1441
	/*
	 * If we asked for subsystems (or explicitly for no
	 * subsystems) then they must match
	 */
	if ((opts->subsys_bits || opts->none)
	    && (opts->subsys_bits != root->subsys_bits))
1442 1443 1444 1445 1446
		return 0;

	return 1;
}

1447 1448 1449 1450
static struct cgroupfs_root *cgroup_root_from_opts(struct cgroup_sb_opts *opts)
{
	struct cgroupfs_root *root;

1451
	if (!opts->subsys_bits && !opts->none)
1452 1453 1454 1455 1456 1457
		return NULL;

	root = kzalloc(sizeof(*root), GFP_KERNEL);
	if (!root)
		return ERR_PTR(-ENOMEM);

1458 1459 1460 1461
	if (!init_root_id(root)) {
		kfree(root);
		return ERR_PTR(-ENOMEM);
	}
1462
	init_cgroup_root(root);
1463

1464 1465 1466 1467 1468 1469
	root->subsys_bits = opts->subsys_bits;
	root->flags = opts->flags;
	if (opts->release_agent)
		strcpy(root->release_agent_path, opts->release_agent);
	if (opts->name)
		strcpy(root->name, opts->name);
1470 1471
	if (opts->clone_children)
		set_bit(CGRP_CLONE_CHILDREN, &root->top_cgroup.flags);
1472 1473 1474
	return root;
}

1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486
static void cgroup_drop_root(struct cgroupfs_root *root)
{
	if (!root)
		return;

	BUG_ON(!root->hierarchy_id);
	spin_lock(&hierarchy_id_lock);
	ida_remove(&hierarchy_ida, root->hierarchy_id);
	spin_unlock(&hierarchy_id_lock);
	kfree(root);
}

1487 1488 1489
static int cgroup_set_super(struct super_block *sb, void *data)
{
	int ret;
1490 1491 1492 1493 1494 1495
	struct cgroup_sb_opts *opts = data;

	/* If we don't have a new root, we can't set up a new sb */
	if (!opts->new_root)
		return -EINVAL;

1496
	BUG_ON(!opts->subsys_bits && !opts->none);
1497 1498 1499 1500 1501

	ret = set_anon_super(sb, NULL);
	if (ret)
		return ret;

1502 1503
	sb->s_fs_info = opts->new_root;
	opts->new_root->sb = sb;
1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514

	sb->s_blocksize = PAGE_CACHE_SIZE;
	sb->s_blocksize_bits = PAGE_CACHE_SHIFT;
	sb->s_magic = CGROUP_SUPER_MAGIC;
	sb->s_op = &cgroup_ops;

	return 0;
}

static int cgroup_get_rootdir(struct super_block *sb)
{
A
Al Viro 已提交
1515 1516
	static const struct dentry_operations cgroup_dops = {
		.d_iput = cgroup_diput,
1517
		.d_delete = cgroup_delete,
A
Al Viro 已提交
1518 1519
	};

1520 1521 1522 1523 1524 1525 1526 1527 1528 1529
	struct inode *inode =
		cgroup_new_inode(S_IFDIR | S_IRUGO | S_IXUGO | S_IWUSR, sb);

	if (!inode)
		return -ENOMEM;

	inode->i_fop = &simple_dir_operations;
	inode->i_op = &cgroup_dir_inode_operations;
	/* directories start off with i_nlink == 2 (for "." entry) */
	inc_nlink(inode);
1530 1531
	sb->s_root = d_make_root(inode);
	if (!sb->s_root)
1532
		return -ENOMEM;
A
Al Viro 已提交
1533 1534
	/* for everything else we want ->d_op set */
	sb->s_d_op = &cgroup_dops;
1535 1536 1537
	return 0;
}

A
Al Viro 已提交
1538
static struct dentry *cgroup_mount(struct file_system_type *fs_type,
1539
			 int flags, const char *unused_dev_name,
A
Al Viro 已提交
1540
			 void *data)
1541 1542
{
	struct cgroup_sb_opts opts;
1543
	struct cgroupfs_root *root;
1544 1545
	int ret = 0;
	struct super_block *sb;
1546
	struct cgroupfs_root *new_root;
T
Tejun Heo 已提交
1547
	struct inode *inode;
1548 1549

	/* First find the desired set of subsystems */
B
Ben Blum 已提交
1550
	mutex_lock(&cgroup_mutex);
1551
	ret = parse_cgroupfs_options(data, &opts);
B
Ben Blum 已提交
1552
	mutex_unlock(&cgroup_mutex);
1553 1554
	if (ret)
		goto out_err;
1555

1556 1557 1558 1559 1560 1561 1562
	/*
	 * Allocate a new cgroup root. We may not need it if we're
	 * reusing an existing hierarchy.
	 */
	new_root = cgroup_root_from_opts(&opts);
	if (IS_ERR(new_root)) {
		ret = PTR_ERR(new_root);
B
Ben Blum 已提交
1563
		goto drop_modules;
1564
	}
1565
	opts.new_root = new_root;
1566

1567 1568
	/* Locate an existing or new sb for this hierarchy */
	sb = sget(fs_type, cgroup_test_super, cgroup_set_super, &opts);
1569
	if (IS_ERR(sb)) {
1570
		ret = PTR_ERR(sb);
1571
		cgroup_drop_root(opts.new_root);
B
Ben Blum 已提交
1572
		goto drop_modules;
1573 1574
	}

1575 1576 1577 1578 1579
	root = sb->s_fs_info;
	BUG_ON(!root);
	if (root == opts.new_root) {
		/* We used the new root structure, so this is a new hierarchy */
		struct list_head tmp_cg_links;
1580
		struct cgroup *root_cgrp = &root->top_cgroup;
1581
		struct cgroupfs_root *existing_root;
1582
		const struct cred *cred;
1583
		int i;
1584 1585 1586 1587 1588 1589

		BUG_ON(sb->s_root != NULL);

		ret = cgroup_get_rootdir(sb);
		if (ret)
			goto drop_new_super;
1590
		inode = sb->s_root->d_inode;
1591

1592
		mutex_lock(&inode->i_mutex);
1593
		mutex_lock(&cgroup_mutex);
T
Tejun Heo 已提交
1594
		mutex_lock(&cgroup_root_mutex);
1595

T
Tejun Heo 已提交
1596 1597 1598 1599 1600 1601
		/* Check for name clashes with existing mounts */
		ret = -EBUSY;
		if (strlen(root->name))
			for_each_active_root(existing_root)
				if (!strcmp(existing_root->name, root->name))
					goto unlock_drop;
1602

1603 1604 1605 1606 1607 1608 1609 1610
		/*
		 * We're accessing css_set_count without locking
		 * css_set_lock here, but that's OK - it can only be
		 * increased by someone holding cgroup_lock, and
		 * that's us. The worst that can happen is that we
		 * have some link structures left over
		 */
		ret = allocate_cg_links(css_set_count, &tmp_cg_links);
T
Tejun Heo 已提交
1611 1612
		if (ret)
			goto unlock_drop;
1613

1614 1615
		ret = rebind_subsystems(root, root->subsys_bits);
		if (ret == -EBUSY) {
1616
			free_cg_links(&tmp_cg_links);
T
Tejun Heo 已提交
1617
			goto unlock_drop;
1618
		}
B
Ben Blum 已提交
1619 1620 1621 1622 1623
		/*
		 * There must be no failure case after here, since rebinding
		 * takes care of subsystems' refcounts, which are explicitly
		 * dropped in the failure exit path.
		 */
1624 1625 1626 1627 1628

		/* EBUSY should be the only error here */
		BUG_ON(ret);

		list_add(&root->root_list, &roots);
1629
		root_count++;
1630

1631
		sb->s_root->d_fsdata = root_cgrp;
1632 1633
		root->top_cgroup.dentry = sb->s_root;

1634 1635 1636
		/* Link the top cgroup in this hierarchy into all
		 * the css_set objects */
		write_lock(&css_set_lock);
1637 1638 1639
		for (i = 0; i < CSS_SET_TABLE_SIZE; i++) {
			struct hlist_head *hhead = &css_set_table[i];
			struct hlist_node *node;
1640
			struct css_set *cg;
1641

1642 1643
			hlist_for_each_entry(cg, node, hhead, hlist)
				link_css_set(&tmp_cg_links, cg, root_cgrp);
1644
		}
1645 1646 1647 1648
		write_unlock(&css_set_lock);

		free_cg_links(&tmp_cg_links);

1649 1650
		BUG_ON(!list_empty(&root_cgrp->sibling));
		BUG_ON(!list_empty(&root_cgrp->children));
1651 1652
		BUG_ON(root->number_of_cgroups != 1);

1653
		cred = override_creds(&init_cred);
1654
		cgroup_populate_dir(root_cgrp);
1655
		revert_creds(cred);
T
Tejun Heo 已提交
1656
		mutex_unlock(&cgroup_root_mutex);
1657
		mutex_unlock(&cgroup_mutex);
1658
		mutex_unlock(&inode->i_mutex);
1659 1660 1661 1662 1663
	} else {
		/*
		 * We re-used an existing hierarchy - the new root (if
		 * any) is not needed
		 */
1664
		cgroup_drop_root(opts.new_root);
B
Ben Blum 已提交
1665 1666
		/* no subsys rebinding, so refcounts don't change */
		drop_parsed_module_refcounts(opts.subsys_bits);
1667 1668
	}

1669 1670
	kfree(opts.release_agent);
	kfree(opts.name);
A
Al Viro 已提交
1671
	return dget(sb->s_root);
1672

T
Tejun Heo 已提交
1673 1674 1675 1676
 unlock_drop:
	mutex_unlock(&cgroup_root_mutex);
	mutex_unlock(&cgroup_mutex);
	mutex_unlock(&inode->i_mutex);
1677
 drop_new_super:
1678
	deactivate_locked_super(sb);
B
Ben Blum 已提交
1679 1680
 drop_modules:
	drop_parsed_module_refcounts(opts.subsys_bits);
1681 1682 1683
 out_err:
	kfree(opts.release_agent);
	kfree(opts.name);
A
Al Viro 已提交
1684
	return ERR_PTR(ret);
1685 1686 1687 1688
}

static void cgroup_kill_sb(struct super_block *sb) {
	struct cgroupfs_root *root = sb->s_fs_info;
1689
	struct cgroup *cgrp = &root->top_cgroup;
1690
	int ret;
K
KOSAKI Motohiro 已提交
1691 1692
	struct cg_cgroup_link *link;
	struct cg_cgroup_link *saved_link;
1693 1694 1695 1696

	BUG_ON(!root);

	BUG_ON(root->number_of_cgroups != 1);
1697 1698
	BUG_ON(!list_empty(&cgrp->children));
	BUG_ON(!list_empty(&cgrp->sibling));
1699 1700

	mutex_lock(&cgroup_mutex);
T
Tejun Heo 已提交
1701
	mutex_lock(&cgroup_root_mutex);
1702 1703 1704 1705 1706 1707

	/* Rebind all subsystems back to the default hierarchy */
	ret = rebind_subsystems(root, 0);
	/* Shouldn't be able to fail ... */
	BUG_ON(ret);

1708 1709 1710 1711 1712
	/*
	 * Release all the links from css_sets to this hierarchy's
	 * root cgroup
	 */
	write_lock(&css_set_lock);
K
KOSAKI Motohiro 已提交
1713 1714 1715

	list_for_each_entry_safe(link, saved_link, &cgrp->css_sets,
				 cgrp_link_list) {
1716
		list_del(&link->cg_link_list);
1717
		list_del(&link->cgrp_link_list);
1718 1719 1720 1721
		kfree(link);
	}
	write_unlock(&css_set_lock);

1722 1723 1724 1725
	if (!list_empty(&root->root_list)) {
		list_del(&root->root_list);
		root_count--;
	}
1726

T
Tejun Heo 已提交
1727
	mutex_unlock(&cgroup_root_mutex);
1728 1729 1730
	mutex_unlock(&cgroup_mutex);

	kill_litter_super(sb);
1731
	cgroup_drop_root(root);
1732 1733 1734 1735
}

static struct file_system_type cgroup_fs_type = {
	.name = "cgroup",
A
Al Viro 已提交
1736
	.mount = cgroup_mount,
1737 1738 1739
	.kill_sb = cgroup_kill_sb,
};

1740 1741
static struct kobject *cgroup_kobj;

L
Li Zefan 已提交
1742 1743 1744 1745 1746 1747
/**
 * cgroup_path - generate the path of a cgroup
 * @cgrp: the cgroup in question
 * @buf: the buffer to write the path into
 * @buflen: the length of the buffer
 *
1748 1749 1750
 * Called with cgroup_mutex held or else with an RCU-protected cgroup
 * reference.  Writes path of cgroup into buf.  Returns 0 on success,
 * -errno on error.
1751
 */
1752
int cgroup_path(const struct cgroup *cgrp, char *buf, int buflen)
1753 1754
{
	char *start;
1755 1756
	struct dentry *dentry = rcu_dereference_check(cgrp->dentry,
						      cgroup_lock_is_held());
1757

1758
	if (!dentry || cgrp == dummytop) {
1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770
		/*
		 * Inactive subsystems have no dentry for their root
		 * cgroup
		 */
		strcpy(buf, "/");
		return 0;
	}

	start = buf + buflen;

	*--start = '\0';
	for (;;) {
1771
		int len = dentry->d_name.len;
1772

1773 1774
		if ((start -= len) < buf)
			return -ENAMETOOLONG;
1775
		memcpy(start, dentry->d_name.name, len);
1776 1777
		cgrp = cgrp->parent;
		if (!cgrp)
1778
			break;
1779 1780 1781

		dentry = rcu_dereference_check(cgrp->dentry,
					       cgroup_lock_is_held());
1782
		if (!cgrp->parent)
1783 1784 1785 1786 1787 1788 1789 1790
			continue;
		if (--start < buf)
			return -ENAMETOOLONG;
		*start = '/';
	}
	memmove(buf, start, buf + buflen - start);
	return 0;
}
B
Ben Blum 已提交
1791
EXPORT_SYMBOL_GPL(cgroup_path);
1792

1793 1794 1795
/*
 * Control Group taskset
 */
1796 1797 1798
struct task_and_cgroup {
	struct task_struct	*task;
	struct cgroup		*cgrp;
1799
	struct css_set		*cg;
1800 1801
};

1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872
struct cgroup_taskset {
	struct task_and_cgroup	single;
	struct flex_array	*tc_array;
	int			tc_array_len;
	int			idx;
	struct cgroup		*cur_cgrp;
};

/**
 * cgroup_taskset_first - reset taskset and return the first task
 * @tset: taskset of interest
 *
 * @tset iteration is initialized and the first task is returned.
 */
struct task_struct *cgroup_taskset_first(struct cgroup_taskset *tset)
{
	if (tset->tc_array) {
		tset->idx = 0;
		return cgroup_taskset_next(tset);
	} else {
		tset->cur_cgrp = tset->single.cgrp;
		return tset->single.task;
	}
}
EXPORT_SYMBOL_GPL(cgroup_taskset_first);

/**
 * cgroup_taskset_next - iterate to the next task in taskset
 * @tset: taskset of interest
 *
 * Return the next task in @tset.  Iteration must have been initialized
 * with cgroup_taskset_first().
 */
struct task_struct *cgroup_taskset_next(struct cgroup_taskset *tset)
{
	struct task_and_cgroup *tc;

	if (!tset->tc_array || tset->idx >= tset->tc_array_len)
		return NULL;

	tc = flex_array_get(tset->tc_array, tset->idx++);
	tset->cur_cgrp = tc->cgrp;
	return tc->task;
}
EXPORT_SYMBOL_GPL(cgroup_taskset_next);

/**
 * cgroup_taskset_cur_cgroup - return the matching cgroup for the current task
 * @tset: taskset of interest
 *
 * Return the cgroup for the current (last returned) task of @tset.  This
 * function must be preceded by either cgroup_taskset_first() or
 * cgroup_taskset_next().
 */
struct cgroup *cgroup_taskset_cur_cgroup(struct cgroup_taskset *tset)
{
	return tset->cur_cgrp;
}
EXPORT_SYMBOL_GPL(cgroup_taskset_cur_cgroup);

/**
 * cgroup_taskset_size - return the number of tasks in taskset
 * @tset: taskset of interest
 */
int cgroup_taskset_size(struct cgroup_taskset *tset)
{
	return tset->tc_array ? tset->tc_array_len : 1;
}
EXPORT_SYMBOL_GPL(cgroup_taskset_size);


B
Ben Blum 已提交
1873 1874 1875 1876 1877
/*
 * cgroup_task_migrate - move a task from one cgroup to another.
 *
 * 'guarantee' is set if the caller promises that a new css_set for the task
 * will already exist. If not set, this function might sleep, and can fail with
1878
 * -ENOMEM. Must be called with cgroup_mutex and threadgroup locked.
B
Ben Blum 已提交
1879
 */
1880 1881
static void cgroup_task_migrate(struct cgroup *cgrp, struct cgroup *oldcgrp,
				struct task_struct *tsk, struct css_set *newcg)
B
Ben Blum 已提交
1882 1883 1884 1885
{
	struct css_set *oldcg;

	/*
1886 1887 1888
	 * We are synchronized through threadgroup_lock() against PF_EXITING
	 * setting such that we can't race against cgroup_exit() changing the
	 * css_set to init_css_set and dropping the old one.
B
Ben Blum 已提交
1889
	 */
1890
	WARN_ON_ONCE(tsk->flags & PF_EXITING);
B
Ben Blum 已提交
1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912
	oldcg = tsk->cgroups;

	task_lock(tsk);
	rcu_assign_pointer(tsk->cgroups, newcg);
	task_unlock(tsk);

	/* Update the css_set linked lists if we're using them */
	write_lock(&css_set_lock);
	if (!list_empty(&tsk->cg_list))
		list_move(&tsk->cg_list, &newcg->tasks);
	write_unlock(&css_set_lock);

	/*
	 * We just gained a reference on oldcg by taking it from the task. As
	 * trading it for newcg is protected by cgroup_mutex, we're safe to drop
	 * it here; it will be freed under RCU.
	 */
	put_css_set(oldcg);

	set_bit(CGRP_RELEASABLE, &oldcgrp->flags);
}

L
Li Zefan 已提交
1913 1914 1915 1916
/**
 * cgroup_attach_task - attach task 'tsk' to cgroup 'cgrp'
 * @cgrp: the cgroup the task is attaching to
 * @tsk: the task to be attached
1917
 *
1918 1919
 * Call with cgroup_mutex and threadgroup locked. May take task_lock of
 * @tsk during call.
1920
 */
1921
int cgroup_attach_task(struct cgroup *cgrp, struct task_struct *tsk)
1922
{
1923
	int retval = 0;
1924
	struct cgroup_subsys *ss, *failed_ss = NULL;
1925 1926
	struct cgroup *oldcgrp;
	struct cgroupfs_root *root = cgrp->root;
1927
	struct cgroup_taskset tset = { };
1928
	struct css_set *newcg;
1929

1930 1931 1932
	/* @tsk either already exited or can't exit until the end */
	if (tsk->flags & PF_EXITING)
		return -ESRCH;
1933 1934

	/* Nothing to do if the task is already in that cgroup */
1935
	oldcgrp = task_cgroup_from_root(tsk, root);
1936
	if (cgrp == oldcgrp)
1937 1938
		return 0;

1939 1940 1941
	tset.single.task = tsk;
	tset.single.cgrp = oldcgrp;

1942 1943
	for_each_subsys(root, ss) {
		if (ss->can_attach) {
1944
			retval = ss->can_attach(cgrp, &tset);
1945 1946 1947 1948 1949 1950 1951 1952 1953 1954
			if (retval) {
				/*
				 * Remember on which subsystem the can_attach()
				 * failed, so that we only call cancel_attach()
				 * against the subsystems whose can_attach()
				 * succeeded. (See below)
				 */
				failed_ss = ss;
				goto out;
			}
1955 1956 1957
		}
	}

1958 1959 1960
	newcg = find_css_set(tsk->cgroups, cgrp);
	if (!newcg) {
		retval = -ENOMEM;
1961
		goto out;
1962 1963 1964
	}

	cgroup_task_migrate(cgrp, oldcgrp, tsk, newcg);
1965

1966
	for_each_subsys(root, ss) {
P
Paul Jackson 已提交
1967
		if (ss->attach)
1968
			ss->attach(cgrp, &tset);
1969
	}
B
Ben Blum 已提交
1970

1971
	synchronize_rcu();
1972 1973 1974 1975 1976

	/*
	 * wake up rmdir() waiter. the rmdir should fail since the cgroup
	 * is no longer empty.
	 */
1977
	cgroup_wakeup_rmdir_waiter(cgrp);
1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989
out:
	if (retval) {
		for_each_subsys(root, ss) {
			if (ss == failed_ss)
				/*
				 * This subsystem was the one that failed the
				 * can_attach() check earlier, so we don't need
				 * to call cancel_attach() against it or any
				 * remaining subsystems.
				 */
				break;
			if (ss->cancel_attach)
1990
				ss->cancel_attach(cgrp, &tset);
1991 1992 1993
		}
	}
	return retval;
1994 1995
}

1996
/**
M
Michael S. Tsirkin 已提交
1997 1998
 * cgroup_attach_task_all - attach task 'tsk' to all cgroups of task 'from'
 * @from: attach to all cgroups of a given task
1999 2000
 * @tsk: the task to be attached
 */
M
Michael S. Tsirkin 已提交
2001
int cgroup_attach_task_all(struct task_struct *from, struct task_struct *tsk)
2002 2003 2004 2005 2006 2007
{
	struct cgroupfs_root *root;
	int retval = 0;

	cgroup_lock();
	for_each_active_root(root) {
M
Michael S. Tsirkin 已提交
2008 2009 2010
		struct cgroup *from_cg = task_cgroup_from_root(from, root);

		retval = cgroup_attach_task(from_cg, tsk);
2011 2012 2013 2014 2015 2016 2017
		if (retval)
			break;
	}
	cgroup_unlock();

	return retval;
}
M
Michael S. Tsirkin 已提交
2018
EXPORT_SYMBOL_GPL(cgroup_attach_task_all);
2019

B
Ben Blum 已提交
2020 2021 2022 2023 2024
/**
 * cgroup_attach_proc - attach all threads in a threadgroup to a cgroup
 * @cgrp: the cgroup to attach to
 * @leader: the threadgroup leader task_struct of the group to be attached
 *
2025 2026
 * Call holding cgroup_mutex and the group_rwsem of the leader. Will take
 * task_lock of each thread in leader's threadgroup individually in turn.
B
Ben Blum 已提交
2027
 */
2028
static int cgroup_attach_proc(struct cgroup *cgrp, struct task_struct *leader)
B
Ben Blum 已提交
2029 2030 2031 2032 2033 2034 2035
{
	int retval, i, group_size;
	struct cgroup_subsys *ss, *failed_ss = NULL;
	/* guaranteed to be initialized later, but the compiler needs this */
	struct cgroupfs_root *root = cgrp->root;
	/* threadgroup list cursor and array */
	struct task_struct *tsk;
2036
	struct task_and_cgroup *tc;
2037
	struct flex_array *group;
2038
	struct cgroup_taskset tset = { };
B
Ben Blum 已提交
2039 2040 2041 2042 2043

	/*
	 * step 0: in order to do expensive, possibly blocking operations for
	 * every thread, we cannot iterate the thread group list, since it needs
	 * rcu or tasklist locked. instead, build an array of all threads in the
2044 2045
	 * group - group_rwsem prevents new threads from appearing, and if
	 * threads exit, this will just be an over-estimate.
B
Ben Blum 已提交
2046 2047
	 */
	group_size = get_nr_threads(leader);
2048
	/* flex_array supports very large thread-groups better than kmalloc. */
2049
	group = flex_array_alloc(sizeof(*tc), group_size, GFP_KERNEL);
B
Ben Blum 已提交
2050 2051
	if (!group)
		return -ENOMEM;
2052 2053 2054 2055
	/* pre-allocate to guarantee space while iterating in rcu read-side. */
	retval = flex_array_prealloc(group, 0, group_size - 1, GFP_KERNEL);
	if (retval)
		goto out_free_group_list;
B
Ben Blum 已提交
2056 2057 2058

	tsk = leader;
	i = 0;
2059 2060 2061 2062 2063 2064
	/*
	 * Prevent freeing of tasks while we take a snapshot. Tasks that are
	 * already PF_EXITING could be freed from underneath us unless we
	 * take an rcu_read_lock.
	 */
	rcu_read_lock();
B
Ben Blum 已提交
2065
	do {
2066 2067
		struct task_and_cgroup ent;

2068 2069 2070 2071
		/* @tsk either already exited or can't exit until the end */
		if (tsk->flags & PF_EXITING)
			continue;

B
Ben Blum 已提交
2072 2073
		/* as per above, nr_threads may decrease, but not increase. */
		BUG_ON(i >= group_size);
2074 2075
		ent.task = tsk;
		ent.cgrp = task_cgroup_from_root(tsk, root);
2076 2077 2078
		/* nothing to do if this task is already in the cgroup */
		if (ent.cgrp == cgrp)
			continue;
2079 2080 2081 2082
		/*
		 * saying GFP_ATOMIC has no effect here because we did prealloc
		 * earlier, but it's good form to communicate our expectations.
		 */
2083
		retval = flex_array_put(group, i, &ent, GFP_ATOMIC);
2084
		BUG_ON(retval != 0);
B
Ben Blum 已提交
2085 2086
		i++;
	} while_each_thread(leader, tsk);
2087
	rcu_read_unlock();
B
Ben Blum 已提交
2088 2089
	/* remember the number of threads in the array for later. */
	group_size = i;
2090 2091
	tset.tc_array = group;
	tset.tc_array_len = group_size;
B
Ben Blum 已提交
2092

2093 2094
	/* methods shouldn't be called if no task is actually migrating */
	retval = 0;
2095
	if (!group_size)
2096
		goto out_free_group_list;
2097

B
Ben Blum 已提交
2098 2099 2100 2101 2102
	/*
	 * step 1: check that we can legitimately attach to the cgroup.
	 */
	for_each_subsys(root, ss) {
		if (ss->can_attach) {
2103
			retval = ss->can_attach(cgrp, &tset);
B
Ben Blum 已提交
2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115
			if (retval) {
				failed_ss = ss;
				goto out_cancel_attach;
			}
		}
	}

	/*
	 * step 2: make sure css_sets exist for all threads to be migrated.
	 * we use find_css_set, which allocates a new one if necessary.
	 */
	for (i = 0; i < group_size; i++) {
2116
		tc = flex_array_get(group, i);
2117 2118 2119 2120
		tc->cg = find_css_set(tc->task->cgroups, cgrp);
		if (!tc->cg) {
			retval = -ENOMEM;
			goto out_put_css_set_refs;
B
Ben Blum 已提交
2121 2122 2123 2124
		}
	}

	/*
2125 2126 2127
	 * step 3: now that we're guaranteed success wrt the css_sets,
	 * proceed to move all tasks to the new cgroup.  There are no
	 * failure cases after here, so this is the commit point.
B
Ben Blum 已提交
2128 2129
	 */
	for (i = 0; i < group_size; i++) {
2130
		tc = flex_array_get(group, i);
2131
		cgroup_task_migrate(cgrp, tc->cgrp, tc->task, tc->cg);
B
Ben Blum 已提交
2132 2133 2134 2135
	}
	/* nothing is sensitive to fork() after this point. */

	/*
2136
	 * step 4: do subsystem attach callbacks.
B
Ben Blum 已提交
2137 2138 2139
	 */
	for_each_subsys(root, ss) {
		if (ss->attach)
2140
			ss->attach(cgrp, &tset);
B
Ben Blum 已提交
2141 2142 2143 2144 2145 2146 2147 2148
	}

	/*
	 * step 5: success! and cleanup
	 */
	synchronize_rcu();
	cgroup_wakeup_rmdir_waiter(cgrp);
	retval = 0;
2149 2150 2151 2152 2153 2154 2155 2156
out_put_css_set_refs:
	if (retval) {
		for (i = 0; i < group_size; i++) {
			tc = flex_array_get(group, i);
			if (!tc->cg)
				break;
			put_css_set(tc->cg);
		}
B
Ben Blum 已提交
2157 2158 2159 2160
	}
out_cancel_attach:
	if (retval) {
		for_each_subsys(root, ss) {
2161
			if (ss == failed_ss)
B
Ben Blum 已提交
2162 2163
				break;
			if (ss->cancel_attach)
2164
				ss->cancel_attach(cgrp, &tset);
B
Ben Blum 已提交
2165 2166 2167
		}
	}
out_free_group_list:
2168
	flex_array_free(group);
B
Ben Blum 已提交
2169 2170 2171 2172 2173
	return retval;
}

/*
 * Find the task_struct of the task to attach by vpid and pass it along to the
2174 2175
 * function to attach either it or all tasks in its threadgroup. Will lock
 * cgroup_mutex and threadgroup; may take task_lock of task.
2176
 */
B
Ben Blum 已提交
2177
static int attach_task_by_pid(struct cgroup *cgrp, u64 pid, bool threadgroup)
2178 2179
{
	struct task_struct *tsk;
2180
	const struct cred *cred = current_cred(), *tcred;
2181 2182
	int ret;

B
Ben Blum 已提交
2183 2184 2185
	if (!cgroup_lock_live_group(cgrp))
		return -ENODEV;

2186 2187
retry_find_task:
	rcu_read_lock();
2188
	if (pid) {
2189
		tsk = find_task_by_vpid(pid);
B
Ben Blum 已提交
2190 2191
		if (!tsk) {
			rcu_read_unlock();
2192 2193
			ret= -ESRCH;
			goto out_unlock_cgroup;
2194
		}
B
Ben Blum 已提交
2195 2196 2197 2198
		/*
		 * even if we're attaching all tasks in the thread group, we
		 * only need to check permissions on one of them.
		 */
2199 2200 2201 2202 2203
		tcred = __task_cred(tsk);
		if (cred->euid &&
		    cred->euid != tcred->uid &&
		    cred->euid != tcred->suid) {
			rcu_read_unlock();
2204 2205
			ret = -EACCES;
			goto out_unlock_cgroup;
2206
		}
2207 2208
	} else
		tsk = current;
2209 2210

	if (threadgroup)
2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228
		tsk = tsk->group_leader;
	get_task_struct(tsk);
	rcu_read_unlock();

	threadgroup_lock(tsk);
	if (threadgroup) {
		if (!thread_group_leader(tsk)) {
			/*
			 * a race with de_thread from another thread's exec()
			 * may strip us of our leadership, if this happens,
			 * there is no choice but to throw this task away and
			 * try again; this is
			 * "double-double-toil-and-trouble-check locking".
			 */
			threadgroup_unlock(tsk);
			put_task_struct(tsk);
			goto retry_find_task;
		}
B
Ben Blum 已提交
2229
		ret = cgroup_attach_proc(cgrp, tsk);
2230
	} else
B
Ben Blum 已提交
2231
		ret = cgroup_attach_task(cgrp, tsk);
2232 2233
	threadgroup_unlock(tsk);

2234
	put_task_struct(tsk);
2235
out_unlock_cgroup:
B
Ben Blum 已提交
2236
	cgroup_unlock();
2237 2238 2239
	return ret;
}

2240
static int cgroup_tasks_write(struct cgroup *cgrp, struct cftype *cft, u64 pid)
B
Ben Blum 已提交
2241 2242 2243 2244 2245
{
	return attach_task_by_pid(cgrp, pid, false);
}

static int cgroup_procs_write(struct cgroup *cgrp, struct cftype *cft, u64 tgid)
2246
{
2247
	return attach_task_by_pid(cgrp, tgid, true);
2248 2249
}

2250 2251 2252 2253
/**
 * cgroup_lock_live_group - take cgroup_mutex and check that cgrp is alive.
 * @cgrp: the cgroup to be checked for liveness
 *
2254 2255
 * On success, returns true; the lock should be later released with
 * cgroup_unlock(). On failure returns false with no lock held.
2256
 */
2257
bool cgroup_lock_live_group(struct cgroup *cgrp)
2258 2259 2260 2261 2262 2263 2264 2265
{
	mutex_lock(&cgroup_mutex);
	if (cgroup_is_removed(cgrp)) {
		mutex_unlock(&cgroup_mutex);
		return false;
	}
	return true;
}
B
Ben Blum 已提交
2266
EXPORT_SYMBOL_GPL(cgroup_lock_live_group);
2267 2268 2269 2270 2271

static int cgroup_release_agent_write(struct cgroup *cgrp, struct cftype *cft,
				      const char *buffer)
{
	BUILD_BUG_ON(sizeof(cgrp->root->release_agent_path) < PATH_MAX);
2272 2273
	if (strlen(buffer) >= PATH_MAX)
		return -EINVAL;
2274 2275
	if (!cgroup_lock_live_group(cgrp))
		return -ENODEV;
T
Tejun Heo 已提交
2276
	mutex_lock(&cgroup_root_mutex);
2277
	strcpy(cgrp->root->release_agent_path, buffer);
T
Tejun Heo 已提交
2278
	mutex_unlock(&cgroup_root_mutex);
2279
	cgroup_unlock();
2280 2281 2282 2283 2284 2285 2286 2287 2288 2289
	return 0;
}

static int cgroup_release_agent_show(struct cgroup *cgrp, struct cftype *cft,
				     struct seq_file *seq)
{
	if (!cgroup_lock_live_group(cgrp))
		return -ENODEV;
	seq_puts(seq, cgrp->root->release_agent_path);
	seq_putc(seq, '\n');
2290
	cgroup_unlock();
2291 2292 2293
	return 0;
}

2294 2295 2296
/* A buffer size big enough for numbers or short strings */
#define CGROUP_LOCAL_BUFFER_SIZE 64

2297
static ssize_t cgroup_write_X64(struct cgroup *cgrp, struct cftype *cft,
2298 2299 2300
				struct file *file,
				const char __user *userbuf,
				size_t nbytes, loff_t *unused_ppos)
2301
{
2302
	char buffer[CGROUP_LOCAL_BUFFER_SIZE];
2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313
	int retval = 0;
	char *end;

	if (!nbytes)
		return -EINVAL;
	if (nbytes >= sizeof(buffer))
		return -E2BIG;
	if (copy_from_user(buffer, userbuf, nbytes))
		return -EFAULT;

	buffer[nbytes] = 0;     /* nul-terminate */
2314
	if (cft->write_u64) {
K
KOSAKI Motohiro 已提交
2315
		u64 val = simple_strtoull(strstrip(buffer), &end, 0);
2316 2317 2318 2319
		if (*end)
			return -EINVAL;
		retval = cft->write_u64(cgrp, cft, val);
	} else {
K
KOSAKI Motohiro 已提交
2320
		s64 val = simple_strtoll(strstrip(buffer), &end, 0);
2321 2322 2323 2324
		if (*end)
			return -EINVAL;
		retval = cft->write_s64(cgrp, cft, val);
	}
2325 2326 2327 2328 2329
	if (!retval)
		retval = nbytes;
	return retval;
}

2330 2331 2332 2333 2334
static ssize_t cgroup_write_string(struct cgroup *cgrp, struct cftype *cft,
				   struct file *file,
				   const char __user *userbuf,
				   size_t nbytes, loff_t *unused_ppos)
{
2335
	char local_buffer[CGROUP_LOCAL_BUFFER_SIZE];
2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349
	int retval = 0;
	size_t max_bytes = cft->max_write_len;
	char *buffer = local_buffer;

	if (!max_bytes)
		max_bytes = sizeof(local_buffer) - 1;
	if (nbytes >= max_bytes)
		return -E2BIG;
	/* Allocate a dynamic buffer if we need one */
	if (nbytes >= sizeof(local_buffer)) {
		buffer = kmalloc(nbytes + 1, GFP_KERNEL);
		if (buffer == NULL)
			return -ENOMEM;
	}
L
Li Zefan 已提交
2350 2351 2352 2353
	if (nbytes && copy_from_user(buffer, userbuf, nbytes)) {
		retval = -EFAULT;
		goto out;
	}
2354 2355

	buffer[nbytes] = 0;     /* nul-terminate */
K
KOSAKI Motohiro 已提交
2356
	retval = cft->write_string(cgrp, cft, strstrip(buffer));
2357 2358
	if (!retval)
		retval = nbytes;
L
Li Zefan 已提交
2359
out:
2360 2361 2362 2363 2364
	if (buffer != local_buffer)
		kfree(buffer);
	return retval;
}

2365 2366 2367 2368
static ssize_t cgroup_file_write(struct file *file, const char __user *buf,
						size_t nbytes, loff_t *ppos)
{
	struct cftype *cft = __d_cft(file->f_dentry);
2369
	struct cgroup *cgrp = __d_cgrp(file->f_dentry->d_parent);
2370

2371
	if (cgroup_is_removed(cgrp))
2372
		return -ENODEV;
2373
	if (cft->write)
2374
		return cft->write(cgrp, cft, file, buf, nbytes, ppos);
2375 2376
	if (cft->write_u64 || cft->write_s64)
		return cgroup_write_X64(cgrp, cft, file, buf, nbytes, ppos);
2377 2378
	if (cft->write_string)
		return cgroup_write_string(cgrp, cft, file, buf, nbytes, ppos);
2379 2380 2381 2382
	if (cft->trigger) {
		int ret = cft->trigger(cgrp, (unsigned int)cft->private);
		return ret ? ret : nbytes;
	}
2383
	return -EINVAL;
2384 2385
}

2386 2387 2388 2389
static ssize_t cgroup_read_u64(struct cgroup *cgrp, struct cftype *cft,
			       struct file *file,
			       char __user *buf, size_t nbytes,
			       loff_t *ppos)
2390
{
2391
	char tmp[CGROUP_LOCAL_BUFFER_SIZE];
2392
	u64 val = cft->read_u64(cgrp, cft);
2393 2394 2395 2396 2397
	int len = sprintf(tmp, "%llu\n", (unsigned long long) val);

	return simple_read_from_buffer(buf, nbytes, ppos, tmp, len);
}

2398 2399 2400 2401 2402
static ssize_t cgroup_read_s64(struct cgroup *cgrp, struct cftype *cft,
			       struct file *file,
			       char __user *buf, size_t nbytes,
			       loff_t *ppos)
{
2403
	char tmp[CGROUP_LOCAL_BUFFER_SIZE];
2404 2405 2406 2407 2408 2409
	s64 val = cft->read_s64(cgrp, cft);
	int len = sprintf(tmp, "%lld\n", (long long) val);

	return simple_read_from_buffer(buf, nbytes, ppos, tmp, len);
}

2410 2411 2412 2413
static ssize_t cgroup_file_read(struct file *file, char __user *buf,
				   size_t nbytes, loff_t *ppos)
{
	struct cftype *cft = __d_cft(file->f_dentry);
2414
	struct cgroup *cgrp = __d_cgrp(file->f_dentry->d_parent);
2415

2416
	if (cgroup_is_removed(cgrp))
2417 2418 2419
		return -ENODEV;

	if (cft->read)
2420
		return cft->read(cgrp, cft, file, buf, nbytes, ppos);
2421 2422
	if (cft->read_u64)
		return cgroup_read_u64(cgrp, cft, file, buf, nbytes, ppos);
2423 2424
	if (cft->read_s64)
		return cgroup_read_s64(cgrp, cft, file, buf, nbytes, ppos);
2425 2426 2427
	return -EINVAL;
}

2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447
/*
 * seqfile ops/methods for returning structured data. Currently just
 * supports string->u64 maps, but can be extended in future.
 */

struct cgroup_seqfile_state {
	struct cftype *cft;
	struct cgroup *cgroup;
};

static int cgroup_map_add(struct cgroup_map_cb *cb, const char *key, u64 value)
{
	struct seq_file *sf = cb->state;
	return seq_printf(sf, "%s %llu\n", key, (unsigned long long)value);
}

static int cgroup_seqfile_show(struct seq_file *m, void *arg)
{
	struct cgroup_seqfile_state *state = m->private;
	struct cftype *cft = state->cft;
2448 2449 2450 2451 2452 2453 2454 2455
	if (cft->read_map) {
		struct cgroup_map_cb cb = {
			.fill = cgroup_map_add,
			.state = m,
		};
		return cft->read_map(state->cgroup, cft, &cb);
	}
	return cft->read_seq_string(state->cgroup, cft, m);
2456 2457
}

2458
static int cgroup_seqfile_release(struct inode *inode, struct file *file)
2459 2460 2461 2462 2463 2464
{
	struct seq_file *seq = file->private_data;
	kfree(seq->private);
	return single_release(inode, file);
}

2465
static const struct file_operations cgroup_seqfile_operations = {
2466
	.read = seq_read,
2467
	.write = cgroup_file_write,
2468 2469 2470 2471
	.llseek = seq_lseek,
	.release = cgroup_seqfile_release,
};

2472 2473 2474 2475 2476 2477 2478 2479 2480
static int cgroup_file_open(struct inode *inode, struct file *file)
{
	int err;
	struct cftype *cft;

	err = generic_file_open(inode, file);
	if (err)
		return err;
	cft = __d_cft(file->f_dentry);
2481

2482
	if (cft->read_map || cft->read_seq_string) {
2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493
		struct cgroup_seqfile_state *state =
			kzalloc(sizeof(*state), GFP_USER);
		if (!state)
			return -ENOMEM;
		state->cft = cft;
		state->cgroup = __d_cgrp(file->f_dentry->d_parent);
		file->f_op = &cgroup_seqfile_operations;
		err = single_open(file, cgroup_seqfile_show, state);
		if (err < 0)
			kfree(state);
	} else if (cft->open)
2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523
		err = cft->open(inode, file);
	else
		err = 0;

	return err;
}

static int cgroup_file_release(struct inode *inode, struct file *file)
{
	struct cftype *cft = __d_cft(file->f_dentry);
	if (cft->release)
		return cft->release(inode, file);
	return 0;
}

/*
 * cgroup_rename - Only allow simple rename of directories in place.
 */
static int cgroup_rename(struct inode *old_dir, struct dentry *old_dentry,
			    struct inode *new_dir, struct dentry *new_dentry)
{
	if (!S_ISDIR(old_dentry->d_inode->i_mode))
		return -ENOTDIR;
	if (new_dentry->d_inode)
		return -EEXIST;
	if (old_dir != new_dir)
		return -EIO;
	return simple_rename(old_dir, old_dentry, new_dir, new_dentry);
}

2524
static const struct file_operations cgroup_file_operations = {
2525 2526 2527 2528 2529 2530 2531
	.read = cgroup_file_read,
	.write = cgroup_file_write,
	.llseek = generic_file_llseek,
	.open = cgroup_file_open,
	.release = cgroup_file_release,
};

2532
static const struct inode_operations cgroup_dir_inode_operations = {
2533
	.lookup = cgroup_lookup,
2534 2535 2536 2537 2538
	.mkdir = cgroup_mkdir,
	.rmdir = cgroup_rmdir,
	.rename = cgroup_rename,
};

2539 2540 2541 2542 2543 2544 2545 2546
static struct dentry *cgroup_lookup(struct inode *dir, struct dentry *dentry, struct nameidata *nd)
{
	if (dentry->d_name.len > NAME_MAX)
		return ERR_PTR(-ENAMETOOLONG);
	d_add(dentry, NULL);
	return NULL;
}

2547 2548 2549 2550 2551 2552 2553 2554 2555 2556
/*
 * Check if a file is a control file
 */
static inline struct cftype *__file_cft(struct file *file)
{
	if (file->f_dentry->d_inode->i_fop != &cgroup_file_operations)
		return ERR_PTR(-EINVAL);
	return __d_cft(file->f_dentry);
}

A
Al Viro 已提交
2557
static int cgroup_create_file(struct dentry *dentry, umode_t mode,
2558 2559
				struct super_block *sb)
{
2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579
	struct inode *inode;

	if (!dentry)
		return -ENOENT;
	if (dentry->d_inode)
		return -EEXIST;

	inode = cgroup_new_inode(mode, sb);
	if (!inode)
		return -ENOMEM;

	if (S_ISDIR(mode)) {
		inode->i_op = &cgroup_dir_inode_operations;
		inode->i_fop = &simple_dir_operations;

		/* start off with i_nlink == 2 (for "." entry) */
		inc_nlink(inode);

		/* start with the directory inode held, so that we can
		 * populate it without racing with another mkdir */
2580
		mutex_lock_nested(&inode->i_mutex, I_MUTEX_CHILD);
2581 2582 2583 2584 2585 2586 2587 2588 2589 2590
	} else if (S_ISREG(mode)) {
		inode->i_size = 0;
		inode->i_fop = &cgroup_file_operations;
	}
	d_instantiate(dentry, inode);
	dget(dentry);	/* Extra count - pin the dentry in core */
	return 0;
}

/*
L
Li Zefan 已提交
2591 2592 2593 2594 2595
 * cgroup_create_dir - create a directory for an object.
 * @cgrp: the cgroup we create the directory for. It must have a valid
 *        ->parent field. And we are going to fill its ->dentry field.
 * @dentry: dentry of the new cgroup
 * @mode: mode to set on new directory.
2596
 */
2597
static int cgroup_create_dir(struct cgroup *cgrp, struct dentry *dentry,
A
Al Viro 已提交
2598
				umode_t mode)
2599 2600 2601 2602
{
	struct dentry *parent;
	int error = 0;

2603 2604
	parent = cgrp->parent->dentry;
	error = cgroup_create_file(dentry, S_IFDIR | mode, cgrp->root->sb);
2605
	if (!error) {
2606
		dentry->d_fsdata = cgrp;
2607
		inc_nlink(parent->d_inode);
2608
		rcu_assign_pointer(cgrp->dentry, dentry);
2609 2610 2611 2612 2613 2614 2615
		dget(dentry);
	}
	dput(dentry);

	return error;
}

L
Li Zefan 已提交
2616 2617 2618 2619 2620 2621 2622 2623 2624
/**
 * cgroup_file_mode - deduce file mode of a control file
 * @cft: the control file in question
 *
 * returns cft->mode if ->mode is not 0
 * returns S_IRUGO|S_IWUSR if it has both a read and a write handler
 * returns S_IRUGO if it has only a read handler
 * returns S_IWUSR if it has only a write hander
 */
A
Al Viro 已提交
2625
static umode_t cgroup_file_mode(const struct cftype *cft)
L
Li Zefan 已提交
2626
{
A
Al Viro 已提交
2627
	umode_t mode = 0;
L
Li Zefan 已提交
2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642

	if (cft->mode)
		return cft->mode;

	if (cft->read || cft->read_u64 || cft->read_s64 ||
	    cft->read_map || cft->read_seq_string)
		mode |= S_IRUGO;

	if (cft->write || cft->write_u64 || cft->write_s64 ||
	    cft->write_string || cft->trigger)
		mode |= S_IWUSR;

	return mode;
}

T
Tejun Heo 已提交
2643 2644
static int cgroup_add_file(struct cgroup *cgrp, struct cgroup_subsys *subsys,
			   const struct cftype *cft)
2645
{
2646
	struct dentry *dir = cgrp->dentry;
T
Tejun Heo 已提交
2647
	struct cgroup *parent = __d_cgrp(dir);
2648
	struct dentry *dentry;
T
Tejun Heo 已提交
2649
	struct cfent *cfe;
2650
	int error;
A
Al Viro 已提交
2651
	umode_t mode;
2652
	char name[MAX_CGROUP_TYPE_NAMELEN + MAX_CFTYPE_NAME + 2] = { 0 };
2653 2654 2655 2656 2657 2658 2659

	/* does @cft->flags tell us to skip creation on @cgrp? */
	if ((cft->flags & CFTYPE_NOT_ON_ROOT) && !cgrp->parent)
		return 0;
	if ((cft->flags & CFTYPE_ONLY_ON_ROOT) && cgrp->parent)
		return 0;

2660
	if (subsys && !test_bit(ROOT_NOPREFIX, &cgrp->root->flags)) {
2661 2662 2663 2664
		strcpy(name, subsys->name);
		strcat(name, ".");
	}
	strcat(name, cft->name);
T
Tejun Heo 已提交
2665

2666
	BUG_ON(!mutex_is_locked(&dir->d_inode->i_mutex));
T
Tejun Heo 已提交
2667 2668 2669 2670 2671

	cfe = kzalloc(sizeof(*cfe), GFP_KERNEL);
	if (!cfe)
		return -ENOMEM;

2672
	dentry = lookup_one_len(name, dir, strlen(name));
T
Tejun Heo 已提交
2673
	if (IS_ERR(dentry)) {
2674
		error = PTR_ERR(dentry);
T
Tejun Heo 已提交
2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689
		goto out;
	}

	mode = cgroup_file_mode(cft);
	error = cgroup_create_file(dentry, mode | S_IFREG, cgrp->root->sb);
	if (!error) {
		cfe->type = (void *)cft;
		cfe->dentry = dentry;
		dentry->d_fsdata = cfe;
		list_add_tail(&cfe->node, &parent->files);
		cfe = NULL;
	}
	dput(dentry);
out:
	kfree(cfe);
2690 2691 2692
	return error;
}

T
Tejun Heo 已提交
2693 2694
static int cgroup_add_files(struct cgroup *cgrp, struct cgroup_subsys *subsys,
			    const struct cftype cfts[])
2695
{
T
Tejun Heo 已提交
2696 2697 2698 2699 2700 2701 2702 2703 2704 2705
	const struct cftype *cft;
	int err, ret = 0;

	for (cft = cfts; cft->name[0] != '\0'; cft++) {
		err = cgroup_add_file(cgrp, subsys, cft);
		if (err) {
			pr_warning("cgroup_add_files: failed to create %s, err=%d\n",
				   cft->name, err);
			ret = err;
		}
2706
	}
T
Tejun Heo 已提交
2707
	return ret;
2708 2709
}

2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752
static DEFINE_MUTEX(cgroup_cft_mutex);

static void cgroup_cfts_prepare(void)
	__acquires(&cgroup_cft_mutex) __acquires(&cgroup_mutex)
{
	/*
	 * Thanks to the entanglement with vfs inode locking, we can't walk
	 * the existing cgroups under cgroup_mutex and create files.
	 * Instead, we increment reference on all cgroups and build list of
	 * them using @cgrp->cft_q_node.  Grab cgroup_cft_mutex to ensure
	 * exclusive access to the field.
	 */
	mutex_lock(&cgroup_cft_mutex);
	mutex_lock(&cgroup_mutex);
}

static void cgroup_cfts_commit(struct cgroup_subsys *ss,
			       const struct cftype *cfts)
	__releases(&cgroup_mutex) __releases(&cgroup_cft_mutex)
{
	LIST_HEAD(pending);
	struct cgroup *cgrp, *n;

	/* %NULL @cfts indicates abort and don't bother if @ss isn't attached */
	if (cfts && ss->root != &rootnode) {
		list_for_each_entry(cgrp, &ss->root->allcg_list, allcg_node) {
			dget(cgrp->dentry);
			list_add_tail(&cgrp->cft_q_node, &pending);
		}
	}

	mutex_unlock(&cgroup_mutex);

	/*
	 * All new cgroups will see @cfts update on @ss->cftsets.  Add/rm
	 * files for all cgroups which were created before.
	 */
	list_for_each_entry_safe(cgrp, n, &pending, cft_q_node) {
		struct inode *inode = cgrp->dentry->d_inode;

		mutex_lock(&inode->i_mutex);
		mutex_lock(&cgroup_mutex);
		if (!cgroup_is_removed(cgrp))
T
Tejun Heo 已提交
2753
			cgroup_add_files(cgrp, ss, cfts);
2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794
		mutex_unlock(&cgroup_mutex);
		mutex_unlock(&inode->i_mutex);

		list_del_init(&cgrp->cft_q_node);
		dput(cgrp->dentry);
	}

	mutex_unlock(&cgroup_cft_mutex);
}

/**
 * cgroup_add_cftypes - add an array of cftypes to a subsystem
 * @ss: target cgroup subsystem
 * @cfts: zero-length name terminated array of cftypes
 *
 * Register @cfts to @ss.  Files described by @cfts are created for all
 * existing cgroups to which @ss is attached and all future cgroups will
 * have them too.  This function can be called anytime whether @ss is
 * attached or not.
 *
 * Returns 0 on successful registration, -errno on failure.  Note that this
 * function currently returns 0 as long as @cfts registration is successful
 * even if some file creation attempts on existing cgroups fail.
 */
int cgroup_add_cftypes(struct cgroup_subsys *ss, const struct cftype *cfts)
{
	struct cftype_set *set;

	set = kzalloc(sizeof(*set), GFP_KERNEL);
	if (!set)
		return -ENOMEM;

	cgroup_cfts_prepare();
	set->cfts = cfts;
	list_add_tail(&set->node, &ss->cftsets);
	cgroup_cfts_commit(ss, cfts);

	return 0;
}
EXPORT_SYMBOL_GPL(cgroup_add_cftypes);

L
Li Zefan 已提交
2795 2796 2797 2798 2799 2800
/**
 * cgroup_task_count - count the number of tasks in a cgroup.
 * @cgrp: the cgroup in question
 *
 * Return the number of tasks in the cgroup.
 */
2801
int cgroup_task_count(const struct cgroup *cgrp)
2802 2803
{
	int count = 0;
K
KOSAKI Motohiro 已提交
2804
	struct cg_cgroup_link *link;
2805 2806

	read_lock(&css_set_lock);
K
KOSAKI Motohiro 已提交
2807
	list_for_each_entry(link, &cgrp->css_sets, cgrp_link_list) {
2808
		count += atomic_read(&link->cg->refcount);
2809 2810
	}
	read_unlock(&css_set_lock);
2811 2812 2813
	return count;
}

2814 2815 2816 2817
/*
 * Advance a list_head iterator.  The iterator should be positioned at
 * the start of a css_set
 */
2818
static void cgroup_advance_iter(struct cgroup *cgrp,
2819
				struct cgroup_iter *it)
2820 2821 2822 2823 2824 2825 2826 2827
{
	struct list_head *l = it->cg_link;
	struct cg_cgroup_link *link;
	struct css_set *cg;

	/* Advance to the next non-empty css_set */
	do {
		l = l->next;
2828
		if (l == &cgrp->css_sets) {
2829 2830 2831
			it->cg_link = NULL;
			return;
		}
2832
		link = list_entry(l, struct cg_cgroup_link, cgrp_link_list);
2833 2834 2835 2836 2837 2838
		cg = link->cg;
	} while (list_empty(&cg->tasks));
	it->cg_link = l;
	it->task = cg->tasks.next;
}

2839 2840 2841 2842 2843 2844
/*
 * To reduce the fork() overhead for systems that are not actually
 * using their cgroups capability, we don't maintain the lists running
 * through each css_set to its tasks until we see the list actually
 * used - in other words after the first call to cgroup_iter_start().
 */
2845
static void cgroup_enable_task_cg_lists(void)
2846 2847 2848 2849
{
	struct task_struct *p, *g;
	write_lock(&css_set_lock);
	use_task_css_set_links = 1;
2850 2851 2852 2853 2854 2855 2856 2857
	/*
	 * We need tasklist_lock because RCU is not safe against
	 * while_each_thread(). Besides, a forking task that has passed
	 * cgroup_post_fork() without seeing use_task_css_set_links = 1
	 * is not guaranteed to have its child immediately visible in the
	 * tasklist if we walk through it with RCU.
	 */
	read_lock(&tasklist_lock);
2858 2859
	do_each_thread(g, p) {
		task_lock(p);
2860 2861 2862 2863 2864 2865
		/*
		 * We should check if the process is exiting, otherwise
		 * it will race with cgroup_exit() in that the list
		 * entry won't be deleted though the process has exited.
		 */
		if (!(p->flags & PF_EXITING) && list_empty(&p->cg_list))
2866 2867 2868
			list_add(&p->cg_list, &p->cgroups->tasks);
		task_unlock(p);
	} while_each_thread(g, p);
2869
	read_unlock(&tasklist_lock);
2870 2871 2872
	write_unlock(&css_set_lock);
}

2873
void cgroup_iter_start(struct cgroup *cgrp, struct cgroup_iter *it)
2874
	__acquires(css_set_lock)
2875 2876 2877 2878 2879 2880
{
	/*
	 * The first time anyone tries to iterate across a cgroup,
	 * we need to enable the list linking each css_set to its
	 * tasks, and fix up all existing tasks.
	 */
2881 2882 2883
	if (!use_task_css_set_links)
		cgroup_enable_task_cg_lists();

2884
	read_lock(&css_set_lock);
2885 2886
	it->cg_link = &cgrp->css_sets;
	cgroup_advance_iter(cgrp, it);
2887 2888
}

2889
struct task_struct *cgroup_iter_next(struct cgroup *cgrp,
2890 2891 2892 2893
					struct cgroup_iter *it)
{
	struct task_struct *res;
	struct list_head *l = it->task;
2894
	struct cg_cgroup_link *link;
2895 2896 2897 2898 2899 2900 2901

	/* If the iterator cg is NULL, we have no tasks */
	if (!it->cg_link)
		return NULL;
	res = list_entry(l, struct task_struct, cg_list);
	/* Advance iterator to find next entry */
	l = l->next;
2902 2903
	link = list_entry(it->cg_link, struct cg_cgroup_link, cgrp_link_list);
	if (l == &link->cg->tasks) {
2904 2905
		/* We reached the end of this task list - move on to
		 * the next cg_cgroup_link */
2906
		cgroup_advance_iter(cgrp, it);
2907 2908 2909 2910 2911 2912
	} else {
		it->task = l;
	}
	return res;
}

2913
void cgroup_iter_end(struct cgroup *cgrp, struct cgroup_iter *it)
2914
	__releases(css_set_lock)
2915 2916 2917 2918
{
	read_unlock(&css_set_lock);
}

2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055
static inline int started_after_time(struct task_struct *t1,
				     struct timespec *time,
				     struct task_struct *t2)
{
	int start_diff = timespec_compare(&t1->start_time, time);
	if (start_diff > 0) {
		return 1;
	} else if (start_diff < 0) {
		return 0;
	} else {
		/*
		 * Arbitrarily, if two processes started at the same
		 * time, we'll say that the lower pointer value
		 * started first. Note that t2 may have exited by now
		 * so this may not be a valid pointer any longer, but
		 * that's fine - it still serves to distinguish
		 * between two tasks started (effectively) simultaneously.
		 */
		return t1 > t2;
	}
}

/*
 * This function is a callback from heap_insert() and is used to order
 * the heap.
 * In this case we order the heap in descending task start time.
 */
static inline int started_after(void *p1, void *p2)
{
	struct task_struct *t1 = p1;
	struct task_struct *t2 = p2;
	return started_after_time(t1, &t2->start_time, t2);
}

/**
 * cgroup_scan_tasks - iterate though all the tasks in a cgroup
 * @scan: struct cgroup_scanner containing arguments for the scan
 *
 * Arguments include pointers to callback functions test_task() and
 * process_task().
 * Iterate through all the tasks in a cgroup, calling test_task() for each,
 * and if it returns true, call process_task() for it also.
 * The test_task pointer may be NULL, meaning always true (select all tasks).
 * Effectively duplicates cgroup_iter_{start,next,end}()
 * but does not lock css_set_lock for the call to process_task().
 * The struct cgroup_scanner may be embedded in any structure of the caller's
 * creation.
 * It is guaranteed that process_task() will act on every task that
 * is a member of the cgroup for the duration of this call. This
 * function may or may not call process_task() for tasks that exit
 * or move to a different cgroup during the call, or are forked or
 * move into the cgroup during the call.
 *
 * Note that test_task() may be called with locks held, and may in some
 * situations be called multiple times for the same task, so it should
 * be cheap.
 * If the heap pointer in the struct cgroup_scanner is non-NULL, a heap has been
 * pre-allocated and will be used for heap operations (and its "gt" member will
 * be overwritten), else a temporary heap will be used (allocation of which
 * may cause this function to fail).
 */
int cgroup_scan_tasks(struct cgroup_scanner *scan)
{
	int retval, i;
	struct cgroup_iter it;
	struct task_struct *p, *dropped;
	/* Never dereference latest_task, since it's not refcounted */
	struct task_struct *latest_task = NULL;
	struct ptr_heap tmp_heap;
	struct ptr_heap *heap;
	struct timespec latest_time = { 0, 0 };

	if (scan->heap) {
		/* The caller supplied our heap and pre-allocated its memory */
		heap = scan->heap;
		heap->gt = &started_after;
	} else {
		/* We need to allocate our own heap memory */
		heap = &tmp_heap;
		retval = heap_init(heap, PAGE_SIZE, GFP_KERNEL, &started_after);
		if (retval)
			/* cannot allocate the heap */
			return retval;
	}

 again:
	/*
	 * Scan tasks in the cgroup, using the scanner's "test_task" callback
	 * to determine which are of interest, and using the scanner's
	 * "process_task" callback to process any of them that need an update.
	 * Since we don't want to hold any locks during the task updates,
	 * gather tasks to be processed in a heap structure.
	 * The heap is sorted by descending task start time.
	 * If the statically-sized heap fills up, we overflow tasks that
	 * started later, and in future iterations only consider tasks that
	 * started after the latest task in the previous pass. This
	 * guarantees forward progress and that we don't miss any tasks.
	 */
	heap->size = 0;
	cgroup_iter_start(scan->cg, &it);
	while ((p = cgroup_iter_next(scan->cg, &it))) {
		/*
		 * Only affect tasks that qualify per the caller's callback,
		 * if he provided one
		 */
		if (scan->test_task && !scan->test_task(p, scan))
			continue;
		/*
		 * Only process tasks that started after the last task
		 * we processed
		 */
		if (!started_after_time(p, &latest_time, latest_task))
			continue;
		dropped = heap_insert(heap, p);
		if (dropped == NULL) {
			/*
			 * The new task was inserted; the heap wasn't
			 * previously full
			 */
			get_task_struct(p);
		} else if (dropped != p) {
			/*
			 * The new task was inserted, and pushed out a
			 * different task
			 */
			get_task_struct(p);
			put_task_struct(dropped);
		}
		/*
		 * Else the new task was newer than anything already in
		 * the heap and wasn't inserted
		 */
	}
	cgroup_iter_end(scan->cg, &it);

	if (heap->size) {
		for (i = 0; i < heap->size; i++) {
3056
			struct task_struct *q = heap->ptrs[i];
3057
			if (i == 0) {
3058 3059
				latest_time = q->start_time;
				latest_task = q;
3060 3061
			}
			/* Process the task per the caller's callback */
3062 3063
			scan->process_task(q, scan);
			put_task_struct(q);
3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078
		}
		/*
		 * If we had to process any tasks at all, scan again
		 * in case some of them were in the middle of forking
		 * children that didn't get processed.
		 * Not the most efficient way to do it, but it avoids
		 * having to take callback_mutex in the fork path
		 */
		goto again;
	}
	if (heap == &tmp_heap)
		heap_free(&tmp_heap);
	return 0;
}

3079
/*
3080
 * Stuff for reading the 'tasks'/'procs' files.
3081 3082 3083 3084 3085 3086 3087 3088
 *
 * Reading this file can return large amounts of data if a cgroup has
 * *lots* of attached tasks. So it may need several calls to read(),
 * but we cannot guarantee that the information we produce is correct
 * unless we produce it entirely atomically.
 *
 */

3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120
/* which pidlist file are we talking about? */
enum cgroup_filetype {
	CGROUP_FILE_PROCS,
	CGROUP_FILE_TASKS,
};

/*
 * A pidlist is a list of pids that virtually represents the contents of one
 * of the cgroup files ("procs" or "tasks"). We keep a list of such pidlists,
 * a pair (one each for procs, tasks) for each pid namespace that's relevant
 * to the cgroup.
 */
struct cgroup_pidlist {
	/*
	 * used to find which pidlist is wanted. doesn't change as long as
	 * this particular list stays in the list.
	*/
	struct { enum cgroup_filetype type; struct pid_namespace *ns; } key;
	/* array of xids */
	pid_t *list;
	/* how many elements the above list has */
	int length;
	/* how many files are using the current array */
	int use_count;
	/* each of these stored in a list by its cgroup */
	struct list_head links;
	/* pointer to the cgroup we belong to, for list removal purposes */
	struct cgroup *owner;
	/* protects the other fields */
	struct rw_semaphore mutex;
};

3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156
/*
 * The following two functions "fix" the issue where there are more pids
 * than kmalloc will give memory for; in such cases, we use vmalloc/vfree.
 * TODO: replace with a kernel-wide solution to this problem
 */
#define PIDLIST_TOO_LARGE(c) ((c) * sizeof(pid_t) > (PAGE_SIZE * 2))
static void *pidlist_allocate(int count)
{
	if (PIDLIST_TOO_LARGE(count))
		return vmalloc(count * sizeof(pid_t));
	else
		return kmalloc(count * sizeof(pid_t), GFP_KERNEL);
}
static void pidlist_free(void *p)
{
	if (is_vmalloc_addr(p))
		vfree(p);
	else
		kfree(p);
}
static void *pidlist_resize(void *p, int newcount)
{
	void *newlist;
	/* note: if new alloc fails, old p will still be valid either way */
	if (is_vmalloc_addr(p)) {
		newlist = vmalloc(newcount * sizeof(pid_t));
		if (!newlist)
			return NULL;
		memcpy(newlist, p, newcount * sizeof(pid_t));
		vfree(p);
	} else {
		newlist = krealloc(p, newcount * sizeof(pid_t), GFP_KERNEL);
	}
	return newlist;
}

3157
/*
3158 3159 3160 3161
 * pidlist_uniq - given a kmalloc()ed list, strip out all duplicate entries
 * If the new stripped list is sufficiently smaller and there's enough memory
 * to allocate a new buffer, will let go of the unneeded memory. Returns the
 * number of unique elements.
3162
 */
3163 3164 3165
/* is the size difference enough that we should re-allocate the array? */
#define PIDLIST_REALLOC_DIFFERENCE(old, new) ((old) - PAGE_SIZE >= (new))
static int pidlist_uniq(pid_t **p, int length)
3166
{
3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195
	int src, dest = 1;
	pid_t *list = *p;
	pid_t *newlist;

	/*
	 * we presume the 0th element is unique, so i starts at 1. trivial
	 * edge cases first; no work needs to be done for either
	 */
	if (length == 0 || length == 1)
		return length;
	/* src and dest walk down the list; dest counts unique elements */
	for (src = 1; src < length; src++) {
		/* find next unique element */
		while (list[src] == list[src-1]) {
			src++;
			if (src == length)
				goto after;
		}
		/* dest always points to where the next unique element goes */
		list[dest] = list[src];
		dest++;
	}
after:
	/*
	 * if the length difference is large enough, we want to allocate a
	 * smaller buffer to save memory. if this fails due to out of memory,
	 * we'll just stay with what we've got.
	 */
	if (PIDLIST_REALLOC_DIFFERENCE(length, dest)) {
3196
		newlist = pidlist_resize(list, dest);
3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207
		if (newlist)
			*p = newlist;
	}
	return dest;
}

static int cmppid(const void *a, const void *b)
{
	return *(pid_t *)a - *(pid_t *)b;
}

3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218
/*
 * find the appropriate pidlist for our purpose (given procs vs tasks)
 * returns with the lock on that pidlist already held, and takes care
 * of the use count, or returns NULL with no locks held if we're out of
 * memory.
 */
static struct cgroup_pidlist *cgroup_pidlist_find(struct cgroup *cgrp,
						  enum cgroup_filetype type)
{
	struct cgroup_pidlist *l;
	/* don't need task_nsproxy() if we're looking at ourself */
3219 3220
	struct pid_namespace *ns = current->nsproxy->pid_ns;

3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244
	/*
	 * We can't drop the pidlist_mutex before taking the l->mutex in case
	 * the last ref-holder is trying to remove l from the list at the same
	 * time. Holding the pidlist_mutex precludes somebody taking whichever
	 * list we find out from under us - compare release_pid_array().
	 */
	mutex_lock(&cgrp->pidlist_mutex);
	list_for_each_entry(l, &cgrp->pidlists, links) {
		if (l->key.type == type && l->key.ns == ns) {
			/* make sure l doesn't vanish out from under us */
			down_write(&l->mutex);
			mutex_unlock(&cgrp->pidlist_mutex);
			return l;
		}
	}
	/* entry not found; create a new one */
	l = kmalloc(sizeof(struct cgroup_pidlist), GFP_KERNEL);
	if (!l) {
		mutex_unlock(&cgrp->pidlist_mutex);
		return l;
	}
	init_rwsem(&l->mutex);
	down_write(&l->mutex);
	l->key.type = type;
3245
	l->key.ns = get_pid_ns(ns);
3246 3247 3248 3249 3250 3251 3252 3253
	l->use_count = 0; /* don't increment here */
	l->list = NULL;
	l->owner = cgrp;
	list_add(&l->links, &cgrp->pidlists);
	mutex_unlock(&cgrp->pidlist_mutex);
	return l;
}

3254 3255 3256
/*
 * Load a cgroup's pidarray with either procs' tgids or tasks' pids
 */
3257 3258
static int pidlist_array_load(struct cgroup *cgrp, enum cgroup_filetype type,
			      struct cgroup_pidlist **lp)
3259 3260 3261 3262
{
	pid_t *array;
	int length;
	int pid, n = 0; /* used for populating the array */
3263 3264
	struct cgroup_iter it;
	struct task_struct *tsk;
3265 3266 3267 3268 3269 3270 3271 3272 3273
	struct cgroup_pidlist *l;

	/*
	 * If cgroup gets more users after we read count, we won't have
	 * enough space - tough.  This race is indistinguishable to the
	 * caller from the case that the additional cgroup users didn't
	 * show up until sometime later on.
	 */
	length = cgroup_task_count(cgrp);
3274
	array = pidlist_allocate(length);
3275 3276 3277
	if (!array)
		return -ENOMEM;
	/* now, populate the array */
3278 3279
	cgroup_iter_start(cgrp, &it);
	while ((tsk = cgroup_iter_next(cgrp, &it))) {
3280
		if (unlikely(n == length))
3281
			break;
3282
		/* get tgid or pid for procs or tasks file respectively */
3283 3284 3285 3286
		if (type == CGROUP_FILE_PROCS)
			pid = task_tgid_vnr(tsk);
		else
			pid = task_pid_vnr(tsk);
3287 3288
		if (pid > 0) /* make sure to only use valid results */
			array[n++] = pid;
3289
	}
3290
	cgroup_iter_end(cgrp, &it);
3291 3292 3293
	length = n;
	/* now sort & (if procs) strip out duplicates */
	sort(array, length, sizeof(pid_t), cmppid, NULL);
3294
	if (type == CGROUP_FILE_PROCS)
3295
		length = pidlist_uniq(&array, length);
3296 3297
	l = cgroup_pidlist_find(cgrp, type);
	if (!l) {
3298
		pidlist_free(array);
3299
		return -ENOMEM;
3300
	}
3301
	/* store array, freeing old if necessary - lock already held */
3302
	pidlist_free(l->list);
3303 3304 3305 3306
	l->list = array;
	l->length = length;
	l->use_count++;
	up_write(&l->mutex);
3307
	*lp = l;
3308
	return 0;
3309 3310
}

B
Balbir Singh 已提交
3311
/**
L
Li Zefan 已提交
3312
 * cgroupstats_build - build and fill cgroupstats
B
Balbir Singh 已提交
3313 3314 3315
 * @stats: cgroupstats to fill information into
 * @dentry: A dentry entry belonging to the cgroup for which stats have
 * been requested.
L
Li Zefan 已提交
3316 3317 3318
 *
 * Build and fill cgroupstats so that taskstats can export it to user
 * space.
B
Balbir Singh 已提交
3319 3320 3321 3322
 */
int cgroupstats_build(struct cgroupstats *stats, struct dentry *dentry)
{
	int ret = -EINVAL;
3323
	struct cgroup *cgrp;
B
Balbir Singh 已提交
3324 3325
	struct cgroup_iter it;
	struct task_struct *tsk;
3326

B
Balbir Singh 已提交
3327
	/*
3328 3329
	 * Validate dentry by checking the superblock operations,
	 * and make sure it's a directory.
B
Balbir Singh 已提交
3330
	 */
3331 3332
	if (dentry->d_sb->s_op != &cgroup_ops ||
	    !S_ISDIR(dentry->d_inode->i_mode))
B
Balbir Singh 已提交
3333 3334 3335
		 goto err;

	ret = 0;
3336
	cgrp = dentry->d_fsdata;
B
Balbir Singh 已提交
3337

3338 3339
	cgroup_iter_start(cgrp, &it);
	while ((tsk = cgroup_iter_next(cgrp, &it))) {
B
Balbir Singh 已提交
3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358
		switch (tsk->state) {
		case TASK_RUNNING:
			stats->nr_running++;
			break;
		case TASK_INTERRUPTIBLE:
			stats->nr_sleeping++;
			break;
		case TASK_UNINTERRUPTIBLE:
			stats->nr_uninterruptible++;
			break;
		case TASK_STOPPED:
			stats->nr_stopped++;
			break;
		default:
			if (delayacct_is_task_waiting_on_io(tsk))
				stats->nr_io_wait++;
			break;
		}
	}
3359
	cgroup_iter_end(cgrp, &it);
B
Balbir Singh 已提交
3360 3361 3362 3363 3364

err:
	return ret;
}

3365

3366
/*
3367
 * seq_file methods for the tasks/procs files. The seq_file position is the
3368
 * next pid to display; the seq_file iterator is a pointer to the pid
3369
 * in the cgroup->l->list array.
3370
 */
3371

3372
static void *cgroup_pidlist_start(struct seq_file *s, loff_t *pos)
3373
{
3374 3375 3376 3377 3378 3379
	/*
	 * Initially we receive a position value that corresponds to
	 * one more than the last pid shown (or 0 on the first call or
	 * after a seek to the start). Use a binary-search to find the
	 * next pid to display, if any
	 */
3380
	struct cgroup_pidlist *l = s->private;
3381 3382 3383
	int index = 0, pid = *pos;
	int *iter;

3384
	down_read(&l->mutex);
3385
	if (pid) {
3386
		int end = l->length;
S
Stephen Rothwell 已提交
3387

3388 3389
		while (index < end) {
			int mid = (index + end) / 2;
3390
			if (l->list[mid] == pid) {
3391 3392
				index = mid;
				break;
3393
			} else if (l->list[mid] <= pid)
3394 3395 3396 3397 3398 3399
				index = mid + 1;
			else
				end = mid;
		}
	}
	/* If we're off the end of the array, we're done */
3400
	if (index >= l->length)
3401 3402
		return NULL;
	/* Update the abstract position to be the actual pid that we found */
3403
	iter = l->list + index;
3404 3405 3406 3407
	*pos = *iter;
	return iter;
}

3408
static void cgroup_pidlist_stop(struct seq_file *s, void *v)
3409
{
3410 3411
	struct cgroup_pidlist *l = s->private;
	up_read(&l->mutex);
3412 3413
}

3414
static void *cgroup_pidlist_next(struct seq_file *s, void *v, loff_t *pos)
3415
{
3416 3417 3418
	struct cgroup_pidlist *l = s->private;
	pid_t *p = v;
	pid_t *end = l->list + l->length;
3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431
	/*
	 * Advance to the next pid in the array. If this goes off the
	 * end, we're done
	 */
	p++;
	if (p >= end) {
		return NULL;
	} else {
		*pos = *p;
		return p;
	}
}

3432
static int cgroup_pidlist_show(struct seq_file *s, void *v)
3433 3434 3435
{
	return seq_printf(s, "%d\n", *(int *)v);
}
3436

3437 3438 3439 3440 3441 3442 3443 3444 3445
/*
 * seq_operations functions for iterating on pidlists through seq_file -
 * independent of whether it's tasks or procs
 */
static const struct seq_operations cgroup_pidlist_seq_operations = {
	.start = cgroup_pidlist_start,
	.stop = cgroup_pidlist_stop,
	.next = cgroup_pidlist_next,
	.show = cgroup_pidlist_show,
3446 3447
};

3448
static void cgroup_release_pid_array(struct cgroup_pidlist *l)
3449
{
3450 3451 3452 3453 3454 3455 3456
	/*
	 * the case where we're the last user of this particular pidlist will
	 * have us remove it from the cgroup's list, which entails taking the
	 * mutex. since in pidlist_find the pidlist->lock depends on cgroup->
	 * pidlist_mutex, we have to take pidlist_mutex first.
	 */
	mutex_lock(&l->owner->pidlist_mutex);
3457 3458 3459
	down_write(&l->mutex);
	BUG_ON(!l->use_count);
	if (!--l->use_count) {
3460 3461 3462
		/* we're the last user if refcount is 0; remove and free */
		list_del(&l->links);
		mutex_unlock(&l->owner->pidlist_mutex);
3463
		pidlist_free(l->list);
3464 3465 3466 3467
		put_pid_ns(l->key.ns);
		up_write(&l->mutex);
		kfree(l);
		return;
3468
	}
3469
	mutex_unlock(&l->owner->pidlist_mutex);
3470
	up_write(&l->mutex);
3471 3472
}

3473
static int cgroup_pidlist_release(struct inode *inode, struct file *file)
3474
{
3475
	struct cgroup_pidlist *l;
3476 3477
	if (!(file->f_mode & FMODE_READ))
		return 0;
3478 3479 3480 3481 3482 3483
	/*
	 * the seq_file will only be initialized if the file was opened for
	 * reading; hence we check if it's not null only in that case.
	 */
	l = ((struct seq_file *)file->private_data)->private;
	cgroup_release_pid_array(l);
3484 3485 3486
	return seq_release(inode, file);
}

3487
static const struct file_operations cgroup_pidlist_operations = {
3488 3489 3490
	.read = seq_read,
	.llseek = seq_lseek,
	.write = cgroup_file_write,
3491
	.release = cgroup_pidlist_release,
3492 3493
};

3494
/*
3495 3496 3497
 * The following functions handle opens on a file that displays a pidlist
 * (tasks or procs). Prepare an array of the process/thread IDs of whoever's
 * in the cgroup.
3498
 */
3499
/* helper function for the two below it */
3500
static int cgroup_pidlist_open(struct file *file, enum cgroup_filetype type)
3501
{
3502
	struct cgroup *cgrp = __d_cgrp(file->f_dentry->d_parent);
3503
	struct cgroup_pidlist *l;
3504
	int retval;
3505

3506
	/* Nothing to do for write-only files */
3507 3508 3509
	if (!(file->f_mode & FMODE_READ))
		return 0;

3510
	/* have the array populated */
3511
	retval = pidlist_array_load(cgrp, type, &l);
3512 3513 3514 3515
	if (retval)
		return retval;
	/* configure file information */
	file->f_op = &cgroup_pidlist_operations;
3516

3517
	retval = seq_open(file, &cgroup_pidlist_seq_operations);
3518
	if (retval) {
3519
		cgroup_release_pid_array(l);
3520
		return retval;
3521
	}
3522
	((struct seq_file *)file->private_data)->private = l;
3523 3524
	return 0;
}
3525 3526
static int cgroup_tasks_open(struct inode *unused, struct file *file)
{
3527
	return cgroup_pidlist_open(file, CGROUP_FILE_TASKS);
3528 3529 3530
}
static int cgroup_procs_open(struct inode *unused, struct file *file)
{
3531
	return cgroup_pidlist_open(file, CGROUP_FILE_PROCS);
3532
}
3533

3534
static u64 cgroup_read_notify_on_release(struct cgroup *cgrp,
3535 3536
					    struct cftype *cft)
{
3537
	return notify_on_release(cgrp);
3538 3539
}

3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551
static int cgroup_write_notify_on_release(struct cgroup *cgrp,
					  struct cftype *cft,
					  u64 val)
{
	clear_bit(CGRP_RELEASABLE, &cgrp->flags);
	if (val)
		set_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
	else
		clear_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
	return 0;
}

3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566
/*
 * Unregister event and free resources.
 *
 * Gets called from workqueue.
 */
static void cgroup_event_remove(struct work_struct *work)
{
	struct cgroup_event *event = container_of(work, struct cgroup_event,
			remove);
	struct cgroup *cgrp = event->cgrp;

	event->cft->unregister_event(cgrp, event->cft, event->eventfd);

	eventfd_ctx_put(event->eventfd);
	kfree(event);
3567
	dput(cgrp->dentry);
3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583
}

/*
 * Gets called on POLLHUP on eventfd when user closes it.
 *
 * Called with wqh->lock held and interrupts disabled.
 */
static int cgroup_event_wake(wait_queue_t *wait, unsigned mode,
		int sync, void *key)
{
	struct cgroup_event *event = container_of(wait,
			struct cgroup_event, wait);
	struct cgroup *cgrp = event->cgrp;
	unsigned long flags = (unsigned long)key;

	if (flags & POLLHUP) {
C
Changli Gao 已提交
3584
		__remove_wait_queue(event->wqh, &event->wait);
3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661
		spin_lock(&cgrp->event_list_lock);
		list_del(&event->list);
		spin_unlock(&cgrp->event_list_lock);
		/*
		 * We are in atomic context, but cgroup_event_remove() may
		 * sleep, so we have to call it in workqueue.
		 */
		schedule_work(&event->remove);
	}

	return 0;
}

static void cgroup_event_ptable_queue_proc(struct file *file,
		wait_queue_head_t *wqh, poll_table *pt)
{
	struct cgroup_event *event = container_of(pt,
			struct cgroup_event, pt);

	event->wqh = wqh;
	add_wait_queue(wqh, &event->wait);
}

/*
 * Parse input and register new cgroup event handler.
 *
 * Input must be in format '<event_fd> <control_fd> <args>'.
 * Interpretation of args is defined by control file implementation.
 */
static int cgroup_write_event_control(struct cgroup *cgrp, struct cftype *cft,
				      const char *buffer)
{
	struct cgroup_event *event = NULL;
	unsigned int efd, cfd;
	struct file *efile = NULL;
	struct file *cfile = NULL;
	char *endp;
	int ret;

	efd = simple_strtoul(buffer, &endp, 10);
	if (*endp != ' ')
		return -EINVAL;
	buffer = endp + 1;

	cfd = simple_strtoul(buffer, &endp, 10);
	if ((*endp != ' ') && (*endp != '\0'))
		return -EINVAL;
	buffer = endp + 1;

	event = kzalloc(sizeof(*event), GFP_KERNEL);
	if (!event)
		return -ENOMEM;
	event->cgrp = cgrp;
	INIT_LIST_HEAD(&event->list);
	init_poll_funcptr(&event->pt, cgroup_event_ptable_queue_proc);
	init_waitqueue_func_entry(&event->wait, cgroup_event_wake);
	INIT_WORK(&event->remove, cgroup_event_remove);

	efile = eventfd_fget(efd);
	if (IS_ERR(efile)) {
		ret = PTR_ERR(efile);
		goto fail;
	}

	event->eventfd = eventfd_ctx_fileget(efile);
	if (IS_ERR(event->eventfd)) {
		ret = PTR_ERR(event->eventfd);
		goto fail;
	}

	cfile = fget(cfd);
	if (!cfile) {
		ret = -EBADF;
		goto fail;
	}

	/* the process need read permission on control file */
A
Al Viro 已提交
3662 3663
	/* AV: shouldn't we check that it's been opened for read instead? */
	ret = inode_permission(cfile->f_path.dentry->d_inode, MAY_READ);
3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688
	if (ret < 0)
		goto fail;

	event->cft = __file_cft(cfile);
	if (IS_ERR(event->cft)) {
		ret = PTR_ERR(event->cft);
		goto fail;
	}

	if (!event->cft->register_event || !event->cft->unregister_event) {
		ret = -EINVAL;
		goto fail;
	}

	ret = event->cft->register_event(cgrp, event->cft,
			event->eventfd, buffer);
	if (ret)
		goto fail;

	if (efile->f_op->poll(efile, &event->pt) & POLLHUP) {
		event->cft->unregister_event(cgrp, event->cft, event->eventfd);
		ret = 0;
		goto fail;
	}

3689 3690 3691 3692 3693 3694 3695
	/*
	 * Events should be removed after rmdir of cgroup directory, but before
	 * destroying subsystem state objects. Let's take reference to cgroup
	 * directory dentry to do that.
	 */
	dget(cgrp->dentry);

3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719
	spin_lock(&cgrp->event_list_lock);
	list_add(&event->list, &cgrp->event_list);
	spin_unlock(&cgrp->event_list_lock);

	fput(cfile);
	fput(efile);

	return 0;

fail:
	if (cfile)
		fput(cfile);

	if (event && event->eventfd && !IS_ERR(event->eventfd))
		eventfd_ctx_put(event->eventfd);

	if (!IS_ERR_OR_NULL(efile))
		fput(efile);

	kfree(event);

	return ret;
}

3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736
static u64 cgroup_clone_children_read(struct cgroup *cgrp,
				    struct cftype *cft)
{
	return clone_children(cgrp);
}

static int cgroup_clone_children_write(struct cgroup *cgrp,
				     struct cftype *cft,
				     u64 val)
{
	if (val)
		set_bit(CGRP_CLONE_CHILDREN, &cgrp->flags);
	else
		clear_bit(CGRP_CLONE_CHILDREN, &cgrp->flags);
	return 0;
}

3737 3738 3739
/*
 * for the common functions, 'private' gives the type of file
 */
3740 3741
/* for hysterical raisins, we can't put this on the older files */
#define CGROUP_FILE_GENERIC_PREFIX "cgroup."
3742 3743 3744 3745
static struct cftype files[] = {
	{
		.name = "tasks",
		.open = cgroup_tasks_open,
3746
		.write_u64 = cgroup_tasks_write,
3747
		.release = cgroup_pidlist_release,
L
Li Zefan 已提交
3748
		.mode = S_IRUGO | S_IWUSR,
3749
	},
3750 3751 3752
	{
		.name = CGROUP_FILE_GENERIC_PREFIX "procs",
		.open = cgroup_procs_open,
B
Ben Blum 已提交
3753
		.write_u64 = cgroup_procs_write,
3754
		.release = cgroup_pidlist_release,
B
Ben Blum 已提交
3755
		.mode = S_IRUGO | S_IWUSR,
3756
	},
3757 3758
	{
		.name = "notify_on_release",
3759
		.read_u64 = cgroup_read_notify_on_release,
3760
		.write_u64 = cgroup_write_notify_on_release,
3761
	},
3762 3763 3764 3765 3766
	{
		.name = CGROUP_FILE_GENERIC_PREFIX "event_control",
		.write_string = cgroup_write_event_control,
		.mode = S_IWUGO,
	},
3767 3768 3769 3770 3771
	{
		.name = "cgroup.clone_children",
		.read_u64 = cgroup_clone_children_read,
		.write_u64 = cgroup_clone_children_write,
	},
3772 3773 3774 3775 3776 3777 3778
	{
		.name = "release_agent",
		.flags = CFTYPE_ONLY_ON_ROOT,
		.read_seq_string = cgroup_release_agent_show,
		.write_string = cgroup_release_agent_write,
		.max_write_len = PATH_MAX,
	},
T
Tejun Heo 已提交
3779
	{ }	/* terminate */
3780 3781
};

3782
static int cgroup_populate_dir(struct cgroup *cgrp)
3783 3784 3785 3786
{
	int err;
	struct cgroup_subsys *ss;

T
Tejun Heo 已提交
3787
	err = cgroup_add_files(cgrp, NULL, files);
3788 3789 3790
	if (err < 0)
		return err;

3791
	/* process cftsets of each subsystem */
3792
	for_each_subsys(cgrp->root, ss) {
3793 3794
		struct cftype_set *set;

3795
		if (ss->populate && (err = ss->populate(ss, cgrp)) < 0)
3796
			return err;
3797

T
Tejun Heo 已提交
3798 3799
		list_for_each_entry(set, &ss->cftsets, node)
			cgroup_add_files(cgrp, ss, set->cfts);
3800
	}
3801

K
KAMEZAWA Hiroyuki 已提交
3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812
	/* This cgroup is ready now */
	for_each_subsys(cgrp->root, ss) {
		struct cgroup_subsys_state *css = cgrp->subsys[ss->subsys_id];
		/*
		 * Update id->css pointer and make this css visible from
		 * CSS ID functions. This pointer will be dereferened
		 * from RCU-read-side without locks.
		 */
		if (css->id)
			rcu_assign_pointer(css->id->css, css);
	}
3813 3814 3815 3816 3817 3818

	return 0;
}

static void init_cgroup_css(struct cgroup_subsys_state *css,
			       struct cgroup_subsys *ss,
3819
			       struct cgroup *cgrp)
3820
{
3821
	css->cgroup = cgrp;
P
Paul Menage 已提交
3822
	atomic_set(&css->refcnt, 1);
3823
	css->flags = 0;
K
KAMEZAWA Hiroyuki 已提交
3824
	css->id = NULL;
3825
	if (cgrp == dummytop)
3826
		set_bit(CSS_ROOT, &css->flags);
3827 3828
	BUG_ON(cgrp->subsys[ss->subsys_id]);
	cgrp->subsys[ss->subsys_id] = css;
3829 3830
}

3831 3832 3833 3834 3835
static void cgroup_lock_hierarchy(struct cgroupfs_root *root)
{
	/* We need to take each hierarchy_mutex in a consistent order */
	int i;

B
Ben Blum 已提交
3836 3837 3838 3839
	/*
	 * No worry about a race with rebind_subsystems that might mess up the
	 * locking order, since both parties are under cgroup_mutex.
	 */
3840 3841
	for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
		struct cgroup_subsys *ss = subsys[i];
B
Ben Blum 已提交
3842 3843
		if (ss == NULL)
			continue;
3844
		if (ss->root == root)
3845
			mutex_lock(&ss->hierarchy_mutex);
3846 3847 3848 3849 3850 3851 3852 3853 3854
	}
}

static void cgroup_unlock_hierarchy(struct cgroupfs_root *root)
{
	int i;

	for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
		struct cgroup_subsys *ss = subsys[i];
B
Ben Blum 已提交
3855 3856
		if (ss == NULL)
			continue;
3857 3858 3859 3860 3861
		if (ss->root == root)
			mutex_unlock(&ss->hierarchy_mutex);
	}
}

3862
/*
L
Li Zefan 已提交
3863 3864 3865 3866
 * cgroup_create - create a cgroup
 * @parent: cgroup that will be parent of the new cgroup
 * @dentry: dentry of the new cgroup
 * @mode: mode to set on new inode
3867
 *
L
Li Zefan 已提交
3868
 * Must be called with the mutex on the parent inode held
3869 3870
 */
static long cgroup_create(struct cgroup *parent, struct dentry *dentry,
A
Al Viro 已提交
3871
			     umode_t mode)
3872
{
3873
	struct cgroup *cgrp;
3874 3875 3876 3877 3878
	struct cgroupfs_root *root = parent->root;
	int err = 0;
	struct cgroup_subsys *ss;
	struct super_block *sb = root->sb;

3879 3880
	cgrp = kzalloc(sizeof(*cgrp), GFP_KERNEL);
	if (!cgrp)
3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891
		return -ENOMEM;

	/* Grab a reference on the superblock so the hierarchy doesn't
	 * get deleted on unmount if there are child cgroups.  This
	 * can be done outside cgroup_mutex, since the sb can't
	 * disappear while someone has an open control file on the
	 * fs */
	atomic_inc(&sb->s_active);

	mutex_lock(&cgroup_mutex);

3892
	init_cgroup_housekeeping(cgrp);
3893

3894 3895 3896
	cgrp->parent = parent;
	cgrp->root = parent->root;
	cgrp->top_cgroup = parent->top_cgroup;
3897

3898 3899 3900
	if (notify_on_release(parent))
		set_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);

3901 3902 3903
	if (clone_children(parent))
		set_bit(CGRP_CLONE_CHILDREN, &cgrp->flags);

3904
	for_each_subsys(root, ss) {
3905
		struct cgroup_subsys_state *css = ss->create(cgrp);
3906

3907 3908 3909 3910
		if (IS_ERR(css)) {
			err = PTR_ERR(css);
			goto err_destroy;
		}
3911
		init_cgroup_css(css, ss, cgrp);
3912 3913 3914
		if (ss->use_id) {
			err = alloc_css_id(ss, parent, cgrp);
			if (err)
K
KAMEZAWA Hiroyuki 已提交
3915
				goto err_destroy;
3916
		}
K
KAMEZAWA Hiroyuki 已提交
3917
		/* At error, ->destroy() callback has to free assigned ID. */
3918
		if (clone_children(parent) && ss->post_clone)
3919
			ss->post_clone(cgrp);
3920 3921
	}

3922
	cgroup_lock_hierarchy(root);
3923
	list_add(&cgrp->sibling, &cgrp->parent->children);
3924
	cgroup_unlock_hierarchy(root);
3925 3926
	root->number_of_cgroups++;

3927
	err = cgroup_create_dir(cgrp, dentry, mode);
3928 3929 3930 3931
	if (err < 0)
		goto err_remove;

	/* The cgroup directory was pre-locked for us */
3932
	BUG_ON(!mutex_is_locked(&cgrp->dentry->d_inode->i_mutex));
3933

3934 3935
	list_add_tail(&cgrp->allcg_node, &root->allcg_list);

3936
	err = cgroup_populate_dir(cgrp);
3937 3938 3939
	/* If err < 0, we have a half-filled directory - oh well ;) */

	mutex_unlock(&cgroup_mutex);
3940
	mutex_unlock(&cgrp->dentry->d_inode->i_mutex);
3941 3942 3943 3944 3945

	return 0;

 err_remove:

3946
	cgroup_lock_hierarchy(root);
3947
	list_del(&cgrp->sibling);
3948
	cgroup_unlock_hierarchy(root);
3949 3950 3951 3952 3953
	root->number_of_cgroups--;

 err_destroy:

	for_each_subsys(root, ss) {
3954
		if (cgrp->subsys[ss->subsys_id])
3955
			ss->destroy(cgrp);
3956 3957 3958 3959 3960 3961 3962
	}

	mutex_unlock(&cgroup_mutex);

	/* Release the reference count that we took on the superblock */
	deactivate_super(sb);

3963
	kfree(cgrp);
3964 3965 3966
	return err;
}

3967
static int cgroup_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
3968 3969 3970 3971 3972 3973 3974
{
	struct cgroup *c_parent = dentry->d_parent->d_fsdata;

	/* the vfs holds inode->i_mutex already */
	return cgroup_create(c_parent, dentry, mode | S_IFDIR);
}

3975
static int cgroup_has_css_refs(struct cgroup *cgrp)
3976 3977 3978
{
	/* Check the reference count on each subsystem. Since we
	 * already established that there are no tasks in the
P
Paul Menage 已提交
3979
	 * cgroup, if the css refcount is also 1, then there should
3980 3981 3982 3983 3984 3985 3986
	 * be no outstanding references, so the subsystem is safe to
	 * destroy. We scan across all subsystems rather than using
	 * the per-hierarchy linked list of mounted subsystems since
	 * we can be called via check_for_release() with no
	 * synchronization other than RCU, and the subsystem linked
	 * list isn't RCU-safe */
	int i;
B
Ben Blum 已提交
3987 3988 3989 3990 3991
	/*
	 * We won't need to lock the subsys array, because the subsystems
	 * we're concerned about aren't going anywhere since our cgroup root
	 * has a reference on them.
	 */
3992 3993 3994
	for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
		struct cgroup_subsys *ss = subsys[i];
		struct cgroup_subsys_state *css;
B
Ben Blum 已提交
3995 3996
		/* Skip subsystems not present or not in this hierarchy */
		if (ss == NULL || ss->root != cgrp->root)
3997
			continue;
3998
		css = cgrp->subsys[ss->subsys_id];
3999 4000 4001 4002 4003 4004
		/* When called from check_for_release() it's possible
		 * that by this point the cgroup has been removed
		 * and the css deleted. But a false-positive doesn't
		 * matter, since it can only happen if the cgroup
		 * has been deleted and hence no longer needs the
		 * release agent to be called anyway. */
P
Paul Menage 已提交
4005
		if (css && (atomic_read(&css->refcnt) > 1))
4006 4007 4008 4009 4010
			return 1;
	}
	return 0;
}

P
Paul Menage 已提交
4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025
/*
 * Atomically mark all (or else none) of the cgroup's CSS objects as
 * CSS_REMOVED. Return true on success, or false if the cgroup has
 * busy subsystems. Call with cgroup_mutex held
 */

static int cgroup_clear_css_refs(struct cgroup *cgrp)
{
	struct cgroup_subsys *ss;
	unsigned long flags;
	bool failed = false;
	local_irq_save(flags);
	for_each_subsys(cgrp->root, ss) {
		struct cgroup_subsys_state *css = cgrp->subsys[ss->subsys_id];
		int refcnt;
4026
		while (1) {
P
Paul Menage 已提交
4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039
			/* We can only remove a CSS with a refcnt==1 */
			refcnt = atomic_read(&css->refcnt);
			if (refcnt > 1) {
				failed = true;
				goto done;
			}
			BUG_ON(!refcnt);
			/*
			 * Drop the refcnt to 0 while we check other
			 * subsystems. This will cause any racing
			 * css_tryget() to spin until we set the
			 * CSS_REMOVED bits or abort
			 */
4040 4041 4042 4043
			if (atomic_cmpxchg(&css->refcnt, refcnt, 0) == refcnt)
				break;
			cpu_relax();
		}
P
Paul Menage 已提交
4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063
	}
 done:
	for_each_subsys(cgrp->root, ss) {
		struct cgroup_subsys_state *css = cgrp->subsys[ss->subsys_id];
		if (failed) {
			/*
			 * Restore old refcnt if we previously managed
			 * to clear it from 1 to 0
			 */
			if (!atomic_read(&css->refcnt))
				atomic_set(&css->refcnt, 1);
		} else {
			/* Commit the fact that the CSS is removed */
			set_bit(CSS_REMOVED, &css->flags);
		}
	}
	local_irq_restore(flags);
	return !failed;
}

4064 4065
static int cgroup_rmdir(struct inode *unused_dir, struct dentry *dentry)
{
4066
	struct cgroup *cgrp = dentry->d_fsdata;
4067 4068
	struct dentry *d;
	struct cgroup *parent;
4069
	DEFINE_WAIT(wait);
4070
	struct cgroup_event *event, *tmp;
4071
	int ret;
4072 4073

	/* the vfs holds both inode->i_mutex already */
4074
again:
4075
	mutex_lock(&cgroup_mutex);
4076
	if (atomic_read(&cgrp->count) != 0) {
4077 4078 4079
		mutex_unlock(&cgroup_mutex);
		return -EBUSY;
	}
4080
	if (!list_empty(&cgrp->children)) {
4081 4082 4083
		mutex_unlock(&cgroup_mutex);
		return -EBUSY;
	}
4084
	mutex_unlock(&cgroup_mutex);
L
Li Zefan 已提交
4085

4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096
	/*
	 * In general, subsystem has no css->refcnt after pre_destroy(). But
	 * in racy cases, subsystem may have to get css->refcnt after
	 * pre_destroy() and it makes rmdir return with -EBUSY. This sometimes
	 * make rmdir return -EBUSY too often. To avoid that, we use waitqueue
	 * for cgroup's rmdir. CGRP_WAIT_ON_RMDIR is for synchronizing rmdir
	 * and subsystem's reference count handling. Please see css_get/put
	 * and css_tryget() and cgroup_wakeup_rmdir_waiter() implementation.
	 */
	set_bit(CGRP_WAIT_ON_RMDIR, &cgrp->flags);

4097
	/*
L
Li Zefan 已提交
4098 4099
	 * Call pre_destroy handlers of subsys. Notify subsystems
	 * that rmdir() request comes.
4100
	 */
4101
	ret = cgroup_call_pre_destroy(cgrp);
4102 4103
	if (ret) {
		clear_bit(CGRP_WAIT_ON_RMDIR, &cgrp->flags);
4104
		return ret;
4105
	}
4106

4107 4108
	mutex_lock(&cgroup_mutex);
	parent = cgrp->parent;
4109
	if (atomic_read(&cgrp->count) || !list_empty(&cgrp->children)) {
4110
		clear_bit(CGRP_WAIT_ON_RMDIR, &cgrp->flags);
4111 4112 4113
		mutex_unlock(&cgroup_mutex);
		return -EBUSY;
	}
4114 4115 4116
	prepare_to_wait(&cgroup_rmdir_waitq, &wait, TASK_INTERRUPTIBLE);
	if (!cgroup_clear_css_refs(cgrp)) {
		mutex_unlock(&cgroup_mutex);
4117 4118 4119 4120 4121 4122
		/*
		 * Because someone may call cgroup_wakeup_rmdir_waiter() before
		 * prepare_to_wait(), we need to check this flag.
		 */
		if (test_bit(CGRP_WAIT_ON_RMDIR, &cgrp->flags))
			schedule();
4123 4124 4125 4126 4127 4128 4129 4130 4131
		finish_wait(&cgroup_rmdir_waitq, &wait);
		clear_bit(CGRP_WAIT_ON_RMDIR, &cgrp->flags);
		if (signal_pending(current))
			return -EINTR;
		goto again;
	}
	/* NO css_tryget() can success after here. */
	finish_wait(&cgroup_rmdir_waitq, &wait);
	clear_bit(CGRP_WAIT_ON_RMDIR, &cgrp->flags);
4132

4133
	raw_spin_lock(&release_list_lock);
4134 4135
	set_bit(CGRP_REMOVED, &cgrp->flags);
	if (!list_empty(&cgrp->release_list))
4136
		list_del_init(&cgrp->release_list);
4137
	raw_spin_unlock(&release_list_lock);
4138 4139 4140

	cgroup_lock_hierarchy(cgrp->root);
	/* delete this cgroup from parent->children */
4141
	list_del_init(&cgrp->sibling);
4142 4143
	cgroup_unlock_hierarchy(cgrp->root);

4144 4145
	list_del_init(&cgrp->allcg_node);

4146
	d = dget(cgrp->dentry);
4147 4148 4149 4150

	cgroup_d_remove_dir(d);
	dput(d);

4151
	set_bit(CGRP_RELEASABLE, &parent->flags);
4152 4153
	check_for_release(parent);

4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167
	/*
	 * Unregister events and notify userspace.
	 * Notify userspace about cgroup removing only after rmdir of cgroup
	 * directory to avoid race between userspace and kernelspace
	 */
	spin_lock(&cgrp->event_list_lock);
	list_for_each_entry_safe(event, tmp, &cgrp->event_list, list) {
		list_del(&event->list);
		remove_wait_queue(event->wqh, &event->wait);
		eventfd_signal(event->eventfd, 1);
		schedule_work(&event->remove);
	}
	spin_unlock(&cgrp->event_list_lock);

4168 4169 4170 4171
	mutex_unlock(&cgroup_mutex);
	return 0;
}

4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185
static void __init_or_module cgroup_init_cftsets(struct cgroup_subsys *ss)
{
	INIT_LIST_HEAD(&ss->cftsets);

	/*
	 * base_cftset is embedded in subsys itself, no need to worry about
	 * deregistration.
	 */
	if (ss->base_cftypes) {
		ss->base_cftset.cfts = ss->base_cftypes;
		list_add_tail(&ss->base_cftset.node, &ss->cftsets);
	}
}

4186
static void __init cgroup_init_subsys(struct cgroup_subsys *ss)
4187 4188
{
	struct cgroup_subsys_state *css;
D
Diego Calleja 已提交
4189 4190

	printk(KERN_INFO "Initializing cgroup subsys %s\n", ss->name);
4191

4192 4193 4194
	/* init base cftset */
	cgroup_init_cftsets(ss);

4195
	/* Create the top cgroup state for this subsystem */
4196
	list_add(&ss->sibling, &rootnode.subsys_list);
4197
	ss->root = &rootnode;
4198
	css = ss->create(dummytop);
4199 4200 4201 4202
	/* We don't handle early failures gracefully */
	BUG_ON(IS_ERR(css));
	init_cgroup_css(css, ss, dummytop);

L
Li Zefan 已提交
4203
	/* Update the init_css_set to contain a subsys
4204
	 * pointer to this state - since the subsystem is
L
Li Zefan 已提交
4205 4206 4207
	 * newly registered, all tasks and hence the
	 * init_css_set is in the subsystem's top cgroup. */
	init_css_set.subsys[ss->subsys_id] = dummytop->subsys[ss->subsys_id];
4208 4209 4210

	need_forkexit_callback |= ss->fork || ss->exit;

L
Li Zefan 已提交
4211 4212 4213 4214 4215
	/* At system boot, before all subsystems have been
	 * registered, no tasks have been forked, so we don't
	 * need to invoke fork callbacks here. */
	BUG_ON(!list_empty(&init_task.tasks));

4216
	mutex_init(&ss->hierarchy_mutex);
4217
	lockdep_set_class(&ss->hierarchy_mutex, &ss->subsys_key);
4218
	ss->active = 1;
4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229

	/* this function shouldn't be used with modular subsystems, since they
	 * need to register a subsys_id, among other things */
	BUG_ON(ss->module);
}

/**
 * cgroup_load_subsys: load and register a modular subsystem at runtime
 * @ss: the subsystem to load
 *
 * This function should be called in a modular subsystem's initcall. If the
T
Thomas Weber 已提交
4230
 * subsystem is built as a module, it will be assigned a new subsys_id and set
4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263
 * up for use. If the subsystem is built-in anyway, work is delegated to the
 * simpler cgroup_init_subsys.
 */
int __init_or_module cgroup_load_subsys(struct cgroup_subsys *ss)
{
	int i;
	struct cgroup_subsys_state *css;

	/* check name and function validity */
	if (ss->name == NULL || strlen(ss->name) > MAX_CGROUP_TYPE_NAMELEN ||
	    ss->create == NULL || ss->destroy == NULL)
		return -EINVAL;

	/*
	 * we don't support callbacks in modular subsystems. this check is
	 * before the ss->module check for consistency; a subsystem that could
	 * be a module should still have no callbacks even if the user isn't
	 * compiling it as one.
	 */
	if (ss->fork || ss->exit)
		return -EINVAL;

	/*
	 * an optionally modular subsystem is built-in: we want to do nothing,
	 * since cgroup_init_subsys will have already taken care of it.
	 */
	if (ss->module == NULL) {
		/* a few sanity checks */
		BUG_ON(ss->subsys_id >= CGROUP_BUILTIN_SUBSYS_COUNT);
		BUG_ON(subsys[ss->subsys_id] != ss);
		return 0;
	}

4264 4265 4266
	/* init base cftset */
	cgroup_init_cftsets(ss);

4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289
	/*
	 * need to register a subsys id before anything else - for example,
	 * init_cgroup_css needs it.
	 */
	mutex_lock(&cgroup_mutex);
	/* find the first empty slot in the array */
	for (i = CGROUP_BUILTIN_SUBSYS_COUNT; i < CGROUP_SUBSYS_COUNT; i++) {
		if (subsys[i] == NULL)
			break;
	}
	if (i == CGROUP_SUBSYS_COUNT) {
		/* maximum number of subsystems already registered! */
		mutex_unlock(&cgroup_mutex);
		return -EBUSY;
	}
	/* assign ourselves the subsys_id */
	ss->subsys_id = i;
	subsys[i] = ss;

	/*
	 * no ss->create seems to need anything important in the ss struct, so
	 * this can happen first (i.e. before the rootnode attachment).
	 */
4290
	css = ss->create(dummytop);
4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307
	if (IS_ERR(css)) {
		/* failure case - need to deassign the subsys[] slot. */
		subsys[i] = NULL;
		mutex_unlock(&cgroup_mutex);
		return PTR_ERR(css);
	}

	list_add(&ss->sibling, &rootnode.subsys_list);
	ss->root = &rootnode;

	/* our new subsystem will be attached to the dummy hierarchy. */
	init_cgroup_css(css, ss, dummytop);
	/* init_idr must be after init_cgroup_css because it sets css->id. */
	if (ss->use_id) {
		int ret = cgroup_init_idr(ss, css);
		if (ret) {
			dummytop->subsys[ss->subsys_id] = NULL;
4308
			ss->destroy(dummytop);
4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350
			subsys[i] = NULL;
			mutex_unlock(&cgroup_mutex);
			return ret;
		}
	}

	/*
	 * Now we need to entangle the css into the existing css_sets. unlike
	 * in cgroup_init_subsys, there are now multiple css_sets, so each one
	 * will need a new pointer to it; done by iterating the css_set_table.
	 * furthermore, modifying the existing css_sets will corrupt the hash
	 * table state, so each changed css_set will need its hash recomputed.
	 * this is all done under the css_set_lock.
	 */
	write_lock(&css_set_lock);
	for (i = 0; i < CSS_SET_TABLE_SIZE; i++) {
		struct css_set *cg;
		struct hlist_node *node, *tmp;
		struct hlist_head *bucket = &css_set_table[i], *new_bucket;

		hlist_for_each_entry_safe(cg, node, tmp, bucket, hlist) {
			/* skip entries that we already rehashed */
			if (cg->subsys[ss->subsys_id])
				continue;
			/* remove existing entry */
			hlist_del(&cg->hlist);
			/* set new value */
			cg->subsys[ss->subsys_id] = css;
			/* recompute hash and restore entry */
			new_bucket = css_set_hash(cg->subsys);
			hlist_add_head(&cg->hlist, new_bucket);
		}
	}
	write_unlock(&css_set_lock);

	mutex_init(&ss->hierarchy_mutex);
	lockdep_set_class(&ss->hierarchy_mutex, &ss->subsys_key);
	ss->active = 1;

	/* success! */
	mutex_unlock(&cgroup_mutex);
	return 0;
4351
}
4352
EXPORT_SYMBOL_GPL(cgroup_load_subsys);
4353

B
Ben Blum 已提交
4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381
/**
 * cgroup_unload_subsys: unload a modular subsystem
 * @ss: the subsystem to unload
 *
 * This function should be called in a modular subsystem's exitcall. When this
 * function is invoked, the refcount on the subsystem's module will be 0, so
 * the subsystem will not be attached to any hierarchy.
 */
void cgroup_unload_subsys(struct cgroup_subsys *ss)
{
	struct cg_cgroup_link *link;
	struct hlist_head *hhead;

	BUG_ON(ss->module == NULL);

	/*
	 * we shouldn't be called if the subsystem is in use, and the use of
	 * try_module_get in parse_cgroupfs_options should ensure that it
	 * doesn't start being used while we're killing it off.
	 */
	BUG_ON(ss->root != &rootnode);

	mutex_lock(&cgroup_mutex);
	/* deassign the subsys_id */
	BUG_ON(ss->subsys_id < CGROUP_BUILTIN_SUBSYS_COUNT);
	subsys[ss->subsys_id] = NULL;

	/* remove subsystem from rootnode's list of subsystems */
4382
	list_del_init(&ss->sibling);
B
Ben Blum 已提交
4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405

	/*
	 * disentangle the css from all css_sets attached to the dummytop. as
	 * in loading, we need to pay our respects to the hashtable gods.
	 */
	write_lock(&css_set_lock);
	list_for_each_entry(link, &dummytop->css_sets, cgrp_link_list) {
		struct css_set *cg = link->cg;

		hlist_del(&cg->hlist);
		BUG_ON(!cg->subsys[ss->subsys_id]);
		cg->subsys[ss->subsys_id] = NULL;
		hhead = css_set_hash(cg->subsys);
		hlist_add_head(&cg->hlist, hhead);
	}
	write_unlock(&css_set_lock);

	/*
	 * remove subsystem's css from the dummytop and free it - need to free
	 * before marking as null because ss->destroy needs the cgrp->subsys
	 * pointer to find their state. note that this also takes care of
	 * freeing the css_id.
	 */
4406
	ss->destroy(dummytop);
B
Ben Blum 已提交
4407 4408 4409 4410 4411 4412
	dummytop->subsys[ss->subsys_id] = NULL;

	mutex_unlock(&cgroup_mutex);
}
EXPORT_SYMBOL_GPL(cgroup_unload_subsys);

4413
/**
L
Li Zefan 已提交
4414 4415 4416 4417
 * cgroup_init_early - cgroup initialization at system boot
 *
 * Initialize cgroups at system boot, and initialize any
 * subsystems that request early init.
4418 4419 4420 4421
 */
int __init cgroup_init_early(void)
{
	int i;
4422
	atomic_set(&init_css_set.refcount, 1);
4423 4424
	INIT_LIST_HEAD(&init_css_set.cg_links);
	INIT_LIST_HEAD(&init_css_set.tasks);
4425
	INIT_HLIST_NODE(&init_css_set.hlist);
4426
	css_set_count = 1;
4427
	init_cgroup_root(&rootnode);
4428 4429 4430 4431
	root_count = 1;
	init_task.cgroups = &init_css_set;

	init_css_set_link.cg = &init_css_set;
4432
	init_css_set_link.cgrp = dummytop;
4433
	list_add(&init_css_set_link.cgrp_link_list,
4434 4435 4436
		 &rootnode.top_cgroup.css_sets);
	list_add(&init_css_set_link.cg_link_list,
		 &init_css_set.cg_links);
4437

4438 4439 4440
	for (i = 0; i < CSS_SET_TABLE_SIZE; i++)
		INIT_HLIST_HEAD(&css_set_table[i]);

B
Ben Blum 已提交
4441 4442
	/* at bootup time, we don't worry about modular subsystems */
	for (i = 0; i < CGROUP_BUILTIN_SUBSYS_COUNT; i++) {
4443 4444 4445 4446 4447 4448 4449
		struct cgroup_subsys *ss = subsys[i];

		BUG_ON(!ss->name);
		BUG_ON(strlen(ss->name) > MAX_CGROUP_TYPE_NAMELEN);
		BUG_ON(!ss->create);
		BUG_ON(!ss->destroy);
		if (ss->subsys_id != i) {
D
Diego Calleja 已提交
4450
			printk(KERN_ERR "cgroup: Subsys %s id == %d\n",
4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461
			       ss->name, ss->subsys_id);
			BUG();
		}

		if (ss->early_init)
			cgroup_init_subsys(ss);
	}
	return 0;
}

/**
L
Li Zefan 已提交
4462 4463 4464 4465
 * cgroup_init - cgroup initialization
 *
 * Register cgroup filesystem and /proc file, and initialize
 * any subsystems that didn't request early init.
4466 4467 4468 4469 4470
 */
int __init cgroup_init(void)
{
	int err;
	int i;
4471
	struct hlist_head *hhead;
4472 4473 4474 4475

	err = bdi_init(&cgroup_backing_dev_info);
	if (err)
		return err;
4476

B
Ben Blum 已提交
4477 4478
	/* at bootup time, we don't worry about modular subsystems */
	for (i = 0; i < CGROUP_BUILTIN_SUBSYS_COUNT; i++) {
4479 4480 4481
		struct cgroup_subsys *ss = subsys[i];
		if (!ss->early_init)
			cgroup_init_subsys(ss);
K
KAMEZAWA Hiroyuki 已提交
4482
		if (ss->use_id)
4483
			cgroup_init_idr(ss, init_css_set.subsys[ss->subsys_id]);
4484 4485
	}

4486 4487 4488
	/* Add init_css_set to the hash table */
	hhead = css_set_hash(init_css_set.subsys);
	hlist_add_head(&init_css_set.hlist, hhead);
4489
	BUG_ON(!init_root_id(&rootnode));
4490 4491 4492 4493 4494 4495 4496

	cgroup_kobj = kobject_create_and_add("cgroup", fs_kobj);
	if (!cgroup_kobj) {
		err = -ENOMEM;
		goto out;
	}

4497
	err = register_filesystem(&cgroup_fs_type);
4498 4499
	if (err < 0) {
		kobject_put(cgroup_kobj);
4500
		goto out;
4501
	}
4502

L
Li Zefan 已提交
4503
	proc_create("cgroups", 0, NULL, &proc_cgroupstats_operations);
4504

4505
out:
4506 4507 4508
	if (err)
		bdi_destroy(&cgroup_backing_dev_info);

4509 4510
	return err;
}
4511

4512 4513 4514 4515 4516 4517
/*
 * proc_cgroup_show()
 *  - Print task's cgroup paths into seq_file, one line for each hierarchy
 *  - Used for /proc/<pid>/cgroup.
 *  - No need to task_lock(tsk) on this tsk->cgroup reference, as it
 *    doesn't really matter if tsk->cgroup changes after we read it,
4518
 *    and we take cgroup_mutex, keeping cgroup_attach_task() from changing it
4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547
 *    anyway.  No need to check that tsk->cgroup != NULL, thanks to
 *    the_top_cgroup_hack in cgroup_exit(), which sets an exiting tasks
 *    cgroup to top_cgroup.
 */

/* TODO: Use a proper seq_file iterator */
static int proc_cgroup_show(struct seq_file *m, void *v)
{
	struct pid *pid;
	struct task_struct *tsk;
	char *buf;
	int retval;
	struct cgroupfs_root *root;

	retval = -ENOMEM;
	buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
	if (!buf)
		goto out;

	retval = -ESRCH;
	pid = m->private;
	tsk = get_pid_task(pid, PIDTYPE_PID);
	if (!tsk)
		goto out_free;

	retval = 0;

	mutex_lock(&cgroup_mutex);

4548
	for_each_active_root(root) {
4549
		struct cgroup_subsys *ss;
4550
		struct cgroup *cgrp;
4551 4552
		int count = 0;

4553
		seq_printf(m, "%d:", root->hierarchy_id);
4554 4555
		for_each_subsys(root, ss)
			seq_printf(m, "%s%s", count++ ? "," : "", ss->name);
4556 4557 4558
		if (strlen(root->name))
			seq_printf(m, "%sname=%s", count ? "," : "",
				   root->name);
4559
		seq_putc(m, ':');
4560
		cgrp = task_cgroup_from_root(tsk, root);
4561
		retval = cgroup_path(cgrp, buf, PAGE_SIZE);
4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582
		if (retval < 0)
			goto out_unlock;
		seq_puts(m, buf);
		seq_putc(m, '\n');
	}

out_unlock:
	mutex_unlock(&cgroup_mutex);
	put_task_struct(tsk);
out_free:
	kfree(buf);
out:
	return retval;
}

static int cgroup_open(struct inode *inode, struct file *file)
{
	struct pid *pid = PROC_I(inode)->pid;
	return single_open(file, proc_cgroup_show, pid);
}

4583
const struct file_operations proc_cgroup_operations = {
4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594
	.open		= cgroup_open,
	.read		= seq_read,
	.llseek		= seq_lseek,
	.release	= single_release,
};

/* Display information about each subsystem and each hierarchy */
static int proc_cgroupstats_show(struct seq_file *m, void *v)
{
	int i;

4595
	seq_puts(m, "#subsys_name\thierarchy\tnum_cgroups\tenabled\n");
B
Ben Blum 已提交
4596 4597 4598 4599 4600
	/*
	 * ideally we don't want subsystems moving around while we do this.
	 * cgroup_mutex is also necessary to guarantee an atomic snapshot of
	 * subsys/hierarchy state.
	 */
4601 4602 4603
	mutex_lock(&cgroup_mutex);
	for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
		struct cgroup_subsys *ss = subsys[i];
B
Ben Blum 已提交
4604 4605
		if (ss == NULL)
			continue;
4606 4607
		seq_printf(m, "%s\t%d\t%d\t%d\n",
			   ss->name, ss->root->hierarchy_id,
4608
			   ss->root->number_of_cgroups, !ss->disabled);
4609 4610 4611 4612 4613 4614 4615
	}
	mutex_unlock(&cgroup_mutex);
	return 0;
}

static int cgroupstats_open(struct inode *inode, struct file *file)
{
A
Al Viro 已提交
4616
	return single_open(file, proc_cgroupstats_show, NULL);
4617 4618
}

4619
static const struct file_operations proc_cgroupstats_operations = {
4620 4621 4622 4623 4624 4625
	.open = cgroupstats_open,
	.read = seq_read,
	.llseek = seq_lseek,
	.release = single_release,
};

4626 4627
/**
 * cgroup_fork - attach newly forked task to its parents cgroup.
L
Li Zefan 已提交
4628
 * @child: pointer to task_struct of forking parent process.
4629 4630 4631 4632 4633
 *
 * Description: A task inherits its parent's cgroup at fork().
 *
 * A pointer to the shared css_set was automatically copied in
 * fork.c by dup_task_struct().  However, we ignore that copy, since
4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644
 * it was not made under the protection of RCU, cgroup_mutex or
 * threadgroup_change_begin(), so it might no longer be a valid
 * cgroup pointer.  cgroup_attach_task() might have already changed
 * current->cgroups, allowing the previously referenced cgroup
 * group to be removed and freed.
 *
 * Outside the pointer validity we also need to process the css_set
 * inheritance between threadgoup_change_begin() and
 * threadgoup_change_end(), this way there is no leak in any process
 * wide migration performed by cgroup_attach_proc() that could otherwise
 * miss a thread because it is too early or too late in the fork stage.
4645 4646 4647 4648 4649 4650
 *
 * At the point that cgroup_fork() is called, 'current' is the parent
 * task, and the passed argument 'child' points to the child task.
 */
void cgroup_fork(struct task_struct *child)
{
4651 4652 4653 4654 4655 4656
	/*
	 * We don't need to task_lock() current because current->cgroups
	 * can't be changed concurrently here. The parent obviously hasn't
	 * exited and called cgroup_exit(), and we are synchronized against
	 * cgroup migration through threadgroup_change_begin().
	 */
4657 4658 4659
	child->cgroups = current->cgroups;
	get_css_set(child->cgroups);
	INIT_LIST_HEAD(&child->cg_list);
4660 4661 4662
}

/**
L
Li Zefan 已提交
4663 4664 4665 4666 4667 4668
 * cgroup_fork_callbacks - run fork callbacks
 * @child: the new task
 *
 * Called on a new task very soon before adding it to the
 * tasklist. No need to take any locks since no-one can
 * be operating on this task.
4669 4670 4671 4672 4673
 */
void cgroup_fork_callbacks(struct task_struct *child)
{
	if (need_forkexit_callback) {
		int i;
B
Ben Blum 已提交
4674 4675 4676 4677 4678 4679
		/*
		 * forkexit callbacks are only supported for builtin
		 * subsystems, and the builtin section of the subsys array is
		 * immutable, so we don't need to lock the subsys array here.
		 */
		for (i = 0; i < CGROUP_BUILTIN_SUBSYS_COUNT; i++) {
4680 4681
			struct cgroup_subsys *ss = subsys[i];
			if (ss->fork)
4682
				ss->fork(child);
4683 4684 4685 4686
		}
	}
}

4687
/**
L
Li Zefan 已提交
4688 4689 4690 4691 4692 4693 4694 4695
 * cgroup_post_fork - called on a new task after adding it to the task list
 * @child: the task in question
 *
 * Adds the task to the list running through its css_set if necessary.
 * Has to be after the task is visible on the task list in case we race
 * with the first call to cgroup_iter_start() - to guarantee that the
 * new task ends up on its list.
 */
4696 4697
void cgroup_post_fork(struct task_struct *child)
{
4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708
	/*
	 * use_task_css_set_links is set to 1 before we walk the tasklist
	 * under the tasklist_lock and we read it here after we added the child
	 * to the tasklist under the tasklist_lock as well. If the child wasn't
	 * yet in the tasklist when we walked through it from
	 * cgroup_enable_task_cg_lists(), then use_task_css_set_links value
	 * should be visible now due to the paired locking and barriers implied
	 * by LOCK/UNLOCK: it is written before the tasklist_lock unlock
	 * in cgroup_enable_task_cg_lists() and read here after the tasklist_lock
	 * lock on fork.
	 */
4709 4710
	if (use_task_css_set_links) {
		write_lock(&css_set_lock);
4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721
		if (list_empty(&child->cg_list)) {
			/*
			 * It's safe to use child->cgroups without task_lock()
			 * here because we are protected through
			 * threadgroup_change_begin() against concurrent
			 * css_set change in cgroup_task_migrate(). Also
			 * the task can't exit at that point until
			 * wake_up_new_task() is called, so we are protected
			 * against cgroup_exit() setting child->cgroup to
			 * init_css_set.
			 */
4722
			list_add(&child->cg_list, &child->cgroups->tasks);
4723
		}
4724 4725 4726
		write_unlock(&css_set_lock);
	}
}
4727 4728 4729
/**
 * cgroup_exit - detach cgroup from exiting task
 * @tsk: pointer to task_struct of exiting process
L
Li Zefan 已提交
4730
 * @run_callback: run exit callbacks?
4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758
 *
 * Description: Detach cgroup from @tsk and release it.
 *
 * Note that cgroups marked notify_on_release force every task in
 * them to take the global cgroup_mutex mutex when exiting.
 * This could impact scaling on very large systems.  Be reluctant to
 * use notify_on_release cgroups where very high task exit scaling
 * is required on large systems.
 *
 * the_top_cgroup_hack:
 *
 *    Set the exiting tasks cgroup to the root cgroup (top_cgroup).
 *
 *    We call cgroup_exit() while the task is still competent to
 *    handle notify_on_release(), then leave the task attached to the
 *    root cgroup in each hierarchy for the remainder of its exit.
 *
 *    To do this properly, we would increment the reference count on
 *    top_cgroup, and near the very end of the kernel/exit.c do_exit()
 *    code we would add a second cgroup function call, to drop that
 *    reference.  This would just create an unnecessary hot spot on
 *    the top_cgroup reference count, to no avail.
 *
 *    Normally, holding a reference to a cgroup without bumping its
 *    count is unsafe.   The cgroup could go away, or someone could
 *    attach us to a different cgroup, decrementing the count on
 *    the first cgroup that we never incremented.  But in this case,
 *    top_cgroup isn't going away, and either task has PF_EXITING set,
4759 4760
 *    which wards off any cgroup_attach_task() attempts, or task is a failed
 *    fork, never visible to cgroup_attach_task.
4761 4762 4763
 */
void cgroup_exit(struct task_struct *tsk, int run_callbacks)
{
4764
	struct css_set *cg;
4765
	int i;
4766 4767 4768 4769 4770 4771 4772 4773 4774

	/*
	 * Unlink from the css_set task list if necessary.
	 * Optimistically check cg_list before taking
	 * css_set_lock
	 */
	if (!list_empty(&tsk->cg_list)) {
		write_lock(&css_set_lock);
		if (!list_empty(&tsk->cg_list))
4775
			list_del_init(&tsk->cg_list);
4776 4777 4778
		write_unlock(&css_set_lock);
	}

4779 4780
	/* Reassign the task to the init_css_set. */
	task_lock(tsk);
4781 4782
	cg = tsk->cgroups;
	tsk->cgroups = &init_css_set;
4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794

	if (run_callbacks && need_forkexit_callback) {
		/*
		 * modular subsystems can't use callbacks, so no need to lock
		 * the subsys array
		 */
		for (i = 0; i < CGROUP_BUILTIN_SUBSYS_COUNT; i++) {
			struct cgroup_subsys *ss = subsys[i];
			if (ss->exit) {
				struct cgroup *old_cgrp =
					rcu_dereference_raw(cg->subsys[i])->cgroup;
				struct cgroup *cgrp = task_cgroup(tsk, i);
4795
				ss->exit(cgrp, old_cgrp, tsk);
4796 4797 4798
			}
		}
	}
4799
	task_unlock(tsk);
4800

4801
	if (cg)
4802
		put_css_set_taskexit(cg);
4803
}
4804

L
Li Zefan 已提交
4805
/**
4806
 * cgroup_is_descendant - see if @cgrp is a descendant of @task's cgrp
L
Li Zefan 已提交
4807
 * @cgrp: the cgroup in question
4808
 * @task: the task in question
L
Li Zefan 已提交
4809
 *
4810 4811
 * See if @cgrp is a descendant of @task's cgroup in the appropriate
 * hierarchy.
4812 4813 4814 4815 4816 4817
 *
 * If we are sending in dummytop, then presumably we are creating
 * the top cgroup in the subsystem.
 *
 * Called only by the ns (nsproxy) cgroup.
 */
4818
int cgroup_is_descendant(const struct cgroup *cgrp, struct task_struct *task)
4819 4820 4821 4822
{
	int ret;
	struct cgroup *target;

4823
	if (cgrp == dummytop)
4824 4825
		return 1;

4826
	target = task_cgroup_from_root(task, cgrp->root);
4827 4828 4829
	while (cgrp != target && cgrp!= cgrp->top_cgroup)
		cgrp = cgrp->parent;
	ret = (cgrp == target);
4830 4831
	return ret;
}
4832

4833
static void check_for_release(struct cgroup *cgrp)
4834 4835 4836
{
	/* All of these checks rely on RCU to keep the cgroup
	 * structure alive */
4837 4838
	if (cgroup_is_releasable(cgrp) && !atomic_read(&cgrp->count)
	    && list_empty(&cgrp->children) && !cgroup_has_css_refs(cgrp)) {
4839 4840 4841 4842
		/* Control Group is currently removeable. If it's not
		 * already queued for a userspace notification, queue
		 * it now */
		int need_schedule_work = 0;
4843
		raw_spin_lock(&release_list_lock);
4844 4845 4846
		if (!cgroup_is_removed(cgrp) &&
		    list_empty(&cgrp->release_list)) {
			list_add(&cgrp->release_list, &release_list);
4847 4848
			need_schedule_work = 1;
		}
4849
		raw_spin_unlock(&release_list_lock);
4850 4851 4852 4853 4854
		if (need_schedule_work)
			schedule_work(&release_agent_work);
	}
}

4855 4856
/* Caller must verify that the css is not for root cgroup */
void __css_put(struct cgroup_subsys_state *css, int count)
4857
{
4858
	struct cgroup *cgrp = css->cgroup;
4859
	int val;
4860
	rcu_read_lock();
4861
	val = atomic_sub_return(count, &css->refcnt);
4862
	if (val == 1) {
4863 4864 4865 4866
		if (notify_on_release(cgrp)) {
			set_bit(CGRP_RELEASABLE, &cgrp->flags);
			check_for_release(cgrp);
		}
4867
		cgroup_wakeup_rmdir_waiter(cgrp);
4868 4869
	}
	rcu_read_unlock();
4870
	WARN_ON_ONCE(val < 1);
4871
}
B
Ben Blum 已提交
4872
EXPORT_SYMBOL_GPL(__css_put);
4873 4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 4885 4886 4887 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899 4900

/*
 * Notify userspace when a cgroup is released, by running the
 * configured release agent with the name of the cgroup (path
 * relative to the root of cgroup file system) as the argument.
 *
 * Most likely, this user command will try to rmdir this cgroup.
 *
 * This races with the possibility that some other task will be
 * attached to this cgroup before it is removed, or that some other
 * user task will 'mkdir' a child cgroup of this cgroup.  That's ok.
 * The presumed 'rmdir' will fail quietly if this cgroup is no longer
 * unused, and this cgroup will be reprieved from its death sentence,
 * to continue to serve a useful existence.  Next time it's released,
 * we will get notified again, if it still has 'notify_on_release' set.
 *
 * The final arg to call_usermodehelper() is UMH_WAIT_EXEC, which
 * means only wait until the task is successfully execve()'d.  The
 * separate release agent task is forked by call_usermodehelper(),
 * then control in this thread returns here, without waiting for the
 * release agent task.  We don't bother to wait because the caller of
 * this routine has no use for the exit status of the release agent
 * task, so no sense holding our caller up for that.
 */
static void cgroup_release_agent(struct work_struct *work)
{
	BUG_ON(work != &release_agent_work);
	mutex_lock(&cgroup_mutex);
4901
	raw_spin_lock(&release_list_lock);
4902 4903 4904
	while (!list_empty(&release_list)) {
		char *argv[3], *envp[3];
		int i;
4905
		char *pathbuf = NULL, *agentbuf = NULL;
4906
		struct cgroup *cgrp = list_entry(release_list.next,
4907 4908
						    struct cgroup,
						    release_list);
4909
		list_del_init(&cgrp->release_list);
4910
		raw_spin_unlock(&release_list_lock);
4911
		pathbuf = kmalloc(PAGE_SIZE, GFP_KERNEL);
4912 4913 4914 4915 4916 4917 4918
		if (!pathbuf)
			goto continue_free;
		if (cgroup_path(cgrp, pathbuf, PAGE_SIZE) < 0)
			goto continue_free;
		agentbuf = kstrdup(cgrp->root->release_agent_path, GFP_KERNEL);
		if (!agentbuf)
			goto continue_free;
4919 4920

		i = 0;
4921 4922
		argv[i++] = agentbuf;
		argv[i++] = pathbuf;
4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936
		argv[i] = NULL;

		i = 0;
		/* minimal command environment */
		envp[i++] = "HOME=/";
		envp[i++] = "PATH=/sbin:/bin:/usr/sbin:/usr/bin";
		envp[i] = NULL;

		/* Drop the lock while we invoke the usermode helper,
		 * since the exec could involve hitting disk and hence
		 * be a slow process */
		mutex_unlock(&cgroup_mutex);
		call_usermodehelper(argv[0], argv, envp, UMH_WAIT_EXEC);
		mutex_lock(&cgroup_mutex);
4937 4938 4939
 continue_free:
		kfree(pathbuf);
		kfree(agentbuf);
4940
		raw_spin_lock(&release_list_lock);
4941
	}
4942
	raw_spin_unlock(&release_list_lock);
4943 4944
	mutex_unlock(&cgroup_mutex);
}
4945 4946 4947 4948 4949 4950 4951 4952 4953

static int __init cgroup_disable(char *str)
{
	int i;
	char *token;

	while ((token = strsep(&str, ",")) != NULL) {
		if (!*token)
			continue;
B
Ben Blum 已提交
4954 4955 4956 4957 4958
		/*
		 * cgroup_disable, being at boot time, can't know about module
		 * subsystems, so we don't worry about them.
		 */
		for (i = 0; i < CGROUP_BUILTIN_SUBSYS_COUNT; i++) {
4959 4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971
			struct cgroup_subsys *ss = subsys[i];

			if (!strcmp(token, ss->name)) {
				ss->disabled = 1;
				printk(KERN_INFO "Disabling %s control group"
					" subsystem\n", ss->name);
				break;
			}
		}
	}
	return 1;
}
__setup("cgroup_disable=", cgroup_disable);
K
KAMEZAWA Hiroyuki 已提交
4972 4973 4974 4975 4976 4977 4978 4979 4980 4981

/*
 * Functons for CSS ID.
 */

/*
 *To get ID other than 0, this should be called when !cgroup_is_removed().
 */
unsigned short css_id(struct cgroup_subsys_state *css)
{
4982 4983 4984 4985 4986 4987 4988
	struct css_id *cssid;

	/*
	 * This css_id() can return correct value when somone has refcnt
	 * on this or this is under rcu_read_lock(). Once css->id is allocated,
	 * it's unchanged until freed.
	 */
4989
	cssid = rcu_dereference_check(css->id, atomic_read(&css->refcnt));
K
KAMEZAWA Hiroyuki 已提交
4990 4991 4992 4993 4994

	if (cssid)
		return cssid->id;
	return 0;
}
B
Ben Blum 已提交
4995
EXPORT_SYMBOL_GPL(css_id);
K
KAMEZAWA Hiroyuki 已提交
4996 4997 4998

unsigned short css_depth(struct cgroup_subsys_state *css)
{
4999 5000
	struct css_id *cssid;

5001
	cssid = rcu_dereference_check(css->id, atomic_read(&css->refcnt));
K
KAMEZAWA Hiroyuki 已提交
5002 5003 5004 5005 5006

	if (cssid)
		return cssid->depth;
	return 0;
}
B
Ben Blum 已提交
5007
EXPORT_SYMBOL_GPL(css_depth);
K
KAMEZAWA Hiroyuki 已提交
5008

5009 5010 5011 5012 5013 5014 5015 5016 5017 5018 5019 5020 5021
/**
 *  css_is_ancestor - test "root" css is an ancestor of "child"
 * @child: the css to be tested.
 * @root: the css supporsed to be an ancestor of the child.
 *
 * Returns true if "root" is an ancestor of "child" in its hierarchy. Because
 * this function reads css->id, this use rcu_dereference() and rcu_read_lock().
 * But, considering usual usage, the csses should be valid objects after test.
 * Assuming that the caller will do some action to the child if this returns
 * returns true, the caller must take "child";s reference count.
 * If "child" is valid object and this returns true, "root" is valid, too.
 */

K
KAMEZAWA Hiroyuki 已提交
5022
bool css_is_ancestor(struct cgroup_subsys_state *child,
5023
		    const struct cgroup_subsys_state *root)
K
KAMEZAWA Hiroyuki 已提交
5024
{
5025 5026 5027
	struct css_id *child_id;
	struct css_id *root_id;
	bool ret = true;
K
KAMEZAWA Hiroyuki 已提交
5028

5029 5030 5031 5032 5033 5034 5035 5036 5037 5038
	rcu_read_lock();
	child_id  = rcu_dereference(child->id);
	root_id = rcu_dereference(root->id);
	if (!child_id
	    || !root_id
	    || (child_id->depth < root_id->depth)
	    || (child_id->stack[root_id->depth] != root_id->id))
		ret = false;
	rcu_read_unlock();
	return ret;
K
KAMEZAWA Hiroyuki 已提交
5039 5040 5041 5042 5043 5044 5045 5046 5047 5048 5049 5050 5051
}

void free_css_id(struct cgroup_subsys *ss, struct cgroup_subsys_state *css)
{
	struct css_id *id = css->id;
	/* When this is called before css_id initialization, id can be NULL */
	if (!id)
		return;

	BUG_ON(!ss->use_id);

	rcu_assign_pointer(id->css, NULL);
	rcu_assign_pointer(css->id, NULL);
5052
	spin_lock(&ss->id_lock);
K
KAMEZAWA Hiroyuki 已提交
5053
	idr_remove(&ss->idr, id->id);
5054
	spin_unlock(&ss->id_lock);
5055
	kfree_rcu(id, rcu_head);
K
KAMEZAWA Hiroyuki 已提交
5056
}
B
Ben Blum 已提交
5057
EXPORT_SYMBOL_GPL(free_css_id);
K
KAMEZAWA Hiroyuki 已提交
5058 5059 5060 5061 5062 5063 5064 5065 5066 5067 5068 5069 5070 5071 5072 5073 5074 5075 5076 5077 5078 5079

/*
 * This is called by init or create(). Then, calls to this function are
 * always serialized (By cgroup_mutex() at create()).
 */

static struct css_id *get_new_cssid(struct cgroup_subsys *ss, int depth)
{
	struct css_id *newid;
	int myid, error, size;

	BUG_ON(!ss->use_id);

	size = sizeof(*newid) + sizeof(unsigned short) * (depth + 1);
	newid = kzalloc(size, GFP_KERNEL);
	if (!newid)
		return ERR_PTR(-ENOMEM);
	/* get id */
	if (unlikely(!idr_pre_get(&ss->idr, GFP_KERNEL))) {
		error = -ENOMEM;
		goto err_out;
	}
5080
	spin_lock(&ss->id_lock);
K
KAMEZAWA Hiroyuki 已提交
5081 5082
	/* Don't use 0. allocates an ID of 1-65535 */
	error = idr_get_new_above(&ss->idr, newid, 1, &myid);
5083
	spin_unlock(&ss->id_lock);
K
KAMEZAWA Hiroyuki 已提交
5084 5085 5086 5087 5088 5089 5090 5091 5092 5093 5094 5095 5096 5097

	/* Returns error when there are no free spaces for new ID.*/
	if (error) {
		error = -ENOSPC;
		goto err_out;
	}
	if (myid > CSS_ID_MAX)
		goto remove_idr;

	newid->id = myid;
	newid->depth = depth;
	return newid;
remove_idr:
	error = -ENOSPC;
5098
	spin_lock(&ss->id_lock);
K
KAMEZAWA Hiroyuki 已提交
5099
	idr_remove(&ss->idr, myid);
5100
	spin_unlock(&ss->id_lock);
K
KAMEZAWA Hiroyuki 已提交
5101 5102 5103 5104 5105 5106
err_out:
	kfree(newid);
	return ERR_PTR(error);

}

5107 5108
static int __init_or_module cgroup_init_idr(struct cgroup_subsys *ss,
					    struct cgroup_subsys_state *rootcss)
K
KAMEZAWA Hiroyuki 已提交
5109 5110 5111
{
	struct css_id *newid;

5112
	spin_lock_init(&ss->id_lock);
K
KAMEZAWA Hiroyuki 已提交
5113 5114 5115 5116 5117 5118 5119 5120 5121 5122 5123 5124 5125 5126 5127 5128 5129
	idr_init(&ss->idr);

	newid = get_new_cssid(ss, 0);
	if (IS_ERR(newid))
		return PTR_ERR(newid);

	newid->stack[0] = newid->id;
	newid->css = rootcss;
	rootcss->id = newid;
	return 0;
}

static int alloc_css_id(struct cgroup_subsys *ss, struct cgroup *parent,
			struct cgroup *child)
{
	int subsys_id, i, depth = 0;
	struct cgroup_subsys_state *parent_css, *child_css;
5130
	struct css_id *child_id, *parent_id;
K
KAMEZAWA Hiroyuki 已提交
5131 5132 5133 5134 5135

	subsys_id = ss->subsys_id;
	parent_css = parent->subsys[subsys_id];
	child_css = child->subsys[subsys_id];
	parent_id = parent_css->id;
5136
	depth = parent_id->depth + 1;
K
KAMEZAWA Hiroyuki 已提交
5137 5138 5139 5140 5141 5142 5143 5144 5145 5146 5147 5148 5149 5150 5151 5152 5153 5154 5155 5156 5157 5158 5159 5160 5161 5162 5163 5164 5165 5166 5167 5168 5169 5170 5171 5172 5173

	child_id = get_new_cssid(ss, depth);
	if (IS_ERR(child_id))
		return PTR_ERR(child_id);

	for (i = 0; i < depth; i++)
		child_id->stack[i] = parent_id->stack[i];
	child_id->stack[depth] = child_id->id;
	/*
	 * child_id->css pointer will be set after this cgroup is available
	 * see cgroup_populate_dir()
	 */
	rcu_assign_pointer(child_css->id, child_id);

	return 0;
}

/**
 * css_lookup - lookup css by id
 * @ss: cgroup subsys to be looked into.
 * @id: the id
 *
 * Returns pointer to cgroup_subsys_state if there is valid one with id.
 * NULL if not. Should be called under rcu_read_lock()
 */
struct cgroup_subsys_state *css_lookup(struct cgroup_subsys *ss, int id)
{
	struct css_id *cssid = NULL;

	BUG_ON(!ss->use_id);
	cssid = idr_find(&ss->idr, id);

	if (unlikely(!cssid))
		return NULL;

	return rcu_dereference(cssid->css);
}
B
Ben Blum 已提交
5174
EXPORT_SYMBOL_GPL(css_lookup);
K
KAMEZAWA Hiroyuki 已提交
5175 5176 5177 5178 5179 5180 5181 5182 5183 5184 5185 5186 5187 5188 5189 5190 5191 5192 5193 5194 5195 5196 5197 5198 5199

/**
 * css_get_next - lookup next cgroup under specified hierarchy.
 * @ss: pointer to subsystem
 * @id: current position of iteration.
 * @root: pointer to css. search tree under this.
 * @foundid: position of found object.
 *
 * Search next css under the specified hierarchy of rootid. Calling under
 * rcu_read_lock() is necessary. Returns NULL if it reaches the end.
 */
struct cgroup_subsys_state *
css_get_next(struct cgroup_subsys *ss, int id,
	     struct cgroup_subsys_state *root, int *foundid)
{
	struct cgroup_subsys_state *ret = NULL;
	struct css_id *tmp;
	int tmpid;
	int rootid = css_id(root);
	int depth = css_depth(root);

	if (!rootid)
		return NULL;

	BUG_ON(!ss->use_id);
5200 5201
	WARN_ON_ONCE(!rcu_read_lock_held());

K
KAMEZAWA Hiroyuki 已提交
5202 5203 5204 5205 5206 5207 5208 5209 5210 5211 5212 5213 5214 5215 5216 5217 5218 5219 5220 5221 5222 5223 5224
	/* fill start point for scan */
	tmpid = id;
	while (1) {
		/*
		 * scan next entry from bitmap(tree), tmpid is updated after
		 * idr_get_next().
		 */
		tmp = idr_get_next(&ss->idr, &tmpid);
		if (!tmp)
			break;
		if (tmp->depth >= depth && tmp->stack[depth] == rootid) {
			ret = rcu_dereference(tmp->css);
			if (ret) {
				*foundid = tmpid;
				break;
			}
		}
		/* continue to scan from next id */
		tmpid = tmpid + 1;
	}
	return ret;
}

S
Stephane Eranian 已提交
5225 5226 5227 5228 5229 5230 5231 5232 5233 5234 5235 5236 5237 5238 5239 5240 5241 5242 5243 5244 5245 5246 5247
/*
 * get corresponding css from file open on cgroupfs directory
 */
struct cgroup_subsys_state *cgroup_css_from_dir(struct file *f, int id)
{
	struct cgroup *cgrp;
	struct inode *inode;
	struct cgroup_subsys_state *css;

	inode = f->f_dentry->d_inode;
	/* check in cgroup filesystem dir */
	if (inode->i_op != &cgroup_dir_inode_operations)
		return ERR_PTR(-EBADF);

	if (id < 0 || id >= CGROUP_SUBSYS_COUNT)
		return ERR_PTR(-EINVAL);

	/* get cgroup */
	cgrp = __d_cgrp(f->f_dentry);
	css = cgrp->subsys[id];
	return css ? css : ERR_PTR(-ENOENT);
}

5248
#ifdef CONFIG_CGROUP_DEBUG
5249
static struct cgroup_subsys_state *debug_create(struct cgroup *cont)
5250 5251 5252 5253 5254 5255 5256 5257 5258
{
	struct cgroup_subsys_state *css = kzalloc(sizeof(*css), GFP_KERNEL);

	if (!css)
		return ERR_PTR(-ENOMEM);

	return css;
}

5259
static void debug_destroy(struct cgroup *cont)
5260 5261 5262 5263 5264 5265 5266 5267 5268 5269 5270 5271 5272 5273 5274 5275 5276 5277 5278 5279 5280 5281 5282 5283 5284 5285 5286 5287 5288 5289
{
	kfree(cont->subsys[debug_subsys_id]);
}

static u64 cgroup_refcount_read(struct cgroup *cont, struct cftype *cft)
{
	return atomic_read(&cont->count);
}

static u64 debug_taskcount_read(struct cgroup *cont, struct cftype *cft)
{
	return cgroup_task_count(cont);
}

static u64 current_css_set_read(struct cgroup *cont, struct cftype *cft)
{
	return (u64)(unsigned long)current->cgroups;
}

static u64 current_css_set_refcount_read(struct cgroup *cont,
					   struct cftype *cft)
{
	u64 count;

	rcu_read_lock();
	count = atomic_read(&current->cgroups->refcount);
	rcu_read_unlock();
	return count;
}

5290 5291 5292 5293 5294 5295 5296 5297 5298 5299 5300 5301 5302 5303 5304 5305 5306 5307
static int current_css_set_cg_links_read(struct cgroup *cont,
					 struct cftype *cft,
					 struct seq_file *seq)
{
	struct cg_cgroup_link *link;
	struct css_set *cg;

	read_lock(&css_set_lock);
	rcu_read_lock();
	cg = rcu_dereference(current->cgroups);
	list_for_each_entry(link, &cg->cg_links, cg_link_list) {
		struct cgroup *c = link->cgrp;
		const char *name;

		if (c->dentry)
			name = c->dentry->d_name.name;
		else
			name = "?";
5308 5309
		seq_printf(seq, "Root %d group %s\n",
			   c->root->hierarchy_id, name);
5310 5311 5312 5313 5314 5315 5316 5317 5318 5319 5320 5321 5322 5323 5324 5325 5326 5327 5328 5329 5330 5331 5332 5333 5334 5335 5336 5337 5338 5339 5340 5341 5342
	}
	rcu_read_unlock();
	read_unlock(&css_set_lock);
	return 0;
}

#define MAX_TASKS_SHOWN_PER_CSS 25
static int cgroup_css_links_read(struct cgroup *cont,
				 struct cftype *cft,
				 struct seq_file *seq)
{
	struct cg_cgroup_link *link;

	read_lock(&css_set_lock);
	list_for_each_entry(link, &cont->css_sets, cgrp_link_list) {
		struct css_set *cg = link->cg;
		struct task_struct *task;
		int count = 0;
		seq_printf(seq, "css_set %p\n", cg);
		list_for_each_entry(task, &cg->tasks, cg_list) {
			if (count++ > MAX_TASKS_SHOWN_PER_CSS) {
				seq_puts(seq, "  ...\n");
				break;
			} else {
				seq_printf(seq, "  task %d\n",
					   task_pid_vnr(task));
			}
		}
	}
	read_unlock(&css_set_lock);
	return 0;
}

5343 5344 5345 5346 5347 5348 5349 5350 5351 5352 5353 5354 5355 5356 5357 5358 5359 5360 5361 5362 5363 5364 5365 5366 5367
static u64 releasable_read(struct cgroup *cgrp, struct cftype *cft)
{
	return test_bit(CGRP_RELEASABLE, &cgrp->flags);
}

static struct cftype debug_files[] =  {
	{
		.name = "cgroup_refcount",
		.read_u64 = cgroup_refcount_read,
	},
	{
		.name = "taskcount",
		.read_u64 = debug_taskcount_read,
	},

	{
		.name = "current_css_set",
		.read_u64 = current_css_set_read,
	},

	{
		.name = "current_css_set_refcount",
		.read_u64 = current_css_set_refcount_read,
	},

5368 5369 5370 5371 5372 5373 5374 5375 5376 5377
	{
		.name = "current_css_set_cg_links",
		.read_seq_string = current_css_set_cg_links_read,
	},

	{
		.name = "cgroup_css_links",
		.read_seq_string = cgroup_css_links_read,
	},

5378 5379 5380 5381 5382
	{
		.name = "releasable",
		.read_u64 = releasable_read,
	},

5383 5384
	{ }	/* terminate */
};
5385 5386 5387 5388 5389 5390

struct cgroup_subsys debug_subsys = {
	.name = "debug",
	.create = debug_create,
	.destroy = debug_destroy,
	.subsys_id = debug_subsys_id,
5391
	.base_cftypes = debug_files,
5392 5393
};
#endif /* CONFIG_CGROUP_DEBUG */