cgroup.c 138.3 KB
Newer Older
1 2 3 4 5 6
/*
 *  Generic process-grouping system.
 *
 *  Based originally on the cpuset system, extracted by Paul Menage
 *  Copyright (C) 2006 Google, Inc
 *
7 8 9 10
 *  Notifications support
 *  Copyright (C) 2009 Nokia Corporation
 *  Author: Kirill A. Shutemov
 *
11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29
 *  Copyright notices from the original cpuset code:
 *  --------------------------------------------------
 *  Copyright (C) 2003 BULL SA.
 *  Copyright (C) 2004-2006 Silicon Graphics, Inc.
 *
 *  Portions derived from Patrick Mochel's sysfs code.
 *  sysfs is Copyright (c) 2001-3 Patrick Mochel
 *
 *  2003-10-10 Written by Simon Derr.
 *  2003-10-22 Updates by Stephen Hemminger.
 *  2004 May-July Rework by Paul Jackson.
 *  ---------------------------------------------------
 *
 *  This file is subject to the terms and conditions of the GNU General Public
 *  License.  See the file COPYING in the main directory of the Linux
 *  distribution for more details.
 */

#include <linux/cgroup.h>
30
#include <linux/cred.h>
31
#include <linux/ctype.h>
32 33
#include <linux/errno.h>
#include <linux/fs.h>
34
#include <linux/init_task.h>
35 36 37 38 39 40
#include <linux/kernel.h>
#include <linux/list.h>
#include <linux/mm.h>
#include <linux/mutex.h>
#include <linux/mount.h>
#include <linux/pagemap.h>
41
#include <linux/proc_fs.h>
42 43
#include <linux/rcupdate.h>
#include <linux/sched.h>
44
#include <linux/backing-dev.h>
45 46 47 48 49
#include <linux/seq_file.h>
#include <linux/slab.h>
#include <linux/magic.h>
#include <linux/spinlock.h>
#include <linux/string.h>
50
#include <linux/sort.h>
51
#include <linux/kmod.h>
52
#include <linux/module.h>
B
Balbir Singh 已提交
53 54
#include <linux/delayacct.h>
#include <linux/cgroupstats.h>
55
#include <linux/hash.h>
56
#include <linux/namei.h>
L
Li Zefan 已提交
57
#include <linux/pid_namespace.h>
58
#include <linux/idr.h>
59
#include <linux/vmalloc.h> /* TODO: replace with more sophisticated array */
60 61
#include <linux/eventfd.h>
#include <linux/poll.h>
62
#include <linux/flex_array.h> /* used in cgroup_attach_proc */
B
Balbir Singh 已提交
63

A
Arun Sharma 已提交
64
#include <linux/atomic.h>
65

T
Tejun Heo 已提交
66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81
/*
 * cgroup_mutex is the master lock.  Any modification to cgroup or its
 * hierarchy must be performed while holding it.
 *
 * cgroup_root_mutex nests inside cgroup_mutex and should be held to modify
 * cgroupfs_root of any cgroup hierarchy - subsys list, flags,
 * release_agent_path and so on.  Modifying requires both cgroup_mutex and
 * cgroup_root_mutex.  Readers can acquire either of the two.  This is to
 * break the following locking order cycle.
 *
 *  A. cgroup_mutex -> cred_guard_mutex -> s_type->i_mutex_key -> namespace_sem
 *  B. namespace_sem -> cgroup_mutex
 *
 * B happens only through cgroup_show_options() and using cgroup_root_mutex
 * breaks it.
 */
82
static DEFINE_MUTEX(cgroup_mutex);
T
Tejun Heo 已提交
83
static DEFINE_MUTEX(cgroup_root_mutex);
84

B
Ben Blum 已提交
85 86 87 88 89 90
/*
 * Generate an array of cgroup subsystem pointers. At boot time, this is
 * populated up to CGROUP_BUILTIN_SUBSYS_COUNT, and modular subsystems are
 * registered after that. The mutable section of this array is protected by
 * cgroup_mutex.
 */
91
#define SUBSYS(_x) &_x ## _subsys,
B
Ben Blum 已提交
92
static struct cgroup_subsys *subsys[CGROUP_SUBSYS_COUNT] = {
93 94 95
#include <linux/cgroup_subsys.h>
};

96 97
#define MAX_CGROUP_ROOT_NAMELEN 64

98 99 100 101 102 103 104 105 106 107 108 109 110 111
/*
 * A cgroupfs_root represents the root of a cgroup hierarchy,
 * and may be associated with a superblock to form an active
 * hierarchy
 */
struct cgroupfs_root {
	struct super_block *sb;

	/*
	 * The bitmask of subsystems intended to be attached to this
	 * hierarchy
	 */
	unsigned long subsys_bits;

112 113 114
	/* Unique id for this hierarchy. */
	int hierarchy_id;

115 116 117 118 119 120 121 122 123 124 125 126
	/* The bitmask of subsystems currently attached to this hierarchy */
	unsigned long actual_subsys_bits;

	/* A list running through the attached subsystems */
	struct list_head subsys_list;

	/* The root cgroup for this hierarchy */
	struct cgroup top_cgroup;

	/* Tracks how many cgroups are currently defined in hierarchy.*/
	int number_of_cgroups;

127
	/* A list running through the active hierarchies */
128 129
	struct list_head root_list;

130 131 132
	/* All cgroups on this root, cgroup_mutex protected */
	struct list_head allcg_list;

133 134
	/* Hierarchy-specific flags */
	unsigned long flags;
135

136
	/* The path to use for release notifications. */
137
	char release_agent_path[PATH_MAX];
138 139 140

	/* The name for this hierarchy - may be empty */
	char name[MAX_CGROUP_ROOT_NAMELEN];
141 142 143 144 145 146 147 148 149
};

/*
 * The "rootnode" hierarchy is the "dummy hierarchy", reserved for the
 * subsystems that are otherwise unattached - it never has more than a
 * single cgroup, and all tasks are part of that cgroup.
 */
static struct cgroupfs_root rootnode;

K
KAMEZAWA Hiroyuki 已提交
150 151 152 153 154 155 156 157 158 159 160 161 162
/*
 * CSS ID -- ID per subsys's Cgroup Subsys State(CSS). used only when
 * cgroup_subsys->use_id != 0.
 */
#define CSS_ID_MAX	(65535)
struct css_id {
	/*
	 * The css to which this ID points. This pointer is set to valid value
	 * after cgroup is populated. If cgroup is removed, this will be NULL.
	 * This pointer is expected to be RCU-safe because destroy()
	 * is called after synchronize_rcu(). But for safe use, css_is_removed()
	 * css_tryget() should be used for avoiding race.
	 */
A
Arnd Bergmann 已提交
163
	struct cgroup_subsys_state __rcu *css;
K
KAMEZAWA Hiroyuki 已提交
164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181
	/*
	 * ID of this css.
	 */
	unsigned short id;
	/*
	 * Depth in hierarchy which this ID belongs to.
	 */
	unsigned short depth;
	/*
	 * ID is freed by RCU. (and lookup routine is RCU safe.)
	 */
	struct rcu_head rcu_head;
	/*
	 * Hierarchy of CSS ID belongs to.
	 */
	unsigned short stack[0]; /* Array of Length (depth+1) */
};

182
/*
L
Lucas De Marchi 已提交
183
 * cgroup_event represents events which userspace want to receive.
184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210
 */
struct cgroup_event {
	/*
	 * Cgroup which the event belongs to.
	 */
	struct cgroup *cgrp;
	/*
	 * Control file which the event associated.
	 */
	struct cftype *cft;
	/*
	 * eventfd to signal userspace about the event.
	 */
	struct eventfd_ctx *eventfd;
	/*
	 * Each of these stored in a list by the cgroup.
	 */
	struct list_head list;
	/*
	 * All fields below needed to unregister event when
	 * userspace closes eventfd.
	 */
	poll_table pt;
	wait_queue_head_t *wqh;
	wait_queue_t wait;
	struct work_struct remove;
};
K
KAMEZAWA Hiroyuki 已提交
211

212 213 214
/* The list of hierarchy roots */

static LIST_HEAD(roots);
215
static int root_count;
216

217 218 219 220
static DEFINE_IDA(hierarchy_ida);
static int next_hierarchy_id;
static DEFINE_SPINLOCK(hierarchy_id_lock);

221 222 223 224
/* dummytop is a shorthand for the dummy hierarchy's top cgroup */
#define dummytop (&rootnode.top_cgroup)

/* This flag indicates whether tasks in the fork and exit paths should
L
Li Zefan 已提交
225 226 227
 * check for fork/exit handlers to call. This avoids us having to do
 * extra work in the fork/exit path if none of the subsystems need to
 * be called.
228
 */
229
static int need_forkexit_callback __read_mostly;
230

231 232 233 234 235 236 237 238 239 240 241 242 243 244
#ifdef CONFIG_PROVE_LOCKING
int cgroup_lock_is_held(void)
{
	return lockdep_is_held(&cgroup_mutex);
}
#else /* #ifdef CONFIG_PROVE_LOCKING */
int cgroup_lock_is_held(void)
{
	return mutex_is_locked(&cgroup_mutex);
}
#endif /* #else #ifdef CONFIG_PROVE_LOCKING */

EXPORT_SYMBOL_GPL(cgroup_lock_is_held);

245
/* convenient tests for these bits */
246
inline int cgroup_is_removed(const struct cgroup *cgrp)
247
{
248
	return test_bit(CGRP_REMOVED, &cgrp->flags);
249 250 251 252 253 254 255
}

/* bits in struct cgroupfs_root flags field */
enum {
	ROOT_NOPREFIX, /* mounted subsystems have no named prefix */
};

256
static int cgroup_is_releasable(const struct cgroup *cgrp)
257 258
{
	const int bits =
259 260 261
		(1 << CGRP_RELEASABLE) |
		(1 << CGRP_NOTIFY_ON_RELEASE);
	return (cgrp->flags & bits) == bits;
262 263
}

264
static int notify_on_release(const struct cgroup *cgrp)
265
{
266
	return test_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
267 268
}

269 270 271 272 273
static int clone_children(const struct cgroup *cgrp)
{
	return test_bit(CGRP_CLONE_CHILDREN, &cgrp->flags);
}

274 275 276 277 278 279 280
/*
 * for_each_subsys() allows you to iterate on each subsystem attached to
 * an active hierarchy
 */
#define for_each_subsys(_root, _ss) \
list_for_each_entry(_ss, &_root->subsys_list, sibling)

281 282
/* for_each_active_root() allows you to iterate across the active hierarchies */
#define for_each_active_root(_root) \
283 284
list_for_each_entry(_root, &roots, root_list)

285 286 287
/* the list of cgroups eligible for automatic release. Protected by
 * release_list_lock */
static LIST_HEAD(release_list);
288
static DEFINE_RAW_SPINLOCK(release_list_lock);
289 290
static void cgroup_release_agent(struct work_struct *work);
static DECLARE_WORK(release_agent_work, cgroup_release_agent);
291
static void check_for_release(struct cgroup *cgrp);
292

293 294 295 296 297 298
/* Link structure for associating css_set objects with cgroups */
struct cg_cgroup_link {
	/*
	 * List running through cg_cgroup_links associated with a
	 * cgroup, anchored on cgroup->css_sets
	 */
299
	struct list_head cgrp_link_list;
300
	struct cgroup *cgrp;
301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318
	/*
	 * List running through cg_cgroup_links pointing at a
	 * single css_set object, anchored on css_set->cg_links
	 */
	struct list_head cg_link_list;
	struct css_set *cg;
};

/* The default css_set - used by init and its children prior to any
 * hierarchies being mounted. It contains a pointer to the root state
 * for each subsystem. Also used to anchor the list of css_sets. Not
 * reference-counted, to improve performance when child cgroups
 * haven't been created.
 */

static struct css_set init_css_set;
static struct cg_cgroup_link init_css_set_link;

319 320
static int cgroup_init_idr(struct cgroup_subsys *ss,
			   struct cgroup_subsys_state *css);
K
KAMEZAWA Hiroyuki 已提交
321

322 323 324 325 326 327
/* css_set_lock protects the list of css_set objects, and the
 * chain of tasks off each css_set.  Nests outside task->alloc_lock
 * due to cgroup_iter_start() */
static DEFINE_RWLOCK(css_set_lock);
static int css_set_count;

328 329 330 331 332
/*
 * hash table for cgroup groups. This improves the performance to find
 * an existing css_set. This hash doesn't (currently) take into
 * account cgroups in empty hierarchies.
 */
333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351
#define CSS_SET_HASH_BITS	7
#define CSS_SET_TABLE_SIZE	(1 << CSS_SET_HASH_BITS)
static struct hlist_head css_set_table[CSS_SET_TABLE_SIZE];

static struct hlist_head *css_set_hash(struct cgroup_subsys_state *css[])
{
	int i;
	int index;
	unsigned long tmp = 0UL;

	for (i = 0; i < CGROUP_SUBSYS_COUNT; i++)
		tmp += (unsigned long)css[i];
	tmp = (tmp >> 16) ^ tmp;

	index = hash_long(tmp, CSS_SET_HASH_BITS);

	return &css_set_table[index];
}

352 353 354 355
/* We don't maintain the lists running through each css_set to its
 * task until after the first call to cgroup_iter_start(). This
 * reduces the fork()/exit() overhead for people who have cgroups
 * compiled into their kernel but not actually in use */
356
static int use_task_css_set_links __read_mostly;
357

358
static void __put_css_set(struct css_set *cg, int taskexit)
359
{
K
KOSAKI Motohiro 已提交
360 361
	struct cg_cgroup_link *link;
	struct cg_cgroup_link *saved_link;
362 363 364 365 366 367 368 369 370 371 372 373
	/*
	 * Ensure that the refcount doesn't hit zero while any readers
	 * can see it. Similar to atomic_dec_and_lock(), but for an
	 * rwlock
	 */
	if (atomic_add_unless(&cg->refcount, -1, 1))
		return;
	write_lock(&css_set_lock);
	if (!atomic_dec_and_test(&cg->refcount)) {
		write_unlock(&css_set_lock);
		return;
	}
374

375 376 377 378 379 380 381 382 383
	/* This css_set is dead. unlink it and release cgroup refcounts */
	hlist_del(&cg->hlist);
	css_set_count--;

	list_for_each_entry_safe(link, saved_link, &cg->cg_links,
				 cg_link_list) {
		struct cgroup *cgrp = link->cgrp;
		list_del(&link->cg_link_list);
		list_del(&link->cgrp_link_list);
384 385
		if (atomic_dec_and_test(&cgrp->count) &&
		    notify_on_release(cgrp)) {
386
			if (taskexit)
387 388
				set_bit(CGRP_RELEASABLE, &cgrp->flags);
			check_for_release(cgrp);
389
		}
390 391

		kfree(link);
392
	}
393 394

	write_unlock(&css_set_lock);
395
	kfree_rcu(cg, rcu_head);
396 397
}

398 399 400 401 402
/*
 * refcounted get/put for css_set objects
 */
static inline void get_css_set(struct css_set *cg)
{
403
	atomic_inc(&cg->refcount);
404 405 406 407
}

static inline void put_css_set(struct css_set *cg)
{
408
	__put_css_set(cg, 0);
409 410
}

411 412
static inline void put_css_set_taskexit(struct css_set *cg)
{
413
	__put_css_set(cg, 1);
414 415
}

416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487
/*
 * compare_css_sets - helper function for find_existing_css_set().
 * @cg: candidate css_set being tested
 * @old_cg: existing css_set for a task
 * @new_cgrp: cgroup that's being entered by the task
 * @template: desired set of css pointers in css_set (pre-calculated)
 *
 * Returns true if "cg" matches "old_cg" except for the hierarchy
 * which "new_cgrp" belongs to, for which it should match "new_cgrp".
 */
static bool compare_css_sets(struct css_set *cg,
			     struct css_set *old_cg,
			     struct cgroup *new_cgrp,
			     struct cgroup_subsys_state *template[])
{
	struct list_head *l1, *l2;

	if (memcmp(template, cg->subsys, sizeof(cg->subsys))) {
		/* Not all subsystems matched */
		return false;
	}

	/*
	 * Compare cgroup pointers in order to distinguish between
	 * different cgroups in heirarchies with no subsystems. We
	 * could get by with just this check alone (and skip the
	 * memcmp above) but on most setups the memcmp check will
	 * avoid the need for this more expensive check on almost all
	 * candidates.
	 */

	l1 = &cg->cg_links;
	l2 = &old_cg->cg_links;
	while (1) {
		struct cg_cgroup_link *cgl1, *cgl2;
		struct cgroup *cg1, *cg2;

		l1 = l1->next;
		l2 = l2->next;
		/* See if we reached the end - both lists are equal length. */
		if (l1 == &cg->cg_links) {
			BUG_ON(l2 != &old_cg->cg_links);
			break;
		} else {
			BUG_ON(l2 == &old_cg->cg_links);
		}
		/* Locate the cgroups associated with these links. */
		cgl1 = list_entry(l1, struct cg_cgroup_link, cg_link_list);
		cgl2 = list_entry(l2, struct cg_cgroup_link, cg_link_list);
		cg1 = cgl1->cgrp;
		cg2 = cgl2->cgrp;
		/* Hierarchies should be linked in the same order. */
		BUG_ON(cg1->root != cg2->root);

		/*
		 * If this hierarchy is the hierarchy of the cgroup
		 * that's changing, then we need to check that this
		 * css_set points to the new cgroup; if it's any other
		 * hierarchy, then this css_set should point to the
		 * same cgroup as the old css_set.
		 */
		if (cg1->root == new_cgrp->root) {
			if (cg1 != new_cgrp)
				return false;
		} else {
			if (cg1 != cg2)
				return false;
		}
	}
	return true;
}

488 489 490
/*
 * find_existing_css_set() is a helper for
 * find_css_set(), and checks to see whether an existing
491
 * css_set is suitable.
492 493 494 495
 *
 * oldcg: the cgroup group that we're using before the cgroup
 * transition
 *
496
 * cgrp: the cgroup that we're moving into
497 498 499 500 501 502
 *
 * template: location in which to build the desired set of subsystem
 * state objects for the new cgroup group
 */
static struct css_set *find_existing_css_set(
	struct css_set *oldcg,
503
	struct cgroup *cgrp,
504
	struct cgroup_subsys_state *template[])
505 506
{
	int i;
507
	struct cgroupfs_root *root = cgrp->root;
508 509 510
	struct hlist_head *hhead;
	struct hlist_node *node;
	struct css_set *cg;
511

B
Ben Blum 已提交
512 513 514 515 516
	/*
	 * Build the set of subsystem state objects that we want to see in the
	 * new css_set. while subsystems can change globally, the entries here
	 * won't change, so no need for locking.
	 */
517
	for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
L
Li Zefan 已提交
518
		if (root->subsys_bits & (1UL << i)) {
519 520 521
			/* Subsystem is in this hierarchy. So we want
			 * the subsystem state from the new
			 * cgroup */
522
			template[i] = cgrp->subsys[i];
523 524 525 526 527 528 529
		} else {
			/* Subsystem is not in this hierarchy, so we
			 * don't want to change the subsystem state */
			template[i] = oldcg->subsys[i];
		}
	}

530 531
	hhead = css_set_hash(template);
	hlist_for_each_entry(cg, node, hhead, hlist) {
532 533 534 535 536
		if (!compare_css_sets(cg, oldcg, cgrp, template))
			continue;

		/* This css_set matches what we need */
		return cg;
537
	}
538 539 540 541 542

	/* No existing cgroup group matched */
	return NULL;
}

543 544 545 546 547 548 549 550 551 552 553
static void free_cg_links(struct list_head *tmp)
{
	struct cg_cgroup_link *link;
	struct cg_cgroup_link *saved_link;

	list_for_each_entry_safe(link, saved_link, tmp, cgrp_link_list) {
		list_del(&link->cgrp_link_list);
		kfree(link);
	}
}

554 555
/*
 * allocate_cg_links() allocates "count" cg_cgroup_link structures
556
 * and chains them on tmp through their cgrp_link_list fields. Returns 0 on
557 558 559 560 561 562 563 564 565 566
 * success or a negative error
 */
static int allocate_cg_links(int count, struct list_head *tmp)
{
	struct cg_cgroup_link *link;
	int i;
	INIT_LIST_HEAD(tmp);
	for (i = 0; i < count; i++) {
		link = kmalloc(sizeof(*link), GFP_KERNEL);
		if (!link) {
567
			free_cg_links(tmp);
568 569
			return -ENOMEM;
		}
570
		list_add(&link->cgrp_link_list, tmp);
571 572 573 574
	}
	return 0;
}

575 576 577 578 579 580 581 582 583 584 585 586 587 588 589
/**
 * link_css_set - a helper function to link a css_set to a cgroup
 * @tmp_cg_links: cg_cgroup_link objects allocated by allocate_cg_links()
 * @cg: the css_set to be linked
 * @cgrp: the destination cgroup
 */
static void link_css_set(struct list_head *tmp_cg_links,
			 struct css_set *cg, struct cgroup *cgrp)
{
	struct cg_cgroup_link *link;

	BUG_ON(list_empty(tmp_cg_links));
	link = list_first_entry(tmp_cg_links, struct cg_cgroup_link,
				cgrp_link_list);
	link->cg = cg;
590
	link->cgrp = cgrp;
591
	atomic_inc(&cgrp->count);
592
	list_move(&link->cgrp_link_list, &cgrp->css_sets);
593 594 595 596 597
	/*
	 * Always add links to the tail of the list so that the list
	 * is sorted by order of hierarchy creation
	 */
	list_add_tail(&link->cg_link_list, &cg->cg_links);
598 599
}

600 601 602 603 604 605 606 607
/*
 * find_css_set() takes an existing cgroup group and a
 * cgroup object, and returns a css_set object that's
 * equivalent to the old group, but with the given cgroup
 * substituted into the appropriate hierarchy. Must be called with
 * cgroup_mutex held
 */
static struct css_set *find_css_set(
608
	struct css_set *oldcg, struct cgroup *cgrp)
609 610 611 612 613 614
{
	struct css_set *res;
	struct cgroup_subsys_state *template[CGROUP_SUBSYS_COUNT];

	struct list_head tmp_cg_links;

615
	struct hlist_head *hhead;
616
	struct cg_cgroup_link *link;
617

618 619
	/* First see if we already have a cgroup group that matches
	 * the desired set */
620
	read_lock(&css_set_lock);
621
	res = find_existing_css_set(oldcg, cgrp, template);
622 623
	if (res)
		get_css_set(res);
624
	read_unlock(&css_set_lock);
625 626 627 628 629 630 631 632 633 634 635 636 637 638

	if (res)
		return res;

	res = kmalloc(sizeof(*res), GFP_KERNEL);
	if (!res)
		return NULL;

	/* Allocate all the cg_cgroup_link objects that we'll need */
	if (allocate_cg_links(root_count, &tmp_cg_links) < 0) {
		kfree(res);
		return NULL;
	}

639
	atomic_set(&res->refcount, 1);
640 641
	INIT_LIST_HEAD(&res->cg_links);
	INIT_LIST_HEAD(&res->tasks);
642
	INIT_HLIST_NODE(&res->hlist);
643 644 645 646 647 648 649

	/* Copy the set of subsystem state objects generated in
	 * find_existing_css_set() */
	memcpy(res->subsys, template, sizeof(res->subsys));

	write_lock(&css_set_lock);
	/* Add reference counts and links from the new css_set. */
650 651 652 653 654 655
	list_for_each_entry(link, &oldcg->cg_links, cg_link_list) {
		struct cgroup *c = link->cgrp;
		if (c->root == cgrp->root)
			c = cgrp;
		link_css_set(&tmp_cg_links, res, c);
	}
656 657 658 659

	BUG_ON(!list_empty(&tmp_cg_links));

	css_set_count++;
660 661 662 663 664

	/* Add this cgroup group to the hash table */
	hhead = css_set_hash(res->subsys);
	hlist_add_head(&res->hlist, hhead);

665 666 667
	write_unlock(&css_set_lock);

	return res;
668 669
}

670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704
/*
 * Return the cgroup for "task" from the given hierarchy. Must be
 * called with cgroup_mutex held.
 */
static struct cgroup *task_cgroup_from_root(struct task_struct *task,
					    struct cgroupfs_root *root)
{
	struct css_set *css;
	struct cgroup *res = NULL;

	BUG_ON(!mutex_is_locked(&cgroup_mutex));
	read_lock(&css_set_lock);
	/*
	 * No need to lock the task - since we hold cgroup_mutex the
	 * task can't change groups, so the only thing that can happen
	 * is that it exits and its css is set back to init_css_set.
	 */
	css = task->cgroups;
	if (css == &init_css_set) {
		res = &root->top_cgroup;
	} else {
		struct cg_cgroup_link *link;
		list_for_each_entry(link, &css->cg_links, cg_link_list) {
			struct cgroup *c = link->cgrp;
			if (c->root == root) {
				res = c;
				break;
			}
		}
	}
	read_unlock(&css_set_lock);
	BUG_ON(!res);
	return res;
}

705 706 707 708 709 710 711 712 713 714
/*
 * There is one global cgroup mutex. We also require taking
 * task_lock() when dereferencing a task's cgroup subsys pointers.
 * See "The task_lock() exception", at the end of this comment.
 *
 * A task must hold cgroup_mutex to modify cgroups.
 *
 * Any task can increment and decrement the count field without lock.
 * So in general, code holding cgroup_mutex can't rely on the count
 * field not changing.  However, if the count goes to zero, then only
715
 * cgroup_attach_task() can increment it again.  Because a count of zero
716 717 718 719 720 721 722 723 724 725 726 727 728
 * means that no tasks are currently attached, therefore there is no
 * way a task attached to that cgroup can fork (the other way to
 * increment the count).  So code holding cgroup_mutex can safely
 * assume that if the count is zero, it will stay zero. Similarly, if
 * a task holds cgroup_mutex on a cgroup with zero count, it
 * knows that the cgroup won't be removed, as cgroup_rmdir()
 * needs that mutex.
 *
 * The fork and exit callbacks cgroup_fork() and cgroup_exit(), don't
 * (usually) take cgroup_mutex.  These are the two most performance
 * critical pieces of code here.  The exception occurs on cgroup_exit(),
 * when a task in a notify_on_release cgroup exits.  Then cgroup_mutex
 * is taken, and if the cgroup count is zero, a usermode call made
L
Li Zefan 已提交
729 730
 * to the release agent with the name of the cgroup (path relative to
 * the root of cgroup file system) as the argument.
731 732 733 734 735 736 737 738 739 740 741
 *
 * A cgroup can only be deleted if both its 'count' of using tasks
 * is zero, and its list of 'children' cgroups is empty.  Since all
 * tasks in the system use _some_ cgroup, and since there is always at
 * least one task in the system (init, pid == 1), therefore, top_cgroup
 * always has either children cgroups and/or using tasks.  So we don't
 * need a special hack to ensure that top_cgroup cannot be deleted.
 *
 *	The task_lock() exception
 *
 * The need for this exception arises from the action of
742
 * cgroup_attach_task(), which overwrites one tasks cgroup pointer with
L
Li Zefan 已提交
743
 * another.  It does so using cgroup_mutex, however there are
744 745 746
 * several performance critical places that need to reference
 * task->cgroup without the expense of grabbing a system global
 * mutex.  Therefore except as noted below, when dereferencing or, as
747
 * in cgroup_attach_task(), modifying a task'ss cgroup pointer we use
748 749 750 751
 * task_lock(), which acts on a spinlock (task->alloc_lock) already in
 * the task_struct routinely used for such matters.
 *
 * P.S.  One more locking exception.  RCU is used to guard the
752
 * update of a tasks cgroup pointer by cgroup_attach_task()
753 754 755 756 757 758 759 760 761 762
 */

/**
 * cgroup_lock - lock out any changes to cgroup structures
 *
 */
void cgroup_lock(void)
{
	mutex_lock(&cgroup_mutex);
}
B
Ben Blum 已提交
763
EXPORT_SYMBOL_GPL(cgroup_lock);
764 765 766 767 768 769 770 771 772 773

/**
 * cgroup_unlock - release lock on cgroup changes
 *
 * Undo the lock taken in a previous cgroup_lock() call.
 */
void cgroup_unlock(void)
{
	mutex_unlock(&cgroup_mutex);
}
B
Ben Blum 已提交
774
EXPORT_SYMBOL_GPL(cgroup_unlock);
775 776 777 778 779 780 781 782

/*
 * A couple of forward declarations required, due to cyclic reference loop:
 * cgroup_mkdir -> cgroup_create -> cgroup_populate_dir ->
 * cgroup_add_file -> cgroup_create_file -> cgroup_dir_inode_operations
 * -> cgroup_mkdir.
 */

783
static int cgroup_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode);
784
static struct dentry *cgroup_lookup(struct inode *, struct dentry *, struct nameidata *);
785
static int cgroup_rmdir(struct inode *unused_dir, struct dentry *dentry);
786
static int cgroup_populate_dir(struct cgroup *cgrp);
787
static const struct inode_operations cgroup_dir_inode_operations;
788
static const struct file_operations proc_cgroupstats_operations;
789 790

static struct backing_dev_info cgroup_backing_dev_info = {
791
	.name		= "cgroup",
792
	.capabilities	= BDI_CAP_NO_ACCT_AND_WRITEBACK,
793
};
794

K
KAMEZAWA Hiroyuki 已提交
795 796 797
static int alloc_css_id(struct cgroup_subsys *ss,
			struct cgroup *parent, struct cgroup *child);

A
Al Viro 已提交
798
static struct inode *cgroup_new_inode(umode_t mode, struct super_block *sb)
799 800 801 802
{
	struct inode *inode = new_inode(sb);

	if (inode) {
803
		inode->i_ino = get_next_ino();
804
		inode->i_mode = mode;
805 806
		inode->i_uid = current_fsuid();
		inode->i_gid = current_fsgid();
807 808 809 810 811 812
		inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
		inode->i_mapping->backing_dev_info = &cgroup_backing_dev_info;
	}
	return inode;
}

813 814 815 816
/*
 * Call subsys's pre_destroy handler.
 * This is called before css refcnt check.
 */
817
static int cgroup_call_pre_destroy(struct cgroup *cgrp)
818 819
{
	struct cgroup_subsys *ss;
820 821
	int ret = 0;

822
	for_each_subsys(cgrp->root, ss)
823
		if (ss->pre_destroy) {
824
			ret = ss->pre_destroy(cgrp);
825
			if (ret)
826
				break;
827
		}
828

829
	return ret;
830 831
}

832 833 834 835
static void cgroup_diput(struct dentry *dentry, struct inode *inode)
{
	/* is dentry a directory ? if so, kfree() associated cgroup */
	if (S_ISDIR(inode->i_mode)) {
836
		struct cgroup *cgrp = dentry->d_fsdata;
837
		struct cgroup_subsys *ss;
838
		BUG_ON(!(cgroup_is_removed(cgrp)));
839 840 841 842 843 844 845
		/* It's possible for external users to be holding css
		 * reference counts on a cgroup; css_put() needs to
		 * be able to access the cgroup after decrementing
		 * the reference count in order to know if it needs to
		 * queue the cgroup to be handled by the release
		 * agent */
		synchronize_rcu();
846 847 848 849 850

		mutex_lock(&cgroup_mutex);
		/*
		 * Release the subsystem state objects.
		 */
851
		for_each_subsys(cgrp->root, ss)
852
			ss->destroy(cgrp);
853 854 855 856

		cgrp->root->number_of_cgroups--;
		mutex_unlock(&cgroup_mutex);

857 858 859 860
		/*
		 * Drop the active superblock reference that we took when we
		 * created the cgroup
		 */
861 862
		deactivate_super(cgrp->root->sb);

863 864 865 866 867 868
		/*
		 * if we're getting rid of the cgroup, refcount should ensure
		 * that there are no pidlists left.
		 */
		BUG_ON(!list_empty(&cgrp->pidlists));

869
		kfree_rcu(cgrp, rcu_head);
870 871 872 873
	}
	iput(inode);
}

874 875 876 877 878
static int cgroup_delete(const struct dentry *d)
{
	return 1;
}

879 880 881 882 883 884 885 886 887 888 889 890 891 892
static void remove_dir(struct dentry *d)
{
	struct dentry *parent = dget(d->d_parent);

	d_delete(d);
	simple_rmdir(parent->d_inode, d);
	dput(parent);
}

static void cgroup_clear_directory(struct dentry *dentry)
{
	struct list_head *node;

	BUG_ON(!mutex_is_locked(&dentry->d_inode->i_mutex));
N
Nick Piggin 已提交
893
	spin_lock(&dentry->d_lock);
894 895 896
	node = dentry->d_subdirs.next;
	while (node != &dentry->d_subdirs) {
		struct dentry *d = list_entry(node, struct dentry, d_u.d_child);
N
Nick Piggin 已提交
897 898

		spin_lock_nested(&d->d_lock, DENTRY_D_LOCK_NESTED);
899 900 901 902 903
		list_del_init(node);
		if (d->d_inode) {
			/* This should never be called on a cgroup
			 * directory with child cgroups */
			BUG_ON(d->d_inode->i_mode & S_IFDIR);
904
			dget_dlock(d);
N
Nick Piggin 已提交
905 906
			spin_unlock(&d->d_lock);
			spin_unlock(&dentry->d_lock);
907 908 909
			d_delete(d);
			simple_unlink(dentry->d_inode, d);
			dput(d);
N
Nick Piggin 已提交
910 911 912
			spin_lock(&dentry->d_lock);
		} else
			spin_unlock(&d->d_lock);
913 914
		node = dentry->d_subdirs.next;
	}
N
Nick Piggin 已提交
915
	spin_unlock(&dentry->d_lock);
916 917 918 919 920 921 922
}

/*
 * NOTE : the dentry must have been dget()'ed
 */
static void cgroup_d_remove_dir(struct dentry *dentry)
{
N
Nick Piggin 已提交
923 924
	struct dentry *parent;

925 926
	cgroup_clear_directory(dentry);

N
Nick Piggin 已提交
927 928
	parent = dentry->d_parent;
	spin_lock(&parent->d_lock);
929
	spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
930
	list_del_init(&dentry->d_u.d_child);
N
Nick Piggin 已提交
931 932
	spin_unlock(&dentry->d_lock);
	spin_unlock(&parent->d_lock);
933 934 935
	remove_dir(dentry);
}

936 937 938 939 940 941
/*
 * A queue for waiters to do rmdir() cgroup. A tasks will sleep when
 * cgroup->count == 0 && list_empty(&cgroup->children) && subsys has some
 * reference to css->refcnt. In general, this refcnt is expected to goes down
 * to zero, soon.
 *
942
 * CGRP_WAIT_ON_RMDIR flag is set under cgroup's inode->i_mutex;
943
 */
944
static DECLARE_WAIT_QUEUE_HEAD(cgroup_rmdir_waitq);
945

946
static void cgroup_wakeup_rmdir_waiter(struct cgroup *cgrp)
947
{
948
	if (unlikely(test_and_clear_bit(CGRP_WAIT_ON_RMDIR, &cgrp->flags)))
949 950 951
		wake_up_all(&cgroup_rmdir_waitq);
}

952 953 954 955 956 957 958 959 960 961 962
void cgroup_exclude_rmdir(struct cgroup_subsys_state *css)
{
	css_get(css);
}

void cgroup_release_and_wakeup_rmdir(struct cgroup_subsys_state *css)
{
	cgroup_wakeup_rmdir_waiter(css->cgroup);
	css_put(css);
}

B
Ben Blum 已提交
963
/*
B
Ben Blum 已提交
964 965 966
 * Call with cgroup_mutex held. Drops reference counts on modules, including
 * any duplicate ones that parse_cgroupfs_options took. If this function
 * returns an error, no reference counts are touched.
B
Ben Blum 已提交
967
 */
968 969 970 971
static int rebind_subsystems(struct cgroupfs_root *root,
			      unsigned long final_bits)
{
	unsigned long added_bits, removed_bits;
972
	struct cgroup *cgrp = &root->top_cgroup;
973 974
	int i;

B
Ben Blum 已提交
975
	BUG_ON(!mutex_is_locked(&cgroup_mutex));
T
Tejun Heo 已提交
976
	BUG_ON(!mutex_is_locked(&cgroup_root_mutex));
B
Ben Blum 已提交
977

978 979 980 981
	removed_bits = root->actual_subsys_bits & ~final_bits;
	added_bits = final_bits & ~root->actual_subsys_bits;
	/* Check that any added subsystems are currently free */
	for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
L
Li Zefan 已提交
982
		unsigned long bit = 1UL << i;
983 984 985
		struct cgroup_subsys *ss = subsys[i];
		if (!(bit & added_bits))
			continue;
B
Ben Blum 已提交
986 987 988 989 990 991
		/*
		 * Nobody should tell us to do a subsys that doesn't exist:
		 * parse_cgroupfs_options should catch that case and refcounts
		 * ensure that subsystems won't disappear once selected.
		 */
		BUG_ON(ss == NULL);
992 993 994 995 996 997 998 999 1000 1001
		if (ss->root != &rootnode) {
			/* Subsystem isn't free */
			return -EBUSY;
		}
	}

	/* Currently we don't handle adding/removing subsystems when
	 * any child cgroups exist. This is theoretically supportable
	 * but involves complex error handling, so it's being left until
	 * later */
1002
	if (root->number_of_cgroups > 1)
1003 1004 1005 1006 1007 1008 1009 1010
		return -EBUSY;

	/* Process each subsystem */
	for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
		struct cgroup_subsys *ss = subsys[i];
		unsigned long bit = 1UL << i;
		if (bit & added_bits) {
			/* We're binding this subsystem to this hierarchy */
B
Ben Blum 已提交
1011
			BUG_ON(ss == NULL);
1012
			BUG_ON(cgrp->subsys[i]);
1013 1014
			BUG_ON(!dummytop->subsys[i]);
			BUG_ON(dummytop->subsys[i]->cgroup != dummytop);
1015
			mutex_lock(&ss->hierarchy_mutex);
1016 1017
			cgrp->subsys[i] = dummytop->subsys[i];
			cgrp->subsys[i]->cgroup = cgrp;
1018
			list_move(&ss->sibling, &root->subsys_list);
1019
			ss->root = root;
1020
			if (ss->bind)
1021
				ss->bind(cgrp);
1022
			mutex_unlock(&ss->hierarchy_mutex);
B
Ben Blum 已提交
1023
			/* refcount was already taken, and we're keeping it */
1024 1025
		} else if (bit & removed_bits) {
			/* We're removing this subsystem */
B
Ben Blum 已提交
1026
			BUG_ON(ss == NULL);
1027 1028
			BUG_ON(cgrp->subsys[i] != dummytop->subsys[i]);
			BUG_ON(cgrp->subsys[i]->cgroup != cgrp);
1029
			mutex_lock(&ss->hierarchy_mutex);
1030
			if (ss->bind)
1031
				ss->bind(dummytop);
1032
			dummytop->subsys[i]->cgroup = dummytop;
1033
			cgrp->subsys[i] = NULL;
1034
			subsys[i]->root = &rootnode;
1035
			list_move(&ss->sibling, &rootnode.subsys_list);
1036
			mutex_unlock(&ss->hierarchy_mutex);
B
Ben Blum 已提交
1037 1038
			/* subsystem is now free - drop reference on module */
			module_put(ss->module);
1039 1040
		} else if (bit & final_bits) {
			/* Subsystem state should already exist */
B
Ben Blum 已提交
1041
			BUG_ON(ss == NULL);
1042
			BUG_ON(!cgrp->subsys[i]);
B
Ben Blum 已提交
1043 1044 1045 1046 1047 1048 1049 1050
			/*
			 * a refcount was taken, but we already had one, so
			 * drop the extra reference.
			 */
			module_put(ss->module);
#ifdef CONFIG_MODULE_UNLOAD
			BUG_ON(ss->module && !module_refcount(ss->module));
#endif
1051 1052
		} else {
			/* Subsystem state shouldn't exist */
1053
			BUG_ON(cgrp->subsys[i]);
1054 1055 1056 1057 1058 1059 1060 1061
		}
	}
	root->subsys_bits = root->actual_subsys_bits = final_bits;
	synchronize_rcu();

	return 0;
}

1062
static int cgroup_show_options(struct seq_file *seq, struct dentry *dentry)
1063
{
1064
	struct cgroupfs_root *root = dentry->d_sb->s_fs_info;
1065 1066
	struct cgroup_subsys *ss;

T
Tejun Heo 已提交
1067
	mutex_lock(&cgroup_root_mutex);
1068 1069 1070 1071
	for_each_subsys(root, ss)
		seq_printf(seq, ",%s", ss->name);
	if (test_bit(ROOT_NOPREFIX, &root->flags))
		seq_puts(seq, ",noprefix");
1072 1073
	if (strlen(root->release_agent_path))
		seq_printf(seq, ",release_agent=%s", root->release_agent_path);
1074 1075
	if (clone_children(&root->top_cgroup))
		seq_puts(seq, ",clone_children");
1076 1077
	if (strlen(root->name))
		seq_printf(seq, ",name=%s", root->name);
T
Tejun Heo 已提交
1078
	mutex_unlock(&cgroup_root_mutex);
1079 1080 1081 1082 1083 1084
	return 0;
}

struct cgroup_sb_opts {
	unsigned long subsys_bits;
	unsigned long flags;
1085
	char *release_agent;
1086
	bool clone_children;
1087
	char *name;
1088 1089
	/* User explicitly requested empty subsystem */
	bool none;
1090 1091

	struct cgroupfs_root *new_root;
1092

1093 1094
};

B
Ben Blum 已提交
1095 1096
/*
 * Convert a hierarchy specifier into a bitmask of subsystems and flags. Call
B
Ben Blum 已提交
1097 1098 1099
 * with cgroup_mutex held to protect the subsys[] array. This function takes
 * refcounts on subsystems to be used, unless it returns error, in which case
 * no refcounts are taken.
B
Ben Blum 已提交
1100
 */
B
Ben Blum 已提交
1101
static int parse_cgroupfs_options(char *data, struct cgroup_sb_opts *opts)
1102
{
1103 1104
	char *token, *o = data;
	bool all_ss = false, one_ss = false;
1105
	unsigned long mask = (unsigned long)-1;
B
Ben Blum 已提交
1106 1107
	int i;
	bool module_pin_failed = false;
1108

B
Ben Blum 已提交
1109 1110
	BUG_ON(!mutex_is_locked(&cgroup_mutex));

1111 1112 1113
#ifdef CONFIG_CPUSETS
	mask = ~(1UL << cpuset_subsys_id);
#endif
1114

1115
	memset(opts, 0, sizeof(*opts));
1116 1117 1118 1119

	while ((token = strsep(&o, ",")) != NULL) {
		if (!*token)
			return -EINVAL;
1120
		if (!strcmp(token, "none")) {
1121 1122
			/* Explicitly have no subsystems */
			opts->none = true;
1123 1124 1125 1126 1127 1128 1129 1130 1131 1132
			continue;
		}
		if (!strcmp(token, "all")) {
			/* Mutually exclusive option 'all' + subsystem name */
			if (one_ss)
				return -EINVAL;
			all_ss = true;
			continue;
		}
		if (!strcmp(token, "noprefix")) {
1133
			set_bit(ROOT_NOPREFIX, &opts->flags);
1134 1135 1136
			continue;
		}
		if (!strcmp(token, "clone_children")) {
1137
			opts->clone_children = true;
1138 1139 1140
			continue;
		}
		if (!strncmp(token, "release_agent=", 14)) {
1141 1142 1143
			/* Specifying two release agents is forbidden */
			if (opts->release_agent)
				return -EINVAL;
1144
			opts->release_agent =
1145
				kstrndup(token + 14, PATH_MAX - 1, GFP_KERNEL);
1146 1147
			if (!opts->release_agent)
				return -ENOMEM;
1148 1149 1150
			continue;
		}
		if (!strncmp(token, "name=", 5)) {
1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167
			const char *name = token + 5;
			/* Can't specify an empty name */
			if (!strlen(name))
				return -EINVAL;
			/* Must match [\w.-]+ */
			for (i = 0; i < strlen(name); i++) {
				char c = name[i];
				if (isalnum(c))
					continue;
				if ((c == '.') || (c == '-') || (c == '_'))
					continue;
				return -EINVAL;
			}
			/* Specifying two names is forbidden */
			if (opts->name)
				return -EINVAL;
			opts->name = kstrndup(name,
1168
					      MAX_CGROUP_ROOT_NAMELEN - 1,
1169 1170 1171
					      GFP_KERNEL);
			if (!opts->name)
				return -ENOMEM;
1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198

			continue;
		}

		for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
			struct cgroup_subsys *ss = subsys[i];
			if (ss == NULL)
				continue;
			if (strcmp(token, ss->name))
				continue;
			if (ss->disabled)
				continue;

			/* Mutually exclusive option 'all' + subsystem name */
			if (all_ss)
				return -EINVAL;
			set_bit(i, &opts->subsys_bits);
			one_ss = true;

			break;
		}
		if (i == CGROUP_SUBSYS_COUNT)
			return -ENOENT;
	}

	/*
	 * If the 'all' option was specified select all the subsystems,
1199 1200
	 * otherwise if 'none', 'name=' and a subsystem name options
	 * were not specified, let's default to 'all'
1201
	 */
1202
	if (all_ss || (!one_ss && !opts->none && !opts->name)) {
1203 1204 1205 1206 1207 1208 1209
		for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
			struct cgroup_subsys *ss = subsys[i];
			if (ss == NULL)
				continue;
			if (ss->disabled)
				continue;
			set_bit(i, &opts->subsys_bits);
1210 1211 1212
		}
	}

1213 1214
	/* Consistency checks */

1215 1216 1217 1218 1219 1220 1221 1222 1223
	/*
	 * Option noprefix was introduced just for backward compatibility
	 * with the old cpuset, so we allow noprefix only if mounting just
	 * the cpuset subsystem.
	 */
	if (test_bit(ROOT_NOPREFIX, &opts->flags) &&
	    (opts->subsys_bits & mask))
		return -EINVAL;

1224 1225 1226 1227 1228 1229 1230 1231 1232

	/* Can't specify "none" and some subsystems */
	if (opts->subsys_bits && opts->none)
		return -EINVAL;

	/*
	 * We either have to specify by name or by subsystems. (So all
	 * empty hierarchies must have a name).
	 */
1233
	if (!opts->subsys_bits && !opts->name)
1234 1235
		return -EINVAL;

B
Ben Blum 已提交
1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268
	/*
	 * Grab references on all the modules we'll need, so the subsystems
	 * don't dance around before rebind_subsystems attaches them. This may
	 * take duplicate reference counts on a subsystem that's already used,
	 * but rebind_subsystems handles this case.
	 */
	for (i = CGROUP_BUILTIN_SUBSYS_COUNT; i < CGROUP_SUBSYS_COUNT; i++) {
		unsigned long bit = 1UL << i;

		if (!(bit & opts->subsys_bits))
			continue;
		if (!try_module_get(subsys[i]->module)) {
			module_pin_failed = true;
			break;
		}
	}
	if (module_pin_failed) {
		/*
		 * oops, one of the modules was going away. this means that we
		 * raced with a module_delete call, and to the user this is
		 * essentially a "subsystem doesn't exist" case.
		 */
		for (i--; i >= CGROUP_BUILTIN_SUBSYS_COUNT; i--) {
			/* drop refcounts only on the ones we took */
			unsigned long bit = 1UL << i;

			if (!(bit & opts->subsys_bits))
				continue;
			module_put(subsys[i]->module);
		}
		return -ENOENT;
	}

1269 1270 1271
	return 0;
}

B
Ben Blum 已提交
1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283
static void drop_parsed_module_refcounts(unsigned long subsys_bits)
{
	int i;
	for (i = CGROUP_BUILTIN_SUBSYS_COUNT; i < CGROUP_SUBSYS_COUNT; i++) {
		unsigned long bit = 1UL << i;

		if (!(bit & subsys_bits))
			continue;
		module_put(subsys[i]->module);
	}
}

1284 1285 1286 1287
static int cgroup_remount(struct super_block *sb, int *flags, char *data)
{
	int ret = 0;
	struct cgroupfs_root *root = sb->s_fs_info;
1288
	struct cgroup *cgrp = &root->top_cgroup;
1289 1290
	struct cgroup_sb_opts opts;

1291
	mutex_lock(&cgrp->dentry->d_inode->i_mutex);
1292
	mutex_lock(&cgroup_mutex);
T
Tejun Heo 已提交
1293
	mutex_lock(&cgroup_root_mutex);
1294 1295 1296 1297 1298 1299

	/* See what subsystems are wanted */
	ret = parse_cgroupfs_options(data, &opts);
	if (ret)
		goto out_unlock;

1300 1301 1302 1303 1304
	/* See feature-removal-schedule.txt */
	if (opts.subsys_bits != root->actual_subsys_bits || opts.release_agent)
		pr_warning("cgroup: option changes via remount are deprecated (pid=%d comm=%s)\n",
			   task_tgid_nr(current), current->comm);

B
Ben Blum 已提交
1305 1306 1307
	/* Don't allow flags or name to change at remount */
	if (opts.flags != root->flags ||
	    (opts.name && strcmp(opts.name, root->name))) {
1308
		ret = -EINVAL;
B
Ben Blum 已提交
1309
		drop_parsed_module_refcounts(opts.subsys_bits);
1310 1311 1312
		goto out_unlock;
	}

1313
	ret = rebind_subsystems(root, opts.subsys_bits);
B
Ben Blum 已提交
1314 1315
	if (ret) {
		drop_parsed_module_refcounts(opts.subsys_bits);
1316
		goto out_unlock;
B
Ben Blum 已提交
1317
	}
1318

1319 1320
	/* clear out any existing files and repopulate subsystem files */
	cgroup_clear_directory(cgrp->dentry);
1321
	cgroup_populate_dir(cgrp);
1322

1323 1324
	if (opts.release_agent)
		strcpy(root->release_agent_path, opts.release_agent);
1325
 out_unlock:
1326
	kfree(opts.release_agent);
1327
	kfree(opts.name);
T
Tejun Heo 已提交
1328
	mutex_unlock(&cgroup_root_mutex);
1329
	mutex_unlock(&cgroup_mutex);
1330
	mutex_unlock(&cgrp->dentry->d_inode->i_mutex);
1331 1332 1333
	return ret;
}

1334
static const struct super_operations cgroup_ops = {
1335 1336 1337 1338 1339 1340
	.statfs = simple_statfs,
	.drop_inode = generic_delete_inode,
	.show_options = cgroup_show_options,
	.remount_fs = cgroup_remount,
};

1341 1342 1343 1344 1345 1346
static void init_cgroup_housekeeping(struct cgroup *cgrp)
{
	INIT_LIST_HEAD(&cgrp->sibling);
	INIT_LIST_HEAD(&cgrp->children);
	INIT_LIST_HEAD(&cgrp->css_sets);
	INIT_LIST_HEAD(&cgrp->release_list);
1347 1348
	INIT_LIST_HEAD(&cgrp->pidlists);
	mutex_init(&cgrp->pidlist_mutex);
1349 1350
	INIT_LIST_HEAD(&cgrp->event_list);
	spin_lock_init(&cgrp->event_list_lock);
1351
}
1352

1353 1354
static void init_cgroup_root(struct cgroupfs_root *root)
{
1355
	struct cgroup *cgrp = &root->top_cgroup;
1356

1357 1358
	INIT_LIST_HEAD(&root->subsys_list);
	INIT_LIST_HEAD(&root->root_list);
1359
	INIT_LIST_HEAD(&root->allcg_list);
1360
	root->number_of_cgroups = 1;
1361 1362
	cgrp->root = root;
	cgrp->top_cgroup = cgrp;
1363
	list_add_tail(&cgrp->allcg_node, &root->allcg_list);
1364
	init_cgroup_housekeeping(cgrp);
1365 1366
}

1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391
static bool init_root_id(struct cgroupfs_root *root)
{
	int ret = 0;

	do {
		if (!ida_pre_get(&hierarchy_ida, GFP_KERNEL))
			return false;
		spin_lock(&hierarchy_id_lock);
		/* Try to allocate the next unused ID */
		ret = ida_get_new_above(&hierarchy_ida, next_hierarchy_id,
					&root->hierarchy_id);
		if (ret == -ENOSPC)
			/* Try again starting from 0 */
			ret = ida_get_new(&hierarchy_ida, &root->hierarchy_id);
		if (!ret) {
			next_hierarchy_id = root->hierarchy_id + 1;
		} else if (ret != -EAGAIN) {
			/* Can only get here if the 31-bit IDR is full ... */
			BUG_ON(ret);
		}
		spin_unlock(&hierarchy_id_lock);
	} while (ret);
	return true;
}

1392 1393
static int cgroup_test_super(struct super_block *sb, void *data)
{
1394
	struct cgroup_sb_opts *opts = data;
1395 1396
	struct cgroupfs_root *root = sb->s_fs_info;

1397 1398 1399
	/* If we asked for a name then it must match */
	if (opts->name && strcmp(opts->name, root->name))
		return 0;
1400

1401 1402 1403 1404 1405 1406
	/*
	 * If we asked for subsystems (or explicitly for no
	 * subsystems) then they must match
	 */
	if ((opts->subsys_bits || opts->none)
	    && (opts->subsys_bits != root->subsys_bits))
1407 1408 1409 1410 1411
		return 0;

	return 1;
}

1412 1413 1414 1415
static struct cgroupfs_root *cgroup_root_from_opts(struct cgroup_sb_opts *opts)
{
	struct cgroupfs_root *root;

1416
	if (!opts->subsys_bits && !opts->none)
1417 1418 1419 1420 1421 1422
		return NULL;

	root = kzalloc(sizeof(*root), GFP_KERNEL);
	if (!root)
		return ERR_PTR(-ENOMEM);

1423 1424 1425 1426
	if (!init_root_id(root)) {
		kfree(root);
		return ERR_PTR(-ENOMEM);
	}
1427
	init_cgroup_root(root);
1428

1429 1430 1431 1432 1433 1434
	root->subsys_bits = opts->subsys_bits;
	root->flags = opts->flags;
	if (opts->release_agent)
		strcpy(root->release_agent_path, opts->release_agent);
	if (opts->name)
		strcpy(root->name, opts->name);
1435 1436
	if (opts->clone_children)
		set_bit(CGRP_CLONE_CHILDREN, &root->top_cgroup.flags);
1437 1438 1439
	return root;
}

1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451
static void cgroup_drop_root(struct cgroupfs_root *root)
{
	if (!root)
		return;

	BUG_ON(!root->hierarchy_id);
	spin_lock(&hierarchy_id_lock);
	ida_remove(&hierarchy_ida, root->hierarchy_id);
	spin_unlock(&hierarchy_id_lock);
	kfree(root);
}

1452 1453 1454
static int cgroup_set_super(struct super_block *sb, void *data)
{
	int ret;
1455 1456 1457 1458 1459 1460
	struct cgroup_sb_opts *opts = data;

	/* If we don't have a new root, we can't set up a new sb */
	if (!opts->new_root)
		return -EINVAL;

1461
	BUG_ON(!opts->subsys_bits && !opts->none);
1462 1463 1464 1465 1466

	ret = set_anon_super(sb, NULL);
	if (ret)
		return ret;

1467 1468
	sb->s_fs_info = opts->new_root;
	opts->new_root->sb = sb;
1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479

	sb->s_blocksize = PAGE_CACHE_SIZE;
	sb->s_blocksize_bits = PAGE_CACHE_SHIFT;
	sb->s_magic = CGROUP_SUPER_MAGIC;
	sb->s_op = &cgroup_ops;

	return 0;
}

static int cgroup_get_rootdir(struct super_block *sb)
{
A
Al Viro 已提交
1480 1481
	static const struct dentry_operations cgroup_dops = {
		.d_iput = cgroup_diput,
1482
		.d_delete = cgroup_delete,
A
Al Viro 已提交
1483 1484
	};

1485 1486 1487 1488 1489 1490 1491 1492 1493 1494
	struct inode *inode =
		cgroup_new_inode(S_IFDIR | S_IRUGO | S_IXUGO | S_IWUSR, sb);

	if (!inode)
		return -ENOMEM;

	inode->i_fop = &simple_dir_operations;
	inode->i_op = &cgroup_dir_inode_operations;
	/* directories start off with i_nlink == 2 (for "." entry) */
	inc_nlink(inode);
1495 1496
	sb->s_root = d_make_root(inode);
	if (!sb->s_root)
1497
		return -ENOMEM;
A
Al Viro 已提交
1498 1499
	/* for everything else we want ->d_op set */
	sb->s_d_op = &cgroup_dops;
1500 1501 1502
	return 0;
}

A
Al Viro 已提交
1503
static struct dentry *cgroup_mount(struct file_system_type *fs_type,
1504
			 int flags, const char *unused_dev_name,
A
Al Viro 已提交
1505
			 void *data)
1506 1507
{
	struct cgroup_sb_opts opts;
1508
	struct cgroupfs_root *root;
1509 1510
	int ret = 0;
	struct super_block *sb;
1511
	struct cgroupfs_root *new_root;
T
Tejun Heo 已提交
1512
	struct inode *inode;
1513 1514

	/* First find the desired set of subsystems */
B
Ben Blum 已提交
1515
	mutex_lock(&cgroup_mutex);
1516
	ret = parse_cgroupfs_options(data, &opts);
B
Ben Blum 已提交
1517
	mutex_unlock(&cgroup_mutex);
1518 1519
	if (ret)
		goto out_err;
1520

1521 1522 1523 1524 1525 1526 1527
	/*
	 * Allocate a new cgroup root. We may not need it if we're
	 * reusing an existing hierarchy.
	 */
	new_root = cgroup_root_from_opts(&opts);
	if (IS_ERR(new_root)) {
		ret = PTR_ERR(new_root);
B
Ben Blum 已提交
1528
		goto drop_modules;
1529
	}
1530
	opts.new_root = new_root;
1531

1532 1533
	/* Locate an existing or new sb for this hierarchy */
	sb = sget(fs_type, cgroup_test_super, cgroup_set_super, &opts);
1534
	if (IS_ERR(sb)) {
1535
		ret = PTR_ERR(sb);
1536
		cgroup_drop_root(opts.new_root);
B
Ben Blum 已提交
1537
		goto drop_modules;
1538 1539
	}

1540 1541 1542 1543 1544
	root = sb->s_fs_info;
	BUG_ON(!root);
	if (root == opts.new_root) {
		/* We used the new root structure, so this is a new hierarchy */
		struct list_head tmp_cg_links;
1545
		struct cgroup *root_cgrp = &root->top_cgroup;
1546
		struct cgroupfs_root *existing_root;
1547
		const struct cred *cred;
1548
		int i;
1549 1550 1551 1552 1553 1554

		BUG_ON(sb->s_root != NULL);

		ret = cgroup_get_rootdir(sb);
		if (ret)
			goto drop_new_super;
1555
		inode = sb->s_root->d_inode;
1556

1557
		mutex_lock(&inode->i_mutex);
1558
		mutex_lock(&cgroup_mutex);
T
Tejun Heo 已提交
1559
		mutex_lock(&cgroup_root_mutex);
1560

T
Tejun Heo 已提交
1561 1562 1563 1564 1565 1566
		/* Check for name clashes with existing mounts */
		ret = -EBUSY;
		if (strlen(root->name))
			for_each_active_root(existing_root)
				if (!strcmp(existing_root->name, root->name))
					goto unlock_drop;
1567

1568 1569 1570 1571 1572 1573 1574 1575
		/*
		 * We're accessing css_set_count without locking
		 * css_set_lock here, but that's OK - it can only be
		 * increased by someone holding cgroup_lock, and
		 * that's us. The worst that can happen is that we
		 * have some link structures left over
		 */
		ret = allocate_cg_links(css_set_count, &tmp_cg_links);
T
Tejun Heo 已提交
1576 1577
		if (ret)
			goto unlock_drop;
1578

1579 1580
		ret = rebind_subsystems(root, root->subsys_bits);
		if (ret == -EBUSY) {
1581
			free_cg_links(&tmp_cg_links);
T
Tejun Heo 已提交
1582
			goto unlock_drop;
1583
		}
B
Ben Blum 已提交
1584 1585 1586 1587 1588
		/*
		 * There must be no failure case after here, since rebinding
		 * takes care of subsystems' refcounts, which are explicitly
		 * dropped in the failure exit path.
		 */
1589 1590 1591 1592 1593

		/* EBUSY should be the only error here */
		BUG_ON(ret);

		list_add(&root->root_list, &roots);
1594
		root_count++;
1595

1596
		sb->s_root->d_fsdata = root_cgrp;
1597 1598
		root->top_cgroup.dentry = sb->s_root;

1599 1600 1601
		/* Link the top cgroup in this hierarchy into all
		 * the css_set objects */
		write_lock(&css_set_lock);
1602 1603 1604
		for (i = 0; i < CSS_SET_TABLE_SIZE; i++) {
			struct hlist_head *hhead = &css_set_table[i];
			struct hlist_node *node;
1605
			struct css_set *cg;
1606

1607 1608
			hlist_for_each_entry(cg, node, hhead, hlist)
				link_css_set(&tmp_cg_links, cg, root_cgrp);
1609
		}
1610 1611 1612 1613
		write_unlock(&css_set_lock);

		free_cg_links(&tmp_cg_links);

1614 1615
		BUG_ON(!list_empty(&root_cgrp->sibling));
		BUG_ON(!list_empty(&root_cgrp->children));
1616 1617
		BUG_ON(root->number_of_cgroups != 1);

1618
		cred = override_creds(&init_cred);
1619
		cgroup_populate_dir(root_cgrp);
1620
		revert_creds(cred);
T
Tejun Heo 已提交
1621
		mutex_unlock(&cgroup_root_mutex);
1622
		mutex_unlock(&cgroup_mutex);
1623
		mutex_unlock(&inode->i_mutex);
1624 1625 1626 1627 1628
	} else {
		/*
		 * We re-used an existing hierarchy - the new root (if
		 * any) is not needed
		 */
1629
		cgroup_drop_root(opts.new_root);
B
Ben Blum 已提交
1630 1631
		/* no subsys rebinding, so refcounts don't change */
		drop_parsed_module_refcounts(opts.subsys_bits);
1632 1633
	}

1634 1635
	kfree(opts.release_agent);
	kfree(opts.name);
A
Al Viro 已提交
1636
	return dget(sb->s_root);
1637

T
Tejun Heo 已提交
1638 1639 1640 1641
 unlock_drop:
	mutex_unlock(&cgroup_root_mutex);
	mutex_unlock(&cgroup_mutex);
	mutex_unlock(&inode->i_mutex);
1642
 drop_new_super:
1643
	deactivate_locked_super(sb);
B
Ben Blum 已提交
1644 1645
 drop_modules:
	drop_parsed_module_refcounts(opts.subsys_bits);
1646 1647 1648
 out_err:
	kfree(opts.release_agent);
	kfree(opts.name);
A
Al Viro 已提交
1649
	return ERR_PTR(ret);
1650 1651 1652 1653
}

static void cgroup_kill_sb(struct super_block *sb) {
	struct cgroupfs_root *root = sb->s_fs_info;
1654
	struct cgroup *cgrp = &root->top_cgroup;
1655
	int ret;
K
KOSAKI Motohiro 已提交
1656 1657
	struct cg_cgroup_link *link;
	struct cg_cgroup_link *saved_link;
1658 1659 1660 1661

	BUG_ON(!root);

	BUG_ON(root->number_of_cgroups != 1);
1662 1663
	BUG_ON(!list_empty(&cgrp->children));
	BUG_ON(!list_empty(&cgrp->sibling));
1664 1665

	mutex_lock(&cgroup_mutex);
T
Tejun Heo 已提交
1666
	mutex_lock(&cgroup_root_mutex);
1667 1668 1669 1670 1671 1672

	/* Rebind all subsystems back to the default hierarchy */
	ret = rebind_subsystems(root, 0);
	/* Shouldn't be able to fail ... */
	BUG_ON(ret);

1673 1674 1675 1676 1677
	/*
	 * Release all the links from css_sets to this hierarchy's
	 * root cgroup
	 */
	write_lock(&css_set_lock);
K
KOSAKI Motohiro 已提交
1678 1679 1680

	list_for_each_entry_safe(link, saved_link, &cgrp->css_sets,
				 cgrp_link_list) {
1681
		list_del(&link->cg_link_list);
1682
		list_del(&link->cgrp_link_list);
1683 1684 1685 1686
		kfree(link);
	}
	write_unlock(&css_set_lock);

1687 1688 1689 1690
	if (!list_empty(&root->root_list)) {
		list_del(&root->root_list);
		root_count--;
	}
1691

T
Tejun Heo 已提交
1692
	mutex_unlock(&cgroup_root_mutex);
1693 1694 1695
	mutex_unlock(&cgroup_mutex);

	kill_litter_super(sb);
1696
	cgroup_drop_root(root);
1697 1698 1699 1700
}

static struct file_system_type cgroup_fs_type = {
	.name = "cgroup",
A
Al Viro 已提交
1701
	.mount = cgroup_mount,
1702 1703 1704
	.kill_sb = cgroup_kill_sb,
};

1705 1706
static struct kobject *cgroup_kobj;

1707
static inline struct cgroup *__d_cgrp(struct dentry *dentry)
1708 1709 1710 1711 1712 1713 1714 1715 1716
{
	return dentry->d_fsdata;
}

static inline struct cftype *__d_cft(struct dentry *dentry)
{
	return dentry->d_fsdata;
}

L
Li Zefan 已提交
1717 1718 1719 1720 1721 1722
/**
 * cgroup_path - generate the path of a cgroup
 * @cgrp: the cgroup in question
 * @buf: the buffer to write the path into
 * @buflen: the length of the buffer
 *
1723 1724 1725
 * Called with cgroup_mutex held or else with an RCU-protected cgroup
 * reference.  Writes path of cgroup into buf.  Returns 0 on success,
 * -errno on error.
1726
 */
1727
int cgroup_path(const struct cgroup *cgrp, char *buf, int buflen)
1728 1729
{
	char *start;
1730 1731
	struct dentry *dentry = rcu_dereference_check(cgrp->dentry,
						      cgroup_lock_is_held());
1732

1733
	if (!dentry || cgrp == dummytop) {
1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745
		/*
		 * Inactive subsystems have no dentry for their root
		 * cgroup
		 */
		strcpy(buf, "/");
		return 0;
	}

	start = buf + buflen;

	*--start = '\0';
	for (;;) {
1746
		int len = dentry->d_name.len;
1747

1748 1749
		if ((start -= len) < buf)
			return -ENAMETOOLONG;
1750
		memcpy(start, dentry->d_name.name, len);
1751 1752
		cgrp = cgrp->parent;
		if (!cgrp)
1753
			break;
1754 1755 1756

		dentry = rcu_dereference_check(cgrp->dentry,
					       cgroup_lock_is_held());
1757
		if (!cgrp->parent)
1758 1759 1760 1761 1762 1763 1764 1765
			continue;
		if (--start < buf)
			return -ENAMETOOLONG;
		*start = '/';
	}
	memmove(buf, start, buf + buflen - start);
	return 0;
}
B
Ben Blum 已提交
1766
EXPORT_SYMBOL_GPL(cgroup_path);
1767

1768 1769 1770
/*
 * Control Group taskset
 */
1771 1772 1773
struct task_and_cgroup {
	struct task_struct	*task;
	struct cgroup		*cgrp;
1774
	struct css_set		*cg;
1775 1776
};

1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847
struct cgroup_taskset {
	struct task_and_cgroup	single;
	struct flex_array	*tc_array;
	int			tc_array_len;
	int			idx;
	struct cgroup		*cur_cgrp;
};

/**
 * cgroup_taskset_first - reset taskset and return the first task
 * @tset: taskset of interest
 *
 * @tset iteration is initialized and the first task is returned.
 */
struct task_struct *cgroup_taskset_first(struct cgroup_taskset *tset)
{
	if (tset->tc_array) {
		tset->idx = 0;
		return cgroup_taskset_next(tset);
	} else {
		tset->cur_cgrp = tset->single.cgrp;
		return tset->single.task;
	}
}
EXPORT_SYMBOL_GPL(cgroup_taskset_first);

/**
 * cgroup_taskset_next - iterate to the next task in taskset
 * @tset: taskset of interest
 *
 * Return the next task in @tset.  Iteration must have been initialized
 * with cgroup_taskset_first().
 */
struct task_struct *cgroup_taskset_next(struct cgroup_taskset *tset)
{
	struct task_and_cgroup *tc;

	if (!tset->tc_array || tset->idx >= tset->tc_array_len)
		return NULL;

	tc = flex_array_get(tset->tc_array, tset->idx++);
	tset->cur_cgrp = tc->cgrp;
	return tc->task;
}
EXPORT_SYMBOL_GPL(cgroup_taskset_next);

/**
 * cgroup_taskset_cur_cgroup - return the matching cgroup for the current task
 * @tset: taskset of interest
 *
 * Return the cgroup for the current (last returned) task of @tset.  This
 * function must be preceded by either cgroup_taskset_first() or
 * cgroup_taskset_next().
 */
struct cgroup *cgroup_taskset_cur_cgroup(struct cgroup_taskset *tset)
{
	return tset->cur_cgrp;
}
EXPORT_SYMBOL_GPL(cgroup_taskset_cur_cgroup);

/**
 * cgroup_taskset_size - return the number of tasks in taskset
 * @tset: taskset of interest
 */
int cgroup_taskset_size(struct cgroup_taskset *tset)
{
	return tset->tc_array ? tset->tc_array_len : 1;
}
EXPORT_SYMBOL_GPL(cgroup_taskset_size);


B
Ben Blum 已提交
1848 1849 1850 1851 1852
/*
 * cgroup_task_migrate - move a task from one cgroup to another.
 *
 * 'guarantee' is set if the caller promises that a new css_set for the task
 * will already exist. If not set, this function might sleep, and can fail with
1853
 * -ENOMEM. Must be called with cgroup_mutex and threadgroup locked.
B
Ben Blum 已提交
1854
 */
1855 1856
static void cgroup_task_migrate(struct cgroup *cgrp, struct cgroup *oldcgrp,
				struct task_struct *tsk, struct css_set *newcg)
B
Ben Blum 已提交
1857 1858 1859 1860
{
	struct css_set *oldcg;

	/*
1861 1862 1863
	 * We are synchronized through threadgroup_lock() against PF_EXITING
	 * setting such that we can't race against cgroup_exit() changing the
	 * css_set to init_css_set and dropping the old one.
B
Ben Blum 已提交
1864
	 */
1865
	WARN_ON_ONCE(tsk->flags & PF_EXITING);
B
Ben Blum 已提交
1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887
	oldcg = tsk->cgroups;

	task_lock(tsk);
	rcu_assign_pointer(tsk->cgroups, newcg);
	task_unlock(tsk);

	/* Update the css_set linked lists if we're using them */
	write_lock(&css_set_lock);
	if (!list_empty(&tsk->cg_list))
		list_move(&tsk->cg_list, &newcg->tasks);
	write_unlock(&css_set_lock);

	/*
	 * We just gained a reference on oldcg by taking it from the task. As
	 * trading it for newcg is protected by cgroup_mutex, we're safe to drop
	 * it here; it will be freed under RCU.
	 */
	put_css_set(oldcg);

	set_bit(CGRP_RELEASABLE, &oldcgrp->flags);
}

L
Li Zefan 已提交
1888 1889 1890 1891
/**
 * cgroup_attach_task - attach task 'tsk' to cgroup 'cgrp'
 * @cgrp: the cgroup the task is attaching to
 * @tsk: the task to be attached
1892
 *
1893 1894
 * Call with cgroup_mutex and threadgroup locked. May take task_lock of
 * @tsk during call.
1895
 */
1896
int cgroup_attach_task(struct cgroup *cgrp, struct task_struct *tsk)
1897
{
1898
	int retval = 0;
1899
	struct cgroup_subsys *ss, *failed_ss = NULL;
1900 1901
	struct cgroup *oldcgrp;
	struct cgroupfs_root *root = cgrp->root;
1902
	struct cgroup_taskset tset = { };
1903
	struct css_set *newcg;
1904

1905 1906 1907
	/* @tsk either already exited or can't exit until the end */
	if (tsk->flags & PF_EXITING)
		return -ESRCH;
1908 1909

	/* Nothing to do if the task is already in that cgroup */
1910
	oldcgrp = task_cgroup_from_root(tsk, root);
1911
	if (cgrp == oldcgrp)
1912 1913
		return 0;

1914 1915 1916
	tset.single.task = tsk;
	tset.single.cgrp = oldcgrp;

1917 1918
	for_each_subsys(root, ss) {
		if (ss->can_attach) {
1919
			retval = ss->can_attach(cgrp, &tset);
1920 1921 1922 1923 1924 1925 1926 1927 1928 1929
			if (retval) {
				/*
				 * Remember on which subsystem the can_attach()
				 * failed, so that we only call cancel_attach()
				 * against the subsystems whose can_attach()
				 * succeeded. (See below)
				 */
				failed_ss = ss;
				goto out;
			}
1930 1931 1932
		}
	}

1933 1934 1935
	newcg = find_css_set(tsk->cgroups, cgrp);
	if (!newcg) {
		retval = -ENOMEM;
1936
		goto out;
1937 1938 1939
	}

	cgroup_task_migrate(cgrp, oldcgrp, tsk, newcg);
1940

1941
	for_each_subsys(root, ss) {
P
Paul Jackson 已提交
1942
		if (ss->attach)
1943
			ss->attach(cgrp, &tset);
1944
	}
B
Ben Blum 已提交
1945

1946
	synchronize_rcu();
1947 1948 1949 1950 1951

	/*
	 * wake up rmdir() waiter. the rmdir should fail since the cgroup
	 * is no longer empty.
	 */
1952
	cgroup_wakeup_rmdir_waiter(cgrp);
1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964
out:
	if (retval) {
		for_each_subsys(root, ss) {
			if (ss == failed_ss)
				/*
				 * This subsystem was the one that failed the
				 * can_attach() check earlier, so we don't need
				 * to call cancel_attach() against it or any
				 * remaining subsystems.
				 */
				break;
			if (ss->cancel_attach)
1965
				ss->cancel_attach(cgrp, &tset);
1966 1967 1968
		}
	}
	return retval;
1969 1970
}

1971
/**
M
Michael S. Tsirkin 已提交
1972 1973
 * cgroup_attach_task_all - attach task 'tsk' to all cgroups of task 'from'
 * @from: attach to all cgroups of a given task
1974 1975
 * @tsk: the task to be attached
 */
M
Michael S. Tsirkin 已提交
1976
int cgroup_attach_task_all(struct task_struct *from, struct task_struct *tsk)
1977 1978 1979 1980 1981 1982
{
	struct cgroupfs_root *root;
	int retval = 0;

	cgroup_lock();
	for_each_active_root(root) {
M
Michael S. Tsirkin 已提交
1983 1984 1985
		struct cgroup *from_cg = task_cgroup_from_root(from, root);

		retval = cgroup_attach_task(from_cg, tsk);
1986 1987 1988 1989 1990 1991 1992
		if (retval)
			break;
	}
	cgroup_unlock();

	return retval;
}
M
Michael S. Tsirkin 已提交
1993
EXPORT_SYMBOL_GPL(cgroup_attach_task_all);
1994

B
Ben Blum 已提交
1995 1996 1997 1998 1999
/**
 * cgroup_attach_proc - attach all threads in a threadgroup to a cgroup
 * @cgrp: the cgroup to attach to
 * @leader: the threadgroup leader task_struct of the group to be attached
 *
2000 2001
 * Call holding cgroup_mutex and the group_rwsem of the leader. Will take
 * task_lock of each thread in leader's threadgroup individually in turn.
B
Ben Blum 已提交
2002
 */
2003
static int cgroup_attach_proc(struct cgroup *cgrp, struct task_struct *leader)
B
Ben Blum 已提交
2004 2005 2006 2007 2008 2009 2010
{
	int retval, i, group_size;
	struct cgroup_subsys *ss, *failed_ss = NULL;
	/* guaranteed to be initialized later, but the compiler needs this */
	struct cgroupfs_root *root = cgrp->root;
	/* threadgroup list cursor and array */
	struct task_struct *tsk;
2011
	struct task_and_cgroup *tc;
2012
	struct flex_array *group;
2013
	struct cgroup_taskset tset = { };
B
Ben Blum 已提交
2014 2015 2016 2017 2018

	/*
	 * step 0: in order to do expensive, possibly blocking operations for
	 * every thread, we cannot iterate the thread group list, since it needs
	 * rcu or tasklist locked. instead, build an array of all threads in the
2019 2020
	 * group - group_rwsem prevents new threads from appearing, and if
	 * threads exit, this will just be an over-estimate.
B
Ben Blum 已提交
2021 2022
	 */
	group_size = get_nr_threads(leader);
2023
	/* flex_array supports very large thread-groups better than kmalloc. */
2024
	group = flex_array_alloc(sizeof(*tc), group_size, GFP_KERNEL);
B
Ben Blum 已提交
2025 2026
	if (!group)
		return -ENOMEM;
2027 2028 2029 2030
	/* pre-allocate to guarantee space while iterating in rcu read-side. */
	retval = flex_array_prealloc(group, 0, group_size - 1, GFP_KERNEL);
	if (retval)
		goto out_free_group_list;
B
Ben Blum 已提交
2031 2032 2033

	tsk = leader;
	i = 0;
2034 2035 2036 2037 2038 2039
	/*
	 * Prevent freeing of tasks while we take a snapshot. Tasks that are
	 * already PF_EXITING could be freed from underneath us unless we
	 * take an rcu_read_lock.
	 */
	rcu_read_lock();
B
Ben Blum 已提交
2040
	do {
2041 2042
		struct task_and_cgroup ent;

2043 2044 2045 2046
		/* @tsk either already exited or can't exit until the end */
		if (tsk->flags & PF_EXITING)
			continue;

B
Ben Blum 已提交
2047 2048
		/* as per above, nr_threads may decrease, but not increase. */
		BUG_ON(i >= group_size);
2049 2050
		ent.task = tsk;
		ent.cgrp = task_cgroup_from_root(tsk, root);
2051 2052 2053
		/* nothing to do if this task is already in the cgroup */
		if (ent.cgrp == cgrp)
			continue;
2054 2055 2056 2057
		/*
		 * saying GFP_ATOMIC has no effect here because we did prealloc
		 * earlier, but it's good form to communicate our expectations.
		 */
2058
		retval = flex_array_put(group, i, &ent, GFP_ATOMIC);
2059
		BUG_ON(retval != 0);
B
Ben Blum 已提交
2060 2061
		i++;
	} while_each_thread(leader, tsk);
2062
	rcu_read_unlock();
B
Ben Blum 已提交
2063 2064
	/* remember the number of threads in the array for later. */
	group_size = i;
2065 2066
	tset.tc_array = group;
	tset.tc_array_len = group_size;
B
Ben Blum 已提交
2067

2068 2069
	/* methods shouldn't be called if no task is actually migrating */
	retval = 0;
2070
	if (!group_size)
2071
		goto out_free_group_list;
2072

B
Ben Blum 已提交
2073 2074 2075 2076 2077
	/*
	 * step 1: check that we can legitimately attach to the cgroup.
	 */
	for_each_subsys(root, ss) {
		if (ss->can_attach) {
2078
			retval = ss->can_attach(cgrp, &tset);
B
Ben Blum 已提交
2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090
			if (retval) {
				failed_ss = ss;
				goto out_cancel_attach;
			}
		}
	}

	/*
	 * step 2: make sure css_sets exist for all threads to be migrated.
	 * we use find_css_set, which allocates a new one if necessary.
	 */
	for (i = 0; i < group_size; i++) {
2091
		tc = flex_array_get(group, i);
2092 2093 2094 2095
		tc->cg = find_css_set(tc->task->cgroups, cgrp);
		if (!tc->cg) {
			retval = -ENOMEM;
			goto out_put_css_set_refs;
B
Ben Blum 已提交
2096 2097 2098 2099
		}
	}

	/*
2100 2101 2102
	 * step 3: now that we're guaranteed success wrt the css_sets,
	 * proceed to move all tasks to the new cgroup.  There are no
	 * failure cases after here, so this is the commit point.
B
Ben Blum 已提交
2103 2104
	 */
	for (i = 0; i < group_size; i++) {
2105
		tc = flex_array_get(group, i);
2106
		cgroup_task_migrate(cgrp, tc->cgrp, tc->task, tc->cg);
B
Ben Blum 已提交
2107 2108 2109 2110
	}
	/* nothing is sensitive to fork() after this point. */

	/*
2111
	 * step 4: do subsystem attach callbacks.
B
Ben Blum 已提交
2112 2113 2114
	 */
	for_each_subsys(root, ss) {
		if (ss->attach)
2115
			ss->attach(cgrp, &tset);
B
Ben Blum 已提交
2116 2117 2118 2119 2120 2121 2122 2123
	}

	/*
	 * step 5: success! and cleanup
	 */
	synchronize_rcu();
	cgroup_wakeup_rmdir_waiter(cgrp);
	retval = 0;
2124 2125 2126 2127 2128 2129 2130 2131
out_put_css_set_refs:
	if (retval) {
		for (i = 0; i < group_size; i++) {
			tc = flex_array_get(group, i);
			if (!tc->cg)
				break;
			put_css_set(tc->cg);
		}
B
Ben Blum 已提交
2132 2133 2134 2135
	}
out_cancel_attach:
	if (retval) {
		for_each_subsys(root, ss) {
2136
			if (ss == failed_ss)
B
Ben Blum 已提交
2137 2138
				break;
			if (ss->cancel_attach)
2139
				ss->cancel_attach(cgrp, &tset);
B
Ben Blum 已提交
2140 2141 2142
		}
	}
out_free_group_list:
2143
	flex_array_free(group);
B
Ben Blum 已提交
2144 2145 2146 2147 2148
	return retval;
}

/*
 * Find the task_struct of the task to attach by vpid and pass it along to the
2149 2150
 * function to attach either it or all tasks in its threadgroup. Will lock
 * cgroup_mutex and threadgroup; may take task_lock of task.
2151
 */
B
Ben Blum 已提交
2152
static int attach_task_by_pid(struct cgroup *cgrp, u64 pid, bool threadgroup)
2153 2154
{
	struct task_struct *tsk;
2155
	const struct cred *cred = current_cred(), *tcred;
2156 2157
	int ret;

B
Ben Blum 已提交
2158 2159 2160
	if (!cgroup_lock_live_group(cgrp))
		return -ENODEV;

2161 2162
retry_find_task:
	rcu_read_lock();
2163
	if (pid) {
2164
		tsk = find_task_by_vpid(pid);
B
Ben Blum 已提交
2165 2166
		if (!tsk) {
			rcu_read_unlock();
2167 2168
			ret= -ESRCH;
			goto out_unlock_cgroup;
2169
		}
B
Ben Blum 已提交
2170 2171 2172 2173
		/*
		 * even if we're attaching all tasks in the thread group, we
		 * only need to check permissions on one of them.
		 */
2174 2175 2176 2177 2178
		tcred = __task_cred(tsk);
		if (cred->euid &&
		    cred->euid != tcred->uid &&
		    cred->euid != tcred->suid) {
			rcu_read_unlock();
2179 2180
			ret = -EACCES;
			goto out_unlock_cgroup;
2181
		}
2182 2183
	} else
		tsk = current;
2184 2185

	if (threadgroup)
2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203
		tsk = tsk->group_leader;
	get_task_struct(tsk);
	rcu_read_unlock();

	threadgroup_lock(tsk);
	if (threadgroup) {
		if (!thread_group_leader(tsk)) {
			/*
			 * a race with de_thread from another thread's exec()
			 * may strip us of our leadership, if this happens,
			 * there is no choice but to throw this task away and
			 * try again; this is
			 * "double-double-toil-and-trouble-check locking".
			 */
			threadgroup_unlock(tsk);
			put_task_struct(tsk);
			goto retry_find_task;
		}
B
Ben Blum 已提交
2204
		ret = cgroup_attach_proc(cgrp, tsk);
2205
	} else
B
Ben Blum 已提交
2206
		ret = cgroup_attach_task(cgrp, tsk);
2207 2208
	threadgroup_unlock(tsk);

2209
	put_task_struct(tsk);
2210
out_unlock_cgroup:
B
Ben Blum 已提交
2211
	cgroup_unlock();
2212 2213 2214
	return ret;
}

2215
static int cgroup_tasks_write(struct cgroup *cgrp, struct cftype *cft, u64 pid)
B
Ben Blum 已提交
2216 2217 2218 2219 2220
{
	return attach_task_by_pid(cgrp, pid, false);
}

static int cgroup_procs_write(struct cgroup *cgrp, struct cftype *cft, u64 tgid)
2221
{
2222
	return attach_task_by_pid(cgrp, tgid, true);
2223 2224
}

2225 2226 2227 2228
/**
 * cgroup_lock_live_group - take cgroup_mutex and check that cgrp is alive.
 * @cgrp: the cgroup to be checked for liveness
 *
2229 2230
 * On success, returns true; the lock should be later released with
 * cgroup_unlock(). On failure returns false with no lock held.
2231
 */
2232
bool cgroup_lock_live_group(struct cgroup *cgrp)
2233 2234 2235 2236 2237 2238 2239 2240
{
	mutex_lock(&cgroup_mutex);
	if (cgroup_is_removed(cgrp)) {
		mutex_unlock(&cgroup_mutex);
		return false;
	}
	return true;
}
B
Ben Blum 已提交
2241
EXPORT_SYMBOL_GPL(cgroup_lock_live_group);
2242 2243 2244 2245 2246

static int cgroup_release_agent_write(struct cgroup *cgrp, struct cftype *cft,
				      const char *buffer)
{
	BUILD_BUG_ON(sizeof(cgrp->root->release_agent_path) < PATH_MAX);
2247 2248
	if (strlen(buffer) >= PATH_MAX)
		return -EINVAL;
2249 2250
	if (!cgroup_lock_live_group(cgrp))
		return -ENODEV;
T
Tejun Heo 已提交
2251
	mutex_lock(&cgroup_root_mutex);
2252
	strcpy(cgrp->root->release_agent_path, buffer);
T
Tejun Heo 已提交
2253
	mutex_unlock(&cgroup_root_mutex);
2254
	cgroup_unlock();
2255 2256 2257 2258 2259 2260 2261 2262 2263 2264
	return 0;
}

static int cgroup_release_agent_show(struct cgroup *cgrp, struct cftype *cft,
				     struct seq_file *seq)
{
	if (!cgroup_lock_live_group(cgrp))
		return -ENODEV;
	seq_puts(seq, cgrp->root->release_agent_path);
	seq_putc(seq, '\n');
2265
	cgroup_unlock();
2266 2267 2268
	return 0;
}

2269 2270 2271
/* A buffer size big enough for numbers or short strings */
#define CGROUP_LOCAL_BUFFER_SIZE 64

2272
static ssize_t cgroup_write_X64(struct cgroup *cgrp, struct cftype *cft,
2273 2274 2275
				struct file *file,
				const char __user *userbuf,
				size_t nbytes, loff_t *unused_ppos)
2276
{
2277
	char buffer[CGROUP_LOCAL_BUFFER_SIZE];
2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288
	int retval = 0;
	char *end;

	if (!nbytes)
		return -EINVAL;
	if (nbytes >= sizeof(buffer))
		return -E2BIG;
	if (copy_from_user(buffer, userbuf, nbytes))
		return -EFAULT;

	buffer[nbytes] = 0;     /* nul-terminate */
2289
	if (cft->write_u64) {
K
KOSAKI Motohiro 已提交
2290
		u64 val = simple_strtoull(strstrip(buffer), &end, 0);
2291 2292 2293 2294
		if (*end)
			return -EINVAL;
		retval = cft->write_u64(cgrp, cft, val);
	} else {
K
KOSAKI Motohiro 已提交
2295
		s64 val = simple_strtoll(strstrip(buffer), &end, 0);
2296 2297 2298 2299
		if (*end)
			return -EINVAL;
		retval = cft->write_s64(cgrp, cft, val);
	}
2300 2301 2302 2303 2304
	if (!retval)
		retval = nbytes;
	return retval;
}

2305 2306 2307 2308 2309
static ssize_t cgroup_write_string(struct cgroup *cgrp, struct cftype *cft,
				   struct file *file,
				   const char __user *userbuf,
				   size_t nbytes, loff_t *unused_ppos)
{
2310
	char local_buffer[CGROUP_LOCAL_BUFFER_SIZE];
2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324
	int retval = 0;
	size_t max_bytes = cft->max_write_len;
	char *buffer = local_buffer;

	if (!max_bytes)
		max_bytes = sizeof(local_buffer) - 1;
	if (nbytes >= max_bytes)
		return -E2BIG;
	/* Allocate a dynamic buffer if we need one */
	if (nbytes >= sizeof(local_buffer)) {
		buffer = kmalloc(nbytes + 1, GFP_KERNEL);
		if (buffer == NULL)
			return -ENOMEM;
	}
L
Li Zefan 已提交
2325 2326 2327 2328
	if (nbytes && copy_from_user(buffer, userbuf, nbytes)) {
		retval = -EFAULT;
		goto out;
	}
2329 2330

	buffer[nbytes] = 0;     /* nul-terminate */
K
KOSAKI Motohiro 已提交
2331
	retval = cft->write_string(cgrp, cft, strstrip(buffer));
2332 2333
	if (!retval)
		retval = nbytes;
L
Li Zefan 已提交
2334
out:
2335 2336 2337 2338 2339
	if (buffer != local_buffer)
		kfree(buffer);
	return retval;
}

2340 2341 2342 2343
static ssize_t cgroup_file_write(struct file *file, const char __user *buf,
						size_t nbytes, loff_t *ppos)
{
	struct cftype *cft = __d_cft(file->f_dentry);
2344
	struct cgroup *cgrp = __d_cgrp(file->f_dentry->d_parent);
2345

2346
	if (cgroup_is_removed(cgrp))
2347
		return -ENODEV;
2348
	if (cft->write)
2349
		return cft->write(cgrp, cft, file, buf, nbytes, ppos);
2350 2351
	if (cft->write_u64 || cft->write_s64)
		return cgroup_write_X64(cgrp, cft, file, buf, nbytes, ppos);
2352 2353
	if (cft->write_string)
		return cgroup_write_string(cgrp, cft, file, buf, nbytes, ppos);
2354 2355 2356 2357
	if (cft->trigger) {
		int ret = cft->trigger(cgrp, (unsigned int)cft->private);
		return ret ? ret : nbytes;
	}
2358
	return -EINVAL;
2359 2360
}

2361 2362 2363 2364
static ssize_t cgroup_read_u64(struct cgroup *cgrp, struct cftype *cft,
			       struct file *file,
			       char __user *buf, size_t nbytes,
			       loff_t *ppos)
2365
{
2366
	char tmp[CGROUP_LOCAL_BUFFER_SIZE];
2367
	u64 val = cft->read_u64(cgrp, cft);
2368 2369 2370 2371 2372
	int len = sprintf(tmp, "%llu\n", (unsigned long long) val);

	return simple_read_from_buffer(buf, nbytes, ppos, tmp, len);
}

2373 2374 2375 2376 2377
static ssize_t cgroup_read_s64(struct cgroup *cgrp, struct cftype *cft,
			       struct file *file,
			       char __user *buf, size_t nbytes,
			       loff_t *ppos)
{
2378
	char tmp[CGROUP_LOCAL_BUFFER_SIZE];
2379 2380 2381 2382 2383 2384
	s64 val = cft->read_s64(cgrp, cft);
	int len = sprintf(tmp, "%lld\n", (long long) val);

	return simple_read_from_buffer(buf, nbytes, ppos, tmp, len);
}

2385 2386 2387 2388
static ssize_t cgroup_file_read(struct file *file, char __user *buf,
				   size_t nbytes, loff_t *ppos)
{
	struct cftype *cft = __d_cft(file->f_dentry);
2389
	struct cgroup *cgrp = __d_cgrp(file->f_dentry->d_parent);
2390

2391
	if (cgroup_is_removed(cgrp))
2392 2393 2394
		return -ENODEV;

	if (cft->read)
2395
		return cft->read(cgrp, cft, file, buf, nbytes, ppos);
2396 2397
	if (cft->read_u64)
		return cgroup_read_u64(cgrp, cft, file, buf, nbytes, ppos);
2398 2399
	if (cft->read_s64)
		return cgroup_read_s64(cgrp, cft, file, buf, nbytes, ppos);
2400 2401 2402
	return -EINVAL;
}

2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422
/*
 * seqfile ops/methods for returning structured data. Currently just
 * supports string->u64 maps, but can be extended in future.
 */

struct cgroup_seqfile_state {
	struct cftype *cft;
	struct cgroup *cgroup;
};

static int cgroup_map_add(struct cgroup_map_cb *cb, const char *key, u64 value)
{
	struct seq_file *sf = cb->state;
	return seq_printf(sf, "%s %llu\n", key, (unsigned long long)value);
}

static int cgroup_seqfile_show(struct seq_file *m, void *arg)
{
	struct cgroup_seqfile_state *state = m->private;
	struct cftype *cft = state->cft;
2423 2424 2425 2426 2427 2428 2429 2430
	if (cft->read_map) {
		struct cgroup_map_cb cb = {
			.fill = cgroup_map_add,
			.state = m,
		};
		return cft->read_map(state->cgroup, cft, &cb);
	}
	return cft->read_seq_string(state->cgroup, cft, m);
2431 2432
}

2433
static int cgroup_seqfile_release(struct inode *inode, struct file *file)
2434 2435 2436 2437 2438 2439
{
	struct seq_file *seq = file->private_data;
	kfree(seq->private);
	return single_release(inode, file);
}

2440
static const struct file_operations cgroup_seqfile_operations = {
2441
	.read = seq_read,
2442
	.write = cgroup_file_write,
2443 2444 2445 2446
	.llseek = seq_lseek,
	.release = cgroup_seqfile_release,
};

2447 2448 2449 2450 2451 2452 2453 2454 2455
static int cgroup_file_open(struct inode *inode, struct file *file)
{
	int err;
	struct cftype *cft;

	err = generic_file_open(inode, file);
	if (err)
		return err;
	cft = __d_cft(file->f_dentry);
2456

2457
	if (cft->read_map || cft->read_seq_string) {
2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468
		struct cgroup_seqfile_state *state =
			kzalloc(sizeof(*state), GFP_USER);
		if (!state)
			return -ENOMEM;
		state->cft = cft;
		state->cgroup = __d_cgrp(file->f_dentry->d_parent);
		file->f_op = &cgroup_seqfile_operations;
		err = single_open(file, cgroup_seqfile_show, state);
		if (err < 0)
			kfree(state);
	} else if (cft->open)
2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498
		err = cft->open(inode, file);
	else
		err = 0;

	return err;
}

static int cgroup_file_release(struct inode *inode, struct file *file)
{
	struct cftype *cft = __d_cft(file->f_dentry);
	if (cft->release)
		return cft->release(inode, file);
	return 0;
}

/*
 * cgroup_rename - Only allow simple rename of directories in place.
 */
static int cgroup_rename(struct inode *old_dir, struct dentry *old_dentry,
			    struct inode *new_dir, struct dentry *new_dentry)
{
	if (!S_ISDIR(old_dentry->d_inode->i_mode))
		return -ENOTDIR;
	if (new_dentry->d_inode)
		return -EEXIST;
	if (old_dir != new_dir)
		return -EIO;
	return simple_rename(old_dir, old_dentry, new_dir, new_dentry);
}

2499
static const struct file_operations cgroup_file_operations = {
2500 2501 2502 2503 2504 2505 2506
	.read = cgroup_file_read,
	.write = cgroup_file_write,
	.llseek = generic_file_llseek,
	.open = cgroup_file_open,
	.release = cgroup_file_release,
};

2507
static const struct inode_operations cgroup_dir_inode_operations = {
2508
	.lookup = cgroup_lookup,
2509 2510 2511 2512 2513
	.mkdir = cgroup_mkdir,
	.rmdir = cgroup_rmdir,
	.rename = cgroup_rename,
};

2514 2515 2516 2517 2518 2519 2520 2521
static struct dentry *cgroup_lookup(struct inode *dir, struct dentry *dentry, struct nameidata *nd)
{
	if (dentry->d_name.len > NAME_MAX)
		return ERR_PTR(-ENAMETOOLONG);
	d_add(dentry, NULL);
	return NULL;
}

2522 2523 2524 2525 2526 2527 2528 2529 2530 2531
/*
 * Check if a file is a control file
 */
static inline struct cftype *__file_cft(struct file *file)
{
	if (file->f_dentry->d_inode->i_fop != &cgroup_file_operations)
		return ERR_PTR(-EINVAL);
	return __d_cft(file->f_dentry);
}

A
Al Viro 已提交
2532
static int cgroup_create_file(struct dentry *dentry, umode_t mode,
2533 2534
				struct super_block *sb)
{
2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554
	struct inode *inode;

	if (!dentry)
		return -ENOENT;
	if (dentry->d_inode)
		return -EEXIST;

	inode = cgroup_new_inode(mode, sb);
	if (!inode)
		return -ENOMEM;

	if (S_ISDIR(mode)) {
		inode->i_op = &cgroup_dir_inode_operations;
		inode->i_fop = &simple_dir_operations;

		/* start off with i_nlink == 2 (for "." entry) */
		inc_nlink(inode);

		/* start with the directory inode held, so that we can
		 * populate it without racing with another mkdir */
2555
		mutex_lock_nested(&inode->i_mutex, I_MUTEX_CHILD);
2556 2557 2558 2559 2560 2561 2562 2563 2564 2565
	} else if (S_ISREG(mode)) {
		inode->i_size = 0;
		inode->i_fop = &cgroup_file_operations;
	}
	d_instantiate(dentry, inode);
	dget(dentry);	/* Extra count - pin the dentry in core */
	return 0;
}

/*
L
Li Zefan 已提交
2566 2567 2568 2569 2570
 * cgroup_create_dir - create a directory for an object.
 * @cgrp: the cgroup we create the directory for. It must have a valid
 *        ->parent field. And we are going to fill its ->dentry field.
 * @dentry: dentry of the new cgroup
 * @mode: mode to set on new directory.
2571
 */
2572
static int cgroup_create_dir(struct cgroup *cgrp, struct dentry *dentry,
A
Al Viro 已提交
2573
				umode_t mode)
2574 2575 2576 2577
{
	struct dentry *parent;
	int error = 0;

2578 2579
	parent = cgrp->parent->dentry;
	error = cgroup_create_file(dentry, S_IFDIR | mode, cgrp->root->sb);
2580
	if (!error) {
2581
		dentry->d_fsdata = cgrp;
2582
		inc_nlink(parent->d_inode);
2583
		rcu_assign_pointer(cgrp->dentry, dentry);
2584 2585 2586 2587 2588 2589 2590
		dget(dentry);
	}
	dput(dentry);

	return error;
}

L
Li Zefan 已提交
2591 2592 2593 2594 2595 2596 2597 2598 2599
/**
 * cgroup_file_mode - deduce file mode of a control file
 * @cft: the control file in question
 *
 * returns cft->mode if ->mode is not 0
 * returns S_IRUGO|S_IWUSR if it has both a read and a write handler
 * returns S_IRUGO if it has only a read handler
 * returns S_IWUSR if it has only a write hander
 */
A
Al Viro 已提交
2600
static umode_t cgroup_file_mode(const struct cftype *cft)
L
Li Zefan 已提交
2601
{
A
Al Viro 已提交
2602
	umode_t mode = 0;
L
Li Zefan 已提交
2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617

	if (cft->mode)
		return cft->mode;

	if (cft->read || cft->read_u64 || cft->read_s64 ||
	    cft->read_map || cft->read_seq_string)
		mode |= S_IRUGO;

	if (cft->write || cft->write_u64 || cft->write_s64 ||
	    cft->write_string || cft->trigger)
		mode |= S_IWUSR;

	return mode;
}

2618
int cgroup_add_file(struct cgroup *cgrp,
2619 2620 2621
		       struct cgroup_subsys *subsys,
		       const struct cftype *cft)
{
2622
	struct dentry *dir = cgrp->dentry;
2623 2624
	struct dentry *dentry;
	int error;
A
Al Viro 已提交
2625
	umode_t mode;
2626 2627

	char name[MAX_CGROUP_TYPE_NAMELEN + MAX_CFTYPE_NAME + 2] = { 0 };
2628
	if (subsys && !test_bit(ROOT_NOPREFIX, &cgrp->root->flags)) {
2629 2630 2631 2632 2633 2634 2635
		strcpy(name, subsys->name);
		strcat(name, ".");
	}
	strcat(name, cft->name);
	BUG_ON(!mutex_is_locked(&dir->d_inode->i_mutex));
	dentry = lookup_one_len(name, dir, strlen(name));
	if (!IS_ERR(dentry)) {
L
Li Zefan 已提交
2636 2637
		mode = cgroup_file_mode(cft);
		error = cgroup_create_file(dentry, mode | S_IFREG,
2638
						cgrp->root->sb);
2639 2640 2641 2642 2643 2644 2645
		if (!error)
			dentry->d_fsdata = (void *)cft;
		dput(dentry);
	} else
		error = PTR_ERR(dentry);
	return error;
}
2646
EXPORT_SYMBOL_GPL(cgroup_add_file);
2647

2648
int cgroup_add_files(struct cgroup *cgrp,
2649 2650 2651 2652 2653 2654
			struct cgroup_subsys *subsys,
			const struct cftype cft[],
			int count)
{
	int i, err;
	for (i = 0; i < count; i++) {
2655
		err = cgroup_add_file(cgrp, subsys, &cft[i]);
2656 2657 2658 2659 2660
		if (err)
			return err;
	}
	return 0;
}
2661
EXPORT_SYMBOL_GPL(cgroup_add_files);
2662

L
Li Zefan 已提交
2663 2664 2665 2666 2667 2668
/**
 * cgroup_task_count - count the number of tasks in a cgroup.
 * @cgrp: the cgroup in question
 *
 * Return the number of tasks in the cgroup.
 */
2669
int cgroup_task_count(const struct cgroup *cgrp)
2670 2671
{
	int count = 0;
K
KOSAKI Motohiro 已提交
2672
	struct cg_cgroup_link *link;
2673 2674

	read_lock(&css_set_lock);
K
KOSAKI Motohiro 已提交
2675
	list_for_each_entry(link, &cgrp->css_sets, cgrp_link_list) {
2676
		count += atomic_read(&link->cg->refcount);
2677 2678
	}
	read_unlock(&css_set_lock);
2679 2680 2681
	return count;
}

2682 2683 2684 2685
/*
 * Advance a list_head iterator.  The iterator should be positioned at
 * the start of a css_set
 */
2686
static void cgroup_advance_iter(struct cgroup *cgrp,
2687
				struct cgroup_iter *it)
2688 2689 2690 2691 2692 2693 2694 2695
{
	struct list_head *l = it->cg_link;
	struct cg_cgroup_link *link;
	struct css_set *cg;

	/* Advance to the next non-empty css_set */
	do {
		l = l->next;
2696
		if (l == &cgrp->css_sets) {
2697 2698 2699
			it->cg_link = NULL;
			return;
		}
2700
		link = list_entry(l, struct cg_cgroup_link, cgrp_link_list);
2701 2702 2703 2704 2705 2706
		cg = link->cg;
	} while (list_empty(&cg->tasks));
	it->cg_link = l;
	it->task = cg->tasks.next;
}

2707 2708 2709 2710 2711 2712
/*
 * To reduce the fork() overhead for systems that are not actually
 * using their cgroups capability, we don't maintain the lists running
 * through each css_set to its tasks until we see the list actually
 * used - in other words after the first call to cgroup_iter_start().
 */
2713
static void cgroup_enable_task_cg_lists(void)
2714 2715 2716 2717
{
	struct task_struct *p, *g;
	write_lock(&css_set_lock);
	use_task_css_set_links = 1;
2718 2719 2720 2721 2722 2723 2724 2725
	/*
	 * We need tasklist_lock because RCU is not safe against
	 * while_each_thread(). Besides, a forking task that has passed
	 * cgroup_post_fork() without seeing use_task_css_set_links = 1
	 * is not guaranteed to have its child immediately visible in the
	 * tasklist if we walk through it with RCU.
	 */
	read_lock(&tasklist_lock);
2726 2727
	do_each_thread(g, p) {
		task_lock(p);
2728 2729 2730 2731 2732 2733
		/*
		 * We should check if the process is exiting, otherwise
		 * it will race with cgroup_exit() in that the list
		 * entry won't be deleted though the process has exited.
		 */
		if (!(p->flags & PF_EXITING) && list_empty(&p->cg_list))
2734 2735 2736
			list_add(&p->cg_list, &p->cgroups->tasks);
		task_unlock(p);
	} while_each_thread(g, p);
2737
	read_unlock(&tasklist_lock);
2738 2739 2740
	write_unlock(&css_set_lock);
}

2741
void cgroup_iter_start(struct cgroup *cgrp, struct cgroup_iter *it)
2742
	__acquires(css_set_lock)
2743 2744 2745 2746 2747 2748
{
	/*
	 * The first time anyone tries to iterate across a cgroup,
	 * we need to enable the list linking each css_set to its
	 * tasks, and fix up all existing tasks.
	 */
2749 2750 2751
	if (!use_task_css_set_links)
		cgroup_enable_task_cg_lists();

2752
	read_lock(&css_set_lock);
2753 2754
	it->cg_link = &cgrp->css_sets;
	cgroup_advance_iter(cgrp, it);
2755 2756
}

2757
struct task_struct *cgroup_iter_next(struct cgroup *cgrp,
2758 2759 2760 2761
					struct cgroup_iter *it)
{
	struct task_struct *res;
	struct list_head *l = it->task;
2762
	struct cg_cgroup_link *link;
2763 2764 2765 2766 2767 2768 2769

	/* If the iterator cg is NULL, we have no tasks */
	if (!it->cg_link)
		return NULL;
	res = list_entry(l, struct task_struct, cg_list);
	/* Advance iterator to find next entry */
	l = l->next;
2770 2771
	link = list_entry(it->cg_link, struct cg_cgroup_link, cgrp_link_list);
	if (l == &link->cg->tasks) {
2772 2773
		/* We reached the end of this task list - move on to
		 * the next cg_cgroup_link */
2774
		cgroup_advance_iter(cgrp, it);
2775 2776 2777 2778 2779 2780
	} else {
		it->task = l;
	}
	return res;
}

2781
void cgroup_iter_end(struct cgroup *cgrp, struct cgroup_iter *it)
2782
	__releases(css_set_lock)
2783 2784 2785 2786
{
	read_unlock(&css_set_lock);
}

2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923
static inline int started_after_time(struct task_struct *t1,
				     struct timespec *time,
				     struct task_struct *t2)
{
	int start_diff = timespec_compare(&t1->start_time, time);
	if (start_diff > 0) {
		return 1;
	} else if (start_diff < 0) {
		return 0;
	} else {
		/*
		 * Arbitrarily, if two processes started at the same
		 * time, we'll say that the lower pointer value
		 * started first. Note that t2 may have exited by now
		 * so this may not be a valid pointer any longer, but
		 * that's fine - it still serves to distinguish
		 * between two tasks started (effectively) simultaneously.
		 */
		return t1 > t2;
	}
}

/*
 * This function is a callback from heap_insert() and is used to order
 * the heap.
 * In this case we order the heap in descending task start time.
 */
static inline int started_after(void *p1, void *p2)
{
	struct task_struct *t1 = p1;
	struct task_struct *t2 = p2;
	return started_after_time(t1, &t2->start_time, t2);
}

/**
 * cgroup_scan_tasks - iterate though all the tasks in a cgroup
 * @scan: struct cgroup_scanner containing arguments for the scan
 *
 * Arguments include pointers to callback functions test_task() and
 * process_task().
 * Iterate through all the tasks in a cgroup, calling test_task() for each,
 * and if it returns true, call process_task() for it also.
 * The test_task pointer may be NULL, meaning always true (select all tasks).
 * Effectively duplicates cgroup_iter_{start,next,end}()
 * but does not lock css_set_lock for the call to process_task().
 * The struct cgroup_scanner may be embedded in any structure of the caller's
 * creation.
 * It is guaranteed that process_task() will act on every task that
 * is a member of the cgroup for the duration of this call. This
 * function may or may not call process_task() for tasks that exit
 * or move to a different cgroup during the call, or are forked or
 * move into the cgroup during the call.
 *
 * Note that test_task() may be called with locks held, and may in some
 * situations be called multiple times for the same task, so it should
 * be cheap.
 * If the heap pointer in the struct cgroup_scanner is non-NULL, a heap has been
 * pre-allocated and will be used for heap operations (and its "gt" member will
 * be overwritten), else a temporary heap will be used (allocation of which
 * may cause this function to fail).
 */
int cgroup_scan_tasks(struct cgroup_scanner *scan)
{
	int retval, i;
	struct cgroup_iter it;
	struct task_struct *p, *dropped;
	/* Never dereference latest_task, since it's not refcounted */
	struct task_struct *latest_task = NULL;
	struct ptr_heap tmp_heap;
	struct ptr_heap *heap;
	struct timespec latest_time = { 0, 0 };

	if (scan->heap) {
		/* The caller supplied our heap and pre-allocated its memory */
		heap = scan->heap;
		heap->gt = &started_after;
	} else {
		/* We need to allocate our own heap memory */
		heap = &tmp_heap;
		retval = heap_init(heap, PAGE_SIZE, GFP_KERNEL, &started_after);
		if (retval)
			/* cannot allocate the heap */
			return retval;
	}

 again:
	/*
	 * Scan tasks in the cgroup, using the scanner's "test_task" callback
	 * to determine which are of interest, and using the scanner's
	 * "process_task" callback to process any of them that need an update.
	 * Since we don't want to hold any locks during the task updates,
	 * gather tasks to be processed in a heap structure.
	 * The heap is sorted by descending task start time.
	 * If the statically-sized heap fills up, we overflow tasks that
	 * started later, and in future iterations only consider tasks that
	 * started after the latest task in the previous pass. This
	 * guarantees forward progress and that we don't miss any tasks.
	 */
	heap->size = 0;
	cgroup_iter_start(scan->cg, &it);
	while ((p = cgroup_iter_next(scan->cg, &it))) {
		/*
		 * Only affect tasks that qualify per the caller's callback,
		 * if he provided one
		 */
		if (scan->test_task && !scan->test_task(p, scan))
			continue;
		/*
		 * Only process tasks that started after the last task
		 * we processed
		 */
		if (!started_after_time(p, &latest_time, latest_task))
			continue;
		dropped = heap_insert(heap, p);
		if (dropped == NULL) {
			/*
			 * The new task was inserted; the heap wasn't
			 * previously full
			 */
			get_task_struct(p);
		} else if (dropped != p) {
			/*
			 * The new task was inserted, and pushed out a
			 * different task
			 */
			get_task_struct(p);
			put_task_struct(dropped);
		}
		/*
		 * Else the new task was newer than anything already in
		 * the heap and wasn't inserted
		 */
	}
	cgroup_iter_end(scan->cg, &it);

	if (heap->size) {
		for (i = 0; i < heap->size; i++) {
2924
			struct task_struct *q = heap->ptrs[i];
2925
			if (i == 0) {
2926 2927
				latest_time = q->start_time;
				latest_task = q;
2928 2929
			}
			/* Process the task per the caller's callback */
2930 2931
			scan->process_task(q, scan);
			put_task_struct(q);
2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946
		}
		/*
		 * If we had to process any tasks at all, scan again
		 * in case some of them were in the middle of forking
		 * children that didn't get processed.
		 * Not the most efficient way to do it, but it avoids
		 * having to take callback_mutex in the fork path
		 */
		goto again;
	}
	if (heap == &tmp_heap)
		heap_free(&tmp_heap);
	return 0;
}

2947
/*
2948
 * Stuff for reading the 'tasks'/'procs' files.
2949 2950 2951 2952 2953 2954 2955 2956
 *
 * Reading this file can return large amounts of data if a cgroup has
 * *lots* of attached tasks. So it may need several calls to read(),
 * but we cannot guarantee that the information we produce is correct
 * unless we produce it entirely atomically.
 *
 */

2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988
/* which pidlist file are we talking about? */
enum cgroup_filetype {
	CGROUP_FILE_PROCS,
	CGROUP_FILE_TASKS,
};

/*
 * A pidlist is a list of pids that virtually represents the contents of one
 * of the cgroup files ("procs" or "tasks"). We keep a list of such pidlists,
 * a pair (one each for procs, tasks) for each pid namespace that's relevant
 * to the cgroup.
 */
struct cgroup_pidlist {
	/*
	 * used to find which pidlist is wanted. doesn't change as long as
	 * this particular list stays in the list.
	*/
	struct { enum cgroup_filetype type; struct pid_namespace *ns; } key;
	/* array of xids */
	pid_t *list;
	/* how many elements the above list has */
	int length;
	/* how many files are using the current array */
	int use_count;
	/* each of these stored in a list by its cgroup */
	struct list_head links;
	/* pointer to the cgroup we belong to, for list removal purposes */
	struct cgroup *owner;
	/* protects the other fields */
	struct rw_semaphore mutex;
};

2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024
/*
 * The following two functions "fix" the issue where there are more pids
 * than kmalloc will give memory for; in such cases, we use vmalloc/vfree.
 * TODO: replace with a kernel-wide solution to this problem
 */
#define PIDLIST_TOO_LARGE(c) ((c) * sizeof(pid_t) > (PAGE_SIZE * 2))
static void *pidlist_allocate(int count)
{
	if (PIDLIST_TOO_LARGE(count))
		return vmalloc(count * sizeof(pid_t));
	else
		return kmalloc(count * sizeof(pid_t), GFP_KERNEL);
}
static void pidlist_free(void *p)
{
	if (is_vmalloc_addr(p))
		vfree(p);
	else
		kfree(p);
}
static void *pidlist_resize(void *p, int newcount)
{
	void *newlist;
	/* note: if new alloc fails, old p will still be valid either way */
	if (is_vmalloc_addr(p)) {
		newlist = vmalloc(newcount * sizeof(pid_t));
		if (!newlist)
			return NULL;
		memcpy(newlist, p, newcount * sizeof(pid_t));
		vfree(p);
	} else {
		newlist = krealloc(p, newcount * sizeof(pid_t), GFP_KERNEL);
	}
	return newlist;
}

3025
/*
3026 3027 3028 3029
 * pidlist_uniq - given a kmalloc()ed list, strip out all duplicate entries
 * If the new stripped list is sufficiently smaller and there's enough memory
 * to allocate a new buffer, will let go of the unneeded memory. Returns the
 * number of unique elements.
3030
 */
3031 3032 3033
/* is the size difference enough that we should re-allocate the array? */
#define PIDLIST_REALLOC_DIFFERENCE(old, new) ((old) - PAGE_SIZE >= (new))
static int pidlist_uniq(pid_t **p, int length)
3034
{
3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063
	int src, dest = 1;
	pid_t *list = *p;
	pid_t *newlist;

	/*
	 * we presume the 0th element is unique, so i starts at 1. trivial
	 * edge cases first; no work needs to be done for either
	 */
	if (length == 0 || length == 1)
		return length;
	/* src and dest walk down the list; dest counts unique elements */
	for (src = 1; src < length; src++) {
		/* find next unique element */
		while (list[src] == list[src-1]) {
			src++;
			if (src == length)
				goto after;
		}
		/* dest always points to where the next unique element goes */
		list[dest] = list[src];
		dest++;
	}
after:
	/*
	 * if the length difference is large enough, we want to allocate a
	 * smaller buffer to save memory. if this fails due to out of memory,
	 * we'll just stay with what we've got.
	 */
	if (PIDLIST_REALLOC_DIFFERENCE(length, dest)) {
3064
		newlist = pidlist_resize(list, dest);
3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075
		if (newlist)
			*p = newlist;
	}
	return dest;
}

static int cmppid(const void *a, const void *b)
{
	return *(pid_t *)a - *(pid_t *)b;
}

3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086
/*
 * find the appropriate pidlist for our purpose (given procs vs tasks)
 * returns with the lock on that pidlist already held, and takes care
 * of the use count, or returns NULL with no locks held if we're out of
 * memory.
 */
static struct cgroup_pidlist *cgroup_pidlist_find(struct cgroup *cgrp,
						  enum cgroup_filetype type)
{
	struct cgroup_pidlist *l;
	/* don't need task_nsproxy() if we're looking at ourself */
3087 3088
	struct pid_namespace *ns = current->nsproxy->pid_ns;

3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112
	/*
	 * We can't drop the pidlist_mutex before taking the l->mutex in case
	 * the last ref-holder is trying to remove l from the list at the same
	 * time. Holding the pidlist_mutex precludes somebody taking whichever
	 * list we find out from under us - compare release_pid_array().
	 */
	mutex_lock(&cgrp->pidlist_mutex);
	list_for_each_entry(l, &cgrp->pidlists, links) {
		if (l->key.type == type && l->key.ns == ns) {
			/* make sure l doesn't vanish out from under us */
			down_write(&l->mutex);
			mutex_unlock(&cgrp->pidlist_mutex);
			return l;
		}
	}
	/* entry not found; create a new one */
	l = kmalloc(sizeof(struct cgroup_pidlist), GFP_KERNEL);
	if (!l) {
		mutex_unlock(&cgrp->pidlist_mutex);
		return l;
	}
	init_rwsem(&l->mutex);
	down_write(&l->mutex);
	l->key.type = type;
3113
	l->key.ns = get_pid_ns(ns);
3114 3115 3116 3117 3118 3119 3120 3121
	l->use_count = 0; /* don't increment here */
	l->list = NULL;
	l->owner = cgrp;
	list_add(&l->links, &cgrp->pidlists);
	mutex_unlock(&cgrp->pidlist_mutex);
	return l;
}

3122 3123 3124
/*
 * Load a cgroup's pidarray with either procs' tgids or tasks' pids
 */
3125 3126
static int pidlist_array_load(struct cgroup *cgrp, enum cgroup_filetype type,
			      struct cgroup_pidlist **lp)
3127 3128 3129 3130
{
	pid_t *array;
	int length;
	int pid, n = 0; /* used for populating the array */
3131 3132
	struct cgroup_iter it;
	struct task_struct *tsk;
3133 3134 3135 3136 3137 3138 3139 3140 3141
	struct cgroup_pidlist *l;

	/*
	 * If cgroup gets more users after we read count, we won't have
	 * enough space - tough.  This race is indistinguishable to the
	 * caller from the case that the additional cgroup users didn't
	 * show up until sometime later on.
	 */
	length = cgroup_task_count(cgrp);
3142
	array = pidlist_allocate(length);
3143 3144 3145
	if (!array)
		return -ENOMEM;
	/* now, populate the array */
3146 3147
	cgroup_iter_start(cgrp, &it);
	while ((tsk = cgroup_iter_next(cgrp, &it))) {
3148
		if (unlikely(n == length))
3149
			break;
3150
		/* get tgid or pid for procs or tasks file respectively */
3151 3152 3153 3154
		if (type == CGROUP_FILE_PROCS)
			pid = task_tgid_vnr(tsk);
		else
			pid = task_pid_vnr(tsk);
3155 3156
		if (pid > 0) /* make sure to only use valid results */
			array[n++] = pid;
3157
	}
3158
	cgroup_iter_end(cgrp, &it);
3159 3160 3161
	length = n;
	/* now sort & (if procs) strip out duplicates */
	sort(array, length, sizeof(pid_t), cmppid, NULL);
3162
	if (type == CGROUP_FILE_PROCS)
3163
		length = pidlist_uniq(&array, length);
3164 3165
	l = cgroup_pidlist_find(cgrp, type);
	if (!l) {
3166
		pidlist_free(array);
3167
		return -ENOMEM;
3168
	}
3169
	/* store array, freeing old if necessary - lock already held */
3170
	pidlist_free(l->list);
3171 3172 3173 3174
	l->list = array;
	l->length = length;
	l->use_count++;
	up_write(&l->mutex);
3175
	*lp = l;
3176
	return 0;
3177 3178
}

B
Balbir Singh 已提交
3179
/**
L
Li Zefan 已提交
3180
 * cgroupstats_build - build and fill cgroupstats
B
Balbir Singh 已提交
3181 3182 3183
 * @stats: cgroupstats to fill information into
 * @dentry: A dentry entry belonging to the cgroup for which stats have
 * been requested.
L
Li Zefan 已提交
3184 3185 3186
 *
 * Build and fill cgroupstats so that taskstats can export it to user
 * space.
B
Balbir Singh 已提交
3187 3188 3189 3190
 */
int cgroupstats_build(struct cgroupstats *stats, struct dentry *dentry)
{
	int ret = -EINVAL;
3191
	struct cgroup *cgrp;
B
Balbir Singh 已提交
3192 3193
	struct cgroup_iter it;
	struct task_struct *tsk;
3194

B
Balbir Singh 已提交
3195
	/*
3196 3197
	 * Validate dentry by checking the superblock operations,
	 * and make sure it's a directory.
B
Balbir Singh 已提交
3198
	 */
3199 3200
	if (dentry->d_sb->s_op != &cgroup_ops ||
	    !S_ISDIR(dentry->d_inode->i_mode))
B
Balbir Singh 已提交
3201 3202 3203
		 goto err;

	ret = 0;
3204
	cgrp = dentry->d_fsdata;
B
Balbir Singh 已提交
3205

3206 3207
	cgroup_iter_start(cgrp, &it);
	while ((tsk = cgroup_iter_next(cgrp, &it))) {
B
Balbir Singh 已提交
3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226
		switch (tsk->state) {
		case TASK_RUNNING:
			stats->nr_running++;
			break;
		case TASK_INTERRUPTIBLE:
			stats->nr_sleeping++;
			break;
		case TASK_UNINTERRUPTIBLE:
			stats->nr_uninterruptible++;
			break;
		case TASK_STOPPED:
			stats->nr_stopped++;
			break;
		default:
			if (delayacct_is_task_waiting_on_io(tsk))
				stats->nr_io_wait++;
			break;
		}
	}
3227
	cgroup_iter_end(cgrp, &it);
B
Balbir Singh 已提交
3228 3229 3230 3231 3232

err:
	return ret;
}

3233

3234
/*
3235
 * seq_file methods for the tasks/procs files. The seq_file position is the
3236
 * next pid to display; the seq_file iterator is a pointer to the pid
3237
 * in the cgroup->l->list array.
3238
 */
3239

3240
static void *cgroup_pidlist_start(struct seq_file *s, loff_t *pos)
3241
{
3242 3243 3244 3245 3246 3247
	/*
	 * Initially we receive a position value that corresponds to
	 * one more than the last pid shown (or 0 on the first call or
	 * after a seek to the start). Use a binary-search to find the
	 * next pid to display, if any
	 */
3248
	struct cgroup_pidlist *l = s->private;
3249 3250 3251
	int index = 0, pid = *pos;
	int *iter;

3252
	down_read(&l->mutex);
3253
	if (pid) {
3254
		int end = l->length;
S
Stephen Rothwell 已提交
3255

3256 3257
		while (index < end) {
			int mid = (index + end) / 2;
3258
			if (l->list[mid] == pid) {
3259 3260
				index = mid;
				break;
3261
			} else if (l->list[mid] <= pid)
3262 3263 3264 3265 3266 3267
				index = mid + 1;
			else
				end = mid;
		}
	}
	/* If we're off the end of the array, we're done */
3268
	if (index >= l->length)
3269 3270
		return NULL;
	/* Update the abstract position to be the actual pid that we found */
3271
	iter = l->list + index;
3272 3273 3274 3275
	*pos = *iter;
	return iter;
}

3276
static void cgroup_pidlist_stop(struct seq_file *s, void *v)
3277
{
3278 3279
	struct cgroup_pidlist *l = s->private;
	up_read(&l->mutex);
3280 3281
}

3282
static void *cgroup_pidlist_next(struct seq_file *s, void *v, loff_t *pos)
3283
{
3284 3285 3286
	struct cgroup_pidlist *l = s->private;
	pid_t *p = v;
	pid_t *end = l->list + l->length;
3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299
	/*
	 * Advance to the next pid in the array. If this goes off the
	 * end, we're done
	 */
	p++;
	if (p >= end) {
		return NULL;
	} else {
		*pos = *p;
		return p;
	}
}

3300
static int cgroup_pidlist_show(struct seq_file *s, void *v)
3301 3302 3303
{
	return seq_printf(s, "%d\n", *(int *)v);
}
3304

3305 3306 3307 3308 3309 3310 3311 3312 3313
/*
 * seq_operations functions for iterating on pidlists through seq_file -
 * independent of whether it's tasks or procs
 */
static const struct seq_operations cgroup_pidlist_seq_operations = {
	.start = cgroup_pidlist_start,
	.stop = cgroup_pidlist_stop,
	.next = cgroup_pidlist_next,
	.show = cgroup_pidlist_show,
3314 3315
};

3316
static void cgroup_release_pid_array(struct cgroup_pidlist *l)
3317
{
3318 3319 3320 3321 3322 3323 3324
	/*
	 * the case where we're the last user of this particular pidlist will
	 * have us remove it from the cgroup's list, which entails taking the
	 * mutex. since in pidlist_find the pidlist->lock depends on cgroup->
	 * pidlist_mutex, we have to take pidlist_mutex first.
	 */
	mutex_lock(&l->owner->pidlist_mutex);
3325 3326 3327
	down_write(&l->mutex);
	BUG_ON(!l->use_count);
	if (!--l->use_count) {
3328 3329 3330
		/* we're the last user if refcount is 0; remove and free */
		list_del(&l->links);
		mutex_unlock(&l->owner->pidlist_mutex);
3331
		pidlist_free(l->list);
3332 3333 3334 3335
		put_pid_ns(l->key.ns);
		up_write(&l->mutex);
		kfree(l);
		return;
3336
	}
3337
	mutex_unlock(&l->owner->pidlist_mutex);
3338
	up_write(&l->mutex);
3339 3340
}

3341
static int cgroup_pidlist_release(struct inode *inode, struct file *file)
3342
{
3343
	struct cgroup_pidlist *l;
3344 3345
	if (!(file->f_mode & FMODE_READ))
		return 0;
3346 3347 3348 3349 3350 3351
	/*
	 * the seq_file will only be initialized if the file was opened for
	 * reading; hence we check if it's not null only in that case.
	 */
	l = ((struct seq_file *)file->private_data)->private;
	cgroup_release_pid_array(l);
3352 3353 3354
	return seq_release(inode, file);
}

3355
static const struct file_operations cgroup_pidlist_operations = {
3356 3357 3358
	.read = seq_read,
	.llseek = seq_lseek,
	.write = cgroup_file_write,
3359
	.release = cgroup_pidlist_release,
3360 3361
};

3362
/*
3363 3364 3365
 * The following functions handle opens on a file that displays a pidlist
 * (tasks or procs). Prepare an array of the process/thread IDs of whoever's
 * in the cgroup.
3366
 */
3367
/* helper function for the two below it */
3368
static int cgroup_pidlist_open(struct file *file, enum cgroup_filetype type)
3369
{
3370
	struct cgroup *cgrp = __d_cgrp(file->f_dentry->d_parent);
3371
	struct cgroup_pidlist *l;
3372
	int retval;
3373

3374
	/* Nothing to do for write-only files */
3375 3376 3377
	if (!(file->f_mode & FMODE_READ))
		return 0;

3378
	/* have the array populated */
3379
	retval = pidlist_array_load(cgrp, type, &l);
3380 3381 3382 3383
	if (retval)
		return retval;
	/* configure file information */
	file->f_op = &cgroup_pidlist_operations;
3384

3385
	retval = seq_open(file, &cgroup_pidlist_seq_operations);
3386
	if (retval) {
3387
		cgroup_release_pid_array(l);
3388
		return retval;
3389
	}
3390
	((struct seq_file *)file->private_data)->private = l;
3391 3392
	return 0;
}
3393 3394
static int cgroup_tasks_open(struct inode *unused, struct file *file)
{
3395
	return cgroup_pidlist_open(file, CGROUP_FILE_TASKS);
3396 3397 3398
}
static int cgroup_procs_open(struct inode *unused, struct file *file)
{
3399
	return cgroup_pidlist_open(file, CGROUP_FILE_PROCS);
3400
}
3401

3402
static u64 cgroup_read_notify_on_release(struct cgroup *cgrp,
3403 3404
					    struct cftype *cft)
{
3405
	return notify_on_release(cgrp);
3406 3407
}

3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419
static int cgroup_write_notify_on_release(struct cgroup *cgrp,
					  struct cftype *cft,
					  u64 val)
{
	clear_bit(CGRP_RELEASABLE, &cgrp->flags);
	if (val)
		set_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
	else
		clear_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
	return 0;
}

3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434
/*
 * Unregister event and free resources.
 *
 * Gets called from workqueue.
 */
static void cgroup_event_remove(struct work_struct *work)
{
	struct cgroup_event *event = container_of(work, struct cgroup_event,
			remove);
	struct cgroup *cgrp = event->cgrp;

	event->cft->unregister_event(cgrp, event->cft, event->eventfd);

	eventfd_ctx_put(event->eventfd);
	kfree(event);
3435
	dput(cgrp->dentry);
3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451
}

/*
 * Gets called on POLLHUP on eventfd when user closes it.
 *
 * Called with wqh->lock held and interrupts disabled.
 */
static int cgroup_event_wake(wait_queue_t *wait, unsigned mode,
		int sync, void *key)
{
	struct cgroup_event *event = container_of(wait,
			struct cgroup_event, wait);
	struct cgroup *cgrp = event->cgrp;
	unsigned long flags = (unsigned long)key;

	if (flags & POLLHUP) {
C
Changli Gao 已提交
3452
		__remove_wait_queue(event->wqh, &event->wait);
3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529
		spin_lock(&cgrp->event_list_lock);
		list_del(&event->list);
		spin_unlock(&cgrp->event_list_lock);
		/*
		 * We are in atomic context, but cgroup_event_remove() may
		 * sleep, so we have to call it in workqueue.
		 */
		schedule_work(&event->remove);
	}

	return 0;
}

static void cgroup_event_ptable_queue_proc(struct file *file,
		wait_queue_head_t *wqh, poll_table *pt)
{
	struct cgroup_event *event = container_of(pt,
			struct cgroup_event, pt);

	event->wqh = wqh;
	add_wait_queue(wqh, &event->wait);
}

/*
 * Parse input and register new cgroup event handler.
 *
 * Input must be in format '<event_fd> <control_fd> <args>'.
 * Interpretation of args is defined by control file implementation.
 */
static int cgroup_write_event_control(struct cgroup *cgrp, struct cftype *cft,
				      const char *buffer)
{
	struct cgroup_event *event = NULL;
	unsigned int efd, cfd;
	struct file *efile = NULL;
	struct file *cfile = NULL;
	char *endp;
	int ret;

	efd = simple_strtoul(buffer, &endp, 10);
	if (*endp != ' ')
		return -EINVAL;
	buffer = endp + 1;

	cfd = simple_strtoul(buffer, &endp, 10);
	if ((*endp != ' ') && (*endp != '\0'))
		return -EINVAL;
	buffer = endp + 1;

	event = kzalloc(sizeof(*event), GFP_KERNEL);
	if (!event)
		return -ENOMEM;
	event->cgrp = cgrp;
	INIT_LIST_HEAD(&event->list);
	init_poll_funcptr(&event->pt, cgroup_event_ptable_queue_proc);
	init_waitqueue_func_entry(&event->wait, cgroup_event_wake);
	INIT_WORK(&event->remove, cgroup_event_remove);

	efile = eventfd_fget(efd);
	if (IS_ERR(efile)) {
		ret = PTR_ERR(efile);
		goto fail;
	}

	event->eventfd = eventfd_ctx_fileget(efile);
	if (IS_ERR(event->eventfd)) {
		ret = PTR_ERR(event->eventfd);
		goto fail;
	}

	cfile = fget(cfd);
	if (!cfile) {
		ret = -EBADF;
		goto fail;
	}

	/* the process need read permission on control file */
A
Al Viro 已提交
3530 3531
	/* AV: shouldn't we check that it's been opened for read instead? */
	ret = inode_permission(cfile->f_path.dentry->d_inode, MAY_READ);
3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556
	if (ret < 0)
		goto fail;

	event->cft = __file_cft(cfile);
	if (IS_ERR(event->cft)) {
		ret = PTR_ERR(event->cft);
		goto fail;
	}

	if (!event->cft->register_event || !event->cft->unregister_event) {
		ret = -EINVAL;
		goto fail;
	}

	ret = event->cft->register_event(cgrp, event->cft,
			event->eventfd, buffer);
	if (ret)
		goto fail;

	if (efile->f_op->poll(efile, &event->pt) & POLLHUP) {
		event->cft->unregister_event(cgrp, event->cft, event->eventfd);
		ret = 0;
		goto fail;
	}

3557 3558 3559 3560 3561 3562 3563
	/*
	 * Events should be removed after rmdir of cgroup directory, but before
	 * destroying subsystem state objects. Let's take reference to cgroup
	 * directory dentry to do that.
	 */
	dget(cgrp->dentry);

3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587
	spin_lock(&cgrp->event_list_lock);
	list_add(&event->list, &cgrp->event_list);
	spin_unlock(&cgrp->event_list_lock);

	fput(cfile);
	fput(efile);

	return 0;

fail:
	if (cfile)
		fput(cfile);

	if (event && event->eventfd && !IS_ERR(event->eventfd))
		eventfd_ctx_put(event->eventfd);

	if (!IS_ERR_OR_NULL(efile))
		fput(efile);

	kfree(event);

	return ret;
}

3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604
static u64 cgroup_clone_children_read(struct cgroup *cgrp,
				    struct cftype *cft)
{
	return clone_children(cgrp);
}

static int cgroup_clone_children_write(struct cgroup *cgrp,
				     struct cftype *cft,
				     u64 val)
{
	if (val)
		set_bit(CGRP_CLONE_CHILDREN, &cgrp->flags);
	else
		clear_bit(CGRP_CLONE_CHILDREN, &cgrp->flags);
	return 0;
}

3605 3606 3607
/*
 * for the common functions, 'private' gives the type of file
 */
3608 3609
/* for hysterical raisins, we can't put this on the older files */
#define CGROUP_FILE_GENERIC_PREFIX "cgroup."
3610 3611 3612 3613
static struct cftype files[] = {
	{
		.name = "tasks",
		.open = cgroup_tasks_open,
3614
		.write_u64 = cgroup_tasks_write,
3615
		.release = cgroup_pidlist_release,
L
Li Zefan 已提交
3616
		.mode = S_IRUGO | S_IWUSR,
3617
	},
3618 3619 3620
	{
		.name = CGROUP_FILE_GENERIC_PREFIX "procs",
		.open = cgroup_procs_open,
B
Ben Blum 已提交
3621
		.write_u64 = cgroup_procs_write,
3622
		.release = cgroup_pidlist_release,
B
Ben Blum 已提交
3623
		.mode = S_IRUGO | S_IWUSR,
3624
	},
3625 3626
	{
		.name = "notify_on_release",
3627
		.read_u64 = cgroup_read_notify_on_release,
3628
		.write_u64 = cgroup_write_notify_on_release,
3629
	},
3630 3631 3632 3633 3634
	{
		.name = CGROUP_FILE_GENERIC_PREFIX "event_control",
		.write_string = cgroup_write_event_control,
		.mode = S_IWUGO,
	},
3635 3636 3637 3638 3639
	{
		.name = "cgroup.clone_children",
		.read_u64 = cgroup_clone_children_read,
		.write_u64 = cgroup_clone_children_write,
	},
3640 3641 3642 3643
};

static struct cftype cft_release_agent = {
	.name = "release_agent",
3644 3645 3646
	.read_seq_string = cgroup_release_agent_show,
	.write_string = cgroup_release_agent_write,
	.max_write_len = PATH_MAX,
3647 3648
};

3649
static int cgroup_populate_dir(struct cgroup *cgrp)
3650 3651 3652 3653
{
	int err;
	struct cgroup_subsys *ss;

3654
	err = cgroup_add_files(cgrp, NULL, files, ARRAY_SIZE(files));
3655 3656 3657
	if (err < 0)
		return err;

3658 3659
	if (cgrp == cgrp->top_cgroup) {
		if ((err = cgroup_add_file(cgrp, NULL, &cft_release_agent)) < 0)
3660 3661 3662
			return err;
	}

3663 3664
	for_each_subsys(cgrp->root, ss) {
		if (ss->populate && (err = ss->populate(ss, cgrp)) < 0)
3665 3666
			return err;
	}
K
KAMEZAWA Hiroyuki 已提交
3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677
	/* This cgroup is ready now */
	for_each_subsys(cgrp->root, ss) {
		struct cgroup_subsys_state *css = cgrp->subsys[ss->subsys_id];
		/*
		 * Update id->css pointer and make this css visible from
		 * CSS ID functions. This pointer will be dereferened
		 * from RCU-read-side without locks.
		 */
		if (css->id)
			rcu_assign_pointer(css->id->css, css);
	}
3678 3679 3680 3681 3682 3683

	return 0;
}

static void init_cgroup_css(struct cgroup_subsys_state *css,
			       struct cgroup_subsys *ss,
3684
			       struct cgroup *cgrp)
3685
{
3686
	css->cgroup = cgrp;
P
Paul Menage 已提交
3687
	atomic_set(&css->refcnt, 1);
3688
	css->flags = 0;
K
KAMEZAWA Hiroyuki 已提交
3689
	css->id = NULL;
3690
	if (cgrp == dummytop)
3691
		set_bit(CSS_ROOT, &css->flags);
3692 3693
	BUG_ON(cgrp->subsys[ss->subsys_id]);
	cgrp->subsys[ss->subsys_id] = css;
3694 3695
}

3696 3697 3698 3699 3700
static void cgroup_lock_hierarchy(struct cgroupfs_root *root)
{
	/* We need to take each hierarchy_mutex in a consistent order */
	int i;

B
Ben Blum 已提交
3701 3702 3703 3704
	/*
	 * No worry about a race with rebind_subsystems that might mess up the
	 * locking order, since both parties are under cgroup_mutex.
	 */
3705 3706
	for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
		struct cgroup_subsys *ss = subsys[i];
B
Ben Blum 已提交
3707 3708
		if (ss == NULL)
			continue;
3709
		if (ss->root == root)
3710
			mutex_lock(&ss->hierarchy_mutex);
3711 3712 3713 3714 3715 3716 3717 3718 3719
	}
}

static void cgroup_unlock_hierarchy(struct cgroupfs_root *root)
{
	int i;

	for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
		struct cgroup_subsys *ss = subsys[i];
B
Ben Blum 已提交
3720 3721
		if (ss == NULL)
			continue;
3722 3723 3724 3725 3726
		if (ss->root == root)
			mutex_unlock(&ss->hierarchy_mutex);
	}
}

3727
/*
L
Li Zefan 已提交
3728 3729 3730 3731
 * cgroup_create - create a cgroup
 * @parent: cgroup that will be parent of the new cgroup
 * @dentry: dentry of the new cgroup
 * @mode: mode to set on new inode
3732
 *
L
Li Zefan 已提交
3733
 * Must be called with the mutex on the parent inode held
3734 3735
 */
static long cgroup_create(struct cgroup *parent, struct dentry *dentry,
A
Al Viro 已提交
3736
			     umode_t mode)
3737
{
3738
	struct cgroup *cgrp;
3739 3740 3741 3742 3743
	struct cgroupfs_root *root = parent->root;
	int err = 0;
	struct cgroup_subsys *ss;
	struct super_block *sb = root->sb;

3744 3745
	cgrp = kzalloc(sizeof(*cgrp), GFP_KERNEL);
	if (!cgrp)
3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756
		return -ENOMEM;

	/* Grab a reference on the superblock so the hierarchy doesn't
	 * get deleted on unmount if there are child cgroups.  This
	 * can be done outside cgroup_mutex, since the sb can't
	 * disappear while someone has an open control file on the
	 * fs */
	atomic_inc(&sb->s_active);

	mutex_lock(&cgroup_mutex);

3757
	init_cgroup_housekeeping(cgrp);
3758

3759 3760 3761
	cgrp->parent = parent;
	cgrp->root = parent->root;
	cgrp->top_cgroup = parent->top_cgroup;
3762

3763 3764 3765
	if (notify_on_release(parent))
		set_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);

3766 3767 3768
	if (clone_children(parent))
		set_bit(CGRP_CLONE_CHILDREN, &cgrp->flags);

3769
	for_each_subsys(root, ss) {
3770
		struct cgroup_subsys_state *css = ss->create(cgrp);
3771

3772 3773 3774 3775
		if (IS_ERR(css)) {
			err = PTR_ERR(css);
			goto err_destroy;
		}
3776
		init_cgroup_css(css, ss, cgrp);
3777 3778 3779
		if (ss->use_id) {
			err = alloc_css_id(ss, parent, cgrp);
			if (err)
K
KAMEZAWA Hiroyuki 已提交
3780
				goto err_destroy;
3781
		}
K
KAMEZAWA Hiroyuki 已提交
3782
		/* At error, ->destroy() callback has to free assigned ID. */
3783
		if (clone_children(parent) && ss->post_clone)
3784
			ss->post_clone(cgrp);
3785 3786
	}

3787
	cgroup_lock_hierarchy(root);
3788
	list_add(&cgrp->sibling, &cgrp->parent->children);
3789
	cgroup_unlock_hierarchy(root);
3790 3791
	root->number_of_cgroups++;

3792
	err = cgroup_create_dir(cgrp, dentry, mode);
3793 3794 3795 3796
	if (err < 0)
		goto err_remove;

	/* The cgroup directory was pre-locked for us */
3797
	BUG_ON(!mutex_is_locked(&cgrp->dentry->d_inode->i_mutex));
3798

3799 3800
	list_add_tail(&cgrp->allcg_node, &root->allcg_list);

3801
	err = cgroup_populate_dir(cgrp);
3802 3803 3804
	/* If err < 0, we have a half-filled directory - oh well ;) */

	mutex_unlock(&cgroup_mutex);
3805
	mutex_unlock(&cgrp->dentry->d_inode->i_mutex);
3806 3807 3808 3809 3810

	return 0;

 err_remove:

3811
	cgroup_lock_hierarchy(root);
3812
	list_del(&cgrp->sibling);
3813
	cgroup_unlock_hierarchy(root);
3814 3815 3816 3817 3818
	root->number_of_cgroups--;

 err_destroy:

	for_each_subsys(root, ss) {
3819
		if (cgrp->subsys[ss->subsys_id])
3820
			ss->destroy(cgrp);
3821 3822 3823 3824 3825 3826 3827
	}

	mutex_unlock(&cgroup_mutex);

	/* Release the reference count that we took on the superblock */
	deactivate_super(sb);

3828
	kfree(cgrp);
3829 3830 3831
	return err;
}

3832
static int cgroup_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
3833 3834 3835 3836 3837 3838 3839
{
	struct cgroup *c_parent = dentry->d_parent->d_fsdata;

	/* the vfs holds inode->i_mutex already */
	return cgroup_create(c_parent, dentry, mode | S_IFDIR);
}

3840
static int cgroup_has_css_refs(struct cgroup *cgrp)
3841 3842 3843
{
	/* Check the reference count on each subsystem. Since we
	 * already established that there are no tasks in the
P
Paul Menage 已提交
3844
	 * cgroup, if the css refcount is also 1, then there should
3845 3846 3847 3848 3849 3850 3851
	 * be no outstanding references, so the subsystem is safe to
	 * destroy. We scan across all subsystems rather than using
	 * the per-hierarchy linked list of mounted subsystems since
	 * we can be called via check_for_release() with no
	 * synchronization other than RCU, and the subsystem linked
	 * list isn't RCU-safe */
	int i;
B
Ben Blum 已提交
3852 3853 3854 3855 3856
	/*
	 * We won't need to lock the subsys array, because the subsystems
	 * we're concerned about aren't going anywhere since our cgroup root
	 * has a reference on them.
	 */
3857 3858 3859
	for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
		struct cgroup_subsys *ss = subsys[i];
		struct cgroup_subsys_state *css;
B
Ben Blum 已提交
3860 3861
		/* Skip subsystems not present or not in this hierarchy */
		if (ss == NULL || ss->root != cgrp->root)
3862
			continue;
3863
		css = cgrp->subsys[ss->subsys_id];
3864 3865 3866 3867 3868 3869
		/* When called from check_for_release() it's possible
		 * that by this point the cgroup has been removed
		 * and the css deleted. But a false-positive doesn't
		 * matter, since it can only happen if the cgroup
		 * has been deleted and hence no longer needs the
		 * release agent to be called anyway. */
P
Paul Menage 已提交
3870
		if (css && (atomic_read(&css->refcnt) > 1))
3871 3872 3873 3874 3875
			return 1;
	}
	return 0;
}

P
Paul Menage 已提交
3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890
/*
 * Atomically mark all (or else none) of the cgroup's CSS objects as
 * CSS_REMOVED. Return true on success, or false if the cgroup has
 * busy subsystems. Call with cgroup_mutex held
 */

static int cgroup_clear_css_refs(struct cgroup *cgrp)
{
	struct cgroup_subsys *ss;
	unsigned long flags;
	bool failed = false;
	local_irq_save(flags);
	for_each_subsys(cgrp->root, ss) {
		struct cgroup_subsys_state *css = cgrp->subsys[ss->subsys_id];
		int refcnt;
3891
		while (1) {
P
Paul Menage 已提交
3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904
			/* We can only remove a CSS with a refcnt==1 */
			refcnt = atomic_read(&css->refcnt);
			if (refcnt > 1) {
				failed = true;
				goto done;
			}
			BUG_ON(!refcnt);
			/*
			 * Drop the refcnt to 0 while we check other
			 * subsystems. This will cause any racing
			 * css_tryget() to spin until we set the
			 * CSS_REMOVED bits or abort
			 */
3905 3906 3907 3908
			if (atomic_cmpxchg(&css->refcnt, refcnt, 0) == refcnt)
				break;
			cpu_relax();
		}
P
Paul Menage 已提交
3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928
	}
 done:
	for_each_subsys(cgrp->root, ss) {
		struct cgroup_subsys_state *css = cgrp->subsys[ss->subsys_id];
		if (failed) {
			/*
			 * Restore old refcnt if we previously managed
			 * to clear it from 1 to 0
			 */
			if (!atomic_read(&css->refcnt))
				atomic_set(&css->refcnt, 1);
		} else {
			/* Commit the fact that the CSS is removed */
			set_bit(CSS_REMOVED, &css->flags);
		}
	}
	local_irq_restore(flags);
	return !failed;
}

3929 3930
static int cgroup_rmdir(struct inode *unused_dir, struct dentry *dentry)
{
3931
	struct cgroup *cgrp = dentry->d_fsdata;
3932 3933
	struct dentry *d;
	struct cgroup *parent;
3934
	DEFINE_WAIT(wait);
3935
	struct cgroup_event *event, *tmp;
3936
	int ret;
3937 3938

	/* the vfs holds both inode->i_mutex already */
3939
again:
3940
	mutex_lock(&cgroup_mutex);
3941
	if (atomic_read(&cgrp->count) != 0) {
3942 3943 3944
		mutex_unlock(&cgroup_mutex);
		return -EBUSY;
	}
3945
	if (!list_empty(&cgrp->children)) {
3946 3947 3948
		mutex_unlock(&cgroup_mutex);
		return -EBUSY;
	}
3949
	mutex_unlock(&cgroup_mutex);
L
Li Zefan 已提交
3950

3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961
	/*
	 * In general, subsystem has no css->refcnt after pre_destroy(). But
	 * in racy cases, subsystem may have to get css->refcnt after
	 * pre_destroy() and it makes rmdir return with -EBUSY. This sometimes
	 * make rmdir return -EBUSY too often. To avoid that, we use waitqueue
	 * for cgroup's rmdir. CGRP_WAIT_ON_RMDIR is for synchronizing rmdir
	 * and subsystem's reference count handling. Please see css_get/put
	 * and css_tryget() and cgroup_wakeup_rmdir_waiter() implementation.
	 */
	set_bit(CGRP_WAIT_ON_RMDIR, &cgrp->flags);

3962
	/*
L
Li Zefan 已提交
3963 3964
	 * Call pre_destroy handlers of subsys. Notify subsystems
	 * that rmdir() request comes.
3965
	 */
3966
	ret = cgroup_call_pre_destroy(cgrp);
3967 3968
	if (ret) {
		clear_bit(CGRP_WAIT_ON_RMDIR, &cgrp->flags);
3969
		return ret;
3970
	}
3971

3972 3973
	mutex_lock(&cgroup_mutex);
	parent = cgrp->parent;
3974
	if (atomic_read(&cgrp->count) || !list_empty(&cgrp->children)) {
3975
		clear_bit(CGRP_WAIT_ON_RMDIR, &cgrp->flags);
3976 3977 3978
		mutex_unlock(&cgroup_mutex);
		return -EBUSY;
	}
3979 3980 3981
	prepare_to_wait(&cgroup_rmdir_waitq, &wait, TASK_INTERRUPTIBLE);
	if (!cgroup_clear_css_refs(cgrp)) {
		mutex_unlock(&cgroup_mutex);
3982 3983 3984 3985 3986 3987
		/*
		 * Because someone may call cgroup_wakeup_rmdir_waiter() before
		 * prepare_to_wait(), we need to check this flag.
		 */
		if (test_bit(CGRP_WAIT_ON_RMDIR, &cgrp->flags))
			schedule();
3988 3989 3990 3991 3992 3993 3994 3995 3996
		finish_wait(&cgroup_rmdir_waitq, &wait);
		clear_bit(CGRP_WAIT_ON_RMDIR, &cgrp->flags);
		if (signal_pending(current))
			return -EINTR;
		goto again;
	}
	/* NO css_tryget() can success after here. */
	finish_wait(&cgroup_rmdir_waitq, &wait);
	clear_bit(CGRP_WAIT_ON_RMDIR, &cgrp->flags);
3997

3998
	raw_spin_lock(&release_list_lock);
3999 4000
	set_bit(CGRP_REMOVED, &cgrp->flags);
	if (!list_empty(&cgrp->release_list))
4001
		list_del_init(&cgrp->release_list);
4002
	raw_spin_unlock(&release_list_lock);
4003 4004 4005

	cgroup_lock_hierarchy(cgrp->root);
	/* delete this cgroup from parent->children */
4006
	list_del_init(&cgrp->sibling);
4007 4008
	cgroup_unlock_hierarchy(cgrp->root);

4009 4010
	list_del_init(&cgrp->allcg_node);

4011
	d = dget(cgrp->dentry);
4012 4013 4014 4015

	cgroup_d_remove_dir(d);
	dput(d);

4016
	set_bit(CGRP_RELEASABLE, &parent->flags);
4017 4018
	check_for_release(parent);

4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032
	/*
	 * Unregister events and notify userspace.
	 * Notify userspace about cgroup removing only after rmdir of cgroup
	 * directory to avoid race between userspace and kernelspace
	 */
	spin_lock(&cgrp->event_list_lock);
	list_for_each_entry_safe(event, tmp, &cgrp->event_list, list) {
		list_del(&event->list);
		remove_wait_queue(event->wqh, &event->wait);
		eventfd_signal(event->eventfd, 1);
		schedule_work(&event->remove);
	}
	spin_unlock(&cgrp->event_list_lock);

4033 4034 4035 4036
	mutex_unlock(&cgroup_mutex);
	return 0;
}

4037
static void __init cgroup_init_subsys(struct cgroup_subsys *ss)
4038 4039
{
	struct cgroup_subsys_state *css;
D
Diego Calleja 已提交
4040 4041

	printk(KERN_INFO "Initializing cgroup subsys %s\n", ss->name);
4042 4043

	/* Create the top cgroup state for this subsystem */
4044
	list_add(&ss->sibling, &rootnode.subsys_list);
4045
	ss->root = &rootnode;
4046
	css = ss->create(dummytop);
4047 4048 4049 4050
	/* We don't handle early failures gracefully */
	BUG_ON(IS_ERR(css));
	init_cgroup_css(css, ss, dummytop);

L
Li Zefan 已提交
4051
	/* Update the init_css_set to contain a subsys
4052
	 * pointer to this state - since the subsystem is
L
Li Zefan 已提交
4053 4054 4055
	 * newly registered, all tasks and hence the
	 * init_css_set is in the subsystem's top cgroup. */
	init_css_set.subsys[ss->subsys_id] = dummytop->subsys[ss->subsys_id];
4056 4057 4058

	need_forkexit_callback |= ss->fork || ss->exit;

L
Li Zefan 已提交
4059 4060 4061 4062 4063
	/* At system boot, before all subsystems have been
	 * registered, no tasks have been forked, so we don't
	 * need to invoke fork callbacks here. */
	BUG_ON(!list_empty(&init_task.tasks));

4064
	mutex_init(&ss->hierarchy_mutex);
4065
	lockdep_set_class(&ss->hierarchy_mutex, &ss->subsys_key);
4066
	ss->active = 1;
4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077

	/* this function shouldn't be used with modular subsystems, since they
	 * need to register a subsys_id, among other things */
	BUG_ON(ss->module);
}

/**
 * cgroup_load_subsys: load and register a modular subsystem at runtime
 * @ss: the subsystem to load
 *
 * This function should be called in a modular subsystem's initcall. If the
T
Thomas Weber 已提交
4078
 * subsystem is built as a module, it will be assigned a new subsys_id and set
4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134
 * up for use. If the subsystem is built-in anyway, work is delegated to the
 * simpler cgroup_init_subsys.
 */
int __init_or_module cgroup_load_subsys(struct cgroup_subsys *ss)
{
	int i;
	struct cgroup_subsys_state *css;

	/* check name and function validity */
	if (ss->name == NULL || strlen(ss->name) > MAX_CGROUP_TYPE_NAMELEN ||
	    ss->create == NULL || ss->destroy == NULL)
		return -EINVAL;

	/*
	 * we don't support callbacks in modular subsystems. this check is
	 * before the ss->module check for consistency; a subsystem that could
	 * be a module should still have no callbacks even if the user isn't
	 * compiling it as one.
	 */
	if (ss->fork || ss->exit)
		return -EINVAL;

	/*
	 * an optionally modular subsystem is built-in: we want to do nothing,
	 * since cgroup_init_subsys will have already taken care of it.
	 */
	if (ss->module == NULL) {
		/* a few sanity checks */
		BUG_ON(ss->subsys_id >= CGROUP_BUILTIN_SUBSYS_COUNT);
		BUG_ON(subsys[ss->subsys_id] != ss);
		return 0;
	}

	/*
	 * need to register a subsys id before anything else - for example,
	 * init_cgroup_css needs it.
	 */
	mutex_lock(&cgroup_mutex);
	/* find the first empty slot in the array */
	for (i = CGROUP_BUILTIN_SUBSYS_COUNT; i < CGROUP_SUBSYS_COUNT; i++) {
		if (subsys[i] == NULL)
			break;
	}
	if (i == CGROUP_SUBSYS_COUNT) {
		/* maximum number of subsystems already registered! */
		mutex_unlock(&cgroup_mutex);
		return -EBUSY;
	}
	/* assign ourselves the subsys_id */
	ss->subsys_id = i;
	subsys[i] = ss;

	/*
	 * no ss->create seems to need anything important in the ss struct, so
	 * this can happen first (i.e. before the rootnode attachment).
	 */
4135
	css = ss->create(dummytop);
4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152
	if (IS_ERR(css)) {
		/* failure case - need to deassign the subsys[] slot. */
		subsys[i] = NULL;
		mutex_unlock(&cgroup_mutex);
		return PTR_ERR(css);
	}

	list_add(&ss->sibling, &rootnode.subsys_list);
	ss->root = &rootnode;

	/* our new subsystem will be attached to the dummy hierarchy. */
	init_cgroup_css(css, ss, dummytop);
	/* init_idr must be after init_cgroup_css because it sets css->id. */
	if (ss->use_id) {
		int ret = cgroup_init_idr(ss, css);
		if (ret) {
			dummytop->subsys[ss->subsys_id] = NULL;
4153
			ss->destroy(dummytop);
4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195
			subsys[i] = NULL;
			mutex_unlock(&cgroup_mutex);
			return ret;
		}
	}

	/*
	 * Now we need to entangle the css into the existing css_sets. unlike
	 * in cgroup_init_subsys, there are now multiple css_sets, so each one
	 * will need a new pointer to it; done by iterating the css_set_table.
	 * furthermore, modifying the existing css_sets will corrupt the hash
	 * table state, so each changed css_set will need its hash recomputed.
	 * this is all done under the css_set_lock.
	 */
	write_lock(&css_set_lock);
	for (i = 0; i < CSS_SET_TABLE_SIZE; i++) {
		struct css_set *cg;
		struct hlist_node *node, *tmp;
		struct hlist_head *bucket = &css_set_table[i], *new_bucket;

		hlist_for_each_entry_safe(cg, node, tmp, bucket, hlist) {
			/* skip entries that we already rehashed */
			if (cg->subsys[ss->subsys_id])
				continue;
			/* remove existing entry */
			hlist_del(&cg->hlist);
			/* set new value */
			cg->subsys[ss->subsys_id] = css;
			/* recompute hash and restore entry */
			new_bucket = css_set_hash(cg->subsys);
			hlist_add_head(&cg->hlist, new_bucket);
		}
	}
	write_unlock(&css_set_lock);

	mutex_init(&ss->hierarchy_mutex);
	lockdep_set_class(&ss->hierarchy_mutex, &ss->subsys_key);
	ss->active = 1;

	/* success! */
	mutex_unlock(&cgroup_mutex);
	return 0;
4196
}
4197
EXPORT_SYMBOL_GPL(cgroup_load_subsys);
4198

B
Ben Blum 已提交
4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226
/**
 * cgroup_unload_subsys: unload a modular subsystem
 * @ss: the subsystem to unload
 *
 * This function should be called in a modular subsystem's exitcall. When this
 * function is invoked, the refcount on the subsystem's module will be 0, so
 * the subsystem will not be attached to any hierarchy.
 */
void cgroup_unload_subsys(struct cgroup_subsys *ss)
{
	struct cg_cgroup_link *link;
	struct hlist_head *hhead;

	BUG_ON(ss->module == NULL);

	/*
	 * we shouldn't be called if the subsystem is in use, and the use of
	 * try_module_get in parse_cgroupfs_options should ensure that it
	 * doesn't start being used while we're killing it off.
	 */
	BUG_ON(ss->root != &rootnode);

	mutex_lock(&cgroup_mutex);
	/* deassign the subsys_id */
	BUG_ON(ss->subsys_id < CGROUP_BUILTIN_SUBSYS_COUNT);
	subsys[ss->subsys_id] = NULL;

	/* remove subsystem from rootnode's list of subsystems */
4227
	list_del_init(&ss->sibling);
B
Ben Blum 已提交
4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250

	/*
	 * disentangle the css from all css_sets attached to the dummytop. as
	 * in loading, we need to pay our respects to the hashtable gods.
	 */
	write_lock(&css_set_lock);
	list_for_each_entry(link, &dummytop->css_sets, cgrp_link_list) {
		struct css_set *cg = link->cg;

		hlist_del(&cg->hlist);
		BUG_ON(!cg->subsys[ss->subsys_id]);
		cg->subsys[ss->subsys_id] = NULL;
		hhead = css_set_hash(cg->subsys);
		hlist_add_head(&cg->hlist, hhead);
	}
	write_unlock(&css_set_lock);

	/*
	 * remove subsystem's css from the dummytop and free it - need to free
	 * before marking as null because ss->destroy needs the cgrp->subsys
	 * pointer to find their state. note that this also takes care of
	 * freeing the css_id.
	 */
4251
	ss->destroy(dummytop);
B
Ben Blum 已提交
4252 4253 4254 4255 4256 4257
	dummytop->subsys[ss->subsys_id] = NULL;

	mutex_unlock(&cgroup_mutex);
}
EXPORT_SYMBOL_GPL(cgroup_unload_subsys);

4258
/**
L
Li Zefan 已提交
4259 4260 4261 4262
 * cgroup_init_early - cgroup initialization at system boot
 *
 * Initialize cgroups at system boot, and initialize any
 * subsystems that request early init.
4263 4264 4265 4266
 */
int __init cgroup_init_early(void)
{
	int i;
4267
	atomic_set(&init_css_set.refcount, 1);
4268 4269
	INIT_LIST_HEAD(&init_css_set.cg_links);
	INIT_LIST_HEAD(&init_css_set.tasks);
4270
	INIT_HLIST_NODE(&init_css_set.hlist);
4271
	css_set_count = 1;
4272
	init_cgroup_root(&rootnode);
4273 4274 4275 4276
	root_count = 1;
	init_task.cgroups = &init_css_set;

	init_css_set_link.cg = &init_css_set;
4277
	init_css_set_link.cgrp = dummytop;
4278
	list_add(&init_css_set_link.cgrp_link_list,
4279 4280 4281
		 &rootnode.top_cgroup.css_sets);
	list_add(&init_css_set_link.cg_link_list,
		 &init_css_set.cg_links);
4282

4283 4284 4285
	for (i = 0; i < CSS_SET_TABLE_SIZE; i++)
		INIT_HLIST_HEAD(&css_set_table[i]);

B
Ben Blum 已提交
4286 4287
	/* at bootup time, we don't worry about modular subsystems */
	for (i = 0; i < CGROUP_BUILTIN_SUBSYS_COUNT; i++) {
4288 4289 4290 4291 4292 4293 4294
		struct cgroup_subsys *ss = subsys[i];

		BUG_ON(!ss->name);
		BUG_ON(strlen(ss->name) > MAX_CGROUP_TYPE_NAMELEN);
		BUG_ON(!ss->create);
		BUG_ON(!ss->destroy);
		if (ss->subsys_id != i) {
D
Diego Calleja 已提交
4295
			printk(KERN_ERR "cgroup: Subsys %s id == %d\n",
4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306
			       ss->name, ss->subsys_id);
			BUG();
		}

		if (ss->early_init)
			cgroup_init_subsys(ss);
	}
	return 0;
}

/**
L
Li Zefan 已提交
4307 4308 4309 4310
 * cgroup_init - cgroup initialization
 *
 * Register cgroup filesystem and /proc file, and initialize
 * any subsystems that didn't request early init.
4311 4312 4313 4314 4315
 */
int __init cgroup_init(void)
{
	int err;
	int i;
4316
	struct hlist_head *hhead;
4317 4318 4319 4320

	err = bdi_init(&cgroup_backing_dev_info);
	if (err)
		return err;
4321

B
Ben Blum 已提交
4322 4323
	/* at bootup time, we don't worry about modular subsystems */
	for (i = 0; i < CGROUP_BUILTIN_SUBSYS_COUNT; i++) {
4324 4325 4326
		struct cgroup_subsys *ss = subsys[i];
		if (!ss->early_init)
			cgroup_init_subsys(ss);
K
KAMEZAWA Hiroyuki 已提交
4327
		if (ss->use_id)
4328
			cgroup_init_idr(ss, init_css_set.subsys[ss->subsys_id]);
4329 4330
	}

4331 4332 4333
	/* Add init_css_set to the hash table */
	hhead = css_set_hash(init_css_set.subsys);
	hlist_add_head(&init_css_set.hlist, hhead);
4334
	BUG_ON(!init_root_id(&rootnode));
4335 4336 4337 4338 4339 4340 4341

	cgroup_kobj = kobject_create_and_add("cgroup", fs_kobj);
	if (!cgroup_kobj) {
		err = -ENOMEM;
		goto out;
	}

4342
	err = register_filesystem(&cgroup_fs_type);
4343 4344
	if (err < 0) {
		kobject_put(cgroup_kobj);
4345
		goto out;
4346
	}
4347

L
Li Zefan 已提交
4348
	proc_create("cgroups", 0, NULL, &proc_cgroupstats_operations);
4349

4350
out:
4351 4352 4353
	if (err)
		bdi_destroy(&cgroup_backing_dev_info);

4354 4355
	return err;
}
4356

4357 4358 4359 4360 4361 4362
/*
 * proc_cgroup_show()
 *  - Print task's cgroup paths into seq_file, one line for each hierarchy
 *  - Used for /proc/<pid>/cgroup.
 *  - No need to task_lock(tsk) on this tsk->cgroup reference, as it
 *    doesn't really matter if tsk->cgroup changes after we read it,
4363
 *    and we take cgroup_mutex, keeping cgroup_attach_task() from changing it
4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392
 *    anyway.  No need to check that tsk->cgroup != NULL, thanks to
 *    the_top_cgroup_hack in cgroup_exit(), which sets an exiting tasks
 *    cgroup to top_cgroup.
 */

/* TODO: Use a proper seq_file iterator */
static int proc_cgroup_show(struct seq_file *m, void *v)
{
	struct pid *pid;
	struct task_struct *tsk;
	char *buf;
	int retval;
	struct cgroupfs_root *root;

	retval = -ENOMEM;
	buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
	if (!buf)
		goto out;

	retval = -ESRCH;
	pid = m->private;
	tsk = get_pid_task(pid, PIDTYPE_PID);
	if (!tsk)
		goto out_free;

	retval = 0;

	mutex_lock(&cgroup_mutex);

4393
	for_each_active_root(root) {
4394
		struct cgroup_subsys *ss;
4395
		struct cgroup *cgrp;
4396 4397
		int count = 0;

4398
		seq_printf(m, "%d:", root->hierarchy_id);
4399 4400
		for_each_subsys(root, ss)
			seq_printf(m, "%s%s", count++ ? "," : "", ss->name);
4401 4402 4403
		if (strlen(root->name))
			seq_printf(m, "%sname=%s", count ? "," : "",
				   root->name);
4404
		seq_putc(m, ':');
4405
		cgrp = task_cgroup_from_root(tsk, root);
4406
		retval = cgroup_path(cgrp, buf, PAGE_SIZE);
4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427
		if (retval < 0)
			goto out_unlock;
		seq_puts(m, buf);
		seq_putc(m, '\n');
	}

out_unlock:
	mutex_unlock(&cgroup_mutex);
	put_task_struct(tsk);
out_free:
	kfree(buf);
out:
	return retval;
}

static int cgroup_open(struct inode *inode, struct file *file)
{
	struct pid *pid = PROC_I(inode)->pid;
	return single_open(file, proc_cgroup_show, pid);
}

4428
const struct file_operations proc_cgroup_operations = {
4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439
	.open		= cgroup_open,
	.read		= seq_read,
	.llseek		= seq_lseek,
	.release	= single_release,
};

/* Display information about each subsystem and each hierarchy */
static int proc_cgroupstats_show(struct seq_file *m, void *v)
{
	int i;

4440
	seq_puts(m, "#subsys_name\thierarchy\tnum_cgroups\tenabled\n");
B
Ben Blum 已提交
4441 4442 4443 4444 4445
	/*
	 * ideally we don't want subsystems moving around while we do this.
	 * cgroup_mutex is also necessary to guarantee an atomic snapshot of
	 * subsys/hierarchy state.
	 */
4446 4447 4448
	mutex_lock(&cgroup_mutex);
	for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
		struct cgroup_subsys *ss = subsys[i];
B
Ben Blum 已提交
4449 4450
		if (ss == NULL)
			continue;
4451 4452
		seq_printf(m, "%s\t%d\t%d\t%d\n",
			   ss->name, ss->root->hierarchy_id,
4453
			   ss->root->number_of_cgroups, !ss->disabled);
4454 4455 4456 4457 4458 4459 4460
	}
	mutex_unlock(&cgroup_mutex);
	return 0;
}

static int cgroupstats_open(struct inode *inode, struct file *file)
{
A
Al Viro 已提交
4461
	return single_open(file, proc_cgroupstats_show, NULL);
4462 4463
}

4464
static const struct file_operations proc_cgroupstats_operations = {
4465 4466 4467 4468 4469 4470
	.open = cgroupstats_open,
	.read = seq_read,
	.llseek = seq_lseek,
	.release = single_release,
};

4471 4472
/**
 * cgroup_fork - attach newly forked task to its parents cgroup.
L
Li Zefan 已提交
4473
 * @child: pointer to task_struct of forking parent process.
4474 4475 4476 4477 4478
 *
 * Description: A task inherits its parent's cgroup at fork().
 *
 * A pointer to the shared css_set was automatically copied in
 * fork.c by dup_task_struct().  However, we ignore that copy, since
4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489
 * it was not made under the protection of RCU, cgroup_mutex or
 * threadgroup_change_begin(), so it might no longer be a valid
 * cgroup pointer.  cgroup_attach_task() might have already changed
 * current->cgroups, allowing the previously referenced cgroup
 * group to be removed and freed.
 *
 * Outside the pointer validity we also need to process the css_set
 * inheritance between threadgoup_change_begin() and
 * threadgoup_change_end(), this way there is no leak in any process
 * wide migration performed by cgroup_attach_proc() that could otherwise
 * miss a thread because it is too early or too late in the fork stage.
4490 4491 4492 4493 4494 4495
 *
 * At the point that cgroup_fork() is called, 'current' is the parent
 * task, and the passed argument 'child' points to the child task.
 */
void cgroup_fork(struct task_struct *child)
{
4496 4497 4498 4499 4500 4501
	/*
	 * We don't need to task_lock() current because current->cgroups
	 * can't be changed concurrently here. The parent obviously hasn't
	 * exited and called cgroup_exit(), and we are synchronized against
	 * cgroup migration through threadgroup_change_begin().
	 */
4502 4503 4504
	child->cgroups = current->cgroups;
	get_css_set(child->cgroups);
	INIT_LIST_HEAD(&child->cg_list);
4505 4506 4507
}

/**
L
Li Zefan 已提交
4508 4509 4510 4511 4512 4513
 * cgroup_fork_callbacks - run fork callbacks
 * @child: the new task
 *
 * Called on a new task very soon before adding it to the
 * tasklist. No need to take any locks since no-one can
 * be operating on this task.
4514 4515 4516 4517 4518
 */
void cgroup_fork_callbacks(struct task_struct *child)
{
	if (need_forkexit_callback) {
		int i;
B
Ben Blum 已提交
4519 4520 4521 4522 4523 4524
		/*
		 * forkexit callbacks are only supported for builtin
		 * subsystems, and the builtin section of the subsys array is
		 * immutable, so we don't need to lock the subsys array here.
		 */
		for (i = 0; i < CGROUP_BUILTIN_SUBSYS_COUNT; i++) {
4525 4526
			struct cgroup_subsys *ss = subsys[i];
			if (ss->fork)
4527
				ss->fork(child);
4528 4529 4530 4531
		}
	}
}

4532
/**
L
Li Zefan 已提交
4533 4534 4535 4536 4537 4538 4539 4540
 * cgroup_post_fork - called on a new task after adding it to the task list
 * @child: the task in question
 *
 * Adds the task to the list running through its css_set if necessary.
 * Has to be after the task is visible on the task list in case we race
 * with the first call to cgroup_iter_start() - to guarantee that the
 * new task ends up on its list.
 */
4541 4542
void cgroup_post_fork(struct task_struct *child)
{
4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553
	/*
	 * use_task_css_set_links is set to 1 before we walk the tasklist
	 * under the tasklist_lock and we read it here after we added the child
	 * to the tasklist under the tasklist_lock as well. If the child wasn't
	 * yet in the tasklist when we walked through it from
	 * cgroup_enable_task_cg_lists(), then use_task_css_set_links value
	 * should be visible now due to the paired locking and barriers implied
	 * by LOCK/UNLOCK: it is written before the tasklist_lock unlock
	 * in cgroup_enable_task_cg_lists() and read here after the tasklist_lock
	 * lock on fork.
	 */
4554 4555
	if (use_task_css_set_links) {
		write_lock(&css_set_lock);
4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566
		if (list_empty(&child->cg_list)) {
			/*
			 * It's safe to use child->cgroups without task_lock()
			 * here because we are protected through
			 * threadgroup_change_begin() against concurrent
			 * css_set change in cgroup_task_migrate(). Also
			 * the task can't exit at that point until
			 * wake_up_new_task() is called, so we are protected
			 * against cgroup_exit() setting child->cgroup to
			 * init_css_set.
			 */
4567
			list_add(&child->cg_list, &child->cgroups->tasks);
4568
		}
4569 4570 4571
		write_unlock(&css_set_lock);
	}
}
4572 4573 4574
/**
 * cgroup_exit - detach cgroup from exiting task
 * @tsk: pointer to task_struct of exiting process
L
Li Zefan 已提交
4575
 * @run_callback: run exit callbacks?
4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603
 *
 * Description: Detach cgroup from @tsk and release it.
 *
 * Note that cgroups marked notify_on_release force every task in
 * them to take the global cgroup_mutex mutex when exiting.
 * This could impact scaling on very large systems.  Be reluctant to
 * use notify_on_release cgroups where very high task exit scaling
 * is required on large systems.
 *
 * the_top_cgroup_hack:
 *
 *    Set the exiting tasks cgroup to the root cgroup (top_cgroup).
 *
 *    We call cgroup_exit() while the task is still competent to
 *    handle notify_on_release(), then leave the task attached to the
 *    root cgroup in each hierarchy for the remainder of its exit.
 *
 *    To do this properly, we would increment the reference count on
 *    top_cgroup, and near the very end of the kernel/exit.c do_exit()
 *    code we would add a second cgroup function call, to drop that
 *    reference.  This would just create an unnecessary hot spot on
 *    the top_cgroup reference count, to no avail.
 *
 *    Normally, holding a reference to a cgroup without bumping its
 *    count is unsafe.   The cgroup could go away, or someone could
 *    attach us to a different cgroup, decrementing the count on
 *    the first cgroup that we never incremented.  But in this case,
 *    top_cgroup isn't going away, and either task has PF_EXITING set,
4604 4605
 *    which wards off any cgroup_attach_task() attempts, or task is a failed
 *    fork, never visible to cgroup_attach_task.
4606 4607 4608
 */
void cgroup_exit(struct task_struct *tsk, int run_callbacks)
{
4609
	struct css_set *cg;
4610
	int i;
4611 4612 4613 4614 4615 4616 4617 4618 4619

	/*
	 * Unlink from the css_set task list if necessary.
	 * Optimistically check cg_list before taking
	 * css_set_lock
	 */
	if (!list_empty(&tsk->cg_list)) {
		write_lock(&css_set_lock);
		if (!list_empty(&tsk->cg_list))
4620
			list_del_init(&tsk->cg_list);
4621 4622 4623
		write_unlock(&css_set_lock);
	}

4624 4625
	/* Reassign the task to the init_css_set. */
	task_lock(tsk);
4626 4627
	cg = tsk->cgroups;
	tsk->cgroups = &init_css_set;
4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639

	if (run_callbacks && need_forkexit_callback) {
		/*
		 * modular subsystems can't use callbacks, so no need to lock
		 * the subsys array
		 */
		for (i = 0; i < CGROUP_BUILTIN_SUBSYS_COUNT; i++) {
			struct cgroup_subsys *ss = subsys[i];
			if (ss->exit) {
				struct cgroup *old_cgrp =
					rcu_dereference_raw(cg->subsys[i])->cgroup;
				struct cgroup *cgrp = task_cgroup(tsk, i);
4640
				ss->exit(cgrp, old_cgrp, tsk);
4641 4642 4643
			}
		}
	}
4644
	task_unlock(tsk);
4645

4646
	if (cg)
4647
		put_css_set_taskexit(cg);
4648
}
4649

L
Li Zefan 已提交
4650
/**
4651
 * cgroup_is_descendant - see if @cgrp is a descendant of @task's cgrp
L
Li Zefan 已提交
4652
 * @cgrp: the cgroup in question
4653
 * @task: the task in question
L
Li Zefan 已提交
4654
 *
4655 4656
 * See if @cgrp is a descendant of @task's cgroup in the appropriate
 * hierarchy.
4657 4658 4659 4660 4661 4662
 *
 * If we are sending in dummytop, then presumably we are creating
 * the top cgroup in the subsystem.
 *
 * Called only by the ns (nsproxy) cgroup.
 */
4663
int cgroup_is_descendant(const struct cgroup *cgrp, struct task_struct *task)
4664 4665 4666 4667
{
	int ret;
	struct cgroup *target;

4668
	if (cgrp == dummytop)
4669 4670
		return 1;

4671
	target = task_cgroup_from_root(task, cgrp->root);
4672 4673 4674
	while (cgrp != target && cgrp!= cgrp->top_cgroup)
		cgrp = cgrp->parent;
	ret = (cgrp == target);
4675 4676
	return ret;
}
4677

4678
static void check_for_release(struct cgroup *cgrp)
4679 4680 4681
{
	/* All of these checks rely on RCU to keep the cgroup
	 * structure alive */
4682 4683
	if (cgroup_is_releasable(cgrp) && !atomic_read(&cgrp->count)
	    && list_empty(&cgrp->children) && !cgroup_has_css_refs(cgrp)) {
4684 4685 4686 4687
		/* Control Group is currently removeable. If it's not
		 * already queued for a userspace notification, queue
		 * it now */
		int need_schedule_work = 0;
4688
		raw_spin_lock(&release_list_lock);
4689 4690 4691
		if (!cgroup_is_removed(cgrp) &&
		    list_empty(&cgrp->release_list)) {
			list_add(&cgrp->release_list, &release_list);
4692 4693
			need_schedule_work = 1;
		}
4694
		raw_spin_unlock(&release_list_lock);
4695 4696 4697 4698 4699
		if (need_schedule_work)
			schedule_work(&release_agent_work);
	}
}

4700 4701
/* Caller must verify that the css is not for root cgroup */
void __css_put(struct cgroup_subsys_state *css, int count)
4702
{
4703
	struct cgroup *cgrp = css->cgroup;
4704
	int val;
4705
	rcu_read_lock();
4706
	val = atomic_sub_return(count, &css->refcnt);
4707
	if (val == 1) {
4708 4709 4710 4711
		if (notify_on_release(cgrp)) {
			set_bit(CGRP_RELEASABLE, &cgrp->flags);
			check_for_release(cgrp);
		}
4712
		cgroup_wakeup_rmdir_waiter(cgrp);
4713 4714
	}
	rcu_read_unlock();
4715
	WARN_ON_ONCE(val < 1);
4716
}
B
Ben Blum 已提交
4717
EXPORT_SYMBOL_GPL(__css_put);
4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745

/*
 * Notify userspace when a cgroup is released, by running the
 * configured release agent with the name of the cgroup (path
 * relative to the root of cgroup file system) as the argument.
 *
 * Most likely, this user command will try to rmdir this cgroup.
 *
 * This races with the possibility that some other task will be
 * attached to this cgroup before it is removed, or that some other
 * user task will 'mkdir' a child cgroup of this cgroup.  That's ok.
 * The presumed 'rmdir' will fail quietly if this cgroup is no longer
 * unused, and this cgroup will be reprieved from its death sentence,
 * to continue to serve a useful existence.  Next time it's released,
 * we will get notified again, if it still has 'notify_on_release' set.
 *
 * The final arg to call_usermodehelper() is UMH_WAIT_EXEC, which
 * means only wait until the task is successfully execve()'d.  The
 * separate release agent task is forked by call_usermodehelper(),
 * then control in this thread returns here, without waiting for the
 * release agent task.  We don't bother to wait because the caller of
 * this routine has no use for the exit status of the release agent
 * task, so no sense holding our caller up for that.
 */
static void cgroup_release_agent(struct work_struct *work)
{
	BUG_ON(work != &release_agent_work);
	mutex_lock(&cgroup_mutex);
4746
	raw_spin_lock(&release_list_lock);
4747 4748 4749
	while (!list_empty(&release_list)) {
		char *argv[3], *envp[3];
		int i;
4750
		char *pathbuf = NULL, *agentbuf = NULL;
4751
		struct cgroup *cgrp = list_entry(release_list.next,
4752 4753
						    struct cgroup,
						    release_list);
4754
		list_del_init(&cgrp->release_list);
4755
		raw_spin_unlock(&release_list_lock);
4756
		pathbuf = kmalloc(PAGE_SIZE, GFP_KERNEL);
4757 4758 4759 4760 4761 4762 4763
		if (!pathbuf)
			goto continue_free;
		if (cgroup_path(cgrp, pathbuf, PAGE_SIZE) < 0)
			goto continue_free;
		agentbuf = kstrdup(cgrp->root->release_agent_path, GFP_KERNEL);
		if (!agentbuf)
			goto continue_free;
4764 4765

		i = 0;
4766 4767
		argv[i++] = agentbuf;
		argv[i++] = pathbuf;
4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781
		argv[i] = NULL;

		i = 0;
		/* minimal command environment */
		envp[i++] = "HOME=/";
		envp[i++] = "PATH=/sbin:/bin:/usr/sbin:/usr/bin";
		envp[i] = NULL;

		/* Drop the lock while we invoke the usermode helper,
		 * since the exec could involve hitting disk and hence
		 * be a slow process */
		mutex_unlock(&cgroup_mutex);
		call_usermodehelper(argv[0], argv, envp, UMH_WAIT_EXEC);
		mutex_lock(&cgroup_mutex);
4782 4783 4784
 continue_free:
		kfree(pathbuf);
		kfree(agentbuf);
4785
		raw_spin_lock(&release_list_lock);
4786
	}
4787
	raw_spin_unlock(&release_list_lock);
4788 4789
	mutex_unlock(&cgroup_mutex);
}
4790 4791 4792 4793 4794 4795 4796 4797 4798

static int __init cgroup_disable(char *str)
{
	int i;
	char *token;

	while ((token = strsep(&str, ",")) != NULL) {
		if (!*token)
			continue;
B
Ben Blum 已提交
4799 4800 4801 4802 4803
		/*
		 * cgroup_disable, being at boot time, can't know about module
		 * subsystems, so we don't worry about them.
		 */
		for (i = 0; i < CGROUP_BUILTIN_SUBSYS_COUNT; i++) {
4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816
			struct cgroup_subsys *ss = subsys[i];

			if (!strcmp(token, ss->name)) {
				ss->disabled = 1;
				printk(KERN_INFO "Disabling %s control group"
					" subsystem\n", ss->name);
				break;
			}
		}
	}
	return 1;
}
__setup("cgroup_disable=", cgroup_disable);
K
KAMEZAWA Hiroyuki 已提交
4817 4818 4819 4820 4821 4822 4823 4824 4825 4826

/*
 * Functons for CSS ID.
 */

/*
 *To get ID other than 0, this should be called when !cgroup_is_removed().
 */
unsigned short css_id(struct cgroup_subsys_state *css)
{
4827 4828 4829 4830 4831 4832 4833
	struct css_id *cssid;

	/*
	 * This css_id() can return correct value when somone has refcnt
	 * on this or this is under rcu_read_lock(). Once css->id is allocated,
	 * it's unchanged until freed.
	 */
4834
	cssid = rcu_dereference_check(css->id, atomic_read(&css->refcnt));
K
KAMEZAWA Hiroyuki 已提交
4835 4836 4837 4838 4839

	if (cssid)
		return cssid->id;
	return 0;
}
B
Ben Blum 已提交
4840
EXPORT_SYMBOL_GPL(css_id);
K
KAMEZAWA Hiroyuki 已提交
4841 4842 4843

unsigned short css_depth(struct cgroup_subsys_state *css)
{
4844 4845
	struct css_id *cssid;

4846
	cssid = rcu_dereference_check(css->id, atomic_read(&css->refcnt));
K
KAMEZAWA Hiroyuki 已提交
4847 4848 4849 4850 4851

	if (cssid)
		return cssid->depth;
	return 0;
}
B
Ben Blum 已提交
4852
EXPORT_SYMBOL_GPL(css_depth);
K
KAMEZAWA Hiroyuki 已提交
4853

4854 4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865 4866
/**
 *  css_is_ancestor - test "root" css is an ancestor of "child"
 * @child: the css to be tested.
 * @root: the css supporsed to be an ancestor of the child.
 *
 * Returns true if "root" is an ancestor of "child" in its hierarchy. Because
 * this function reads css->id, this use rcu_dereference() and rcu_read_lock().
 * But, considering usual usage, the csses should be valid objects after test.
 * Assuming that the caller will do some action to the child if this returns
 * returns true, the caller must take "child";s reference count.
 * If "child" is valid object and this returns true, "root" is valid, too.
 */

K
KAMEZAWA Hiroyuki 已提交
4867
bool css_is_ancestor(struct cgroup_subsys_state *child,
4868
		    const struct cgroup_subsys_state *root)
K
KAMEZAWA Hiroyuki 已提交
4869
{
4870 4871 4872
	struct css_id *child_id;
	struct css_id *root_id;
	bool ret = true;
K
KAMEZAWA Hiroyuki 已提交
4873

4874 4875 4876 4877 4878 4879 4880 4881 4882 4883
	rcu_read_lock();
	child_id  = rcu_dereference(child->id);
	root_id = rcu_dereference(root->id);
	if (!child_id
	    || !root_id
	    || (child_id->depth < root_id->depth)
	    || (child_id->stack[root_id->depth] != root_id->id))
		ret = false;
	rcu_read_unlock();
	return ret;
K
KAMEZAWA Hiroyuki 已提交
4884 4885 4886 4887 4888 4889 4890 4891 4892 4893 4894 4895 4896
}

void free_css_id(struct cgroup_subsys *ss, struct cgroup_subsys_state *css)
{
	struct css_id *id = css->id;
	/* When this is called before css_id initialization, id can be NULL */
	if (!id)
		return;

	BUG_ON(!ss->use_id);

	rcu_assign_pointer(id->css, NULL);
	rcu_assign_pointer(css->id, NULL);
4897
	spin_lock(&ss->id_lock);
K
KAMEZAWA Hiroyuki 已提交
4898
	idr_remove(&ss->idr, id->id);
4899
	spin_unlock(&ss->id_lock);
4900
	kfree_rcu(id, rcu_head);
K
KAMEZAWA Hiroyuki 已提交
4901
}
B
Ben Blum 已提交
4902
EXPORT_SYMBOL_GPL(free_css_id);
K
KAMEZAWA Hiroyuki 已提交
4903 4904 4905 4906 4907 4908 4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923 4924

/*
 * This is called by init or create(). Then, calls to this function are
 * always serialized (By cgroup_mutex() at create()).
 */

static struct css_id *get_new_cssid(struct cgroup_subsys *ss, int depth)
{
	struct css_id *newid;
	int myid, error, size;

	BUG_ON(!ss->use_id);

	size = sizeof(*newid) + sizeof(unsigned short) * (depth + 1);
	newid = kzalloc(size, GFP_KERNEL);
	if (!newid)
		return ERR_PTR(-ENOMEM);
	/* get id */
	if (unlikely(!idr_pre_get(&ss->idr, GFP_KERNEL))) {
		error = -ENOMEM;
		goto err_out;
	}
4925
	spin_lock(&ss->id_lock);
K
KAMEZAWA Hiroyuki 已提交
4926 4927
	/* Don't use 0. allocates an ID of 1-65535 */
	error = idr_get_new_above(&ss->idr, newid, 1, &myid);
4928
	spin_unlock(&ss->id_lock);
K
KAMEZAWA Hiroyuki 已提交
4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940 4941 4942

	/* Returns error when there are no free spaces for new ID.*/
	if (error) {
		error = -ENOSPC;
		goto err_out;
	}
	if (myid > CSS_ID_MAX)
		goto remove_idr;

	newid->id = myid;
	newid->depth = depth;
	return newid;
remove_idr:
	error = -ENOSPC;
4943
	spin_lock(&ss->id_lock);
K
KAMEZAWA Hiroyuki 已提交
4944
	idr_remove(&ss->idr, myid);
4945
	spin_unlock(&ss->id_lock);
K
KAMEZAWA Hiroyuki 已提交
4946 4947 4948 4949 4950 4951
err_out:
	kfree(newid);
	return ERR_PTR(error);

}

4952 4953
static int __init_or_module cgroup_init_idr(struct cgroup_subsys *ss,
					    struct cgroup_subsys_state *rootcss)
K
KAMEZAWA Hiroyuki 已提交
4954 4955 4956
{
	struct css_id *newid;

4957
	spin_lock_init(&ss->id_lock);
K
KAMEZAWA Hiroyuki 已提交
4958 4959 4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974
	idr_init(&ss->idr);

	newid = get_new_cssid(ss, 0);
	if (IS_ERR(newid))
		return PTR_ERR(newid);

	newid->stack[0] = newid->id;
	newid->css = rootcss;
	rootcss->id = newid;
	return 0;
}

static int alloc_css_id(struct cgroup_subsys *ss, struct cgroup *parent,
			struct cgroup *child)
{
	int subsys_id, i, depth = 0;
	struct cgroup_subsys_state *parent_css, *child_css;
4975
	struct css_id *child_id, *parent_id;
K
KAMEZAWA Hiroyuki 已提交
4976 4977 4978 4979 4980

	subsys_id = ss->subsys_id;
	parent_css = parent->subsys[subsys_id];
	child_css = child->subsys[subsys_id];
	parent_id = parent_css->id;
4981
	depth = parent_id->depth + 1;
K
KAMEZAWA Hiroyuki 已提交
4982 4983 4984 4985 4986 4987 4988 4989 4990 4991 4992 4993 4994 4995 4996 4997 4998 4999 5000 5001 5002 5003 5004 5005 5006 5007 5008 5009 5010 5011 5012 5013 5014 5015 5016 5017 5018

	child_id = get_new_cssid(ss, depth);
	if (IS_ERR(child_id))
		return PTR_ERR(child_id);

	for (i = 0; i < depth; i++)
		child_id->stack[i] = parent_id->stack[i];
	child_id->stack[depth] = child_id->id;
	/*
	 * child_id->css pointer will be set after this cgroup is available
	 * see cgroup_populate_dir()
	 */
	rcu_assign_pointer(child_css->id, child_id);

	return 0;
}

/**
 * css_lookup - lookup css by id
 * @ss: cgroup subsys to be looked into.
 * @id: the id
 *
 * Returns pointer to cgroup_subsys_state if there is valid one with id.
 * NULL if not. Should be called under rcu_read_lock()
 */
struct cgroup_subsys_state *css_lookup(struct cgroup_subsys *ss, int id)
{
	struct css_id *cssid = NULL;

	BUG_ON(!ss->use_id);
	cssid = idr_find(&ss->idr, id);

	if (unlikely(!cssid))
		return NULL;

	return rcu_dereference(cssid->css);
}
B
Ben Blum 已提交
5019
EXPORT_SYMBOL_GPL(css_lookup);
K
KAMEZAWA Hiroyuki 已提交
5020 5021 5022 5023 5024 5025 5026 5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040 5041 5042 5043 5044

/**
 * css_get_next - lookup next cgroup under specified hierarchy.
 * @ss: pointer to subsystem
 * @id: current position of iteration.
 * @root: pointer to css. search tree under this.
 * @foundid: position of found object.
 *
 * Search next css under the specified hierarchy of rootid. Calling under
 * rcu_read_lock() is necessary. Returns NULL if it reaches the end.
 */
struct cgroup_subsys_state *
css_get_next(struct cgroup_subsys *ss, int id,
	     struct cgroup_subsys_state *root, int *foundid)
{
	struct cgroup_subsys_state *ret = NULL;
	struct css_id *tmp;
	int tmpid;
	int rootid = css_id(root);
	int depth = css_depth(root);

	if (!rootid)
		return NULL;

	BUG_ON(!ss->use_id);
5045 5046
	WARN_ON_ONCE(!rcu_read_lock_held());

K
KAMEZAWA Hiroyuki 已提交
5047 5048 5049 5050 5051 5052 5053 5054 5055 5056 5057 5058 5059 5060 5061 5062 5063 5064 5065 5066 5067 5068 5069
	/* fill start point for scan */
	tmpid = id;
	while (1) {
		/*
		 * scan next entry from bitmap(tree), tmpid is updated after
		 * idr_get_next().
		 */
		tmp = idr_get_next(&ss->idr, &tmpid);
		if (!tmp)
			break;
		if (tmp->depth >= depth && tmp->stack[depth] == rootid) {
			ret = rcu_dereference(tmp->css);
			if (ret) {
				*foundid = tmpid;
				break;
			}
		}
		/* continue to scan from next id */
		tmpid = tmpid + 1;
	}
	return ret;
}

S
Stephane Eranian 已提交
5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082 5083 5084 5085 5086 5087 5088 5089 5090 5091 5092
/*
 * get corresponding css from file open on cgroupfs directory
 */
struct cgroup_subsys_state *cgroup_css_from_dir(struct file *f, int id)
{
	struct cgroup *cgrp;
	struct inode *inode;
	struct cgroup_subsys_state *css;

	inode = f->f_dentry->d_inode;
	/* check in cgroup filesystem dir */
	if (inode->i_op != &cgroup_dir_inode_operations)
		return ERR_PTR(-EBADF);

	if (id < 0 || id >= CGROUP_SUBSYS_COUNT)
		return ERR_PTR(-EINVAL);

	/* get cgroup */
	cgrp = __d_cgrp(f->f_dentry);
	css = cgrp->subsys[id];
	return css ? css : ERR_PTR(-ENOENT);
}

5093
#ifdef CONFIG_CGROUP_DEBUG
5094
static struct cgroup_subsys_state *debug_create(struct cgroup *cont)
5095 5096 5097 5098 5099 5100 5101 5102 5103
{
	struct cgroup_subsys_state *css = kzalloc(sizeof(*css), GFP_KERNEL);

	if (!css)
		return ERR_PTR(-ENOMEM);

	return css;
}

5104
static void debug_destroy(struct cgroup *cont)
5105 5106 5107 5108 5109 5110 5111 5112 5113 5114 5115 5116 5117 5118 5119 5120 5121 5122 5123 5124 5125 5126 5127 5128 5129 5130 5131 5132 5133 5134
{
	kfree(cont->subsys[debug_subsys_id]);
}

static u64 cgroup_refcount_read(struct cgroup *cont, struct cftype *cft)
{
	return atomic_read(&cont->count);
}

static u64 debug_taskcount_read(struct cgroup *cont, struct cftype *cft)
{
	return cgroup_task_count(cont);
}

static u64 current_css_set_read(struct cgroup *cont, struct cftype *cft)
{
	return (u64)(unsigned long)current->cgroups;
}

static u64 current_css_set_refcount_read(struct cgroup *cont,
					   struct cftype *cft)
{
	u64 count;

	rcu_read_lock();
	count = atomic_read(&current->cgroups->refcount);
	rcu_read_unlock();
	return count;
}

5135 5136 5137 5138 5139 5140 5141 5142 5143 5144 5145 5146 5147 5148 5149 5150 5151 5152
static int current_css_set_cg_links_read(struct cgroup *cont,
					 struct cftype *cft,
					 struct seq_file *seq)
{
	struct cg_cgroup_link *link;
	struct css_set *cg;

	read_lock(&css_set_lock);
	rcu_read_lock();
	cg = rcu_dereference(current->cgroups);
	list_for_each_entry(link, &cg->cg_links, cg_link_list) {
		struct cgroup *c = link->cgrp;
		const char *name;

		if (c->dentry)
			name = c->dentry->d_name.name;
		else
			name = "?";
5153 5154
		seq_printf(seq, "Root %d group %s\n",
			   c->root->hierarchy_id, name);
5155 5156 5157 5158 5159 5160 5161 5162 5163 5164 5165 5166 5167 5168 5169 5170 5171 5172 5173 5174 5175 5176 5177 5178 5179 5180 5181 5182 5183 5184 5185 5186 5187
	}
	rcu_read_unlock();
	read_unlock(&css_set_lock);
	return 0;
}

#define MAX_TASKS_SHOWN_PER_CSS 25
static int cgroup_css_links_read(struct cgroup *cont,
				 struct cftype *cft,
				 struct seq_file *seq)
{
	struct cg_cgroup_link *link;

	read_lock(&css_set_lock);
	list_for_each_entry(link, &cont->css_sets, cgrp_link_list) {
		struct css_set *cg = link->cg;
		struct task_struct *task;
		int count = 0;
		seq_printf(seq, "css_set %p\n", cg);
		list_for_each_entry(task, &cg->tasks, cg_list) {
			if (count++ > MAX_TASKS_SHOWN_PER_CSS) {
				seq_puts(seq, "  ...\n");
				break;
			} else {
				seq_printf(seq, "  task %d\n",
					   task_pid_vnr(task));
			}
		}
	}
	read_unlock(&css_set_lock);
	return 0;
}

5188 5189 5190 5191 5192 5193 5194 5195 5196 5197 5198 5199 5200 5201 5202 5203 5204 5205 5206 5207 5208 5209 5210 5211 5212
static u64 releasable_read(struct cgroup *cgrp, struct cftype *cft)
{
	return test_bit(CGRP_RELEASABLE, &cgrp->flags);
}

static struct cftype debug_files[] =  {
	{
		.name = "cgroup_refcount",
		.read_u64 = cgroup_refcount_read,
	},
	{
		.name = "taskcount",
		.read_u64 = debug_taskcount_read,
	},

	{
		.name = "current_css_set",
		.read_u64 = current_css_set_read,
	},

	{
		.name = "current_css_set_refcount",
		.read_u64 = current_css_set_refcount_read,
	},

5213 5214 5215 5216 5217 5218 5219 5220 5221 5222
	{
		.name = "current_css_set_cg_links",
		.read_seq_string = current_css_set_cg_links_read,
	},

	{
		.name = "cgroup_css_links",
		.read_seq_string = cgroup_css_links_read,
	},

5223 5224 5225 5226 5227 5228 5229 5230 5231 5232 5233 5234 5235 5236 5237 5238 5239 5240 5241 5242
	{
		.name = "releasable",
		.read_u64 = releasable_read,
	},
};

static int debug_populate(struct cgroup_subsys *ss, struct cgroup *cont)
{
	return cgroup_add_files(cont, ss, debug_files,
				ARRAY_SIZE(debug_files));
}

struct cgroup_subsys debug_subsys = {
	.name = "debug",
	.create = debug_create,
	.destroy = debug_destroy,
	.populate = debug_populate,
	.subsys_id = debug_subsys_id,
};
#endif /* CONFIG_CGROUP_DEBUG */