cgroup.c 115.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
/*
 *  Generic process-grouping system.
 *
 *  Based originally on the cpuset system, extracted by Paul Menage
 *  Copyright (C) 2006 Google, Inc
 *
 *  Copyright notices from the original cpuset code:
 *  --------------------------------------------------
 *  Copyright (C) 2003 BULL SA.
 *  Copyright (C) 2004-2006 Silicon Graphics, Inc.
 *
 *  Portions derived from Patrick Mochel's sysfs code.
 *  sysfs is Copyright (c) 2001-3 Patrick Mochel
 *
 *  2003-10-10 Written by Simon Derr.
 *  2003-10-22 Updates by Stephen Hemminger.
 *  2004 May-July Rework by Paul Jackson.
 *  ---------------------------------------------------
 *
 *  This file is subject to the terms and conditions of the GNU General Public
 *  License.  See the file COPYING in the main directory of the Linux
 *  distribution for more details.
 */

#include <linux/cgroup.h>
I
Ingo Molnar 已提交
26
#include <linux/module.h>
27
#include <linux/ctype.h>
28 29 30 31 32 33 34 35
#include <linux/errno.h>
#include <linux/fs.h>
#include <linux/kernel.h>
#include <linux/list.h>
#include <linux/mm.h>
#include <linux/mutex.h>
#include <linux/mount.h>
#include <linux/pagemap.h>
36
#include <linux/proc_fs.h>
37 38
#include <linux/rcupdate.h>
#include <linux/sched.h>
39
#include <linux/backing-dev.h>
40 41 42 43 44
#include <linux/seq_file.h>
#include <linux/slab.h>
#include <linux/magic.h>
#include <linux/spinlock.h>
#include <linux/string.h>
45
#include <linux/sort.h>
46
#include <linux/kmod.h>
47
#include <linux/module.h>
B
Balbir Singh 已提交
48 49
#include <linux/delayacct.h>
#include <linux/cgroupstats.h>
50
#include <linux/hash.h>
51
#include <linux/namei.h>
52
#include <linux/smp_lock.h>
L
Li Zefan 已提交
53
#include <linux/pid_namespace.h>
54
#include <linux/idr.h>
55
#include <linux/vmalloc.h> /* TODO: replace with more sophisticated array */
B
Balbir Singh 已提交
56

57 58
#include <asm/atomic.h>

59 60
static DEFINE_MUTEX(cgroup_mutex);

B
Ben Blum 已提交
61 62 63 64 65 66
/*
 * Generate an array of cgroup subsystem pointers. At boot time, this is
 * populated up to CGROUP_BUILTIN_SUBSYS_COUNT, and modular subsystems are
 * registered after that. The mutable section of this array is protected by
 * cgroup_mutex.
 */
67
#define SUBSYS(_x) &_x ## _subsys,
B
Ben Blum 已提交
68
static struct cgroup_subsys *subsys[CGROUP_SUBSYS_COUNT] = {
69 70 71
#include <linux/cgroup_subsys.h>
};

72 73
#define MAX_CGROUP_ROOT_NAMELEN 64

74 75 76 77 78 79 80 81 82 83 84 85 86 87
/*
 * A cgroupfs_root represents the root of a cgroup hierarchy,
 * and may be associated with a superblock to form an active
 * hierarchy
 */
struct cgroupfs_root {
	struct super_block *sb;

	/*
	 * The bitmask of subsystems intended to be attached to this
	 * hierarchy
	 */
	unsigned long subsys_bits;

88 89 90
	/* Unique id for this hierarchy. */
	int hierarchy_id;

91 92 93 94 95 96 97 98 99 100 101 102
	/* The bitmask of subsystems currently attached to this hierarchy */
	unsigned long actual_subsys_bits;

	/* A list running through the attached subsystems */
	struct list_head subsys_list;

	/* The root cgroup for this hierarchy */
	struct cgroup top_cgroup;

	/* Tracks how many cgroups are currently defined in hierarchy.*/
	int number_of_cgroups;

103
	/* A list running through the active hierarchies */
104 105 106 107
	struct list_head root_list;

	/* Hierarchy-specific flags */
	unsigned long flags;
108

109
	/* The path to use for release notifications. */
110
	char release_agent_path[PATH_MAX];
111 112 113

	/* The name for this hierarchy - may be empty */
	char name[MAX_CGROUP_ROOT_NAMELEN];
114 115 116 117 118 119 120 121 122
};

/*
 * The "rootnode" hierarchy is the "dummy hierarchy", reserved for the
 * subsystems that are otherwise unattached - it never has more than a
 * single cgroup, and all tasks are part of that cgroup.
 */
static struct cgroupfs_root rootnode;

K
KAMEZAWA Hiroyuki 已提交
123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155
/*
 * CSS ID -- ID per subsys's Cgroup Subsys State(CSS). used only when
 * cgroup_subsys->use_id != 0.
 */
#define CSS_ID_MAX	(65535)
struct css_id {
	/*
	 * The css to which this ID points. This pointer is set to valid value
	 * after cgroup is populated. If cgroup is removed, this will be NULL.
	 * This pointer is expected to be RCU-safe because destroy()
	 * is called after synchronize_rcu(). But for safe use, css_is_removed()
	 * css_tryget() should be used for avoiding race.
	 */
	struct cgroup_subsys_state *css;
	/*
	 * ID of this css.
	 */
	unsigned short id;
	/*
	 * Depth in hierarchy which this ID belongs to.
	 */
	unsigned short depth;
	/*
	 * ID is freed by RCU. (and lookup routine is RCU safe.)
	 */
	struct rcu_head rcu_head;
	/*
	 * Hierarchy of CSS ID belongs to.
	 */
	unsigned short stack[0]; /* Array of Length (depth+1) */
};


156 157 158
/* The list of hierarchy roots */

static LIST_HEAD(roots);
159
static int root_count;
160

161 162 163 164
static DEFINE_IDA(hierarchy_ida);
static int next_hierarchy_id;
static DEFINE_SPINLOCK(hierarchy_id_lock);

165 166 167 168
/* dummytop is a shorthand for the dummy hierarchy's top cgroup */
#define dummytop (&rootnode.top_cgroup)

/* This flag indicates whether tasks in the fork and exit paths should
L
Li Zefan 已提交
169 170 171
 * check for fork/exit handlers to call. This avoids us having to do
 * extra work in the fork/exit path if none of the subsystems need to
 * be called.
172
 */
173
static int need_forkexit_callback __read_mostly;
174

175 176 177 178 179 180 181 182 183 184 185 186 187 188
#ifdef CONFIG_PROVE_LOCKING
int cgroup_lock_is_held(void)
{
	return lockdep_is_held(&cgroup_mutex);
}
#else /* #ifdef CONFIG_PROVE_LOCKING */
int cgroup_lock_is_held(void)
{
	return mutex_is_locked(&cgroup_mutex);
}
#endif /* #else #ifdef CONFIG_PROVE_LOCKING */

EXPORT_SYMBOL_GPL(cgroup_lock_is_held);

189
/* convenient tests for these bits */
190
inline int cgroup_is_removed(const struct cgroup *cgrp)
191
{
192
	return test_bit(CGRP_REMOVED, &cgrp->flags);
193 194 195 196 197 198 199
}

/* bits in struct cgroupfs_root flags field */
enum {
	ROOT_NOPREFIX, /* mounted subsystems have no named prefix */
};

200
static int cgroup_is_releasable(const struct cgroup *cgrp)
201 202
{
	const int bits =
203 204 205
		(1 << CGRP_RELEASABLE) |
		(1 << CGRP_NOTIFY_ON_RELEASE);
	return (cgrp->flags & bits) == bits;
206 207
}

208
static int notify_on_release(const struct cgroup *cgrp)
209
{
210
	return test_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
211 212
}

213 214 215 216 217 218 219
/*
 * for_each_subsys() allows you to iterate on each subsystem attached to
 * an active hierarchy
 */
#define for_each_subsys(_root, _ss) \
list_for_each_entry(_ss, &_root->subsys_list, sibling)

220 221
/* for_each_active_root() allows you to iterate across the active hierarchies */
#define for_each_active_root(_root) \
222 223
list_for_each_entry(_root, &roots, root_list)

224 225 226 227 228 229
/* the list of cgroups eligible for automatic release. Protected by
 * release_list_lock */
static LIST_HEAD(release_list);
static DEFINE_SPINLOCK(release_list_lock);
static void cgroup_release_agent(struct work_struct *work);
static DECLARE_WORK(release_agent_work, cgroup_release_agent);
230
static void check_for_release(struct cgroup *cgrp);
231

232 233 234 235 236 237
/* Link structure for associating css_set objects with cgroups */
struct cg_cgroup_link {
	/*
	 * List running through cg_cgroup_links associated with a
	 * cgroup, anchored on cgroup->css_sets
	 */
238
	struct list_head cgrp_link_list;
239
	struct cgroup *cgrp;
240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257
	/*
	 * List running through cg_cgroup_links pointing at a
	 * single css_set object, anchored on css_set->cg_links
	 */
	struct list_head cg_link_list;
	struct css_set *cg;
};

/* The default css_set - used by init and its children prior to any
 * hierarchies being mounted. It contains a pointer to the root state
 * for each subsystem. Also used to anchor the list of css_sets. Not
 * reference-counted, to improve performance when child cgroups
 * haven't been created.
 */

static struct css_set init_css_set;
static struct cg_cgroup_link init_css_set_link;

258 259
static int cgroup_init_idr(struct cgroup_subsys *ss,
			   struct cgroup_subsys_state *css);
K
KAMEZAWA Hiroyuki 已提交
260

261 262 263 264 265 266
/* css_set_lock protects the list of css_set objects, and the
 * chain of tasks off each css_set.  Nests outside task->alloc_lock
 * due to cgroup_iter_start() */
static DEFINE_RWLOCK(css_set_lock);
static int css_set_count;

267 268 269 270 271
/*
 * hash table for cgroup groups. This improves the performance to find
 * an existing css_set. This hash doesn't (currently) take into
 * account cgroups in empty hierarchies.
 */
272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290
#define CSS_SET_HASH_BITS	7
#define CSS_SET_TABLE_SIZE	(1 << CSS_SET_HASH_BITS)
static struct hlist_head css_set_table[CSS_SET_TABLE_SIZE];

static struct hlist_head *css_set_hash(struct cgroup_subsys_state *css[])
{
	int i;
	int index;
	unsigned long tmp = 0UL;

	for (i = 0; i < CGROUP_SUBSYS_COUNT; i++)
		tmp += (unsigned long)css[i];
	tmp = (tmp >> 16) ^ tmp;

	index = hash_long(tmp, CSS_SET_HASH_BITS);

	return &css_set_table[index];
}

291 292 293 294 295 296
static void free_css_set_rcu(struct rcu_head *obj)
{
	struct css_set *cg = container_of(obj, struct css_set, rcu_head);
	kfree(cg);
}

297 298 299 300
/* We don't maintain the lists running through each css_set to its
 * task until after the first call to cgroup_iter_start(). This
 * reduces the fork()/exit() overhead for people who have cgroups
 * compiled into their kernel but not actually in use */
301
static int use_task_css_set_links __read_mostly;
302

303
static void __put_css_set(struct css_set *cg, int taskexit)
304
{
K
KOSAKI Motohiro 已提交
305 306
	struct cg_cgroup_link *link;
	struct cg_cgroup_link *saved_link;
307 308 309 310 311 312 313 314 315 316 317 318
	/*
	 * Ensure that the refcount doesn't hit zero while any readers
	 * can see it. Similar to atomic_dec_and_lock(), but for an
	 * rwlock
	 */
	if (atomic_add_unless(&cg->refcount, -1, 1))
		return;
	write_lock(&css_set_lock);
	if (!atomic_dec_and_test(&cg->refcount)) {
		write_unlock(&css_set_lock);
		return;
	}
319

320 321 322 323 324 325 326 327 328
	/* This css_set is dead. unlink it and release cgroup refcounts */
	hlist_del(&cg->hlist);
	css_set_count--;

	list_for_each_entry_safe(link, saved_link, &cg->cg_links,
				 cg_link_list) {
		struct cgroup *cgrp = link->cgrp;
		list_del(&link->cg_link_list);
		list_del(&link->cgrp_link_list);
329 330
		if (atomic_dec_and_test(&cgrp->count) &&
		    notify_on_release(cgrp)) {
331
			if (taskexit)
332 333
				set_bit(CGRP_RELEASABLE, &cgrp->flags);
			check_for_release(cgrp);
334
		}
335 336

		kfree(link);
337
	}
338 339

	write_unlock(&css_set_lock);
340
	call_rcu(&cg->rcu_head, free_css_set_rcu);
341 342
}

343 344 345 346 347
/*
 * refcounted get/put for css_set objects
 */
static inline void get_css_set(struct css_set *cg)
{
348
	atomic_inc(&cg->refcount);
349 350 351 352
}

static inline void put_css_set(struct css_set *cg)
{
353
	__put_css_set(cg, 0);
354 355
}

356 357
static inline void put_css_set_taskexit(struct css_set *cg)
{
358
	__put_css_set(cg, 1);
359 360
}

361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432
/*
 * compare_css_sets - helper function for find_existing_css_set().
 * @cg: candidate css_set being tested
 * @old_cg: existing css_set for a task
 * @new_cgrp: cgroup that's being entered by the task
 * @template: desired set of css pointers in css_set (pre-calculated)
 *
 * Returns true if "cg" matches "old_cg" except for the hierarchy
 * which "new_cgrp" belongs to, for which it should match "new_cgrp".
 */
static bool compare_css_sets(struct css_set *cg,
			     struct css_set *old_cg,
			     struct cgroup *new_cgrp,
			     struct cgroup_subsys_state *template[])
{
	struct list_head *l1, *l2;

	if (memcmp(template, cg->subsys, sizeof(cg->subsys))) {
		/* Not all subsystems matched */
		return false;
	}

	/*
	 * Compare cgroup pointers in order to distinguish between
	 * different cgroups in heirarchies with no subsystems. We
	 * could get by with just this check alone (and skip the
	 * memcmp above) but on most setups the memcmp check will
	 * avoid the need for this more expensive check on almost all
	 * candidates.
	 */

	l1 = &cg->cg_links;
	l2 = &old_cg->cg_links;
	while (1) {
		struct cg_cgroup_link *cgl1, *cgl2;
		struct cgroup *cg1, *cg2;

		l1 = l1->next;
		l2 = l2->next;
		/* See if we reached the end - both lists are equal length. */
		if (l1 == &cg->cg_links) {
			BUG_ON(l2 != &old_cg->cg_links);
			break;
		} else {
			BUG_ON(l2 == &old_cg->cg_links);
		}
		/* Locate the cgroups associated with these links. */
		cgl1 = list_entry(l1, struct cg_cgroup_link, cg_link_list);
		cgl2 = list_entry(l2, struct cg_cgroup_link, cg_link_list);
		cg1 = cgl1->cgrp;
		cg2 = cgl2->cgrp;
		/* Hierarchies should be linked in the same order. */
		BUG_ON(cg1->root != cg2->root);

		/*
		 * If this hierarchy is the hierarchy of the cgroup
		 * that's changing, then we need to check that this
		 * css_set points to the new cgroup; if it's any other
		 * hierarchy, then this css_set should point to the
		 * same cgroup as the old css_set.
		 */
		if (cg1->root == new_cgrp->root) {
			if (cg1 != new_cgrp)
				return false;
		} else {
			if (cg1 != cg2)
				return false;
		}
	}
	return true;
}

433 434 435
/*
 * find_existing_css_set() is a helper for
 * find_css_set(), and checks to see whether an existing
436
 * css_set is suitable.
437 438 439 440
 *
 * oldcg: the cgroup group that we're using before the cgroup
 * transition
 *
441
 * cgrp: the cgroup that we're moving into
442 443 444 445 446 447
 *
 * template: location in which to build the desired set of subsystem
 * state objects for the new cgroup group
 */
static struct css_set *find_existing_css_set(
	struct css_set *oldcg,
448
	struct cgroup *cgrp,
449
	struct cgroup_subsys_state *template[])
450 451
{
	int i;
452
	struct cgroupfs_root *root = cgrp->root;
453 454 455
	struct hlist_head *hhead;
	struct hlist_node *node;
	struct css_set *cg;
456

B
Ben Blum 已提交
457 458 459 460 461
	/*
	 * Build the set of subsystem state objects that we want to see in the
	 * new css_set. while subsystems can change globally, the entries here
	 * won't change, so no need for locking.
	 */
462
	for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
L
Li Zefan 已提交
463
		if (root->subsys_bits & (1UL << i)) {
464 465 466
			/* Subsystem is in this hierarchy. So we want
			 * the subsystem state from the new
			 * cgroup */
467
			template[i] = cgrp->subsys[i];
468 469 470 471 472 473 474
		} else {
			/* Subsystem is not in this hierarchy, so we
			 * don't want to change the subsystem state */
			template[i] = oldcg->subsys[i];
		}
	}

475 476
	hhead = css_set_hash(template);
	hlist_for_each_entry(cg, node, hhead, hlist) {
477 478 479 480 481
		if (!compare_css_sets(cg, oldcg, cgrp, template))
			continue;

		/* This css_set matches what we need */
		return cg;
482
	}
483 484 485 486 487

	/* No existing cgroup group matched */
	return NULL;
}

488 489 490 491 492 493 494 495 496 497 498
static void free_cg_links(struct list_head *tmp)
{
	struct cg_cgroup_link *link;
	struct cg_cgroup_link *saved_link;

	list_for_each_entry_safe(link, saved_link, tmp, cgrp_link_list) {
		list_del(&link->cgrp_link_list);
		kfree(link);
	}
}

499 500
/*
 * allocate_cg_links() allocates "count" cg_cgroup_link structures
501
 * and chains them on tmp through their cgrp_link_list fields. Returns 0 on
502 503 504 505 506 507 508 509 510 511
 * success or a negative error
 */
static int allocate_cg_links(int count, struct list_head *tmp)
{
	struct cg_cgroup_link *link;
	int i;
	INIT_LIST_HEAD(tmp);
	for (i = 0; i < count; i++) {
		link = kmalloc(sizeof(*link), GFP_KERNEL);
		if (!link) {
512
			free_cg_links(tmp);
513 514
			return -ENOMEM;
		}
515
		list_add(&link->cgrp_link_list, tmp);
516 517 518 519
	}
	return 0;
}

520 521 522 523 524 525 526 527 528 529 530 531 532 533 534
/**
 * link_css_set - a helper function to link a css_set to a cgroup
 * @tmp_cg_links: cg_cgroup_link objects allocated by allocate_cg_links()
 * @cg: the css_set to be linked
 * @cgrp: the destination cgroup
 */
static void link_css_set(struct list_head *tmp_cg_links,
			 struct css_set *cg, struct cgroup *cgrp)
{
	struct cg_cgroup_link *link;

	BUG_ON(list_empty(tmp_cg_links));
	link = list_first_entry(tmp_cg_links, struct cg_cgroup_link,
				cgrp_link_list);
	link->cg = cg;
535
	link->cgrp = cgrp;
536
	atomic_inc(&cgrp->count);
537
	list_move(&link->cgrp_link_list, &cgrp->css_sets);
538 539 540 541 542
	/*
	 * Always add links to the tail of the list so that the list
	 * is sorted by order of hierarchy creation
	 */
	list_add_tail(&link->cg_link_list, &cg->cg_links);
543 544
}

545 546 547 548 549 550 551 552
/*
 * find_css_set() takes an existing cgroup group and a
 * cgroup object, and returns a css_set object that's
 * equivalent to the old group, but with the given cgroup
 * substituted into the appropriate hierarchy. Must be called with
 * cgroup_mutex held
 */
static struct css_set *find_css_set(
553
	struct css_set *oldcg, struct cgroup *cgrp)
554 555 556 557 558 559
{
	struct css_set *res;
	struct cgroup_subsys_state *template[CGROUP_SUBSYS_COUNT];

	struct list_head tmp_cg_links;

560
	struct hlist_head *hhead;
561
	struct cg_cgroup_link *link;
562

563 564
	/* First see if we already have a cgroup group that matches
	 * the desired set */
565
	read_lock(&css_set_lock);
566
	res = find_existing_css_set(oldcg, cgrp, template);
567 568
	if (res)
		get_css_set(res);
569
	read_unlock(&css_set_lock);
570 571 572 573 574 575 576 577 578 579 580 581 582 583

	if (res)
		return res;

	res = kmalloc(sizeof(*res), GFP_KERNEL);
	if (!res)
		return NULL;

	/* Allocate all the cg_cgroup_link objects that we'll need */
	if (allocate_cg_links(root_count, &tmp_cg_links) < 0) {
		kfree(res);
		return NULL;
	}

584
	atomic_set(&res->refcount, 1);
585 586
	INIT_LIST_HEAD(&res->cg_links);
	INIT_LIST_HEAD(&res->tasks);
587
	INIT_HLIST_NODE(&res->hlist);
588 589 590 591 592 593 594

	/* Copy the set of subsystem state objects generated in
	 * find_existing_css_set() */
	memcpy(res->subsys, template, sizeof(res->subsys));

	write_lock(&css_set_lock);
	/* Add reference counts and links from the new css_set. */
595 596 597 598 599 600
	list_for_each_entry(link, &oldcg->cg_links, cg_link_list) {
		struct cgroup *c = link->cgrp;
		if (c->root == cgrp->root)
			c = cgrp;
		link_css_set(&tmp_cg_links, res, c);
	}
601 602 603 604

	BUG_ON(!list_empty(&tmp_cg_links));

	css_set_count++;
605 606 607 608 609

	/* Add this cgroup group to the hash table */
	hhead = css_set_hash(res->subsys);
	hlist_add_head(&res->hlist, hhead);

610 611 612
	write_unlock(&css_set_lock);

	return res;
613 614
}

615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649
/*
 * Return the cgroup for "task" from the given hierarchy. Must be
 * called with cgroup_mutex held.
 */
static struct cgroup *task_cgroup_from_root(struct task_struct *task,
					    struct cgroupfs_root *root)
{
	struct css_set *css;
	struct cgroup *res = NULL;

	BUG_ON(!mutex_is_locked(&cgroup_mutex));
	read_lock(&css_set_lock);
	/*
	 * No need to lock the task - since we hold cgroup_mutex the
	 * task can't change groups, so the only thing that can happen
	 * is that it exits and its css is set back to init_css_set.
	 */
	css = task->cgroups;
	if (css == &init_css_set) {
		res = &root->top_cgroup;
	} else {
		struct cg_cgroup_link *link;
		list_for_each_entry(link, &css->cg_links, cg_link_list) {
			struct cgroup *c = link->cgrp;
			if (c->root == root) {
				res = c;
				break;
			}
		}
	}
	read_unlock(&css_set_lock);
	BUG_ON(!res);
	return res;
}

650 651 652 653 654 655 656 657 658 659
/*
 * There is one global cgroup mutex. We also require taking
 * task_lock() when dereferencing a task's cgroup subsys pointers.
 * See "The task_lock() exception", at the end of this comment.
 *
 * A task must hold cgroup_mutex to modify cgroups.
 *
 * Any task can increment and decrement the count field without lock.
 * So in general, code holding cgroup_mutex can't rely on the count
 * field not changing.  However, if the count goes to zero, then only
660
 * cgroup_attach_task() can increment it again.  Because a count of zero
661 662 663 664 665 666 667 668 669 670 671 672 673
 * means that no tasks are currently attached, therefore there is no
 * way a task attached to that cgroup can fork (the other way to
 * increment the count).  So code holding cgroup_mutex can safely
 * assume that if the count is zero, it will stay zero. Similarly, if
 * a task holds cgroup_mutex on a cgroup with zero count, it
 * knows that the cgroup won't be removed, as cgroup_rmdir()
 * needs that mutex.
 *
 * The fork and exit callbacks cgroup_fork() and cgroup_exit(), don't
 * (usually) take cgroup_mutex.  These are the two most performance
 * critical pieces of code here.  The exception occurs on cgroup_exit(),
 * when a task in a notify_on_release cgroup exits.  Then cgroup_mutex
 * is taken, and if the cgroup count is zero, a usermode call made
L
Li Zefan 已提交
674 675
 * to the release agent with the name of the cgroup (path relative to
 * the root of cgroup file system) as the argument.
676 677 678 679 680 681 682 683 684 685 686
 *
 * A cgroup can only be deleted if both its 'count' of using tasks
 * is zero, and its list of 'children' cgroups is empty.  Since all
 * tasks in the system use _some_ cgroup, and since there is always at
 * least one task in the system (init, pid == 1), therefore, top_cgroup
 * always has either children cgroups and/or using tasks.  So we don't
 * need a special hack to ensure that top_cgroup cannot be deleted.
 *
 *	The task_lock() exception
 *
 * The need for this exception arises from the action of
687
 * cgroup_attach_task(), which overwrites one tasks cgroup pointer with
L
Li Zefan 已提交
688
 * another.  It does so using cgroup_mutex, however there are
689 690 691
 * several performance critical places that need to reference
 * task->cgroup without the expense of grabbing a system global
 * mutex.  Therefore except as noted below, when dereferencing or, as
692
 * in cgroup_attach_task(), modifying a task'ss cgroup pointer we use
693 694 695 696
 * task_lock(), which acts on a spinlock (task->alloc_lock) already in
 * the task_struct routinely used for such matters.
 *
 * P.S.  One more locking exception.  RCU is used to guard the
697
 * update of a tasks cgroup pointer by cgroup_attach_task()
698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727
 */

/**
 * cgroup_lock - lock out any changes to cgroup structures
 *
 */
void cgroup_lock(void)
{
	mutex_lock(&cgroup_mutex);
}

/**
 * cgroup_unlock - release lock on cgroup changes
 *
 * Undo the lock taken in a previous cgroup_lock() call.
 */
void cgroup_unlock(void)
{
	mutex_unlock(&cgroup_mutex);
}

/*
 * A couple of forward declarations required, due to cyclic reference loop:
 * cgroup_mkdir -> cgroup_create -> cgroup_populate_dir ->
 * cgroup_add_file -> cgroup_create_file -> cgroup_dir_inode_operations
 * -> cgroup_mkdir.
 */

static int cgroup_mkdir(struct inode *dir, struct dentry *dentry, int mode);
static int cgroup_rmdir(struct inode *unused_dir, struct dentry *dentry);
728
static int cgroup_populate_dir(struct cgroup *cgrp);
729
static const struct inode_operations cgroup_dir_inode_operations;
730
static const struct file_operations proc_cgroupstats_operations;
731 732

static struct backing_dev_info cgroup_backing_dev_info = {
733
	.name		= "cgroup",
734
	.capabilities	= BDI_CAP_NO_ACCT_AND_WRITEBACK,
735
};
736

K
KAMEZAWA Hiroyuki 已提交
737 738 739
static int alloc_css_id(struct cgroup_subsys *ss,
			struct cgroup *parent, struct cgroup *child);

740 741 742 743 744 745
static struct inode *cgroup_new_inode(mode_t mode, struct super_block *sb)
{
	struct inode *inode = new_inode(sb);

	if (inode) {
		inode->i_mode = mode;
746 747
		inode->i_uid = current_fsuid();
		inode->i_gid = current_fsgid();
748 749 750 751 752 753
		inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
		inode->i_mapping->backing_dev_info = &cgroup_backing_dev_info;
	}
	return inode;
}

754 755 756 757
/*
 * Call subsys's pre_destroy handler.
 * This is called before css refcnt check.
 */
758
static int cgroup_call_pre_destroy(struct cgroup *cgrp)
759 760
{
	struct cgroup_subsys *ss;
761 762
	int ret = 0;

763
	for_each_subsys(cgrp->root, ss)
764 765 766 767 768 769
		if (ss->pre_destroy) {
			ret = ss->pre_destroy(ss, cgrp);
			if (ret)
				break;
		}
	return ret;
770 771
}

772 773 774 775 776 777 778
static void free_cgroup_rcu(struct rcu_head *obj)
{
	struct cgroup *cgrp = container_of(obj, struct cgroup, rcu_head);

	kfree(cgrp);
}

779 780 781 782
static void cgroup_diput(struct dentry *dentry, struct inode *inode)
{
	/* is dentry a directory ? if so, kfree() associated cgroup */
	if (S_ISDIR(inode->i_mode)) {
783
		struct cgroup *cgrp = dentry->d_fsdata;
784
		struct cgroup_subsys *ss;
785
		BUG_ON(!(cgroup_is_removed(cgrp)));
786 787 788 789 790 791 792
		/* It's possible for external users to be holding css
		 * reference counts on a cgroup; css_put() needs to
		 * be able to access the cgroup after decrementing
		 * the reference count in order to know if it needs to
		 * queue the cgroup to be handled by the release
		 * agent */
		synchronize_rcu();
793 794 795 796 797

		mutex_lock(&cgroup_mutex);
		/*
		 * Release the subsystem state objects.
		 */
798 799
		for_each_subsys(cgrp->root, ss)
			ss->destroy(ss, cgrp);
800 801 802 803

		cgrp->root->number_of_cgroups--;
		mutex_unlock(&cgroup_mutex);

804 805 806 807
		/*
		 * Drop the active superblock reference that we took when we
		 * created the cgroup
		 */
808 809
		deactivate_super(cgrp->root->sb);

810 811 812 813 814 815
		/*
		 * if we're getting rid of the cgroup, refcount should ensure
		 * that there are no pidlists left.
		 */
		BUG_ON(!list_empty(&cgrp->pidlists));

816
		call_rcu(&cgrp->rcu_head, free_cgroup_rcu);
817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868
	}
	iput(inode);
}

static void remove_dir(struct dentry *d)
{
	struct dentry *parent = dget(d->d_parent);

	d_delete(d);
	simple_rmdir(parent->d_inode, d);
	dput(parent);
}

static void cgroup_clear_directory(struct dentry *dentry)
{
	struct list_head *node;

	BUG_ON(!mutex_is_locked(&dentry->d_inode->i_mutex));
	spin_lock(&dcache_lock);
	node = dentry->d_subdirs.next;
	while (node != &dentry->d_subdirs) {
		struct dentry *d = list_entry(node, struct dentry, d_u.d_child);
		list_del_init(node);
		if (d->d_inode) {
			/* This should never be called on a cgroup
			 * directory with child cgroups */
			BUG_ON(d->d_inode->i_mode & S_IFDIR);
			d = dget_locked(d);
			spin_unlock(&dcache_lock);
			d_delete(d);
			simple_unlink(dentry->d_inode, d);
			dput(d);
			spin_lock(&dcache_lock);
		}
		node = dentry->d_subdirs.next;
	}
	spin_unlock(&dcache_lock);
}

/*
 * NOTE : the dentry must have been dget()'ed
 */
static void cgroup_d_remove_dir(struct dentry *dentry)
{
	cgroup_clear_directory(dentry);

	spin_lock(&dcache_lock);
	list_del_init(&dentry->d_u.d_child);
	spin_unlock(&dcache_lock);
	remove_dir(dentry);
}

869 870 871 872 873 874
/*
 * A queue for waiters to do rmdir() cgroup. A tasks will sleep when
 * cgroup->count == 0 && list_empty(&cgroup->children) && subsys has some
 * reference to css->refcnt. In general, this refcnt is expected to goes down
 * to zero, soon.
 *
875
 * CGRP_WAIT_ON_RMDIR flag is set under cgroup's inode->i_mutex;
876 877 878
 */
DECLARE_WAIT_QUEUE_HEAD(cgroup_rmdir_waitq);

879
static void cgroup_wakeup_rmdir_waiter(struct cgroup *cgrp)
880
{
881
	if (unlikely(test_and_clear_bit(CGRP_WAIT_ON_RMDIR, &cgrp->flags)))
882 883 884
		wake_up_all(&cgroup_rmdir_waitq);
}

885 886 887 888 889 890 891 892 893 894 895
void cgroup_exclude_rmdir(struct cgroup_subsys_state *css)
{
	css_get(css);
}

void cgroup_release_and_wakeup_rmdir(struct cgroup_subsys_state *css)
{
	cgroup_wakeup_rmdir_waiter(css->cgroup);
	css_put(css);
}

B
Ben Blum 已提交
896 897 898
/*
 * Call with cgroup_mutex held.
 */
899 900 901 902
static int rebind_subsystems(struct cgroupfs_root *root,
			      unsigned long final_bits)
{
	unsigned long added_bits, removed_bits;
903
	struct cgroup *cgrp = &root->top_cgroup;
904 905
	int i;

B
Ben Blum 已提交
906 907
	BUG_ON(!mutex_is_locked(&cgroup_mutex));

908 909 910 911
	removed_bits = root->actual_subsys_bits & ~final_bits;
	added_bits = final_bits & ~root->actual_subsys_bits;
	/* Check that any added subsystems are currently free */
	for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
L
Li Zefan 已提交
912
		unsigned long bit = 1UL << i;
913 914 915
		struct cgroup_subsys *ss = subsys[i];
		if (!(bit & added_bits))
			continue;
B
Ben Blum 已提交
916 917 918 919 920 921
		/*
		 * Nobody should tell us to do a subsys that doesn't exist:
		 * parse_cgroupfs_options should catch that case and refcounts
		 * ensure that subsystems won't disappear once selected.
		 */
		BUG_ON(ss == NULL);
922 923 924 925 926 927 928 929 930 931
		if (ss->root != &rootnode) {
			/* Subsystem isn't free */
			return -EBUSY;
		}
	}

	/* Currently we don't handle adding/removing subsystems when
	 * any child cgroups exist. This is theoretically supportable
	 * but involves complex error handling, so it's being left until
	 * later */
932
	if (root->number_of_cgroups > 1)
933 934 935 936 937 938 939 940
		return -EBUSY;

	/* Process each subsystem */
	for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
		struct cgroup_subsys *ss = subsys[i];
		unsigned long bit = 1UL << i;
		if (bit & added_bits) {
			/* We're binding this subsystem to this hierarchy */
B
Ben Blum 已提交
941
			BUG_ON(ss == NULL);
942
			BUG_ON(cgrp->subsys[i]);
943 944
			BUG_ON(!dummytop->subsys[i]);
			BUG_ON(dummytop->subsys[i]->cgroup != dummytop);
945
			mutex_lock(&ss->hierarchy_mutex);
946 947
			cgrp->subsys[i] = dummytop->subsys[i];
			cgrp->subsys[i]->cgroup = cgrp;
948
			list_move(&ss->sibling, &root->subsys_list);
949
			ss->root = root;
950
			if (ss->bind)
951
				ss->bind(ss, cgrp);
952
			mutex_unlock(&ss->hierarchy_mutex);
953 954
		} else if (bit & removed_bits) {
			/* We're removing this subsystem */
B
Ben Blum 已提交
955
			BUG_ON(ss == NULL);
956 957
			BUG_ON(cgrp->subsys[i] != dummytop->subsys[i]);
			BUG_ON(cgrp->subsys[i]->cgroup != cgrp);
958
			mutex_lock(&ss->hierarchy_mutex);
959 960 961
			if (ss->bind)
				ss->bind(ss, dummytop);
			dummytop->subsys[i]->cgroup = dummytop;
962
			cgrp->subsys[i] = NULL;
963
			subsys[i]->root = &rootnode;
964
			list_move(&ss->sibling, &rootnode.subsys_list);
965
			mutex_unlock(&ss->hierarchy_mutex);
966 967
		} else if (bit & final_bits) {
			/* Subsystem state should already exist */
B
Ben Blum 已提交
968
			BUG_ON(ss == NULL);
969
			BUG_ON(!cgrp->subsys[i]);
970 971
		} else {
			/* Subsystem state shouldn't exist */
972
			BUG_ON(cgrp->subsys[i]);
973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990
		}
	}
	root->subsys_bits = root->actual_subsys_bits = final_bits;
	synchronize_rcu();

	return 0;
}

static int cgroup_show_options(struct seq_file *seq, struct vfsmount *vfs)
{
	struct cgroupfs_root *root = vfs->mnt_sb->s_fs_info;
	struct cgroup_subsys *ss;

	mutex_lock(&cgroup_mutex);
	for_each_subsys(root, ss)
		seq_printf(seq, ",%s", ss->name);
	if (test_bit(ROOT_NOPREFIX, &root->flags))
		seq_puts(seq, ",noprefix");
991 992
	if (strlen(root->release_agent_path))
		seq_printf(seq, ",release_agent=%s", root->release_agent_path);
993 994
	if (strlen(root->name))
		seq_printf(seq, ",name=%s", root->name);
995 996 997 998 999 1000 1001
	mutex_unlock(&cgroup_mutex);
	return 0;
}

struct cgroup_sb_opts {
	unsigned long subsys_bits;
	unsigned long flags;
1002
	char *release_agent;
1003
	char *name;
1004 1005
	/* User explicitly requested empty subsystem */
	bool none;
1006 1007

	struct cgroupfs_root *new_root;
1008

1009 1010
};

B
Ben Blum 已提交
1011 1012 1013 1014
/*
 * Convert a hierarchy specifier into a bitmask of subsystems and flags. Call
 * with cgroup_mutex held to protect the subsys[] array.
 */
1015 1016 1017 1018
static int parse_cgroupfs_options(char *data,
				     struct cgroup_sb_opts *opts)
{
	char *token, *o = data ?: "all";
1019 1020
	unsigned long mask = (unsigned long)-1;

B
Ben Blum 已提交
1021 1022
	BUG_ON(!mutex_is_locked(&cgroup_mutex));

1023 1024 1025
#ifdef CONFIG_CPUSETS
	mask = ~(1UL << cpuset_subsys_id);
#endif
1026

1027
	memset(opts, 0, sizeof(*opts));
1028 1029 1030 1031 1032

	while ((token = strsep(&o, ",")) != NULL) {
		if (!*token)
			return -EINVAL;
		if (!strcmp(token, "all")) {
1033 1034 1035 1036 1037
			/* Add all non-disabled subsystems */
			int i;
			opts->subsys_bits = 0;
			for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
				struct cgroup_subsys *ss = subsys[i];
B
Ben Blum 已提交
1038 1039
				if (ss == NULL)
					continue;
1040 1041 1042
				if (!ss->disabled)
					opts->subsys_bits |= 1ul << i;
			}
1043 1044 1045
		} else if (!strcmp(token, "none")) {
			/* Explicitly have no subsystems */
			opts->none = true;
1046 1047
		} else if (!strcmp(token, "noprefix")) {
			set_bit(ROOT_NOPREFIX, &opts->flags);
1048 1049 1050 1051
		} else if (!strncmp(token, "release_agent=", 14)) {
			/* Specifying two release agents is forbidden */
			if (opts->release_agent)
				return -EINVAL;
1052 1053
			opts->release_agent =
				kstrndup(token + 14, PATH_MAX, GFP_KERNEL);
1054 1055
			if (!opts->release_agent)
				return -ENOMEM;
1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078
		} else if (!strncmp(token, "name=", 5)) {
			int i;
			const char *name = token + 5;
			/* Can't specify an empty name */
			if (!strlen(name))
				return -EINVAL;
			/* Must match [\w.-]+ */
			for (i = 0; i < strlen(name); i++) {
				char c = name[i];
				if (isalnum(c))
					continue;
				if ((c == '.') || (c == '-') || (c == '_'))
					continue;
				return -EINVAL;
			}
			/* Specifying two names is forbidden */
			if (opts->name)
				return -EINVAL;
			opts->name = kstrndup(name,
					      MAX_CGROUP_ROOT_NAMELEN,
					      GFP_KERNEL);
			if (!opts->name)
				return -ENOMEM;
1079 1080 1081 1082 1083
		} else {
			struct cgroup_subsys *ss;
			int i;
			for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
				ss = subsys[i];
B
Ben Blum 已提交
1084 1085
				if (ss == NULL)
					continue;
1086
				if (!strcmp(token, ss->name)) {
1087 1088
					if (!ss->disabled)
						set_bit(i, &opts->subsys_bits);
1089 1090 1091 1092 1093 1094 1095 1096
					break;
				}
			}
			if (i == CGROUP_SUBSYS_COUNT)
				return -ENOENT;
		}
	}

1097 1098
	/* Consistency checks */

1099 1100 1101 1102 1103 1104 1105 1106 1107
	/*
	 * Option noprefix was introduced just for backward compatibility
	 * with the old cpuset, so we allow noprefix only if mounting just
	 * the cpuset subsystem.
	 */
	if (test_bit(ROOT_NOPREFIX, &opts->flags) &&
	    (opts->subsys_bits & mask))
		return -EINVAL;

1108 1109 1110 1111 1112 1113 1114 1115 1116

	/* Can't specify "none" and some subsystems */
	if (opts->subsys_bits && opts->none)
		return -EINVAL;

	/*
	 * We either have to specify by name or by subsystems. (So all
	 * empty hierarchies must have a name).
	 */
1117
	if (!opts->subsys_bits && !opts->name)
1118 1119 1120 1121 1122 1123 1124 1125 1126
		return -EINVAL;

	return 0;
}

static int cgroup_remount(struct super_block *sb, int *flags, char *data)
{
	int ret = 0;
	struct cgroupfs_root *root = sb->s_fs_info;
1127
	struct cgroup *cgrp = &root->top_cgroup;
1128 1129
	struct cgroup_sb_opts opts;

1130
	lock_kernel();
1131
	mutex_lock(&cgrp->dentry->d_inode->i_mutex);
1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144
	mutex_lock(&cgroup_mutex);

	/* See what subsystems are wanted */
	ret = parse_cgroupfs_options(data, &opts);
	if (ret)
		goto out_unlock;

	/* Don't allow flags to change at remount */
	if (opts.flags != root->flags) {
		ret = -EINVAL;
		goto out_unlock;
	}

1145 1146 1147 1148 1149 1150
	/* Don't allow name to change at remount */
	if (opts.name && strcmp(opts.name, root->name)) {
		ret = -EINVAL;
		goto out_unlock;
	}

1151
	ret = rebind_subsystems(root, opts.subsys_bits);
1152 1153
	if (ret)
		goto out_unlock;
1154 1155

	/* (re)populate subsystem files */
1156
	cgroup_populate_dir(cgrp);
1157

1158 1159
	if (opts.release_agent)
		strcpy(root->release_agent_path, opts.release_agent);
1160
 out_unlock:
1161
	kfree(opts.release_agent);
1162
	kfree(opts.name);
1163
	mutex_unlock(&cgroup_mutex);
1164
	mutex_unlock(&cgrp->dentry->d_inode->i_mutex);
1165
	unlock_kernel();
1166 1167 1168
	return ret;
}

1169
static const struct super_operations cgroup_ops = {
1170 1171 1172 1173 1174 1175
	.statfs = simple_statfs,
	.drop_inode = generic_delete_inode,
	.show_options = cgroup_show_options,
	.remount_fs = cgroup_remount,
};

1176 1177 1178 1179 1180 1181
static void init_cgroup_housekeeping(struct cgroup *cgrp)
{
	INIT_LIST_HEAD(&cgrp->sibling);
	INIT_LIST_HEAD(&cgrp->children);
	INIT_LIST_HEAD(&cgrp->css_sets);
	INIT_LIST_HEAD(&cgrp->release_list);
1182 1183
	INIT_LIST_HEAD(&cgrp->pidlists);
	mutex_init(&cgrp->pidlist_mutex);
1184
}
1185

1186 1187
static void init_cgroup_root(struct cgroupfs_root *root)
{
1188
	struct cgroup *cgrp = &root->top_cgroup;
1189 1190 1191
	INIT_LIST_HEAD(&root->subsys_list);
	INIT_LIST_HEAD(&root->root_list);
	root->number_of_cgroups = 1;
1192 1193
	cgrp->root = root;
	cgrp->top_cgroup = cgrp;
1194
	init_cgroup_housekeeping(cgrp);
1195 1196
}

1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221
static bool init_root_id(struct cgroupfs_root *root)
{
	int ret = 0;

	do {
		if (!ida_pre_get(&hierarchy_ida, GFP_KERNEL))
			return false;
		spin_lock(&hierarchy_id_lock);
		/* Try to allocate the next unused ID */
		ret = ida_get_new_above(&hierarchy_ida, next_hierarchy_id,
					&root->hierarchy_id);
		if (ret == -ENOSPC)
			/* Try again starting from 0 */
			ret = ida_get_new(&hierarchy_ida, &root->hierarchy_id);
		if (!ret) {
			next_hierarchy_id = root->hierarchy_id + 1;
		} else if (ret != -EAGAIN) {
			/* Can only get here if the 31-bit IDR is full ... */
			BUG_ON(ret);
		}
		spin_unlock(&hierarchy_id_lock);
	} while (ret);
	return true;
}

1222 1223
static int cgroup_test_super(struct super_block *sb, void *data)
{
1224
	struct cgroup_sb_opts *opts = data;
1225 1226
	struct cgroupfs_root *root = sb->s_fs_info;

1227 1228 1229
	/* If we asked for a name then it must match */
	if (opts->name && strcmp(opts->name, root->name))
		return 0;
1230

1231 1232 1233 1234 1235 1236
	/*
	 * If we asked for subsystems (or explicitly for no
	 * subsystems) then they must match
	 */
	if ((opts->subsys_bits || opts->none)
	    && (opts->subsys_bits != root->subsys_bits))
1237 1238 1239 1240 1241
		return 0;

	return 1;
}

1242 1243 1244 1245
static struct cgroupfs_root *cgroup_root_from_opts(struct cgroup_sb_opts *opts)
{
	struct cgroupfs_root *root;

1246
	if (!opts->subsys_bits && !opts->none)
1247 1248 1249 1250 1251 1252
		return NULL;

	root = kzalloc(sizeof(*root), GFP_KERNEL);
	if (!root)
		return ERR_PTR(-ENOMEM);

1253 1254 1255 1256
	if (!init_root_id(root)) {
		kfree(root);
		return ERR_PTR(-ENOMEM);
	}
1257
	init_cgroup_root(root);
1258

1259 1260 1261 1262 1263 1264 1265 1266 1267
	root->subsys_bits = opts->subsys_bits;
	root->flags = opts->flags;
	if (opts->release_agent)
		strcpy(root->release_agent_path, opts->release_agent);
	if (opts->name)
		strcpy(root->name, opts->name);
	return root;
}

1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279
static void cgroup_drop_root(struct cgroupfs_root *root)
{
	if (!root)
		return;

	BUG_ON(!root->hierarchy_id);
	spin_lock(&hierarchy_id_lock);
	ida_remove(&hierarchy_ida, root->hierarchy_id);
	spin_unlock(&hierarchy_id_lock);
	kfree(root);
}

1280 1281 1282
static int cgroup_set_super(struct super_block *sb, void *data)
{
	int ret;
1283 1284 1285 1286 1287 1288
	struct cgroup_sb_opts *opts = data;

	/* If we don't have a new root, we can't set up a new sb */
	if (!opts->new_root)
		return -EINVAL;

1289
	BUG_ON(!opts->subsys_bits && !opts->none);
1290 1291 1292 1293 1294

	ret = set_anon_super(sb, NULL);
	if (ret)
		return ret;

1295 1296
	sb->s_fs_info = opts->new_root;
	opts->new_root->sb = sb;
1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332

	sb->s_blocksize = PAGE_CACHE_SIZE;
	sb->s_blocksize_bits = PAGE_CACHE_SHIFT;
	sb->s_magic = CGROUP_SUPER_MAGIC;
	sb->s_op = &cgroup_ops;

	return 0;
}

static int cgroup_get_rootdir(struct super_block *sb)
{
	struct inode *inode =
		cgroup_new_inode(S_IFDIR | S_IRUGO | S_IXUGO | S_IWUSR, sb);
	struct dentry *dentry;

	if (!inode)
		return -ENOMEM;

	inode->i_fop = &simple_dir_operations;
	inode->i_op = &cgroup_dir_inode_operations;
	/* directories start off with i_nlink == 2 (for "." entry) */
	inc_nlink(inode);
	dentry = d_alloc_root(inode);
	if (!dentry) {
		iput(inode);
		return -ENOMEM;
	}
	sb->s_root = dentry;
	return 0;
}

static int cgroup_get_sb(struct file_system_type *fs_type,
			 int flags, const char *unused_dev_name,
			 void *data, struct vfsmount *mnt)
{
	struct cgroup_sb_opts opts;
1333
	struct cgroupfs_root *root;
1334 1335
	int ret = 0;
	struct super_block *sb;
1336
	struct cgroupfs_root *new_root;
1337 1338

	/* First find the desired set of subsystems */
B
Ben Blum 已提交
1339
	mutex_lock(&cgroup_mutex);
1340
	ret = parse_cgroupfs_options(data, &opts);
B
Ben Blum 已提交
1341
	mutex_unlock(&cgroup_mutex);
1342 1343
	if (ret)
		goto out_err;
1344

1345 1346 1347 1348 1349 1350 1351 1352
	/*
	 * Allocate a new cgroup root. We may not need it if we're
	 * reusing an existing hierarchy.
	 */
	new_root = cgroup_root_from_opts(&opts);
	if (IS_ERR(new_root)) {
		ret = PTR_ERR(new_root);
		goto out_err;
1353
	}
1354
	opts.new_root = new_root;
1355

1356 1357
	/* Locate an existing or new sb for this hierarchy */
	sb = sget(fs_type, cgroup_test_super, cgroup_set_super, &opts);
1358
	if (IS_ERR(sb)) {
1359
		ret = PTR_ERR(sb);
1360
		cgroup_drop_root(opts.new_root);
1361
		goto out_err;
1362 1363
	}

1364 1365 1366 1367 1368
	root = sb->s_fs_info;
	BUG_ON(!root);
	if (root == opts.new_root) {
		/* We used the new root structure, so this is a new hierarchy */
		struct list_head tmp_cg_links;
1369
		struct cgroup *root_cgrp = &root->top_cgroup;
1370
		struct inode *inode;
1371
		struct cgroupfs_root *existing_root;
1372
		int i;
1373 1374 1375 1376 1377 1378

		BUG_ON(sb->s_root != NULL);

		ret = cgroup_get_rootdir(sb);
		if (ret)
			goto drop_new_super;
1379
		inode = sb->s_root->d_inode;
1380

1381
		mutex_lock(&inode->i_mutex);
1382 1383
		mutex_lock(&cgroup_mutex);

1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395
		if (strlen(root->name)) {
			/* Check for name clashes with existing mounts */
			for_each_active_root(existing_root) {
				if (!strcmp(existing_root->name, root->name)) {
					ret = -EBUSY;
					mutex_unlock(&cgroup_mutex);
					mutex_unlock(&inode->i_mutex);
					goto drop_new_super;
				}
			}
		}

1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409
		/*
		 * We're accessing css_set_count without locking
		 * css_set_lock here, but that's OK - it can only be
		 * increased by someone holding cgroup_lock, and
		 * that's us. The worst that can happen is that we
		 * have some link structures left over
		 */
		ret = allocate_cg_links(css_set_count, &tmp_cg_links);
		if (ret) {
			mutex_unlock(&cgroup_mutex);
			mutex_unlock(&inode->i_mutex);
			goto drop_new_super;
		}

1410 1411 1412
		ret = rebind_subsystems(root, root->subsys_bits);
		if (ret == -EBUSY) {
			mutex_unlock(&cgroup_mutex);
1413
			mutex_unlock(&inode->i_mutex);
1414 1415
			free_cg_links(&tmp_cg_links);
			goto drop_new_super;
1416 1417 1418 1419 1420 1421
		}

		/* EBUSY should be the only error here */
		BUG_ON(ret);

		list_add(&root->root_list, &roots);
1422
		root_count++;
1423

1424
		sb->s_root->d_fsdata = root_cgrp;
1425 1426
		root->top_cgroup.dentry = sb->s_root;

1427 1428 1429
		/* Link the top cgroup in this hierarchy into all
		 * the css_set objects */
		write_lock(&css_set_lock);
1430 1431 1432
		for (i = 0; i < CSS_SET_TABLE_SIZE; i++) {
			struct hlist_head *hhead = &css_set_table[i];
			struct hlist_node *node;
1433
			struct css_set *cg;
1434

1435 1436
			hlist_for_each_entry(cg, node, hhead, hlist)
				link_css_set(&tmp_cg_links, cg, root_cgrp);
1437
		}
1438 1439 1440 1441
		write_unlock(&css_set_lock);

		free_cg_links(&tmp_cg_links);

1442 1443
		BUG_ON(!list_empty(&root_cgrp->sibling));
		BUG_ON(!list_empty(&root_cgrp->children));
1444 1445
		BUG_ON(root->number_of_cgroups != 1);

1446
		cgroup_populate_dir(root_cgrp);
1447
		mutex_unlock(&cgroup_mutex);
1448
		mutex_unlock(&inode->i_mutex);
1449 1450 1451 1452 1453
	} else {
		/*
		 * We re-used an existing hierarchy - the new root (if
		 * any) is not needed
		 */
1454
		cgroup_drop_root(opts.new_root);
1455 1456
	}

1457
	simple_set_mnt(mnt, sb);
1458 1459
	kfree(opts.release_agent);
	kfree(opts.name);
1460
	return 0;
1461 1462

 drop_new_super:
1463
	deactivate_locked_super(sb);
1464 1465 1466 1467
 out_err:
	kfree(opts.release_agent);
	kfree(opts.name);

1468 1469 1470 1471 1472
	return ret;
}

static void cgroup_kill_sb(struct super_block *sb) {
	struct cgroupfs_root *root = sb->s_fs_info;
1473
	struct cgroup *cgrp = &root->top_cgroup;
1474
	int ret;
K
KOSAKI Motohiro 已提交
1475 1476
	struct cg_cgroup_link *link;
	struct cg_cgroup_link *saved_link;
1477 1478 1479 1480

	BUG_ON(!root);

	BUG_ON(root->number_of_cgroups != 1);
1481 1482
	BUG_ON(!list_empty(&cgrp->children));
	BUG_ON(!list_empty(&cgrp->sibling));
1483 1484 1485 1486 1487 1488 1489 1490

	mutex_lock(&cgroup_mutex);

	/* Rebind all subsystems back to the default hierarchy */
	ret = rebind_subsystems(root, 0);
	/* Shouldn't be able to fail ... */
	BUG_ON(ret);

1491 1492 1493 1494 1495
	/*
	 * Release all the links from css_sets to this hierarchy's
	 * root cgroup
	 */
	write_lock(&css_set_lock);
K
KOSAKI Motohiro 已提交
1496 1497 1498

	list_for_each_entry_safe(link, saved_link, &cgrp->css_sets,
				 cgrp_link_list) {
1499
		list_del(&link->cg_link_list);
1500
		list_del(&link->cgrp_link_list);
1501 1502 1503 1504
		kfree(link);
	}
	write_unlock(&css_set_lock);

1505 1506 1507 1508
	if (!list_empty(&root->root_list)) {
		list_del(&root->root_list);
		root_count--;
	}
1509

1510 1511 1512
	mutex_unlock(&cgroup_mutex);

	kill_litter_super(sb);
1513
	cgroup_drop_root(root);
1514 1515 1516 1517 1518 1519 1520 1521
}

static struct file_system_type cgroup_fs_type = {
	.name = "cgroup",
	.get_sb = cgroup_get_sb,
	.kill_sb = cgroup_kill_sb,
};

1522
static inline struct cgroup *__d_cgrp(struct dentry *dentry)
1523 1524 1525 1526 1527 1528 1529 1530 1531
{
	return dentry->d_fsdata;
}

static inline struct cftype *__d_cft(struct dentry *dentry)
{
	return dentry->d_fsdata;
}

L
Li Zefan 已提交
1532 1533 1534 1535 1536 1537
/**
 * cgroup_path - generate the path of a cgroup
 * @cgrp: the cgroup in question
 * @buf: the buffer to write the path into
 * @buflen: the length of the buffer
 *
1538 1539 1540
 * Called with cgroup_mutex held or else with an RCU-protected cgroup
 * reference.  Writes path of cgroup into buf.  Returns 0 on success,
 * -errno on error.
1541
 */
1542
int cgroup_path(const struct cgroup *cgrp, char *buf, int buflen)
1543 1544
{
	char *start;
1545
	struct dentry *dentry = rcu_dereference(cgrp->dentry);
1546

1547
	if (!dentry || cgrp == dummytop) {
1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559
		/*
		 * Inactive subsystems have no dentry for their root
		 * cgroup
		 */
		strcpy(buf, "/");
		return 0;
	}

	start = buf + buflen;

	*--start = '\0';
	for (;;) {
1560
		int len = dentry->d_name.len;
1561 1562
		if ((start -= len) < buf)
			return -ENAMETOOLONG;
1563 1564 1565
		memcpy(start, cgrp->dentry->d_name.name, len);
		cgrp = cgrp->parent;
		if (!cgrp)
1566
			break;
1567
		dentry = rcu_dereference(cgrp->dentry);
1568
		if (!cgrp->parent)
1569 1570 1571 1572 1573 1574 1575 1576 1577
			continue;
		if (--start < buf)
			return -ENAMETOOLONG;
		*start = '/';
	}
	memmove(buf, start, buf + buflen - start);
	return 0;
}

L
Li Zefan 已提交
1578 1579 1580 1581
/**
 * cgroup_attach_task - attach task 'tsk' to cgroup 'cgrp'
 * @cgrp: the cgroup the task is attaching to
 * @tsk: the task to be attached
1582
 *
L
Li Zefan 已提交
1583 1584
 * Call holding cgroup_mutex. May take task_lock of
 * the task 'tsk' during call.
1585
 */
1586
int cgroup_attach_task(struct cgroup *cgrp, struct task_struct *tsk)
1587 1588
{
	int retval = 0;
1589
	struct cgroup_subsys *ss, *failed_ss = NULL;
1590
	struct cgroup *oldcgrp;
1591
	struct css_set *cg;
1592
	struct css_set *newcg;
1593
	struct cgroupfs_root *root = cgrp->root;
1594 1595

	/* Nothing to do if the task is already in that cgroup */
1596
	oldcgrp = task_cgroup_from_root(tsk, root);
1597
	if (cgrp == oldcgrp)
1598 1599 1600 1601
		return 0;

	for_each_subsys(root, ss) {
		if (ss->can_attach) {
1602
			retval = ss->can_attach(ss, cgrp, tsk, false);
1603 1604 1605 1606 1607 1608 1609 1610 1611 1612
			if (retval) {
				/*
				 * Remember on which subsystem the can_attach()
				 * failed, so that we only call cancel_attach()
				 * against the subsystems whose can_attach()
				 * succeeded. (See below)
				 */
				failed_ss = ss;
				goto out;
			}
1613 1614 1615
		}
	}

1616 1617 1618 1619
	task_lock(tsk);
	cg = tsk->cgroups;
	get_css_set(cg);
	task_unlock(tsk);
1620 1621 1622 1623
	/*
	 * Locate or allocate a new css_set for this task,
	 * based on its final set of cgroups
	 */
1624
	newcg = find_css_set(cg, cgrp);
1625
	put_css_set(cg);
1626 1627 1628 1629
	if (!newcg) {
		retval = -ENOMEM;
		goto out;
	}
1630

1631 1632 1633
	task_lock(tsk);
	if (tsk->flags & PF_EXITING) {
		task_unlock(tsk);
1634
		put_css_set(newcg);
1635 1636
		retval = -ESRCH;
		goto out;
1637
	}
1638
	rcu_assign_pointer(tsk->cgroups, newcg);
1639 1640
	task_unlock(tsk);

1641 1642 1643 1644 1645 1646 1647 1648
	/* Update the css_set linked lists if we're using them */
	write_lock(&css_set_lock);
	if (!list_empty(&tsk->cg_list)) {
		list_del(&tsk->cg_list);
		list_add(&tsk->cg_list, &newcg->tasks);
	}
	write_unlock(&css_set_lock);

1649
	for_each_subsys(root, ss) {
P
Paul Jackson 已提交
1650
		if (ss->attach)
1651
			ss->attach(ss, cgrp, oldcgrp, tsk, false);
1652
	}
1653
	set_bit(CGRP_RELEASABLE, &oldcgrp->flags);
1654
	synchronize_rcu();
1655
	put_css_set(cg);
1656 1657 1658 1659 1660

	/*
	 * wake up rmdir() waiter. the rmdir should fail since the cgroup
	 * is no longer empty.
	 */
1661
	cgroup_wakeup_rmdir_waiter(cgrp);
1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677
out:
	if (retval) {
		for_each_subsys(root, ss) {
			if (ss == failed_ss)
				/*
				 * This subsystem was the one that failed the
				 * can_attach() check earlier, so we don't need
				 * to call cancel_attach() against it or any
				 * remaining subsystems.
				 */
				break;
			if (ss->cancel_attach)
				ss->cancel_attach(ss, cgrp, tsk, false);
		}
	}
	return retval;
1678 1679 1680
}

/*
1681 1682
 * Attach task with pid 'pid' to cgroup 'cgrp'. Call with cgroup_mutex
 * held. May take task_lock of task
1683
 */
1684
static int attach_task_by_pid(struct cgroup *cgrp, u64 pid)
1685 1686
{
	struct task_struct *tsk;
1687
	const struct cred *cred = current_cred(), *tcred;
1688 1689 1690 1691
	int ret;

	if (pid) {
		rcu_read_lock();
1692
		tsk = find_task_by_vpid(pid);
1693 1694 1695 1696 1697
		if (!tsk || tsk->flags & PF_EXITING) {
			rcu_read_unlock();
			return -ESRCH;
		}

1698 1699 1700 1701 1702
		tcred = __task_cred(tsk);
		if (cred->euid &&
		    cred->euid != tcred->uid &&
		    cred->euid != tcred->suid) {
			rcu_read_unlock();
1703 1704
			return -EACCES;
		}
1705 1706
		get_task_struct(tsk);
		rcu_read_unlock();
1707 1708 1709 1710 1711
	} else {
		tsk = current;
		get_task_struct(tsk);
	}

1712
	ret = cgroup_attach_task(cgrp, tsk);
1713 1714 1715 1716
	put_task_struct(tsk);
	return ret;
}

1717 1718 1719 1720 1721 1722 1723 1724 1725 1726
static int cgroup_tasks_write(struct cgroup *cgrp, struct cftype *cft, u64 pid)
{
	int ret;
	if (!cgroup_lock_live_group(cgrp))
		return -ENODEV;
	ret = attach_task_by_pid(cgrp, pid);
	cgroup_unlock();
	return ret;
}

1727 1728 1729 1730
/**
 * cgroup_lock_live_group - take cgroup_mutex and check that cgrp is alive.
 * @cgrp: the cgroup to be checked for liveness
 *
1731 1732
 * On success, returns true; the lock should be later released with
 * cgroup_unlock(). On failure returns false with no lock held.
1733
 */
1734
bool cgroup_lock_live_group(struct cgroup *cgrp)
1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750
{
	mutex_lock(&cgroup_mutex);
	if (cgroup_is_removed(cgrp)) {
		mutex_unlock(&cgroup_mutex);
		return false;
	}
	return true;
}

static int cgroup_release_agent_write(struct cgroup *cgrp, struct cftype *cft,
				      const char *buffer)
{
	BUILD_BUG_ON(sizeof(cgrp->root->release_agent_path) < PATH_MAX);
	if (!cgroup_lock_live_group(cgrp))
		return -ENODEV;
	strcpy(cgrp->root->release_agent_path, buffer);
1751
	cgroup_unlock();
1752 1753 1754 1755 1756 1757 1758 1759 1760 1761
	return 0;
}

static int cgroup_release_agent_show(struct cgroup *cgrp, struct cftype *cft,
				     struct seq_file *seq)
{
	if (!cgroup_lock_live_group(cgrp))
		return -ENODEV;
	seq_puts(seq, cgrp->root->release_agent_path);
	seq_putc(seq, '\n');
1762
	cgroup_unlock();
1763 1764 1765
	return 0;
}

1766 1767 1768
/* A buffer size big enough for numbers or short strings */
#define CGROUP_LOCAL_BUFFER_SIZE 64

1769
static ssize_t cgroup_write_X64(struct cgroup *cgrp, struct cftype *cft,
1770 1771 1772
				struct file *file,
				const char __user *userbuf,
				size_t nbytes, loff_t *unused_ppos)
1773
{
1774
	char buffer[CGROUP_LOCAL_BUFFER_SIZE];
1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785
	int retval = 0;
	char *end;

	if (!nbytes)
		return -EINVAL;
	if (nbytes >= sizeof(buffer))
		return -E2BIG;
	if (copy_from_user(buffer, userbuf, nbytes))
		return -EFAULT;

	buffer[nbytes] = 0;     /* nul-terminate */
1786
	if (cft->write_u64) {
K
KOSAKI Motohiro 已提交
1787
		u64 val = simple_strtoull(strstrip(buffer), &end, 0);
1788 1789 1790 1791
		if (*end)
			return -EINVAL;
		retval = cft->write_u64(cgrp, cft, val);
	} else {
K
KOSAKI Motohiro 已提交
1792
		s64 val = simple_strtoll(strstrip(buffer), &end, 0);
1793 1794 1795 1796
		if (*end)
			return -EINVAL;
		retval = cft->write_s64(cgrp, cft, val);
	}
1797 1798 1799 1800 1801
	if (!retval)
		retval = nbytes;
	return retval;
}

1802 1803 1804 1805 1806
static ssize_t cgroup_write_string(struct cgroup *cgrp, struct cftype *cft,
				   struct file *file,
				   const char __user *userbuf,
				   size_t nbytes, loff_t *unused_ppos)
{
1807
	char local_buffer[CGROUP_LOCAL_BUFFER_SIZE];
1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821
	int retval = 0;
	size_t max_bytes = cft->max_write_len;
	char *buffer = local_buffer;

	if (!max_bytes)
		max_bytes = sizeof(local_buffer) - 1;
	if (nbytes >= max_bytes)
		return -E2BIG;
	/* Allocate a dynamic buffer if we need one */
	if (nbytes >= sizeof(local_buffer)) {
		buffer = kmalloc(nbytes + 1, GFP_KERNEL);
		if (buffer == NULL)
			return -ENOMEM;
	}
L
Li Zefan 已提交
1822 1823 1824 1825
	if (nbytes && copy_from_user(buffer, userbuf, nbytes)) {
		retval = -EFAULT;
		goto out;
	}
1826 1827

	buffer[nbytes] = 0;     /* nul-terminate */
K
KOSAKI Motohiro 已提交
1828
	retval = cft->write_string(cgrp, cft, strstrip(buffer));
1829 1830
	if (!retval)
		retval = nbytes;
L
Li Zefan 已提交
1831
out:
1832 1833 1834 1835 1836
	if (buffer != local_buffer)
		kfree(buffer);
	return retval;
}

1837 1838 1839 1840
static ssize_t cgroup_file_write(struct file *file, const char __user *buf,
						size_t nbytes, loff_t *ppos)
{
	struct cftype *cft = __d_cft(file->f_dentry);
1841
	struct cgroup *cgrp = __d_cgrp(file->f_dentry->d_parent);
1842

1843
	if (cgroup_is_removed(cgrp))
1844
		return -ENODEV;
1845
	if (cft->write)
1846
		return cft->write(cgrp, cft, file, buf, nbytes, ppos);
1847 1848
	if (cft->write_u64 || cft->write_s64)
		return cgroup_write_X64(cgrp, cft, file, buf, nbytes, ppos);
1849 1850
	if (cft->write_string)
		return cgroup_write_string(cgrp, cft, file, buf, nbytes, ppos);
1851 1852 1853 1854
	if (cft->trigger) {
		int ret = cft->trigger(cgrp, (unsigned int)cft->private);
		return ret ? ret : nbytes;
	}
1855
	return -EINVAL;
1856 1857
}

1858 1859 1860 1861
static ssize_t cgroup_read_u64(struct cgroup *cgrp, struct cftype *cft,
			       struct file *file,
			       char __user *buf, size_t nbytes,
			       loff_t *ppos)
1862
{
1863
	char tmp[CGROUP_LOCAL_BUFFER_SIZE];
1864
	u64 val = cft->read_u64(cgrp, cft);
1865 1866 1867 1868 1869
	int len = sprintf(tmp, "%llu\n", (unsigned long long) val);

	return simple_read_from_buffer(buf, nbytes, ppos, tmp, len);
}

1870 1871 1872 1873 1874
static ssize_t cgroup_read_s64(struct cgroup *cgrp, struct cftype *cft,
			       struct file *file,
			       char __user *buf, size_t nbytes,
			       loff_t *ppos)
{
1875
	char tmp[CGROUP_LOCAL_BUFFER_SIZE];
1876 1877 1878 1879 1880 1881
	s64 val = cft->read_s64(cgrp, cft);
	int len = sprintf(tmp, "%lld\n", (long long) val);

	return simple_read_from_buffer(buf, nbytes, ppos, tmp, len);
}

1882 1883 1884 1885
static ssize_t cgroup_file_read(struct file *file, char __user *buf,
				   size_t nbytes, loff_t *ppos)
{
	struct cftype *cft = __d_cft(file->f_dentry);
1886
	struct cgroup *cgrp = __d_cgrp(file->f_dentry->d_parent);
1887

1888
	if (cgroup_is_removed(cgrp))
1889 1890 1891
		return -ENODEV;

	if (cft->read)
1892
		return cft->read(cgrp, cft, file, buf, nbytes, ppos);
1893 1894
	if (cft->read_u64)
		return cgroup_read_u64(cgrp, cft, file, buf, nbytes, ppos);
1895 1896
	if (cft->read_s64)
		return cgroup_read_s64(cgrp, cft, file, buf, nbytes, ppos);
1897 1898 1899
	return -EINVAL;
}

1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919
/*
 * seqfile ops/methods for returning structured data. Currently just
 * supports string->u64 maps, but can be extended in future.
 */

struct cgroup_seqfile_state {
	struct cftype *cft;
	struct cgroup *cgroup;
};

static int cgroup_map_add(struct cgroup_map_cb *cb, const char *key, u64 value)
{
	struct seq_file *sf = cb->state;
	return seq_printf(sf, "%s %llu\n", key, (unsigned long long)value);
}

static int cgroup_seqfile_show(struct seq_file *m, void *arg)
{
	struct cgroup_seqfile_state *state = m->private;
	struct cftype *cft = state->cft;
1920 1921 1922 1923 1924 1925 1926 1927
	if (cft->read_map) {
		struct cgroup_map_cb cb = {
			.fill = cgroup_map_add,
			.state = m,
		};
		return cft->read_map(state->cgroup, cft, &cb);
	}
	return cft->read_seq_string(state->cgroup, cft, m);
1928 1929
}

1930
static int cgroup_seqfile_release(struct inode *inode, struct file *file)
1931 1932 1933 1934 1935 1936
{
	struct seq_file *seq = file->private_data;
	kfree(seq->private);
	return single_release(inode, file);
}

1937
static const struct file_operations cgroup_seqfile_operations = {
1938
	.read = seq_read,
1939
	.write = cgroup_file_write,
1940 1941 1942 1943
	.llseek = seq_lseek,
	.release = cgroup_seqfile_release,
};

1944 1945 1946 1947 1948 1949 1950 1951 1952
static int cgroup_file_open(struct inode *inode, struct file *file)
{
	int err;
	struct cftype *cft;

	err = generic_file_open(inode, file);
	if (err)
		return err;
	cft = __d_cft(file->f_dentry);
1953

1954
	if (cft->read_map || cft->read_seq_string) {
1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965
		struct cgroup_seqfile_state *state =
			kzalloc(sizeof(*state), GFP_USER);
		if (!state)
			return -ENOMEM;
		state->cft = cft;
		state->cgroup = __d_cgrp(file->f_dentry->d_parent);
		file->f_op = &cgroup_seqfile_operations;
		err = single_open(file, cgroup_seqfile_show, state);
		if (err < 0)
			kfree(state);
	} else if (cft->open)
1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995
		err = cft->open(inode, file);
	else
		err = 0;

	return err;
}

static int cgroup_file_release(struct inode *inode, struct file *file)
{
	struct cftype *cft = __d_cft(file->f_dentry);
	if (cft->release)
		return cft->release(inode, file);
	return 0;
}

/*
 * cgroup_rename - Only allow simple rename of directories in place.
 */
static int cgroup_rename(struct inode *old_dir, struct dentry *old_dentry,
			    struct inode *new_dir, struct dentry *new_dentry)
{
	if (!S_ISDIR(old_dentry->d_inode->i_mode))
		return -ENOTDIR;
	if (new_dentry->d_inode)
		return -EEXIST;
	if (old_dir != new_dir)
		return -EIO;
	return simple_rename(old_dir, old_dentry, new_dir, new_dentry);
}

1996
static const struct file_operations cgroup_file_operations = {
1997 1998 1999 2000 2001 2002 2003
	.read = cgroup_file_read,
	.write = cgroup_file_write,
	.llseek = generic_file_llseek,
	.open = cgroup_file_open,
	.release = cgroup_file_release,
};

2004
static const struct inode_operations cgroup_dir_inode_operations = {
2005 2006 2007 2008 2009 2010
	.lookup = simple_lookup,
	.mkdir = cgroup_mkdir,
	.rmdir = cgroup_rmdir,
	.rename = cgroup_rename,
};

L
Li Zefan 已提交
2011
static int cgroup_create_file(struct dentry *dentry, mode_t mode,
2012 2013
				struct super_block *sb)
{
A
Al Viro 已提交
2014
	static const struct dentry_operations cgroup_dops = {
2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037
		.d_iput = cgroup_diput,
	};

	struct inode *inode;

	if (!dentry)
		return -ENOENT;
	if (dentry->d_inode)
		return -EEXIST;

	inode = cgroup_new_inode(mode, sb);
	if (!inode)
		return -ENOMEM;

	if (S_ISDIR(mode)) {
		inode->i_op = &cgroup_dir_inode_operations;
		inode->i_fop = &simple_dir_operations;

		/* start off with i_nlink == 2 (for "." entry) */
		inc_nlink(inode);

		/* start with the directory inode held, so that we can
		 * populate it without racing with another mkdir */
2038
		mutex_lock_nested(&inode->i_mutex, I_MUTEX_CHILD);
2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049
	} else if (S_ISREG(mode)) {
		inode->i_size = 0;
		inode->i_fop = &cgroup_file_operations;
	}
	dentry->d_op = &cgroup_dops;
	d_instantiate(dentry, inode);
	dget(dentry);	/* Extra count - pin the dentry in core */
	return 0;
}

/*
L
Li Zefan 已提交
2050 2051 2052 2053 2054
 * cgroup_create_dir - create a directory for an object.
 * @cgrp: the cgroup we create the directory for. It must have a valid
 *        ->parent field. And we are going to fill its ->dentry field.
 * @dentry: dentry of the new cgroup
 * @mode: mode to set on new directory.
2055
 */
2056
static int cgroup_create_dir(struct cgroup *cgrp, struct dentry *dentry,
L
Li Zefan 已提交
2057
				mode_t mode)
2058 2059 2060 2061
{
	struct dentry *parent;
	int error = 0;

2062 2063
	parent = cgrp->parent->dentry;
	error = cgroup_create_file(dentry, S_IFDIR | mode, cgrp->root->sb);
2064
	if (!error) {
2065
		dentry->d_fsdata = cgrp;
2066
		inc_nlink(parent->d_inode);
2067
		rcu_assign_pointer(cgrp->dentry, dentry);
2068 2069 2070 2071 2072 2073 2074
		dget(dentry);
	}
	dput(dentry);

	return error;
}

L
Li Zefan 已提交
2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101
/**
 * cgroup_file_mode - deduce file mode of a control file
 * @cft: the control file in question
 *
 * returns cft->mode if ->mode is not 0
 * returns S_IRUGO|S_IWUSR if it has both a read and a write handler
 * returns S_IRUGO if it has only a read handler
 * returns S_IWUSR if it has only a write hander
 */
static mode_t cgroup_file_mode(const struct cftype *cft)
{
	mode_t mode = 0;

	if (cft->mode)
		return cft->mode;

	if (cft->read || cft->read_u64 || cft->read_s64 ||
	    cft->read_map || cft->read_seq_string)
		mode |= S_IRUGO;

	if (cft->write || cft->write_u64 || cft->write_s64 ||
	    cft->write_string || cft->trigger)
		mode |= S_IWUSR;

	return mode;
}

2102
int cgroup_add_file(struct cgroup *cgrp,
2103 2104 2105
		       struct cgroup_subsys *subsys,
		       const struct cftype *cft)
{
2106
	struct dentry *dir = cgrp->dentry;
2107 2108
	struct dentry *dentry;
	int error;
L
Li Zefan 已提交
2109
	mode_t mode;
2110 2111

	char name[MAX_CGROUP_TYPE_NAMELEN + MAX_CFTYPE_NAME + 2] = { 0 };
2112
	if (subsys && !test_bit(ROOT_NOPREFIX, &cgrp->root->flags)) {
2113 2114 2115 2116 2117 2118 2119
		strcpy(name, subsys->name);
		strcat(name, ".");
	}
	strcat(name, cft->name);
	BUG_ON(!mutex_is_locked(&dir->d_inode->i_mutex));
	dentry = lookup_one_len(name, dir, strlen(name));
	if (!IS_ERR(dentry)) {
L
Li Zefan 已提交
2120 2121
		mode = cgroup_file_mode(cft);
		error = cgroup_create_file(dentry, mode | S_IFREG,
2122
						cgrp->root->sb);
2123 2124 2125 2126 2127 2128 2129
		if (!error)
			dentry->d_fsdata = (void *)cft;
		dput(dentry);
	} else
		error = PTR_ERR(dentry);
	return error;
}
2130
EXPORT_SYMBOL_GPL(cgroup_add_file);
2131

2132
int cgroup_add_files(struct cgroup *cgrp,
2133 2134 2135 2136 2137 2138
			struct cgroup_subsys *subsys,
			const struct cftype cft[],
			int count)
{
	int i, err;
	for (i = 0; i < count; i++) {
2139
		err = cgroup_add_file(cgrp, subsys, &cft[i]);
2140 2141 2142 2143 2144
		if (err)
			return err;
	}
	return 0;
}
2145
EXPORT_SYMBOL_GPL(cgroup_add_files);
2146

L
Li Zefan 已提交
2147 2148 2149 2150 2151 2152
/**
 * cgroup_task_count - count the number of tasks in a cgroup.
 * @cgrp: the cgroup in question
 *
 * Return the number of tasks in the cgroup.
 */
2153
int cgroup_task_count(const struct cgroup *cgrp)
2154 2155
{
	int count = 0;
K
KOSAKI Motohiro 已提交
2156
	struct cg_cgroup_link *link;
2157 2158

	read_lock(&css_set_lock);
K
KOSAKI Motohiro 已提交
2159
	list_for_each_entry(link, &cgrp->css_sets, cgrp_link_list) {
2160
		count += atomic_read(&link->cg->refcount);
2161 2162
	}
	read_unlock(&css_set_lock);
2163 2164 2165
	return count;
}

2166 2167 2168 2169
/*
 * Advance a list_head iterator.  The iterator should be positioned at
 * the start of a css_set
 */
2170
static void cgroup_advance_iter(struct cgroup *cgrp,
2171
				struct cgroup_iter *it)
2172 2173 2174 2175 2176 2177 2178 2179
{
	struct list_head *l = it->cg_link;
	struct cg_cgroup_link *link;
	struct css_set *cg;

	/* Advance to the next non-empty css_set */
	do {
		l = l->next;
2180
		if (l == &cgrp->css_sets) {
2181 2182 2183
			it->cg_link = NULL;
			return;
		}
2184
		link = list_entry(l, struct cg_cgroup_link, cgrp_link_list);
2185 2186 2187 2188 2189 2190
		cg = link->cg;
	} while (list_empty(&cg->tasks));
	it->cg_link = l;
	it->task = cg->tasks.next;
}

2191 2192 2193 2194 2195 2196 2197 2198 2199
/*
 * To reduce the fork() overhead for systems that are not actually
 * using their cgroups capability, we don't maintain the lists running
 * through each css_set to its tasks until we see the list actually
 * used - in other words after the first call to cgroup_iter_start().
 *
 * The tasklist_lock is not held here, as do_each_thread() and
 * while_each_thread() are protected by RCU.
 */
2200
static void cgroup_enable_task_cg_lists(void)
2201 2202 2203 2204 2205 2206
{
	struct task_struct *p, *g;
	write_lock(&css_set_lock);
	use_task_css_set_links = 1;
	do_each_thread(g, p) {
		task_lock(p);
2207 2208 2209 2210 2211 2212
		/*
		 * We should check if the process is exiting, otherwise
		 * it will race with cgroup_exit() in that the list
		 * entry won't be deleted though the process has exited.
		 */
		if (!(p->flags & PF_EXITING) && list_empty(&p->cg_list))
2213 2214 2215 2216 2217 2218
			list_add(&p->cg_list, &p->cgroups->tasks);
		task_unlock(p);
	} while_each_thread(g, p);
	write_unlock(&css_set_lock);
}

2219
void cgroup_iter_start(struct cgroup *cgrp, struct cgroup_iter *it)
2220 2221 2222 2223 2224 2225
{
	/*
	 * The first time anyone tries to iterate across a cgroup,
	 * we need to enable the list linking each css_set to its
	 * tasks, and fix up all existing tasks.
	 */
2226 2227 2228
	if (!use_task_css_set_links)
		cgroup_enable_task_cg_lists();

2229
	read_lock(&css_set_lock);
2230 2231
	it->cg_link = &cgrp->css_sets;
	cgroup_advance_iter(cgrp, it);
2232 2233
}

2234
struct task_struct *cgroup_iter_next(struct cgroup *cgrp,
2235 2236 2237 2238
					struct cgroup_iter *it)
{
	struct task_struct *res;
	struct list_head *l = it->task;
2239
	struct cg_cgroup_link *link;
2240 2241 2242 2243 2244 2245 2246

	/* If the iterator cg is NULL, we have no tasks */
	if (!it->cg_link)
		return NULL;
	res = list_entry(l, struct task_struct, cg_list);
	/* Advance iterator to find next entry */
	l = l->next;
2247 2248
	link = list_entry(it->cg_link, struct cg_cgroup_link, cgrp_link_list);
	if (l == &link->cg->tasks) {
2249 2250
		/* We reached the end of this task list - move on to
		 * the next cg_cgroup_link */
2251
		cgroup_advance_iter(cgrp, it);
2252 2253 2254 2255 2256 2257
	} else {
		it->task = l;
	}
	return res;
}

2258
void cgroup_iter_end(struct cgroup *cgrp, struct cgroup_iter *it)
2259 2260 2261 2262
{
	read_unlock(&css_set_lock);
}

2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399
static inline int started_after_time(struct task_struct *t1,
				     struct timespec *time,
				     struct task_struct *t2)
{
	int start_diff = timespec_compare(&t1->start_time, time);
	if (start_diff > 0) {
		return 1;
	} else if (start_diff < 0) {
		return 0;
	} else {
		/*
		 * Arbitrarily, if two processes started at the same
		 * time, we'll say that the lower pointer value
		 * started first. Note that t2 may have exited by now
		 * so this may not be a valid pointer any longer, but
		 * that's fine - it still serves to distinguish
		 * between two tasks started (effectively) simultaneously.
		 */
		return t1 > t2;
	}
}

/*
 * This function is a callback from heap_insert() and is used to order
 * the heap.
 * In this case we order the heap in descending task start time.
 */
static inline int started_after(void *p1, void *p2)
{
	struct task_struct *t1 = p1;
	struct task_struct *t2 = p2;
	return started_after_time(t1, &t2->start_time, t2);
}

/**
 * cgroup_scan_tasks - iterate though all the tasks in a cgroup
 * @scan: struct cgroup_scanner containing arguments for the scan
 *
 * Arguments include pointers to callback functions test_task() and
 * process_task().
 * Iterate through all the tasks in a cgroup, calling test_task() for each,
 * and if it returns true, call process_task() for it also.
 * The test_task pointer may be NULL, meaning always true (select all tasks).
 * Effectively duplicates cgroup_iter_{start,next,end}()
 * but does not lock css_set_lock for the call to process_task().
 * The struct cgroup_scanner may be embedded in any structure of the caller's
 * creation.
 * It is guaranteed that process_task() will act on every task that
 * is a member of the cgroup for the duration of this call. This
 * function may or may not call process_task() for tasks that exit
 * or move to a different cgroup during the call, or are forked or
 * move into the cgroup during the call.
 *
 * Note that test_task() may be called with locks held, and may in some
 * situations be called multiple times for the same task, so it should
 * be cheap.
 * If the heap pointer in the struct cgroup_scanner is non-NULL, a heap has been
 * pre-allocated and will be used for heap operations (and its "gt" member will
 * be overwritten), else a temporary heap will be used (allocation of which
 * may cause this function to fail).
 */
int cgroup_scan_tasks(struct cgroup_scanner *scan)
{
	int retval, i;
	struct cgroup_iter it;
	struct task_struct *p, *dropped;
	/* Never dereference latest_task, since it's not refcounted */
	struct task_struct *latest_task = NULL;
	struct ptr_heap tmp_heap;
	struct ptr_heap *heap;
	struct timespec latest_time = { 0, 0 };

	if (scan->heap) {
		/* The caller supplied our heap and pre-allocated its memory */
		heap = scan->heap;
		heap->gt = &started_after;
	} else {
		/* We need to allocate our own heap memory */
		heap = &tmp_heap;
		retval = heap_init(heap, PAGE_SIZE, GFP_KERNEL, &started_after);
		if (retval)
			/* cannot allocate the heap */
			return retval;
	}

 again:
	/*
	 * Scan tasks in the cgroup, using the scanner's "test_task" callback
	 * to determine which are of interest, and using the scanner's
	 * "process_task" callback to process any of them that need an update.
	 * Since we don't want to hold any locks during the task updates,
	 * gather tasks to be processed in a heap structure.
	 * The heap is sorted by descending task start time.
	 * If the statically-sized heap fills up, we overflow tasks that
	 * started later, and in future iterations only consider tasks that
	 * started after the latest task in the previous pass. This
	 * guarantees forward progress and that we don't miss any tasks.
	 */
	heap->size = 0;
	cgroup_iter_start(scan->cg, &it);
	while ((p = cgroup_iter_next(scan->cg, &it))) {
		/*
		 * Only affect tasks that qualify per the caller's callback,
		 * if he provided one
		 */
		if (scan->test_task && !scan->test_task(p, scan))
			continue;
		/*
		 * Only process tasks that started after the last task
		 * we processed
		 */
		if (!started_after_time(p, &latest_time, latest_task))
			continue;
		dropped = heap_insert(heap, p);
		if (dropped == NULL) {
			/*
			 * The new task was inserted; the heap wasn't
			 * previously full
			 */
			get_task_struct(p);
		} else if (dropped != p) {
			/*
			 * The new task was inserted, and pushed out a
			 * different task
			 */
			get_task_struct(p);
			put_task_struct(dropped);
		}
		/*
		 * Else the new task was newer than anything already in
		 * the heap and wasn't inserted
		 */
	}
	cgroup_iter_end(scan->cg, &it);

	if (heap->size) {
		for (i = 0; i < heap->size; i++) {
2400
			struct task_struct *q = heap->ptrs[i];
2401
			if (i == 0) {
2402 2403
				latest_time = q->start_time;
				latest_task = q;
2404 2405
			}
			/* Process the task per the caller's callback */
2406 2407
			scan->process_task(q, scan);
			put_task_struct(q);
2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422
		}
		/*
		 * If we had to process any tasks at all, scan again
		 * in case some of them were in the middle of forking
		 * children that didn't get processed.
		 * Not the most efficient way to do it, but it avoids
		 * having to take callback_mutex in the fork path
		 */
		goto again;
	}
	if (heap == &tmp_heap)
		heap_free(&tmp_heap);
	return 0;
}

2423
/*
2424
 * Stuff for reading the 'tasks'/'procs' files.
2425 2426 2427 2428 2429 2430 2431 2432
 *
 * Reading this file can return large amounts of data if a cgroup has
 * *lots* of attached tasks. So it may need several calls to read(),
 * but we cannot guarantee that the information we produce is correct
 * unless we produce it entirely atomically.
 *
 */

2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468
/*
 * The following two functions "fix" the issue where there are more pids
 * than kmalloc will give memory for; in such cases, we use vmalloc/vfree.
 * TODO: replace with a kernel-wide solution to this problem
 */
#define PIDLIST_TOO_LARGE(c) ((c) * sizeof(pid_t) > (PAGE_SIZE * 2))
static void *pidlist_allocate(int count)
{
	if (PIDLIST_TOO_LARGE(count))
		return vmalloc(count * sizeof(pid_t));
	else
		return kmalloc(count * sizeof(pid_t), GFP_KERNEL);
}
static void pidlist_free(void *p)
{
	if (is_vmalloc_addr(p))
		vfree(p);
	else
		kfree(p);
}
static void *pidlist_resize(void *p, int newcount)
{
	void *newlist;
	/* note: if new alloc fails, old p will still be valid either way */
	if (is_vmalloc_addr(p)) {
		newlist = vmalloc(newcount * sizeof(pid_t));
		if (!newlist)
			return NULL;
		memcpy(newlist, p, newcount * sizeof(pid_t));
		vfree(p);
	} else {
		newlist = krealloc(p, newcount * sizeof(pid_t), GFP_KERNEL);
	}
	return newlist;
}

2469
/*
2470 2471 2472 2473
 * pidlist_uniq - given a kmalloc()ed list, strip out all duplicate entries
 * If the new stripped list is sufficiently smaller and there's enough memory
 * to allocate a new buffer, will let go of the unneeded memory. Returns the
 * number of unique elements.
2474
 */
2475 2476 2477
/* is the size difference enough that we should re-allocate the array? */
#define PIDLIST_REALLOC_DIFFERENCE(old, new) ((old) - PAGE_SIZE >= (new))
static int pidlist_uniq(pid_t **p, int length)
2478
{
2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507
	int src, dest = 1;
	pid_t *list = *p;
	pid_t *newlist;

	/*
	 * we presume the 0th element is unique, so i starts at 1. trivial
	 * edge cases first; no work needs to be done for either
	 */
	if (length == 0 || length == 1)
		return length;
	/* src and dest walk down the list; dest counts unique elements */
	for (src = 1; src < length; src++) {
		/* find next unique element */
		while (list[src] == list[src-1]) {
			src++;
			if (src == length)
				goto after;
		}
		/* dest always points to where the next unique element goes */
		list[dest] = list[src];
		dest++;
	}
after:
	/*
	 * if the length difference is large enough, we want to allocate a
	 * smaller buffer to save memory. if this fails due to out of memory,
	 * we'll just stay with what we've got.
	 */
	if (PIDLIST_REALLOC_DIFFERENCE(length, dest)) {
2508
		newlist = pidlist_resize(list, dest);
2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519
		if (newlist)
			*p = newlist;
	}
	return dest;
}

static int cmppid(const void *a, const void *b)
{
	return *(pid_t *)a - *(pid_t *)b;
}

2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567
/*
 * find the appropriate pidlist for our purpose (given procs vs tasks)
 * returns with the lock on that pidlist already held, and takes care
 * of the use count, or returns NULL with no locks held if we're out of
 * memory.
 */
static struct cgroup_pidlist *cgroup_pidlist_find(struct cgroup *cgrp,
						  enum cgroup_filetype type)
{
	struct cgroup_pidlist *l;
	/* don't need task_nsproxy() if we're looking at ourself */
	struct pid_namespace *ns = get_pid_ns(current->nsproxy->pid_ns);
	/*
	 * We can't drop the pidlist_mutex before taking the l->mutex in case
	 * the last ref-holder is trying to remove l from the list at the same
	 * time. Holding the pidlist_mutex precludes somebody taking whichever
	 * list we find out from under us - compare release_pid_array().
	 */
	mutex_lock(&cgrp->pidlist_mutex);
	list_for_each_entry(l, &cgrp->pidlists, links) {
		if (l->key.type == type && l->key.ns == ns) {
			/* found a matching list - drop the extra refcount */
			put_pid_ns(ns);
			/* make sure l doesn't vanish out from under us */
			down_write(&l->mutex);
			mutex_unlock(&cgrp->pidlist_mutex);
			return l;
		}
	}
	/* entry not found; create a new one */
	l = kmalloc(sizeof(struct cgroup_pidlist), GFP_KERNEL);
	if (!l) {
		mutex_unlock(&cgrp->pidlist_mutex);
		put_pid_ns(ns);
		return l;
	}
	init_rwsem(&l->mutex);
	down_write(&l->mutex);
	l->key.type = type;
	l->key.ns = ns;
	l->use_count = 0; /* don't increment here */
	l->list = NULL;
	l->owner = cgrp;
	list_add(&l->links, &cgrp->pidlists);
	mutex_unlock(&cgrp->pidlist_mutex);
	return l;
}

2568 2569 2570
/*
 * Load a cgroup's pidarray with either procs' tgids or tasks' pids
 */
2571 2572
static int pidlist_array_load(struct cgroup *cgrp, enum cgroup_filetype type,
			      struct cgroup_pidlist **lp)
2573 2574 2575 2576
{
	pid_t *array;
	int length;
	int pid, n = 0; /* used for populating the array */
2577 2578
	struct cgroup_iter it;
	struct task_struct *tsk;
2579 2580 2581 2582 2583 2584 2585 2586 2587
	struct cgroup_pidlist *l;

	/*
	 * If cgroup gets more users after we read count, we won't have
	 * enough space - tough.  This race is indistinguishable to the
	 * caller from the case that the additional cgroup users didn't
	 * show up until sometime later on.
	 */
	length = cgroup_task_count(cgrp);
2588
	array = pidlist_allocate(length);
2589 2590 2591
	if (!array)
		return -ENOMEM;
	/* now, populate the array */
2592 2593
	cgroup_iter_start(cgrp, &it);
	while ((tsk = cgroup_iter_next(cgrp, &it))) {
2594
		if (unlikely(n == length))
2595
			break;
2596
		/* get tgid or pid for procs or tasks file respectively */
2597 2598 2599 2600
		if (type == CGROUP_FILE_PROCS)
			pid = task_tgid_vnr(tsk);
		else
			pid = task_pid_vnr(tsk);
2601 2602
		if (pid > 0) /* make sure to only use valid results */
			array[n++] = pid;
2603
	}
2604
	cgroup_iter_end(cgrp, &it);
2605 2606 2607
	length = n;
	/* now sort & (if procs) strip out duplicates */
	sort(array, length, sizeof(pid_t), cmppid, NULL);
2608
	if (type == CGROUP_FILE_PROCS)
2609
		length = pidlist_uniq(&array, length);
2610 2611
	l = cgroup_pidlist_find(cgrp, type);
	if (!l) {
2612
		pidlist_free(array);
2613
		return -ENOMEM;
2614
	}
2615
	/* store array, freeing old if necessary - lock already held */
2616
	pidlist_free(l->list);
2617 2618 2619 2620
	l->list = array;
	l->length = length;
	l->use_count++;
	up_write(&l->mutex);
2621
	*lp = l;
2622
	return 0;
2623 2624
}

B
Balbir Singh 已提交
2625
/**
L
Li Zefan 已提交
2626
 * cgroupstats_build - build and fill cgroupstats
B
Balbir Singh 已提交
2627 2628 2629
 * @stats: cgroupstats to fill information into
 * @dentry: A dentry entry belonging to the cgroup for which stats have
 * been requested.
L
Li Zefan 已提交
2630 2631 2632
 *
 * Build and fill cgroupstats so that taskstats can export it to user
 * space.
B
Balbir Singh 已提交
2633 2634 2635 2636
 */
int cgroupstats_build(struct cgroupstats *stats, struct dentry *dentry)
{
	int ret = -EINVAL;
2637
	struct cgroup *cgrp;
B
Balbir Singh 已提交
2638 2639
	struct cgroup_iter it;
	struct task_struct *tsk;
2640

B
Balbir Singh 已提交
2641
	/*
2642 2643
	 * Validate dentry by checking the superblock operations,
	 * and make sure it's a directory.
B
Balbir Singh 已提交
2644
	 */
2645 2646
	if (dentry->d_sb->s_op != &cgroup_ops ||
	    !S_ISDIR(dentry->d_inode->i_mode))
B
Balbir Singh 已提交
2647 2648 2649
		 goto err;

	ret = 0;
2650
	cgrp = dentry->d_fsdata;
B
Balbir Singh 已提交
2651

2652 2653
	cgroup_iter_start(cgrp, &it);
	while ((tsk = cgroup_iter_next(cgrp, &it))) {
B
Balbir Singh 已提交
2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672
		switch (tsk->state) {
		case TASK_RUNNING:
			stats->nr_running++;
			break;
		case TASK_INTERRUPTIBLE:
			stats->nr_sleeping++;
			break;
		case TASK_UNINTERRUPTIBLE:
			stats->nr_uninterruptible++;
			break;
		case TASK_STOPPED:
			stats->nr_stopped++;
			break;
		default:
			if (delayacct_is_task_waiting_on_io(tsk))
				stats->nr_io_wait++;
			break;
		}
	}
2673
	cgroup_iter_end(cgrp, &it);
B
Balbir Singh 已提交
2674 2675 2676 2677 2678

err:
	return ret;
}

2679

2680
/*
2681
 * seq_file methods for the tasks/procs files. The seq_file position is the
2682
 * next pid to display; the seq_file iterator is a pointer to the pid
2683
 * in the cgroup->l->list array.
2684
 */
2685

2686
static void *cgroup_pidlist_start(struct seq_file *s, loff_t *pos)
2687
{
2688 2689 2690 2691 2692 2693
	/*
	 * Initially we receive a position value that corresponds to
	 * one more than the last pid shown (or 0 on the first call or
	 * after a seek to the start). Use a binary-search to find the
	 * next pid to display, if any
	 */
2694
	struct cgroup_pidlist *l = s->private;
2695 2696 2697
	int index = 0, pid = *pos;
	int *iter;

2698
	down_read(&l->mutex);
2699
	if (pid) {
2700
		int end = l->length;
S
Stephen Rothwell 已提交
2701

2702 2703
		while (index < end) {
			int mid = (index + end) / 2;
2704
			if (l->list[mid] == pid) {
2705 2706
				index = mid;
				break;
2707
			} else if (l->list[mid] <= pid)
2708 2709 2710 2711 2712 2713
				index = mid + 1;
			else
				end = mid;
		}
	}
	/* If we're off the end of the array, we're done */
2714
	if (index >= l->length)
2715 2716
		return NULL;
	/* Update the abstract position to be the actual pid that we found */
2717
	iter = l->list + index;
2718 2719 2720 2721
	*pos = *iter;
	return iter;
}

2722
static void cgroup_pidlist_stop(struct seq_file *s, void *v)
2723
{
2724 2725
	struct cgroup_pidlist *l = s->private;
	up_read(&l->mutex);
2726 2727
}

2728
static void *cgroup_pidlist_next(struct seq_file *s, void *v, loff_t *pos)
2729
{
2730 2731 2732
	struct cgroup_pidlist *l = s->private;
	pid_t *p = v;
	pid_t *end = l->list + l->length;
2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745
	/*
	 * Advance to the next pid in the array. If this goes off the
	 * end, we're done
	 */
	p++;
	if (p >= end) {
		return NULL;
	} else {
		*pos = *p;
		return p;
	}
}

2746
static int cgroup_pidlist_show(struct seq_file *s, void *v)
2747 2748 2749
{
	return seq_printf(s, "%d\n", *(int *)v);
}
2750

2751 2752 2753 2754 2755 2756 2757 2758 2759
/*
 * seq_operations functions for iterating on pidlists through seq_file -
 * independent of whether it's tasks or procs
 */
static const struct seq_operations cgroup_pidlist_seq_operations = {
	.start = cgroup_pidlist_start,
	.stop = cgroup_pidlist_stop,
	.next = cgroup_pidlist_next,
	.show = cgroup_pidlist_show,
2760 2761
};

2762
static void cgroup_release_pid_array(struct cgroup_pidlist *l)
2763
{
2764 2765 2766 2767 2768 2769 2770
	/*
	 * the case where we're the last user of this particular pidlist will
	 * have us remove it from the cgroup's list, which entails taking the
	 * mutex. since in pidlist_find the pidlist->lock depends on cgroup->
	 * pidlist_mutex, we have to take pidlist_mutex first.
	 */
	mutex_lock(&l->owner->pidlist_mutex);
2771 2772 2773
	down_write(&l->mutex);
	BUG_ON(!l->use_count);
	if (!--l->use_count) {
2774 2775 2776
		/* we're the last user if refcount is 0; remove and free */
		list_del(&l->links);
		mutex_unlock(&l->owner->pidlist_mutex);
2777
		pidlist_free(l->list);
2778 2779 2780 2781
		put_pid_ns(l->key.ns);
		up_write(&l->mutex);
		kfree(l);
		return;
2782
	}
2783
	mutex_unlock(&l->owner->pidlist_mutex);
2784
	up_write(&l->mutex);
2785 2786
}

2787
static int cgroup_pidlist_release(struct inode *inode, struct file *file)
2788
{
2789
	struct cgroup_pidlist *l;
2790 2791
	if (!(file->f_mode & FMODE_READ))
		return 0;
2792 2793 2794 2795 2796 2797
	/*
	 * the seq_file will only be initialized if the file was opened for
	 * reading; hence we check if it's not null only in that case.
	 */
	l = ((struct seq_file *)file->private_data)->private;
	cgroup_release_pid_array(l);
2798 2799 2800
	return seq_release(inode, file);
}

2801
static const struct file_operations cgroup_pidlist_operations = {
2802 2803 2804
	.read = seq_read,
	.llseek = seq_lseek,
	.write = cgroup_file_write,
2805
	.release = cgroup_pidlist_release,
2806 2807
};

2808
/*
2809 2810 2811
 * The following functions handle opens on a file that displays a pidlist
 * (tasks or procs). Prepare an array of the process/thread IDs of whoever's
 * in the cgroup.
2812
 */
2813
/* helper function for the two below it */
2814
static int cgroup_pidlist_open(struct file *file, enum cgroup_filetype type)
2815
{
2816
	struct cgroup *cgrp = __d_cgrp(file->f_dentry->d_parent);
2817
	struct cgroup_pidlist *l;
2818
	int retval;
2819

2820
	/* Nothing to do for write-only files */
2821 2822 2823
	if (!(file->f_mode & FMODE_READ))
		return 0;

2824
	/* have the array populated */
2825
	retval = pidlist_array_load(cgrp, type, &l);
2826 2827 2828 2829
	if (retval)
		return retval;
	/* configure file information */
	file->f_op = &cgroup_pidlist_operations;
2830

2831
	retval = seq_open(file, &cgroup_pidlist_seq_operations);
2832
	if (retval) {
2833
		cgroup_release_pid_array(l);
2834
		return retval;
2835
	}
2836
	((struct seq_file *)file->private_data)->private = l;
2837 2838
	return 0;
}
2839 2840
static int cgroup_tasks_open(struct inode *unused, struct file *file)
{
2841
	return cgroup_pidlist_open(file, CGROUP_FILE_TASKS);
2842 2843 2844
}
static int cgroup_procs_open(struct inode *unused, struct file *file)
{
2845
	return cgroup_pidlist_open(file, CGROUP_FILE_PROCS);
2846
}
2847

2848
static u64 cgroup_read_notify_on_release(struct cgroup *cgrp,
2849 2850
					    struct cftype *cft)
{
2851
	return notify_on_release(cgrp);
2852 2853
}

2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865
static int cgroup_write_notify_on_release(struct cgroup *cgrp,
					  struct cftype *cft,
					  u64 val)
{
	clear_bit(CGRP_RELEASABLE, &cgrp->flags);
	if (val)
		set_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
	else
		clear_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
	return 0;
}

2866 2867 2868
/*
 * for the common functions, 'private' gives the type of file
 */
2869 2870
/* for hysterical raisins, we can't put this on the older files */
#define CGROUP_FILE_GENERIC_PREFIX "cgroup."
2871 2872 2873 2874
static struct cftype files[] = {
	{
		.name = "tasks",
		.open = cgroup_tasks_open,
2875
		.write_u64 = cgroup_tasks_write,
2876
		.release = cgroup_pidlist_release,
L
Li Zefan 已提交
2877
		.mode = S_IRUGO | S_IWUSR,
2878
	},
2879 2880 2881 2882 2883 2884 2885
	{
		.name = CGROUP_FILE_GENERIC_PREFIX "procs",
		.open = cgroup_procs_open,
		/* .write_u64 = cgroup_procs_write, TODO */
		.release = cgroup_pidlist_release,
		.mode = S_IRUGO,
	},
2886 2887
	{
		.name = "notify_on_release",
2888
		.read_u64 = cgroup_read_notify_on_release,
2889
		.write_u64 = cgroup_write_notify_on_release,
2890 2891 2892 2893 2894
	},
};

static struct cftype cft_release_agent = {
	.name = "release_agent",
2895 2896 2897
	.read_seq_string = cgroup_release_agent_show,
	.write_string = cgroup_release_agent_write,
	.max_write_len = PATH_MAX,
2898 2899
};

2900
static int cgroup_populate_dir(struct cgroup *cgrp)
2901 2902 2903 2904 2905
{
	int err;
	struct cgroup_subsys *ss;

	/* First clear out any existing files */
2906
	cgroup_clear_directory(cgrp->dentry);
2907

2908
	err = cgroup_add_files(cgrp, NULL, files, ARRAY_SIZE(files));
2909 2910 2911
	if (err < 0)
		return err;

2912 2913
	if (cgrp == cgrp->top_cgroup) {
		if ((err = cgroup_add_file(cgrp, NULL, &cft_release_agent)) < 0)
2914 2915 2916
			return err;
	}

2917 2918
	for_each_subsys(cgrp->root, ss) {
		if (ss->populate && (err = ss->populate(ss, cgrp)) < 0)
2919 2920
			return err;
	}
K
KAMEZAWA Hiroyuki 已提交
2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931
	/* This cgroup is ready now */
	for_each_subsys(cgrp->root, ss) {
		struct cgroup_subsys_state *css = cgrp->subsys[ss->subsys_id];
		/*
		 * Update id->css pointer and make this css visible from
		 * CSS ID functions. This pointer will be dereferened
		 * from RCU-read-side without locks.
		 */
		if (css->id)
			rcu_assign_pointer(css->id->css, css);
	}
2932 2933 2934 2935 2936 2937

	return 0;
}

static void init_cgroup_css(struct cgroup_subsys_state *css,
			       struct cgroup_subsys *ss,
2938
			       struct cgroup *cgrp)
2939
{
2940
	css->cgroup = cgrp;
P
Paul Menage 已提交
2941
	atomic_set(&css->refcnt, 1);
2942
	css->flags = 0;
K
KAMEZAWA Hiroyuki 已提交
2943
	css->id = NULL;
2944
	if (cgrp == dummytop)
2945
		set_bit(CSS_ROOT, &css->flags);
2946 2947
	BUG_ON(cgrp->subsys[ss->subsys_id]);
	cgrp->subsys[ss->subsys_id] = css;
2948 2949
}

2950 2951 2952 2953 2954
static void cgroup_lock_hierarchy(struct cgroupfs_root *root)
{
	/* We need to take each hierarchy_mutex in a consistent order */
	int i;

B
Ben Blum 已提交
2955 2956 2957 2958
	/*
	 * No worry about a race with rebind_subsystems that might mess up the
	 * locking order, since both parties are under cgroup_mutex.
	 */
2959 2960
	for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
		struct cgroup_subsys *ss = subsys[i];
B
Ben Blum 已提交
2961 2962
		if (ss == NULL)
			continue;
2963
		if (ss->root == root)
2964
			mutex_lock(&ss->hierarchy_mutex);
2965 2966 2967 2968 2969 2970 2971 2972 2973
	}
}

static void cgroup_unlock_hierarchy(struct cgroupfs_root *root)
{
	int i;

	for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
		struct cgroup_subsys *ss = subsys[i];
B
Ben Blum 已提交
2974 2975
		if (ss == NULL)
			continue;
2976 2977 2978 2979 2980
		if (ss->root == root)
			mutex_unlock(&ss->hierarchy_mutex);
	}
}

2981
/*
L
Li Zefan 已提交
2982 2983 2984 2985
 * cgroup_create - create a cgroup
 * @parent: cgroup that will be parent of the new cgroup
 * @dentry: dentry of the new cgroup
 * @mode: mode to set on new inode
2986
 *
L
Li Zefan 已提交
2987
 * Must be called with the mutex on the parent inode held
2988 2989
 */
static long cgroup_create(struct cgroup *parent, struct dentry *dentry,
L
Li Zefan 已提交
2990
			     mode_t mode)
2991
{
2992
	struct cgroup *cgrp;
2993 2994 2995 2996 2997
	struct cgroupfs_root *root = parent->root;
	int err = 0;
	struct cgroup_subsys *ss;
	struct super_block *sb = root->sb;

2998 2999
	cgrp = kzalloc(sizeof(*cgrp), GFP_KERNEL);
	if (!cgrp)
3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010
		return -ENOMEM;

	/* Grab a reference on the superblock so the hierarchy doesn't
	 * get deleted on unmount if there are child cgroups.  This
	 * can be done outside cgroup_mutex, since the sb can't
	 * disappear while someone has an open control file on the
	 * fs */
	atomic_inc(&sb->s_active);

	mutex_lock(&cgroup_mutex);

3011
	init_cgroup_housekeeping(cgrp);
3012

3013 3014 3015
	cgrp->parent = parent;
	cgrp->root = parent->root;
	cgrp->top_cgroup = parent->top_cgroup;
3016

3017 3018 3019
	if (notify_on_release(parent))
		set_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);

3020
	for_each_subsys(root, ss) {
3021
		struct cgroup_subsys_state *css = ss->create(ss, cgrp);
3022

3023 3024 3025 3026
		if (IS_ERR(css)) {
			err = PTR_ERR(css);
			goto err_destroy;
		}
3027
		init_cgroup_css(css, ss, cgrp);
3028 3029 3030
		if (ss->use_id) {
			err = alloc_css_id(ss, parent, cgrp);
			if (err)
K
KAMEZAWA Hiroyuki 已提交
3031
				goto err_destroy;
3032
		}
K
KAMEZAWA Hiroyuki 已提交
3033
		/* At error, ->destroy() callback has to free assigned ID. */
3034 3035
	}

3036
	cgroup_lock_hierarchy(root);
3037
	list_add(&cgrp->sibling, &cgrp->parent->children);
3038
	cgroup_unlock_hierarchy(root);
3039 3040
	root->number_of_cgroups++;

3041
	err = cgroup_create_dir(cgrp, dentry, mode);
3042 3043 3044 3045
	if (err < 0)
		goto err_remove;

	/* The cgroup directory was pre-locked for us */
3046
	BUG_ON(!mutex_is_locked(&cgrp->dentry->d_inode->i_mutex));
3047

3048
	err = cgroup_populate_dir(cgrp);
3049 3050 3051
	/* If err < 0, we have a half-filled directory - oh well ;) */

	mutex_unlock(&cgroup_mutex);
3052
	mutex_unlock(&cgrp->dentry->d_inode->i_mutex);
3053 3054 3055 3056 3057

	return 0;

 err_remove:

3058
	cgroup_lock_hierarchy(root);
3059
	list_del(&cgrp->sibling);
3060
	cgroup_unlock_hierarchy(root);
3061 3062 3063 3064 3065
	root->number_of_cgroups--;

 err_destroy:

	for_each_subsys(root, ss) {
3066 3067
		if (cgrp->subsys[ss->subsys_id])
			ss->destroy(ss, cgrp);
3068 3069 3070 3071 3072 3073 3074
	}

	mutex_unlock(&cgroup_mutex);

	/* Release the reference count that we took on the superblock */
	deactivate_super(sb);

3075
	kfree(cgrp);
3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086
	return err;
}

static int cgroup_mkdir(struct inode *dir, struct dentry *dentry, int mode)
{
	struct cgroup *c_parent = dentry->d_parent->d_fsdata;

	/* the vfs holds inode->i_mutex already */
	return cgroup_create(c_parent, dentry, mode | S_IFDIR);
}

3087
static int cgroup_has_css_refs(struct cgroup *cgrp)
3088 3089 3090
{
	/* Check the reference count on each subsystem. Since we
	 * already established that there are no tasks in the
P
Paul Menage 已提交
3091
	 * cgroup, if the css refcount is also 1, then there should
3092 3093 3094 3095 3096 3097 3098
	 * be no outstanding references, so the subsystem is safe to
	 * destroy. We scan across all subsystems rather than using
	 * the per-hierarchy linked list of mounted subsystems since
	 * we can be called via check_for_release() with no
	 * synchronization other than RCU, and the subsystem linked
	 * list isn't RCU-safe */
	int i;
B
Ben Blum 已提交
3099 3100 3101 3102 3103
	/*
	 * We won't need to lock the subsys array, because the subsystems
	 * we're concerned about aren't going anywhere since our cgroup root
	 * has a reference on them.
	 */
3104 3105 3106
	for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
		struct cgroup_subsys *ss = subsys[i];
		struct cgroup_subsys_state *css;
B
Ben Blum 已提交
3107 3108
		/* Skip subsystems not present or not in this hierarchy */
		if (ss == NULL || ss->root != cgrp->root)
3109
			continue;
3110
		css = cgrp->subsys[ss->subsys_id];
3111 3112 3113 3114 3115 3116
		/* When called from check_for_release() it's possible
		 * that by this point the cgroup has been removed
		 * and the css deleted. But a false-positive doesn't
		 * matter, since it can only happen if the cgroup
		 * has been deleted and hence no longer needs the
		 * release agent to be called anyway. */
P
Paul Menage 已提交
3117
		if (css && (atomic_read(&css->refcnt) > 1))
3118 3119 3120 3121 3122
			return 1;
	}
	return 0;
}

P
Paul Menage 已提交
3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137
/*
 * Atomically mark all (or else none) of the cgroup's CSS objects as
 * CSS_REMOVED. Return true on success, or false if the cgroup has
 * busy subsystems. Call with cgroup_mutex held
 */

static int cgroup_clear_css_refs(struct cgroup *cgrp)
{
	struct cgroup_subsys *ss;
	unsigned long flags;
	bool failed = false;
	local_irq_save(flags);
	for_each_subsys(cgrp->root, ss) {
		struct cgroup_subsys_state *css = cgrp->subsys[ss->subsys_id];
		int refcnt;
3138
		while (1) {
P
Paul Menage 已提交
3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151
			/* We can only remove a CSS with a refcnt==1 */
			refcnt = atomic_read(&css->refcnt);
			if (refcnt > 1) {
				failed = true;
				goto done;
			}
			BUG_ON(!refcnt);
			/*
			 * Drop the refcnt to 0 while we check other
			 * subsystems. This will cause any racing
			 * css_tryget() to spin until we set the
			 * CSS_REMOVED bits or abort
			 */
3152 3153 3154 3155
			if (atomic_cmpxchg(&css->refcnt, refcnt, 0) == refcnt)
				break;
			cpu_relax();
		}
P
Paul Menage 已提交
3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175
	}
 done:
	for_each_subsys(cgrp->root, ss) {
		struct cgroup_subsys_state *css = cgrp->subsys[ss->subsys_id];
		if (failed) {
			/*
			 * Restore old refcnt if we previously managed
			 * to clear it from 1 to 0
			 */
			if (!atomic_read(&css->refcnt))
				atomic_set(&css->refcnt, 1);
		} else {
			/* Commit the fact that the CSS is removed */
			set_bit(CSS_REMOVED, &css->flags);
		}
	}
	local_irq_restore(flags);
	return !failed;
}

3176 3177
static int cgroup_rmdir(struct inode *unused_dir, struct dentry *dentry)
{
3178
	struct cgroup *cgrp = dentry->d_fsdata;
3179 3180
	struct dentry *d;
	struct cgroup *parent;
3181 3182
	DEFINE_WAIT(wait);
	int ret;
3183 3184

	/* the vfs holds both inode->i_mutex already */
3185
again:
3186
	mutex_lock(&cgroup_mutex);
3187
	if (atomic_read(&cgrp->count) != 0) {
3188 3189 3190
		mutex_unlock(&cgroup_mutex);
		return -EBUSY;
	}
3191
	if (!list_empty(&cgrp->children)) {
3192 3193 3194
		mutex_unlock(&cgroup_mutex);
		return -EBUSY;
	}
3195
	mutex_unlock(&cgroup_mutex);
L
Li Zefan 已提交
3196

3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207
	/*
	 * In general, subsystem has no css->refcnt after pre_destroy(). But
	 * in racy cases, subsystem may have to get css->refcnt after
	 * pre_destroy() and it makes rmdir return with -EBUSY. This sometimes
	 * make rmdir return -EBUSY too often. To avoid that, we use waitqueue
	 * for cgroup's rmdir. CGRP_WAIT_ON_RMDIR is for synchronizing rmdir
	 * and subsystem's reference count handling. Please see css_get/put
	 * and css_tryget() and cgroup_wakeup_rmdir_waiter() implementation.
	 */
	set_bit(CGRP_WAIT_ON_RMDIR, &cgrp->flags);

3208
	/*
L
Li Zefan 已提交
3209 3210
	 * Call pre_destroy handlers of subsys. Notify subsystems
	 * that rmdir() request comes.
3211
	 */
3212
	ret = cgroup_call_pre_destroy(cgrp);
3213 3214
	if (ret) {
		clear_bit(CGRP_WAIT_ON_RMDIR, &cgrp->flags);
3215
		return ret;
3216
	}
3217

3218 3219
	mutex_lock(&cgroup_mutex);
	parent = cgrp->parent;
3220
	if (atomic_read(&cgrp->count) || !list_empty(&cgrp->children)) {
3221
		clear_bit(CGRP_WAIT_ON_RMDIR, &cgrp->flags);
3222 3223 3224
		mutex_unlock(&cgroup_mutex);
		return -EBUSY;
	}
3225 3226 3227
	prepare_to_wait(&cgroup_rmdir_waitq, &wait, TASK_INTERRUPTIBLE);
	if (!cgroup_clear_css_refs(cgrp)) {
		mutex_unlock(&cgroup_mutex);
3228 3229 3230 3231 3232 3233
		/*
		 * Because someone may call cgroup_wakeup_rmdir_waiter() before
		 * prepare_to_wait(), we need to check this flag.
		 */
		if (test_bit(CGRP_WAIT_ON_RMDIR, &cgrp->flags))
			schedule();
3234 3235 3236 3237 3238 3239 3240 3241 3242
		finish_wait(&cgroup_rmdir_waitq, &wait);
		clear_bit(CGRP_WAIT_ON_RMDIR, &cgrp->flags);
		if (signal_pending(current))
			return -EINTR;
		goto again;
	}
	/* NO css_tryget() can success after here. */
	finish_wait(&cgroup_rmdir_waitq, &wait);
	clear_bit(CGRP_WAIT_ON_RMDIR, &cgrp->flags);
3243

3244
	spin_lock(&release_list_lock);
3245 3246 3247
	set_bit(CGRP_REMOVED, &cgrp->flags);
	if (!list_empty(&cgrp->release_list))
		list_del(&cgrp->release_list);
3248
	spin_unlock(&release_list_lock);
3249 3250 3251

	cgroup_lock_hierarchy(cgrp->root);
	/* delete this cgroup from parent->children */
3252
	list_del(&cgrp->sibling);
3253 3254
	cgroup_unlock_hierarchy(cgrp->root);

3255 3256
	spin_lock(&cgrp->dentry->d_lock);
	d = dget(cgrp->dentry);
3257 3258 3259 3260 3261
	spin_unlock(&d->d_lock);

	cgroup_d_remove_dir(d);
	dput(d);

3262
	set_bit(CGRP_RELEASABLE, &parent->flags);
3263 3264
	check_for_release(parent);

3265 3266 3267 3268
	mutex_unlock(&cgroup_mutex);
	return 0;
}

3269
static void __init cgroup_init_subsys(struct cgroup_subsys *ss)
3270 3271
{
	struct cgroup_subsys_state *css;
D
Diego Calleja 已提交
3272 3273

	printk(KERN_INFO "Initializing cgroup subsys %s\n", ss->name);
3274 3275

	/* Create the top cgroup state for this subsystem */
3276
	list_add(&ss->sibling, &rootnode.subsys_list);
3277 3278 3279 3280 3281 3282
	ss->root = &rootnode;
	css = ss->create(ss, dummytop);
	/* We don't handle early failures gracefully */
	BUG_ON(IS_ERR(css));
	init_cgroup_css(css, ss, dummytop);

L
Li Zefan 已提交
3283
	/* Update the init_css_set to contain a subsys
3284
	 * pointer to this state - since the subsystem is
L
Li Zefan 已提交
3285 3286 3287
	 * newly registered, all tasks and hence the
	 * init_css_set is in the subsystem's top cgroup. */
	init_css_set.subsys[ss->subsys_id] = dummytop->subsys[ss->subsys_id];
3288 3289 3290

	need_forkexit_callback |= ss->fork || ss->exit;

L
Li Zefan 已提交
3291 3292 3293 3294 3295
	/* At system boot, before all subsystems have been
	 * registered, no tasks have been forked, so we don't
	 * need to invoke fork callbacks here. */
	BUG_ON(!list_empty(&init_task.tasks));

3296
	mutex_init(&ss->hierarchy_mutex);
3297
	lockdep_set_class(&ss->hierarchy_mutex, &ss->subsys_key);
3298
	ss->active = 1;
3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434

	/* this function shouldn't be used with modular subsystems, since they
	 * need to register a subsys_id, among other things */
	BUG_ON(ss->module);
}

/**
 * cgroup_load_subsys: load and register a modular subsystem at runtime
 * @ss: the subsystem to load
 *
 * This function should be called in a modular subsystem's initcall. If the
 * subsytem is built as a module, it will be assigned a new subsys_id and set
 * up for use. If the subsystem is built-in anyway, work is delegated to the
 * simpler cgroup_init_subsys.
 */
int __init_or_module cgroup_load_subsys(struct cgroup_subsys *ss)
{
	int i;
	struct cgroup_subsys_state *css;

	/* check name and function validity */
	if (ss->name == NULL || strlen(ss->name) > MAX_CGROUP_TYPE_NAMELEN ||
	    ss->create == NULL || ss->destroy == NULL)
		return -EINVAL;

	/*
	 * we don't support callbacks in modular subsystems. this check is
	 * before the ss->module check for consistency; a subsystem that could
	 * be a module should still have no callbacks even if the user isn't
	 * compiling it as one.
	 */
	if (ss->fork || ss->exit)
		return -EINVAL;

	/*
	 * an optionally modular subsystem is built-in: we want to do nothing,
	 * since cgroup_init_subsys will have already taken care of it.
	 */
	if (ss->module == NULL) {
		/* a few sanity checks */
		BUG_ON(ss->subsys_id >= CGROUP_BUILTIN_SUBSYS_COUNT);
		BUG_ON(subsys[ss->subsys_id] != ss);
		return 0;
	}

	/*
	 * need to register a subsys id before anything else - for example,
	 * init_cgroup_css needs it.
	 */
	mutex_lock(&cgroup_mutex);
	/* find the first empty slot in the array */
	for (i = CGROUP_BUILTIN_SUBSYS_COUNT; i < CGROUP_SUBSYS_COUNT; i++) {
		if (subsys[i] == NULL)
			break;
	}
	if (i == CGROUP_SUBSYS_COUNT) {
		/* maximum number of subsystems already registered! */
		mutex_unlock(&cgroup_mutex);
		return -EBUSY;
	}
	/* assign ourselves the subsys_id */
	ss->subsys_id = i;
	subsys[i] = ss;

	/*
	 * no ss->create seems to need anything important in the ss struct, so
	 * this can happen first (i.e. before the rootnode attachment).
	 */
	css = ss->create(ss, dummytop);
	if (IS_ERR(css)) {
		/* failure case - need to deassign the subsys[] slot. */
		subsys[i] = NULL;
		mutex_unlock(&cgroup_mutex);
		return PTR_ERR(css);
	}

	list_add(&ss->sibling, &rootnode.subsys_list);
	ss->root = &rootnode;

	/* our new subsystem will be attached to the dummy hierarchy. */
	init_cgroup_css(css, ss, dummytop);
	/* init_idr must be after init_cgroup_css because it sets css->id. */
	if (ss->use_id) {
		int ret = cgroup_init_idr(ss, css);
		if (ret) {
			dummytop->subsys[ss->subsys_id] = NULL;
			ss->destroy(ss, dummytop);
			subsys[i] = NULL;
			mutex_unlock(&cgroup_mutex);
			return ret;
		}
	}

	/*
	 * Now we need to entangle the css into the existing css_sets. unlike
	 * in cgroup_init_subsys, there are now multiple css_sets, so each one
	 * will need a new pointer to it; done by iterating the css_set_table.
	 * furthermore, modifying the existing css_sets will corrupt the hash
	 * table state, so each changed css_set will need its hash recomputed.
	 * this is all done under the css_set_lock.
	 */
	write_lock(&css_set_lock);
	for (i = 0; i < CSS_SET_TABLE_SIZE; i++) {
		struct css_set *cg;
		struct hlist_node *node, *tmp;
		struct hlist_head *bucket = &css_set_table[i], *new_bucket;

		hlist_for_each_entry_safe(cg, node, tmp, bucket, hlist) {
			/* skip entries that we already rehashed */
			if (cg->subsys[ss->subsys_id])
				continue;
			/* remove existing entry */
			hlist_del(&cg->hlist);
			/* set new value */
			cg->subsys[ss->subsys_id] = css;
			/* recompute hash and restore entry */
			new_bucket = css_set_hash(cg->subsys);
			hlist_add_head(&cg->hlist, new_bucket);
		}
	}
	write_unlock(&css_set_lock);

	mutex_init(&ss->hierarchy_mutex);
	lockdep_set_class(&ss->hierarchy_mutex, &ss->subsys_key);
	ss->active = 1;

	/*
	 * pin the subsystem's module so it doesn't go away. this shouldn't
	 * fail, since the module's initcall calls us.
	 * TODO: with module unloading, move this elsewhere
	 */
	BUG_ON(!try_module_get(ss->module));

	/* success! */
	mutex_unlock(&cgroup_mutex);
	return 0;
3435
}
3436
EXPORT_SYMBOL_GPL(cgroup_load_subsys);
3437 3438

/**
L
Li Zefan 已提交
3439 3440 3441 3442
 * cgroup_init_early - cgroup initialization at system boot
 *
 * Initialize cgroups at system boot, and initialize any
 * subsystems that request early init.
3443 3444 3445 3446
 */
int __init cgroup_init_early(void)
{
	int i;
3447
	atomic_set(&init_css_set.refcount, 1);
3448 3449
	INIT_LIST_HEAD(&init_css_set.cg_links);
	INIT_LIST_HEAD(&init_css_set.tasks);
3450
	INIT_HLIST_NODE(&init_css_set.hlist);
3451
	css_set_count = 1;
3452
	init_cgroup_root(&rootnode);
3453 3454 3455 3456
	root_count = 1;
	init_task.cgroups = &init_css_set;

	init_css_set_link.cg = &init_css_set;
3457
	init_css_set_link.cgrp = dummytop;
3458
	list_add(&init_css_set_link.cgrp_link_list,
3459 3460 3461
		 &rootnode.top_cgroup.css_sets);
	list_add(&init_css_set_link.cg_link_list,
		 &init_css_set.cg_links);
3462

3463 3464 3465
	for (i = 0; i < CSS_SET_TABLE_SIZE; i++)
		INIT_HLIST_HEAD(&css_set_table[i]);

B
Ben Blum 已提交
3466 3467
	/* at bootup time, we don't worry about modular subsystems */
	for (i = 0; i < CGROUP_BUILTIN_SUBSYS_COUNT; i++) {
3468 3469 3470 3471 3472 3473 3474
		struct cgroup_subsys *ss = subsys[i];

		BUG_ON(!ss->name);
		BUG_ON(strlen(ss->name) > MAX_CGROUP_TYPE_NAMELEN);
		BUG_ON(!ss->create);
		BUG_ON(!ss->destroy);
		if (ss->subsys_id != i) {
D
Diego Calleja 已提交
3475
			printk(KERN_ERR "cgroup: Subsys %s id == %d\n",
3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486
			       ss->name, ss->subsys_id);
			BUG();
		}

		if (ss->early_init)
			cgroup_init_subsys(ss);
	}
	return 0;
}

/**
L
Li Zefan 已提交
3487 3488 3489 3490
 * cgroup_init - cgroup initialization
 *
 * Register cgroup filesystem and /proc file, and initialize
 * any subsystems that didn't request early init.
3491 3492 3493 3494 3495
 */
int __init cgroup_init(void)
{
	int err;
	int i;
3496
	struct hlist_head *hhead;
3497 3498 3499 3500

	err = bdi_init(&cgroup_backing_dev_info);
	if (err)
		return err;
3501

B
Ben Blum 已提交
3502 3503
	/* at bootup time, we don't worry about modular subsystems */
	for (i = 0; i < CGROUP_BUILTIN_SUBSYS_COUNT; i++) {
3504 3505 3506
		struct cgroup_subsys *ss = subsys[i];
		if (!ss->early_init)
			cgroup_init_subsys(ss);
K
KAMEZAWA Hiroyuki 已提交
3507
		if (ss->use_id)
3508
			cgroup_init_idr(ss, init_css_set.subsys[ss->subsys_id]);
3509 3510
	}

3511 3512 3513
	/* Add init_css_set to the hash table */
	hhead = css_set_hash(init_css_set.subsys);
	hlist_add_head(&init_css_set.hlist, hhead);
3514
	BUG_ON(!init_root_id(&rootnode));
3515 3516 3517 3518
	err = register_filesystem(&cgroup_fs_type);
	if (err < 0)
		goto out;

L
Li Zefan 已提交
3519
	proc_create("cgroups", 0, NULL, &proc_cgroupstats_operations);
3520

3521
out:
3522 3523 3524
	if (err)
		bdi_destroy(&cgroup_backing_dev_info);

3525 3526
	return err;
}
3527

3528 3529 3530 3531 3532 3533
/*
 * proc_cgroup_show()
 *  - Print task's cgroup paths into seq_file, one line for each hierarchy
 *  - Used for /proc/<pid>/cgroup.
 *  - No need to task_lock(tsk) on this tsk->cgroup reference, as it
 *    doesn't really matter if tsk->cgroup changes after we read it,
3534
 *    and we take cgroup_mutex, keeping cgroup_attach_task() from changing it
3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563
 *    anyway.  No need to check that tsk->cgroup != NULL, thanks to
 *    the_top_cgroup_hack in cgroup_exit(), which sets an exiting tasks
 *    cgroup to top_cgroup.
 */

/* TODO: Use a proper seq_file iterator */
static int proc_cgroup_show(struct seq_file *m, void *v)
{
	struct pid *pid;
	struct task_struct *tsk;
	char *buf;
	int retval;
	struct cgroupfs_root *root;

	retval = -ENOMEM;
	buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
	if (!buf)
		goto out;

	retval = -ESRCH;
	pid = m->private;
	tsk = get_pid_task(pid, PIDTYPE_PID);
	if (!tsk)
		goto out_free;

	retval = 0;

	mutex_lock(&cgroup_mutex);

3564
	for_each_active_root(root) {
3565
		struct cgroup_subsys *ss;
3566
		struct cgroup *cgrp;
3567 3568
		int count = 0;

3569
		seq_printf(m, "%d:", root->hierarchy_id);
3570 3571
		for_each_subsys(root, ss)
			seq_printf(m, "%s%s", count++ ? "," : "", ss->name);
3572 3573 3574
		if (strlen(root->name))
			seq_printf(m, "%sname=%s", count ? "," : "",
				   root->name);
3575
		seq_putc(m, ':');
3576
		cgrp = task_cgroup_from_root(tsk, root);
3577
		retval = cgroup_path(cgrp, buf, PAGE_SIZE);
3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598
		if (retval < 0)
			goto out_unlock;
		seq_puts(m, buf);
		seq_putc(m, '\n');
	}

out_unlock:
	mutex_unlock(&cgroup_mutex);
	put_task_struct(tsk);
out_free:
	kfree(buf);
out:
	return retval;
}

static int cgroup_open(struct inode *inode, struct file *file)
{
	struct pid *pid = PROC_I(inode)->pid;
	return single_open(file, proc_cgroup_show, pid);
}

3599
const struct file_operations proc_cgroup_operations = {
3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610
	.open		= cgroup_open,
	.read		= seq_read,
	.llseek		= seq_lseek,
	.release	= single_release,
};

/* Display information about each subsystem and each hierarchy */
static int proc_cgroupstats_show(struct seq_file *m, void *v)
{
	int i;

3611
	seq_puts(m, "#subsys_name\thierarchy\tnum_cgroups\tenabled\n");
B
Ben Blum 已提交
3612 3613 3614 3615 3616
	/*
	 * ideally we don't want subsystems moving around while we do this.
	 * cgroup_mutex is also necessary to guarantee an atomic snapshot of
	 * subsys/hierarchy state.
	 */
3617 3618 3619
	mutex_lock(&cgroup_mutex);
	for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
		struct cgroup_subsys *ss = subsys[i];
B
Ben Blum 已提交
3620 3621
		if (ss == NULL)
			continue;
3622 3623
		seq_printf(m, "%s\t%d\t%d\t%d\n",
			   ss->name, ss->root->hierarchy_id,
3624
			   ss->root->number_of_cgroups, !ss->disabled);
3625 3626 3627 3628 3629 3630 3631
	}
	mutex_unlock(&cgroup_mutex);
	return 0;
}

static int cgroupstats_open(struct inode *inode, struct file *file)
{
A
Al Viro 已提交
3632
	return single_open(file, proc_cgroupstats_show, NULL);
3633 3634
}

3635
static const struct file_operations proc_cgroupstats_operations = {
3636 3637 3638 3639 3640 3641
	.open = cgroupstats_open,
	.read = seq_read,
	.llseek = seq_lseek,
	.release = single_release,
};

3642 3643
/**
 * cgroup_fork - attach newly forked task to its parents cgroup.
L
Li Zefan 已提交
3644
 * @child: pointer to task_struct of forking parent process.
3645 3646 3647 3648 3649 3650
 *
 * Description: A task inherits its parent's cgroup at fork().
 *
 * A pointer to the shared css_set was automatically copied in
 * fork.c by dup_task_struct().  However, we ignore that copy, since
 * it was not made under the protection of RCU or cgroup_mutex, so
3651
 * might no longer be a valid cgroup pointer.  cgroup_attach_task() might
3652 3653
 * have already changed current->cgroups, allowing the previously
 * referenced cgroup group to be removed and freed.
3654 3655 3656 3657 3658 3659
 *
 * At the point that cgroup_fork() is called, 'current' is the parent
 * task, and the passed argument 'child' points to the child task.
 */
void cgroup_fork(struct task_struct *child)
{
3660 3661 3662 3663 3664
	task_lock(current);
	child->cgroups = current->cgroups;
	get_css_set(child->cgroups);
	task_unlock(current);
	INIT_LIST_HEAD(&child->cg_list);
3665 3666 3667
}

/**
L
Li Zefan 已提交
3668 3669 3670 3671 3672 3673
 * cgroup_fork_callbacks - run fork callbacks
 * @child: the new task
 *
 * Called on a new task very soon before adding it to the
 * tasklist. No need to take any locks since no-one can
 * be operating on this task.
3674 3675 3676 3677 3678
 */
void cgroup_fork_callbacks(struct task_struct *child)
{
	if (need_forkexit_callback) {
		int i;
B
Ben Blum 已提交
3679 3680 3681 3682 3683 3684
		/*
		 * forkexit callbacks are only supported for builtin
		 * subsystems, and the builtin section of the subsys array is
		 * immutable, so we don't need to lock the subsys array here.
		 */
		for (i = 0; i < CGROUP_BUILTIN_SUBSYS_COUNT; i++) {
3685 3686 3687 3688 3689 3690 3691
			struct cgroup_subsys *ss = subsys[i];
			if (ss->fork)
				ss->fork(ss, child);
		}
	}
}

3692
/**
L
Li Zefan 已提交
3693 3694 3695 3696 3697 3698 3699 3700
 * cgroup_post_fork - called on a new task after adding it to the task list
 * @child: the task in question
 *
 * Adds the task to the list running through its css_set if necessary.
 * Has to be after the task is visible on the task list in case we race
 * with the first call to cgroup_iter_start() - to guarantee that the
 * new task ends up on its list.
 */
3701 3702 3703 3704
void cgroup_post_fork(struct task_struct *child)
{
	if (use_task_css_set_links) {
		write_lock(&css_set_lock);
3705
		task_lock(child);
3706 3707
		if (list_empty(&child->cg_list))
			list_add(&child->cg_list, &child->cgroups->tasks);
3708
		task_unlock(child);
3709 3710 3711
		write_unlock(&css_set_lock);
	}
}
3712 3713 3714
/**
 * cgroup_exit - detach cgroup from exiting task
 * @tsk: pointer to task_struct of exiting process
L
Li Zefan 已提交
3715
 * @run_callback: run exit callbacks?
3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743
 *
 * Description: Detach cgroup from @tsk and release it.
 *
 * Note that cgroups marked notify_on_release force every task in
 * them to take the global cgroup_mutex mutex when exiting.
 * This could impact scaling on very large systems.  Be reluctant to
 * use notify_on_release cgroups where very high task exit scaling
 * is required on large systems.
 *
 * the_top_cgroup_hack:
 *
 *    Set the exiting tasks cgroup to the root cgroup (top_cgroup).
 *
 *    We call cgroup_exit() while the task is still competent to
 *    handle notify_on_release(), then leave the task attached to the
 *    root cgroup in each hierarchy for the remainder of its exit.
 *
 *    To do this properly, we would increment the reference count on
 *    top_cgroup, and near the very end of the kernel/exit.c do_exit()
 *    code we would add a second cgroup function call, to drop that
 *    reference.  This would just create an unnecessary hot spot on
 *    the top_cgroup reference count, to no avail.
 *
 *    Normally, holding a reference to a cgroup without bumping its
 *    count is unsafe.   The cgroup could go away, or someone could
 *    attach us to a different cgroup, decrementing the count on
 *    the first cgroup that we never incremented.  But in this case,
 *    top_cgroup isn't going away, and either task has PF_EXITING set,
3744 3745
 *    which wards off any cgroup_attach_task() attempts, or task is a failed
 *    fork, never visible to cgroup_attach_task.
3746 3747 3748 3749
 */
void cgroup_exit(struct task_struct *tsk, int run_callbacks)
{
	int i;
3750
	struct css_set *cg;
3751 3752

	if (run_callbacks && need_forkexit_callback) {
B
Ben Blum 已提交
3753 3754 3755 3756 3757
		/*
		 * modular subsystems can't use callbacks, so no need to lock
		 * the subsys array
		 */
		for (i = 0; i < CGROUP_BUILTIN_SUBSYS_COUNT; i++) {
3758 3759 3760 3761 3762
			struct cgroup_subsys *ss = subsys[i];
			if (ss->exit)
				ss->exit(ss, tsk);
		}
	}
3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775

	/*
	 * Unlink from the css_set task list if necessary.
	 * Optimistically check cg_list before taking
	 * css_set_lock
	 */
	if (!list_empty(&tsk->cg_list)) {
		write_lock(&css_set_lock);
		if (!list_empty(&tsk->cg_list))
			list_del(&tsk->cg_list);
		write_unlock(&css_set_lock);
	}

3776 3777
	/* Reassign the task to the init_css_set. */
	task_lock(tsk);
3778 3779
	cg = tsk->cgroups;
	tsk->cgroups = &init_css_set;
3780
	task_unlock(tsk);
3781
	if (cg)
3782
		put_css_set_taskexit(cg);
3783
}
3784 3785

/**
L
Li Zefan 已提交
3786 3787 3788
 * cgroup_clone - clone the cgroup the given subsystem is attached to
 * @tsk: the task to be moved
 * @subsys: the given subsystem
3789
 * @nodename: the name for the new cgroup
L
Li Zefan 已提交
3790 3791 3792 3793
 *
 * Duplicate the current cgroup in the hierarchy that the given
 * subsystem is attached to, and move this task into the new
 * child.
3794
 */
3795 3796
int cgroup_clone(struct task_struct *tsk, struct cgroup_subsys *subsys,
							char *nodename)
3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819
{
	struct dentry *dentry;
	int ret = 0;
	struct cgroup *parent, *child;
	struct inode *inode;
	struct css_set *cg;
	struct cgroupfs_root *root;
	struct cgroup_subsys *ss;

	/* We shouldn't be called by an unregistered subsystem */
	BUG_ON(!subsys->active);

	/* First figure out what hierarchy and cgroup we're dealing
	 * with, and pin them so we can drop cgroup_mutex */
	mutex_lock(&cgroup_mutex);
 again:
	root = subsys->root;
	if (root == &rootnode) {
		mutex_unlock(&cgroup_mutex);
		return 0;
	}

	/* Pin the hierarchy */
3820
	if (!atomic_inc_not_zero(&root->sb->s_active)) {
3821 3822 3823 3824
		/* We race with the final deactivate_super() */
		mutex_unlock(&cgroup_mutex);
		return 0;
	}
3825

3826
	/* Keep the cgroup alive */
3827 3828 3829
	task_lock(tsk);
	parent = task_cgroup(tsk, subsys->subsys_id);
	cg = tsk->cgroups;
3830
	get_css_set(cg);
3831
	task_unlock(tsk);
3832

3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843
	mutex_unlock(&cgroup_mutex);

	/* Now do the VFS work to create a cgroup */
	inode = parent->dentry->d_inode;

	/* Hold the parent directory mutex across this operation to
	 * stop anyone else deleting the new cgroup */
	mutex_lock(&inode->i_mutex);
	dentry = lookup_one_len(nodename, parent->dentry, strlen(nodename));
	if (IS_ERR(dentry)) {
		printk(KERN_INFO
D
Diego Calleja 已提交
3844
		       "cgroup: Couldn't allocate dentry for %s: %ld\n", nodename,
3845 3846 3847 3848 3849 3850
		       PTR_ERR(dentry));
		ret = PTR_ERR(dentry);
		goto out_release;
	}

	/* Create the cgroup directory, which also creates the cgroup */
3851
	ret = vfs_mkdir(inode, dentry, 0755);
3852
	child = __d_cgrp(dentry);
3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868
	dput(dentry);
	if (ret) {
		printk(KERN_INFO
		       "Failed to create cgroup %s: %d\n", nodename,
		       ret);
		goto out_release;
	}

	/* The cgroup now exists. Retake cgroup_mutex and check
	 * that we're still in the same state that we thought we
	 * were. */
	mutex_lock(&cgroup_mutex);
	if ((root != subsys->root) ||
	    (parent != task_cgroup(tsk, subsys->subsys_id))) {
		/* Aargh, we raced ... */
		mutex_unlock(&inode->i_mutex);
3869
		put_css_set(cg);
3870

3871
		deactivate_super(root->sb);
3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887
		/* The cgroup is still accessible in the VFS, but
		 * we're not going to try to rmdir() it at this
		 * point. */
		printk(KERN_INFO
		       "Race in cgroup_clone() - leaking cgroup %s\n",
		       nodename);
		goto again;
	}

	/* do any required auto-setup */
	for_each_subsys(root, ss) {
		if (ss->post_clone)
			ss->post_clone(ss, child);
	}

	/* All seems fine. Finish by moving the task into the new cgroup */
3888
	ret = cgroup_attach_task(child, tsk);
3889 3890 3891 3892
	mutex_unlock(&cgroup_mutex);

 out_release:
	mutex_unlock(&inode->i_mutex);
3893 3894

	mutex_lock(&cgroup_mutex);
3895
	put_css_set(cg);
3896
	mutex_unlock(&cgroup_mutex);
3897
	deactivate_super(root->sb);
3898 3899 3900
	return ret;
}

L
Li Zefan 已提交
3901
/**
3902
 * cgroup_is_descendant - see if @cgrp is a descendant of @task's cgrp
L
Li Zefan 已提交
3903
 * @cgrp: the cgroup in question
3904
 * @task: the task in question
L
Li Zefan 已提交
3905
 *
3906 3907
 * See if @cgrp is a descendant of @task's cgroup in the appropriate
 * hierarchy.
3908 3909 3910 3911 3912 3913
 *
 * If we are sending in dummytop, then presumably we are creating
 * the top cgroup in the subsystem.
 *
 * Called only by the ns (nsproxy) cgroup.
 */
3914
int cgroup_is_descendant(const struct cgroup *cgrp, struct task_struct *task)
3915 3916 3917 3918
{
	int ret;
	struct cgroup *target;

3919
	if (cgrp == dummytop)
3920 3921
		return 1;

3922
	target = task_cgroup_from_root(task, cgrp->root);
3923 3924 3925
	while (cgrp != target && cgrp!= cgrp->top_cgroup)
		cgrp = cgrp->parent;
	ret = (cgrp == target);
3926 3927
	return ret;
}
3928

3929
static void check_for_release(struct cgroup *cgrp)
3930 3931 3932
{
	/* All of these checks rely on RCU to keep the cgroup
	 * structure alive */
3933 3934
	if (cgroup_is_releasable(cgrp) && !atomic_read(&cgrp->count)
	    && list_empty(&cgrp->children) && !cgroup_has_css_refs(cgrp)) {
3935 3936 3937 3938 3939
		/* Control Group is currently removeable. If it's not
		 * already queued for a userspace notification, queue
		 * it now */
		int need_schedule_work = 0;
		spin_lock(&release_list_lock);
3940 3941 3942
		if (!cgroup_is_removed(cgrp) &&
		    list_empty(&cgrp->release_list)) {
			list_add(&cgrp->release_list, &release_list);
3943 3944 3945 3946 3947 3948 3949 3950
			need_schedule_work = 1;
		}
		spin_unlock(&release_list_lock);
		if (need_schedule_work)
			schedule_work(&release_agent_work);
	}
}

3951 3952
/* Caller must verify that the css is not for root cgroup */
void __css_put(struct cgroup_subsys_state *css, int count)
3953
{
3954
	struct cgroup *cgrp = css->cgroup;
3955
	int val;
3956
	rcu_read_lock();
3957
	val = atomic_sub_return(count, &css->refcnt);
3958
	if (val == 1) {
3959 3960 3961 3962
		if (notify_on_release(cgrp)) {
			set_bit(CGRP_RELEASABLE, &cgrp->flags);
			check_for_release(cgrp);
		}
3963
		cgroup_wakeup_rmdir_waiter(cgrp);
3964 3965
	}
	rcu_read_unlock();
3966
	WARN_ON_ONCE(val < 1);
3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999
}

/*
 * Notify userspace when a cgroup is released, by running the
 * configured release agent with the name of the cgroup (path
 * relative to the root of cgroup file system) as the argument.
 *
 * Most likely, this user command will try to rmdir this cgroup.
 *
 * This races with the possibility that some other task will be
 * attached to this cgroup before it is removed, or that some other
 * user task will 'mkdir' a child cgroup of this cgroup.  That's ok.
 * The presumed 'rmdir' will fail quietly if this cgroup is no longer
 * unused, and this cgroup will be reprieved from its death sentence,
 * to continue to serve a useful existence.  Next time it's released,
 * we will get notified again, if it still has 'notify_on_release' set.
 *
 * The final arg to call_usermodehelper() is UMH_WAIT_EXEC, which
 * means only wait until the task is successfully execve()'d.  The
 * separate release agent task is forked by call_usermodehelper(),
 * then control in this thread returns here, without waiting for the
 * release agent task.  We don't bother to wait because the caller of
 * this routine has no use for the exit status of the release agent
 * task, so no sense holding our caller up for that.
 */
static void cgroup_release_agent(struct work_struct *work)
{
	BUG_ON(work != &release_agent_work);
	mutex_lock(&cgroup_mutex);
	spin_lock(&release_list_lock);
	while (!list_empty(&release_list)) {
		char *argv[3], *envp[3];
		int i;
4000
		char *pathbuf = NULL, *agentbuf = NULL;
4001
		struct cgroup *cgrp = list_entry(release_list.next,
4002 4003
						    struct cgroup,
						    release_list);
4004
		list_del_init(&cgrp->release_list);
4005 4006
		spin_unlock(&release_list_lock);
		pathbuf = kmalloc(PAGE_SIZE, GFP_KERNEL);
4007 4008 4009 4010 4011 4012 4013
		if (!pathbuf)
			goto continue_free;
		if (cgroup_path(cgrp, pathbuf, PAGE_SIZE) < 0)
			goto continue_free;
		agentbuf = kstrdup(cgrp->root->release_agent_path, GFP_KERNEL);
		if (!agentbuf)
			goto continue_free;
4014 4015

		i = 0;
4016 4017
		argv[i++] = agentbuf;
		argv[i++] = pathbuf;
4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031
		argv[i] = NULL;

		i = 0;
		/* minimal command environment */
		envp[i++] = "HOME=/";
		envp[i++] = "PATH=/sbin:/bin:/usr/sbin:/usr/bin";
		envp[i] = NULL;

		/* Drop the lock while we invoke the usermode helper,
		 * since the exec could involve hitting disk and hence
		 * be a slow process */
		mutex_unlock(&cgroup_mutex);
		call_usermodehelper(argv[0], argv, envp, UMH_WAIT_EXEC);
		mutex_lock(&cgroup_mutex);
4032 4033 4034
 continue_free:
		kfree(pathbuf);
		kfree(agentbuf);
4035 4036 4037 4038 4039
		spin_lock(&release_list_lock);
	}
	spin_unlock(&release_list_lock);
	mutex_unlock(&cgroup_mutex);
}
4040 4041 4042 4043 4044 4045 4046 4047 4048

static int __init cgroup_disable(char *str)
{
	int i;
	char *token;

	while ((token = strsep(&str, ",")) != NULL) {
		if (!*token)
			continue;
B
Ben Blum 已提交
4049 4050 4051 4052 4053
		/*
		 * cgroup_disable, being at boot time, can't know about module
		 * subsystems, so we don't worry about them.
		 */
		for (i = 0; i < CGROUP_BUILTIN_SUBSYS_COUNT; i++) {
4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066
			struct cgroup_subsys *ss = subsys[i];

			if (!strcmp(token, ss->name)) {
				ss->disabled = 1;
				printk(KERN_INFO "Disabling %s control group"
					" subsystem\n", ss->name);
				break;
			}
		}
	}
	return 1;
}
__setup("cgroup_disable=", cgroup_disable);
K
KAMEZAWA Hiroyuki 已提交
4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093

/*
 * Functons for CSS ID.
 */

/*
 *To get ID other than 0, this should be called when !cgroup_is_removed().
 */
unsigned short css_id(struct cgroup_subsys_state *css)
{
	struct css_id *cssid = rcu_dereference(css->id);

	if (cssid)
		return cssid->id;
	return 0;
}

unsigned short css_depth(struct cgroup_subsys_state *css)
{
	struct css_id *cssid = rcu_dereference(css->id);

	if (cssid)
		return cssid->depth;
	return 0;
}

bool css_is_ancestor(struct cgroup_subsys_state *child,
4094
		    const struct cgroup_subsys_state *root)
K
KAMEZAWA Hiroyuki 已提交
4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176
{
	struct css_id *child_id = rcu_dereference(child->id);
	struct css_id *root_id = rcu_dereference(root->id);

	if (!child_id || !root_id || (child_id->depth < root_id->depth))
		return false;
	return child_id->stack[root_id->depth] == root_id->id;
}

static void __free_css_id_cb(struct rcu_head *head)
{
	struct css_id *id;

	id = container_of(head, struct css_id, rcu_head);
	kfree(id);
}

void free_css_id(struct cgroup_subsys *ss, struct cgroup_subsys_state *css)
{
	struct css_id *id = css->id;
	/* When this is called before css_id initialization, id can be NULL */
	if (!id)
		return;

	BUG_ON(!ss->use_id);

	rcu_assign_pointer(id->css, NULL);
	rcu_assign_pointer(css->id, NULL);
	spin_lock(&ss->id_lock);
	idr_remove(&ss->idr, id->id);
	spin_unlock(&ss->id_lock);
	call_rcu(&id->rcu_head, __free_css_id_cb);
}

/*
 * This is called by init or create(). Then, calls to this function are
 * always serialized (By cgroup_mutex() at create()).
 */

static struct css_id *get_new_cssid(struct cgroup_subsys *ss, int depth)
{
	struct css_id *newid;
	int myid, error, size;

	BUG_ON(!ss->use_id);

	size = sizeof(*newid) + sizeof(unsigned short) * (depth + 1);
	newid = kzalloc(size, GFP_KERNEL);
	if (!newid)
		return ERR_PTR(-ENOMEM);
	/* get id */
	if (unlikely(!idr_pre_get(&ss->idr, GFP_KERNEL))) {
		error = -ENOMEM;
		goto err_out;
	}
	spin_lock(&ss->id_lock);
	/* Don't use 0. allocates an ID of 1-65535 */
	error = idr_get_new_above(&ss->idr, newid, 1, &myid);
	spin_unlock(&ss->id_lock);

	/* Returns error when there are no free spaces for new ID.*/
	if (error) {
		error = -ENOSPC;
		goto err_out;
	}
	if (myid > CSS_ID_MAX)
		goto remove_idr;

	newid->id = myid;
	newid->depth = depth;
	return newid;
remove_idr:
	error = -ENOSPC;
	spin_lock(&ss->id_lock);
	idr_remove(&ss->idr, myid);
	spin_unlock(&ss->id_lock);
err_out:
	kfree(newid);
	return ERR_PTR(error);

}

4177 4178
static int __init_or_module cgroup_init_idr(struct cgroup_subsys *ss,
					    struct cgroup_subsys_state *rootcss)
K
KAMEZAWA Hiroyuki 已提交
4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294
{
	struct css_id *newid;

	spin_lock_init(&ss->id_lock);
	idr_init(&ss->idr);

	newid = get_new_cssid(ss, 0);
	if (IS_ERR(newid))
		return PTR_ERR(newid);

	newid->stack[0] = newid->id;
	newid->css = rootcss;
	rootcss->id = newid;
	return 0;
}

static int alloc_css_id(struct cgroup_subsys *ss, struct cgroup *parent,
			struct cgroup *child)
{
	int subsys_id, i, depth = 0;
	struct cgroup_subsys_state *parent_css, *child_css;
	struct css_id *child_id, *parent_id = NULL;

	subsys_id = ss->subsys_id;
	parent_css = parent->subsys[subsys_id];
	child_css = child->subsys[subsys_id];
	depth = css_depth(parent_css) + 1;
	parent_id = parent_css->id;

	child_id = get_new_cssid(ss, depth);
	if (IS_ERR(child_id))
		return PTR_ERR(child_id);

	for (i = 0; i < depth; i++)
		child_id->stack[i] = parent_id->stack[i];
	child_id->stack[depth] = child_id->id;
	/*
	 * child_id->css pointer will be set after this cgroup is available
	 * see cgroup_populate_dir()
	 */
	rcu_assign_pointer(child_css->id, child_id);

	return 0;
}

/**
 * css_lookup - lookup css by id
 * @ss: cgroup subsys to be looked into.
 * @id: the id
 *
 * Returns pointer to cgroup_subsys_state if there is valid one with id.
 * NULL if not. Should be called under rcu_read_lock()
 */
struct cgroup_subsys_state *css_lookup(struct cgroup_subsys *ss, int id)
{
	struct css_id *cssid = NULL;

	BUG_ON(!ss->use_id);
	cssid = idr_find(&ss->idr, id);

	if (unlikely(!cssid))
		return NULL;

	return rcu_dereference(cssid->css);
}

/**
 * css_get_next - lookup next cgroup under specified hierarchy.
 * @ss: pointer to subsystem
 * @id: current position of iteration.
 * @root: pointer to css. search tree under this.
 * @foundid: position of found object.
 *
 * Search next css under the specified hierarchy of rootid. Calling under
 * rcu_read_lock() is necessary. Returns NULL if it reaches the end.
 */
struct cgroup_subsys_state *
css_get_next(struct cgroup_subsys *ss, int id,
	     struct cgroup_subsys_state *root, int *foundid)
{
	struct cgroup_subsys_state *ret = NULL;
	struct css_id *tmp;
	int tmpid;
	int rootid = css_id(root);
	int depth = css_depth(root);

	if (!rootid)
		return NULL;

	BUG_ON(!ss->use_id);
	/* fill start point for scan */
	tmpid = id;
	while (1) {
		/*
		 * scan next entry from bitmap(tree), tmpid is updated after
		 * idr_get_next().
		 */
		spin_lock(&ss->id_lock);
		tmp = idr_get_next(&ss->idr, &tmpid);
		spin_unlock(&ss->id_lock);

		if (!tmp)
			break;
		if (tmp->depth >= depth && tmp->stack[depth] == rootid) {
			ret = rcu_dereference(tmp->css);
			if (ret) {
				*foundid = tmpid;
				break;
			}
		}
		/* continue to scan from next id */
		tmpid = tmpid + 1;
	}
	return ret;
}

4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337
#ifdef CONFIG_CGROUP_DEBUG
static struct cgroup_subsys_state *debug_create(struct cgroup_subsys *ss,
						   struct cgroup *cont)
{
	struct cgroup_subsys_state *css = kzalloc(sizeof(*css), GFP_KERNEL);

	if (!css)
		return ERR_PTR(-ENOMEM);

	return css;
}

static void debug_destroy(struct cgroup_subsys *ss, struct cgroup *cont)
{
	kfree(cont->subsys[debug_subsys_id]);
}

static u64 cgroup_refcount_read(struct cgroup *cont, struct cftype *cft)
{
	return atomic_read(&cont->count);
}

static u64 debug_taskcount_read(struct cgroup *cont, struct cftype *cft)
{
	return cgroup_task_count(cont);
}

static u64 current_css_set_read(struct cgroup *cont, struct cftype *cft)
{
	return (u64)(unsigned long)current->cgroups;
}

static u64 current_css_set_refcount_read(struct cgroup *cont,
					   struct cftype *cft)
{
	u64 count;

	rcu_read_lock();
	count = atomic_read(&current->cgroups->refcount);
	rcu_read_unlock();
	return count;
}

4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355
static int current_css_set_cg_links_read(struct cgroup *cont,
					 struct cftype *cft,
					 struct seq_file *seq)
{
	struct cg_cgroup_link *link;
	struct css_set *cg;

	read_lock(&css_set_lock);
	rcu_read_lock();
	cg = rcu_dereference(current->cgroups);
	list_for_each_entry(link, &cg->cg_links, cg_link_list) {
		struct cgroup *c = link->cgrp;
		const char *name;

		if (c->dentry)
			name = c->dentry->d_name.name;
		else
			name = "?";
4356 4357
		seq_printf(seq, "Root %d group %s\n",
			   c->root->hierarchy_id, name);
4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390
	}
	rcu_read_unlock();
	read_unlock(&css_set_lock);
	return 0;
}

#define MAX_TASKS_SHOWN_PER_CSS 25
static int cgroup_css_links_read(struct cgroup *cont,
				 struct cftype *cft,
				 struct seq_file *seq)
{
	struct cg_cgroup_link *link;

	read_lock(&css_set_lock);
	list_for_each_entry(link, &cont->css_sets, cgrp_link_list) {
		struct css_set *cg = link->cg;
		struct task_struct *task;
		int count = 0;
		seq_printf(seq, "css_set %p\n", cg);
		list_for_each_entry(task, &cg->tasks, cg_list) {
			if (count++ > MAX_TASKS_SHOWN_PER_CSS) {
				seq_puts(seq, "  ...\n");
				break;
			} else {
				seq_printf(seq, "  task %d\n",
					   task_pid_vnr(task));
			}
		}
	}
	read_unlock(&css_set_lock);
	return 0;
}

4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415
static u64 releasable_read(struct cgroup *cgrp, struct cftype *cft)
{
	return test_bit(CGRP_RELEASABLE, &cgrp->flags);
}

static struct cftype debug_files[] =  {
	{
		.name = "cgroup_refcount",
		.read_u64 = cgroup_refcount_read,
	},
	{
		.name = "taskcount",
		.read_u64 = debug_taskcount_read,
	},

	{
		.name = "current_css_set",
		.read_u64 = current_css_set_read,
	},

	{
		.name = "current_css_set_refcount",
		.read_u64 = current_css_set_refcount_read,
	},

4416 4417 4418 4419 4420 4421 4422 4423 4424 4425
	{
		.name = "current_css_set_cg_links",
		.read_seq_string = current_css_set_cg_links_read,
	},

	{
		.name = "cgroup_css_links",
		.read_seq_string = cgroup_css_links_read,
	},

4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445
	{
		.name = "releasable",
		.read_u64 = releasable_read,
	},
};

static int debug_populate(struct cgroup_subsys *ss, struct cgroup *cont)
{
	return cgroup_add_files(cont, ss, debug_files,
				ARRAY_SIZE(debug_files));
}

struct cgroup_subsys debug_subsys = {
	.name = "debug",
	.create = debug_create,
	.destroy = debug_destroy,
	.populate = debug_populate,
	.subsys_id = debug_subsys_id,
};
#endif /* CONFIG_CGROUP_DEBUG */