cgroup.c 150.8 KB
Newer Older
1 2 3 4 5 6
/*
 *  Generic process-grouping system.
 *
 *  Based originally on the cpuset system, extracted by Paul Menage
 *  Copyright (C) 2006 Google, Inc
 *
7 8 9 10
 *  Notifications support
 *  Copyright (C) 2009 Nokia Corporation
 *  Author: Kirill A. Shutemov
 *
11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29
 *  Copyright notices from the original cpuset code:
 *  --------------------------------------------------
 *  Copyright (C) 2003 BULL SA.
 *  Copyright (C) 2004-2006 Silicon Graphics, Inc.
 *
 *  Portions derived from Patrick Mochel's sysfs code.
 *  sysfs is Copyright (c) 2001-3 Patrick Mochel
 *
 *  2003-10-10 Written by Simon Derr.
 *  2003-10-22 Updates by Stephen Hemminger.
 *  2004 May-July Rework by Paul Jackson.
 *  ---------------------------------------------------
 *
 *  This file is subject to the terms and conditions of the GNU General Public
 *  License.  See the file COPYING in the main directory of the Linux
 *  distribution for more details.
 */

#include <linux/cgroup.h>
30
#include <linux/cred.h>
31
#include <linux/ctype.h>
32
#include <linux/errno.h>
33
#include <linux/init_task.h>
34 35 36 37 38 39
#include <linux/kernel.h>
#include <linux/list.h>
#include <linux/mm.h>
#include <linux/mutex.h>
#include <linux/mount.h>
#include <linux/pagemap.h>
40
#include <linux/proc_fs.h>
41 42
#include <linux/rcupdate.h>
#include <linux/sched.h>
43
#include <linux/backing-dev.h>
44 45 46 47 48
#include <linux/seq_file.h>
#include <linux/slab.h>
#include <linux/magic.h>
#include <linux/spinlock.h>
#include <linux/string.h>
49
#include <linux/sort.h>
50
#include <linux/kmod.h>
51
#include <linux/module.h>
B
Balbir Singh 已提交
52 53
#include <linux/delayacct.h>
#include <linux/cgroupstats.h>
54
#include <linux/hashtable.h>
55
#include <linux/namei.h>
L
Li Zefan 已提交
56
#include <linux/pid_namespace.h>
57
#include <linux/idr.h>
58
#include <linux/vmalloc.h> /* TODO: replace with more sophisticated array */
59 60
#include <linux/eventfd.h>
#include <linux/poll.h>
61
#include <linux/flex_array.h> /* used in cgroup_attach_task */
62
#include <linux/kthread.h>
B
Balbir Singh 已提交
63

A
Arun Sharma 已提交
64
#include <linux/atomic.h>
65

T
Tejun Heo 已提交
66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81
/*
 * cgroup_mutex is the master lock.  Any modification to cgroup or its
 * hierarchy must be performed while holding it.
 *
 * cgroup_root_mutex nests inside cgroup_mutex and should be held to modify
 * cgroupfs_root of any cgroup hierarchy - subsys list, flags,
 * release_agent_path and so on.  Modifying requires both cgroup_mutex and
 * cgroup_root_mutex.  Readers can acquire either of the two.  This is to
 * break the following locking order cycle.
 *
 *  A. cgroup_mutex -> cred_guard_mutex -> s_type->i_mutex_key -> namespace_sem
 *  B. namespace_sem -> cgroup_mutex
 *
 * B happens only through cgroup_show_options() and using cgroup_root_mutex
 * breaks it.
 */
T
Tejun Heo 已提交
82 83 84 85
#ifdef CONFIG_PROVE_RCU
DEFINE_MUTEX(cgroup_mutex);
EXPORT_SYMBOL_GPL(cgroup_mutex);	/* only for task_subsys_state_check() */
#else
86
static DEFINE_MUTEX(cgroup_mutex);
T
Tejun Heo 已提交
87 88
#endif

T
Tejun Heo 已提交
89
static DEFINE_MUTEX(cgroup_root_mutex);
90

B
Ben Blum 已提交
91 92
/*
 * Generate an array of cgroup subsystem pointers. At boot time, this is
93
 * populated with the built in subsystems, and modular subsystems are
B
Ben Blum 已提交
94 95 96
 * registered after that. The mutable section of this array is protected by
 * cgroup_mutex.
 */
97
#define SUBSYS(_x) [_x ## _subsys_id] = &_x ## _subsys,
98
#define IS_SUBSYS_ENABLED(option) IS_BUILTIN(option)
99
static struct cgroup_subsys *cgroup_subsys[CGROUP_SUBSYS_COUNT] = {
100 101 102 103
#include <linux/cgroup_subsys.h>
};

/*
104 105 106
 * The dummy hierarchy, reserved for the subsystems that are otherwise
 * unattached - it never has more than a single cgroup, and all tasks are
 * part of that cgroup.
107
 */
108 109 110 111
static struct cgroupfs_root cgroup_dummy_root;

/* dummy_top is a shorthand for the dummy hierarchy's top cgroup */
static struct cgroup * const cgroup_dummy_top = &cgroup_dummy_root.top_cgroup;
112

T
Tejun Heo 已提交
113 114 115 116 117 118 119
/*
 * cgroupfs file entry, pointed to from leaf dentry->d_fsdata.
 */
struct cfent {
	struct list_head		node;
	struct dentry			*dentry;
	struct cftype			*type;
L
Li Zefan 已提交
120 121 122

	/* file xattrs */
	struct simple_xattrs		xattrs;
T
Tejun Heo 已提交
123 124
};

K
KAMEZAWA Hiroyuki 已提交
125 126 127 128 129 130 131 132 133 134
/*
 * CSS ID -- ID per subsys's Cgroup Subsys State(CSS). used only when
 * cgroup_subsys->use_id != 0.
 */
#define CSS_ID_MAX	(65535)
struct css_id {
	/*
	 * The css to which this ID points. This pointer is set to valid value
	 * after cgroup is populated. If cgroup is removed, this will be NULL.
	 * This pointer is expected to be RCU-safe because destroy()
T
Tejun Heo 已提交
135 136
	 * is called after synchronize_rcu(). But for safe use, css_tryget()
	 * should be used for avoiding race.
K
KAMEZAWA Hiroyuki 已提交
137
	 */
A
Arnd Bergmann 已提交
138
	struct cgroup_subsys_state __rcu *css;
K
KAMEZAWA Hiroyuki 已提交
139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156
	/*
	 * ID of this css.
	 */
	unsigned short id;
	/*
	 * Depth in hierarchy which this ID belongs to.
	 */
	unsigned short depth;
	/*
	 * ID is freed by RCU. (and lookup routine is RCU safe.)
	 */
	struct rcu_head rcu_head;
	/*
	 * Hierarchy of CSS ID belongs to.
	 */
	unsigned short stack[0]; /* Array of Length (depth+1) */
};

157
/*
L
Lucas De Marchi 已提交
158
 * cgroup_event represents events which userspace want to receive.
159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185
 */
struct cgroup_event {
	/*
	 * Cgroup which the event belongs to.
	 */
	struct cgroup *cgrp;
	/*
	 * Control file which the event associated.
	 */
	struct cftype *cft;
	/*
	 * eventfd to signal userspace about the event.
	 */
	struct eventfd_ctx *eventfd;
	/*
	 * Each of these stored in a list by the cgroup.
	 */
	struct list_head list;
	/*
	 * All fields below needed to unregister event when
	 * userspace closes eventfd.
	 */
	poll_table pt;
	wait_queue_head_t *wqh;
	wait_queue_t wait;
	struct work_struct remove;
};
K
KAMEZAWA Hiroyuki 已提交
186

187 188
/* The list of hierarchy roots */

189 190
static LIST_HEAD(cgroup_roots);
static int cgroup_root_count;
191

T
Tejun Heo 已提交
192 193 194 195 196
/*
 * Hierarchy ID allocation and mapping.  It follows the same exclusion
 * rules as other root ops - both cgroup_mutex and cgroup_root_mutex for
 * writes, either for reads.
 */
197
static DEFINE_IDR(cgroup_hierarchy_idr);
198

199 200
static struct cgroup_name root_cgroup_name = { .name = "/" };

201 202 203 204 205
/*
 * Assign a monotonically increasing serial number to cgroups.  It
 * guarantees cgroups with bigger numbers are newer than those with smaller
 * numbers.  Also, as cgroups are always appended to the parent's
 * ->children list, it guarantees that sibling cgroups are always sorted in
206 207
 * the ascending serial number order on the list.  Protected by
 * cgroup_mutex.
208
 */
209
static u64 cgroup_serial_nr_next = 1;
210

211
/* This flag indicates whether tasks in the fork and exit paths should
L
Li Zefan 已提交
212 213 214
 * check for fork/exit handlers to call. This avoids us having to do
 * extra work in the fork/exit path if none of the subsystems need to
 * be called.
215
 */
216
static int need_forkexit_callback __read_mostly;
217

218 219
static struct cftype cgroup_base_files[];

220
static void cgroup_offline_fn(struct work_struct *work);
221
static int cgroup_destroy_locked(struct cgroup *cgrp);
222 223
static int cgroup_addrm_files(struct cgroup *cgrp, struct cgroup_subsys *subsys,
			      struct cftype cfts[], bool is_add);
224

225
/* convenient tests for these bits */
226
static inline bool cgroup_is_dead(const struct cgroup *cgrp)
227
{
228
	return test_bit(CGRP_DEAD, &cgrp->flags);
229 230
}

231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249
/**
 * cgroup_is_descendant - test ancestry
 * @cgrp: the cgroup to be tested
 * @ancestor: possible ancestor of @cgrp
 *
 * Test whether @cgrp is a descendant of @ancestor.  It also returns %true
 * if @cgrp == @ancestor.  This function is safe to call as long as @cgrp
 * and @ancestor are accessible.
 */
bool cgroup_is_descendant(struct cgroup *cgrp, struct cgroup *ancestor)
{
	while (cgrp) {
		if (cgrp == ancestor)
			return true;
		cgrp = cgrp->parent;
	}
	return false;
}
EXPORT_SYMBOL_GPL(cgroup_is_descendant);
250

251
static int cgroup_is_releasable(const struct cgroup *cgrp)
252 253
{
	const int bits =
254 255 256
		(1 << CGRP_RELEASABLE) |
		(1 << CGRP_NOTIFY_ON_RELEASE);
	return (cgrp->flags & bits) == bits;
257 258
}

259
static int notify_on_release(const struct cgroup *cgrp)
260
{
261
	return test_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
262 263
}

264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288
/**
 * for_each_subsys - iterate all loaded cgroup subsystems
 * @ss: the iteration cursor
 * @i: the index of @ss, CGROUP_SUBSYS_COUNT after reaching the end
 *
 * Should be called under cgroup_mutex.
 */
#define for_each_subsys(ss, i)						\
	for ((i) = 0; (i) < CGROUP_SUBSYS_COUNT; (i)++)			\
		if (({ lockdep_assert_held(&cgroup_mutex);		\
		       !((ss) = cgroup_subsys[i]); })) { }		\
		else

/**
 * for_each_builtin_subsys - iterate all built-in cgroup subsystems
 * @ss: the iteration cursor
 * @i: the index of @ss, CGROUP_BUILTIN_SUBSYS_COUNT after reaching the end
 *
 * Bulit-in subsystems are always present and iteration itself doesn't
 * require any synchronization.
 */
#define for_each_builtin_subsys(ss, i)					\
	for ((i) = 0; (i) < CGROUP_BUILTIN_SUBSYS_COUNT &&		\
	     (((ss) = cgroup_subsys[i]) || true); (i)++)

289 290 291
/* iterate each subsystem attached to a hierarchy */
#define for_each_root_subsys(root, ss)					\
	list_for_each_entry((ss), &(root)->subsys_list, sibling)
292

293 294 295
/* iterate across the active hierarchies */
#define for_each_active_root(root)					\
	list_for_each_entry((root), &cgroup_roots, root_list)
296

297 298 299 300 301
static inline struct cgroup *__d_cgrp(struct dentry *dentry)
{
	return dentry->d_fsdata;
}

T
Tejun Heo 已提交
302
static inline struct cfent *__d_cfe(struct dentry *dentry)
303 304 305 306
{
	return dentry->d_fsdata;
}

T
Tejun Heo 已提交
307 308 309 310 311
static inline struct cftype *__d_cft(struct dentry *dentry)
{
	return __d_cfe(dentry)->type;
}

312 313 314 315
/**
 * cgroup_lock_live_group - take cgroup_mutex and check that cgrp is alive.
 * @cgrp: the cgroup to be checked for liveness
 *
T
Tejun Heo 已提交
316 317
 * On success, returns true; the mutex should be later unlocked.  On
 * failure returns false with no lock held.
318
 */
319
static bool cgroup_lock_live_group(struct cgroup *cgrp)
320 321
{
	mutex_lock(&cgroup_mutex);
322
	if (cgroup_is_dead(cgrp)) {
323 324 325 326 327 328
		mutex_unlock(&cgroup_mutex);
		return false;
	}
	return true;
}

329 330 331
/* the list of cgroups eligible for automatic release. Protected by
 * release_list_lock */
static LIST_HEAD(release_list);
332
static DEFINE_RAW_SPINLOCK(release_list_lock);
333 334
static void cgroup_release_agent(struct work_struct *work);
static DECLARE_WORK(release_agent_work, cgroup_release_agent);
335
static void check_for_release(struct cgroup *cgrp);
336

337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354
/*
 * A cgroup can be associated with multiple css_sets as different tasks may
 * belong to different cgroups on different hierarchies.  In the other
 * direction, a css_set is naturally associated with multiple cgroups.
 * This M:N relationship is represented by the following link structure
 * which exists for each association and allows traversing the associations
 * from both sides.
 */
struct cgrp_cset_link {
	/* the cgroup and css_set this link associates */
	struct cgroup		*cgrp;
	struct css_set		*cset;

	/* list of cgrp_cset_links anchored at cgrp->cset_links */
	struct list_head	cset_link;

	/* list of cgrp_cset_links anchored at css_set->cgrp_links */
	struct list_head	cgrp_link;
355 356 357 358 359 360 361 362 363 364
};

/* The default css_set - used by init and its children prior to any
 * hierarchies being mounted. It contains a pointer to the root state
 * for each subsystem. Also used to anchor the list of css_sets. Not
 * reference-counted, to improve performance when child cgroups
 * haven't been created.
 */

static struct css_set init_css_set;
365
static struct cgrp_cset_link init_cgrp_cset_link;
366

367 368
static int cgroup_init_idr(struct cgroup_subsys *ss,
			   struct cgroup_subsys_state *css);
K
KAMEZAWA Hiroyuki 已提交
369

370 371 372 373 374 375
/* css_set_lock protects the list of css_set objects, and the
 * chain of tasks off each css_set.  Nests outside task->alloc_lock
 * due to cgroup_iter_start() */
static DEFINE_RWLOCK(css_set_lock);
static int css_set_count;

376 377 378 379 380
/*
 * hash table for cgroup groups. This improves the performance to find
 * an existing css_set. This hash doesn't (currently) take into
 * account cgroups in empty hierarchies.
 */
381
#define CSS_SET_HASH_BITS	7
382
static DEFINE_HASHTABLE(css_set_table, CSS_SET_HASH_BITS);
383

384
static unsigned long css_set_hash(struct cgroup_subsys_state *css[])
385
{
386
	unsigned long key = 0UL;
387 388
	struct cgroup_subsys *ss;
	int i;
389

390
	for_each_subsys(ss, i)
391 392
		key += (unsigned long)css[i];
	key = (key >> 16) ^ key;
393

394
	return key;
395 396
}

397 398 399 400
/* We don't maintain the lists running through each css_set to its
 * task until after the first call to cgroup_iter_start(). This
 * reduces the fork()/exit() overhead for people who have cgroups
 * compiled into their kernel but not actually in use */
401
static int use_task_css_set_links __read_mostly;
402

403
static void __put_css_set(struct css_set *cset, int taskexit)
404
{
405
	struct cgrp_cset_link *link, *tmp_link;
406

407 408 409 410 411
	/*
	 * Ensure that the refcount doesn't hit zero while any readers
	 * can see it. Similar to atomic_dec_and_lock(), but for an
	 * rwlock
	 */
412
	if (atomic_add_unless(&cset->refcount, -1, 1))
413 414
		return;
	write_lock(&css_set_lock);
415
	if (!atomic_dec_and_test(&cset->refcount)) {
416 417 418
		write_unlock(&css_set_lock);
		return;
	}
419

420
	/* This css_set is dead. unlink it and release cgroup refcounts */
421
	hash_del(&cset->hlist);
422 423
	css_set_count--;

424
	list_for_each_entry_safe(link, tmp_link, &cset->cgrp_links, cgrp_link) {
425
		struct cgroup *cgrp = link->cgrp;
426

427 428
		list_del(&link->cset_link);
		list_del(&link->cgrp_link);
L
Li Zefan 已提交
429

430
		/* @cgrp can't go away while we're holding css_set_lock */
T
Tejun Heo 已提交
431
		if (list_empty(&cgrp->cset_links) && notify_on_release(cgrp)) {
432
			if (taskexit)
433 434
				set_bit(CGRP_RELEASABLE, &cgrp->flags);
			check_for_release(cgrp);
435
		}
436 437

		kfree(link);
438
	}
439 440

	write_unlock(&css_set_lock);
441
	kfree_rcu(cset, rcu_head);
442 443
}

444 445 446
/*
 * refcounted get/put for css_set objects
 */
447
static inline void get_css_set(struct css_set *cset)
448
{
449
	atomic_inc(&cset->refcount);
450 451
}

452
static inline void put_css_set(struct css_set *cset)
453
{
454
	__put_css_set(cset, 0);
455 456
}

457
static inline void put_css_set_taskexit(struct css_set *cset)
458
{
459
	__put_css_set(cset, 1);
460 461
}

462
/**
463
 * compare_css_sets - helper function for find_existing_css_set().
464 465
 * @cset: candidate css_set being tested
 * @old_cset: existing css_set for a task
466 467 468
 * @new_cgrp: cgroup that's being entered by the task
 * @template: desired set of css pointers in css_set (pre-calculated)
 *
L
Li Zefan 已提交
469
 * Returns true if "cset" matches "old_cset" except for the hierarchy
470 471
 * which "new_cgrp" belongs to, for which it should match "new_cgrp".
 */
472 473
static bool compare_css_sets(struct css_set *cset,
			     struct css_set *old_cset,
474 475 476 477 478
			     struct cgroup *new_cgrp,
			     struct cgroup_subsys_state *template[])
{
	struct list_head *l1, *l2;

479
	if (memcmp(template, cset->subsys, sizeof(cset->subsys))) {
480 481 482 483 484 485 486 487 488 489 490 491 492
		/* Not all subsystems matched */
		return false;
	}

	/*
	 * Compare cgroup pointers in order to distinguish between
	 * different cgroups in heirarchies with no subsystems. We
	 * could get by with just this check alone (and skip the
	 * memcmp above) but on most setups the memcmp check will
	 * avoid the need for this more expensive check on almost all
	 * candidates.
	 */

493 494
	l1 = &cset->cgrp_links;
	l2 = &old_cset->cgrp_links;
495
	while (1) {
496
		struct cgrp_cset_link *link1, *link2;
497
		struct cgroup *cgrp1, *cgrp2;
498 499 500 501

		l1 = l1->next;
		l2 = l2->next;
		/* See if we reached the end - both lists are equal length. */
502 503
		if (l1 == &cset->cgrp_links) {
			BUG_ON(l2 != &old_cset->cgrp_links);
504 505
			break;
		} else {
506
			BUG_ON(l2 == &old_cset->cgrp_links);
507 508
		}
		/* Locate the cgroups associated with these links. */
509 510 511 512
		link1 = list_entry(l1, struct cgrp_cset_link, cgrp_link);
		link2 = list_entry(l2, struct cgrp_cset_link, cgrp_link);
		cgrp1 = link1->cgrp;
		cgrp2 = link2->cgrp;
513
		/* Hierarchies should be linked in the same order. */
514
		BUG_ON(cgrp1->root != cgrp2->root);
515 516 517 518 519 520 521 522

		/*
		 * If this hierarchy is the hierarchy of the cgroup
		 * that's changing, then we need to check that this
		 * css_set points to the new cgroup; if it's any other
		 * hierarchy, then this css_set should point to the
		 * same cgroup as the old css_set.
		 */
523 524
		if (cgrp1->root == new_cgrp->root) {
			if (cgrp1 != new_cgrp)
525 526
				return false;
		} else {
527
			if (cgrp1 != cgrp2)
528 529 530 531 532 533
				return false;
		}
	}
	return true;
}

534 535 536 537 538
/**
 * find_existing_css_set - init css array and find the matching css_set
 * @old_cset: the css_set that we're using before the cgroup transition
 * @cgrp: the cgroup that we're moving into
 * @template: out param for the new set of csses, should be clear on entry
539
 */
540 541 542
static struct css_set *find_existing_css_set(struct css_set *old_cset,
					struct cgroup *cgrp,
					struct cgroup_subsys_state *template[])
543
{
544
	struct cgroupfs_root *root = cgrp->root;
545
	struct cgroup_subsys *ss;
546
	struct css_set *cset;
547
	unsigned long key;
548
	int i;
549

B
Ben Blum 已提交
550 551 552 553 554
	/*
	 * Build the set of subsystem state objects that we want to see in the
	 * new css_set. while subsystems can change globally, the entries here
	 * won't change, so no need for locking.
	 */
555
	for_each_subsys(ss, i) {
556
		if (root->subsys_mask & (1UL << i)) {
557 558 559
			/* Subsystem is in this hierarchy. So we want
			 * the subsystem state from the new
			 * cgroup */
560
			template[i] = cgrp->subsys[i];
561 562 563
		} else {
			/* Subsystem is not in this hierarchy, so we
			 * don't want to change the subsystem state */
564
			template[i] = old_cset->subsys[i];
565 566 567
		}
	}

568
	key = css_set_hash(template);
569 570
	hash_for_each_possible(css_set_table, cset, hlist, key) {
		if (!compare_css_sets(cset, old_cset, cgrp, template))
571 572 573
			continue;

		/* This css_set matches what we need */
574
		return cset;
575
	}
576 577 578 579 580

	/* No existing cgroup group matched */
	return NULL;
}

581
static void free_cgrp_cset_links(struct list_head *links_to_free)
582
{
583
	struct cgrp_cset_link *link, *tmp_link;
584

585 586
	list_for_each_entry_safe(link, tmp_link, links_to_free, cset_link) {
		list_del(&link->cset_link);
587 588 589 590
		kfree(link);
	}
}

591 592 593 594 595 596 597
/**
 * allocate_cgrp_cset_links - allocate cgrp_cset_links
 * @count: the number of links to allocate
 * @tmp_links: list_head the allocated links are put on
 *
 * Allocate @count cgrp_cset_link structures and chain them on @tmp_links
 * through ->cset_link.  Returns 0 on success or -errno.
598
 */
599
static int allocate_cgrp_cset_links(int count, struct list_head *tmp_links)
600
{
601
	struct cgrp_cset_link *link;
602
	int i;
603 604 605

	INIT_LIST_HEAD(tmp_links);

606
	for (i = 0; i < count; i++) {
607
		link = kzalloc(sizeof(*link), GFP_KERNEL);
608
		if (!link) {
609
			free_cgrp_cset_links(tmp_links);
610 611
			return -ENOMEM;
		}
612
		list_add(&link->cset_link, tmp_links);
613 614 615 616
	}
	return 0;
}

617 618
/**
 * link_css_set - a helper function to link a css_set to a cgroup
619
 * @tmp_links: cgrp_cset_link objects allocated by allocate_cgrp_cset_links()
620
 * @cset: the css_set to be linked
621 622
 * @cgrp: the destination cgroup
 */
623 624
static void link_css_set(struct list_head *tmp_links, struct css_set *cset,
			 struct cgroup *cgrp)
625
{
626
	struct cgrp_cset_link *link;
627

628 629 630
	BUG_ON(list_empty(tmp_links));
	link = list_first_entry(tmp_links, struct cgrp_cset_link, cset_link);
	link->cset = cset;
631
	link->cgrp = cgrp;
632
	list_move(&link->cset_link, &cgrp->cset_links);
633 634 635 636
	/*
	 * Always add links to the tail of the list so that the list
	 * is sorted by order of hierarchy creation
	 */
637
	list_add_tail(&link->cgrp_link, &cset->cgrp_links);
638 639
}

640 641 642 643 644 645 646
/**
 * find_css_set - return a new css_set with one cgroup updated
 * @old_cset: the baseline css_set
 * @cgrp: the cgroup to be updated
 *
 * Return a new css_set that's equivalent to @old_cset, but with @cgrp
 * substituted into the appropriate hierarchy.
647
 */
648 649
static struct css_set *find_css_set(struct css_set *old_cset,
				    struct cgroup *cgrp)
650
{
651
	struct cgroup_subsys_state *template[CGROUP_SUBSYS_COUNT] = { };
652
	struct css_set *cset;
653 654
	struct list_head tmp_links;
	struct cgrp_cset_link *link;
655
	unsigned long key;
656

657 658
	lockdep_assert_held(&cgroup_mutex);

659 660
	/* First see if we already have a cgroup group that matches
	 * the desired set */
661
	read_lock(&css_set_lock);
662 663 664
	cset = find_existing_css_set(old_cset, cgrp, template);
	if (cset)
		get_css_set(cset);
665
	read_unlock(&css_set_lock);
666

667 668
	if (cset)
		return cset;
669

670
	cset = kzalloc(sizeof(*cset), GFP_KERNEL);
671
	if (!cset)
672 673
		return NULL;

674
	/* Allocate all the cgrp_cset_link objects that we'll need */
675
	if (allocate_cgrp_cset_links(cgroup_root_count, &tmp_links) < 0) {
676
		kfree(cset);
677 678 679
		return NULL;
	}

680
	atomic_set(&cset->refcount, 1);
681
	INIT_LIST_HEAD(&cset->cgrp_links);
682 683
	INIT_LIST_HEAD(&cset->tasks);
	INIT_HLIST_NODE(&cset->hlist);
684 685 686

	/* Copy the set of subsystem state objects generated in
	 * find_existing_css_set() */
687
	memcpy(cset->subsys, template, sizeof(cset->subsys));
688 689 690

	write_lock(&css_set_lock);
	/* Add reference counts and links from the new css_set. */
691
	list_for_each_entry(link, &old_cset->cgrp_links, cgrp_link) {
692
		struct cgroup *c = link->cgrp;
693

694 695
		if (c->root == cgrp->root)
			c = cgrp;
696
		link_css_set(&tmp_links, cset, c);
697
	}
698

699
	BUG_ON(!list_empty(&tmp_links));
700 701

	css_set_count++;
702 703

	/* Add this cgroup group to the hash table */
704 705
	key = css_set_hash(cset->subsys);
	hash_add(css_set_table, &cset->hlist, key);
706

707 708
	write_unlock(&css_set_lock);

709
	return cset;
710 711
}

712 713 714 715 716 717 718
/*
 * Return the cgroup for "task" from the given hierarchy. Must be
 * called with cgroup_mutex held.
 */
static struct cgroup *task_cgroup_from_root(struct task_struct *task,
					    struct cgroupfs_root *root)
{
719
	struct css_set *cset;
720 721 722 723 724 725 726 727 728
	struct cgroup *res = NULL;

	BUG_ON(!mutex_is_locked(&cgroup_mutex));
	read_lock(&css_set_lock);
	/*
	 * No need to lock the task - since we hold cgroup_mutex the
	 * task can't change groups, so the only thing that can happen
	 * is that it exits and its css is set back to init_css_set.
	 */
729
	cset = task_css_set(task);
730
	if (cset == &init_css_set) {
731 732
		res = &root->top_cgroup;
	} else {
733 734 735
		struct cgrp_cset_link *link;

		list_for_each_entry(link, &cset->cgrp_links, cgrp_link) {
736
			struct cgroup *c = link->cgrp;
737

738 739 740 741 742 743 744 745 746 747 748
			if (c->root == root) {
				res = c;
				break;
			}
		}
	}
	read_unlock(&css_set_lock);
	BUG_ON(!res);
	return res;
}

749 750 751 752 753 754 755 756 757 758
/*
 * There is one global cgroup mutex. We also require taking
 * task_lock() when dereferencing a task's cgroup subsys pointers.
 * See "The task_lock() exception", at the end of this comment.
 *
 * A task must hold cgroup_mutex to modify cgroups.
 *
 * Any task can increment and decrement the count field without lock.
 * So in general, code holding cgroup_mutex can't rely on the count
 * field not changing.  However, if the count goes to zero, then only
759
 * cgroup_attach_task() can increment it again.  Because a count of zero
760 761 762 763 764 765 766 767 768 769 770 771 772
 * means that no tasks are currently attached, therefore there is no
 * way a task attached to that cgroup can fork (the other way to
 * increment the count).  So code holding cgroup_mutex can safely
 * assume that if the count is zero, it will stay zero. Similarly, if
 * a task holds cgroup_mutex on a cgroup with zero count, it
 * knows that the cgroup won't be removed, as cgroup_rmdir()
 * needs that mutex.
 *
 * The fork and exit callbacks cgroup_fork() and cgroup_exit(), don't
 * (usually) take cgroup_mutex.  These are the two most performance
 * critical pieces of code here.  The exception occurs on cgroup_exit(),
 * when a task in a notify_on_release cgroup exits.  Then cgroup_mutex
 * is taken, and if the cgroup count is zero, a usermode call made
L
Li Zefan 已提交
773 774
 * to the release agent with the name of the cgroup (path relative to
 * the root of cgroup file system) as the argument.
775 776 777 778 779 780 781 782 783 784 785
 *
 * A cgroup can only be deleted if both its 'count' of using tasks
 * is zero, and its list of 'children' cgroups is empty.  Since all
 * tasks in the system use _some_ cgroup, and since there is always at
 * least one task in the system (init, pid == 1), therefore, top_cgroup
 * always has either children cgroups and/or using tasks.  So we don't
 * need a special hack to ensure that top_cgroup cannot be deleted.
 *
 *	The task_lock() exception
 *
 * The need for this exception arises from the action of
786
 * cgroup_attach_task(), which overwrites one task's cgroup pointer with
L
Li Zefan 已提交
787
 * another.  It does so using cgroup_mutex, however there are
788 789 790
 * several performance critical places that need to reference
 * task->cgroup without the expense of grabbing a system global
 * mutex.  Therefore except as noted below, when dereferencing or, as
791
 * in cgroup_attach_task(), modifying a task's cgroup pointer we use
792 793 794 795
 * task_lock(), which acts on a spinlock (task->alloc_lock) already in
 * the task_struct routinely used for such matters.
 *
 * P.S.  One more locking exception.  RCU is used to guard the
796
 * update of a tasks cgroup pointer by cgroup_attach_task()
797 798 799 800 801 802 803 804 805
 */

/*
 * A couple of forward declarations required, due to cyclic reference loop:
 * cgroup_mkdir -> cgroup_create -> cgroup_populate_dir ->
 * cgroup_add_file -> cgroup_create_file -> cgroup_dir_inode_operations
 * -> cgroup_mkdir.
 */

806
static int cgroup_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode);
A
Al Viro 已提交
807
static struct dentry *cgroup_lookup(struct inode *, struct dentry *, unsigned int);
808
static int cgroup_rmdir(struct inode *unused_dir, struct dentry *dentry);
809
static int cgroup_populate_dir(struct cgroup *cgrp, unsigned long subsys_mask);
810
static const struct inode_operations cgroup_dir_inode_operations;
811
static const struct file_operations proc_cgroupstats_operations;
812 813

static struct backing_dev_info cgroup_backing_dev_info = {
814
	.name		= "cgroup",
815
	.capabilities	= BDI_CAP_NO_ACCT_AND_WRITEBACK,
816
};
817

K
KAMEZAWA Hiroyuki 已提交
818 819 820
static int alloc_css_id(struct cgroup_subsys *ss,
			struct cgroup *parent, struct cgroup *child);

A
Al Viro 已提交
821
static struct inode *cgroup_new_inode(umode_t mode, struct super_block *sb)
822 823 824 825
{
	struct inode *inode = new_inode(sb);

	if (inode) {
826
		inode->i_ino = get_next_ino();
827
		inode->i_mode = mode;
828 829
		inode->i_uid = current_fsuid();
		inode->i_gid = current_fsgid();
830 831 832 833 834 835
		inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
		inode->i_mapping->backing_dev_info = &cgroup_backing_dev_info;
	}
	return inode;
}

836 837 838 839 840 841 842 843 844 845 846
static struct cgroup_name *cgroup_alloc_name(struct dentry *dentry)
{
	struct cgroup_name *name;

	name = kmalloc(sizeof(*name) + dentry->d_name.len + 1, GFP_KERNEL);
	if (!name)
		return NULL;
	strcpy(name->name, dentry->d_name.name);
	return name;
}

847 848
static void cgroup_free_fn(struct work_struct *work)
{
849
	struct cgroup *cgrp = container_of(work, struct cgroup, destroy_work);
850 851 852 853 854 855
	struct cgroup_subsys *ss;

	mutex_lock(&cgroup_mutex);
	/*
	 * Release the subsystem state objects.
	 */
856
	for_each_root_subsys(cgrp->root, ss)
857 858 859 860 861
		ss->css_free(cgrp);

	cgrp->root->number_of_cgroups--;
	mutex_unlock(&cgroup_mutex);

862 863 864 865 866 867 868
	/*
	 * We get a ref to the parent's dentry, and put the ref when
	 * this cgroup is being freed, so it's guaranteed that the
	 * parent won't be destroyed before its children.
	 */
	dput(cgrp->parent->dentry);

869 870
	ida_simple_remove(&cgrp->root->cgroup_ida, cgrp->id);

871 872
	/*
	 * Drop the active superblock reference that we took when we
873 874
	 * created the cgroup. This will free cgrp->root, if we are
	 * holding the last reference to @sb.
875 876 877 878 879 880 881 882 883 884 885
	 */
	deactivate_super(cgrp->root->sb);

	/*
	 * if we're getting rid of the cgroup, refcount should ensure
	 * that there are no pidlists left.
	 */
	BUG_ON(!list_empty(&cgrp->pidlists));

	simple_xattrs_free(&cgrp->xattrs);

886
	kfree(rcu_dereference_raw(cgrp->name));
887 888 889 890 891 892 893
	kfree(cgrp);
}

static void cgroup_free_rcu(struct rcu_head *head)
{
	struct cgroup *cgrp = container_of(head, struct cgroup, rcu_head);

894 895
	INIT_WORK(&cgrp->destroy_work, cgroup_free_fn);
	schedule_work(&cgrp->destroy_work);
896 897
}

898 899 900 901
static void cgroup_diput(struct dentry *dentry, struct inode *inode)
{
	/* is dentry a directory ? if so, kfree() associated cgroup */
	if (S_ISDIR(inode->i_mode)) {
902
		struct cgroup *cgrp = dentry->d_fsdata;
903

904
		BUG_ON(!(cgroup_is_dead(cgrp)));
905
		call_rcu(&cgrp->rcu_head, cgroup_free_rcu);
T
Tejun Heo 已提交
906 907 908 909 910 911 912
	} else {
		struct cfent *cfe = __d_cfe(dentry);
		struct cgroup *cgrp = dentry->d_parent->d_fsdata;

		WARN_ONCE(!list_empty(&cfe->node) &&
			  cgrp != &cgrp->root->top_cgroup,
			  "cfe still linked for %s\n", cfe->type->name);
L
Li Zefan 已提交
913
		simple_xattrs_free(&cfe->xattrs);
T
Tejun Heo 已提交
914
		kfree(cfe);
915 916 917 918
	}
	iput(inode);
}

919 920 921 922 923
static int cgroup_delete(const struct dentry *d)
{
	return 1;
}

924 925 926 927 928 929 930 931 932
static void remove_dir(struct dentry *d)
{
	struct dentry *parent = dget(d->d_parent);

	d_delete(d);
	simple_rmdir(parent->d_inode, d);
	dput(parent);
}

933
static void cgroup_rm_file(struct cgroup *cgrp, const struct cftype *cft)
T
Tejun Heo 已提交
934 935 936 937 938 939
{
	struct cfent *cfe;

	lockdep_assert_held(&cgrp->dentry->d_inode->i_mutex);
	lockdep_assert_held(&cgroup_mutex);

940 941 942 943
	/*
	 * If we're doing cleanup due to failure of cgroup_create(),
	 * the corresponding @cfe may not exist.
	 */
T
Tejun Heo 已提交
944 945 946 947 948 949 950 951
	list_for_each_entry(cfe, &cgrp->files, node) {
		struct dentry *d = cfe->dentry;

		if (cft && cfe->type != cft)
			continue;

		dget(d);
		d_delete(d);
952
		simple_unlink(cgrp->dentry->d_inode, d);
T
Tejun Heo 已提交
953 954 955
		list_del_init(&cfe->node);
		dput(d);

956
		break;
957
	}
T
Tejun Heo 已提交
958 959
}

960
/**
961
 * cgroup_clear_dir - remove subsys files in a cgroup directory
962
 * @cgrp: target cgroup
963 964
 * @subsys_mask: mask of the subsystem ids whose files should be removed
 */
965
static void cgroup_clear_dir(struct cgroup *cgrp, unsigned long subsys_mask)
T
Tejun Heo 已提交
966
{
967
	struct cgroup_subsys *ss;
968
	int i;
T
Tejun Heo 已提交
969

970
	for_each_subsys(ss, i) {
971
		struct cftype_set *set;
972 973

		if (!test_bit(i, &subsys_mask))
974 975
			continue;
		list_for_each_entry(set, &ss->cftsets, node)
976
			cgroup_addrm_files(cgrp, NULL, set->cfts, false);
977
	}
978 979 980 981 982 983 984
}

/*
 * NOTE : the dentry must have been dget()'ed
 */
static void cgroup_d_remove_dir(struct dentry *dentry)
{
N
Nick Piggin 已提交
985
	struct dentry *parent;
986

N
Nick Piggin 已提交
987 988
	parent = dentry->d_parent;
	spin_lock(&parent->d_lock);
989
	spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
990
	list_del_init(&dentry->d_u.d_child);
N
Nick Piggin 已提交
991 992
	spin_unlock(&dentry->d_lock);
	spin_unlock(&parent->d_lock);
993 994 995
	remove_dir(dentry);
}

B
Ben Blum 已提交
996
/*
B
Ben Blum 已提交
997 998 999
 * Call with cgroup_mutex held. Drops reference counts on modules, including
 * any duplicate ones that parse_cgroupfs_options took. If this function
 * returns an error, no reference counts are touched.
B
Ben Blum 已提交
1000
 */
1001
static int rebind_subsystems(struct cgroupfs_root *root,
1002
			     unsigned long added_mask, unsigned removed_mask)
1003
{
1004
	struct cgroup *cgrp = &root->top_cgroup;
1005
	struct cgroup_subsys *ss;
1006
	unsigned long pinned = 0;
1007
	int i, ret;
1008

B
Ben Blum 已提交
1009
	BUG_ON(!mutex_is_locked(&cgroup_mutex));
T
Tejun Heo 已提交
1010
	BUG_ON(!mutex_is_locked(&cgroup_root_mutex));
B
Ben Blum 已提交
1011

1012
	/* Check that any added subsystems are currently free */
1013
	for_each_subsys(ss, i) {
1014
		if (!(added_mask & (1 << i)))
1015
			continue;
1016

1017
		/* is the subsystem mounted elsewhere? */
1018
		if (ss->root != &cgroup_dummy_root) {
1019 1020 1021 1022 1023 1024 1025 1026
			ret = -EBUSY;
			goto out_put;
		}

		/* pin the module */
		if (!try_module_get(ss->module)) {
			ret = -ENOENT;
			goto out_put;
1027
		}
1028 1029 1030 1031 1032 1033 1034
		pinned |= 1 << i;
	}

	/* subsys could be missing if unloaded between parsing and here */
	if (added_mask != pinned) {
		ret = -ENOENT;
		goto out_put;
1035 1036
	}

1037 1038
	ret = cgroup_populate_dir(cgrp, added_mask);
	if (ret)
1039
		goto out_put;
1040 1041 1042 1043 1044 1045 1046

	/*
	 * Nothing can fail from this point on.  Remove files for the
	 * removed subsystems and rebind each subsystem.
	 */
	cgroup_clear_dir(cgrp, removed_mask);

1047
	for_each_subsys(ss, i) {
1048
		unsigned long bit = 1UL << i;
1049

1050
		if (bit & added_mask) {
1051
			/* We're binding this subsystem to this hierarchy */
1052
			BUG_ON(cgrp->subsys[i]);
1053 1054
			BUG_ON(!cgroup_dummy_top->subsys[i]);
			BUG_ON(cgroup_dummy_top->subsys[i]->cgroup != cgroup_dummy_top);
1055

1056
			cgrp->subsys[i] = cgroup_dummy_top->subsys[i];
1057
			cgrp->subsys[i]->cgroup = cgrp;
1058
			list_move(&ss->sibling, &root->subsys_list);
1059
			ss->root = root;
1060
			if (ss->bind)
1061
				ss->bind(cgrp);
1062

B
Ben Blum 已提交
1063
			/* refcount was already taken, and we're keeping it */
1064
			root->subsys_mask |= bit;
1065
		} else if (bit & removed_mask) {
1066
			/* We're removing this subsystem */
1067
			BUG_ON(cgrp->subsys[i] != cgroup_dummy_top->subsys[i]);
1068
			BUG_ON(cgrp->subsys[i]->cgroup != cgrp);
1069

1070
			if (ss->bind)
1071 1072
				ss->bind(cgroup_dummy_top);
			cgroup_dummy_top->subsys[i]->cgroup = cgroup_dummy_top;
1073
			cgrp->subsys[i] = NULL;
1074 1075
			cgroup_subsys[i]->root = &cgroup_dummy_root;
			list_move(&ss->sibling, &cgroup_dummy_root.subsys_list);
1076

B
Ben Blum 已提交
1077 1078
			/* subsystem is now free - drop reference on module */
			module_put(ss->module);
1079
			root->subsys_mask &= ~bit;
1080 1081 1082
		}
	}

1083 1084 1085 1086 1087 1088
	/*
	 * Mark @root has finished binding subsystems.  @root->subsys_mask
	 * now matches the bound subsystems.
	 */
	root->flags |= CGRP_ROOT_SUBSYS_BOUND;

1089
	return 0;
1090 1091 1092 1093 1094 1095

out_put:
	for_each_subsys(ss, i)
		if (pinned & (1 << i))
			module_put(ss->module);
	return ret;
1096 1097
}

1098
static int cgroup_show_options(struct seq_file *seq, struct dentry *dentry)
1099
{
1100
	struct cgroupfs_root *root = dentry->d_sb->s_fs_info;
1101 1102
	struct cgroup_subsys *ss;

T
Tejun Heo 已提交
1103
	mutex_lock(&cgroup_root_mutex);
1104
	for_each_root_subsys(root, ss)
1105
		seq_printf(seq, ",%s", ss->name);
1106 1107
	if (root->flags & CGRP_ROOT_SANE_BEHAVIOR)
		seq_puts(seq, ",sane_behavior");
1108
	if (root->flags & CGRP_ROOT_NOPREFIX)
1109
		seq_puts(seq, ",noprefix");
1110
	if (root->flags & CGRP_ROOT_XATTR)
A
Aristeu Rozanski 已提交
1111
		seq_puts(seq, ",xattr");
1112 1113
	if (strlen(root->release_agent_path))
		seq_printf(seq, ",release_agent=%s", root->release_agent_path);
1114
	if (test_bit(CGRP_CPUSET_CLONE_CHILDREN, &root->top_cgroup.flags))
1115
		seq_puts(seq, ",clone_children");
1116 1117
	if (strlen(root->name))
		seq_printf(seq, ",name=%s", root->name);
T
Tejun Heo 已提交
1118
	mutex_unlock(&cgroup_root_mutex);
1119 1120 1121 1122
	return 0;
}

struct cgroup_sb_opts {
1123
	unsigned long subsys_mask;
1124
	unsigned long flags;
1125
	char *release_agent;
1126
	bool cpuset_clone_children;
1127
	char *name;
1128 1129
	/* User explicitly requested empty subsystem */
	bool none;
1130 1131

	struct cgroupfs_root *new_root;
1132

1133 1134
};

B
Ben Blum 已提交
1135
/*
1136 1137 1138 1139
 * Convert a hierarchy specifier into a bitmask of subsystems and
 * flags. Call with cgroup_mutex held to protect the cgroup_subsys[]
 * array. This function takes refcounts on subsystems to be used, unless it
 * returns error, in which case no refcounts are taken.
B
Ben Blum 已提交
1140
 */
B
Ben Blum 已提交
1141
static int parse_cgroupfs_options(char *data, struct cgroup_sb_opts *opts)
1142
{
1143 1144
	char *token, *o = data;
	bool all_ss = false, one_ss = false;
1145
	unsigned long mask = (unsigned long)-1;
1146 1147
	struct cgroup_subsys *ss;
	int i;
1148

B
Ben Blum 已提交
1149 1150
	BUG_ON(!mutex_is_locked(&cgroup_mutex));

1151 1152 1153
#ifdef CONFIG_CPUSETS
	mask = ~(1UL << cpuset_subsys_id);
#endif
1154

1155
	memset(opts, 0, sizeof(*opts));
1156 1157 1158 1159

	while ((token = strsep(&o, ",")) != NULL) {
		if (!*token)
			return -EINVAL;
1160
		if (!strcmp(token, "none")) {
1161 1162
			/* Explicitly have no subsystems */
			opts->none = true;
1163 1164 1165 1166 1167 1168 1169 1170 1171
			continue;
		}
		if (!strcmp(token, "all")) {
			/* Mutually exclusive option 'all' + subsystem name */
			if (one_ss)
				return -EINVAL;
			all_ss = true;
			continue;
		}
1172 1173 1174 1175
		if (!strcmp(token, "__DEVEL__sane_behavior")) {
			opts->flags |= CGRP_ROOT_SANE_BEHAVIOR;
			continue;
		}
1176
		if (!strcmp(token, "noprefix")) {
1177
			opts->flags |= CGRP_ROOT_NOPREFIX;
1178 1179 1180
			continue;
		}
		if (!strcmp(token, "clone_children")) {
1181
			opts->cpuset_clone_children = true;
1182 1183
			continue;
		}
A
Aristeu Rozanski 已提交
1184
		if (!strcmp(token, "xattr")) {
1185
			opts->flags |= CGRP_ROOT_XATTR;
A
Aristeu Rozanski 已提交
1186 1187
			continue;
		}
1188
		if (!strncmp(token, "release_agent=", 14)) {
1189 1190 1191
			/* Specifying two release agents is forbidden */
			if (opts->release_agent)
				return -EINVAL;
1192
			opts->release_agent =
1193
				kstrndup(token + 14, PATH_MAX - 1, GFP_KERNEL);
1194 1195
			if (!opts->release_agent)
				return -ENOMEM;
1196 1197 1198
			continue;
		}
		if (!strncmp(token, "name=", 5)) {
1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215
			const char *name = token + 5;
			/* Can't specify an empty name */
			if (!strlen(name))
				return -EINVAL;
			/* Must match [\w.-]+ */
			for (i = 0; i < strlen(name); i++) {
				char c = name[i];
				if (isalnum(c))
					continue;
				if ((c == '.') || (c == '-') || (c == '_'))
					continue;
				return -EINVAL;
			}
			/* Specifying two names is forbidden */
			if (opts->name)
				return -EINVAL;
			opts->name = kstrndup(name,
1216
					      MAX_CGROUP_ROOT_NAMELEN - 1,
1217 1218 1219
					      GFP_KERNEL);
			if (!opts->name)
				return -ENOMEM;
1220 1221 1222 1223

			continue;
		}

1224
		for_each_subsys(ss, i) {
1225 1226 1227 1228 1229 1230 1231 1232
			if (strcmp(token, ss->name))
				continue;
			if (ss->disabled)
				continue;

			/* Mutually exclusive option 'all' + subsystem name */
			if (all_ss)
				return -EINVAL;
1233
			set_bit(i, &opts->subsys_mask);
1234 1235 1236 1237 1238 1239 1240 1241 1242 1243
			one_ss = true;

			break;
		}
		if (i == CGROUP_SUBSYS_COUNT)
			return -ENOENT;
	}

	/*
	 * If the 'all' option was specified select all the subsystems,
1244 1245
	 * otherwise if 'none', 'name=' and a subsystem name options
	 * were not specified, let's default to 'all'
1246
	 */
1247 1248 1249 1250
	if (all_ss || (!one_ss && !opts->none && !opts->name))
		for_each_subsys(ss, i)
			if (!ss->disabled)
				set_bit(i, &opts->subsys_mask);
1251

1252 1253
	/* Consistency checks */

1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267
	if (opts->flags & CGRP_ROOT_SANE_BEHAVIOR) {
		pr_warning("cgroup: sane_behavior: this is still under development and its behaviors will change, proceed at your own risk\n");

		if (opts->flags & CGRP_ROOT_NOPREFIX) {
			pr_err("cgroup: sane_behavior: noprefix is not allowed\n");
			return -EINVAL;
		}

		if (opts->cpuset_clone_children) {
			pr_err("cgroup: sane_behavior: clone_children is not allowed\n");
			return -EINVAL;
		}
	}

1268 1269 1270 1271 1272
	/*
	 * Option noprefix was introduced just for backward compatibility
	 * with the old cpuset, so we allow noprefix only if mounting just
	 * the cpuset subsystem.
	 */
1273
	if ((opts->flags & CGRP_ROOT_NOPREFIX) && (opts->subsys_mask & mask))
1274 1275
		return -EINVAL;

1276 1277

	/* Can't specify "none" and some subsystems */
1278
	if (opts->subsys_mask && opts->none)
1279 1280 1281 1282 1283 1284
		return -EINVAL;

	/*
	 * We either have to specify by name or by subsystems. (So all
	 * empty hierarchies must have a name).
	 */
1285
	if (!opts->subsys_mask && !opts->name)
1286 1287 1288 1289 1290 1291 1292 1293 1294
		return -EINVAL;

	return 0;
}

static int cgroup_remount(struct super_block *sb, int *flags, char *data)
{
	int ret = 0;
	struct cgroupfs_root *root = sb->s_fs_info;
1295
	struct cgroup *cgrp = &root->top_cgroup;
1296
	struct cgroup_sb_opts opts;
1297
	unsigned long added_mask, removed_mask;
1298

1299 1300 1301 1302 1303
	if (root->flags & CGRP_ROOT_SANE_BEHAVIOR) {
		pr_err("cgroup: sane_behavior: remount is not allowed\n");
		return -EINVAL;
	}

1304
	mutex_lock(&cgrp->dentry->d_inode->i_mutex);
1305
	mutex_lock(&cgroup_mutex);
T
Tejun Heo 已提交
1306
	mutex_lock(&cgroup_root_mutex);
1307 1308 1309 1310 1311 1312

	/* See what subsystems are wanted */
	ret = parse_cgroupfs_options(data, &opts);
	if (ret)
		goto out_unlock;

1313
	if (opts.subsys_mask != root->subsys_mask || opts.release_agent)
1314 1315 1316
		pr_warning("cgroup: option changes via remount are deprecated (pid=%d comm=%s)\n",
			   task_tgid_nr(current), current->comm);

1317 1318
	added_mask = opts.subsys_mask & ~root->subsys_mask;
	removed_mask = root->subsys_mask & ~opts.subsys_mask;
1319

B
Ben Blum 已提交
1320
	/* Don't allow flags or name to change at remount */
1321
	if (((opts.flags ^ root->flags) & CGRP_ROOT_OPTION_MASK) ||
B
Ben Blum 已提交
1322
	    (opts.name && strcmp(opts.name, root->name))) {
1323 1324 1325
		pr_err("cgroup: option or name mismatch, new: 0x%lx \"%s\", old: 0x%lx \"%s\"\n",
		       opts.flags & CGRP_ROOT_OPTION_MASK, opts.name ?: "",
		       root->flags & CGRP_ROOT_OPTION_MASK, root->name);
1326 1327 1328 1329
		ret = -EINVAL;
		goto out_unlock;
	}

1330 1331 1332 1333 1334 1335
	/* remounting is not allowed for populated hierarchies */
	if (root->number_of_cgroups > 1) {
		ret = -EBUSY;
		goto out_unlock;
	}

1336
	ret = rebind_subsystems(root, added_mask, removed_mask);
1337
	if (ret)
1338
		goto out_unlock;
1339

1340 1341
	if (opts.release_agent)
		strcpy(root->release_agent_path, opts.release_agent);
1342
 out_unlock:
1343
	kfree(opts.release_agent);
1344
	kfree(opts.name);
T
Tejun Heo 已提交
1345
	mutex_unlock(&cgroup_root_mutex);
1346
	mutex_unlock(&cgroup_mutex);
1347
	mutex_unlock(&cgrp->dentry->d_inode->i_mutex);
1348 1349 1350
	return ret;
}

1351
static const struct super_operations cgroup_ops = {
1352 1353 1354 1355 1356 1357
	.statfs = simple_statfs,
	.drop_inode = generic_delete_inode,
	.show_options = cgroup_show_options,
	.remount_fs = cgroup_remount,
};

1358 1359 1360 1361
static void init_cgroup_housekeeping(struct cgroup *cgrp)
{
	INIT_LIST_HEAD(&cgrp->sibling);
	INIT_LIST_HEAD(&cgrp->children);
T
Tejun Heo 已提交
1362
	INIT_LIST_HEAD(&cgrp->files);
1363
	INIT_LIST_HEAD(&cgrp->cset_links);
1364
	INIT_LIST_HEAD(&cgrp->release_list);
1365 1366
	INIT_LIST_HEAD(&cgrp->pidlists);
	mutex_init(&cgrp->pidlist_mutex);
1367 1368
	INIT_LIST_HEAD(&cgrp->event_list);
	spin_lock_init(&cgrp->event_list_lock);
A
Aristeu Rozanski 已提交
1369
	simple_xattrs_init(&cgrp->xattrs);
1370
}
1371

1372 1373
static void init_cgroup_root(struct cgroupfs_root *root)
{
1374
	struct cgroup *cgrp = &root->top_cgroup;
1375

1376 1377 1378
	INIT_LIST_HEAD(&root->subsys_list);
	INIT_LIST_HEAD(&root->root_list);
	root->number_of_cgroups = 1;
1379
	cgrp->root = root;
1380
	RCU_INIT_POINTER(cgrp->name, &root_cgroup_name);
1381
	init_cgroup_housekeeping(cgrp);
1382 1383
}

1384
static int cgroup_init_root_id(struct cgroupfs_root *root, int start, int end)
1385
{
1386
	int id;
1387

T
Tejun Heo 已提交
1388 1389 1390
	lockdep_assert_held(&cgroup_mutex);
	lockdep_assert_held(&cgroup_root_mutex);

1391 1392
	id = idr_alloc_cyclic(&cgroup_hierarchy_idr, root, start, end,
			      GFP_KERNEL);
1393 1394 1395 1396
	if (id < 0)
		return id;

	root->hierarchy_id = id;
1397 1398 1399 1400 1401
	return 0;
}

static void cgroup_exit_root_id(struct cgroupfs_root *root)
{
T
Tejun Heo 已提交
1402 1403 1404
	lockdep_assert_held(&cgroup_mutex);
	lockdep_assert_held(&cgroup_root_mutex);

1405
	if (root->hierarchy_id) {
1406
		idr_remove(&cgroup_hierarchy_idr, root->hierarchy_id);
1407 1408
		root->hierarchy_id = 0;
	}
1409 1410
}

1411 1412
static int cgroup_test_super(struct super_block *sb, void *data)
{
1413
	struct cgroup_sb_opts *opts = data;
1414 1415
	struct cgroupfs_root *root = sb->s_fs_info;

1416 1417 1418
	/* If we asked for a name then it must match */
	if (opts->name && strcmp(opts->name, root->name))
		return 0;
1419

1420 1421 1422 1423
	/*
	 * If we asked for subsystems (or explicitly for no
	 * subsystems) then they must match
	 */
1424 1425
	if ((opts->subsys_mask || opts->none)
	    && (opts->subsys_mask != root->subsys_mask))
1426 1427 1428 1429 1430
		return 0;

	return 1;
}

1431 1432 1433 1434
static struct cgroupfs_root *cgroup_root_from_opts(struct cgroup_sb_opts *opts)
{
	struct cgroupfs_root *root;

1435
	if (!opts->subsys_mask && !opts->none)
1436 1437 1438 1439 1440 1441 1442
		return NULL;

	root = kzalloc(sizeof(*root), GFP_KERNEL);
	if (!root)
		return ERR_PTR(-ENOMEM);

	init_cgroup_root(root);
1443

1444 1445 1446 1447 1448 1449 1450 1451
	/*
	 * We need to set @root->subsys_mask now so that @root can be
	 * matched by cgroup_test_super() before it finishes
	 * initialization; otherwise, competing mounts with the same
	 * options may try to bind the same subsystems instead of waiting
	 * for the first one leading to unexpected mount errors.
	 * SUBSYS_BOUND will be set once actual binding is complete.
	 */
1452
	root->subsys_mask = opts->subsys_mask;
1453
	root->flags = opts->flags;
T
Tejun Heo 已提交
1454
	ida_init(&root->cgroup_ida);
1455 1456 1457 1458
	if (opts->release_agent)
		strcpy(root->release_agent_path, opts->release_agent);
	if (opts->name)
		strcpy(root->name, opts->name);
1459 1460
	if (opts->cpuset_clone_children)
		set_bit(CGRP_CPUSET_CLONE_CHILDREN, &root->top_cgroup.flags);
1461 1462 1463
	return root;
}

1464
static void cgroup_free_root(struct cgroupfs_root *root)
1465
{
1466 1467 1468
	if (root) {
		/* hierarhcy ID shoulid already have been released */
		WARN_ON_ONCE(root->hierarchy_id);
1469

1470 1471 1472
		ida_destroy(&root->cgroup_ida);
		kfree(root);
	}
1473 1474
}

1475 1476 1477
static int cgroup_set_super(struct super_block *sb, void *data)
{
	int ret;
1478 1479 1480 1481 1482 1483
	struct cgroup_sb_opts *opts = data;

	/* If we don't have a new root, we can't set up a new sb */
	if (!opts->new_root)
		return -EINVAL;

1484
	BUG_ON(!opts->subsys_mask && !opts->none);
1485 1486 1487 1488 1489

	ret = set_anon_super(sb, NULL);
	if (ret)
		return ret;

1490 1491
	sb->s_fs_info = opts->new_root;
	opts->new_root->sb = sb;
1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502

	sb->s_blocksize = PAGE_CACHE_SIZE;
	sb->s_blocksize_bits = PAGE_CACHE_SHIFT;
	sb->s_magic = CGROUP_SUPER_MAGIC;
	sb->s_op = &cgroup_ops;

	return 0;
}

static int cgroup_get_rootdir(struct super_block *sb)
{
A
Al Viro 已提交
1503 1504
	static const struct dentry_operations cgroup_dops = {
		.d_iput = cgroup_diput,
1505
		.d_delete = cgroup_delete,
A
Al Viro 已提交
1506 1507
	};

1508 1509 1510 1511 1512 1513 1514 1515 1516 1517
	struct inode *inode =
		cgroup_new_inode(S_IFDIR | S_IRUGO | S_IXUGO | S_IWUSR, sb);

	if (!inode)
		return -ENOMEM;

	inode->i_fop = &simple_dir_operations;
	inode->i_op = &cgroup_dir_inode_operations;
	/* directories start off with i_nlink == 2 (for "." entry) */
	inc_nlink(inode);
1518 1519
	sb->s_root = d_make_root(inode);
	if (!sb->s_root)
1520
		return -ENOMEM;
A
Al Viro 已提交
1521 1522
	/* for everything else we want ->d_op set */
	sb->s_d_op = &cgroup_dops;
1523 1524 1525
	return 0;
}

A
Al Viro 已提交
1526
static struct dentry *cgroup_mount(struct file_system_type *fs_type,
1527
			 int flags, const char *unused_dev_name,
A
Al Viro 已提交
1528
			 void *data)
1529 1530
{
	struct cgroup_sb_opts opts;
1531
	struct cgroupfs_root *root;
1532 1533
	int ret = 0;
	struct super_block *sb;
1534
	struct cgroupfs_root *new_root;
1535
	struct list_head tmp_links;
T
Tejun Heo 已提交
1536
	struct inode *inode;
1537
	const struct cred *cred;
1538 1539

	/* First find the desired set of subsystems */
B
Ben Blum 已提交
1540
	mutex_lock(&cgroup_mutex);
1541
	ret = parse_cgroupfs_options(data, &opts);
B
Ben Blum 已提交
1542
	mutex_unlock(&cgroup_mutex);
1543 1544
	if (ret)
		goto out_err;
1545

1546 1547 1548 1549 1550 1551 1552
	/*
	 * Allocate a new cgroup root. We may not need it if we're
	 * reusing an existing hierarchy.
	 */
	new_root = cgroup_root_from_opts(&opts);
	if (IS_ERR(new_root)) {
		ret = PTR_ERR(new_root);
1553
		goto out_err;
1554
	}
1555
	opts.new_root = new_root;
1556

1557
	/* Locate an existing or new sb for this hierarchy */
D
David Howells 已提交
1558
	sb = sget(fs_type, cgroup_test_super, cgroup_set_super, 0, &opts);
1559
	if (IS_ERR(sb)) {
1560
		ret = PTR_ERR(sb);
1561
		cgroup_free_root(opts.new_root);
1562
		goto out_err;
1563 1564
	}

1565 1566 1567 1568
	root = sb->s_fs_info;
	BUG_ON(!root);
	if (root == opts.new_root) {
		/* We used the new root structure, so this is a new hierarchy */
1569
		struct cgroup *root_cgrp = &root->top_cgroup;
1570
		struct cgroupfs_root *existing_root;
1571
		int i;
1572
		struct css_set *cset;
1573 1574 1575 1576 1577 1578

		BUG_ON(sb->s_root != NULL);

		ret = cgroup_get_rootdir(sb);
		if (ret)
			goto drop_new_super;
1579
		inode = sb->s_root->d_inode;
1580

1581
		mutex_lock(&inode->i_mutex);
1582
		mutex_lock(&cgroup_mutex);
T
Tejun Heo 已提交
1583
		mutex_lock(&cgroup_root_mutex);
1584

T
Tejun Heo 已提交
1585 1586 1587 1588 1589 1590
		/* Check for name clashes with existing mounts */
		ret = -EBUSY;
		if (strlen(root->name))
			for_each_active_root(existing_root)
				if (!strcmp(existing_root->name, root->name))
					goto unlock_drop;
1591

1592 1593 1594 1595 1596 1597 1598
		/*
		 * We're accessing css_set_count without locking
		 * css_set_lock here, but that's OK - it can only be
		 * increased by someone holding cgroup_lock, and
		 * that's us. The worst that can happen is that we
		 * have some link structures left over
		 */
1599
		ret = allocate_cgrp_cset_links(css_set_count, &tmp_links);
T
Tejun Heo 已提交
1600 1601
		if (ret)
			goto unlock_drop;
1602

1603 1604
		/* ID 0 is reserved for dummy root, 1 for unified hierarchy */
		ret = cgroup_init_root_id(root, 2, 0);
1605 1606 1607
		if (ret)
			goto unlock_drop;

1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623
		sb->s_root->d_fsdata = root_cgrp;
		root_cgrp->dentry = sb->s_root;

		/*
		 * We're inside get_sb() and will call lookup_one_len() to
		 * create the root files, which doesn't work if SELinux is
		 * in use.  The following cred dancing somehow works around
		 * it.  See 2ce9738ba ("cgroupfs: use init_cred when
		 * populating new cgroupfs mount") for more details.
		 */
		cred = override_creds(&init_cred);

		ret = cgroup_addrm_files(root_cgrp, NULL, cgroup_base_files, true);
		if (ret)
			goto rm_base_files;

1624
		ret = rebind_subsystems(root, root->subsys_mask, 0);
1625 1626 1627 1628 1629
		if (ret)
			goto rm_base_files;

		revert_creds(cred);

B
Ben Blum 已提交
1630 1631 1632 1633 1634
		/*
		 * There must be no failure case after here, since rebinding
		 * takes care of subsystems' refcounts, which are explicitly
		 * dropped in the failure exit path.
		 */
1635

1636 1637
		list_add(&root->root_list, &cgroup_roots);
		cgroup_root_count++;
1638

1639 1640 1641
		/* Link the top cgroup in this hierarchy into all
		 * the css_set objects */
		write_lock(&css_set_lock);
1642
		hash_for_each(css_set_table, i, cset, hlist)
1643
			link_css_set(&tmp_links, cset, root_cgrp);
1644 1645
		write_unlock(&css_set_lock);

1646
		free_cgrp_cset_links(&tmp_links);
1647

1648
		BUG_ON(!list_empty(&root_cgrp->children));
1649 1650
		BUG_ON(root->number_of_cgroups != 1);

T
Tejun Heo 已提交
1651
		mutex_unlock(&cgroup_root_mutex);
1652
		mutex_unlock(&cgroup_mutex);
1653
		mutex_unlock(&inode->i_mutex);
1654 1655 1656 1657 1658
	} else {
		/*
		 * We re-used an existing hierarchy - the new root (if
		 * any) is not needed
		 */
1659
		cgroup_free_root(opts.new_root);
1660

1661
		if ((root->flags ^ opts.flags) & CGRP_ROOT_OPTION_MASK) {
1662 1663 1664 1665 1666 1667 1668
			if ((root->flags | opts.flags) & CGRP_ROOT_SANE_BEHAVIOR) {
				pr_err("cgroup: sane_behavior: new mount options should match the existing superblock\n");
				ret = -EINVAL;
				goto drop_new_super;
			} else {
				pr_warning("cgroup: new mount options do not match the existing superblock, will be ignored\n");
			}
1669
		}
1670 1671
	}

1672 1673
	kfree(opts.release_agent);
	kfree(opts.name);
A
Al Viro 已提交
1674
	return dget(sb->s_root);
1675

1676 1677 1678 1679
 rm_base_files:
	free_cgrp_cset_links(&tmp_links);
	cgroup_addrm_files(&root->top_cgroup, NULL, cgroup_base_files, false);
	revert_creds(cred);
T
Tejun Heo 已提交
1680
 unlock_drop:
1681
	cgroup_exit_root_id(root);
T
Tejun Heo 已提交
1682 1683 1684
	mutex_unlock(&cgroup_root_mutex);
	mutex_unlock(&cgroup_mutex);
	mutex_unlock(&inode->i_mutex);
1685
 drop_new_super:
1686
	deactivate_locked_super(sb);
1687 1688 1689
 out_err:
	kfree(opts.release_agent);
	kfree(opts.name);
A
Al Viro 已提交
1690
	return ERR_PTR(ret);
1691 1692 1693 1694
}

static void cgroup_kill_sb(struct super_block *sb) {
	struct cgroupfs_root *root = sb->s_fs_info;
1695
	struct cgroup *cgrp = &root->top_cgroup;
1696
	struct cgrp_cset_link *link, *tmp_link;
1697 1698 1699 1700 1701
	int ret;

	BUG_ON(!root);

	BUG_ON(root->number_of_cgroups != 1);
1702
	BUG_ON(!list_empty(&cgrp->children));
1703

1704
	mutex_lock(&cgrp->dentry->d_inode->i_mutex);
1705
	mutex_lock(&cgroup_mutex);
T
Tejun Heo 已提交
1706
	mutex_lock(&cgroup_root_mutex);
1707 1708

	/* Rebind all subsystems back to the default hierarchy */
1709 1710 1711 1712 1713
	if (root->flags & CGRP_ROOT_SUBSYS_BOUND) {
		ret = rebind_subsystems(root, 0, root->subsys_mask);
		/* Shouldn't be able to fail ... */
		BUG_ON(ret);
	}
1714

1715
	/*
1716
	 * Release all the links from cset_links to this hierarchy's
1717 1718 1719
	 * root cgroup
	 */
	write_lock(&css_set_lock);
K
KOSAKI Motohiro 已提交
1720

1721 1722 1723
	list_for_each_entry_safe(link, tmp_link, &cgrp->cset_links, cset_link) {
		list_del(&link->cset_link);
		list_del(&link->cgrp_link);
1724 1725 1726 1727
		kfree(link);
	}
	write_unlock(&css_set_lock);

1728 1729
	if (!list_empty(&root->root_list)) {
		list_del(&root->root_list);
1730
		cgroup_root_count--;
1731
	}
1732

1733 1734
	cgroup_exit_root_id(root);

T
Tejun Heo 已提交
1735
	mutex_unlock(&cgroup_root_mutex);
1736
	mutex_unlock(&cgroup_mutex);
1737
	mutex_unlock(&cgrp->dentry->d_inode->i_mutex);
1738

A
Aristeu Rozanski 已提交
1739 1740
	simple_xattrs_free(&cgrp->xattrs);

1741
	kill_litter_super(sb);
1742
	cgroup_free_root(root);
1743 1744 1745 1746
}

static struct file_system_type cgroup_fs_type = {
	.name = "cgroup",
A
Al Viro 已提交
1747
	.mount = cgroup_mount,
1748 1749 1750
	.kill_sb = cgroup_kill_sb,
};

1751 1752
static struct kobject *cgroup_kobj;

L
Li Zefan 已提交
1753 1754 1755 1756 1757 1758
/**
 * cgroup_path - generate the path of a cgroup
 * @cgrp: the cgroup in question
 * @buf: the buffer to write the path into
 * @buflen: the length of the buffer
 *
1759 1760 1761 1762 1763 1764
 * Writes path of cgroup into buf.  Returns 0 on success, -errno on error.
 *
 * We can't generate cgroup path using dentry->d_name, as accessing
 * dentry->name must be protected by irq-unsafe dentry->d_lock or parent
 * inode's i_mutex, while on the other hand cgroup_path() can be called
 * with some irq-safe spinlocks held.
1765
 */
1766
int cgroup_path(const struct cgroup *cgrp, char *buf, int buflen)
1767
{
1768
	int ret = -ENAMETOOLONG;
1769
	char *start;
1770

1771 1772 1773
	if (!cgrp->parent) {
		if (strlcpy(buf, "/", buflen) >= buflen)
			return -ENAMETOOLONG;
1774 1775 1776
		return 0;
	}

1777 1778
	start = buf + buflen - 1;
	*start = '\0';
1779

1780
	rcu_read_lock();
1781
	do {
1782 1783 1784 1785
		const char *name = cgroup_name(cgrp);
		int len;

		len = strlen(name);
1786
		if ((start -= len) < buf)
1787 1788
			goto out;
		memcpy(start, name, len);
1789

1790
		if (--start < buf)
1791
			goto out;
1792
		*start = '/';
1793 1794

		cgrp = cgrp->parent;
1795
	} while (cgrp->parent);
1796
	ret = 0;
1797
	memmove(buf, start, buf + buflen - start);
1798 1799 1800
out:
	rcu_read_unlock();
	return ret;
1801
}
B
Ben Blum 已提交
1802
EXPORT_SYMBOL_GPL(cgroup_path);
1803

1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835
/**
 * task_cgroup_path_from_hierarchy - cgroup path of a task on a hierarchy
 * @task: target task
 * @hierarchy_id: the hierarchy to look up @task's cgroup from
 * @buf: the buffer to write the path into
 * @buflen: the length of the buffer
 *
 * Determine @task's cgroup on the hierarchy specified by @hierarchy_id and
 * copy its path into @buf.  This function grabs cgroup_mutex and shouldn't
 * be used inside locks used by cgroup controller callbacks.
 */
int task_cgroup_path_from_hierarchy(struct task_struct *task, int hierarchy_id,
				    char *buf, size_t buflen)
{
	struct cgroupfs_root *root;
	struct cgroup *cgrp = NULL;
	int ret = -ENOENT;

	mutex_lock(&cgroup_mutex);

	root = idr_find(&cgroup_hierarchy_idr, hierarchy_id);
	if (root) {
		cgrp = task_cgroup_from_root(task, root);
		ret = cgroup_path(cgrp, buf, buflen);
	}

	mutex_unlock(&cgroup_mutex);

	return ret;
}
EXPORT_SYMBOL_GPL(task_cgroup_path_from_hierarchy);

1836 1837 1838
/*
 * Control Group taskset
 */
1839 1840 1841
struct task_and_cgroup {
	struct task_struct	*task;
	struct cgroup		*cgrp;
L
Li Zefan 已提交
1842
	struct css_set		*cset;
1843 1844
};

1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915
struct cgroup_taskset {
	struct task_and_cgroup	single;
	struct flex_array	*tc_array;
	int			tc_array_len;
	int			idx;
	struct cgroup		*cur_cgrp;
};

/**
 * cgroup_taskset_first - reset taskset and return the first task
 * @tset: taskset of interest
 *
 * @tset iteration is initialized and the first task is returned.
 */
struct task_struct *cgroup_taskset_first(struct cgroup_taskset *tset)
{
	if (tset->tc_array) {
		tset->idx = 0;
		return cgroup_taskset_next(tset);
	} else {
		tset->cur_cgrp = tset->single.cgrp;
		return tset->single.task;
	}
}
EXPORT_SYMBOL_GPL(cgroup_taskset_first);

/**
 * cgroup_taskset_next - iterate to the next task in taskset
 * @tset: taskset of interest
 *
 * Return the next task in @tset.  Iteration must have been initialized
 * with cgroup_taskset_first().
 */
struct task_struct *cgroup_taskset_next(struct cgroup_taskset *tset)
{
	struct task_and_cgroup *tc;

	if (!tset->tc_array || tset->idx >= tset->tc_array_len)
		return NULL;

	tc = flex_array_get(tset->tc_array, tset->idx++);
	tset->cur_cgrp = tc->cgrp;
	return tc->task;
}
EXPORT_SYMBOL_GPL(cgroup_taskset_next);

/**
 * cgroup_taskset_cur_cgroup - return the matching cgroup for the current task
 * @tset: taskset of interest
 *
 * Return the cgroup for the current (last returned) task of @tset.  This
 * function must be preceded by either cgroup_taskset_first() or
 * cgroup_taskset_next().
 */
struct cgroup *cgroup_taskset_cur_cgroup(struct cgroup_taskset *tset)
{
	return tset->cur_cgrp;
}
EXPORT_SYMBOL_GPL(cgroup_taskset_cur_cgroup);

/**
 * cgroup_taskset_size - return the number of tasks in taskset
 * @tset: taskset of interest
 */
int cgroup_taskset_size(struct cgroup_taskset *tset)
{
	return tset->tc_array ? tset->tc_array_len : 1;
}
EXPORT_SYMBOL_GPL(cgroup_taskset_size);


B
Ben Blum 已提交
1916 1917 1918
/*
 * cgroup_task_migrate - move a task from one cgroup to another.
 *
1919
 * Must be called with cgroup_mutex and threadgroup locked.
B
Ben Blum 已提交
1920
 */
1921 1922 1923
static void cgroup_task_migrate(struct cgroup *old_cgrp,
				struct task_struct *tsk,
				struct css_set *new_cset)
B
Ben Blum 已提交
1924
{
1925
	struct css_set *old_cset;
B
Ben Blum 已提交
1926 1927

	/*
1928 1929 1930
	 * We are synchronized through threadgroup_lock() against PF_EXITING
	 * setting such that we can't race against cgroup_exit() changing the
	 * css_set to init_css_set and dropping the old one.
B
Ben Blum 已提交
1931
	 */
1932
	WARN_ON_ONCE(tsk->flags & PF_EXITING);
1933
	old_cset = task_css_set(tsk);
B
Ben Blum 已提交
1934 1935

	task_lock(tsk);
1936
	rcu_assign_pointer(tsk->cgroups, new_cset);
B
Ben Blum 已提交
1937 1938 1939 1940 1941
	task_unlock(tsk);

	/* Update the css_set linked lists if we're using them */
	write_lock(&css_set_lock);
	if (!list_empty(&tsk->cg_list))
1942
		list_move(&tsk->cg_list, &new_cset->tasks);
B
Ben Blum 已提交
1943 1944 1945
	write_unlock(&css_set_lock);

	/*
1946 1947 1948
	 * We just gained a reference on old_cset by taking it from the
	 * task. As trading it for new_cset is protected by cgroup_mutex,
	 * we're safe to drop it here; it will be freed under RCU.
B
Ben Blum 已提交
1949
	 */
1950 1951
	set_bit(CGRP_RELEASABLE, &old_cgrp->flags);
	put_css_set(old_cset);
B
Ben Blum 已提交
1952 1953
}

L
Li Zefan 已提交
1954
/**
1955
 * cgroup_attach_task - attach a task or a whole threadgroup to a cgroup
B
Ben Blum 已提交
1956
 * @cgrp: the cgroup to attach to
1957 1958
 * @tsk: the task or the leader of the threadgroup to be attached
 * @threadgroup: attach the whole threadgroup?
B
Ben Blum 已提交
1959
 *
1960
 * Call holding cgroup_mutex and the group_rwsem of the leader. Will take
1961
 * task_lock of @tsk or each thread in the threadgroup individually in turn.
B
Ben Blum 已提交
1962
 */
T
Tejun Heo 已提交
1963 1964
static int cgroup_attach_task(struct cgroup *cgrp, struct task_struct *tsk,
			      bool threadgroup)
B
Ben Blum 已提交
1965 1966 1967 1968 1969
{
	int retval, i, group_size;
	struct cgroup_subsys *ss, *failed_ss = NULL;
	struct cgroupfs_root *root = cgrp->root;
	/* threadgroup list cursor and array */
1970
	struct task_struct *leader = tsk;
1971
	struct task_and_cgroup *tc;
1972
	struct flex_array *group;
1973
	struct cgroup_taskset tset = { };
B
Ben Blum 已提交
1974 1975 1976 1977 1978

	/*
	 * step 0: in order to do expensive, possibly blocking operations for
	 * every thread, we cannot iterate the thread group list, since it needs
	 * rcu or tasklist locked. instead, build an array of all threads in the
1979 1980
	 * group - group_rwsem prevents new threads from appearing, and if
	 * threads exit, this will just be an over-estimate.
B
Ben Blum 已提交
1981
	 */
1982 1983 1984 1985
	if (threadgroup)
		group_size = get_nr_threads(tsk);
	else
		group_size = 1;
1986
	/* flex_array supports very large thread-groups better than kmalloc. */
1987
	group = flex_array_alloc(sizeof(*tc), group_size, GFP_KERNEL);
B
Ben Blum 已提交
1988 1989
	if (!group)
		return -ENOMEM;
1990
	/* pre-allocate to guarantee space while iterating in rcu read-side. */
1991
	retval = flex_array_prealloc(group, 0, group_size, GFP_KERNEL);
1992 1993
	if (retval)
		goto out_free_group_list;
B
Ben Blum 已提交
1994 1995

	i = 0;
1996 1997 1998 1999 2000 2001
	/*
	 * Prevent freeing of tasks while we take a snapshot. Tasks that are
	 * already PF_EXITING could be freed from underneath us unless we
	 * take an rcu_read_lock.
	 */
	rcu_read_lock();
B
Ben Blum 已提交
2002
	do {
2003 2004
		struct task_and_cgroup ent;

2005 2006 2007 2008
		/* @tsk either already exited or can't exit until the end */
		if (tsk->flags & PF_EXITING)
			continue;

B
Ben Blum 已提交
2009 2010
		/* as per above, nr_threads may decrease, but not increase. */
		BUG_ON(i >= group_size);
2011 2012
		ent.task = tsk;
		ent.cgrp = task_cgroup_from_root(tsk, root);
2013 2014 2015
		/* nothing to do if this task is already in the cgroup */
		if (ent.cgrp == cgrp)
			continue;
2016 2017 2018 2019
		/*
		 * saying GFP_ATOMIC has no effect here because we did prealloc
		 * earlier, but it's good form to communicate our expectations.
		 */
2020
		retval = flex_array_put(group, i, &ent, GFP_ATOMIC);
2021
		BUG_ON(retval != 0);
B
Ben Blum 已提交
2022
		i++;
2023 2024 2025

		if (!threadgroup)
			break;
B
Ben Blum 已提交
2026
	} while_each_thread(leader, tsk);
2027
	rcu_read_unlock();
B
Ben Blum 已提交
2028 2029
	/* remember the number of threads in the array for later. */
	group_size = i;
2030 2031
	tset.tc_array = group;
	tset.tc_array_len = group_size;
B
Ben Blum 已提交
2032

2033 2034
	/* methods shouldn't be called if no task is actually migrating */
	retval = 0;
2035
	if (!group_size)
2036
		goto out_free_group_list;
2037

B
Ben Blum 已提交
2038 2039 2040
	/*
	 * step 1: check that we can legitimately attach to the cgroup.
	 */
2041
	for_each_root_subsys(root, ss) {
B
Ben Blum 已提交
2042
		if (ss->can_attach) {
2043
			retval = ss->can_attach(cgrp, &tset);
B
Ben Blum 已提交
2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055
			if (retval) {
				failed_ss = ss;
				goto out_cancel_attach;
			}
		}
	}

	/*
	 * step 2: make sure css_sets exist for all threads to be migrated.
	 * we use find_css_set, which allocates a new one if necessary.
	 */
	for (i = 0; i < group_size; i++) {
2056 2057
		struct css_set *old_cset;

2058
		tc = flex_array_get(group, i);
2059
		old_cset = task_css_set(tc->task);
L
Li Zefan 已提交
2060 2061
		tc->cset = find_css_set(old_cset, cgrp);
		if (!tc->cset) {
2062 2063
			retval = -ENOMEM;
			goto out_put_css_set_refs;
B
Ben Blum 已提交
2064 2065 2066 2067
		}
	}

	/*
2068 2069 2070
	 * step 3: now that we're guaranteed success wrt the css_sets,
	 * proceed to move all tasks to the new cgroup.  There are no
	 * failure cases after here, so this is the commit point.
B
Ben Blum 已提交
2071 2072
	 */
	for (i = 0; i < group_size; i++) {
2073
		tc = flex_array_get(group, i);
L
Li Zefan 已提交
2074
		cgroup_task_migrate(tc->cgrp, tc->task, tc->cset);
B
Ben Blum 已提交
2075 2076 2077 2078
	}
	/* nothing is sensitive to fork() after this point. */

	/*
2079
	 * step 4: do subsystem attach callbacks.
B
Ben Blum 已提交
2080
	 */
2081
	for_each_root_subsys(root, ss) {
B
Ben Blum 已提交
2082
		if (ss->attach)
2083
			ss->attach(cgrp, &tset);
B
Ben Blum 已提交
2084 2085 2086 2087 2088 2089
	}

	/*
	 * step 5: success! and cleanup
	 */
	retval = 0;
2090 2091 2092 2093
out_put_css_set_refs:
	if (retval) {
		for (i = 0; i < group_size; i++) {
			tc = flex_array_get(group, i);
L
Li Zefan 已提交
2094
			if (!tc->cset)
2095
				break;
L
Li Zefan 已提交
2096
			put_css_set(tc->cset);
2097
		}
B
Ben Blum 已提交
2098 2099 2100
	}
out_cancel_attach:
	if (retval) {
2101
		for_each_root_subsys(root, ss) {
2102
			if (ss == failed_ss)
B
Ben Blum 已提交
2103 2104
				break;
			if (ss->cancel_attach)
2105
				ss->cancel_attach(cgrp, &tset);
B
Ben Blum 已提交
2106 2107 2108
		}
	}
out_free_group_list:
2109
	flex_array_free(group);
B
Ben Blum 已提交
2110 2111 2112 2113 2114
	return retval;
}

/*
 * Find the task_struct of the task to attach by vpid and pass it along to the
2115 2116
 * function to attach either it or all tasks in its threadgroup. Will lock
 * cgroup_mutex and threadgroup; may take task_lock of task.
2117
 */
B
Ben Blum 已提交
2118
static int attach_task_by_pid(struct cgroup *cgrp, u64 pid, bool threadgroup)
2119 2120
{
	struct task_struct *tsk;
2121
	const struct cred *cred = current_cred(), *tcred;
2122 2123
	int ret;

B
Ben Blum 已提交
2124 2125 2126
	if (!cgroup_lock_live_group(cgrp))
		return -ENODEV;

2127 2128
retry_find_task:
	rcu_read_lock();
2129
	if (pid) {
2130
		tsk = find_task_by_vpid(pid);
B
Ben Blum 已提交
2131 2132
		if (!tsk) {
			rcu_read_unlock();
2133 2134
			ret= -ESRCH;
			goto out_unlock_cgroup;
2135
		}
B
Ben Blum 已提交
2136 2137 2138 2139
		/*
		 * even if we're attaching all tasks in the thread group, we
		 * only need to check permissions on one of them.
		 */
2140
		tcred = __task_cred(tsk);
2141 2142 2143
		if (!uid_eq(cred->euid, GLOBAL_ROOT_UID) &&
		    !uid_eq(cred->euid, tcred->uid) &&
		    !uid_eq(cred->euid, tcred->suid)) {
2144
			rcu_read_unlock();
2145 2146
			ret = -EACCES;
			goto out_unlock_cgroup;
2147
		}
2148 2149
	} else
		tsk = current;
2150 2151

	if (threadgroup)
2152
		tsk = tsk->group_leader;
2153 2154

	/*
2155
	 * Workqueue threads may acquire PF_NO_SETAFFINITY and become
2156 2157 2158
	 * trapped in a cpuset, or RT worker may be born in a cgroup
	 * with no rt_runtime allocated.  Just say no.
	 */
2159
	if (tsk == kthreadd_task || (tsk->flags & PF_NO_SETAFFINITY)) {
2160 2161 2162 2163 2164
		ret = -EINVAL;
		rcu_read_unlock();
		goto out_unlock_cgroup;
	}

2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181
	get_task_struct(tsk);
	rcu_read_unlock();

	threadgroup_lock(tsk);
	if (threadgroup) {
		if (!thread_group_leader(tsk)) {
			/*
			 * a race with de_thread from another thread's exec()
			 * may strip us of our leadership, if this happens,
			 * there is no choice but to throw this task away and
			 * try again; this is
			 * "double-double-toil-and-trouble-check locking".
			 */
			threadgroup_unlock(tsk);
			put_task_struct(tsk);
			goto retry_find_task;
		}
2182 2183 2184 2185
	}

	ret = cgroup_attach_task(cgrp, tsk, threadgroup);

2186 2187
	threadgroup_unlock(tsk);

2188
	put_task_struct(tsk);
2189
out_unlock_cgroup:
T
Tejun Heo 已提交
2190
	mutex_unlock(&cgroup_mutex);
2191 2192 2193
	return ret;
}

2194 2195 2196 2197 2198 2199 2200 2201 2202 2203
/**
 * cgroup_attach_task_all - attach task 'tsk' to all cgroups of task 'from'
 * @from: attach to all cgroups of a given task
 * @tsk: the task to be attached
 */
int cgroup_attach_task_all(struct task_struct *from, struct task_struct *tsk)
{
	struct cgroupfs_root *root;
	int retval = 0;

T
Tejun Heo 已提交
2204
	mutex_lock(&cgroup_mutex);
2205
	for_each_active_root(root) {
L
Li Zefan 已提交
2206
		struct cgroup *from_cgrp = task_cgroup_from_root(from, root);
2207

L
Li Zefan 已提交
2208
		retval = cgroup_attach_task(from_cgrp, tsk, false);
2209 2210 2211
		if (retval)
			break;
	}
T
Tejun Heo 已提交
2212
	mutex_unlock(&cgroup_mutex);
2213 2214 2215 2216 2217

	return retval;
}
EXPORT_SYMBOL_GPL(cgroup_attach_task_all);

2218
static int cgroup_tasks_write(struct cgroup *cgrp, struct cftype *cft, u64 pid)
B
Ben Blum 已提交
2219 2220 2221 2222 2223
{
	return attach_task_by_pid(cgrp, pid, false);
}

static int cgroup_procs_write(struct cgroup *cgrp, struct cftype *cft, u64 tgid)
2224
{
2225
	return attach_task_by_pid(cgrp, tgid, true);
2226 2227
}

2228 2229 2230 2231
static int cgroup_release_agent_write(struct cgroup *cgrp, struct cftype *cft,
				      const char *buffer)
{
	BUILD_BUG_ON(sizeof(cgrp->root->release_agent_path) < PATH_MAX);
2232 2233
	if (strlen(buffer) >= PATH_MAX)
		return -EINVAL;
2234 2235
	if (!cgroup_lock_live_group(cgrp))
		return -ENODEV;
T
Tejun Heo 已提交
2236
	mutex_lock(&cgroup_root_mutex);
2237
	strcpy(cgrp->root->release_agent_path, buffer);
T
Tejun Heo 已提交
2238
	mutex_unlock(&cgroup_root_mutex);
T
Tejun Heo 已提交
2239
	mutex_unlock(&cgroup_mutex);
2240 2241 2242 2243 2244 2245 2246 2247 2248 2249
	return 0;
}

static int cgroup_release_agent_show(struct cgroup *cgrp, struct cftype *cft,
				     struct seq_file *seq)
{
	if (!cgroup_lock_live_group(cgrp))
		return -ENODEV;
	seq_puts(seq, cgrp->root->release_agent_path);
	seq_putc(seq, '\n');
T
Tejun Heo 已提交
2250
	mutex_unlock(&cgroup_mutex);
2251 2252 2253
	return 0;
}

2254 2255 2256 2257
static int cgroup_sane_behavior_show(struct cgroup *cgrp, struct cftype *cft,
				     struct seq_file *seq)
{
	seq_printf(seq, "%d\n", cgroup_sane_behavior(cgrp));
2258 2259 2260
	return 0;
}

2261 2262 2263
/* A buffer size big enough for numbers or short strings */
#define CGROUP_LOCAL_BUFFER_SIZE 64

2264
static ssize_t cgroup_write_X64(struct cgroup *cgrp, struct cftype *cft,
2265 2266 2267
				struct file *file,
				const char __user *userbuf,
				size_t nbytes, loff_t *unused_ppos)
2268
{
2269
	char buffer[CGROUP_LOCAL_BUFFER_SIZE];
2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280
	int retval = 0;
	char *end;

	if (!nbytes)
		return -EINVAL;
	if (nbytes >= sizeof(buffer))
		return -E2BIG;
	if (copy_from_user(buffer, userbuf, nbytes))
		return -EFAULT;

	buffer[nbytes] = 0;     /* nul-terminate */
2281
	if (cft->write_u64) {
K
KOSAKI Motohiro 已提交
2282
		u64 val = simple_strtoull(strstrip(buffer), &end, 0);
2283 2284 2285 2286
		if (*end)
			return -EINVAL;
		retval = cft->write_u64(cgrp, cft, val);
	} else {
K
KOSAKI Motohiro 已提交
2287
		s64 val = simple_strtoll(strstrip(buffer), &end, 0);
2288 2289 2290 2291
		if (*end)
			return -EINVAL;
		retval = cft->write_s64(cgrp, cft, val);
	}
2292 2293 2294 2295 2296
	if (!retval)
		retval = nbytes;
	return retval;
}

2297 2298 2299 2300 2301
static ssize_t cgroup_write_string(struct cgroup *cgrp, struct cftype *cft,
				   struct file *file,
				   const char __user *userbuf,
				   size_t nbytes, loff_t *unused_ppos)
{
2302
	char local_buffer[CGROUP_LOCAL_BUFFER_SIZE];
2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316
	int retval = 0;
	size_t max_bytes = cft->max_write_len;
	char *buffer = local_buffer;

	if (!max_bytes)
		max_bytes = sizeof(local_buffer) - 1;
	if (nbytes >= max_bytes)
		return -E2BIG;
	/* Allocate a dynamic buffer if we need one */
	if (nbytes >= sizeof(local_buffer)) {
		buffer = kmalloc(nbytes + 1, GFP_KERNEL);
		if (buffer == NULL)
			return -ENOMEM;
	}
L
Li Zefan 已提交
2317 2318 2319 2320
	if (nbytes && copy_from_user(buffer, userbuf, nbytes)) {
		retval = -EFAULT;
		goto out;
	}
2321 2322

	buffer[nbytes] = 0;     /* nul-terminate */
K
KOSAKI Motohiro 已提交
2323
	retval = cft->write_string(cgrp, cft, strstrip(buffer));
2324 2325
	if (!retval)
		retval = nbytes;
L
Li Zefan 已提交
2326
out:
2327 2328 2329 2330 2331
	if (buffer != local_buffer)
		kfree(buffer);
	return retval;
}

2332 2333 2334 2335
static ssize_t cgroup_file_write(struct file *file, const char __user *buf,
						size_t nbytes, loff_t *ppos)
{
	struct cftype *cft = __d_cft(file->f_dentry);
2336
	struct cgroup *cgrp = __d_cgrp(file->f_dentry->d_parent);
2337

2338
	if (cgroup_is_dead(cgrp))
2339
		return -ENODEV;
2340
	if (cft->write)
2341
		return cft->write(cgrp, cft, file, buf, nbytes, ppos);
2342 2343
	if (cft->write_u64 || cft->write_s64)
		return cgroup_write_X64(cgrp, cft, file, buf, nbytes, ppos);
2344 2345
	if (cft->write_string)
		return cgroup_write_string(cgrp, cft, file, buf, nbytes, ppos);
2346 2347 2348 2349
	if (cft->trigger) {
		int ret = cft->trigger(cgrp, (unsigned int)cft->private);
		return ret ? ret : nbytes;
	}
2350
	return -EINVAL;
2351 2352
}

2353 2354 2355 2356
static ssize_t cgroup_read_u64(struct cgroup *cgrp, struct cftype *cft,
			       struct file *file,
			       char __user *buf, size_t nbytes,
			       loff_t *ppos)
2357
{
2358
	char tmp[CGROUP_LOCAL_BUFFER_SIZE];
2359
	u64 val = cft->read_u64(cgrp, cft);
2360 2361 2362 2363 2364
	int len = sprintf(tmp, "%llu\n", (unsigned long long) val);

	return simple_read_from_buffer(buf, nbytes, ppos, tmp, len);
}

2365 2366 2367 2368 2369
static ssize_t cgroup_read_s64(struct cgroup *cgrp, struct cftype *cft,
			       struct file *file,
			       char __user *buf, size_t nbytes,
			       loff_t *ppos)
{
2370
	char tmp[CGROUP_LOCAL_BUFFER_SIZE];
2371 2372 2373 2374 2375 2376
	s64 val = cft->read_s64(cgrp, cft);
	int len = sprintf(tmp, "%lld\n", (long long) val);

	return simple_read_from_buffer(buf, nbytes, ppos, tmp, len);
}

2377 2378 2379 2380
static ssize_t cgroup_file_read(struct file *file, char __user *buf,
				   size_t nbytes, loff_t *ppos)
{
	struct cftype *cft = __d_cft(file->f_dentry);
2381
	struct cgroup *cgrp = __d_cgrp(file->f_dentry->d_parent);
2382

2383
	if (cgroup_is_dead(cgrp))
2384 2385 2386
		return -ENODEV;

	if (cft->read)
2387
		return cft->read(cgrp, cft, file, buf, nbytes, ppos);
2388 2389
	if (cft->read_u64)
		return cgroup_read_u64(cgrp, cft, file, buf, nbytes, ppos);
2390 2391
	if (cft->read_s64)
		return cgroup_read_s64(cgrp, cft, file, buf, nbytes, ppos);
2392 2393 2394
	return -EINVAL;
}

2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407
/*
 * seqfile ops/methods for returning structured data. Currently just
 * supports string->u64 maps, but can be extended in future.
 */

static int cgroup_map_add(struct cgroup_map_cb *cb, const char *key, u64 value)
{
	struct seq_file *sf = cb->state;
	return seq_printf(sf, "%s %llu\n", key, (unsigned long long)value);
}

static int cgroup_seqfile_show(struct seq_file *m, void *arg)
{
2408 2409 2410 2411
	struct cfent *cfe = m->private;
	struct cftype *cft = cfe->type;
	struct cgroup *cgrp = __d_cgrp(cfe->dentry->d_parent);

2412 2413 2414 2415 2416
	if (cft->read_map) {
		struct cgroup_map_cb cb = {
			.fill = cgroup_map_add,
			.state = m,
		};
2417
		return cft->read_map(cgrp, cft, &cb);
2418
	}
2419
	return cft->read_seq_string(cgrp, cft, m);
2420 2421
}

2422
static const struct file_operations cgroup_seqfile_operations = {
2423
	.read = seq_read,
2424
	.write = cgroup_file_write,
2425
	.llseek = seq_lseek,
2426
	.release = single_release,
2427 2428
};

2429 2430 2431
static int cgroup_file_open(struct inode *inode, struct file *file)
{
	int err;
2432
	struct cfent *cfe;
2433 2434 2435 2436 2437
	struct cftype *cft;

	err = generic_file_open(inode, file);
	if (err)
		return err;
2438 2439
	cfe = __d_cfe(file->f_dentry);
	cft = cfe->type;
2440

2441
	if (cft->read_map || cft->read_seq_string) {
2442
		file->f_op = &cgroup_seqfile_operations;
2443 2444
		err = single_open(file, cgroup_seqfile_show, cfe);
	} else if (cft->open) {
2445
		err = cft->open(inode, file);
2446
	}
2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464

	return err;
}

static int cgroup_file_release(struct inode *inode, struct file *file)
{
	struct cftype *cft = __d_cft(file->f_dentry);
	if (cft->release)
		return cft->release(inode, file);
	return 0;
}

/*
 * cgroup_rename - Only allow simple rename of directories in place.
 */
static int cgroup_rename(struct inode *old_dir, struct dentry *old_dentry,
			    struct inode *new_dir, struct dentry *new_dentry)
{
2465 2466 2467 2468 2469 2470 2471 2472 2473 2474
	int ret;
	struct cgroup_name *name, *old_name;
	struct cgroup *cgrp;

	/*
	 * It's convinient to use parent dir's i_mutex to protected
	 * cgrp->name.
	 */
	lockdep_assert_held(&old_dir->i_mutex);

2475 2476 2477 2478 2479 2480
	if (!S_ISDIR(old_dentry->d_inode->i_mode))
		return -ENOTDIR;
	if (new_dentry->d_inode)
		return -EEXIST;
	if (old_dir != new_dir)
		return -EIO;
2481 2482 2483

	cgrp = __d_cgrp(old_dentry);

2484 2485 2486 2487 2488 2489 2490
	/*
	 * This isn't a proper migration and its usefulness is very
	 * limited.  Disallow if sane_behavior.
	 */
	if (cgroup_sane_behavior(cgrp))
		return -EPERM;

2491 2492 2493 2494 2495 2496 2497 2498 2499 2500
	name = cgroup_alloc_name(new_dentry);
	if (!name)
		return -ENOMEM;

	ret = simple_rename(old_dir, old_dentry, new_dir, new_dentry);
	if (ret) {
		kfree(name);
		return ret;
	}

2501
	old_name = rcu_dereference_protected(cgrp->name, true);
2502 2503 2504 2505
	rcu_assign_pointer(cgrp->name, name);

	kfree_rcu(old_name, rcu_head);
	return 0;
2506 2507
}

A
Aristeu Rozanski 已提交
2508 2509 2510 2511 2512
static struct simple_xattrs *__d_xattrs(struct dentry *dentry)
{
	if (S_ISDIR(dentry->d_inode->i_mode))
		return &__d_cgrp(dentry)->xattrs;
	else
L
Li Zefan 已提交
2513
		return &__d_cfe(dentry)->xattrs;
A
Aristeu Rozanski 已提交
2514 2515 2516 2517 2518
}

static inline int xattr_enabled(struct dentry *dentry)
{
	struct cgroupfs_root *root = dentry->d_sb->s_fs_info;
2519
	return root->flags & CGRP_ROOT_XATTR;
A
Aristeu Rozanski 已提交
2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565
}

static bool is_valid_xattr(const char *name)
{
	if (!strncmp(name, XATTR_TRUSTED_PREFIX, XATTR_TRUSTED_PREFIX_LEN) ||
	    !strncmp(name, XATTR_SECURITY_PREFIX, XATTR_SECURITY_PREFIX_LEN))
		return true;
	return false;
}

static int cgroup_setxattr(struct dentry *dentry, const char *name,
			   const void *val, size_t size, int flags)
{
	if (!xattr_enabled(dentry))
		return -EOPNOTSUPP;
	if (!is_valid_xattr(name))
		return -EINVAL;
	return simple_xattr_set(__d_xattrs(dentry), name, val, size, flags);
}

static int cgroup_removexattr(struct dentry *dentry, const char *name)
{
	if (!xattr_enabled(dentry))
		return -EOPNOTSUPP;
	if (!is_valid_xattr(name))
		return -EINVAL;
	return simple_xattr_remove(__d_xattrs(dentry), name);
}

static ssize_t cgroup_getxattr(struct dentry *dentry, const char *name,
			       void *buf, size_t size)
{
	if (!xattr_enabled(dentry))
		return -EOPNOTSUPP;
	if (!is_valid_xattr(name))
		return -EINVAL;
	return simple_xattr_get(__d_xattrs(dentry), name, buf, size);
}

static ssize_t cgroup_listxattr(struct dentry *dentry, char *buf, size_t size)
{
	if (!xattr_enabled(dentry))
		return -EOPNOTSUPP;
	return simple_xattr_list(__d_xattrs(dentry), buf, size);
}

2566
static const struct file_operations cgroup_file_operations = {
2567 2568 2569 2570 2571 2572 2573
	.read = cgroup_file_read,
	.write = cgroup_file_write,
	.llseek = generic_file_llseek,
	.open = cgroup_file_open,
	.release = cgroup_file_release,
};

A
Aristeu Rozanski 已提交
2574 2575 2576 2577 2578 2579 2580
static const struct inode_operations cgroup_file_inode_operations = {
	.setxattr = cgroup_setxattr,
	.getxattr = cgroup_getxattr,
	.listxattr = cgroup_listxattr,
	.removexattr = cgroup_removexattr,
};

2581
static const struct inode_operations cgroup_dir_inode_operations = {
2582
	.lookup = cgroup_lookup,
2583 2584 2585
	.mkdir = cgroup_mkdir,
	.rmdir = cgroup_rmdir,
	.rename = cgroup_rename,
A
Aristeu Rozanski 已提交
2586 2587 2588 2589
	.setxattr = cgroup_setxattr,
	.getxattr = cgroup_getxattr,
	.listxattr = cgroup_listxattr,
	.removexattr = cgroup_removexattr,
2590 2591
};

A
Al Viro 已提交
2592
static struct dentry *cgroup_lookup(struct inode *dir, struct dentry *dentry, unsigned int flags)
2593 2594 2595 2596 2597 2598 2599
{
	if (dentry->d_name.len > NAME_MAX)
		return ERR_PTR(-ENAMETOOLONG);
	d_add(dentry, NULL);
	return NULL;
}

2600 2601 2602 2603 2604
/*
 * Check if a file is a control file
 */
static inline struct cftype *__file_cft(struct file *file)
{
A
Al Viro 已提交
2605
	if (file_inode(file)->i_fop != &cgroup_file_operations)
2606 2607 2608 2609
		return ERR_PTR(-EINVAL);
	return __d_cft(file->f_dentry);
}

A
Al Viro 已提交
2610
static int cgroup_create_file(struct dentry *dentry, umode_t mode,
2611 2612
				struct super_block *sb)
{
2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629
	struct inode *inode;

	if (!dentry)
		return -ENOENT;
	if (dentry->d_inode)
		return -EEXIST;

	inode = cgroup_new_inode(mode, sb);
	if (!inode)
		return -ENOMEM;

	if (S_ISDIR(mode)) {
		inode->i_op = &cgroup_dir_inode_operations;
		inode->i_fop = &simple_dir_operations;

		/* start off with i_nlink == 2 (for "." entry) */
		inc_nlink(inode);
T
Tejun Heo 已提交
2630
		inc_nlink(dentry->d_parent->d_inode);
2631

2632 2633 2634 2635 2636 2637 2638 2639 2640
		/*
		 * Control reaches here with cgroup_mutex held.
		 * @inode->i_mutex should nest outside cgroup_mutex but we
		 * want to populate it immediately without releasing
		 * cgroup_mutex.  As @inode isn't visible to anyone else
		 * yet, trylock will always succeed without affecting
		 * lockdep checks.
		 */
		WARN_ON_ONCE(!mutex_trylock(&inode->i_mutex));
2641 2642 2643
	} else if (S_ISREG(mode)) {
		inode->i_size = 0;
		inode->i_fop = &cgroup_file_operations;
A
Aristeu Rozanski 已提交
2644
		inode->i_op = &cgroup_file_inode_operations;
2645 2646 2647 2648 2649 2650
	}
	d_instantiate(dentry, inode);
	dget(dentry);	/* Extra count - pin the dentry in core */
	return 0;
}

L
Li Zefan 已提交
2651 2652 2653 2654 2655 2656 2657 2658 2659
/**
 * cgroup_file_mode - deduce file mode of a control file
 * @cft: the control file in question
 *
 * returns cft->mode if ->mode is not 0
 * returns S_IRUGO|S_IWUSR if it has both a read and a write handler
 * returns S_IRUGO if it has only a read handler
 * returns S_IWUSR if it has only a write hander
 */
A
Al Viro 已提交
2660
static umode_t cgroup_file_mode(const struct cftype *cft)
L
Li Zefan 已提交
2661
{
A
Al Viro 已提交
2662
	umode_t mode = 0;
L
Li Zefan 已提交
2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677

	if (cft->mode)
		return cft->mode;

	if (cft->read || cft->read_u64 || cft->read_s64 ||
	    cft->read_map || cft->read_seq_string)
		mode |= S_IRUGO;

	if (cft->write || cft->write_u64 || cft->write_s64 ||
	    cft->write_string || cft->trigger)
		mode |= S_IWUSR;

	return mode;
}

T
Tejun Heo 已提交
2678
static int cgroup_add_file(struct cgroup *cgrp, struct cgroup_subsys *subsys,
A
Aristeu Rozanski 已提交
2679
			   struct cftype *cft)
2680
{
2681
	struct dentry *dir = cgrp->dentry;
T
Tejun Heo 已提交
2682
	struct cgroup *parent = __d_cgrp(dir);
2683
	struct dentry *dentry;
T
Tejun Heo 已提交
2684
	struct cfent *cfe;
2685
	int error;
A
Al Viro 已提交
2686
	umode_t mode;
2687
	char name[MAX_CGROUP_TYPE_NAMELEN + MAX_CFTYPE_NAME + 2] = { 0 };
2688

2689
	if (subsys && !(cgrp->root->flags & CGRP_ROOT_NOPREFIX)) {
2690 2691 2692 2693
		strcpy(name, subsys->name);
		strcat(name, ".");
	}
	strcat(name, cft->name);
T
Tejun Heo 已提交
2694

2695
	BUG_ON(!mutex_is_locked(&dir->d_inode->i_mutex));
T
Tejun Heo 已提交
2696 2697 2698 2699 2700

	cfe = kzalloc(sizeof(*cfe), GFP_KERNEL);
	if (!cfe)
		return -ENOMEM;

2701
	dentry = lookup_one_len(name, dir, strlen(name));
T
Tejun Heo 已提交
2702
	if (IS_ERR(dentry)) {
2703
		error = PTR_ERR(dentry);
T
Tejun Heo 已提交
2704 2705 2706
		goto out;
	}

2707 2708 2709 2710 2711
	cfe->type = (void *)cft;
	cfe->dentry = dentry;
	dentry->d_fsdata = cfe;
	simple_xattrs_init(&cfe->xattrs);

T
Tejun Heo 已提交
2712 2713 2714 2715 2716 2717 2718 2719 2720
	mode = cgroup_file_mode(cft);
	error = cgroup_create_file(dentry, mode | S_IFREG, cgrp->root->sb);
	if (!error) {
		list_add_tail(&cfe->node, &parent->files);
		cfe = NULL;
	}
	dput(dentry);
out:
	kfree(cfe);
2721 2722 2723
	return error;
}

2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735
/**
 * cgroup_addrm_files - add or remove files to a cgroup directory
 * @cgrp: the target cgroup
 * @subsys: the subsystem of files to be added
 * @cfts: array of cftypes to be added
 * @is_add: whether to add or remove
 *
 * Depending on @is_add, add or remove files defined by @cfts on @cgrp.
 * All @cfts should belong to @subsys.  For removals, this function never
 * fails.  If addition fails, this function doesn't remove files already
 * added.  The caller is responsible for cleaning up.
 */
2736
static int cgroup_addrm_files(struct cgroup *cgrp, struct cgroup_subsys *subsys,
A
Aristeu Rozanski 已提交
2737
			      struct cftype cfts[], bool is_add)
2738
{
A
Aristeu Rozanski 已提交
2739
	struct cftype *cft;
2740 2741 2742 2743
	int ret;

	lockdep_assert_held(&cgrp->dentry->d_inode->i_mutex);
	lockdep_assert_held(&cgroup_mutex);
T
Tejun Heo 已提交
2744 2745

	for (cft = cfts; cft->name[0] != '\0'; cft++) {
2746
		/* does cft->flags tell us to skip this file on @cgrp? */
2747 2748
		if ((cft->flags & CFTYPE_INSANE) && cgroup_sane_behavior(cgrp))
			continue;
2749 2750 2751 2752 2753
		if ((cft->flags & CFTYPE_NOT_ON_ROOT) && !cgrp->parent)
			continue;
		if ((cft->flags & CFTYPE_ONLY_ON_ROOT) && cgrp->parent)
			continue;

2754
		if (is_add) {
2755 2756
			ret = cgroup_add_file(cgrp, subsys, cft);
			if (ret) {
2757
				pr_warn("cgroup_addrm_files: failed to add %s, err=%d\n",
2758 2759 2760
					cft->name, ret);
				return ret;
			}
2761 2762
		} else {
			cgroup_rm_file(cgrp, cft);
T
Tejun Heo 已提交
2763
		}
2764
	}
2765
	return 0;
2766 2767
}

2768
static void cgroup_cfts_prepare(void)
2769
	__acquires(&cgroup_mutex)
2770 2771 2772 2773
{
	/*
	 * Thanks to the entanglement with vfs inode locking, we can't walk
	 * the existing cgroups under cgroup_mutex and create files.
2774 2775
	 * Instead, we use cgroup_for_each_descendant_pre() and drop RCU
	 * read lock before calling cgroup_addrm_files().
2776 2777 2778 2779
	 */
	mutex_lock(&cgroup_mutex);
}

2780 2781
static int cgroup_cfts_commit(struct cgroup_subsys *ss,
			      struct cftype *cfts, bool is_add)
2782
	__releases(&cgroup_mutex)
2783 2784
{
	LIST_HEAD(pending);
2785
	struct cgroup *cgrp, *root = &ss->root->top_cgroup;
2786
	struct super_block *sb = ss->root->sb;
2787 2788
	struct dentry *prev = NULL;
	struct inode *inode;
2789
	u64 update_before;
2790
	int ret = 0;
2791 2792

	/* %NULL @cfts indicates abort and don't bother if @ss isn't attached */
2793
	if (!cfts || ss->root == &cgroup_dummy_root ||
2794 2795
	    !atomic_inc_not_zero(&sb->s_active)) {
		mutex_unlock(&cgroup_mutex);
2796
		return 0;
2797 2798 2799
	}

	/*
2800 2801
	 * All cgroups which are created after we drop cgroup_mutex will
	 * have the updated set of files, so we only need to update the
2802
	 * cgroups created before the current @cgroup_serial_nr_next.
2803
	 */
2804
	update_before = cgroup_serial_nr_next;
2805 2806 2807 2808 2809 2810 2811

	mutex_unlock(&cgroup_mutex);

	/* @root always needs to be updated */
	inode = root->dentry->d_inode;
	mutex_lock(&inode->i_mutex);
	mutex_lock(&cgroup_mutex);
2812
	ret = cgroup_addrm_files(root, ss, cfts, is_add);
2813 2814 2815
	mutex_unlock(&cgroup_mutex);
	mutex_unlock(&inode->i_mutex);

2816 2817 2818
	if (ret)
		goto out_deact;

2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830
	/* add/rm files for all cgroups created before */
	rcu_read_lock();
	cgroup_for_each_descendant_pre(cgrp, root) {
		if (cgroup_is_dead(cgrp))
			continue;

		inode = cgrp->dentry->d_inode;
		dget(cgrp->dentry);
		rcu_read_unlock();

		dput(prev);
		prev = cgrp->dentry;
2831 2832 2833

		mutex_lock(&inode->i_mutex);
		mutex_lock(&cgroup_mutex);
2834
		if (cgrp->serial_nr < update_before && !cgroup_is_dead(cgrp))
2835
			ret = cgroup_addrm_files(cgrp, ss, cfts, is_add);
2836 2837 2838
		mutex_unlock(&cgroup_mutex);
		mutex_unlock(&inode->i_mutex);

2839
		rcu_read_lock();
2840 2841
		if (ret)
			break;
2842
	}
2843 2844
	rcu_read_unlock();
	dput(prev);
2845
out_deact:
2846
	deactivate_super(sb);
2847
	return ret;
2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863
}

/**
 * cgroup_add_cftypes - add an array of cftypes to a subsystem
 * @ss: target cgroup subsystem
 * @cfts: zero-length name terminated array of cftypes
 *
 * Register @cfts to @ss.  Files described by @cfts are created for all
 * existing cgroups to which @ss is attached and all future cgroups will
 * have them too.  This function can be called anytime whether @ss is
 * attached or not.
 *
 * Returns 0 on successful registration, -errno on failure.  Note that this
 * function currently returns 0 as long as @cfts registration is successful
 * even if some file creation attempts on existing cgroups fail.
 */
A
Aristeu Rozanski 已提交
2864
int cgroup_add_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
2865 2866
{
	struct cftype_set *set;
2867
	int ret;
2868 2869 2870 2871 2872 2873 2874 2875

	set = kzalloc(sizeof(*set), GFP_KERNEL);
	if (!set)
		return -ENOMEM;

	cgroup_cfts_prepare();
	set->cfts = cfts;
	list_add_tail(&set->node, &ss->cftsets);
2876 2877 2878 2879
	ret = cgroup_cfts_commit(ss, cfts, true);
	if (ret)
		cgroup_rm_cftypes(ss, cfts);
	return ret;
2880 2881 2882
}
EXPORT_SYMBOL_GPL(cgroup_add_cftypes);

2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895
/**
 * cgroup_rm_cftypes - remove an array of cftypes from a subsystem
 * @ss: target cgroup subsystem
 * @cfts: zero-length name terminated array of cftypes
 *
 * Unregister @cfts from @ss.  Files described by @cfts are removed from
 * all existing cgroups to which @ss is attached and all future cgroups
 * won't have them either.  This function can be called anytime whether @ss
 * is attached or not.
 *
 * Returns 0 on successful unregistration, -ENOENT if @cfts is not
 * registered with @ss.
 */
A
Aristeu Rozanski 已提交
2896
int cgroup_rm_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
2897 2898 2899 2900 2901 2902 2903
{
	struct cftype_set *set;

	cgroup_cfts_prepare();

	list_for_each_entry(set, &ss->cftsets, node) {
		if (set->cfts == cfts) {
2904 2905
			list_del(&set->node);
			kfree(set);
2906 2907 2908 2909 2910 2911 2912 2913 2914
			cgroup_cfts_commit(ss, cfts, false);
			return 0;
		}
	}

	cgroup_cfts_commit(ss, NULL, false);
	return -ENOENT;
}

L
Li Zefan 已提交
2915 2916 2917 2918 2919 2920
/**
 * cgroup_task_count - count the number of tasks in a cgroup.
 * @cgrp: the cgroup in question
 *
 * Return the number of tasks in the cgroup.
 */
2921
int cgroup_task_count(const struct cgroup *cgrp)
2922 2923
{
	int count = 0;
2924
	struct cgrp_cset_link *link;
2925 2926

	read_lock(&css_set_lock);
2927 2928
	list_for_each_entry(link, &cgrp->cset_links, cset_link)
		count += atomic_read(&link->cset->refcount);
2929
	read_unlock(&css_set_lock);
2930 2931 2932
	return count;
}

2933 2934 2935 2936
/*
 * Advance a list_head iterator.  The iterator should be positioned at
 * the start of a css_set
 */
2937
static void cgroup_advance_iter(struct cgroup *cgrp, struct cgroup_iter *it)
2938
{
2939 2940
	struct list_head *l = it->cset_link;
	struct cgrp_cset_link *link;
2941
	struct css_set *cset;
2942 2943 2944 2945

	/* Advance to the next non-empty css_set */
	do {
		l = l->next;
2946 2947
		if (l == &cgrp->cset_links) {
			it->cset_link = NULL;
2948 2949
			return;
		}
2950 2951
		link = list_entry(l, struct cgrp_cset_link, cset_link);
		cset = link->cset;
2952
	} while (list_empty(&cset->tasks));
2953
	it->cset_link = l;
2954
	it->task = cset->tasks.next;
2955 2956
}

2957 2958 2959 2960 2961 2962
/*
 * To reduce the fork() overhead for systems that are not actually
 * using their cgroups capability, we don't maintain the lists running
 * through each css_set to its tasks until we see the list actually
 * used - in other words after the first call to cgroup_iter_start().
 */
2963
static void cgroup_enable_task_cg_lists(void)
2964 2965 2966 2967
{
	struct task_struct *p, *g;
	write_lock(&css_set_lock);
	use_task_css_set_links = 1;
2968 2969 2970 2971 2972 2973 2974 2975
	/*
	 * We need tasklist_lock because RCU is not safe against
	 * while_each_thread(). Besides, a forking task that has passed
	 * cgroup_post_fork() without seeing use_task_css_set_links = 1
	 * is not guaranteed to have its child immediately visible in the
	 * tasklist if we walk through it with RCU.
	 */
	read_lock(&tasklist_lock);
2976 2977
	do_each_thread(g, p) {
		task_lock(p);
2978 2979 2980 2981 2982 2983
		/*
		 * We should check if the process is exiting, otherwise
		 * it will race with cgroup_exit() in that the list
		 * entry won't be deleted though the process has exited.
		 */
		if (!(p->flags & PF_EXITING) && list_empty(&p->cg_list))
2984
			list_add(&p->cg_list, &task_css_set(p)->tasks);
2985 2986
		task_unlock(p);
	} while_each_thread(g, p);
2987
	read_unlock(&tasklist_lock);
2988 2989 2990
	write_unlock(&css_set_lock);
}

2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008
/**
 * cgroup_next_sibling - find the next sibling of a given cgroup
 * @pos: the current cgroup
 *
 * This function returns the next sibling of @pos and should be called
 * under RCU read lock.  The only requirement is that @pos is accessible.
 * The next sibling is guaranteed to be returned regardless of @pos's
 * state.
 */
struct cgroup *cgroup_next_sibling(struct cgroup *pos)
{
	struct cgroup *next;

	WARN_ON_ONCE(!rcu_read_lock_held());

	/*
	 * @pos could already have been removed.  Once a cgroup is removed,
	 * its ->sibling.next is no longer updated when its next sibling
3009 3010 3011 3012 3013 3014 3015
	 * changes.  As CGRP_DEAD assertion is serialized and happens
	 * before the cgroup is taken off the ->sibling list, if we see it
	 * unasserted, it's guaranteed that the next sibling hasn't
	 * finished its grace period even if it's already removed, and thus
	 * safe to dereference from this RCU critical section.  If
	 * ->sibling.next is inaccessible, cgroup_is_dead() is guaranteed
	 * to be visible as %true here.
3016
	 */
3017
	if (likely(!cgroup_is_dead(pos))) {
3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040
		next = list_entry_rcu(pos->sibling.next, struct cgroup, sibling);
		if (&next->sibling != &pos->parent->children)
			return next;
		return NULL;
	}

	/*
	 * Can't dereference the next pointer.  Each cgroup is given a
	 * monotonically increasing unique serial number and always
	 * appended to the sibling list, so the next one can be found by
	 * walking the parent's children until we see a cgroup with higher
	 * serial number than @pos's.
	 *
	 * While this path can be slow, it's taken only when either the
	 * current cgroup is removed or iteration and removal race.
	 */
	list_for_each_entry_rcu(next, &pos->parent->children, sibling)
		if (next->serial_nr > pos->serial_nr)
			return next;
	return NULL;
}
EXPORT_SYMBOL_GPL(cgroup_next_sibling);

3041 3042 3043 3044 3045 3046 3047
/**
 * cgroup_next_descendant_pre - find the next descendant for pre-order walk
 * @pos: the current position (%NULL to initiate traversal)
 * @cgroup: cgroup whose descendants to walk
 *
 * To be used by cgroup_for_each_descendant_pre().  Find the next
 * descendant to visit for pre-order traversal of @cgroup's descendants.
3048 3049 3050 3051 3052
 *
 * While this function requires RCU read locking, it doesn't require the
 * whole traversal to be contained in a single RCU critical section.  This
 * function will return the correct next descendant as long as both @pos
 * and @cgroup are accessible and @pos is a descendant of @cgroup.
3053 3054 3055 3056 3057 3058 3059 3060 3061
 */
struct cgroup *cgroup_next_descendant_pre(struct cgroup *pos,
					  struct cgroup *cgroup)
{
	struct cgroup *next;

	WARN_ON_ONCE(!rcu_read_lock_held());

	/* if first iteration, pretend we just visited @cgroup */
3062
	if (!pos)
3063 3064 3065 3066 3067 3068 3069 3070
		pos = cgroup;

	/* visit the first child if exists */
	next = list_first_or_null_rcu(&pos->children, struct cgroup, sibling);
	if (next)
		return next;

	/* no child, visit my or the closest ancestor's next sibling */
3071
	while (pos != cgroup) {
3072 3073
		next = cgroup_next_sibling(pos);
		if (next)
3074 3075
			return next;
		pos = pos->parent;
3076
	}
3077 3078 3079 3080 3081

	return NULL;
}
EXPORT_SYMBOL_GPL(cgroup_next_descendant_pre);

3082 3083 3084 3085 3086 3087 3088
/**
 * cgroup_rightmost_descendant - return the rightmost descendant of a cgroup
 * @pos: cgroup of interest
 *
 * Return the rightmost descendant of @pos.  If there's no descendant,
 * @pos is returned.  This can be used during pre-order traversal to skip
 * subtree of @pos.
3089 3090 3091 3092 3093
 *
 * While this function requires RCU read locking, it doesn't require the
 * whole traversal to be contained in a single RCU critical section.  This
 * function will return the correct rightmost descendant as long as @pos is
 * accessible.
3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112
 */
struct cgroup *cgroup_rightmost_descendant(struct cgroup *pos)
{
	struct cgroup *last, *tmp;

	WARN_ON_ONCE(!rcu_read_lock_held());

	do {
		last = pos;
		/* ->prev isn't RCU safe, walk ->next till the end */
		pos = NULL;
		list_for_each_entry_rcu(tmp, &last->children, sibling)
			pos = tmp;
	} while (pos);

	return last;
}
EXPORT_SYMBOL_GPL(cgroup_rightmost_descendant);

3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132
static struct cgroup *cgroup_leftmost_descendant(struct cgroup *pos)
{
	struct cgroup *last;

	do {
		last = pos;
		pos = list_first_or_null_rcu(&pos->children, struct cgroup,
					     sibling);
	} while (pos);

	return last;
}

/**
 * cgroup_next_descendant_post - find the next descendant for post-order walk
 * @pos: the current position (%NULL to initiate traversal)
 * @cgroup: cgroup whose descendants to walk
 *
 * To be used by cgroup_for_each_descendant_post().  Find the next
 * descendant to visit for post-order traversal of @cgroup's descendants.
3133 3134 3135 3136 3137
 *
 * While this function requires RCU read locking, it doesn't require the
 * whole traversal to be contained in a single RCU critical section.  This
 * function will return the correct next descendant as long as both @pos
 * and @cgroup are accessible and @pos is a descendant of @cgroup.
3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152
 */
struct cgroup *cgroup_next_descendant_post(struct cgroup *pos,
					   struct cgroup *cgroup)
{
	struct cgroup *next;

	WARN_ON_ONCE(!rcu_read_lock_held());

	/* if first iteration, visit the leftmost descendant */
	if (!pos) {
		next = cgroup_leftmost_descendant(cgroup);
		return next != cgroup ? next : NULL;
	}

	/* if there's an unvisited sibling, visit its leftmost descendant */
3153 3154
	next = cgroup_next_sibling(pos);
	if (next)
3155 3156 3157 3158 3159 3160 3161 3162
		return cgroup_leftmost_descendant(next);

	/* no sibling left, visit parent */
	next = pos->parent;
	return next != cgroup ? next : NULL;
}
EXPORT_SYMBOL_GPL(cgroup_next_descendant_post);

3163
void cgroup_iter_start(struct cgroup *cgrp, struct cgroup_iter *it)
3164
	__acquires(css_set_lock)
3165 3166 3167 3168 3169 3170
{
	/*
	 * The first time anyone tries to iterate across a cgroup,
	 * we need to enable the list linking each css_set to its
	 * tasks, and fix up all existing tasks.
	 */
3171 3172 3173
	if (!use_task_css_set_links)
		cgroup_enable_task_cg_lists();

3174
	read_lock(&css_set_lock);
3175
	it->cset_link = &cgrp->cset_links;
3176
	cgroup_advance_iter(cgrp, it);
3177 3178
}

3179
struct task_struct *cgroup_iter_next(struct cgroup *cgrp,
3180 3181 3182 3183
					struct cgroup_iter *it)
{
	struct task_struct *res;
	struct list_head *l = it->task;
3184
	struct cgrp_cset_link *link;
3185 3186

	/* If the iterator cg is NULL, we have no tasks */
3187
	if (!it->cset_link)
3188 3189 3190 3191
		return NULL;
	res = list_entry(l, struct task_struct, cg_list);
	/* Advance iterator to find next entry */
	l = l->next;
3192 3193
	link = list_entry(it->cset_link, struct cgrp_cset_link, cset_link);
	if (l == &link->cset->tasks) {
3194 3195
		/* We reached the end of this task list - move on to
		 * the next cg_cgroup_link */
3196
		cgroup_advance_iter(cgrp, it);
3197 3198 3199 3200 3201 3202
	} else {
		it->task = l;
	}
	return res;
}

3203
void cgroup_iter_end(struct cgroup *cgrp, struct cgroup_iter *it)
3204
	__releases(css_set_lock)
3205 3206 3207 3208
{
	read_unlock(&css_set_lock);
}

3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307
static inline int started_after_time(struct task_struct *t1,
				     struct timespec *time,
				     struct task_struct *t2)
{
	int start_diff = timespec_compare(&t1->start_time, time);
	if (start_diff > 0) {
		return 1;
	} else if (start_diff < 0) {
		return 0;
	} else {
		/*
		 * Arbitrarily, if two processes started at the same
		 * time, we'll say that the lower pointer value
		 * started first. Note that t2 may have exited by now
		 * so this may not be a valid pointer any longer, but
		 * that's fine - it still serves to distinguish
		 * between two tasks started (effectively) simultaneously.
		 */
		return t1 > t2;
	}
}

/*
 * This function is a callback from heap_insert() and is used to order
 * the heap.
 * In this case we order the heap in descending task start time.
 */
static inline int started_after(void *p1, void *p2)
{
	struct task_struct *t1 = p1;
	struct task_struct *t2 = p2;
	return started_after_time(t1, &t2->start_time, t2);
}

/**
 * cgroup_scan_tasks - iterate though all the tasks in a cgroup
 * @scan: struct cgroup_scanner containing arguments for the scan
 *
 * Arguments include pointers to callback functions test_task() and
 * process_task().
 * Iterate through all the tasks in a cgroup, calling test_task() for each,
 * and if it returns true, call process_task() for it also.
 * The test_task pointer may be NULL, meaning always true (select all tasks).
 * Effectively duplicates cgroup_iter_{start,next,end}()
 * but does not lock css_set_lock for the call to process_task().
 * The struct cgroup_scanner may be embedded in any structure of the caller's
 * creation.
 * It is guaranteed that process_task() will act on every task that
 * is a member of the cgroup for the duration of this call. This
 * function may or may not call process_task() for tasks that exit
 * or move to a different cgroup during the call, or are forked or
 * move into the cgroup during the call.
 *
 * Note that test_task() may be called with locks held, and may in some
 * situations be called multiple times for the same task, so it should
 * be cheap.
 * If the heap pointer in the struct cgroup_scanner is non-NULL, a heap has been
 * pre-allocated and will be used for heap operations (and its "gt" member will
 * be overwritten), else a temporary heap will be used (allocation of which
 * may cause this function to fail).
 */
int cgroup_scan_tasks(struct cgroup_scanner *scan)
{
	int retval, i;
	struct cgroup_iter it;
	struct task_struct *p, *dropped;
	/* Never dereference latest_task, since it's not refcounted */
	struct task_struct *latest_task = NULL;
	struct ptr_heap tmp_heap;
	struct ptr_heap *heap;
	struct timespec latest_time = { 0, 0 };

	if (scan->heap) {
		/* The caller supplied our heap and pre-allocated its memory */
		heap = scan->heap;
		heap->gt = &started_after;
	} else {
		/* We need to allocate our own heap memory */
		heap = &tmp_heap;
		retval = heap_init(heap, PAGE_SIZE, GFP_KERNEL, &started_after);
		if (retval)
			/* cannot allocate the heap */
			return retval;
	}

 again:
	/*
	 * Scan tasks in the cgroup, using the scanner's "test_task" callback
	 * to determine which are of interest, and using the scanner's
	 * "process_task" callback to process any of them that need an update.
	 * Since we don't want to hold any locks during the task updates,
	 * gather tasks to be processed in a heap structure.
	 * The heap is sorted by descending task start time.
	 * If the statically-sized heap fills up, we overflow tasks that
	 * started later, and in future iterations only consider tasks that
	 * started after the latest task in the previous pass. This
	 * guarantees forward progress and that we don't miss any tasks.
	 */
	heap->size = 0;
L
Li Zefan 已提交
3308 3309
	cgroup_iter_start(scan->cgrp, &it);
	while ((p = cgroup_iter_next(scan->cgrp, &it))) {
3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341
		/*
		 * Only affect tasks that qualify per the caller's callback,
		 * if he provided one
		 */
		if (scan->test_task && !scan->test_task(p, scan))
			continue;
		/*
		 * Only process tasks that started after the last task
		 * we processed
		 */
		if (!started_after_time(p, &latest_time, latest_task))
			continue;
		dropped = heap_insert(heap, p);
		if (dropped == NULL) {
			/*
			 * The new task was inserted; the heap wasn't
			 * previously full
			 */
			get_task_struct(p);
		} else if (dropped != p) {
			/*
			 * The new task was inserted, and pushed out a
			 * different task
			 */
			get_task_struct(p);
			put_task_struct(dropped);
		}
		/*
		 * Else the new task was newer than anything already in
		 * the heap and wasn't inserted
		 */
	}
L
Li Zefan 已提交
3342
	cgroup_iter_end(scan->cgrp, &it);
3343 3344 3345

	if (heap->size) {
		for (i = 0; i < heap->size; i++) {
3346
			struct task_struct *q = heap->ptrs[i];
3347
			if (i == 0) {
3348 3349
				latest_time = q->start_time;
				latest_task = q;
3350 3351
			}
			/* Process the task per the caller's callback */
3352 3353
			scan->process_task(q, scan);
			put_task_struct(q);
3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368
		}
		/*
		 * If we had to process any tasks at all, scan again
		 * in case some of them were in the middle of forking
		 * children that didn't get processed.
		 * Not the most efficient way to do it, but it avoids
		 * having to take callback_mutex in the fork path
		 */
		goto again;
	}
	if (heap == &tmp_heap)
		heap_free(&tmp_heap);
	return 0;
}

3369 3370 3371 3372 3373
static void cgroup_transfer_one_task(struct task_struct *task,
				     struct cgroup_scanner *scan)
{
	struct cgroup *new_cgroup = scan->data;

T
Tejun Heo 已提交
3374
	mutex_lock(&cgroup_mutex);
3375
	cgroup_attach_task(new_cgroup, task, false);
T
Tejun Heo 已提交
3376
	mutex_unlock(&cgroup_mutex);
3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387
}

/**
 * cgroup_trasnsfer_tasks - move tasks from one cgroup to another
 * @to: cgroup to which the tasks will be moved
 * @from: cgroup in which the tasks currently reside
 */
int cgroup_transfer_tasks(struct cgroup *to, struct cgroup *from)
{
	struct cgroup_scanner scan;

L
Li Zefan 已提交
3388
	scan.cgrp = from;
3389 3390 3391 3392 3393 3394 3395 3396
	scan.test_task = NULL; /* select all tasks in cgroup */
	scan.process_task = cgroup_transfer_one_task;
	scan.heap = NULL;
	scan.data = to;

	return cgroup_scan_tasks(&scan);
}

3397
/*
3398
 * Stuff for reading the 'tasks'/'procs' files.
3399 3400 3401 3402 3403 3404 3405 3406
 *
 * Reading this file can return large amounts of data if a cgroup has
 * *lots* of attached tasks. So it may need several calls to read(),
 * but we cannot guarantee that the information we produce is correct
 * unless we produce it entirely atomically.
 *
 */

3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438
/* which pidlist file are we talking about? */
enum cgroup_filetype {
	CGROUP_FILE_PROCS,
	CGROUP_FILE_TASKS,
};

/*
 * A pidlist is a list of pids that virtually represents the contents of one
 * of the cgroup files ("procs" or "tasks"). We keep a list of such pidlists,
 * a pair (one each for procs, tasks) for each pid namespace that's relevant
 * to the cgroup.
 */
struct cgroup_pidlist {
	/*
	 * used to find which pidlist is wanted. doesn't change as long as
	 * this particular list stays in the list.
	*/
	struct { enum cgroup_filetype type; struct pid_namespace *ns; } key;
	/* array of xids */
	pid_t *list;
	/* how many elements the above list has */
	int length;
	/* how many files are using the current array */
	int use_count;
	/* each of these stored in a list by its cgroup */
	struct list_head links;
	/* pointer to the cgroup we belong to, for list removal purposes */
	struct cgroup *owner;
	/* protects the other fields */
	struct rw_semaphore mutex;
};

3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459
/*
 * The following two functions "fix" the issue where there are more pids
 * than kmalloc will give memory for; in such cases, we use vmalloc/vfree.
 * TODO: replace with a kernel-wide solution to this problem
 */
#define PIDLIST_TOO_LARGE(c) ((c) * sizeof(pid_t) > (PAGE_SIZE * 2))
static void *pidlist_allocate(int count)
{
	if (PIDLIST_TOO_LARGE(count))
		return vmalloc(count * sizeof(pid_t));
	else
		return kmalloc(count * sizeof(pid_t), GFP_KERNEL);
}
static void pidlist_free(void *p)
{
	if (is_vmalloc_addr(p))
		vfree(p);
	else
		kfree(p);
}

3460
/*
3461
 * pidlist_uniq - given a kmalloc()ed list, strip out all duplicate entries
3462
 * Returns the number of unique elements.
3463
 */
3464
static int pidlist_uniq(pid_t *list, int length)
3465
{
3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494
	int src, dest = 1;

	/*
	 * we presume the 0th element is unique, so i starts at 1. trivial
	 * edge cases first; no work needs to be done for either
	 */
	if (length == 0 || length == 1)
		return length;
	/* src and dest walk down the list; dest counts unique elements */
	for (src = 1; src < length; src++) {
		/* find next unique element */
		while (list[src] == list[src-1]) {
			src++;
			if (src == length)
				goto after;
		}
		/* dest always points to where the next unique element goes */
		list[dest] = list[src];
		dest++;
	}
after:
	return dest;
}

static int cmppid(const void *a, const void *b)
{
	return *(pid_t *)a - *(pid_t *)b;
}

3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505
/*
 * find the appropriate pidlist for our purpose (given procs vs tasks)
 * returns with the lock on that pidlist already held, and takes care
 * of the use count, or returns NULL with no locks held if we're out of
 * memory.
 */
static struct cgroup_pidlist *cgroup_pidlist_find(struct cgroup *cgrp,
						  enum cgroup_filetype type)
{
	struct cgroup_pidlist *l;
	/* don't need task_nsproxy() if we're looking at ourself */
3506
	struct pid_namespace *ns = task_active_pid_ns(current);
3507

3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523
	/*
	 * We can't drop the pidlist_mutex before taking the l->mutex in case
	 * the last ref-holder is trying to remove l from the list at the same
	 * time. Holding the pidlist_mutex precludes somebody taking whichever
	 * list we find out from under us - compare release_pid_array().
	 */
	mutex_lock(&cgrp->pidlist_mutex);
	list_for_each_entry(l, &cgrp->pidlists, links) {
		if (l->key.type == type && l->key.ns == ns) {
			/* make sure l doesn't vanish out from under us */
			down_write(&l->mutex);
			mutex_unlock(&cgrp->pidlist_mutex);
			return l;
		}
	}
	/* entry not found; create a new one */
3524
	l = kzalloc(sizeof(struct cgroup_pidlist), GFP_KERNEL);
3525 3526 3527 3528 3529 3530 3531
	if (!l) {
		mutex_unlock(&cgrp->pidlist_mutex);
		return l;
	}
	init_rwsem(&l->mutex);
	down_write(&l->mutex);
	l->key.type = type;
3532
	l->key.ns = get_pid_ns(ns);
3533 3534 3535 3536 3537 3538
	l->owner = cgrp;
	list_add(&l->links, &cgrp->pidlists);
	mutex_unlock(&cgrp->pidlist_mutex);
	return l;
}

3539 3540 3541
/*
 * Load a cgroup's pidarray with either procs' tgids or tasks' pids
 */
3542 3543
static int pidlist_array_load(struct cgroup *cgrp, enum cgroup_filetype type,
			      struct cgroup_pidlist **lp)
3544 3545 3546 3547
{
	pid_t *array;
	int length;
	int pid, n = 0; /* used for populating the array */
3548 3549
	struct cgroup_iter it;
	struct task_struct *tsk;
3550 3551 3552 3553 3554 3555 3556 3557 3558
	struct cgroup_pidlist *l;

	/*
	 * If cgroup gets more users after we read count, we won't have
	 * enough space - tough.  This race is indistinguishable to the
	 * caller from the case that the additional cgroup users didn't
	 * show up until sometime later on.
	 */
	length = cgroup_task_count(cgrp);
3559
	array = pidlist_allocate(length);
3560 3561 3562
	if (!array)
		return -ENOMEM;
	/* now, populate the array */
3563 3564
	cgroup_iter_start(cgrp, &it);
	while ((tsk = cgroup_iter_next(cgrp, &it))) {
3565
		if (unlikely(n == length))
3566
			break;
3567
		/* get tgid or pid for procs or tasks file respectively */
3568 3569 3570 3571
		if (type == CGROUP_FILE_PROCS)
			pid = task_tgid_vnr(tsk);
		else
			pid = task_pid_vnr(tsk);
3572 3573
		if (pid > 0) /* make sure to only use valid results */
			array[n++] = pid;
3574
	}
3575
	cgroup_iter_end(cgrp, &it);
3576 3577 3578
	length = n;
	/* now sort & (if procs) strip out duplicates */
	sort(array, length, sizeof(pid_t), cmppid, NULL);
3579
	if (type == CGROUP_FILE_PROCS)
3580
		length = pidlist_uniq(array, length);
3581 3582
	l = cgroup_pidlist_find(cgrp, type);
	if (!l) {
3583
		pidlist_free(array);
3584
		return -ENOMEM;
3585
	}
3586
	/* store array, freeing old if necessary - lock already held */
3587
	pidlist_free(l->list);
3588 3589 3590 3591
	l->list = array;
	l->length = length;
	l->use_count++;
	up_write(&l->mutex);
3592
	*lp = l;
3593
	return 0;
3594 3595
}

B
Balbir Singh 已提交
3596
/**
L
Li Zefan 已提交
3597
 * cgroupstats_build - build and fill cgroupstats
B
Balbir Singh 已提交
3598 3599 3600
 * @stats: cgroupstats to fill information into
 * @dentry: A dentry entry belonging to the cgroup for which stats have
 * been requested.
L
Li Zefan 已提交
3601 3602 3603
 *
 * Build and fill cgroupstats so that taskstats can export it to user
 * space.
B
Balbir Singh 已提交
3604 3605 3606 3607
 */
int cgroupstats_build(struct cgroupstats *stats, struct dentry *dentry)
{
	int ret = -EINVAL;
3608
	struct cgroup *cgrp;
B
Balbir Singh 已提交
3609 3610
	struct cgroup_iter it;
	struct task_struct *tsk;
3611

B
Balbir Singh 已提交
3612
	/*
3613 3614
	 * Validate dentry by checking the superblock operations,
	 * and make sure it's a directory.
B
Balbir Singh 已提交
3615
	 */
3616 3617
	if (dentry->d_sb->s_op != &cgroup_ops ||
	    !S_ISDIR(dentry->d_inode->i_mode))
B
Balbir Singh 已提交
3618 3619 3620
		 goto err;

	ret = 0;
3621
	cgrp = dentry->d_fsdata;
B
Balbir Singh 已提交
3622

3623 3624
	cgroup_iter_start(cgrp, &it);
	while ((tsk = cgroup_iter_next(cgrp, &it))) {
B
Balbir Singh 已提交
3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643
		switch (tsk->state) {
		case TASK_RUNNING:
			stats->nr_running++;
			break;
		case TASK_INTERRUPTIBLE:
			stats->nr_sleeping++;
			break;
		case TASK_UNINTERRUPTIBLE:
			stats->nr_uninterruptible++;
			break;
		case TASK_STOPPED:
			stats->nr_stopped++;
			break;
		default:
			if (delayacct_is_task_waiting_on_io(tsk))
				stats->nr_io_wait++;
			break;
		}
	}
3644
	cgroup_iter_end(cgrp, &it);
B
Balbir Singh 已提交
3645 3646 3647 3648 3649

err:
	return ret;
}

3650

3651
/*
3652
 * seq_file methods for the tasks/procs files. The seq_file position is the
3653
 * next pid to display; the seq_file iterator is a pointer to the pid
3654
 * in the cgroup->l->list array.
3655
 */
3656

3657
static void *cgroup_pidlist_start(struct seq_file *s, loff_t *pos)
3658
{
3659 3660 3661 3662 3663 3664
	/*
	 * Initially we receive a position value that corresponds to
	 * one more than the last pid shown (or 0 on the first call or
	 * after a seek to the start). Use a binary-search to find the
	 * next pid to display, if any
	 */
3665
	struct cgroup_pidlist *l = s->private;
3666 3667 3668
	int index = 0, pid = *pos;
	int *iter;

3669
	down_read(&l->mutex);
3670
	if (pid) {
3671
		int end = l->length;
S
Stephen Rothwell 已提交
3672

3673 3674
		while (index < end) {
			int mid = (index + end) / 2;
3675
			if (l->list[mid] == pid) {
3676 3677
				index = mid;
				break;
3678
			} else if (l->list[mid] <= pid)
3679 3680 3681 3682 3683 3684
				index = mid + 1;
			else
				end = mid;
		}
	}
	/* If we're off the end of the array, we're done */
3685
	if (index >= l->length)
3686 3687
		return NULL;
	/* Update the abstract position to be the actual pid that we found */
3688
	iter = l->list + index;
3689 3690 3691 3692
	*pos = *iter;
	return iter;
}

3693
static void cgroup_pidlist_stop(struct seq_file *s, void *v)
3694
{
3695 3696
	struct cgroup_pidlist *l = s->private;
	up_read(&l->mutex);
3697 3698
}

3699
static void *cgroup_pidlist_next(struct seq_file *s, void *v, loff_t *pos)
3700
{
3701 3702 3703
	struct cgroup_pidlist *l = s->private;
	pid_t *p = v;
	pid_t *end = l->list + l->length;
3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716
	/*
	 * Advance to the next pid in the array. If this goes off the
	 * end, we're done
	 */
	p++;
	if (p >= end) {
		return NULL;
	} else {
		*pos = *p;
		return p;
	}
}

3717
static int cgroup_pidlist_show(struct seq_file *s, void *v)
3718 3719 3720
{
	return seq_printf(s, "%d\n", *(int *)v);
}
3721

3722 3723 3724 3725 3726 3727 3728 3729 3730
/*
 * seq_operations functions for iterating on pidlists through seq_file -
 * independent of whether it's tasks or procs
 */
static const struct seq_operations cgroup_pidlist_seq_operations = {
	.start = cgroup_pidlist_start,
	.stop = cgroup_pidlist_stop,
	.next = cgroup_pidlist_next,
	.show = cgroup_pidlist_show,
3731 3732
};

3733
static void cgroup_release_pid_array(struct cgroup_pidlist *l)
3734
{
3735 3736 3737 3738 3739 3740 3741
	/*
	 * the case where we're the last user of this particular pidlist will
	 * have us remove it from the cgroup's list, which entails taking the
	 * mutex. since in pidlist_find the pidlist->lock depends on cgroup->
	 * pidlist_mutex, we have to take pidlist_mutex first.
	 */
	mutex_lock(&l->owner->pidlist_mutex);
3742 3743 3744
	down_write(&l->mutex);
	BUG_ON(!l->use_count);
	if (!--l->use_count) {
3745 3746 3747
		/* we're the last user if refcount is 0; remove and free */
		list_del(&l->links);
		mutex_unlock(&l->owner->pidlist_mutex);
3748
		pidlist_free(l->list);
3749 3750 3751 3752
		put_pid_ns(l->key.ns);
		up_write(&l->mutex);
		kfree(l);
		return;
3753
	}
3754
	mutex_unlock(&l->owner->pidlist_mutex);
3755
	up_write(&l->mutex);
3756 3757
}

3758
static int cgroup_pidlist_release(struct inode *inode, struct file *file)
3759
{
3760
	struct cgroup_pidlist *l;
3761 3762
	if (!(file->f_mode & FMODE_READ))
		return 0;
3763 3764 3765 3766 3767 3768
	/*
	 * the seq_file will only be initialized if the file was opened for
	 * reading; hence we check if it's not null only in that case.
	 */
	l = ((struct seq_file *)file->private_data)->private;
	cgroup_release_pid_array(l);
3769 3770 3771
	return seq_release(inode, file);
}

3772
static const struct file_operations cgroup_pidlist_operations = {
3773 3774 3775
	.read = seq_read,
	.llseek = seq_lseek,
	.write = cgroup_file_write,
3776
	.release = cgroup_pidlist_release,
3777 3778
};

3779
/*
3780 3781 3782
 * The following functions handle opens on a file that displays a pidlist
 * (tasks or procs). Prepare an array of the process/thread IDs of whoever's
 * in the cgroup.
3783
 */
3784
/* helper function for the two below it */
3785
static int cgroup_pidlist_open(struct file *file, enum cgroup_filetype type)
3786
{
3787
	struct cgroup *cgrp = __d_cgrp(file->f_dentry->d_parent);
3788
	struct cgroup_pidlist *l;
3789
	int retval;
3790

3791
	/* Nothing to do for write-only files */
3792 3793 3794
	if (!(file->f_mode & FMODE_READ))
		return 0;

3795
	/* have the array populated */
3796
	retval = pidlist_array_load(cgrp, type, &l);
3797 3798 3799 3800
	if (retval)
		return retval;
	/* configure file information */
	file->f_op = &cgroup_pidlist_operations;
3801

3802
	retval = seq_open(file, &cgroup_pidlist_seq_operations);
3803
	if (retval) {
3804
		cgroup_release_pid_array(l);
3805
		return retval;
3806
	}
3807
	((struct seq_file *)file->private_data)->private = l;
3808 3809
	return 0;
}
3810 3811
static int cgroup_tasks_open(struct inode *unused, struct file *file)
{
3812
	return cgroup_pidlist_open(file, CGROUP_FILE_TASKS);
3813 3814 3815
}
static int cgroup_procs_open(struct inode *unused, struct file *file)
{
3816
	return cgroup_pidlist_open(file, CGROUP_FILE_PROCS);
3817
}
3818

3819
static u64 cgroup_read_notify_on_release(struct cgroup *cgrp,
3820 3821
					    struct cftype *cft)
{
3822
	return notify_on_release(cgrp);
3823 3824
}

3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836
static int cgroup_write_notify_on_release(struct cgroup *cgrp,
					  struct cftype *cft,
					  u64 val)
{
	clear_bit(CGRP_RELEASABLE, &cgrp->flags);
	if (val)
		set_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
	else
		clear_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
	return 0;
}

3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853
/*
 * When dput() is called asynchronously, if umount has been done and
 * then deactivate_super() in cgroup_free_fn() kills the superblock,
 * there's a small window that vfs will see the root dentry with non-zero
 * refcnt and trigger BUG().
 *
 * That's why we hold a reference before dput() and drop it right after.
 */
static void cgroup_dput(struct cgroup *cgrp)
{
	struct super_block *sb = cgrp->root->sb;

	atomic_inc(&sb->s_active);
	dput(cgrp->dentry);
	deactivate_super(sb);
}

3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864
/*
 * Unregister event and free resources.
 *
 * Gets called from workqueue.
 */
static void cgroup_event_remove(struct work_struct *work)
{
	struct cgroup_event *event = container_of(work, struct cgroup_event,
			remove);
	struct cgroup *cgrp = event->cgrp;

3865 3866
	remove_wait_queue(event->wqh, &event->wait);

3867 3868
	event->cft->unregister_event(cgrp, event->cft, event->eventfd);

3869 3870 3871
	/* Notify userspace the event is going away. */
	eventfd_signal(event->eventfd, 1);

3872 3873
	eventfd_ctx_put(event->eventfd);
	kfree(event);
3874
	cgroup_dput(cgrp);
3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891
}

/*
 * Gets called on POLLHUP on eventfd when user closes it.
 *
 * Called with wqh->lock held and interrupts disabled.
 */
static int cgroup_event_wake(wait_queue_t *wait, unsigned mode,
		int sync, void *key)
{
	struct cgroup_event *event = container_of(wait,
			struct cgroup_event, wait);
	struct cgroup *cgrp = event->cgrp;
	unsigned long flags = (unsigned long)key;

	if (flags & POLLHUP) {
		/*
3892 3893 3894 3895 3896 3897 3898
		 * If the event has been detached at cgroup removal, we
		 * can simply return knowing the other side will cleanup
		 * for us.
		 *
		 * We can't race against event freeing since the other
		 * side will require wqh->lock via remove_wait_queue(),
		 * which we hold.
3899
		 */
3900 3901 3902 3903 3904 3905 3906 3907 3908 3909
		spin_lock(&cgrp->event_list_lock);
		if (!list_empty(&event->list)) {
			list_del_init(&event->list);
			/*
			 * We are in atomic context, but cgroup_event_remove()
			 * may sleep, so we have to call it in workqueue.
			 */
			schedule_work(&event->remove);
		}
		spin_unlock(&cgrp->event_list_lock);
3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934
	}

	return 0;
}

static void cgroup_event_ptable_queue_proc(struct file *file,
		wait_queue_head_t *wqh, poll_table *pt)
{
	struct cgroup_event *event = container_of(pt,
			struct cgroup_event, pt);

	event->wqh = wqh;
	add_wait_queue(wqh, &event->wait);
}

/*
 * Parse input and register new cgroup event handler.
 *
 * Input must be in format '<event_fd> <control_fd> <args>'.
 * Interpretation of args is defined by control file implementation.
 */
static int cgroup_write_event_control(struct cgroup *cgrp, struct cftype *cft,
				      const char *buffer)
{
	struct cgroup_event *event = NULL;
3935
	struct cgroup *cgrp_cfile;
3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979
	unsigned int efd, cfd;
	struct file *efile = NULL;
	struct file *cfile = NULL;
	char *endp;
	int ret;

	efd = simple_strtoul(buffer, &endp, 10);
	if (*endp != ' ')
		return -EINVAL;
	buffer = endp + 1;

	cfd = simple_strtoul(buffer, &endp, 10);
	if ((*endp != ' ') && (*endp != '\0'))
		return -EINVAL;
	buffer = endp + 1;

	event = kzalloc(sizeof(*event), GFP_KERNEL);
	if (!event)
		return -ENOMEM;
	event->cgrp = cgrp;
	INIT_LIST_HEAD(&event->list);
	init_poll_funcptr(&event->pt, cgroup_event_ptable_queue_proc);
	init_waitqueue_func_entry(&event->wait, cgroup_event_wake);
	INIT_WORK(&event->remove, cgroup_event_remove);

	efile = eventfd_fget(efd);
	if (IS_ERR(efile)) {
		ret = PTR_ERR(efile);
		goto fail;
	}

	event->eventfd = eventfd_ctx_fileget(efile);
	if (IS_ERR(event->eventfd)) {
		ret = PTR_ERR(event->eventfd);
		goto fail;
	}

	cfile = fget(cfd);
	if (!cfile) {
		ret = -EBADF;
		goto fail;
	}

	/* the process need read permission on control file */
A
Al Viro 已提交
3980
	/* AV: shouldn't we check that it's been opened for read instead? */
A
Al Viro 已提交
3981
	ret = inode_permission(file_inode(cfile), MAY_READ);
3982 3983 3984 3985 3986 3987 3988 3989 3990
	if (ret < 0)
		goto fail;

	event->cft = __file_cft(cfile);
	if (IS_ERR(event->cft)) {
		ret = PTR_ERR(event->cft);
		goto fail;
	}

3991 3992 3993 3994 3995 3996 3997 3998 3999 4000
	/*
	 * The file to be monitored must be in the same cgroup as
	 * cgroup.event_control is.
	 */
	cgrp_cfile = __d_cgrp(cfile->f_dentry->d_parent);
	if (cgrp_cfile != cgrp) {
		ret = -EINVAL;
		goto fail;
	}

4001 4002 4003 4004 4005 4006 4007 4008 4009 4010
	if (!event->cft->register_event || !event->cft->unregister_event) {
		ret = -EINVAL;
		goto fail;
	}

	ret = event->cft->register_event(cgrp, event->cft,
			event->eventfd, buffer);
	if (ret)
		goto fail;

4011
	efile->f_op->poll(efile, &event->pt);
4012

4013 4014 4015 4016 4017 4018 4019
	/*
	 * Events should be removed after rmdir of cgroup directory, but before
	 * destroying subsystem state objects. Let's take reference to cgroup
	 * directory dentry to do that.
	 */
	dget(cgrp->dentry);

4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043
	spin_lock(&cgrp->event_list_lock);
	list_add(&event->list, &cgrp->event_list);
	spin_unlock(&cgrp->event_list_lock);

	fput(cfile);
	fput(efile);

	return 0;

fail:
	if (cfile)
		fput(cfile);

	if (event && event->eventfd && !IS_ERR(event->eventfd))
		eventfd_ctx_put(event->eventfd);

	if (!IS_ERR_OR_NULL(efile))
		fput(efile);

	kfree(event);

	return ret;
}

4044 4045 4046
static u64 cgroup_clone_children_read(struct cgroup *cgrp,
				    struct cftype *cft)
{
4047
	return test_bit(CGRP_CPUSET_CLONE_CHILDREN, &cgrp->flags);
4048 4049 4050 4051 4052 4053 4054
}

static int cgroup_clone_children_write(struct cgroup *cgrp,
				     struct cftype *cft,
				     u64 val)
{
	if (val)
4055
		set_bit(CGRP_CPUSET_CLONE_CHILDREN, &cgrp->flags);
4056
	else
4057
		clear_bit(CGRP_CPUSET_CLONE_CHILDREN, &cgrp->flags);
4058 4059 4060
	return 0;
}

4061
static struct cftype cgroup_base_files[] = {
4062
	{
4063
		.name = "cgroup.procs",
4064
		.open = cgroup_procs_open,
B
Ben Blum 已提交
4065
		.write_u64 = cgroup_procs_write,
4066
		.release = cgroup_pidlist_release,
B
Ben Blum 已提交
4067
		.mode = S_IRUGO | S_IWUSR,
4068
	},
4069
	{
4070
		.name = "cgroup.event_control",
4071 4072 4073
		.write_string = cgroup_write_event_control,
		.mode = S_IWUGO,
	},
4074 4075
	{
		.name = "cgroup.clone_children",
4076
		.flags = CFTYPE_INSANE,
4077 4078 4079
		.read_u64 = cgroup_clone_children_read,
		.write_u64 = cgroup_clone_children_write,
	},
4080 4081 4082 4083 4084
	{
		.name = "cgroup.sane_behavior",
		.flags = CFTYPE_ONLY_ON_ROOT,
		.read_seq_string = cgroup_sane_behavior_show,
	},
4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104

	/*
	 * Historical crazy stuff.  These don't have "cgroup."  prefix and
	 * don't exist if sane_behavior.  If you're depending on these, be
	 * prepared to be burned.
	 */
	{
		.name = "tasks",
		.flags = CFTYPE_INSANE,		/* use "procs" instead */
		.open = cgroup_tasks_open,
		.write_u64 = cgroup_tasks_write,
		.release = cgroup_pidlist_release,
		.mode = S_IRUGO | S_IWUSR,
	},
	{
		.name = "notify_on_release",
		.flags = CFTYPE_INSANE,
		.read_u64 = cgroup_read_notify_on_release,
		.write_u64 = cgroup_write_notify_on_release,
	},
4105 4106
	{
		.name = "release_agent",
4107
		.flags = CFTYPE_INSANE | CFTYPE_ONLY_ON_ROOT,
4108 4109 4110 4111
		.read_seq_string = cgroup_release_agent_show,
		.write_string = cgroup_release_agent_write,
		.max_write_len = PATH_MAX,
	},
T
Tejun Heo 已提交
4112
	{ }	/* terminate */
4113 4114
};

4115
/**
4116
 * cgroup_populate_dir - create subsys files in a cgroup directory
4117 4118
 * @cgrp: target cgroup
 * @subsys_mask: mask of the subsystem ids whose files should be added
4119 4120
 *
 * On failure, no file is added.
4121
 */
4122
static int cgroup_populate_dir(struct cgroup *cgrp, unsigned long subsys_mask)
4123 4124
{
	struct cgroup_subsys *ss;
4125
	int i, ret = 0;
4126

4127
	/* process cftsets of each subsystem */
4128
	for_each_subsys(ss, i) {
4129
		struct cftype_set *set;
4130 4131

		if (!test_bit(i, &subsys_mask))
4132
			continue;
4133

4134 4135 4136 4137 4138
		list_for_each_entry(set, &ss->cftsets, node) {
			ret = cgroup_addrm_files(cgrp, ss, set->cfts, true);
			if (ret < 0)
				goto err;
		}
4139
	}
4140

K
KAMEZAWA Hiroyuki 已提交
4141
	/* This cgroup is ready now */
4142
	for_each_root_subsys(cgrp->root, ss) {
K
KAMEZAWA Hiroyuki 已提交
4143
		struct cgroup_subsys_state *css = cgrp->subsys[ss->subsys_id];
4144 4145
		struct css_id *id = rcu_dereference_protected(css->id, true);

K
KAMEZAWA Hiroyuki 已提交
4146 4147 4148 4149 4150
		/*
		 * Update id->css pointer and make this css visible from
		 * CSS ID functions. This pointer will be dereferened
		 * from RCU-read-side without locks.
		 */
4151 4152
		if (id)
			rcu_assign_pointer(id->css, css);
K
KAMEZAWA Hiroyuki 已提交
4153
	}
4154 4155

	return 0;
4156 4157 4158
err:
	cgroup_clear_dir(cgrp, subsys_mask);
	return ret;
4159 4160
}

4161 4162 4163 4164 4165
static void css_dput_fn(struct work_struct *work)
{
	struct cgroup_subsys_state *css =
		container_of(work, struct cgroup_subsys_state, dput_work);

4166
	cgroup_dput(css->cgroup);
4167 4168
}

4169 4170 4171 4172 4173 4174 4175 4176
static void css_release(struct percpu_ref *ref)
{
	struct cgroup_subsys_state *css =
		container_of(ref, struct cgroup_subsys_state, refcnt);

	schedule_work(&css->dput_work);
}

4177 4178
static void init_cgroup_css(struct cgroup_subsys_state *css,
			       struct cgroup_subsys *ss,
4179
			       struct cgroup *cgrp)
4180
{
4181
	css->cgroup = cgrp;
4182
	css->flags = 0;
K
KAMEZAWA Hiroyuki 已提交
4183
	css->id = NULL;
4184
	if (cgrp == cgroup_dummy_top)
4185
		css->flags |= CSS_ROOT;
4186 4187
	BUG_ON(cgrp->subsys[ss->subsys_id]);
	cgrp->subsys[ss->subsys_id] = css;
4188 4189

	/*
4190 4191 4192 4193
	 * css holds an extra ref to @cgrp->dentry which is put on the last
	 * css_put().  dput() requires process context, which css_put() may
	 * be called without.  @css->dput_work will be used to invoke
	 * dput() asynchronously from css_put().
4194 4195
	 */
	INIT_WORK(&css->dput_work, css_dput_fn);
4196 4197
}

4198
/* invoke ->css_online() on a new CSS and mark it online if successful */
T
Tejun Heo 已提交
4199
static int online_css(struct cgroup_subsys *ss, struct cgroup *cgrp)
4200
{
T
Tejun Heo 已提交
4201 4202
	int ret = 0;

4203 4204
	lockdep_assert_held(&cgroup_mutex);

4205 4206
	if (ss->css_online)
		ret = ss->css_online(cgrp);
T
Tejun Heo 已提交
4207 4208 4209
	if (!ret)
		cgrp->subsys[ss->subsys_id]->flags |= CSS_ONLINE;
	return ret;
4210 4211
}

4212
/* if the CSS is online, invoke ->css_offline() on it and mark it offline */
4213 4214 4215 4216 4217 4218 4219 4220 4221
static void offline_css(struct cgroup_subsys *ss, struct cgroup *cgrp)
{
	struct cgroup_subsys_state *css = cgrp->subsys[ss->subsys_id];

	lockdep_assert_held(&cgroup_mutex);

	if (!(css->flags & CSS_ONLINE))
		return;

4222
	if (ss->css_offline)
4223
		ss->css_offline(cgrp);
4224 4225 4226 4227

	cgrp->subsys[ss->subsys_id]->flags &= ~CSS_ONLINE;
}

4228
/*
L
Li Zefan 已提交
4229 4230 4231 4232
 * cgroup_create - create a cgroup
 * @parent: cgroup that will be parent of the new cgroup
 * @dentry: dentry of the new cgroup
 * @mode: mode to set on new inode
4233
 *
L
Li Zefan 已提交
4234
 * Must be called with the mutex on the parent inode held
4235 4236
 */
static long cgroup_create(struct cgroup *parent, struct dentry *dentry,
A
Al Viro 已提交
4237
			     umode_t mode)
4238
{
4239
	struct cgroup *cgrp;
4240
	struct cgroup_name *name;
4241 4242 4243 4244 4245
	struct cgroupfs_root *root = parent->root;
	int err = 0;
	struct cgroup_subsys *ss;
	struct super_block *sb = root->sb;

T
Tejun Heo 已提交
4246
	/* allocate the cgroup and its ID, 0 is reserved for the root */
4247 4248
	cgrp = kzalloc(sizeof(*cgrp), GFP_KERNEL);
	if (!cgrp)
4249 4250
		return -ENOMEM;

4251 4252 4253 4254 4255
	name = cgroup_alloc_name(dentry);
	if (!name)
		goto err_free_cgrp;
	rcu_assign_pointer(cgrp->name, name);

T
Tejun Heo 已提交
4256 4257
	cgrp->id = ida_simple_get(&root->cgroup_ida, 1, 0, GFP_KERNEL);
	if (cgrp->id < 0)
4258
		goto err_free_name;
T
Tejun Heo 已提交
4259

4260 4261 4262 4263 4264 4265 4266 4267 4268
	/*
	 * Only live parents can have children.  Note that the liveliness
	 * check isn't strictly necessary because cgroup_mkdir() and
	 * cgroup_rmdir() are fully synchronized by i_mutex; however, do it
	 * anyway so that locking is contained inside cgroup proper and we
	 * don't get nasty surprises if we ever grow another caller.
	 */
	if (!cgroup_lock_live_group(parent)) {
		err = -ENODEV;
T
Tejun Heo 已提交
4269
		goto err_free_id;
4270 4271
	}

4272 4273 4274 4275 4276 4277 4278
	/* Grab a reference on the superblock so the hierarchy doesn't
	 * get deleted on unmount if there are child cgroups.  This
	 * can be done outside cgroup_mutex, since the sb can't
	 * disappear while someone has an open control file on the
	 * fs */
	atomic_inc(&sb->s_active);

4279
	init_cgroup_housekeeping(cgrp);
4280

4281 4282 4283
	dentry->d_fsdata = cgrp;
	cgrp->dentry = dentry;

4284 4285
	cgrp->parent = parent;
	cgrp->root = parent->root;
4286

4287 4288 4289
	if (notify_on_release(parent))
		set_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);

4290 4291
	if (test_bit(CGRP_CPUSET_CLONE_CHILDREN, &parent->flags))
		set_bit(CGRP_CPUSET_CLONE_CHILDREN, &cgrp->flags);
4292

4293
	for_each_root_subsys(root, ss) {
4294
		struct cgroup_subsys_state *css;
4295

4296
		css = ss->css_alloc(cgrp);
4297 4298
		if (IS_ERR(css)) {
			err = PTR_ERR(css);
4299
			goto err_free_all;
4300
		}
4301 4302 4303 4304 4305

		err = percpu_ref_init(&css->refcnt, css_release);
		if (err)
			goto err_free_all;

4306
		init_cgroup_css(css, ss, cgrp);
4307

4308 4309 4310
		if (ss->use_id) {
			err = alloc_css_id(ss, parent, cgrp);
			if (err)
4311
				goto err_free_all;
4312
		}
4313 4314
	}

4315 4316 4317 4318 4319
	/*
	 * Create directory.  cgroup_create_file() returns with the new
	 * directory locked on success so that it can be populated without
	 * dropping cgroup_mutex.
	 */
T
Tejun Heo 已提交
4320
	err = cgroup_create_file(dentry, S_IFDIR | mode, sb);
4321
	if (err < 0)
4322
		goto err_free_all;
4323
	lockdep_assert_held(&dentry->d_inode->i_mutex);
4324

4325
	cgrp->serial_nr = cgroup_serial_nr_next++;
4326

4327 4328 4329
	/* allocation complete, commit to creation */
	list_add_tail_rcu(&cgrp->sibling, &cgrp->parent->children);
	root->number_of_cgroups++;
T
Tejun Heo 已提交
4330

T
Tejun Heo 已提交
4331
	/* each css holds a ref to the cgroup's dentry */
4332
	for_each_root_subsys(root, ss)
4333
		dget(dentry);
4334

4335 4336 4337
	/* hold a ref to the parent's dentry */
	dget(parent->dentry);

T
Tejun Heo 已提交
4338
	/* creation succeeded, notify subsystems */
4339
	for_each_root_subsys(root, ss) {
T
Tejun Heo 已提交
4340 4341 4342
		err = online_css(ss, cgrp);
		if (err)
			goto err_destroy;
4343 4344 4345 4346 4347 4348 4349 4350 4351

		if (ss->broken_hierarchy && !ss->warned_broken_hierarchy &&
		    parent->parent) {
			pr_warning("cgroup: %s (%d) created nested cgroup for controller \"%s\" which has incomplete hierarchy support. Nested cgroups may change behavior in the future.\n",
				   current->comm, current->pid, ss->name);
			if (!strcmp(ss->name, "memory"))
				pr_warning("cgroup: \"memory\" requires setting use_hierarchy to 1 on the root.\n");
			ss->warned_broken_hierarchy = true;
		}
4352 4353
	}

4354 4355 4356 4357 4358
	err = cgroup_addrm_files(cgrp, NULL, cgroup_base_files, true);
	if (err)
		goto err_destroy;

	err = cgroup_populate_dir(cgrp, root->subsys_mask);
4359 4360
	if (err)
		goto err_destroy;
4361 4362

	mutex_unlock(&cgroup_mutex);
4363
	mutex_unlock(&cgrp->dentry->d_inode->i_mutex);
4364 4365 4366

	return 0;

4367
err_free_all:
4368
	for_each_root_subsys(root, ss) {
4369 4370 4371 4372
		struct cgroup_subsys_state *css = cgrp->subsys[ss->subsys_id];

		if (css) {
			percpu_ref_cancel_init(&css->refcnt);
4373
			ss->css_free(cgrp);
4374
		}
4375 4376 4377 4378
	}
	mutex_unlock(&cgroup_mutex);
	/* Release the reference count that we took on the superblock */
	deactivate_super(sb);
T
Tejun Heo 已提交
4379 4380
err_free_id:
	ida_simple_remove(&root->cgroup_ida, cgrp->id);
4381 4382
err_free_name:
	kfree(rcu_dereference_raw(cgrp->name));
4383
err_free_cgrp:
4384
	kfree(cgrp);
4385
	return err;
4386 4387 4388 4389 4390 4391

err_destroy:
	cgroup_destroy_locked(cgrp);
	mutex_unlock(&cgroup_mutex);
	mutex_unlock(&dentry->d_inode->i_mutex);
	return err;
4392 4393
}

4394
static int cgroup_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
4395 4396 4397 4398 4399 4400 4401
{
	struct cgroup *c_parent = dentry->d_parent->d_fsdata;

	/* the vfs holds inode->i_mutex already */
	return cgroup_create(c_parent, dentry, mode | S_IFDIR);
}

4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443
static void cgroup_css_killed(struct cgroup *cgrp)
{
	if (!atomic_dec_and_test(&cgrp->css_kill_cnt))
		return;

	/* percpu ref's of all css's are killed, kick off the next step */
	INIT_WORK(&cgrp->destroy_work, cgroup_offline_fn);
	schedule_work(&cgrp->destroy_work);
}

static void css_ref_killed_fn(struct percpu_ref *ref)
{
	struct cgroup_subsys_state *css =
		container_of(ref, struct cgroup_subsys_state, refcnt);

	cgroup_css_killed(css->cgroup);
}

/**
 * cgroup_destroy_locked - the first stage of cgroup destruction
 * @cgrp: cgroup to be destroyed
 *
 * css's make use of percpu refcnts whose killing latency shouldn't be
 * exposed to userland and are RCU protected.  Also, cgroup core needs to
 * guarantee that css_tryget() won't succeed by the time ->css_offline() is
 * invoked.  To satisfy all the requirements, destruction is implemented in
 * the following two steps.
 *
 * s1. Verify @cgrp can be destroyed and mark it dying.  Remove all
 *     userland visible parts and start killing the percpu refcnts of
 *     css's.  Set up so that the next stage will be kicked off once all
 *     the percpu refcnts are confirmed to be killed.
 *
 * s2. Invoke ->css_offline(), mark the cgroup dead and proceed with the
 *     rest of destruction.  Once all cgroup references are gone, the
 *     cgroup is RCU-freed.
 *
 * This function implements s1.  After this step, @cgrp is gone as far as
 * the userland is concerned and a new cgroup with the same name may be
 * created.  As cgroup doesn't care about the names internally, this
 * doesn't cause any problem.
 */
4444 4445
static int cgroup_destroy_locked(struct cgroup *cgrp)
	__releases(&cgroup_mutex) __acquires(&cgroup_mutex)
4446
{
4447
	struct dentry *d = cgrp->dentry;
4448
	struct cgroup_event *event, *tmp;
4449
	struct cgroup_subsys *ss;
4450
	bool empty;
4451

4452 4453 4454
	lockdep_assert_held(&d->d_inode->i_mutex);
	lockdep_assert_held(&cgroup_mutex);

4455
	/*
T
Tejun Heo 已提交
4456 4457
	 * css_set_lock synchronizes access to ->cset_links and prevents
	 * @cgrp from being removed while __put_css_set() is in progress.
4458 4459
	 */
	read_lock(&css_set_lock);
T
Tejun Heo 已提交
4460
	empty = list_empty(&cgrp->cset_links) && list_empty(&cgrp->children);
4461 4462
	read_unlock(&css_set_lock);
	if (!empty)
4463
		return -EBUSY;
L
Li Zefan 已提交
4464

4465
	/*
4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478
	 * Block new css_tryget() by killing css refcnts.  cgroup core
	 * guarantees that, by the time ->css_offline() is invoked, no new
	 * css reference will be given out via css_tryget().  We can't
	 * simply call percpu_ref_kill() and proceed to offlining css's
	 * because percpu_ref_kill() doesn't guarantee that the ref is seen
	 * as killed on all CPUs on return.
	 *
	 * Use percpu_ref_kill_and_confirm() to get notifications as each
	 * css is confirmed to be seen as killed on all CPUs.  The
	 * notification callback keeps track of the number of css's to be
	 * killed and schedules cgroup_offline_fn() to perform the rest of
	 * destruction once the percpu refs of all css's are confirmed to
	 * be killed.
4479
	 */
4480
	atomic_set(&cgrp->css_kill_cnt, 1);
4481
	for_each_root_subsys(cgrp->root, ss) {
4482
		struct cgroup_subsys_state *css = cgrp->subsys[ss->subsys_id];
4483

4484 4485 4486 4487 4488 4489 4490 4491
		/*
		 * Killing would put the base ref, but we need to keep it
		 * alive until after ->css_offline.
		 */
		percpu_ref_get(&css->refcnt);

		atomic_inc(&cgrp->css_kill_cnt);
		percpu_ref_kill_and_confirm(&css->refcnt, css_ref_killed_fn);
4492
	}
4493
	cgroup_css_killed(cgrp);
4494 4495 4496 4497 4498 4499 4500 4501

	/*
	 * Mark @cgrp dead.  This prevents further task migration and child
	 * creation by disabling cgroup_lock_live_group().  Note that
	 * CGRP_DEAD assertion is depended upon by cgroup_next_sibling() to
	 * resume iteration after dropping RCU read lock.  See
	 * cgroup_next_sibling() for details.
	 */
4502
	set_bit(CGRP_DEAD, &cgrp->flags);
4503

4504 4505 4506 4507 4508 4509 4510
	/* CGRP_DEAD is set, remove from ->release_list for the last time */
	raw_spin_lock(&release_list_lock);
	if (!list_empty(&cgrp->release_list))
		list_del_init(&cgrp->release_list);
	raw_spin_unlock(&release_list_lock);

	/*
4511 4512
	 * Clear and remove @cgrp directory.  The removal puts the base ref
	 * but we aren't quite done with @cgrp yet, so hold onto it.
4513
	 */
4514 4515
	cgroup_clear_dir(cgrp, cgrp->root->subsys_mask);
	cgroup_addrm_files(cgrp, NULL, cgroup_base_files, false);
4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530
	dget(d);
	cgroup_d_remove_dir(d);

	/*
	 * Unregister events and notify userspace.
	 * Notify userspace about cgroup removing only after rmdir of cgroup
	 * directory to avoid race between userspace and kernelspace.
	 */
	spin_lock(&cgrp->event_list_lock);
	list_for_each_entry_safe(event, tmp, &cgrp->event_list, list) {
		list_del_init(&event->list);
		schedule_work(&event->remove);
	}
	spin_unlock(&cgrp->event_list_lock);

4531 4532 4533
	return 0;
};

4534 4535 4536 4537 4538 4539 4540 4541 4542 4543
/**
 * cgroup_offline_fn - the second step of cgroup destruction
 * @work: cgroup->destroy_free_work
 *
 * This function is invoked from a work item for a cgroup which is being
 * destroyed after the percpu refcnts of all css's are guaranteed to be
 * seen as killed on all CPUs, and performs the rest of destruction.  This
 * is the second step of destruction described in the comment above
 * cgroup_destroy_locked().
 */
4544 4545 4546 4547 4548 4549 4550 4551 4552
static void cgroup_offline_fn(struct work_struct *work)
{
	struct cgroup *cgrp = container_of(work, struct cgroup, destroy_work);
	struct cgroup *parent = cgrp->parent;
	struct dentry *d = cgrp->dentry;
	struct cgroup_subsys *ss;

	mutex_lock(&cgroup_mutex);

4553 4554 4555 4556
	/*
	 * css_tryget() is guaranteed to fail now.  Tell subsystems to
	 * initate destruction.
	 */
4557
	for_each_root_subsys(cgrp->root, ss)
4558
		offline_css(ss, cgrp);
4559 4560

	/*
4561 4562 4563 4564 4565
	 * Put the css refs from cgroup_destroy_locked().  Each css holds
	 * an extra reference to the cgroup's dentry and cgroup removal
	 * proceeds regardless of css refs.  On the last put of each css,
	 * whenever that may be, the extra dentry ref is put so that dentry
	 * destruction happens only after all css's are released.
4566
	 */
4567
	for_each_root_subsys(cgrp->root, ss)
T
Tejun Heo 已提交
4568
		css_put(cgrp->subsys[ss->subsys_id]);
4569

4570
	/* delete this cgroup from parent->children */
4571
	list_del_rcu(&cgrp->sibling);
4572

4573 4574
	dput(d);

4575
	set_bit(CGRP_RELEASABLE, &parent->flags);
4576 4577
	check_for_release(parent);

4578
	mutex_unlock(&cgroup_mutex);
4579 4580
}

4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591
static int cgroup_rmdir(struct inode *unused_dir, struct dentry *dentry)
{
	int ret;

	mutex_lock(&cgroup_mutex);
	ret = cgroup_destroy_locked(dentry->d_fsdata);
	mutex_unlock(&cgroup_mutex);

	return ret;
}

4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605
static void __init_or_module cgroup_init_cftsets(struct cgroup_subsys *ss)
{
	INIT_LIST_HEAD(&ss->cftsets);

	/*
	 * base_cftset is embedded in subsys itself, no need to worry about
	 * deregistration.
	 */
	if (ss->base_cftypes) {
		ss->base_cftset.cfts = ss->base_cftypes;
		list_add_tail(&ss->base_cftset.node, &ss->cftsets);
	}
}

4606
static void __init cgroup_init_subsys(struct cgroup_subsys *ss)
4607 4608
{
	struct cgroup_subsys_state *css;
D
Diego Calleja 已提交
4609 4610

	printk(KERN_INFO "Initializing cgroup subsys %s\n", ss->name);
4611

4612 4613
	mutex_lock(&cgroup_mutex);

4614 4615 4616
	/* init base cftset */
	cgroup_init_cftsets(ss);

4617
	/* Create the top cgroup state for this subsystem */
4618 4619 4620
	list_add(&ss->sibling, &cgroup_dummy_root.subsys_list);
	ss->root = &cgroup_dummy_root;
	css = ss->css_alloc(cgroup_dummy_top);
4621 4622
	/* We don't handle early failures gracefully */
	BUG_ON(IS_ERR(css));
4623
	init_cgroup_css(css, ss, cgroup_dummy_top);
4624

L
Li Zefan 已提交
4625
	/* Update the init_css_set to contain a subsys
4626
	 * pointer to this state - since the subsystem is
L
Li Zefan 已提交
4627 4628
	 * newly registered, all tasks and hence the
	 * init_css_set is in the subsystem's top cgroup. */
4629
	init_css_set.subsys[ss->subsys_id] = css;
4630 4631 4632

	need_forkexit_callback |= ss->fork || ss->exit;

L
Li Zefan 已提交
4633 4634 4635 4636 4637
	/* At system boot, before all subsystems have been
	 * registered, no tasks have been forked, so we don't
	 * need to invoke fork callbacks here. */
	BUG_ON(!list_empty(&init_task.tasks));

4638
	BUG_ON(online_css(ss, cgroup_dummy_top));
4639

4640 4641
	mutex_unlock(&cgroup_mutex);

4642 4643 4644 4645 4646 4647 4648 4649 4650 4651
	/* this function shouldn't be used with modular subsystems, since they
	 * need to register a subsys_id, among other things */
	BUG_ON(ss->module);
}

/**
 * cgroup_load_subsys: load and register a modular subsystem at runtime
 * @ss: the subsystem to load
 *
 * This function should be called in a modular subsystem's initcall. If the
T
Thomas Weber 已提交
4652
 * subsystem is built as a module, it will be assigned a new subsys_id and set
4653 4654 4655 4656 4657 4658
 * up for use. If the subsystem is built-in anyway, work is delegated to the
 * simpler cgroup_init_subsys.
 */
int __init_or_module cgroup_load_subsys(struct cgroup_subsys *ss)
{
	struct cgroup_subsys_state *css;
4659
	int i, ret;
4660
	struct hlist_node *tmp;
4661
	struct css_set *cset;
4662
	unsigned long key;
4663 4664 4665

	/* check name and function validity */
	if (ss->name == NULL || strlen(ss->name) > MAX_CGROUP_TYPE_NAMELEN ||
4666
	    ss->css_alloc == NULL || ss->css_free == NULL)
4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682
		return -EINVAL;

	/*
	 * we don't support callbacks in modular subsystems. this check is
	 * before the ss->module check for consistency; a subsystem that could
	 * be a module should still have no callbacks even if the user isn't
	 * compiling it as one.
	 */
	if (ss->fork || ss->exit)
		return -EINVAL;

	/*
	 * an optionally modular subsystem is built-in: we want to do nothing,
	 * since cgroup_init_subsys will have already taken care of it.
	 */
	if (ss->module == NULL) {
4683
		/* a sanity check */
4684
		BUG_ON(cgroup_subsys[ss->subsys_id] != ss);
4685 4686 4687
		return 0;
	}

4688 4689 4690
	/* init base cftset */
	cgroup_init_cftsets(ss);

4691
	mutex_lock(&cgroup_mutex);
4692
	cgroup_subsys[ss->subsys_id] = ss;
4693 4694

	/*
4695
	 * no ss->css_alloc seems to need anything important in the ss
4696
	 * struct, so this can happen first (i.e. before the dummy root
4697
	 * attachment).
4698
	 */
4699
	css = ss->css_alloc(cgroup_dummy_top);
4700
	if (IS_ERR(css)) {
4701 4702
		/* failure case - need to deassign the cgroup_subsys[] slot. */
		cgroup_subsys[ss->subsys_id] = NULL;
4703 4704 4705 4706
		mutex_unlock(&cgroup_mutex);
		return PTR_ERR(css);
	}

4707 4708
	list_add(&ss->sibling, &cgroup_dummy_root.subsys_list);
	ss->root = &cgroup_dummy_root;
4709 4710

	/* our new subsystem will be attached to the dummy hierarchy. */
4711
	init_cgroup_css(css, ss, cgroup_dummy_top);
4712 4713
	/* init_idr must be after init_cgroup_css because it sets css->id. */
	if (ss->use_id) {
4714 4715 4716
		ret = cgroup_init_idr(ss, css);
		if (ret)
			goto err_unload;
4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727
	}

	/*
	 * Now we need to entangle the css into the existing css_sets. unlike
	 * in cgroup_init_subsys, there are now multiple css_sets, so each one
	 * will need a new pointer to it; done by iterating the css_set_table.
	 * furthermore, modifying the existing css_sets will corrupt the hash
	 * table state, so each changed css_set will need its hash recomputed.
	 * this is all done under the css_set_lock.
	 */
	write_lock(&css_set_lock);
4728
	hash_for_each_safe(css_set_table, i, tmp, cset, hlist) {
4729
		/* skip entries that we already rehashed */
4730
		if (cset->subsys[ss->subsys_id])
4731 4732
			continue;
		/* remove existing entry */
4733
		hash_del(&cset->hlist);
4734
		/* set new value */
4735
		cset->subsys[ss->subsys_id] = css;
4736
		/* recompute hash and restore entry */
4737 4738
		key = css_set_hash(cset->subsys);
		hash_add(css_set_table, &cset->hlist, key);
4739 4740 4741
	}
	write_unlock(&css_set_lock);

4742
	ret = online_css(ss, cgroup_dummy_top);
T
Tejun Heo 已提交
4743 4744
	if (ret)
		goto err_unload;
4745

4746 4747 4748
	/* success! */
	mutex_unlock(&cgroup_mutex);
	return 0;
4749 4750 4751 4752 4753 4754

err_unload:
	mutex_unlock(&cgroup_mutex);
	/* @ss can't be mounted here as try_module_get() would fail */
	cgroup_unload_subsys(ss);
	return ret;
4755
}
4756
EXPORT_SYMBOL_GPL(cgroup_load_subsys);
4757

B
Ben Blum 已提交
4758 4759 4760 4761 4762 4763 4764 4765 4766 4767
/**
 * cgroup_unload_subsys: unload a modular subsystem
 * @ss: the subsystem to unload
 *
 * This function should be called in a modular subsystem's exitcall. When this
 * function is invoked, the refcount on the subsystem's module will be 0, so
 * the subsystem will not be attached to any hierarchy.
 */
void cgroup_unload_subsys(struct cgroup_subsys *ss)
{
4768
	struct cgrp_cset_link *link;
B
Ben Blum 已提交
4769 4770 4771 4772 4773

	BUG_ON(ss->module == NULL);

	/*
	 * we shouldn't be called if the subsystem is in use, and the use of
4774
	 * try_module_get() in rebind_subsystems() should ensure that it
B
Ben Blum 已提交
4775 4776
	 * doesn't start being used while we're killing it off.
	 */
4777
	BUG_ON(ss->root != &cgroup_dummy_root);
B
Ben Blum 已提交
4778 4779

	mutex_lock(&cgroup_mutex);
4780

4781
	offline_css(ss, cgroup_dummy_top);
4782

T
Tejun Heo 已提交
4783
	if (ss->use_id)
4784 4785
		idr_destroy(&ss->idr);

B
Ben Blum 已提交
4786
	/* deassign the subsys_id */
4787
	cgroup_subsys[ss->subsys_id] = NULL;
B
Ben Blum 已提交
4788

4789
	/* remove subsystem from the dummy root's list of subsystems */
4790
	list_del_init(&ss->sibling);
B
Ben Blum 已提交
4791 4792

	/*
4793 4794 4795
	 * disentangle the css from all css_sets attached to the dummy
	 * top. as in loading, we need to pay our respects to the hashtable
	 * gods.
B
Ben Blum 已提交
4796 4797
	 */
	write_lock(&css_set_lock);
4798
	list_for_each_entry(link, &cgroup_dummy_top->cset_links, cset_link) {
4799
		struct css_set *cset = link->cset;
4800
		unsigned long key;
B
Ben Blum 已提交
4801

4802 4803 4804 4805
		hash_del(&cset->hlist);
		cset->subsys[ss->subsys_id] = NULL;
		key = css_set_hash(cset->subsys);
		hash_add(css_set_table, &cset->hlist, key);
B
Ben Blum 已提交
4806 4807 4808 4809
	}
	write_unlock(&css_set_lock);

	/*
4810 4811 4812 4813
	 * remove subsystem's css from the cgroup_dummy_top and free it -
	 * need to free before marking as null because ss->css_free needs
	 * the cgrp->subsys pointer to find their state. note that this
	 * also takes care of freeing the css_id.
B
Ben Blum 已提交
4814
	 */
4815 4816
	ss->css_free(cgroup_dummy_top);
	cgroup_dummy_top->subsys[ss->subsys_id] = NULL;
B
Ben Blum 已提交
4817 4818 4819 4820 4821

	mutex_unlock(&cgroup_mutex);
}
EXPORT_SYMBOL_GPL(cgroup_unload_subsys);

4822
/**
L
Li Zefan 已提交
4823 4824 4825 4826
 * cgroup_init_early - cgroup initialization at system boot
 *
 * Initialize cgroups at system boot, and initialize any
 * subsystems that request early init.
4827 4828 4829
 */
int __init cgroup_init_early(void)
{
4830
	struct cgroup_subsys *ss;
4831
	int i;
4832

4833
	atomic_set(&init_css_set.refcount, 1);
4834
	INIT_LIST_HEAD(&init_css_set.cgrp_links);
4835
	INIT_LIST_HEAD(&init_css_set.tasks);
4836
	INIT_HLIST_NODE(&init_css_set.hlist);
4837
	css_set_count = 1;
4838 4839
	init_cgroup_root(&cgroup_dummy_root);
	cgroup_root_count = 1;
4840
	RCU_INIT_POINTER(init_task.cgroups, &init_css_set);
4841

4842
	init_cgrp_cset_link.cset = &init_css_set;
4843 4844
	init_cgrp_cset_link.cgrp = cgroup_dummy_top;
	list_add(&init_cgrp_cset_link.cset_link, &cgroup_dummy_top->cset_links);
4845
	list_add(&init_cgrp_cset_link.cgrp_link, &init_css_set.cgrp_links);
4846

4847 4848
	/* at bootup time, we don't worry about modular subsystems */
	for_each_builtin_subsys(ss, i) {
4849 4850
		BUG_ON(!ss->name);
		BUG_ON(strlen(ss->name) > MAX_CGROUP_TYPE_NAMELEN);
4851 4852
		BUG_ON(!ss->css_alloc);
		BUG_ON(!ss->css_free);
4853
		if (ss->subsys_id != i) {
D
Diego Calleja 已提交
4854
			printk(KERN_ERR "cgroup: Subsys %s id == %d\n",
4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865
			       ss->name, ss->subsys_id);
			BUG();
		}

		if (ss->early_init)
			cgroup_init_subsys(ss);
	}
	return 0;
}

/**
L
Li Zefan 已提交
4866 4867 4868 4869
 * cgroup_init - cgroup initialization
 *
 * Register cgroup filesystem and /proc file, and initialize
 * any subsystems that didn't request early init.
4870 4871 4872
 */
int __init cgroup_init(void)
{
4873
	struct cgroup_subsys *ss;
4874
	unsigned long key;
4875
	int i, err;
4876 4877 4878 4879

	err = bdi_init(&cgroup_backing_dev_info);
	if (err)
		return err;
4880

4881
	for_each_builtin_subsys(ss, i) {
4882 4883
		if (!ss->early_init)
			cgroup_init_subsys(ss);
K
KAMEZAWA Hiroyuki 已提交
4884
		if (ss->use_id)
4885
			cgroup_init_idr(ss, init_css_set.subsys[ss->subsys_id]);
4886 4887
	}

4888
	/* allocate id for the dummy hierarchy */
T
Tejun Heo 已提交
4889 4890 4891
	mutex_lock(&cgroup_mutex);
	mutex_lock(&cgroup_root_mutex);

4892 4893 4894 4895
	/* Add init_css_set to the hash table */
	key = css_set_hash(init_css_set.subsys);
	hash_add(css_set_table, &init_css_set.hlist, key);

4896
	BUG_ON(cgroup_init_root_id(&cgroup_dummy_root, 0, 1));
4897

T
Tejun Heo 已提交
4898 4899 4900
	mutex_unlock(&cgroup_root_mutex);
	mutex_unlock(&cgroup_mutex);

4901 4902 4903 4904 4905 4906
	cgroup_kobj = kobject_create_and_add("cgroup", fs_kobj);
	if (!cgroup_kobj) {
		err = -ENOMEM;
		goto out;
	}

4907
	err = register_filesystem(&cgroup_fs_type);
4908 4909
	if (err < 0) {
		kobject_put(cgroup_kobj);
4910
		goto out;
4911
	}
4912

L
Li Zefan 已提交
4913
	proc_create("cgroups", 0, NULL, &proc_cgroupstats_operations);
4914

4915
out:
4916 4917 4918
	if (err)
		bdi_destroy(&cgroup_backing_dev_info);

4919 4920
	return err;
}
4921

4922 4923 4924 4925 4926 4927
/*
 * proc_cgroup_show()
 *  - Print task's cgroup paths into seq_file, one line for each hierarchy
 *  - Used for /proc/<pid>/cgroup.
 *  - No need to task_lock(tsk) on this tsk->cgroup reference, as it
 *    doesn't really matter if tsk->cgroup changes after we read it,
4928
 *    and we take cgroup_mutex, keeping cgroup_attach_task() from changing it
4929 4930 4931 4932 4933 4934
 *    anyway.  No need to check that tsk->cgroup != NULL, thanks to
 *    the_top_cgroup_hack in cgroup_exit(), which sets an exiting tasks
 *    cgroup to top_cgroup.
 */

/* TODO: Use a proper seq_file iterator */
4935
int proc_cgroup_show(struct seq_file *m, void *v)
4936 4937 4938 4939 4940 4941 4942 4943 4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957
{
	struct pid *pid;
	struct task_struct *tsk;
	char *buf;
	int retval;
	struct cgroupfs_root *root;

	retval = -ENOMEM;
	buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
	if (!buf)
		goto out;

	retval = -ESRCH;
	pid = m->private;
	tsk = get_pid_task(pid, PIDTYPE_PID);
	if (!tsk)
		goto out_free;

	retval = 0;

	mutex_lock(&cgroup_mutex);

4958
	for_each_active_root(root) {
4959
		struct cgroup_subsys *ss;
4960
		struct cgroup *cgrp;
4961 4962
		int count = 0;

4963
		seq_printf(m, "%d:", root->hierarchy_id);
4964
		for_each_root_subsys(root, ss)
4965
			seq_printf(m, "%s%s", count++ ? "," : "", ss->name);
4966 4967 4968
		if (strlen(root->name))
			seq_printf(m, "%sname=%s", count ? "," : "",
				   root->name);
4969
		seq_putc(m, ':');
4970
		cgrp = task_cgroup_from_root(tsk, root);
4971
		retval = cgroup_path(cgrp, buf, PAGE_SIZE);
4972 4973 4974 4975 4976 4977 4978 4979 4980 4981 4982 4983 4984 4985 4986 4987 4988 4989
		if (retval < 0)
			goto out_unlock;
		seq_puts(m, buf);
		seq_putc(m, '\n');
	}

out_unlock:
	mutex_unlock(&cgroup_mutex);
	put_task_struct(tsk);
out_free:
	kfree(buf);
out:
	return retval;
}

/* Display information about each subsystem and each hierarchy */
static int proc_cgroupstats_show(struct seq_file *m, void *v)
{
4990
	struct cgroup_subsys *ss;
4991 4992
	int i;

4993
	seq_puts(m, "#subsys_name\thierarchy\tnum_cgroups\tenabled\n");
B
Ben Blum 已提交
4994 4995 4996 4997 4998
	/*
	 * ideally we don't want subsystems moving around while we do this.
	 * cgroup_mutex is also necessary to guarantee an atomic snapshot of
	 * subsys/hierarchy state.
	 */
4999
	mutex_lock(&cgroup_mutex);
5000 5001

	for_each_subsys(ss, i)
5002 5003
		seq_printf(m, "%s\t%d\t%d\t%d\n",
			   ss->name, ss->root->hierarchy_id,
5004
			   ss->root->number_of_cgroups, !ss->disabled);
5005

5006 5007 5008 5009 5010 5011
	mutex_unlock(&cgroup_mutex);
	return 0;
}

static int cgroupstats_open(struct inode *inode, struct file *file)
{
A
Al Viro 已提交
5012
	return single_open(file, proc_cgroupstats_show, NULL);
5013 5014
}

5015
static const struct file_operations proc_cgroupstats_operations = {
5016 5017 5018 5019 5020 5021
	.open = cgroupstats_open,
	.read = seq_read,
	.llseek = seq_lseek,
	.release = single_release,
};

5022 5023
/**
 * cgroup_fork - attach newly forked task to its parents cgroup.
L
Li Zefan 已提交
5024
 * @child: pointer to task_struct of forking parent process.
5025 5026 5027 5028 5029
 *
 * Description: A task inherits its parent's cgroup at fork().
 *
 * A pointer to the shared css_set was automatically copied in
 * fork.c by dup_task_struct().  However, we ignore that copy, since
5030 5031 5032 5033
 * it was not made under the protection of RCU or cgroup_mutex, so
 * might no longer be a valid cgroup pointer.  cgroup_attach_task() might
 * have already changed current->cgroups, allowing the previously
 * referenced cgroup group to be removed and freed.
5034 5035 5036 5037 5038 5039
 *
 * At the point that cgroup_fork() is called, 'current' is the parent
 * task, and the passed argument 'child' points to the child task.
 */
void cgroup_fork(struct task_struct *child)
{
5040
	task_lock(current);
5041
	get_css_set(task_css_set(current));
5042
	child->cgroups = current->cgroups;
5043
	task_unlock(current);
5044
	INIT_LIST_HEAD(&child->cg_list);
5045 5046
}

5047
/**
L
Li Zefan 已提交
5048 5049 5050
 * cgroup_post_fork - called on a new task after adding it to the task list
 * @child: the task in question
 *
5051 5052 5053 5054 5055
 * Adds the task to the list running through its css_set if necessary and
 * call the subsystem fork() callbacks.  Has to be after the task is
 * visible on the task list in case we race with the first call to
 * cgroup_iter_start() - to guarantee that the new task ends up on its
 * list.
L
Li Zefan 已提交
5056
 */
5057 5058
void cgroup_post_fork(struct task_struct *child)
{
5059
	struct cgroup_subsys *ss;
5060 5061
	int i;

5062 5063 5064 5065 5066 5067 5068 5069 5070 5071 5072
	/*
	 * use_task_css_set_links is set to 1 before we walk the tasklist
	 * under the tasklist_lock and we read it here after we added the child
	 * to the tasklist under the tasklist_lock as well. If the child wasn't
	 * yet in the tasklist when we walked through it from
	 * cgroup_enable_task_cg_lists(), then use_task_css_set_links value
	 * should be visible now due to the paired locking and barriers implied
	 * by LOCK/UNLOCK: it is written before the tasklist_lock unlock
	 * in cgroup_enable_task_cg_lists() and read here after the tasklist_lock
	 * lock on fork.
	 */
5073 5074
	if (use_task_css_set_links) {
		write_lock(&css_set_lock);
5075 5076
		task_lock(child);
		if (list_empty(&child->cg_list))
5077
			list_add(&child->cg_list, &task_css_set(child)->tasks);
5078
		task_unlock(child);
5079 5080
		write_unlock(&css_set_lock);
	}
5081 5082 5083 5084 5085 5086 5087

	/*
	 * Call ss->fork().  This must happen after @child is linked on
	 * css_set; otherwise, @child might change state between ->fork()
	 * and addition to css_set.
	 */
	if (need_forkexit_callback) {
5088 5089 5090 5091 5092 5093 5094 5095
		/*
		 * fork/exit callbacks are supported only for builtin
		 * subsystems, and the builtin section of the subsys
		 * array is immutable, so we don't need to lock the
		 * subsys array here. On the other hand, modular section
		 * of the array can be freed at module unload, so we
		 * can't touch that.
		 */
5096
		for_each_builtin_subsys(ss, i)
5097 5098 5099
			if (ss->fork)
				ss->fork(child);
	}
5100
}
5101

5102 5103 5104
/**
 * cgroup_exit - detach cgroup from exiting task
 * @tsk: pointer to task_struct of exiting process
L
Li Zefan 已提交
5105
 * @run_callback: run exit callbacks?
5106 5107 5108 5109 5110 5111 5112 5113 5114 5115 5116 5117 5118 5119 5120 5121 5122 5123 5124 5125 5126 5127 5128 5129 5130 5131 5132 5133
 *
 * Description: Detach cgroup from @tsk and release it.
 *
 * Note that cgroups marked notify_on_release force every task in
 * them to take the global cgroup_mutex mutex when exiting.
 * This could impact scaling on very large systems.  Be reluctant to
 * use notify_on_release cgroups where very high task exit scaling
 * is required on large systems.
 *
 * the_top_cgroup_hack:
 *
 *    Set the exiting tasks cgroup to the root cgroup (top_cgroup).
 *
 *    We call cgroup_exit() while the task is still competent to
 *    handle notify_on_release(), then leave the task attached to the
 *    root cgroup in each hierarchy for the remainder of its exit.
 *
 *    To do this properly, we would increment the reference count on
 *    top_cgroup, and near the very end of the kernel/exit.c do_exit()
 *    code we would add a second cgroup function call, to drop that
 *    reference.  This would just create an unnecessary hot spot on
 *    the top_cgroup reference count, to no avail.
 *
 *    Normally, holding a reference to a cgroup without bumping its
 *    count is unsafe.   The cgroup could go away, or someone could
 *    attach us to a different cgroup, decrementing the count on
 *    the first cgroup that we never incremented.  But in this case,
 *    top_cgroup isn't going away, and either task has PF_EXITING set,
5134 5135
 *    which wards off any cgroup_attach_task() attempts, or task is a failed
 *    fork, never visible to cgroup_attach_task.
5136 5137 5138
 */
void cgroup_exit(struct task_struct *tsk, int run_callbacks)
{
5139
	struct cgroup_subsys *ss;
5140
	struct css_set *cset;
5141
	int i;
5142 5143 5144 5145 5146 5147 5148 5149 5150

	/*
	 * Unlink from the css_set task list if necessary.
	 * Optimistically check cg_list before taking
	 * css_set_lock
	 */
	if (!list_empty(&tsk->cg_list)) {
		write_lock(&css_set_lock);
		if (!list_empty(&tsk->cg_list))
5151
			list_del_init(&tsk->cg_list);
5152 5153 5154
		write_unlock(&css_set_lock);
	}

5155 5156
	/* Reassign the task to the init_css_set. */
	task_lock(tsk);
5157 5158
	cset = task_css_set(tsk);
	RCU_INIT_POINTER(tsk->cgroups, &init_css_set);
5159 5160

	if (run_callbacks && need_forkexit_callback) {
5161 5162 5163 5164
		/*
		 * fork/exit callbacks are supported only for builtin
		 * subsystems, see cgroup_post_fork() for details.
		 */
5165
		for_each_builtin_subsys(ss, i) {
5166
			if (ss->exit) {
5167
				struct cgroup *old_cgrp = cset->subsys[i]->cgroup;
5168
				struct cgroup *cgrp = task_cgroup(tsk, i);
5169

5170
				ss->exit(cgrp, old_cgrp, tsk);
5171 5172 5173
			}
		}
	}
5174
	task_unlock(tsk);
5175

5176
	put_css_set_taskexit(cset);
5177
}
5178

5179
static void check_for_release(struct cgroup *cgrp)
5180
{
5181
	if (cgroup_is_releasable(cgrp) &&
T
Tejun Heo 已提交
5182
	    list_empty(&cgrp->cset_links) && list_empty(&cgrp->children)) {
5183 5184
		/*
		 * Control Group is currently removeable. If it's not
5185
		 * already queued for a userspace notification, queue
5186 5187
		 * it now
		 */
5188
		int need_schedule_work = 0;
5189

5190
		raw_spin_lock(&release_list_lock);
5191
		if (!cgroup_is_dead(cgrp) &&
5192 5193
		    list_empty(&cgrp->release_list)) {
			list_add(&cgrp->release_list, &release_list);
5194 5195
			need_schedule_work = 1;
		}
5196
		raw_spin_unlock(&release_list_lock);
5197 5198 5199 5200 5201 5202 5203 5204 5205 5206 5207 5208 5209 5210 5211 5212 5213 5214 5215 5216 5217 5218 5219 5220 5221 5222 5223 5224 5225 5226 5227 5228
		if (need_schedule_work)
			schedule_work(&release_agent_work);
	}
}

/*
 * Notify userspace when a cgroup is released, by running the
 * configured release agent with the name of the cgroup (path
 * relative to the root of cgroup file system) as the argument.
 *
 * Most likely, this user command will try to rmdir this cgroup.
 *
 * This races with the possibility that some other task will be
 * attached to this cgroup before it is removed, or that some other
 * user task will 'mkdir' a child cgroup of this cgroup.  That's ok.
 * The presumed 'rmdir' will fail quietly if this cgroup is no longer
 * unused, and this cgroup will be reprieved from its death sentence,
 * to continue to serve a useful existence.  Next time it's released,
 * we will get notified again, if it still has 'notify_on_release' set.
 *
 * The final arg to call_usermodehelper() is UMH_WAIT_EXEC, which
 * means only wait until the task is successfully execve()'d.  The
 * separate release agent task is forked by call_usermodehelper(),
 * then control in this thread returns here, without waiting for the
 * release agent task.  We don't bother to wait because the caller of
 * this routine has no use for the exit status of the release agent
 * task, so no sense holding our caller up for that.
 */
static void cgroup_release_agent(struct work_struct *work)
{
	BUG_ON(work != &release_agent_work);
	mutex_lock(&cgroup_mutex);
5229
	raw_spin_lock(&release_list_lock);
5230 5231 5232
	while (!list_empty(&release_list)) {
		char *argv[3], *envp[3];
		int i;
5233
		char *pathbuf = NULL, *agentbuf = NULL;
5234
		struct cgroup *cgrp = list_entry(release_list.next,
5235 5236
						    struct cgroup,
						    release_list);
5237
		list_del_init(&cgrp->release_list);
5238
		raw_spin_unlock(&release_list_lock);
5239
		pathbuf = kmalloc(PAGE_SIZE, GFP_KERNEL);
5240 5241 5242 5243 5244 5245 5246
		if (!pathbuf)
			goto continue_free;
		if (cgroup_path(cgrp, pathbuf, PAGE_SIZE) < 0)
			goto continue_free;
		agentbuf = kstrdup(cgrp->root->release_agent_path, GFP_KERNEL);
		if (!agentbuf)
			goto continue_free;
5247 5248

		i = 0;
5249 5250
		argv[i++] = agentbuf;
		argv[i++] = pathbuf;
5251 5252 5253 5254 5255 5256 5257 5258 5259 5260 5261 5262 5263 5264
		argv[i] = NULL;

		i = 0;
		/* minimal command environment */
		envp[i++] = "HOME=/";
		envp[i++] = "PATH=/sbin:/bin:/usr/sbin:/usr/bin";
		envp[i] = NULL;

		/* Drop the lock while we invoke the usermode helper,
		 * since the exec could involve hitting disk and hence
		 * be a slow process */
		mutex_unlock(&cgroup_mutex);
		call_usermodehelper(argv[0], argv, envp, UMH_WAIT_EXEC);
		mutex_lock(&cgroup_mutex);
5265 5266 5267
 continue_free:
		kfree(pathbuf);
		kfree(agentbuf);
5268
		raw_spin_lock(&release_list_lock);
5269
	}
5270
	raw_spin_unlock(&release_list_lock);
5271 5272
	mutex_unlock(&cgroup_mutex);
}
5273 5274 5275

static int __init cgroup_disable(char *str)
{
5276
	struct cgroup_subsys *ss;
5277
	char *token;
5278
	int i;
5279 5280 5281 5282

	while ((token = strsep(&str, ",")) != NULL) {
		if (!*token)
			continue;
5283

5284 5285 5286 5287 5288
		/*
		 * cgroup_disable, being at boot time, can't know about
		 * module subsystems, so we don't worry about them.
		 */
		for_each_builtin_subsys(ss, i) {
5289 5290 5291 5292 5293 5294 5295 5296 5297 5298 5299
			if (!strcmp(token, ss->name)) {
				ss->disabled = 1;
				printk(KERN_INFO "Disabling %s control group"
					" subsystem\n", ss->name);
				break;
			}
		}
	}
	return 1;
}
__setup("cgroup_disable=", cgroup_disable);
K
KAMEZAWA Hiroyuki 已提交
5300 5301 5302 5303 5304

/*
 * Functons for CSS ID.
 */

5305
/* to get ID other than 0, this should be called when !cgroup_is_dead() */
K
KAMEZAWA Hiroyuki 已提交
5306 5307
unsigned short css_id(struct cgroup_subsys_state *css)
{
5308 5309 5310 5311 5312 5313 5314
	struct css_id *cssid;

	/*
	 * This css_id() can return correct value when somone has refcnt
	 * on this or this is under rcu_read_lock(). Once css->id is allocated,
	 * it's unchanged until freed.
	 */
5315
	cssid = rcu_dereference_raw(css->id);
K
KAMEZAWA Hiroyuki 已提交
5316 5317 5318 5319 5320

	if (cssid)
		return cssid->id;
	return 0;
}
B
Ben Blum 已提交
5321
EXPORT_SYMBOL_GPL(css_id);
K
KAMEZAWA Hiroyuki 已提交
5322

5323 5324 5325 5326 5327 5328
/**
 *  css_is_ancestor - test "root" css is an ancestor of "child"
 * @child: the css to be tested.
 * @root: the css supporsed to be an ancestor of the child.
 *
 * Returns true if "root" is an ancestor of "child" in its hierarchy. Because
5329
 * this function reads css->id, the caller must hold rcu_read_lock().
5330 5331 5332 5333 5334 5335
 * But, considering usual usage, the csses should be valid objects after test.
 * Assuming that the caller will do some action to the child if this returns
 * returns true, the caller must take "child";s reference count.
 * If "child" is valid object and this returns true, "root" is valid, too.
 */

K
KAMEZAWA Hiroyuki 已提交
5336
bool css_is_ancestor(struct cgroup_subsys_state *child,
5337
		    const struct cgroup_subsys_state *root)
K
KAMEZAWA Hiroyuki 已提交
5338
{
5339 5340
	struct css_id *child_id;
	struct css_id *root_id;
K
KAMEZAWA Hiroyuki 已提交
5341

5342
	child_id  = rcu_dereference(child->id);
5343 5344
	if (!child_id)
		return false;
5345
	root_id = rcu_dereference(root->id);
5346 5347 5348 5349 5350 5351 5352
	if (!root_id)
		return false;
	if (child_id->depth < root_id->depth)
		return false;
	if (child_id->stack[root_id->depth] != root_id->id)
		return false;
	return true;
K
KAMEZAWA Hiroyuki 已提交
5353 5354 5355 5356
}

void free_css_id(struct cgroup_subsys *ss, struct cgroup_subsys_state *css)
{
5357 5358
	struct css_id *id = rcu_dereference_protected(css->id, true);

K
KAMEZAWA Hiroyuki 已提交
5359 5360 5361 5362 5363 5364 5365 5366
	/* When this is called before css_id initialization, id can be NULL */
	if (!id)
		return;

	BUG_ON(!ss->use_id);

	rcu_assign_pointer(id->css, NULL);
	rcu_assign_pointer(css->id, NULL);
5367
	spin_lock(&ss->id_lock);
K
KAMEZAWA Hiroyuki 已提交
5368
	idr_remove(&ss->idr, id->id);
5369
	spin_unlock(&ss->id_lock);
5370
	kfree_rcu(id, rcu_head);
K
KAMEZAWA Hiroyuki 已提交
5371
}
B
Ben Blum 已提交
5372
EXPORT_SYMBOL_GPL(free_css_id);
K
KAMEZAWA Hiroyuki 已提交
5373 5374 5375 5376 5377 5378 5379 5380 5381

/*
 * This is called by init or create(). Then, calls to this function are
 * always serialized (By cgroup_mutex() at create()).
 */

static struct css_id *get_new_cssid(struct cgroup_subsys *ss, int depth)
{
	struct css_id *newid;
T
Tejun Heo 已提交
5382
	int ret, size;
K
KAMEZAWA Hiroyuki 已提交
5383 5384 5385 5386 5387 5388 5389

	BUG_ON(!ss->use_id);

	size = sizeof(*newid) + sizeof(unsigned short) * (depth + 1);
	newid = kzalloc(size, GFP_KERNEL);
	if (!newid)
		return ERR_PTR(-ENOMEM);
T
Tejun Heo 已提交
5390 5391

	idr_preload(GFP_KERNEL);
5392
	spin_lock(&ss->id_lock);
K
KAMEZAWA Hiroyuki 已提交
5393
	/* Don't use 0. allocates an ID of 1-65535 */
T
Tejun Heo 已提交
5394
	ret = idr_alloc(&ss->idr, newid, 1, CSS_ID_MAX + 1, GFP_NOWAIT);
5395
	spin_unlock(&ss->id_lock);
T
Tejun Heo 已提交
5396
	idr_preload_end();
K
KAMEZAWA Hiroyuki 已提交
5397 5398

	/* Returns error when there are no free spaces for new ID.*/
T
Tejun Heo 已提交
5399
	if (ret < 0)
K
KAMEZAWA Hiroyuki 已提交
5400 5401
		goto err_out;

T
Tejun Heo 已提交
5402
	newid->id = ret;
K
KAMEZAWA Hiroyuki 已提交
5403 5404 5405 5406
	newid->depth = depth;
	return newid;
err_out:
	kfree(newid);
T
Tejun Heo 已提交
5407
	return ERR_PTR(ret);
K
KAMEZAWA Hiroyuki 已提交
5408 5409 5410

}

5411 5412
static int __init_or_module cgroup_init_idr(struct cgroup_subsys *ss,
					    struct cgroup_subsys_state *rootcss)
K
KAMEZAWA Hiroyuki 已提交
5413 5414 5415
{
	struct css_id *newid;

5416
	spin_lock_init(&ss->id_lock);
K
KAMEZAWA Hiroyuki 已提交
5417 5418 5419 5420 5421 5422 5423
	idr_init(&ss->idr);

	newid = get_new_cssid(ss, 0);
	if (IS_ERR(newid))
		return PTR_ERR(newid);

	newid->stack[0] = newid->id;
5424 5425
	RCU_INIT_POINTER(newid->css, rootcss);
	RCU_INIT_POINTER(rootcss->id, newid);
K
KAMEZAWA Hiroyuki 已提交
5426 5427 5428 5429 5430 5431 5432 5433
	return 0;
}

static int alloc_css_id(struct cgroup_subsys *ss, struct cgroup *parent,
			struct cgroup *child)
{
	int subsys_id, i, depth = 0;
	struct cgroup_subsys_state *parent_css, *child_css;
5434
	struct css_id *child_id, *parent_id;
K
KAMEZAWA Hiroyuki 已提交
5435 5436 5437 5438

	subsys_id = ss->subsys_id;
	parent_css = parent->subsys[subsys_id];
	child_css = child->subsys[subsys_id];
5439
	parent_id = rcu_dereference_protected(parent_css->id, true);
5440
	depth = parent_id->depth + 1;
K
KAMEZAWA Hiroyuki 已提交
5441 5442 5443 5444 5445 5446 5447 5448 5449 5450 5451 5452 5453 5454 5455 5456 5457 5458 5459 5460 5461 5462 5463 5464 5465 5466 5467 5468 5469 5470 5471 5472 5473 5474 5475 5476 5477

	child_id = get_new_cssid(ss, depth);
	if (IS_ERR(child_id))
		return PTR_ERR(child_id);

	for (i = 0; i < depth; i++)
		child_id->stack[i] = parent_id->stack[i];
	child_id->stack[depth] = child_id->id;
	/*
	 * child_id->css pointer will be set after this cgroup is available
	 * see cgroup_populate_dir()
	 */
	rcu_assign_pointer(child_css->id, child_id);

	return 0;
}

/**
 * css_lookup - lookup css by id
 * @ss: cgroup subsys to be looked into.
 * @id: the id
 *
 * Returns pointer to cgroup_subsys_state if there is valid one with id.
 * NULL if not. Should be called under rcu_read_lock()
 */
struct cgroup_subsys_state *css_lookup(struct cgroup_subsys *ss, int id)
{
	struct css_id *cssid = NULL;

	BUG_ON(!ss->use_id);
	cssid = idr_find(&ss->idr, id);

	if (unlikely(!cssid))
		return NULL;

	return rcu_dereference(cssid->css);
}
B
Ben Blum 已提交
5478
EXPORT_SYMBOL_GPL(css_lookup);
K
KAMEZAWA Hiroyuki 已提交
5479

S
Stephane Eranian 已提交
5480 5481 5482 5483 5484 5485 5486 5487 5488
/*
 * get corresponding css from file open on cgroupfs directory
 */
struct cgroup_subsys_state *cgroup_css_from_dir(struct file *f, int id)
{
	struct cgroup *cgrp;
	struct inode *inode;
	struct cgroup_subsys_state *css;

A
Al Viro 已提交
5489
	inode = file_inode(f);
S
Stephane Eranian 已提交
5490 5491 5492 5493 5494 5495 5496 5497 5498 5499 5500 5501 5502
	/* check in cgroup filesystem dir */
	if (inode->i_op != &cgroup_dir_inode_operations)
		return ERR_PTR(-EBADF);

	if (id < 0 || id >= CGROUP_SUBSYS_COUNT)
		return ERR_PTR(-EINVAL);

	/* get cgroup */
	cgrp = __d_cgrp(f->f_dentry);
	css = cgrp->subsys[id];
	return css ? css : ERR_PTR(-ENOENT);
}

5503
#ifdef CONFIG_CGROUP_DEBUG
L
Li Zefan 已提交
5504
static struct cgroup_subsys_state *debug_css_alloc(struct cgroup *cgrp)
5505 5506 5507 5508 5509 5510 5511 5512 5513
{
	struct cgroup_subsys_state *css = kzalloc(sizeof(*css), GFP_KERNEL);

	if (!css)
		return ERR_PTR(-ENOMEM);

	return css;
}

L
Li Zefan 已提交
5514
static void debug_css_free(struct cgroup *cgrp)
5515
{
L
Li Zefan 已提交
5516
	kfree(cgrp->subsys[debug_subsys_id]);
5517 5518
}

L
Li Zefan 已提交
5519
static u64 debug_taskcount_read(struct cgroup *cgrp, struct cftype *cft)
5520
{
L
Li Zefan 已提交
5521
	return cgroup_task_count(cgrp);
5522 5523
}

L
Li Zefan 已提交
5524
static u64 current_css_set_read(struct cgroup *cgrp, struct cftype *cft)
5525 5526 5527 5528
{
	return (u64)(unsigned long)current->cgroups;
}

L
Li Zefan 已提交
5529 5530
static u64 current_css_set_refcount_read(struct cgroup *cgrp,
					 struct cftype *cft)
5531 5532 5533 5534
{
	u64 count;

	rcu_read_lock();
5535
	count = atomic_read(&task_css_set(current)->refcount);
5536 5537 5538 5539
	rcu_read_unlock();
	return count;
}

L
Li Zefan 已提交
5540
static int current_css_set_cg_links_read(struct cgroup *cgrp,
5541 5542 5543
					 struct cftype *cft,
					 struct seq_file *seq)
{
5544
	struct cgrp_cset_link *link;
5545
	struct css_set *cset;
5546 5547 5548

	read_lock(&css_set_lock);
	rcu_read_lock();
5549
	cset = rcu_dereference(current->cgroups);
5550
	list_for_each_entry(link, &cset->cgrp_links, cgrp_link) {
5551 5552 5553 5554 5555 5556 5557
		struct cgroup *c = link->cgrp;
		const char *name;

		if (c->dentry)
			name = c->dentry->d_name.name;
		else
			name = "?";
5558 5559
		seq_printf(seq, "Root %d group %s\n",
			   c->root->hierarchy_id, name);
5560 5561 5562 5563 5564 5565 5566
	}
	rcu_read_unlock();
	read_unlock(&css_set_lock);
	return 0;
}

#define MAX_TASKS_SHOWN_PER_CSS 25
L
Li Zefan 已提交
5567
static int cgroup_css_links_read(struct cgroup *cgrp,
5568 5569 5570
				 struct cftype *cft,
				 struct seq_file *seq)
{
5571
	struct cgrp_cset_link *link;
5572 5573

	read_lock(&css_set_lock);
L
Li Zefan 已提交
5574
	list_for_each_entry(link, &cgrp->cset_links, cset_link) {
5575
		struct css_set *cset = link->cset;
5576 5577
		struct task_struct *task;
		int count = 0;
5578 5579
		seq_printf(seq, "css_set %p\n", cset);
		list_for_each_entry(task, &cset->tasks, cg_list) {
5580 5581 5582 5583 5584 5585 5586 5587 5588 5589 5590 5591 5592
			if (count++ > MAX_TASKS_SHOWN_PER_CSS) {
				seq_puts(seq, "  ...\n");
				break;
			} else {
				seq_printf(seq, "  task %d\n",
					   task_pid_vnr(task));
			}
		}
	}
	read_unlock(&css_set_lock);
	return 0;
}

5593 5594 5595 5596 5597 5598 5599 5600 5601 5602 5603 5604 5605 5606 5607 5608 5609 5610 5611 5612 5613
static u64 releasable_read(struct cgroup *cgrp, struct cftype *cft)
{
	return test_bit(CGRP_RELEASABLE, &cgrp->flags);
}

static struct cftype debug_files[] =  {
	{
		.name = "taskcount",
		.read_u64 = debug_taskcount_read,
	},

	{
		.name = "current_css_set",
		.read_u64 = current_css_set_read,
	},

	{
		.name = "current_css_set_refcount",
		.read_u64 = current_css_set_refcount_read,
	},

5614 5615 5616 5617 5618 5619 5620 5621 5622 5623
	{
		.name = "current_css_set_cg_links",
		.read_seq_string = current_css_set_cg_links_read,
	},

	{
		.name = "cgroup_css_links",
		.read_seq_string = cgroup_css_links_read,
	},

5624 5625 5626 5627 5628
	{
		.name = "releasable",
		.read_u64 = releasable_read,
	},

5629 5630
	{ }	/* terminate */
};
5631 5632 5633

struct cgroup_subsys debug_subsys = {
	.name = "debug",
5634 5635
	.css_alloc = debug_css_alloc,
	.css_free = debug_css_free,
5636
	.subsys_id = debug_subsys_id,
5637
	.base_cftypes = debug_files,
5638 5639
};
#endif /* CONFIG_CGROUP_DEBUG */