cgroup.c 94.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33
/*
 *  Generic process-grouping system.
 *
 *  Based originally on the cpuset system, extracted by Paul Menage
 *  Copyright (C) 2006 Google, Inc
 *
 *  Copyright notices from the original cpuset code:
 *  --------------------------------------------------
 *  Copyright (C) 2003 BULL SA.
 *  Copyright (C) 2004-2006 Silicon Graphics, Inc.
 *
 *  Portions derived from Patrick Mochel's sysfs code.
 *  sysfs is Copyright (c) 2001-3 Patrick Mochel
 *
 *  2003-10-10 Written by Simon Derr.
 *  2003-10-22 Updates by Stephen Hemminger.
 *  2004 May-July Rework by Paul Jackson.
 *  ---------------------------------------------------
 *
 *  This file is subject to the terms and conditions of the GNU General Public
 *  License.  See the file COPYING in the main directory of the Linux
 *  distribution for more details.
 */

#include <linux/cgroup.h>
#include <linux/errno.h>
#include <linux/fs.h>
#include <linux/kernel.h>
#include <linux/list.h>
#include <linux/mm.h>
#include <linux/mutex.h>
#include <linux/mount.h>
#include <linux/pagemap.h>
34
#include <linux/proc_fs.h>
35 36
#include <linux/rcupdate.h>
#include <linux/sched.h>
37
#include <linux/backing-dev.h>
38 39 40 41 42
#include <linux/seq_file.h>
#include <linux/slab.h>
#include <linux/magic.h>
#include <linux/spinlock.h>
#include <linux/string.h>
43
#include <linux/sort.h>
44
#include <linux/kmod.h>
B
Balbir Singh 已提交
45 46
#include <linux/delayacct.h>
#include <linux/cgroupstats.h>
47
#include <linux/hash.h>
48
#include <linux/namei.h>
49
#include <linux/smp_lock.h>
L
Li Zefan 已提交
50
#include <linux/pid_namespace.h>
B
Balbir Singh 已提交
51

52 53
#include <asm/atomic.h>

54 55
static DEFINE_MUTEX(cgroup_mutex);

56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88
/* Generate an array of cgroup subsystem pointers */
#define SUBSYS(_x) &_x ## _subsys,

static struct cgroup_subsys *subsys[] = {
#include <linux/cgroup_subsys.h>
};

/*
 * A cgroupfs_root represents the root of a cgroup hierarchy,
 * and may be associated with a superblock to form an active
 * hierarchy
 */
struct cgroupfs_root {
	struct super_block *sb;

	/*
	 * The bitmask of subsystems intended to be attached to this
	 * hierarchy
	 */
	unsigned long subsys_bits;

	/* The bitmask of subsystems currently attached to this hierarchy */
	unsigned long actual_subsys_bits;

	/* A list running through the attached subsystems */
	struct list_head subsys_list;

	/* The root cgroup for this hierarchy */
	struct cgroup top_cgroup;

	/* Tracks how many cgroups are currently defined in hierarchy.*/
	int number_of_cgroups;

89
	/* A list running through the active hierarchies */
90 91 92 93
	struct list_head root_list;

	/* Hierarchy-specific flags */
	unsigned long flags;
94

95
	/* The path to use for release notifications. */
96
	char release_agent_path[PATH_MAX];
97 98 99 100 101 102 103 104 105
};

/*
 * The "rootnode" hierarchy is the "dummy hierarchy", reserved for the
 * subsystems that are otherwise unattached - it never has more than a
 * single cgroup, and all tasks are part of that cgroup.
 */
static struct cgroupfs_root rootnode;

K
KAMEZAWA Hiroyuki 已提交
106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138
/*
 * CSS ID -- ID per subsys's Cgroup Subsys State(CSS). used only when
 * cgroup_subsys->use_id != 0.
 */
#define CSS_ID_MAX	(65535)
struct css_id {
	/*
	 * The css to which this ID points. This pointer is set to valid value
	 * after cgroup is populated. If cgroup is removed, this will be NULL.
	 * This pointer is expected to be RCU-safe because destroy()
	 * is called after synchronize_rcu(). But for safe use, css_is_removed()
	 * css_tryget() should be used for avoiding race.
	 */
	struct cgroup_subsys_state *css;
	/*
	 * ID of this css.
	 */
	unsigned short id;
	/*
	 * Depth in hierarchy which this ID belongs to.
	 */
	unsigned short depth;
	/*
	 * ID is freed by RCU. (and lookup routine is RCU safe.)
	 */
	struct rcu_head rcu_head;
	/*
	 * Hierarchy of CSS ID belongs to.
	 */
	unsigned short stack[0]; /* Array of Length (depth+1) */
};


139 140 141
/* The list of hierarchy roots */

static LIST_HEAD(roots);
142
static int root_count;
143 144 145 146 147

/* dummytop is a shorthand for the dummy hierarchy's top cgroup */
#define dummytop (&rootnode.top_cgroup)

/* This flag indicates whether tasks in the fork and exit paths should
L
Li Zefan 已提交
148 149 150
 * check for fork/exit handlers to call. This avoids us having to do
 * extra work in the fork/exit path if none of the subsystems need to
 * be called.
151
 */
152
static int need_forkexit_callback __read_mostly;
153 154

/* convenient tests for these bits */
155
inline int cgroup_is_removed(const struct cgroup *cgrp)
156
{
157
	return test_bit(CGRP_REMOVED, &cgrp->flags);
158 159 160 161 162 163 164
}

/* bits in struct cgroupfs_root flags field */
enum {
	ROOT_NOPREFIX, /* mounted subsystems have no named prefix */
};

165
static int cgroup_is_releasable(const struct cgroup *cgrp)
166 167
{
	const int bits =
168 169 170
		(1 << CGRP_RELEASABLE) |
		(1 << CGRP_NOTIFY_ON_RELEASE);
	return (cgrp->flags & bits) == bits;
171 172
}

173
static int notify_on_release(const struct cgroup *cgrp)
174
{
175
	return test_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
176 177
}

178 179 180 181 182 183 184
/*
 * for_each_subsys() allows you to iterate on each subsystem attached to
 * an active hierarchy
 */
#define for_each_subsys(_root, _ss) \
list_for_each_entry(_ss, &_root->subsys_list, sibling)

185 186
/* for_each_active_root() allows you to iterate across the active hierarchies */
#define for_each_active_root(_root) \
187 188
list_for_each_entry(_root, &roots, root_list)

189 190 191 192 193 194
/* the list of cgroups eligible for automatic release. Protected by
 * release_list_lock */
static LIST_HEAD(release_list);
static DEFINE_SPINLOCK(release_list_lock);
static void cgroup_release_agent(struct work_struct *work);
static DECLARE_WORK(release_agent_work, cgroup_release_agent);
195
static void check_for_release(struct cgroup *cgrp);
196

197 198 199 200 201 202
/* Link structure for associating css_set objects with cgroups */
struct cg_cgroup_link {
	/*
	 * List running through cg_cgroup_links associated with a
	 * cgroup, anchored on cgroup->css_sets
	 */
203
	struct list_head cgrp_link_list;
204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221
	/*
	 * List running through cg_cgroup_links pointing at a
	 * single css_set object, anchored on css_set->cg_links
	 */
	struct list_head cg_link_list;
	struct css_set *cg;
};

/* The default css_set - used by init and its children prior to any
 * hierarchies being mounted. It contains a pointer to the root state
 * for each subsystem. Also used to anchor the list of css_sets. Not
 * reference-counted, to improve performance when child cgroups
 * haven't been created.
 */

static struct css_set init_css_set;
static struct cg_cgroup_link init_css_set_link;

K
KAMEZAWA Hiroyuki 已提交
222 223
static int cgroup_subsys_init_idr(struct cgroup_subsys *ss);

224 225 226 227 228 229
/* css_set_lock protects the list of css_set objects, and the
 * chain of tasks off each css_set.  Nests outside task->alloc_lock
 * due to cgroup_iter_start() */
static DEFINE_RWLOCK(css_set_lock);
static int css_set_count;

230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250
/* hash table for cgroup groups. This improves the performance to
 * find an existing css_set */
#define CSS_SET_HASH_BITS	7
#define CSS_SET_TABLE_SIZE	(1 << CSS_SET_HASH_BITS)
static struct hlist_head css_set_table[CSS_SET_TABLE_SIZE];

static struct hlist_head *css_set_hash(struct cgroup_subsys_state *css[])
{
	int i;
	int index;
	unsigned long tmp = 0UL;

	for (i = 0; i < CGROUP_SUBSYS_COUNT; i++)
		tmp += (unsigned long)css[i];
	tmp = (tmp >> 16) ^ tmp;

	index = hash_long(tmp, CSS_SET_HASH_BITS);

	return &css_set_table[index];
}

251 252 253 254
/* We don't maintain the lists running through each css_set to its
 * task until after the first call to cgroup_iter_start(). This
 * reduces the fork()/exit() overhead for people who have cgroups
 * compiled into their kernel but not actually in use */
255
static int use_task_css_set_links __read_mostly;
256 257 258 259 260 261 262

/* When we create or destroy a css_set, the operation simply
 * takes/releases a reference count on all the cgroups referenced
 * by subsystems in this css_set. This can end up multiple-counting
 * some cgroups, but that's OK - the ref-count is just a
 * busy/not-busy indicator; ensuring that we only count each cgroup
 * once would require taking a global lock to ensure that no
263 264 265 266 267 268 269
 * subsystems moved between hierarchies while we were doing so.
 *
 * Possible TODO: decide at boot time based on the number of
 * registered subsystems and the number of CPUs or NUMA nodes whether
 * it's better for performance to ref-count every subsystem, or to
 * take a global lock and only add one ref count to each hierarchy.
 */
270 271 272 273

/*
 * unlink a css_set from the list and free it
 */
274
static void unlink_css_set(struct css_set *cg)
275
{
K
KOSAKI Motohiro 已提交
276 277 278
	struct cg_cgroup_link *link;
	struct cg_cgroup_link *saved_link;

279
	hlist_del(&cg->hlist);
280
	css_set_count--;
K
KOSAKI Motohiro 已提交
281 282 283

	list_for_each_entry_safe(link, saved_link, &cg->cg_links,
				 cg_link_list) {
284
		list_del(&link->cg_link_list);
285
		list_del(&link->cgrp_link_list);
286 287
		kfree(link);
	}
288 289
}

290
static void __put_css_set(struct css_set *cg, int taskexit)
291 292
{
	int i;
293 294 295 296 297 298 299 300 301 302 303 304
	/*
	 * Ensure that the refcount doesn't hit zero while any readers
	 * can see it. Similar to atomic_dec_and_lock(), but for an
	 * rwlock
	 */
	if (atomic_add_unless(&cg->refcount, -1, 1))
		return;
	write_lock(&css_set_lock);
	if (!atomic_dec_and_test(&cg->refcount)) {
		write_unlock(&css_set_lock);
		return;
	}
305
	unlink_css_set(cg);
306
	write_unlock(&css_set_lock);
307 308 309

	rcu_read_lock();
	for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
310
		struct cgroup *cgrp = rcu_dereference(cg->subsys[i]->cgroup);
311 312
		if (atomic_dec_and_test(&cgrp->count) &&
		    notify_on_release(cgrp)) {
313
			if (taskexit)
314 315
				set_bit(CGRP_RELEASABLE, &cgrp->flags);
			check_for_release(cgrp);
316 317 318
		}
	}
	rcu_read_unlock();
319
	kfree(cg);
320 321
}

322 323 324 325 326
/*
 * refcounted get/put for css_set objects
 */
static inline void get_css_set(struct css_set *cg)
{
327
	atomic_inc(&cg->refcount);
328 329 330 331
}

static inline void put_css_set(struct css_set *cg)
{
332
	__put_css_set(cg, 0);
333 334
}

335 336
static inline void put_css_set_taskexit(struct css_set *cg)
{
337
	__put_css_set(cg, 1);
338 339
}

340 341 342
/*
 * find_existing_css_set() is a helper for
 * find_css_set(), and checks to see whether an existing
343
 * css_set is suitable.
344 345 346 347
 *
 * oldcg: the cgroup group that we're using before the cgroup
 * transition
 *
348
 * cgrp: the cgroup that we're moving into
349 350 351 352 353 354
 *
 * template: location in which to build the desired set of subsystem
 * state objects for the new cgroup group
 */
static struct css_set *find_existing_css_set(
	struct css_set *oldcg,
355
	struct cgroup *cgrp,
356
	struct cgroup_subsys_state *template[])
357 358
{
	int i;
359
	struct cgroupfs_root *root = cgrp->root;
360 361 362
	struct hlist_head *hhead;
	struct hlist_node *node;
	struct css_set *cg;
363 364 365 366

	/* Built the set of subsystem state objects that we want to
	 * see in the new css_set */
	for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
L
Li Zefan 已提交
367
		if (root->subsys_bits & (1UL << i)) {
368 369 370
			/* Subsystem is in this hierarchy. So we want
			 * the subsystem state from the new
			 * cgroup */
371
			template[i] = cgrp->subsys[i];
372 373 374 375 376 377 378
		} else {
			/* Subsystem is not in this hierarchy, so we
			 * don't want to change the subsystem state */
			template[i] = oldcg->subsys[i];
		}
	}

379 380
	hhead = css_set_hash(template);
	hlist_for_each_entry(cg, node, hhead, hlist) {
381 382 383 384
		if (!memcmp(template, cg->subsys, sizeof(cg->subsys))) {
			/* All subsystems matched */
			return cg;
		}
385
	}
386 387 388 389 390

	/* No existing cgroup group matched */
	return NULL;
}

391 392 393 394 395 396 397 398 399 400 401
static void free_cg_links(struct list_head *tmp)
{
	struct cg_cgroup_link *link;
	struct cg_cgroup_link *saved_link;

	list_for_each_entry_safe(link, saved_link, tmp, cgrp_link_list) {
		list_del(&link->cgrp_link_list);
		kfree(link);
	}
}

402 403
/*
 * allocate_cg_links() allocates "count" cg_cgroup_link structures
404
 * and chains them on tmp through their cgrp_link_list fields. Returns 0 on
405 406 407 408 409 410 411 412 413 414
 * success or a negative error
 */
static int allocate_cg_links(int count, struct list_head *tmp)
{
	struct cg_cgroup_link *link;
	int i;
	INIT_LIST_HEAD(tmp);
	for (i = 0; i < count; i++) {
		link = kmalloc(sizeof(*link), GFP_KERNEL);
		if (!link) {
415
			free_cg_links(tmp);
416 417
			return -ENOMEM;
		}
418
		list_add(&link->cgrp_link_list, tmp);
419 420 421 422
	}
	return 0;
}

423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441
/**
 * link_css_set - a helper function to link a css_set to a cgroup
 * @tmp_cg_links: cg_cgroup_link objects allocated by allocate_cg_links()
 * @cg: the css_set to be linked
 * @cgrp: the destination cgroup
 */
static void link_css_set(struct list_head *tmp_cg_links,
			 struct css_set *cg, struct cgroup *cgrp)
{
	struct cg_cgroup_link *link;

	BUG_ON(list_empty(tmp_cg_links));
	link = list_first_entry(tmp_cg_links, struct cg_cgroup_link,
				cgrp_link_list);
	link->cg = cg;
	list_move(&link->cgrp_link_list, &cgrp->css_sets);
	list_add(&link->cg_link_list, &cg->cg_links);
}

442 443 444 445 446 447 448 449
/*
 * find_css_set() takes an existing cgroup group and a
 * cgroup object, and returns a css_set object that's
 * equivalent to the old group, but with the given cgroup
 * substituted into the appropriate hierarchy. Must be called with
 * cgroup_mutex held
 */
static struct css_set *find_css_set(
450
	struct css_set *oldcg, struct cgroup *cgrp)
451 452 453 454 455 456 457
{
	struct css_set *res;
	struct cgroup_subsys_state *template[CGROUP_SUBSYS_COUNT];
	int i;

	struct list_head tmp_cg_links;

458 459
	struct hlist_head *hhead;

460 461
	/* First see if we already have a cgroup group that matches
	 * the desired set */
462
	read_lock(&css_set_lock);
463
	res = find_existing_css_set(oldcg, cgrp, template);
464 465
	if (res)
		get_css_set(res);
466
	read_unlock(&css_set_lock);
467 468 469 470 471 472 473 474 475 476 477 478 479 480

	if (res)
		return res;

	res = kmalloc(sizeof(*res), GFP_KERNEL);
	if (!res)
		return NULL;

	/* Allocate all the cg_cgroup_link objects that we'll need */
	if (allocate_cg_links(root_count, &tmp_cg_links) < 0) {
		kfree(res);
		return NULL;
	}

481
	atomic_set(&res->refcount, 1);
482 483
	INIT_LIST_HEAD(&res->cg_links);
	INIT_LIST_HEAD(&res->tasks);
484
	INIT_HLIST_NODE(&res->hlist);
485 486 487 488 489 490 491 492

	/* Copy the set of subsystem state objects generated in
	 * find_existing_css_set() */
	memcpy(res->subsys, template, sizeof(res->subsys));

	write_lock(&css_set_lock);
	/* Add reference counts and links from the new css_set. */
	for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
493
		struct cgroup *cgrp = res->subsys[i]->cgroup;
494
		struct cgroup_subsys *ss = subsys[i];
495
		atomic_inc(&cgrp->count);
496 497 498 499 500
		/*
		 * We want to add a link once per cgroup, so we
		 * only do it for the first subsystem in each
		 * hierarchy
		 */
501 502
		if (ss->root->subsys_list.next == &ss->sibling)
			link_css_set(&tmp_cg_links, res, cgrp);
503
	}
504 505
	if (list_empty(&rootnode.subsys_list))
		link_css_set(&tmp_cg_links, res, dummytop);
506 507 508 509

	BUG_ON(!list_empty(&tmp_cg_links));

	css_set_count++;
510 511 512 513 514

	/* Add this cgroup group to the hash table */
	hhead = css_set_hash(res->subsys);
	hlist_add_head(&res->hlist, hhead);

515 516 517
	write_unlock(&css_set_lock);

	return res;
518 519
}

520 521 522 523 524 525 526 527 528 529
/*
 * There is one global cgroup mutex. We also require taking
 * task_lock() when dereferencing a task's cgroup subsys pointers.
 * See "The task_lock() exception", at the end of this comment.
 *
 * A task must hold cgroup_mutex to modify cgroups.
 *
 * Any task can increment and decrement the count field without lock.
 * So in general, code holding cgroup_mutex can't rely on the count
 * field not changing.  However, if the count goes to zero, then only
530
 * cgroup_attach_task() can increment it again.  Because a count of zero
531 532 533 534 535 536 537 538 539 540 541 542 543
 * means that no tasks are currently attached, therefore there is no
 * way a task attached to that cgroup can fork (the other way to
 * increment the count).  So code holding cgroup_mutex can safely
 * assume that if the count is zero, it will stay zero. Similarly, if
 * a task holds cgroup_mutex on a cgroup with zero count, it
 * knows that the cgroup won't be removed, as cgroup_rmdir()
 * needs that mutex.
 *
 * The fork and exit callbacks cgroup_fork() and cgroup_exit(), don't
 * (usually) take cgroup_mutex.  These are the two most performance
 * critical pieces of code here.  The exception occurs on cgroup_exit(),
 * when a task in a notify_on_release cgroup exits.  Then cgroup_mutex
 * is taken, and if the cgroup count is zero, a usermode call made
L
Li Zefan 已提交
544 545
 * to the release agent with the name of the cgroup (path relative to
 * the root of cgroup file system) as the argument.
546 547 548 549 550 551 552 553 554 555 556
 *
 * A cgroup can only be deleted if both its 'count' of using tasks
 * is zero, and its list of 'children' cgroups is empty.  Since all
 * tasks in the system use _some_ cgroup, and since there is always at
 * least one task in the system (init, pid == 1), therefore, top_cgroup
 * always has either children cgroups and/or using tasks.  So we don't
 * need a special hack to ensure that top_cgroup cannot be deleted.
 *
 *	The task_lock() exception
 *
 * The need for this exception arises from the action of
557
 * cgroup_attach_task(), which overwrites one tasks cgroup pointer with
L
Li Zefan 已提交
558
 * another.  It does so using cgroup_mutex, however there are
559 560 561
 * several performance critical places that need to reference
 * task->cgroup without the expense of grabbing a system global
 * mutex.  Therefore except as noted below, when dereferencing or, as
562
 * in cgroup_attach_task(), modifying a task'ss cgroup pointer we use
563 564 565 566
 * task_lock(), which acts on a spinlock (task->alloc_lock) already in
 * the task_struct routinely used for such matters.
 *
 * P.S.  One more locking exception.  RCU is used to guard the
567
 * update of a tasks cgroup pointer by cgroup_attach_task()
568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597
 */

/**
 * cgroup_lock - lock out any changes to cgroup structures
 *
 */
void cgroup_lock(void)
{
	mutex_lock(&cgroup_mutex);
}

/**
 * cgroup_unlock - release lock on cgroup changes
 *
 * Undo the lock taken in a previous cgroup_lock() call.
 */
void cgroup_unlock(void)
{
	mutex_unlock(&cgroup_mutex);
}

/*
 * A couple of forward declarations required, due to cyclic reference loop:
 * cgroup_mkdir -> cgroup_create -> cgroup_populate_dir ->
 * cgroup_add_file -> cgroup_create_file -> cgroup_dir_inode_operations
 * -> cgroup_mkdir.
 */

static int cgroup_mkdir(struct inode *dir, struct dentry *dentry, int mode);
static int cgroup_rmdir(struct inode *unused_dir, struct dentry *dentry);
598
static int cgroup_populate_dir(struct cgroup *cgrp);
599
static struct inode_operations cgroup_dir_inode_operations;
600 601 602
static struct file_operations proc_cgroupstats_operations;

static struct backing_dev_info cgroup_backing_dev_info = {
603
	.capabilities	= BDI_CAP_NO_ACCT_AND_WRITEBACK,
604
};
605

K
KAMEZAWA Hiroyuki 已提交
606 607 608
static int alloc_css_id(struct cgroup_subsys *ss,
			struct cgroup *parent, struct cgroup *child);

609 610 611 612 613 614
static struct inode *cgroup_new_inode(mode_t mode, struct super_block *sb)
{
	struct inode *inode = new_inode(sb);

	if (inode) {
		inode->i_mode = mode;
615 616
		inode->i_uid = current_fsuid();
		inode->i_gid = current_fsgid();
617 618 619 620 621 622
		inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
		inode->i_mapping->backing_dev_info = &cgroup_backing_dev_info;
	}
	return inode;
}

623 624 625 626
/*
 * Call subsys's pre_destroy handler.
 * This is called before css refcnt check.
 */
627
static int cgroup_call_pre_destroy(struct cgroup *cgrp)
628 629
{
	struct cgroup_subsys *ss;
630 631
	int ret = 0;

632
	for_each_subsys(cgrp->root, ss)
633 634 635 636 637 638
		if (ss->pre_destroy) {
			ret = ss->pre_destroy(ss, cgrp);
			if (ret)
				break;
		}
	return ret;
639 640
}

641 642 643 644 645 646 647
static void free_cgroup_rcu(struct rcu_head *obj)
{
	struct cgroup *cgrp = container_of(obj, struct cgroup, rcu_head);

	kfree(cgrp);
}

648 649 650 651
static void cgroup_diput(struct dentry *dentry, struct inode *inode)
{
	/* is dentry a directory ? if so, kfree() associated cgroup */
	if (S_ISDIR(inode->i_mode)) {
652
		struct cgroup *cgrp = dentry->d_fsdata;
653
		struct cgroup_subsys *ss;
654
		BUG_ON(!(cgroup_is_removed(cgrp)));
655 656 657 658 659 660 661
		/* It's possible for external users to be holding css
		 * reference counts on a cgroup; css_put() needs to
		 * be able to access the cgroup after decrementing
		 * the reference count in order to know if it needs to
		 * queue the cgroup to be handled by the release
		 * agent */
		synchronize_rcu();
662 663 664 665 666

		mutex_lock(&cgroup_mutex);
		/*
		 * Release the subsystem state objects.
		 */
667 668
		for_each_subsys(cgrp->root, ss)
			ss->destroy(ss, cgrp);
669 670 671 672

		cgrp->root->number_of_cgroups--;
		mutex_unlock(&cgroup_mutex);

673 674 675 676
		/*
		 * Drop the active superblock reference that we took when we
		 * created the cgroup
		 */
677 678
		deactivate_super(cgrp->root->sb);

679
		call_rcu(&cgrp->rcu_head, free_cgroup_rcu);
680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731
	}
	iput(inode);
}

static void remove_dir(struct dentry *d)
{
	struct dentry *parent = dget(d->d_parent);

	d_delete(d);
	simple_rmdir(parent->d_inode, d);
	dput(parent);
}

static void cgroup_clear_directory(struct dentry *dentry)
{
	struct list_head *node;

	BUG_ON(!mutex_is_locked(&dentry->d_inode->i_mutex));
	spin_lock(&dcache_lock);
	node = dentry->d_subdirs.next;
	while (node != &dentry->d_subdirs) {
		struct dentry *d = list_entry(node, struct dentry, d_u.d_child);
		list_del_init(node);
		if (d->d_inode) {
			/* This should never be called on a cgroup
			 * directory with child cgroups */
			BUG_ON(d->d_inode->i_mode & S_IFDIR);
			d = dget_locked(d);
			spin_unlock(&dcache_lock);
			d_delete(d);
			simple_unlink(dentry->d_inode, d);
			dput(d);
			spin_lock(&dcache_lock);
		}
		node = dentry->d_subdirs.next;
	}
	spin_unlock(&dcache_lock);
}

/*
 * NOTE : the dentry must have been dget()'ed
 */
static void cgroup_d_remove_dir(struct dentry *dentry)
{
	cgroup_clear_directory(dentry);

	spin_lock(&dcache_lock);
	list_del_init(&dentry->d_u.d_child);
	spin_unlock(&dcache_lock);
	remove_dir(dentry);
}

732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747
/*
 * A queue for waiters to do rmdir() cgroup. A tasks will sleep when
 * cgroup->count == 0 && list_empty(&cgroup->children) && subsys has some
 * reference to css->refcnt. In general, this refcnt is expected to goes down
 * to zero, soon.
 *
 * CGRP_WAIT_ON_RMDIR flag is modified under cgroup's inode->i_mutex;
 */
DECLARE_WAIT_QUEUE_HEAD(cgroup_rmdir_waitq);

static void cgroup_wakeup_rmdir_waiters(const struct cgroup *cgrp)
{
	if (unlikely(test_bit(CGRP_WAIT_ON_RMDIR, &cgrp->flags)))
		wake_up_all(&cgroup_rmdir_waitq);
}

748 749 750 751
static int rebind_subsystems(struct cgroupfs_root *root,
			      unsigned long final_bits)
{
	unsigned long added_bits, removed_bits;
752
	struct cgroup *cgrp = &root->top_cgroup;
753 754 755 756 757 758
	int i;

	removed_bits = root->actual_subsys_bits & ~final_bits;
	added_bits = final_bits & ~root->actual_subsys_bits;
	/* Check that any added subsystems are currently free */
	for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
L
Li Zefan 已提交
759
		unsigned long bit = 1UL << i;
760 761 762 763 764 765 766 767 768 769 770 771 772
		struct cgroup_subsys *ss = subsys[i];
		if (!(bit & added_bits))
			continue;
		if (ss->root != &rootnode) {
			/* Subsystem isn't free */
			return -EBUSY;
		}
	}

	/* Currently we don't handle adding/removing subsystems when
	 * any child cgroups exist. This is theoretically supportable
	 * but involves complex error handling, so it's being left until
	 * later */
773
	if (root->number_of_cgroups > 1)
774 775 776 777 778 779 780 781
		return -EBUSY;

	/* Process each subsystem */
	for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
		struct cgroup_subsys *ss = subsys[i];
		unsigned long bit = 1UL << i;
		if (bit & added_bits) {
			/* We're binding this subsystem to this hierarchy */
782
			BUG_ON(cgrp->subsys[i]);
783 784
			BUG_ON(!dummytop->subsys[i]);
			BUG_ON(dummytop->subsys[i]->cgroup != dummytop);
785
			mutex_lock(&ss->hierarchy_mutex);
786 787
			cgrp->subsys[i] = dummytop->subsys[i];
			cgrp->subsys[i]->cgroup = cgrp;
788
			list_move(&ss->sibling, &root->subsys_list);
789
			ss->root = root;
790
			if (ss->bind)
791
				ss->bind(ss, cgrp);
792
			mutex_unlock(&ss->hierarchy_mutex);
793 794
		} else if (bit & removed_bits) {
			/* We're removing this subsystem */
795 796
			BUG_ON(cgrp->subsys[i] != dummytop->subsys[i]);
			BUG_ON(cgrp->subsys[i]->cgroup != cgrp);
797
			mutex_lock(&ss->hierarchy_mutex);
798 799 800
			if (ss->bind)
				ss->bind(ss, dummytop);
			dummytop->subsys[i]->cgroup = dummytop;
801
			cgrp->subsys[i] = NULL;
802
			subsys[i]->root = &rootnode;
803
			list_move(&ss->sibling, &rootnode.subsys_list);
804
			mutex_unlock(&ss->hierarchy_mutex);
805 806
		} else if (bit & final_bits) {
			/* Subsystem state should already exist */
807
			BUG_ON(!cgrp->subsys[i]);
808 809
		} else {
			/* Subsystem state shouldn't exist */
810
			BUG_ON(cgrp->subsys[i]);
811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828
		}
	}
	root->subsys_bits = root->actual_subsys_bits = final_bits;
	synchronize_rcu();

	return 0;
}

static int cgroup_show_options(struct seq_file *seq, struct vfsmount *vfs)
{
	struct cgroupfs_root *root = vfs->mnt_sb->s_fs_info;
	struct cgroup_subsys *ss;

	mutex_lock(&cgroup_mutex);
	for_each_subsys(root, ss)
		seq_printf(seq, ",%s", ss->name);
	if (test_bit(ROOT_NOPREFIX, &root->flags))
		seq_puts(seq, ",noprefix");
829 830
	if (strlen(root->release_agent_path))
		seq_printf(seq, ",release_agent=%s", root->release_agent_path);
831 832 833 834 835 836 837
	mutex_unlock(&cgroup_mutex);
	return 0;
}

struct cgroup_sb_opts {
	unsigned long subsys_bits;
	unsigned long flags;
838
	char *release_agent;
839 840 841 842 843 844 845 846
};

/* Convert a hierarchy specifier into a bitmask of subsystems and
 * flags. */
static int parse_cgroupfs_options(char *data,
				     struct cgroup_sb_opts *opts)
{
	char *token, *o = data ?: "all";
847 848 849 850 851
	unsigned long mask = (unsigned long)-1;

#ifdef CONFIG_CPUSETS
	mask = ~(1UL << cpuset_subsys_id);
#endif
852 853 854

	opts->subsys_bits = 0;
	opts->flags = 0;
855
	opts->release_agent = NULL;
856 857 858 859 860

	while ((token = strsep(&o, ",")) != NULL) {
		if (!*token)
			return -EINVAL;
		if (!strcmp(token, "all")) {
861 862 863 864 865 866 867 868
			/* Add all non-disabled subsystems */
			int i;
			opts->subsys_bits = 0;
			for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
				struct cgroup_subsys *ss = subsys[i];
				if (!ss->disabled)
					opts->subsys_bits |= 1ul << i;
			}
869 870
		} else if (!strcmp(token, "noprefix")) {
			set_bit(ROOT_NOPREFIX, &opts->flags);
871 872 873 874 875 876 877 878 879
		} else if (!strncmp(token, "release_agent=", 14)) {
			/* Specifying two release agents is forbidden */
			if (opts->release_agent)
				return -EINVAL;
			opts->release_agent = kzalloc(PATH_MAX, GFP_KERNEL);
			if (!opts->release_agent)
				return -ENOMEM;
			strncpy(opts->release_agent, token + 14, PATH_MAX - 1);
			opts->release_agent[PATH_MAX - 1] = 0;
880 881 882 883 884 885
		} else {
			struct cgroup_subsys *ss;
			int i;
			for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
				ss = subsys[i];
				if (!strcmp(token, ss->name)) {
886 887
					if (!ss->disabled)
						set_bit(i, &opts->subsys_bits);
888 889 890 891 892 893 894 895
					break;
				}
			}
			if (i == CGROUP_SUBSYS_COUNT)
				return -ENOENT;
		}
	}

896 897 898 899 900 901 902 903 904
	/*
	 * Option noprefix was introduced just for backward compatibility
	 * with the old cpuset, so we allow noprefix only if mounting just
	 * the cpuset subsystem.
	 */
	if (test_bit(ROOT_NOPREFIX, &opts->flags) &&
	    (opts->subsys_bits & mask))
		return -EINVAL;

905 906 907 908 909 910 911 912 913 914 915
	/* We can't have an empty hierarchy */
	if (!opts->subsys_bits)
		return -EINVAL;

	return 0;
}

static int cgroup_remount(struct super_block *sb, int *flags, char *data)
{
	int ret = 0;
	struct cgroupfs_root *root = sb->s_fs_info;
916
	struct cgroup *cgrp = &root->top_cgroup;
917 918
	struct cgroup_sb_opts opts;

919
	lock_kernel();
920
	mutex_lock(&cgrp->dentry->d_inode->i_mutex);
921 922 923 924 925 926 927 928 929 930 931 932 933 934
	mutex_lock(&cgroup_mutex);

	/* See what subsystems are wanted */
	ret = parse_cgroupfs_options(data, &opts);
	if (ret)
		goto out_unlock;

	/* Don't allow flags to change at remount */
	if (opts.flags != root->flags) {
		ret = -EINVAL;
		goto out_unlock;
	}

	ret = rebind_subsystems(root, opts.subsys_bits);
935 936
	if (ret)
		goto out_unlock;
937 938

	/* (re)populate subsystem files */
939
	cgroup_populate_dir(cgrp);
940

941 942
	if (opts.release_agent)
		strcpy(root->release_agent_path, opts.release_agent);
943
 out_unlock:
944
	kfree(opts.release_agent);
945
	mutex_unlock(&cgroup_mutex);
946
	mutex_unlock(&cgrp->dentry->d_inode->i_mutex);
947
	unlock_kernel();
948 949 950 951 952 953 954 955 956 957
	return ret;
}

static struct super_operations cgroup_ops = {
	.statfs = simple_statfs,
	.drop_inode = generic_delete_inode,
	.show_options = cgroup_show_options,
	.remount_fs = cgroup_remount,
};

958 959 960 961 962 963
static void init_cgroup_housekeeping(struct cgroup *cgrp)
{
	INIT_LIST_HEAD(&cgrp->sibling);
	INIT_LIST_HEAD(&cgrp->children);
	INIT_LIST_HEAD(&cgrp->css_sets);
	INIT_LIST_HEAD(&cgrp->release_list);
L
Li Zefan 已提交
964
	INIT_LIST_HEAD(&cgrp->pids_list);
965 966
	init_rwsem(&cgrp->pids_mutex);
}
967 968
static void init_cgroup_root(struct cgroupfs_root *root)
{
969
	struct cgroup *cgrp = &root->top_cgroup;
970 971 972
	INIT_LIST_HEAD(&root->subsys_list);
	INIT_LIST_HEAD(&root->root_list);
	root->number_of_cgroups = 1;
973 974
	cgrp->root = root;
	cgrp->top_cgroup = cgrp;
975
	init_cgroup_housekeeping(cgrp);
976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043
}

static int cgroup_test_super(struct super_block *sb, void *data)
{
	struct cgroupfs_root *new = data;
	struct cgroupfs_root *root = sb->s_fs_info;

	/* First check subsystems */
	if (new->subsys_bits != root->subsys_bits)
	    return 0;

	/* Next check flags */
	if (new->flags != root->flags)
		return 0;

	return 1;
}

static int cgroup_set_super(struct super_block *sb, void *data)
{
	int ret;
	struct cgroupfs_root *root = data;

	ret = set_anon_super(sb, NULL);
	if (ret)
		return ret;

	sb->s_fs_info = root;
	root->sb = sb;

	sb->s_blocksize = PAGE_CACHE_SIZE;
	sb->s_blocksize_bits = PAGE_CACHE_SHIFT;
	sb->s_magic = CGROUP_SUPER_MAGIC;
	sb->s_op = &cgroup_ops;

	return 0;
}

static int cgroup_get_rootdir(struct super_block *sb)
{
	struct inode *inode =
		cgroup_new_inode(S_IFDIR | S_IRUGO | S_IXUGO | S_IWUSR, sb);
	struct dentry *dentry;

	if (!inode)
		return -ENOMEM;

	inode->i_fop = &simple_dir_operations;
	inode->i_op = &cgroup_dir_inode_operations;
	/* directories start off with i_nlink == 2 (for "." entry) */
	inc_nlink(inode);
	dentry = d_alloc_root(inode);
	if (!dentry) {
		iput(inode);
		return -ENOMEM;
	}
	sb->s_root = dentry;
	return 0;
}

static int cgroup_get_sb(struct file_system_type *fs_type,
			 int flags, const char *unused_dev_name,
			 void *data, struct vfsmount *mnt)
{
	struct cgroup_sb_opts opts;
	int ret = 0;
	struct super_block *sb;
	struct cgroupfs_root *root;
1044
	struct list_head tmp_cg_links;
1045 1046 1047

	/* First find the desired set of subsystems */
	ret = parse_cgroupfs_options(data, &opts);
1048
	if (ret) {
1049
		kfree(opts.release_agent);
1050
		return ret;
1051
	}
1052 1053

	root = kzalloc(sizeof(*root), GFP_KERNEL);
1054
	if (!root) {
1055
		kfree(opts.release_agent);
1056
		return -ENOMEM;
1057
	}
1058 1059 1060 1061

	init_cgroup_root(root);
	root->subsys_bits = opts.subsys_bits;
	root->flags = opts.flags;
1062 1063 1064 1065
	if (opts.release_agent) {
		strcpy(root->release_agent_path, opts.release_agent);
		kfree(opts.release_agent);
	}
1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080

	sb = sget(fs_type, cgroup_test_super, cgroup_set_super, root);

	if (IS_ERR(sb)) {
		kfree(root);
		return PTR_ERR(sb);
	}

	if (sb->s_fs_info != root) {
		/* Reusing an existing superblock */
		BUG_ON(sb->s_root == NULL);
		kfree(root);
		root = NULL;
	} else {
		/* New superblock */
1081
		struct cgroup *root_cgrp = &root->top_cgroup;
1082
		struct inode *inode;
1083
		int i;
1084 1085 1086 1087 1088 1089

		BUG_ON(sb->s_root != NULL);

		ret = cgroup_get_rootdir(sb);
		if (ret)
			goto drop_new_super;
1090
		inode = sb->s_root->d_inode;
1091

1092
		mutex_lock(&inode->i_mutex);
1093 1094
		mutex_lock(&cgroup_mutex);

1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108
		/*
		 * We're accessing css_set_count without locking
		 * css_set_lock here, but that's OK - it can only be
		 * increased by someone holding cgroup_lock, and
		 * that's us. The worst that can happen is that we
		 * have some link structures left over
		 */
		ret = allocate_cg_links(css_set_count, &tmp_cg_links);
		if (ret) {
			mutex_unlock(&cgroup_mutex);
			mutex_unlock(&inode->i_mutex);
			goto drop_new_super;
		}

1109 1110 1111
		ret = rebind_subsystems(root, root->subsys_bits);
		if (ret == -EBUSY) {
			mutex_unlock(&cgroup_mutex);
1112
			mutex_unlock(&inode->i_mutex);
1113
			goto free_cg_links;
1114 1115 1116 1117 1118 1119
		}

		/* EBUSY should be the only error here */
		BUG_ON(ret);

		list_add(&root->root_list, &roots);
1120
		root_count++;
1121

1122
		sb->s_root->d_fsdata = root_cgrp;
1123 1124
		root->top_cgroup.dentry = sb->s_root;

1125 1126 1127
		/* Link the top cgroup in this hierarchy into all
		 * the css_set objects */
		write_lock(&css_set_lock);
1128 1129 1130
		for (i = 0; i < CSS_SET_TABLE_SIZE; i++) {
			struct hlist_head *hhead = &css_set_table[i];
			struct hlist_node *node;
1131
			struct css_set *cg;
1132

1133 1134
			hlist_for_each_entry(cg, node, hhead, hlist)
				link_css_set(&tmp_cg_links, cg, root_cgrp);
1135
		}
1136 1137 1138 1139
		write_unlock(&css_set_lock);

		free_cg_links(&tmp_cg_links);

1140 1141
		BUG_ON(!list_empty(&root_cgrp->sibling));
		BUG_ON(!list_empty(&root_cgrp->children));
1142 1143
		BUG_ON(root->number_of_cgroups != 1);

1144
		cgroup_populate_dir(root_cgrp);
1145
		mutex_unlock(&inode->i_mutex);
1146 1147 1148
		mutex_unlock(&cgroup_mutex);
	}

1149 1150
	simple_set_mnt(mnt, sb);
	return 0;
1151

1152 1153
 free_cg_links:
	free_cg_links(&tmp_cg_links);
1154
 drop_new_super:
1155
	deactivate_locked_super(sb);
1156 1157 1158 1159 1160
	return ret;
}

static void cgroup_kill_sb(struct super_block *sb) {
	struct cgroupfs_root *root = sb->s_fs_info;
1161
	struct cgroup *cgrp = &root->top_cgroup;
1162
	int ret;
K
KOSAKI Motohiro 已提交
1163 1164
	struct cg_cgroup_link *link;
	struct cg_cgroup_link *saved_link;
1165 1166 1167 1168

	BUG_ON(!root);

	BUG_ON(root->number_of_cgroups != 1);
1169 1170
	BUG_ON(!list_empty(&cgrp->children));
	BUG_ON(!list_empty(&cgrp->sibling));
1171 1172 1173 1174 1175 1176 1177 1178

	mutex_lock(&cgroup_mutex);

	/* Rebind all subsystems back to the default hierarchy */
	ret = rebind_subsystems(root, 0);
	/* Shouldn't be able to fail ... */
	BUG_ON(ret);

1179 1180 1181 1182 1183
	/*
	 * Release all the links from css_sets to this hierarchy's
	 * root cgroup
	 */
	write_lock(&css_set_lock);
K
KOSAKI Motohiro 已提交
1184 1185 1186

	list_for_each_entry_safe(link, saved_link, &cgrp->css_sets,
				 cgrp_link_list) {
1187
		list_del(&link->cg_link_list);
1188
		list_del(&link->cgrp_link_list);
1189 1190 1191 1192
		kfree(link);
	}
	write_unlock(&css_set_lock);

1193 1194 1195 1196
	if (!list_empty(&root->root_list)) {
		list_del(&root->root_list);
		root_count--;
	}
1197

1198 1199 1200
	mutex_unlock(&cgroup_mutex);

	kill_litter_super(sb);
L
Li Zefan 已提交
1201
	kfree(root);
1202 1203 1204 1205 1206 1207 1208 1209
}

static struct file_system_type cgroup_fs_type = {
	.name = "cgroup",
	.get_sb = cgroup_get_sb,
	.kill_sb = cgroup_kill_sb,
};

1210
static inline struct cgroup *__d_cgrp(struct dentry *dentry)
1211 1212 1213 1214 1215 1216 1217 1218 1219
{
	return dentry->d_fsdata;
}

static inline struct cftype *__d_cft(struct dentry *dentry)
{
	return dentry->d_fsdata;
}

L
Li Zefan 已提交
1220 1221 1222 1223 1224 1225
/**
 * cgroup_path - generate the path of a cgroup
 * @cgrp: the cgroup in question
 * @buf: the buffer to write the path into
 * @buflen: the length of the buffer
 *
1226 1227 1228
 * Called with cgroup_mutex held or else with an RCU-protected cgroup
 * reference.  Writes path of cgroup into buf.  Returns 0 on success,
 * -errno on error.
1229
 */
1230
int cgroup_path(const struct cgroup *cgrp, char *buf, int buflen)
1231 1232
{
	char *start;
1233
	struct dentry *dentry = rcu_dereference(cgrp->dentry);
1234

1235
	if (!dentry || cgrp == dummytop) {
1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247
		/*
		 * Inactive subsystems have no dentry for their root
		 * cgroup
		 */
		strcpy(buf, "/");
		return 0;
	}

	start = buf + buflen;

	*--start = '\0';
	for (;;) {
1248
		int len = dentry->d_name.len;
1249 1250
		if ((start -= len) < buf)
			return -ENAMETOOLONG;
1251 1252 1253
		memcpy(start, cgrp->dentry->d_name.name, len);
		cgrp = cgrp->parent;
		if (!cgrp)
1254
			break;
1255
		dentry = rcu_dereference(cgrp->dentry);
1256
		if (!cgrp->parent)
1257 1258 1259 1260 1261 1262 1263 1264 1265
			continue;
		if (--start < buf)
			return -ENAMETOOLONG;
		*start = '/';
	}
	memmove(buf, start, buf + buflen - start);
	return 0;
}

1266 1267 1268 1269 1270
/*
 * Return the first subsystem attached to a cgroup's hierarchy, and
 * its subsystem id.
 */

1271
static void get_first_subsys(const struct cgroup *cgrp,
1272 1273
			struct cgroup_subsys_state **css, int *subsys_id)
{
1274
	const struct cgroupfs_root *root = cgrp->root;
1275 1276 1277 1278 1279
	const struct cgroup_subsys *test_ss;
	BUG_ON(list_empty(&root->subsys_list));
	test_ss = list_entry(root->subsys_list.next,
			     struct cgroup_subsys, sibling);
	if (css) {
1280
		*css = cgrp->subsys[test_ss->subsys_id];
1281 1282 1283 1284 1285 1286
		BUG_ON(!*css);
	}
	if (subsys_id)
		*subsys_id = test_ss->subsys_id;
}

L
Li Zefan 已提交
1287 1288 1289 1290
/**
 * cgroup_attach_task - attach task 'tsk' to cgroup 'cgrp'
 * @cgrp: the cgroup the task is attaching to
 * @tsk: the task to be attached
1291
 *
L
Li Zefan 已提交
1292 1293
 * Call holding cgroup_mutex. May take task_lock of
 * the task 'tsk' during call.
1294
 */
1295
int cgroup_attach_task(struct cgroup *cgrp, struct task_struct *tsk)
1296 1297 1298
{
	int retval = 0;
	struct cgroup_subsys *ss;
1299
	struct cgroup *oldcgrp;
1300
	struct css_set *cg;
1301
	struct css_set *newcg;
1302
	struct cgroupfs_root *root = cgrp->root;
1303 1304
	int subsys_id;

1305
	get_first_subsys(cgrp, NULL, &subsys_id);
1306 1307

	/* Nothing to do if the task is already in that cgroup */
1308 1309
	oldcgrp = task_cgroup(tsk, subsys_id);
	if (cgrp == oldcgrp)
1310 1311 1312 1313
		return 0;

	for_each_subsys(root, ss) {
		if (ss->can_attach) {
1314
			retval = ss->can_attach(ss, cgrp, tsk);
P
Paul Jackson 已提交
1315
			if (retval)
1316 1317 1318 1319
				return retval;
		}
	}

1320 1321 1322 1323
	task_lock(tsk);
	cg = tsk->cgroups;
	get_css_set(cg);
	task_unlock(tsk);
1324 1325 1326 1327
	/*
	 * Locate or allocate a new css_set for this task,
	 * based on its final set of cgroups
	 */
1328
	newcg = find_css_set(cg, cgrp);
1329
	put_css_set(cg);
P
Paul Jackson 已提交
1330
	if (!newcg)
1331 1332
		return -ENOMEM;

1333 1334 1335
	task_lock(tsk);
	if (tsk->flags & PF_EXITING) {
		task_unlock(tsk);
1336
		put_css_set(newcg);
1337 1338
		return -ESRCH;
	}
1339
	rcu_assign_pointer(tsk->cgroups, newcg);
1340 1341
	task_unlock(tsk);

1342 1343 1344 1345 1346 1347 1348 1349
	/* Update the css_set linked lists if we're using them */
	write_lock(&css_set_lock);
	if (!list_empty(&tsk->cg_list)) {
		list_del(&tsk->cg_list);
		list_add(&tsk->cg_list, &newcg->tasks);
	}
	write_unlock(&css_set_lock);

1350
	for_each_subsys(root, ss) {
P
Paul Jackson 已提交
1351
		if (ss->attach)
1352
			ss->attach(ss, cgrp, oldcgrp, tsk);
1353
	}
1354
	set_bit(CGRP_RELEASABLE, &oldcgrp->flags);
1355
	synchronize_rcu();
1356
	put_css_set(cg);
1357 1358 1359 1360 1361 1362

	/*
	 * wake up rmdir() waiter. the rmdir should fail since the cgroup
	 * is no longer empty.
	 */
	cgroup_wakeup_rmdir_waiters(cgrp);
1363 1364 1365 1366
	return 0;
}

/*
1367 1368
 * Attach task with pid 'pid' to cgroup 'cgrp'. Call with cgroup_mutex
 * held. May take task_lock of task
1369
 */
1370
static int attach_task_by_pid(struct cgroup *cgrp, u64 pid)
1371 1372
{
	struct task_struct *tsk;
1373
	const struct cred *cred = current_cred(), *tcred;
1374 1375 1376 1377
	int ret;

	if (pid) {
		rcu_read_lock();
1378
		tsk = find_task_by_vpid(pid);
1379 1380 1381 1382 1383
		if (!tsk || tsk->flags & PF_EXITING) {
			rcu_read_unlock();
			return -ESRCH;
		}

1384 1385 1386 1387 1388
		tcred = __task_cred(tsk);
		if (cred->euid &&
		    cred->euid != tcred->uid &&
		    cred->euid != tcred->suid) {
			rcu_read_unlock();
1389 1390
			return -EACCES;
		}
1391 1392
		get_task_struct(tsk);
		rcu_read_unlock();
1393 1394 1395 1396 1397
	} else {
		tsk = current;
		get_task_struct(tsk);
	}

1398
	ret = cgroup_attach_task(cgrp, tsk);
1399 1400 1401 1402
	put_task_struct(tsk);
	return ret;
}

1403 1404 1405 1406 1407 1408 1409 1410 1411 1412
static int cgroup_tasks_write(struct cgroup *cgrp, struct cftype *cft, u64 pid)
{
	int ret;
	if (!cgroup_lock_live_group(cgrp))
		return -ENODEV;
	ret = attach_task_by_pid(cgrp, pid);
	cgroup_unlock();
	return ret;
}

1413 1414 1415 1416 1417
/* The various types of files and directories in a cgroup file system */
enum cgroup_filetype {
	FILE_ROOT,
	FILE_DIR,
	FILE_TASKLIST,
1418 1419
	FILE_NOTIFY_ON_RELEASE,
	FILE_RELEASE_AGENT,
1420 1421
};

1422 1423 1424 1425
/**
 * cgroup_lock_live_group - take cgroup_mutex and check that cgrp is alive.
 * @cgrp: the cgroup to be checked for liveness
 *
1426 1427
 * On success, returns true; the lock should be later released with
 * cgroup_unlock(). On failure returns false with no lock held.
1428
 */
1429
bool cgroup_lock_live_group(struct cgroup *cgrp)
1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445
{
	mutex_lock(&cgroup_mutex);
	if (cgroup_is_removed(cgrp)) {
		mutex_unlock(&cgroup_mutex);
		return false;
	}
	return true;
}

static int cgroup_release_agent_write(struct cgroup *cgrp, struct cftype *cft,
				      const char *buffer)
{
	BUILD_BUG_ON(sizeof(cgrp->root->release_agent_path) < PATH_MAX);
	if (!cgroup_lock_live_group(cgrp))
		return -ENODEV;
	strcpy(cgrp->root->release_agent_path, buffer);
1446
	cgroup_unlock();
1447 1448 1449 1450 1451 1452 1453 1454 1455 1456
	return 0;
}

static int cgroup_release_agent_show(struct cgroup *cgrp, struct cftype *cft,
				     struct seq_file *seq)
{
	if (!cgroup_lock_live_group(cgrp))
		return -ENODEV;
	seq_puts(seq, cgrp->root->release_agent_path);
	seq_putc(seq, '\n');
1457
	cgroup_unlock();
1458 1459 1460
	return 0;
}

1461 1462 1463
/* A buffer size big enough for numbers or short strings */
#define CGROUP_LOCAL_BUFFER_SIZE 64

1464
static ssize_t cgroup_write_X64(struct cgroup *cgrp, struct cftype *cft,
1465 1466 1467
				struct file *file,
				const char __user *userbuf,
				size_t nbytes, loff_t *unused_ppos)
1468
{
1469
	char buffer[CGROUP_LOCAL_BUFFER_SIZE];
1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480
	int retval = 0;
	char *end;

	if (!nbytes)
		return -EINVAL;
	if (nbytes >= sizeof(buffer))
		return -E2BIG;
	if (copy_from_user(buffer, userbuf, nbytes))
		return -EFAULT;

	buffer[nbytes] = 0;     /* nul-terminate */
1481
	strstrip(buffer);
1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492
	if (cft->write_u64) {
		u64 val = simple_strtoull(buffer, &end, 0);
		if (*end)
			return -EINVAL;
		retval = cft->write_u64(cgrp, cft, val);
	} else {
		s64 val = simple_strtoll(buffer, &end, 0);
		if (*end)
			return -EINVAL;
		retval = cft->write_s64(cgrp, cft, val);
	}
1493 1494 1495 1496 1497
	if (!retval)
		retval = nbytes;
	return retval;
}

1498 1499 1500 1501 1502
static ssize_t cgroup_write_string(struct cgroup *cgrp, struct cftype *cft,
				   struct file *file,
				   const char __user *userbuf,
				   size_t nbytes, loff_t *unused_ppos)
{
1503
	char local_buffer[CGROUP_LOCAL_BUFFER_SIZE];
1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517
	int retval = 0;
	size_t max_bytes = cft->max_write_len;
	char *buffer = local_buffer;

	if (!max_bytes)
		max_bytes = sizeof(local_buffer) - 1;
	if (nbytes >= max_bytes)
		return -E2BIG;
	/* Allocate a dynamic buffer if we need one */
	if (nbytes >= sizeof(local_buffer)) {
		buffer = kmalloc(nbytes + 1, GFP_KERNEL);
		if (buffer == NULL)
			return -ENOMEM;
	}
L
Li Zefan 已提交
1518 1519 1520 1521
	if (nbytes && copy_from_user(buffer, userbuf, nbytes)) {
		retval = -EFAULT;
		goto out;
	}
1522 1523 1524 1525 1526 1527

	buffer[nbytes] = 0;     /* nul-terminate */
	strstrip(buffer);
	retval = cft->write_string(cgrp, cft, buffer);
	if (!retval)
		retval = nbytes;
L
Li Zefan 已提交
1528
out:
1529 1530 1531 1532 1533
	if (buffer != local_buffer)
		kfree(buffer);
	return retval;
}

1534 1535 1536 1537
static ssize_t cgroup_file_write(struct file *file, const char __user *buf,
						size_t nbytes, loff_t *ppos)
{
	struct cftype *cft = __d_cft(file->f_dentry);
1538
	struct cgroup *cgrp = __d_cgrp(file->f_dentry->d_parent);
1539

1540
	if (cgroup_is_removed(cgrp))
1541
		return -ENODEV;
1542
	if (cft->write)
1543
		return cft->write(cgrp, cft, file, buf, nbytes, ppos);
1544 1545
	if (cft->write_u64 || cft->write_s64)
		return cgroup_write_X64(cgrp, cft, file, buf, nbytes, ppos);
1546 1547
	if (cft->write_string)
		return cgroup_write_string(cgrp, cft, file, buf, nbytes, ppos);
1548 1549 1550 1551
	if (cft->trigger) {
		int ret = cft->trigger(cgrp, (unsigned int)cft->private);
		return ret ? ret : nbytes;
	}
1552
	return -EINVAL;
1553 1554
}

1555 1556 1557 1558
static ssize_t cgroup_read_u64(struct cgroup *cgrp, struct cftype *cft,
			       struct file *file,
			       char __user *buf, size_t nbytes,
			       loff_t *ppos)
1559
{
1560
	char tmp[CGROUP_LOCAL_BUFFER_SIZE];
1561
	u64 val = cft->read_u64(cgrp, cft);
1562 1563 1564 1565 1566
	int len = sprintf(tmp, "%llu\n", (unsigned long long) val);

	return simple_read_from_buffer(buf, nbytes, ppos, tmp, len);
}

1567 1568 1569 1570 1571
static ssize_t cgroup_read_s64(struct cgroup *cgrp, struct cftype *cft,
			       struct file *file,
			       char __user *buf, size_t nbytes,
			       loff_t *ppos)
{
1572
	char tmp[CGROUP_LOCAL_BUFFER_SIZE];
1573 1574 1575 1576 1577 1578
	s64 val = cft->read_s64(cgrp, cft);
	int len = sprintf(tmp, "%lld\n", (long long) val);

	return simple_read_from_buffer(buf, nbytes, ppos, tmp, len);
}

1579 1580 1581 1582
static ssize_t cgroup_file_read(struct file *file, char __user *buf,
				   size_t nbytes, loff_t *ppos)
{
	struct cftype *cft = __d_cft(file->f_dentry);
1583
	struct cgroup *cgrp = __d_cgrp(file->f_dentry->d_parent);
1584

1585
	if (cgroup_is_removed(cgrp))
1586 1587 1588
		return -ENODEV;

	if (cft->read)
1589
		return cft->read(cgrp, cft, file, buf, nbytes, ppos);
1590 1591
	if (cft->read_u64)
		return cgroup_read_u64(cgrp, cft, file, buf, nbytes, ppos);
1592 1593
	if (cft->read_s64)
		return cgroup_read_s64(cgrp, cft, file, buf, nbytes, ppos);
1594 1595 1596
	return -EINVAL;
}

1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616
/*
 * seqfile ops/methods for returning structured data. Currently just
 * supports string->u64 maps, but can be extended in future.
 */

struct cgroup_seqfile_state {
	struct cftype *cft;
	struct cgroup *cgroup;
};

static int cgroup_map_add(struct cgroup_map_cb *cb, const char *key, u64 value)
{
	struct seq_file *sf = cb->state;
	return seq_printf(sf, "%s %llu\n", key, (unsigned long long)value);
}

static int cgroup_seqfile_show(struct seq_file *m, void *arg)
{
	struct cgroup_seqfile_state *state = m->private;
	struct cftype *cft = state->cft;
1617 1618 1619 1620 1621 1622 1623 1624
	if (cft->read_map) {
		struct cgroup_map_cb cb = {
			.fill = cgroup_map_add,
			.state = m,
		};
		return cft->read_map(state->cgroup, cft, &cb);
	}
	return cft->read_seq_string(state->cgroup, cft, m);
1625 1626
}

1627
static int cgroup_seqfile_release(struct inode *inode, struct file *file)
1628 1629 1630 1631 1632 1633 1634 1635
{
	struct seq_file *seq = file->private_data;
	kfree(seq->private);
	return single_release(inode, file);
}

static struct file_operations cgroup_seqfile_operations = {
	.read = seq_read,
1636
	.write = cgroup_file_write,
1637 1638 1639 1640
	.llseek = seq_lseek,
	.release = cgroup_seqfile_release,
};

1641 1642 1643 1644 1645 1646 1647 1648 1649
static int cgroup_file_open(struct inode *inode, struct file *file)
{
	int err;
	struct cftype *cft;

	err = generic_file_open(inode, file);
	if (err)
		return err;
	cft = __d_cft(file->f_dentry);
1650

1651
	if (cft->read_map || cft->read_seq_string) {
1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662
		struct cgroup_seqfile_state *state =
			kzalloc(sizeof(*state), GFP_USER);
		if (!state)
			return -ENOMEM;
		state->cft = cft;
		state->cgroup = __d_cgrp(file->f_dentry->d_parent);
		file->f_op = &cgroup_seqfile_operations;
		err = single_open(file, cgroup_seqfile_show, state);
		if (err < 0)
			kfree(state);
	} else if (cft->open)
1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707
		err = cft->open(inode, file);
	else
		err = 0;

	return err;
}

static int cgroup_file_release(struct inode *inode, struct file *file)
{
	struct cftype *cft = __d_cft(file->f_dentry);
	if (cft->release)
		return cft->release(inode, file);
	return 0;
}

/*
 * cgroup_rename - Only allow simple rename of directories in place.
 */
static int cgroup_rename(struct inode *old_dir, struct dentry *old_dentry,
			    struct inode *new_dir, struct dentry *new_dentry)
{
	if (!S_ISDIR(old_dentry->d_inode->i_mode))
		return -ENOTDIR;
	if (new_dentry->d_inode)
		return -EEXIST;
	if (old_dir != new_dir)
		return -EIO;
	return simple_rename(old_dir, old_dentry, new_dir, new_dentry);
}

static struct file_operations cgroup_file_operations = {
	.read = cgroup_file_read,
	.write = cgroup_file_write,
	.llseek = generic_file_llseek,
	.open = cgroup_file_open,
	.release = cgroup_file_release,
};

static struct inode_operations cgroup_dir_inode_operations = {
	.lookup = simple_lookup,
	.mkdir = cgroup_mkdir,
	.rmdir = cgroup_rmdir,
	.rename = cgroup_rename,
};

L
Li Zefan 已提交
1708
static int cgroup_create_file(struct dentry *dentry, mode_t mode,
1709 1710
				struct super_block *sb)
{
A
Al Viro 已提交
1711
	static const struct dentry_operations cgroup_dops = {
1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734
		.d_iput = cgroup_diput,
	};

	struct inode *inode;

	if (!dentry)
		return -ENOENT;
	if (dentry->d_inode)
		return -EEXIST;

	inode = cgroup_new_inode(mode, sb);
	if (!inode)
		return -ENOMEM;

	if (S_ISDIR(mode)) {
		inode->i_op = &cgroup_dir_inode_operations;
		inode->i_fop = &simple_dir_operations;

		/* start off with i_nlink == 2 (for "." entry) */
		inc_nlink(inode);

		/* start with the directory inode held, so that we can
		 * populate it without racing with another mkdir */
1735
		mutex_lock_nested(&inode->i_mutex, I_MUTEX_CHILD);
1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746
	} else if (S_ISREG(mode)) {
		inode->i_size = 0;
		inode->i_fop = &cgroup_file_operations;
	}
	dentry->d_op = &cgroup_dops;
	d_instantiate(dentry, inode);
	dget(dentry);	/* Extra count - pin the dentry in core */
	return 0;
}

/*
L
Li Zefan 已提交
1747 1748 1749 1750 1751
 * cgroup_create_dir - create a directory for an object.
 * @cgrp: the cgroup we create the directory for. It must have a valid
 *        ->parent field. And we are going to fill its ->dentry field.
 * @dentry: dentry of the new cgroup
 * @mode: mode to set on new directory.
1752
 */
1753
static int cgroup_create_dir(struct cgroup *cgrp, struct dentry *dentry,
L
Li Zefan 已提交
1754
				mode_t mode)
1755 1756 1757 1758
{
	struct dentry *parent;
	int error = 0;

1759 1760
	parent = cgrp->parent->dentry;
	error = cgroup_create_file(dentry, S_IFDIR | mode, cgrp->root->sb);
1761
	if (!error) {
1762
		dentry->d_fsdata = cgrp;
1763
		inc_nlink(parent->d_inode);
1764
		rcu_assign_pointer(cgrp->dentry, dentry);
1765 1766 1767 1768 1769 1770 1771
		dget(dentry);
	}
	dput(dentry);

	return error;
}

L
Li Zefan 已提交
1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798
/**
 * cgroup_file_mode - deduce file mode of a control file
 * @cft: the control file in question
 *
 * returns cft->mode if ->mode is not 0
 * returns S_IRUGO|S_IWUSR if it has both a read and a write handler
 * returns S_IRUGO if it has only a read handler
 * returns S_IWUSR if it has only a write hander
 */
static mode_t cgroup_file_mode(const struct cftype *cft)
{
	mode_t mode = 0;

	if (cft->mode)
		return cft->mode;

	if (cft->read || cft->read_u64 || cft->read_s64 ||
	    cft->read_map || cft->read_seq_string)
		mode |= S_IRUGO;

	if (cft->write || cft->write_u64 || cft->write_s64 ||
	    cft->write_string || cft->trigger)
		mode |= S_IWUSR;

	return mode;
}

1799
int cgroup_add_file(struct cgroup *cgrp,
1800 1801 1802
		       struct cgroup_subsys *subsys,
		       const struct cftype *cft)
{
1803
	struct dentry *dir = cgrp->dentry;
1804 1805
	struct dentry *dentry;
	int error;
L
Li Zefan 已提交
1806
	mode_t mode;
1807 1808

	char name[MAX_CGROUP_TYPE_NAMELEN + MAX_CFTYPE_NAME + 2] = { 0 };
1809
	if (subsys && !test_bit(ROOT_NOPREFIX, &cgrp->root->flags)) {
1810 1811 1812 1813 1814 1815 1816
		strcpy(name, subsys->name);
		strcat(name, ".");
	}
	strcat(name, cft->name);
	BUG_ON(!mutex_is_locked(&dir->d_inode->i_mutex));
	dentry = lookup_one_len(name, dir, strlen(name));
	if (!IS_ERR(dentry)) {
L
Li Zefan 已提交
1817 1818
		mode = cgroup_file_mode(cft);
		error = cgroup_create_file(dentry, mode | S_IFREG,
1819
						cgrp->root->sb);
1820 1821 1822 1823 1824 1825 1826 1827
		if (!error)
			dentry->d_fsdata = (void *)cft;
		dput(dentry);
	} else
		error = PTR_ERR(dentry);
	return error;
}

1828
int cgroup_add_files(struct cgroup *cgrp,
1829 1830 1831 1832 1833 1834
			struct cgroup_subsys *subsys,
			const struct cftype cft[],
			int count)
{
	int i, err;
	for (i = 0; i < count; i++) {
1835
		err = cgroup_add_file(cgrp, subsys, &cft[i]);
1836 1837 1838 1839 1840 1841
		if (err)
			return err;
	}
	return 0;
}

L
Li Zefan 已提交
1842 1843 1844 1845 1846 1847
/**
 * cgroup_task_count - count the number of tasks in a cgroup.
 * @cgrp: the cgroup in question
 *
 * Return the number of tasks in the cgroup.
 */
1848
int cgroup_task_count(const struct cgroup *cgrp)
1849 1850
{
	int count = 0;
K
KOSAKI Motohiro 已提交
1851
	struct cg_cgroup_link *link;
1852 1853

	read_lock(&css_set_lock);
K
KOSAKI Motohiro 已提交
1854
	list_for_each_entry(link, &cgrp->css_sets, cgrp_link_list) {
1855
		count += atomic_read(&link->cg->refcount);
1856 1857
	}
	read_unlock(&css_set_lock);
1858 1859 1860
	return count;
}

1861 1862 1863 1864
/*
 * Advance a list_head iterator.  The iterator should be positioned at
 * the start of a css_set
 */
1865
static void cgroup_advance_iter(struct cgroup *cgrp,
1866 1867 1868 1869 1870 1871 1872 1873 1874
					  struct cgroup_iter *it)
{
	struct list_head *l = it->cg_link;
	struct cg_cgroup_link *link;
	struct css_set *cg;

	/* Advance to the next non-empty css_set */
	do {
		l = l->next;
1875
		if (l == &cgrp->css_sets) {
1876 1877 1878
			it->cg_link = NULL;
			return;
		}
1879
		link = list_entry(l, struct cg_cgroup_link, cgrp_link_list);
1880 1881 1882 1883 1884 1885
		cg = link->cg;
	} while (list_empty(&cg->tasks));
	it->cg_link = l;
	it->task = cg->tasks.next;
}

1886 1887 1888 1889 1890 1891 1892 1893 1894
/*
 * To reduce the fork() overhead for systems that are not actually
 * using their cgroups capability, we don't maintain the lists running
 * through each css_set to its tasks until we see the list actually
 * used - in other words after the first call to cgroup_iter_start().
 *
 * The tasklist_lock is not held here, as do_each_thread() and
 * while_each_thread() are protected by RCU.
 */
1895
static void cgroup_enable_task_cg_lists(void)
1896 1897 1898 1899 1900 1901
{
	struct task_struct *p, *g;
	write_lock(&css_set_lock);
	use_task_css_set_links = 1;
	do_each_thread(g, p) {
		task_lock(p);
1902 1903 1904 1905 1906 1907
		/*
		 * We should check if the process is exiting, otherwise
		 * it will race with cgroup_exit() in that the list
		 * entry won't be deleted though the process has exited.
		 */
		if (!(p->flags & PF_EXITING) && list_empty(&p->cg_list))
1908 1909 1910 1911 1912 1913
			list_add(&p->cg_list, &p->cgroups->tasks);
		task_unlock(p);
	} while_each_thread(g, p);
	write_unlock(&css_set_lock);
}

1914
void cgroup_iter_start(struct cgroup *cgrp, struct cgroup_iter *it)
1915 1916 1917 1918 1919 1920
{
	/*
	 * The first time anyone tries to iterate across a cgroup,
	 * we need to enable the list linking each css_set to its
	 * tasks, and fix up all existing tasks.
	 */
1921 1922 1923
	if (!use_task_css_set_links)
		cgroup_enable_task_cg_lists();

1924
	read_lock(&css_set_lock);
1925 1926
	it->cg_link = &cgrp->css_sets;
	cgroup_advance_iter(cgrp, it);
1927 1928
}

1929
struct task_struct *cgroup_iter_next(struct cgroup *cgrp,
1930 1931 1932 1933
					struct cgroup_iter *it)
{
	struct task_struct *res;
	struct list_head *l = it->task;
1934
	struct cg_cgroup_link *link;
1935 1936 1937 1938 1939 1940 1941

	/* If the iterator cg is NULL, we have no tasks */
	if (!it->cg_link)
		return NULL;
	res = list_entry(l, struct task_struct, cg_list);
	/* Advance iterator to find next entry */
	l = l->next;
1942 1943
	link = list_entry(it->cg_link, struct cg_cgroup_link, cgrp_link_list);
	if (l == &link->cg->tasks) {
1944 1945
		/* We reached the end of this task list - move on to
		 * the next cg_cgroup_link */
1946
		cgroup_advance_iter(cgrp, it);
1947 1948 1949 1950 1951 1952
	} else {
		it->task = l;
	}
	return res;
}

1953
void cgroup_iter_end(struct cgroup *cgrp, struct cgroup_iter *it)
1954 1955 1956 1957
{
	read_unlock(&css_set_lock);
}

1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094
static inline int started_after_time(struct task_struct *t1,
				     struct timespec *time,
				     struct task_struct *t2)
{
	int start_diff = timespec_compare(&t1->start_time, time);
	if (start_diff > 0) {
		return 1;
	} else if (start_diff < 0) {
		return 0;
	} else {
		/*
		 * Arbitrarily, if two processes started at the same
		 * time, we'll say that the lower pointer value
		 * started first. Note that t2 may have exited by now
		 * so this may not be a valid pointer any longer, but
		 * that's fine - it still serves to distinguish
		 * between two tasks started (effectively) simultaneously.
		 */
		return t1 > t2;
	}
}

/*
 * This function is a callback from heap_insert() and is used to order
 * the heap.
 * In this case we order the heap in descending task start time.
 */
static inline int started_after(void *p1, void *p2)
{
	struct task_struct *t1 = p1;
	struct task_struct *t2 = p2;
	return started_after_time(t1, &t2->start_time, t2);
}

/**
 * cgroup_scan_tasks - iterate though all the tasks in a cgroup
 * @scan: struct cgroup_scanner containing arguments for the scan
 *
 * Arguments include pointers to callback functions test_task() and
 * process_task().
 * Iterate through all the tasks in a cgroup, calling test_task() for each,
 * and if it returns true, call process_task() for it also.
 * The test_task pointer may be NULL, meaning always true (select all tasks).
 * Effectively duplicates cgroup_iter_{start,next,end}()
 * but does not lock css_set_lock for the call to process_task().
 * The struct cgroup_scanner may be embedded in any structure of the caller's
 * creation.
 * It is guaranteed that process_task() will act on every task that
 * is a member of the cgroup for the duration of this call. This
 * function may or may not call process_task() for tasks that exit
 * or move to a different cgroup during the call, or are forked or
 * move into the cgroup during the call.
 *
 * Note that test_task() may be called with locks held, and may in some
 * situations be called multiple times for the same task, so it should
 * be cheap.
 * If the heap pointer in the struct cgroup_scanner is non-NULL, a heap has been
 * pre-allocated and will be used for heap operations (and its "gt" member will
 * be overwritten), else a temporary heap will be used (allocation of which
 * may cause this function to fail).
 */
int cgroup_scan_tasks(struct cgroup_scanner *scan)
{
	int retval, i;
	struct cgroup_iter it;
	struct task_struct *p, *dropped;
	/* Never dereference latest_task, since it's not refcounted */
	struct task_struct *latest_task = NULL;
	struct ptr_heap tmp_heap;
	struct ptr_heap *heap;
	struct timespec latest_time = { 0, 0 };

	if (scan->heap) {
		/* The caller supplied our heap and pre-allocated its memory */
		heap = scan->heap;
		heap->gt = &started_after;
	} else {
		/* We need to allocate our own heap memory */
		heap = &tmp_heap;
		retval = heap_init(heap, PAGE_SIZE, GFP_KERNEL, &started_after);
		if (retval)
			/* cannot allocate the heap */
			return retval;
	}

 again:
	/*
	 * Scan tasks in the cgroup, using the scanner's "test_task" callback
	 * to determine which are of interest, and using the scanner's
	 * "process_task" callback to process any of them that need an update.
	 * Since we don't want to hold any locks during the task updates,
	 * gather tasks to be processed in a heap structure.
	 * The heap is sorted by descending task start time.
	 * If the statically-sized heap fills up, we overflow tasks that
	 * started later, and in future iterations only consider tasks that
	 * started after the latest task in the previous pass. This
	 * guarantees forward progress and that we don't miss any tasks.
	 */
	heap->size = 0;
	cgroup_iter_start(scan->cg, &it);
	while ((p = cgroup_iter_next(scan->cg, &it))) {
		/*
		 * Only affect tasks that qualify per the caller's callback,
		 * if he provided one
		 */
		if (scan->test_task && !scan->test_task(p, scan))
			continue;
		/*
		 * Only process tasks that started after the last task
		 * we processed
		 */
		if (!started_after_time(p, &latest_time, latest_task))
			continue;
		dropped = heap_insert(heap, p);
		if (dropped == NULL) {
			/*
			 * The new task was inserted; the heap wasn't
			 * previously full
			 */
			get_task_struct(p);
		} else if (dropped != p) {
			/*
			 * The new task was inserted, and pushed out a
			 * different task
			 */
			get_task_struct(p);
			put_task_struct(dropped);
		}
		/*
		 * Else the new task was newer than anything already in
		 * the heap and wasn't inserted
		 */
	}
	cgroup_iter_end(scan->cg, &it);

	if (heap->size) {
		for (i = 0; i < heap->size; i++) {
2095
			struct task_struct *q = heap->ptrs[i];
2096
			if (i == 0) {
2097 2098
				latest_time = q->start_time;
				latest_task = q;
2099 2100
			}
			/* Process the task per the caller's callback */
2101 2102
			scan->process_task(q, scan);
			put_task_struct(q);
2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117
		}
		/*
		 * If we had to process any tasks at all, scan again
		 * in case some of them were in the middle of forking
		 * children that didn't get processed.
		 * Not the most efficient way to do it, but it avoids
		 * having to take callback_mutex in the fork path
		 */
		goto again;
	}
	if (heap == &tmp_heap)
		heap_free(&tmp_heap);
	return 0;
}

2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129
/*
 * Stuff for reading the 'tasks' file.
 *
 * Reading this file can return large amounts of data if a cgroup has
 * *lots* of attached tasks. So it may need several calls to read(),
 * but we cannot guarantee that the information we produce is correct
 * unless we produce it entirely atomically.
 *
 */

/*
 * Load into 'pidarray' up to 'npids' of the tasks using cgroup
2130
 * 'cgrp'.  Return actual number of pids loaded.  No need to
2131 2132 2133 2134
 * task_lock(p) when reading out p->cgroup, since we're in an RCU
 * read section, so the css_set can't go away, and is
 * immutable after creation.
 */
2135
static int pid_array_load(pid_t *pidarray, int npids, struct cgroup *cgrp)
2136
{
2137
	int n = 0, pid;
2138 2139
	struct cgroup_iter it;
	struct task_struct *tsk;
2140 2141
	cgroup_iter_start(cgrp, &it);
	while ((tsk = cgroup_iter_next(cgrp, &it))) {
2142 2143
		if (unlikely(n == npids))
			break;
2144 2145 2146
		pid = task_pid_vnr(tsk);
		if (pid > 0)
			pidarray[n++] = pid;
2147
	}
2148
	cgroup_iter_end(cgrp, &it);
2149 2150 2151
	return n;
}

B
Balbir Singh 已提交
2152
/**
L
Li Zefan 已提交
2153
 * cgroupstats_build - build and fill cgroupstats
B
Balbir Singh 已提交
2154 2155 2156
 * @stats: cgroupstats to fill information into
 * @dentry: A dentry entry belonging to the cgroup for which stats have
 * been requested.
L
Li Zefan 已提交
2157 2158 2159
 *
 * Build and fill cgroupstats so that taskstats can export it to user
 * space.
B
Balbir Singh 已提交
2160 2161 2162 2163
 */
int cgroupstats_build(struct cgroupstats *stats, struct dentry *dentry)
{
	int ret = -EINVAL;
2164
	struct cgroup *cgrp;
B
Balbir Singh 已提交
2165 2166
	struct cgroup_iter it;
	struct task_struct *tsk;
2167

B
Balbir Singh 已提交
2168
	/*
2169 2170
	 * Validate dentry by checking the superblock operations,
	 * and make sure it's a directory.
B
Balbir Singh 已提交
2171
	 */
2172 2173
	if (dentry->d_sb->s_op != &cgroup_ops ||
	    !S_ISDIR(dentry->d_inode->i_mode))
B
Balbir Singh 已提交
2174 2175 2176
		 goto err;

	ret = 0;
2177
	cgrp = dentry->d_fsdata;
B
Balbir Singh 已提交
2178

2179 2180
	cgroup_iter_start(cgrp, &it);
	while ((tsk = cgroup_iter_next(cgrp, &it))) {
B
Balbir Singh 已提交
2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199
		switch (tsk->state) {
		case TASK_RUNNING:
			stats->nr_running++;
			break;
		case TASK_INTERRUPTIBLE:
			stats->nr_sleeping++;
			break;
		case TASK_UNINTERRUPTIBLE:
			stats->nr_uninterruptible++;
			break;
		case TASK_STOPPED:
			stats->nr_stopped++;
			break;
		default:
			if (delayacct_is_task_waiting_on_io(tsk))
				stats->nr_io_wait++;
			break;
		}
	}
2200
	cgroup_iter_end(cgrp, &it);
B
Balbir Singh 已提交
2201 2202 2203 2204 2205

err:
	return ret;
}

L
Li Zefan 已提交
2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224
/*
 * Cache pids for all threads in the same pid namespace that are
 * opening the same "tasks" file.
 */
struct cgroup_pids {
	/* The node in cgrp->pids_list */
	struct list_head list;
	/* The cgroup those pids belong to */
	struct cgroup *cgrp;
	/* The namepsace those pids belong to */
	struct pid_namespace *ns;
	/* Array of process ids in the cgroup */
	pid_t *tasks_pids;
	/* How many files are using the this tasks_pids array */
	int use_count;
	/* Length of the current tasks_pids array */
	int length;
};

2225 2226 2227 2228 2229 2230
static int cmppid(const void *a, const void *b)
{
	return *(pid_t *)a - *(pid_t *)b;
}

/*
2231 2232 2233
 * seq_file methods for the "tasks" file. The seq_file position is the
 * next pid to display; the seq_file iterator is a pointer to the pid
 * in the cgroup->tasks_pids array.
2234
 */
2235 2236

static void *cgroup_tasks_start(struct seq_file *s, loff_t *pos)
2237
{
2238 2239 2240 2241 2242 2243
	/*
	 * Initially we receive a position value that corresponds to
	 * one more than the last pid shown (or 0 on the first call or
	 * after a seek to the start). Use a binary-search to find the
	 * next pid to display, if any
	 */
L
Li Zefan 已提交
2244 2245
	struct cgroup_pids *cp = s->private;
	struct cgroup *cgrp = cp->cgrp;
2246 2247 2248 2249 2250
	int index = 0, pid = *pos;
	int *iter;

	down_read(&cgrp->pids_mutex);
	if (pid) {
L
Li Zefan 已提交
2251
		int end = cp->length;
S
Stephen Rothwell 已提交
2252

2253 2254
		while (index < end) {
			int mid = (index + end) / 2;
L
Li Zefan 已提交
2255
			if (cp->tasks_pids[mid] == pid) {
2256 2257
				index = mid;
				break;
L
Li Zefan 已提交
2258
			} else if (cp->tasks_pids[mid] <= pid)
2259 2260 2261 2262 2263 2264
				index = mid + 1;
			else
				end = mid;
		}
	}
	/* If we're off the end of the array, we're done */
L
Li Zefan 已提交
2265
	if (index >= cp->length)
2266 2267
		return NULL;
	/* Update the abstract position to be the actual pid that we found */
L
Li Zefan 已提交
2268
	iter = cp->tasks_pids + index;
2269 2270 2271 2272 2273 2274
	*pos = *iter;
	return iter;
}

static void cgroup_tasks_stop(struct seq_file *s, void *v)
{
L
Li Zefan 已提交
2275 2276
	struct cgroup_pids *cp = s->private;
	struct cgroup *cgrp = cp->cgrp;
2277 2278 2279 2280 2281
	up_read(&cgrp->pids_mutex);
}

static void *cgroup_tasks_next(struct seq_file *s, void *v, loff_t *pos)
{
L
Li Zefan 已提交
2282
	struct cgroup_pids *cp = s->private;
2283
	int *p = v;
L
Li Zefan 已提交
2284
	int *end = cp->tasks_pids + cp->length;
2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302

	/*
	 * Advance to the next pid in the array. If this goes off the
	 * end, we're done
	 */
	p++;
	if (p >= end) {
		return NULL;
	} else {
		*pos = *p;
		return p;
	}
}

static int cgroup_tasks_show(struct seq_file *s, void *v)
{
	return seq_printf(s, "%d\n", *(int *)v);
}
2303

2304 2305 2306 2307 2308 2309 2310
static struct seq_operations cgroup_tasks_seq_operations = {
	.start = cgroup_tasks_start,
	.stop = cgroup_tasks_stop,
	.next = cgroup_tasks_next,
	.show = cgroup_tasks_show,
};

L
Li Zefan 已提交
2311
static void release_cgroup_pid_array(struct cgroup_pids *cp)
2312
{
L
Li Zefan 已提交
2313 2314
	struct cgroup *cgrp = cp->cgrp;

2315
	down_write(&cgrp->pids_mutex);
L
Li Zefan 已提交
2316 2317 2318 2319 2320 2321
	BUG_ON(!cp->use_count);
	if (!--cp->use_count) {
		list_del(&cp->list);
		put_pid_ns(cp->ns);
		kfree(cp->tasks_pids);
		kfree(cp);
2322 2323
	}
	up_write(&cgrp->pids_mutex);
2324 2325
}

2326 2327
static int cgroup_tasks_release(struct inode *inode, struct file *file)
{
L
Li Zefan 已提交
2328 2329
	struct seq_file *seq;
	struct cgroup_pids *cp;
2330 2331 2332 2333

	if (!(file->f_mode & FMODE_READ))
		return 0;

L
Li Zefan 已提交
2334 2335 2336 2337
	seq = file->private_data;
	cp = seq->private;

	release_cgroup_pid_array(cp);
2338 2339 2340 2341 2342 2343 2344 2345 2346 2347
	return seq_release(inode, file);
}

static struct file_operations cgroup_tasks_operations = {
	.read = seq_read,
	.llseek = seq_lseek,
	.write = cgroup_file_write,
	.release = cgroup_tasks_release,
};

2348
/*
2349
 * Handle an open on 'tasks' file.  Prepare an array containing the
2350 2351
 * process id's of tasks currently attached to the cgroup being opened.
 */
2352

2353 2354
static int cgroup_tasks_open(struct inode *unused, struct file *file)
{
2355
	struct cgroup *cgrp = __d_cgrp(file->f_dentry->d_parent);
L
Li Zefan 已提交
2356 2357
	struct pid_namespace *ns = current->nsproxy->pid_ns;
	struct cgroup_pids *cp;
2358 2359
	pid_t *pidarray;
	int npids;
2360
	int retval;
2361

2362
	/* Nothing to do for write-only files */
2363 2364 2365 2366 2367 2368 2369 2370 2371
	if (!(file->f_mode & FMODE_READ))
		return 0;

	/*
	 * If cgroup gets more users after we read count, we won't have
	 * enough space - tough.  This race is indistinguishable to the
	 * caller from the case that the additional cgroup users didn't
	 * show up until sometime later on.
	 */
2372
	npids = cgroup_task_count(cgrp);
2373 2374 2375 2376 2377
	pidarray = kmalloc(npids * sizeof(pid_t), GFP_KERNEL);
	if (!pidarray)
		return -ENOMEM;
	npids = pid_array_load(pidarray, npids, cgrp);
	sort(pidarray, npids, sizeof(pid_t), cmppid, NULL);
2378

2379 2380 2381 2382 2383
	/*
	 * Store the array in the cgroup, freeing the old
	 * array if necessary
	 */
	down_write(&cgrp->pids_mutex);
L
Li Zefan 已提交
2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404

	list_for_each_entry(cp, &cgrp->pids_list, list) {
		if (ns == cp->ns)
			goto found;
	}

	cp = kzalloc(sizeof(*cp), GFP_KERNEL);
	if (!cp) {
		up_write(&cgrp->pids_mutex);
		kfree(pidarray);
		return -ENOMEM;
	}
	cp->cgrp = cgrp;
	cp->ns = ns;
	get_pid_ns(ns);
	list_add(&cp->list, &cgrp->pids_list);
found:
	kfree(cp->tasks_pids);
	cp->tasks_pids = pidarray;
	cp->length = npids;
	cp->use_count++;
2405 2406 2407 2408 2409 2410
	up_write(&cgrp->pids_mutex);

	file->f_op = &cgroup_tasks_operations;

	retval = seq_open(file, &cgroup_tasks_seq_operations);
	if (retval) {
L
Li Zefan 已提交
2411
		release_cgroup_pid_array(cp);
2412
		return retval;
2413
	}
L
Li Zefan 已提交
2414
	((struct seq_file *)file->private_data)->private = cp;
2415 2416 2417
	return 0;
}

2418
static u64 cgroup_read_notify_on_release(struct cgroup *cgrp,
2419 2420
					    struct cftype *cft)
{
2421
	return notify_on_release(cgrp);
2422 2423
}

2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435
static int cgroup_write_notify_on_release(struct cgroup *cgrp,
					  struct cftype *cft,
					  u64 val)
{
	clear_bit(CGRP_RELEASABLE, &cgrp->flags);
	if (val)
		set_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
	else
		clear_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
	return 0;
}

2436 2437 2438
/*
 * for the common functions, 'private' gives the type of file
 */
2439 2440 2441 2442
static struct cftype files[] = {
	{
		.name = "tasks",
		.open = cgroup_tasks_open,
2443
		.write_u64 = cgroup_tasks_write,
2444 2445
		.release = cgroup_tasks_release,
		.private = FILE_TASKLIST,
L
Li Zefan 已提交
2446
		.mode = S_IRUGO | S_IWUSR,
2447 2448 2449 2450
	},

	{
		.name = "notify_on_release",
2451
		.read_u64 = cgroup_read_notify_on_release,
2452
		.write_u64 = cgroup_write_notify_on_release,
2453 2454 2455 2456 2457 2458
		.private = FILE_NOTIFY_ON_RELEASE,
	},
};

static struct cftype cft_release_agent = {
	.name = "release_agent",
2459 2460 2461
	.read_seq_string = cgroup_release_agent_show,
	.write_string = cgroup_release_agent_write,
	.max_write_len = PATH_MAX,
2462
	.private = FILE_RELEASE_AGENT,
2463 2464
};

2465
static int cgroup_populate_dir(struct cgroup *cgrp)
2466 2467 2468 2469 2470
{
	int err;
	struct cgroup_subsys *ss;

	/* First clear out any existing files */
2471
	cgroup_clear_directory(cgrp->dentry);
2472

2473
	err = cgroup_add_files(cgrp, NULL, files, ARRAY_SIZE(files));
2474 2475 2476
	if (err < 0)
		return err;

2477 2478
	if (cgrp == cgrp->top_cgroup) {
		if ((err = cgroup_add_file(cgrp, NULL, &cft_release_agent)) < 0)
2479 2480 2481
			return err;
	}

2482 2483
	for_each_subsys(cgrp->root, ss) {
		if (ss->populate && (err = ss->populate(ss, cgrp)) < 0)
2484 2485
			return err;
	}
K
KAMEZAWA Hiroyuki 已提交
2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496
	/* This cgroup is ready now */
	for_each_subsys(cgrp->root, ss) {
		struct cgroup_subsys_state *css = cgrp->subsys[ss->subsys_id];
		/*
		 * Update id->css pointer and make this css visible from
		 * CSS ID functions. This pointer will be dereferened
		 * from RCU-read-side without locks.
		 */
		if (css->id)
			rcu_assign_pointer(css->id->css, css);
	}
2497 2498 2499 2500 2501 2502

	return 0;
}

static void init_cgroup_css(struct cgroup_subsys_state *css,
			       struct cgroup_subsys *ss,
2503
			       struct cgroup *cgrp)
2504
{
2505
	css->cgroup = cgrp;
P
Paul Menage 已提交
2506
	atomic_set(&css->refcnt, 1);
2507
	css->flags = 0;
K
KAMEZAWA Hiroyuki 已提交
2508
	css->id = NULL;
2509
	if (cgrp == dummytop)
2510
		set_bit(CSS_ROOT, &css->flags);
2511 2512
	BUG_ON(cgrp->subsys[ss->subsys_id]);
	cgrp->subsys[ss->subsys_id] = css;
2513 2514
}

2515 2516 2517 2518 2519 2520 2521 2522
static void cgroup_lock_hierarchy(struct cgroupfs_root *root)
{
	/* We need to take each hierarchy_mutex in a consistent order */
	int i;

	for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
		struct cgroup_subsys *ss = subsys[i];
		if (ss->root == root)
2523
			mutex_lock(&ss->hierarchy_mutex);
2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537
	}
}

static void cgroup_unlock_hierarchy(struct cgroupfs_root *root)
{
	int i;

	for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
		struct cgroup_subsys *ss = subsys[i];
		if (ss->root == root)
			mutex_unlock(&ss->hierarchy_mutex);
	}
}

2538
/*
L
Li Zefan 已提交
2539 2540 2541 2542
 * cgroup_create - create a cgroup
 * @parent: cgroup that will be parent of the new cgroup
 * @dentry: dentry of the new cgroup
 * @mode: mode to set on new inode
2543
 *
L
Li Zefan 已提交
2544
 * Must be called with the mutex on the parent inode held
2545 2546
 */
static long cgroup_create(struct cgroup *parent, struct dentry *dentry,
L
Li Zefan 已提交
2547
			     mode_t mode)
2548
{
2549
	struct cgroup *cgrp;
2550 2551 2552 2553 2554
	struct cgroupfs_root *root = parent->root;
	int err = 0;
	struct cgroup_subsys *ss;
	struct super_block *sb = root->sb;

2555 2556
	cgrp = kzalloc(sizeof(*cgrp), GFP_KERNEL);
	if (!cgrp)
2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567
		return -ENOMEM;

	/* Grab a reference on the superblock so the hierarchy doesn't
	 * get deleted on unmount if there are child cgroups.  This
	 * can be done outside cgroup_mutex, since the sb can't
	 * disappear while someone has an open control file on the
	 * fs */
	atomic_inc(&sb->s_active);

	mutex_lock(&cgroup_mutex);

2568
	init_cgroup_housekeeping(cgrp);
2569

2570 2571 2572
	cgrp->parent = parent;
	cgrp->root = parent->root;
	cgrp->top_cgroup = parent->top_cgroup;
2573

2574 2575 2576
	if (notify_on_release(parent))
		set_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);

2577
	for_each_subsys(root, ss) {
2578
		struct cgroup_subsys_state *css = ss->create(ss, cgrp);
2579 2580 2581 2582
		if (IS_ERR(css)) {
			err = PTR_ERR(css);
			goto err_destroy;
		}
2583
		init_cgroup_css(css, ss, cgrp);
K
KAMEZAWA Hiroyuki 已提交
2584 2585 2586 2587
		if (ss->use_id)
			if (alloc_css_id(ss, parent, cgrp))
				goto err_destroy;
		/* At error, ->destroy() callback has to free assigned ID. */
2588 2589
	}

2590
	cgroup_lock_hierarchy(root);
2591
	list_add(&cgrp->sibling, &cgrp->parent->children);
2592
	cgroup_unlock_hierarchy(root);
2593 2594
	root->number_of_cgroups++;

2595
	err = cgroup_create_dir(cgrp, dentry, mode);
2596 2597 2598 2599
	if (err < 0)
		goto err_remove;

	/* The cgroup directory was pre-locked for us */
2600
	BUG_ON(!mutex_is_locked(&cgrp->dentry->d_inode->i_mutex));
2601

2602
	err = cgroup_populate_dir(cgrp);
2603 2604 2605
	/* If err < 0, we have a half-filled directory - oh well ;) */

	mutex_unlock(&cgroup_mutex);
2606
	mutex_unlock(&cgrp->dentry->d_inode->i_mutex);
2607 2608 2609 2610 2611

	return 0;

 err_remove:

2612
	cgroup_lock_hierarchy(root);
2613
	list_del(&cgrp->sibling);
2614
	cgroup_unlock_hierarchy(root);
2615 2616 2617 2618 2619
	root->number_of_cgroups--;

 err_destroy:

	for_each_subsys(root, ss) {
2620 2621
		if (cgrp->subsys[ss->subsys_id])
			ss->destroy(ss, cgrp);
2622 2623 2624 2625 2626 2627 2628
	}

	mutex_unlock(&cgroup_mutex);

	/* Release the reference count that we took on the superblock */
	deactivate_super(sb);

2629
	kfree(cgrp);
2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640
	return err;
}

static int cgroup_mkdir(struct inode *dir, struct dentry *dentry, int mode)
{
	struct cgroup *c_parent = dentry->d_parent->d_fsdata;

	/* the vfs holds inode->i_mutex already */
	return cgroup_create(c_parent, dentry, mode | S_IFDIR);
}

2641
static int cgroup_has_css_refs(struct cgroup *cgrp)
2642 2643 2644
{
	/* Check the reference count on each subsystem. Since we
	 * already established that there are no tasks in the
P
Paul Menage 已提交
2645
	 * cgroup, if the css refcount is also 1, then there should
2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656
	 * be no outstanding references, so the subsystem is safe to
	 * destroy. We scan across all subsystems rather than using
	 * the per-hierarchy linked list of mounted subsystems since
	 * we can be called via check_for_release() with no
	 * synchronization other than RCU, and the subsystem linked
	 * list isn't RCU-safe */
	int i;
	for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
		struct cgroup_subsys *ss = subsys[i];
		struct cgroup_subsys_state *css;
		/* Skip subsystems not in this hierarchy */
2657
		if (ss->root != cgrp->root)
2658
			continue;
2659
		css = cgrp->subsys[ss->subsys_id];
2660 2661 2662 2663 2664 2665
		/* When called from check_for_release() it's possible
		 * that by this point the cgroup has been removed
		 * and the css deleted. But a false-positive doesn't
		 * matter, since it can only happen if the cgroup
		 * has been deleted and hence no longer needs the
		 * release agent to be called anyway. */
P
Paul Menage 已提交
2666
		if (css && (atomic_read(&css->refcnt) > 1))
2667 2668 2669 2670 2671
			return 1;
	}
	return 0;
}

P
Paul Menage 已提交
2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686
/*
 * Atomically mark all (or else none) of the cgroup's CSS objects as
 * CSS_REMOVED. Return true on success, or false if the cgroup has
 * busy subsystems. Call with cgroup_mutex held
 */

static int cgroup_clear_css_refs(struct cgroup *cgrp)
{
	struct cgroup_subsys *ss;
	unsigned long flags;
	bool failed = false;
	local_irq_save(flags);
	for_each_subsys(cgrp->root, ss) {
		struct cgroup_subsys_state *css = cgrp->subsys[ss->subsys_id];
		int refcnt;
2687
		while (1) {
P
Paul Menage 已提交
2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700
			/* We can only remove a CSS with a refcnt==1 */
			refcnt = atomic_read(&css->refcnt);
			if (refcnt > 1) {
				failed = true;
				goto done;
			}
			BUG_ON(!refcnt);
			/*
			 * Drop the refcnt to 0 while we check other
			 * subsystems. This will cause any racing
			 * css_tryget() to spin until we set the
			 * CSS_REMOVED bits or abort
			 */
2701 2702 2703 2704
			if (atomic_cmpxchg(&css->refcnt, refcnt, 0) == refcnt)
				break;
			cpu_relax();
		}
P
Paul Menage 已提交
2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724
	}
 done:
	for_each_subsys(cgrp->root, ss) {
		struct cgroup_subsys_state *css = cgrp->subsys[ss->subsys_id];
		if (failed) {
			/*
			 * Restore old refcnt if we previously managed
			 * to clear it from 1 to 0
			 */
			if (!atomic_read(&css->refcnt))
				atomic_set(&css->refcnt, 1);
		} else {
			/* Commit the fact that the CSS is removed */
			set_bit(CSS_REMOVED, &css->flags);
		}
	}
	local_irq_restore(flags);
	return !failed;
}

2725 2726
static int cgroup_rmdir(struct inode *unused_dir, struct dentry *dentry)
{
2727
	struct cgroup *cgrp = dentry->d_fsdata;
2728 2729
	struct dentry *d;
	struct cgroup *parent;
2730 2731
	DEFINE_WAIT(wait);
	int ret;
2732 2733

	/* the vfs holds both inode->i_mutex already */
2734
again:
2735
	mutex_lock(&cgroup_mutex);
2736
	if (atomic_read(&cgrp->count) != 0) {
2737 2738 2739
		mutex_unlock(&cgroup_mutex);
		return -EBUSY;
	}
2740
	if (!list_empty(&cgrp->children)) {
2741 2742 2743
		mutex_unlock(&cgroup_mutex);
		return -EBUSY;
	}
2744
	mutex_unlock(&cgroup_mutex);
L
Li Zefan 已提交
2745

2746
	/*
L
Li Zefan 已提交
2747 2748
	 * Call pre_destroy handlers of subsys. Notify subsystems
	 * that rmdir() request comes.
2749
	 */
2750 2751 2752
	ret = cgroup_call_pre_destroy(cgrp);
	if (ret)
		return ret;
2753

2754 2755
	mutex_lock(&cgroup_mutex);
	parent = cgrp->parent;
2756
	if (atomic_read(&cgrp->count) || !list_empty(&cgrp->children)) {
2757 2758 2759
		mutex_unlock(&cgroup_mutex);
		return -EBUSY;
	}
2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782
	/*
	 * css_put/get is provided for subsys to grab refcnt to css. In typical
	 * case, subsystem has no reference after pre_destroy(). But, under
	 * hierarchy management, some *temporal* refcnt can be hold.
	 * To avoid returning -EBUSY to a user, waitqueue is used. If subsys
	 * is really busy, it should return -EBUSY at pre_destroy(). wake_up
	 * is called when css_put() is called and refcnt goes down to 0.
	 */
	set_bit(CGRP_WAIT_ON_RMDIR, &cgrp->flags);
	prepare_to_wait(&cgroup_rmdir_waitq, &wait, TASK_INTERRUPTIBLE);

	if (!cgroup_clear_css_refs(cgrp)) {
		mutex_unlock(&cgroup_mutex);
		schedule();
		finish_wait(&cgroup_rmdir_waitq, &wait);
		clear_bit(CGRP_WAIT_ON_RMDIR, &cgrp->flags);
		if (signal_pending(current))
			return -EINTR;
		goto again;
	}
	/* NO css_tryget() can success after here. */
	finish_wait(&cgroup_rmdir_waitq, &wait);
	clear_bit(CGRP_WAIT_ON_RMDIR, &cgrp->flags);
2783

2784
	spin_lock(&release_list_lock);
2785 2786 2787
	set_bit(CGRP_REMOVED, &cgrp->flags);
	if (!list_empty(&cgrp->release_list))
		list_del(&cgrp->release_list);
2788
	spin_unlock(&release_list_lock);
2789 2790 2791

	cgroup_lock_hierarchy(cgrp->root);
	/* delete this cgroup from parent->children */
2792
	list_del(&cgrp->sibling);
2793 2794
	cgroup_unlock_hierarchy(cgrp->root);

2795 2796
	spin_lock(&cgrp->dentry->d_lock);
	d = dget(cgrp->dentry);
2797 2798 2799 2800 2801
	spin_unlock(&d->d_lock);

	cgroup_d_remove_dir(d);
	dput(d);

2802
	set_bit(CGRP_RELEASABLE, &parent->flags);
2803 2804
	check_for_release(parent);

2805 2806 2807 2808
	mutex_unlock(&cgroup_mutex);
	return 0;
}

2809
static void __init cgroup_init_subsys(struct cgroup_subsys *ss)
2810 2811
{
	struct cgroup_subsys_state *css;
D
Diego Calleja 已提交
2812 2813

	printk(KERN_INFO "Initializing cgroup subsys %s\n", ss->name);
2814 2815

	/* Create the top cgroup state for this subsystem */
2816
	list_add(&ss->sibling, &rootnode.subsys_list);
2817 2818 2819 2820 2821 2822
	ss->root = &rootnode;
	css = ss->create(ss, dummytop);
	/* We don't handle early failures gracefully */
	BUG_ON(IS_ERR(css));
	init_cgroup_css(css, ss, dummytop);

L
Li Zefan 已提交
2823
	/* Update the init_css_set to contain a subsys
2824
	 * pointer to this state - since the subsystem is
L
Li Zefan 已提交
2825 2826 2827
	 * newly registered, all tasks and hence the
	 * init_css_set is in the subsystem's top cgroup. */
	init_css_set.subsys[ss->subsys_id] = dummytop->subsys[ss->subsys_id];
2828 2829 2830

	need_forkexit_callback |= ss->fork || ss->exit;

L
Li Zefan 已提交
2831 2832 2833 2834 2835
	/* At system boot, before all subsystems have been
	 * registered, no tasks have been forked, so we don't
	 * need to invoke fork callbacks here. */
	BUG_ON(!list_empty(&init_task.tasks));

2836
	mutex_init(&ss->hierarchy_mutex);
2837
	lockdep_set_class(&ss->hierarchy_mutex, &ss->subsys_key);
2838 2839 2840 2841
	ss->active = 1;
}

/**
L
Li Zefan 已提交
2842 2843 2844 2845
 * cgroup_init_early - cgroup initialization at system boot
 *
 * Initialize cgroups at system boot, and initialize any
 * subsystems that request early init.
2846 2847 2848 2849
 */
int __init cgroup_init_early(void)
{
	int i;
2850
	atomic_set(&init_css_set.refcount, 1);
2851 2852
	INIT_LIST_HEAD(&init_css_set.cg_links);
	INIT_LIST_HEAD(&init_css_set.tasks);
2853
	INIT_HLIST_NODE(&init_css_set.hlist);
2854
	css_set_count = 1;
2855
	init_cgroup_root(&rootnode);
2856 2857 2858 2859
	root_count = 1;
	init_task.cgroups = &init_css_set;

	init_css_set_link.cg = &init_css_set;
2860
	list_add(&init_css_set_link.cgrp_link_list,
2861 2862 2863
		 &rootnode.top_cgroup.css_sets);
	list_add(&init_css_set_link.cg_link_list,
		 &init_css_set.cg_links);
2864

2865 2866 2867
	for (i = 0; i < CSS_SET_TABLE_SIZE; i++)
		INIT_HLIST_HEAD(&css_set_table[i]);

2868 2869 2870 2871 2872 2873 2874 2875
	for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
		struct cgroup_subsys *ss = subsys[i];

		BUG_ON(!ss->name);
		BUG_ON(strlen(ss->name) > MAX_CGROUP_TYPE_NAMELEN);
		BUG_ON(!ss->create);
		BUG_ON(!ss->destroy);
		if (ss->subsys_id != i) {
D
Diego Calleja 已提交
2876
			printk(KERN_ERR "cgroup: Subsys %s id == %d\n",
2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887
			       ss->name, ss->subsys_id);
			BUG();
		}

		if (ss->early_init)
			cgroup_init_subsys(ss);
	}
	return 0;
}

/**
L
Li Zefan 已提交
2888 2889 2890 2891
 * cgroup_init - cgroup initialization
 *
 * Register cgroup filesystem and /proc file, and initialize
 * any subsystems that didn't request early init.
2892 2893 2894 2895 2896
 */
int __init cgroup_init(void)
{
	int err;
	int i;
2897
	struct hlist_head *hhead;
2898 2899 2900 2901

	err = bdi_init(&cgroup_backing_dev_info);
	if (err)
		return err;
2902 2903 2904 2905 2906

	for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
		struct cgroup_subsys *ss = subsys[i];
		if (!ss->early_init)
			cgroup_init_subsys(ss);
K
KAMEZAWA Hiroyuki 已提交
2907 2908
		if (ss->use_id)
			cgroup_subsys_init_idr(ss);
2909 2910
	}

2911 2912 2913 2914
	/* Add init_css_set to the hash table */
	hhead = css_set_hash(init_css_set.subsys);
	hlist_add_head(&init_css_set.hlist, hhead);

2915 2916 2917 2918
	err = register_filesystem(&cgroup_fs_type);
	if (err < 0)
		goto out;

L
Li Zefan 已提交
2919
	proc_create("cgroups", 0, NULL, &proc_cgroupstats_operations);
2920

2921
out:
2922 2923 2924
	if (err)
		bdi_destroy(&cgroup_backing_dev_info);

2925 2926
	return err;
}
2927

2928 2929 2930 2931 2932 2933
/*
 * proc_cgroup_show()
 *  - Print task's cgroup paths into seq_file, one line for each hierarchy
 *  - Used for /proc/<pid>/cgroup.
 *  - No need to task_lock(tsk) on this tsk->cgroup reference, as it
 *    doesn't really matter if tsk->cgroup changes after we read it,
2934
 *    and we take cgroup_mutex, keeping cgroup_attach_task() from changing it
2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963
 *    anyway.  No need to check that tsk->cgroup != NULL, thanks to
 *    the_top_cgroup_hack in cgroup_exit(), which sets an exiting tasks
 *    cgroup to top_cgroup.
 */

/* TODO: Use a proper seq_file iterator */
static int proc_cgroup_show(struct seq_file *m, void *v)
{
	struct pid *pid;
	struct task_struct *tsk;
	char *buf;
	int retval;
	struct cgroupfs_root *root;

	retval = -ENOMEM;
	buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
	if (!buf)
		goto out;

	retval = -ESRCH;
	pid = m->private;
	tsk = get_pid_task(pid, PIDTYPE_PID);
	if (!tsk)
		goto out_free;

	retval = 0;

	mutex_lock(&cgroup_mutex);

2964
	for_each_active_root(root) {
2965
		struct cgroup_subsys *ss;
2966
		struct cgroup *cgrp;
2967 2968 2969
		int subsys_id;
		int count = 0;

2970
		seq_printf(m, "%lu:", root->subsys_bits);
2971 2972 2973 2974
		for_each_subsys(root, ss)
			seq_printf(m, "%s%s", count++ ? "," : "", ss->name);
		seq_putc(m, ':');
		get_first_subsys(&root->top_cgroup, NULL, &subsys_id);
2975 2976
		cgrp = task_cgroup(tsk, subsys_id);
		retval = cgroup_path(cgrp, buf, PAGE_SIZE);
2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009
		if (retval < 0)
			goto out_unlock;
		seq_puts(m, buf);
		seq_putc(m, '\n');
	}

out_unlock:
	mutex_unlock(&cgroup_mutex);
	put_task_struct(tsk);
out_free:
	kfree(buf);
out:
	return retval;
}

static int cgroup_open(struct inode *inode, struct file *file)
{
	struct pid *pid = PROC_I(inode)->pid;
	return single_open(file, proc_cgroup_show, pid);
}

struct file_operations proc_cgroup_operations = {
	.open		= cgroup_open,
	.read		= seq_read,
	.llseek		= seq_lseek,
	.release	= single_release,
};

/* Display information about each subsystem and each hierarchy */
static int proc_cgroupstats_show(struct seq_file *m, void *v)
{
	int i;

3010
	seq_puts(m, "#subsys_name\thierarchy\tnum_cgroups\tenabled\n");
3011 3012 3013
	mutex_lock(&cgroup_mutex);
	for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
		struct cgroup_subsys *ss = subsys[i];
3014
		seq_printf(m, "%s\t%lu\t%d\t%d\n",
3015
			   ss->name, ss->root->subsys_bits,
3016
			   ss->root->number_of_cgroups, !ss->disabled);
3017 3018 3019 3020 3021 3022 3023
	}
	mutex_unlock(&cgroup_mutex);
	return 0;
}

static int cgroupstats_open(struct inode *inode, struct file *file)
{
A
Al Viro 已提交
3024
	return single_open(file, proc_cgroupstats_show, NULL);
3025 3026 3027 3028 3029 3030 3031 3032 3033
}

static struct file_operations proc_cgroupstats_operations = {
	.open = cgroupstats_open,
	.read = seq_read,
	.llseek = seq_lseek,
	.release = single_release,
};

3034 3035
/**
 * cgroup_fork - attach newly forked task to its parents cgroup.
L
Li Zefan 已提交
3036
 * @child: pointer to task_struct of forking parent process.
3037 3038 3039 3040 3041 3042
 *
 * Description: A task inherits its parent's cgroup at fork().
 *
 * A pointer to the shared css_set was automatically copied in
 * fork.c by dup_task_struct().  However, we ignore that copy, since
 * it was not made under the protection of RCU or cgroup_mutex, so
3043
 * might no longer be a valid cgroup pointer.  cgroup_attach_task() might
3044 3045
 * have already changed current->cgroups, allowing the previously
 * referenced cgroup group to be removed and freed.
3046 3047 3048 3049 3050 3051
 *
 * At the point that cgroup_fork() is called, 'current' is the parent
 * task, and the passed argument 'child' points to the child task.
 */
void cgroup_fork(struct task_struct *child)
{
3052 3053 3054 3055 3056
	task_lock(current);
	child->cgroups = current->cgroups;
	get_css_set(child->cgroups);
	task_unlock(current);
	INIT_LIST_HEAD(&child->cg_list);
3057 3058 3059
}

/**
L
Li Zefan 已提交
3060 3061 3062 3063 3064 3065
 * cgroup_fork_callbacks - run fork callbacks
 * @child: the new task
 *
 * Called on a new task very soon before adding it to the
 * tasklist. No need to take any locks since no-one can
 * be operating on this task.
3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078
 */
void cgroup_fork_callbacks(struct task_struct *child)
{
	if (need_forkexit_callback) {
		int i;
		for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
			struct cgroup_subsys *ss = subsys[i];
			if (ss->fork)
				ss->fork(ss, child);
		}
	}
}

3079
/**
L
Li Zefan 已提交
3080 3081 3082 3083 3084 3085 3086 3087
 * cgroup_post_fork - called on a new task after adding it to the task list
 * @child: the task in question
 *
 * Adds the task to the list running through its css_set if necessary.
 * Has to be after the task is visible on the task list in case we race
 * with the first call to cgroup_iter_start() - to guarantee that the
 * new task ends up on its list.
 */
3088 3089 3090 3091
void cgroup_post_fork(struct task_struct *child)
{
	if (use_task_css_set_links) {
		write_lock(&css_set_lock);
3092
		task_lock(child);
3093 3094
		if (list_empty(&child->cg_list))
			list_add(&child->cg_list, &child->cgroups->tasks);
3095
		task_unlock(child);
3096 3097 3098
		write_unlock(&css_set_lock);
	}
}
3099 3100 3101
/**
 * cgroup_exit - detach cgroup from exiting task
 * @tsk: pointer to task_struct of exiting process
L
Li Zefan 已提交
3102
 * @run_callback: run exit callbacks?
3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130
 *
 * Description: Detach cgroup from @tsk and release it.
 *
 * Note that cgroups marked notify_on_release force every task in
 * them to take the global cgroup_mutex mutex when exiting.
 * This could impact scaling on very large systems.  Be reluctant to
 * use notify_on_release cgroups where very high task exit scaling
 * is required on large systems.
 *
 * the_top_cgroup_hack:
 *
 *    Set the exiting tasks cgroup to the root cgroup (top_cgroup).
 *
 *    We call cgroup_exit() while the task is still competent to
 *    handle notify_on_release(), then leave the task attached to the
 *    root cgroup in each hierarchy for the remainder of its exit.
 *
 *    To do this properly, we would increment the reference count on
 *    top_cgroup, and near the very end of the kernel/exit.c do_exit()
 *    code we would add a second cgroup function call, to drop that
 *    reference.  This would just create an unnecessary hot spot on
 *    the top_cgroup reference count, to no avail.
 *
 *    Normally, holding a reference to a cgroup without bumping its
 *    count is unsafe.   The cgroup could go away, or someone could
 *    attach us to a different cgroup, decrementing the count on
 *    the first cgroup that we never incremented.  But in this case,
 *    top_cgroup isn't going away, and either task has PF_EXITING set,
3131 3132
 *    which wards off any cgroup_attach_task() attempts, or task is a failed
 *    fork, never visible to cgroup_attach_task.
3133 3134 3135 3136
 */
void cgroup_exit(struct task_struct *tsk, int run_callbacks)
{
	int i;
3137
	struct css_set *cg;
3138 3139 3140 3141 3142 3143 3144 3145

	if (run_callbacks && need_forkexit_callback) {
		for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
			struct cgroup_subsys *ss = subsys[i];
			if (ss->exit)
				ss->exit(ss, tsk);
		}
	}
3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158

	/*
	 * Unlink from the css_set task list if necessary.
	 * Optimistically check cg_list before taking
	 * css_set_lock
	 */
	if (!list_empty(&tsk->cg_list)) {
		write_lock(&css_set_lock);
		if (!list_empty(&tsk->cg_list))
			list_del(&tsk->cg_list);
		write_unlock(&css_set_lock);
	}

3159 3160
	/* Reassign the task to the init_css_set. */
	task_lock(tsk);
3161 3162
	cg = tsk->cgroups;
	tsk->cgroups = &init_css_set;
3163
	task_unlock(tsk);
3164
	if (cg)
3165
		put_css_set_taskexit(cg);
3166
}
3167 3168

/**
L
Li Zefan 已提交
3169 3170 3171
 * cgroup_clone - clone the cgroup the given subsystem is attached to
 * @tsk: the task to be moved
 * @subsys: the given subsystem
3172
 * @nodename: the name for the new cgroup
L
Li Zefan 已提交
3173 3174 3175 3176
 *
 * Duplicate the current cgroup in the hierarchy that the given
 * subsystem is attached to, and move this task into the new
 * child.
3177
 */
3178 3179
int cgroup_clone(struct task_struct *tsk, struct cgroup_subsys *subsys,
							char *nodename)
3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202
{
	struct dentry *dentry;
	int ret = 0;
	struct cgroup *parent, *child;
	struct inode *inode;
	struct css_set *cg;
	struct cgroupfs_root *root;
	struct cgroup_subsys *ss;

	/* We shouldn't be called by an unregistered subsystem */
	BUG_ON(!subsys->active);

	/* First figure out what hierarchy and cgroup we're dealing
	 * with, and pin them so we can drop cgroup_mutex */
	mutex_lock(&cgroup_mutex);
 again:
	root = subsys->root;
	if (root == &rootnode) {
		mutex_unlock(&cgroup_mutex);
		return 0;
	}

	/* Pin the hierarchy */
3203
	if (!atomic_inc_not_zero(&root->sb->s_active)) {
3204 3205 3206 3207
		/* We race with the final deactivate_super() */
		mutex_unlock(&cgroup_mutex);
		return 0;
	}
3208

3209
	/* Keep the cgroup alive */
3210 3211 3212
	task_lock(tsk);
	parent = task_cgroup(tsk, subsys->subsys_id);
	cg = tsk->cgroups;
3213
	get_css_set(cg);
3214
	task_unlock(tsk);
3215

3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226
	mutex_unlock(&cgroup_mutex);

	/* Now do the VFS work to create a cgroup */
	inode = parent->dentry->d_inode;

	/* Hold the parent directory mutex across this operation to
	 * stop anyone else deleting the new cgroup */
	mutex_lock(&inode->i_mutex);
	dentry = lookup_one_len(nodename, parent->dentry, strlen(nodename));
	if (IS_ERR(dentry)) {
		printk(KERN_INFO
D
Diego Calleja 已提交
3227
		       "cgroup: Couldn't allocate dentry for %s: %ld\n", nodename,
3228 3229 3230 3231 3232 3233
		       PTR_ERR(dentry));
		ret = PTR_ERR(dentry);
		goto out_release;
	}

	/* Create the cgroup directory, which also creates the cgroup */
3234
	ret = vfs_mkdir(inode, dentry, 0755);
3235
	child = __d_cgrp(dentry);
3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251
	dput(dentry);
	if (ret) {
		printk(KERN_INFO
		       "Failed to create cgroup %s: %d\n", nodename,
		       ret);
		goto out_release;
	}

	/* The cgroup now exists. Retake cgroup_mutex and check
	 * that we're still in the same state that we thought we
	 * were. */
	mutex_lock(&cgroup_mutex);
	if ((root != subsys->root) ||
	    (parent != task_cgroup(tsk, subsys->subsys_id))) {
		/* Aargh, we raced ... */
		mutex_unlock(&inode->i_mutex);
3252
		put_css_set(cg);
3253

3254
		deactivate_super(root->sb);
3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270
		/* The cgroup is still accessible in the VFS, but
		 * we're not going to try to rmdir() it at this
		 * point. */
		printk(KERN_INFO
		       "Race in cgroup_clone() - leaking cgroup %s\n",
		       nodename);
		goto again;
	}

	/* do any required auto-setup */
	for_each_subsys(root, ss) {
		if (ss->post_clone)
			ss->post_clone(ss, child);
	}

	/* All seems fine. Finish by moving the task into the new cgroup */
3271
	ret = cgroup_attach_task(child, tsk);
3272 3273 3274 3275
	mutex_unlock(&cgroup_mutex);

 out_release:
	mutex_unlock(&inode->i_mutex);
3276 3277

	mutex_lock(&cgroup_mutex);
3278
	put_css_set(cg);
3279
	mutex_unlock(&cgroup_mutex);
3280
	deactivate_super(root->sb);
3281 3282 3283
	return ret;
}

L
Li Zefan 已提交
3284
/**
3285
 * cgroup_is_descendant - see if @cgrp is a descendant of @task's cgrp
L
Li Zefan 已提交
3286
 * @cgrp: the cgroup in question
3287
 * @task: the task in question
L
Li Zefan 已提交
3288
 *
3289 3290
 * See if @cgrp is a descendant of @task's cgroup in the appropriate
 * hierarchy.
3291 3292 3293 3294 3295 3296
 *
 * If we are sending in dummytop, then presumably we are creating
 * the top cgroup in the subsystem.
 *
 * Called only by the ns (nsproxy) cgroup.
 */
3297
int cgroup_is_descendant(const struct cgroup *cgrp, struct task_struct *task)
3298 3299 3300 3301 3302
{
	int ret;
	struct cgroup *target;
	int subsys_id;

3303
	if (cgrp == dummytop)
3304 3305
		return 1;

3306
	get_first_subsys(cgrp, NULL, &subsys_id);
3307
	target = task_cgroup(task, subsys_id);
3308 3309 3310
	while (cgrp != target && cgrp!= cgrp->top_cgroup)
		cgrp = cgrp->parent;
	ret = (cgrp == target);
3311 3312
	return ret;
}
3313

3314
static void check_for_release(struct cgroup *cgrp)
3315 3316 3317
{
	/* All of these checks rely on RCU to keep the cgroup
	 * structure alive */
3318 3319
	if (cgroup_is_releasable(cgrp) && !atomic_read(&cgrp->count)
	    && list_empty(&cgrp->children) && !cgroup_has_css_refs(cgrp)) {
3320 3321 3322 3323 3324
		/* Control Group is currently removeable. If it's not
		 * already queued for a userspace notification, queue
		 * it now */
		int need_schedule_work = 0;
		spin_lock(&release_list_lock);
3325 3326 3327
		if (!cgroup_is_removed(cgrp) &&
		    list_empty(&cgrp->release_list)) {
			list_add(&cgrp->release_list, &release_list);
3328 3329 3330 3331 3332 3333 3334 3335 3336 3337
			need_schedule_work = 1;
		}
		spin_unlock(&release_list_lock);
		if (need_schedule_work)
			schedule_work(&release_agent_work);
	}
}

void __css_put(struct cgroup_subsys_state *css)
{
3338
	struct cgroup *cgrp = css->cgroup;
3339
	rcu_read_lock();
3340 3341 3342 3343 3344 3345
	if (atomic_dec_return(&css->refcnt) == 1) {
		if (notify_on_release(cgrp)) {
			set_bit(CGRP_RELEASABLE, &cgrp->flags);
			check_for_release(cgrp);
		}
		cgroup_wakeup_rmdir_waiters(cgrp);
3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380
	}
	rcu_read_unlock();
}

/*
 * Notify userspace when a cgroup is released, by running the
 * configured release agent with the name of the cgroup (path
 * relative to the root of cgroup file system) as the argument.
 *
 * Most likely, this user command will try to rmdir this cgroup.
 *
 * This races with the possibility that some other task will be
 * attached to this cgroup before it is removed, or that some other
 * user task will 'mkdir' a child cgroup of this cgroup.  That's ok.
 * The presumed 'rmdir' will fail quietly if this cgroup is no longer
 * unused, and this cgroup will be reprieved from its death sentence,
 * to continue to serve a useful existence.  Next time it's released,
 * we will get notified again, if it still has 'notify_on_release' set.
 *
 * The final arg to call_usermodehelper() is UMH_WAIT_EXEC, which
 * means only wait until the task is successfully execve()'d.  The
 * separate release agent task is forked by call_usermodehelper(),
 * then control in this thread returns here, without waiting for the
 * release agent task.  We don't bother to wait because the caller of
 * this routine has no use for the exit status of the release agent
 * task, so no sense holding our caller up for that.
 */
static void cgroup_release_agent(struct work_struct *work)
{
	BUG_ON(work != &release_agent_work);
	mutex_lock(&cgroup_mutex);
	spin_lock(&release_list_lock);
	while (!list_empty(&release_list)) {
		char *argv[3], *envp[3];
		int i;
3381
		char *pathbuf = NULL, *agentbuf = NULL;
3382
		struct cgroup *cgrp = list_entry(release_list.next,
3383 3384
						    struct cgroup,
						    release_list);
3385
		list_del_init(&cgrp->release_list);
3386 3387
		spin_unlock(&release_list_lock);
		pathbuf = kmalloc(PAGE_SIZE, GFP_KERNEL);
3388 3389 3390 3391 3392 3393 3394
		if (!pathbuf)
			goto continue_free;
		if (cgroup_path(cgrp, pathbuf, PAGE_SIZE) < 0)
			goto continue_free;
		agentbuf = kstrdup(cgrp->root->release_agent_path, GFP_KERNEL);
		if (!agentbuf)
			goto continue_free;
3395 3396

		i = 0;
3397 3398
		argv[i++] = agentbuf;
		argv[i++] = pathbuf;
3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412
		argv[i] = NULL;

		i = 0;
		/* minimal command environment */
		envp[i++] = "HOME=/";
		envp[i++] = "PATH=/sbin:/bin:/usr/sbin:/usr/bin";
		envp[i] = NULL;

		/* Drop the lock while we invoke the usermode helper,
		 * since the exec could involve hitting disk and hence
		 * be a slow process */
		mutex_unlock(&cgroup_mutex);
		call_usermodehelper(argv[0], argv, envp, UMH_WAIT_EXEC);
		mutex_lock(&cgroup_mutex);
3413 3414 3415
 continue_free:
		kfree(pathbuf);
		kfree(agentbuf);
3416 3417 3418 3419 3420
		spin_lock(&release_list_lock);
	}
	spin_unlock(&release_list_lock);
	mutex_unlock(&cgroup_mutex);
}
3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444

static int __init cgroup_disable(char *str)
{
	int i;
	char *token;

	while ((token = strsep(&str, ",")) != NULL) {
		if (!*token)
			continue;

		for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
			struct cgroup_subsys *ss = subsys[i];

			if (!strcmp(token, ss->name)) {
				ss->disabled = 1;
				printk(KERN_INFO "Disabling %s control group"
					" subsystem\n", ss->name);
				break;
			}
		}
	}
	return 1;
}
__setup("cgroup_disable=", cgroup_disable);
K
KAMEZAWA Hiroyuki 已提交
3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471

/*
 * Functons for CSS ID.
 */

/*
 *To get ID other than 0, this should be called when !cgroup_is_removed().
 */
unsigned short css_id(struct cgroup_subsys_state *css)
{
	struct css_id *cssid = rcu_dereference(css->id);

	if (cssid)
		return cssid->id;
	return 0;
}

unsigned short css_depth(struct cgroup_subsys_state *css)
{
	struct css_id *cssid = rcu_dereference(css->id);

	if (cssid)
		return cssid->depth;
	return 0;
}

bool css_is_ancestor(struct cgroup_subsys_state *child,
3472
		    const struct cgroup_subsys_state *root)
K
KAMEZAWA Hiroyuki 已提交
3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673
{
	struct css_id *child_id = rcu_dereference(child->id);
	struct css_id *root_id = rcu_dereference(root->id);

	if (!child_id || !root_id || (child_id->depth < root_id->depth))
		return false;
	return child_id->stack[root_id->depth] == root_id->id;
}

static void __free_css_id_cb(struct rcu_head *head)
{
	struct css_id *id;

	id = container_of(head, struct css_id, rcu_head);
	kfree(id);
}

void free_css_id(struct cgroup_subsys *ss, struct cgroup_subsys_state *css)
{
	struct css_id *id = css->id;
	/* When this is called before css_id initialization, id can be NULL */
	if (!id)
		return;

	BUG_ON(!ss->use_id);

	rcu_assign_pointer(id->css, NULL);
	rcu_assign_pointer(css->id, NULL);
	spin_lock(&ss->id_lock);
	idr_remove(&ss->idr, id->id);
	spin_unlock(&ss->id_lock);
	call_rcu(&id->rcu_head, __free_css_id_cb);
}

/*
 * This is called by init or create(). Then, calls to this function are
 * always serialized (By cgroup_mutex() at create()).
 */

static struct css_id *get_new_cssid(struct cgroup_subsys *ss, int depth)
{
	struct css_id *newid;
	int myid, error, size;

	BUG_ON(!ss->use_id);

	size = sizeof(*newid) + sizeof(unsigned short) * (depth + 1);
	newid = kzalloc(size, GFP_KERNEL);
	if (!newid)
		return ERR_PTR(-ENOMEM);
	/* get id */
	if (unlikely(!idr_pre_get(&ss->idr, GFP_KERNEL))) {
		error = -ENOMEM;
		goto err_out;
	}
	spin_lock(&ss->id_lock);
	/* Don't use 0. allocates an ID of 1-65535 */
	error = idr_get_new_above(&ss->idr, newid, 1, &myid);
	spin_unlock(&ss->id_lock);

	/* Returns error when there are no free spaces for new ID.*/
	if (error) {
		error = -ENOSPC;
		goto err_out;
	}
	if (myid > CSS_ID_MAX)
		goto remove_idr;

	newid->id = myid;
	newid->depth = depth;
	return newid;
remove_idr:
	error = -ENOSPC;
	spin_lock(&ss->id_lock);
	idr_remove(&ss->idr, myid);
	spin_unlock(&ss->id_lock);
err_out:
	kfree(newid);
	return ERR_PTR(error);

}

static int __init cgroup_subsys_init_idr(struct cgroup_subsys *ss)
{
	struct css_id *newid;
	struct cgroup_subsys_state *rootcss;

	spin_lock_init(&ss->id_lock);
	idr_init(&ss->idr);

	rootcss = init_css_set.subsys[ss->subsys_id];
	newid = get_new_cssid(ss, 0);
	if (IS_ERR(newid))
		return PTR_ERR(newid);

	newid->stack[0] = newid->id;
	newid->css = rootcss;
	rootcss->id = newid;
	return 0;
}

static int alloc_css_id(struct cgroup_subsys *ss, struct cgroup *parent,
			struct cgroup *child)
{
	int subsys_id, i, depth = 0;
	struct cgroup_subsys_state *parent_css, *child_css;
	struct css_id *child_id, *parent_id = NULL;

	subsys_id = ss->subsys_id;
	parent_css = parent->subsys[subsys_id];
	child_css = child->subsys[subsys_id];
	depth = css_depth(parent_css) + 1;
	parent_id = parent_css->id;

	child_id = get_new_cssid(ss, depth);
	if (IS_ERR(child_id))
		return PTR_ERR(child_id);

	for (i = 0; i < depth; i++)
		child_id->stack[i] = parent_id->stack[i];
	child_id->stack[depth] = child_id->id;
	/*
	 * child_id->css pointer will be set after this cgroup is available
	 * see cgroup_populate_dir()
	 */
	rcu_assign_pointer(child_css->id, child_id);

	return 0;
}

/**
 * css_lookup - lookup css by id
 * @ss: cgroup subsys to be looked into.
 * @id: the id
 *
 * Returns pointer to cgroup_subsys_state if there is valid one with id.
 * NULL if not. Should be called under rcu_read_lock()
 */
struct cgroup_subsys_state *css_lookup(struct cgroup_subsys *ss, int id)
{
	struct css_id *cssid = NULL;

	BUG_ON(!ss->use_id);
	cssid = idr_find(&ss->idr, id);

	if (unlikely(!cssid))
		return NULL;

	return rcu_dereference(cssid->css);
}

/**
 * css_get_next - lookup next cgroup under specified hierarchy.
 * @ss: pointer to subsystem
 * @id: current position of iteration.
 * @root: pointer to css. search tree under this.
 * @foundid: position of found object.
 *
 * Search next css under the specified hierarchy of rootid. Calling under
 * rcu_read_lock() is necessary. Returns NULL if it reaches the end.
 */
struct cgroup_subsys_state *
css_get_next(struct cgroup_subsys *ss, int id,
	     struct cgroup_subsys_state *root, int *foundid)
{
	struct cgroup_subsys_state *ret = NULL;
	struct css_id *tmp;
	int tmpid;
	int rootid = css_id(root);
	int depth = css_depth(root);

	if (!rootid)
		return NULL;

	BUG_ON(!ss->use_id);
	/* fill start point for scan */
	tmpid = id;
	while (1) {
		/*
		 * scan next entry from bitmap(tree), tmpid is updated after
		 * idr_get_next().
		 */
		spin_lock(&ss->id_lock);
		tmp = idr_get_next(&ss->idr, &tmpid);
		spin_unlock(&ss->id_lock);

		if (!tmp)
			break;
		if (tmp->depth >= depth && tmp->stack[depth] == rootid) {
			ret = rcu_dereference(tmp->css);
			if (ret) {
				*foundid = tmpid;
				break;
			}
		}
		/* continue to scan from next id */
		tmpid = tmpid + 1;
	}
	return ret;
}