cgroup.c 81.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33
/*
 *  Generic process-grouping system.
 *
 *  Based originally on the cpuset system, extracted by Paul Menage
 *  Copyright (C) 2006 Google, Inc
 *
 *  Copyright notices from the original cpuset code:
 *  --------------------------------------------------
 *  Copyright (C) 2003 BULL SA.
 *  Copyright (C) 2004-2006 Silicon Graphics, Inc.
 *
 *  Portions derived from Patrick Mochel's sysfs code.
 *  sysfs is Copyright (c) 2001-3 Patrick Mochel
 *
 *  2003-10-10 Written by Simon Derr.
 *  2003-10-22 Updates by Stephen Hemminger.
 *  2004 May-July Rework by Paul Jackson.
 *  ---------------------------------------------------
 *
 *  This file is subject to the terms and conditions of the GNU General Public
 *  License.  See the file COPYING in the main directory of the Linux
 *  distribution for more details.
 */

#include <linux/cgroup.h>
#include <linux/errno.h>
#include <linux/fs.h>
#include <linux/kernel.h>
#include <linux/list.h>
#include <linux/mm.h>
#include <linux/mutex.h>
#include <linux/mount.h>
#include <linux/pagemap.h>
34
#include <linux/proc_fs.h>
35 36
#include <linux/rcupdate.h>
#include <linux/sched.h>
37
#include <linux/backing-dev.h>
38 39 40 41 42
#include <linux/seq_file.h>
#include <linux/slab.h>
#include <linux/magic.h>
#include <linux/spinlock.h>
#include <linux/string.h>
43
#include <linux/sort.h>
44
#include <linux/kmod.h>
B
Balbir Singh 已提交
45 46
#include <linux/delayacct.h>
#include <linux/cgroupstats.h>
47
#include <linux/hash.h>
48
#include <linux/namei.h>
B
Balbir Singh 已提交
49

50 51
#include <asm/atomic.h>

52 53
static DEFINE_MUTEX(cgroup_mutex);

54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91
/* Generate an array of cgroup subsystem pointers */
#define SUBSYS(_x) &_x ## _subsys,

static struct cgroup_subsys *subsys[] = {
#include <linux/cgroup_subsys.h>
};

/*
 * A cgroupfs_root represents the root of a cgroup hierarchy,
 * and may be associated with a superblock to form an active
 * hierarchy
 */
struct cgroupfs_root {
	struct super_block *sb;

	/*
	 * The bitmask of subsystems intended to be attached to this
	 * hierarchy
	 */
	unsigned long subsys_bits;

	/* The bitmask of subsystems currently attached to this hierarchy */
	unsigned long actual_subsys_bits;

	/* A list running through the attached subsystems */
	struct list_head subsys_list;

	/* The root cgroup for this hierarchy */
	struct cgroup top_cgroup;

	/* Tracks how many cgroups are currently defined in hierarchy.*/
	int number_of_cgroups;

	/* A list running through the mounted hierarchies */
	struct list_head root_list;

	/* Hierarchy-specific flags */
	unsigned long flags;
92

93
	/* The path to use for release notifications. */
94
	char release_agent_path[PATH_MAX];
95 96 97 98 99 100 101 102 103 104 105 106 107
};


/*
 * The "rootnode" hierarchy is the "dummy hierarchy", reserved for the
 * subsystems that are otherwise unattached - it never has more than a
 * single cgroup, and all tasks are part of that cgroup.
 */
static struct cgroupfs_root rootnode;

/* The list of hierarchy roots */

static LIST_HEAD(roots);
108
static int root_count;
109 110 111 112 113

/* dummytop is a shorthand for the dummy hierarchy's top cgroup */
#define dummytop (&rootnode.top_cgroup)

/* This flag indicates whether tasks in the fork and exit paths should
L
Li Zefan 已提交
114 115 116
 * check for fork/exit handlers to call. This avoids us having to do
 * extra work in the fork/exit path if none of the subsystems need to
 * be called.
117
 */
118
static int need_forkexit_callback __read_mostly;
119
static int need_mm_owner_callback __read_mostly;
120 121

/* convenient tests for these bits */
122
inline int cgroup_is_removed(const struct cgroup *cgrp)
123
{
124
	return test_bit(CGRP_REMOVED, &cgrp->flags);
125 126 127 128 129 130 131
}

/* bits in struct cgroupfs_root flags field */
enum {
	ROOT_NOPREFIX, /* mounted subsystems have no named prefix */
};

132
static int cgroup_is_releasable(const struct cgroup *cgrp)
133 134
{
	const int bits =
135 136 137
		(1 << CGRP_RELEASABLE) |
		(1 << CGRP_NOTIFY_ON_RELEASE);
	return (cgrp->flags & bits) == bits;
138 139
}

140
static int notify_on_release(const struct cgroup *cgrp)
141
{
142
	return test_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
143 144
}

145 146 147 148 149 150 151 152 153 154 155
/*
 * for_each_subsys() allows you to iterate on each subsystem attached to
 * an active hierarchy
 */
#define for_each_subsys(_root, _ss) \
list_for_each_entry(_ss, &_root->subsys_list, sibling)

/* for_each_root() allows you to iterate across the active hierarchies */
#define for_each_root(_root) \
list_for_each_entry(_root, &roots, root_list)

156 157 158 159 160 161
/* the list of cgroups eligible for automatic release. Protected by
 * release_list_lock */
static LIST_HEAD(release_list);
static DEFINE_SPINLOCK(release_list_lock);
static void cgroup_release_agent(struct work_struct *work);
static DECLARE_WORK(release_agent_work, cgroup_release_agent);
162
static void check_for_release(struct cgroup *cgrp);
163

164 165 166 167 168 169
/* Link structure for associating css_set objects with cgroups */
struct cg_cgroup_link {
	/*
	 * List running through cg_cgroup_links associated with a
	 * cgroup, anchored on cgroup->css_sets
	 */
170
	struct list_head cgrp_link_list;
171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194
	/*
	 * List running through cg_cgroup_links pointing at a
	 * single css_set object, anchored on css_set->cg_links
	 */
	struct list_head cg_link_list;
	struct css_set *cg;
};

/* The default css_set - used by init and its children prior to any
 * hierarchies being mounted. It contains a pointer to the root state
 * for each subsystem. Also used to anchor the list of css_sets. Not
 * reference-counted, to improve performance when child cgroups
 * haven't been created.
 */

static struct css_set init_css_set;
static struct cg_cgroup_link init_css_set_link;

/* css_set_lock protects the list of css_set objects, and the
 * chain of tasks off each css_set.  Nests outside task->alloc_lock
 * due to cgroup_iter_start() */
static DEFINE_RWLOCK(css_set_lock);
static int css_set_count;

195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215
/* hash table for cgroup groups. This improves the performance to
 * find an existing css_set */
#define CSS_SET_HASH_BITS	7
#define CSS_SET_TABLE_SIZE	(1 << CSS_SET_HASH_BITS)
static struct hlist_head css_set_table[CSS_SET_TABLE_SIZE];

static struct hlist_head *css_set_hash(struct cgroup_subsys_state *css[])
{
	int i;
	int index;
	unsigned long tmp = 0UL;

	for (i = 0; i < CGROUP_SUBSYS_COUNT; i++)
		tmp += (unsigned long)css[i];
	tmp = (tmp >> 16) ^ tmp;

	index = hash_long(tmp, CSS_SET_HASH_BITS);

	return &css_set_table[index];
}

216 217 218 219
/* We don't maintain the lists running through each css_set to its
 * task until after the first call to cgroup_iter_start(). This
 * reduces the fork()/exit() overhead for people who have cgroups
 * compiled into their kernel but not actually in use */
220
static int use_task_css_set_links __read_mostly;
221 222 223 224 225 226 227

/* When we create or destroy a css_set, the operation simply
 * takes/releases a reference count on all the cgroups referenced
 * by subsystems in this css_set. This can end up multiple-counting
 * some cgroups, but that's OK - the ref-count is just a
 * busy/not-busy indicator; ensuring that we only count each cgroup
 * once would require taking a global lock to ensure that no
228 229 230 231 232 233 234
 * subsystems moved between hierarchies while we were doing so.
 *
 * Possible TODO: decide at boot time based on the number of
 * registered subsystems and the number of CPUs or NUMA nodes whether
 * it's better for performance to ref-count every subsystem, or to
 * take a global lock and only add one ref count to each hierarchy.
 */
235 236 237 238

/*
 * unlink a css_set from the list and free it
 */
239
static void unlink_css_set(struct css_set *cg)
240
{
K
KOSAKI Motohiro 已提交
241 242 243
	struct cg_cgroup_link *link;
	struct cg_cgroup_link *saved_link;

244
	hlist_del(&cg->hlist);
245
	css_set_count--;
K
KOSAKI Motohiro 已提交
246 247 248

	list_for_each_entry_safe(link, saved_link, &cg->cg_links,
				 cg_link_list) {
249
		list_del(&link->cg_link_list);
250
		list_del(&link->cgrp_link_list);
251 252
		kfree(link);
	}
253 254
}

255
static void __put_css_set(struct css_set *cg, int taskexit)
256 257
{
	int i;
258 259 260 261 262 263 264 265 266 267 268 269
	/*
	 * Ensure that the refcount doesn't hit zero while any readers
	 * can see it. Similar to atomic_dec_and_lock(), but for an
	 * rwlock
	 */
	if (atomic_add_unless(&cg->refcount, -1, 1))
		return;
	write_lock(&css_set_lock);
	if (!atomic_dec_and_test(&cg->refcount)) {
		write_unlock(&css_set_lock);
		return;
	}
270
	unlink_css_set(cg);
271
	write_unlock(&css_set_lock);
272 273 274

	rcu_read_lock();
	for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
275 276 277
		struct cgroup *cgrp = cg->subsys[i]->cgroup;
		if (atomic_dec_and_test(&cgrp->count) &&
		    notify_on_release(cgrp)) {
278
			if (taskexit)
279 280
				set_bit(CGRP_RELEASABLE, &cgrp->flags);
			check_for_release(cgrp);
281 282 283
		}
	}
	rcu_read_unlock();
284
	kfree(cg);
285 286
}

287 288 289 290 291
/*
 * refcounted get/put for css_set objects
 */
static inline void get_css_set(struct css_set *cg)
{
292
	atomic_inc(&cg->refcount);
293 294 295 296
}

static inline void put_css_set(struct css_set *cg)
{
297
	__put_css_set(cg, 0);
298 299
}

300 301
static inline void put_css_set_taskexit(struct css_set *cg)
{
302
	__put_css_set(cg, 1);
303 304
}

305 306 307
/*
 * find_existing_css_set() is a helper for
 * find_css_set(), and checks to see whether an existing
308
 * css_set is suitable.
309 310 311 312
 *
 * oldcg: the cgroup group that we're using before the cgroup
 * transition
 *
313
 * cgrp: the cgroup that we're moving into
314 315 316 317 318 319
 *
 * template: location in which to build the desired set of subsystem
 * state objects for the new cgroup group
 */
static struct css_set *find_existing_css_set(
	struct css_set *oldcg,
320
	struct cgroup *cgrp,
321
	struct cgroup_subsys_state *template[])
322 323
{
	int i;
324
	struct cgroupfs_root *root = cgrp->root;
325 326 327
	struct hlist_head *hhead;
	struct hlist_node *node;
	struct css_set *cg;
328 329 330 331

	/* Built the set of subsystem state objects that we want to
	 * see in the new css_set */
	for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
L
Li Zefan 已提交
332
		if (root->subsys_bits & (1UL << i)) {
333 334 335
			/* Subsystem is in this hierarchy. So we want
			 * the subsystem state from the new
			 * cgroup */
336
			template[i] = cgrp->subsys[i];
337 338 339 340 341 342 343
		} else {
			/* Subsystem is not in this hierarchy, so we
			 * don't want to change the subsystem state */
			template[i] = oldcg->subsys[i];
		}
	}

344 345
	hhead = css_set_hash(template);
	hlist_for_each_entry(cg, node, hhead, hlist) {
346 347 348 349
		if (!memcmp(template, cg->subsys, sizeof(cg->subsys))) {
			/* All subsystems matched */
			return cg;
		}
350
	}
351 352 353 354 355

	/* No existing cgroup group matched */
	return NULL;
}

356 357 358 359 360 361 362 363 364 365 366
static void free_cg_links(struct list_head *tmp)
{
	struct cg_cgroup_link *link;
	struct cg_cgroup_link *saved_link;

	list_for_each_entry_safe(link, saved_link, tmp, cgrp_link_list) {
		list_del(&link->cgrp_link_list);
		kfree(link);
	}
}

367 368
/*
 * allocate_cg_links() allocates "count" cg_cgroup_link structures
369
 * and chains them on tmp through their cgrp_link_list fields. Returns 0 on
370 371 372 373 374 375 376 377 378 379
 * success or a negative error
 */
static int allocate_cg_links(int count, struct list_head *tmp)
{
	struct cg_cgroup_link *link;
	int i;
	INIT_LIST_HEAD(tmp);
	for (i = 0; i < count; i++) {
		link = kmalloc(sizeof(*link), GFP_KERNEL);
		if (!link) {
380
			free_cg_links(tmp);
381 382
			return -ENOMEM;
		}
383
		list_add(&link->cgrp_link_list, tmp);
384 385 386 387 388 389 390 391 392 393 394 395
	}
	return 0;
}

/*
 * find_css_set() takes an existing cgroup group and a
 * cgroup object, and returns a css_set object that's
 * equivalent to the old group, but with the given cgroup
 * substituted into the appropriate hierarchy. Must be called with
 * cgroup_mutex held
 */
static struct css_set *find_css_set(
396
	struct css_set *oldcg, struct cgroup *cgrp)
397 398 399 400 401 402 403 404
{
	struct css_set *res;
	struct cgroup_subsys_state *template[CGROUP_SUBSYS_COUNT];
	int i;

	struct list_head tmp_cg_links;
	struct cg_cgroup_link *link;

405 406
	struct hlist_head *hhead;

407 408
	/* First see if we already have a cgroup group that matches
	 * the desired set */
409
	read_lock(&css_set_lock);
410
	res = find_existing_css_set(oldcg, cgrp, template);
411 412
	if (res)
		get_css_set(res);
413
	read_unlock(&css_set_lock);
414 415 416 417 418 419 420 421 422 423 424 425 426 427

	if (res)
		return res;

	res = kmalloc(sizeof(*res), GFP_KERNEL);
	if (!res)
		return NULL;

	/* Allocate all the cg_cgroup_link objects that we'll need */
	if (allocate_cg_links(root_count, &tmp_cg_links) < 0) {
		kfree(res);
		return NULL;
	}

428
	atomic_set(&res->refcount, 1);
429 430
	INIT_LIST_HEAD(&res->cg_links);
	INIT_LIST_HEAD(&res->tasks);
431
	INIT_HLIST_NODE(&res->hlist);
432 433 434 435 436 437 438 439

	/* Copy the set of subsystem state objects generated in
	 * find_existing_css_set() */
	memcpy(res->subsys, template, sizeof(res->subsys));

	write_lock(&css_set_lock);
	/* Add reference counts and links from the new css_set. */
	for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
440
		struct cgroup *cgrp = res->subsys[i]->cgroup;
441
		struct cgroup_subsys *ss = subsys[i];
442
		atomic_inc(&cgrp->count);
443 444 445 446 447 448 449 450 451
		/*
		 * We want to add a link once per cgroup, so we
		 * only do it for the first subsystem in each
		 * hierarchy
		 */
		if (ss->root->subsys_list.next == &ss->sibling) {
			BUG_ON(list_empty(&tmp_cg_links));
			link = list_entry(tmp_cg_links.next,
					  struct cg_cgroup_link,
452 453 454
					  cgrp_link_list);
			list_del(&link->cgrp_link_list);
			list_add(&link->cgrp_link_list, &cgrp->css_sets);
455 456 457 458 459 460 461
			link->cg = res;
			list_add(&link->cg_link_list, &res->cg_links);
		}
	}
	if (list_empty(&rootnode.subsys_list)) {
		link = list_entry(tmp_cg_links.next,
				  struct cg_cgroup_link,
462 463 464
				  cgrp_link_list);
		list_del(&link->cgrp_link_list);
		list_add(&link->cgrp_link_list, &dummytop->css_sets);
465 466 467 468 469 470 471
		link->cg = res;
		list_add(&link->cg_link_list, &res->cg_links);
	}

	BUG_ON(!list_empty(&tmp_cg_links));

	css_set_count++;
472 473 474 475 476

	/* Add this cgroup group to the hash table */
	hhead = css_set_hash(res->subsys);
	hlist_add_head(&res->hlist, hhead);

477 478 479
	write_unlock(&css_set_lock);

	return res;
480 481
}

482 483 484 485 486 487 488 489 490 491
/*
 * There is one global cgroup mutex. We also require taking
 * task_lock() when dereferencing a task's cgroup subsys pointers.
 * See "The task_lock() exception", at the end of this comment.
 *
 * A task must hold cgroup_mutex to modify cgroups.
 *
 * Any task can increment and decrement the count field without lock.
 * So in general, code holding cgroup_mutex can't rely on the count
 * field not changing.  However, if the count goes to zero, then only
492
 * cgroup_attach_task() can increment it again.  Because a count of zero
493 494 495 496 497 498 499 500 501 502 503 504 505
 * means that no tasks are currently attached, therefore there is no
 * way a task attached to that cgroup can fork (the other way to
 * increment the count).  So code holding cgroup_mutex can safely
 * assume that if the count is zero, it will stay zero. Similarly, if
 * a task holds cgroup_mutex on a cgroup with zero count, it
 * knows that the cgroup won't be removed, as cgroup_rmdir()
 * needs that mutex.
 *
 * The fork and exit callbacks cgroup_fork() and cgroup_exit(), don't
 * (usually) take cgroup_mutex.  These are the two most performance
 * critical pieces of code here.  The exception occurs on cgroup_exit(),
 * when a task in a notify_on_release cgroup exits.  Then cgroup_mutex
 * is taken, and if the cgroup count is zero, a usermode call made
L
Li Zefan 已提交
506 507
 * to the release agent with the name of the cgroup (path relative to
 * the root of cgroup file system) as the argument.
508 509 510 511 512 513 514 515 516 517 518
 *
 * A cgroup can only be deleted if both its 'count' of using tasks
 * is zero, and its list of 'children' cgroups is empty.  Since all
 * tasks in the system use _some_ cgroup, and since there is always at
 * least one task in the system (init, pid == 1), therefore, top_cgroup
 * always has either children cgroups and/or using tasks.  So we don't
 * need a special hack to ensure that top_cgroup cannot be deleted.
 *
 *	The task_lock() exception
 *
 * The need for this exception arises from the action of
519
 * cgroup_attach_task(), which overwrites one tasks cgroup pointer with
L
Li Zefan 已提交
520
 * another.  It does so using cgroup_mutex, however there are
521 522 523
 * several performance critical places that need to reference
 * task->cgroup without the expense of grabbing a system global
 * mutex.  Therefore except as noted below, when dereferencing or, as
524
 * in cgroup_attach_task(), modifying a task'ss cgroup pointer we use
525 526 527 528
 * task_lock(), which acts on a spinlock (task->alloc_lock) already in
 * the task_struct routinely used for such matters.
 *
 * P.S.  One more locking exception.  RCU is used to guard the
529
 * update of a tasks cgroup pointer by cgroup_attach_task()
530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559
 */

/**
 * cgroup_lock - lock out any changes to cgroup structures
 *
 */
void cgroup_lock(void)
{
	mutex_lock(&cgroup_mutex);
}

/**
 * cgroup_unlock - release lock on cgroup changes
 *
 * Undo the lock taken in a previous cgroup_lock() call.
 */
void cgroup_unlock(void)
{
	mutex_unlock(&cgroup_mutex);
}

/*
 * A couple of forward declarations required, due to cyclic reference loop:
 * cgroup_mkdir -> cgroup_create -> cgroup_populate_dir ->
 * cgroup_add_file -> cgroup_create_file -> cgroup_dir_inode_operations
 * -> cgroup_mkdir.
 */

static int cgroup_mkdir(struct inode *dir, struct dentry *dentry, int mode);
static int cgroup_rmdir(struct inode *unused_dir, struct dentry *dentry);
560
static int cgroup_populate_dir(struct cgroup *cgrp);
561
static struct inode_operations cgroup_dir_inode_operations;
562 563 564
static struct file_operations proc_cgroupstats_operations;

static struct backing_dev_info cgroup_backing_dev_info = {
565
	.capabilities	= BDI_CAP_NO_ACCT_AND_WRITEBACK,
566
};
567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582

static struct inode *cgroup_new_inode(mode_t mode, struct super_block *sb)
{
	struct inode *inode = new_inode(sb);

	if (inode) {
		inode->i_mode = mode;
		inode->i_uid = current->fsuid;
		inode->i_gid = current->fsgid;
		inode->i_blocks = 0;
		inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
		inode->i_mapping->backing_dev_info = &cgroup_backing_dev_info;
	}
	return inode;
}

583 584 585 586 587 588 589 590 591 592 593 594 595
/*
 * Call subsys's pre_destroy handler.
 * This is called before css refcnt check.
 */
static void cgroup_call_pre_destroy(struct cgroup *cgrp)
{
	struct cgroup_subsys *ss;
	for_each_subsys(cgrp->root, ss)
		if (ss->pre_destroy && cgrp->subsys[ss->subsys_id])
			ss->pre_destroy(ss, cgrp);
	return;
}

596 597 598 599
static void cgroup_diput(struct dentry *dentry, struct inode *inode)
{
	/* is dentry a directory ? if so, kfree() associated cgroup */
	if (S_ISDIR(inode->i_mode)) {
600
		struct cgroup *cgrp = dentry->d_fsdata;
601
		struct cgroup_subsys *ss;
602
		BUG_ON(!(cgroup_is_removed(cgrp)));
603 604 605 606 607 608 609
		/* It's possible for external users to be holding css
		 * reference counts on a cgroup; css_put() needs to
		 * be able to access the cgroup after decrementing
		 * the reference count in order to know if it needs to
		 * queue the cgroup to be handled by the release
		 * agent */
		synchronize_rcu();
610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626

		mutex_lock(&cgroup_mutex);
		/*
		 * Release the subsystem state objects.
		 */
		for_each_subsys(cgrp->root, ss) {
			if (cgrp->subsys[ss->subsys_id])
				ss->destroy(ss, cgrp);
		}

		cgrp->root->number_of_cgroups--;
		mutex_unlock(&cgroup_mutex);

		/* Drop the active superblock reference that we took when we
		 * created the cgroup */
		deactivate_super(cgrp->root->sb);

627
		kfree(cgrp);
628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683
	}
	iput(inode);
}

static void remove_dir(struct dentry *d)
{
	struct dentry *parent = dget(d->d_parent);

	d_delete(d);
	simple_rmdir(parent->d_inode, d);
	dput(parent);
}

static void cgroup_clear_directory(struct dentry *dentry)
{
	struct list_head *node;

	BUG_ON(!mutex_is_locked(&dentry->d_inode->i_mutex));
	spin_lock(&dcache_lock);
	node = dentry->d_subdirs.next;
	while (node != &dentry->d_subdirs) {
		struct dentry *d = list_entry(node, struct dentry, d_u.d_child);
		list_del_init(node);
		if (d->d_inode) {
			/* This should never be called on a cgroup
			 * directory with child cgroups */
			BUG_ON(d->d_inode->i_mode & S_IFDIR);
			d = dget_locked(d);
			spin_unlock(&dcache_lock);
			d_delete(d);
			simple_unlink(dentry->d_inode, d);
			dput(d);
			spin_lock(&dcache_lock);
		}
		node = dentry->d_subdirs.next;
	}
	spin_unlock(&dcache_lock);
}

/*
 * NOTE : the dentry must have been dget()'ed
 */
static void cgroup_d_remove_dir(struct dentry *dentry)
{
	cgroup_clear_directory(dentry);

	spin_lock(&dcache_lock);
	list_del_init(&dentry->d_u.d_child);
	spin_unlock(&dcache_lock);
	remove_dir(dentry);
}

static int rebind_subsystems(struct cgroupfs_root *root,
			      unsigned long final_bits)
{
	unsigned long added_bits, removed_bits;
684
	struct cgroup *cgrp = &root->top_cgroup;
685 686 687 688 689 690
	int i;

	removed_bits = root->actual_subsys_bits & ~final_bits;
	added_bits = final_bits & ~root->actual_subsys_bits;
	/* Check that any added subsystems are currently free */
	for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
L
Li Zefan 已提交
691
		unsigned long bit = 1UL << i;
692 693 694 695 696 697 698 699 700 701 702 703 704
		struct cgroup_subsys *ss = subsys[i];
		if (!(bit & added_bits))
			continue;
		if (ss->root != &rootnode) {
			/* Subsystem isn't free */
			return -EBUSY;
		}
	}

	/* Currently we don't handle adding/removing subsystems when
	 * any child cgroups exist. This is theoretically supportable
	 * but involves complex error handling, so it's being left until
	 * later */
705
	if (!list_empty(&cgrp->children))
706 707 708 709 710 711 712 713
		return -EBUSY;

	/* Process each subsystem */
	for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
		struct cgroup_subsys *ss = subsys[i];
		unsigned long bit = 1UL << i;
		if (bit & added_bits) {
			/* We're binding this subsystem to this hierarchy */
714
			BUG_ON(cgrp->subsys[i]);
715 716
			BUG_ON(!dummytop->subsys[i]);
			BUG_ON(dummytop->subsys[i]->cgroup != dummytop);
717 718
			cgrp->subsys[i] = dummytop->subsys[i];
			cgrp->subsys[i]->cgroup = cgrp;
719 720 721
			list_add(&ss->sibling, &root->subsys_list);
			rcu_assign_pointer(ss->root, root);
			if (ss->bind)
722
				ss->bind(ss, cgrp);
723 724 725

		} else if (bit & removed_bits) {
			/* We're removing this subsystem */
726 727
			BUG_ON(cgrp->subsys[i] != dummytop->subsys[i]);
			BUG_ON(cgrp->subsys[i]->cgroup != cgrp);
728 729 730
			if (ss->bind)
				ss->bind(ss, dummytop);
			dummytop->subsys[i]->cgroup = dummytop;
731
			cgrp->subsys[i] = NULL;
732 733 734 735
			rcu_assign_pointer(subsys[i]->root, &rootnode);
			list_del(&ss->sibling);
		} else if (bit & final_bits) {
			/* Subsystem state should already exist */
736
			BUG_ON(!cgrp->subsys[i]);
737 738
		} else {
			/* Subsystem state shouldn't exist */
739
			BUG_ON(cgrp->subsys[i]);
740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757
		}
	}
	root->subsys_bits = root->actual_subsys_bits = final_bits;
	synchronize_rcu();

	return 0;
}

static int cgroup_show_options(struct seq_file *seq, struct vfsmount *vfs)
{
	struct cgroupfs_root *root = vfs->mnt_sb->s_fs_info;
	struct cgroup_subsys *ss;

	mutex_lock(&cgroup_mutex);
	for_each_subsys(root, ss)
		seq_printf(seq, ",%s", ss->name);
	if (test_bit(ROOT_NOPREFIX, &root->flags))
		seq_puts(seq, ",noprefix");
758 759
	if (strlen(root->release_agent_path))
		seq_printf(seq, ",release_agent=%s", root->release_agent_path);
760 761 762 763 764 765 766
	mutex_unlock(&cgroup_mutex);
	return 0;
}

struct cgroup_sb_opts {
	unsigned long subsys_bits;
	unsigned long flags;
767
	char *release_agent;
768 769 770 771 772 773 774 775 776 777 778
};

/* Convert a hierarchy specifier into a bitmask of subsystems and
 * flags. */
static int parse_cgroupfs_options(char *data,
				     struct cgroup_sb_opts *opts)
{
	char *token, *o = data ?: "all";

	opts->subsys_bits = 0;
	opts->flags = 0;
779
	opts->release_agent = NULL;
780 781 782 783 784

	while ((token = strsep(&o, ",")) != NULL) {
		if (!*token)
			return -EINVAL;
		if (!strcmp(token, "all")) {
785 786 787 788 789 790 791 792
			/* Add all non-disabled subsystems */
			int i;
			opts->subsys_bits = 0;
			for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
				struct cgroup_subsys *ss = subsys[i];
				if (!ss->disabled)
					opts->subsys_bits |= 1ul << i;
			}
793 794
		} else if (!strcmp(token, "noprefix")) {
			set_bit(ROOT_NOPREFIX, &opts->flags);
795 796 797 798 799 800 801 802 803
		} else if (!strncmp(token, "release_agent=", 14)) {
			/* Specifying two release agents is forbidden */
			if (opts->release_agent)
				return -EINVAL;
			opts->release_agent = kzalloc(PATH_MAX, GFP_KERNEL);
			if (!opts->release_agent)
				return -ENOMEM;
			strncpy(opts->release_agent, token + 14, PATH_MAX - 1);
			opts->release_agent[PATH_MAX - 1] = 0;
804 805 806 807 808 809
		} else {
			struct cgroup_subsys *ss;
			int i;
			for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
				ss = subsys[i];
				if (!strcmp(token, ss->name)) {
810 811
					if (!ss->disabled)
						set_bit(i, &opts->subsys_bits);
812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830
					break;
				}
			}
			if (i == CGROUP_SUBSYS_COUNT)
				return -ENOENT;
		}
	}

	/* We can't have an empty hierarchy */
	if (!opts->subsys_bits)
		return -EINVAL;

	return 0;
}

static int cgroup_remount(struct super_block *sb, int *flags, char *data)
{
	int ret = 0;
	struct cgroupfs_root *root = sb->s_fs_info;
831
	struct cgroup *cgrp = &root->top_cgroup;
832 833
	struct cgroup_sb_opts opts;

834
	mutex_lock(&cgrp->dentry->d_inode->i_mutex);
835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851
	mutex_lock(&cgroup_mutex);

	/* See what subsystems are wanted */
	ret = parse_cgroupfs_options(data, &opts);
	if (ret)
		goto out_unlock;

	/* Don't allow flags to change at remount */
	if (opts.flags != root->flags) {
		ret = -EINVAL;
		goto out_unlock;
	}

	ret = rebind_subsystems(root, opts.subsys_bits);

	/* (re)populate subsystem files */
	if (!ret)
852
		cgroup_populate_dir(cgrp);
853

854 855
	if (opts.release_agent)
		strcpy(root->release_agent_path, opts.release_agent);
856
 out_unlock:
857 858
	if (opts.release_agent)
		kfree(opts.release_agent);
859
	mutex_unlock(&cgroup_mutex);
860
	mutex_unlock(&cgrp->dentry->d_inode->i_mutex);
861 862 863 864 865 866 867 868 869 870 871 872
	return ret;
}

static struct super_operations cgroup_ops = {
	.statfs = simple_statfs,
	.drop_inode = generic_delete_inode,
	.show_options = cgroup_show_options,
	.remount_fs = cgroup_remount,
};

static void init_cgroup_root(struct cgroupfs_root *root)
{
873
	struct cgroup *cgrp = &root->top_cgroup;
874 875 876
	INIT_LIST_HEAD(&root->subsys_list);
	INIT_LIST_HEAD(&root->root_list);
	root->number_of_cgroups = 1;
877 878 879 880 881 882
	cgrp->root = root;
	cgrp->top_cgroup = cgrp;
	INIT_LIST_HEAD(&cgrp->sibling);
	INIT_LIST_HEAD(&cgrp->children);
	INIT_LIST_HEAD(&cgrp->css_sets);
	INIT_LIST_HEAD(&cgrp->release_list);
883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950
}

static int cgroup_test_super(struct super_block *sb, void *data)
{
	struct cgroupfs_root *new = data;
	struct cgroupfs_root *root = sb->s_fs_info;

	/* First check subsystems */
	if (new->subsys_bits != root->subsys_bits)
	    return 0;

	/* Next check flags */
	if (new->flags != root->flags)
		return 0;

	return 1;
}

static int cgroup_set_super(struct super_block *sb, void *data)
{
	int ret;
	struct cgroupfs_root *root = data;

	ret = set_anon_super(sb, NULL);
	if (ret)
		return ret;

	sb->s_fs_info = root;
	root->sb = sb;

	sb->s_blocksize = PAGE_CACHE_SIZE;
	sb->s_blocksize_bits = PAGE_CACHE_SHIFT;
	sb->s_magic = CGROUP_SUPER_MAGIC;
	sb->s_op = &cgroup_ops;

	return 0;
}

static int cgroup_get_rootdir(struct super_block *sb)
{
	struct inode *inode =
		cgroup_new_inode(S_IFDIR | S_IRUGO | S_IXUGO | S_IWUSR, sb);
	struct dentry *dentry;

	if (!inode)
		return -ENOMEM;

	inode->i_fop = &simple_dir_operations;
	inode->i_op = &cgroup_dir_inode_operations;
	/* directories start off with i_nlink == 2 (for "." entry) */
	inc_nlink(inode);
	dentry = d_alloc_root(inode);
	if (!dentry) {
		iput(inode);
		return -ENOMEM;
	}
	sb->s_root = dentry;
	return 0;
}

static int cgroup_get_sb(struct file_system_type *fs_type,
			 int flags, const char *unused_dev_name,
			 void *data, struct vfsmount *mnt)
{
	struct cgroup_sb_opts opts;
	int ret = 0;
	struct super_block *sb;
	struct cgroupfs_root *root;
951
	struct list_head tmp_cg_links;
952 953 954

	/* First find the desired set of subsystems */
	ret = parse_cgroupfs_options(data, &opts);
955 956 957
	if (ret) {
		if (opts.release_agent)
			kfree(opts.release_agent);
958
		return ret;
959
	}
960 961

	root = kzalloc(sizeof(*root), GFP_KERNEL);
962 963 964
	if (!root) {
		if (opts.release_agent)
			kfree(opts.release_agent);
965
		return -ENOMEM;
966
	}
967 968 969 970

	init_cgroup_root(root);
	root->subsys_bits = opts.subsys_bits;
	root->flags = opts.flags;
971 972 973 974
	if (opts.release_agent) {
		strcpy(root->release_agent_path, opts.release_agent);
		kfree(opts.release_agent);
	}
975 976 977 978 979 980 981 982 983 984 985 986 987 988 989

	sb = sget(fs_type, cgroup_test_super, cgroup_set_super, root);

	if (IS_ERR(sb)) {
		kfree(root);
		return PTR_ERR(sb);
	}

	if (sb->s_fs_info != root) {
		/* Reusing an existing superblock */
		BUG_ON(sb->s_root == NULL);
		kfree(root);
		root = NULL;
	} else {
		/* New superblock */
990
		struct cgroup *cgrp = &root->top_cgroup;
991
		struct inode *inode;
992
		int i;
993 994 995 996 997 998

		BUG_ON(sb->s_root != NULL);

		ret = cgroup_get_rootdir(sb);
		if (ret)
			goto drop_new_super;
999
		inode = sb->s_root->d_inode;
1000

1001
		mutex_lock(&inode->i_mutex);
1002 1003
		mutex_lock(&cgroup_mutex);

1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017
		/*
		 * We're accessing css_set_count without locking
		 * css_set_lock here, but that's OK - it can only be
		 * increased by someone holding cgroup_lock, and
		 * that's us. The worst that can happen is that we
		 * have some link structures left over
		 */
		ret = allocate_cg_links(css_set_count, &tmp_cg_links);
		if (ret) {
			mutex_unlock(&cgroup_mutex);
			mutex_unlock(&inode->i_mutex);
			goto drop_new_super;
		}

1018 1019 1020
		ret = rebind_subsystems(root, root->subsys_bits);
		if (ret == -EBUSY) {
			mutex_unlock(&cgroup_mutex);
1021
			mutex_unlock(&inode->i_mutex);
1022 1023 1024 1025 1026 1027 1028
			goto drop_new_super;
		}

		/* EBUSY should be the only error here */
		BUG_ON(ret);

		list_add(&root->root_list, &roots);
1029
		root_count++;
1030 1031 1032 1033

		sb->s_root->d_fsdata = &root->top_cgroup;
		root->top_cgroup.dentry = sb->s_root;

1034 1035 1036
		/* Link the top cgroup in this hierarchy into all
		 * the css_set objects */
		write_lock(&css_set_lock);
1037 1038 1039
		for (i = 0; i < CSS_SET_TABLE_SIZE; i++) {
			struct hlist_head *hhead = &css_set_table[i];
			struct hlist_node *node;
1040
			struct css_set *cg;
1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055

			hlist_for_each_entry(cg, node, hhead, hlist) {
				struct cg_cgroup_link *link;

				BUG_ON(list_empty(&tmp_cg_links));
				link = list_entry(tmp_cg_links.next,
						  struct cg_cgroup_link,
						  cgrp_link_list);
				list_del(&link->cgrp_link_list);
				link->cg = cg;
				list_add(&link->cgrp_link_list,
					 &root->top_cgroup.css_sets);
				list_add(&link->cg_link_list, &cg->cg_links);
			}
		}
1056 1057 1058 1059
		write_unlock(&css_set_lock);

		free_cg_links(&tmp_cg_links);

1060 1061
		BUG_ON(!list_empty(&cgrp->sibling));
		BUG_ON(!list_empty(&cgrp->children));
1062 1063
		BUG_ON(root->number_of_cgroups != 1);

1064
		cgroup_populate_dir(cgrp);
1065
		mutex_unlock(&inode->i_mutex);
1066 1067 1068 1069 1070 1071 1072 1073
		mutex_unlock(&cgroup_mutex);
	}

	return simple_set_mnt(mnt, sb);

 drop_new_super:
	up_write(&sb->s_umount);
	deactivate_super(sb);
1074
	free_cg_links(&tmp_cg_links);
1075 1076 1077 1078 1079
	return ret;
}

static void cgroup_kill_sb(struct super_block *sb) {
	struct cgroupfs_root *root = sb->s_fs_info;
1080
	struct cgroup *cgrp = &root->top_cgroup;
1081
	int ret;
K
KOSAKI Motohiro 已提交
1082 1083
	struct cg_cgroup_link *link;
	struct cg_cgroup_link *saved_link;
1084 1085 1086 1087

	BUG_ON(!root);

	BUG_ON(root->number_of_cgroups != 1);
1088 1089
	BUG_ON(!list_empty(&cgrp->children));
	BUG_ON(!list_empty(&cgrp->sibling));
1090 1091 1092 1093 1094 1095 1096 1097

	mutex_lock(&cgroup_mutex);

	/* Rebind all subsystems back to the default hierarchy */
	ret = rebind_subsystems(root, 0);
	/* Shouldn't be able to fail ... */
	BUG_ON(ret);

1098 1099 1100 1101 1102
	/*
	 * Release all the links from css_sets to this hierarchy's
	 * root cgroup
	 */
	write_lock(&css_set_lock);
K
KOSAKI Motohiro 已提交
1103 1104 1105

	list_for_each_entry_safe(link, saved_link, &cgrp->css_sets,
				 cgrp_link_list) {
1106
		list_del(&link->cg_link_list);
1107
		list_del(&link->cgrp_link_list);
1108 1109 1110 1111 1112
		kfree(link);
	}
	write_unlock(&css_set_lock);

	if (!list_empty(&root->root_list)) {
1113
		list_del(&root->root_list);
1114 1115
		root_count--;
	}
1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127
	mutex_unlock(&cgroup_mutex);

	kfree(root);
	kill_litter_super(sb);
}

static struct file_system_type cgroup_fs_type = {
	.name = "cgroup",
	.get_sb = cgroup_get_sb,
	.kill_sb = cgroup_kill_sb,
};

1128
static inline struct cgroup *__d_cgrp(struct dentry *dentry)
1129 1130 1131 1132 1133 1134 1135 1136 1137
{
	return dentry->d_fsdata;
}

static inline struct cftype *__d_cft(struct dentry *dentry)
{
	return dentry->d_fsdata;
}

L
Li Zefan 已提交
1138 1139 1140 1141 1142 1143 1144
/**
 * cgroup_path - generate the path of a cgroup
 * @cgrp: the cgroup in question
 * @buf: the buffer to write the path into
 * @buflen: the length of the buffer
 *
 * Called with cgroup_mutex held. Writes path of cgroup into buf.
1145 1146
 * Returns 0 on success, -errno on error.
 */
1147
int cgroup_path(const struct cgroup *cgrp, char *buf, int buflen)
1148 1149 1150
{
	char *start;

1151
	if (cgrp == dummytop) {
1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163
		/*
		 * Inactive subsystems have no dentry for their root
		 * cgroup
		 */
		strcpy(buf, "/");
		return 0;
	}

	start = buf + buflen;

	*--start = '\0';
	for (;;) {
1164
		int len = cgrp->dentry->d_name.len;
1165 1166
		if ((start -= len) < buf)
			return -ENAMETOOLONG;
1167 1168 1169
		memcpy(start, cgrp->dentry->d_name.name, len);
		cgrp = cgrp->parent;
		if (!cgrp)
1170
			break;
1171
		if (!cgrp->parent)
1172 1173 1174 1175 1176 1177 1178 1179 1180
			continue;
		if (--start < buf)
			return -ENAMETOOLONG;
		*start = '/';
	}
	memmove(buf, start, buf + buflen - start);
	return 0;
}

1181 1182 1183 1184 1185
/*
 * Return the first subsystem attached to a cgroup's hierarchy, and
 * its subsystem id.
 */

1186
static void get_first_subsys(const struct cgroup *cgrp,
1187 1188
			struct cgroup_subsys_state **css, int *subsys_id)
{
1189
	const struct cgroupfs_root *root = cgrp->root;
1190 1191 1192 1193 1194
	const struct cgroup_subsys *test_ss;
	BUG_ON(list_empty(&root->subsys_list));
	test_ss = list_entry(root->subsys_list.next,
			     struct cgroup_subsys, sibling);
	if (css) {
1195
		*css = cgrp->subsys[test_ss->subsys_id];
1196 1197 1198 1199 1200 1201
		BUG_ON(!*css);
	}
	if (subsys_id)
		*subsys_id = test_ss->subsys_id;
}

L
Li Zefan 已提交
1202 1203 1204 1205
/**
 * cgroup_attach_task - attach task 'tsk' to cgroup 'cgrp'
 * @cgrp: the cgroup the task is attaching to
 * @tsk: the task to be attached
1206
 *
L
Li Zefan 已提交
1207 1208
 * Call holding cgroup_mutex. May take task_lock of
 * the task 'tsk' during call.
1209
 */
1210
int cgroup_attach_task(struct cgroup *cgrp, struct task_struct *tsk)
1211 1212 1213
{
	int retval = 0;
	struct cgroup_subsys *ss;
1214
	struct cgroup *oldcgrp;
1215 1216
	struct css_set *cg = tsk->cgroups;
	struct css_set *newcg;
1217
	struct cgroupfs_root *root = cgrp->root;
1218 1219
	int subsys_id;

1220
	get_first_subsys(cgrp, NULL, &subsys_id);
1221 1222

	/* Nothing to do if the task is already in that cgroup */
1223 1224
	oldcgrp = task_cgroup(tsk, subsys_id);
	if (cgrp == oldcgrp)
1225 1226 1227 1228
		return 0;

	for_each_subsys(root, ss) {
		if (ss->can_attach) {
1229
			retval = ss->can_attach(ss, cgrp, tsk);
P
Paul Jackson 已提交
1230
			if (retval)
1231 1232 1233 1234
				return retval;
		}
	}

1235 1236 1237 1238
	/*
	 * Locate or allocate a new css_set for this task,
	 * based on its final set of cgroups
	 */
1239
	newcg = find_css_set(cg, cgrp);
P
Paul Jackson 已提交
1240
	if (!newcg)
1241 1242
		return -ENOMEM;

1243 1244 1245
	task_lock(tsk);
	if (tsk->flags & PF_EXITING) {
		task_unlock(tsk);
1246
		put_css_set(newcg);
1247 1248
		return -ESRCH;
	}
1249
	rcu_assign_pointer(tsk->cgroups, newcg);
1250 1251
	task_unlock(tsk);

1252 1253 1254 1255 1256 1257 1258 1259
	/* Update the css_set linked lists if we're using them */
	write_lock(&css_set_lock);
	if (!list_empty(&tsk->cg_list)) {
		list_del(&tsk->cg_list);
		list_add(&tsk->cg_list, &newcg->tasks);
	}
	write_unlock(&css_set_lock);

1260
	for_each_subsys(root, ss) {
P
Paul Jackson 已提交
1261
		if (ss->attach)
1262
			ss->attach(ss, cgrp, oldcgrp, tsk);
1263
	}
1264
	set_bit(CGRP_RELEASABLE, &oldcgrp->flags);
1265
	synchronize_rcu();
1266
	put_css_set(cg);
1267 1268 1269 1270
	return 0;
}

/*
1271 1272
 * Attach task with pid 'pid' to cgroup 'cgrp'. Call with cgroup_mutex
 * held. May take task_lock of task
1273
 */
1274
static int attach_task_by_pid(struct cgroup *cgrp, u64 pid)
1275 1276 1277 1278 1279 1280
{
	struct task_struct *tsk;
	int ret;

	if (pid) {
		rcu_read_lock();
1281
		tsk = find_task_by_vpid(pid);
1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298
		if (!tsk || tsk->flags & PF_EXITING) {
			rcu_read_unlock();
			return -ESRCH;
		}
		get_task_struct(tsk);
		rcu_read_unlock();

		if ((current->euid) && (current->euid != tsk->uid)
		    && (current->euid != tsk->suid)) {
			put_task_struct(tsk);
			return -EACCES;
		}
	} else {
		tsk = current;
		get_task_struct(tsk);
	}

1299
	ret = cgroup_attach_task(cgrp, tsk);
1300 1301 1302 1303
	put_task_struct(tsk);
	return ret;
}

1304 1305 1306 1307 1308 1309 1310 1311 1312 1313
static int cgroup_tasks_write(struct cgroup *cgrp, struct cftype *cft, u64 pid)
{
	int ret;
	if (!cgroup_lock_live_group(cgrp))
		return -ENODEV;
	ret = attach_task_by_pid(cgrp, pid);
	cgroup_unlock();
	return ret;
}

1314 1315 1316 1317 1318
/* The various types of files and directories in a cgroup file system */
enum cgroup_filetype {
	FILE_ROOT,
	FILE_DIR,
	FILE_TASKLIST,
1319 1320
	FILE_NOTIFY_ON_RELEASE,
	FILE_RELEASE_AGENT,
1321 1322
};

1323 1324 1325 1326
/**
 * cgroup_lock_live_group - take cgroup_mutex and check that cgrp is alive.
 * @cgrp: the cgroup to be checked for liveness
 *
1327 1328
 * On success, returns true; the lock should be later released with
 * cgroup_unlock(). On failure returns false with no lock held.
1329
 */
1330
bool cgroup_lock_live_group(struct cgroup *cgrp)
1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346
{
	mutex_lock(&cgroup_mutex);
	if (cgroup_is_removed(cgrp)) {
		mutex_unlock(&cgroup_mutex);
		return false;
	}
	return true;
}

static int cgroup_release_agent_write(struct cgroup *cgrp, struct cftype *cft,
				      const char *buffer)
{
	BUILD_BUG_ON(sizeof(cgrp->root->release_agent_path) < PATH_MAX);
	if (!cgroup_lock_live_group(cgrp))
		return -ENODEV;
	strcpy(cgrp->root->release_agent_path, buffer);
1347
	cgroup_unlock();
1348 1349 1350 1351 1352 1353 1354 1355 1356 1357
	return 0;
}

static int cgroup_release_agent_show(struct cgroup *cgrp, struct cftype *cft,
				     struct seq_file *seq)
{
	if (!cgroup_lock_live_group(cgrp))
		return -ENODEV;
	seq_puts(seq, cgrp->root->release_agent_path);
	seq_putc(seq, '\n');
1358
	cgroup_unlock();
1359 1360 1361
	return 0;
}

1362 1363 1364
/* A buffer size big enough for numbers or short strings */
#define CGROUP_LOCAL_BUFFER_SIZE 64

1365
static ssize_t cgroup_write_X64(struct cgroup *cgrp, struct cftype *cft,
1366 1367 1368
				struct file *file,
				const char __user *userbuf,
				size_t nbytes, loff_t *unused_ppos)
1369
{
1370
	char buffer[CGROUP_LOCAL_BUFFER_SIZE];
1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381
	int retval = 0;
	char *end;

	if (!nbytes)
		return -EINVAL;
	if (nbytes >= sizeof(buffer))
		return -E2BIG;
	if (copy_from_user(buffer, userbuf, nbytes))
		return -EFAULT;

	buffer[nbytes] = 0;     /* nul-terminate */
1382
	strstrip(buffer);
1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393
	if (cft->write_u64) {
		u64 val = simple_strtoull(buffer, &end, 0);
		if (*end)
			return -EINVAL;
		retval = cft->write_u64(cgrp, cft, val);
	} else {
		s64 val = simple_strtoll(buffer, &end, 0);
		if (*end)
			return -EINVAL;
		retval = cft->write_s64(cgrp, cft, val);
	}
1394 1395 1396 1397 1398
	if (!retval)
		retval = nbytes;
	return retval;
}

1399 1400 1401 1402 1403
static ssize_t cgroup_write_string(struct cgroup *cgrp, struct cftype *cft,
				   struct file *file,
				   const char __user *userbuf,
				   size_t nbytes, loff_t *unused_ppos)
{
1404
	char local_buffer[CGROUP_LOCAL_BUFFER_SIZE];
1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418
	int retval = 0;
	size_t max_bytes = cft->max_write_len;
	char *buffer = local_buffer;

	if (!max_bytes)
		max_bytes = sizeof(local_buffer) - 1;
	if (nbytes >= max_bytes)
		return -E2BIG;
	/* Allocate a dynamic buffer if we need one */
	if (nbytes >= sizeof(local_buffer)) {
		buffer = kmalloc(nbytes + 1, GFP_KERNEL);
		if (buffer == NULL)
			return -ENOMEM;
	}
L
Li Zefan 已提交
1419 1420 1421 1422
	if (nbytes && copy_from_user(buffer, userbuf, nbytes)) {
		retval = -EFAULT;
		goto out;
	}
1423 1424 1425 1426 1427 1428

	buffer[nbytes] = 0;     /* nul-terminate */
	strstrip(buffer);
	retval = cft->write_string(cgrp, cft, buffer);
	if (!retval)
		retval = nbytes;
L
Li Zefan 已提交
1429
out:
1430 1431 1432 1433 1434
	if (buffer != local_buffer)
		kfree(buffer);
	return retval;
}

1435 1436 1437 1438
static ssize_t cgroup_file_write(struct file *file, const char __user *buf,
						size_t nbytes, loff_t *ppos)
{
	struct cftype *cft = __d_cft(file->f_dentry);
1439
	struct cgroup *cgrp = __d_cgrp(file->f_dentry->d_parent);
1440

1441
	if (!cft || cgroup_is_removed(cgrp))
1442
		return -ENODEV;
1443
	if (cft->write)
1444
		return cft->write(cgrp, cft, file, buf, nbytes, ppos);
1445 1446
	if (cft->write_u64 || cft->write_s64)
		return cgroup_write_X64(cgrp, cft, file, buf, nbytes, ppos);
1447 1448
	if (cft->write_string)
		return cgroup_write_string(cgrp, cft, file, buf, nbytes, ppos);
1449 1450 1451 1452
	if (cft->trigger) {
		int ret = cft->trigger(cgrp, (unsigned int)cft->private);
		return ret ? ret : nbytes;
	}
1453
	return -EINVAL;
1454 1455
}

1456 1457 1458 1459
static ssize_t cgroup_read_u64(struct cgroup *cgrp, struct cftype *cft,
			       struct file *file,
			       char __user *buf, size_t nbytes,
			       loff_t *ppos)
1460
{
1461
	char tmp[CGROUP_LOCAL_BUFFER_SIZE];
1462
	u64 val = cft->read_u64(cgrp, cft);
1463 1464 1465 1466 1467
	int len = sprintf(tmp, "%llu\n", (unsigned long long) val);

	return simple_read_from_buffer(buf, nbytes, ppos, tmp, len);
}

1468 1469 1470 1471 1472
static ssize_t cgroup_read_s64(struct cgroup *cgrp, struct cftype *cft,
			       struct file *file,
			       char __user *buf, size_t nbytes,
			       loff_t *ppos)
{
1473
	char tmp[CGROUP_LOCAL_BUFFER_SIZE];
1474 1475 1476 1477 1478 1479
	s64 val = cft->read_s64(cgrp, cft);
	int len = sprintf(tmp, "%lld\n", (long long) val);

	return simple_read_from_buffer(buf, nbytes, ppos, tmp, len);
}

1480 1481 1482 1483
static ssize_t cgroup_file_read(struct file *file, char __user *buf,
				   size_t nbytes, loff_t *ppos)
{
	struct cftype *cft = __d_cft(file->f_dentry);
1484
	struct cgroup *cgrp = __d_cgrp(file->f_dentry->d_parent);
1485

1486
	if (!cft || cgroup_is_removed(cgrp))
1487 1488 1489
		return -ENODEV;

	if (cft->read)
1490
		return cft->read(cgrp, cft, file, buf, nbytes, ppos);
1491 1492
	if (cft->read_u64)
		return cgroup_read_u64(cgrp, cft, file, buf, nbytes, ppos);
1493 1494
	if (cft->read_s64)
		return cgroup_read_s64(cgrp, cft, file, buf, nbytes, ppos);
1495 1496 1497
	return -EINVAL;
}

1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517
/*
 * seqfile ops/methods for returning structured data. Currently just
 * supports string->u64 maps, but can be extended in future.
 */

struct cgroup_seqfile_state {
	struct cftype *cft;
	struct cgroup *cgroup;
};

static int cgroup_map_add(struct cgroup_map_cb *cb, const char *key, u64 value)
{
	struct seq_file *sf = cb->state;
	return seq_printf(sf, "%s %llu\n", key, (unsigned long long)value);
}

static int cgroup_seqfile_show(struct seq_file *m, void *arg)
{
	struct cgroup_seqfile_state *state = m->private;
	struct cftype *cft = state->cft;
1518 1519 1520 1521 1522 1523 1524 1525
	if (cft->read_map) {
		struct cgroup_map_cb cb = {
			.fill = cgroup_map_add,
			.state = m,
		};
		return cft->read_map(state->cgroup, cft, &cb);
	}
	return cft->read_seq_string(state->cgroup, cft, m);
1526 1527
}

1528
static int cgroup_seqfile_release(struct inode *inode, struct file *file)
1529 1530 1531 1532 1533 1534 1535 1536
{
	struct seq_file *seq = file->private_data;
	kfree(seq->private);
	return single_release(inode, file);
}

static struct file_operations cgroup_seqfile_operations = {
	.read = seq_read,
1537
	.write = cgroup_file_write,
1538 1539 1540 1541
	.llseek = seq_lseek,
	.release = cgroup_seqfile_release,
};

1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553
static int cgroup_file_open(struct inode *inode, struct file *file)
{
	int err;
	struct cftype *cft;

	err = generic_file_open(inode, file);
	if (err)
		return err;

	cft = __d_cft(file->f_dentry);
	if (!cft)
		return -ENODEV;
1554
	if (cft->read_map || cft->read_seq_string) {
1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565
		struct cgroup_seqfile_state *state =
			kzalloc(sizeof(*state), GFP_USER);
		if (!state)
			return -ENOMEM;
		state->cft = cft;
		state->cgroup = __d_cgrp(file->f_dentry->d_parent);
		file->f_op = &cgroup_seqfile_operations;
		err = single_open(file, cgroup_seqfile_show, state);
		if (err < 0)
			kfree(state);
	} else if (cft->open)
1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637
		err = cft->open(inode, file);
	else
		err = 0;

	return err;
}

static int cgroup_file_release(struct inode *inode, struct file *file)
{
	struct cftype *cft = __d_cft(file->f_dentry);
	if (cft->release)
		return cft->release(inode, file);
	return 0;
}

/*
 * cgroup_rename - Only allow simple rename of directories in place.
 */
static int cgroup_rename(struct inode *old_dir, struct dentry *old_dentry,
			    struct inode *new_dir, struct dentry *new_dentry)
{
	if (!S_ISDIR(old_dentry->d_inode->i_mode))
		return -ENOTDIR;
	if (new_dentry->d_inode)
		return -EEXIST;
	if (old_dir != new_dir)
		return -EIO;
	return simple_rename(old_dir, old_dentry, new_dir, new_dentry);
}

static struct file_operations cgroup_file_operations = {
	.read = cgroup_file_read,
	.write = cgroup_file_write,
	.llseek = generic_file_llseek,
	.open = cgroup_file_open,
	.release = cgroup_file_release,
};

static struct inode_operations cgroup_dir_inode_operations = {
	.lookup = simple_lookup,
	.mkdir = cgroup_mkdir,
	.rmdir = cgroup_rmdir,
	.rename = cgroup_rename,
};

static int cgroup_create_file(struct dentry *dentry, int mode,
				struct super_block *sb)
{
	static struct dentry_operations cgroup_dops = {
		.d_iput = cgroup_diput,
	};

	struct inode *inode;

	if (!dentry)
		return -ENOENT;
	if (dentry->d_inode)
		return -EEXIST;

	inode = cgroup_new_inode(mode, sb);
	if (!inode)
		return -ENOMEM;

	if (S_ISDIR(mode)) {
		inode->i_op = &cgroup_dir_inode_operations;
		inode->i_fop = &simple_dir_operations;

		/* start off with i_nlink == 2 (for "." entry) */
		inc_nlink(inode);

		/* start with the directory inode held, so that we can
		 * populate it without racing with another mkdir */
1638
		mutex_lock_nested(&inode->i_mutex, I_MUTEX_CHILD);
1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649
	} else if (S_ISREG(mode)) {
		inode->i_size = 0;
		inode->i_fop = &cgroup_file_operations;
	}
	dentry->d_op = &cgroup_dops;
	d_instantiate(dentry, inode);
	dget(dentry);	/* Extra count - pin the dentry in core */
	return 0;
}

/*
L
Li Zefan 已提交
1650 1651 1652 1653 1654
 * cgroup_create_dir - create a directory for an object.
 * @cgrp: the cgroup we create the directory for. It must have a valid
 *        ->parent field. And we are going to fill its ->dentry field.
 * @dentry: dentry of the new cgroup
 * @mode: mode to set on new directory.
1655
 */
1656
static int cgroup_create_dir(struct cgroup *cgrp, struct dentry *dentry,
1657 1658 1659 1660 1661
				int mode)
{
	struct dentry *parent;
	int error = 0;

1662 1663
	parent = cgrp->parent->dentry;
	error = cgroup_create_file(dentry, S_IFDIR | mode, cgrp->root->sb);
1664
	if (!error) {
1665
		dentry->d_fsdata = cgrp;
1666
		inc_nlink(parent->d_inode);
1667
		cgrp->dentry = dentry;
1668 1669 1670 1671 1672 1673 1674
		dget(dentry);
	}
	dput(dentry);

	return error;
}

1675
int cgroup_add_file(struct cgroup *cgrp,
1676 1677 1678
		       struct cgroup_subsys *subsys,
		       const struct cftype *cft)
{
1679
	struct dentry *dir = cgrp->dentry;
1680 1681 1682 1683
	struct dentry *dentry;
	int error;

	char name[MAX_CGROUP_TYPE_NAMELEN + MAX_CFTYPE_NAME + 2] = { 0 };
1684
	if (subsys && !test_bit(ROOT_NOPREFIX, &cgrp->root->flags)) {
1685 1686 1687 1688 1689 1690 1691 1692
		strcpy(name, subsys->name);
		strcat(name, ".");
	}
	strcat(name, cft->name);
	BUG_ON(!mutex_is_locked(&dir->d_inode->i_mutex));
	dentry = lookup_one_len(name, dir, strlen(name));
	if (!IS_ERR(dentry)) {
		error = cgroup_create_file(dentry, 0644 | S_IFREG,
1693
						cgrp->root->sb);
1694 1695 1696 1697 1698 1699 1700 1701
		if (!error)
			dentry->d_fsdata = (void *)cft;
		dput(dentry);
	} else
		error = PTR_ERR(dentry);
	return error;
}

1702
int cgroup_add_files(struct cgroup *cgrp,
1703 1704 1705 1706 1707 1708
			struct cgroup_subsys *subsys,
			const struct cftype cft[],
			int count)
{
	int i, err;
	for (i = 0; i < count; i++) {
1709
		err = cgroup_add_file(cgrp, subsys, &cft[i]);
1710 1711 1712 1713 1714 1715
		if (err)
			return err;
	}
	return 0;
}

L
Li Zefan 已提交
1716 1717 1718 1719 1720 1721
/**
 * cgroup_task_count - count the number of tasks in a cgroup.
 * @cgrp: the cgroup in question
 *
 * Return the number of tasks in the cgroup.
 */
1722
int cgroup_task_count(const struct cgroup *cgrp)
1723 1724
{
	int count = 0;
K
KOSAKI Motohiro 已提交
1725
	struct cg_cgroup_link *link;
1726 1727

	read_lock(&css_set_lock);
K
KOSAKI Motohiro 已提交
1728
	list_for_each_entry(link, &cgrp->css_sets, cgrp_link_list) {
1729
		count += atomic_read(&link->cg->refcount);
1730 1731
	}
	read_unlock(&css_set_lock);
1732 1733 1734
	return count;
}

1735 1736 1737 1738
/*
 * Advance a list_head iterator.  The iterator should be positioned at
 * the start of a css_set
 */
1739
static void cgroup_advance_iter(struct cgroup *cgrp,
1740 1741 1742 1743 1744 1745 1746 1747 1748
					  struct cgroup_iter *it)
{
	struct list_head *l = it->cg_link;
	struct cg_cgroup_link *link;
	struct css_set *cg;

	/* Advance to the next non-empty css_set */
	do {
		l = l->next;
1749
		if (l == &cgrp->css_sets) {
1750 1751 1752
			it->cg_link = NULL;
			return;
		}
1753
		link = list_entry(l, struct cg_cgroup_link, cgrp_link_list);
1754 1755 1756 1757 1758 1759
		cg = link->cg;
	} while (list_empty(&cg->tasks));
	it->cg_link = l;
	it->task = cg->tasks.next;
}

1760 1761 1762 1763 1764 1765 1766 1767 1768
/*
 * To reduce the fork() overhead for systems that are not actually
 * using their cgroups capability, we don't maintain the lists running
 * through each css_set to its tasks until we see the list actually
 * used - in other words after the first call to cgroup_iter_start().
 *
 * The tasklist_lock is not held here, as do_each_thread() and
 * while_each_thread() are protected by RCU.
 */
1769
static void cgroup_enable_task_cg_lists(void)
1770 1771 1772 1773 1774 1775
{
	struct task_struct *p, *g;
	write_lock(&css_set_lock);
	use_task_css_set_links = 1;
	do_each_thread(g, p) {
		task_lock(p);
1776 1777 1778 1779 1780 1781
		/*
		 * We should check if the process is exiting, otherwise
		 * it will race with cgroup_exit() in that the list
		 * entry won't be deleted though the process has exited.
		 */
		if (!(p->flags & PF_EXITING) && list_empty(&p->cg_list))
1782 1783 1784 1785 1786 1787
			list_add(&p->cg_list, &p->cgroups->tasks);
		task_unlock(p);
	} while_each_thread(g, p);
	write_unlock(&css_set_lock);
}

1788
void cgroup_iter_start(struct cgroup *cgrp, struct cgroup_iter *it)
1789 1790 1791 1792 1793 1794
{
	/*
	 * The first time anyone tries to iterate across a cgroup,
	 * we need to enable the list linking each css_set to its
	 * tasks, and fix up all existing tasks.
	 */
1795 1796 1797
	if (!use_task_css_set_links)
		cgroup_enable_task_cg_lists();

1798
	read_lock(&css_set_lock);
1799 1800
	it->cg_link = &cgrp->css_sets;
	cgroup_advance_iter(cgrp, it);
1801 1802
}

1803
struct task_struct *cgroup_iter_next(struct cgroup *cgrp,
1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817
					struct cgroup_iter *it)
{
	struct task_struct *res;
	struct list_head *l = it->task;

	/* If the iterator cg is NULL, we have no tasks */
	if (!it->cg_link)
		return NULL;
	res = list_entry(l, struct task_struct, cg_list);
	/* Advance iterator to find next entry */
	l = l->next;
	if (l == &res->cgroups->tasks) {
		/* We reached the end of this task list - move on to
		 * the next cg_cgroup_link */
1818
		cgroup_advance_iter(cgrp, it);
1819 1820 1821 1822 1823 1824
	} else {
		it->task = l;
	}
	return res;
}

1825
void cgroup_iter_end(struct cgroup *cgrp, struct cgroup_iter *it)
1826 1827 1828 1829
{
	read_unlock(&css_set_lock);
}

1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966
static inline int started_after_time(struct task_struct *t1,
				     struct timespec *time,
				     struct task_struct *t2)
{
	int start_diff = timespec_compare(&t1->start_time, time);
	if (start_diff > 0) {
		return 1;
	} else if (start_diff < 0) {
		return 0;
	} else {
		/*
		 * Arbitrarily, if two processes started at the same
		 * time, we'll say that the lower pointer value
		 * started first. Note that t2 may have exited by now
		 * so this may not be a valid pointer any longer, but
		 * that's fine - it still serves to distinguish
		 * between two tasks started (effectively) simultaneously.
		 */
		return t1 > t2;
	}
}

/*
 * This function is a callback from heap_insert() and is used to order
 * the heap.
 * In this case we order the heap in descending task start time.
 */
static inline int started_after(void *p1, void *p2)
{
	struct task_struct *t1 = p1;
	struct task_struct *t2 = p2;
	return started_after_time(t1, &t2->start_time, t2);
}

/**
 * cgroup_scan_tasks - iterate though all the tasks in a cgroup
 * @scan: struct cgroup_scanner containing arguments for the scan
 *
 * Arguments include pointers to callback functions test_task() and
 * process_task().
 * Iterate through all the tasks in a cgroup, calling test_task() for each,
 * and if it returns true, call process_task() for it also.
 * The test_task pointer may be NULL, meaning always true (select all tasks).
 * Effectively duplicates cgroup_iter_{start,next,end}()
 * but does not lock css_set_lock for the call to process_task().
 * The struct cgroup_scanner may be embedded in any structure of the caller's
 * creation.
 * It is guaranteed that process_task() will act on every task that
 * is a member of the cgroup for the duration of this call. This
 * function may or may not call process_task() for tasks that exit
 * or move to a different cgroup during the call, or are forked or
 * move into the cgroup during the call.
 *
 * Note that test_task() may be called with locks held, and may in some
 * situations be called multiple times for the same task, so it should
 * be cheap.
 * If the heap pointer in the struct cgroup_scanner is non-NULL, a heap has been
 * pre-allocated and will be used for heap operations (and its "gt" member will
 * be overwritten), else a temporary heap will be used (allocation of which
 * may cause this function to fail).
 */
int cgroup_scan_tasks(struct cgroup_scanner *scan)
{
	int retval, i;
	struct cgroup_iter it;
	struct task_struct *p, *dropped;
	/* Never dereference latest_task, since it's not refcounted */
	struct task_struct *latest_task = NULL;
	struct ptr_heap tmp_heap;
	struct ptr_heap *heap;
	struct timespec latest_time = { 0, 0 };

	if (scan->heap) {
		/* The caller supplied our heap and pre-allocated its memory */
		heap = scan->heap;
		heap->gt = &started_after;
	} else {
		/* We need to allocate our own heap memory */
		heap = &tmp_heap;
		retval = heap_init(heap, PAGE_SIZE, GFP_KERNEL, &started_after);
		if (retval)
			/* cannot allocate the heap */
			return retval;
	}

 again:
	/*
	 * Scan tasks in the cgroup, using the scanner's "test_task" callback
	 * to determine which are of interest, and using the scanner's
	 * "process_task" callback to process any of them that need an update.
	 * Since we don't want to hold any locks during the task updates,
	 * gather tasks to be processed in a heap structure.
	 * The heap is sorted by descending task start time.
	 * If the statically-sized heap fills up, we overflow tasks that
	 * started later, and in future iterations only consider tasks that
	 * started after the latest task in the previous pass. This
	 * guarantees forward progress and that we don't miss any tasks.
	 */
	heap->size = 0;
	cgroup_iter_start(scan->cg, &it);
	while ((p = cgroup_iter_next(scan->cg, &it))) {
		/*
		 * Only affect tasks that qualify per the caller's callback,
		 * if he provided one
		 */
		if (scan->test_task && !scan->test_task(p, scan))
			continue;
		/*
		 * Only process tasks that started after the last task
		 * we processed
		 */
		if (!started_after_time(p, &latest_time, latest_task))
			continue;
		dropped = heap_insert(heap, p);
		if (dropped == NULL) {
			/*
			 * The new task was inserted; the heap wasn't
			 * previously full
			 */
			get_task_struct(p);
		} else if (dropped != p) {
			/*
			 * The new task was inserted, and pushed out a
			 * different task
			 */
			get_task_struct(p);
			put_task_struct(dropped);
		}
		/*
		 * Else the new task was newer than anything already in
		 * the heap and wasn't inserted
		 */
	}
	cgroup_iter_end(scan->cg, &it);

	if (heap->size) {
		for (i = 0; i < heap->size; i++) {
1967
			struct task_struct *q = heap->ptrs[i];
1968
			if (i == 0) {
1969 1970
				latest_time = q->start_time;
				latest_task = q;
1971 1972
			}
			/* Process the task per the caller's callback */
1973 1974
			scan->process_task(q, scan);
			put_task_struct(q);
1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989
		}
		/*
		 * If we had to process any tasks at all, scan again
		 * in case some of them were in the middle of forking
		 * children that didn't get processed.
		 * Not the most efficient way to do it, but it avoids
		 * having to take callback_mutex in the fork path
		 */
		goto again;
	}
	if (heap == &tmp_heap)
		heap_free(&tmp_heap);
	return 0;
}

1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010
/*
 * Stuff for reading the 'tasks' file.
 *
 * Reading this file can return large amounts of data if a cgroup has
 * *lots* of attached tasks. So it may need several calls to read(),
 * but we cannot guarantee that the information we produce is correct
 * unless we produce it entirely atomically.
 *
 * Upon tasks file open(), a struct ctr_struct is allocated, that
 * will have a pointer to an array (also allocated here).  The struct
 * ctr_struct * is stored in file->private_data.  Its resources will
 * be freed by release() when the file is closed.  The array is used
 * to sprintf the PIDs and then used by read().
 */
struct ctr_struct {
	char *buf;
	int bufsz;
};

/*
 * Load into 'pidarray' up to 'npids' of the tasks using cgroup
2011
 * 'cgrp'.  Return actual number of pids loaded.  No need to
2012 2013 2014 2015
 * task_lock(p) when reading out p->cgroup, since we're in an RCU
 * read section, so the css_set can't go away, and is
 * immutable after creation.
 */
2016
static int pid_array_load(pid_t *pidarray, int npids, struct cgroup *cgrp)
2017 2018
{
	int n = 0;
2019 2020
	struct cgroup_iter it;
	struct task_struct *tsk;
2021 2022
	cgroup_iter_start(cgrp, &it);
	while ((tsk = cgroup_iter_next(cgrp, &it))) {
2023 2024
		if (unlikely(n == npids))
			break;
2025
		pidarray[n++] = task_pid_vnr(tsk);
2026
	}
2027
	cgroup_iter_end(cgrp, &it);
2028 2029 2030
	return n;
}

B
Balbir Singh 已提交
2031
/**
L
Li Zefan 已提交
2032
 * cgroupstats_build - build and fill cgroupstats
B
Balbir Singh 已提交
2033 2034 2035
 * @stats: cgroupstats to fill information into
 * @dentry: A dentry entry belonging to the cgroup for which stats have
 * been requested.
L
Li Zefan 已提交
2036 2037 2038
 *
 * Build and fill cgroupstats so that taskstats can export it to user
 * space.
B
Balbir Singh 已提交
2039 2040 2041 2042
 */
int cgroupstats_build(struct cgroupstats *stats, struct dentry *dentry)
{
	int ret = -EINVAL;
2043
	struct cgroup *cgrp;
B
Balbir Singh 已提交
2044 2045 2046 2047 2048 2049 2050 2051 2052
	struct cgroup_iter it;
	struct task_struct *tsk;
	/*
	 * Validate dentry by checking the superblock operations
	 */
	if (dentry->d_sb->s_op != &cgroup_ops)
		 goto err;

	ret = 0;
2053
	cgrp = dentry->d_fsdata;
B
Balbir Singh 已提交
2054 2055
	rcu_read_lock();

2056 2057
	cgroup_iter_start(cgrp, &it);
	while ((tsk = cgroup_iter_next(cgrp, &it))) {
B
Balbir Singh 已提交
2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076
		switch (tsk->state) {
		case TASK_RUNNING:
			stats->nr_running++;
			break;
		case TASK_INTERRUPTIBLE:
			stats->nr_sleeping++;
			break;
		case TASK_UNINTERRUPTIBLE:
			stats->nr_uninterruptible++;
			break;
		case TASK_STOPPED:
			stats->nr_stopped++;
			break;
		default:
			if (delayacct_is_task_waiting_on_io(tsk))
				stats->nr_io_wait++;
			break;
		}
	}
2077
	cgroup_iter_end(cgrp, &it);
B
Balbir Singh 已提交
2078 2079 2080 2081 2082 2083

	rcu_read_unlock();
err:
	return ret;
}

2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111
static int cmppid(const void *a, const void *b)
{
	return *(pid_t *)a - *(pid_t *)b;
}

/*
 * Convert array 'a' of 'npids' pid_t's to a string of newline separated
 * decimal pids in 'buf'.  Don't write more than 'sz' chars, but return
 * count 'cnt' of how many chars would be written if buf were large enough.
 */
static int pid_array_to_buf(char *buf, int sz, pid_t *a, int npids)
{
	int cnt = 0;
	int i;

	for (i = 0; i < npids; i++)
		cnt += snprintf(buf + cnt, max(sz - cnt, 0), "%d\n", a[i]);
	return cnt;
}

/*
 * Handle an open on 'tasks' file.  Prepare a buffer listing the
 * process id's of tasks currently attached to the cgroup being opened.
 *
 * Does not require any specific cgroup mutexes, and does not take any.
 */
static int cgroup_tasks_open(struct inode *unused, struct file *file)
{
2112
	struct cgroup *cgrp = __d_cgrp(file->f_dentry->d_parent);
2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130
	struct ctr_struct *ctr;
	pid_t *pidarray;
	int npids;
	char c;

	if (!(file->f_mode & FMODE_READ))
		return 0;

	ctr = kmalloc(sizeof(*ctr), GFP_KERNEL);
	if (!ctr)
		goto err0;

	/*
	 * If cgroup gets more users after we read count, we won't have
	 * enough space - tough.  This race is indistinguishable to the
	 * caller from the case that the additional cgroup users didn't
	 * show up until sometime later on.
	 */
2131
	npids = cgroup_task_count(cgrp);
2132 2133 2134 2135 2136
	if (npids) {
		pidarray = kmalloc(npids * sizeof(pid_t), GFP_KERNEL);
		if (!pidarray)
			goto err1;

2137
		npids = pid_array_load(pidarray, npids, cgrp);
2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148
		sort(pidarray, npids, sizeof(pid_t), cmppid, NULL);

		/* Call pid_array_to_buf() twice, first just to get bufsz */
		ctr->bufsz = pid_array_to_buf(&c, sizeof(c), pidarray, npids) + 1;
		ctr->buf = kmalloc(ctr->bufsz, GFP_KERNEL);
		if (!ctr->buf)
			goto err2;
		ctr->bufsz = pid_array_to_buf(ctr->buf, ctr->bufsz, pidarray, npids);

		kfree(pidarray);
	} else {
A
Al Viro 已提交
2149
		ctr->buf = NULL;
2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162
		ctr->bufsz = 0;
	}
	file->private_data = ctr;
	return 0;

err2:
	kfree(pidarray);
err1:
	kfree(ctr);
err0:
	return -ENOMEM;
}

2163
static ssize_t cgroup_tasks_read(struct cgroup *cgrp,
2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185
				    struct cftype *cft,
				    struct file *file, char __user *buf,
				    size_t nbytes, loff_t *ppos)
{
	struct ctr_struct *ctr = file->private_data;

	return simple_read_from_buffer(buf, nbytes, ppos, ctr->buf, ctr->bufsz);
}

static int cgroup_tasks_release(struct inode *unused_inode,
					struct file *file)
{
	struct ctr_struct *ctr;

	if (file->f_mode & FMODE_READ) {
		ctr = file->private_data;
		kfree(ctr->buf);
		kfree(ctr);
	}
	return 0;
}

2186
static u64 cgroup_read_notify_on_release(struct cgroup *cgrp,
2187 2188
					    struct cftype *cft)
{
2189
	return notify_on_release(cgrp);
2190 2191
}

2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203
static int cgroup_write_notify_on_release(struct cgroup *cgrp,
					  struct cftype *cft,
					  u64 val)
{
	clear_bit(CGRP_RELEASABLE, &cgrp->flags);
	if (val)
		set_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
	else
		clear_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
	return 0;
}

2204 2205 2206
/*
 * for the common functions, 'private' gives the type of file
 */
2207 2208 2209 2210 2211
static struct cftype files[] = {
	{
		.name = "tasks",
		.open = cgroup_tasks_open,
		.read = cgroup_tasks_read,
2212
		.write_u64 = cgroup_tasks_write,
2213 2214 2215 2216 2217 2218
		.release = cgroup_tasks_release,
		.private = FILE_TASKLIST,
	},

	{
		.name = "notify_on_release",
2219
		.read_u64 = cgroup_read_notify_on_release,
2220
		.write_u64 = cgroup_write_notify_on_release,
2221 2222 2223 2224 2225 2226
		.private = FILE_NOTIFY_ON_RELEASE,
	},
};

static struct cftype cft_release_agent = {
	.name = "release_agent",
2227 2228 2229
	.read_seq_string = cgroup_release_agent_show,
	.write_string = cgroup_release_agent_write,
	.max_write_len = PATH_MAX,
2230
	.private = FILE_RELEASE_AGENT,
2231 2232
};

2233
static int cgroup_populate_dir(struct cgroup *cgrp)
2234 2235 2236 2237 2238
{
	int err;
	struct cgroup_subsys *ss;

	/* First clear out any existing files */
2239
	cgroup_clear_directory(cgrp->dentry);
2240

2241
	err = cgroup_add_files(cgrp, NULL, files, ARRAY_SIZE(files));
2242 2243 2244
	if (err < 0)
		return err;

2245 2246
	if (cgrp == cgrp->top_cgroup) {
		if ((err = cgroup_add_file(cgrp, NULL, &cft_release_agent)) < 0)
2247 2248 2249
			return err;
	}

2250 2251
	for_each_subsys(cgrp->root, ss) {
		if (ss->populate && (err = ss->populate(ss, cgrp)) < 0)
2252 2253 2254 2255 2256 2257 2258 2259
			return err;
	}

	return 0;
}

static void init_cgroup_css(struct cgroup_subsys_state *css,
			       struct cgroup_subsys *ss,
2260
			       struct cgroup *cgrp)
2261
{
2262
	css->cgroup = cgrp;
2263 2264
	atomic_set(&css->refcnt, 0);
	css->flags = 0;
2265
	if (cgrp == dummytop)
2266
		set_bit(CSS_ROOT, &css->flags);
2267 2268
	BUG_ON(cgrp->subsys[ss->subsys_id]);
	cgrp->subsys[ss->subsys_id] = css;
2269 2270 2271
}

/*
L
Li Zefan 已提交
2272 2273 2274 2275
 * cgroup_create - create a cgroup
 * @parent: cgroup that will be parent of the new cgroup
 * @dentry: dentry of the new cgroup
 * @mode: mode to set on new inode
2276
 *
L
Li Zefan 已提交
2277
 * Must be called with the mutex on the parent inode held
2278 2279 2280 2281
 */
static long cgroup_create(struct cgroup *parent, struct dentry *dentry,
			     int mode)
{
2282
	struct cgroup *cgrp;
2283 2284 2285 2286 2287
	struct cgroupfs_root *root = parent->root;
	int err = 0;
	struct cgroup_subsys *ss;
	struct super_block *sb = root->sb;

2288 2289
	cgrp = kzalloc(sizeof(*cgrp), GFP_KERNEL);
	if (!cgrp)
2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300
		return -ENOMEM;

	/* Grab a reference on the superblock so the hierarchy doesn't
	 * get deleted on unmount if there are child cgroups.  This
	 * can be done outside cgroup_mutex, since the sb can't
	 * disappear while someone has an open control file on the
	 * fs */
	atomic_inc(&sb->s_active);

	mutex_lock(&cgroup_mutex);

2301 2302 2303 2304
	INIT_LIST_HEAD(&cgrp->sibling);
	INIT_LIST_HEAD(&cgrp->children);
	INIT_LIST_HEAD(&cgrp->css_sets);
	INIT_LIST_HEAD(&cgrp->release_list);
2305

2306 2307 2308
	cgrp->parent = parent;
	cgrp->root = parent->root;
	cgrp->top_cgroup = parent->top_cgroup;
2309

2310 2311 2312
	if (notify_on_release(parent))
		set_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);

2313
	for_each_subsys(root, ss) {
2314
		struct cgroup_subsys_state *css = ss->create(ss, cgrp);
2315 2316 2317 2318
		if (IS_ERR(css)) {
			err = PTR_ERR(css);
			goto err_destroy;
		}
2319
		init_cgroup_css(css, ss, cgrp);
2320 2321
	}

2322
	list_add(&cgrp->sibling, &cgrp->parent->children);
2323 2324
	root->number_of_cgroups++;

2325
	err = cgroup_create_dir(cgrp, dentry, mode);
2326 2327 2328 2329
	if (err < 0)
		goto err_remove;

	/* The cgroup directory was pre-locked for us */
2330
	BUG_ON(!mutex_is_locked(&cgrp->dentry->d_inode->i_mutex));
2331

2332
	err = cgroup_populate_dir(cgrp);
2333 2334 2335
	/* If err < 0, we have a half-filled directory - oh well ;) */

	mutex_unlock(&cgroup_mutex);
2336
	mutex_unlock(&cgrp->dentry->d_inode->i_mutex);
2337 2338 2339 2340 2341

	return 0;

 err_remove:

2342
	list_del(&cgrp->sibling);
2343 2344 2345 2346 2347
	root->number_of_cgroups--;

 err_destroy:

	for_each_subsys(root, ss) {
2348 2349
		if (cgrp->subsys[ss->subsys_id])
			ss->destroy(ss, cgrp);
2350 2351 2352 2353 2354 2355 2356
	}

	mutex_unlock(&cgroup_mutex);

	/* Release the reference count that we took on the superblock */
	deactivate_super(sb);

2357
	kfree(cgrp);
2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368
	return err;
}

static int cgroup_mkdir(struct inode *dir, struct dentry *dentry, int mode)
{
	struct cgroup *c_parent = dentry->d_parent->d_fsdata;

	/* the vfs holds inode->i_mutex already */
	return cgroup_create(c_parent, dentry, mode | S_IFDIR);
}

2369
static int cgroup_has_css_refs(struct cgroup *cgrp)
2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384
{
	/* Check the reference count on each subsystem. Since we
	 * already established that there are no tasks in the
	 * cgroup, if the css refcount is also 0, then there should
	 * be no outstanding references, so the subsystem is safe to
	 * destroy. We scan across all subsystems rather than using
	 * the per-hierarchy linked list of mounted subsystems since
	 * we can be called via check_for_release() with no
	 * synchronization other than RCU, and the subsystem linked
	 * list isn't RCU-safe */
	int i;
	for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
		struct cgroup_subsys *ss = subsys[i];
		struct cgroup_subsys_state *css;
		/* Skip subsystems not in this hierarchy */
2385
		if (ss->root != cgrp->root)
2386
			continue;
2387
		css = cgrp->subsys[ss->subsys_id];
2388 2389 2390 2391 2392 2393
		/* When called from check_for_release() it's possible
		 * that by this point the cgroup has been removed
		 * and the css deleted. But a false-positive doesn't
		 * matter, since it can only happen if the cgroup
		 * has been deleted and hence no longer needs the
		 * release agent to be called anyway. */
P
Paul Jackson 已提交
2394
		if (css && atomic_read(&css->refcnt))
2395 2396 2397 2398 2399
			return 1;
	}
	return 0;
}

2400 2401
static int cgroup_rmdir(struct inode *unused_dir, struct dentry *dentry)
{
2402
	struct cgroup *cgrp = dentry->d_fsdata;
2403 2404 2405 2406 2407 2408 2409 2410
	struct dentry *d;
	struct cgroup *parent;
	struct super_block *sb;
	struct cgroupfs_root *root;

	/* the vfs holds both inode->i_mutex already */

	mutex_lock(&cgroup_mutex);
2411
	if (atomic_read(&cgrp->count) != 0) {
2412 2413 2414
		mutex_unlock(&cgroup_mutex);
		return -EBUSY;
	}
2415
	if (!list_empty(&cgrp->children)) {
2416 2417 2418 2419
		mutex_unlock(&cgroup_mutex);
		return -EBUSY;
	}

2420 2421
	parent = cgrp->parent;
	root = cgrp->root;
2422
	sb = root->sb;
L
Li Zefan 已提交
2423

2424
	/*
L
Li Zefan 已提交
2425 2426
	 * Call pre_destroy handlers of subsys. Notify subsystems
	 * that rmdir() request comes.
2427 2428
	 */
	cgroup_call_pre_destroy(cgrp);
2429

2430
	if (cgroup_has_css_refs(cgrp)) {
2431 2432 2433 2434
		mutex_unlock(&cgroup_mutex);
		return -EBUSY;
	}

2435
	spin_lock(&release_list_lock);
2436 2437 2438
	set_bit(CGRP_REMOVED, &cgrp->flags);
	if (!list_empty(&cgrp->release_list))
		list_del(&cgrp->release_list);
2439
	spin_unlock(&release_list_lock);
2440
	/* delete my sibling from parent->children */
2441 2442 2443 2444
	list_del(&cgrp->sibling);
	spin_lock(&cgrp->dentry->d_lock);
	d = dget(cgrp->dentry);
	cgrp->dentry = NULL;
2445 2446 2447 2448 2449
	spin_unlock(&d->d_lock);

	cgroup_d_remove_dir(d);
	dput(d);

2450
	set_bit(CGRP_RELEASABLE, &parent->flags);
2451 2452
	check_for_release(parent);

2453 2454 2455 2456
	mutex_unlock(&cgroup_mutex);
	return 0;
}

2457
static void __init cgroup_init_subsys(struct cgroup_subsys *ss)
2458 2459
{
	struct cgroup_subsys_state *css;
D
Diego Calleja 已提交
2460 2461

	printk(KERN_INFO "Initializing cgroup subsys %s\n", ss->name);
2462 2463 2464 2465 2466 2467 2468 2469

	/* Create the top cgroup state for this subsystem */
	ss->root = &rootnode;
	css = ss->create(ss, dummytop);
	/* We don't handle early failures gracefully */
	BUG_ON(IS_ERR(css));
	init_cgroup_css(css, ss, dummytop);

L
Li Zefan 已提交
2470
	/* Update the init_css_set to contain a subsys
2471
	 * pointer to this state - since the subsystem is
L
Li Zefan 已提交
2472 2473 2474
	 * newly registered, all tasks and hence the
	 * init_css_set is in the subsystem's top cgroup. */
	init_css_set.subsys[ss->subsys_id] = dummytop->subsys[ss->subsys_id];
2475 2476

	need_forkexit_callback |= ss->fork || ss->exit;
2477
	need_mm_owner_callback |= !!ss->mm_owner_changed;
2478

L
Li Zefan 已提交
2479 2480 2481 2482 2483
	/* At system boot, before all subsystems have been
	 * registered, no tasks have been forked, so we don't
	 * need to invoke fork callbacks here. */
	BUG_ON(!list_empty(&init_task.tasks));

2484 2485 2486 2487
	ss->active = 1;
}

/**
L
Li Zefan 已提交
2488 2489 2490 2491
 * cgroup_init_early - cgroup initialization at system boot
 *
 * Initialize cgroups at system boot, and initialize any
 * subsystems that request early init.
2492 2493 2494 2495
 */
int __init cgroup_init_early(void)
{
	int i;
2496
	atomic_set(&init_css_set.refcount, 1);
2497 2498
	INIT_LIST_HEAD(&init_css_set.cg_links);
	INIT_LIST_HEAD(&init_css_set.tasks);
2499
	INIT_HLIST_NODE(&init_css_set.hlist);
2500
	css_set_count = 1;
2501 2502
	init_cgroup_root(&rootnode);
	list_add(&rootnode.root_list, &roots);
2503 2504 2505 2506
	root_count = 1;
	init_task.cgroups = &init_css_set;

	init_css_set_link.cg = &init_css_set;
2507
	list_add(&init_css_set_link.cgrp_link_list,
2508 2509 2510
		 &rootnode.top_cgroup.css_sets);
	list_add(&init_css_set_link.cg_link_list,
		 &init_css_set.cg_links);
2511

2512 2513 2514
	for (i = 0; i < CSS_SET_TABLE_SIZE; i++)
		INIT_HLIST_HEAD(&css_set_table[i]);

2515 2516 2517 2518 2519 2520 2521 2522
	for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
		struct cgroup_subsys *ss = subsys[i];

		BUG_ON(!ss->name);
		BUG_ON(strlen(ss->name) > MAX_CGROUP_TYPE_NAMELEN);
		BUG_ON(!ss->create);
		BUG_ON(!ss->destroy);
		if (ss->subsys_id != i) {
D
Diego Calleja 已提交
2523
			printk(KERN_ERR "cgroup: Subsys %s id == %d\n",
2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534
			       ss->name, ss->subsys_id);
			BUG();
		}

		if (ss->early_init)
			cgroup_init_subsys(ss);
	}
	return 0;
}

/**
L
Li Zefan 已提交
2535 2536 2537 2538
 * cgroup_init - cgroup initialization
 *
 * Register cgroup filesystem and /proc file, and initialize
 * any subsystems that didn't request early init.
2539 2540 2541 2542 2543
 */
int __init cgroup_init(void)
{
	int err;
	int i;
2544
	struct hlist_head *hhead;
2545 2546 2547 2548

	err = bdi_init(&cgroup_backing_dev_info);
	if (err)
		return err;
2549 2550 2551 2552 2553 2554 2555

	for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
		struct cgroup_subsys *ss = subsys[i];
		if (!ss->early_init)
			cgroup_init_subsys(ss);
	}

2556 2557 2558 2559
	/* Add init_css_set to the hash table */
	hhead = css_set_hash(init_css_set.subsys);
	hlist_add_head(&init_css_set.hlist, hhead);

2560 2561 2562 2563
	err = register_filesystem(&cgroup_fs_type);
	if (err < 0)
		goto out;

L
Li Zefan 已提交
2564
	proc_create("cgroups", 0, NULL, &proc_cgroupstats_operations);
2565

2566
out:
2567 2568 2569
	if (err)
		bdi_destroy(&cgroup_backing_dev_info);

2570 2571
	return err;
}
2572

2573 2574 2575 2576 2577 2578
/*
 * proc_cgroup_show()
 *  - Print task's cgroup paths into seq_file, one line for each hierarchy
 *  - Used for /proc/<pid>/cgroup.
 *  - No need to task_lock(tsk) on this tsk->cgroup reference, as it
 *    doesn't really matter if tsk->cgroup changes after we read it,
2579
 *    and we take cgroup_mutex, keeping cgroup_attach_task() from changing it
2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610
 *    anyway.  No need to check that tsk->cgroup != NULL, thanks to
 *    the_top_cgroup_hack in cgroup_exit(), which sets an exiting tasks
 *    cgroup to top_cgroup.
 */

/* TODO: Use a proper seq_file iterator */
static int proc_cgroup_show(struct seq_file *m, void *v)
{
	struct pid *pid;
	struct task_struct *tsk;
	char *buf;
	int retval;
	struct cgroupfs_root *root;

	retval = -ENOMEM;
	buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
	if (!buf)
		goto out;

	retval = -ESRCH;
	pid = m->private;
	tsk = get_pid_task(pid, PIDTYPE_PID);
	if (!tsk)
		goto out_free;

	retval = 0;

	mutex_lock(&cgroup_mutex);

	for_each_root(root) {
		struct cgroup_subsys *ss;
2611
		struct cgroup *cgrp;
2612 2613 2614 2615 2616 2617
		int subsys_id;
		int count = 0;

		/* Skip this hierarchy if it has no active subsystems */
		if (!root->actual_subsys_bits)
			continue;
2618
		seq_printf(m, "%lu:", root->subsys_bits);
2619 2620 2621 2622
		for_each_subsys(root, ss)
			seq_printf(m, "%s%s", count++ ? "," : "", ss->name);
		seq_putc(m, ':');
		get_first_subsys(&root->top_cgroup, NULL, &subsys_id);
2623 2624
		cgrp = task_cgroup(tsk, subsys_id);
		retval = cgroup_path(cgrp, buf, PAGE_SIZE);
2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657
		if (retval < 0)
			goto out_unlock;
		seq_puts(m, buf);
		seq_putc(m, '\n');
	}

out_unlock:
	mutex_unlock(&cgroup_mutex);
	put_task_struct(tsk);
out_free:
	kfree(buf);
out:
	return retval;
}

static int cgroup_open(struct inode *inode, struct file *file)
{
	struct pid *pid = PROC_I(inode)->pid;
	return single_open(file, proc_cgroup_show, pid);
}

struct file_operations proc_cgroup_operations = {
	.open		= cgroup_open,
	.read		= seq_read,
	.llseek		= seq_lseek,
	.release	= single_release,
};

/* Display information about each subsystem and each hierarchy */
static int proc_cgroupstats_show(struct seq_file *m, void *v)
{
	int i;

2658
	seq_puts(m, "#subsys_name\thierarchy\tnum_cgroups\tenabled\n");
2659 2660 2661
	mutex_lock(&cgroup_mutex);
	for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
		struct cgroup_subsys *ss = subsys[i];
2662
		seq_printf(m, "%s\t%lu\t%d\t%d\n",
2663
			   ss->name, ss->root->subsys_bits,
2664
			   ss->root->number_of_cgroups, !ss->disabled);
2665 2666 2667 2668 2669 2670 2671
	}
	mutex_unlock(&cgroup_mutex);
	return 0;
}

static int cgroupstats_open(struct inode *inode, struct file *file)
{
A
Al Viro 已提交
2672
	return single_open(file, proc_cgroupstats_show, NULL);
2673 2674 2675 2676 2677 2678 2679 2680 2681
}

static struct file_operations proc_cgroupstats_operations = {
	.open = cgroupstats_open,
	.read = seq_read,
	.llseek = seq_lseek,
	.release = single_release,
};

2682 2683
/**
 * cgroup_fork - attach newly forked task to its parents cgroup.
L
Li Zefan 已提交
2684
 * @child: pointer to task_struct of forking parent process.
2685 2686 2687 2688 2689 2690
 *
 * Description: A task inherits its parent's cgroup at fork().
 *
 * A pointer to the shared css_set was automatically copied in
 * fork.c by dup_task_struct().  However, we ignore that copy, since
 * it was not made under the protection of RCU or cgroup_mutex, so
2691
 * might no longer be a valid cgroup pointer.  cgroup_attach_task() might
2692 2693
 * have already changed current->cgroups, allowing the previously
 * referenced cgroup group to be removed and freed.
2694 2695 2696 2697 2698 2699
 *
 * At the point that cgroup_fork() is called, 'current' is the parent
 * task, and the passed argument 'child' points to the child task.
 */
void cgroup_fork(struct task_struct *child)
{
2700 2701 2702 2703 2704
	task_lock(current);
	child->cgroups = current->cgroups;
	get_css_set(child->cgroups);
	task_unlock(current);
	INIT_LIST_HEAD(&child->cg_list);
2705 2706 2707
}

/**
L
Li Zefan 已提交
2708 2709 2710 2711 2712 2713
 * cgroup_fork_callbacks - run fork callbacks
 * @child: the new task
 *
 * Called on a new task very soon before adding it to the
 * tasklist. No need to take any locks since no-one can
 * be operating on this task.
2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726
 */
void cgroup_fork_callbacks(struct task_struct *child)
{
	if (need_forkexit_callback) {
		int i;
		for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
			struct cgroup_subsys *ss = subsys[i];
			if (ss->fork)
				ss->fork(ss, child);
		}
	}
}

2727 2728 2729 2730 2731 2732 2733 2734
#ifdef CONFIG_MM_OWNER
/**
 * cgroup_mm_owner_callbacks - run callbacks when the mm->owner changes
 * @p: the new owner
 *
 * Called on every change to mm->owner. mm_init_owner() does not
 * invoke this routine, since it assigns the mm->owner the first time
 * and does not change it.
2735 2736
 *
 * The callbacks are invoked with mmap_sem held in read mode.
2737 2738 2739
 */
void cgroup_mm_owner_callbacks(struct task_struct *old, struct task_struct *new)
{
2740
	struct cgroup *oldcgrp, *newcgrp = NULL;
2741 2742 2743 2744 2745 2746

	if (need_mm_owner_callback) {
		int i;
		for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
			struct cgroup_subsys *ss = subsys[i];
			oldcgrp = task_cgroup(old, ss->subsys_id);
2747 2748
			if (new)
				newcgrp = task_cgroup(new, ss->subsys_id);
2749 2750 2751
			if (oldcgrp == newcgrp)
				continue;
			if (ss->mm_owner_changed)
2752
				ss->mm_owner_changed(ss, oldcgrp, newcgrp, new);
2753 2754 2755 2756 2757
		}
	}
}
#endif /* CONFIG_MM_OWNER */

2758
/**
L
Li Zefan 已提交
2759 2760 2761 2762 2763 2764 2765 2766
 * cgroup_post_fork - called on a new task after adding it to the task list
 * @child: the task in question
 *
 * Adds the task to the list running through its css_set if necessary.
 * Has to be after the task is visible on the task list in case we race
 * with the first call to cgroup_iter_start() - to guarantee that the
 * new task ends up on its list.
 */
2767 2768 2769 2770 2771 2772 2773 2774 2775
void cgroup_post_fork(struct task_struct *child)
{
	if (use_task_css_set_links) {
		write_lock(&css_set_lock);
		if (list_empty(&child->cg_list))
			list_add(&child->cg_list, &child->cgroups->tasks);
		write_unlock(&css_set_lock);
	}
}
2776 2777 2778
/**
 * cgroup_exit - detach cgroup from exiting task
 * @tsk: pointer to task_struct of exiting process
L
Li Zefan 已提交
2779
 * @run_callback: run exit callbacks?
2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807
 *
 * Description: Detach cgroup from @tsk and release it.
 *
 * Note that cgroups marked notify_on_release force every task in
 * them to take the global cgroup_mutex mutex when exiting.
 * This could impact scaling on very large systems.  Be reluctant to
 * use notify_on_release cgroups where very high task exit scaling
 * is required on large systems.
 *
 * the_top_cgroup_hack:
 *
 *    Set the exiting tasks cgroup to the root cgroup (top_cgroup).
 *
 *    We call cgroup_exit() while the task is still competent to
 *    handle notify_on_release(), then leave the task attached to the
 *    root cgroup in each hierarchy for the remainder of its exit.
 *
 *    To do this properly, we would increment the reference count on
 *    top_cgroup, and near the very end of the kernel/exit.c do_exit()
 *    code we would add a second cgroup function call, to drop that
 *    reference.  This would just create an unnecessary hot spot on
 *    the top_cgroup reference count, to no avail.
 *
 *    Normally, holding a reference to a cgroup without bumping its
 *    count is unsafe.   The cgroup could go away, or someone could
 *    attach us to a different cgroup, decrementing the count on
 *    the first cgroup that we never incremented.  But in this case,
 *    top_cgroup isn't going away, and either task has PF_EXITING set,
2808 2809
 *    which wards off any cgroup_attach_task() attempts, or task is a failed
 *    fork, never visible to cgroup_attach_task.
2810 2811 2812 2813
 */
void cgroup_exit(struct task_struct *tsk, int run_callbacks)
{
	int i;
2814
	struct css_set *cg;
2815 2816 2817 2818 2819 2820 2821 2822

	if (run_callbacks && need_forkexit_callback) {
		for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
			struct cgroup_subsys *ss = subsys[i];
			if (ss->exit)
				ss->exit(ss, tsk);
		}
	}
2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835

	/*
	 * Unlink from the css_set task list if necessary.
	 * Optimistically check cg_list before taking
	 * css_set_lock
	 */
	if (!list_empty(&tsk->cg_list)) {
		write_lock(&css_set_lock);
		if (!list_empty(&tsk->cg_list))
			list_del(&tsk->cg_list);
		write_unlock(&css_set_lock);
	}

2836 2837
	/* Reassign the task to the init_css_set. */
	task_lock(tsk);
2838 2839
	cg = tsk->cgroups;
	tsk->cgroups = &init_css_set;
2840
	task_unlock(tsk);
2841
	if (cg)
2842
		put_css_set_taskexit(cg);
2843
}
2844 2845

/**
L
Li Zefan 已提交
2846 2847 2848
 * cgroup_clone - clone the cgroup the given subsystem is attached to
 * @tsk: the task to be moved
 * @subsys: the given subsystem
2849
 * @nodename: the name for the new cgroup
L
Li Zefan 已提交
2850 2851 2852 2853
 *
 * Duplicate the current cgroup in the hierarchy that the given
 * subsystem is attached to, and move this task into the new
 * child.
2854
 */
2855 2856
int cgroup_clone(struct task_struct *tsk, struct cgroup_subsys *subsys,
							char *nodename)
2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880
{
	struct dentry *dentry;
	int ret = 0;
	struct cgroup *parent, *child;
	struct inode *inode;
	struct css_set *cg;
	struct cgroupfs_root *root;
	struct cgroup_subsys *ss;

	/* We shouldn't be called by an unregistered subsystem */
	BUG_ON(!subsys->active);

	/* First figure out what hierarchy and cgroup we're dealing
	 * with, and pin them so we can drop cgroup_mutex */
	mutex_lock(&cgroup_mutex);
 again:
	root = subsys->root;
	if (root == &rootnode) {
		printk(KERN_INFO
		       "Not cloning cgroup for unused subsystem %s\n",
		       subsys->name);
		mutex_unlock(&cgroup_mutex);
		return 0;
	}
2881
	cg = tsk->cgroups;
2882 2883 2884 2885 2886
	parent = task_cgroup(tsk, subsys->subsys_id);

	/* Pin the hierarchy */
	atomic_inc(&parent->root->sb->s_active);

2887 2888
	/* Keep the cgroup alive */
	get_css_set(cg);
2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899
	mutex_unlock(&cgroup_mutex);

	/* Now do the VFS work to create a cgroup */
	inode = parent->dentry->d_inode;

	/* Hold the parent directory mutex across this operation to
	 * stop anyone else deleting the new cgroup */
	mutex_lock(&inode->i_mutex);
	dentry = lookup_one_len(nodename, parent->dentry, strlen(nodename));
	if (IS_ERR(dentry)) {
		printk(KERN_INFO
D
Diego Calleja 已提交
2900
		       "cgroup: Couldn't allocate dentry for %s: %ld\n", nodename,
2901 2902 2903 2904 2905 2906 2907
		       PTR_ERR(dentry));
		ret = PTR_ERR(dentry);
		goto out_release;
	}

	/* Create the cgroup directory, which also creates the cgroup */
	ret = vfs_mkdir(inode, dentry, S_IFDIR | 0755);
2908
	child = __d_cgrp(dentry);
2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931
	dput(dentry);
	if (ret) {
		printk(KERN_INFO
		       "Failed to create cgroup %s: %d\n", nodename,
		       ret);
		goto out_release;
	}

	if (!child) {
		printk(KERN_INFO
		       "Couldn't find new cgroup %s\n", nodename);
		ret = -ENOMEM;
		goto out_release;
	}

	/* The cgroup now exists. Retake cgroup_mutex and check
	 * that we're still in the same state that we thought we
	 * were. */
	mutex_lock(&cgroup_mutex);
	if ((root != subsys->root) ||
	    (parent != task_cgroup(tsk, subsys->subsys_id))) {
		/* Aargh, we raced ... */
		mutex_unlock(&inode->i_mutex);
2932
		put_css_set(cg);
2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950

		deactivate_super(parent->root->sb);
		/* The cgroup is still accessible in the VFS, but
		 * we're not going to try to rmdir() it at this
		 * point. */
		printk(KERN_INFO
		       "Race in cgroup_clone() - leaking cgroup %s\n",
		       nodename);
		goto again;
	}

	/* do any required auto-setup */
	for_each_subsys(root, ss) {
		if (ss->post_clone)
			ss->post_clone(ss, child);
	}

	/* All seems fine. Finish by moving the task into the new cgroup */
2951
	ret = cgroup_attach_task(child, tsk);
2952 2953 2954 2955
	mutex_unlock(&cgroup_mutex);

 out_release:
	mutex_unlock(&inode->i_mutex);
2956 2957

	mutex_lock(&cgroup_mutex);
2958
	put_css_set(cg);
2959
	mutex_unlock(&cgroup_mutex);
2960 2961 2962 2963
	deactivate_super(parent->root->sb);
	return ret;
}

L
Li Zefan 已提交
2964 2965 2966 2967 2968 2969
/**
 * cgroup_is_descendant - see if @cgrp is a descendant of current task's cgrp
 * @cgrp: the cgroup in question
 *
 * See if @cgrp is a descendant of the current task's cgroup in
 * the appropriate hierarchy.
2970 2971 2972 2973 2974 2975
 *
 * If we are sending in dummytop, then presumably we are creating
 * the top cgroup in the subsystem.
 *
 * Called only by the ns (nsproxy) cgroup.
 */
2976
int cgroup_is_descendant(const struct cgroup *cgrp)
2977 2978 2979 2980 2981
{
	int ret;
	struct cgroup *target;
	int subsys_id;

2982
	if (cgrp == dummytop)
2983 2984
		return 1;

2985
	get_first_subsys(cgrp, NULL, &subsys_id);
2986
	target = task_cgroup(current, subsys_id);
2987 2988 2989
	while (cgrp != target && cgrp!= cgrp->top_cgroup)
		cgrp = cgrp->parent;
	ret = (cgrp == target);
2990 2991
	return ret;
}
2992

2993
static void check_for_release(struct cgroup *cgrp)
2994 2995 2996
{
	/* All of these checks rely on RCU to keep the cgroup
	 * structure alive */
2997 2998
	if (cgroup_is_releasable(cgrp) && !atomic_read(&cgrp->count)
	    && list_empty(&cgrp->children) && !cgroup_has_css_refs(cgrp)) {
2999 3000 3001 3002 3003
		/* Control Group is currently removeable. If it's not
		 * already queued for a userspace notification, queue
		 * it now */
		int need_schedule_work = 0;
		spin_lock(&release_list_lock);
3004 3005 3006
		if (!cgroup_is_removed(cgrp) &&
		    list_empty(&cgrp->release_list)) {
			list_add(&cgrp->release_list, &release_list);
3007 3008 3009 3010 3011 3012 3013 3014 3015 3016
			need_schedule_work = 1;
		}
		spin_unlock(&release_list_lock);
		if (need_schedule_work)
			schedule_work(&release_agent_work);
	}
}

void __css_put(struct cgroup_subsys_state *css)
{
3017
	struct cgroup *cgrp = css->cgroup;
3018
	rcu_read_lock();
3019 3020 3021
	if (atomic_dec_and_test(&css->refcnt) && notify_on_release(cgrp)) {
		set_bit(CGRP_RELEASABLE, &cgrp->flags);
		check_for_release(cgrp);
3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056
	}
	rcu_read_unlock();
}

/*
 * Notify userspace when a cgroup is released, by running the
 * configured release agent with the name of the cgroup (path
 * relative to the root of cgroup file system) as the argument.
 *
 * Most likely, this user command will try to rmdir this cgroup.
 *
 * This races with the possibility that some other task will be
 * attached to this cgroup before it is removed, or that some other
 * user task will 'mkdir' a child cgroup of this cgroup.  That's ok.
 * The presumed 'rmdir' will fail quietly if this cgroup is no longer
 * unused, and this cgroup will be reprieved from its death sentence,
 * to continue to serve a useful existence.  Next time it's released,
 * we will get notified again, if it still has 'notify_on_release' set.
 *
 * The final arg to call_usermodehelper() is UMH_WAIT_EXEC, which
 * means only wait until the task is successfully execve()'d.  The
 * separate release agent task is forked by call_usermodehelper(),
 * then control in this thread returns here, without waiting for the
 * release agent task.  We don't bother to wait because the caller of
 * this routine has no use for the exit status of the release agent
 * task, so no sense holding our caller up for that.
 */
static void cgroup_release_agent(struct work_struct *work)
{
	BUG_ON(work != &release_agent_work);
	mutex_lock(&cgroup_mutex);
	spin_lock(&release_list_lock);
	while (!list_empty(&release_list)) {
		char *argv[3], *envp[3];
		int i;
3057
		char *pathbuf = NULL, *agentbuf = NULL;
3058
		struct cgroup *cgrp = list_entry(release_list.next,
3059 3060
						    struct cgroup,
						    release_list);
3061
		list_del_init(&cgrp->release_list);
3062 3063
		spin_unlock(&release_list_lock);
		pathbuf = kmalloc(PAGE_SIZE, GFP_KERNEL);
3064 3065 3066 3067 3068 3069 3070
		if (!pathbuf)
			goto continue_free;
		if (cgroup_path(cgrp, pathbuf, PAGE_SIZE) < 0)
			goto continue_free;
		agentbuf = kstrdup(cgrp->root->release_agent_path, GFP_KERNEL);
		if (!agentbuf)
			goto continue_free;
3071 3072

		i = 0;
3073 3074
		argv[i++] = agentbuf;
		argv[i++] = pathbuf;
3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088
		argv[i] = NULL;

		i = 0;
		/* minimal command environment */
		envp[i++] = "HOME=/";
		envp[i++] = "PATH=/sbin:/bin:/usr/sbin:/usr/bin";
		envp[i] = NULL;

		/* Drop the lock while we invoke the usermode helper,
		 * since the exec could involve hitting disk and hence
		 * be a slow process */
		mutex_unlock(&cgroup_mutex);
		call_usermodehelper(argv[0], argv, envp, UMH_WAIT_EXEC);
		mutex_lock(&cgroup_mutex);
3089 3090 3091
 continue_free:
		kfree(pathbuf);
		kfree(agentbuf);
3092 3093 3094 3095 3096
		spin_lock(&release_list_lock);
	}
	spin_unlock(&release_list_lock);
	mutex_unlock(&cgroup_mutex);
}
3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120

static int __init cgroup_disable(char *str)
{
	int i;
	char *token;

	while ((token = strsep(&str, ",")) != NULL) {
		if (!*token)
			continue;

		for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
			struct cgroup_subsys *ss = subsys[i];

			if (!strcmp(token, ss->name)) {
				ss->disabled = 1;
				printk(KERN_INFO "Disabling %s control group"
					" subsystem\n", ss->name);
				break;
			}
		}
	}
	return 1;
}
__setup("cgroup_disable=", cgroup_disable);