cgroup.c 146.2 KB
Newer Older
1 2 3 4 5 6
/*
 *  Generic process-grouping system.
 *
 *  Based originally on the cpuset system, extracted by Paul Menage
 *  Copyright (C) 2006 Google, Inc
 *
7 8 9 10
 *  Notifications support
 *  Copyright (C) 2009 Nokia Corporation
 *  Author: Kirill A. Shutemov
 *
11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29
 *  Copyright notices from the original cpuset code:
 *  --------------------------------------------------
 *  Copyright (C) 2003 BULL SA.
 *  Copyright (C) 2004-2006 Silicon Graphics, Inc.
 *
 *  Portions derived from Patrick Mochel's sysfs code.
 *  sysfs is Copyright (c) 2001-3 Patrick Mochel
 *
 *  2003-10-10 Written by Simon Derr.
 *  2003-10-22 Updates by Stephen Hemminger.
 *  2004 May-July Rework by Paul Jackson.
 *  ---------------------------------------------------
 *
 *  This file is subject to the terms and conditions of the GNU General Public
 *  License.  See the file COPYING in the main directory of the Linux
 *  distribution for more details.
 */

#include <linux/cgroup.h>
30
#include <linux/cred.h>
31
#include <linux/ctype.h>
32
#include <linux/errno.h>
33
#include <linux/init_task.h>
34 35 36 37 38 39
#include <linux/kernel.h>
#include <linux/list.h>
#include <linux/mm.h>
#include <linux/mutex.h>
#include <linux/mount.h>
#include <linux/pagemap.h>
40
#include <linux/proc_fs.h>
41 42
#include <linux/rcupdate.h>
#include <linux/sched.h>
43
#include <linux/backing-dev.h>
44 45 46 47
#include <linux/slab.h>
#include <linux/magic.h>
#include <linux/spinlock.h>
#include <linux/string.h>
48
#include <linux/sort.h>
49
#include <linux/kmod.h>
50
#include <linux/module.h>
B
Balbir Singh 已提交
51 52
#include <linux/delayacct.h>
#include <linux/cgroupstats.h>
53
#include <linux/hashtable.h>
54
#include <linux/namei.h>
L
Li Zefan 已提交
55
#include <linux/pid_namespace.h>
56
#include <linux/idr.h>
57
#include <linux/vmalloc.h> /* TODO: replace with more sophisticated array */
58
#include <linux/flex_array.h> /* used in cgroup_attach_task */
59
#include <linux/kthread.h>
B
Balbir Singh 已提交
60

A
Arun Sharma 已提交
61
#include <linux/atomic.h>
62

63 64 65 66 67 68 69 70
/*
 * pidlists linger the following amount before being destroyed.  The goal
 * is avoiding frequent destruction in the middle of consecutive read calls
 * Expiring in the middle is a performance problem not a correctness one.
 * 1 sec should be enough.
 */
#define CGROUP_PIDLIST_DESTROY_DELAY	HZ

T
Tejun Heo 已提交
71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86
/*
 * cgroup_mutex is the master lock.  Any modification to cgroup or its
 * hierarchy must be performed while holding it.
 *
 * cgroup_root_mutex nests inside cgroup_mutex and should be held to modify
 * cgroupfs_root of any cgroup hierarchy - subsys list, flags,
 * release_agent_path and so on.  Modifying requires both cgroup_mutex and
 * cgroup_root_mutex.  Readers can acquire either of the two.  This is to
 * break the following locking order cycle.
 *
 *  A. cgroup_mutex -> cred_guard_mutex -> s_type->i_mutex_key -> namespace_sem
 *  B. namespace_sem -> cgroup_mutex
 *
 * B happens only through cgroup_show_options() and using cgroup_root_mutex
 * breaks it.
 */
T
Tejun Heo 已提交
87 88
#ifdef CONFIG_PROVE_RCU
DEFINE_MUTEX(cgroup_mutex);
89
EXPORT_SYMBOL_GPL(cgroup_mutex);	/* only for lockdep */
T
Tejun Heo 已提交
90
#else
91
static DEFINE_MUTEX(cgroup_mutex);
T
Tejun Heo 已提交
92 93
#endif

T
Tejun Heo 已提交
94
static DEFINE_MUTEX(cgroup_root_mutex);
95

96 97 98 99 100 101 102 103
/*
 * cgroup destruction makes heavy use of work items and there can be a lot
 * of concurrent destructions.  Use a separate workqueue so that cgroup
 * destruction work items don't end up filling up max_active of system_wq
 * which may lead to deadlock.
 */
static struct workqueue_struct *cgroup_destroy_wq;

104 105 106 107 108 109
/*
 * pidlist destructions need to be flushed on cgroup destruction.  Use a
 * separate workqueue as flush domain.
 */
static struct workqueue_struct *cgroup_pidlist_destroy_wq;

B
Ben Blum 已提交
110 111
/*
 * Generate an array of cgroup subsystem pointers. At boot time, this is
112
 * populated with the built in subsystems, and modular subsystems are
B
Ben Blum 已提交
113 114 115
 * registered after that. The mutable section of this array is protected by
 * cgroup_mutex.
 */
116
#define SUBSYS(_x) [_x ## _subsys_id] = &_x ## _subsys,
117
#define IS_SUBSYS_ENABLED(option) IS_BUILTIN(option)
118
static struct cgroup_subsys *cgroup_subsys[CGROUP_SUBSYS_COUNT] = {
119 120 121 122
#include <linux/cgroup_subsys.h>
};

/*
123 124 125
 * The dummy hierarchy, reserved for the subsystems that are otherwise
 * unattached - it never has more than a single cgroup, and all tasks are
 * part of that cgroup.
126
 */
127 128 129 130
static struct cgroupfs_root cgroup_dummy_root;

/* dummy_top is a shorthand for the dummy hierarchy's top cgroup */
static struct cgroup * const cgroup_dummy_top = &cgroup_dummy_root.top_cgroup;
131 132 133

/* The list of hierarchy roots */

134 135
static LIST_HEAD(cgroup_roots);
static int cgroup_root_count;
136

T
Tejun Heo 已提交
137 138 139 140 141
/*
 * Hierarchy ID allocation and mapping.  It follows the same exclusion
 * rules as other root ops - both cgroup_mutex and cgroup_root_mutex for
 * writes, either for reads.
 */
142
static DEFINE_IDR(cgroup_hierarchy_idr);
143

144 145
static struct cgroup_name root_cgroup_name = { .name = "/" };

146 147 148 149 150
/*
 * Assign a monotonically increasing serial number to cgroups.  It
 * guarantees cgroups with bigger numbers are newer than those with smaller
 * numbers.  Also, as cgroups are always appended to the parent's
 * ->children list, it guarantees that sibling cgroups are always sorted in
151 152
 * the ascending serial number order on the list.  Protected by
 * cgroup_mutex.
153
 */
154
static u64 cgroup_serial_nr_next = 1;
155

156
/* This flag indicates whether tasks in the fork and exit paths should
L
Li Zefan 已提交
157 158 159
 * check for fork/exit handlers to call. This avoids us having to do
 * extra work in the fork/exit path if none of the subsystems need to
 * be called.
160
 */
161
static int need_forkexit_callback __read_mostly;
162

163 164
static struct cftype cgroup_base_files[];

165
static void cgroup_destroy_css_killed(struct cgroup *cgrp);
166
static int cgroup_destroy_locked(struct cgroup *cgrp);
167 168
static int cgroup_addrm_files(struct cgroup *cgrp, struct cftype cfts[],
			      bool is_add);
169
static int cgroup_file_release(struct inode *inode, struct file *file);
170
static void cgroup_pidlist_destroy_all(struct cgroup *cgrp);
171

T
Tejun Heo 已提交
172 173 174
/**
 * cgroup_css - obtain a cgroup's css for the specified subsystem
 * @cgrp: the cgroup of interest
175
 * @ss: the subsystem of interest (%NULL returns the dummy_css)
T
Tejun Heo 已提交
176
 *
177 178 179 180 181
 * Return @cgrp's css (cgroup_subsys_state) associated with @ss.  This
 * function must be called either under cgroup_mutex or rcu_read_lock() and
 * the caller is responsible for pinning the returned css if it wants to
 * keep accessing it outside the said locks.  This function may return
 * %NULL if @cgrp doesn't have @subsys_id enabled.
T
Tejun Heo 已提交
182 183
 */
static struct cgroup_subsys_state *cgroup_css(struct cgroup *cgrp,
184
					      struct cgroup_subsys *ss)
T
Tejun Heo 已提交
185
{
186 187 188 189 190
	if (ss)
		return rcu_dereference_check(cgrp->subsys[ss->subsys_id],
					     lockdep_is_held(&cgroup_mutex));
	else
		return &cgrp->dummy_css;
T
Tejun Heo 已提交
191
}
192

193
/* convenient tests for these bits */
194
static inline bool cgroup_is_dead(const struct cgroup *cgrp)
195
{
196
	return test_bit(CGRP_DEAD, &cgrp->flags);
197 198
}

199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217
/**
 * cgroup_is_descendant - test ancestry
 * @cgrp: the cgroup to be tested
 * @ancestor: possible ancestor of @cgrp
 *
 * Test whether @cgrp is a descendant of @ancestor.  It also returns %true
 * if @cgrp == @ancestor.  This function is safe to call as long as @cgrp
 * and @ancestor are accessible.
 */
bool cgroup_is_descendant(struct cgroup *cgrp, struct cgroup *ancestor)
{
	while (cgrp) {
		if (cgrp == ancestor)
			return true;
		cgrp = cgrp->parent;
	}
	return false;
}
EXPORT_SYMBOL_GPL(cgroup_is_descendant);
218

219
static int cgroup_is_releasable(const struct cgroup *cgrp)
220 221
{
	const int bits =
222 223 224
		(1 << CGRP_RELEASABLE) |
		(1 << CGRP_NOTIFY_ON_RELEASE);
	return (cgrp->flags & bits) == bits;
225 226
}

227
static int notify_on_release(const struct cgroup *cgrp)
228
{
229
	return test_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
230 231
}

232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256
/**
 * for_each_subsys - iterate all loaded cgroup subsystems
 * @ss: the iteration cursor
 * @i: the index of @ss, CGROUP_SUBSYS_COUNT after reaching the end
 *
 * Should be called under cgroup_mutex.
 */
#define for_each_subsys(ss, i)						\
	for ((i) = 0; (i) < CGROUP_SUBSYS_COUNT; (i)++)			\
		if (({ lockdep_assert_held(&cgroup_mutex);		\
		       !((ss) = cgroup_subsys[i]); })) { }		\
		else

/**
 * for_each_builtin_subsys - iterate all built-in cgroup subsystems
 * @ss: the iteration cursor
 * @i: the index of @ss, CGROUP_BUILTIN_SUBSYS_COUNT after reaching the end
 *
 * Bulit-in subsystems are always present and iteration itself doesn't
 * require any synchronization.
 */
#define for_each_builtin_subsys(ss, i)					\
	for ((i) = 0; (i) < CGROUP_BUILTIN_SUBSYS_COUNT &&		\
	     (((ss) = cgroup_subsys[i]) || true); (i)++)

257 258 259
/* iterate each subsystem attached to a hierarchy */
#define for_each_root_subsys(root, ss)					\
	list_for_each_entry((ss), &(root)->subsys_list, sibling)
260

261 262 263
/* iterate across the active hierarchies */
#define for_each_active_root(root)					\
	list_for_each_entry((root), &cgroup_roots, root_list)
264

265 266 267 268 269
static inline struct cgroup *__d_cgrp(struct dentry *dentry)
{
	return dentry->d_fsdata;
}

T
Tejun Heo 已提交
270
static inline struct cfent *__d_cfe(struct dentry *dentry)
271 272 273 274
{
	return dentry->d_fsdata;
}

T
Tejun Heo 已提交
275 276 277 278 279
static inline struct cftype *__d_cft(struct dentry *dentry)
{
	return __d_cfe(dentry)->type;
}

280 281 282 283
/**
 * cgroup_lock_live_group - take cgroup_mutex and check that cgrp is alive.
 * @cgrp: the cgroup to be checked for liveness
 *
T
Tejun Heo 已提交
284 285
 * On success, returns true; the mutex should be later unlocked.  On
 * failure returns false with no lock held.
286
 */
287
static bool cgroup_lock_live_group(struct cgroup *cgrp)
288 289
{
	mutex_lock(&cgroup_mutex);
290
	if (cgroup_is_dead(cgrp)) {
291 292 293 294 295 296
		mutex_unlock(&cgroup_mutex);
		return false;
	}
	return true;
}

297 298 299
/* the list of cgroups eligible for automatic release. Protected by
 * release_list_lock */
static LIST_HEAD(release_list);
300
static DEFINE_RAW_SPINLOCK(release_list_lock);
301 302
static void cgroup_release_agent(struct work_struct *work);
static DECLARE_WORK(release_agent_work, cgroup_release_agent);
303
static void check_for_release(struct cgroup *cgrp);
304

305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322
/*
 * A cgroup can be associated with multiple css_sets as different tasks may
 * belong to different cgroups on different hierarchies.  In the other
 * direction, a css_set is naturally associated with multiple cgroups.
 * This M:N relationship is represented by the following link structure
 * which exists for each association and allows traversing the associations
 * from both sides.
 */
struct cgrp_cset_link {
	/* the cgroup and css_set this link associates */
	struct cgroup		*cgrp;
	struct css_set		*cset;

	/* list of cgrp_cset_links anchored at cgrp->cset_links */
	struct list_head	cset_link;

	/* list of cgrp_cset_links anchored at css_set->cgrp_links */
	struct list_head	cgrp_link;
323 324 325 326 327 328 329 330 331 332
};

/* The default css_set - used by init and its children prior to any
 * hierarchies being mounted. It contains a pointer to the root state
 * for each subsystem. Also used to anchor the list of css_sets. Not
 * reference-counted, to improve performance when child cgroups
 * haven't been created.
 */

static struct css_set init_css_set;
333
static struct cgrp_cset_link init_cgrp_cset_link;
334

335 336 337
/*
 * css_set_lock protects the list of css_set objects, and the chain of
 * tasks off each css_set.  Nests outside task->alloc_lock due to
338
 * css_task_iter_start().
339
 */
340 341 342
static DEFINE_RWLOCK(css_set_lock);
static int css_set_count;

343 344 345 346 347
/*
 * hash table for cgroup groups. This improves the performance to find
 * an existing css_set. This hash doesn't (currently) take into
 * account cgroups in empty hierarchies.
 */
348
#define CSS_SET_HASH_BITS	7
349
static DEFINE_HASHTABLE(css_set_table, CSS_SET_HASH_BITS);
350

351
static unsigned long css_set_hash(struct cgroup_subsys_state *css[])
352
{
353
	unsigned long key = 0UL;
354 355
	struct cgroup_subsys *ss;
	int i;
356

357
	for_each_subsys(ss, i)
358 359
		key += (unsigned long)css[i];
	key = (key >> 16) ^ key;
360

361
	return key;
362 363
}

364 365
/*
 * We don't maintain the lists running through each css_set to its task
366 367 368
 * until after the first call to css_task_iter_start().  This reduces the
 * fork()/exit() overhead for people who have cgroups compiled into their
 * kernel but not actually in use.
369
 */
370
static int use_task_css_set_links __read_mostly;
371

372
static void __put_css_set(struct css_set *cset, int taskexit)
373
{
374
	struct cgrp_cset_link *link, *tmp_link;
375

376 377 378 379 380
	/*
	 * Ensure that the refcount doesn't hit zero while any readers
	 * can see it. Similar to atomic_dec_and_lock(), but for an
	 * rwlock
	 */
381
	if (atomic_add_unless(&cset->refcount, -1, 1))
382 383
		return;
	write_lock(&css_set_lock);
384
	if (!atomic_dec_and_test(&cset->refcount)) {
385 386 387
		write_unlock(&css_set_lock);
		return;
	}
388

389
	/* This css_set is dead. unlink it and release cgroup refcounts */
390
	hash_del(&cset->hlist);
391 392
	css_set_count--;

393
	list_for_each_entry_safe(link, tmp_link, &cset->cgrp_links, cgrp_link) {
394
		struct cgroup *cgrp = link->cgrp;
395

396 397
		list_del(&link->cset_link);
		list_del(&link->cgrp_link);
L
Li Zefan 已提交
398

399
		/* @cgrp can't go away while we're holding css_set_lock */
T
Tejun Heo 已提交
400
		if (list_empty(&cgrp->cset_links) && notify_on_release(cgrp)) {
401
			if (taskexit)
402 403
				set_bit(CGRP_RELEASABLE, &cgrp->flags);
			check_for_release(cgrp);
404
		}
405 406

		kfree(link);
407
	}
408 409

	write_unlock(&css_set_lock);
410
	kfree_rcu(cset, rcu_head);
411 412
}

413 414 415
/*
 * refcounted get/put for css_set objects
 */
416
static inline void get_css_set(struct css_set *cset)
417
{
418
	atomic_inc(&cset->refcount);
419 420
}

421
static inline void put_css_set(struct css_set *cset)
422
{
423
	__put_css_set(cset, 0);
424 425
}

426
static inline void put_css_set_taskexit(struct css_set *cset)
427
{
428
	__put_css_set(cset, 1);
429 430
}

431
/**
432
 * compare_css_sets - helper function for find_existing_css_set().
433 434
 * @cset: candidate css_set being tested
 * @old_cset: existing css_set for a task
435 436 437
 * @new_cgrp: cgroup that's being entered by the task
 * @template: desired set of css pointers in css_set (pre-calculated)
 *
L
Li Zefan 已提交
438
 * Returns true if "cset" matches "old_cset" except for the hierarchy
439 440
 * which "new_cgrp" belongs to, for which it should match "new_cgrp".
 */
441 442
static bool compare_css_sets(struct css_set *cset,
			     struct css_set *old_cset,
443 444 445 446 447
			     struct cgroup *new_cgrp,
			     struct cgroup_subsys_state *template[])
{
	struct list_head *l1, *l2;

448
	if (memcmp(template, cset->subsys, sizeof(cset->subsys))) {
449 450 451 452 453 454 455 456 457 458 459 460 461
		/* Not all subsystems matched */
		return false;
	}

	/*
	 * Compare cgroup pointers in order to distinguish between
	 * different cgroups in heirarchies with no subsystems. We
	 * could get by with just this check alone (and skip the
	 * memcmp above) but on most setups the memcmp check will
	 * avoid the need for this more expensive check on almost all
	 * candidates.
	 */

462 463
	l1 = &cset->cgrp_links;
	l2 = &old_cset->cgrp_links;
464
	while (1) {
465
		struct cgrp_cset_link *link1, *link2;
466
		struct cgroup *cgrp1, *cgrp2;
467 468 469 470

		l1 = l1->next;
		l2 = l2->next;
		/* See if we reached the end - both lists are equal length. */
471 472
		if (l1 == &cset->cgrp_links) {
			BUG_ON(l2 != &old_cset->cgrp_links);
473 474
			break;
		} else {
475
			BUG_ON(l2 == &old_cset->cgrp_links);
476 477
		}
		/* Locate the cgroups associated with these links. */
478 479 480 481
		link1 = list_entry(l1, struct cgrp_cset_link, cgrp_link);
		link2 = list_entry(l2, struct cgrp_cset_link, cgrp_link);
		cgrp1 = link1->cgrp;
		cgrp2 = link2->cgrp;
482
		/* Hierarchies should be linked in the same order. */
483
		BUG_ON(cgrp1->root != cgrp2->root);
484 485 486 487 488 489 490 491

		/*
		 * If this hierarchy is the hierarchy of the cgroup
		 * that's changing, then we need to check that this
		 * css_set points to the new cgroup; if it's any other
		 * hierarchy, then this css_set should point to the
		 * same cgroup as the old css_set.
		 */
492 493
		if (cgrp1->root == new_cgrp->root) {
			if (cgrp1 != new_cgrp)
494 495
				return false;
		} else {
496
			if (cgrp1 != cgrp2)
497 498 499 500 501 502
				return false;
		}
	}
	return true;
}

503 504 505 506 507
/**
 * find_existing_css_set - init css array and find the matching css_set
 * @old_cset: the css_set that we're using before the cgroup transition
 * @cgrp: the cgroup that we're moving into
 * @template: out param for the new set of csses, should be clear on entry
508
 */
509 510 511
static struct css_set *find_existing_css_set(struct css_set *old_cset,
					struct cgroup *cgrp,
					struct cgroup_subsys_state *template[])
512
{
513
	struct cgroupfs_root *root = cgrp->root;
514
	struct cgroup_subsys *ss;
515
	struct css_set *cset;
516
	unsigned long key;
517
	int i;
518

B
Ben Blum 已提交
519 520 521 522 523
	/*
	 * Build the set of subsystem state objects that we want to see in the
	 * new css_set. while subsystems can change globally, the entries here
	 * won't change, so no need for locking.
	 */
524
	for_each_subsys(ss, i) {
525
		if (root->subsys_mask & (1UL << i)) {
526 527 528
			/* Subsystem is in this hierarchy. So we want
			 * the subsystem state from the new
			 * cgroup */
529
			template[i] = cgroup_css(cgrp, ss);
530 531 532
		} else {
			/* Subsystem is not in this hierarchy, so we
			 * don't want to change the subsystem state */
533
			template[i] = old_cset->subsys[i];
534 535 536
		}
	}

537
	key = css_set_hash(template);
538 539
	hash_for_each_possible(css_set_table, cset, hlist, key) {
		if (!compare_css_sets(cset, old_cset, cgrp, template))
540 541 542
			continue;

		/* This css_set matches what we need */
543
		return cset;
544
	}
545 546 547 548 549

	/* No existing cgroup group matched */
	return NULL;
}

550
static void free_cgrp_cset_links(struct list_head *links_to_free)
551
{
552
	struct cgrp_cset_link *link, *tmp_link;
553

554 555
	list_for_each_entry_safe(link, tmp_link, links_to_free, cset_link) {
		list_del(&link->cset_link);
556 557 558 559
		kfree(link);
	}
}

560 561 562 563 564 565 566
/**
 * allocate_cgrp_cset_links - allocate cgrp_cset_links
 * @count: the number of links to allocate
 * @tmp_links: list_head the allocated links are put on
 *
 * Allocate @count cgrp_cset_link structures and chain them on @tmp_links
 * through ->cset_link.  Returns 0 on success or -errno.
567
 */
568
static int allocate_cgrp_cset_links(int count, struct list_head *tmp_links)
569
{
570
	struct cgrp_cset_link *link;
571
	int i;
572 573 574

	INIT_LIST_HEAD(tmp_links);

575
	for (i = 0; i < count; i++) {
576
		link = kzalloc(sizeof(*link), GFP_KERNEL);
577
		if (!link) {
578
			free_cgrp_cset_links(tmp_links);
579 580
			return -ENOMEM;
		}
581
		list_add(&link->cset_link, tmp_links);
582 583 584 585
	}
	return 0;
}

586 587
/**
 * link_css_set - a helper function to link a css_set to a cgroup
588
 * @tmp_links: cgrp_cset_link objects allocated by allocate_cgrp_cset_links()
589
 * @cset: the css_set to be linked
590 591
 * @cgrp: the destination cgroup
 */
592 593
static void link_css_set(struct list_head *tmp_links, struct css_set *cset,
			 struct cgroup *cgrp)
594
{
595
	struct cgrp_cset_link *link;
596

597 598 599
	BUG_ON(list_empty(tmp_links));
	link = list_first_entry(tmp_links, struct cgrp_cset_link, cset_link);
	link->cset = cset;
600
	link->cgrp = cgrp;
601
	list_move(&link->cset_link, &cgrp->cset_links);
602 603 604 605
	/*
	 * Always add links to the tail of the list so that the list
	 * is sorted by order of hierarchy creation
	 */
606
	list_add_tail(&link->cgrp_link, &cset->cgrp_links);
607 608
}

609 610 611 612 613 614 615
/**
 * find_css_set - return a new css_set with one cgroup updated
 * @old_cset: the baseline css_set
 * @cgrp: the cgroup to be updated
 *
 * Return a new css_set that's equivalent to @old_cset, but with @cgrp
 * substituted into the appropriate hierarchy.
616
 */
617 618
static struct css_set *find_css_set(struct css_set *old_cset,
				    struct cgroup *cgrp)
619
{
620
	struct cgroup_subsys_state *template[CGROUP_SUBSYS_COUNT] = { };
621
	struct css_set *cset;
622 623
	struct list_head tmp_links;
	struct cgrp_cset_link *link;
624
	unsigned long key;
625

626 627
	lockdep_assert_held(&cgroup_mutex);

628 629
	/* First see if we already have a cgroup group that matches
	 * the desired set */
630
	read_lock(&css_set_lock);
631 632 633
	cset = find_existing_css_set(old_cset, cgrp, template);
	if (cset)
		get_css_set(cset);
634
	read_unlock(&css_set_lock);
635

636 637
	if (cset)
		return cset;
638

639
	cset = kzalloc(sizeof(*cset), GFP_KERNEL);
640
	if (!cset)
641 642
		return NULL;

643
	/* Allocate all the cgrp_cset_link objects that we'll need */
644
	if (allocate_cgrp_cset_links(cgroup_root_count, &tmp_links) < 0) {
645
		kfree(cset);
646 647 648
		return NULL;
	}

649
	atomic_set(&cset->refcount, 1);
650
	INIT_LIST_HEAD(&cset->cgrp_links);
651 652
	INIT_LIST_HEAD(&cset->tasks);
	INIT_HLIST_NODE(&cset->hlist);
653 654 655

	/* Copy the set of subsystem state objects generated in
	 * find_existing_css_set() */
656
	memcpy(cset->subsys, template, sizeof(cset->subsys));
657 658 659

	write_lock(&css_set_lock);
	/* Add reference counts and links from the new css_set. */
660
	list_for_each_entry(link, &old_cset->cgrp_links, cgrp_link) {
661
		struct cgroup *c = link->cgrp;
662

663 664
		if (c->root == cgrp->root)
			c = cgrp;
665
		link_css_set(&tmp_links, cset, c);
666
	}
667

668
	BUG_ON(!list_empty(&tmp_links));
669 670

	css_set_count++;
671 672

	/* Add this cgroup group to the hash table */
673 674
	key = css_set_hash(cset->subsys);
	hash_add(css_set_table, &cset->hlist, key);
675

676 677
	write_unlock(&css_set_lock);

678
	return cset;
679 680
}

681 682 683 684 685 686 687
/*
 * Return the cgroup for "task" from the given hierarchy. Must be
 * called with cgroup_mutex held.
 */
static struct cgroup *task_cgroup_from_root(struct task_struct *task,
					    struct cgroupfs_root *root)
{
688
	struct css_set *cset;
689 690 691 692 693 694 695 696 697
	struct cgroup *res = NULL;

	BUG_ON(!mutex_is_locked(&cgroup_mutex));
	read_lock(&css_set_lock);
	/*
	 * No need to lock the task - since we hold cgroup_mutex the
	 * task can't change groups, so the only thing that can happen
	 * is that it exits and its css is set back to init_css_set.
	 */
698
	cset = task_css_set(task);
699
	if (cset == &init_css_set) {
700 701
		res = &root->top_cgroup;
	} else {
702 703 704
		struct cgrp_cset_link *link;

		list_for_each_entry(link, &cset->cgrp_links, cgrp_link) {
705
			struct cgroup *c = link->cgrp;
706

707 708 709 710 711 712 713 714 715 716 717
			if (c->root == root) {
				res = c;
				break;
			}
		}
	}
	read_unlock(&css_set_lock);
	BUG_ON(!res);
	return res;
}

718 719 720 721 722 723 724 725 726 727
/*
 * There is one global cgroup mutex. We also require taking
 * task_lock() when dereferencing a task's cgroup subsys pointers.
 * See "The task_lock() exception", at the end of this comment.
 *
 * A task must hold cgroup_mutex to modify cgroups.
 *
 * Any task can increment and decrement the count field without lock.
 * So in general, code holding cgroup_mutex can't rely on the count
 * field not changing.  However, if the count goes to zero, then only
728
 * cgroup_attach_task() can increment it again.  Because a count of zero
729 730 731 732 733 734 735 736 737 738 739 740 741
 * means that no tasks are currently attached, therefore there is no
 * way a task attached to that cgroup can fork (the other way to
 * increment the count).  So code holding cgroup_mutex can safely
 * assume that if the count is zero, it will stay zero. Similarly, if
 * a task holds cgroup_mutex on a cgroup with zero count, it
 * knows that the cgroup won't be removed, as cgroup_rmdir()
 * needs that mutex.
 *
 * The fork and exit callbacks cgroup_fork() and cgroup_exit(), don't
 * (usually) take cgroup_mutex.  These are the two most performance
 * critical pieces of code here.  The exception occurs on cgroup_exit(),
 * when a task in a notify_on_release cgroup exits.  Then cgroup_mutex
 * is taken, and if the cgroup count is zero, a usermode call made
L
Li Zefan 已提交
742 743
 * to the release agent with the name of the cgroup (path relative to
 * the root of cgroup file system) as the argument.
744 745 746 747 748 749 750 751 752 753 754
 *
 * A cgroup can only be deleted if both its 'count' of using tasks
 * is zero, and its list of 'children' cgroups is empty.  Since all
 * tasks in the system use _some_ cgroup, and since there is always at
 * least one task in the system (init, pid == 1), therefore, top_cgroup
 * always has either children cgroups and/or using tasks.  So we don't
 * need a special hack to ensure that top_cgroup cannot be deleted.
 *
 *	The task_lock() exception
 *
 * The need for this exception arises from the action of
755
 * cgroup_attach_task(), which overwrites one task's cgroup pointer with
L
Li Zefan 已提交
756
 * another.  It does so using cgroup_mutex, however there are
757 758 759
 * several performance critical places that need to reference
 * task->cgroup without the expense of grabbing a system global
 * mutex.  Therefore except as noted below, when dereferencing or, as
760
 * in cgroup_attach_task(), modifying a task's cgroup pointer we use
761 762 763 764
 * task_lock(), which acts on a spinlock (task->alloc_lock) already in
 * the task_struct routinely used for such matters.
 *
 * P.S.  One more locking exception.  RCU is used to guard the
765
 * update of a tasks cgroup pointer by cgroup_attach_task()
766 767 768 769 770 771 772 773 774
 */

/*
 * A couple of forward declarations required, due to cyclic reference loop:
 * cgroup_mkdir -> cgroup_create -> cgroup_populate_dir ->
 * cgroup_add_file -> cgroup_create_file -> cgroup_dir_inode_operations
 * -> cgroup_mkdir.
 */

775
static int cgroup_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode);
776
static int cgroup_rmdir(struct inode *unused_dir, struct dentry *dentry);
777
static int cgroup_populate_dir(struct cgroup *cgrp, unsigned long subsys_mask);
778
static const struct inode_operations cgroup_dir_inode_operations;
779
static const struct file_operations proc_cgroupstats_operations;
780 781

static struct backing_dev_info cgroup_backing_dev_info = {
782
	.name		= "cgroup",
783
	.capabilities	= BDI_CAP_NO_ACCT_AND_WRITEBACK,
784
};
785

A
Al Viro 已提交
786
static struct inode *cgroup_new_inode(umode_t mode, struct super_block *sb)
787 788 789 790
{
	struct inode *inode = new_inode(sb);

	if (inode) {
791
		inode->i_ino = get_next_ino();
792
		inode->i_mode = mode;
793 794
		inode->i_uid = current_fsuid();
		inode->i_gid = current_fsgid();
795 796 797 798 799 800
		inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
		inode->i_mapping->backing_dev_info = &cgroup_backing_dev_info;
	}
	return inode;
}

801 802 803 804 805 806 807 808 809 810 811
static struct cgroup_name *cgroup_alloc_name(struct dentry *dentry)
{
	struct cgroup_name *name;

	name = kmalloc(sizeof(*name) + dentry->d_name.len + 1, GFP_KERNEL);
	if (!name)
		return NULL;
	strcpy(name->name, dentry->d_name.name);
	return name;
}

812 813
static void cgroup_free_fn(struct work_struct *work)
{
814
	struct cgroup *cgrp = container_of(work, struct cgroup, destroy_work);
815 816 817 818 819

	mutex_lock(&cgroup_mutex);
	cgrp->root->number_of_cgroups--;
	mutex_unlock(&cgroup_mutex);

820 821 822 823 824 825 826
	/*
	 * We get a ref to the parent's dentry, and put the ref when
	 * this cgroup is being freed, so it's guaranteed that the
	 * parent won't be destroyed before its children.
	 */
	dput(cgrp->parent->dentry);

827 828
	/*
	 * Drop the active superblock reference that we took when we
829 830
	 * created the cgroup. This will free cgrp->root, if we are
	 * holding the last reference to @sb.
831 832 833
	 */
	deactivate_super(cgrp->root->sb);

834
	cgroup_pidlist_destroy_all(cgrp);
835 836 837

	simple_xattrs_free(&cgrp->xattrs);

838
	kfree(rcu_dereference_raw(cgrp->name));
839 840 841 842 843 844 845
	kfree(cgrp);
}

static void cgroup_free_rcu(struct rcu_head *head)
{
	struct cgroup *cgrp = container_of(head, struct cgroup, rcu_head);

846
	INIT_WORK(&cgrp->destroy_work, cgroup_free_fn);
847
	queue_work(cgroup_destroy_wq, &cgrp->destroy_work);
848 849
}

850 851 852 853
static void cgroup_diput(struct dentry *dentry, struct inode *inode)
{
	/* is dentry a directory ? if so, kfree() associated cgroup */
	if (S_ISDIR(inode->i_mode)) {
854
		struct cgroup *cgrp = dentry->d_fsdata;
855

856
		BUG_ON(!(cgroup_is_dead(cgrp)));
857
		call_rcu(&cgrp->rcu_head, cgroup_free_rcu);
T
Tejun Heo 已提交
858 859 860 861 862 863 864
	} else {
		struct cfent *cfe = __d_cfe(dentry);
		struct cgroup *cgrp = dentry->d_parent->d_fsdata;

		WARN_ONCE(!list_empty(&cfe->node) &&
			  cgrp != &cgrp->root->top_cgroup,
			  "cfe still linked for %s\n", cfe->type->name);
L
Li Zefan 已提交
865
		simple_xattrs_free(&cfe->xattrs);
T
Tejun Heo 已提交
866
		kfree(cfe);
867 868 869 870 871 872 873 874 875 876 877 878 879
	}
	iput(inode);
}

static void remove_dir(struct dentry *d)
{
	struct dentry *parent = dget(d->d_parent);

	d_delete(d);
	simple_rmdir(parent->d_inode, d);
	dput(parent);
}

880
static void cgroup_rm_file(struct cgroup *cgrp, const struct cftype *cft)
T
Tejun Heo 已提交
881 882 883 884 885 886
{
	struct cfent *cfe;

	lockdep_assert_held(&cgrp->dentry->d_inode->i_mutex);
	lockdep_assert_held(&cgroup_mutex);

887 888 889 890
	/*
	 * If we're doing cleanup due to failure of cgroup_create(),
	 * the corresponding @cfe may not exist.
	 */
T
Tejun Heo 已提交
891 892 893 894 895 896 897 898
	list_for_each_entry(cfe, &cgrp->files, node) {
		struct dentry *d = cfe->dentry;

		if (cft && cfe->type != cft)
			continue;

		dget(d);
		d_delete(d);
899
		simple_unlink(cgrp->dentry->d_inode, d);
T
Tejun Heo 已提交
900 901 902
		list_del_init(&cfe->node);
		dput(d);

903
		break;
904
	}
T
Tejun Heo 已提交
905 906
}

907
/**
908
 * cgroup_clear_dir - remove subsys files in a cgroup directory
909
 * @cgrp: target cgroup
910 911
 * @subsys_mask: mask of the subsystem ids whose files should be removed
 */
912
static void cgroup_clear_dir(struct cgroup *cgrp, unsigned long subsys_mask)
T
Tejun Heo 已提交
913
{
914
	struct cgroup_subsys *ss;
915
	int i;
T
Tejun Heo 已提交
916

917
	for_each_subsys(ss, i) {
918
		struct cftype_set *set;
919 920

		if (!test_bit(i, &subsys_mask))
921 922
			continue;
		list_for_each_entry(set, &ss->cftsets, node)
923
			cgroup_addrm_files(cgrp, set->cfts, false);
924
	}
925 926 927 928 929 930 931
}

/*
 * NOTE : the dentry must have been dget()'ed
 */
static void cgroup_d_remove_dir(struct dentry *dentry)
{
N
Nick Piggin 已提交
932
	struct dentry *parent;
933

N
Nick Piggin 已提交
934 935
	parent = dentry->d_parent;
	spin_lock(&parent->d_lock);
936
	spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
937
	list_del_init(&dentry->d_u.d_child);
N
Nick Piggin 已提交
938 939
	spin_unlock(&dentry->d_lock);
	spin_unlock(&parent->d_lock);
940 941 942
	remove_dir(dentry);
}

B
Ben Blum 已提交
943
/*
B
Ben Blum 已提交
944 945 946
 * Call with cgroup_mutex held. Drops reference counts on modules, including
 * any duplicate ones that parse_cgroupfs_options took. If this function
 * returns an error, no reference counts are touched.
B
Ben Blum 已提交
947
 */
948
static int rebind_subsystems(struct cgroupfs_root *root,
949
			     unsigned long added_mask, unsigned removed_mask)
950
{
951
	struct cgroup *cgrp = &root->top_cgroup;
952
	struct cgroup_subsys *ss;
953
	unsigned long pinned = 0;
954
	int i, ret;
955

B
Ben Blum 已提交
956
	BUG_ON(!mutex_is_locked(&cgroup_mutex));
T
Tejun Heo 已提交
957
	BUG_ON(!mutex_is_locked(&cgroup_root_mutex));
B
Ben Blum 已提交
958

959
	/* Check that any added subsystems are currently free */
960
	for_each_subsys(ss, i) {
961
		if (!(added_mask & (1 << i)))
962
			continue;
963

964
		/* is the subsystem mounted elsewhere? */
965
		if (ss->root != &cgroup_dummy_root) {
966 967 968 969 970 971 972 973
			ret = -EBUSY;
			goto out_put;
		}

		/* pin the module */
		if (!try_module_get(ss->module)) {
			ret = -ENOENT;
			goto out_put;
974
		}
975
		pinned |= 1 << i;
976 977
	}

978 979 980 981
	/* subsys could be missing if unloaded between parsing and here */
	if (added_mask != pinned) {
		ret = -ENOENT;
		goto out_put;
982 983
	}

984 985
	ret = cgroup_populate_dir(cgrp, added_mask);
	if (ret)
986
		goto out_put;
987 988 989 990 991 992

	/*
	 * Nothing can fail from this point on.  Remove files for the
	 * removed subsystems and rebind each subsystem.
	 */
	cgroup_clear_dir(cgrp, removed_mask);
993

994
	for_each_subsys(ss, i) {
995
		unsigned long bit = 1UL << i;
996

997
		if (bit & added_mask) {
998
			/* We're binding this subsystem to this hierarchy */
999 1000 1001
			BUG_ON(cgroup_css(cgrp, ss));
			BUG_ON(!cgroup_css(cgroup_dummy_top, ss));
			BUG_ON(cgroup_css(cgroup_dummy_top, ss)->cgroup != cgroup_dummy_top);
1002

1003
			rcu_assign_pointer(cgrp->subsys[i],
1004 1005
					   cgroup_css(cgroup_dummy_top, ss));
			cgroup_css(cgrp, ss)->cgroup = cgrp;
1006

1007
			list_move(&ss->sibling, &root->subsys_list);
1008
			ss->root = root;
1009
			if (ss->bind)
1010
				ss->bind(cgroup_css(cgrp, ss));
1011

B
Ben Blum 已提交
1012
			/* refcount was already taken, and we're keeping it */
1013
			root->subsys_mask |= bit;
1014
		} else if (bit & removed_mask) {
1015
			/* We're removing this subsystem */
1016 1017
			BUG_ON(cgroup_css(cgrp, ss) != cgroup_css(cgroup_dummy_top, ss));
			BUG_ON(cgroup_css(cgrp, ss)->cgroup != cgrp);
1018

1019
			if (ss->bind)
1020
				ss->bind(cgroup_css(cgroup_dummy_top, ss));
1021

1022
			cgroup_css(cgroup_dummy_top, ss)->cgroup = cgroup_dummy_top;
1023 1024
			RCU_INIT_POINTER(cgrp->subsys[i], NULL);

1025 1026
			cgroup_subsys[i]->root = &cgroup_dummy_root;
			list_move(&ss->sibling, &cgroup_dummy_root.subsys_list);
1027

B
Ben Blum 已提交
1028 1029
			/* subsystem is now free - drop reference on module */
			module_put(ss->module);
1030
			root->subsys_mask &= ~bit;
1031 1032 1033
		}
	}

1034 1035 1036 1037 1038 1039
	/*
	 * Mark @root has finished binding subsystems.  @root->subsys_mask
	 * now matches the bound subsystems.
	 */
	root->flags |= CGRP_ROOT_SUBSYS_BOUND;

1040
	return 0;
1041 1042 1043 1044 1045 1046

out_put:
	for_each_subsys(ss, i)
		if (pinned & (1 << i))
			module_put(ss->module);
	return ret;
1047 1048
}

1049
static int cgroup_show_options(struct seq_file *seq, struct dentry *dentry)
1050
{
1051
	struct cgroupfs_root *root = dentry->d_sb->s_fs_info;
1052 1053
	struct cgroup_subsys *ss;

T
Tejun Heo 已提交
1054
	mutex_lock(&cgroup_root_mutex);
1055
	for_each_root_subsys(root, ss)
1056
		seq_printf(seq, ",%s", ss->name);
1057 1058
	if (root->flags & CGRP_ROOT_SANE_BEHAVIOR)
		seq_puts(seq, ",sane_behavior");
1059
	if (root->flags & CGRP_ROOT_NOPREFIX)
1060
		seq_puts(seq, ",noprefix");
1061
	if (root->flags & CGRP_ROOT_XATTR)
A
Aristeu Rozanski 已提交
1062
		seq_puts(seq, ",xattr");
1063 1064
	if (strlen(root->release_agent_path))
		seq_printf(seq, ",release_agent=%s", root->release_agent_path);
1065
	if (test_bit(CGRP_CPUSET_CLONE_CHILDREN, &root->top_cgroup.flags))
1066
		seq_puts(seq, ",clone_children");
1067 1068
	if (strlen(root->name))
		seq_printf(seq, ",name=%s", root->name);
T
Tejun Heo 已提交
1069
	mutex_unlock(&cgroup_root_mutex);
1070 1071 1072 1073
	return 0;
}

struct cgroup_sb_opts {
1074
	unsigned long subsys_mask;
1075
	unsigned long flags;
1076
	char *release_agent;
1077
	bool cpuset_clone_children;
1078
	char *name;
1079 1080
	/* User explicitly requested empty subsystem */
	bool none;
1081 1082

	struct cgroupfs_root *new_root;
1083

1084 1085
};

B
Ben Blum 已提交
1086
/*
1087 1088 1089 1090
 * Convert a hierarchy specifier into a bitmask of subsystems and
 * flags. Call with cgroup_mutex held to protect the cgroup_subsys[]
 * array. This function takes refcounts on subsystems to be used, unless it
 * returns error, in which case no refcounts are taken.
B
Ben Blum 已提交
1091
 */
B
Ben Blum 已提交
1092
static int parse_cgroupfs_options(char *data, struct cgroup_sb_opts *opts)
1093
{
1094 1095
	char *token, *o = data;
	bool all_ss = false, one_ss = false;
1096
	unsigned long mask = (unsigned long)-1;
1097 1098
	struct cgroup_subsys *ss;
	int i;
1099

B
Ben Blum 已提交
1100 1101
	BUG_ON(!mutex_is_locked(&cgroup_mutex));

1102 1103 1104
#ifdef CONFIG_CPUSETS
	mask = ~(1UL << cpuset_subsys_id);
#endif
1105

1106
	memset(opts, 0, sizeof(*opts));
1107 1108 1109 1110

	while ((token = strsep(&o, ",")) != NULL) {
		if (!*token)
			return -EINVAL;
1111
		if (!strcmp(token, "none")) {
1112 1113
			/* Explicitly have no subsystems */
			opts->none = true;
1114 1115 1116 1117 1118 1119 1120 1121 1122
			continue;
		}
		if (!strcmp(token, "all")) {
			/* Mutually exclusive option 'all' + subsystem name */
			if (one_ss)
				return -EINVAL;
			all_ss = true;
			continue;
		}
1123 1124 1125 1126
		if (!strcmp(token, "__DEVEL__sane_behavior")) {
			opts->flags |= CGRP_ROOT_SANE_BEHAVIOR;
			continue;
		}
1127
		if (!strcmp(token, "noprefix")) {
1128
			opts->flags |= CGRP_ROOT_NOPREFIX;
1129 1130 1131
			continue;
		}
		if (!strcmp(token, "clone_children")) {
1132
			opts->cpuset_clone_children = true;
1133 1134
			continue;
		}
A
Aristeu Rozanski 已提交
1135
		if (!strcmp(token, "xattr")) {
1136
			opts->flags |= CGRP_ROOT_XATTR;
A
Aristeu Rozanski 已提交
1137 1138
			continue;
		}
1139
		if (!strncmp(token, "release_agent=", 14)) {
1140 1141 1142
			/* Specifying two release agents is forbidden */
			if (opts->release_agent)
				return -EINVAL;
1143
			opts->release_agent =
1144
				kstrndup(token + 14, PATH_MAX - 1, GFP_KERNEL);
1145 1146
			if (!opts->release_agent)
				return -ENOMEM;
1147 1148 1149
			continue;
		}
		if (!strncmp(token, "name=", 5)) {
1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166
			const char *name = token + 5;
			/* Can't specify an empty name */
			if (!strlen(name))
				return -EINVAL;
			/* Must match [\w.-]+ */
			for (i = 0; i < strlen(name); i++) {
				char c = name[i];
				if (isalnum(c))
					continue;
				if ((c == '.') || (c == '-') || (c == '_'))
					continue;
				return -EINVAL;
			}
			/* Specifying two names is forbidden */
			if (opts->name)
				return -EINVAL;
			opts->name = kstrndup(name,
1167
					      MAX_CGROUP_ROOT_NAMELEN - 1,
1168 1169 1170
					      GFP_KERNEL);
			if (!opts->name)
				return -ENOMEM;
1171 1172 1173 1174

			continue;
		}

1175
		for_each_subsys(ss, i) {
1176 1177 1178 1179 1180 1181 1182 1183
			if (strcmp(token, ss->name))
				continue;
			if (ss->disabled)
				continue;

			/* Mutually exclusive option 'all' + subsystem name */
			if (all_ss)
				return -EINVAL;
1184
			set_bit(i, &opts->subsys_mask);
1185 1186 1187 1188 1189 1190 1191 1192 1193 1194
			one_ss = true;

			break;
		}
		if (i == CGROUP_SUBSYS_COUNT)
			return -ENOENT;
	}

	/*
	 * If the 'all' option was specified select all the subsystems,
1195 1196
	 * otherwise if 'none', 'name=' and a subsystem name options
	 * were not specified, let's default to 'all'
1197
	 */
1198 1199 1200 1201
	if (all_ss || (!one_ss && !opts->none && !opts->name))
		for_each_subsys(ss, i)
			if (!ss->disabled)
				set_bit(i, &opts->subsys_mask);
1202

1203 1204
	/* Consistency checks */

1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218
	if (opts->flags & CGRP_ROOT_SANE_BEHAVIOR) {
		pr_warning("cgroup: sane_behavior: this is still under development and its behaviors will change, proceed at your own risk\n");

		if (opts->flags & CGRP_ROOT_NOPREFIX) {
			pr_err("cgroup: sane_behavior: noprefix is not allowed\n");
			return -EINVAL;
		}

		if (opts->cpuset_clone_children) {
			pr_err("cgroup: sane_behavior: clone_children is not allowed\n");
			return -EINVAL;
		}
	}

1219 1220 1221 1222 1223
	/*
	 * Option noprefix was introduced just for backward compatibility
	 * with the old cpuset, so we allow noprefix only if mounting just
	 * the cpuset subsystem.
	 */
1224
	if ((opts->flags & CGRP_ROOT_NOPREFIX) && (opts->subsys_mask & mask))
1225 1226
		return -EINVAL;

1227 1228

	/* Can't specify "none" and some subsystems */
1229
	if (opts->subsys_mask && opts->none)
1230 1231 1232 1233 1234 1235
		return -EINVAL;

	/*
	 * We either have to specify by name or by subsystems. (So all
	 * empty hierarchies must have a name).
	 */
1236
	if (!opts->subsys_mask && !opts->name)
1237 1238 1239 1240 1241 1242 1243 1244 1245
		return -EINVAL;

	return 0;
}

static int cgroup_remount(struct super_block *sb, int *flags, char *data)
{
	int ret = 0;
	struct cgroupfs_root *root = sb->s_fs_info;
1246
	struct cgroup *cgrp = &root->top_cgroup;
1247
	struct cgroup_sb_opts opts;
1248
	unsigned long added_mask, removed_mask;
1249

1250 1251 1252 1253 1254
	if (root->flags & CGRP_ROOT_SANE_BEHAVIOR) {
		pr_err("cgroup: sane_behavior: remount is not allowed\n");
		return -EINVAL;
	}

1255
	mutex_lock(&cgrp->dentry->d_inode->i_mutex);
1256
	mutex_lock(&cgroup_mutex);
T
Tejun Heo 已提交
1257
	mutex_lock(&cgroup_root_mutex);
1258 1259 1260 1261 1262 1263

	/* See what subsystems are wanted */
	ret = parse_cgroupfs_options(data, &opts);
	if (ret)
		goto out_unlock;

1264
	if (opts.subsys_mask != root->subsys_mask || opts.release_agent)
1265 1266 1267
		pr_warning("cgroup: option changes via remount are deprecated (pid=%d comm=%s)\n",
			   task_tgid_nr(current), current->comm);

1268 1269
	added_mask = opts.subsys_mask & ~root->subsys_mask;
	removed_mask = root->subsys_mask & ~opts.subsys_mask;
1270

B
Ben Blum 已提交
1271
	/* Don't allow flags or name to change at remount */
1272
	if (((opts.flags ^ root->flags) & CGRP_ROOT_OPTION_MASK) ||
B
Ben Blum 已提交
1273
	    (opts.name && strcmp(opts.name, root->name))) {
1274 1275 1276
		pr_err("cgroup: option or name mismatch, new: 0x%lx \"%s\", old: 0x%lx \"%s\"\n",
		       opts.flags & CGRP_ROOT_OPTION_MASK, opts.name ?: "",
		       root->flags & CGRP_ROOT_OPTION_MASK, root->name);
1277 1278 1279 1280
		ret = -EINVAL;
		goto out_unlock;
	}

1281 1282 1283
	/* remounting is not allowed for populated hierarchies */
	if (root->number_of_cgroups > 1) {
		ret = -EBUSY;
1284
		goto out_unlock;
B
Ben Blum 已提交
1285
	}
1286

1287
	ret = rebind_subsystems(root, added_mask, removed_mask);
1288
	if (ret)
1289
		goto out_unlock;
1290

1291 1292
	if (opts.release_agent)
		strcpy(root->release_agent_path, opts.release_agent);
1293
 out_unlock:
1294
	kfree(opts.release_agent);
1295
	kfree(opts.name);
T
Tejun Heo 已提交
1296
	mutex_unlock(&cgroup_root_mutex);
1297
	mutex_unlock(&cgroup_mutex);
1298
	mutex_unlock(&cgrp->dentry->d_inode->i_mutex);
1299 1300 1301
	return ret;
}

1302
static const struct super_operations cgroup_ops = {
1303 1304 1305 1306 1307 1308
	.statfs = simple_statfs,
	.drop_inode = generic_delete_inode,
	.show_options = cgroup_show_options,
	.remount_fs = cgroup_remount,
};

1309 1310 1311 1312
static void init_cgroup_housekeeping(struct cgroup *cgrp)
{
	INIT_LIST_HEAD(&cgrp->sibling);
	INIT_LIST_HEAD(&cgrp->children);
T
Tejun Heo 已提交
1313
	INIT_LIST_HEAD(&cgrp->files);
1314
	INIT_LIST_HEAD(&cgrp->cset_links);
1315
	INIT_LIST_HEAD(&cgrp->release_list);
1316 1317
	INIT_LIST_HEAD(&cgrp->pidlists);
	mutex_init(&cgrp->pidlist_mutex);
T
Tejun Heo 已提交
1318
	cgrp->dummy_css.cgroup = cgrp;
A
Aristeu Rozanski 已提交
1319
	simple_xattrs_init(&cgrp->xattrs);
1320
}
1321

1322 1323
static void init_cgroup_root(struct cgroupfs_root *root)
{
1324
	struct cgroup *cgrp = &root->top_cgroup;
1325

1326 1327 1328
	INIT_LIST_HEAD(&root->subsys_list);
	INIT_LIST_HEAD(&root->root_list);
	root->number_of_cgroups = 1;
1329
	cgrp->root = root;
1330
	RCU_INIT_POINTER(cgrp->name, &root_cgroup_name);
1331
	init_cgroup_housekeeping(cgrp);
1332
	idr_init(&root->cgroup_idr);
1333 1334
}

1335
static int cgroup_init_root_id(struct cgroupfs_root *root, int start, int end)
1336
{
1337
	int id;
1338

T
Tejun Heo 已提交
1339 1340 1341
	lockdep_assert_held(&cgroup_mutex);
	lockdep_assert_held(&cgroup_root_mutex);

1342 1343
	id = idr_alloc_cyclic(&cgroup_hierarchy_idr, root, start, end,
			      GFP_KERNEL);
1344 1345 1346 1347
	if (id < 0)
		return id;

	root->hierarchy_id = id;
1348 1349 1350 1351 1352
	return 0;
}

static void cgroup_exit_root_id(struct cgroupfs_root *root)
{
T
Tejun Heo 已提交
1353 1354 1355
	lockdep_assert_held(&cgroup_mutex);
	lockdep_assert_held(&cgroup_root_mutex);

1356
	if (root->hierarchy_id) {
1357
		idr_remove(&cgroup_hierarchy_idr, root->hierarchy_id);
1358 1359
		root->hierarchy_id = 0;
	}
1360 1361
}

1362 1363
static int cgroup_test_super(struct super_block *sb, void *data)
{
1364
	struct cgroup_sb_opts *opts = data;
1365 1366
	struct cgroupfs_root *root = sb->s_fs_info;

1367 1368 1369
	/* If we asked for a name then it must match */
	if (opts->name && strcmp(opts->name, root->name))
		return 0;
1370

1371 1372 1373 1374
	/*
	 * If we asked for subsystems (or explicitly for no
	 * subsystems) then they must match
	 */
1375 1376
	if ((opts->subsys_mask || opts->none)
	    && (opts->subsys_mask != root->subsys_mask))
1377 1378 1379 1380 1381
		return 0;

	return 1;
}

1382 1383 1384 1385
static struct cgroupfs_root *cgroup_root_from_opts(struct cgroup_sb_opts *opts)
{
	struct cgroupfs_root *root;

1386
	if (!opts->subsys_mask && !opts->none)
1387 1388 1389 1390 1391 1392 1393
		return NULL;

	root = kzalloc(sizeof(*root), GFP_KERNEL);
	if (!root)
		return ERR_PTR(-ENOMEM);

	init_cgroup_root(root);
1394

1395 1396 1397 1398 1399 1400 1401 1402
	/*
	 * We need to set @root->subsys_mask now so that @root can be
	 * matched by cgroup_test_super() before it finishes
	 * initialization; otherwise, competing mounts with the same
	 * options may try to bind the same subsystems instead of waiting
	 * for the first one leading to unexpected mount errors.
	 * SUBSYS_BOUND will be set once actual binding is complete.
	 */
1403
	root->subsys_mask = opts->subsys_mask;
1404 1405 1406 1407 1408
	root->flags = opts->flags;
	if (opts->release_agent)
		strcpy(root->release_agent_path, opts->release_agent);
	if (opts->name)
		strcpy(root->name, opts->name);
1409 1410
	if (opts->cpuset_clone_children)
		set_bit(CGRP_CPUSET_CLONE_CHILDREN, &root->top_cgroup.flags);
1411 1412 1413
	return root;
}

1414
static void cgroup_free_root(struct cgroupfs_root *root)
1415
{
1416 1417 1418
	if (root) {
		/* hierarhcy ID shoulid already have been released */
		WARN_ON_ONCE(root->hierarchy_id);
1419

1420
		idr_destroy(&root->cgroup_idr);
1421 1422
		kfree(root);
	}
1423 1424
}

1425 1426 1427
static int cgroup_set_super(struct super_block *sb, void *data)
{
	int ret;
1428 1429 1430 1431 1432 1433
	struct cgroup_sb_opts *opts = data;

	/* If we don't have a new root, we can't set up a new sb */
	if (!opts->new_root)
		return -EINVAL;

1434
	BUG_ON(!opts->subsys_mask && !opts->none);
1435 1436 1437 1438 1439

	ret = set_anon_super(sb, NULL);
	if (ret)
		return ret;

1440 1441
	sb->s_fs_info = opts->new_root;
	opts->new_root->sb = sb;
1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452

	sb->s_blocksize = PAGE_CACHE_SIZE;
	sb->s_blocksize_bits = PAGE_CACHE_SHIFT;
	sb->s_magic = CGROUP_SUPER_MAGIC;
	sb->s_op = &cgroup_ops;

	return 0;
}

static int cgroup_get_rootdir(struct super_block *sb)
{
A
Al Viro 已提交
1453 1454
	static const struct dentry_operations cgroup_dops = {
		.d_iput = cgroup_diput,
1455
		.d_delete = always_delete_dentry,
A
Al Viro 已提交
1456 1457
	};

1458 1459 1460 1461 1462 1463 1464 1465 1466 1467
	struct inode *inode =
		cgroup_new_inode(S_IFDIR | S_IRUGO | S_IXUGO | S_IWUSR, sb);

	if (!inode)
		return -ENOMEM;

	inode->i_fop = &simple_dir_operations;
	inode->i_op = &cgroup_dir_inode_operations;
	/* directories start off with i_nlink == 2 (for "." entry) */
	inc_nlink(inode);
1468 1469
	sb->s_root = d_make_root(inode);
	if (!sb->s_root)
1470
		return -ENOMEM;
A
Al Viro 已提交
1471 1472
	/* for everything else we want ->d_op set */
	sb->s_d_op = &cgroup_dops;
1473 1474 1475
	return 0;
}

A
Al Viro 已提交
1476
static struct dentry *cgroup_mount(struct file_system_type *fs_type,
1477
			 int flags, const char *unused_dev_name,
A
Al Viro 已提交
1478
			 void *data)
1479 1480
{
	struct cgroup_sb_opts opts;
1481
	struct cgroupfs_root *root;
1482 1483
	int ret = 0;
	struct super_block *sb;
1484
	struct cgroupfs_root *new_root;
1485
	struct list_head tmp_links;
T
Tejun Heo 已提交
1486
	struct inode *inode;
1487
	const struct cred *cred;
1488 1489

	/* First find the desired set of subsystems */
B
Ben Blum 已提交
1490
	mutex_lock(&cgroup_mutex);
1491
	ret = parse_cgroupfs_options(data, &opts);
B
Ben Blum 已提交
1492
	mutex_unlock(&cgroup_mutex);
1493 1494
	if (ret)
		goto out_err;
1495

1496 1497 1498 1499 1500 1501 1502
	/*
	 * Allocate a new cgroup root. We may not need it if we're
	 * reusing an existing hierarchy.
	 */
	new_root = cgroup_root_from_opts(&opts);
	if (IS_ERR(new_root)) {
		ret = PTR_ERR(new_root);
1503
		goto out_err;
1504
	}
1505
	opts.new_root = new_root;
1506

1507
	/* Locate an existing or new sb for this hierarchy */
D
David Howells 已提交
1508
	sb = sget(fs_type, cgroup_test_super, cgroup_set_super, 0, &opts);
1509
	if (IS_ERR(sb)) {
1510
		ret = PTR_ERR(sb);
1511
		cgroup_free_root(opts.new_root);
1512
		goto out_err;
1513 1514
	}

1515 1516 1517 1518
	root = sb->s_fs_info;
	BUG_ON(!root);
	if (root == opts.new_root) {
		/* We used the new root structure, so this is a new hierarchy */
1519
		struct cgroup *root_cgrp = &root->top_cgroup;
1520
		struct cgroupfs_root *existing_root;
1521
		int i;
1522
		struct css_set *cset;
1523 1524 1525 1526 1527 1528

		BUG_ON(sb->s_root != NULL);

		ret = cgroup_get_rootdir(sb);
		if (ret)
			goto drop_new_super;
1529
		inode = sb->s_root->d_inode;
1530

1531
		mutex_lock(&inode->i_mutex);
1532
		mutex_lock(&cgroup_mutex);
T
Tejun Heo 已提交
1533
		mutex_lock(&cgroup_root_mutex);
1534

1535 1536 1537 1538 1539
		root_cgrp->id = idr_alloc(&root->cgroup_idr, root_cgrp,
					   0, 1, GFP_KERNEL);
		if (root_cgrp->id < 0)
			goto unlock_drop;

T
Tejun Heo 已提交
1540 1541 1542 1543 1544 1545
		/* Check for name clashes with existing mounts */
		ret = -EBUSY;
		if (strlen(root->name))
			for_each_active_root(existing_root)
				if (!strcmp(existing_root->name, root->name))
					goto unlock_drop;
1546

1547 1548 1549 1550 1551 1552 1553
		/*
		 * We're accessing css_set_count without locking
		 * css_set_lock here, but that's OK - it can only be
		 * increased by someone holding cgroup_lock, and
		 * that's us. The worst that can happen is that we
		 * have some link structures left over
		 */
1554
		ret = allocate_cgrp_cset_links(css_set_count, &tmp_links);
T
Tejun Heo 已提交
1555 1556
		if (ret)
			goto unlock_drop;
1557

1558 1559
		/* ID 0 is reserved for dummy root, 1 for unified hierarchy */
		ret = cgroup_init_root_id(root, 2, 0);
1560 1561 1562
		if (ret)
			goto unlock_drop;

1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574
		sb->s_root->d_fsdata = root_cgrp;
		root_cgrp->dentry = sb->s_root;

		/*
		 * We're inside get_sb() and will call lookup_one_len() to
		 * create the root files, which doesn't work if SELinux is
		 * in use.  The following cred dancing somehow works around
		 * it.  See 2ce9738ba ("cgroupfs: use init_cred when
		 * populating new cgroupfs mount") for more details.
		 */
		cred = override_creds(&init_cred);

1575
		ret = cgroup_addrm_files(root_cgrp, cgroup_base_files, true);
1576 1577 1578
		if (ret)
			goto rm_base_files;

1579
		ret = rebind_subsystems(root, root->subsys_mask, 0);
1580 1581 1582 1583 1584
		if (ret)
			goto rm_base_files;

		revert_creds(cred);

B
Ben Blum 已提交
1585 1586 1587 1588 1589
		/*
		 * There must be no failure case after here, since rebinding
		 * takes care of subsystems' refcounts, which are explicitly
		 * dropped in the failure exit path.
		 */
1590

1591 1592
		list_add(&root->root_list, &cgroup_roots);
		cgroup_root_count++;
1593

1594 1595 1596
		/* Link the top cgroup in this hierarchy into all
		 * the css_set objects */
		write_lock(&css_set_lock);
1597
		hash_for_each(css_set_table, i, cset, hlist)
1598
			link_css_set(&tmp_links, cset, root_cgrp);
1599 1600
		write_unlock(&css_set_lock);

1601
		free_cgrp_cset_links(&tmp_links);
1602

1603
		BUG_ON(!list_empty(&root_cgrp->children));
1604 1605
		BUG_ON(root->number_of_cgroups != 1);

T
Tejun Heo 已提交
1606
		mutex_unlock(&cgroup_root_mutex);
1607
		mutex_unlock(&cgroup_mutex);
1608
		mutex_unlock(&inode->i_mutex);
1609 1610 1611 1612 1613
	} else {
		/*
		 * We re-used an existing hierarchy - the new root (if
		 * any) is not needed
		 */
1614
		cgroup_free_root(opts.new_root);
1615

1616
		if ((root->flags ^ opts.flags) & CGRP_ROOT_OPTION_MASK) {
1617 1618 1619 1620 1621 1622 1623
			if ((root->flags | opts.flags) & CGRP_ROOT_SANE_BEHAVIOR) {
				pr_err("cgroup: sane_behavior: new mount options should match the existing superblock\n");
				ret = -EINVAL;
				goto drop_new_super;
			} else {
				pr_warning("cgroup: new mount options do not match the existing superblock, will be ignored\n");
			}
1624
		}
1625 1626
	}

1627 1628
	kfree(opts.release_agent);
	kfree(opts.name);
A
Al Viro 已提交
1629
	return dget(sb->s_root);
1630

1631 1632
 rm_base_files:
	free_cgrp_cset_links(&tmp_links);
1633
	cgroup_addrm_files(&root->top_cgroup, cgroup_base_files, false);
1634
	revert_creds(cred);
T
Tejun Heo 已提交
1635
 unlock_drop:
1636
	cgroup_exit_root_id(root);
T
Tejun Heo 已提交
1637 1638 1639
	mutex_unlock(&cgroup_root_mutex);
	mutex_unlock(&cgroup_mutex);
	mutex_unlock(&inode->i_mutex);
1640
 drop_new_super:
1641
	deactivate_locked_super(sb);
1642 1643 1644
 out_err:
	kfree(opts.release_agent);
	kfree(opts.name);
A
Al Viro 已提交
1645
	return ERR_PTR(ret);
1646 1647 1648 1649
}

static void cgroup_kill_sb(struct super_block *sb) {
	struct cgroupfs_root *root = sb->s_fs_info;
1650
	struct cgroup *cgrp = &root->top_cgroup;
1651
	struct cgrp_cset_link *link, *tmp_link;
1652 1653 1654 1655 1656
	int ret;

	BUG_ON(!root);

	BUG_ON(root->number_of_cgroups != 1);
1657
	BUG_ON(!list_empty(&cgrp->children));
1658

1659
	mutex_lock(&cgrp->dentry->d_inode->i_mutex);
1660
	mutex_lock(&cgroup_mutex);
T
Tejun Heo 已提交
1661
	mutex_lock(&cgroup_root_mutex);
1662 1663

	/* Rebind all subsystems back to the default hierarchy */
1664 1665 1666 1667 1668
	if (root->flags & CGRP_ROOT_SUBSYS_BOUND) {
		ret = rebind_subsystems(root, 0, root->subsys_mask);
		/* Shouldn't be able to fail ... */
		BUG_ON(ret);
	}
1669

1670
	/*
1671
	 * Release all the links from cset_links to this hierarchy's
1672 1673 1674
	 * root cgroup
	 */
	write_lock(&css_set_lock);
K
KOSAKI Motohiro 已提交
1675

1676 1677 1678
	list_for_each_entry_safe(link, tmp_link, &cgrp->cset_links, cset_link) {
		list_del(&link->cset_link);
		list_del(&link->cgrp_link);
1679 1680 1681 1682
		kfree(link);
	}
	write_unlock(&css_set_lock);

1683 1684
	if (!list_empty(&root->root_list)) {
		list_del(&root->root_list);
1685
		cgroup_root_count--;
1686
	}
1687

1688 1689
	cgroup_exit_root_id(root);

T
Tejun Heo 已提交
1690
	mutex_unlock(&cgroup_root_mutex);
1691
	mutex_unlock(&cgroup_mutex);
1692
	mutex_unlock(&cgrp->dentry->d_inode->i_mutex);
1693

A
Aristeu Rozanski 已提交
1694 1695
	simple_xattrs_free(&cgrp->xattrs);

1696
	kill_litter_super(sb);
1697
	cgroup_free_root(root);
1698 1699 1700 1701
}

static struct file_system_type cgroup_fs_type = {
	.name = "cgroup",
A
Al Viro 已提交
1702
	.mount = cgroup_mount,
1703 1704 1705
	.kill_sb = cgroup_kill_sb,
};

1706 1707
static struct kobject *cgroup_kobj;

L
Li Zefan 已提交
1708 1709 1710 1711 1712 1713
/**
 * cgroup_path - generate the path of a cgroup
 * @cgrp: the cgroup in question
 * @buf: the buffer to write the path into
 * @buflen: the length of the buffer
 *
1714 1715 1716 1717 1718 1719
 * Writes path of cgroup into buf.  Returns 0 on success, -errno on error.
 *
 * We can't generate cgroup path using dentry->d_name, as accessing
 * dentry->name must be protected by irq-unsafe dentry->d_lock or parent
 * inode's i_mutex, while on the other hand cgroup_path() can be called
 * with some irq-safe spinlocks held.
1720
 */
1721
int cgroup_path(const struct cgroup *cgrp, char *buf, int buflen)
1722
{
1723
	int ret = -ENAMETOOLONG;
1724
	char *start;
1725

1726 1727 1728
	if (!cgrp->parent) {
		if (strlcpy(buf, "/", buflen) >= buflen)
			return -ENAMETOOLONG;
1729 1730 1731
		return 0;
	}

1732 1733
	start = buf + buflen - 1;
	*start = '\0';
1734

1735
	rcu_read_lock();
1736
	do {
1737 1738 1739 1740
		const char *name = cgroup_name(cgrp);
		int len;

		len = strlen(name);
1741
		if ((start -= len) < buf)
1742 1743
			goto out;
		memcpy(start, name, len);
1744

1745
		if (--start < buf)
1746
			goto out;
1747
		*start = '/';
1748 1749

		cgrp = cgrp->parent;
1750
	} while (cgrp->parent);
1751
	ret = 0;
1752
	memmove(buf, start, buf + buflen - start);
1753 1754 1755
out:
	rcu_read_unlock();
	return ret;
1756
}
B
Ben Blum 已提交
1757
EXPORT_SYMBOL_GPL(cgroup_path);
1758

1759
/**
1760
 * task_cgroup_path - cgroup path of a task in the first cgroup hierarchy
1761 1762 1763 1764
 * @task: target task
 * @buf: the buffer to write the path into
 * @buflen: the length of the buffer
 *
1765 1766 1767 1768 1769 1770
 * Determine @task's cgroup on the first (the one with the lowest non-zero
 * hierarchy_id) cgroup hierarchy and copy its path into @buf.  This
 * function grabs cgroup_mutex and shouldn't be used inside locks used by
 * cgroup controller callbacks.
 *
 * Returns 0 on success, fails with -%ENAMETOOLONG if @buflen is too short.
1771
 */
1772
int task_cgroup_path(struct task_struct *task, char *buf, size_t buflen)
1773 1774
{
	struct cgroupfs_root *root;
1775 1776 1777 1778 1779
	struct cgroup *cgrp;
	int hierarchy_id = 1, ret = 0;

	if (buflen < 2)
		return -ENAMETOOLONG;
1780 1781 1782

	mutex_lock(&cgroup_mutex);

1783 1784
	root = idr_get_next(&cgroup_hierarchy_idr, &hierarchy_id);

1785 1786 1787
	if (root) {
		cgrp = task_cgroup_from_root(task, root);
		ret = cgroup_path(cgrp, buf, buflen);
1788 1789 1790
	} else {
		/* if no hierarchy exists, everyone is in "/" */
		memcpy(buf, "/", 2);
1791 1792 1793 1794 1795
	}

	mutex_unlock(&cgroup_mutex);
	return ret;
}
1796
EXPORT_SYMBOL_GPL(task_cgroup_path);
1797

1798 1799 1800
/*
 * Control Group taskset
 */
1801 1802 1803
struct task_and_cgroup {
	struct task_struct	*task;
	struct cgroup		*cgrp;
L
Li Zefan 已提交
1804
	struct css_set		*cset;
1805 1806
};

1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853
struct cgroup_taskset {
	struct task_and_cgroup	single;
	struct flex_array	*tc_array;
	int			tc_array_len;
	int			idx;
	struct cgroup		*cur_cgrp;
};

/**
 * cgroup_taskset_first - reset taskset and return the first task
 * @tset: taskset of interest
 *
 * @tset iteration is initialized and the first task is returned.
 */
struct task_struct *cgroup_taskset_first(struct cgroup_taskset *tset)
{
	if (tset->tc_array) {
		tset->idx = 0;
		return cgroup_taskset_next(tset);
	} else {
		tset->cur_cgrp = tset->single.cgrp;
		return tset->single.task;
	}
}
EXPORT_SYMBOL_GPL(cgroup_taskset_first);

/**
 * cgroup_taskset_next - iterate to the next task in taskset
 * @tset: taskset of interest
 *
 * Return the next task in @tset.  Iteration must have been initialized
 * with cgroup_taskset_first().
 */
struct task_struct *cgroup_taskset_next(struct cgroup_taskset *tset)
{
	struct task_and_cgroup *tc;

	if (!tset->tc_array || tset->idx >= tset->tc_array_len)
		return NULL;

	tc = flex_array_get(tset->tc_array, tset->idx++);
	tset->cur_cgrp = tc->cgrp;
	return tc->task;
}
EXPORT_SYMBOL_GPL(cgroup_taskset_next);

/**
1854
 * cgroup_taskset_cur_css - return the matching css for the current task
1855
 * @tset: taskset of interest
1856
 * @subsys_id: the ID of the target subsystem
1857
 *
1858 1859 1860
 * Return the css for the current (last returned) task of @tset for
 * subsystem specified by @subsys_id.  This function must be preceded by
 * either cgroup_taskset_first() or cgroup_taskset_next().
1861
 */
1862 1863
struct cgroup_subsys_state *cgroup_taskset_cur_css(struct cgroup_taskset *tset,
						   int subsys_id)
1864
{
1865
	return cgroup_css(tset->cur_cgrp, cgroup_subsys[subsys_id]);
1866
}
1867
EXPORT_SYMBOL_GPL(cgroup_taskset_cur_css);
1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879

/**
 * cgroup_taskset_size - return the number of tasks in taskset
 * @tset: taskset of interest
 */
int cgroup_taskset_size(struct cgroup_taskset *tset)
{
	return tset->tc_array ? tset->tc_array_len : 1;
}
EXPORT_SYMBOL_GPL(cgroup_taskset_size);


B
Ben Blum 已提交
1880 1881 1882
/*
 * cgroup_task_migrate - move a task from one cgroup to another.
 *
1883
 * Must be called with cgroup_mutex and threadgroup locked.
B
Ben Blum 已提交
1884
 */
1885 1886 1887
static void cgroup_task_migrate(struct cgroup *old_cgrp,
				struct task_struct *tsk,
				struct css_set *new_cset)
B
Ben Blum 已提交
1888
{
1889
	struct css_set *old_cset;
B
Ben Blum 已提交
1890 1891

	/*
1892 1893 1894
	 * We are synchronized through threadgroup_lock() against PF_EXITING
	 * setting such that we can't race against cgroup_exit() changing the
	 * css_set to init_css_set and dropping the old one.
B
Ben Blum 已提交
1895
	 */
1896
	WARN_ON_ONCE(tsk->flags & PF_EXITING);
1897
	old_cset = task_css_set(tsk);
B
Ben Blum 已提交
1898 1899

	task_lock(tsk);
1900
	rcu_assign_pointer(tsk->cgroups, new_cset);
B
Ben Blum 已提交
1901 1902 1903 1904 1905
	task_unlock(tsk);

	/* Update the css_set linked lists if we're using them */
	write_lock(&css_set_lock);
	if (!list_empty(&tsk->cg_list))
1906
		list_move(&tsk->cg_list, &new_cset->tasks);
B
Ben Blum 已提交
1907 1908 1909
	write_unlock(&css_set_lock);

	/*
1910 1911 1912
	 * We just gained a reference on old_cset by taking it from the
	 * task. As trading it for new_cset is protected by cgroup_mutex,
	 * we're safe to drop it here; it will be freed under RCU.
B
Ben Blum 已提交
1913
	 */
1914 1915
	set_bit(CGRP_RELEASABLE, &old_cgrp->flags);
	put_css_set(old_cset);
B
Ben Blum 已提交
1916 1917
}

L
Li Zefan 已提交
1918
/**
1919
 * cgroup_attach_task - attach a task or a whole threadgroup to a cgroup
B
Ben Blum 已提交
1920
 * @cgrp: the cgroup to attach to
1921 1922
 * @tsk: the task or the leader of the threadgroup to be attached
 * @threadgroup: attach the whole threadgroup?
B
Ben Blum 已提交
1923
 *
1924
 * Call holding cgroup_mutex and the group_rwsem of the leader. Will take
1925
 * task_lock of @tsk or each thread in the threadgroup individually in turn.
B
Ben Blum 已提交
1926
 */
T
Tejun Heo 已提交
1927 1928
static int cgroup_attach_task(struct cgroup *cgrp, struct task_struct *tsk,
			      bool threadgroup)
B
Ben Blum 已提交
1929 1930 1931 1932 1933
{
	int retval, i, group_size;
	struct cgroup_subsys *ss, *failed_ss = NULL;
	struct cgroupfs_root *root = cgrp->root;
	/* threadgroup list cursor and array */
1934
	struct task_struct *leader = tsk;
1935
	struct task_and_cgroup *tc;
1936
	struct flex_array *group;
1937
	struct cgroup_taskset tset = { };
B
Ben Blum 已提交
1938 1939 1940 1941 1942

	/*
	 * step 0: in order to do expensive, possibly blocking operations for
	 * every thread, we cannot iterate the thread group list, since it needs
	 * rcu or tasklist locked. instead, build an array of all threads in the
1943 1944
	 * group - group_rwsem prevents new threads from appearing, and if
	 * threads exit, this will just be an over-estimate.
B
Ben Blum 已提交
1945
	 */
1946 1947 1948 1949
	if (threadgroup)
		group_size = get_nr_threads(tsk);
	else
		group_size = 1;
1950
	/* flex_array supports very large thread-groups better than kmalloc. */
1951
	group = flex_array_alloc(sizeof(*tc), group_size, GFP_KERNEL);
B
Ben Blum 已提交
1952 1953
	if (!group)
		return -ENOMEM;
1954
	/* pre-allocate to guarantee space while iterating in rcu read-side. */
1955
	retval = flex_array_prealloc(group, 0, group_size, GFP_KERNEL);
1956 1957
	if (retval)
		goto out_free_group_list;
B
Ben Blum 已提交
1958 1959

	i = 0;
1960 1961 1962 1963 1964 1965
	/*
	 * Prevent freeing of tasks while we take a snapshot. Tasks that are
	 * already PF_EXITING could be freed from underneath us unless we
	 * take an rcu_read_lock.
	 */
	rcu_read_lock();
B
Ben Blum 已提交
1966
	do {
1967 1968
		struct task_and_cgroup ent;

1969 1970
		/* @tsk either already exited or can't exit until the end */
		if (tsk->flags & PF_EXITING)
1971
			goto next;
1972

B
Ben Blum 已提交
1973 1974
		/* as per above, nr_threads may decrease, but not increase. */
		BUG_ON(i >= group_size);
1975 1976
		ent.task = tsk;
		ent.cgrp = task_cgroup_from_root(tsk, root);
1977 1978
		/* nothing to do if this task is already in the cgroup */
		if (ent.cgrp == cgrp)
1979
			goto next;
1980 1981 1982 1983
		/*
		 * saying GFP_ATOMIC has no effect here because we did prealloc
		 * earlier, but it's good form to communicate our expectations.
		 */
1984
		retval = flex_array_put(group, i, &ent, GFP_ATOMIC);
1985
		BUG_ON(retval != 0);
B
Ben Blum 已提交
1986
		i++;
1987
	next:
1988 1989
		if (!threadgroup)
			break;
B
Ben Blum 已提交
1990
	} while_each_thread(leader, tsk);
1991
	rcu_read_unlock();
B
Ben Blum 已提交
1992 1993
	/* remember the number of threads in the array for later. */
	group_size = i;
1994 1995
	tset.tc_array = group;
	tset.tc_array_len = group_size;
B
Ben Blum 已提交
1996

1997 1998
	/* methods shouldn't be called if no task is actually migrating */
	retval = 0;
1999
	if (!group_size)
2000
		goto out_free_group_list;
2001

B
Ben Blum 已提交
2002 2003 2004
	/*
	 * step 1: check that we can legitimately attach to the cgroup.
	 */
2005
	for_each_root_subsys(root, ss) {
2006
		struct cgroup_subsys_state *css = cgroup_css(cgrp, ss);
2007

B
Ben Blum 已提交
2008
		if (ss->can_attach) {
2009
			retval = ss->can_attach(css, &tset);
B
Ben Blum 已提交
2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021
			if (retval) {
				failed_ss = ss;
				goto out_cancel_attach;
			}
		}
	}

	/*
	 * step 2: make sure css_sets exist for all threads to be migrated.
	 * we use find_css_set, which allocates a new one if necessary.
	 */
	for (i = 0; i < group_size; i++) {
2022 2023
		struct css_set *old_cset;

2024
		tc = flex_array_get(group, i);
2025
		old_cset = task_css_set(tc->task);
L
Li Zefan 已提交
2026 2027
		tc->cset = find_css_set(old_cset, cgrp);
		if (!tc->cset) {
2028 2029
			retval = -ENOMEM;
			goto out_put_css_set_refs;
B
Ben Blum 已提交
2030 2031 2032 2033
		}
	}

	/*
2034 2035 2036
	 * step 3: now that we're guaranteed success wrt the css_sets,
	 * proceed to move all tasks to the new cgroup.  There are no
	 * failure cases after here, so this is the commit point.
B
Ben Blum 已提交
2037 2038
	 */
	for (i = 0; i < group_size; i++) {
2039
		tc = flex_array_get(group, i);
L
Li Zefan 已提交
2040
		cgroup_task_migrate(tc->cgrp, tc->task, tc->cset);
B
Ben Blum 已提交
2041 2042 2043 2044
	}
	/* nothing is sensitive to fork() after this point. */

	/*
2045
	 * step 4: do subsystem attach callbacks.
B
Ben Blum 已提交
2046
	 */
2047
	for_each_root_subsys(root, ss) {
2048
		struct cgroup_subsys_state *css = cgroup_css(cgrp, ss);
2049

B
Ben Blum 已提交
2050
		if (ss->attach)
2051
			ss->attach(css, &tset);
B
Ben Blum 已提交
2052 2053 2054 2055 2056 2057
	}

	/*
	 * step 5: success! and cleanup
	 */
	retval = 0;
2058 2059 2060 2061
out_put_css_set_refs:
	if (retval) {
		for (i = 0; i < group_size; i++) {
			tc = flex_array_get(group, i);
L
Li Zefan 已提交
2062
			if (!tc->cset)
2063
				break;
L
Li Zefan 已提交
2064
			put_css_set(tc->cset);
2065
		}
B
Ben Blum 已提交
2066 2067 2068
	}
out_cancel_attach:
	if (retval) {
2069
		for_each_root_subsys(root, ss) {
2070
			struct cgroup_subsys_state *css = cgroup_css(cgrp, ss);
2071

2072
			if (ss == failed_ss)
B
Ben Blum 已提交
2073 2074
				break;
			if (ss->cancel_attach)
2075
				ss->cancel_attach(css, &tset);
B
Ben Blum 已提交
2076 2077 2078
		}
	}
out_free_group_list:
2079
	flex_array_free(group);
B
Ben Blum 已提交
2080 2081 2082 2083 2084
	return retval;
}

/*
 * Find the task_struct of the task to attach by vpid and pass it along to the
2085 2086
 * function to attach either it or all tasks in its threadgroup. Will lock
 * cgroup_mutex and threadgroup; may take task_lock of task.
2087
 */
B
Ben Blum 已提交
2088
static int attach_task_by_pid(struct cgroup *cgrp, u64 pid, bool threadgroup)
2089 2090
{
	struct task_struct *tsk;
2091
	const struct cred *cred = current_cred(), *tcred;
2092 2093
	int ret;

B
Ben Blum 已提交
2094 2095 2096
	if (!cgroup_lock_live_group(cgrp))
		return -ENODEV;

2097 2098
retry_find_task:
	rcu_read_lock();
2099
	if (pid) {
2100
		tsk = find_task_by_vpid(pid);
B
Ben Blum 已提交
2101 2102
		if (!tsk) {
			rcu_read_unlock();
2103 2104
			ret= -ESRCH;
			goto out_unlock_cgroup;
2105
		}
B
Ben Blum 已提交
2106 2107 2108 2109
		/*
		 * even if we're attaching all tasks in the thread group, we
		 * only need to check permissions on one of them.
		 */
2110
		tcred = __task_cred(tsk);
2111 2112 2113
		if (!uid_eq(cred->euid, GLOBAL_ROOT_UID) &&
		    !uid_eq(cred->euid, tcred->uid) &&
		    !uid_eq(cred->euid, tcred->suid)) {
2114
			rcu_read_unlock();
2115 2116
			ret = -EACCES;
			goto out_unlock_cgroup;
2117
		}
2118 2119
	} else
		tsk = current;
2120 2121

	if (threadgroup)
2122
		tsk = tsk->group_leader;
2123 2124

	/*
2125
	 * Workqueue threads may acquire PF_NO_SETAFFINITY and become
2126 2127 2128
	 * trapped in a cpuset, or RT worker may be born in a cgroup
	 * with no rt_runtime allocated.  Just say no.
	 */
2129
	if (tsk == kthreadd_task || (tsk->flags & PF_NO_SETAFFINITY)) {
2130 2131 2132 2133 2134
		ret = -EINVAL;
		rcu_read_unlock();
		goto out_unlock_cgroup;
	}

2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151
	get_task_struct(tsk);
	rcu_read_unlock();

	threadgroup_lock(tsk);
	if (threadgroup) {
		if (!thread_group_leader(tsk)) {
			/*
			 * a race with de_thread from another thread's exec()
			 * may strip us of our leadership, if this happens,
			 * there is no choice but to throw this task away and
			 * try again; this is
			 * "double-double-toil-and-trouble-check locking".
			 */
			threadgroup_unlock(tsk);
			put_task_struct(tsk);
			goto retry_find_task;
		}
2152 2153 2154 2155
	}

	ret = cgroup_attach_task(cgrp, tsk, threadgroup);

2156 2157
	threadgroup_unlock(tsk);

2158
	put_task_struct(tsk);
2159
out_unlock_cgroup:
T
Tejun Heo 已提交
2160
	mutex_unlock(&cgroup_mutex);
2161 2162 2163
	return ret;
}

2164 2165 2166 2167 2168 2169 2170 2171 2172 2173
/**
 * cgroup_attach_task_all - attach task 'tsk' to all cgroups of task 'from'
 * @from: attach to all cgroups of a given task
 * @tsk: the task to be attached
 */
int cgroup_attach_task_all(struct task_struct *from, struct task_struct *tsk)
{
	struct cgroupfs_root *root;
	int retval = 0;

T
Tejun Heo 已提交
2174
	mutex_lock(&cgroup_mutex);
2175
	for_each_active_root(root) {
L
Li Zefan 已提交
2176
		struct cgroup *from_cgrp = task_cgroup_from_root(from, root);
2177

L
Li Zefan 已提交
2178
		retval = cgroup_attach_task(from_cgrp, tsk, false);
2179 2180 2181
		if (retval)
			break;
	}
T
Tejun Heo 已提交
2182
	mutex_unlock(&cgroup_mutex);
2183 2184 2185 2186 2187

	return retval;
}
EXPORT_SYMBOL_GPL(cgroup_attach_task_all);

2188 2189
static int cgroup_tasks_write(struct cgroup_subsys_state *css,
			      struct cftype *cft, u64 pid)
B
Ben Blum 已提交
2190
{
2191
	return attach_task_by_pid(css->cgroup, pid, false);
B
Ben Blum 已提交
2192 2193
}

2194 2195
static int cgroup_procs_write(struct cgroup_subsys_state *css,
			      struct cftype *cft, u64 tgid)
2196
{
2197
	return attach_task_by_pid(css->cgroup, tgid, true);
2198 2199
}

2200 2201
static int cgroup_release_agent_write(struct cgroup_subsys_state *css,
				      struct cftype *cft, const char *buffer)
2202
{
2203
	BUILD_BUG_ON(sizeof(css->cgroup->root->release_agent_path) < PATH_MAX);
2204 2205
	if (strlen(buffer) >= PATH_MAX)
		return -EINVAL;
2206
	if (!cgroup_lock_live_group(css->cgroup))
2207
		return -ENODEV;
T
Tejun Heo 已提交
2208
	mutex_lock(&cgroup_root_mutex);
2209
	strcpy(css->cgroup->root->release_agent_path, buffer);
T
Tejun Heo 已提交
2210
	mutex_unlock(&cgroup_root_mutex);
T
Tejun Heo 已提交
2211
	mutex_unlock(&cgroup_mutex);
2212 2213 2214
	return 0;
}

2215
static int cgroup_release_agent_show(struct seq_file *seq, void *v)
2216
{
2217
	struct cgroup *cgrp = seq_css(seq)->cgroup;
2218

2219 2220 2221 2222
	if (!cgroup_lock_live_group(cgrp))
		return -ENODEV;
	seq_puts(seq, cgrp->root->release_agent_path);
	seq_putc(seq, '\n');
T
Tejun Heo 已提交
2223
	mutex_unlock(&cgroup_mutex);
2224 2225 2226
	return 0;
}

2227
static int cgroup_sane_behavior_show(struct seq_file *seq, void *v)
2228
{
2229 2230 2231
	struct cgroup *cgrp = seq_css(seq)->cgroup;

	seq_printf(seq, "%d\n", cgroup_sane_behavior(cgrp));
2232 2233 2234
	return 0;
}

2235 2236 2237
/* A buffer size big enough for numbers or short strings */
#define CGROUP_LOCAL_BUFFER_SIZE 64

2238 2239
static ssize_t cgroup_file_write(struct file *file, const char __user *userbuf,
				 size_t nbytes, loff_t *ppos)
2240
{
2241 2242 2243 2244 2245 2246
	struct cfent *cfe = __d_cfe(file->f_dentry);
	struct cftype *cft = __d_cft(file->f_dentry);
	struct cgroup_subsys_state *css = cfe->css;
	size_t max_bytes = cft->max_write_len ?: CGROUP_LOCAL_BUFFER_SIZE - 1;
	char *buf;
	int ret;
2247 2248 2249 2250

	if (nbytes >= max_bytes)
		return -E2BIG;

2251 2252 2253
	buf = kmalloc(nbytes + 1, GFP_KERNEL);
	if (!buf)
		return -ENOMEM;
2254

2255 2256 2257 2258
	if (copy_from_user(buf, userbuf, nbytes)) {
		ret = -EFAULT;
		goto out_free;
	}
2259

2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277
	buf[nbytes] = '\0';

	if (cft->write_string) {
		ret = cft->write_string(css, cft, strstrip(buf));
	} else if (cft->write_u64) {
		unsigned long long v;
		ret = kstrtoull(buf, 0, &v);
		if (!ret)
			ret = cft->write_u64(css, cft, v);
	} else if (cft->write_s64) {
		long long v;
		ret = kstrtoll(buf, 0, &v);
		if (!ret)
			ret = cft->write_s64(css, cft, v);
	} else if (cft->trigger) {
		ret = cft->trigger(css, (unsigned int)cft->private);
	} else {
		ret = -EINVAL;
2278
	}
2279 2280 2281
out_free:
	kfree(buf);
	return ret ?: nbytes;
2282 2283
}

2284 2285 2286 2287 2288
/*
 * seqfile ops/methods for returning structured data. Currently just
 * supports string->u64 maps, but can be extended in future.
 */

2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327
static void *cgroup_seqfile_start(struct seq_file *seq, loff_t *ppos)
{
	struct cftype *cft = seq_cft(seq);

	if (cft->seq_start) {
		return cft->seq_start(seq, ppos);
	} else {
		/*
		 * The same behavior and code as single_open().  Returns
		 * !NULL if pos is at the beginning; otherwise, NULL.
		 */
		return NULL + !*ppos;
	}
}

static void *cgroup_seqfile_next(struct seq_file *seq, void *v, loff_t *ppos)
{
	struct cftype *cft = seq_cft(seq);

	if (cft->seq_next) {
		return cft->seq_next(seq, v, ppos);
	} else {
		/*
		 * The same behavior and code as single_open(), always
		 * terminate after the initial read.
		 */
		++*ppos;
		return NULL;
	}
}

static void cgroup_seqfile_stop(struct seq_file *seq, void *v)
{
	struct cftype *cft = seq_cft(seq);

	if (cft->seq_stop)
		cft->seq_stop(seq, v);
}

2328 2329
static int cgroup_seqfile_show(struct seq_file *m, void *arg)
{
2330 2331
	struct cftype *cft = seq_cft(m);
	struct cgroup_subsys_state *css = seq_css(m);
2332

2333 2334
	if (cft->seq_show)
		return cft->seq_show(m, arg);
2335

2336 2337 2338 2339 2340 2341 2342 2343
	if (cft->read_u64)
		seq_printf(m, "%llu\n", cft->read_u64(css, cft));
	else if (cft->read_s64)
		seq_printf(m, "%lld\n", cft->read_s64(css, cft));
	else
		return -EINVAL;
	return 0;
}
2344

2345 2346 2347 2348 2349 2350 2351
static struct seq_operations cgroup_seq_operations = {
	.start		= cgroup_seqfile_start,
	.next		= cgroup_seqfile_next,
	.stop		= cgroup_seqfile_stop,
	.show		= cgroup_seqfile_show,
};

2352 2353
static int cgroup_file_open(struct inode *inode, struct file *file)
{
2354 2355
	struct cfent *cfe = __d_cfe(file->f_dentry);
	struct cftype *cft = __d_cft(file->f_dentry);
2356 2357
	struct cgroup *cgrp = __d_cgrp(cfe->dentry->d_parent);
	struct cgroup_subsys_state *css;
2358
	struct cgroup_open_file *of;
2359 2360 2361 2362 2363
	int err;

	err = generic_file_open(inode, file);
	if (err)
		return err;
2364

2365 2366 2367 2368 2369
	/*
	 * If the file belongs to a subsystem, pin the css.  Will be
	 * unpinned either on open failure or release.  This ensures that
	 * @css stays alive for all file operations.
	 */
2370
	rcu_read_lock();
2371 2372 2373
	css = cgroup_css(cgrp, cft->ss);
	if (cft->ss && !css_tryget(css))
		css = NULL;
2374
	rcu_read_unlock();
2375

2376
	if (!css)
2377
		return -ENODEV;
2378

2379 2380 2381 2382 2383 2384 2385 2386
	/*
	 * @cfe->css is used by read/write/close to determine the
	 * associated css.  @file->private_data would be a better place but
	 * that's already used by seqfile.  Multiple accessors may use it
	 * simultaneously which is okay as the association never changes.
	 */
	WARN_ON_ONCE(cfe->css && cfe->css != css);
	cfe->css = css;
2387

2388 2389 2390 2391 2392
	of = __seq_open_private(file, &cgroup_seq_operations,
				sizeof(struct cgroup_open_file));
	if (of) {
		of->cfe = cfe;
		return 0;
2393
	}
2394

2395
	if (css->ss)
2396
		css_put(css);
2397
	return -ENOMEM;
2398 2399 2400 2401
}

static int cgroup_file_release(struct inode *inode, struct file *file)
{
2402
	struct cfent *cfe = __d_cfe(file->f_dentry);
2403
	struct cgroup_subsys_state *css = cfe->css;
2404

T
Tejun Heo 已提交
2405
	if (css->ss)
2406
		css_put(css);
2407
	return seq_release_private(inode, file);
2408 2409 2410 2411 2412 2413 2414 2415
}

/*
 * cgroup_rename - Only allow simple rename of directories in place.
 */
static int cgroup_rename(struct inode *old_dir, struct dentry *old_dentry,
			    struct inode *new_dir, struct dentry *new_dentry)
{
2416 2417 2418 2419 2420 2421 2422 2423 2424 2425
	int ret;
	struct cgroup_name *name, *old_name;
	struct cgroup *cgrp;

	/*
	 * It's convinient to use parent dir's i_mutex to protected
	 * cgrp->name.
	 */
	lockdep_assert_held(&old_dir->i_mutex);

2426 2427 2428 2429 2430 2431
	if (!S_ISDIR(old_dentry->d_inode->i_mode))
		return -ENOTDIR;
	if (new_dentry->d_inode)
		return -EEXIST;
	if (old_dir != new_dir)
		return -EIO;
2432 2433 2434

	cgrp = __d_cgrp(old_dentry);

2435 2436 2437 2438 2439 2440 2441
	/*
	 * This isn't a proper migration and its usefulness is very
	 * limited.  Disallow if sane_behavior.
	 */
	if (cgroup_sane_behavior(cgrp))
		return -EPERM;

2442 2443 2444 2445 2446 2447 2448 2449 2450 2451
	name = cgroup_alloc_name(new_dentry);
	if (!name)
		return -ENOMEM;

	ret = simple_rename(old_dir, old_dentry, new_dir, new_dentry);
	if (ret) {
		kfree(name);
		return ret;
	}

2452
	old_name = rcu_dereference_protected(cgrp->name, true);
2453 2454 2455 2456
	rcu_assign_pointer(cgrp->name, name);

	kfree_rcu(old_name, rcu_head);
	return 0;
2457 2458
}

A
Aristeu Rozanski 已提交
2459 2460 2461 2462 2463
static struct simple_xattrs *__d_xattrs(struct dentry *dentry)
{
	if (S_ISDIR(dentry->d_inode->i_mode))
		return &__d_cgrp(dentry)->xattrs;
	else
L
Li Zefan 已提交
2464
		return &__d_cfe(dentry)->xattrs;
A
Aristeu Rozanski 已提交
2465 2466 2467 2468 2469
}

static inline int xattr_enabled(struct dentry *dentry)
{
	struct cgroupfs_root *root = dentry->d_sb->s_fs_info;
2470
	return root->flags & CGRP_ROOT_XATTR;
A
Aristeu Rozanski 已提交
2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516
}

static bool is_valid_xattr(const char *name)
{
	if (!strncmp(name, XATTR_TRUSTED_PREFIX, XATTR_TRUSTED_PREFIX_LEN) ||
	    !strncmp(name, XATTR_SECURITY_PREFIX, XATTR_SECURITY_PREFIX_LEN))
		return true;
	return false;
}

static int cgroup_setxattr(struct dentry *dentry, const char *name,
			   const void *val, size_t size, int flags)
{
	if (!xattr_enabled(dentry))
		return -EOPNOTSUPP;
	if (!is_valid_xattr(name))
		return -EINVAL;
	return simple_xattr_set(__d_xattrs(dentry), name, val, size, flags);
}

static int cgroup_removexattr(struct dentry *dentry, const char *name)
{
	if (!xattr_enabled(dentry))
		return -EOPNOTSUPP;
	if (!is_valid_xattr(name))
		return -EINVAL;
	return simple_xattr_remove(__d_xattrs(dentry), name);
}

static ssize_t cgroup_getxattr(struct dentry *dentry, const char *name,
			       void *buf, size_t size)
{
	if (!xattr_enabled(dentry))
		return -EOPNOTSUPP;
	if (!is_valid_xattr(name))
		return -EINVAL;
	return simple_xattr_get(__d_xattrs(dentry), name, buf, size);
}

static ssize_t cgroup_listxattr(struct dentry *dentry, char *buf, size_t size)
{
	if (!xattr_enabled(dentry))
		return -EOPNOTSUPP;
	return simple_xattr_list(__d_xattrs(dentry), buf, size);
}

2517
static const struct file_operations cgroup_file_operations = {
2518
	.read = seq_read,
2519 2520 2521 2522 2523 2524
	.write = cgroup_file_write,
	.llseek = generic_file_llseek,
	.open = cgroup_file_open,
	.release = cgroup_file_release,
};

A
Aristeu Rozanski 已提交
2525 2526 2527 2528 2529 2530 2531
static const struct inode_operations cgroup_file_inode_operations = {
	.setxattr = cgroup_setxattr,
	.getxattr = cgroup_getxattr,
	.listxattr = cgroup_listxattr,
	.removexattr = cgroup_removexattr,
};

2532
static const struct inode_operations cgroup_dir_inode_operations = {
A
Al Viro 已提交
2533
	.lookup = simple_lookup,
2534 2535 2536
	.mkdir = cgroup_mkdir,
	.rmdir = cgroup_rmdir,
	.rename = cgroup_rename,
A
Aristeu Rozanski 已提交
2537 2538 2539 2540
	.setxattr = cgroup_setxattr,
	.getxattr = cgroup_getxattr,
	.listxattr = cgroup_listxattr,
	.removexattr = cgroup_removexattr,
2541 2542
};

A
Al Viro 已提交
2543
static int cgroup_create_file(struct dentry *dentry, umode_t mode,
2544 2545
				struct super_block *sb)
{
2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562
	struct inode *inode;

	if (!dentry)
		return -ENOENT;
	if (dentry->d_inode)
		return -EEXIST;

	inode = cgroup_new_inode(mode, sb);
	if (!inode)
		return -ENOMEM;

	if (S_ISDIR(mode)) {
		inode->i_op = &cgroup_dir_inode_operations;
		inode->i_fop = &simple_dir_operations;

		/* start off with i_nlink == 2 (for "." entry) */
		inc_nlink(inode);
T
Tejun Heo 已提交
2563
		inc_nlink(dentry->d_parent->d_inode);
2564

2565 2566 2567 2568 2569 2570 2571 2572 2573
		/*
		 * Control reaches here with cgroup_mutex held.
		 * @inode->i_mutex should nest outside cgroup_mutex but we
		 * want to populate it immediately without releasing
		 * cgroup_mutex.  As @inode isn't visible to anyone else
		 * yet, trylock will always succeed without affecting
		 * lockdep checks.
		 */
		WARN_ON_ONCE(!mutex_trylock(&inode->i_mutex));
2574 2575 2576
	} else if (S_ISREG(mode)) {
		inode->i_size = 0;
		inode->i_fop = &cgroup_file_operations;
A
Aristeu Rozanski 已提交
2577
		inode->i_op = &cgroup_file_inode_operations;
2578 2579 2580 2581 2582 2583
	}
	d_instantiate(dentry, inode);
	dget(dentry);	/* Extra count - pin the dentry in core */
	return 0;
}

L
Li Zefan 已提交
2584 2585 2586 2587 2588 2589 2590 2591 2592
/**
 * cgroup_file_mode - deduce file mode of a control file
 * @cft: the control file in question
 *
 * returns cft->mode if ->mode is not 0
 * returns S_IRUGO|S_IWUSR if it has both a read and a write handler
 * returns S_IRUGO if it has only a read handler
 * returns S_IWUSR if it has only a write hander
 */
A
Al Viro 已提交
2593
static umode_t cgroup_file_mode(const struct cftype *cft)
L
Li Zefan 已提交
2594
{
A
Al Viro 已提交
2595
	umode_t mode = 0;
L
Li Zefan 已提交
2596 2597 2598 2599

	if (cft->mode)
		return cft->mode;

2600
	if (cft->read_u64 || cft->read_s64 || cft->seq_show)
L
Li Zefan 已提交
2601 2602
		mode |= S_IRUGO;

2603 2604
	if (cft->write_u64 || cft->write_s64 || cft->write_string ||
	    cft->trigger)
L
Li Zefan 已提交
2605 2606 2607 2608 2609
		mode |= S_IWUSR;

	return mode;
}

2610
static int cgroup_add_file(struct cgroup *cgrp, struct cftype *cft)
2611
{
2612
	struct dentry *dir = cgrp->dentry;
T
Tejun Heo 已提交
2613
	struct cgroup *parent = __d_cgrp(dir);
2614
	struct dentry *dentry;
T
Tejun Heo 已提交
2615
	struct cfent *cfe;
2616
	int error;
A
Al Viro 已提交
2617
	umode_t mode;
2618
	char name[MAX_CGROUP_TYPE_NAMELEN + MAX_CFTYPE_NAME + 2] = { 0 };
2619

T
Tejun Heo 已提交
2620 2621
	if (cft->ss && !(cft->flags & CFTYPE_NO_PREFIX) &&
	    !(cgrp->root->flags & CGRP_ROOT_NOPREFIX)) {
2622
		strcpy(name, cft->ss->name);
2623 2624 2625
		strcat(name, ".");
	}
	strcat(name, cft->name);
T
Tejun Heo 已提交
2626

2627
	BUG_ON(!mutex_is_locked(&dir->d_inode->i_mutex));
T
Tejun Heo 已提交
2628 2629 2630 2631 2632

	cfe = kzalloc(sizeof(*cfe), GFP_KERNEL);
	if (!cfe)
		return -ENOMEM;

2633
	dentry = lookup_one_len(name, dir, strlen(name));
T
Tejun Heo 已提交
2634
	if (IS_ERR(dentry)) {
2635
		error = PTR_ERR(dentry);
T
Tejun Heo 已提交
2636 2637 2638
		goto out;
	}

2639 2640 2641 2642 2643
	cfe->type = (void *)cft;
	cfe->dentry = dentry;
	dentry->d_fsdata = cfe;
	simple_xattrs_init(&cfe->xattrs);

T
Tejun Heo 已提交
2644 2645 2646 2647 2648 2649 2650 2651 2652
	mode = cgroup_file_mode(cft);
	error = cgroup_create_file(dentry, mode | S_IFREG, cgrp->root->sb);
	if (!error) {
		list_add_tail(&cfe->node, &parent->files);
		cfe = NULL;
	}
	dput(dentry);
out:
	kfree(cfe);
2653 2654 2655
	return error;
}

2656 2657 2658 2659 2660 2661 2662
/**
 * cgroup_addrm_files - add or remove files to a cgroup directory
 * @cgrp: the target cgroup
 * @cfts: array of cftypes to be added
 * @is_add: whether to add or remove
 *
 * Depending on @is_add, add or remove files defined by @cfts on @cgrp.
2663 2664 2665
 * For removals, this function never fails.  If addition fails, this
 * function doesn't remove files already added.  The caller is responsible
 * for cleaning up.
2666
 */
2667 2668
static int cgroup_addrm_files(struct cgroup *cgrp, struct cftype cfts[],
			      bool is_add)
2669
{
A
Aristeu Rozanski 已提交
2670
	struct cftype *cft;
2671 2672 2673 2674
	int ret;

	lockdep_assert_held(&cgrp->dentry->d_inode->i_mutex);
	lockdep_assert_held(&cgroup_mutex);
T
Tejun Heo 已提交
2675 2676

	for (cft = cfts; cft->name[0] != '\0'; cft++) {
2677
		/* does cft->flags tell us to skip this file on @cgrp? */
2678 2679
		if ((cft->flags & CFTYPE_INSANE) && cgroup_sane_behavior(cgrp))
			continue;
2680 2681 2682 2683 2684
		if ((cft->flags & CFTYPE_NOT_ON_ROOT) && !cgrp->parent)
			continue;
		if ((cft->flags & CFTYPE_ONLY_ON_ROOT) && cgrp->parent)
			continue;

2685
		if (is_add) {
2686
			ret = cgroup_add_file(cgrp, cft);
2687
			if (ret) {
2688
				pr_warn("cgroup_addrm_files: failed to add %s, err=%d\n",
2689 2690 2691
					cft->name, ret);
				return ret;
			}
2692 2693
		} else {
			cgroup_rm_file(cgrp, cft);
T
Tejun Heo 已提交
2694
		}
2695
	}
2696
	return 0;
2697 2698
}

2699
static void cgroup_cfts_prepare(void)
2700
	__acquires(&cgroup_mutex)
2701 2702 2703 2704
{
	/*
	 * Thanks to the entanglement with vfs inode locking, we can't walk
	 * the existing cgroups under cgroup_mutex and create files.
2705 2706
	 * Instead, we use css_for_each_descendant_pre() and drop RCU read
	 * lock before calling cgroup_addrm_files().
2707 2708 2709 2710
	 */
	mutex_lock(&cgroup_mutex);
}

2711
static int cgroup_cfts_commit(struct cftype *cfts, bool is_add)
2712
	__releases(&cgroup_mutex)
2713 2714
{
	LIST_HEAD(pending);
2715
	struct cgroup_subsys *ss = cfts[0].ss;
2716
	struct cgroup *root = &ss->root->top_cgroup;
2717
	struct super_block *sb = ss->root->sb;
2718 2719
	struct dentry *prev = NULL;
	struct inode *inode;
2720
	struct cgroup_subsys_state *css;
2721
	u64 update_before;
2722
	int ret = 0;
2723 2724

	/* %NULL @cfts indicates abort and don't bother if @ss isn't attached */
2725
	if (!cfts || ss->root == &cgroup_dummy_root ||
2726 2727
	    !atomic_inc_not_zero(&sb->s_active)) {
		mutex_unlock(&cgroup_mutex);
2728
		return 0;
2729 2730 2731
	}

	/*
2732 2733
	 * All cgroups which are created after we drop cgroup_mutex will
	 * have the updated set of files, so we only need to update the
2734
	 * cgroups created before the current @cgroup_serial_nr_next.
2735
	 */
2736
	update_before = cgroup_serial_nr_next;
2737 2738 2739 2740 2741

	mutex_unlock(&cgroup_mutex);

	/* add/rm files for all cgroups created before */
	rcu_read_lock();
2742
	css_for_each_descendant_pre(css, cgroup_css(root, ss)) {
2743 2744
		struct cgroup *cgrp = css->cgroup;

2745 2746 2747 2748 2749 2750 2751 2752 2753
		if (cgroup_is_dead(cgrp))
			continue;

		inode = cgrp->dentry->d_inode;
		dget(cgrp->dentry);
		rcu_read_unlock();

		dput(prev);
		prev = cgrp->dentry;
2754 2755 2756

		mutex_lock(&inode->i_mutex);
		mutex_lock(&cgroup_mutex);
2757
		if (cgrp->serial_nr < update_before && !cgroup_is_dead(cgrp))
2758
			ret = cgroup_addrm_files(cgrp, cfts, is_add);
2759 2760 2761
		mutex_unlock(&cgroup_mutex);
		mutex_unlock(&inode->i_mutex);

2762
		rcu_read_lock();
2763 2764
		if (ret)
			break;
2765
	}
2766 2767 2768
	rcu_read_unlock();
	dput(prev);
	deactivate_super(sb);
2769
	return ret;
2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785
}

/**
 * cgroup_add_cftypes - add an array of cftypes to a subsystem
 * @ss: target cgroup subsystem
 * @cfts: zero-length name terminated array of cftypes
 *
 * Register @cfts to @ss.  Files described by @cfts are created for all
 * existing cgroups to which @ss is attached and all future cgroups will
 * have them too.  This function can be called anytime whether @ss is
 * attached or not.
 *
 * Returns 0 on successful registration, -errno on failure.  Note that this
 * function currently returns 0 as long as @cfts registration is successful
 * even if some file creation attempts on existing cgroups fail.
 */
A
Aristeu Rozanski 已提交
2786
int cgroup_add_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
2787 2788
{
	struct cftype_set *set;
2789
	struct cftype *cft;
2790
	int ret;
2791 2792 2793 2794 2795

	set = kzalloc(sizeof(*set), GFP_KERNEL);
	if (!set)
		return -ENOMEM;

2796 2797 2798
	for (cft = cfts; cft->name[0] != '\0'; cft++)
		cft->ss = ss;

2799 2800 2801
	cgroup_cfts_prepare();
	set->cfts = cfts;
	list_add_tail(&set->node, &ss->cftsets);
2802
	ret = cgroup_cfts_commit(cfts, true);
2803
	if (ret)
2804
		cgroup_rm_cftypes(cfts);
2805
	return ret;
2806 2807 2808
}
EXPORT_SYMBOL_GPL(cgroup_add_cftypes);

2809 2810 2811 2812
/**
 * cgroup_rm_cftypes - remove an array of cftypes from a subsystem
 * @cfts: zero-length name terminated array of cftypes
 *
2813 2814 2815
 * Unregister @cfts.  Files described by @cfts are removed from all
 * existing cgroups and all future cgroups won't have them either.  This
 * function can be called anytime whether @cfts' subsys is attached or not.
2816 2817
 *
 * Returns 0 on successful unregistration, -ENOENT if @cfts is not
2818
 * registered.
2819
 */
2820
int cgroup_rm_cftypes(struct cftype *cfts)
2821 2822 2823
{
	struct cftype_set *set;

2824 2825 2826
	if (!cfts || !cfts[0].ss)
		return -ENOENT;

2827 2828
	cgroup_cfts_prepare();

2829
	list_for_each_entry(set, &cfts[0].ss->cftsets, node) {
2830
		if (set->cfts == cfts) {
2831 2832
			list_del(&set->node);
			kfree(set);
2833
			cgroup_cfts_commit(cfts, false);
2834 2835 2836 2837
			return 0;
		}
	}

2838
	cgroup_cfts_commit(NULL, false);
2839 2840 2841
	return -ENOENT;
}

L
Li Zefan 已提交
2842 2843 2844 2845 2846 2847
/**
 * cgroup_task_count - count the number of tasks in a cgroup.
 * @cgrp: the cgroup in question
 *
 * Return the number of tasks in the cgroup.
 */
2848
int cgroup_task_count(const struct cgroup *cgrp)
2849 2850
{
	int count = 0;
2851
	struct cgrp_cset_link *link;
2852 2853

	read_lock(&css_set_lock);
2854 2855
	list_for_each_entry(link, &cgrp->cset_links, cset_link)
		count += atomic_read(&link->cset->refcount);
2856
	read_unlock(&css_set_lock);
2857 2858 2859
	return count;
}

2860
/*
2861 2862 2863
 * To reduce the fork() overhead for systems that are not actually using
 * their cgroups capability, we don't maintain the lists running through
 * each css_set to its tasks until we see the list actually used - in other
2864
 * words after the first call to css_task_iter_start().
2865
 */
2866
static void cgroup_enable_task_cg_lists(void)
2867 2868 2869 2870
{
	struct task_struct *p, *g;
	write_lock(&css_set_lock);
	use_task_css_set_links = 1;
2871 2872 2873 2874 2875 2876 2877 2878
	/*
	 * We need tasklist_lock because RCU is not safe against
	 * while_each_thread(). Besides, a forking task that has passed
	 * cgroup_post_fork() without seeing use_task_css_set_links = 1
	 * is not guaranteed to have its child immediately visible in the
	 * tasklist if we walk through it with RCU.
	 */
	read_lock(&tasklist_lock);
2879 2880
	do_each_thread(g, p) {
		task_lock(p);
2881 2882 2883 2884 2885 2886
		/*
		 * We should check if the process is exiting, otherwise
		 * it will race with cgroup_exit() in that the list
		 * entry won't be deleted though the process has exited.
		 */
		if (!(p->flags & PF_EXITING) && list_empty(&p->cg_list))
2887
			list_add(&p->cg_list, &task_css_set(p)->tasks);
2888 2889
		task_unlock(p);
	} while_each_thread(g, p);
2890
	read_unlock(&tasklist_lock);
2891 2892 2893
	write_unlock(&css_set_lock);
}

2894
/**
2895 2896 2897
 * css_next_child - find the next child of a given css
 * @pos_css: the current position (%NULL to initiate traversal)
 * @parent_css: css whose children to walk
2898
 *
2899 2900 2901 2902
 * This function returns the next child of @parent_css and should be called
 * under RCU read lock.  The only requirement is that @parent_css and
 * @pos_css are accessible.  The next sibling is guaranteed to be returned
 * regardless of their states.
2903
 */
2904 2905 2906
struct cgroup_subsys_state *
css_next_child(struct cgroup_subsys_state *pos_css,
	       struct cgroup_subsys_state *parent_css)
2907
{
2908 2909
	struct cgroup *pos = pos_css ? pos_css->cgroup : NULL;
	struct cgroup *cgrp = parent_css->cgroup;
2910 2911 2912 2913 2914 2915 2916
	struct cgroup *next;

	WARN_ON_ONCE(!rcu_read_lock_held());

	/*
	 * @pos could already have been removed.  Once a cgroup is removed,
	 * its ->sibling.next is no longer updated when its next sibling
2917 2918 2919 2920 2921 2922 2923
	 * changes.  As CGRP_DEAD assertion is serialized and happens
	 * before the cgroup is taken off the ->sibling list, if we see it
	 * unasserted, it's guaranteed that the next sibling hasn't
	 * finished its grace period even if it's already removed, and thus
	 * safe to dereference from this RCU critical section.  If
	 * ->sibling.next is inaccessible, cgroup_is_dead() is guaranteed
	 * to be visible as %true here.
2924 2925 2926 2927 2928 2929 2930 2931
	 *
	 * If @pos is dead, its next pointer can't be dereferenced;
	 * however, as each cgroup is given a monotonically increasing
	 * unique serial number and always appended to the sibling list,
	 * the next one can be found by walking the parent's children until
	 * we see a cgroup with higher serial number than @pos's.  While
	 * this path can be slower, it's taken only when either the current
	 * cgroup is removed or iteration and removal race.
2932
	 */
2933 2934 2935
	if (!pos) {
		next = list_entry_rcu(cgrp->children.next, struct cgroup, sibling);
	} else if (likely(!cgroup_is_dead(pos))) {
2936
		next = list_entry_rcu(pos->sibling.next, struct cgroup, sibling);
2937 2938 2939 2940
	} else {
		list_for_each_entry_rcu(next, &cgrp->children, sibling)
			if (next->serial_nr > pos->serial_nr)
				break;
2941 2942
	}

2943 2944 2945
	if (&next->sibling == &cgrp->children)
		return NULL;

2946
	return cgroup_css(next, parent_css->ss);
2947
}
2948
EXPORT_SYMBOL_GPL(css_next_child);
2949

2950
/**
2951
 * css_next_descendant_pre - find the next descendant for pre-order walk
2952
 * @pos: the current position (%NULL to initiate traversal)
2953
 * @root: css whose descendants to walk
2954
 *
2955
 * To be used by css_for_each_descendant_pre().  Find the next descendant
2956 2957
 * to visit for pre-order traversal of @root's descendants.  @root is
 * included in the iteration and the first node to be visited.
2958 2959 2960 2961
 *
 * While this function requires RCU read locking, it doesn't require the
 * whole traversal to be contained in a single RCU critical section.  This
 * function will return the correct next descendant as long as both @pos
2962
 * and @root are accessible and @pos is a descendant of @root.
2963
 */
2964 2965 2966
struct cgroup_subsys_state *
css_next_descendant_pre(struct cgroup_subsys_state *pos,
			struct cgroup_subsys_state *root)
2967
{
2968
	struct cgroup_subsys_state *next;
2969 2970 2971

	WARN_ON_ONCE(!rcu_read_lock_held());

2972
	/* if first iteration, visit @root */
2973
	if (!pos)
2974
		return root;
2975 2976

	/* visit the first child if exists */
2977
	next = css_next_child(NULL, pos);
2978 2979 2980 2981
	if (next)
		return next;

	/* no child, visit my or the closest ancestor's next sibling */
2982 2983
	while (pos != root) {
		next = css_next_child(pos, css_parent(pos));
2984
		if (next)
2985
			return next;
2986
		pos = css_parent(pos);
2987
	}
2988 2989 2990

	return NULL;
}
2991
EXPORT_SYMBOL_GPL(css_next_descendant_pre);
2992

2993
/**
2994 2995
 * css_rightmost_descendant - return the rightmost descendant of a css
 * @pos: css of interest
2996
 *
2997 2998
 * Return the rightmost descendant of @pos.  If there's no descendant, @pos
 * is returned.  This can be used during pre-order traversal to skip
2999
 * subtree of @pos.
3000 3001 3002 3003 3004
 *
 * While this function requires RCU read locking, it doesn't require the
 * whole traversal to be contained in a single RCU critical section.  This
 * function will return the correct rightmost descendant as long as @pos is
 * accessible.
3005
 */
3006 3007
struct cgroup_subsys_state *
css_rightmost_descendant(struct cgroup_subsys_state *pos)
3008
{
3009
	struct cgroup_subsys_state *last, *tmp;
3010 3011 3012 3013 3014 3015 3016

	WARN_ON_ONCE(!rcu_read_lock_held());

	do {
		last = pos;
		/* ->prev isn't RCU safe, walk ->next till the end */
		pos = NULL;
3017
		css_for_each_child(tmp, last)
3018 3019 3020 3021 3022
			pos = tmp;
	} while (pos);

	return last;
}
3023
EXPORT_SYMBOL_GPL(css_rightmost_descendant);
3024

3025 3026
static struct cgroup_subsys_state *
css_leftmost_descendant(struct cgroup_subsys_state *pos)
3027
{
3028
	struct cgroup_subsys_state *last;
3029 3030 3031

	do {
		last = pos;
3032
		pos = css_next_child(NULL, pos);
3033 3034 3035 3036 3037 3038
	} while (pos);

	return last;
}

/**
3039
 * css_next_descendant_post - find the next descendant for post-order walk
3040
 * @pos: the current position (%NULL to initiate traversal)
3041
 * @root: css whose descendants to walk
3042
 *
3043
 * To be used by css_for_each_descendant_post().  Find the next descendant
3044 3045
 * to visit for post-order traversal of @root's descendants.  @root is
 * included in the iteration and the last node to be visited.
3046 3047 3048 3049 3050
 *
 * While this function requires RCU read locking, it doesn't require the
 * whole traversal to be contained in a single RCU critical section.  This
 * function will return the correct next descendant as long as both @pos
 * and @cgroup are accessible and @pos is a descendant of @cgroup.
3051
 */
3052 3053 3054
struct cgroup_subsys_state *
css_next_descendant_post(struct cgroup_subsys_state *pos,
			 struct cgroup_subsys_state *root)
3055
{
3056
	struct cgroup_subsys_state *next;
3057 3058 3059

	WARN_ON_ONCE(!rcu_read_lock_held());

3060 3061 3062
	/* if first iteration, visit leftmost descendant which may be @root */
	if (!pos)
		return css_leftmost_descendant(root);
3063

3064 3065 3066 3067
	/* if we visited @root, we're done */
	if (pos == root)
		return NULL;

3068
	/* if there's an unvisited sibling, visit its leftmost descendant */
3069
	next = css_next_child(pos, css_parent(pos));
3070
	if (next)
3071
		return css_leftmost_descendant(next);
3072 3073

	/* no sibling left, visit parent */
3074
	return css_parent(pos);
3075
}
3076
EXPORT_SYMBOL_GPL(css_next_descendant_post);
3077

3078
/**
3079
 * css_advance_task_iter - advance a task itererator to the next css_set
3080 3081 3082
 * @it: the iterator to advance
 *
 * Advance @it to the next css_set to walk.
3083
 */
3084
static void css_advance_task_iter(struct css_task_iter *it)
3085 3086 3087 3088 3089 3090 3091 3092
{
	struct list_head *l = it->cset_link;
	struct cgrp_cset_link *link;
	struct css_set *cset;

	/* Advance to the next non-empty css_set */
	do {
		l = l->next;
3093
		if (l == &it->origin_css->cgroup->cset_links) {
3094 3095 3096 3097 3098 3099 3100 3101 3102 3103
			it->cset_link = NULL;
			return;
		}
		link = list_entry(l, struct cgrp_cset_link, cset_link);
		cset = link->cset;
	} while (list_empty(&cset->tasks));
	it->cset_link = l;
	it->task = cset->tasks.next;
}

3104
/**
3105 3106
 * css_task_iter_start - initiate task iteration
 * @css: the css to walk tasks of
3107 3108
 * @it: the task iterator to use
 *
3109 3110 3111 3112
 * Initiate iteration through the tasks of @css.  The caller can call
 * css_task_iter_next() to walk through the tasks until the function
 * returns NULL.  On completion of iteration, css_task_iter_end() must be
 * called.
3113 3114 3115 3116 3117
 *
 * Note that this function acquires a lock which is released when the
 * iteration finishes.  The caller can't sleep while iteration is in
 * progress.
 */
3118 3119
void css_task_iter_start(struct cgroup_subsys_state *css,
			 struct css_task_iter *it)
3120
	__acquires(css_set_lock)
3121 3122
{
	/*
3123 3124 3125
	 * The first time anyone tries to iterate across a css, we need to
	 * enable the list linking each css_set to its tasks, and fix up
	 * all existing tasks.
3126
	 */
3127 3128 3129
	if (!use_task_css_set_links)
		cgroup_enable_task_cg_lists();

3130
	read_lock(&css_set_lock);
3131

3132 3133
	it->origin_css = css;
	it->cset_link = &css->cgroup->cset_links;
3134

3135
	css_advance_task_iter(it);
3136 3137
}

3138
/**
3139
 * css_task_iter_next - return the next task for the iterator
3140 3141 3142
 * @it: the task iterator being iterated
 *
 * The "next" function for task iteration.  @it should have been
3143 3144
 * initialized via css_task_iter_start().  Returns NULL when the iteration
 * reaches the end.
3145
 */
3146
struct task_struct *css_task_iter_next(struct css_task_iter *it)
3147 3148 3149
{
	struct task_struct *res;
	struct list_head *l = it->task;
3150
	struct cgrp_cset_link *link;
3151 3152

	/* If the iterator cg is NULL, we have no tasks */
3153
	if (!it->cset_link)
3154 3155 3156 3157
		return NULL;
	res = list_entry(l, struct task_struct, cg_list);
	/* Advance iterator to find next entry */
	l = l->next;
3158 3159
	link = list_entry(it->cset_link, struct cgrp_cset_link, cset_link);
	if (l == &link->cset->tasks) {
3160 3161 3162 3163
		/*
		 * We reached the end of this task list - move on to the
		 * next cgrp_cset_link.
		 */
3164
		css_advance_task_iter(it);
3165 3166 3167 3168 3169 3170
	} else {
		it->task = l;
	}
	return res;
}

3171
/**
3172
 * css_task_iter_end - finish task iteration
3173 3174
 * @it: the task iterator to finish
 *
3175
 * Finish task iteration started by css_task_iter_start().
3176
 */
3177
void css_task_iter_end(struct css_task_iter *it)
3178
	__releases(css_set_lock)
3179 3180 3181 3182
{
	read_unlock(&css_set_lock);
}

3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217
static inline int started_after_time(struct task_struct *t1,
				     struct timespec *time,
				     struct task_struct *t2)
{
	int start_diff = timespec_compare(&t1->start_time, time);
	if (start_diff > 0) {
		return 1;
	} else if (start_diff < 0) {
		return 0;
	} else {
		/*
		 * Arbitrarily, if two processes started at the same
		 * time, we'll say that the lower pointer value
		 * started first. Note that t2 may have exited by now
		 * so this may not be a valid pointer any longer, but
		 * that's fine - it still serves to distinguish
		 * between two tasks started (effectively) simultaneously.
		 */
		return t1 > t2;
	}
}

/*
 * This function is a callback from heap_insert() and is used to order
 * the heap.
 * In this case we order the heap in descending task start time.
 */
static inline int started_after(void *p1, void *p2)
{
	struct task_struct *t1 = p1;
	struct task_struct *t2 = p2;
	return started_after_time(t1, &t2->start_time, t2);
}

/**
3218 3219
 * css_scan_tasks - iterate though all the tasks in a css
 * @css: the css to iterate tasks of
T
Tejun Heo 已提交
3220 3221 3222 3223
 * @test: optional test callback
 * @process: process callback
 * @data: data passed to @test and @process
 * @heap: optional pre-allocated heap used for task iteration
3224
 *
3225 3226
 * Iterate through all the tasks in @css, calling @test for each, and if it
 * returns %true, call @process for it also.
3227
 *
T
Tejun Heo 已提交
3228
 * @test may be NULL, meaning always true (select all tasks), which
3229
 * effectively duplicates css_task_iter_{start,next,end}() but does not
T
Tejun Heo 已提交
3230 3231 3232
 * lock css_set_lock for the call to @process.
 *
 * It is guaranteed that @process will act on every task that is a member
3233 3234 3235
 * of @css for the duration of this call.  This function may or may not
 * call @process for tasks that exit or move to a different css during the
 * call, or are forked or move into the css during the call.
3236
 *
T
Tejun Heo 已提交
3237 3238 3239
 * Note that @test may be called with locks held, and may in some
 * situations be called multiple times for the same task, so it should be
 * cheap.
3240
 *
T
Tejun Heo 已提交
3241 3242 3243 3244
 * If @heap is non-NULL, a heap has been pre-allocated and will be used for
 * heap operations (and its "gt" member will be overwritten), else a
 * temporary heap will be used (allocation of which may cause this function
 * to fail).
3245
 */
3246 3247 3248 3249
int css_scan_tasks(struct cgroup_subsys_state *css,
		   bool (*test)(struct task_struct *, void *),
		   void (*process)(struct task_struct *, void *),
		   void *data, struct ptr_heap *heap)
3250 3251
{
	int retval, i;
3252
	struct css_task_iter it;
3253 3254 3255 3256 3257 3258
	struct task_struct *p, *dropped;
	/* Never dereference latest_task, since it's not refcounted */
	struct task_struct *latest_task = NULL;
	struct ptr_heap tmp_heap;
	struct timespec latest_time = { 0, 0 };

T
Tejun Heo 已提交
3259
	if (heap) {
3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272
		/* The caller supplied our heap and pre-allocated its memory */
		heap->gt = &started_after;
	} else {
		/* We need to allocate our own heap memory */
		heap = &tmp_heap;
		retval = heap_init(heap, PAGE_SIZE, GFP_KERNEL, &started_after);
		if (retval)
			/* cannot allocate the heap */
			return retval;
	}

 again:
	/*
3273
	 * Scan tasks in the css, using the @test callback to determine
T
Tejun Heo 已提交
3274 3275 3276 3277 3278 3279 3280
	 * which are of interest, and invoking @process callback on the
	 * ones which need an update.  Since we don't want to hold any
	 * locks during the task updates, gather tasks to be processed in a
	 * heap structure.  The heap is sorted by descending task start
	 * time.  If the statically-sized heap fills up, we overflow tasks
	 * that started later, and in future iterations only consider tasks
	 * that started after the latest task in the previous pass. This
3281 3282 3283
	 * guarantees forward progress and that we don't miss any tasks.
	 */
	heap->size = 0;
3284 3285
	css_task_iter_start(css, &it);
	while ((p = css_task_iter_next(&it))) {
3286 3287 3288 3289
		/*
		 * Only affect tasks that qualify per the caller's callback,
		 * if he provided one
		 */
T
Tejun Heo 已提交
3290
		if (test && !test(p, data))
3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317
			continue;
		/*
		 * Only process tasks that started after the last task
		 * we processed
		 */
		if (!started_after_time(p, &latest_time, latest_task))
			continue;
		dropped = heap_insert(heap, p);
		if (dropped == NULL) {
			/*
			 * The new task was inserted; the heap wasn't
			 * previously full
			 */
			get_task_struct(p);
		} else if (dropped != p) {
			/*
			 * The new task was inserted, and pushed out a
			 * different task
			 */
			get_task_struct(p);
			put_task_struct(dropped);
		}
		/*
		 * Else the new task was newer than anything already in
		 * the heap and wasn't inserted
		 */
	}
3318
	css_task_iter_end(&it);
3319 3320 3321

	if (heap->size) {
		for (i = 0; i < heap->size; i++) {
3322
			struct task_struct *q = heap->ptrs[i];
3323
			if (i == 0) {
3324 3325
				latest_time = q->start_time;
				latest_task = q;
3326 3327
			}
			/* Process the task per the caller's callback */
T
Tejun Heo 已提交
3328
			process(q, data);
3329
			put_task_struct(q);
3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344
		}
		/*
		 * If we had to process any tasks at all, scan again
		 * in case some of them were in the middle of forking
		 * children that didn't get processed.
		 * Not the most efficient way to do it, but it avoids
		 * having to take callback_mutex in the fork path
		 */
		goto again;
	}
	if (heap == &tmp_heap)
		heap_free(&tmp_heap);
	return 0;
}

T
Tejun Heo 已提交
3345
static void cgroup_transfer_one_task(struct task_struct *task, void *data)
3346
{
T
Tejun Heo 已提交
3347
	struct cgroup *new_cgroup = data;
3348

T
Tejun Heo 已提交
3349
	mutex_lock(&cgroup_mutex);
3350
	cgroup_attach_task(new_cgroup, task, false);
T
Tejun Heo 已提交
3351
	mutex_unlock(&cgroup_mutex);
3352 3353 3354 3355 3356 3357 3358 3359 3360
}

/**
 * cgroup_trasnsfer_tasks - move tasks from one cgroup to another
 * @to: cgroup to which the tasks will be moved
 * @from: cgroup in which the tasks currently reside
 */
int cgroup_transfer_tasks(struct cgroup *to, struct cgroup *from)
{
3361 3362
	return css_scan_tasks(&from->dummy_css, NULL, cgroup_transfer_one_task,
			      to, NULL);
3363 3364
}

3365
/*
3366
 * Stuff for reading the 'tasks'/'procs' files.
3367 3368 3369 3370 3371 3372 3373 3374
 *
 * Reading this file can return large amounts of data if a cgroup has
 * *lots* of attached tasks. So it may need several calls to read(),
 * but we cannot guarantee that the information we produce is correct
 * unless we produce it entirely atomically.
 *
 */

3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400
/* which pidlist file are we talking about? */
enum cgroup_filetype {
	CGROUP_FILE_PROCS,
	CGROUP_FILE_TASKS,
};

/*
 * A pidlist is a list of pids that virtually represents the contents of one
 * of the cgroup files ("procs" or "tasks"). We keep a list of such pidlists,
 * a pair (one each for procs, tasks) for each pid namespace that's relevant
 * to the cgroup.
 */
struct cgroup_pidlist {
	/*
	 * used to find which pidlist is wanted. doesn't change as long as
	 * this particular list stays in the list.
	*/
	struct { enum cgroup_filetype type; struct pid_namespace *ns; } key;
	/* array of xids */
	pid_t *list;
	/* how many elements the above list has */
	int length;
	/* each of these stored in a list by its cgroup */
	struct list_head links;
	/* pointer to the cgroup we belong to, for list removal purposes */
	struct cgroup *owner;
3401 3402
	/* for delayed destruction */
	struct delayed_work destroy_dwork;
3403 3404
};

3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417
/*
 * The following two functions "fix" the issue where there are more pids
 * than kmalloc will give memory for; in such cases, we use vmalloc/vfree.
 * TODO: replace with a kernel-wide solution to this problem
 */
#define PIDLIST_TOO_LARGE(c) ((c) * sizeof(pid_t) > (PAGE_SIZE * 2))
static void *pidlist_allocate(int count)
{
	if (PIDLIST_TOO_LARGE(count))
		return vmalloc(count * sizeof(pid_t));
	else
		return kmalloc(count * sizeof(pid_t), GFP_KERNEL);
}
3418

3419 3420 3421 3422 3423 3424 3425 3426
static void pidlist_free(void *p)
{
	if (is_vmalloc_addr(p))
		vfree(p);
	else
		kfree(p);
}

3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453
/*
 * Used to destroy all pidlists lingering waiting for destroy timer.  None
 * should be left afterwards.
 */
static void cgroup_pidlist_destroy_all(struct cgroup *cgrp)
{
	struct cgroup_pidlist *l, *tmp_l;

	mutex_lock(&cgrp->pidlist_mutex);
	list_for_each_entry_safe(l, tmp_l, &cgrp->pidlists, links)
		mod_delayed_work(cgroup_pidlist_destroy_wq, &l->destroy_dwork, 0);
	mutex_unlock(&cgrp->pidlist_mutex);

	flush_workqueue(cgroup_pidlist_destroy_wq);
	BUG_ON(!list_empty(&cgrp->pidlists));
}

static void cgroup_pidlist_destroy_work_fn(struct work_struct *work)
{
	struct delayed_work *dwork = to_delayed_work(work);
	struct cgroup_pidlist *l = container_of(dwork, struct cgroup_pidlist,
						destroy_dwork);
	struct cgroup_pidlist *tofree = NULL;

	mutex_lock(&l->owner->pidlist_mutex);

	/*
3454 3455
	 * Destroy iff we didn't get queued again.  The state won't change
	 * as destroy_dwork can only be queued while locked.
3456
	 */
3457
	if (!delayed_work_pending(dwork)) {
3458 3459 3460 3461 3462 3463 3464 3465 3466 3467
		list_del(&l->links);
		pidlist_free(l->list);
		put_pid_ns(l->key.ns);
		tofree = l;
	}

	mutex_unlock(&l->owner->pidlist_mutex);
	kfree(tofree);
}

3468
/*
3469
 * pidlist_uniq - given a kmalloc()ed list, strip out all duplicate entries
3470
 * Returns the number of unique elements.
3471
 */
3472
static int pidlist_uniq(pid_t *list, int length)
3473
{
3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497
	int src, dest = 1;

	/*
	 * we presume the 0th element is unique, so i starts at 1. trivial
	 * edge cases first; no work needs to be done for either
	 */
	if (length == 0 || length == 1)
		return length;
	/* src and dest walk down the list; dest counts unique elements */
	for (src = 1; src < length; src++) {
		/* find next unique element */
		while (list[src] == list[src-1]) {
			src++;
			if (src == length)
				goto after;
		}
		/* dest always points to where the next unique element goes */
		list[dest] = list[src];
		dest++;
	}
after:
	return dest;
}

3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530
/*
 * The two pid files - task and cgroup.procs - guaranteed that the result
 * is sorted, which forced this whole pidlist fiasco.  As pid order is
 * different per namespace, each namespace needs differently sorted list,
 * making it impossible to use, for example, single rbtree of member tasks
 * sorted by task pointer.  As pidlists can be fairly large, allocating one
 * per open file is dangerous, so cgroup had to implement shared pool of
 * pidlists keyed by cgroup and namespace.
 *
 * All this extra complexity was caused by the original implementation
 * committing to an entirely unnecessary property.  In the long term, we
 * want to do away with it.  Explicitly scramble sort order if
 * sane_behavior so that no such expectation exists in the new interface.
 *
 * Scrambling is done by swapping every two consecutive bits, which is
 * non-identity one-to-one mapping which disturbs sort order sufficiently.
 */
static pid_t pid_fry(pid_t pid)
{
	unsigned a = pid & 0x55555555;
	unsigned b = pid & 0xAAAAAAAA;

	return (a << 1) | (b >> 1);
}

static pid_t cgroup_pid_fry(struct cgroup *cgrp, pid_t pid)
{
	if (cgroup_sane_behavior(cgrp))
		return pid_fry(pid);
	else
		return pid;
}

3531 3532 3533 3534 3535
static int cmppid(const void *a, const void *b)
{
	return *(pid_t *)a - *(pid_t *)b;
}

3536 3537 3538 3539 3540
static int fried_cmppid(const void *a, const void *b)
{
	return pid_fry(*(pid_t *)a) - pid_fry(*(pid_t *)b);
}

T
Tejun Heo 已提交
3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555
static struct cgroup_pidlist *cgroup_pidlist_find(struct cgroup *cgrp,
						  enum cgroup_filetype type)
{
	struct cgroup_pidlist *l;
	/* don't need task_nsproxy() if we're looking at ourself */
	struct pid_namespace *ns = task_active_pid_ns(current);

	lockdep_assert_held(&cgrp->pidlist_mutex);

	list_for_each_entry(l, &cgrp->pidlists, links)
		if (l->key.type == type && l->key.ns == ns)
			return l;
	return NULL;
}

3556 3557 3558 3559 3560 3561
/*
 * find the appropriate pidlist for our purpose (given procs vs tasks)
 * returns with the lock on that pidlist already held, and takes care
 * of the use count, or returns NULL with no locks held if we're out of
 * memory.
 */
T
Tejun Heo 已提交
3562 3563
static struct cgroup_pidlist *cgroup_pidlist_find_create(struct cgroup *cgrp,
						enum cgroup_filetype type)
3564 3565
{
	struct cgroup_pidlist *l;
3566

T
Tejun Heo 已提交
3567 3568 3569 3570 3571 3572
	lockdep_assert_held(&cgrp->pidlist_mutex);

	l = cgroup_pidlist_find(cgrp, type);
	if (l)
		return l;

3573
	/* entry not found; create a new one */
3574
	l = kzalloc(sizeof(struct cgroup_pidlist), GFP_KERNEL);
T
Tejun Heo 已提交
3575
	if (!l)
3576
		return l;
T
Tejun Heo 已提交
3577

3578
	INIT_DELAYED_WORK(&l->destroy_dwork, cgroup_pidlist_destroy_work_fn);
3579
	l->key.type = type;
T
Tejun Heo 已提交
3580 3581
	/* don't need task_nsproxy() if we're looking at ourself */
	l->key.ns = get_pid_ns(task_active_pid_ns(current));
3582 3583 3584 3585 3586
	l->owner = cgrp;
	list_add(&l->links, &cgrp->pidlists);
	return l;
}

3587 3588 3589
/*
 * Load a cgroup's pidarray with either procs' tgids or tasks' pids
 */
3590 3591
static int pidlist_array_load(struct cgroup *cgrp, enum cgroup_filetype type,
			      struct cgroup_pidlist **lp)
3592 3593 3594 3595
{
	pid_t *array;
	int length;
	int pid, n = 0; /* used for populating the array */
3596
	struct css_task_iter it;
3597
	struct task_struct *tsk;
3598 3599
	struct cgroup_pidlist *l;

3600 3601
	lockdep_assert_held(&cgrp->pidlist_mutex);

3602 3603 3604 3605 3606 3607 3608
	/*
	 * If cgroup gets more users after we read count, we won't have
	 * enough space - tough.  This race is indistinguishable to the
	 * caller from the case that the additional cgroup users didn't
	 * show up until sometime later on.
	 */
	length = cgroup_task_count(cgrp);
3609
	array = pidlist_allocate(length);
3610 3611 3612
	if (!array)
		return -ENOMEM;
	/* now, populate the array */
3613 3614
	css_task_iter_start(&cgrp->dummy_css, &it);
	while ((tsk = css_task_iter_next(&it))) {
3615
		if (unlikely(n == length))
3616
			break;
3617
		/* get tgid or pid for procs or tasks file respectively */
3618 3619 3620 3621
		if (type == CGROUP_FILE_PROCS)
			pid = task_tgid_vnr(tsk);
		else
			pid = task_pid_vnr(tsk);
3622 3623
		if (pid > 0) /* make sure to only use valid results */
			array[n++] = pid;
3624
	}
3625
	css_task_iter_end(&it);
3626 3627
	length = n;
	/* now sort & (if procs) strip out duplicates */
3628 3629 3630 3631
	if (cgroup_sane_behavior(cgrp))
		sort(array, length, sizeof(pid_t), fried_cmppid, NULL);
	else
		sort(array, length, sizeof(pid_t), cmppid, NULL);
3632
	if (type == CGROUP_FILE_PROCS)
3633
		length = pidlist_uniq(array, length);
T
Tejun Heo 已提交
3634 3635

	l = cgroup_pidlist_find_create(cgrp, type);
3636
	if (!l) {
T
Tejun Heo 已提交
3637
		mutex_unlock(&cgrp->pidlist_mutex);
3638
		pidlist_free(array);
3639
		return -ENOMEM;
3640
	}
T
Tejun Heo 已提交
3641 3642

	/* store array, freeing old if necessary */
3643
	pidlist_free(l->list);
3644 3645
	l->list = array;
	l->length = length;
3646
	*lp = l;
3647
	return 0;
3648 3649
}

B
Balbir Singh 已提交
3650
/**
L
Li Zefan 已提交
3651
 * cgroupstats_build - build and fill cgroupstats
B
Balbir Singh 已提交
3652 3653 3654
 * @stats: cgroupstats to fill information into
 * @dentry: A dentry entry belonging to the cgroup for which stats have
 * been requested.
L
Li Zefan 已提交
3655 3656 3657
 *
 * Build and fill cgroupstats so that taskstats can export it to user
 * space.
B
Balbir Singh 已提交
3658 3659 3660 3661
 */
int cgroupstats_build(struct cgroupstats *stats, struct dentry *dentry)
{
	int ret = -EINVAL;
3662
	struct cgroup *cgrp;
3663
	struct css_task_iter it;
B
Balbir Singh 已提交
3664
	struct task_struct *tsk;
3665

B
Balbir Singh 已提交
3666
	/*
3667 3668
	 * Validate dentry by checking the superblock operations,
	 * and make sure it's a directory.
B
Balbir Singh 已提交
3669
	 */
3670 3671
	if (dentry->d_sb->s_op != &cgroup_ops ||
	    !S_ISDIR(dentry->d_inode->i_mode))
B
Balbir Singh 已提交
3672 3673 3674
		 goto err;

	ret = 0;
3675
	cgrp = dentry->d_fsdata;
B
Balbir Singh 已提交
3676

3677 3678
	css_task_iter_start(&cgrp->dummy_css, &it);
	while ((tsk = css_task_iter_next(&it))) {
B
Balbir Singh 已提交
3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697
		switch (tsk->state) {
		case TASK_RUNNING:
			stats->nr_running++;
			break;
		case TASK_INTERRUPTIBLE:
			stats->nr_sleeping++;
			break;
		case TASK_UNINTERRUPTIBLE:
			stats->nr_uninterruptible++;
			break;
		case TASK_STOPPED:
			stats->nr_stopped++;
			break;
		default:
			if (delayacct_is_task_waiting_on_io(tsk))
				stats->nr_io_wait++;
			break;
		}
	}
3698
	css_task_iter_end(&it);
B
Balbir Singh 已提交
3699 3700 3701 3702 3703

err:
	return ret;
}

3704

3705
/*
3706
 * seq_file methods for the tasks/procs files. The seq_file position is the
3707
 * next pid to display; the seq_file iterator is a pointer to the pid
3708
 * in the cgroup->l->list array.
3709
 */
3710

3711
static void *cgroup_pidlist_start(struct seq_file *s, loff_t *pos)
3712
{
3713 3714 3715 3716 3717 3718
	/*
	 * Initially we receive a position value that corresponds to
	 * one more than the last pid shown (or 0 on the first call or
	 * after a seek to the start). Use a binary-search to find the
	 * next pid to display, if any
	 */
3719
	struct cgroup_open_file *of = s->private;
3720
	struct cgroup *cgrp = seq_css(s)->cgroup;
3721
	struct cgroup_pidlist *l;
3722
	enum cgroup_filetype type = seq_cft(s)->private;
3723
	int index = 0, pid = *pos;
3724 3725 3726 3727 3728
	int *iter, ret;

	mutex_lock(&cgrp->pidlist_mutex);

	/*
3729
	 * !NULL @of->priv indicates that this isn't the first start()
3730
	 * after open.  If the matching pidlist is around, we can use that.
3731
	 * Look for it.  Note that @of->priv can't be used directly.  It
3732 3733
	 * could already have been destroyed.
	 */
3734 3735
	if (of->priv)
		of->priv = cgroup_pidlist_find(cgrp, type);
3736 3737 3738 3739 3740

	/*
	 * Either this is the first start() after open or the matching
	 * pidlist has been destroyed inbetween.  Create a new one.
	 */
3741 3742 3743
	if (!of->priv) {
		ret = pidlist_array_load(cgrp, type,
					 (struct cgroup_pidlist **)&of->priv);
3744 3745 3746
		if (ret)
			return ERR_PTR(ret);
	}
3747
	l = of->priv;
3748 3749

	if (pid) {
3750
		int end = l->length;
S
Stephen Rothwell 已提交
3751

3752 3753
		while (index < end) {
			int mid = (index + end) / 2;
3754
			if (cgroup_pid_fry(cgrp, l->list[mid]) == pid) {
3755 3756
				index = mid;
				break;
3757
			} else if (cgroup_pid_fry(cgrp, l->list[mid]) <= pid)
3758 3759 3760 3761 3762 3763
				index = mid + 1;
			else
				end = mid;
		}
	}
	/* If we're off the end of the array, we're done */
3764
	if (index >= l->length)
3765 3766
		return NULL;
	/* Update the abstract position to be the actual pid that we found */
3767
	iter = l->list + index;
3768
	*pos = cgroup_pid_fry(cgrp, *iter);
3769 3770 3771
	return iter;
}

3772
static void cgroup_pidlist_stop(struct seq_file *s, void *v)
3773
{
3774 3775
	struct cgroup_open_file *of = s->private;
	struct cgroup_pidlist *l = of->priv;
3776

3777 3778
	if (l)
		mod_delayed_work(cgroup_pidlist_destroy_wq, &l->destroy_dwork,
3779
				 CGROUP_PIDLIST_DESTROY_DELAY);
3780
	mutex_unlock(&seq_css(s)->cgroup->pidlist_mutex);
3781 3782
}

3783
static void *cgroup_pidlist_next(struct seq_file *s, void *v, loff_t *pos)
3784
{
3785 3786
	struct cgroup_open_file *of = s->private;
	struct cgroup_pidlist *l = of->priv;
3787 3788
	pid_t *p = v;
	pid_t *end = l->list + l->length;
3789 3790 3791 3792 3793 3794 3795 3796
	/*
	 * Advance to the next pid in the array. If this goes off the
	 * end, we're done
	 */
	p++;
	if (p >= end) {
		return NULL;
	} else {
3797
		*pos = cgroup_pid_fry(seq_css(s)->cgroup, *p);
3798 3799 3800 3801
		return p;
	}
}

3802
static int cgroup_pidlist_show(struct seq_file *s, void *v)
3803 3804 3805
{
	return seq_printf(s, "%d\n", *(int *)v);
}
3806

3807 3808 3809 3810 3811 3812 3813 3814 3815
/*
 * seq_operations functions for iterating on pidlists through seq_file -
 * independent of whether it's tasks or procs
 */
static const struct seq_operations cgroup_pidlist_seq_operations = {
	.start = cgroup_pidlist_start,
	.stop = cgroup_pidlist_stop,
	.next = cgroup_pidlist_next,
	.show = cgroup_pidlist_show,
3816 3817
};

3818 3819
static u64 cgroup_read_notify_on_release(struct cgroup_subsys_state *css,
					 struct cftype *cft)
3820
{
3821
	return notify_on_release(css->cgroup);
3822 3823
}

3824 3825
static int cgroup_write_notify_on_release(struct cgroup_subsys_state *css,
					  struct cftype *cft, u64 val)
3826
{
3827
	clear_bit(CGRP_RELEASABLE, &css->cgroup->flags);
3828
	if (val)
3829
		set_bit(CGRP_NOTIFY_ON_RELEASE, &css->cgroup->flags);
3830
	else
3831
		clear_bit(CGRP_NOTIFY_ON_RELEASE, &css->cgroup->flags);
3832 3833 3834
	return 0;
}

3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851
/*
 * When dput() is called asynchronously, if umount has been done and
 * then deactivate_super() in cgroup_free_fn() kills the superblock,
 * there's a small window that vfs will see the root dentry with non-zero
 * refcnt and trigger BUG().
 *
 * That's why we hold a reference before dput() and drop it right after.
 */
static void cgroup_dput(struct cgroup *cgrp)
{
	struct super_block *sb = cgrp->root->sb;

	atomic_inc(&sb->s_active);
	dput(cgrp->dentry);
	deactivate_super(sb);
}

3852 3853
static u64 cgroup_clone_children_read(struct cgroup_subsys_state *css,
				      struct cftype *cft)
3854
{
3855
	return test_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags);
3856 3857
}

3858 3859
static int cgroup_clone_children_write(struct cgroup_subsys_state *css,
				       struct cftype *cft, u64 val)
3860 3861
{
	if (val)
3862
		set_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags);
3863
	else
3864
		clear_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags);
3865 3866 3867
	return 0;
}

3868
static struct cftype cgroup_base_files[] = {
3869
	{
3870
		.name = "cgroup.procs",
3871 3872 3873 3874
		.seq_start = cgroup_pidlist_start,
		.seq_next = cgroup_pidlist_next,
		.seq_stop = cgroup_pidlist_stop,
		.seq_show = cgroup_pidlist_show,
3875
		.private = CGROUP_FILE_PROCS,
B
Ben Blum 已提交
3876 3877
		.write_u64 = cgroup_procs_write,
		.mode = S_IRUGO | S_IWUSR,
3878
	},
3879 3880
	{
		.name = "cgroup.clone_children",
3881
		.flags = CFTYPE_INSANE,
3882 3883 3884
		.read_u64 = cgroup_clone_children_read,
		.write_u64 = cgroup_clone_children_write,
	},
3885 3886 3887
	{
		.name = "cgroup.sane_behavior",
		.flags = CFTYPE_ONLY_ON_ROOT,
3888
		.seq_show = cgroup_sane_behavior_show,
3889
	},
3890 3891 3892 3893 3894 3895 3896 3897 3898

	/*
	 * Historical crazy stuff.  These don't have "cgroup."  prefix and
	 * don't exist if sane_behavior.  If you're depending on these, be
	 * prepared to be burned.
	 */
	{
		.name = "tasks",
		.flags = CFTYPE_INSANE,		/* use "procs" instead */
3899 3900 3901 3902
		.seq_start = cgroup_pidlist_start,
		.seq_next = cgroup_pidlist_next,
		.seq_stop = cgroup_pidlist_stop,
		.seq_show = cgroup_pidlist_show,
3903
		.private = CGROUP_FILE_TASKS,
3904 3905 3906 3907 3908 3909 3910 3911 3912
		.write_u64 = cgroup_tasks_write,
		.mode = S_IRUGO | S_IWUSR,
	},
	{
		.name = "notify_on_release",
		.flags = CFTYPE_INSANE,
		.read_u64 = cgroup_read_notify_on_release,
		.write_u64 = cgroup_write_notify_on_release,
	},
3913 3914
	{
		.name = "release_agent",
3915
		.flags = CFTYPE_INSANE | CFTYPE_ONLY_ON_ROOT,
3916
		.seq_show = cgroup_release_agent_show,
3917 3918 3919
		.write_string = cgroup_release_agent_write,
		.max_write_len = PATH_MAX,
	},
T
Tejun Heo 已提交
3920
	{ }	/* terminate */
3921 3922
};

3923
/**
3924
 * cgroup_populate_dir - create subsys files in a cgroup directory
3925 3926
 * @cgrp: target cgroup
 * @subsys_mask: mask of the subsystem ids whose files should be added
3927 3928
 *
 * On failure, no file is added.
3929
 */
3930
static int cgroup_populate_dir(struct cgroup *cgrp, unsigned long subsys_mask)
3931 3932
{
	struct cgroup_subsys *ss;
3933
	int i, ret = 0;
3934

3935
	/* process cftsets of each subsystem */
3936
	for_each_subsys(ss, i) {
3937
		struct cftype_set *set;
3938 3939

		if (!test_bit(i, &subsys_mask))
3940
			continue;
3941

3942
		list_for_each_entry(set, &ss->cftsets, node) {
3943
			ret = cgroup_addrm_files(cgrp, set->cfts, true);
3944 3945 3946
			if (ret < 0)
				goto err;
		}
3947 3948
	}
	return 0;
3949 3950 3951
err:
	cgroup_clear_dir(cgrp, subsys_mask);
	return ret;
3952 3953
}

3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975
/*
 * css destruction is four-stage process.
 *
 * 1. Destruction starts.  Killing of the percpu_ref is initiated.
 *    Implemented in kill_css().
 *
 * 2. When the percpu_ref is confirmed to be visible as killed on all CPUs
 *    and thus css_tryget() is guaranteed to fail, the css can be offlined
 *    by invoking offline_css().  After offlining, the base ref is put.
 *    Implemented in css_killed_work_fn().
 *
 * 3. When the percpu_ref reaches zero, the only possible remaining
 *    accessors are inside RCU read sections.  css_release() schedules the
 *    RCU callback.
 *
 * 4. After the grace period, the css can be freed.  Implemented in
 *    css_free_work_fn().
 *
 * It is actually hairier because both step 2 and 4 require process context
 * and thus involve punting to css->destroy_work adding two additional
 * steps to the already complex sequence.
 */
3976
static void css_free_work_fn(struct work_struct *work)
3977 3978
{
	struct cgroup_subsys_state *css =
3979
		container_of(work, struct cgroup_subsys_state, destroy_work);
3980
	struct cgroup *cgrp = css->cgroup;
3981

3982 3983 3984
	if (css->parent)
		css_put(css->parent);

3985 3986
	css->ss->css_free(css);
	cgroup_dput(cgrp);
3987 3988
}

3989
static void css_free_rcu_fn(struct rcu_head *rcu_head)
3990 3991
{
	struct cgroup_subsys_state *css =
3992
		container_of(rcu_head, struct cgroup_subsys_state, rcu_head);
3993

3994 3995
	/*
	 * css holds an extra ref to @cgrp->dentry which is put on the last
3996
	 * css_put().  dput() requires process context which we don't have.
3997 3998
	 */
	INIT_WORK(&css->destroy_work, css_free_work_fn);
3999
	queue_work(cgroup_destroy_wq, &css->destroy_work);
4000 4001
}

4002 4003 4004 4005 4006
static void css_release(struct percpu_ref *ref)
{
	struct cgroup_subsys_state *css =
		container_of(ref, struct cgroup_subsys_state, refcnt);

4007
	call_rcu(&css->rcu_head, css_free_rcu_fn);
4008 4009
}

4010 4011
static void init_css(struct cgroup_subsys_state *css, struct cgroup_subsys *ss,
		     struct cgroup *cgrp)
4012
{
4013
	css->cgroup = cgrp;
4014
	css->ss = ss;
4015
	css->flags = 0;
4016 4017

	if (cgrp->parent)
4018
		css->parent = cgroup_css(cgrp->parent, ss);
4019
	else
4020
		css->flags |= CSS_ROOT;
4021

4022
	BUG_ON(cgroup_css(cgrp, ss));
4023 4024
}

4025
/* invoke ->css_online() on a new CSS and mark it online if successful */
4026
static int online_css(struct cgroup_subsys_state *css)
4027
{
4028
	struct cgroup_subsys *ss = css->ss;
T
Tejun Heo 已提交
4029 4030
	int ret = 0;

4031 4032
	lockdep_assert_held(&cgroup_mutex);

4033
	if (ss->css_online)
4034
		ret = ss->css_online(css);
4035
	if (!ret) {
4036
		css->flags |= CSS_ONLINE;
4037
		css->cgroup->nr_css++;
4038 4039
		rcu_assign_pointer(css->cgroup->subsys[ss->subsys_id], css);
	}
T
Tejun Heo 已提交
4040
	return ret;
4041 4042
}

4043
/* if the CSS is online, invoke ->css_offline() on it and mark it offline */
4044
static void offline_css(struct cgroup_subsys_state *css)
4045
{
4046
	struct cgroup_subsys *ss = css->ss;
4047 4048 4049 4050 4051 4052

	lockdep_assert_held(&cgroup_mutex);

	if (!(css->flags & CSS_ONLINE))
		return;

4053
	if (ss->css_offline)
4054
		ss->css_offline(css);
4055

4056
	css->flags &= ~CSS_ONLINE;
4057
	css->cgroup->nr_css--;
4058
	RCU_INIT_POINTER(css->cgroup->subsys[ss->subsys_id], css);
4059 4060
}

4061
/*
L
Li Zefan 已提交
4062 4063 4064 4065
 * cgroup_create - create a cgroup
 * @parent: cgroup that will be parent of the new cgroup
 * @dentry: dentry of the new cgroup
 * @mode: mode to set on new inode
4066
 *
L
Li Zefan 已提交
4067
 * Must be called with the mutex on the parent inode held
4068 4069
 */
static long cgroup_create(struct cgroup *parent, struct dentry *dentry,
A
Al Viro 已提交
4070
			     umode_t mode)
4071
{
4072
	struct cgroup_subsys_state *css_ar[CGROUP_SUBSYS_COUNT] = { };
4073
	struct cgroup *cgrp;
4074
	struct cgroup_name *name;
4075 4076 4077 4078 4079
	struct cgroupfs_root *root = parent->root;
	int err = 0;
	struct cgroup_subsys *ss;
	struct super_block *sb = root->sb;

T
Tejun Heo 已提交
4080
	/* allocate the cgroup and its ID, 0 is reserved for the root */
4081 4082
	cgrp = kzalloc(sizeof(*cgrp), GFP_KERNEL);
	if (!cgrp)
4083 4084
		return -ENOMEM;

4085 4086 4087 4088 4089
	name = cgroup_alloc_name(dentry);
	if (!name)
		goto err_free_cgrp;
	rcu_assign_pointer(cgrp->name, name);

4090 4091 4092 4093 4094
	/*
	 * Temporarily set the pointer to NULL, so idr_find() won't return
	 * a half-baked cgroup.
	 */
	cgrp->id = idr_alloc(&root->cgroup_idr, NULL, 1, 0, GFP_KERNEL);
T
Tejun Heo 已提交
4095
	if (cgrp->id < 0)
4096
		goto err_free_name;
T
Tejun Heo 已提交
4097

4098 4099 4100 4101 4102 4103 4104 4105 4106
	/*
	 * Only live parents can have children.  Note that the liveliness
	 * check isn't strictly necessary because cgroup_mkdir() and
	 * cgroup_rmdir() are fully synchronized by i_mutex; however, do it
	 * anyway so that locking is contained inside cgroup proper and we
	 * don't get nasty surprises if we ever grow another caller.
	 */
	if (!cgroup_lock_live_group(parent)) {
		err = -ENODEV;
T
Tejun Heo 已提交
4107
		goto err_free_id;
4108 4109
	}

4110 4111 4112 4113 4114 4115 4116
	/* Grab a reference on the superblock so the hierarchy doesn't
	 * get deleted on unmount if there are child cgroups.  This
	 * can be done outside cgroup_mutex, since the sb can't
	 * disappear while someone has an open control file on the
	 * fs */
	atomic_inc(&sb->s_active);

4117
	init_cgroup_housekeeping(cgrp);
4118

4119 4120 4121
	dentry->d_fsdata = cgrp;
	cgrp->dentry = dentry;

4122
	cgrp->parent = parent;
4123
	cgrp->dummy_css.parent = &parent->dummy_css;
4124
	cgrp->root = parent->root;
4125

4126 4127 4128
	if (notify_on_release(parent))
		set_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);

4129 4130
	if (test_bit(CGRP_CPUSET_CLONE_CHILDREN, &parent->flags))
		set_bit(CGRP_CPUSET_CLONE_CHILDREN, &cgrp->flags);
4131

4132
	for_each_root_subsys(root, ss) {
4133
		struct cgroup_subsys_state *css;
4134

4135
		css = ss->css_alloc(cgroup_css(parent, ss));
4136 4137
		if (IS_ERR(css)) {
			err = PTR_ERR(css);
4138
			goto err_free_all;
4139
		}
4140
		css_ar[ss->subsys_id] = css;
4141 4142

		err = percpu_ref_init(&css->refcnt, css_release);
4143
		if (err)
4144 4145
			goto err_free_all;

4146
		init_css(css, ss, cgrp);
4147 4148
	}

4149 4150 4151 4152 4153
	/*
	 * Create directory.  cgroup_create_file() returns with the new
	 * directory locked on success so that it can be populated without
	 * dropping cgroup_mutex.
	 */
T
Tejun Heo 已提交
4154
	err = cgroup_create_file(dentry, S_IFDIR | mode, sb);
4155
	if (err < 0)
4156
		goto err_free_all;
4157
	lockdep_assert_held(&dentry->d_inode->i_mutex);
4158

4159
	cgrp->serial_nr = cgroup_serial_nr_next++;
4160

4161 4162 4163
	/* allocation complete, commit to creation */
	list_add_tail_rcu(&cgrp->sibling, &cgrp->parent->children);
	root->number_of_cgroups++;
T
Tejun Heo 已提交
4164

4165 4166 4167
	/* hold a ref to the parent's dentry */
	dget(parent->dentry);

T
Tejun Heo 已提交
4168
	/* creation succeeded, notify subsystems */
4169
	for_each_root_subsys(root, ss) {
4170
		struct cgroup_subsys_state *css = css_ar[ss->subsys_id];
4171 4172

		err = online_css(css);
T
Tejun Heo 已提交
4173 4174
		if (err)
			goto err_destroy;
4175

4176 4177 4178 4179 4180 4181 4182
		/* each css holds a ref to the cgroup's dentry and parent css */
		dget(dentry);
		css_get(css->parent);

		/* mark it consumed for error path */
		css_ar[ss->subsys_id] = NULL;

4183 4184 4185 4186 4187 4188 4189 4190
		if (ss->broken_hierarchy && !ss->warned_broken_hierarchy &&
		    parent->parent) {
			pr_warning("cgroup: %s (%d) created nested cgroup for controller \"%s\" which has incomplete hierarchy support. Nested cgroups may change behavior in the future.\n",
				   current->comm, current->pid, ss->name);
			if (!strcmp(ss->name, "memory"))
				pr_warning("cgroup: \"memory\" requires setting use_hierarchy to 1 on the root.\n");
			ss->warned_broken_hierarchy = true;
		}
4191 4192
	}

4193 4194
	idr_replace(&root->cgroup_idr, cgrp, cgrp->id);

4195
	err = cgroup_addrm_files(cgrp, cgroup_base_files, true);
4196 4197 4198 4199
	if (err)
		goto err_destroy;

	err = cgroup_populate_dir(cgrp, root->subsys_mask);
4200 4201
	if (err)
		goto err_destroy;
4202 4203

	mutex_unlock(&cgroup_mutex);
4204
	mutex_unlock(&cgrp->dentry->d_inode->i_mutex);
4205 4206 4207

	return 0;

4208
err_free_all:
4209
	for_each_root_subsys(root, ss) {
4210
		struct cgroup_subsys_state *css = css_ar[ss->subsys_id];
4211 4212 4213

		if (css) {
			percpu_ref_cancel_init(&css->refcnt);
4214
			ss->css_free(css);
4215
		}
4216 4217 4218 4219
	}
	mutex_unlock(&cgroup_mutex);
	/* Release the reference count that we took on the superblock */
	deactivate_super(sb);
T
Tejun Heo 已提交
4220
err_free_id:
4221
	idr_remove(&root->cgroup_idr, cgrp->id);
4222 4223
err_free_name:
	kfree(rcu_dereference_raw(cgrp->name));
4224
err_free_cgrp:
4225
	kfree(cgrp);
4226
	return err;
4227 4228

err_destroy:
4229 4230 4231 4232 4233 4234 4235 4236
	for_each_root_subsys(root, ss) {
		struct cgroup_subsys_state *css = css_ar[ss->subsys_id];

		if (css) {
			percpu_ref_cancel_init(&css->refcnt);
			ss->css_free(css);
		}
	}
4237 4238 4239 4240
	cgroup_destroy_locked(cgrp);
	mutex_unlock(&cgroup_mutex);
	mutex_unlock(&dentry->d_inode->i_mutex);
	return err;
4241 4242
}

4243
static int cgroup_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
4244 4245 4246 4247 4248 4249 4250
{
	struct cgroup *c_parent = dentry->d_parent->d_fsdata;

	/* the vfs holds inode->i_mutex already */
	return cgroup_create(c_parent, dentry, mode | S_IFDIR);
}

4251 4252 4253 4254 4255
/*
 * This is called when the refcnt of a css is confirmed to be killed.
 * css_tryget() is now guaranteed to fail.
 */
static void css_killed_work_fn(struct work_struct *work)
4256
{
4257 4258 4259
	struct cgroup_subsys_state *css =
		container_of(work, struct cgroup_subsys_state, destroy_work);
	struct cgroup *cgrp = css->cgroup;
4260

4261 4262
	mutex_lock(&cgroup_mutex);

4263 4264 4265 4266 4267 4268
	/*
	 * css_tryget() is guaranteed to fail now.  Tell subsystems to
	 * initate destruction.
	 */
	offline_css(css);

4269 4270 4271 4272 4273
	/*
	 * If @cgrp is marked dead, it's waiting for refs of all css's to
	 * be disabled before proceeding to the second phase of cgroup
	 * destruction.  If we are the last one, kick it off.
	 */
4274
	if (!cgrp->nr_css && cgroup_is_dead(cgrp))
4275 4276 4277
		cgroup_destroy_css_killed(cgrp);

	mutex_unlock(&cgroup_mutex);
4278 4279 4280 4281 4282 4283 4284 4285 4286

	/*
	 * Put the css refs from kill_css().  Each css holds an extra
	 * reference to the cgroup's dentry and cgroup removal proceeds
	 * regardless of css refs.  On the last put of each css, whenever
	 * that may be, the extra dentry ref is put so that dentry
	 * destruction happens only after all css's are released.
	 */
	css_put(css);
4287 4288
}

4289 4290
/* css kill confirmation processing requires process context, bounce */
static void css_killed_ref_fn(struct percpu_ref *ref)
4291 4292 4293 4294
{
	struct cgroup_subsys_state *css =
		container_of(ref, struct cgroup_subsys_state, refcnt);

4295
	INIT_WORK(&css->destroy_work, css_killed_work_fn);
4296
	queue_work(cgroup_destroy_wq, &css->destroy_work);
4297 4298
}

T
Tejun Heo 已提交
4299 4300 4301 4302
/**
 * kill_css - destroy a css
 * @css: css to destroy
 *
4303 4304 4305 4306
 * This function initiates destruction of @css by removing cgroup interface
 * files and putting its base reference.  ->css_offline() will be invoked
 * asynchronously once css_tryget() is guaranteed to fail and when the
 * reference count reaches zero, @css will be released.
T
Tejun Heo 已提交
4307 4308 4309
 */
static void kill_css(struct cgroup_subsys_state *css)
{
4310 4311
	cgroup_clear_dir(css->cgroup, 1 << css->ss->subsys_id);

T
Tejun Heo 已提交
4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328
	/*
	 * Killing would put the base ref, but we need to keep it alive
	 * until after ->css_offline().
	 */
	css_get(css);

	/*
	 * cgroup core guarantees that, by the time ->css_offline() is
	 * invoked, no new css reference will be given out via
	 * css_tryget().  We can't simply call percpu_ref_kill() and
	 * proceed to offlining css's because percpu_ref_kill() doesn't
	 * guarantee that the ref is seen as killed on all CPUs on return.
	 *
	 * Use percpu_ref_kill_and_confirm() to get notifications as each
	 * css is confirmed to be seen as killed on all CPUs.
	 */
	percpu_ref_kill_and_confirm(&css->refcnt, css_killed_ref_fn);
4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354
}

/**
 * cgroup_destroy_locked - the first stage of cgroup destruction
 * @cgrp: cgroup to be destroyed
 *
 * css's make use of percpu refcnts whose killing latency shouldn't be
 * exposed to userland and are RCU protected.  Also, cgroup core needs to
 * guarantee that css_tryget() won't succeed by the time ->css_offline() is
 * invoked.  To satisfy all the requirements, destruction is implemented in
 * the following two steps.
 *
 * s1. Verify @cgrp can be destroyed and mark it dying.  Remove all
 *     userland visible parts and start killing the percpu refcnts of
 *     css's.  Set up so that the next stage will be kicked off once all
 *     the percpu refcnts are confirmed to be killed.
 *
 * s2. Invoke ->css_offline(), mark the cgroup dead and proceed with the
 *     rest of destruction.  Once all cgroup references are gone, the
 *     cgroup is RCU-freed.
 *
 * This function implements s1.  After this step, @cgrp is gone as far as
 * the userland is concerned and a new cgroup with the same name may be
 * created.  As cgroup doesn't care about the names internally, this
 * doesn't cause any problem.
 */
4355 4356
static int cgroup_destroy_locked(struct cgroup *cgrp)
	__releases(&cgroup_mutex) __acquires(&cgroup_mutex)
4357
{
4358
	struct dentry *d = cgrp->dentry;
4359
	struct cgroup_subsys *ss;
4360
	struct cgroup *child;
4361
	bool empty;
4362

4363 4364 4365
	lockdep_assert_held(&d->d_inode->i_mutex);
	lockdep_assert_held(&cgroup_mutex);

4366
	/*
T
Tejun Heo 已提交
4367 4368
	 * css_set_lock synchronizes access to ->cset_links and prevents
	 * @cgrp from being removed while __put_css_set() is in progress.
4369 4370
	 */
	read_lock(&css_set_lock);
4371
	empty = list_empty(&cgrp->cset_links);
4372 4373
	read_unlock(&css_set_lock);
	if (!empty)
4374
		return -EBUSY;
L
Li Zefan 已提交
4375

4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391
	/*
	 * Make sure there's no live children.  We can't test ->children
	 * emptiness as dead children linger on it while being destroyed;
	 * otherwise, "rmdir parent/child parent" may fail with -EBUSY.
	 */
	empty = true;
	rcu_read_lock();
	list_for_each_entry_rcu(child, &cgrp->children, sibling) {
		empty = cgroup_is_dead(child);
		if (!empty)
			break;
	}
	rcu_read_unlock();
	if (!empty)
		return -EBUSY;

4392
	/*
T
Tejun Heo 已提交
4393 4394 4395
	 * Initiate massacre of all css's.  cgroup_destroy_css_killed()
	 * will be invoked to perform the rest of destruction once the
	 * percpu refs of all css's are confirmed to be killed.
4396
	 */
4397 4398 4399 4400 4401 4402
	for_each_root_subsys(cgrp->root, ss) {
		struct cgroup_subsys_state *css = cgroup_css(cgrp, ss);

		if (css)
			kill_css(css);
	}
4403 4404 4405 4406

	/*
	 * Mark @cgrp dead.  This prevents further task migration and child
	 * creation by disabling cgroup_lock_live_group().  Note that
4407
	 * CGRP_DEAD assertion is depended upon by css_next_child() to
4408
	 * resume iteration after dropping RCU read lock.  See
4409
	 * css_next_child() for details.
4410
	 */
4411
	set_bit(CGRP_DEAD, &cgrp->flags);
4412

4413 4414 4415 4416 4417 4418 4419
	/* CGRP_DEAD is set, remove from ->release_list for the last time */
	raw_spin_lock(&release_list_lock);
	if (!list_empty(&cgrp->release_list))
		list_del_init(&cgrp->release_list);
	raw_spin_unlock(&release_list_lock);

	/*
4420 4421 4422 4423 4424 4425 4426 4427
	 * If @cgrp has css's attached, the second stage of cgroup
	 * destruction is kicked off from css_killed_work_fn() after the
	 * refs of all attached css's are killed.  If @cgrp doesn't have
	 * any css, we kick it off here.
	 */
	if (!cgrp->nr_css)
		cgroup_destroy_css_killed(cgrp);

4428
	/*
4429 4430 4431
	 * Clear the base files and remove @cgrp directory.  The removal
	 * puts the base ref but we aren't quite done with @cgrp yet, so
	 * hold onto it.
4432
	 */
4433
	cgroup_addrm_files(cgrp, cgroup_base_files, false);
4434 4435 4436
	dget(d);
	cgroup_d_remove_dir(d);

4437 4438 4439
	return 0;
};

4440
/**
4441
 * cgroup_destroy_css_killed - the second step of cgroup destruction
4442 4443 4444
 * @work: cgroup->destroy_free_work
 *
 * This function is invoked from a work item for a cgroup which is being
4445 4446 4447
 * destroyed after all css's are offlined and performs the rest of
 * destruction.  This is the second step of destruction described in the
 * comment above cgroup_destroy_locked().
4448
 */
4449
static void cgroup_destroy_css_killed(struct cgroup *cgrp)
4450 4451 4452 4453
{
	struct cgroup *parent = cgrp->parent;
	struct dentry *d = cgrp->dentry;

4454
	lockdep_assert_held(&cgroup_mutex);
4455

4456
	/* delete this cgroup from parent->children */
4457
	list_del_rcu(&cgrp->sibling);
4458 4459

	/*
4460 4461 4462
	 * We should remove the cgroup object from idr before its grace
	 * period starts, so we won't be looking up a cgroup while the
	 * cgroup is being freed.
4463
	 */
4464 4465
	idr_remove(&cgrp->root->cgroup_idr, cgrp->id);
	cgrp->id = -1;
4466

4467 4468
	dput(d);

4469
	set_bit(CGRP_RELEASABLE, &parent->flags);
4470
	check_for_release(parent);
4471 4472
}

4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483
static int cgroup_rmdir(struct inode *unused_dir, struct dentry *dentry)
{
	int ret;

	mutex_lock(&cgroup_mutex);
	ret = cgroup_destroy_locked(dentry->d_fsdata);
	mutex_unlock(&cgroup_mutex);

	return ret;
}

4484 4485 4486 4487 4488 4489 4490 4491 4492
static void __init_or_module cgroup_init_cftsets(struct cgroup_subsys *ss)
{
	INIT_LIST_HEAD(&ss->cftsets);

	/*
	 * base_cftset is embedded in subsys itself, no need to worry about
	 * deregistration.
	 */
	if (ss->base_cftypes) {
4493 4494 4495 4496 4497
		struct cftype *cft;

		for (cft = ss->base_cftypes; cft->name[0] != '\0'; cft++)
			cft->ss = ss;

4498 4499 4500 4501 4502
		ss->base_cftset.cfts = ss->base_cftypes;
		list_add_tail(&ss->base_cftset.node, &ss->cftsets);
	}
}

4503
static void __init cgroup_init_subsys(struct cgroup_subsys *ss)
4504 4505
{
	struct cgroup_subsys_state *css;
D
Diego Calleja 已提交
4506 4507

	printk(KERN_INFO "Initializing cgroup subsys %s\n", ss->name);
4508

4509 4510
	mutex_lock(&cgroup_mutex);

4511 4512 4513
	/* init base cftset */
	cgroup_init_cftsets(ss);

4514
	/* Create the top cgroup state for this subsystem */
4515 4516
	list_add(&ss->sibling, &cgroup_dummy_root.subsys_list);
	ss->root = &cgroup_dummy_root;
4517
	css = ss->css_alloc(cgroup_css(cgroup_dummy_top, ss));
4518 4519
	/* We don't handle early failures gracefully */
	BUG_ON(IS_ERR(css));
4520
	init_css(css, ss, cgroup_dummy_top);
4521

L
Li Zefan 已提交
4522
	/* Update the init_css_set to contain a subsys
4523
	 * pointer to this state - since the subsystem is
L
Li Zefan 已提交
4524 4525
	 * newly registered, all tasks and hence the
	 * init_css_set is in the subsystem's top cgroup. */
4526
	init_css_set.subsys[ss->subsys_id] = css;
4527 4528 4529

	need_forkexit_callback |= ss->fork || ss->exit;

L
Li Zefan 已提交
4530 4531 4532 4533 4534
	/* At system boot, before all subsystems have been
	 * registered, no tasks have been forked, so we don't
	 * need to invoke fork callbacks here. */
	BUG_ON(!list_empty(&init_task.tasks));

4535
	BUG_ON(online_css(css));
4536

4537 4538
	mutex_unlock(&cgroup_mutex);

4539 4540 4541 4542 4543 4544 4545 4546 4547 4548
	/* this function shouldn't be used with modular subsystems, since they
	 * need to register a subsys_id, among other things */
	BUG_ON(ss->module);
}

/**
 * cgroup_load_subsys: load and register a modular subsystem at runtime
 * @ss: the subsystem to load
 *
 * This function should be called in a modular subsystem's initcall. If the
T
Thomas Weber 已提交
4549
 * subsystem is built as a module, it will be assigned a new subsys_id and set
4550 4551 4552 4553 4554 4555
 * up for use. If the subsystem is built-in anyway, work is delegated to the
 * simpler cgroup_init_subsys.
 */
int __init_or_module cgroup_load_subsys(struct cgroup_subsys *ss)
{
	struct cgroup_subsys_state *css;
4556
	int i, ret;
4557
	struct hlist_node *tmp;
4558
	struct css_set *cset;
4559
	unsigned long key;
4560 4561 4562

	/* check name and function validity */
	if (ss->name == NULL || strlen(ss->name) > MAX_CGROUP_TYPE_NAMELEN ||
4563
	    ss->css_alloc == NULL || ss->css_free == NULL)
4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579
		return -EINVAL;

	/*
	 * we don't support callbacks in modular subsystems. this check is
	 * before the ss->module check for consistency; a subsystem that could
	 * be a module should still have no callbacks even if the user isn't
	 * compiling it as one.
	 */
	if (ss->fork || ss->exit)
		return -EINVAL;

	/*
	 * an optionally modular subsystem is built-in: we want to do nothing,
	 * since cgroup_init_subsys will have already taken care of it.
	 */
	if (ss->module == NULL) {
4580
		/* a sanity check */
4581
		BUG_ON(cgroup_subsys[ss->subsys_id] != ss);
4582 4583 4584
		return 0;
	}

4585 4586 4587
	/* init base cftset */
	cgroup_init_cftsets(ss);

4588
	mutex_lock(&cgroup_mutex);
4589
	cgroup_subsys[ss->subsys_id] = ss;
4590 4591

	/*
4592
	 * no ss->css_alloc seems to need anything important in the ss
4593
	 * struct, so this can happen first (i.e. before the dummy root
4594
	 * attachment).
4595
	 */
4596
	css = ss->css_alloc(cgroup_css(cgroup_dummy_top, ss));
4597
	if (IS_ERR(css)) {
4598 4599
		/* failure case - need to deassign the cgroup_subsys[] slot. */
		cgroup_subsys[ss->subsys_id] = NULL;
4600 4601 4602 4603
		mutex_unlock(&cgroup_mutex);
		return PTR_ERR(css);
	}

4604 4605
	list_add(&ss->sibling, &cgroup_dummy_root.subsys_list);
	ss->root = &cgroup_dummy_root;
4606 4607

	/* our new subsystem will be attached to the dummy hierarchy. */
4608
	init_css(css, ss, cgroup_dummy_top);
4609 4610 4611 4612 4613 4614 4615 4616 4617 4618

	/*
	 * Now we need to entangle the css into the existing css_sets. unlike
	 * in cgroup_init_subsys, there are now multiple css_sets, so each one
	 * will need a new pointer to it; done by iterating the css_set_table.
	 * furthermore, modifying the existing css_sets will corrupt the hash
	 * table state, so each changed css_set will need its hash recomputed.
	 * this is all done under the css_set_lock.
	 */
	write_lock(&css_set_lock);
4619
	hash_for_each_safe(css_set_table, i, tmp, cset, hlist) {
4620
		/* skip entries that we already rehashed */
4621
		if (cset->subsys[ss->subsys_id])
4622 4623
			continue;
		/* remove existing entry */
4624
		hash_del(&cset->hlist);
4625
		/* set new value */
4626
		cset->subsys[ss->subsys_id] = css;
4627
		/* recompute hash and restore entry */
4628 4629
		key = css_set_hash(cset->subsys);
		hash_add(css_set_table, &cset->hlist, key);
4630 4631 4632
	}
	write_unlock(&css_set_lock);

4633
	ret = online_css(css);
T
Tejun Heo 已提交
4634 4635
	if (ret)
		goto err_unload;
4636

4637 4638 4639
	/* success! */
	mutex_unlock(&cgroup_mutex);
	return 0;
4640 4641 4642 4643 4644 4645

err_unload:
	mutex_unlock(&cgroup_mutex);
	/* @ss can't be mounted here as try_module_get() would fail */
	cgroup_unload_subsys(ss);
	return ret;
4646
}
4647
EXPORT_SYMBOL_GPL(cgroup_load_subsys);
4648

B
Ben Blum 已提交
4649 4650 4651 4652 4653 4654 4655 4656 4657 4658
/**
 * cgroup_unload_subsys: unload a modular subsystem
 * @ss: the subsystem to unload
 *
 * This function should be called in a modular subsystem's exitcall. When this
 * function is invoked, the refcount on the subsystem's module will be 0, so
 * the subsystem will not be attached to any hierarchy.
 */
void cgroup_unload_subsys(struct cgroup_subsys *ss)
{
4659
	struct cgrp_cset_link *link;
B
Ben Blum 已提交
4660 4661 4662 4663 4664

	BUG_ON(ss->module == NULL);

	/*
	 * we shouldn't be called if the subsystem is in use, and the use of
4665
	 * try_module_get() in rebind_subsystems() should ensure that it
B
Ben Blum 已提交
4666 4667
	 * doesn't start being used while we're killing it off.
	 */
4668
	BUG_ON(ss->root != &cgroup_dummy_root);
B
Ben Blum 已提交
4669 4670

	mutex_lock(&cgroup_mutex);
4671

4672
	offline_css(cgroup_css(cgroup_dummy_top, ss));
4673

B
Ben Blum 已提交
4674
	/* deassign the subsys_id */
4675
	cgroup_subsys[ss->subsys_id] = NULL;
B
Ben Blum 已提交
4676

4677
	/* remove subsystem from the dummy root's list of subsystems */
4678
	list_del_init(&ss->sibling);
B
Ben Blum 已提交
4679 4680

	/*
4681 4682 4683
	 * disentangle the css from all css_sets attached to the dummy
	 * top. as in loading, we need to pay our respects to the hashtable
	 * gods.
B
Ben Blum 已提交
4684 4685
	 */
	write_lock(&css_set_lock);
4686
	list_for_each_entry(link, &cgroup_dummy_top->cset_links, cset_link) {
4687
		struct css_set *cset = link->cset;
4688
		unsigned long key;
B
Ben Blum 已提交
4689

4690 4691 4692 4693
		hash_del(&cset->hlist);
		cset->subsys[ss->subsys_id] = NULL;
		key = css_set_hash(cset->subsys);
		hash_add(css_set_table, &cset->hlist, key);
B
Ben Blum 已提交
4694 4695 4696 4697
	}
	write_unlock(&css_set_lock);

	/*
4698 4699
	 * remove subsystem's css from the cgroup_dummy_top and free it -
	 * need to free before marking as null because ss->css_free needs
L
Li Zefan 已提交
4700
	 * the cgrp->subsys pointer to find their state.
B
Ben Blum 已提交
4701
	 */
4702
	ss->css_free(cgroup_css(cgroup_dummy_top, ss));
4703
	RCU_INIT_POINTER(cgroup_dummy_top->subsys[ss->subsys_id], NULL);
B
Ben Blum 已提交
4704 4705 4706 4707 4708

	mutex_unlock(&cgroup_mutex);
}
EXPORT_SYMBOL_GPL(cgroup_unload_subsys);

4709
/**
L
Li Zefan 已提交
4710 4711 4712 4713
 * cgroup_init_early - cgroup initialization at system boot
 *
 * Initialize cgroups at system boot, and initialize any
 * subsystems that request early init.
4714 4715 4716
 */
int __init cgroup_init_early(void)
{
4717
	struct cgroup_subsys *ss;
4718
	int i;
4719

4720
	atomic_set(&init_css_set.refcount, 1);
4721
	INIT_LIST_HEAD(&init_css_set.cgrp_links);
4722
	INIT_LIST_HEAD(&init_css_set.tasks);
4723
	INIT_HLIST_NODE(&init_css_set.hlist);
4724
	css_set_count = 1;
4725 4726
	init_cgroup_root(&cgroup_dummy_root);
	cgroup_root_count = 1;
4727
	RCU_INIT_POINTER(init_task.cgroups, &init_css_set);
4728

4729
	init_cgrp_cset_link.cset = &init_css_set;
4730 4731
	init_cgrp_cset_link.cgrp = cgroup_dummy_top;
	list_add(&init_cgrp_cset_link.cset_link, &cgroup_dummy_top->cset_links);
4732
	list_add(&init_cgrp_cset_link.cgrp_link, &init_css_set.cgrp_links);
4733

4734 4735
	/* at bootup time, we don't worry about modular subsystems */
	for_each_builtin_subsys(ss, i) {
4736 4737
		BUG_ON(!ss->name);
		BUG_ON(strlen(ss->name) > MAX_CGROUP_TYPE_NAMELEN);
4738 4739
		BUG_ON(!ss->css_alloc);
		BUG_ON(!ss->css_free);
4740
		if (ss->subsys_id != i) {
D
Diego Calleja 已提交
4741
			printk(KERN_ERR "cgroup: Subsys %s id == %d\n",
4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752
			       ss->name, ss->subsys_id);
			BUG();
		}

		if (ss->early_init)
			cgroup_init_subsys(ss);
	}
	return 0;
}

/**
L
Li Zefan 已提交
4753 4754 4755 4756
 * cgroup_init - cgroup initialization
 *
 * Register cgroup filesystem and /proc file, and initialize
 * any subsystems that didn't request early init.
4757 4758 4759
 */
int __init cgroup_init(void)
{
4760
	struct cgroup_subsys *ss;
4761
	unsigned long key;
4762
	int i, err;
4763 4764 4765 4766

	err = bdi_init(&cgroup_backing_dev_info);
	if (err)
		return err;
4767

4768
	for_each_builtin_subsys(ss, i) {
4769 4770 4771 4772
		if (!ss->early_init)
			cgroup_init_subsys(ss);
	}

4773
	/* allocate id for the dummy hierarchy */
T
Tejun Heo 已提交
4774 4775 4776
	mutex_lock(&cgroup_mutex);
	mutex_lock(&cgroup_root_mutex);

4777 4778 4779 4780
	/* Add init_css_set to the hash table */
	key = css_set_hash(init_css_set.subsys);
	hash_add(css_set_table, &init_css_set.hlist, key);

4781
	BUG_ON(cgroup_init_root_id(&cgroup_dummy_root, 0, 1));
4782

4783 4784 4785 4786
	err = idr_alloc(&cgroup_dummy_root.cgroup_idr, cgroup_dummy_top,
			0, 1, GFP_KERNEL);
	BUG_ON(err < 0);

T
Tejun Heo 已提交
4787 4788 4789
	mutex_unlock(&cgroup_root_mutex);
	mutex_unlock(&cgroup_mutex);

4790 4791 4792 4793 4794 4795
	cgroup_kobj = kobject_create_and_add("cgroup", fs_kobj);
	if (!cgroup_kobj) {
		err = -ENOMEM;
		goto out;
	}

4796
	err = register_filesystem(&cgroup_fs_type);
4797 4798
	if (err < 0) {
		kobject_put(cgroup_kobj);
4799
		goto out;
4800
	}
4801

L
Li Zefan 已提交
4802
	proc_create("cgroups", 0, NULL, &proc_cgroupstats_operations);
4803

4804
out:
4805 4806 4807
	if (err)
		bdi_destroy(&cgroup_backing_dev_info);

4808 4809
	return err;
}
4810

4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822
static int __init cgroup_wq_init(void)
{
	/*
	 * There isn't much point in executing destruction path in
	 * parallel.  Good chunk is serialized with cgroup_mutex anyway.
	 * Use 1 for @max_active.
	 *
	 * We would prefer to do this in cgroup_init() above, but that
	 * is called before init_workqueues(): so leave this until after.
	 */
	cgroup_destroy_wq = alloc_workqueue("cgroup_destroy", 0, 1);
	BUG_ON(!cgroup_destroy_wq);
4823 4824 4825 4826 4827 4828 4829 4830 4831

	/*
	 * Used to destroy pidlists and separate to serve as flush domain.
	 * Cap @max_active to 1 too.
	 */
	cgroup_pidlist_destroy_wq = alloc_workqueue("cgroup_pidlist_destroy",
						    0, 1);
	BUG_ON(!cgroup_pidlist_destroy_wq);

4832 4833 4834 4835
	return 0;
}
core_initcall(cgroup_wq_init);

4836 4837 4838 4839 4840 4841
/*
 * proc_cgroup_show()
 *  - Print task's cgroup paths into seq_file, one line for each hierarchy
 *  - Used for /proc/<pid>/cgroup.
 *  - No need to task_lock(tsk) on this tsk->cgroup reference, as it
 *    doesn't really matter if tsk->cgroup changes after we read it,
4842
 *    and we take cgroup_mutex, keeping cgroup_attach_task() from changing it
4843 4844 4845 4846 4847 4848
 *    anyway.  No need to check that tsk->cgroup != NULL, thanks to
 *    the_top_cgroup_hack in cgroup_exit(), which sets an exiting tasks
 *    cgroup to top_cgroup.
 */

/* TODO: Use a proper seq_file iterator */
4849
int proc_cgroup_show(struct seq_file *m, void *v)
4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871
{
	struct pid *pid;
	struct task_struct *tsk;
	char *buf;
	int retval;
	struct cgroupfs_root *root;

	retval = -ENOMEM;
	buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
	if (!buf)
		goto out;

	retval = -ESRCH;
	pid = m->private;
	tsk = get_pid_task(pid, PIDTYPE_PID);
	if (!tsk)
		goto out_free;

	retval = 0;

	mutex_lock(&cgroup_mutex);

4872
	for_each_active_root(root) {
4873
		struct cgroup_subsys *ss;
4874
		struct cgroup *cgrp;
4875 4876
		int count = 0;

4877
		seq_printf(m, "%d:", root->hierarchy_id);
4878
		for_each_root_subsys(root, ss)
4879
			seq_printf(m, "%s%s", count++ ? "," : "", ss->name);
4880 4881 4882
		if (strlen(root->name))
			seq_printf(m, "%sname=%s", count ? "," : "",
				   root->name);
4883
		seq_putc(m, ':');
4884
		cgrp = task_cgroup_from_root(tsk, root);
4885
		retval = cgroup_path(cgrp, buf, PAGE_SIZE);
4886 4887 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899 4900 4901 4902 4903
		if (retval < 0)
			goto out_unlock;
		seq_puts(m, buf);
		seq_putc(m, '\n');
	}

out_unlock:
	mutex_unlock(&cgroup_mutex);
	put_task_struct(tsk);
out_free:
	kfree(buf);
out:
	return retval;
}

/* Display information about each subsystem and each hierarchy */
static int proc_cgroupstats_show(struct seq_file *m, void *v)
{
4904
	struct cgroup_subsys *ss;
4905 4906
	int i;

4907
	seq_puts(m, "#subsys_name\thierarchy\tnum_cgroups\tenabled\n");
B
Ben Blum 已提交
4908 4909 4910 4911 4912
	/*
	 * ideally we don't want subsystems moving around while we do this.
	 * cgroup_mutex is also necessary to guarantee an atomic snapshot of
	 * subsys/hierarchy state.
	 */
4913
	mutex_lock(&cgroup_mutex);
4914 4915

	for_each_subsys(ss, i)
4916 4917
		seq_printf(m, "%s\t%d\t%d\t%d\n",
			   ss->name, ss->root->hierarchy_id,
4918
			   ss->root->number_of_cgroups, !ss->disabled);
4919

4920 4921 4922 4923 4924 4925
	mutex_unlock(&cgroup_mutex);
	return 0;
}

static int cgroupstats_open(struct inode *inode, struct file *file)
{
A
Al Viro 已提交
4926
	return single_open(file, proc_cgroupstats_show, NULL);
4927 4928
}

4929
static const struct file_operations proc_cgroupstats_operations = {
4930 4931 4932 4933 4934 4935
	.open = cgroupstats_open,
	.read = seq_read,
	.llseek = seq_lseek,
	.release = single_release,
};

4936 4937
/**
 * cgroup_fork - attach newly forked task to its parents cgroup.
L
Li Zefan 已提交
4938
 * @child: pointer to task_struct of forking parent process.
4939 4940 4941 4942 4943
 *
 * Description: A task inherits its parent's cgroup at fork().
 *
 * A pointer to the shared css_set was automatically copied in
 * fork.c by dup_task_struct().  However, we ignore that copy, since
4944 4945 4946 4947
 * it was not made under the protection of RCU or cgroup_mutex, so
 * might no longer be a valid cgroup pointer.  cgroup_attach_task() might
 * have already changed current->cgroups, allowing the previously
 * referenced cgroup group to be removed and freed.
4948 4949 4950 4951 4952 4953
 *
 * At the point that cgroup_fork() is called, 'current' is the parent
 * task, and the passed argument 'child' points to the child task.
 */
void cgroup_fork(struct task_struct *child)
{
4954
	task_lock(current);
4955
	get_css_set(task_css_set(current));
4956
	child->cgroups = current->cgroups;
4957
	task_unlock(current);
4958
	INIT_LIST_HEAD(&child->cg_list);
4959 4960
}

4961
/**
L
Li Zefan 已提交
4962 4963 4964
 * cgroup_post_fork - called on a new task after adding it to the task list
 * @child: the task in question
 *
4965 4966 4967
 * Adds the task to the list running through its css_set if necessary and
 * call the subsystem fork() callbacks.  Has to be after the task is
 * visible on the task list in case we race with the first call to
4968
 * cgroup_task_iter_start() - to guarantee that the new task ends up on its
4969
 * list.
L
Li Zefan 已提交
4970
 */
4971 4972
void cgroup_post_fork(struct task_struct *child)
{
4973
	struct cgroup_subsys *ss;
4974 4975
	int i;

4976 4977 4978 4979 4980 4981 4982 4983 4984 4985 4986
	/*
	 * use_task_css_set_links is set to 1 before we walk the tasklist
	 * under the tasklist_lock and we read it here after we added the child
	 * to the tasklist under the tasklist_lock as well. If the child wasn't
	 * yet in the tasklist when we walked through it from
	 * cgroup_enable_task_cg_lists(), then use_task_css_set_links value
	 * should be visible now due to the paired locking and barriers implied
	 * by LOCK/UNLOCK: it is written before the tasklist_lock unlock
	 * in cgroup_enable_task_cg_lists() and read here after the tasklist_lock
	 * lock on fork.
	 */
4987 4988
	if (use_task_css_set_links) {
		write_lock(&css_set_lock);
4989 4990
		task_lock(child);
		if (list_empty(&child->cg_list))
4991
			list_add(&child->cg_list, &task_css_set(child)->tasks);
4992
		task_unlock(child);
4993 4994
		write_unlock(&css_set_lock);
	}
4995 4996 4997 4998 4999 5000 5001

	/*
	 * Call ss->fork().  This must happen after @child is linked on
	 * css_set; otherwise, @child might change state between ->fork()
	 * and addition to css_set.
	 */
	if (need_forkexit_callback) {
5002 5003 5004 5005 5006 5007 5008 5009
		/*
		 * fork/exit callbacks are supported only for builtin
		 * subsystems, and the builtin section of the subsys
		 * array is immutable, so we don't need to lock the
		 * subsys array here. On the other hand, modular section
		 * of the array can be freed at module unload, so we
		 * can't touch that.
		 */
5010
		for_each_builtin_subsys(ss, i)
5011 5012 5013
			if (ss->fork)
				ss->fork(child);
	}
5014
}
5015

5016 5017 5018
/**
 * cgroup_exit - detach cgroup from exiting task
 * @tsk: pointer to task_struct of exiting process
L
Li Zefan 已提交
5019
 * @run_callback: run exit callbacks?
5020 5021 5022 5023 5024 5025 5026 5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040 5041 5042 5043 5044 5045 5046 5047
 *
 * Description: Detach cgroup from @tsk and release it.
 *
 * Note that cgroups marked notify_on_release force every task in
 * them to take the global cgroup_mutex mutex when exiting.
 * This could impact scaling on very large systems.  Be reluctant to
 * use notify_on_release cgroups where very high task exit scaling
 * is required on large systems.
 *
 * the_top_cgroup_hack:
 *
 *    Set the exiting tasks cgroup to the root cgroup (top_cgroup).
 *
 *    We call cgroup_exit() while the task is still competent to
 *    handle notify_on_release(), then leave the task attached to the
 *    root cgroup in each hierarchy for the remainder of its exit.
 *
 *    To do this properly, we would increment the reference count on
 *    top_cgroup, and near the very end of the kernel/exit.c do_exit()
 *    code we would add a second cgroup function call, to drop that
 *    reference.  This would just create an unnecessary hot spot on
 *    the top_cgroup reference count, to no avail.
 *
 *    Normally, holding a reference to a cgroup without bumping its
 *    count is unsafe.   The cgroup could go away, or someone could
 *    attach us to a different cgroup, decrementing the count on
 *    the first cgroup that we never incremented.  But in this case,
 *    top_cgroup isn't going away, and either task has PF_EXITING set,
5048 5049
 *    which wards off any cgroup_attach_task() attempts, or task is a failed
 *    fork, never visible to cgroup_attach_task.
5050 5051 5052
 */
void cgroup_exit(struct task_struct *tsk, int run_callbacks)
{
5053
	struct cgroup_subsys *ss;
5054
	struct css_set *cset;
5055
	int i;
5056 5057 5058 5059 5060 5061 5062 5063 5064

	/*
	 * Unlink from the css_set task list if necessary.
	 * Optimistically check cg_list before taking
	 * css_set_lock
	 */
	if (!list_empty(&tsk->cg_list)) {
		write_lock(&css_set_lock);
		if (!list_empty(&tsk->cg_list))
5065
			list_del_init(&tsk->cg_list);
5066 5067 5068
		write_unlock(&css_set_lock);
	}

5069 5070
	/* Reassign the task to the init_css_set. */
	task_lock(tsk);
5071 5072
	cset = task_css_set(tsk);
	RCU_INIT_POINTER(tsk->cgroups, &init_css_set);
5073 5074

	if (run_callbacks && need_forkexit_callback) {
5075 5076 5077 5078
		/*
		 * fork/exit callbacks are supported only for builtin
		 * subsystems, see cgroup_post_fork() for details.
		 */
5079
		for_each_builtin_subsys(ss, i) {
5080
			if (ss->exit) {
5081 5082
				struct cgroup_subsys_state *old_css = cset->subsys[i];
				struct cgroup_subsys_state *css = task_css(tsk, i);
5083

5084
				ss->exit(css, old_css, tsk);
5085 5086 5087
			}
		}
	}
5088
	task_unlock(tsk);
5089

5090
	put_css_set_taskexit(cset);
5091
}
5092

5093
static void check_for_release(struct cgroup *cgrp)
5094
{
5095
	if (cgroup_is_releasable(cgrp) &&
T
Tejun Heo 已提交
5096
	    list_empty(&cgrp->cset_links) && list_empty(&cgrp->children)) {
5097 5098
		/*
		 * Control Group is currently removeable. If it's not
5099
		 * already queued for a userspace notification, queue
5100 5101
		 * it now
		 */
5102
		int need_schedule_work = 0;
5103

5104
		raw_spin_lock(&release_list_lock);
5105
		if (!cgroup_is_dead(cgrp) &&
5106 5107
		    list_empty(&cgrp->release_list)) {
			list_add(&cgrp->release_list, &release_list);
5108 5109
			need_schedule_work = 1;
		}
5110
		raw_spin_unlock(&release_list_lock);
5111 5112 5113 5114 5115 5116 5117 5118 5119 5120 5121 5122 5123 5124 5125 5126 5127 5128 5129 5130 5131 5132 5133 5134 5135 5136 5137 5138 5139 5140 5141 5142
		if (need_schedule_work)
			schedule_work(&release_agent_work);
	}
}

/*
 * Notify userspace when a cgroup is released, by running the
 * configured release agent with the name of the cgroup (path
 * relative to the root of cgroup file system) as the argument.
 *
 * Most likely, this user command will try to rmdir this cgroup.
 *
 * This races with the possibility that some other task will be
 * attached to this cgroup before it is removed, or that some other
 * user task will 'mkdir' a child cgroup of this cgroup.  That's ok.
 * The presumed 'rmdir' will fail quietly if this cgroup is no longer
 * unused, and this cgroup will be reprieved from its death sentence,
 * to continue to serve a useful existence.  Next time it's released,
 * we will get notified again, if it still has 'notify_on_release' set.
 *
 * The final arg to call_usermodehelper() is UMH_WAIT_EXEC, which
 * means only wait until the task is successfully execve()'d.  The
 * separate release agent task is forked by call_usermodehelper(),
 * then control in this thread returns here, without waiting for the
 * release agent task.  We don't bother to wait because the caller of
 * this routine has no use for the exit status of the release agent
 * task, so no sense holding our caller up for that.
 */
static void cgroup_release_agent(struct work_struct *work)
{
	BUG_ON(work != &release_agent_work);
	mutex_lock(&cgroup_mutex);
5143
	raw_spin_lock(&release_list_lock);
5144 5145 5146
	while (!list_empty(&release_list)) {
		char *argv[3], *envp[3];
		int i;
5147
		char *pathbuf = NULL, *agentbuf = NULL;
5148
		struct cgroup *cgrp = list_entry(release_list.next,
5149 5150
						    struct cgroup,
						    release_list);
5151
		list_del_init(&cgrp->release_list);
5152
		raw_spin_unlock(&release_list_lock);
5153
		pathbuf = kmalloc(PAGE_SIZE, GFP_KERNEL);
5154 5155 5156 5157 5158 5159 5160
		if (!pathbuf)
			goto continue_free;
		if (cgroup_path(cgrp, pathbuf, PAGE_SIZE) < 0)
			goto continue_free;
		agentbuf = kstrdup(cgrp->root->release_agent_path, GFP_KERNEL);
		if (!agentbuf)
			goto continue_free;
5161 5162

		i = 0;
5163 5164
		argv[i++] = agentbuf;
		argv[i++] = pathbuf;
5165 5166 5167 5168 5169 5170 5171 5172 5173 5174 5175 5176 5177 5178
		argv[i] = NULL;

		i = 0;
		/* minimal command environment */
		envp[i++] = "HOME=/";
		envp[i++] = "PATH=/sbin:/bin:/usr/sbin:/usr/bin";
		envp[i] = NULL;

		/* Drop the lock while we invoke the usermode helper,
		 * since the exec could involve hitting disk and hence
		 * be a slow process */
		mutex_unlock(&cgroup_mutex);
		call_usermodehelper(argv[0], argv, envp, UMH_WAIT_EXEC);
		mutex_lock(&cgroup_mutex);
5179 5180 5181
 continue_free:
		kfree(pathbuf);
		kfree(agentbuf);
5182
		raw_spin_lock(&release_list_lock);
5183
	}
5184
	raw_spin_unlock(&release_list_lock);
5185 5186
	mutex_unlock(&cgroup_mutex);
}
5187 5188 5189

static int __init cgroup_disable(char *str)
{
5190
	struct cgroup_subsys *ss;
5191
	char *token;
5192
	int i;
5193 5194 5195 5196

	while ((token = strsep(&str, ",")) != NULL) {
		if (!*token)
			continue;
5197

5198 5199 5200 5201 5202
		/*
		 * cgroup_disable, being at boot time, can't know about
		 * module subsystems, so we don't worry about them.
		 */
		for_each_builtin_subsys(ss, i) {
5203 5204 5205 5206 5207 5208 5209 5210 5211 5212 5213
			if (!strcmp(token, ss->name)) {
				ss->disabled = 1;
				printk(KERN_INFO "Disabling %s control group"
					" subsystem\n", ss->name);
				break;
			}
		}
	}
	return 1;
}
__setup("cgroup_disable=", cgroup_disable);
K
KAMEZAWA Hiroyuki 已提交
5214

5215
/**
5216 5217 5218
 * css_from_dir - get corresponding css from the dentry of a cgroup dir
 * @dentry: directory dentry of interest
 * @ss: subsystem of interest
5219 5220 5221 5222
 *
 * Must be called under RCU read lock.  The caller is responsible for
 * pinning the returned css if it needs to be accessed outside the RCU
 * critical section.
S
Stephane Eranian 已提交
5223
 */
5224 5225
struct cgroup_subsys_state *css_from_dir(struct dentry *dentry,
					 struct cgroup_subsys *ss)
S
Stephane Eranian 已提交
5226 5227 5228
{
	struct cgroup *cgrp;

5229 5230
	WARN_ON_ONCE(!rcu_read_lock_held());

5231 5232 5233
	/* is @dentry a cgroup dir? */
	if (!dentry->d_inode ||
	    dentry->d_inode->i_op != &cgroup_dir_inode_operations)
S
Stephane Eranian 已提交
5234 5235
		return ERR_PTR(-EBADF);

5236
	cgrp = __d_cgrp(dentry);
5237
	return cgroup_css(cgrp, ss) ?: ERR_PTR(-ENOENT);
S
Stephane Eranian 已提交
5238 5239
}

5240 5241 5242 5243 5244 5245 5246 5247 5248 5249 5250 5251 5252 5253 5254 5255 5256 5257
/**
 * css_from_id - lookup css by id
 * @id: the cgroup id
 * @ss: cgroup subsys to be looked into
 *
 * Returns the css if there's valid one with @id, otherwise returns NULL.
 * Should be called under rcu_read_lock().
 */
struct cgroup_subsys_state *css_from_id(int id, struct cgroup_subsys *ss)
{
	struct cgroup *cgrp;

	rcu_lockdep_assert(rcu_read_lock_held() ||
			   lockdep_is_held(&cgroup_mutex),
			   "css_from_id() needs proper protection");

	cgrp = idr_find(&ss->root->cgroup_idr, id);
	if (cgrp)
5258
		return cgroup_css(cgrp, ss);
5259
	return NULL;
S
Stephane Eranian 已提交
5260 5261
}

5262
#ifdef CONFIG_CGROUP_DEBUG
5263 5264
static struct cgroup_subsys_state *
debug_css_alloc(struct cgroup_subsys_state *parent_css)
5265 5266 5267 5268 5269 5270 5271 5272 5273
{
	struct cgroup_subsys_state *css = kzalloc(sizeof(*css), GFP_KERNEL);

	if (!css)
		return ERR_PTR(-ENOMEM);

	return css;
}

5274
static void debug_css_free(struct cgroup_subsys_state *css)
5275
{
5276
	kfree(css);
5277 5278
}

5279 5280
static u64 debug_taskcount_read(struct cgroup_subsys_state *css,
				struct cftype *cft)
5281
{
5282
	return cgroup_task_count(css->cgroup);
5283 5284
}

5285 5286
static u64 current_css_set_read(struct cgroup_subsys_state *css,
				struct cftype *cft)
5287 5288 5289 5290
{
	return (u64)(unsigned long)current->cgroups;
}

5291
static u64 current_css_set_refcount_read(struct cgroup_subsys_state *css,
L
Li Zefan 已提交
5292
					 struct cftype *cft)
5293 5294 5295 5296
{
	u64 count;

	rcu_read_lock();
5297
	count = atomic_read(&task_css_set(current)->refcount);
5298 5299 5300 5301
	rcu_read_unlock();
	return count;
}

5302
static int current_css_set_cg_links_read(struct seq_file *seq, void *v)
5303
{
5304
	struct cgrp_cset_link *link;
5305
	struct css_set *cset;
5306 5307 5308

	read_lock(&css_set_lock);
	rcu_read_lock();
5309
	cset = rcu_dereference(current->cgroups);
5310
	list_for_each_entry(link, &cset->cgrp_links, cgrp_link) {
5311 5312 5313 5314 5315 5316 5317
		struct cgroup *c = link->cgrp;
		const char *name;

		if (c->dentry)
			name = c->dentry->d_name.name;
		else
			name = "?";
5318 5319
		seq_printf(seq, "Root %d group %s\n",
			   c->root->hierarchy_id, name);
5320 5321 5322 5323 5324 5325 5326
	}
	rcu_read_unlock();
	read_unlock(&css_set_lock);
	return 0;
}

#define MAX_TASKS_SHOWN_PER_CSS 25
5327
static int cgroup_css_links_read(struct seq_file *seq, void *v)
5328
{
5329
	struct cgroup_subsys_state *css = seq_css(seq);
5330
	struct cgrp_cset_link *link;
5331 5332

	read_lock(&css_set_lock);
5333
	list_for_each_entry(link, &css->cgroup->cset_links, cset_link) {
5334
		struct css_set *cset = link->cset;
5335 5336
		struct task_struct *task;
		int count = 0;
5337 5338
		seq_printf(seq, "css_set %p\n", cset);
		list_for_each_entry(task, &cset->tasks, cg_list) {
5339 5340 5341 5342 5343 5344 5345 5346 5347 5348 5349 5350 5351
			if (count++ > MAX_TASKS_SHOWN_PER_CSS) {
				seq_puts(seq, "  ...\n");
				break;
			} else {
				seq_printf(seq, "  task %d\n",
					   task_pid_vnr(task));
			}
		}
	}
	read_unlock(&css_set_lock);
	return 0;
}

5352
static u64 releasable_read(struct cgroup_subsys_state *css, struct cftype *cft)
5353
{
5354
	return test_bit(CGRP_RELEASABLE, &css->cgroup->flags);
5355 5356 5357 5358 5359 5360 5361 5362 5363 5364 5365 5366 5367 5368 5369 5370 5371 5372
}

static struct cftype debug_files[] =  {
	{
		.name = "taskcount",
		.read_u64 = debug_taskcount_read,
	},

	{
		.name = "current_css_set",
		.read_u64 = current_css_set_read,
	},

	{
		.name = "current_css_set_refcount",
		.read_u64 = current_css_set_refcount_read,
	},

5373 5374
	{
		.name = "current_css_set_cg_links",
5375
		.seq_show = current_css_set_cg_links_read,
5376 5377 5378 5379
	},

	{
		.name = "cgroup_css_links",
5380
		.seq_show = cgroup_css_links_read,
5381 5382
	},

5383 5384 5385 5386 5387
	{
		.name = "releasable",
		.read_u64 = releasable_read,
	},

5388 5389
	{ }	/* terminate */
};
5390 5391 5392

struct cgroup_subsys debug_subsys = {
	.name = "debug",
5393 5394
	.css_alloc = debug_css_alloc,
	.css_free = debug_css_free,
5395
	.subsys_id = debug_subsys_id,
5396
	.base_cftypes = debug_files,
5397 5398
};
#endif /* CONFIG_CGROUP_DEBUG */