cgroup.c 102.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
/*
 *  Generic process-grouping system.
 *
 *  Based originally on the cpuset system, extracted by Paul Menage
 *  Copyright (C) 2006 Google, Inc
 *
 *  Copyright notices from the original cpuset code:
 *  --------------------------------------------------
 *  Copyright (C) 2003 BULL SA.
 *  Copyright (C) 2004-2006 Silicon Graphics, Inc.
 *
 *  Portions derived from Patrick Mochel's sysfs code.
 *  sysfs is Copyright (c) 2001-3 Patrick Mochel
 *
 *  2003-10-10 Written by Simon Derr.
 *  2003-10-22 Updates by Stephen Hemminger.
 *  2004 May-July Rework by Paul Jackson.
 *  ---------------------------------------------------
 *
 *  This file is subject to the terms and conditions of the GNU General Public
 *  License.  See the file COPYING in the main directory of the Linux
 *  distribution for more details.
 */

#include <linux/cgroup.h>
26
#include <linux/ctype.h>
27 28 29 30 31 32 33 34
#include <linux/errno.h>
#include <linux/fs.h>
#include <linux/kernel.h>
#include <linux/list.h>
#include <linux/mm.h>
#include <linux/mutex.h>
#include <linux/mount.h>
#include <linux/pagemap.h>
35
#include <linux/proc_fs.h>
36 37
#include <linux/rcupdate.h>
#include <linux/sched.h>
38
#include <linux/backing-dev.h>
39 40 41 42 43
#include <linux/seq_file.h>
#include <linux/slab.h>
#include <linux/magic.h>
#include <linux/spinlock.h>
#include <linux/string.h>
44
#include <linux/sort.h>
45
#include <linux/kmod.h>
B
Balbir Singh 已提交
46 47
#include <linux/delayacct.h>
#include <linux/cgroupstats.h>
48
#include <linux/hash.h>
49
#include <linux/namei.h>
50
#include <linux/smp_lock.h>
L
Li Zefan 已提交
51
#include <linux/pid_namespace.h>
52
#include <linux/idr.h>
B
Balbir Singh 已提交
53

54 55
#include <asm/atomic.h>

56 57
static DEFINE_MUTEX(cgroup_mutex);

58 59 60 61 62 63 64
/* Generate an array of cgroup subsystem pointers */
#define SUBSYS(_x) &_x ## _subsys,

static struct cgroup_subsys *subsys[] = {
#include <linux/cgroup_subsys.h>
};

65 66
#define MAX_CGROUP_ROOT_NAMELEN 64

67 68 69 70 71 72 73 74 75 76 77 78 79 80
/*
 * A cgroupfs_root represents the root of a cgroup hierarchy,
 * and may be associated with a superblock to form an active
 * hierarchy
 */
struct cgroupfs_root {
	struct super_block *sb;

	/*
	 * The bitmask of subsystems intended to be attached to this
	 * hierarchy
	 */
	unsigned long subsys_bits;

81 82 83
	/* Unique id for this hierarchy. */
	int hierarchy_id;

84 85 86 87 88 89 90 91 92 93 94 95
	/* The bitmask of subsystems currently attached to this hierarchy */
	unsigned long actual_subsys_bits;

	/* A list running through the attached subsystems */
	struct list_head subsys_list;

	/* The root cgroup for this hierarchy */
	struct cgroup top_cgroup;

	/* Tracks how many cgroups are currently defined in hierarchy.*/
	int number_of_cgroups;

96
	/* A list running through the active hierarchies */
97 98 99 100
	struct list_head root_list;

	/* Hierarchy-specific flags */
	unsigned long flags;
101

102
	/* The path to use for release notifications. */
103
	char release_agent_path[PATH_MAX];
104 105 106

	/* The name for this hierarchy - may be empty */
	char name[MAX_CGROUP_ROOT_NAMELEN];
107 108 109 110 111 112 113 114 115
};

/*
 * The "rootnode" hierarchy is the "dummy hierarchy", reserved for the
 * subsystems that are otherwise unattached - it never has more than a
 * single cgroup, and all tasks are part of that cgroup.
 */
static struct cgroupfs_root rootnode;

K
KAMEZAWA Hiroyuki 已提交
116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148
/*
 * CSS ID -- ID per subsys's Cgroup Subsys State(CSS). used only when
 * cgroup_subsys->use_id != 0.
 */
#define CSS_ID_MAX	(65535)
struct css_id {
	/*
	 * The css to which this ID points. This pointer is set to valid value
	 * after cgroup is populated. If cgroup is removed, this will be NULL.
	 * This pointer is expected to be RCU-safe because destroy()
	 * is called after synchronize_rcu(). But for safe use, css_is_removed()
	 * css_tryget() should be used for avoiding race.
	 */
	struct cgroup_subsys_state *css;
	/*
	 * ID of this css.
	 */
	unsigned short id;
	/*
	 * Depth in hierarchy which this ID belongs to.
	 */
	unsigned short depth;
	/*
	 * ID is freed by RCU. (and lookup routine is RCU safe.)
	 */
	struct rcu_head rcu_head;
	/*
	 * Hierarchy of CSS ID belongs to.
	 */
	unsigned short stack[0]; /* Array of Length (depth+1) */
};


149 150 151
/* The list of hierarchy roots */

static LIST_HEAD(roots);
152
static int root_count;
153

154 155 156 157
static DEFINE_IDA(hierarchy_ida);
static int next_hierarchy_id;
static DEFINE_SPINLOCK(hierarchy_id_lock);

158 159 160 161
/* dummytop is a shorthand for the dummy hierarchy's top cgroup */
#define dummytop (&rootnode.top_cgroup)

/* This flag indicates whether tasks in the fork and exit paths should
L
Li Zefan 已提交
162 163 164
 * check for fork/exit handlers to call. This avoids us having to do
 * extra work in the fork/exit path if none of the subsystems need to
 * be called.
165
 */
166
static int need_forkexit_callback __read_mostly;
167 168

/* convenient tests for these bits */
169
inline int cgroup_is_removed(const struct cgroup *cgrp)
170
{
171
	return test_bit(CGRP_REMOVED, &cgrp->flags);
172 173 174 175 176 177 178
}

/* bits in struct cgroupfs_root flags field */
enum {
	ROOT_NOPREFIX, /* mounted subsystems have no named prefix */
};

179
static int cgroup_is_releasable(const struct cgroup *cgrp)
180 181
{
	const int bits =
182 183 184
		(1 << CGRP_RELEASABLE) |
		(1 << CGRP_NOTIFY_ON_RELEASE);
	return (cgrp->flags & bits) == bits;
185 186
}

187
static int notify_on_release(const struct cgroup *cgrp)
188
{
189
	return test_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
190 191
}

192 193 194 195 196 197 198
/*
 * for_each_subsys() allows you to iterate on each subsystem attached to
 * an active hierarchy
 */
#define for_each_subsys(_root, _ss) \
list_for_each_entry(_ss, &_root->subsys_list, sibling)

199 200
/* for_each_active_root() allows you to iterate across the active hierarchies */
#define for_each_active_root(_root) \
201 202
list_for_each_entry(_root, &roots, root_list)

203 204 205 206 207 208
/* the list of cgroups eligible for automatic release. Protected by
 * release_list_lock */
static LIST_HEAD(release_list);
static DEFINE_SPINLOCK(release_list_lock);
static void cgroup_release_agent(struct work_struct *work);
static DECLARE_WORK(release_agent_work, cgroup_release_agent);
209
static void check_for_release(struct cgroup *cgrp);
210

211 212 213 214 215 216
/* Link structure for associating css_set objects with cgroups */
struct cg_cgroup_link {
	/*
	 * List running through cg_cgroup_links associated with a
	 * cgroup, anchored on cgroup->css_sets
	 */
217
	struct list_head cgrp_link_list;
218
	struct cgroup *cgrp;
219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236
	/*
	 * List running through cg_cgroup_links pointing at a
	 * single css_set object, anchored on css_set->cg_links
	 */
	struct list_head cg_link_list;
	struct css_set *cg;
};

/* The default css_set - used by init and its children prior to any
 * hierarchies being mounted. It contains a pointer to the root state
 * for each subsystem. Also used to anchor the list of css_sets. Not
 * reference-counted, to improve performance when child cgroups
 * haven't been created.
 */

static struct css_set init_css_set;
static struct cg_cgroup_link init_css_set_link;

K
KAMEZAWA Hiroyuki 已提交
237 238
static int cgroup_subsys_init_idr(struct cgroup_subsys *ss);

239 240 241 242 243 244
/* css_set_lock protects the list of css_set objects, and the
 * chain of tasks off each css_set.  Nests outside task->alloc_lock
 * due to cgroup_iter_start() */
static DEFINE_RWLOCK(css_set_lock);
static int css_set_count;

245 246 247 248 249
/*
 * hash table for cgroup groups. This improves the performance to find
 * an existing css_set. This hash doesn't (currently) take into
 * account cgroups in empty hierarchies.
 */
250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268
#define CSS_SET_HASH_BITS	7
#define CSS_SET_TABLE_SIZE	(1 << CSS_SET_HASH_BITS)
static struct hlist_head css_set_table[CSS_SET_TABLE_SIZE];

static struct hlist_head *css_set_hash(struct cgroup_subsys_state *css[])
{
	int i;
	int index;
	unsigned long tmp = 0UL;

	for (i = 0; i < CGROUP_SUBSYS_COUNT; i++)
		tmp += (unsigned long)css[i];
	tmp = (tmp >> 16) ^ tmp;

	index = hash_long(tmp, CSS_SET_HASH_BITS);

	return &css_set_table[index];
}

269 270 271 272
/* We don't maintain the lists running through each css_set to its
 * task until after the first call to cgroup_iter_start(). This
 * reduces the fork()/exit() overhead for people who have cgroups
 * compiled into their kernel but not actually in use */
273
static int use_task_css_set_links __read_mostly;
274

275
static void __put_css_set(struct css_set *cg, int taskexit)
276
{
K
KOSAKI Motohiro 已提交
277 278
	struct cg_cgroup_link *link;
	struct cg_cgroup_link *saved_link;
279 280 281 282 283 284 285 286 287 288 289 290
	/*
	 * Ensure that the refcount doesn't hit zero while any readers
	 * can see it. Similar to atomic_dec_and_lock(), but for an
	 * rwlock
	 */
	if (atomic_add_unless(&cg->refcount, -1, 1))
		return;
	write_lock(&css_set_lock);
	if (!atomic_dec_and_test(&cg->refcount)) {
		write_unlock(&css_set_lock);
		return;
	}
291

292 293 294 295 296 297 298 299 300
	/* This css_set is dead. unlink it and release cgroup refcounts */
	hlist_del(&cg->hlist);
	css_set_count--;

	list_for_each_entry_safe(link, saved_link, &cg->cg_links,
				 cg_link_list) {
		struct cgroup *cgrp = link->cgrp;
		list_del(&link->cg_link_list);
		list_del(&link->cgrp_link_list);
301 302
		if (atomic_dec_and_test(&cgrp->count) &&
		    notify_on_release(cgrp)) {
303
			if (taskexit)
304 305
				set_bit(CGRP_RELEASABLE, &cgrp->flags);
			check_for_release(cgrp);
306
		}
307 308

		kfree(link);
309
	}
310 311

	write_unlock(&css_set_lock);
312
	kfree(cg);
313 314
}

315 316 317 318 319
/*
 * refcounted get/put for css_set objects
 */
static inline void get_css_set(struct css_set *cg)
{
320
	atomic_inc(&cg->refcount);
321 322 323 324
}

static inline void put_css_set(struct css_set *cg)
{
325
	__put_css_set(cg, 0);
326 327
}

328 329
static inline void put_css_set_taskexit(struct css_set *cg)
{
330
	__put_css_set(cg, 1);
331 332
}

333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404
/*
 * compare_css_sets - helper function for find_existing_css_set().
 * @cg: candidate css_set being tested
 * @old_cg: existing css_set for a task
 * @new_cgrp: cgroup that's being entered by the task
 * @template: desired set of css pointers in css_set (pre-calculated)
 *
 * Returns true if "cg" matches "old_cg" except for the hierarchy
 * which "new_cgrp" belongs to, for which it should match "new_cgrp".
 */
static bool compare_css_sets(struct css_set *cg,
			     struct css_set *old_cg,
			     struct cgroup *new_cgrp,
			     struct cgroup_subsys_state *template[])
{
	struct list_head *l1, *l2;

	if (memcmp(template, cg->subsys, sizeof(cg->subsys))) {
		/* Not all subsystems matched */
		return false;
	}

	/*
	 * Compare cgroup pointers in order to distinguish between
	 * different cgroups in heirarchies with no subsystems. We
	 * could get by with just this check alone (and skip the
	 * memcmp above) but on most setups the memcmp check will
	 * avoid the need for this more expensive check on almost all
	 * candidates.
	 */

	l1 = &cg->cg_links;
	l2 = &old_cg->cg_links;
	while (1) {
		struct cg_cgroup_link *cgl1, *cgl2;
		struct cgroup *cg1, *cg2;

		l1 = l1->next;
		l2 = l2->next;
		/* See if we reached the end - both lists are equal length. */
		if (l1 == &cg->cg_links) {
			BUG_ON(l2 != &old_cg->cg_links);
			break;
		} else {
			BUG_ON(l2 == &old_cg->cg_links);
		}
		/* Locate the cgroups associated with these links. */
		cgl1 = list_entry(l1, struct cg_cgroup_link, cg_link_list);
		cgl2 = list_entry(l2, struct cg_cgroup_link, cg_link_list);
		cg1 = cgl1->cgrp;
		cg2 = cgl2->cgrp;
		/* Hierarchies should be linked in the same order. */
		BUG_ON(cg1->root != cg2->root);

		/*
		 * If this hierarchy is the hierarchy of the cgroup
		 * that's changing, then we need to check that this
		 * css_set points to the new cgroup; if it's any other
		 * hierarchy, then this css_set should point to the
		 * same cgroup as the old css_set.
		 */
		if (cg1->root == new_cgrp->root) {
			if (cg1 != new_cgrp)
				return false;
		} else {
			if (cg1 != cg2)
				return false;
		}
	}
	return true;
}

405 406 407
/*
 * find_existing_css_set() is a helper for
 * find_css_set(), and checks to see whether an existing
408
 * css_set is suitable.
409 410 411 412
 *
 * oldcg: the cgroup group that we're using before the cgroup
 * transition
 *
413
 * cgrp: the cgroup that we're moving into
414 415 416 417 418 419
 *
 * template: location in which to build the desired set of subsystem
 * state objects for the new cgroup group
 */
static struct css_set *find_existing_css_set(
	struct css_set *oldcg,
420
	struct cgroup *cgrp,
421
	struct cgroup_subsys_state *template[])
422 423
{
	int i;
424
	struct cgroupfs_root *root = cgrp->root;
425 426 427
	struct hlist_head *hhead;
	struct hlist_node *node;
	struct css_set *cg;
428 429 430 431

	/* Built the set of subsystem state objects that we want to
	 * see in the new css_set */
	for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
L
Li Zefan 已提交
432
		if (root->subsys_bits & (1UL << i)) {
433 434 435
			/* Subsystem is in this hierarchy. So we want
			 * the subsystem state from the new
			 * cgroup */
436
			template[i] = cgrp->subsys[i];
437 438 439 440 441 442 443
		} else {
			/* Subsystem is not in this hierarchy, so we
			 * don't want to change the subsystem state */
			template[i] = oldcg->subsys[i];
		}
	}

444 445
	hhead = css_set_hash(template);
	hlist_for_each_entry(cg, node, hhead, hlist) {
446 447 448 449 450
		if (!compare_css_sets(cg, oldcg, cgrp, template))
			continue;

		/* This css_set matches what we need */
		return cg;
451
	}
452 453 454 455 456

	/* No existing cgroup group matched */
	return NULL;
}

457 458 459 460 461 462 463 464 465 466 467
static void free_cg_links(struct list_head *tmp)
{
	struct cg_cgroup_link *link;
	struct cg_cgroup_link *saved_link;

	list_for_each_entry_safe(link, saved_link, tmp, cgrp_link_list) {
		list_del(&link->cgrp_link_list);
		kfree(link);
	}
}

468 469
/*
 * allocate_cg_links() allocates "count" cg_cgroup_link structures
470
 * and chains them on tmp through their cgrp_link_list fields. Returns 0 on
471 472 473 474 475 476 477 478 479 480
 * success or a negative error
 */
static int allocate_cg_links(int count, struct list_head *tmp)
{
	struct cg_cgroup_link *link;
	int i;
	INIT_LIST_HEAD(tmp);
	for (i = 0; i < count; i++) {
		link = kmalloc(sizeof(*link), GFP_KERNEL);
		if (!link) {
481
			free_cg_links(tmp);
482 483
			return -ENOMEM;
		}
484
		list_add(&link->cgrp_link_list, tmp);
485 486 487 488
	}
	return 0;
}

489 490 491 492 493 494 495 496 497 498 499 500 501 502 503
/**
 * link_css_set - a helper function to link a css_set to a cgroup
 * @tmp_cg_links: cg_cgroup_link objects allocated by allocate_cg_links()
 * @cg: the css_set to be linked
 * @cgrp: the destination cgroup
 */
static void link_css_set(struct list_head *tmp_cg_links,
			 struct css_set *cg, struct cgroup *cgrp)
{
	struct cg_cgroup_link *link;

	BUG_ON(list_empty(tmp_cg_links));
	link = list_first_entry(tmp_cg_links, struct cg_cgroup_link,
				cgrp_link_list);
	link->cg = cg;
504
	link->cgrp = cgrp;
505
	atomic_inc(&cgrp->count);
506
	list_move(&link->cgrp_link_list, &cgrp->css_sets);
507 508 509 510 511
	/*
	 * Always add links to the tail of the list so that the list
	 * is sorted by order of hierarchy creation
	 */
	list_add_tail(&link->cg_link_list, &cg->cg_links);
512 513
}

514 515 516 517 518 519 520 521
/*
 * find_css_set() takes an existing cgroup group and a
 * cgroup object, and returns a css_set object that's
 * equivalent to the old group, but with the given cgroup
 * substituted into the appropriate hierarchy. Must be called with
 * cgroup_mutex held
 */
static struct css_set *find_css_set(
522
	struct css_set *oldcg, struct cgroup *cgrp)
523 524 525 526 527 528
{
	struct css_set *res;
	struct cgroup_subsys_state *template[CGROUP_SUBSYS_COUNT];

	struct list_head tmp_cg_links;

529
	struct hlist_head *hhead;
530
	struct cg_cgroup_link *link;
531

532 533
	/* First see if we already have a cgroup group that matches
	 * the desired set */
534
	read_lock(&css_set_lock);
535
	res = find_existing_css_set(oldcg, cgrp, template);
536 537
	if (res)
		get_css_set(res);
538
	read_unlock(&css_set_lock);
539 540 541 542 543 544 545 546 547 548 549 550 551 552

	if (res)
		return res;

	res = kmalloc(sizeof(*res), GFP_KERNEL);
	if (!res)
		return NULL;

	/* Allocate all the cg_cgroup_link objects that we'll need */
	if (allocate_cg_links(root_count, &tmp_cg_links) < 0) {
		kfree(res);
		return NULL;
	}

553
	atomic_set(&res->refcount, 1);
554 555
	INIT_LIST_HEAD(&res->cg_links);
	INIT_LIST_HEAD(&res->tasks);
556
	INIT_HLIST_NODE(&res->hlist);
557 558 559 560 561 562 563

	/* Copy the set of subsystem state objects generated in
	 * find_existing_css_set() */
	memcpy(res->subsys, template, sizeof(res->subsys));

	write_lock(&css_set_lock);
	/* Add reference counts and links from the new css_set. */
564 565 566 567 568 569
	list_for_each_entry(link, &oldcg->cg_links, cg_link_list) {
		struct cgroup *c = link->cgrp;
		if (c->root == cgrp->root)
			c = cgrp;
		link_css_set(&tmp_cg_links, res, c);
	}
570 571 572 573

	BUG_ON(!list_empty(&tmp_cg_links));

	css_set_count++;
574 575 576 577 578

	/* Add this cgroup group to the hash table */
	hhead = css_set_hash(res->subsys);
	hlist_add_head(&res->hlist, hhead);

579 580 581
	write_unlock(&css_set_lock);

	return res;
582 583
}

584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618
/*
 * Return the cgroup for "task" from the given hierarchy. Must be
 * called with cgroup_mutex held.
 */
static struct cgroup *task_cgroup_from_root(struct task_struct *task,
					    struct cgroupfs_root *root)
{
	struct css_set *css;
	struct cgroup *res = NULL;

	BUG_ON(!mutex_is_locked(&cgroup_mutex));
	read_lock(&css_set_lock);
	/*
	 * No need to lock the task - since we hold cgroup_mutex the
	 * task can't change groups, so the only thing that can happen
	 * is that it exits and its css is set back to init_css_set.
	 */
	css = task->cgroups;
	if (css == &init_css_set) {
		res = &root->top_cgroup;
	} else {
		struct cg_cgroup_link *link;
		list_for_each_entry(link, &css->cg_links, cg_link_list) {
			struct cgroup *c = link->cgrp;
			if (c->root == root) {
				res = c;
				break;
			}
		}
	}
	read_unlock(&css_set_lock);
	BUG_ON(!res);
	return res;
}

619 620 621 622 623 624 625 626 627 628
/*
 * There is one global cgroup mutex. We also require taking
 * task_lock() when dereferencing a task's cgroup subsys pointers.
 * See "The task_lock() exception", at the end of this comment.
 *
 * A task must hold cgroup_mutex to modify cgroups.
 *
 * Any task can increment and decrement the count field without lock.
 * So in general, code holding cgroup_mutex can't rely on the count
 * field not changing.  However, if the count goes to zero, then only
629
 * cgroup_attach_task() can increment it again.  Because a count of zero
630 631 632 633 634 635 636 637 638 639 640 641 642
 * means that no tasks are currently attached, therefore there is no
 * way a task attached to that cgroup can fork (the other way to
 * increment the count).  So code holding cgroup_mutex can safely
 * assume that if the count is zero, it will stay zero. Similarly, if
 * a task holds cgroup_mutex on a cgroup with zero count, it
 * knows that the cgroup won't be removed, as cgroup_rmdir()
 * needs that mutex.
 *
 * The fork and exit callbacks cgroup_fork() and cgroup_exit(), don't
 * (usually) take cgroup_mutex.  These are the two most performance
 * critical pieces of code here.  The exception occurs on cgroup_exit(),
 * when a task in a notify_on_release cgroup exits.  Then cgroup_mutex
 * is taken, and if the cgroup count is zero, a usermode call made
L
Li Zefan 已提交
643 644
 * to the release agent with the name of the cgroup (path relative to
 * the root of cgroup file system) as the argument.
645 646 647 648 649 650 651 652 653 654 655
 *
 * A cgroup can only be deleted if both its 'count' of using tasks
 * is zero, and its list of 'children' cgroups is empty.  Since all
 * tasks in the system use _some_ cgroup, and since there is always at
 * least one task in the system (init, pid == 1), therefore, top_cgroup
 * always has either children cgroups and/or using tasks.  So we don't
 * need a special hack to ensure that top_cgroup cannot be deleted.
 *
 *	The task_lock() exception
 *
 * The need for this exception arises from the action of
656
 * cgroup_attach_task(), which overwrites one tasks cgroup pointer with
L
Li Zefan 已提交
657
 * another.  It does so using cgroup_mutex, however there are
658 659 660
 * several performance critical places that need to reference
 * task->cgroup without the expense of grabbing a system global
 * mutex.  Therefore except as noted below, when dereferencing or, as
661
 * in cgroup_attach_task(), modifying a task'ss cgroup pointer we use
662 663 664 665
 * task_lock(), which acts on a spinlock (task->alloc_lock) already in
 * the task_struct routinely used for such matters.
 *
 * P.S.  One more locking exception.  RCU is used to guard the
666
 * update of a tasks cgroup pointer by cgroup_attach_task()
667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696
 */

/**
 * cgroup_lock - lock out any changes to cgroup structures
 *
 */
void cgroup_lock(void)
{
	mutex_lock(&cgroup_mutex);
}

/**
 * cgroup_unlock - release lock on cgroup changes
 *
 * Undo the lock taken in a previous cgroup_lock() call.
 */
void cgroup_unlock(void)
{
	mutex_unlock(&cgroup_mutex);
}

/*
 * A couple of forward declarations required, due to cyclic reference loop:
 * cgroup_mkdir -> cgroup_create -> cgroup_populate_dir ->
 * cgroup_add_file -> cgroup_create_file -> cgroup_dir_inode_operations
 * -> cgroup_mkdir.
 */

static int cgroup_mkdir(struct inode *dir, struct dentry *dentry, int mode);
static int cgroup_rmdir(struct inode *unused_dir, struct dentry *dentry);
697
static int cgroup_populate_dir(struct cgroup *cgrp);
698
static const struct inode_operations cgroup_dir_inode_operations;
699 700 701
static struct file_operations proc_cgroupstats_operations;

static struct backing_dev_info cgroup_backing_dev_info = {
702
	.name		= "cgroup",
703
	.capabilities	= BDI_CAP_NO_ACCT_AND_WRITEBACK,
704
};
705

K
KAMEZAWA Hiroyuki 已提交
706 707 708
static int alloc_css_id(struct cgroup_subsys *ss,
			struct cgroup *parent, struct cgroup *child);

709 710 711 712 713 714
static struct inode *cgroup_new_inode(mode_t mode, struct super_block *sb)
{
	struct inode *inode = new_inode(sb);

	if (inode) {
		inode->i_mode = mode;
715 716
		inode->i_uid = current_fsuid();
		inode->i_gid = current_fsgid();
717 718 719 720 721 722
		inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
		inode->i_mapping->backing_dev_info = &cgroup_backing_dev_info;
	}
	return inode;
}

723 724 725 726
/*
 * Call subsys's pre_destroy handler.
 * This is called before css refcnt check.
 */
727
static int cgroup_call_pre_destroy(struct cgroup *cgrp)
728 729
{
	struct cgroup_subsys *ss;
730 731
	int ret = 0;

732
	for_each_subsys(cgrp->root, ss)
733 734 735 736 737 738
		if (ss->pre_destroy) {
			ret = ss->pre_destroy(ss, cgrp);
			if (ret)
				break;
		}
	return ret;
739 740
}

741 742 743 744 745 746 747
static void free_cgroup_rcu(struct rcu_head *obj)
{
	struct cgroup *cgrp = container_of(obj, struct cgroup, rcu_head);

	kfree(cgrp);
}

748 749 750 751
static void cgroup_diput(struct dentry *dentry, struct inode *inode)
{
	/* is dentry a directory ? if so, kfree() associated cgroup */
	if (S_ISDIR(inode->i_mode)) {
752
		struct cgroup *cgrp = dentry->d_fsdata;
753
		struct cgroup_subsys *ss;
754
		BUG_ON(!(cgroup_is_removed(cgrp)));
755 756 757 758 759 760 761
		/* It's possible for external users to be holding css
		 * reference counts on a cgroup; css_put() needs to
		 * be able to access the cgroup after decrementing
		 * the reference count in order to know if it needs to
		 * queue the cgroup to be handled by the release
		 * agent */
		synchronize_rcu();
762 763 764 765 766

		mutex_lock(&cgroup_mutex);
		/*
		 * Release the subsystem state objects.
		 */
767 768
		for_each_subsys(cgrp->root, ss)
			ss->destroy(ss, cgrp);
769 770 771 772

		cgrp->root->number_of_cgroups--;
		mutex_unlock(&cgroup_mutex);

773 774 775 776
		/*
		 * Drop the active superblock reference that we took when we
		 * created the cgroup
		 */
777 778
		deactivate_super(cgrp->root->sb);

779
		call_rcu(&cgrp->rcu_head, free_cgroup_rcu);
780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831
	}
	iput(inode);
}

static void remove_dir(struct dentry *d)
{
	struct dentry *parent = dget(d->d_parent);

	d_delete(d);
	simple_rmdir(parent->d_inode, d);
	dput(parent);
}

static void cgroup_clear_directory(struct dentry *dentry)
{
	struct list_head *node;

	BUG_ON(!mutex_is_locked(&dentry->d_inode->i_mutex));
	spin_lock(&dcache_lock);
	node = dentry->d_subdirs.next;
	while (node != &dentry->d_subdirs) {
		struct dentry *d = list_entry(node, struct dentry, d_u.d_child);
		list_del_init(node);
		if (d->d_inode) {
			/* This should never be called on a cgroup
			 * directory with child cgroups */
			BUG_ON(d->d_inode->i_mode & S_IFDIR);
			d = dget_locked(d);
			spin_unlock(&dcache_lock);
			d_delete(d);
			simple_unlink(dentry->d_inode, d);
			dput(d);
			spin_lock(&dcache_lock);
		}
		node = dentry->d_subdirs.next;
	}
	spin_unlock(&dcache_lock);
}

/*
 * NOTE : the dentry must have been dget()'ed
 */
static void cgroup_d_remove_dir(struct dentry *dentry)
{
	cgroup_clear_directory(dentry);

	spin_lock(&dcache_lock);
	list_del_init(&dentry->d_u.d_child);
	spin_unlock(&dcache_lock);
	remove_dir(dentry);
}

832 833 834 835 836 837
/*
 * A queue for waiters to do rmdir() cgroup. A tasks will sleep when
 * cgroup->count == 0 && list_empty(&cgroup->children) && subsys has some
 * reference to css->refcnt. In general, this refcnt is expected to goes down
 * to zero, soon.
 *
838
 * CGRP_WAIT_ON_RMDIR flag is set under cgroup's inode->i_mutex;
839 840 841
 */
DECLARE_WAIT_QUEUE_HEAD(cgroup_rmdir_waitq);

842
static void cgroup_wakeup_rmdir_waiter(struct cgroup *cgrp)
843
{
844
	if (unlikely(test_and_clear_bit(CGRP_WAIT_ON_RMDIR, &cgrp->flags)))
845 846 847
		wake_up_all(&cgroup_rmdir_waitq);
}

848 849 850 851 852 853 854 855 856 857 858 859
void cgroup_exclude_rmdir(struct cgroup_subsys_state *css)
{
	css_get(css);
}

void cgroup_release_and_wakeup_rmdir(struct cgroup_subsys_state *css)
{
	cgroup_wakeup_rmdir_waiter(css->cgroup);
	css_put(css);
}


860 861 862 863
static int rebind_subsystems(struct cgroupfs_root *root,
			      unsigned long final_bits)
{
	unsigned long added_bits, removed_bits;
864
	struct cgroup *cgrp = &root->top_cgroup;
865 866 867 868 869 870
	int i;

	removed_bits = root->actual_subsys_bits & ~final_bits;
	added_bits = final_bits & ~root->actual_subsys_bits;
	/* Check that any added subsystems are currently free */
	for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
L
Li Zefan 已提交
871
		unsigned long bit = 1UL << i;
872 873 874 875 876 877 878 879 880 881 882 883 884
		struct cgroup_subsys *ss = subsys[i];
		if (!(bit & added_bits))
			continue;
		if (ss->root != &rootnode) {
			/* Subsystem isn't free */
			return -EBUSY;
		}
	}

	/* Currently we don't handle adding/removing subsystems when
	 * any child cgroups exist. This is theoretically supportable
	 * but involves complex error handling, so it's being left until
	 * later */
885
	if (root->number_of_cgroups > 1)
886 887 888 889 890 891 892 893
		return -EBUSY;

	/* Process each subsystem */
	for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
		struct cgroup_subsys *ss = subsys[i];
		unsigned long bit = 1UL << i;
		if (bit & added_bits) {
			/* We're binding this subsystem to this hierarchy */
894
			BUG_ON(cgrp->subsys[i]);
895 896
			BUG_ON(!dummytop->subsys[i]);
			BUG_ON(dummytop->subsys[i]->cgroup != dummytop);
897
			mutex_lock(&ss->hierarchy_mutex);
898 899
			cgrp->subsys[i] = dummytop->subsys[i];
			cgrp->subsys[i]->cgroup = cgrp;
900
			list_move(&ss->sibling, &root->subsys_list);
901
			ss->root = root;
902
			if (ss->bind)
903
				ss->bind(ss, cgrp);
904
			mutex_unlock(&ss->hierarchy_mutex);
905 906
		} else if (bit & removed_bits) {
			/* We're removing this subsystem */
907 908
			BUG_ON(cgrp->subsys[i] != dummytop->subsys[i]);
			BUG_ON(cgrp->subsys[i]->cgroup != cgrp);
909
			mutex_lock(&ss->hierarchy_mutex);
910 911 912
			if (ss->bind)
				ss->bind(ss, dummytop);
			dummytop->subsys[i]->cgroup = dummytop;
913
			cgrp->subsys[i] = NULL;
914
			subsys[i]->root = &rootnode;
915
			list_move(&ss->sibling, &rootnode.subsys_list);
916
			mutex_unlock(&ss->hierarchy_mutex);
917 918
		} else if (bit & final_bits) {
			/* Subsystem state should already exist */
919
			BUG_ON(!cgrp->subsys[i]);
920 921
		} else {
			/* Subsystem state shouldn't exist */
922
			BUG_ON(cgrp->subsys[i]);
923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940
		}
	}
	root->subsys_bits = root->actual_subsys_bits = final_bits;
	synchronize_rcu();

	return 0;
}

static int cgroup_show_options(struct seq_file *seq, struct vfsmount *vfs)
{
	struct cgroupfs_root *root = vfs->mnt_sb->s_fs_info;
	struct cgroup_subsys *ss;

	mutex_lock(&cgroup_mutex);
	for_each_subsys(root, ss)
		seq_printf(seq, ",%s", ss->name);
	if (test_bit(ROOT_NOPREFIX, &root->flags))
		seq_puts(seq, ",noprefix");
941 942
	if (strlen(root->release_agent_path))
		seq_printf(seq, ",release_agent=%s", root->release_agent_path);
943 944
	if (strlen(root->name))
		seq_printf(seq, ",name=%s", root->name);
945 946 947 948 949 950 951
	mutex_unlock(&cgroup_mutex);
	return 0;
}

struct cgroup_sb_opts {
	unsigned long subsys_bits;
	unsigned long flags;
952
	char *release_agent;
953
	char *name;
954 955
	/* User explicitly requested empty subsystem */
	bool none;
956 957

	struct cgroupfs_root *new_root;
958

959 960 961 962 963 964 965 966
};

/* Convert a hierarchy specifier into a bitmask of subsystems and
 * flags. */
static int parse_cgroupfs_options(char *data,
				     struct cgroup_sb_opts *opts)
{
	char *token, *o = data ?: "all";
967 968 969 970 971
	unsigned long mask = (unsigned long)-1;

#ifdef CONFIG_CPUSETS
	mask = ~(1UL << cpuset_subsys_id);
#endif
972

973
	memset(opts, 0, sizeof(*opts));
974 975 976 977 978

	while ((token = strsep(&o, ",")) != NULL) {
		if (!*token)
			return -EINVAL;
		if (!strcmp(token, "all")) {
979 980 981 982 983 984 985 986
			/* Add all non-disabled subsystems */
			int i;
			opts->subsys_bits = 0;
			for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
				struct cgroup_subsys *ss = subsys[i];
				if (!ss->disabled)
					opts->subsys_bits |= 1ul << i;
			}
987 988 989
		} else if (!strcmp(token, "none")) {
			/* Explicitly have no subsystems */
			opts->none = true;
990 991
		} else if (!strcmp(token, "noprefix")) {
			set_bit(ROOT_NOPREFIX, &opts->flags);
992 993 994 995
		} else if (!strncmp(token, "release_agent=", 14)) {
			/* Specifying two release agents is forbidden */
			if (opts->release_agent)
				return -EINVAL;
996 997
			opts->release_agent =
				kstrndup(token + 14, PATH_MAX, GFP_KERNEL);
998 999
			if (!opts->release_agent)
				return -ENOMEM;
1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022
		} else if (!strncmp(token, "name=", 5)) {
			int i;
			const char *name = token + 5;
			/* Can't specify an empty name */
			if (!strlen(name))
				return -EINVAL;
			/* Must match [\w.-]+ */
			for (i = 0; i < strlen(name); i++) {
				char c = name[i];
				if (isalnum(c))
					continue;
				if ((c == '.') || (c == '-') || (c == '_'))
					continue;
				return -EINVAL;
			}
			/* Specifying two names is forbidden */
			if (opts->name)
				return -EINVAL;
			opts->name = kstrndup(name,
					      MAX_CGROUP_ROOT_NAMELEN,
					      GFP_KERNEL);
			if (!opts->name)
				return -ENOMEM;
1023 1024 1025 1026 1027 1028
		} else {
			struct cgroup_subsys *ss;
			int i;
			for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
				ss = subsys[i];
				if (!strcmp(token, ss->name)) {
1029 1030
					if (!ss->disabled)
						set_bit(i, &opts->subsys_bits);
1031 1032 1033 1034 1035 1036 1037 1038
					break;
				}
			}
			if (i == CGROUP_SUBSYS_COUNT)
				return -ENOENT;
		}
	}

1039 1040
	/* Consistency checks */

1041 1042 1043 1044 1045 1046 1047 1048 1049
	/*
	 * Option noprefix was introduced just for backward compatibility
	 * with the old cpuset, so we allow noprefix only if mounting just
	 * the cpuset subsystem.
	 */
	if (test_bit(ROOT_NOPREFIX, &opts->flags) &&
	    (opts->subsys_bits & mask))
		return -EINVAL;

1050 1051 1052 1053 1054 1055 1056 1057 1058

	/* Can't specify "none" and some subsystems */
	if (opts->subsys_bits && opts->none)
		return -EINVAL;

	/*
	 * We either have to specify by name or by subsystems. (So all
	 * empty hierarchies must have a name).
	 */
1059
	if (!opts->subsys_bits && !opts->name)
1060 1061 1062 1063 1064 1065 1066 1067 1068
		return -EINVAL;

	return 0;
}

static int cgroup_remount(struct super_block *sb, int *flags, char *data)
{
	int ret = 0;
	struct cgroupfs_root *root = sb->s_fs_info;
1069
	struct cgroup *cgrp = &root->top_cgroup;
1070 1071
	struct cgroup_sb_opts opts;

1072
	lock_kernel();
1073
	mutex_lock(&cgrp->dentry->d_inode->i_mutex);
1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086
	mutex_lock(&cgroup_mutex);

	/* See what subsystems are wanted */
	ret = parse_cgroupfs_options(data, &opts);
	if (ret)
		goto out_unlock;

	/* Don't allow flags to change at remount */
	if (opts.flags != root->flags) {
		ret = -EINVAL;
		goto out_unlock;
	}

1087 1088 1089 1090 1091 1092
	/* Don't allow name to change at remount */
	if (opts.name && strcmp(opts.name, root->name)) {
		ret = -EINVAL;
		goto out_unlock;
	}

1093
	ret = rebind_subsystems(root, opts.subsys_bits);
1094 1095
	if (ret)
		goto out_unlock;
1096 1097

	/* (re)populate subsystem files */
1098
	cgroup_populate_dir(cgrp);
1099

1100 1101
	if (opts.release_agent)
		strcpy(root->release_agent_path, opts.release_agent);
1102
 out_unlock:
1103
	kfree(opts.release_agent);
1104
	kfree(opts.name);
1105
	mutex_unlock(&cgroup_mutex);
1106
	mutex_unlock(&cgrp->dentry->d_inode->i_mutex);
1107
	unlock_kernel();
1108 1109 1110
	return ret;
}

1111
static const struct super_operations cgroup_ops = {
1112 1113 1114 1115 1116 1117
	.statfs = simple_statfs,
	.drop_inode = generic_delete_inode,
	.show_options = cgroup_show_options,
	.remount_fs = cgroup_remount,
};

1118 1119 1120 1121 1122 1123 1124 1125
static void init_cgroup_housekeeping(struct cgroup *cgrp)
{
	INIT_LIST_HEAD(&cgrp->sibling);
	INIT_LIST_HEAD(&cgrp->children);
	INIT_LIST_HEAD(&cgrp->css_sets);
	INIT_LIST_HEAD(&cgrp->release_list);
	init_rwsem(&cgrp->pids_mutex);
}
1126

1127 1128
static void init_cgroup_root(struct cgroupfs_root *root)
{
1129
	struct cgroup *cgrp = &root->top_cgroup;
1130 1131 1132
	INIT_LIST_HEAD(&root->subsys_list);
	INIT_LIST_HEAD(&root->root_list);
	root->number_of_cgroups = 1;
1133 1134
	cgrp->root = root;
	cgrp->top_cgroup = cgrp;
1135
	init_cgroup_housekeeping(cgrp);
1136 1137
}

1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162
static bool init_root_id(struct cgroupfs_root *root)
{
	int ret = 0;

	do {
		if (!ida_pre_get(&hierarchy_ida, GFP_KERNEL))
			return false;
		spin_lock(&hierarchy_id_lock);
		/* Try to allocate the next unused ID */
		ret = ida_get_new_above(&hierarchy_ida, next_hierarchy_id,
					&root->hierarchy_id);
		if (ret == -ENOSPC)
			/* Try again starting from 0 */
			ret = ida_get_new(&hierarchy_ida, &root->hierarchy_id);
		if (!ret) {
			next_hierarchy_id = root->hierarchy_id + 1;
		} else if (ret != -EAGAIN) {
			/* Can only get here if the 31-bit IDR is full ... */
			BUG_ON(ret);
		}
		spin_unlock(&hierarchy_id_lock);
	} while (ret);
	return true;
}

1163 1164
static int cgroup_test_super(struct super_block *sb, void *data)
{
1165
	struct cgroup_sb_opts *opts = data;
1166 1167
	struct cgroupfs_root *root = sb->s_fs_info;

1168 1169 1170
	/* If we asked for a name then it must match */
	if (opts->name && strcmp(opts->name, root->name))
		return 0;
1171

1172 1173 1174 1175 1176 1177
	/*
	 * If we asked for subsystems (or explicitly for no
	 * subsystems) then they must match
	 */
	if ((opts->subsys_bits || opts->none)
	    && (opts->subsys_bits != root->subsys_bits))
1178 1179 1180 1181 1182
		return 0;

	return 1;
}

1183 1184 1185 1186
static struct cgroupfs_root *cgroup_root_from_opts(struct cgroup_sb_opts *opts)
{
	struct cgroupfs_root *root;

1187
	if (!opts->subsys_bits && !opts->none)
1188 1189 1190 1191 1192 1193
		return NULL;

	root = kzalloc(sizeof(*root), GFP_KERNEL);
	if (!root)
		return ERR_PTR(-ENOMEM);

1194 1195 1196 1197
	if (!init_root_id(root)) {
		kfree(root);
		return ERR_PTR(-ENOMEM);
	}
1198
	init_cgroup_root(root);
1199

1200 1201 1202 1203 1204 1205 1206 1207 1208
	root->subsys_bits = opts->subsys_bits;
	root->flags = opts->flags;
	if (opts->release_agent)
		strcpy(root->release_agent_path, opts->release_agent);
	if (opts->name)
		strcpy(root->name, opts->name);
	return root;
}

1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220
static void cgroup_drop_root(struct cgroupfs_root *root)
{
	if (!root)
		return;

	BUG_ON(!root->hierarchy_id);
	spin_lock(&hierarchy_id_lock);
	ida_remove(&hierarchy_ida, root->hierarchy_id);
	spin_unlock(&hierarchy_id_lock);
	kfree(root);
}

1221 1222 1223
static int cgroup_set_super(struct super_block *sb, void *data)
{
	int ret;
1224 1225 1226 1227 1228 1229
	struct cgroup_sb_opts *opts = data;

	/* If we don't have a new root, we can't set up a new sb */
	if (!opts->new_root)
		return -EINVAL;

1230
	BUG_ON(!opts->subsys_bits && !opts->none);
1231 1232 1233 1234 1235

	ret = set_anon_super(sb, NULL);
	if (ret)
		return ret;

1236 1237
	sb->s_fs_info = opts->new_root;
	opts->new_root->sb = sb;
1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273

	sb->s_blocksize = PAGE_CACHE_SIZE;
	sb->s_blocksize_bits = PAGE_CACHE_SHIFT;
	sb->s_magic = CGROUP_SUPER_MAGIC;
	sb->s_op = &cgroup_ops;

	return 0;
}

static int cgroup_get_rootdir(struct super_block *sb)
{
	struct inode *inode =
		cgroup_new_inode(S_IFDIR | S_IRUGO | S_IXUGO | S_IWUSR, sb);
	struct dentry *dentry;

	if (!inode)
		return -ENOMEM;

	inode->i_fop = &simple_dir_operations;
	inode->i_op = &cgroup_dir_inode_operations;
	/* directories start off with i_nlink == 2 (for "." entry) */
	inc_nlink(inode);
	dentry = d_alloc_root(inode);
	if (!dentry) {
		iput(inode);
		return -ENOMEM;
	}
	sb->s_root = dentry;
	return 0;
}

static int cgroup_get_sb(struct file_system_type *fs_type,
			 int flags, const char *unused_dev_name,
			 void *data, struct vfsmount *mnt)
{
	struct cgroup_sb_opts opts;
1274
	struct cgroupfs_root *root;
1275 1276
	int ret = 0;
	struct super_block *sb;
1277
	struct cgroupfs_root *new_root;
1278 1279 1280

	/* First find the desired set of subsystems */
	ret = parse_cgroupfs_options(data, &opts);
1281 1282
	if (ret)
		goto out_err;
1283

1284 1285 1286 1287 1288 1289 1290 1291
	/*
	 * Allocate a new cgroup root. We may not need it if we're
	 * reusing an existing hierarchy.
	 */
	new_root = cgroup_root_from_opts(&opts);
	if (IS_ERR(new_root)) {
		ret = PTR_ERR(new_root);
		goto out_err;
1292
	}
1293
	opts.new_root = new_root;
1294

1295 1296
	/* Locate an existing or new sb for this hierarchy */
	sb = sget(fs_type, cgroup_test_super, cgroup_set_super, &opts);
1297
	if (IS_ERR(sb)) {
1298
		ret = PTR_ERR(sb);
1299
		cgroup_drop_root(opts.new_root);
1300
		goto out_err;
1301 1302
	}

1303 1304 1305 1306 1307
	root = sb->s_fs_info;
	BUG_ON(!root);
	if (root == opts.new_root) {
		/* We used the new root structure, so this is a new hierarchy */
		struct list_head tmp_cg_links;
1308
		struct cgroup *root_cgrp = &root->top_cgroup;
1309
		struct inode *inode;
1310
		struct cgroupfs_root *existing_root;
1311
		int i;
1312 1313 1314 1315 1316 1317

		BUG_ON(sb->s_root != NULL);

		ret = cgroup_get_rootdir(sb);
		if (ret)
			goto drop_new_super;
1318
		inode = sb->s_root->d_inode;
1319

1320
		mutex_lock(&inode->i_mutex);
1321 1322
		mutex_lock(&cgroup_mutex);

1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334
		if (strlen(root->name)) {
			/* Check for name clashes with existing mounts */
			for_each_active_root(existing_root) {
				if (!strcmp(existing_root->name, root->name)) {
					ret = -EBUSY;
					mutex_unlock(&cgroup_mutex);
					mutex_unlock(&inode->i_mutex);
					goto drop_new_super;
				}
			}
		}

1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348
		/*
		 * We're accessing css_set_count without locking
		 * css_set_lock here, but that's OK - it can only be
		 * increased by someone holding cgroup_lock, and
		 * that's us. The worst that can happen is that we
		 * have some link structures left over
		 */
		ret = allocate_cg_links(css_set_count, &tmp_cg_links);
		if (ret) {
			mutex_unlock(&cgroup_mutex);
			mutex_unlock(&inode->i_mutex);
			goto drop_new_super;
		}

1349 1350 1351
		ret = rebind_subsystems(root, root->subsys_bits);
		if (ret == -EBUSY) {
			mutex_unlock(&cgroup_mutex);
1352
			mutex_unlock(&inode->i_mutex);
1353 1354
			free_cg_links(&tmp_cg_links);
			goto drop_new_super;
1355 1356 1357 1358 1359 1360
		}

		/* EBUSY should be the only error here */
		BUG_ON(ret);

		list_add(&root->root_list, &roots);
1361
		root_count++;
1362

1363
		sb->s_root->d_fsdata = root_cgrp;
1364 1365
		root->top_cgroup.dentry = sb->s_root;

1366 1367 1368
		/* Link the top cgroup in this hierarchy into all
		 * the css_set objects */
		write_lock(&css_set_lock);
1369 1370 1371
		for (i = 0; i < CSS_SET_TABLE_SIZE; i++) {
			struct hlist_head *hhead = &css_set_table[i];
			struct hlist_node *node;
1372
			struct css_set *cg;
1373

1374 1375
			hlist_for_each_entry(cg, node, hhead, hlist)
				link_css_set(&tmp_cg_links, cg, root_cgrp);
1376
		}
1377 1378 1379 1380
		write_unlock(&css_set_lock);

		free_cg_links(&tmp_cg_links);

1381 1382
		BUG_ON(!list_empty(&root_cgrp->sibling));
		BUG_ON(!list_empty(&root_cgrp->children));
1383 1384
		BUG_ON(root->number_of_cgroups != 1);

1385
		cgroup_populate_dir(root_cgrp);
1386
		mutex_unlock(&cgroup_mutex);
1387
		mutex_unlock(&inode->i_mutex);
1388 1389 1390 1391 1392
	} else {
		/*
		 * We re-used an existing hierarchy - the new root (if
		 * any) is not needed
		 */
1393
		cgroup_drop_root(opts.new_root);
1394 1395
	}

1396
	simple_set_mnt(mnt, sb);
1397 1398
	kfree(opts.release_agent);
	kfree(opts.name);
1399
	return 0;
1400 1401

 drop_new_super:
1402
	deactivate_locked_super(sb);
1403 1404 1405 1406
 out_err:
	kfree(opts.release_agent);
	kfree(opts.name);

1407 1408 1409 1410 1411
	return ret;
}

static void cgroup_kill_sb(struct super_block *sb) {
	struct cgroupfs_root *root = sb->s_fs_info;
1412
	struct cgroup *cgrp = &root->top_cgroup;
1413
	int ret;
K
KOSAKI Motohiro 已提交
1414 1415
	struct cg_cgroup_link *link;
	struct cg_cgroup_link *saved_link;
1416 1417 1418 1419

	BUG_ON(!root);

	BUG_ON(root->number_of_cgroups != 1);
1420 1421
	BUG_ON(!list_empty(&cgrp->children));
	BUG_ON(!list_empty(&cgrp->sibling));
1422 1423 1424 1425 1426 1427 1428 1429

	mutex_lock(&cgroup_mutex);

	/* Rebind all subsystems back to the default hierarchy */
	ret = rebind_subsystems(root, 0);
	/* Shouldn't be able to fail ... */
	BUG_ON(ret);

1430 1431 1432 1433 1434
	/*
	 * Release all the links from css_sets to this hierarchy's
	 * root cgroup
	 */
	write_lock(&css_set_lock);
K
KOSAKI Motohiro 已提交
1435 1436 1437

	list_for_each_entry_safe(link, saved_link, &cgrp->css_sets,
				 cgrp_link_list) {
1438
		list_del(&link->cg_link_list);
1439
		list_del(&link->cgrp_link_list);
1440 1441 1442 1443
		kfree(link);
	}
	write_unlock(&css_set_lock);

1444 1445 1446 1447
	if (!list_empty(&root->root_list)) {
		list_del(&root->root_list);
		root_count--;
	}
1448

1449 1450 1451
	mutex_unlock(&cgroup_mutex);

	kill_litter_super(sb);
1452
	cgroup_drop_root(root);
1453 1454 1455 1456 1457 1458 1459 1460
}

static struct file_system_type cgroup_fs_type = {
	.name = "cgroup",
	.get_sb = cgroup_get_sb,
	.kill_sb = cgroup_kill_sb,
};

1461
static inline struct cgroup *__d_cgrp(struct dentry *dentry)
1462 1463 1464 1465 1466 1467 1468 1469 1470
{
	return dentry->d_fsdata;
}

static inline struct cftype *__d_cft(struct dentry *dentry)
{
	return dentry->d_fsdata;
}

L
Li Zefan 已提交
1471 1472 1473 1474 1475 1476
/**
 * cgroup_path - generate the path of a cgroup
 * @cgrp: the cgroup in question
 * @buf: the buffer to write the path into
 * @buflen: the length of the buffer
 *
1477 1478 1479
 * Called with cgroup_mutex held or else with an RCU-protected cgroup
 * reference.  Writes path of cgroup into buf.  Returns 0 on success,
 * -errno on error.
1480
 */
1481
int cgroup_path(const struct cgroup *cgrp, char *buf, int buflen)
1482 1483
{
	char *start;
1484
	struct dentry *dentry = rcu_dereference(cgrp->dentry);
1485

1486
	if (!dentry || cgrp == dummytop) {
1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498
		/*
		 * Inactive subsystems have no dentry for their root
		 * cgroup
		 */
		strcpy(buf, "/");
		return 0;
	}

	start = buf + buflen;

	*--start = '\0';
	for (;;) {
1499
		int len = dentry->d_name.len;
1500 1501
		if ((start -= len) < buf)
			return -ENAMETOOLONG;
1502 1503 1504
		memcpy(start, cgrp->dentry->d_name.name, len);
		cgrp = cgrp->parent;
		if (!cgrp)
1505
			break;
1506
		dentry = rcu_dereference(cgrp->dentry);
1507
		if (!cgrp->parent)
1508 1509 1510 1511 1512 1513 1514 1515 1516
			continue;
		if (--start < buf)
			return -ENAMETOOLONG;
		*start = '/';
	}
	memmove(buf, start, buf + buflen - start);
	return 0;
}

L
Li Zefan 已提交
1517 1518 1519 1520
/**
 * cgroup_attach_task - attach task 'tsk' to cgroup 'cgrp'
 * @cgrp: the cgroup the task is attaching to
 * @tsk: the task to be attached
1521
 *
L
Li Zefan 已提交
1522 1523
 * Call holding cgroup_mutex. May take task_lock of
 * the task 'tsk' during call.
1524
 */
1525
int cgroup_attach_task(struct cgroup *cgrp, struct task_struct *tsk)
1526 1527 1528
{
	int retval = 0;
	struct cgroup_subsys *ss;
1529
	struct cgroup *oldcgrp;
1530
	struct css_set *cg;
1531
	struct css_set *newcg;
1532
	struct cgroupfs_root *root = cgrp->root;
1533 1534

	/* Nothing to do if the task is already in that cgroup */
1535
	oldcgrp = task_cgroup_from_root(tsk, root);
1536
	if (cgrp == oldcgrp)
1537 1538 1539 1540
		return 0;

	for_each_subsys(root, ss) {
		if (ss->can_attach) {
1541
			retval = ss->can_attach(ss, cgrp, tsk);
P
Paul Jackson 已提交
1542
			if (retval)
1543 1544 1545 1546
				return retval;
		}
	}

1547 1548 1549 1550
	task_lock(tsk);
	cg = tsk->cgroups;
	get_css_set(cg);
	task_unlock(tsk);
1551 1552 1553 1554
	/*
	 * Locate or allocate a new css_set for this task,
	 * based on its final set of cgroups
	 */
1555
	newcg = find_css_set(cg, cgrp);
1556
	put_css_set(cg);
P
Paul Jackson 已提交
1557
	if (!newcg)
1558 1559
		return -ENOMEM;

1560 1561 1562
	task_lock(tsk);
	if (tsk->flags & PF_EXITING) {
		task_unlock(tsk);
1563
		put_css_set(newcg);
1564 1565
		return -ESRCH;
	}
1566
	rcu_assign_pointer(tsk->cgroups, newcg);
1567 1568
	task_unlock(tsk);

1569 1570 1571 1572 1573 1574 1575 1576
	/* Update the css_set linked lists if we're using them */
	write_lock(&css_set_lock);
	if (!list_empty(&tsk->cg_list)) {
		list_del(&tsk->cg_list);
		list_add(&tsk->cg_list, &newcg->tasks);
	}
	write_unlock(&css_set_lock);

1577
	for_each_subsys(root, ss) {
P
Paul Jackson 已提交
1578
		if (ss->attach)
1579
			ss->attach(ss, cgrp, oldcgrp, tsk);
1580
	}
1581
	set_bit(CGRP_RELEASABLE, &oldcgrp->flags);
1582
	synchronize_rcu();
1583
	put_css_set(cg);
1584 1585 1586 1587 1588

	/*
	 * wake up rmdir() waiter. the rmdir should fail since the cgroup
	 * is no longer empty.
	 */
1589
	cgroup_wakeup_rmdir_waiter(cgrp);
1590 1591 1592 1593
	return 0;
}

/*
1594 1595
 * Attach task with pid 'pid' to cgroup 'cgrp'. Call with cgroup_mutex
 * held. May take task_lock of task
1596
 */
1597
static int attach_task_by_pid(struct cgroup *cgrp, u64 pid)
1598 1599
{
	struct task_struct *tsk;
1600
	const struct cred *cred = current_cred(), *tcred;
1601 1602 1603 1604
	int ret;

	if (pid) {
		rcu_read_lock();
1605
		tsk = find_task_by_vpid(pid);
1606 1607 1608 1609 1610
		if (!tsk || tsk->flags & PF_EXITING) {
			rcu_read_unlock();
			return -ESRCH;
		}

1611 1612 1613 1614 1615
		tcred = __task_cred(tsk);
		if (cred->euid &&
		    cred->euid != tcred->uid &&
		    cred->euid != tcred->suid) {
			rcu_read_unlock();
1616 1617
			return -EACCES;
		}
1618 1619
		get_task_struct(tsk);
		rcu_read_unlock();
1620 1621 1622 1623 1624
	} else {
		tsk = current;
		get_task_struct(tsk);
	}

1625
	ret = cgroup_attach_task(cgrp, tsk);
1626 1627 1628 1629
	put_task_struct(tsk);
	return ret;
}

1630 1631 1632 1633 1634 1635 1636 1637 1638 1639
static int cgroup_tasks_write(struct cgroup *cgrp, struct cftype *cft, u64 pid)
{
	int ret;
	if (!cgroup_lock_live_group(cgrp))
		return -ENODEV;
	ret = attach_task_by_pid(cgrp, pid);
	cgroup_unlock();
	return ret;
}

1640 1641 1642 1643 1644
/* The various types of files and directories in a cgroup file system */
enum cgroup_filetype {
	FILE_ROOT,
	FILE_DIR,
	FILE_TASKLIST,
1645 1646
	FILE_NOTIFY_ON_RELEASE,
	FILE_RELEASE_AGENT,
1647 1648
};

1649 1650 1651 1652
/**
 * cgroup_lock_live_group - take cgroup_mutex and check that cgrp is alive.
 * @cgrp: the cgroup to be checked for liveness
 *
1653 1654
 * On success, returns true; the lock should be later released with
 * cgroup_unlock(). On failure returns false with no lock held.
1655
 */
1656
bool cgroup_lock_live_group(struct cgroup *cgrp)
1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672
{
	mutex_lock(&cgroup_mutex);
	if (cgroup_is_removed(cgrp)) {
		mutex_unlock(&cgroup_mutex);
		return false;
	}
	return true;
}

static int cgroup_release_agent_write(struct cgroup *cgrp, struct cftype *cft,
				      const char *buffer)
{
	BUILD_BUG_ON(sizeof(cgrp->root->release_agent_path) < PATH_MAX);
	if (!cgroup_lock_live_group(cgrp))
		return -ENODEV;
	strcpy(cgrp->root->release_agent_path, buffer);
1673
	cgroup_unlock();
1674 1675 1676 1677 1678 1679 1680 1681 1682 1683
	return 0;
}

static int cgroup_release_agent_show(struct cgroup *cgrp, struct cftype *cft,
				     struct seq_file *seq)
{
	if (!cgroup_lock_live_group(cgrp))
		return -ENODEV;
	seq_puts(seq, cgrp->root->release_agent_path);
	seq_putc(seq, '\n');
1684
	cgroup_unlock();
1685 1686 1687
	return 0;
}

1688 1689 1690
/* A buffer size big enough for numbers or short strings */
#define CGROUP_LOCAL_BUFFER_SIZE 64

1691
static ssize_t cgroup_write_X64(struct cgroup *cgrp, struct cftype *cft,
1692 1693 1694
				struct file *file,
				const char __user *userbuf,
				size_t nbytes, loff_t *unused_ppos)
1695
{
1696
	char buffer[CGROUP_LOCAL_BUFFER_SIZE];
1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707
	int retval = 0;
	char *end;

	if (!nbytes)
		return -EINVAL;
	if (nbytes >= sizeof(buffer))
		return -E2BIG;
	if (copy_from_user(buffer, userbuf, nbytes))
		return -EFAULT;

	buffer[nbytes] = 0;     /* nul-terminate */
1708
	strstrip(buffer);
1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719
	if (cft->write_u64) {
		u64 val = simple_strtoull(buffer, &end, 0);
		if (*end)
			return -EINVAL;
		retval = cft->write_u64(cgrp, cft, val);
	} else {
		s64 val = simple_strtoll(buffer, &end, 0);
		if (*end)
			return -EINVAL;
		retval = cft->write_s64(cgrp, cft, val);
	}
1720 1721 1722 1723 1724
	if (!retval)
		retval = nbytes;
	return retval;
}

1725 1726 1727 1728 1729
static ssize_t cgroup_write_string(struct cgroup *cgrp, struct cftype *cft,
				   struct file *file,
				   const char __user *userbuf,
				   size_t nbytes, loff_t *unused_ppos)
{
1730
	char local_buffer[CGROUP_LOCAL_BUFFER_SIZE];
1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744
	int retval = 0;
	size_t max_bytes = cft->max_write_len;
	char *buffer = local_buffer;

	if (!max_bytes)
		max_bytes = sizeof(local_buffer) - 1;
	if (nbytes >= max_bytes)
		return -E2BIG;
	/* Allocate a dynamic buffer if we need one */
	if (nbytes >= sizeof(local_buffer)) {
		buffer = kmalloc(nbytes + 1, GFP_KERNEL);
		if (buffer == NULL)
			return -ENOMEM;
	}
L
Li Zefan 已提交
1745 1746 1747 1748
	if (nbytes && copy_from_user(buffer, userbuf, nbytes)) {
		retval = -EFAULT;
		goto out;
	}
1749 1750 1751 1752 1753 1754

	buffer[nbytes] = 0;     /* nul-terminate */
	strstrip(buffer);
	retval = cft->write_string(cgrp, cft, buffer);
	if (!retval)
		retval = nbytes;
L
Li Zefan 已提交
1755
out:
1756 1757 1758 1759 1760
	if (buffer != local_buffer)
		kfree(buffer);
	return retval;
}

1761 1762 1763 1764
static ssize_t cgroup_file_write(struct file *file, const char __user *buf,
						size_t nbytes, loff_t *ppos)
{
	struct cftype *cft = __d_cft(file->f_dentry);
1765
	struct cgroup *cgrp = __d_cgrp(file->f_dentry->d_parent);
1766

1767
	if (cgroup_is_removed(cgrp))
1768
		return -ENODEV;
1769
	if (cft->write)
1770
		return cft->write(cgrp, cft, file, buf, nbytes, ppos);
1771 1772
	if (cft->write_u64 || cft->write_s64)
		return cgroup_write_X64(cgrp, cft, file, buf, nbytes, ppos);
1773 1774
	if (cft->write_string)
		return cgroup_write_string(cgrp, cft, file, buf, nbytes, ppos);
1775 1776 1777 1778
	if (cft->trigger) {
		int ret = cft->trigger(cgrp, (unsigned int)cft->private);
		return ret ? ret : nbytes;
	}
1779
	return -EINVAL;
1780 1781
}

1782 1783 1784 1785
static ssize_t cgroup_read_u64(struct cgroup *cgrp, struct cftype *cft,
			       struct file *file,
			       char __user *buf, size_t nbytes,
			       loff_t *ppos)
1786
{
1787
	char tmp[CGROUP_LOCAL_BUFFER_SIZE];
1788
	u64 val = cft->read_u64(cgrp, cft);
1789 1790 1791 1792 1793
	int len = sprintf(tmp, "%llu\n", (unsigned long long) val);

	return simple_read_from_buffer(buf, nbytes, ppos, tmp, len);
}

1794 1795 1796 1797 1798
static ssize_t cgroup_read_s64(struct cgroup *cgrp, struct cftype *cft,
			       struct file *file,
			       char __user *buf, size_t nbytes,
			       loff_t *ppos)
{
1799
	char tmp[CGROUP_LOCAL_BUFFER_SIZE];
1800 1801 1802 1803 1804 1805
	s64 val = cft->read_s64(cgrp, cft);
	int len = sprintf(tmp, "%lld\n", (long long) val);

	return simple_read_from_buffer(buf, nbytes, ppos, tmp, len);
}

1806 1807 1808 1809
static ssize_t cgroup_file_read(struct file *file, char __user *buf,
				   size_t nbytes, loff_t *ppos)
{
	struct cftype *cft = __d_cft(file->f_dentry);
1810
	struct cgroup *cgrp = __d_cgrp(file->f_dentry->d_parent);
1811

1812
	if (cgroup_is_removed(cgrp))
1813 1814 1815
		return -ENODEV;

	if (cft->read)
1816
		return cft->read(cgrp, cft, file, buf, nbytes, ppos);
1817 1818
	if (cft->read_u64)
		return cgroup_read_u64(cgrp, cft, file, buf, nbytes, ppos);
1819 1820
	if (cft->read_s64)
		return cgroup_read_s64(cgrp, cft, file, buf, nbytes, ppos);
1821 1822 1823
	return -EINVAL;
}

1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843
/*
 * seqfile ops/methods for returning structured data. Currently just
 * supports string->u64 maps, but can be extended in future.
 */

struct cgroup_seqfile_state {
	struct cftype *cft;
	struct cgroup *cgroup;
};

static int cgroup_map_add(struct cgroup_map_cb *cb, const char *key, u64 value)
{
	struct seq_file *sf = cb->state;
	return seq_printf(sf, "%s %llu\n", key, (unsigned long long)value);
}

static int cgroup_seqfile_show(struct seq_file *m, void *arg)
{
	struct cgroup_seqfile_state *state = m->private;
	struct cftype *cft = state->cft;
1844 1845 1846 1847 1848 1849 1850 1851
	if (cft->read_map) {
		struct cgroup_map_cb cb = {
			.fill = cgroup_map_add,
			.state = m,
		};
		return cft->read_map(state->cgroup, cft, &cb);
	}
	return cft->read_seq_string(state->cgroup, cft, m);
1852 1853
}

1854
static int cgroup_seqfile_release(struct inode *inode, struct file *file)
1855 1856 1857 1858 1859 1860 1861 1862
{
	struct seq_file *seq = file->private_data;
	kfree(seq->private);
	return single_release(inode, file);
}

static struct file_operations cgroup_seqfile_operations = {
	.read = seq_read,
1863
	.write = cgroup_file_write,
1864 1865 1866 1867
	.llseek = seq_lseek,
	.release = cgroup_seqfile_release,
};

1868 1869 1870 1871 1872 1873 1874 1875 1876
static int cgroup_file_open(struct inode *inode, struct file *file)
{
	int err;
	struct cftype *cft;

	err = generic_file_open(inode, file);
	if (err)
		return err;
	cft = __d_cft(file->f_dentry);
1877

1878
	if (cft->read_map || cft->read_seq_string) {
1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889
		struct cgroup_seqfile_state *state =
			kzalloc(sizeof(*state), GFP_USER);
		if (!state)
			return -ENOMEM;
		state->cft = cft;
		state->cgroup = __d_cgrp(file->f_dentry->d_parent);
		file->f_op = &cgroup_seqfile_operations;
		err = single_open(file, cgroup_seqfile_show, state);
		if (err < 0)
			kfree(state);
	} else if (cft->open)
1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927
		err = cft->open(inode, file);
	else
		err = 0;

	return err;
}

static int cgroup_file_release(struct inode *inode, struct file *file)
{
	struct cftype *cft = __d_cft(file->f_dentry);
	if (cft->release)
		return cft->release(inode, file);
	return 0;
}

/*
 * cgroup_rename - Only allow simple rename of directories in place.
 */
static int cgroup_rename(struct inode *old_dir, struct dentry *old_dentry,
			    struct inode *new_dir, struct dentry *new_dentry)
{
	if (!S_ISDIR(old_dentry->d_inode->i_mode))
		return -ENOTDIR;
	if (new_dentry->d_inode)
		return -EEXIST;
	if (old_dir != new_dir)
		return -EIO;
	return simple_rename(old_dir, old_dentry, new_dir, new_dentry);
}

static struct file_operations cgroup_file_operations = {
	.read = cgroup_file_read,
	.write = cgroup_file_write,
	.llseek = generic_file_llseek,
	.open = cgroup_file_open,
	.release = cgroup_file_release,
};

1928
static const struct inode_operations cgroup_dir_inode_operations = {
1929 1930 1931 1932 1933 1934
	.lookup = simple_lookup,
	.mkdir = cgroup_mkdir,
	.rmdir = cgroup_rmdir,
	.rename = cgroup_rename,
};

L
Li Zefan 已提交
1935
static int cgroup_create_file(struct dentry *dentry, mode_t mode,
1936 1937
				struct super_block *sb)
{
A
Al Viro 已提交
1938
	static const struct dentry_operations cgroup_dops = {
1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961
		.d_iput = cgroup_diput,
	};

	struct inode *inode;

	if (!dentry)
		return -ENOENT;
	if (dentry->d_inode)
		return -EEXIST;

	inode = cgroup_new_inode(mode, sb);
	if (!inode)
		return -ENOMEM;

	if (S_ISDIR(mode)) {
		inode->i_op = &cgroup_dir_inode_operations;
		inode->i_fop = &simple_dir_operations;

		/* start off with i_nlink == 2 (for "." entry) */
		inc_nlink(inode);

		/* start with the directory inode held, so that we can
		 * populate it without racing with another mkdir */
1962
		mutex_lock_nested(&inode->i_mutex, I_MUTEX_CHILD);
1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973
	} else if (S_ISREG(mode)) {
		inode->i_size = 0;
		inode->i_fop = &cgroup_file_operations;
	}
	dentry->d_op = &cgroup_dops;
	d_instantiate(dentry, inode);
	dget(dentry);	/* Extra count - pin the dentry in core */
	return 0;
}

/*
L
Li Zefan 已提交
1974 1975 1976 1977 1978
 * cgroup_create_dir - create a directory for an object.
 * @cgrp: the cgroup we create the directory for. It must have a valid
 *        ->parent field. And we are going to fill its ->dentry field.
 * @dentry: dentry of the new cgroup
 * @mode: mode to set on new directory.
1979
 */
1980
static int cgroup_create_dir(struct cgroup *cgrp, struct dentry *dentry,
L
Li Zefan 已提交
1981
				mode_t mode)
1982 1983 1984 1985
{
	struct dentry *parent;
	int error = 0;

1986 1987
	parent = cgrp->parent->dentry;
	error = cgroup_create_file(dentry, S_IFDIR | mode, cgrp->root->sb);
1988
	if (!error) {
1989
		dentry->d_fsdata = cgrp;
1990
		inc_nlink(parent->d_inode);
1991
		rcu_assign_pointer(cgrp->dentry, dentry);
1992 1993 1994 1995 1996 1997 1998
		dget(dentry);
	}
	dput(dentry);

	return error;
}

L
Li Zefan 已提交
1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025
/**
 * cgroup_file_mode - deduce file mode of a control file
 * @cft: the control file in question
 *
 * returns cft->mode if ->mode is not 0
 * returns S_IRUGO|S_IWUSR if it has both a read and a write handler
 * returns S_IRUGO if it has only a read handler
 * returns S_IWUSR if it has only a write hander
 */
static mode_t cgroup_file_mode(const struct cftype *cft)
{
	mode_t mode = 0;

	if (cft->mode)
		return cft->mode;

	if (cft->read || cft->read_u64 || cft->read_s64 ||
	    cft->read_map || cft->read_seq_string)
		mode |= S_IRUGO;

	if (cft->write || cft->write_u64 || cft->write_s64 ||
	    cft->write_string || cft->trigger)
		mode |= S_IWUSR;

	return mode;
}

2026
int cgroup_add_file(struct cgroup *cgrp,
2027 2028 2029
		       struct cgroup_subsys *subsys,
		       const struct cftype *cft)
{
2030
	struct dentry *dir = cgrp->dentry;
2031 2032
	struct dentry *dentry;
	int error;
L
Li Zefan 已提交
2033
	mode_t mode;
2034 2035

	char name[MAX_CGROUP_TYPE_NAMELEN + MAX_CFTYPE_NAME + 2] = { 0 };
2036
	if (subsys && !test_bit(ROOT_NOPREFIX, &cgrp->root->flags)) {
2037 2038 2039 2040 2041 2042 2043
		strcpy(name, subsys->name);
		strcat(name, ".");
	}
	strcat(name, cft->name);
	BUG_ON(!mutex_is_locked(&dir->d_inode->i_mutex));
	dentry = lookup_one_len(name, dir, strlen(name));
	if (!IS_ERR(dentry)) {
L
Li Zefan 已提交
2044 2045
		mode = cgroup_file_mode(cft);
		error = cgroup_create_file(dentry, mode | S_IFREG,
2046
						cgrp->root->sb);
2047 2048 2049 2050 2051 2052 2053 2054
		if (!error)
			dentry->d_fsdata = (void *)cft;
		dput(dentry);
	} else
		error = PTR_ERR(dentry);
	return error;
}

2055
int cgroup_add_files(struct cgroup *cgrp,
2056 2057 2058 2059 2060 2061
			struct cgroup_subsys *subsys,
			const struct cftype cft[],
			int count)
{
	int i, err;
	for (i = 0; i < count; i++) {
2062
		err = cgroup_add_file(cgrp, subsys, &cft[i]);
2063 2064 2065 2066 2067 2068
		if (err)
			return err;
	}
	return 0;
}

L
Li Zefan 已提交
2069 2070 2071 2072 2073 2074
/**
 * cgroup_task_count - count the number of tasks in a cgroup.
 * @cgrp: the cgroup in question
 *
 * Return the number of tasks in the cgroup.
 */
2075
int cgroup_task_count(const struct cgroup *cgrp)
2076 2077
{
	int count = 0;
K
KOSAKI Motohiro 已提交
2078
	struct cg_cgroup_link *link;
2079 2080

	read_lock(&css_set_lock);
K
KOSAKI Motohiro 已提交
2081
	list_for_each_entry(link, &cgrp->css_sets, cgrp_link_list) {
2082
		count += atomic_read(&link->cg->refcount);
2083 2084
	}
	read_unlock(&css_set_lock);
2085 2086 2087
	return count;
}

2088 2089 2090 2091
/*
 * Advance a list_head iterator.  The iterator should be positioned at
 * the start of a css_set
 */
2092
static void cgroup_advance_iter(struct cgroup *cgrp,
2093
				struct cgroup_iter *it)
2094 2095 2096 2097 2098 2099 2100 2101
{
	struct list_head *l = it->cg_link;
	struct cg_cgroup_link *link;
	struct css_set *cg;

	/* Advance to the next non-empty css_set */
	do {
		l = l->next;
2102
		if (l == &cgrp->css_sets) {
2103 2104 2105
			it->cg_link = NULL;
			return;
		}
2106
		link = list_entry(l, struct cg_cgroup_link, cgrp_link_list);
2107 2108 2109 2110 2111 2112
		cg = link->cg;
	} while (list_empty(&cg->tasks));
	it->cg_link = l;
	it->task = cg->tasks.next;
}

2113 2114 2115 2116 2117 2118 2119 2120 2121
/*
 * To reduce the fork() overhead for systems that are not actually
 * using their cgroups capability, we don't maintain the lists running
 * through each css_set to its tasks until we see the list actually
 * used - in other words after the first call to cgroup_iter_start().
 *
 * The tasklist_lock is not held here, as do_each_thread() and
 * while_each_thread() are protected by RCU.
 */
2122
static void cgroup_enable_task_cg_lists(void)
2123 2124 2125 2126 2127 2128
{
	struct task_struct *p, *g;
	write_lock(&css_set_lock);
	use_task_css_set_links = 1;
	do_each_thread(g, p) {
		task_lock(p);
2129 2130 2131 2132 2133 2134
		/*
		 * We should check if the process is exiting, otherwise
		 * it will race with cgroup_exit() in that the list
		 * entry won't be deleted though the process has exited.
		 */
		if (!(p->flags & PF_EXITING) && list_empty(&p->cg_list))
2135 2136 2137 2138 2139 2140
			list_add(&p->cg_list, &p->cgroups->tasks);
		task_unlock(p);
	} while_each_thread(g, p);
	write_unlock(&css_set_lock);
}

2141
void cgroup_iter_start(struct cgroup *cgrp, struct cgroup_iter *it)
2142 2143 2144 2145 2146 2147
{
	/*
	 * The first time anyone tries to iterate across a cgroup,
	 * we need to enable the list linking each css_set to its
	 * tasks, and fix up all existing tasks.
	 */
2148 2149 2150
	if (!use_task_css_set_links)
		cgroup_enable_task_cg_lists();

2151
	read_lock(&css_set_lock);
2152 2153
	it->cg_link = &cgrp->css_sets;
	cgroup_advance_iter(cgrp, it);
2154 2155
}

2156
struct task_struct *cgroup_iter_next(struct cgroup *cgrp,
2157 2158 2159 2160
					struct cgroup_iter *it)
{
	struct task_struct *res;
	struct list_head *l = it->task;
2161
	struct cg_cgroup_link *link;
2162 2163 2164 2165 2166 2167 2168

	/* If the iterator cg is NULL, we have no tasks */
	if (!it->cg_link)
		return NULL;
	res = list_entry(l, struct task_struct, cg_list);
	/* Advance iterator to find next entry */
	l = l->next;
2169 2170
	link = list_entry(it->cg_link, struct cg_cgroup_link, cgrp_link_list);
	if (l == &link->cg->tasks) {
2171 2172
		/* We reached the end of this task list - move on to
		 * the next cg_cgroup_link */
2173
		cgroup_advance_iter(cgrp, it);
2174 2175 2176 2177 2178 2179
	} else {
		it->task = l;
	}
	return res;
}

2180
void cgroup_iter_end(struct cgroup *cgrp, struct cgroup_iter *it)
2181 2182 2183 2184
{
	read_unlock(&css_set_lock);
}

2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321
static inline int started_after_time(struct task_struct *t1,
				     struct timespec *time,
				     struct task_struct *t2)
{
	int start_diff = timespec_compare(&t1->start_time, time);
	if (start_diff > 0) {
		return 1;
	} else if (start_diff < 0) {
		return 0;
	} else {
		/*
		 * Arbitrarily, if two processes started at the same
		 * time, we'll say that the lower pointer value
		 * started first. Note that t2 may have exited by now
		 * so this may not be a valid pointer any longer, but
		 * that's fine - it still serves to distinguish
		 * between two tasks started (effectively) simultaneously.
		 */
		return t1 > t2;
	}
}

/*
 * This function is a callback from heap_insert() and is used to order
 * the heap.
 * In this case we order the heap in descending task start time.
 */
static inline int started_after(void *p1, void *p2)
{
	struct task_struct *t1 = p1;
	struct task_struct *t2 = p2;
	return started_after_time(t1, &t2->start_time, t2);
}

/**
 * cgroup_scan_tasks - iterate though all the tasks in a cgroup
 * @scan: struct cgroup_scanner containing arguments for the scan
 *
 * Arguments include pointers to callback functions test_task() and
 * process_task().
 * Iterate through all the tasks in a cgroup, calling test_task() for each,
 * and if it returns true, call process_task() for it also.
 * The test_task pointer may be NULL, meaning always true (select all tasks).
 * Effectively duplicates cgroup_iter_{start,next,end}()
 * but does not lock css_set_lock for the call to process_task().
 * The struct cgroup_scanner may be embedded in any structure of the caller's
 * creation.
 * It is guaranteed that process_task() will act on every task that
 * is a member of the cgroup for the duration of this call. This
 * function may or may not call process_task() for tasks that exit
 * or move to a different cgroup during the call, or are forked or
 * move into the cgroup during the call.
 *
 * Note that test_task() may be called with locks held, and may in some
 * situations be called multiple times for the same task, so it should
 * be cheap.
 * If the heap pointer in the struct cgroup_scanner is non-NULL, a heap has been
 * pre-allocated and will be used for heap operations (and its "gt" member will
 * be overwritten), else a temporary heap will be used (allocation of which
 * may cause this function to fail).
 */
int cgroup_scan_tasks(struct cgroup_scanner *scan)
{
	int retval, i;
	struct cgroup_iter it;
	struct task_struct *p, *dropped;
	/* Never dereference latest_task, since it's not refcounted */
	struct task_struct *latest_task = NULL;
	struct ptr_heap tmp_heap;
	struct ptr_heap *heap;
	struct timespec latest_time = { 0, 0 };

	if (scan->heap) {
		/* The caller supplied our heap and pre-allocated its memory */
		heap = scan->heap;
		heap->gt = &started_after;
	} else {
		/* We need to allocate our own heap memory */
		heap = &tmp_heap;
		retval = heap_init(heap, PAGE_SIZE, GFP_KERNEL, &started_after);
		if (retval)
			/* cannot allocate the heap */
			return retval;
	}

 again:
	/*
	 * Scan tasks in the cgroup, using the scanner's "test_task" callback
	 * to determine which are of interest, and using the scanner's
	 * "process_task" callback to process any of them that need an update.
	 * Since we don't want to hold any locks during the task updates,
	 * gather tasks to be processed in a heap structure.
	 * The heap is sorted by descending task start time.
	 * If the statically-sized heap fills up, we overflow tasks that
	 * started later, and in future iterations only consider tasks that
	 * started after the latest task in the previous pass. This
	 * guarantees forward progress and that we don't miss any tasks.
	 */
	heap->size = 0;
	cgroup_iter_start(scan->cg, &it);
	while ((p = cgroup_iter_next(scan->cg, &it))) {
		/*
		 * Only affect tasks that qualify per the caller's callback,
		 * if he provided one
		 */
		if (scan->test_task && !scan->test_task(p, scan))
			continue;
		/*
		 * Only process tasks that started after the last task
		 * we processed
		 */
		if (!started_after_time(p, &latest_time, latest_task))
			continue;
		dropped = heap_insert(heap, p);
		if (dropped == NULL) {
			/*
			 * The new task was inserted; the heap wasn't
			 * previously full
			 */
			get_task_struct(p);
		} else if (dropped != p) {
			/*
			 * The new task was inserted, and pushed out a
			 * different task
			 */
			get_task_struct(p);
			put_task_struct(dropped);
		}
		/*
		 * Else the new task was newer than anything already in
		 * the heap and wasn't inserted
		 */
	}
	cgroup_iter_end(scan->cg, &it);

	if (heap->size) {
		for (i = 0; i < heap->size; i++) {
2322
			struct task_struct *q = heap->ptrs[i];
2323
			if (i == 0) {
2324 2325
				latest_time = q->start_time;
				latest_task = q;
2326 2327
			}
			/* Process the task per the caller's callback */
2328 2329
			scan->process_task(q, scan);
			put_task_struct(q);
2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344
		}
		/*
		 * If we had to process any tasks at all, scan again
		 * in case some of them were in the middle of forking
		 * children that didn't get processed.
		 * Not the most efficient way to do it, but it avoids
		 * having to take callback_mutex in the fork path
		 */
		goto again;
	}
	if (heap == &tmp_heap)
		heap_free(&tmp_heap);
	return 0;
}

2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356
/*
 * Stuff for reading the 'tasks' file.
 *
 * Reading this file can return large amounts of data if a cgroup has
 * *lots* of attached tasks. So it may need several calls to read(),
 * but we cannot guarantee that the information we produce is correct
 * unless we produce it entirely atomically.
 *
 */

/*
 * Load into 'pidarray' up to 'npids' of the tasks using cgroup
2357
 * 'cgrp'.  Return actual number of pids loaded.  No need to
2358 2359 2360 2361
 * task_lock(p) when reading out p->cgroup, since we're in an RCU
 * read section, so the css_set can't go away, and is
 * immutable after creation.
 */
2362
static int pid_array_load(pid_t *pidarray, int npids, struct cgroup *cgrp)
2363
{
2364
	int n = 0, pid;
2365 2366
	struct cgroup_iter it;
	struct task_struct *tsk;
2367 2368
	cgroup_iter_start(cgrp, &it);
	while ((tsk = cgroup_iter_next(cgrp, &it))) {
2369 2370
		if (unlikely(n == npids))
			break;
2371 2372 2373
		pid = task_pid_vnr(tsk);
		if (pid > 0)
			pidarray[n++] = pid;
2374
	}
2375
	cgroup_iter_end(cgrp, &it);
2376 2377 2378
	return n;
}

B
Balbir Singh 已提交
2379
/**
L
Li Zefan 已提交
2380
 * cgroupstats_build - build and fill cgroupstats
B
Balbir Singh 已提交
2381 2382 2383
 * @stats: cgroupstats to fill information into
 * @dentry: A dentry entry belonging to the cgroup for which stats have
 * been requested.
L
Li Zefan 已提交
2384 2385 2386
 *
 * Build and fill cgroupstats so that taskstats can export it to user
 * space.
B
Balbir Singh 已提交
2387 2388 2389 2390
 */
int cgroupstats_build(struct cgroupstats *stats, struct dentry *dentry)
{
	int ret = -EINVAL;
2391
	struct cgroup *cgrp;
B
Balbir Singh 已提交
2392 2393
	struct cgroup_iter it;
	struct task_struct *tsk;
2394

B
Balbir Singh 已提交
2395
	/*
2396 2397
	 * Validate dentry by checking the superblock operations,
	 * and make sure it's a directory.
B
Balbir Singh 已提交
2398
	 */
2399 2400
	if (dentry->d_sb->s_op != &cgroup_ops ||
	    !S_ISDIR(dentry->d_inode->i_mode))
B
Balbir Singh 已提交
2401 2402 2403
		 goto err;

	ret = 0;
2404
	cgrp = dentry->d_fsdata;
B
Balbir Singh 已提交
2405

2406 2407
	cgroup_iter_start(cgrp, &it);
	while ((tsk = cgroup_iter_next(cgrp, &it))) {
B
Balbir Singh 已提交
2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426
		switch (tsk->state) {
		case TASK_RUNNING:
			stats->nr_running++;
			break;
		case TASK_INTERRUPTIBLE:
			stats->nr_sleeping++;
			break;
		case TASK_UNINTERRUPTIBLE:
			stats->nr_uninterruptible++;
			break;
		case TASK_STOPPED:
			stats->nr_stopped++;
			break;
		default:
			if (delayacct_is_task_waiting_on_io(tsk))
				stats->nr_io_wait++;
			break;
		}
	}
2427
	cgroup_iter_end(cgrp, &it);
B
Balbir Singh 已提交
2428 2429 2430 2431 2432

err:
	return ret;
}

2433 2434 2435 2436 2437
static int cmppid(const void *a, const void *b)
{
	return *(pid_t *)a - *(pid_t *)b;
}

2438

2439
/*
2440 2441 2442
 * seq_file methods for the "tasks" file. The seq_file position is the
 * next pid to display; the seq_file iterator is a pointer to the pid
 * in the cgroup->tasks_pids array.
2443
 */
2444 2445

static void *cgroup_tasks_start(struct seq_file *s, loff_t *pos)
2446
{
2447 2448 2449 2450 2451 2452
	/*
	 * Initially we receive a position value that corresponds to
	 * one more than the last pid shown (or 0 on the first call or
	 * after a seek to the start). Use a binary-search to find the
	 * next pid to display, if any
	 */
2453
	struct cgroup *cgrp = s->private;
2454 2455 2456 2457 2458
	int index = 0, pid = *pos;
	int *iter;

	down_read(&cgrp->pids_mutex);
	if (pid) {
2459
		int end = cgrp->pids_length;
S
Stephen Rothwell 已提交
2460

2461 2462
		while (index < end) {
			int mid = (index + end) / 2;
2463
			if (cgrp->tasks_pids[mid] == pid) {
2464 2465
				index = mid;
				break;
2466
			} else if (cgrp->tasks_pids[mid] <= pid)
2467 2468 2469 2470 2471 2472
				index = mid + 1;
			else
				end = mid;
		}
	}
	/* If we're off the end of the array, we're done */
2473
	if (index >= cgrp->pids_length)
2474 2475
		return NULL;
	/* Update the abstract position to be the actual pid that we found */
2476
	iter = cgrp->tasks_pids + index;
2477 2478 2479 2480 2481 2482
	*pos = *iter;
	return iter;
}

static void cgroup_tasks_stop(struct seq_file *s, void *v)
{
2483
	struct cgroup *cgrp = s->private;
2484 2485 2486 2487 2488
	up_read(&cgrp->pids_mutex);
}

static void *cgroup_tasks_next(struct seq_file *s, void *v, loff_t *pos)
{
2489
	struct cgroup *cgrp = s->private;
2490
	int *p = v;
2491
	int *end = cgrp->tasks_pids + cgrp->pids_length;
2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509

	/*
	 * Advance to the next pid in the array. If this goes off the
	 * end, we're done
	 */
	p++;
	if (p >= end) {
		return NULL;
	} else {
		*pos = *p;
		return p;
	}
}

static int cgroup_tasks_show(struct seq_file *s, void *v)
{
	return seq_printf(s, "%d\n", *(int *)v);
}
2510

J
James Morris 已提交
2511
static const struct seq_operations cgroup_tasks_seq_operations = {
2512 2513 2514 2515 2516 2517
	.start = cgroup_tasks_start,
	.stop = cgroup_tasks_stop,
	.next = cgroup_tasks_next,
	.show = cgroup_tasks_show,
};

2518
static void release_cgroup_pid_array(struct cgroup *cgrp)
2519 2520
{
	down_write(&cgrp->pids_mutex);
2521 2522 2523 2524 2525
	BUG_ON(!cgrp->pids_use_count);
	if (!--cgrp->pids_use_count) {
		kfree(cgrp->tasks_pids);
		cgrp->tasks_pids = NULL;
		cgrp->pids_length = 0;
2526 2527
	}
	up_write(&cgrp->pids_mutex);
2528 2529
}

2530 2531
static int cgroup_tasks_release(struct inode *inode, struct file *file)
{
2532
	struct cgroup *cgrp = __d_cgrp(file->f_dentry->d_parent);
2533 2534 2535 2536

	if (!(file->f_mode & FMODE_READ))
		return 0;

2537
	release_cgroup_pid_array(cgrp);
2538 2539 2540 2541 2542 2543 2544 2545 2546 2547
	return seq_release(inode, file);
}

static struct file_operations cgroup_tasks_operations = {
	.read = seq_read,
	.llseek = seq_lseek,
	.write = cgroup_file_write,
	.release = cgroup_tasks_release,
};

2548
/*
2549
 * Handle an open on 'tasks' file.  Prepare an array containing the
2550 2551
 * process id's of tasks currently attached to the cgroup being opened.
 */
2552

2553 2554
static int cgroup_tasks_open(struct inode *unused, struct file *file)
{
2555
	struct cgroup *cgrp = __d_cgrp(file->f_dentry->d_parent);
2556 2557
	pid_t *pidarray;
	int npids;
2558
	int retval;
2559

2560
	/* Nothing to do for write-only files */
2561 2562 2563 2564 2565 2566 2567 2568 2569
	if (!(file->f_mode & FMODE_READ))
		return 0;

	/*
	 * If cgroup gets more users after we read count, we won't have
	 * enough space - tough.  This race is indistinguishable to the
	 * caller from the case that the additional cgroup users didn't
	 * show up until sometime later on.
	 */
2570
	npids = cgroup_task_count(cgrp);
2571 2572 2573 2574 2575
	pidarray = kmalloc(npids * sizeof(pid_t), GFP_KERNEL);
	if (!pidarray)
		return -ENOMEM;
	npids = pid_array_load(pidarray, npids, cgrp);
	sort(pidarray, npids, sizeof(pid_t), cmppid, NULL);
2576

2577 2578 2579 2580 2581
	/*
	 * Store the array in the cgroup, freeing the old
	 * array if necessary
	 */
	down_write(&cgrp->pids_mutex);
2582 2583 2584 2585
	kfree(cgrp->tasks_pids);
	cgrp->tasks_pids = pidarray;
	cgrp->pids_length = npids;
	cgrp->pids_use_count++;
2586 2587 2588 2589 2590 2591
	up_write(&cgrp->pids_mutex);

	file->f_op = &cgroup_tasks_operations;

	retval = seq_open(file, &cgroup_tasks_seq_operations);
	if (retval) {
2592
		release_cgroup_pid_array(cgrp);
2593
		return retval;
2594
	}
2595
	((struct seq_file *)file->private_data)->private = cgrp;
2596 2597 2598
	return 0;
}

2599
static u64 cgroup_read_notify_on_release(struct cgroup *cgrp,
2600 2601
					    struct cftype *cft)
{
2602
	return notify_on_release(cgrp);
2603 2604
}

2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616
static int cgroup_write_notify_on_release(struct cgroup *cgrp,
					  struct cftype *cft,
					  u64 val)
{
	clear_bit(CGRP_RELEASABLE, &cgrp->flags);
	if (val)
		set_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
	else
		clear_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
	return 0;
}

2617 2618 2619
/*
 * for the common functions, 'private' gives the type of file
 */
2620 2621 2622 2623
static struct cftype files[] = {
	{
		.name = "tasks",
		.open = cgroup_tasks_open,
2624
		.write_u64 = cgroup_tasks_write,
2625 2626
		.release = cgroup_tasks_release,
		.private = FILE_TASKLIST,
L
Li Zefan 已提交
2627
		.mode = S_IRUGO | S_IWUSR,
2628 2629 2630 2631
	},

	{
		.name = "notify_on_release",
2632
		.read_u64 = cgroup_read_notify_on_release,
2633
		.write_u64 = cgroup_write_notify_on_release,
2634 2635 2636 2637 2638 2639
		.private = FILE_NOTIFY_ON_RELEASE,
	},
};

static struct cftype cft_release_agent = {
	.name = "release_agent",
2640 2641 2642
	.read_seq_string = cgroup_release_agent_show,
	.write_string = cgroup_release_agent_write,
	.max_write_len = PATH_MAX,
2643
	.private = FILE_RELEASE_AGENT,
2644 2645
};

2646
static int cgroup_populate_dir(struct cgroup *cgrp)
2647 2648 2649 2650 2651
{
	int err;
	struct cgroup_subsys *ss;

	/* First clear out any existing files */
2652
	cgroup_clear_directory(cgrp->dentry);
2653

2654
	err = cgroup_add_files(cgrp, NULL, files, ARRAY_SIZE(files));
2655 2656 2657
	if (err < 0)
		return err;

2658 2659
	if (cgrp == cgrp->top_cgroup) {
		if ((err = cgroup_add_file(cgrp, NULL, &cft_release_agent)) < 0)
2660 2661 2662
			return err;
	}

2663 2664
	for_each_subsys(cgrp->root, ss) {
		if (ss->populate && (err = ss->populate(ss, cgrp)) < 0)
2665 2666
			return err;
	}
K
KAMEZAWA Hiroyuki 已提交
2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677
	/* This cgroup is ready now */
	for_each_subsys(cgrp->root, ss) {
		struct cgroup_subsys_state *css = cgrp->subsys[ss->subsys_id];
		/*
		 * Update id->css pointer and make this css visible from
		 * CSS ID functions. This pointer will be dereferened
		 * from RCU-read-side without locks.
		 */
		if (css->id)
			rcu_assign_pointer(css->id->css, css);
	}
2678 2679 2680 2681 2682 2683

	return 0;
}

static void init_cgroup_css(struct cgroup_subsys_state *css,
			       struct cgroup_subsys *ss,
2684
			       struct cgroup *cgrp)
2685
{
2686
	css->cgroup = cgrp;
P
Paul Menage 已提交
2687
	atomic_set(&css->refcnt, 1);
2688
	css->flags = 0;
K
KAMEZAWA Hiroyuki 已提交
2689
	css->id = NULL;
2690
	if (cgrp == dummytop)
2691
		set_bit(CSS_ROOT, &css->flags);
2692 2693
	BUG_ON(cgrp->subsys[ss->subsys_id]);
	cgrp->subsys[ss->subsys_id] = css;
2694 2695
}

2696 2697 2698 2699 2700 2701 2702 2703
static void cgroup_lock_hierarchy(struct cgroupfs_root *root)
{
	/* We need to take each hierarchy_mutex in a consistent order */
	int i;

	for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
		struct cgroup_subsys *ss = subsys[i];
		if (ss->root == root)
2704
			mutex_lock(&ss->hierarchy_mutex);
2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718
	}
}

static void cgroup_unlock_hierarchy(struct cgroupfs_root *root)
{
	int i;

	for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
		struct cgroup_subsys *ss = subsys[i];
		if (ss->root == root)
			mutex_unlock(&ss->hierarchy_mutex);
	}
}

2719
/*
L
Li Zefan 已提交
2720 2721 2722 2723
 * cgroup_create - create a cgroup
 * @parent: cgroup that will be parent of the new cgroup
 * @dentry: dentry of the new cgroup
 * @mode: mode to set on new inode
2724
 *
L
Li Zefan 已提交
2725
 * Must be called with the mutex on the parent inode held
2726 2727
 */
static long cgroup_create(struct cgroup *parent, struct dentry *dentry,
L
Li Zefan 已提交
2728
			     mode_t mode)
2729
{
2730
	struct cgroup *cgrp;
2731 2732 2733 2734 2735
	struct cgroupfs_root *root = parent->root;
	int err = 0;
	struct cgroup_subsys *ss;
	struct super_block *sb = root->sb;

2736 2737
	cgrp = kzalloc(sizeof(*cgrp), GFP_KERNEL);
	if (!cgrp)
2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748
		return -ENOMEM;

	/* Grab a reference on the superblock so the hierarchy doesn't
	 * get deleted on unmount if there are child cgroups.  This
	 * can be done outside cgroup_mutex, since the sb can't
	 * disappear while someone has an open control file on the
	 * fs */
	atomic_inc(&sb->s_active);

	mutex_lock(&cgroup_mutex);

2749
	init_cgroup_housekeeping(cgrp);
2750

2751 2752 2753
	cgrp->parent = parent;
	cgrp->root = parent->root;
	cgrp->top_cgroup = parent->top_cgroup;
2754

2755 2756 2757
	if (notify_on_release(parent))
		set_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);

2758
	for_each_subsys(root, ss) {
2759
		struct cgroup_subsys_state *css = ss->create(ss, cgrp);
2760 2761 2762 2763
		if (IS_ERR(css)) {
			err = PTR_ERR(css);
			goto err_destroy;
		}
2764
		init_cgroup_css(css, ss, cgrp);
K
KAMEZAWA Hiroyuki 已提交
2765 2766 2767 2768
		if (ss->use_id)
			if (alloc_css_id(ss, parent, cgrp))
				goto err_destroy;
		/* At error, ->destroy() callback has to free assigned ID. */
2769 2770
	}

2771
	cgroup_lock_hierarchy(root);
2772
	list_add(&cgrp->sibling, &cgrp->parent->children);
2773
	cgroup_unlock_hierarchy(root);
2774 2775
	root->number_of_cgroups++;

2776
	err = cgroup_create_dir(cgrp, dentry, mode);
2777 2778 2779 2780
	if (err < 0)
		goto err_remove;

	/* The cgroup directory was pre-locked for us */
2781
	BUG_ON(!mutex_is_locked(&cgrp->dentry->d_inode->i_mutex));
2782

2783
	err = cgroup_populate_dir(cgrp);
2784 2785 2786
	/* If err < 0, we have a half-filled directory - oh well ;) */

	mutex_unlock(&cgroup_mutex);
2787
	mutex_unlock(&cgrp->dentry->d_inode->i_mutex);
2788 2789 2790 2791 2792

	return 0;

 err_remove:

2793
	cgroup_lock_hierarchy(root);
2794
	list_del(&cgrp->sibling);
2795
	cgroup_unlock_hierarchy(root);
2796 2797 2798 2799 2800
	root->number_of_cgroups--;

 err_destroy:

	for_each_subsys(root, ss) {
2801 2802
		if (cgrp->subsys[ss->subsys_id])
			ss->destroy(ss, cgrp);
2803 2804 2805 2806 2807 2808 2809
	}

	mutex_unlock(&cgroup_mutex);

	/* Release the reference count that we took on the superblock */
	deactivate_super(sb);

2810
	kfree(cgrp);
2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821
	return err;
}

static int cgroup_mkdir(struct inode *dir, struct dentry *dentry, int mode)
{
	struct cgroup *c_parent = dentry->d_parent->d_fsdata;

	/* the vfs holds inode->i_mutex already */
	return cgroup_create(c_parent, dentry, mode | S_IFDIR);
}

2822
static int cgroup_has_css_refs(struct cgroup *cgrp)
2823 2824 2825
{
	/* Check the reference count on each subsystem. Since we
	 * already established that there are no tasks in the
P
Paul Menage 已提交
2826
	 * cgroup, if the css refcount is also 1, then there should
2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837
	 * be no outstanding references, so the subsystem is safe to
	 * destroy. We scan across all subsystems rather than using
	 * the per-hierarchy linked list of mounted subsystems since
	 * we can be called via check_for_release() with no
	 * synchronization other than RCU, and the subsystem linked
	 * list isn't RCU-safe */
	int i;
	for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
		struct cgroup_subsys *ss = subsys[i];
		struct cgroup_subsys_state *css;
		/* Skip subsystems not in this hierarchy */
2838
		if (ss->root != cgrp->root)
2839
			continue;
2840
		css = cgrp->subsys[ss->subsys_id];
2841 2842 2843 2844 2845 2846
		/* When called from check_for_release() it's possible
		 * that by this point the cgroup has been removed
		 * and the css deleted. But a false-positive doesn't
		 * matter, since it can only happen if the cgroup
		 * has been deleted and hence no longer needs the
		 * release agent to be called anyway. */
P
Paul Menage 已提交
2847
		if (css && (atomic_read(&css->refcnt) > 1))
2848 2849 2850 2851 2852
			return 1;
	}
	return 0;
}

P
Paul Menage 已提交
2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867
/*
 * Atomically mark all (or else none) of the cgroup's CSS objects as
 * CSS_REMOVED. Return true on success, or false if the cgroup has
 * busy subsystems. Call with cgroup_mutex held
 */

static int cgroup_clear_css_refs(struct cgroup *cgrp)
{
	struct cgroup_subsys *ss;
	unsigned long flags;
	bool failed = false;
	local_irq_save(flags);
	for_each_subsys(cgrp->root, ss) {
		struct cgroup_subsys_state *css = cgrp->subsys[ss->subsys_id];
		int refcnt;
2868
		while (1) {
P
Paul Menage 已提交
2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881
			/* We can only remove a CSS with a refcnt==1 */
			refcnt = atomic_read(&css->refcnt);
			if (refcnt > 1) {
				failed = true;
				goto done;
			}
			BUG_ON(!refcnt);
			/*
			 * Drop the refcnt to 0 while we check other
			 * subsystems. This will cause any racing
			 * css_tryget() to spin until we set the
			 * CSS_REMOVED bits or abort
			 */
2882 2883 2884 2885
			if (atomic_cmpxchg(&css->refcnt, refcnt, 0) == refcnt)
				break;
			cpu_relax();
		}
P
Paul Menage 已提交
2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905
	}
 done:
	for_each_subsys(cgrp->root, ss) {
		struct cgroup_subsys_state *css = cgrp->subsys[ss->subsys_id];
		if (failed) {
			/*
			 * Restore old refcnt if we previously managed
			 * to clear it from 1 to 0
			 */
			if (!atomic_read(&css->refcnt))
				atomic_set(&css->refcnt, 1);
		} else {
			/* Commit the fact that the CSS is removed */
			set_bit(CSS_REMOVED, &css->flags);
		}
	}
	local_irq_restore(flags);
	return !failed;
}

2906 2907
static int cgroup_rmdir(struct inode *unused_dir, struct dentry *dentry)
{
2908
	struct cgroup *cgrp = dentry->d_fsdata;
2909 2910
	struct dentry *d;
	struct cgroup *parent;
2911 2912
	DEFINE_WAIT(wait);
	int ret;
2913 2914

	/* the vfs holds both inode->i_mutex already */
2915
again:
2916
	mutex_lock(&cgroup_mutex);
2917
	if (atomic_read(&cgrp->count) != 0) {
2918 2919 2920
		mutex_unlock(&cgroup_mutex);
		return -EBUSY;
	}
2921
	if (!list_empty(&cgrp->children)) {
2922 2923 2924
		mutex_unlock(&cgroup_mutex);
		return -EBUSY;
	}
2925
	mutex_unlock(&cgroup_mutex);
L
Li Zefan 已提交
2926

2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937
	/*
	 * In general, subsystem has no css->refcnt after pre_destroy(). But
	 * in racy cases, subsystem may have to get css->refcnt after
	 * pre_destroy() and it makes rmdir return with -EBUSY. This sometimes
	 * make rmdir return -EBUSY too often. To avoid that, we use waitqueue
	 * for cgroup's rmdir. CGRP_WAIT_ON_RMDIR is for synchronizing rmdir
	 * and subsystem's reference count handling. Please see css_get/put
	 * and css_tryget() and cgroup_wakeup_rmdir_waiter() implementation.
	 */
	set_bit(CGRP_WAIT_ON_RMDIR, &cgrp->flags);

2938
	/*
L
Li Zefan 已提交
2939 2940
	 * Call pre_destroy handlers of subsys. Notify subsystems
	 * that rmdir() request comes.
2941
	 */
2942
	ret = cgroup_call_pre_destroy(cgrp);
2943 2944
	if (ret) {
		clear_bit(CGRP_WAIT_ON_RMDIR, &cgrp->flags);
2945
		return ret;
2946
	}
2947

2948 2949
	mutex_lock(&cgroup_mutex);
	parent = cgrp->parent;
2950
	if (atomic_read(&cgrp->count) || !list_empty(&cgrp->children)) {
2951
		clear_bit(CGRP_WAIT_ON_RMDIR, &cgrp->flags);
2952 2953 2954
		mutex_unlock(&cgroup_mutex);
		return -EBUSY;
	}
2955 2956 2957
	prepare_to_wait(&cgroup_rmdir_waitq, &wait, TASK_INTERRUPTIBLE);
	if (!cgroup_clear_css_refs(cgrp)) {
		mutex_unlock(&cgroup_mutex);
2958 2959 2960 2961 2962 2963
		/*
		 * Because someone may call cgroup_wakeup_rmdir_waiter() before
		 * prepare_to_wait(), we need to check this flag.
		 */
		if (test_bit(CGRP_WAIT_ON_RMDIR, &cgrp->flags))
			schedule();
2964 2965 2966 2967 2968 2969 2970 2971 2972
		finish_wait(&cgroup_rmdir_waitq, &wait);
		clear_bit(CGRP_WAIT_ON_RMDIR, &cgrp->flags);
		if (signal_pending(current))
			return -EINTR;
		goto again;
	}
	/* NO css_tryget() can success after here. */
	finish_wait(&cgroup_rmdir_waitq, &wait);
	clear_bit(CGRP_WAIT_ON_RMDIR, &cgrp->flags);
2973

2974
	spin_lock(&release_list_lock);
2975 2976 2977
	set_bit(CGRP_REMOVED, &cgrp->flags);
	if (!list_empty(&cgrp->release_list))
		list_del(&cgrp->release_list);
2978
	spin_unlock(&release_list_lock);
2979 2980 2981

	cgroup_lock_hierarchy(cgrp->root);
	/* delete this cgroup from parent->children */
2982
	list_del(&cgrp->sibling);
2983 2984
	cgroup_unlock_hierarchy(cgrp->root);

2985 2986
	spin_lock(&cgrp->dentry->d_lock);
	d = dget(cgrp->dentry);
2987 2988 2989 2990 2991
	spin_unlock(&d->d_lock);

	cgroup_d_remove_dir(d);
	dput(d);

2992
	set_bit(CGRP_RELEASABLE, &parent->flags);
2993 2994
	check_for_release(parent);

2995 2996 2997 2998
	mutex_unlock(&cgroup_mutex);
	return 0;
}

2999
static void __init cgroup_init_subsys(struct cgroup_subsys *ss)
3000 3001
{
	struct cgroup_subsys_state *css;
D
Diego Calleja 已提交
3002 3003

	printk(KERN_INFO "Initializing cgroup subsys %s\n", ss->name);
3004 3005

	/* Create the top cgroup state for this subsystem */
3006
	list_add(&ss->sibling, &rootnode.subsys_list);
3007 3008 3009 3010 3011 3012
	ss->root = &rootnode;
	css = ss->create(ss, dummytop);
	/* We don't handle early failures gracefully */
	BUG_ON(IS_ERR(css));
	init_cgroup_css(css, ss, dummytop);

L
Li Zefan 已提交
3013
	/* Update the init_css_set to contain a subsys
3014
	 * pointer to this state - since the subsystem is
L
Li Zefan 已提交
3015 3016 3017
	 * newly registered, all tasks and hence the
	 * init_css_set is in the subsystem's top cgroup. */
	init_css_set.subsys[ss->subsys_id] = dummytop->subsys[ss->subsys_id];
3018 3019 3020

	need_forkexit_callback |= ss->fork || ss->exit;

L
Li Zefan 已提交
3021 3022 3023 3024 3025
	/* At system boot, before all subsystems have been
	 * registered, no tasks have been forked, so we don't
	 * need to invoke fork callbacks here. */
	BUG_ON(!list_empty(&init_task.tasks));

3026
	mutex_init(&ss->hierarchy_mutex);
3027
	lockdep_set_class(&ss->hierarchy_mutex, &ss->subsys_key);
3028 3029 3030 3031
	ss->active = 1;
}

/**
L
Li Zefan 已提交
3032 3033 3034 3035
 * cgroup_init_early - cgroup initialization at system boot
 *
 * Initialize cgroups at system boot, and initialize any
 * subsystems that request early init.
3036 3037 3038 3039
 */
int __init cgroup_init_early(void)
{
	int i;
3040
	atomic_set(&init_css_set.refcount, 1);
3041 3042
	INIT_LIST_HEAD(&init_css_set.cg_links);
	INIT_LIST_HEAD(&init_css_set.tasks);
3043
	INIT_HLIST_NODE(&init_css_set.hlist);
3044
	css_set_count = 1;
3045
	init_cgroup_root(&rootnode);
3046 3047 3048 3049
	root_count = 1;
	init_task.cgroups = &init_css_set;

	init_css_set_link.cg = &init_css_set;
3050
	init_css_set_link.cgrp = dummytop;
3051
	list_add(&init_css_set_link.cgrp_link_list,
3052 3053 3054
		 &rootnode.top_cgroup.css_sets);
	list_add(&init_css_set_link.cg_link_list,
		 &init_css_set.cg_links);
3055

3056 3057 3058
	for (i = 0; i < CSS_SET_TABLE_SIZE; i++)
		INIT_HLIST_HEAD(&css_set_table[i]);

3059 3060 3061 3062 3063 3064 3065 3066
	for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
		struct cgroup_subsys *ss = subsys[i];

		BUG_ON(!ss->name);
		BUG_ON(strlen(ss->name) > MAX_CGROUP_TYPE_NAMELEN);
		BUG_ON(!ss->create);
		BUG_ON(!ss->destroy);
		if (ss->subsys_id != i) {
D
Diego Calleja 已提交
3067
			printk(KERN_ERR "cgroup: Subsys %s id == %d\n",
3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078
			       ss->name, ss->subsys_id);
			BUG();
		}

		if (ss->early_init)
			cgroup_init_subsys(ss);
	}
	return 0;
}

/**
L
Li Zefan 已提交
3079 3080 3081 3082
 * cgroup_init - cgroup initialization
 *
 * Register cgroup filesystem and /proc file, and initialize
 * any subsystems that didn't request early init.
3083 3084 3085 3086 3087
 */
int __init cgroup_init(void)
{
	int err;
	int i;
3088
	struct hlist_head *hhead;
3089 3090 3091 3092

	err = bdi_init(&cgroup_backing_dev_info);
	if (err)
		return err;
3093 3094 3095 3096 3097

	for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
		struct cgroup_subsys *ss = subsys[i];
		if (!ss->early_init)
			cgroup_init_subsys(ss);
K
KAMEZAWA Hiroyuki 已提交
3098 3099
		if (ss->use_id)
			cgroup_subsys_init_idr(ss);
3100 3101
	}

3102 3103 3104
	/* Add init_css_set to the hash table */
	hhead = css_set_hash(init_css_set.subsys);
	hlist_add_head(&init_css_set.hlist, hhead);
3105
	BUG_ON(!init_root_id(&rootnode));
3106 3107 3108 3109
	err = register_filesystem(&cgroup_fs_type);
	if (err < 0)
		goto out;

L
Li Zefan 已提交
3110
	proc_create("cgroups", 0, NULL, &proc_cgroupstats_operations);
3111

3112
out:
3113 3114 3115
	if (err)
		bdi_destroy(&cgroup_backing_dev_info);

3116 3117
	return err;
}
3118

3119 3120 3121 3122 3123 3124
/*
 * proc_cgroup_show()
 *  - Print task's cgroup paths into seq_file, one line for each hierarchy
 *  - Used for /proc/<pid>/cgroup.
 *  - No need to task_lock(tsk) on this tsk->cgroup reference, as it
 *    doesn't really matter if tsk->cgroup changes after we read it,
3125
 *    and we take cgroup_mutex, keeping cgroup_attach_task() from changing it
3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154
 *    anyway.  No need to check that tsk->cgroup != NULL, thanks to
 *    the_top_cgroup_hack in cgroup_exit(), which sets an exiting tasks
 *    cgroup to top_cgroup.
 */

/* TODO: Use a proper seq_file iterator */
static int proc_cgroup_show(struct seq_file *m, void *v)
{
	struct pid *pid;
	struct task_struct *tsk;
	char *buf;
	int retval;
	struct cgroupfs_root *root;

	retval = -ENOMEM;
	buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
	if (!buf)
		goto out;

	retval = -ESRCH;
	pid = m->private;
	tsk = get_pid_task(pid, PIDTYPE_PID);
	if (!tsk)
		goto out_free;

	retval = 0;

	mutex_lock(&cgroup_mutex);

3155
	for_each_active_root(root) {
3156
		struct cgroup_subsys *ss;
3157
		struct cgroup *cgrp;
3158 3159
		int count = 0;

3160
		seq_printf(m, "%d:", root->hierarchy_id);
3161 3162
		for_each_subsys(root, ss)
			seq_printf(m, "%s%s", count++ ? "," : "", ss->name);
3163 3164 3165
		if (strlen(root->name))
			seq_printf(m, "%sname=%s", count ? "," : "",
				   root->name);
3166
		seq_putc(m, ':');
3167
		cgrp = task_cgroup_from_root(tsk, root);
3168
		retval = cgroup_path(cgrp, buf, PAGE_SIZE);
3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201
		if (retval < 0)
			goto out_unlock;
		seq_puts(m, buf);
		seq_putc(m, '\n');
	}

out_unlock:
	mutex_unlock(&cgroup_mutex);
	put_task_struct(tsk);
out_free:
	kfree(buf);
out:
	return retval;
}

static int cgroup_open(struct inode *inode, struct file *file)
{
	struct pid *pid = PROC_I(inode)->pid;
	return single_open(file, proc_cgroup_show, pid);
}

struct file_operations proc_cgroup_operations = {
	.open		= cgroup_open,
	.read		= seq_read,
	.llseek		= seq_lseek,
	.release	= single_release,
};

/* Display information about each subsystem and each hierarchy */
static int proc_cgroupstats_show(struct seq_file *m, void *v)
{
	int i;

3202
	seq_puts(m, "#subsys_name\thierarchy\tnum_cgroups\tenabled\n");
3203 3204 3205
	mutex_lock(&cgroup_mutex);
	for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
		struct cgroup_subsys *ss = subsys[i];
3206 3207
		seq_printf(m, "%s\t%d\t%d\t%d\n",
			   ss->name, ss->root->hierarchy_id,
3208
			   ss->root->number_of_cgroups, !ss->disabled);
3209 3210 3211 3212 3213 3214 3215
	}
	mutex_unlock(&cgroup_mutex);
	return 0;
}

static int cgroupstats_open(struct inode *inode, struct file *file)
{
A
Al Viro 已提交
3216
	return single_open(file, proc_cgroupstats_show, NULL);
3217 3218 3219 3220 3221 3222 3223 3224 3225
}

static struct file_operations proc_cgroupstats_operations = {
	.open = cgroupstats_open,
	.read = seq_read,
	.llseek = seq_lseek,
	.release = single_release,
};

3226 3227
/**
 * cgroup_fork - attach newly forked task to its parents cgroup.
L
Li Zefan 已提交
3228
 * @child: pointer to task_struct of forking parent process.
3229 3230 3231 3232 3233 3234
 *
 * Description: A task inherits its parent's cgroup at fork().
 *
 * A pointer to the shared css_set was automatically copied in
 * fork.c by dup_task_struct().  However, we ignore that copy, since
 * it was not made under the protection of RCU or cgroup_mutex, so
3235
 * might no longer be a valid cgroup pointer.  cgroup_attach_task() might
3236 3237
 * have already changed current->cgroups, allowing the previously
 * referenced cgroup group to be removed and freed.
3238 3239 3240 3241 3242 3243
 *
 * At the point that cgroup_fork() is called, 'current' is the parent
 * task, and the passed argument 'child' points to the child task.
 */
void cgroup_fork(struct task_struct *child)
{
3244 3245 3246 3247 3248
	task_lock(current);
	child->cgroups = current->cgroups;
	get_css_set(child->cgroups);
	task_unlock(current);
	INIT_LIST_HEAD(&child->cg_list);
3249 3250 3251
}

/**
L
Li Zefan 已提交
3252 3253 3254 3255 3256 3257
 * cgroup_fork_callbacks - run fork callbacks
 * @child: the new task
 *
 * Called on a new task very soon before adding it to the
 * tasklist. No need to take any locks since no-one can
 * be operating on this task.
3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270
 */
void cgroup_fork_callbacks(struct task_struct *child)
{
	if (need_forkexit_callback) {
		int i;
		for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
			struct cgroup_subsys *ss = subsys[i];
			if (ss->fork)
				ss->fork(ss, child);
		}
	}
}

3271
/**
L
Li Zefan 已提交
3272 3273 3274 3275 3276 3277 3278 3279
 * cgroup_post_fork - called on a new task after adding it to the task list
 * @child: the task in question
 *
 * Adds the task to the list running through its css_set if necessary.
 * Has to be after the task is visible on the task list in case we race
 * with the first call to cgroup_iter_start() - to guarantee that the
 * new task ends up on its list.
 */
3280 3281 3282 3283
void cgroup_post_fork(struct task_struct *child)
{
	if (use_task_css_set_links) {
		write_lock(&css_set_lock);
3284
		task_lock(child);
3285 3286
		if (list_empty(&child->cg_list))
			list_add(&child->cg_list, &child->cgroups->tasks);
3287
		task_unlock(child);
3288 3289 3290
		write_unlock(&css_set_lock);
	}
}
3291 3292 3293
/**
 * cgroup_exit - detach cgroup from exiting task
 * @tsk: pointer to task_struct of exiting process
L
Li Zefan 已提交
3294
 * @run_callback: run exit callbacks?
3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322
 *
 * Description: Detach cgroup from @tsk and release it.
 *
 * Note that cgroups marked notify_on_release force every task in
 * them to take the global cgroup_mutex mutex when exiting.
 * This could impact scaling on very large systems.  Be reluctant to
 * use notify_on_release cgroups where very high task exit scaling
 * is required on large systems.
 *
 * the_top_cgroup_hack:
 *
 *    Set the exiting tasks cgroup to the root cgroup (top_cgroup).
 *
 *    We call cgroup_exit() while the task is still competent to
 *    handle notify_on_release(), then leave the task attached to the
 *    root cgroup in each hierarchy for the remainder of its exit.
 *
 *    To do this properly, we would increment the reference count on
 *    top_cgroup, and near the very end of the kernel/exit.c do_exit()
 *    code we would add a second cgroup function call, to drop that
 *    reference.  This would just create an unnecessary hot spot on
 *    the top_cgroup reference count, to no avail.
 *
 *    Normally, holding a reference to a cgroup without bumping its
 *    count is unsafe.   The cgroup could go away, or someone could
 *    attach us to a different cgroup, decrementing the count on
 *    the first cgroup that we never incremented.  But in this case,
 *    top_cgroup isn't going away, and either task has PF_EXITING set,
3323 3324
 *    which wards off any cgroup_attach_task() attempts, or task is a failed
 *    fork, never visible to cgroup_attach_task.
3325 3326 3327 3328
 */
void cgroup_exit(struct task_struct *tsk, int run_callbacks)
{
	int i;
3329
	struct css_set *cg;
3330 3331 3332 3333 3334 3335 3336 3337

	if (run_callbacks && need_forkexit_callback) {
		for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
			struct cgroup_subsys *ss = subsys[i];
			if (ss->exit)
				ss->exit(ss, tsk);
		}
	}
3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350

	/*
	 * Unlink from the css_set task list if necessary.
	 * Optimistically check cg_list before taking
	 * css_set_lock
	 */
	if (!list_empty(&tsk->cg_list)) {
		write_lock(&css_set_lock);
		if (!list_empty(&tsk->cg_list))
			list_del(&tsk->cg_list);
		write_unlock(&css_set_lock);
	}

3351 3352
	/* Reassign the task to the init_css_set. */
	task_lock(tsk);
3353 3354
	cg = tsk->cgroups;
	tsk->cgroups = &init_css_set;
3355
	task_unlock(tsk);
3356
	if (cg)
3357
		put_css_set_taskexit(cg);
3358
}
3359 3360

/**
L
Li Zefan 已提交
3361 3362 3363
 * cgroup_clone - clone the cgroup the given subsystem is attached to
 * @tsk: the task to be moved
 * @subsys: the given subsystem
3364
 * @nodename: the name for the new cgroup
L
Li Zefan 已提交
3365 3366 3367 3368
 *
 * Duplicate the current cgroup in the hierarchy that the given
 * subsystem is attached to, and move this task into the new
 * child.
3369
 */
3370 3371
int cgroup_clone(struct task_struct *tsk, struct cgroup_subsys *subsys,
							char *nodename)
3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394
{
	struct dentry *dentry;
	int ret = 0;
	struct cgroup *parent, *child;
	struct inode *inode;
	struct css_set *cg;
	struct cgroupfs_root *root;
	struct cgroup_subsys *ss;

	/* We shouldn't be called by an unregistered subsystem */
	BUG_ON(!subsys->active);

	/* First figure out what hierarchy and cgroup we're dealing
	 * with, and pin them so we can drop cgroup_mutex */
	mutex_lock(&cgroup_mutex);
 again:
	root = subsys->root;
	if (root == &rootnode) {
		mutex_unlock(&cgroup_mutex);
		return 0;
	}

	/* Pin the hierarchy */
3395
	if (!atomic_inc_not_zero(&root->sb->s_active)) {
3396 3397 3398 3399
		/* We race with the final deactivate_super() */
		mutex_unlock(&cgroup_mutex);
		return 0;
	}
3400

3401
	/* Keep the cgroup alive */
3402 3403 3404
	task_lock(tsk);
	parent = task_cgroup(tsk, subsys->subsys_id);
	cg = tsk->cgroups;
3405
	get_css_set(cg);
3406
	task_unlock(tsk);
3407

3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418
	mutex_unlock(&cgroup_mutex);

	/* Now do the VFS work to create a cgroup */
	inode = parent->dentry->d_inode;

	/* Hold the parent directory mutex across this operation to
	 * stop anyone else deleting the new cgroup */
	mutex_lock(&inode->i_mutex);
	dentry = lookup_one_len(nodename, parent->dentry, strlen(nodename));
	if (IS_ERR(dentry)) {
		printk(KERN_INFO
D
Diego Calleja 已提交
3419
		       "cgroup: Couldn't allocate dentry for %s: %ld\n", nodename,
3420 3421 3422 3423 3424 3425
		       PTR_ERR(dentry));
		ret = PTR_ERR(dentry);
		goto out_release;
	}

	/* Create the cgroup directory, which also creates the cgroup */
3426
	ret = vfs_mkdir(inode, dentry, 0755);
3427
	child = __d_cgrp(dentry);
3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443
	dput(dentry);
	if (ret) {
		printk(KERN_INFO
		       "Failed to create cgroup %s: %d\n", nodename,
		       ret);
		goto out_release;
	}

	/* The cgroup now exists. Retake cgroup_mutex and check
	 * that we're still in the same state that we thought we
	 * were. */
	mutex_lock(&cgroup_mutex);
	if ((root != subsys->root) ||
	    (parent != task_cgroup(tsk, subsys->subsys_id))) {
		/* Aargh, we raced ... */
		mutex_unlock(&inode->i_mutex);
3444
		put_css_set(cg);
3445

3446
		deactivate_super(root->sb);
3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462
		/* The cgroup is still accessible in the VFS, but
		 * we're not going to try to rmdir() it at this
		 * point. */
		printk(KERN_INFO
		       "Race in cgroup_clone() - leaking cgroup %s\n",
		       nodename);
		goto again;
	}

	/* do any required auto-setup */
	for_each_subsys(root, ss) {
		if (ss->post_clone)
			ss->post_clone(ss, child);
	}

	/* All seems fine. Finish by moving the task into the new cgroup */
3463
	ret = cgroup_attach_task(child, tsk);
3464 3465 3466 3467
	mutex_unlock(&cgroup_mutex);

 out_release:
	mutex_unlock(&inode->i_mutex);
3468 3469

	mutex_lock(&cgroup_mutex);
3470
	put_css_set(cg);
3471
	mutex_unlock(&cgroup_mutex);
3472
	deactivate_super(root->sb);
3473 3474 3475
	return ret;
}

L
Li Zefan 已提交
3476
/**
3477
 * cgroup_is_descendant - see if @cgrp is a descendant of @task's cgrp
L
Li Zefan 已提交
3478
 * @cgrp: the cgroup in question
3479
 * @task: the task in question
L
Li Zefan 已提交
3480
 *
3481 3482
 * See if @cgrp is a descendant of @task's cgroup in the appropriate
 * hierarchy.
3483 3484 3485 3486 3487 3488
 *
 * If we are sending in dummytop, then presumably we are creating
 * the top cgroup in the subsystem.
 *
 * Called only by the ns (nsproxy) cgroup.
 */
3489
int cgroup_is_descendant(const struct cgroup *cgrp, struct task_struct *task)
3490 3491 3492 3493
{
	int ret;
	struct cgroup *target;

3494
	if (cgrp == dummytop)
3495 3496
		return 1;

3497
	target = task_cgroup_from_root(task, cgrp->root);
3498 3499 3500
	while (cgrp != target && cgrp!= cgrp->top_cgroup)
		cgrp = cgrp->parent;
	ret = (cgrp == target);
3501 3502
	return ret;
}
3503

3504
static void check_for_release(struct cgroup *cgrp)
3505 3506 3507
{
	/* All of these checks rely on RCU to keep the cgroup
	 * structure alive */
3508 3509
	if (cgroup_is_releasable(cgrp) && !atomic_read(&cgrp->count)
	    && list_empty(&cgrp->children) && !cgroup_has_css_refs(cgrp)) {
3510 3511 3512 3513 3514
		/* Control Group is currently removeable. If it's not
		 * already queued for a userspace notification, queue
		 * it now */
		int need_schedule_work = 0;
		spin_lock(&release_list_lock);
3515 3516 3517
		if (!cgroup_is_removed(cgrp) &&
		    list_empty(&cgrp->release_list)) {
			list_add(&cgrp->release_list, &release_list);
3518 3519 3520 3521 3522 3523 3524 3525 3526 3527
			need_schedule_work = 1;
		}
		spin_unlock(&release_list_lock);
		if (need_schedule_work)
			schedule_work(&release_agent_work);
	}
}

void __css_put(struct cgroup_subsys_state *css)
{
3528
	struct cgroup *cgrp = css->cgroup;
3529
	rcu_read_lock();
3530 3531 3532 3533 3534
	if (atomic_dec_return(&css->refcnt) == 1) {
		if (notify_on_release(cgrp)) {
			set_bit(CGRP_RELEASABLE, &cgrp->flags);
			check_for_release(cgrp);
		}
3535
		cgroup_wakeup_rmdir_waiter(cgrp);
3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570
	}
	rcu_read_unlock();
}

/*
 * Notify userspace when a cgroup is released, by running the
 * configured release agent with the name of the cgroup (path
 * relative to the root of cgroup file system) as the argument.
 *
 * Most likely, this user command will try to rmdir this cgroup.
 *
 * This races with the possibility that some other task will be
 * attached to this cgroup before it is removed, or that some other
 * user task will 'mkdir' a child cgroup of this cgroup.  That's ok.
 * The presumed 'rmdir' will fail quietly if this cgroup is no longer
 * unused, and this cgroup will be reprieved from its death sentence,
 * to continue to serve a useful existence.  Next time it's released,
 * we will get notified again, if it still has 'notify_on_release' set.
 *
 * The final arg to call_usermodehelper() is UMH_WAIT_EXEC, which
 * means only wait until the task is successfully execve()'d.  The
 * separate release agent task is forked by call_usermodehelper(),
 * then control in this thread returns here, without waiting for the
 * release agent task.  We don't bother to wait because the caller of
 * this routine has no use for the exit status of the release agent
 * task, so no sense holding our caller up for that.
 */
static void cgroup_release_agent(struct work_struct *work)
{
	BUG_ON(work != &release_agent_work);
	mutex_lock(&cgroup_mutex);
	spin_lock(&release_list_lock);
	while (!list_empty(&release_list)) {
		char *argv[3], *envp[3];
		int i;
3571
		char *pathbuf = NULL, *agentbuf = NULL;
3572
		struct cgroup *cgrp = list_entry(release_list.next,
3573 3574
						    struct cgroup,
						    release_list);
3575
		list_del_init(&cgrp->release_list);
3576 3577
		spin_unlock(&release_list_lock);
		pathbuf = kmalloc(PAGE_SIZE, GFP_KERNEL);
3578 3579 3580 3581 3582 3583 3584
		if (!pathbuf)
			goto continue_free;
		if (cgroup_path(cgrp, pathbuf, PAGE_SIZE) < 0)
			goto continue_free;
		agentbuf = kstrdup(cgrp->root->release_agent_path, GFP_KERNEL);
		if (!agentbuf)
			goto continue_free;
3585 3586

		i = 0;
3587 3588
		argv[i++] = agentbuf;
		argv[i++] = pathbuf;
3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602
		argv[i] = NULL;

		i = 0;
		/* minimal command environment */
		envp[i++] = "HOME=/";
		envp[i++] = "PATH=/sbin:/bin:/usr/sbin:/usr/bin";
		envp[i] = NULL;

		/* Drop the lock while we invoke the usermode helper,
		 * since the exec could involve hitting disk and hence
		 * be a slow process */
		mutex_unlock(&cgroup_mutex);
		call_usermodehelper(argv[0], argv, envp, UMH_WAIT_EXEC);
		mutex_lock(&cgroup_mutex);
3603 3604 3605
 continue_free:
		kfree(pathbuf);
		kfree(agentbuf);
3606 3607 3608 3609 3610
		spin_lock(&release_list_lock);
	}
	spin_unlock(&release_list_lock);
	mutex_unlock(&cgroup_mutex);
}
3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634

static int __init cgroup_disable(char *str)
{
	int i;
	char *token;

	while ((token = strsep(&str, ",")) != NULL) {
		if (!*token)
			continue;

		for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
			struct cgroup_subsys *ss = subsys[i];

			if (!strcmp(token, ss->name)) {
				ss->disabled = 1;
				printk(KERN_INFO "Disabling %s control group"
					" subsystem\n", ss->name);
				break;
			}
		}
	}
	return 1;
}
__setup("cgroup_disable=", cgroup_disable);
K
KAMEZAWA Hiroyuki 已提交
3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661

/*
 * Functons for CSS ID.
 */

/*
 *To get ID other than 0, this should be called when !cgroup_is_removed().
 */
unsigned short css_id(struct cgroup_subsys_state *css)
{
	struct css_id *cssid = rcu_dereference(css->id);

	if (cssid)
		return cssid->id;
	return 0;
}

unsigned short css_depth(struct cgroup_subsys_state *css)
{
	struct css_id *cssid = rcu_dereference(css->id);

	if (cssid)
		return cssid->depth;
	return 0;
}

bool css_is_ancestor(struct cgroup_subsys_state *child,
3662
		    const struct cgroup_subsys_state *root)
K
KAMEZAWA Hiroyuki 已提交
3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863
{
	struct css_id *child_id = rcu_dereference(child->id);
	struct css_id *root_id = rcu_dereference(root->id);

	if (!child_id || !root_id || (child_id->depth < root_id->depth))
		return false;
	return child_id->stack[root_id->depth] == root_id->id;
}

static void __free_css_id_cb(struct rcu_head *head)
{
	struct css_id *id;

	id = container_of(head, struct css_id, rcu_head);
	kfree(id);
}

void free_css_id(struct cgroup_subsys *ss, struct cgroup_subsys_state *css)
{
	struct css_id *id = css->id;
	/* When this is called before css_id initialization, id can be NULL */
	if (!id)
		return;

	BUG_ON(!ss->use_id);

	rcu_assign_pointer(id->css, NULL);
	rcu_assign_pointer(css->id, NULL);
	spin_lock(&ss->id_lock);
	idr_remove(&ss->idr, id->id);
	spin_unlock(&ss->id_lock);
	call_rcu(&id->rcu_head, __free_css_id_cb);
}

/*
 * This is called by init or create(). Then, calls to this function are
 * always serialized (By cgroup_mutex() at create()).
 */

static struct css_id *get_new_cssid(struct cgroup_subsys *ss, int depth)
{
	struct css_id *newid;
	int myid, error, size;

	BUG_ON(!ss->use_id);

	size = sizeof(*newid) + sizeof(unsigned short) * (depth + 1);
	newid = kzalloc(size, GFP_KERNEL);
	if (!newid)
		return ERR_PTR(-ENOMEM);
	/* get id */
	if (unlikely(!idr_pre_get(&ss->idr, GFP_KERNEL))) {
		error = -ENOMEM;
		goto err_out;
	}
	spin_lock(&ss->id_lock);
	/* Don't use 0. allocates an ID of 1-65535 */
	error = idr_get_new_above(&ss->idr, newid, 1, &myid);
	spin_unlock(&ss->id_lock);

	/* Returns error when there are no free spaces for new ID.*/
	if (error) {
		error = -ENOSPC;
		goto err_out;
	}
	if (myid > CSS_ID_MAX)
		goto remove_idr;

	newid->id = myid;
	newid->depth = depth;
	return newid;
remove_idr:
	error = -ENOSPC;
	spin_lock(&ss->id_lock);
	idr_remove(&ss->idr, myid);
	spin_unlock(&ss->id_lock);
err_out:
	kfree(newid);
	return ERR_PTR(error);

}

static int __init cgroup_subsys_init_idr(struct cgroup_subsys *ss)
{
	struct css_id *newid;
	struct cgroup_subsys_state *rootcss;

	spin_lock_init(&ss->id_lock);
	idr_init(&ss->idr);

	rootcss = init_css_set.subsys[ss->subsys_id];
	newid = get_new_cssid(ss, 0);
	if (IS_ERR(newid))
		return PTR_ERR(newid);

	newid->stack[0] = newid->id;
	newid->css = rootcss;
	rootcss->id = newid;
	return 0;
}

static int alloc_css_id(struct cgroup_subsys *ss, struct cgroup *parent,
			struct cgroup *child)
{
	int subsys_id, i, depth = 0;
	struct cgroup_subsys_state *parent_css, *child_css;
	struct css_id *child_id, *parent_id = NULL;

	subsys_id = ss->subsys_id;
	parent_css = parent->subsys[subsys_id];
	child_css = child->subsys[subsys_id];
	depth = css_depth(parent_css) + 1;
	parent_id = parent_css->id;

	child_id = get_new_cssid(ss, depth);
	if (IS_ERR(child_id))
		return PTR_ERR(child_id);

	for (i = 0; i < depth; i++)
		child_id->stack[i] = parent_id->stack[i];
	child_id->stack[depth] = child_id->id;
	/*
	 * child_id->css pointer will be set after this cgroup is available
	 * see cgroup_populate_dir()
	 */
	rcu_assign_pointer(child_css->id, child_id);

	return 0;
}

/**
 * css_lookup - lookup css by id
 * @ss: cgroup subsys to be looked into.
 * @id: the id
 *
 * Returns pointer to cgroup_subsys_state if there is valid one with id.
 * NULL if not. Should be called under rcu_read_lock()
 */
struct cgroup_subsys_state *css_lookup(struct cgroup_subsys *ss, int id)
{
	struct css_id *cssid = NULL;

	BUG_ON(!ss->use_id);
	cssid = idr_find(&ss->idr, id);

	if (unlikely(!cssid))
		return NULL;

	return rcu_dereference(cssid->css);
}

/**
 * css_get_next - lookup next cgroup under specified hierarchy.
 * @ss: pointer to subsystem
 * @id: current position of iteration.
 * @root: pointer to css. search tree under this.
 * @foundid: position of found object.
 *
 * Search next css under the specified hierarchy of rootid. Calling under
 * rcu_read_lock() is necessary. Returns NULL if it reaches the end.
 */
struct cgroup_subsys_state *
css_get_next(struct cgroup_subsys *ss, int id,
	     struct cgroup_subsys_state *root, int *foundid)
{
	struct cgroup_subsys_state *ret = NULL;
	struct css_id *tmp;
	int tmpid;
	int rootid = css_id(root);
	int depth = css_depth(root);

	if (!rootid)
		return NULL;

	BUG_ON(!ss->use_id);
	/* fill start point for scan */
	tmpid = id;
	while (1) {
		/*
		 * scan next entry from bitmap(tree), tmpid is updated after
		 * idr_get_next().
		 */
		spin_lock(&ss->id_lock);
		tmp = idr_get_next(&ss->idr, &tmpid);
		spin_unlock(&ss->id_lock);

		if (!tmp)
			break;
		if (tmp->depth >= depth && tmp->stack[depth] == rootid) {
			ret = rcu_dereference(tmp->css);
			if (ret) {
				*foundid = tmpid;
				break;
			}
		}
		/* continue to scan from next id */
		tmpid = tmpid + 1;
	}
	return ret;
}

3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906
#ifdef CONFIG_CGROUP_DEBUG
static struct cgroup_subsys_state *debug_create(struct cgroup_subsys *ss,
						   struct cgroup *cont)
{
	struct cgroup_subsys_state *css = kzalloc(sizeof(*css), GFP_KERNEL);

	if (!css)
		return ERR_PTR(-ENOMEM);

	return css;
}

static void debug_destroy(struct cgroup_subsys *ss, struct cgroup *cont)
{
	kfree(cont->subsys[debug_subsys_id]);
}

static u64 cgroup_refcount_read(struct cgroup *cont, struct cftype *cft)
{
	return atomic_read(&cont->count);
}

static u64 debug_taskcount_read(struct cgroup *cont, struct cftype *cft)
{
	return cgroup_task_count(cont);
}

static u64 current_css_set_read(struct cgroup *cont, struct cftype *cft)
{
	return (u64)(unsigned long)current->cgroups;
}

static u64 current_css_set_refcount_read(struct cgroup *cont,
					   struct cftype *cft)
{
	u64 count;

	rcu_read_lock();
	count = atomic_read(&current->cgroups->refcount);
	rcu_read_unlock();
	return count;
}

3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924
static int current_css_set_cg_links_read(struct cgroup *cont,
					 struct cftype *cft,
					 struct seq_file *seq)
{
	struct cg_cgroup_link *link;
	struct css_set *cg;

	read_lock(&css_set_lock);
	rcu_read_lock();
	cg = rcu_dereference(current->cgroups);
	list_for_each_entry(link, &cg->cg_links, cg_link_list) {
		struct cgroup *c = link->cgrp;
		const char *name;

		if (c->dentry)
			name = c->dentry->d_name.name;
		else
			name = "?";
3925 3926
		seq_printf(seq, "Root %d group %s\n",
			   c->root->hierarchy_id, name);
3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959
	}
	rcu_read_unlock();
	read_unlock(&css_set_lock);
	return 0;
}

#define MAX_TASKS_SHOWN_PER_CSS 25
static int cgroup_css_links_read(struct cgroup *cont,
				 struct cftype *cft,
				 struct seq_file *seq)
{
	struct cg_cgroup_link *link;

	read_lock(&css_set_lock);
	list_for_each_entry(link, &cont->css_sets, cgrp_link_list) {
		struct css_set *cg = link->cg;
		struct task_struct *task;
		int count = 0;
		seq_printf(seq, "css_set %p\n", cg);
		list_for_each_entry(task, &cg->tasks, cg_list) {
			if (count++ > MAX_TASKS_SHOWN_PER_CSS) {
				seq_puts(seq, "  ...\n");
				break;
			} else {
				seq_printf(seq, "  task %d\n",
					   task_pid_vnr(task));
			}
		}
	}
	read_unlock(&css_set_lock);
	return 0;
}

3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984
static u64 releasable_read(struct cgroup *cgrp, struct cftype *cft)
{
	return test_bit(CGRP_RELEASABLE, &cgrp->flags);
}

static struct cftype debug_files[] =  {
	{
		.name = "cgroup_refcount",
		.read_u64 = cgroup_refcount_read,
	},
	{
		.name = "taskcount",
		.read_u64 = debug_taskcount_read,
	},

	{
		.name = "current_css_set",
		.read_u64 = current_css_set_read,
	},

	{
		.name = "current_css_set_refcount",
		.read_u64 = current_css_set_refcount_read,
	},

3985 3986 3987 3988 3989 3990 3991 3992 3993 3994
	{
		.name = "current_css_set_cg_links",
		.read_seq_string = current_css_set_cg_links_read,
	},

	{
		.name = "cgroup_css_links",
		.read_seq_string = cgroup_css_links_read,
	},

3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014
	{
		.name = "releasable",
		.read_u64 = releasable_read,
	},
};

static int debug_populate(struct cgroup_subsys *ss, struct cgroup *cont)
{
	return cgroup_add_files(cont, ss, debug_files,
				ARRAY_SIZE(debug_files));
}

struct cgroup_subsys debug_subsys = {
	.name = "debug",
	.create = debug_create,
	.destroy = debug_destroy,
	.populate = debug_populate,
	.subsys_id = debug_subsys_id,
};
#endif /* CONFIG_CGROUP_DEBUG */