cgroup.c 82.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33
/*
 *  Generic process-grouping system.
 *
 *  Based originally on the cpuset system, extracted by Paul Menage
 *  Copyright (C) 2006 Google, Inc
 *
 *  Copyright notices from the original cpuset code:
 *  --------------------------------------------------
 *  Copyright (C) 2003 BULL SA.
 *  Copyright (C) 2004-2006 Silicon Graphics, Inc.
 *
 *  Portions derived from Patrick Mochel's sysfs code.
 *  sysfs is Copyright (c) 2001-3 Patrick Mochel
 *
 *  2003-10-10 Written by Simon Derr.
 *  2003-10-22 Updates by Stephen Hemminger.
 *  2004 May-July Rework by Paul Jackson.
 *  ---------------------------------------------------
 *
 *  This file is subject to the terms and conditions of the GNU General Public
 *  License.  See the file COPYING in the main directory of the Linux
 *  distribution for more details.
 */

#include <linux/cgroup.h>
#include <linux/errno.h>
#include <linux/fs.h>
#include <linux/kernel.h>
#include <linux/list.h>
#include <linux/mm.h>
#include <linux/mutex.h>
#include <linux/mount.h>
#include <linux/pagemap.h>
34
#include <linux/proc_fs.h>
35 36
#include <linux/rcupdate.h>
#include <linux/sched.h>
37
#include <linux/backing-dev.h>
38 39 40 41 42
#include <linux/seq_file.h>
#include <linux/slab.h>
#include <linux/magic.h>
#include <linux/spinlock.h>
#include <linux/string.h>
43
#include <linux/sort.h>
44
#include <linux/kmod.h>
B
Balbir Singh 已提交
45 46
#include <linux/delayacct.h>
#include <linux/cgroupstats.h>
47
#include <linux/hash.h>
B
Balbir Singh 已提交
48

49 50
#include <asm/atomic.h>

51 52
static DEFINE_MUTEX(cgroup_mutex);

53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90
/* Generate an array of cgroup subsystem pointers */
#define SUBSYS(_x) &_x ## _subsys,

static struct cgroup_subsys *subsys[] = {
#include <linux/cgroup_subsys.h>
};

/*
 * A cgroupfs_root represents the root of a cgroup hierarchy,
 * and may be associated with a superblock to form an active
 * hierarchy
 */
struct cgroupfs_root {
	struct super_block *sb;

	/*
	 * The bitmask of subsystems intended to be attached to this
	 * hierarchy
	 */
	unsigned long subsys_bits;

	/* The bitmask of subsystems currently attached to this hierarchy */
	unsigned long actual_subsys_bits;

	/* A list running through the attached subsystems */
	struct list_head subsys_list;

	/* The root cgroup for this hierarchy */
	struct cgroup top_cgroup;

	/* Tracks how many cgroups are currently defined in hierarchy.*/
	int number_of_cgroups;

	/* A list running through the mounted hierarchies */
	struct list_head root_list;

	/* Hierarchy-specific flags */
	unsigned long flags;
91 92 93 94 95 96 97

	/* The path to use for release notifications. No locking
	 * between setting and use - so if userspace updates this
	 * while child cgroups exist, you could miss a
	 * notification. We ensure that it's always a valid
	 * NUL-terminated string */
	char release_agent_path[PATH_MAX];
98 99 100 101 102 103 104 105 106 107 108 109 110
};


/*
 * The "rootnode" hierarchy is the "dummy hierarchy", reserved for the
 * subsystems that are otherwise unattached - it never has more than a
 * single cgroup, and all tasks are part of that cgroup.
 */
static struct cgroupfs_root rootnode;

/* The list of hierarchy roots */

static LIST_HEAD(roots);
111
static int root_count;
112 113 114 115 116

/* dummytop is a shorthand for the dummy hierarchy's top cgroup */
#define dummytop (&rootnode.top_cgroup)

/* This flag indicates whether tasks in the fork and exit paths should
L
Li Zefan 已提交
117 118 119
 * check for fork/exit handlers to call. This avoids us having to do
 * extra work in the fork/exit path if none of the subsystems need to
 * be called.
120
 */
121
static int need_forkexit_callback __read_mostly;
122
static int need_mm_owner_callback __read_mostly;
123 124

/* convenient tests for these bits */
125
inline int cgroup_is_removed(const struct cgroup *cgrp)
126
{
127
	return test_bit(CGRP_REMOVED, &cgrp->flags);
128 129 130 131 132 133 134
}

/* bits in struct cgroupfs_root flags field */
enum {
	ROOT_NOPREFIX, /* mounted subsystems have no named prefix */
};

135
static int cgroup_is_releasable(const struct cgroup *cgrp)
136 137
{
	const int bits =
138 139 140
		(1 << CGRP_RELEASABLE) |
		(1 << CGRP_NOTIFY_ON_RELEASE);
	return (cgrp->flags & bits) == bits;
141 142
}

143
static int notify_on_release(const struct cgroup *cgrp)
144
{
145
	return test_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
146 147
}

148 149 150 151 152 153 154 155 156 157 158
/*
 * for_each_subsys() allows you to iterate on each subsystem attached to
 * an active hierarchy
 */
#define for_each_subsys(_root, _ss) \
list_for_each_entry(_ss, &_root->subsys_list, sibling)

/* for_each_root() allows you to iterate across the active hierarchies */
#define for_each_root(_root) \
list_for_each_entry(_root, &roots, root_list)

159 160 161 162 163 164
/* the list of cgroups eligible for automatic release. Protected by
 * release_list_lock */
static LIST_HEAD(release_list);
static DEFINE_SPINLOCK(release_list_lock);
static void cgroup_release_agent(struct work_struct *work);
static DECLARE_WORK(release_agent_work, cgroup_release_agent);
165
static void check_for_release(struct cgroup *cgrp);
166

167 168 169 170 171 172
/* Link structure for associating css_set objects with cgroups */
struct cg_cgroup_link {
	/*
	 * List running through cg_cgroup_links associated with a
	 * cgroup, anchored on cgroup->css_sets
	 */
173
	struct list_head cgrp_link_list;
174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197
	/*
	 * List running through cg_cgroup_links pointing at a
	 * single css_set object, anchored on css_set->cg_links
	 */
	struct list_head cg_link_list;
	struct css_set *cg;
};

/* The default css_set - used by init and its children prior to any
 * hierarchies being mounted. It contains a pointer to the root state
 * for each subsystem. Also used to anchor the list of css_sets. Not
 * reference-counted, to improve performance when child cgroups
 * haven't been created.
 */

static struct css_set init_css_set;
static struct cg_cgroup_link init_css_set_link;

/* css_set_lock protects the list of css_set objects, and the
 * chain of tasks off each css_set.  Nests outside task->alloc_lock
 * due to cgroup_iter_start() */
static DEFINE_RWLOCK(css_set_lock);
static int css_set_count;

198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218
/* hash table for cgroup groups. This improves the performance to
 * find an existing css_set */
#define CSS_SET_HASH_BITS	7
#define CSS_SET_TABLE_SIZE	(1 << CSS_SET_HASH_BITS)
static struct hlist_head css_set_table[CSS_SET_TABLE_SIZE];

static struct hlist_head *css_set_hash(struct cgroup_subsys_state *css[])
{
	int i;
	int index;
	unsigned long tmp = 0UL;

	for (i = 0; i < CGROUP_SUBSYS_COUNT; i++)
		tmp += (unsigned long)css[i];
	tmp = (tmp >> 16) ^ tmp;

	index = hash_long(tmp, CSS_SET_HASH_BITS);

	return &css_set_table[index];
}

219 220 221 222
/* We don't maintain the lists running through each css_set to its
 * task until after the first call to cgroup_iter_start(). This
 * reduces the fork()/exit() overhead for people who have cgroups
 * compiled into their kernel but not actually in use */
223
static int use_task_css_set_links __read_mostly;
224 225 226 227 228 229 230

/* When we create or destroy a css_set, the operation simply
 * takes/releases a reference count on all the cgroups referenced
 * by subsystems in this css_set. This can end up multiple-counting
 * some cgroups, but that's OK - the ref-count is just a
 * busy/not-busy indicator; ensuring that we only count each cgroup
 * once would require taking a global lock to ensure that no
231 232 233 234 235 236 237
 * subsystems moved between hierarchies while we were doing so.
 *
 * Possible TODO: decide at boot time based on the number of
 * registered subsystems and the number of CPUs or NUMA nodes whether
 * it's better for performance to ref-count every subsystem, or to
 * take a global lock and only add one ref count to each hierarchy.
 */
238 239 240 241

/*
 * unlink a css_set from the list and free it
 */
242
static void unlink_css_set(struct css_set *cg)
243
{
K
KOSAKI Motohiro 已提交
244 245 246
	struct cg_cgroup_link *link;
	struct cg_cgroup_link *saved_link;

247
	write_lock(&css_set_lock);
248
	hlist_del(&cg->hlist);
249
	css_set_count--;
K
KOSAKI Motohiro 已提交
250 251 252

	list_for_each_entry_safe(link, saved_link, &cg->cg_links,
				 cg_link_list) {
253
		list_del(&link->cg_link_list);
254
		list_del(&link->cgrp_link_list);
255 256
		kfree(link);
	}
K
KOSAKI Motohiro 已提交
257

258
	write_unlock(&css_set_lock);
259 260 261 262 263 264 265 266 267 268 269
}

static void __release_css_set(struct kref *k, int taskexit)
{
	int i;
	struct css_set *cg = container_of(k, struct css_set, ref);

	unlink_css_set(cg);

	rcu_read_lock();
	for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
270 271 272
		struct cgroup *cgrp = cg->subsys[i]->cgroup;
		if (atomic_dec_and_test(&cgrp->count) &&
		    notify_on_release(cgrp)) {
273
			if (taskexit)
274 275
				set_bit(CGRP_RELEASABLE, &cgrp->flags);
			check_for_release(cgrp);
276 277 278
		}
	}
	rcu_read_unlock();
279
	kfree(cg);
280 281
}

282 283 284 285 286 287 288 289 290 291
static void release_css_set(struct kref *k)
{
	__release_css_set(k, 0);
}

static void release_css_set_taskexit(struct kref *k)
{
	__release_css_set(k, 1);
}

292 293 294 295 296 297 298 299 300 301 302 303 304
/*
 * refcounted get/put for css_set objects
 */
static inline void get_css_set(struct css_set *cg)
{
	kref_get(&cg->ref);
}

static inline void put_css_set(struct css_set *cg)
{
	kref_put(&cg->ref, release_css_set);
}

305 306 307 308 309
static inline void put_css_set_taskexit(struct css_set *cg)
{
	kref_put(&cg->ref, release_css_set_taskexit);
}

310 311 312
/*
 * find_existing_css_set() is a helper for
 * find_css_set(), and checks to see whether an existing
313
 * css_set is suitable.
314 315 316 317
 *
 * oldcg: the cgroup group that we're using before the cgroup
 * transition
 *
318
 * cgrp: the cgroup that we're moving into
319 320 321 322 323 324
 *
 * template: location in which to build the desired set of subsystem
 * state objects for the new cgroup group
 */
static struct css_set *find_existing_css_set(
	struct css_set *oldcg,
325
	struct cgroup *cgrp,
326
	struct cgroup_subsys_state *template[])
327 328
{
	int i;
329
	struct cgroupfs_root *root = cgrp->root;
330 331 332
	struct hlist_head *hhead;
	struct hlist_node *node;
	struct css_set *cg;
333 334 335 336

	/* Built the set of subsystem state objects that we want to
	 * see in the new css_set */
	for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
L
Li Zefan 已提交
337
		if (root->subsys_bits & (1UL << i)) {
338 339 340
			/* Subsystem is in this hierarchy. So we want
			 * the subsystem state from the new
			 * cgroup */
341
			template[i] = cgrp->subsys[i];
342 343 344 345 346 347 348
		} else {
			/* Subsystem is not in this hierarchy, so we
			 * don't want to change the subsystem state */
			template[i] = oldcg->subsys[i];
		}
	}

349 350
	hhead = css_set_hash(template);
	hlist_for_each_entry(cg, node, hhead, hlist) {
351 352 353 354
		if (!memcmp(template, cg->subsys, sizeof(cg->subsys))) {
			/* All subsystems matched */
			return cg;
		}
355
	}
356 357 358 359 360 361 362

	/* No existing cgroup group matched */
	return NULL;
}

/*
 * allocate_cg_links() allocates "count" cg_cgroup_link structures
363
 * and chains them on tmp through their cgrp_link_list fields. Returns 0 on
364 365 366 367 368
 * success or a negative error
 */
static int allocate_cg_links(int count, struct list_head *tmp)
{
	struct cg_cgroup_link *link;
K
KOSAKI Motohiro 已提交
369
	struct cg_cgroup_link *saved_link;
370 371 372 373 374
	int i;
	INIT_LIST_HEAD(tmp);
	for (i = 0; i < count; i++) {
		link = kmalloc(sizeof(*link), GFP_KERNEL);
		if (!link) {
K
KOSAKI Motohiro 已提交
375 376
			list_for_each_entry_safe(link, saved_link, tmp,
						 cgrp_link_list) {
377
				list_del(&link->cgrp_link_list);
378 379 380 381
				kfree(link);
			}
			return -ENOMEM;
		}
382
		list_add(&link->cgrp_link_list, tmp);
383 384 385 386 387 388
	}
	return 0;
}

static void free_cg_links(struct list_head *tmp)
{
K
KOSAKI Motohiro 已提交
389 390 391 392
	struct cg_cgroup_link *link;
	struct cg_cgroup_link *saved_link;

	list_for_each_entry_safe(link, saved_link, tmp, cgrp_link_list) {
393
		list_del(&link->cgrp_link_list);
394 395 396 397 398 399 400 401 402 403 404 405
		kfree(link);
	}
}

/*
 * find_css_set() takes an existing cgroup group and a
 * cgroup object, and returns a css_set object that's
 * equivalent to the old group, but with the given cgroup
 * substituted into the appropriate hierarchy. Must be called with
 * cgroup_mutex held
 */
static struct css_set *find_css_set(
406
	struct css_set *oldcg, struct cgroup *cgrp)
407 408 409 410 411 412 413 414
{
	struct css_set *res;
	struct cgroup_subsys_state *template[CGROUP_SUBSYS_COUNT];
	int i;

	struct list_head tmp_cg_links;
	struct cg_cgroup_link *link;

415 416
	struct hlist_head *hhead;

417 418
	/* First see if we already have a cgroup group that matches
	 * the desired set */
419
	read_lock(&css_set_lock);
420
	res = find_existing_css_set(oldcg, cgrp, template);
421 422
	if (res)
		get_css_set(res);
423
	read_unlock(&css_set_lock);
424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440

	if (res)
		return res;

	res = kmalloc(sizeof(*res), GFP_KERNEL);
	if (!res)
		return NULL;

	/* Allocate all the cg_cgroup_link objects that we'll need */
	if (allocate_cg_links(root_count, &tmp_cg_links) < 0) {
		kfree(res);
		return NULL;
	}

	kref_init(&res->ref);
	INIT_LIST_HEAD(&res->cg_links);
	INIT_LIST_HEAD(&res->tasks);
441
	INIT_HLIST_NODE(&res->hlist);
442 443 444 445 446 447 448 449

	/* Copy the set of subsystem state objects generated in
	 * find_existing_css_set() */
	memcpy(res->subsys, template, sizeof(res->subsys));

	write_lock(&css_set_lock);
	/* Add reference counts and links from the new css_set. */
	for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
450
		struct cgroup *cgrp = res->subsys[i]->cgroup;
451
		struct cgroup_subsys *ss = subsys[i];
452
		atomic_inc(&cgrp->count);
453 454 455 456 457 458 459 460 461
		/*
		 * We want to add a link once per cgroup, so we
		 * only do it for the first subsystem in each
		 * hierarchy
		 */
		if (ss->root->subsys_list.next == &ss->sibling) {
			BUG_ON(list_empty(&tmp_cg_links));
			link = list_entry(tmp_cg_links.next,
					  struct cg_cgroup_link,
462 463 464
					  cgrp_link_list);
			list_del(&link->cgrp_link_list);
			list_add(&link->cgrp_link_list, &cgrp->css_sets);
465 466 467 468 469 470 471
			link->cg = res;
			list_add(&link->cg_link_list, &res->cg_links);
		}
	}
	if (list_empty(&rootnode.subsys_list)) {
		link = list_entry(tmp_cg_links.next,
				  struct cg_cgroup_link,
472 473 474
				  cgrp_link_list);
		list_del(&link->cgrp_link_list);
		list_add(&link->cgrp_link_list, &dummytop->css_sets);
475 476 477 478 479 480 481
		link->cg = res;
		list_add(&link->cg_link_list, &res->cg_links);
	}

	BUG_ON(!list_empty(&tmp_cg_links));

	css_set_count++;
482 483 484 485 486

	/* Add this cgroup group to the hash table */
	hhead = css_set_hash(res->subsys);
	hlist_add_head(&res->hlist, hhead);

487 488 489
	write_unlock(&css_set_lock);

	return res;
490 491
}

492 493 494 495 496 497 498 499 500 501
/*
 * There is one global cgroup mutex. We also require taking
 * task_lock() when dereferencing a task's cgroup subsys pointers.
 * See "The task_lock() exception", at the end of this comment.
 *
 * A task must hold cgroup_mutex to modify cgroups.
 *
 * Any task can increment and decrement the count field without lock.
 * So in general, code holding cgroup_mutex can't rely on the count
 * field not changing.  However, if the count goes to zero, then only
502
 * cgroup_attach_task() can increment it again.  Because a count of zero
503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519
 * means that no tasks are currently attached, therefore there is no
 * way a task attached to that cgroup can fork (the other way to
 * increment the count).  So code holding cgroup_mutex can safely
 * assume that if the count is zero, it will stay zero. Similarly, if
 * a task holds cgroup_mutex on a cgroup with zero count, it
 * knows that the cgroup won't be removed, as cgroup_rmdir()
 * needs that mutex.
 *
 * The cgroup_common_file_write handler for operations that modify
 * the cgroup hierarchy holds cgroup_mutex across the entire operation,
 * single threading all such cgroup modifications across the system.
 *
 * The fork and exit callbacks cgroup_fork() and cgroup_exit(), don't
 * (usually) take cgroup_mutex.  These are the two most performance
 * critical pieces of code here.  The exception occurs on cgroup_exit(),
 * when a task in a notify_on_release cgroup exits.  Then cgroup_mutex
 * is taken, and if the cgroup count is zero, a usermode call made
L
Li Zefan 已提交
520 521
 * to the release agent with the name of the cgroup (path relative to
 * the root of cgroup file system) as the argument.
522 523 524 525 526 527 528 529 530 531 532
 *
 * A cgroup can only be deleted if both its 'count' of using tasks
 * is zero, and its list of 'children' cgroups is empty.  Since all
 * tasks in the system use _some_ cgroup, and since there is always at
 * least one task in the system (init, pid == 1), therefore, top_cgroup
 * always has either children cgroups and/or using tasks.  So we don't
 * need a special hack to ensure that top_cgroup cannot be deleted.
 *
 *	The task_lock() exception
 *
 * The need for this exception arises from the action of
533
 * cgroup_attach_task(), which overwrites one tasks cgroup pointer with
L
Li Zefan 已提交
534
 * another.  It does so using cgroup_mutex, however there are
535 536 537
 * several performance critical places that need to reference
 * task->cgroup without the expense of grabbing a system global
 * mutex.  Therefore except as noted below, when dereferencing or, as
538
 * in cgroup_attach_task(), modifying a task'ss cgroup pointer we use
539 540 541 542
 * task_lock(), which acts on a spinlock (task->alloc_lock) already in
 * the task_struct routinely used for such matters.
 *
 * P.S.  One more locking exception.  RCU is used to guard the
543
 * update of a tasks cgroup pointer by cgroup_attach_task()
544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573
 */

/**
 * cgroup_lock - lock out any changes to cgroup structures
 *
 */
void cgroup_lock(void)
{
	mutex_lock(&cgroup_mutex);
}

/**
 * cgroup_unlock - release lock on cgroup changes
 *
 * Undo the lock taken in a previous cgroup_lock() call.
 */
void cgroup_unlock(void)
{
	mutex_unlock(&cgroup_mutex);
}

/*
 * A couple of forward declarations required, due to cyclic reference loop:
 * cgroup_mkdir -> cgroup_create -> cgroup_populate_dir ->
 * cgroup_add_file -> cgroup_create_file -> cgroup_dir_inode_operations
 * -> cgroup_mkdir.
 */

static int cgroup_mkdir(struct inode *dir, struct dentry *dentry, int mode);
static int cgroup_rmdir(struct inode *unused_dir, struct dentry *dentry);
574
static int cgroup_populate_dir(struct cgroup *cgrp);
575
static struct inode_operations cgroup_dir_inode_operations;
576 577 578
static struct file_operations proc_cgroupstats_operations;

static struct backing_dev_info cgroup_backing_dev_info = {
579
	.capabilities	= BDI_CAP_NO_ACCT_AND_WRITEBACK,
580
};
581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596

static struct inode *cgroup_new_inode(mode_t mode, struct super_block *sb)
{
	struct inode *inode = new_inode(sb);

	if (inode) {
		inode->i_mode = mode;
		inode->i_uid = current->fsuid;
		inode->i_gid = current->fsgid;
		inode->i_blocks = 0;
		inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
		inode->i_mapping->backing_dev_info = &cgroup_backing_dev_info;
	}
	return inode;
}

597 598 599 600 601 602 603 604 605 606 607 608 609
/*
 * Call subsys's pre_destroy handler.
 * This is called before css refcnt check.
 */
static void cgroup_call_pre_destroy(struct cgroup *cgrp)
{
	struct cgroup_subsys *ss;
	for_each_subsys(cgrp->root, ss)
		if (ss->pre_destroy && cgrp->subsys[ss->subsys_id])
			ss->pre_destroy(ss, cgrp);
	return;
}

610 611 612 613
static void cgroup_diput(struct dentry *dentry, struct inode *inode)
{
	/* is dentry a directory ? if so, kfree() associated cgroup */
	if (S_ISDIR(inode->i_mode)) {
614
		struct cgroup *cgrp = dentry->d_fsdata;
615
		struct cgroup_subsys *ss;
616
		BUG_ON(!(cgroup_is_removed(cgrp)));
617 618 619 620 621 622 623
		/* It's possible for external users to be holding css
		 * reference counts on a cgroup; css_put() needs to
		 * be able to access the cgroup after decrementing
		 * the reference count in order to know if it needs to
		 * queue the cgroup to be handled by the release
		 * agent */
		synchronize_rcu();
624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640

		mutex_lock(&cgroup_mutex);
		/*
		 * Release the subsystem state objects.
		 */
		for_each_subsys(cgrp->root, ss) {
			if (cgrp->subsys[ss->subsys_id])
				ss->destroy(ss, cgrp);
		}

		cgrp->root->number_of_cgroups--;
		mutex_unlock(&cgroup_mutex);

		/* Drop the active superblock reference that we took when we
		 * created the cgroup */
		deactivate_super(cgrp->root->sb);

641
		kfree(cgrp);
642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697
	}
	iput(inode);
}

static void remove_dir(struct dentry *d)
{
	struct dentry *parent = dget(d->d_parent);

	d_delete(d);
	simple_rmdir(parent->d_inode, d);
	dput(parent);
}

static void cgroup_clear_directory(struct dentry *dentry)
{
	struct list_head *node;

	BUG_ON(!mutex_is_locked(&dentry->d_inode->i_mutex));
	spin_lock(&dcache_lock);
	node = dentry->d_subdirs.next;
	while (node != &dentry->d_subdirs) {
		struct dentry *d = list_entry(node, struct dentry, d_u.d_child);
		list_del_init(node);
		if (d->d_inode) {
			/* This should never be called on a cgroup
			 * directory with child cgroups */
			BUG_ON(d->d_inode->i_mode & S_IFDIR);
			d = dget_locked(d);
			spin_unlock(&dcache_lock);
			d_delete(d);
			simple_unlink(dentry->d_inode, d);
			dput(d);
			spin_lock(&dcache_lock);
		}
		node = dentry->d_subdirs.next;
	}
	spin_unlock(&dcache_lock);
}

/*
 * NOTE : the dentry must have been dget()'ed
 */
static void cgroup_d_remove_dir(struct dentry *dentry)
{
	cgroup_clear_directory(dentry);

	spin_lock(&dcache_lock);
	list_del_init(&dentry->d_u.d_child);
	spin_unlock(&dcache_lock);
	remove_dir(dentry);
}

static int rebind_subsystems(struct cgroupfs_root *root,
			      unsigned long final_bits)
{
	unsigned long added_bits, removed_bits;
698
	struct cgroup *cgrp = &root->top_cgroup;
699 700 701 702 703 704
	int i;

	removed_bits = root->actual_subsys_bits & ~final_bits;
	added_bits = final_bits & ~root->actual_subsys_bits;
	/* Check that any added subsystems are currently free */
	for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
L
Li Zefan 已提交
705
		unsigned long bit = 1UL << i;
706 707 708 709 710 711 712 713 714 715 716 717 718
		struct cgroup_subsys *ss = subsys[i];
		if (!(bit & added_bits))
			continue;
		if (ss->root != &rootnode) {
			/* Subsystem isn't free */
			return -EBUSY;
		}
	}

	/* Currently we don't handle adding/removing subsystems when
	 * any child cgroups exist. This is theoretically supportable
	 * but involves complex error handling, so it's being left until
	 * later */
719
	if (!list_empty(&cgrp->children))
720 721 722 723 724 725 726 727
		return -EBUSY;

	/* Process each subsystem */
	for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
		struct cgroup_subsys *ss = subsys[i];
		unsigned long bit = 1UL << i;
		if (bit & added_bits) {
			/* We're binding this subsystem to this hierarchy */
728
			BUG_ON(cgrp->subsys[i]);
729 730
			BUG_ON(!dummytop->subsys[i]);
			BUG_ON(dummytop->subsys[i]->cgroup != dummytop);
731 732
			cgrp->subsys[i] = dummytop->subsys[i];
			cgrp->subsys[i]->cgroup = cgrp;
733 734 735
			list_add(&ss->sibling, &root->subsys_list);
			rcu_assign_pointer(ss->root, root);
			if (ss->bind)
736
				ss->bind(ss, cgrp);
737 738 739

		} else if (bit & removed_bits) {
			/* We're removing this subsystem */
740 741
			BUG_ON(cgrp->subsys[i] != dummytop->subsys[i]);
			BUG_ON(cgrp->subsys[i]->cgroup != cgrp);
742 743 744
			if (ss->bind)
				ss->bind(ss, dummytop);
			dummytop->subsys[i]->cgroup = dummytop;
745
			cgrp->subsys[i] = NULL;
746 747 748 749
			rcu_assign_pointer(subsys[i]->root, &rootnode);
			list_del(&ss->sibling);
		} else if (bit & final_bits) {
			/* Subsystem state should already exist */
750
			BUG_ON(!cgrp->subsys[i]);
751 752
		} else {
			/* Subsystem state shouldn't exist */
753
			BUG_ON(cgrp->subsys[i]);
754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771
		}
	}
	root->subsys_bits = root->actual_subsys_bits = final_bits;
	synchronize_rcu();

	return 0;
}

static int cgroup_show_options(struct seq_file *seq, struct vfsmount *vfs)
{
	struct cgroupfs_root *root = vfs->mnt_sb->s_fs_info;
	struct cgroup_subsys *ss;

	mutex_lock(&cgroup_mutex);
	for_each_subsys(root, ss)
		seq_printf(seq, ",%s", ss->name);
	if (test_bit(ROOT_NOPREFIX, &root->flags))
		seq_puts(seq, ",noprefix");
772 773
	if (strlen(root->release_agent_path))
		seq_printf(seq, ",release_agent=%s", root->release_agent_path);
774 775 776 777 778 779 780
	mutex_unlock(&cgroup_mutex);
	return 0;
}

struct cgroup_sb_opts {
	unsigned long subsys_bits;
	unsigned long flags;
781
	char *release_agent;
782 783 784 785 786 787 788 789 790 791 792
};

/* Convert a hierarchy specifier into a bitmask of subsystems and
 * flags. */
static int parse_cgroupfs_options(char *data,
				     struct cgroup_sb_opts *opts)
{
	char *token, *o = data ?: "all";

	opts->subsys_bits = 0;
	opts->flags = 0;
793
	opts->release_agent = NULL;
794 795 796 797 798

	while ((token = strsep(&o, ",")) != NULL) {
		if (!*token)
			return -EINVAL;
		if (!strcmp(token, "all")) {
799 800 801 802 803 804 805 806
			/* Add all non-disabled subsystems */
			int i;
			opts->subsys_bits = 0;
			for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
				struct cgroup_subsys *ss = subsys[i];
				if (!ss->disabled)
					opts->subsys_bits |= 1ul << i;
			}
807 808
		} else if (!strcmp(token, "noprefix")) {
			set_bit(ROOT_NOPREFIX, &opts->flags);
809 810 811 812 813 814 815 816 817
		} else if (!strncmp(token, "release_agent=", 14)) {
			/* Specifying two release agents is forbidden */
			if (opts->release_agent)
				return -EINVAL;
			opts->release_agent = kzalloc(PATH_MAX, GFP_KERNEL);
			if (!opts->release_agent)
				return -ENOMEM;
			strncpy(opts->release_agent, token + 14, PATH_MAX - 1);
			opts->release_agent[PATH_MAX - 1] = 0;
818 819 820 821 822 823
		} else {
			struct cgroup_subsys *ss;
			int i;
			for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
				ss = subsys[i];
				if (!strcmp(token, ss->name)) {
824 825
					if (!ss->disabled)
						set_bit(i, &opts->subsys_bits);
826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844
					break;
				}
			}
			if (i == CGROUP_SUBSYS_COUNT)
				return -ENOENT;
		}
	}

	/* We can't have an empty hierarchy */
	if (!opts->subsys_bits)
		return -EINVAL;

	return 0;
}

static int cgroup_remount(struct super_block *sb, int *flags, char *data)
{
	int ret = 0;
	struct cgroupfs_root *root = sb->s_fs_info;
845
	struct cgroup *cgrp = &root->top_cgroup;
846 847
	struct cgroup_sb_opts opts;

848
	mutex_lock(&cgrp->dentry->d_inode->i_mutex);
849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865
	mutex_lock(&cgroup_mutex);

	/* See what subsystems are wanted */
	ret = parse_cgroupfs_options(data, &opts);
	if (ret)
		goto out_unlock;

	/* Don't allow flags to change at remount */
	if (opts.flags != root->flags) {
		ret = -EINVAL;
		goto out_unlock;
	}

	ret = rebind_subsystems(root, opts.subsys_bits);

	/* (re)populate subsystem files */
	if (!ret)
866
		cgroup_populate_dir(cgrp);
867

868 869
	if (opts.release_agent)
		strcpy(root->release_agent_path, opts.release_agent);
870
 out_unlock:
871 872
	if (opts.release_agent)
		kfree(opts.release_agent);
873
	mutex_unlock(&cgroup_mutex);
874
	mutex_unlock(&cgrp->dentry->d_inode->i_mutex);
875 876 877 878 879 880 881 882 883 884 885 886
	return ret;
}

static struct super_operations cgroup_ops = {
	.statfs = simple_statfs,
	.drop_inode = generic_delete_inode,
	.show_options = cgroup_show_options,
	.remount_fs = cgroup_remount,
};

static void init_cgroup_root(struct cgroupfs_root *root)
{
887
	struct cgroup *cgrp = &root->top_cgroup;
888 889 890
	INIT_LIST_HEAD(&root->subsys_list);
	INIT_LIST_HEAD(&root->root_list);
	root->number_of_cgroups = 1;
891 892 893 894 895 896
	cgrp->root = root;
	cgrp->top_cgroup = cgrp;
	INIT_LIST_HEAD(&cgrp->sibling);
	INIT_LIST_HEAD(&cgrp->children);
	INIT_LIST_HEAD(&cgrp->css_sets);
	INIT_LIST_HEAD(&cgrp->release_list);
897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964
}

static int cgroup_test_super(struct super_block *sb, void *data)
{
	struct cgroupfs_root *new = data;
	struct cgroupfs_root *root = sb->s_fs_info;

	/* First check subsystems */
	if (new->subsys_bits != root->subsys_bits)
	    return 0;

	/* Next check flags */
	if (new->flags != root->flags)
		return 0;

	return 1;
}

static int cgroup_set_super(struct super_block *sb, void *data)
{
	int ret;
	struct cgroupfs_root *root = data;

	ret = set_anon_super(sb, NULL);
	if (ret)
		return ret;

	sb->s_fs_info = root;
	root->sb = sb;

	sb->s_blocksize = PAGE_CACHE_SIZE;
	sb->s_blocksize_bits = PAGE_CACHE_SHIFT;
	sb->s_magic = CGROUP_SUPER_MAGIC;
	sb->s_op = &cgroup_ops;

	return 0;
}

static int cgroup_get_rootdir(struct super_block *sb)
{
	struct inode *inode =
		cgroup_new_inode(S_IFDIR | S_IRUGO | S_IXUGO | S_IWUSR, sb);
	struct dentry *dentry;

	if (!inode)
		return -ENOMEM;

	inode->i_fop = &simple_dir_operations;
	inode->i_op = &cgroup_dir_inode_operations;
	/* directories start off with i_nlink == 2 (for "." entry) */
	inc_nlink(inode);
	dentry = d_alloc_root(inode);
	if (!dentry) {
		iput(inode);
		return -ENOMEM;
	}
	sb->s_root = dentry;
	return 0;
}

static int cgroup_get_sb(struct file_system_type *fs_type,
			 int flags, const char *unused_dev_name,
			 void *data, struct vfsmount *mnt)
{
	struct cgroup_sb_opts opts;
	int ret = 0;
	struct super_block *sb;
	struct cgroupfs_root *root;
965
	struct list_head tmp_cg_links;
966
	INIT_LIST_HEAD(&tmp_cg_links);
967 968 969

	/* First find the desired set of subsystems */
	ret = parse_cgroupfs_options(data, &opts);
970 971 972
	if (ret) {
		if (opts.release_agent)
			kfree(opts.release_agent);
973
		return ret;
974
	}
975 976

	root = kzalloc(sizeof(*root), GFP_KERNEL);
977 978 979
	if (!root) {
		if (opts.release_agent)
			kfree(opts.release_agent);
980
		return -ENOMEM;
981
	}
982 983 984 985

	init_cgroup_root(root);
	root->subsys_bits = opts.subsys_bits;
	root->flags = opts.flags;
986 987 988 989
	if (opts.release_agent) {
		strcpy(root->release_agent_path, opts.release_agent);
		kfree(opts.release_agent);
	}
990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004

	sb = sget(fs_type, cgroup_test_super, cgroup_set_super, root);

	if (IS_ERR(sb)) {
		kfree(root);
		return PTR_ERR(sb);
	}

	if (sb->s_fs_info != root) {
		/* Reusing an existing superblock */
		BUG_ON(sb->s_root == NULL);
		kfree(root);
		root = NULL;
	} else {
		/* New superblock */
1005
		struct cgroup *cgrp = &root->top_cgroup;
1006
		struct inode *inode;
1007
		int i;
1008 1009 1010 1011 1012 1013

		BUG_ON(sb->s_root != NULL);

		ret = cgroup_get_rootdir(sb);
		if (ret)
			goto drop_new_super;
1014
		inode = sb->s_root->d_inode;
1015

1016
		mutex_lock(&inode->i_mutex);
1017 1018
		mutex_lock(&cgroup_mutex);

1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032
		/*
		 * We're accessing css_set_count without locking
		 * css_set_lock here, but that's OK - it can only be
		 * increased by someone holding cgroup_lock, and
		 * that's us. The worst that can happen is that we
		 * have some link structures left over
		 */
		ret = allocate_cg_links(css_set_count, &tmp_cg_links);
		if (ret) {
			mutex_unlock(&cgroup_mutex);
			mutex_unlock(&inode->i_mutex);
			goto drop_new_super;
		}

1033 1034 1035
		ret = rebind_subsystems(root, root->subsys_bits);
		if (ret == -EBUSY) {
			mutex_unlock(&cgroup_mutex);
1036
			mutex_unlock(&inode->i_mutex);
1037 1038 1039 1040 1041 1042 1043
			goto drop_new_super;
		}

		/* EBUSY should be the only error here */
		BUG_ON(ret);

		list_add(&root->root_list, &roots);
1044
		root_count++;
1045 1046 1047 1048

		sb->s_root->d_fsdata = &root->top_cgroup;
		root->top_cgroup.dentry = sb->s_root;

1049 1050 1051
		/* Link the top cgroup in this hierarchy into all
		 * the css_set objects */
		write_lock(&css_set_lock);
1052 1053 1054
		for (i = 0; i < CSS_SET_TABLE_SIZE; i++) {
			struct hlist_head *hhead = &css_set_table[i];
			struct hlist_node *node;
1055
			struct css_set *cg;
1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070

			hlist_for_each_entry(cg, node, hhead, hlist) {
				struct cg_cgroup_link *link;

				BUG_ON(list_empty(&tmp_cg_links));
				link = list_entry(tmp_cg_links.next,
						  struct cg_cgroup_link,
						  cgrp_link_list);
				list_del(&link->cgrp_link_list);
				link->cg = cg;
				list_add(&link->cgrp_link_list,
					 &root->top_cgroup.css_sets);
				list_add(&link->cg_link_list, &cg->cg_links);
			}
		}
1071 1072 1073 1074
		write_unlock(&css_set_lock);

		free_cg_links(&tmp_cg_links);

1075 1076
		BUG_ON(!list_empty(&cgrp->sibling));
		BUG_ON(!list_empty(&cgrp->children));
1077 1078
		BUG_ON(root->number_of_cgroups != 1);

1079
		cgroup_populate_dir(cgrp);
1080
		mutex_unlock(&inode->i_mutex);
1081 1082 1083 1084 1085 1086 1087 1088
		mutex_unlock(&cgroup_mutex);
	}

	return simple_set_mnt(mnt, sb);

 drop_new_super:
	up_write(&sb->s_umount);
	deactivate_super(sb);
1089
	free_cg_links(&tmp_cg_links);
1090 1091 1092 1093 1094
	return ret;
}

static void cgroup_kill_sb(struct super_block *sb) {
	struct cgroupfs_root *root = sb->s_fs_info;
1095
	struct cgroup *cgrp = &root->top_cgroup;
1096
	int ret;
K
KOSAKI Motohiro 已提交
1097 1098
	struct cg_cgroup_link *link;
	struct cg_cgroup_link *saved_link;
1099 1100 1101 1102

	BUG_ON(!root);

	BUG_ON(root->number_of_cgroups != 1);
1103 1104
	BUG_ON(!list_empty(&cgrp->children));
	BUG_ON(!list_empty(&cgrp->sibling));
1105 1106 1107 1108 1109 1110 1111 1112

	mutex_lock(&cgroup_mutex);

	/* Rebind all subsystems back to the default hierarchy */
	ret = rebind_subsystems(root, 0);
	/* Shouldn't be able to fail ... */
	BUG_ON(ret);

1113 1114 1115 1116 1117
	/*
	 * Release all the links from css_sets to this hierarchy's
	 * root cgroup
	 */
	write_lock(&css_set_lock);
K
KOSAKI Motohiro 已提交
1118 1119 1120

	list_for_each_entry_safe(link, saved_link, &cgrp->css_sets,
				 cgrp_link_list) {
1121
		list_del(&link->cg_link_list);
1122
		list_del(&link->cgrp_link_list);
1123 1124 1125 1126 1127
		kfree(link);
	}
	write_unlock(&css_set_lock);

	if (!list_empty(&root->root_list)) {
1128
		list_del(&root->root_list);
1129 1130
		root_count--;
	}
1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142
	mutex_unlock(&cgroup_mutex);

	kfree(root);
	kill_litter_super(sb);
}

static struct file_system_type cgroup_fs_type = {
	.name = "cgroup",
	.get_sb = cgroup_get_sb,
	.kill_sb = cgroup_kill_sb,
};

1143
static inline struct cgroup *__d_cgrp(struct dentry *dentry)
1144 1145 1146 1147 1148 1149 1150 1151 1152
{
	return dentry->d_fsdata;
}

static inline struct cftype *__d_cft(struct dentry *dentry)
{
	return dentry->d_fsdata;
}

L
Li Zefan 已提交
1153 1154 1155 1156 1157 1158 1159
/**
 * cgroup_path - generate the path of a cgroup
 * @cgrp: the cgroup in question
 * @buf: the buffer to write the path into
 * @buflen: the length of the buffer
 *
 * Called with cgroup_mutex held. Writes path of cgroup into buf.
1160 1161
 * Returns 0 on success, -errno on error.
 */
1162
int cgroup_path(const struct cgroup *cgrp, char *buf, int buflen)
1163 1164 1165
{
	char *start;

1166
	if (cgrp == dummytop) {
1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178
		/*
		 * Inactive subsystems have no dentry for their root
		 * cgroup
		 */
		strcpy(buf, "/");
		return 0;
	}

	start = buf + buflen;

	*--start = '\0';
	for (;;) {
1179
		int len = cgrp->dentry->d_name.len;
1180 1181
		if ((start -= len) < buf)
			return -ENAMETOOLONG;
1182 1183 1184
		memcpy(start, cgrp->dentry->d_name.name, len);
		cgrp = cgrp->parent;
		if (!cgrp)
1185
			break;
1186
		if (!cgrp->parent)
1187 1188 1189 1190 1191 1192 1193 1194 1195
			continue;
		if (--start < buf)
			return -ENAMETOOLONG;
		*start = '/';
	}
	memmove(buf, start, buf + buflen - start);
	return 0;
}

1196 1197 1198 1199 1200
/*
 * Return the first subsystem attached to a cgroup's hierarchy, and
 * its subsystem id.
 */

1201
static void get_first_subsys(const struct cgroup *cgrp,
1202 1203
			struct cgroup_subsys_state **css, int *subsys_id)
{
1204
	const struct cgroupfs_root *root = cgrp->root;
1205 1206 1207 1208 1209
	const struct cgroup_subsys *test_ss;
	BUG_ON(list_empty(&root->subsys_list));
	test_ss = list_entry(root->subsys_list.next,
			     struct cgroup_subsys, sibling);
	if (css) {
1210
		*css = cgrp->subsys[test_ss->subsys_id];
1211 1212 1213 1214 1215 1216
		BUG_ON(!*css);
	}
	if (subsys_id)
		*subsys_id = test_ss->subsys_id;
}

L
Li Zefan 已提交
1217 1218 1219 1220
/**
 * cgroup_attach_task - attach task 'tsk' to cgroup 'cgrp'
 * @cgrp: the cgroup the task is attaching to
 * @tsk: the task to be attached
1221
 *
L
Li Zefan 已提交
1222 1223
 * Call holding cgroup_mutex. May take task_lock of
 * the task 'tsk' during call.
1224
 */
1225
int cgroup_attach_task(struct cgroup *cgrp, struct task_struct *tsk)
1226 1227 1228
{
	int retval = 0;
	struct cgroup_subsys *ss;
1229
	struct cgroup *oldcgrp;
1230 1231
	struct css_set *cg = tsk->cgroups;
	struct css_set *newcg;
1232
	struct cgroupfs_root *root = cgrp->root;
1233 1234
	int subsys_id;

1235
	get_first_subsys(cgrp, NULL, &subsys_id);
1236 1237

	/* Nothing to do if the task is already in that cgroup */
1238 1239
	oldcgrp = task_cgroup(tsk, subsys_id);
	if (cgrp == oldcgrp)
1240 1241 1242 1243
		return 0;

	for_each_subsys(root, ss) {
		if (ss->can_attach) {
1244
			retval = ss->can_attach(ss, cgrp, tsk);
P
Paul Jackson 已提交
1245
			if (retval)
1246 1247 1248 1249
				return retval;
		}
	}

1250 1251 1252 1253
	/*
	 * Locate or allocate a new css_set for this task,
	 * based on its final set of cgroups
	 */
1254
	newcg = find_css_set(cg, cgrp);
P
Paul Jackson 已提交
1255
	if (!newcg)
1256 1257
		return -ENOMEM;

1258 1259 1260
	task_lock(tsk);
	if (tsk->flags & PF_EXITING) {
		task_unlock(tsk);
1261
		put_css_set(newcg);
1262 1263
		return -ESRCH;
	}
1264
	rcu_assign_pointer(tsk->cgroups, newcg);
1265 1266
	task_unlock(tsk);

1267 1268 1269 1270 1271 1272 1273 1274
	/* Update the css_set linked lists if we're using them */
	write_lock(&css_set_lock);
	if (!list_empty(&tsk->cg_list)) {
		list_del(&tsk->cg_list);
		list_add(&tsk->cg_list, &newcg->tasks);
	}
	write_unlock(&css_set_lock);

1275
	for_each_subsys(root, ss) {
P
Paul Jackson 已提交
1276
		if (ss->attach)
1277
			ss->attach(ss, cgrp, oldcgrp, tsk);
1278
	}
1279
	set_bit(CGRP_RELEASABLE, &oldcgrp->flags);
1280
	synchronize_rcu();
1281
	put_css_set(cg);
1282 1283 1284 1285
	return 0;
}

/*
1286
 * Attach task with pid 'pid' to cgroup 'cgrp'. Call with
1287 1288
 * cgroup_mutex, may take task_lock of task
 */
1289
static int attach_task_by_pid(struct cgroup *cgrp, char *pidbuf)
1290 1291 1292 1293 1294 1295 1296 1297 1298 1299
{
	pid_t pid;
	struct task_struct *tsk;
	int ret;

	if (sscanf(pidbuf, "%d", &pid) != 1)
		return -EIO;

	if (pid) {
		rcu_read_lock();
1300
		tsk = find_task_by_vpid(pid);
1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317
		if (!tsk || tsk->flags & PF_EXITING) {
			rcu_read_unlock();
			return -ESRCH;
		}
		get_task_struct(tsk);
		rcu_read_unlock();

		if ((current->euid) && (current->euid != tsk->uid)
		    && (current->euid != tsk->suid)) {
			put_task_struct(tsk);
			return -EACCES;
		}
	} else {
		tsk = current;
		get_task_struct(tsk);
	}

1318
	ret = cgroup_attach_task(cgrp, tsk);
1319 1320 1321 1322
	put_task_struct(tsk);
	return ret;
}

1323 1324 1325 1326 1327
/* The various types of files and directories in a cgroup file system */
enum cgroup_filetype {
	FILE_ROOT,
	FILE_DIR,
	FILE_TASKLIST,
1328 1329
	FILE_NOTIFY_ON_RELEASE,
	FILE_RELEASE_AGENT,
1330 1331
};

1332
static ssize_t cgroup_write_X64(struct cgroup *cgrp, struct cftype *cft,
1333 1334 1335
				struct file *file,
				const char __user *userbuf,
				size_t nbytes, loff_t *unused_ppos)
1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348
{
	char buffer[64];
	int retval = 0;
	char *end;

	if (!nbytes)
		return -EINVAL;
	if (nbytes >= sizeof(buffer))
		return -E2BIG;
	if (copy_from_user(buffer, userbuf, nbytes))
		return -EFAULT;

	buffer[nbytes] = 0;     /* nul-terminate */
1349
	strstrip(buffer);
1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360
	if (cft->write_u64) {
		u64 val = simple_strtoull(buffer, &end, 0);
		if (*end)
			return -EINVAL;
		retval = cft->write_u64(cgrp, cft, val);
	} else {
		s64 val = simple_strtoll(buffer, &end, 0);
		if (*end)
			return -EINVAL;
		retval = cft->write_s64(cgrp, cft, val);
	}
1361 1362 1363 1364 1365
	if (!retval)
		retval = nbytes;
	return retval;
}

1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398
static ssize_t cgroup_write_string(struct cgroup *cgrp, struct cftype *cft,
				   struct file *file,
				   const char __user *userbuf,
				   size_t nbytes, loff_t *unused_ppos)
{
	char local_buffer[64];
	int retval = 0;
	size_t max_bytes = cft->max_write_len;
	char *buffer = local_buffer;

	if (!max_bytes)
		max_bytes = sizeof(local_buffer) - 1;
	if (nbytes >= max_bytes)
		return -E2BIG;
	/* Allocate a dynamic buffer if we need one */
	if (nbytes >= sizeof(local_buffer)) {
		buffer = kmalloc(nbytes + 1, GFP_KERNEL);
		if (buffer == NULL)
			return -ENOMEM;
	}
	if (nbytes && copy_from_user(buffer, userbuf, nbytes))
		return -EFAULT;

	buffer[nbytes] = 0;     /* nul-terminate */
	strstrip(buffer);
	retval = cft->write_string(cgrp, cft, buffer);
	if (!retval)
		retval = nbytes;
	if (buffer != local_buffer)
		kfree(buffer);
	return retval;
}

1399
static ssize_t cgroup_common_file_write(struct cgroup *cgrp,
1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421
					   struct cftype *cft,
					   struct file *file,
					   const char __user *userbuf,
					   size_t nbytes, loff_t *unused_ppos)
{
	enum cgroup_filetype type = cft->private;
	char *buffer;
	int retval = 0;

	if (nbytes >= PATH_MAX)
		return -E2BIG;

	/* +1 for nul-terminator */
	buffer = kmalloc(nbytes + 1, GFP_KERNEL);
	if (buffer == NULL)
		return -ENOMEM;

	if (copy_from_user(buffer, userbuf, nbytes)) {
		retval = -EFAULT;
		goto out1;
	}
	buffer[nbytes] = 0;	/* nul-terminate */
P
Paul Jackson 已提交
1422
	strstrip(buffer);	/* strip -just- trailing whitespace */
1423 1424 1425

	mutex_lock(&cgroup_mutex);

1426 1427 1428 1429
	/*
	 * This was already checked for in cgroup_file_write(), but
	 * check again now we're holding cgroup_mutex.
	 */
1430
	if (cgroup_is_removed(cgrp)) {
1431 1432 1433 1434 1435 1436
		retval = -ENODEV;
		goto out2;
	}

	switch (type) {
	case FILE_TASKLIST:
1437
		retval = attach_task_by_pid(cgrp, buffer);
1438
		break;
1439
	case FILE_NOTIFY_ON_RELEASE:
1440
		clear_bit(CGRP_RELEASABLE, &cgrp->flags);
1441
		if (simple_strtoul(buffer, NULL, 10) != 0)
1442
			set_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
1443
		else
1444
			clear_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
1445 1446
		break;
	case FILE_RELEASE_AGENT:
P
Paul Jackson 已提交
1447 1448
		BUILD_BUG_ON(sizeof(cgrp->root->release_agent_path) < PATH_MAX);
		strcpy(cgrp->root->release_agent_path, buffer);
1449
		break;
1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463
	default:
		retval = -EINVAL;
		goto out2;
	}

	if (retval == 0)
		retval = nbytes;
out2:
	mutex_unlock(&cgroup_mutex);
out1:
	kfree(buffer);
	return retval;
}

1464 1465 1466 1467
static ssize_t cgroup_file_write(struct file *file, const char __user *buf,
						size_t nbytes, loff_t *ppos)
{
	struct cftype *cft = __d_cft(file->f_dentry);
1468
	struct cgroup *cgrp = __d_cgrp(file->f_dentry->d_parent);
1469

1470
	if (!cft || cgroup_is_removed(cgrp))
1471
		return -ENODEV;
1472
	if (cft->write)
1473
		return cft->write(cgrp, cft, file, buf, nbytes, ppos);
1474 1475
	if (cft->write_u64 || cft->write_s64)
		return cgroup_write_X64(cgrp, cft, file, buf, nbytes, ppos);
1476 1477
	if (cft->write_string)
		return cgroup_write_string(cgrp, cft, file, buf, nbytes, ppos);
1478 1479 1480 1481
	if (cft->trigger) {
		int ret = cft->trigger(cgrp, (unsigned int)cft->private);
		return ret ? ret : nbytes;
	}
1482
	return -EINVAL;
1483 1484
}

1485 1486 1487 1488
static ssize_t cgroup_read_u64(struct cgroup *cgrp, struct cftype *cft,
			       struct file *file,
			       char __user *buf, size_t nbytes,
			       loff_t *ppos)
1489 1490
{
	char tmp[64];
1491
	u64 val = cft->read_u64(cgrp, cft);
1492 1493 1494 1495 1496
	int len = sprintf(tmp, "%llu\n", (unsigned long long) val);

	return simple_read_from_buffer(buf, nbytes, ppos, tmp, len);
}

1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508
static ssize_t cgroup_read_s64(struct cgroup *cgrp, struct cftype *cft,
			       struct file *file,
			       char __user *buf, size_t nbytes,
			       loff_t *ppos)
{
	char tmp[64];
	s64 val = cft->read_s64(cgrp, cft);
	int len = sprintf(tmp, "%lld\n", (long long) val);

	return simple_read_from_buffer(buf, nbytes, ppos, tmp, len);
}

1509
static ssize_t cgroup_common_file_read(struct cgroup *cgrp,
1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530
					  struct cftype *cft,
					  struct file *file,
					  char __user *buf,
					  size_t nbytes, loff_t *ppos)
{
	enum cgroup_filetype type = cft->private;
	char *page;
	ssize_t retval = 0;
	char *s;

	if (!(page = (char *)__get_free_page(GFP_KERNEL)))
		return -ENOMEM;

	s = page;

	switch (type) {
	case FILE_RELEASE_AGENT:
	{
		struct cgroupfs_root *root;
		size_t n;
		mutex_lock(&cgroup_mutex);
1531
		root = cgrp->root;
1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551
		n = strnlen(root->release_agent_path,
			    sizeof(root->release_agent_path));
		n = min(n, (size_t) PAGE_SIZE);
		strncpy(s, root->release_agent_path, n);
		mutex_unlock(&cgroup_mutex);
		s += n;
		break;
	}
	default:
		retval = -EINVAL;
		goto out;
	}
	*s++ = '\n';

	retval = simple_read_from_buffer(buf, nbytes, ppos, page, s - page);
out:
	free_page((unsigned long)page);
	return retval;
}

1552 1553 1554 1555
static ssize_t cgroup_file_read(struct file *file, char __user *buf,
				   size_t nbytes, loff_t *ppos)
{
	struct cftype *cft = __d_cft(file->f_dentry);
1556
	struct cgroup *cgrp = __d_cgrp(file->f_dentry->d_parent);
1557

1558
	if (!cft || cgroup_is_removed(cgrp))
1559 1560 1561
		return -ENODEV;

	if (cft->read)
1562
		return cft->read(cgrp, cft, file, buf, nbytes, ppos);
1563 1564
	if (cft->read_u64)
		return cgroup_read_u64(cgrp, cft, file, buf, nbytes, ppos);
1565 1566
	if (cft->read_s64)
		return cgroup_read_s64(cgrp, cft, file, buf, nbytes, ppos);
1567 1568 1569
	return -EINVAL;
}

1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589
/*
 * seqfile ops/methods for returning structured data. Currently just
 * supports string->u64 maps, but can be extended in future.
 */

struct cgroup_seqfile_state {
	struct cftype *cft;
	struct cgroup *cgroup;
};

static int cgroup_map_add(struct cgroup_map_cb *cb, const char *key, u64 value)
{
	struct seq_file *sf = cb->state;
	return seq_printf(sf, "%s %llu\n", key, (unsigned long long)value);
}

static int cgroup_seqfile_show(struct seq_file *m, void *arg)
{
	struct cgroup_seqfile_state *state = m->private;
	struct cftype *cft = state->cft;
1590 1591 1592 1593 1594 1595 1596 1597
	if (cft->read_map) {
		struct cgroup_map_cb cb = {
			.fill = cgroup_map_add,
			.state = m,
		};
		return cft->read_map(state->cgroup, cft, &cb);
	}
	return cft->read_seq_string(state->cgroup, cft, m);
1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612
}

int cgroup_seqfile_release(struct inode *inode, struct file *file)
{
	struct seq_file *seq = file->private_data;
	kfree(seq->private);
	return single_release(inode, file);
}

static struct file_operations cgroup_seqfile_operations = {
	.read = seq_read,
	.llseek = seq_lseek,
	.release = cgroup_seqfile_release,
};

1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624
static int cgroup_file_open(struct inode *inode, struct file *file)
{
	int err;
	struct cftype *cft;

	err = generic_file_open(inode, file);
	if (err)
		return err;

	cft = __d_cft(file->f_dentry);
	if (!cft)
		return -ENODEV;
1625
	if (cft->read_map || cft->read_seq_string) {
1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636
		struct cgroup_seqfile_state *state =
			kzalloc(sizeof(*state), GFP_USER);
		if (!state)
			return -ENOMEM;
		state->cft = cft;
		state->cgroup = __d_cgrp(file->f_dentry->d_parent);
		file->f_op = &cgroup_seqfile_operations;
		err = single_open(file, cgroup_seqfile_show, state);
		if (err < 0)
			kfree(state);
	} else if (cft->open)
1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708
		err = cft->open(inode, file);
	else
		err = 0;

	return err;
}

static int cgroup_file_release(struct inode *inode, struct file *file)
{
	struct cftype *cft = __d_cft(file->f_dentry);
	if (cft->release)
		return cft->release(inode, file);
	return 0;
}

/*
 * cgroup_rename - Only allow simple rename of directories in place.
 */
static int cgroup_rename(struct inode *old_dir, struct dentry *old_dentry,
			    struct inode *new_dir, struct dentry *new_dentry)
{
	if (!S_ISDIR(old_dentry->d_inode->i_mode))
		return -ENOTDIR;
	if (new_dentry->d_inode)
		return -EEXIST;
	if (old_dir != new_dir)
		return -EIO;
	return simple_rename(old_dir, old_dentry, new_dir, new_dentry);
}

static struct file_operations cgroup_file_operations = {
	.read = cgroup_file_read,
	.write = cgroup_file_write,
	.llseek = generic_file_llseek,
	.open = cgroup_file_open,
	.release = cgroup_file_release,
};

static struct inode_operations cgroup_dir_inode_operations = {
	.lookup = simple_lookup,
	.mkdir = cgroup_mkdir,
	.rmdir = cgroup_rmdir,
	.rename = cgroup_rename,
};

static int cgroup_create_file(struct dentry *dentry, int mode,
				struct super_block *sb)
{
	static struct dentry_operations cgroup_dops = {
		.d_iput = cgroup_diput,
	};

	struct inode *inode;

	if (!dentry)
		return -ENOENT;
	if (dentry->d_inode)
		return -EEXIST;

	inode = cgroup_new_inode(mode, sb);
	if (!inode)
		return -ENOMEM;

	if (S_ISDIR(mode)) {
		inode->i_op = &cgroup_dir_inode_operations;
		inode->i_fop = &simple_dir_operations;

		/* start off with i_nlink == 2 (for "." entry) */
		inc_nlink(inode);

		/* start with the directory inode held, so that we can
		 * populate it without racing with another mkdir */
1709
		mutex_lock_nested(&inode->i_mutex, I_MUTEX_CHILD);
1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720
	} else if (S_ISREG(mode)) {
		inode->i_size = 0;
		inode->i_fop = &cgroup_file_operations;
	}
	dentry->d_op = &cgroup_dops;
	d_instantiate(dentry, inode);
	dget(dentry);	/* Extra count - pin the dentry in core */
	return 0;
}

/*
L
Li Zefan 已提交
1721 1722 1723 1724 1725
 * cgroup_create_dir - create a directory for an object.
 * @cgrp: the cgroup we create the directory for. It must have a valid
 *        ->parent field. And we are going to fill its ->dentry field.
 * @dentry: dentry of the new cgroup
 * @mode: mode to set on new directory.
1726
 */
1727
static int cgroup_create_dir(struct cgroup *cgrp, struct dentry *dentry,
1728 1729 1730 1731 1732
				int mode)
{
	struct dentry *parent;
	int error = 0;

1733 1734
	parent = cgrp->parent->dentry;
	error = cgroup_create_file(dentry, S_IFDIR | mode, cgrp->root->sb);
1735
	if (!error) {
1736
		dentry->d_fsdata = cgrp;
1737
		inc_nlink(parent->d_inode);
1738
		cgrp->dentry = dentry;
1739 1740 1741 1742 1743 1744 1745
		dget(dentry);
	}
	dput(dentry);

	return error;
}

1746
int cgroup_add_file(struct cgroup *cgrp,
1747 1748 1749
		       struct cgroup_subsys *subsys,
		       const struct cftype *cft)
{
1750
	struct dentry *dir = cgrp->dentry;
1751 1752 1753 1754
	struct dentry *dentry;
	int error;

	char name[MAX_CGROUP_TYPE_NAMELEN + MAX_CFTYPE_NAME + 2] = { 0 };
1755
	if (subsys && !test_bit(ROOT_NOPREFIX, &cgrp->root->flags)) {
1756 1757 1758 1759 1760 1761 1762 1763
		strcpy(name, subsys->name);
		strcat(name, ".");
	}
	strcat(name, cft->name);
	BUG_ON(!mutex_is_locked(&dir->d_inode->i_mutex));
	dentry = lookup_one_len(name, dir, strlen(name));
	if (!IS_ERR(dentry)) {
		error = cgroup_create_file(dentry, 0644 | S_IFREG,
1764
						cgrp->root->sb);
1765 1766 1767 1768 1769 1770 1771 1772
		if (!error)
			dentry->d_fsdata = (void *)cft;
		dput(dentry);
	} else
		error = PTR_ERR(dentry);
	return error;
}

1773
int cgroup_add_files(struct cgroup *cgrp,
1774 1775 1776 1777 1778 1779
			struct cgroup_subsys *subsys,
			const struct cftype cft[],
			int count)
{
	int i, err;
	for (i = 0; i < count; i++) {
1780
		err = cgroup_add_file(cgrp, subsys, &cft[i]);
1781 1782 1783 1784 1785 1786
		if (err)
			return err;
	}
	return 0;
}

L
Li Zefan 已提交
1787 1788 1789 1790 1791 1792
/**
 * cgroup_task_count - count the number of tasks in a cgroup.
 * @cgrp: the cgroup in question
 *
 * Return the number of tasks in the cgroup.
 */
1793
int cgroup_task_count(const struct cgroup *cgrp)
1794 1795
{
	int count = 0;
K
KOSAKI Motohiro 已提交
1796
	struct cg_cgroup_link *link;
1797 1798

	read_lock(&css_set_lock);
K
KOSAKI Motohiro 已提交
1799
	list_for_each_entry(link, &cgrp->css_sets, cgrp_link_list) {
1800 1801 1802
		count += atomic_read(&link->cg->ref.refcount);
	}
	read_unlock(&css_set_lock);
1803 1804 1805
	return count;
}

1806 1807 1808 1809
/*
 * Advance a list_head iterator.  The iterator should be positioned at
 * the start of a css_set
 */
1810
static void cgroup_advance_iter(struct cgroup *cgrp,
1811 1812 1813 1814 1815 1816 1817 1818 1819
					  struct cgroup_iter *it)
{
	struct list_head *l = it->cg_link;
	struct cg_cgroup_link *link;
	struct css_set *cg;

	/* Advance to the next non-empty css_set */
	do {
		l = l->next;
1820
		if (l == &cgrp->css_sets) {
1821 1822 1823
			it->cg_link = NULL;
			return;
		}
1824
		link = list_entry(l, struct cg_cgroup_link, cgrp_link_list);
1825 1826 1827 1828 1829 1830
		cg = link->cg;
	} while (list_empty(&cg->tasks));
	it->cg_link = l;
	it->task = cg->tasks.next;
}

1831 1832 1833 1834 1835 1836 1837 1838 1839
/*
 * To reduce the fork() overhead for systems that are not actually
 * using their cgroups capability, we don't maintain the lists running
 * through each css_set to its tasks until we see the list actually
 * used - in other words after the first call to cgroup_iter_start().
 *
 * The tasklist_lock is not held here, as do_each_thread() and
 * while_each_thread() are protected by RCU.
 */
1840
static void cgroup_enable_task_cg_lists(void)
1841 1842 1843 1844 1845 1846
{
	struct task_struct *p, *g;
	write_lock(&css_set_lock);
	use_task_css_set_links = 1;
	do_each_thread(g, p) {
		task_lock(p);
1847 1848 1849 1850 1851 1852
		/*
		 * We should check if the process is exiting, otherwise
		 * it will race with cgroup_exit() in that the list
		 * entry won't be deleted though the process has exited.
		 */
		if (!(p->flags & PF_EXITING) && list_empty(&p->cg_list))
1853 1854 1855 1856 1857 1858
			list_add(&p->cg_list, &p->cgroups->tasks);
		task_unlock(p);
	} while_each_thread(g, p);
	write_unlock(&css_set_lock);
}

1859
void cgroup_iter_start(struct cgroup *cgrp, struct cgroup_iter *it)
1860 1861 1862 1863 1864 1865
{
	/*
	 * The first time anyone tries to iterate across a cgroup,
	 * we need to enable the list linking each css_set to its
	 * tasks, and fix up all existing tasks.
	 */
1866 1867 1868
	if (!use_task_css_set_links)
		cgroup_enable_task_cg_lists();

1869
	read_lock(&css_set_lock);
1870 1871
	it->cg_link = &cgrp->css_sets;
	cgroup_advance_iter(cgrp, it);
1872 1873
}

1874
struct task_struct *cgroup_iter_next(struct cgroup *cgrp,
1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888
					struct cgroup_iter *it)
{
	struct task_struct *res;
	struct list_head *l = it->task;

	/* If the iterator cg is NULL, we have no tasks */
	if (!it->cg_link)
		return NULL;
	res = list_entry(l, struct task_struct, cg_list);
	/* Advance iterator to find next entry */
	l = l->next;
	if (l == &res->cgroups->tasks) {
		/* We reached the end of this task list - move on to
		 * the next cg_cgroup_link */
1889
		cgroup_advance_iter(cgrp, it);
1890 1891 1892 1893 1894 1895
	} else {
		it->task = l;
	}
	return res;
}

1896
void cgroup_iter_end(struct cgroup *cgrp, struct cgroup_iter *it)
1897 1898 1899 1900
{
	read_unlock(&css_set_lock);
}

1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037
static inline int started_after_time(struct task_struct *t1,
				     struct timespec *time,
				     struct task_struct *t2)
{
	int start_diff = timespec_compare(&t1->start_time, time);
	if (start_diff > 0) {
		return 1;
	} else if (start_diff < 0) {
		return 0;
	} else {
		/*
		 * Arbitrarily, if two processes started at the same
		 * time, we'll say that the lower pointer value
		 * started first. Note that t2 may have exited by now
		 * so this may not be a valid pointer any longer, but
		 * that's fine - it still serves to distinguish
		 * between two tasks started (effectively) simultaneously.
		 */
		return t1 > t2;
	}
}

/*
 * This function is a callback from heap_insert() and is used to order
 * the heap.
 * In this case we order the heap in descending task start time.
 */
static inline int started_after(void *p1, void *p2)
{
	struct task_struct *t1 = p1;
	struct task_struct *t2 = p2;
	return started_after_time(t1, &t2->start_time, t2);
}

/**
 * cgroup_scan_tasks - iterate though all the tasks in a cgroup
 * @scan: struct cgroup_scanner containing arguments for the scan
 *
 * Arguments include pointers to callback functions test_task() and
 * process_task().
 * Iterate through all the tasks in a cgroup, calling test_task() for each,
 * and if it returns true, call process_task() for it also.
 * The test_task pointer may be NULL, meaning always true (select all tasks).
 * Effectively duplicates cgroup_iter_{start,next,end}()
 * but does not lock css_set_lock for the call to process_task().
 * The struct cgroup_scanner may be embedded in any structure of the caller's
 * creation.
 * It is guaranteed that process_task() will act on every task that
 * is a member of the cgroup for the duration of this call. This
 * function may or may not call process_task() for tasks that exit
 * or move to a different cgroup during the call, or are forked or
 * move into the cgroup during the call.
 *
 * Note that test_task() may be called with locks held, and may in some
 * situations be called multiple times for the same task, so it should
 * be cheap.
 * If the heap pointer in the struct cgroup_scanner is non-NULL, a heap has been
 * pre-allocated and will be used for heap operations (and its "gt" member will
 * be overwritten), else a temporary heap will be used (allocation of which
 * may cause this function to fail).
 */
int cgroup_scan_tasks(struct cgroup_scanner *scan)
{
	int retval, i;
	struct cgroup_iter it;
	struct task_struct *p, *dropped;
	/* Never dereference latest_task, since it's not refcounted */
	struct task_struct *latest_task = NULL;
	struct ptr_heap tmp_heap;
	struct ptr_heap *heap;
	struct timespec latest_time = { 0, 0 };

	if (scan->heap) {
		/* The caller supplied our heap and pre-allocated its memory */
		heap = scan->heap;
		heap->gt = &started_after;
	} else {
		/* We need to allocate our own heap memory */
		heap = &tmp_heap;
		retval = heap_init(heap, PAGE_SIZE, GFP_KERNEL, &started_after);
		if (retval)
			/* cannot allocate the heap */
			return retval;
	}

 again:
	/*
	 * Scan tasks in the cgroup, using the scanner's "test_task" callback
	 * to determine which are of interest, and using the scanner's
	 * "process_task" callback to process any of them that need an update.
	 * Since we don't want to hold any locks during the task updates,
	 * gather tasks to be processed in a heap structure.
	 * The heap is sorted by descending task start time.
	 * If the statically-sized heap fills up, we overflow tasks that
	 * started later, and in future iterations only consider tasks that
	 * started after the latest task in the previous pass. This
	 * guarantees forward progress and that we don't miss any tasks.
	 */
	heap->size = 0;
	cgroup_iter_start(scan->cg, &it);
	while ((p = cgroup_iter_next(scan->cg, &it))) {
		/*
		 * Only affect tasks that qualify per the caller's callback,
		 * if he provided one
		 */
		if (scan->test_task && !scan->test_task(p, scan))
			continue;
		/*
		 * Only process tasks that started after the last task
		 * we processed
		 */
		if (!started_after_time(p, &latest_time, latest_task))
			continue;
		dropped = heap_insert(heap, p);
		if (dropped == NULL) {
			/*
			 * The new task was inserted; the heap wasn't
			 * previously full
			 */
			get_task_struct(p);
		} else if (dropped != p) {
			/*
			 * The new task was inserted, and pushed out a
			 * different task
			 */
			get_task_struct(p);
			put_task_struct(dropped);
		}
		/*
		 * Else the new task was newer than anything already in
		 * the heap and wasn't inserted
		 */
	}
	cgroup_iter_end(scan->cg, &it);

	if (heap->size) {
		for (i = 0; i < heap->size; i++) {
2038
			struct task_struct *q = heap->ptrs[i];
2039
			if (i == 0) {
2040 2041
				latest_time = q->start_time;
				latest_task = q;
2042 2043
			}
			/* Process the task per the caller's callback */
2044 2045
			scan->process_task(q, scan);
			put_task_struct(q);
2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060
		}
		/*
		 * If we had to process any tasks at all, scan again
		 * in case some of them were in the middle of forking
		 * children that didn't get processed.
		 * Not the most efficient way to do it, but it avoids
		 * having to take callback_mutex in the fork path
		 */
		goto again;
	}
	if (heap == &tmp_heap)
		heap_free(&tmp_heap);
	return 0;
}

2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081
/*
 * Stuff for reading the 'tasks' file.
 *
 * Reading this file can return large amounts of data if a cgroup has
 * *lots* of attached tasks. So it may need several calls to read(),
 * but we cannot guarantee that the information we produce is correct
 * unless we produce it entirely atomically.
 *
 * Upon tasks file open(), a struct ctr_struct is allocated, that
 * will have a pointer to an array (also allocated here).  The struct
 * ctr_struct * is stored in file->private_data.  Its resources will
 * be freed by release() when the file is closed.  The array is used
 * to sprintf the PIDs and then used by read().
 */
struct ctr_struct {
	char *buf;
	int bufsz;
};

/*
 * Load into 'pidarray' up to 'npids' of the tasks using cgroup
2082
 * 'cgrp'.  Return actual number of pids loaded.  No need to
2083 2084 2085 2086
 * task_lock(p) when reading out p->cgroup, since we're in an RCU
 * read section, so the css_set can't go away, and is
 * immutable after creation.
 */
2087
static int pid_array_load(pid_t *pidarray, int npids, struct cgroup *cgrp)
2088 2089
{
	int n = 0;
2090 2091
	struct cgroup_iter it;
	struct task_struct *tsk;
2092 2093
	cgroup_iter_start(cgrp, &it);
	while ((tsk = cgroup_iter_next(cgrp, &it))) {
2094 2095
		if (unlikely(n == npids))
			break;
2096
		pidarray[n++] = task_pid_vnr(tsk);
2097
	}
2098
	cgroup_iter_end(cgrp, &it);
2099 2100 2101
	return n;
}

B
Balbir Singh 已提交
2102
/**
L
Li Zefan 已提交
2103
 * cgroupstats_build - build and fill cgroupstats
B
Balbir Singh 已提交
2104 2105 2106
 * @stats: cgroupstats to fill information into
 * @dentry: A dentry entry belonging to the cgroup for which stats have
 * been requested.
L
Li Zefan 已提交
2107 2108 2109
 *
 * Build and fill cgroupstats so that taskstats can export it to user
 * space.
B
Balbir Singh 已提交
2110 2111 2112 2113
 */
int cgroupstats_build(struct cgroupstats *stats, struct dentry *dentry)
{
	int ret = -EINVAL;
2114
	struct cgroup *cgrp;
B
Balbir Singh 已提交
2115 2116 2117 2118 2119 2120 2121 2122 2123
	struct cgroup_iter it;
	struct task_struct *tsk;
	/*
	 * Validate dentry by checking the superblock operations
	 */
	if (dentry->d_sb->s_op != &cgroup_ops)
		 goto err;

	ret = 0;
2124
	cgrp = dentry->d_fsdata;
B
Balbir Singh 已提交
2125 2126
	rcu_read_lock();

2127 2128
	cgroup_iter_start(cgrp, &it);
	while ((tsk = cgroup_iter_next(cgrp, &it))) {
B
Balbir Singh 已提交
2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147
		switch (tsk->state) {
		case TASK_RUNNING:
			stats->nr_running++;
			break;
		case TASK_INTERRUPTIBLE:
			stats->nr_sleeping++;
			break;
		case TASK_UNINTERRUPTIBLE:
			stats->nr_uninterruptible++;
			break;
		case TASK_STOPPED:
			stats->nr_stopped++;
			break;
		default:
			if (delayacct_is_task_waiting_on_io(tsk))
				stats->nr_io_wait++;
			break;
		}
	}
2148
	cgroup_iter_end(cgrp, &it);
B
Balbir Singh 已提交
2149 2150 2151 2152 2153 2154

	rcu_read_unlock();
err:
	return ret;
}

2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182
static int cmppid(const void *a, const void *b)
{
	return *(pid_t *)a - *(pid_t *)b;
}

/*
 * Convert array 'a' of 'npids' pid_t's to a string of newline separated
 * decimal pids in 'buf'.  Don't write more than 'sz' chars, but return
 * count 'cnt' of how many chars would be written if buf were large enough.
 */
static int pid_array_to_buf(char *buf, int sz, pid_t *a, int npids)
{
	int cnt = 0;
	int i;

	for (i = 0; i < npids; i++)
		cnt += snprintf(buf + cnt, max(sz - cnt, 0), "%d\n", a[i]);
	return cnt;
}

/*
 * Handle an open on 'tasks' file.  Prepare a buffer listing the
 * process id's of tasks currently attached to the cgroup being opened.
 *
 * Does not require any specific cgroup mutexes, and does not take any.
 */
static int cgroup_tasks_open(struct inode *unused, struct file *file)
{
2183
	struct cgroup *cgrp = __d_cgrp(file->f_dentry->d_parent);
2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201
	struct ctr_struct *ctr;
	pid_t *pidarray;
	int npids;
	char c;

	if (!(file->f_mode & FMODE_READ))
		return 0;

	ctr = kmalloc(sizeof(*ctr), GFP_KERNEL);
	if (!ctr)
		goto err0;

	/*
	 * If cgroup gets more users after we read count, we won't have
	 * enough space - tough.  This race is indistinguishable to the
	 * caller from the case that the additional cgroup users didn't
	 * show up until sometime later on.
	 */
2202
	npids = cgroup_task_count(cgrp);
2203 2204 2205 2206 2207
	if (npids) {
		pidarray = kmalloc(npids * sizeof(pid_t), GFP_KERNEL);
		if (!pidarray)
			goto err1;

2208
		npids = pid_array_load(pidarray, npids, cgrp);
2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219
		sort(pidarray, npids, sizeof(pid_t), cmppid, NULL);

		/* Call pid_array_to_buf() twice, first just to get bufsz */
		ctr->bufsz = pid_array_to_buf(&c, sizeof(c), pidarray, npids) + 1;
		ctr->buf = kmalloc(ctr->bufsz, GFP_KERNEL);
		if (!ctr->buf)
			goto err2;
		ctr->bufsz = pid_array_to_buf(ctr->buf, ctr->bufsz, pidarray, npids);

		kfree(pidarray);
	} else {
A
Al Viro 已提交
2220
		ctr->buf = NULL;
2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233
		ctr->bufsz = 0;
	}
	file->private_data = ctr;
	return 0;

err2:
	kfree(pidarray);
err1:
	kfree(ctr);
err0:
	return -ENOMEM;
}

2234
static ssize_t cgroup_tasks_read(struct cgroup *cgrp,
2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256
				    struct cftype *cft,
				    struct file *file, char __user *buf,
				    size_t nbytes, loff_t *ppos)
{
	struct ctr_struct *ctr = file->private_data;

	return simple_read_from_buffer(buf, nbytes, ppos, ctr->buf, ctr->bufsz);
}

static int cgroup_tasks_release(struct inode *unused_inode,
					struct file *file)
{
	struct ctr_struct *ctr;

	if (file->f_mode & FMODE_READ) {
		ctr = file->private_data;
		kfree(ctr->buf);
		kfree(ctr);
	}
	return 0;
}

2257
static u64 cgroup_read_notify_on_release(struct cgroup *cgrp,
2258 2259
					    struct cftype *cft)
{
2260
	return notify_on_release(cgrp);
2261 2262
}

2263 2264 2265
/*
 * for the common functions, 'private' gives the type of file
 */
2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277
static struct cftype files[] = {
	{
		.name = "tasks",
		.open = cgroup_tasks_open,
		.read = cgroup_tasks_read,
		.write = cgroup_common_file_write,
		.release = cgroup_tasks_release,
		.private = FILE_TASKLIST,
	},

	{
		.name = "notify_on_release",
2278
		.read_u64 = cgroup_read_notify_on_release,
2279 2280 2281 2282 2283 2284 2285 2286
		.write = cgroup_common_file_write,
		.private = FILE_NOTIFY_ON_RELEASE,
	},
};

static struct cftype cft_release_agent = {
	.name = "release_agent",
	.read = cgroup_common_file_read,
2287
	.write = cgroup_common_file_write,
2288
	.private = FILE_RELEASE_AGENT,
2289 2290
};

2291
static int cgroup_populate_dir(struct cgroup *cgrp)
2292 2293 2294 2295 2296
{
	int err;
	struct cgroup_subsys *ss;

	/* First clear out any existing files */
2297
	cgroup_clear_directory(cgrp->dentry);
2298

2299
	err = cgroup_add_files(cgrp, NULL, files, ARRAY_SIZE(files));
2300 2301 2302
	if (err < 0)
		return err;

2303 2304
	if (cgrp == cgrp->top_cgroup) {
		if ((err = cgroup_add_file(cgrp, NULL, &cft_release_agent)) < 0)
2305 2306 2307
			return err;
	}

2308 2309
	for_each_subsys(cgrp->root, ss) {
		if (ss->populate && (err = ss->populate(ss, cgrp)) < 0)
2310 2311 2312 2313 2314 2315 2316 2317
			return err;
	}

	return 0;
}

static void init_cgroup_css(struct cgroup_subsys_state *css,
			       struct cgroup_subsys *ss,
2318
			       struct cgroup *cgrp)
2319
{
2320
	css->cgroup = cgrp;
2321 2322
	atomic_set(&css->refcnt, 0);
	css->flags = 0;
2323
	if (cgrp == dummytop)
2324
		set_bit(CSS_ROOT, &css->flags);
2325 2326
	BUG_ON(cgrp->subsys[ss->subsys_id]);
	cgrp->subsys[ss->subsys_id] = css;
2327 2328 2329
}

/*
L
Li Zefan 已提交
2330 2331 2332 2333
 * cgroup_create - create a cgroup
 * @parent: cgroup that will be parent of the new cgroup
 * @dentry: dentry of the new cgroup
 * @mode: mode to set on new inode
2334
 *
L
Li Zefan 已提交
2335
 * Must be called with the mutex on the parent inode held
2336 2337 2338 2339
 */
static long cgroup_create(struct cgroup *parent, struct dentry *dentry,
			     int mode)
{
2340
	struct cgroup *cgrp;
2341 2342 2343 2344 2345
	struct cgroupfs_root *root = parent->root;
	int err = 0;
	struct cgroup_subsys *ss;
	struct super_block *sb = root->sb;

2346 2347
	cgrp = kzalloc(sizeof(*cgrp), GFP_KERNEL);
	if (!cgrp)
2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358
		return -ENOMEM;

	/* Grab a reference on the superblock so the hierarchy doesn't
	 * get deleted on unmount if there are child cgroups.  This
	 * can be done outside cgroup_mutex, since the sb can't
	 * disappear while someone has an open control file on the
	 * fs */
	atomic_inc(&sb->s_active);

	mutex_lock(&cgroup_mutex);

2359 2360 2361 2362
	INIT_LIST_HEAD(&cgrp->sibling);
	INIT_LIST_HEAD(&cgrp->children);
	INIT_LIST_HEAD(&cgrp->css_sets);
	INIT_LIST_HEAD(&cgrp->release_list);
2363

2364 2365 2366
	cgrp->parent = parent;
	cgrp->root = parent->root;
	cgrp->top_cgroup = parent->top_cgroup;
2367

2368 2369 2370
	if (notify_on_release(parent))
		set_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);

2371
	for_each_subsys(root, ss) {
2372
		struct cgroup_subsys_state *css = ss->create(ss, cgrp);
2373 2374 2375 2376
		if (IS_ERR(css)) {
			err = PTR_ERR(css);
			goto err_destroy;
		}
2377
		init_cgroup_css(css, ss, cgrp);
2378 2379
	}

2380
	list_add(&cgrp->sibling, &cgrp->parent->children);
2381 2382
	root->number_of_cgroups++;

2383
	err = cgroup_create_dir(cgrp, dentry, mode);
2384 2385 2386 2387
	if (err < 0)
		goto err_remove;

	/* The cgroup directory was pre-locked for us */
2388
	BUG_ON(!mutex_is_locked(&cgrp->dentry->d_inode->i_mutex));
2389

2390
	err = cgroup_populate_dir(cgrp);
2391 2392 2393
	/* If err < 0, we have a half-filled directory - oh well ;) */

	mutex_unlock(&cgroup_mutex);
2394
	mutex_unlock(&cgrp->dentry->d_inode->i_mutex);
2395 2396 2397 2398 2399

	return 0;

 err_remove:

2400
	list_del(&cgrp->sibling);
2401 2402 2403 2404 2405
	root->number_of_cgroups--;

 err_destroy:

	for_each_subsys(root, ss) {
2406 2407
		if (cgrp->subsys[ss->subsys_id])
			ss->destroy(ss, cgrp);
2408 2409 2410 2411 2412 2413 2414
	}

	mutex_unlock(&cgroup_mutex);

	/* Release the reference count that we took on the superblock */
	deactivate_super(sb);

2415
	kfree(cgrp);
2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426
	return err;
}

static int cgroup_mkdir(struct inode *dir, struct dentry *dentry, int mode)
{
	struct cgroup *c_parent = dentry->d_parent->d_fsdata;

	/* the vfs holds inode->i_mutex already */
	return cgroup_create(c_parent, dentry, mode | S_IFDIR);
}

2427
static inline int cgroup_has_css_refs(struct cgroup *cgrp)
2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442
{
	/* Check the reference count on each subsystem. Since we
	 * already established that there are no tasks in the
	 * cgroup, if the css refcount is also 0, then there should
	 * be no outstanding references, so the subsystem is safe to
	 * destroy. We scan across all subsystems rather than using
	 * the per-hierarchy linked list of mounted subsystems since
	 * we can be called via check_for_release() with no
	 * synchronization other than RCU, and the subsystem linked
	 * list isn't RCU-safe */
	int i;
	for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
		struct cgroup_subsys *ss = subsys[i];
		struct cgroup_subsys_state *css;
		/* Skip subsystems not in this hierarchy */
2443
		if (ss->root != cgrp->root)
2444
			continue;
2445
		css = cgrp->subsys[ss->subsys_id];
2446 2447 2448 2449 2450 2451
		/* When called from check_for_release() it's possible
		 * that by this point the cgroup has been removed
		 * and the css deleted. But a false-positive doesn't
		 * matter, since it can only happen if the cgroup
		 * has been deleted and hence no longer needs the
		 * release agent to be called anyway. */
P
Paul Jackson 已提交
2452
		if (css && atomic_read(&css->refcnt))
2453 2454 2455 2456 2457
			return 1;
	}
	return 0;
}

2458 2459
static int cgroup_rmdir(struct inode *unused_dir, struct dentry *dentry)
{
2460
	struct cgroup *cgrp = dentry->d_fsdata;
2461 2462 2463 2464 2465 2466 2467 2468
	struct dentry *d;
	struct cgroup *parent;
	struct super_block *sb;
	struct cgroupfs_root *root;

	/* the vfs holds both inode->i_mutex already */

	mutex_lock(&cgroup_mutex);
2469
	if (atomic_read(&cgrp->count) != 0) {
2470 2471 2472
		mutex_unlock(&cgroup_mutex);
		return -EBUSY;
	}
2473
	if (!list_empty(&cgrp->children)) {
2474 2475 2476 2477
		mutex_unlock(&cgroup_mutex);
		return -EBUSY;
	}

2478 2479
	parent = cgrp->parent;
	root = cgrp->root;
2480
	sb = root->sb;
L
Li Zefan 已提交
2481

2482
	/*
L
Li Zefan 已提交
2483 2484
	 * Call pre_destroy handlers of subsys. Notify subsystems
	 * that rmdir() request comes.
2485 2486
	 */
	cgroup_call_pre_destroy(cgrp);
2487

2488
	if (cgroup_has_css_refs(cgrp)) {
2489 2490 2491 2492
		mutex_unlock(&cgroup_mutex);
		return -EBUSY;
	}

2493
	spin_lock(&release_list_lock);
2494 2495 2496
	set_bit(CGRP_REMOVED, &cgrp->flags);
	if (!list_empty(&cgrp->release_list))
		list_del(&cgrp->release_list);
2497
	spin_unlock(&release_list_lock);
2498
	/* delete my sibling from parent->children */
2499 2500 2501 2502
	list_del(&cgrp->sibling);
	spin_lock(&cgrp->dentry->d_lock);
	d = dget(cgrp->dentry);
	cgrp->dentry = NULL;
2503 2504 2505 2506 2507
	spin_unlock(&d->d_lock);

	cgroup_d_remove_dir(d);
	dput(d);

2508
	set_bit(CGRP_RELEASABLE, &parent->flags);
2509 2510
	check_for_release(parent);

2511 2512 2513 2514
	mutex_unlock(&cgroup_mutex);
	return 0;
}

2515
static void __init cgroup_init_subsys(struct cgroup_subsys *ss)
2516 2517
{
	struct cgroup_subsys_state *css;
D
Diego Calleja 已提交
2518 2519

	printk(KERN_INFO "Initializing cgroup subsys %s\n", ss->name);
2520 2521 2522 2523 2524 2525 2526 2527

	/* Create the top cgroup state for this subsystem */
	ss->root = &rootnode;
	css = ss->create(ss, dummytop);
	/* We don't handle early failures gracefully */
	BUG_ON(IS_ERR(css));
	init_cgroup_css(css, ss, dummytop);

L
Li Zefan 已提交
2528
	/* Update the init_css_set to contain a subsys
2529
	 * pointer to this state - since the subsystem is
L
Li Zefan 已提交
2530 2531 2532
	 * newly registered, all tasks and hence the
	 * init_css_set is in the subsystem's top cgroup. */
	init_css_set.subsys[ss->subsys_id] = dummytop->subsys[ss->subsys_id];
2533 2534

	need_forkexit_callback |= ss->fork || ss->exit;
2535
	need_mm_owner_callback |= !!ss->mm_owner_changed;
2536

L
Li Zefan 已提交
2537 2538 2539 2540 2541
	/* At system boot, before all subsystems have been
	 * registered, no tasks have been forked, so we don't
	 * need to invoke fork callbacks here. */
	BUG_ON(!list_empty(&init_task.tasks));

2542 2543 2544 2545
	ss->active = 1;
}

/**
L
Li Zefan 已提交
2546 2547 2548 2549
 * cgroup_init_early - cgroup initialization at system boot
 *
 * Initialize cgroups at system boot, and initialize any
 * subsystems that request early init.
2550 2551 2552 2553
 */
int __init cgroup_init_early(void)
{
	int i;
2554 2555 2556 2557
	kref_init(&init_css_set.ref);
	kref_get(&init_css_set.ref);
	INIT_LIST_HEAD(&init_css_set.cg_links);
	INIT_LIST_HEAD(&init_css_set.tasks);
2558
	INIT_HLIST_NODE(&init_css_set.hlist);
2559
	css_set_count = 1;
2560 2561
	init_cgroup_root(&rootnode);
	list_add(&rootnode.root_list, &roots);
2562 2563 2564 2565
	root_count = 1;
	init_task.cgroups = &init_css_set;

	init_css_set_link.cg = &init_css_set;
2566
	list_add(&init_css_set_link.cgrp_link_list,
2567 2568 2569
		 &rootnode.top_cgroup.css_sets);
	list_add(&init_css_set_link.cg_link_list,
		 &init_css_set.cg_links);
2570

2571 2572 2573
	for (i = 0; i < CSS_SET_TABLE_SIZE; i++)
		INIT_HLIST_HEAD(&css_set_table[i]);

2574 2575 2576 2577 2578 2579 2580 2581
	for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
		struct cgroup_subsys *ss = subsys[i];

		BUG_ON(!ss->name);
		BUG_ON(strlen(ss->name) > MAX_CGROUP_TYPE_NAMELEN);
		BUG_ON(!ss->create);
		BUG_ON(!ss->destroy);
		if (ss->subsys_id != i) {
D
Diego Calleja 已提交
2582
			printk(KERN_ERR "cgroup: Subsys %s id == %d\n",
2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593
			       ss->name, ss->subsys_id);
			BUG();
		}

		if (ss->early_init)
			cgroup_init_subsys(ss);
	}
	return 0;
}

/**
L
Li Zefan 已提交
2594 2595 2596 2597
 * cgroup_init - cgroup initialization
 *
 * Register cgroup filesystem and /proc file, and initialize
 * any subsystems that didn't request early init.
2598 2599 2600 2601 2602
 */
int __init cgroup_init(void)
{
	int err;
	int i;
2603
	struct hlist_head *hhead;
2604 2605 2606 2607

	err = bdi_init(&cgroup_backing_dev_info);
	if (err)
		return err;
2608 2609 2610 2611 2612 2613 2614

	for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
		struct cgroup_subsys *ss = subsys[i];
		if (!ss->early_init)
			cgroup_init_subsys(ss);
	}

2615 2616 2617 2618
	/* Add init_css_set to the hash table */
	hhead = css_set_hash(init_css_set.subsys);
	hlist_add_head(&init_css_set.hlist, hhead);

2619 2620 2621 2622
	err = register_filesystem(&cgroup_fs_type);
	if (err < 0)
		goto out;

L
Li Zefan 已提交
2623
	proc_create("cgroups", 0, NULL, &proc_cgroupstats_operations);
2624

2625
out:
2626 2627 2628
	if (err)
		bdi_destroy(&cgroup_backing_dev_info);

2629 2630
	return err;
}
2631

2632 2633 2634 2635 2636 2637
/*
 * proc_cgroup_show()
 *  - Print task's cgroup paths into seq_file, one line for each hierarchy
 *  - Used for /proc/<pid>/cgroup.
 *  - No need to task_lock(tsk) on this tsk->cgroup reference, as it
 *    doesn't really matter if tsk->cgroup changes after we read it,
2638
 *    and we take cgroup_mutex, keeping cgroup_attach_task() from changing it
2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669
 *    anyway.  No need to check that tsk->cgroup != NULL, thanks to
 *    the_top_cgroup_hack in cgroup_exit(), which sets an exiting tasks
 *    cgroup to top_cgroup.
 */

/* TODO: Use a proper seq_file iterator */
static int proc_cgroup_show(struct seq_file *m, void *v)
{
	struct pid *pid;
	struct task_struct *tsk;
	char *buf;
	int retval;
	struct cgroupfs_root *root;

	retval = -ENOMEM;
	buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
	if (!buf)
		goto out;

	retval = -ESRCH;
	pid = m->private;
	tsk = get_pid_task(pid, PIDTYPE_PID);
	if (!tsk)
		goto out_free;

	retval = 0;

	mutex_lock(&cgroup_mutex);

	for_each_root(root) {
		struct cgroup_subsys *ss;
2670
		struct cgroup *cgrp;
2671 2672 2673 2674 2675 2676
		int subsys_id;
		int count = 0;

		/* Skip this hierarchy if it has no active subsystems */
		if (!root->actual_subsys_bits)
			continue;
2677
		seq_printf(m, "%lu:", root->subsys_bits);
2678 2679 2680 2681
		for_each_subsys(root, ss)
			seq_printf(m, "%s%s", count++ ? "," : "", ss->name);
		seq_putc(m, ':');
		get_first_subsys(&root->top_cgroup, NULL, &subsys_id);
2682 2683
		cgrp = task_cgroup(tsk, subsys_id);
		retval = cgroup_path(cgrp, buf, PAGE_SIZE);
2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716
		if (retval < 0)
			goto out_unlock;
		seq_puts(m, buf);
		seq_putc(m, '\n');
	}

out_unlock:
	mutex_unlock(&cgroup_mutex);
	put_task_struct(tsk);
out_free:
	kfree(buf);
out:
	return retval;
}

static int cgroup_open(struct inode *inode, struct file *file)
{
	struct pid *pid = PROC_I(inode)->pid;
	return single_open(file, proc_cgroup_show, pid);
}

struct file_operations proc_cgroup_operations = {
	.open		= cgroup_open,
	.read		= seq_read,
	.llseek		= seq_lseek,
	.release	= single_release,
};

/* Display information about each subsystem and each hierarchy */
static int proc_cgroupstats_show(struct seq_file *m, void *v)
{
	int i;

2717
	seq_puts(m, "#subsys_name\thierarchy\tnum_cgroups\tenabled\n");
2718 2719 2720
	mutex_lock(&cgroup_mutex);
	for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
		struct cgroup_subsys *ss = subsys[i];
2721
		seq_printf(m, "%s\t%lu\t%d\t%d\n",
2722
			   ss->name, ss->root->subsys_bits,
2723
			   ss->root->number_of_cgroups, !ss->disabled);
2724 2725 2726 2727 2728 2729 2730
	}
	mutex_unlock(&cgroup_mutex);
	return 0;
}

static int cgroupstats_open(struct inode *inode, struct file *file)
{
A
Al Viro 已提交
2731
	return single_open(file, proc_cgroupstats_show, NULL);
2732 2733 2734 2735 2736 2737 2738 2739 2740
}

static struct file_operations proc_cgroupstats_operations = {
	.open = cgroupstats_open,
	.read = seq_read,
	.llseek = seq_lseek,
	.release = single_release,
};

2741 2742
/**
 * cgroup_fork - attach newly forked task to its parents cgroup.
L
Li Zefan 已提交
2743
 * @child: pointer to task_struct of forking parent process.
2744 2745 2746 2747 2748 2749
 *
 * Description: A task inherits its parent's cgroup at fork().
 *
 * A pointer to the shared css_set was automatically copied in
 * fork.c by dup_task_struct().  However, we ignore that copy, since
 * it was not made under the protection of RCU or cgroup_mutex, so
2750
 * might no longer be a valid cgroup pointer.  cgroup_attach_task() might
2751 2752
 * have already changed current->cgroups, allowing the previously
 * referenced cgroup group to be removed and freed.
2753 2754 2755 2756 2757 2758
 *
 * At the point that cgroup_fork() is called, 'current' is the parent
 * task, and the passed argument 'child' points to the child task.
 */
void cgroup_fork(struct task_struct *child)
{
2759 2760 2761 2762 2763
	task_lock(current);
	child->cgroups = current->cgroups;
	get_css_set(child->cgroups);
	task_unlock(current);
	INIT_LIST_HEAD(&child->cg_list);
2764 2765 2766
}

/**
L
Li Zefan 已提交
2767 2768 2769 2770 2771 2772
 * cgroup_fork_callbacks - run fork callbacks
 * @child: the new task
 *
 * Called on a new task very soon before adding it to the
 * tasklist. No need to take any locks since no-one can
 * be operating on this task.
2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785
 */
void cgroup_fork_callbacks(struct task_struct *child)
{
	if (need_forkexit_callback) {
		int i;
		for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
			struct cgroup_subsys *ss = subsys[i];
			if (ss->fork)
				ss->fork(ss, child);
		}
	}
}

2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813
#ifdef CONFIG_MM_OWNER
/**
 * cgroup_mm_owner_callbacks - run callbacks when the mm->owner changes
 * @p: the new owner
 *
 * Called on every change to mm->owner. mm_init_owner() does not
 * invoke this routine, since it assigns the mm->owner the first time
 * and does not change it.
 */
void cgroup_mm_owner_callbacks(struct task_struct *old, struct task_struct *new)
{
	struct cgroup *oldcgrp, *newcgrp;

	if (need_mm_owner_callback) {
		int i;
		for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
			struct cgroup_subsys *ss = subsys[i];
			oldcgrp = task_cgroup(old, ss->subsys_id);
			newcgrp = task_cgroup(new, ss->subsys_id);
			if (oldcgrp == newcgrp)
				continue;
			if (ss->mm_owner_changed)
				ss->mm_owner_changed(ss, oldcgrp, newcgrp);
		}
	}
}
#endif /* CONFIG_MM_OWNER */

2814
/**
L
Li Zefan 已提交
2815 2816 2817 2818 2819 2820 2821 2822
 * cgroup_post_fork - called on a new task after adding it to the task list
 * @child: the task in question
 *
 * Adds the task to the list running through its css_set if necessary.
 * Has to be after the task is visible on the task list in case we race
 * with the first call to cgroup_iter_start() - to guarantee that the
 * new task ends up on its list.
 */
2823 2824 2825 2826 2827 2828 2829 2830 2831
void cgroup_post_fork(struct task_struct *child)
{
	if (use_task_css_set_links) {
		write_lock(&css_set_lock);
		if (list_empty(&child->cg_list))
			list_add(&child->cg_list, &child->cgroups->tasks);
		write_unlock(&css_set_lock);
	}
}
2832 2833 2834
/**
 * cgroup_exit - detach cgroup from exiting task
 * @tsk: pointer to task_struct of exiting process
L
Li Zefan 已提交
2835
 * @run_callback: run exit callbacks?
2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863
 *
 * Description: Detach cgroup from @tsk and release it.
 *
 * Note that cgroups marked notify_on_release force every task in
 * them to take the global cgroup_mutex mutex when exiting.
 * This could impact scaling on very large systems.  Be reluctant to
 * use notify_on_release cgroups where very high task exit scaling
 * is required on large systems.
 *
 * the_top_cgroup_hack:
 *
 *    Set the exiting tasks cgroup to the root cgroup (top_cgroup).
 *
 *    We call cgroup_exit() while the task is still competent to
 *    handle notify_on_release(), then leave the task attached to the
 *    root cgroup in each hierarchy for the remainder of its exit.
 *
 *    To do this properly, we would increment the reference count on
 *    top_cgroup, and near the very end of the kernel/exit.c do_exit()
 *    code we would add a second cgroup function call, to drop that
 *    reference.  This would just create an unnecessary hot spot on
 *    the top_cgroup reference count, to no avail.
 *
 *    Normally, holding a reference to a cgroup without bumping its
 *    count is unsafe.   The cgroup could go away, or someone could
 *    attach us to a different cgroup, decrementing the count on
 *    the first cgroup that we never incremented.  But in this case,
 *    top_cgroup isn't going away, and either task has PF_EXITING set,
2864 2865
 *    which wards off any cgroup_attach_task() attempts, or task is a failed
 *    fork, never visible to cgroup_attach_task.
2866 2867 2868 2869
 */
void cgroup_exit(struct task_struct *tsk, int run_callbacks)
{
	int i;
2870
	struct css_set *cg;
2871 2872 2873 2874 2875 2876 2877 2878

	if (run_callbacks && need_forkexit_callback) {
		for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
			struct cgroup_subsys *ss = subsys[i];
			if (ss->exit)
				ss->exit(ss, tsk);
		}
	}
2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891

	/*
	 * Unlink from the css_set task list if necessary.
	 * Optimistically check cg_list before taking
	 * css_set_lock
	 */
	if (!list_empty(&tsk->cg_list)) {
		write_lock(&css_set_lock);
		if (!list_empty(&tsk->cg_list))
			list_del(&tsk->cg_list);
		write_unlock(&css_set_lock);
	}

2892 2893
	/* Reassign the task to the init_css_set. */
	task_lock(tsk);
2894 2895
	cg = tsk->cgroups;
	tsk->cgroups = &init_css_set;
2896
	task_unlock(tsk);
2897
	if (cg)
2898
		put_css_set_taskexit(cg);
2899
}
2900 2901

/**
L
Li Zefan 已提交
2902 2903 2904 2905 2906 2907 2908
 * cgroup_clone - clone the cgroup the given subsystem is attached to
 * @tsk: the task to be moved
 * @subsys: the given subsystem
 *
 * Duplicate the current cgroup in the hierarchy that the given
 * subsystem is attached to, and move this task into the new
 * child.
2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935
 */
int cgroup_clone(struct task_struct *tsk, struct cgroup_subsys *subsys)
{
	struct dentry *dentry;
	int ret = 0;
	char nodename[MAX_CGROUP_TYPE_NAMELEN];
	struct cgroup *parent, *child;
	struct inode *inode;
	struct css_set *cg;
	struct cgroupfs_root *root;
	struct cgroup_subsys *ss;

	/* We shouldn't be called by an unregistered subsystem */
	BUG_ON(!subsys->active);

	/* First figure out what hierarchy and cgroup we're dealing
	 * with, and pin them so we can drop cgroup_mutex */
	mutex_lock(&cgroup_mutex);
 again:
	root = subsys->root;
	if (root == &rootnode) {
		printk(KERN_INFO
		       "Not cloning cgroup for unused subsystem %s\n",
		       subsys->name);
		mutex_unlock(&cgroup_mutex);
		return 0;
	}
2936
	cg = tsk->cgroups;
2937 2938
	parent = task_cgroup(tsk, subsys->subsys_id);

2939
	snprintf(nodename, MAX_CGROUP_TYPE_NAMELEN, "%d", tsk->pid);
2940 2941 2942 2943

	/* Pin the hierarchy */
	atomic_inc(&parent->root->sb->s_active);

2944 2945
	/* Keep the cgroup alive */
	get_css_set(cg);
2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956
	mutex_unlock(&cgroup_mutex);

	/* Now do the VFS work to create a cgroup */
	inode = parent->dentry->d_inode;

	/* Hold the parent directory mutex across this operation to
	 * stop anyone else deleting the new cgroup */
	mutex_lock(&inode->i_mutex);
	dentry = lookup_one_len(nodename, parent->dentry, strlen(nodename));
	if (IS_ERR(dentry)) {
		printk(KERN_INFO
D
Diego Calleja 已提交
2957
		       "cgroup: Couldn't allocate dentry for %s: %ld\n", nodename,
2958 2959 2960 2961 2962 2963 2964
		       PTR_ERR(dentry));
		ret = PTR_ERR(dentry);
		goto out_release;
	}

	/* Create the cgroup directory, which also creates the cgroup */
	ret = vfs_mkdir(inode, dentry, S_IFDIR | 0755);
2965
	child = __d_cgrp(dentry);
2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988
	dput(dentry);
	if (ret) {
		printk(KERN_INFO
		       "Failed to create cgroup %s: %d\n", nodename,
		       ret);
		goto out_release;
	}

	if (!child) {
		printk(KERN_INFO
		       "Couldn't find new cgroup %s\n", nodename);
		ret = -ENOMEM;
		goto out_release;
	}

	/* The cgroup now exists. Retake cgroup_mutex and check
	 * that we're still in the same state that we thought we
	 * were. */
	mutex_lock(&cgroup_mutex);
	if ((root != subsys->root) ||
	    (parent != task_cgroup(tsk, subsys->subsys_id))) {
		/* Aargh, we raced ... */
		mutex_unlock(&inode->i_mutex);
2989
		put_css_set(cg);
2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007

		deactivate_super(parent->root->sb);
		/* The cgroup is still accessible in the VFS, but
		 * we're not going to try to rmdir() it at this
		 * point. */
		printk(KERN_INFO
		       "Race in cgroup_clone() - leaking cgroup %s\n",
		       nodename);
		goto again;
	}

	/* do any required auto-setup */
	for_each_subsys(root, ss) {
		if (ss->post_clone)
			ss->post_clone(ss, child);
	}

	/* All seems fine. Finish by moving the task into the new cgroup */
3008
	ret = cgroup_attach_task(child, tsk);
3009 3010 3011 3012
	mutex_unlock(&cgroup_mutex);

 out_release:
	mutex_unlock(&inode->i_mutex);
3013 3014

	mutex_lock(&cgroup_mutex);
3015
	put_css_set(cg);
3016
	mutex_unlock(&cgroup_mutex);
3017 3018 3019 3020
	deactivate_super(parent->root->sb);
	return ret;
}

L
Li Zefan 已提交
3021 3022 3023 3024 3025 3026
/**
 * cgroup_is_descendant - see if @cgrp is a descendant of current task's cgrp
 * @cgrp: the cgroup in question
 *
 * See if @cgrp is a descendant of the current task's cgroup in
 * the appropriate hierarchy.
3027 3028 3029 3030 3031 3032
 *
 * If we are sending in dummytop, then presumably we are creating
 * the top cgroup in the subsystem.
 *
 * Called only by the ns (nsproxy) cgroup.
 */
3033
int cgroup_is_descendant(const struct cgroup *cgrp)
3034 3035 3036 3037 3038
{
	int ret;
	struct cgroup *target;
	int subsys_id;

3039
	if (cgrp == dummytop)
3040 3041
		return 1;

3042
	get_first_subsys(cgrp, NULL, &subsys_id);
3043
	target = task_cgroup(current, subsys_id);
3044 3045 3046
	while (cgrp != target && cgrp!= cgrp->top_cgroup)
		cgrp = cgrp->parent;
	ret = (cgrp == target);
3047 3048
	return ret;
}
3049

3050
static void check_for_release(struct cgroup *cgrp)
3051 3052 3053
{
	/* All of these checks rely on RCU to keep the cgroup
	 * structure alive */
3054 3055
	if (cgroup_is_releasable(cgrp) && !atomic_read(&cgrp->count)
	    && list_empty(&cgrp->children) && !cgroup_has_css_refs(cgrp)) {
3056 3057 3058 3059 3060
		/* Control Group is currently removeable. If it's not
		 * already queued for a userspace notification, queue
		 * it now */
		int need_schedule_work = 0;
		spin_lock(&release_list_lock);
3061 3062 3063
		if (!cgroup_is_removed(cgrp) &&
		    list_empty(&cgrp->release_list)) {
			list_add(&cgrp->release_list, &release_list);
3064 3065 3066 3067 3068 3069 3070 3071 3072 3073
			need_schedule_work = 1;
		}
		spin_unlock(&release_list_lock);
		if (need_schedule_work)
			schedule_work(&release_agent_work);
	}
}

void __css_put(struct cgroup_subsys_state *css)
{
3074
	struct cgroup *cgrp = css->cgroup;
3075
	rcu_read_lock();
3076 3077 3078
	if (atomic_dec_and_test(&css->refcnt) && notify_on_release(cgrp)) {
		set_bit(CGRP_RELEASABLE, &cgrp->flags);
		check_for_release(cgrp);
3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114
	}
	rcu_read_unlock();
}

/*
 * Notify userspace when a cgroup is released, by running the
 * configured release agent with the name of the cgroup (path
 * relative to the root of cgroup file system) as the argument.
 *
 * Most likely, this user command will try to rmdir this cgroup.
 *
 * This races with the possibility that some other task will be
 * attached to this cgroup before it is removed, or that some other
 * user task will 'mkdir' a child cgroup of this cgroup.  That's ok.
 * The presumed 'rmdir' will fail quietly if this cgroup is no longer
 * unused, and this cgroup will be reprieved from its death sentence,
 * to continue to serve a useful existence.  Next time it's released,
 * we will get notified again, if it still has 'notify_on_release' set.
 *
 * The final arg to call_usermodehelper() is UMH_WAIT_EXEC, which
 * means only wait until the task is successfully execve()'d.  The
 * separate release agent task is forked by call_usermodehelper(),
 * then control in this thread returns here, without waiting for the
 * release agent task.  We don't bother to wait because the caller of
 * this routine has no use for the exit status of the release agent
 * task, so no sense holding our caller up for that.
 */
static void cgroup_release_agent(struct work_struct *work)
{
	BUG_ON(work != &release_agent_work);
	mutex_lock(&cgroup_mutex);
	spin_lock(&release_list_lock);
	while (!list_empty(&release_list)) {
		char *argv[3], *envp[3];
		int i;
		char *pathbuf;
3115
		struct cgroup *cgrp = list_entry(release_list.next,
3116 3117
						    struct cgroup,
						    release_list);
3118
		list_del_init(&cgrp->release_list);
3119 3120 3121 3122 3123 3124 3125
		spin_unlock(&release_list_lock);
		pathbuf = kmalloc(PAGE_SIZE, GFP_KERNEL);
		if (!pathbuf) {
			spin_lock(&release_list_lock);
			continue;
		}

3126
		if (cgroup_path(cgrp, pathbuf, PAGE_SIZE) < 0) {
3127 3128 3129 3130 3131 3132
			kfree(pathbuf);
			spin_lock(&release_list_lock);
			continue;
		}

		i = 0;
3133
		argv[i++] = cgrp->root->release_agent_path;
3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154
		argv[i++] = (char *)pathbuf;
		argv[i] = NULL;

		i = 0;
		/* minimal command environment */
		envp[i++] = "HOME=/";
		envp[i++] = "PATH=/sbin:/bin:/usr/sbin:/usr/bin";
		envp[i] = NULL;

		/* Drop the lock while we invoke the usermode helper,
		 * since the exec could involve hitting disk and hence
		 * be a slow process */
		mutex_unlock(&cgroup_mutex);
		call_usermodehelper(argv[0], argv, envp, UMH_WAIT_EXEC);
		kfree(pathbuf);
		mutex_lock(&cgroup_mutex);
		spin_lock(&release_list_lock);
	}
	spin_unlock(&release_list_lock);
	mutex_unlock(&cgroup_mutex);
}
3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178

static int __init cgroup_disable(char *str)
{
	int i;
	char *token;

	while ((token = strsep(&str, ",")) != NULL) {
		if (!*token)
			continue;

		for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
			struct cgroup_subsys *ss = subsys[i];

			if (!strcmp(token, ss->name)) {
				ss->disabled = 1;
				printk(KERN_INFO "Disabling %s control group"
					" subsystem\n", ss->name);
				break;
			}
		}
	}
	return 1;
}
__setup("cgroup_disable=", cgroup_disable);