cgroup.c 151.2 KB
Newer Older
1 2 3 4 5 6
/*
 *  Generic process-grouping system.
 *
 *  Based originally on the cpuset system, extracted by Paul Menage
 *  Copyright (C) 2006 Google, Inc
 *
7 8 9 10
 *  Notifications support
 *  Copyright (C) 2009 Nokia Corporation
 *  Author: Kirill A. Shutemov
 *
11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29
 *  Copyright notices from the original cpuset code:
 *  --------------------------------------------------
 *  Copyright (C) 2003 BULL SA.
 *  Copyright (C) 2004-2006 Silicon Graphics, Inc.
 *
 *  Portions derived from Patrick Mochel's sysfs code.
 *  sysfs is Copyright (c) 2001-3 Patrick Mochel
 *
 *  2003-10-10 Written by Simon Derr.
 *  2003-10-22 Updates by Stephen Hemminger.
 *  2004 May-July Rework by Paul Jackson.
 *  ---------------------------------------------------
 *
 *  This file is subject to the terms and conditions of the GNU General Public
 *  License.  See the file COPYING in the main directory of the Linux
 *  distribution for more details.
 */

#include <linux/cgroup.h>
30
#include <linux/cred.h>
31
#include <linux/ctype.h>
32
#include <linux/errno.h>
33
#include <linux/init_task.h>
34 35 36 37 38 39
#include <linux/kernel.h>
#include <linux/list.h>
#include <linux/mm.h>
#include <linux/mutex.h>
#include <linux/mount.h>
#include <linux/pagemap.h>
40
#include <linux/proc_fs.h>
41 42
#include <linux/rcupdate.h>
#include <linux/sched.h>
43
#include <linux/backing-dev.h>
44 45 46 47 48
#include <linux/seq_file.h>
#include <linux/slab.h>
#include <linux/magic.h>
#include <linux/spinlock.h>
#include <linux/string.h>
49
#include <linux/sort.h>
50
#include <linux/kmod.h>
51
#include <linux/module.h>
B
Balbir Singh 已提交
52 53
#include <linux/delayacct.h>
#include <linux/cgroupstats.h>
54
#include <linux/hashtable.h>
55
#include <linux/namei.h>
L
Li Zefan 已提交
56
#include <linux/pid_namespace.h>
57
#include <linux/idr.h>
58
#include <linux/vmalloc.h> /* TODO: replace with more sophisticated array */
59 60
#include <linux/eventfd.h>
#include <linux/poll.h>
61
#include <linux/flex_array.h> /* used in cgroup_attach_task */
62
#include <linux/kthread.h>
B
Balbir Singh 已提交
63

A
Arun Sharma 已提交
64
#include <linux/atomic.h>
65

T
Tejun Heo 已提交
66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81
/*
 * cgroup_mutex is the master lock.  Any modification to cgroup or its
 * hierarchy must be performed while holding it.
 *
 * cgroup_root_mutex nests inside cgroup_mutex and should be held to modify
 * cgroupfs_root of any cgroup hierarchy - subsys list, flags,
 * release_agent_path and so on.  Modifying requires both cgroup_mutex and
 * cgroup_root_mutex.  Readers can acquire either of the two.  This is to
 * break the following locking order cycle.
 *
 *  A. cgroup_mutex -> cred_guard_mutex -> s_type->i_mutex_key -> namespace_sem
 *  B. namespace_sem -> cgroup_mutex
 *
 * B happens only through cgroup_show_options() and using cgroup_root_mutex
 * breaks it.
 */
T
Tejun Heo 已提交
82 83 84 85
#ifdef CONFIG_PROVE_RCU
DEFINE_MUTEX(cgroup_mutex);
EXPORT_SYMBOL_GPL(cgroup_mutex);	/* only for task_subsys_state_check() */
#else
86
static DEFINE_MUTEX(cgroup_mutex);
T
Tejun Heo 已提交
87 88
#endif

T
Tejun Heo 已提交
89
static DEFINE_MUTEX(cgroup_root_mutex);
90

B
Ben Blum 已提交
91 92
/*
 * Generate an array of cgroup subsystem pointers. At boot time, this is
93
 * populated with the built in subsystems, and modular subsystems are
B
Ben Blum 已提交
94 95 96
 * registered after that. The mutable section of this array is protected by
 * cgroup_mutex.
 */
97
#define SUBSYS(_x) [_x ## _subsys_id] = &_x ## _subsys,
98
#define IS_SUBSYS_ENABLED(option) IS_BUILTIN(option)
99
static struct cgroup_subsys *cgroup_subsys[CGROUP_SUBSYS_COUNT] = {
100 101 102 103
#include <linux/cgroup_subsys.h>
};

/*
104 105 106
 * The dummy hierarchy, reserved for the subsystems that are otherwise
 * unattached - it never has more than a single cgroup, and all tasks are
 * part of that cgroup.
107
 */
108 109 110 111
static struct cgroupfs_root cgroup_dummy_root;

/* dummy_top is a shorthand for the dummy hierarchy's top cgroup */
static struct cgroup * const cgroup_dummy_top = &cgroup_dummy_root.top_cgroup;
112

T
Tejun Heo 已提交
113 114 115 116 117 118 119
/*
 * cgroupfs file entry, pointed to from leaf dentry->d_fsdata.
 */
struct cfent {
	struct list_head		node;
	struct dentry			*dentry;
	struct cftype			*type;
L
Li Zefan 已提交
120 121 122

	/* file xattrs */
	struct simple_xattrs		xattrs;
T
Tejun Heo 已提交
123 124
};

K
KAMEZAWA Hiroyuki 已提交
125 126 127 128 129 130 131 132 133 134
/*
 * CSS ID -- ID per subsys's Cgroup Subsys State(CSS). used only when
 * cgroup_subsys->use_id != 0.
 */
#define CSS_ID_MAX	(65535)
struct css_id {
	/*
	 * The css to which this ID points. This pointer is set to valid value
	 * after cgroup is populated. If cgroup is removed, this will be NULL.
	 * This pointer is expected to be RCU-safe because destroy()
T
Tejun Heo 已提交
135 136
	 * is called after synchronize_rcu(). But for safe use, css_tryget()
	 * should be used for avoiding race.
K
KAMEZAWA Hiroyuki 已提交
137
	 */
A
Arnd Bergmann 已提交
138
	struct cgroup_subsys_state __rcu *css;
K
KAMEZAWA Hiroyuki 已提交
139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156
	/*
	 * ID of this css.
	 */
	unsigned short id;
	/*
	 * Depth in hierarchy which this ID belongs to.
	 */
	unsigned short depth;
	/*
	 * ID is freed by RCU. (and lookup routine is RCU safe.)
	 */
	struct rcu_head rcu_head;
	/*
	 * Hierarchy of CSS ID belongs to.
	 */
	unsigned short stack[0]; /* Array of Length (depth+1) */
};

157
/*
L
Lucas De Marchi 已提交
158
 * cgroup_event represents events which userspace want to receive.
159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185
 */
struct cgroup_event {
	/*
	 * Cgroup which the event belongs to.
	 */
	struct cgroup *cgrp;
	/*
	 * Control file which the event associated.
	 */
	struct cftype *cft;
	/*
	 * eventfd to signal userspace about the event.
	 */
	struct eventfd_ctx *eventfd;
	/*
	 * Each of these stored in a list by the cgroup.
	 */
	struct list_head list;
	/*
	 * All fields below needed to unregister event when
	 * userspace closes eventfd.
	 */
	poll_table pt;
	wait_queue_head_t *wqh;
	wait_queue_t wait;
	struct work_struct remove;
};
K
KAMEZAWA Hiroyuki 已提交
186

187 188
/* The list of hierarchy roots */

189 190
static LIST_HEAD(cgroup_roots);
static int cgroup_root_count;
191

T
Tejun Heo 已提交
192 193 194 195 196
/*
 * Hierarchy ID allocation and mapping.  It follows the same exclusion
 * rules as other root ops - both cgroup_mutex and cgroup_root_mutex for
 * writes, either for reads.
 */
197
static DEFINE_IDR(cgroup_hierarchy_idr);
198

199 200
static struct cgroup_name root_cgroup_name = { .name = "/" };

201 202 203 204 205
/*
 * Assign a monotonically increasing serial number to cgroups.  It
 * guarantees cgroups with bigger numbers are newer than those with smaller
 * numbers.  Also, as cgroups are always appended to the parent's
 * ->children list, it guarantees that sibling cgroups are always sorted in
206 207
 * the ascending serial number order on the list.  Protected by
 * cgroup_mutex.
208
 */
209
static u64 cgroup_serial_nr_next = 1;
210

211
/* This flag indicates whether tasks in the fork and exit paths should
L
Li Zefan 已提交
212 213 214
 * check for fork/exit handlers to call. This avoids us having to do
 * extra work in the fork/exit path if none of the subsystems need to
 * be called.
215
 */
216
static int need_forkexit_callback __read_mostly;
217

218
static void cgroup_offline_fn(struct work_struct *work);
219
static int cgroup_destroy_locked(struct cgroup *cgrp);
220 221
static int cgroup_addrm_files(struct cgroup *cgrp, struct cgroup_subsys *subsys,
			      struct cftype cfts[], bool is_add);
222

223
/* convenient tests for these bits */
224
static inline bool cgroup_is_dead(const struct cgroup *cgrp)
225
{
226
	return test_bit(CGRP_DEAD, &cgrp->flags);
227 228
}

229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247
/**
 * cgroup_is_descendant - test ancestry
 * @cgrp: the cgroup to be tested
 * @ancestor: possible ancestor of @cgrp
 *
 * Test whether @cgrp is a descendant of @ancestor.  It also returns %true
 * if @cgrp == @ancestor.  This function is safe to call as long as @cgrp
 * and @ancestor are accessible.
 */
bool cgroup_is_descendant(struct cgroup *cgrp, struct cgroup *ancestor)
{
	while (cgrp) {
		if (cgrp == ancestor)
			return true;
		cgrp = cgrp->parent;
	}
	return false;
}
EXPORT_SYMBOL_GPL(cgroup_is_descendant);
248

249
static int cgroup_is_releasable(const struct cgroup *cgrp)
250 251
{
	const int bits =
252 253 254
		(1 << CGRP_RELEASABLE) |
		(1 << CGRP_NOTIFY_ON_RELEASE);
	return (cgrp->flags & bits) == bits;
255 256
}

257
static int notify_on_release(const struct cgroup *cgrp)
258
{
259
	return test_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
260 261
}

262 263 264 265 266 267 268
/*
 * for_each_subsys() allows you to iterate on each subsystem attached to
 * an active hierarchy
 */
#define for_each_subsys(_root, _ss) \
list_for_each_entry(_ss, &_root->subsys_list, sibling)

269 270
/* for_each_active_root() allows you to iterate across the active hierarchies */
#define for_each_active_root(_root) \
271
list_for_each_entry(_root, &cgroup_roots, root_list)
272

273 274 275 276 277
static inline struct cgroup *__d_cgrp(struct dentry *dentry)
{
	return dentry->d_fsdata;
}

T
Tejun Heo 已提交
278
static inline struct cfent *__d_cfe(struct dentry *dentry)
279 280 281 282
{
	return dentry->d_fsdata;
}

T
Tejun Heo 已提交
283 284 285 286 287
static inline struct cftype *__d_cft(struct dentry *dentry)
{
	return __d_cfe(dentry)->type;
}

288 289 290 291
/**
 * cgroup_lock_live_group - take cgroup_mutex and check that cgrp is alive.
 * @cgrp: the cgroup to be checked for liveness
 *
T
Tejun Heo 已提交
292 293
 * On success, returns true; the mutex should be later unlocked.  On
 * failure returns false with no lock held.
294
 */
295
static bool cgroup_lock_live_group(struct cgroup *cgrp)
296 297
{
	mutex_lock(&cgroup_mutex);
298
	if (cgroup_is_dead(cgrp)) {
299 300 301 302 303 304
		mutex_unlock(&cgroup_mutex);
		return false;
	}
	return true;
}

305 306 307
/* the list of cgroups eligible for automatic release. Protected by
 * release_list_lock */
static LIST_HEAD(release_list);
308
static DEFINE_RAW_SPINLOCK(release_list_lock);
309 310
static void cgroup_release_agent(struct work_struct *work);
static DECLARE_WORK(release_agent_work, cgroup_release_agent);
311
static void check_for_release(struct cgroup *cgrp);
312

313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330
/*
 * A cgroup can be associated with multiple css_sets as different tasks may
 * belong to different cgroups on different hierarchies.  In the other
 * direction, a css_set is naturally associated with multiple cgroups.
 * This M:N relationship is represented by the following link structure
 * which exists for each association and allows traversing the associations
 * from both sides.
 */
struct cgrp_cset_link {
	/* the cgroup and css_set this link associates */
	struct cgroup		*cgrp;
	struct css_set		*cset;

	/* list of cgrp_cset_links anchored at cgrp->cset_links */
	struct list_head	cset_link;

	/* list of cgrp_cset_links anchored at css_set->cgrp_links */
	struct list_head	cgrp_link;
331 332 333 334 335 336 337 338 339 340
};

/* The default css_set - used by init and its children prior to any
 * hierarchies being mounted. It contains a pointer to the root state
 * for each subsystem. Also used to anchor the list of css_sets. Not
 * reference-counted, to improve performance when child cgroups
 * haven't been created.
 */

static struct css_set init_css_set;
341
static struct cgrp_cset_link init_cgrp_cset_link;
342

343 344
static int cgroup_init_idr(struct cgroup_subsys *ss,
			   struct cgroup_subsys_state *css);
K
KAMEZAWA Hiroyuki 已提交
345

346 347 348 349 350 351
/* css_set_lock protects the list of css_set objects, and the
 * chain of tasks off each css_set.  Nests outside task->alloc_lock
 * due to cgroup_iter_start() */
static DEFINE_RWLOCK(css_set_lock);
static int css_set_count;

352 353 354 355 356
/*
 * hash table for cgroup groups. This improves the performance to find
 * an existing css_set. This hash doesn't (currently) take into
 * account cgroups in empty hierarchies.
 */
357
#define CSS_SET_HASH_BITS	7
358
static DEFINE_HASHTABLE(css_set_table, CSS_SET_HASH_BITS);
359

360
static unsigned long css_set_hash(struct cgroup_subsys_state *css[])
361 362
{
	int i;
363
	unsigned long key = 0UL;
364 365

	for (i = 0; i < CGROUP_SUBSYS_COUNT; i++)
366 367
		key += (unsigned long)css[i];
	key = (key >> 16) ^ key;
368

369
	return key;
370 371
}

372 373 374 375
/* We don't maintain the lists running through each css_set to its
 * task until after the first call to cgroup_iter_start(). This
 * reduces the fork()/exit() overhead for people who have cgroups
 * compiled into their kernel but not actually in use */
376
static int use_task_css_set_links __read_mostly;
377

378
static void __put_css_set(struct css_set *cset, int taskexit)
379
{
380
	struct cgrp_cset_link *link, *tmp_link;
381

382 383 384 385 386
	/*
	 * Ensure that the refcount doesn't hit zero while any readers
	 * can see it. Similar to atomic_dec_and_lock(), but for an
	 * rwlock
	 */
387
	if (atomic_add_unless(&cset->refcount, -1, 1))
388 389
		return;
	write_lock(&css_set_lock);
390
	if (!atomic_dec_and_test(&cset->refcount)) {
391 392 393
		write_unlock(&css_set_lock);
		return;
	}
394

395
	/* This css_set is dead. unlink it and release cgroup refcounts */
396
	hash_del(&cset->hlist);
397 398
	css_set_count--;

399
	list_for_each_entry_safe(link, tmp_link, &cset->cgrp_links, cgrp_link) {
400
		struct cgroup *cgrp = link->cgrp;
401

402 403
		list_del(&link->cset_link);
		list_del(&link->cgrp_link);
L
Li Zefan 已提交
404

405
		/* @cgrp can't go away while we're holding css_set_lock */
T
Tejun Heo 已提交
406
		if (list_empty(&cgrp->cset_links) && notify_on_release(cgrp)) {
407
			if (taskexit)
408 409
				set_bit(CGRP_RELEASABLE, &cgrp->flags);
			check_for_release(cgrp);
410
		}
411 412

		kfree(link);
413
	}
414 415

	write_unlock(&css_set_lock);
416
	kfree_rcu(cset, rcu_head);
417 418
}

419 420 421
/*
 * refcounted get/put for css_set objects
 */
422
static inline void get_css_set(struct css_set *cset)
423
{
424
	atomic_inc(&cset->refcount);
425 426
}

427
static inline void put_css_set(struct css_set *cset)
428
{
429
	__put_css_set(cset, 0);
430 431
}

432
static inline void put_css_set_taskexit(struct css_set *cset)
433
{
434
	__put_css_set(cset, 1);
435 436
}

437 438
/*
 * compare_css_sets - helper function for find_existing_css_set().
439 440
 * @cset: candidate css_set being tested
 * @old_cset: existing css_set for a task
441 442 443 444 445 446
 * @new_cgrp: cgroup that's being entered by the task
 * @template: desired set of css pointers in css_set (pre-calculated)
 *
 * Returns true if "cg" matches "old_cg" except for the hierarchy
 * which "new_cgrp" belongs to, for which it should match "new_cgrp".
 */
447 448
static bool compare_css_sets(struct css_set *cset,
			     struct css_set *old_cset,
449 450 451 452 453
			     struct cgroup *new_cgrp,
			     struct cgroup_subsys_state *template[])
{
	struct list_head *l1, *l2;

454
	if (memcmp(template, cset->subsys, sizeof(cset->subsys))) {
455 456 457 458 459 460 461 462 463 464 465 466 467
		/* Not all subsystems matched */
		return false;
	}

	/*
	 * Compare cgroup pointers in order to distinguish between
	 * different cgroups in heirarchies with no subsystems. We
	 * could get by with just this check alone (and skip the
	 * memcmp above) but on most setups the memcmp check will
	 * avoid the need for this more expensive check on almost all
	 * candidates.
	 */

468 469
	l1 = &cset->cgrp_links;
	l2 = &old_cset->cgrp_links;
470
	while (1) {
471
		struct cgrp_cset_link *link1, *link2;
472
		struct cgroup *cgrp1, *cgrp2;
473 474 475 476

		l1 = l1->next;
		l2 = l2->next;
		/* See if we reached the end - both lists are equal length. */
477 478
		if (l1 == &cset->cgrp_links) {
			BUG_ON(l2 != &old_cset->cgrp_links);
479 480
			break;
		} else {
481
			BUG_ON(l2 == &old_cset->cgrp_links);
482 483
		}
		/* Locate the cgroups associated with these links. */
484 485 486 487
		link1 = list_entry(l1, struct cgrp_cset_link, cgrp_link);
		link2 = list_entry(l2, struct cgrp_cset_link, cgrp_link);
		cgrp1 = link1->cgrp;
		cgrp2 = link2->cgrp;
488
		/* Hierarchies should be linked in the same order. */
489
		BUG_ON(cgrp1->root != cgrp2->root);
490 491 492 493 494 495 496 497

		/*
		 * If this hierarchy is the hierarchy of the cgroup
		 * that's changing, then we need to check that this
		 * css_set points to the new cgroup; if it's any other
		 * hierarchy, then this css_set should point to the
		 * same cgroup as the old css_set.
		 */
498 499
		if (cgrp1->root == new_cgrp->root) {
			if (cgrp1 != new_cgrp)
500 501
				return false;
		} else {
502
			if (cgrp1 != cgrp2)
503 504 505 506 507 508
				return false;
		}
	}
	return true;
}

509 510 511
/*
 * find_existing_css_set() is a helper for
 * find_css_set(), and checks to see whether an existing
512
 * css_set is suitable.
513 514 515 516
 *
 * oldcg: the cgroup group that we're using before the cgroup
 * transition
 *
517
 * cgrp: the cgroup that we're moving into
518 519 520 521
 *
 * template: location in which to build the desired set of subsystem
 * state objects for the new cgroup group
 */
522 523 524
static struct css_set *find_existing_css_set(struct css_set *old_cset,
					struct cgroup *cgrp,
					struct cgroup_subsys_state *template[])
525 526
{
	int i;
527
	struct cgroupfs_root *root = cgrp->root;
528
	struct css_set *cset;
529
	unsigned long key;
530

B
Ben Blum 已提交
531 532 533 534 535
	/*
	 * Build the set of subsystem state objects that we want to see in the
	 * new css_set. while subsystems can change globally, the entries here
	 * won't change, so no need for locking.
	 */
536
	for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
537
		if (root->subsys_mask & (1UL << i)) {
538 539 540
			/* Subsystem is in this hierarchy. So we want
			 * the subsystem state from the new
			 * cgroup */
541
			template[i] = cgrp->subsys[i];
542 543 544
		} else {
			/* Subsystem is not in this hierarchy, so we
			 * don't want to change the subsystem state */
545
			template[i] = old_cset->subsys[i];
546 547 548
		}
	}

549
	key = css_set_hash(template);
550 551
	hash_for_each_possible(css_set_table, cset, hlist, key) {
		if (!compare_css_sets(cset, old_cset, cgrp, template))
552 553 554
			continue;

		/* This css_set matches what we need */
555
		return cset;
556
	}
557 558 559 560 561

	/* No existing cgroup group matched */
	return NULL;
}

562
static void free_cgrp_cset_links(struct list_head *links_to_free)
563
{
564
	struct cgrp_cset_link *link, *tmp_link;
565

566 567
	list_for_each_entry_safe(link, tmp_link, links_to_free, cset_link) {
		list_del(&link->cset_link);
568 569 570 571
		kfree(link);
	}
}

572 573 574 575 576 577 578
/**
 * allocate_cgrp_cset_links - allocate cgrp_cset_links
 * @count: the number of links to allocate
 * @tmp_links: list_head the allocated links are put on
 *
 * Allocate @count cgrp_cset_link structures and chain them on @tmp_links
 * through ->cset_link.  Returns 0 on success or -errno.
579
 */
580
static int allocate_cgrp_cset_links(int count, struct list_head *tmp_links)
581
{
582
	struct cgrp_cset_link *link;
583
	int i;
584 585 586

	INIT_LIST_HEAD(tmp_links);

587
	for (i = 0; i < count; i++) {
588
		link = kzalloc(sizeof(*link), GFP_KERNEL);
589
		if (!link) {
590
			free_cgrp_cset_links(tmp_links);
591 592
			return -ENOMEM;
		}
593
		list_add(&link->cset_link, tmp_links);
594 595 596 597
	}
	return 0;
}

598 599
/**
 * link_css_set - a helper function to link a css_set to a cgroup
600
 * @tmp_links: cgrp_cset_link objects allocated by allocate_cgrp_cset_links()
601
 * @cset: the css_set to be linked
602 603
 * @cgrp: the destination cgroup
 */
604 605
static void link_css_set(struct list_head *tmp_links, struct css_set *cset,
			 struct cgroup *cgrp)
606
{
607
	struct cgrp_cset_link *link;
608

609 610 611
	BUG_ON(list_empty(tmp_links));
	link = list_first_entry(tmp_links, struct cgrp_cset_link, cset_link);
	link->cset = cset;
612
	link->cgrp = cgrp;
613
	list_move(&link->cset_link, &cgrp->cset_links);
614 615 616 617
	/*
	 * Always add links to the tail of the list so that the list
	 * is sorted by order of hierarchy creation
	 */
618
	list_add_tail(&link->cgrp_link, &cset->cgrp_links);
619 620
}

621 622 623 624 625 626 627
/*
 * find_css_set() takes an existing cgroup group and a
 * cgroup object, and returns a css_set object that's
 * equivalent to the old group, but with the given cgroup
 * substituted into the appropriate hierarchy. Must be called with
 * cgroup_mutex held
 */
628 629
static struct css_set *find_css_set(struct css_set *old_cset,
				    struct cgroup *cgrp)
630
{
631
	struct css_set *cset;
632
	struct cgroup_subsys_state *template[CGROUP_SUBSYS_COUNT];
633 634
	struct list_head tmp_links;
	struct cgrp_cset_link *link;
635
	unsigned long key;
636

637 638
	/* First see if we already have a cgroup group that matches
	 * the desired set */
639
	read_lock(&css_set_lock);
640 641 642
	cset = find_existing_css_set(old_cset, cgrp, template);
	if (cset)
		get_css_set(cset);
643
	read_unlock(&css_set_lock);
644

645 646
	if (cset)
		return cset;
647

648
	cset = kzalloc(sizeof(*cset), GFP_KERNEL);
649
	if (!cset)
650 651
		return NULL;

652
	/* Allocate all the cgrp_cset_link objects that we'll need */
653
	if (allocate_cgrp_cset_links(cgroup_root_count, &tmp_links) < 0) {
654
		kfree(cset);
655 656 657
		return NULL;
	}

658
	atomic_set(&cset->refcount, 1);
659
	INIT_LIST_HEAD(&cset->cgrp_links);
660 661
	INIT_LIST_HEAD(&cset->tasks);
	INIT_HLIST_NODE(&cset->hlist);
662 663 664

	/* Copy the set of subsystem state objects generated in
	 * find_existing_css_set() */
665
	memcpy(cset->subsys, template, sizeof(cset->subsys));
666 667 668

	write_lock(&css_set_lock);
	/* Add reference counts and links from the new css_set. */
669
	list_for_each_entry(link, &old_cset->cgrp_links, cgrp_link) {
670
		struct cgroup *c = link->cgrp;
671

672 673
		if (c->root == cgrp->root)
			c = cgrp;
674
		link_css_set(&tmp_links, cset, c);
675
	}
676

677
	BUG_ON(!list_empty(&tmp_links));
678 679

	css_set_count++;
680 681

	/* Add this cgroup group to the hash table */
682 683
	key = css_set_hash(cset->subsys);
	hash_add(css_set_table, &cset->hlist, key);
684

685 686
	write_unlock(&css_set_lock);

687
	return cset;
688 689
}

690 691 692 693 694 695 696
/*
 * Return the cgroup for "task" from the given hierarchy. Must be
 * called with cgroup_mutex held.
 */
static struct cgroup *task_cgroup_from_root(struct task_struct *task,
					    struct cgroupfs_root *root)
{
697
	struct css_set *cset;
698 699 700 701 702 703 704 705 706
	struct cgroup *res = NULL;

	BUG_ON(!mutex_is_locked(&cgroup_mutex));
	read_lock(&css_set_lock);
	/*
	 * No need to lock the task - since we hold cgroup_mutex the
	 * task can't change groups, so the only thing that can happen
	 * is that it exits and its css is set back to init_css_set.
	 */
707 708
	cset = task->cgroups;
	if (cset == &init_css_set) {
709 710
		res = &root->top_cgroup;
	} else {
711 712 713
		struct cgrp_cset_link *link;

		list_for_each_entry(link, &cset->cgrp_links, cgrp_link) {
714
			struct cgroup *c = link->cgrp;
715

716 717 718 719 720 721 722 723 724 725 726
			if (c->root == root) {
				res = c;
				break;
			}
		}
	}
	read_unlock(&css_set_lock);
	BUG_ON(!res);
	return res;
}

727 728 729 730 731 732 733 734 735 736
/*
 * There is one global cgroup mutex. We also require taking
 * task_lock() when dereferencing a task's cgroup subsys pointers.
 * See "The task_lock() exception", at the end of this comment.
 *
 * A task must hold cgroup_mutex to modify cgroups.
 *
 * Any task can increment and decrement the count field without lock.
 * So in general, code holding cgroup_mutex can't rely on the count
 * field not changing.  However, if the count goes to zero, then only
737
 * cgroup_attach_task() can increment it again.  Because a count of zero
738 739 740 741 742 743 744 745 746 747 748 749 750
 * means that no tasks are currently attached, therefore there is no
 * way a task attached to that cgroup can fork (the other way to
 * increment the count).  So code holding cgroup_mutex can safely
 * assume that if the count is zero, it will stay zero. Similarly, if
 * a task holds cgroup_mutex on a cgroup with zero count, it
 * knows that the cgroup won't be removed, as cgroup_rmdir()
 * needs that mutex.
 *
 * The fork and exit callbacks cgroup_fork() and cgroup_exit(), don't
 * (usually) take cgroup_mutex.  These are the two most performance
 * critical pieces of code here.  The exception occurs on cgroup_exit(),
 * when a task in a notify_on_release cgroup exits.  Then cgroup_mutex
 * is taken, and if the cgroup count is zero, a usermode call made
L
Li Zefan 已提交
751 752
 * to the release agent with the name of the cgroup (path relative to
 * the root of cgroup file system) as the argument.
753 754 755 756 757 758 759 760 761 762 763
 *
 * A cgroup can only be deleted if both its 'count' of using tasks
 * is zero, and its list of 'children' cgroups is empty.  Since all
 * tasks in the system use _some_ cgroup, and since there is always at
 * least one task in the system (init, pid == 1), therefore, top_cgroup
 * always has either children cgroups and/or using tasks.  So we don't
 * need a special hack to ensure that top_cgroup cannot be deleted.
 *
 *	The task_lock() exception
 *
 * The need for this exception arises from the action of
764
 * cgroup_attach_task(), which overwrites one task's cgroup pointer with
L
Li Zefan 已提交
765
 * another.  It does so using cgroup_mutex, however there are
766 767 768
 * several performance critical places that need to reference
 * task->cgroup without the expense of grabbing a system global
 * mutex.  Therefore except as noted below, when dereferencing or, as
769
 * in cgroup_attach_task(), modifying a task's cgroup pointer we use
770 771 772 773
 * task_lock(), which acts on a spinlock (task->alloc_lock) already in
 * the task_struct routinely used for such matters.
 *
 * P.S.  One more locking exception.  RCU is used to guard the
774
 * update of a tasks cgroup pointer by cgroup_attach_task()
775 776 777 778 779 780 781 782 783
 */

/*
 * A couple of forward declarations required, due to cyclic reference loop:
 * cgroup_mkdir -> cgroup_create -> cgroup_populate_dir ->
 * cgroup_add_file -> cgroup_create_file -> cgroup_dir_inode_operations
 * -> cgroup_mkdir.
 */

784
static int cgroup_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode);
A
Al Viro 已提交
785
static struct dentry *cgroup_lookup(struct inode *, struct dentry *, unsigned int);
786
static int cgroup_rmdir(struct inode *unused_dir, struct dentry *dentry);
787 788
static int cgroup_populate_dir(struct cgroup *cgrp, bool base_files,
			       unsigned long subsys_mask);
789
static const struct inode_operations cgroup_dir_inode_operations;
790
static const struct file_operations proc_cgroupstats_operations;
791 792

static struct backing_dev_info cgroup_backing_dev_info = {
793
	.name		= "cgroup",
794
	.capabilities	= BDI_CAP_NO_ACCT_AND_WRITEBACK,
795
};
796

K
KAMEZAWA Hiroyuki 已提交
797 798 799
static int alloc_css_id(struct cgroup_subsys *ss,
			struct cgroup *parent, struct cgroup *child);

A
Al Viro 已提交
800
static struct inode *cgroup_new_inode(umode_t mode, struct super_block *sb)
801 802 803 804
{
	struct inode *inode = new_inode(sb);

	if (inode) {
805
		inode->i_ino = get_next_ino();
806
		inode->i_mode = mode;
807 808
		inode->i_uid = current_fsuid();
		inode->i_gid = current_fsgid();
809 810 811 812 813 814
		inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
		inode->i_mapping->backing_dev_info = &cgroup_backing_dev_info;
	}
	return inode;
}

815 816 817 818 819 820 821 822 823 824 825
static struct cgroup_name *cgroup_alloc_name(struct dentry *dentry)
{
	struct cgroup_name *name;

	name = kmalloc(sizeof(*name) + dentry->d_name.len + 1, GFP_KERNEL);
	if (!name)
		return NULL;
	strcpy(name->name, dentry->d_name.name);
	return name;
}

826 827
static void cgroup_free_fn(struct work_struct *work)
{
828
	struct cgroup *cgrp = container_of(work, struct cgroup, destroy_work);
829 830 831 832 833 834 835 836 837 838 839 840
	struct cgroup_subsys *ss;

	mutex_lock(&cgroup_mutex);
	/*
	 * Release the subsystem state objects.
	 */
	for_each_subsys(cgrp->root, ss)
		ss->css_free(cgrp);

	cgrp->root->number_of_cgroups--;
	mutex_unlock(&cgroup_mutex);

841 842 843 844 845 846 847
	/*
	 * We get a ref to the parent's dentry, and put the ref when
	 * this cgroup is being freed, so it's guaranteed that the
	 * parent won't be destroyed before its children.
	 */
	dput(cgrp->parent->dentry);

848 849
	ida_simple_remove(&cgrp->root->cgroup_ida, cgrp->id);

850 851
	/*
	 * Drop the active superblock reference that we took when we
852 853
	 * created the cgroup. This will free cgrp->root, if we are
	 * holding the last reference to @sb.
854 855 856 857 858 859 860 861 862 863 864
	 */
	deactivate_super(cgrp->root->sb);

	/*
	 * if we're getting rid of the cgroup, refcount should ensure
	 * that there are no pidlists left.
	 */
	BUG_ON(!list_empty(&cgrp->pidlists));

	simple_xattrs_free(&cgrp->xattrs);

865
	kfree(rcu_dereference_raw(cgrp->name));
866 867 868 869 870 871 872
	kfree(cgrp);
}

static void cgroup_free_rcu(struct rcu_head *head)
{
	struct cgroup *cgrp = container_of(head, struct cgroup, rcu_head);

873 874
	INIT_WORK(&cgrp->destroy_work, cgroup_free_fn);
	schedule_work(&cgrp->destroy_work);
875 876
}

877 878 879 880
static void cgroup_diput(struct dentry *dentry, struct inode *inode)
{
	/* is dentry a directory ? if so, kfree() associated cgroup */
	if (S_ISDIR(inode->i_mode)) {
881
		struct cgroup *cgrp = dentry->d_fsdata;
882

883
		BUG_ON(!(cgroup_is_dead(cgrp)));
884
		call_rcu(&cgrp->rcu_head, cgroup_free_rcu);
T
Tejun Heo 已提交
885 886 887 888 889 890 891
	} else {
		struct cfent *cfe = __d_cfe(dentry);
		struct cgroup *cgrp = dentry->d_parent->d_fsdata;

		WARN_ONCE(!list_empty(&cfe->node) &&
			  cgrp != &cgrp->root->top_cgroup,
			  "cfe still linked for %s\n", cfe->type->name);
L
Li Zefan 已提交
892
		simple_xattrs_free(&cfe->xattrs);
T
Tejun Heo 已提交
893
		kfree(cfe);
894 895 896 897
	}
	iput(inode);
}

898 899 900 901 902
static int cgroup_delete(const struct dentry *d)
{
	return 1;
}

903 904 905 906 907 908 909 910 911
static void remove_dir(struct dentry *d)
{
	struct dentry *parent = dget(d->d_parent);

	d_delete(d);
	simple_rmdir(parent->d_inode, d);
	dput(parent);
}

912
static void cgroup_rm_file(struct cgroup *cgrp, const struct cftype *cft)
T
Tejun Heo 已提交
913 914 915 916 917 918
{
	struct cfent *cfe;

	lockdep_assert_held(&cgrp->dentry->d_inode->i_mutex);
	lockdep_assert_held(&cgroup_mutex);

919 920 921 922
	/*
	 * If we're doing cleanup due to failure of cgroup_create(),
	 * the corresponding @cfe may not exist.
	 */
T
Tejun Heo 已提交
923 924 925 926 927 928 929 930
	list_for_each_entry(cfe, &cgrp->files, node) {
		struct dentry *d = cfe->dentry;

		if (cft && cfe->type != cft)
			continue;

		dget(d);
		d_delete(d);
931
		simple_unlink(cgrp->dentry->d_inode, d);
T
Tejun Heo 已提交
932 933 934
		list_del_init(&cfe->node);
		dput(d);

935
		break;
936
	}
T
Tejun Heo 已提交
937 938
}

939 940 941 942 943 944 945 946
/**
 * cgroup_clear_directory - selective removal of base and subsystem files
 * @dir: directory containing the files
 * @base_files: true if the base files should be removed
 * @subsys_mask: mask of the subsystem ids whose files should be removed
 */
static void cgroup_clear_directory(struct dentry *dir, bool base_files,
				   unsigned long subsys_mask)
T
Tejun Heo 已提交
947 948
{
	struct cgroup *cgrp = __d_cgrp(dir);
949
	struct cgroup_subsys *ss;
T
Tejun Heo 已提交
950

951 952 953 954 955
	for_each_subsys(cgrp->root, ss) {
		struct cftype_set *set;
		if (!test_bit(ss->subsys_id, &subsys_mask))
			continue;
		list_for_each_entry(set, &ss->cftsets, node)
956
			cgroup_addrm_files(cgrp, NULL, set->cfts, false);
957 958 959 960 961
	}
	if (base_files) {
		while (!list_empty(&cgrp->files))
			cgroup_rm_file(cgrp, NULL);
	}
962 963 964 965 966 967 968
}

/*
 * NOTE : the dentry must have been dget()'ed
 */
static void cgroup_d_remove_dir(struct dentry *dentry)
{
N
Nick Piggin 已提交
969
	struct dentry *parent;
970
	struct cgroupfs_root *root = dentry->d_sb->s_fs_info;
N
Nick Piggin 已提交
971

972
	cgroup_clear_directory(dentry, true, root->subsys_mask);
973

N
Nick Piggin 已提交
974 975
	parent = dentry->d_parent;
	spin_lock(&parent->d_lock);
976
	spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
977
	list_del_init(&dentry->d_u.d_child);
N
Nick Piggin 已提交
978 979
	spin_unlock(&dentry->d_lock);
	spin_unlock(&parent->d_lock);
980 981 982
	remove_dir(dentry);
}

B
Ben Blum 已提交
983
/*
B
Ben Blum 已提交
984 985 986
 * Call with cgroup_mutex held. Drops reference counts on modules, including
 * any duplicate ones that parse_cgroupfs_options took. If this function
 * returns an error, no reference counts are touched.
B
Ben Blum 已提交
987
 */
988
static int rebind_subsystems(struct cgroupfs_root *root,
989
			      unsigned long final_subsys_mask)
990
{
991
	unsigned long added_mask, removed_mask;
992
	struct cgroup *cgrp = &root->top_cgroup;
993 994
	int i;

B
Ben Blum 已提交
995
	BUG_ON(!mutex_is_locked(&cgroup_mutex));
T
Tejun Heo 已提交
996
	BUG_ON(!mutex_is_locked(&cgroup_root_mutex));
B
Ben Blum 已提交
997

998 999
	removed_mask = root->actual_subsys_mask & ~final_subsys_mask;
	added_mask = final_subsys_mask & ~root->actual_subsys_mask;
1000 1001
	/* Check that any added subsystems are currently free */
	for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
L
Li Zefan 已提交
1002
		unsigned long bit = 1UL << i;
1003
		struct cgroup_subsys *ss = cgroup_subsys[i];
1004
		if (!(bit & added_mask))
1005
			continue;
B
Ben Blum 已提交
1006 1007 1008 1009 1010 1011
		/*
		 * Nobody should tell us to do a subsys that doesn't exist:
		 * parse_cgroupfs_options should catch that case and refcounts
		 * ensure that subsystems won't disappear once selected.
		 */
		BUG_ON(ss == NULL);
1012
		if (ss->root != &cgroup_dummy_root) {
1013 1014 1015 1016 1017 1018 1019 1020 1021
			/* Subsystem isn't free */
			return -EBUSY;
		}
	}

	/* Currently we don't handle adding/removing subsystems when
	 * any child cgroups exist. This is theoretically supportable
	 * but involves complex error handling, so it's being left until
	 * later */
1022
	if (root->number_of_cgroups > 1)
1023 1024 1025 1026
		return -EBUSY;

	/* Process each subsystem */
	for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
1027
		struct cgroup_subsys *ss = cgroup_subsys[i];
1028
		unsigned long bit = 1UL << i;
1029
		if (bit & added_mask) {
1030
			/* We're binding this subsystem to this hierarchy */
B
Ben Blum 已提交
1031
			BUG_ON(ss == NULL);
1032
			BUG_ON(cgrp->subsys[i]);
1033 1034 1035
			BUG_ON(!cgroup_dummy_top->subsys[i]);
			BUG_ON(cgroup_dummy_top->subsys[i]->cgroup != cgroup_dummy_top);
			cgrp->subsys[i] = cgroup_dummy_top->subsys[i];
1036
			cgrp->subsys[i]->cgroup = cgrp;
1037
			list_move(&ss->sibling, &root->subsys_list);
1038
			ss->root = root;
1039
			if (ss->bind)
1040
				ss->bind(cgrp);
B
Ben Blum 已提交
1041
			/* refcount was already taken, and we're keeping it */
1042
		} else if (bit & removed_mask) {
1043
			/* We're removing this subsystem */
B
Ben Blum 已提交
1044
			BUG_ON(ss == NULL);
1045
			BUG_ON(cgrp->subsys[i] != cgroup_dummy_top->subsys[i]);
1046
			BUG_ON(cgrp->subsys[i]->cgroup != cgrp);
1047
			if (ss->bind)
1048 1049
				ss->bind(cgroup_dummy_top);
			cgroup_dummy_top->subsys[i]->cgroup = cgroup_dummy_top;
1050
			cgrp->subsys[i] = NULL;
1051 1052
			cgroup_subsys[i]->root = &cgroup_dummy_root;
			list_move(&ss->sibling, &cgroup_dummy_root.subsys_list);
B
Ben Blum 已提交
1053 1054
			/* subsystem is now free - drop reference on module */
			module_put(ss->module);
1055
		} else if (bit & final_subsys_mask) {
1056
			/* Subsystem state should already exist */
B
Ben Blum 已提交
1057
			BUG_ON(ss == NULL);
1058
			BUG_ON(!cgrp->subsys[i]);
B
Ben Blum 已提交
1059 1060 1061 1062 1063 1064 1065 1066
			/*
			 * a refcount was taken, but we already had one, so
			 * drop the extra reference.
			 */
			module_put(ss->module);
#ifdef CONFIG_MODULE_UNLOAD
			BUG_ON(ss->module && !module_refcount(ss->module));
#endif
1067 1068
		} else {
			/* Subsystem state shouldn't exist */
1069
			BUG_ON(cgrp->subsys[i]);
1070 1071
		}
	}
1072
	root->subsys_mask = root->actual_subsys_mask = final_subsys_mask;
1073 1074 1075 1076

	return 0;
}

1077
static int cgroup_show_options(struct seq_file *seq, struct dentry *dentry)
1078
{
1079
	struct cgroupfs_root *root = dentry->d_sb->s_fs_info;
1080 1081
	struct cgroup_subsys *ss;

T
Tejun Heo 已提交
1082
	mutex_lock(&cgroup_root_mutex);
1083 1084
	for_each_subsys(root, ss)
		seq_printf(seq, ",%s", ss->name);
1085 1086
	if (root->flags & CGRP_ROOT_SANE_BEHAVIOR)
		seq_puts(seq, ",sane_behavior");
1087
	if (root->flags & CGRP_ROOT_NOPREFIX)
1088
		seq_puts(seq, ",noprefix");
1089
	if (root->flags & CGRP_ROOT_XATTR)
A
Aristeu Rozanski 已提交
1090
		seq_puts(seq, ",xattr");
1091 1092
	if (strlen(root->release_agent_path))
		seq_printf(seq, ",release_agent=%s", root->release_agent_path);
1093
	if (test_bit(CGRP_CPUSET_CLONE_CHILDREN, &root->top_cgroup.flags))
1094
		seq_puts(seq, ",clone_children");
1095 1096
	if (strlen(root->name))
		seq_printf(seq, ",name=%s", root->name);
T
Tejun Heo 已提交
1097
	mutex_unlock(&cgroup_root_mutex);
1098 1099 1100 1101
	return 0;
}

struct cgroup_sb_opts {
1102
	unsigned long subsys_mask;
1103
	unsigned long flags;
1104
	char *release_agent;
1105
	bool cpuset_clone_children;
1106
	char *name;
1107 1108
	/* User explicitly requested empty subsystem */
	bool none;
1109 1110

	struct cgroupfs_root *new_root;
1111

1112 1113
};

B
Ben Blum 已提交
1114
/*
1115 1116 1117 1118
 * Convert a hierarchy specifier into a bitmask of subsystems and
 * flags. Call with cgroup_mutex held to protect the cgroup_subsys[]
 * array. This function takes refcounts on subsystems to be used, unless it
 * returns error, in which case no refcounts are taken.
B
Ben Blum 已提交
1119
 */
B
Ben Blum 已提交
1120
static int parse_cgroupfs_options(char *data, struct cgroup_sb_opts *opts)
1121
{
1122 1123
	char *token, *o = data;
	bool all_ss = false, one_ss = false;
1124
	unsigned long mask = (unsigned long)-1;
B
Ben Blum 已提交
1125 1126
	int i;
	bool module_pin_failed = false;
1127

B
Ben Blum 已提交
1128 1129
	BUG_ON(!mutex_is_locked(&cgroup_mutex));

1130 1131 1132
#ifdef CONFIG_CPUSETS
	mask = ~(1UL << cpuset_subsys_id);
#endif
1133

1134
	memset(opts, 0, sizeof(*opts));
1135 1136 1137 1138

	while ((token = strsep(&o, ",")) != NULL) {
		if (!*token)
			return -EINVAL;
1139
		if (!strcmp(token, "none")) {
1140 1141
			/* Explicitly have no subsystems */
			opts->none = true;
1142 1143 1144 1145 1146 1147 1148 1149 1150
			continue;
		}
		if (!strcmp(token, "all")) {
			/* Mutually exclusive option 'all' + subsystem name */
			if (one_ss)
				return -EINVAL;
			all_ss = true;
			continue;
		}
1151 1152 1153 1154
		if (!strcmp(token, "__DEVEL__sane_behavior")) {
			opts->flags |= CGRP_ROOT_SANE_BEHAVIOR;
			continue;
		}
1155
		if (!strcmp(token, "noprefix")) {
1156
			opts->flags |= CGRP_ROOT_NOPREFIX;
1157 1158 1159
			continue;
		}
		if (!strcmp(token, "clone_children")) {
1160
			opts->cpuset_clone_children = true;
1161 1162
			continue;
		}
A
Aristeu Rozanski 已提交
1163
		if (!strcmp(token, "xattr")) {
1164
			opts->flags |= CGRP_ROOT_XATTR;
A
Aristeu Rozanski 已提交
1165 1166
			continue;
		}
1167
		if (!strncmp(token, "release_agent=", 14)) {
1168 1169 1170
			/* Specifying two release agents is forbidden */
			if (opts->release_agent)
				return -EINVAL;
1171
			opts->release_agent =
1172
				kstrndup(token + 14, PATH_MAX - 1, GFP_KERNEL);
1173 1174
			if (!opts->release_agent)
				return -ENOMEM;
1175 1176 1177
			continue;
		}
		if (!strncmp(token, "name=", 5)) {
1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194
			const char *name = token + 5;
			/* Can't specify an empty name */
			if (!strlen(name))
				return -EINVAL;
			/* Must match [\w.-]+ */
			for (i = 0; i < strlen(name); i++) {
				char c = name[i];
				if (isalnum(c))
					continue;
				if ((c == '.') || (c == '-') || (c == '_'))
					continue;
				return -EINVAL;
			}
			/* Specifying two names is forbidden */
			if (opts->name)
				return -EINVAL;
			opts->name = kstrndup(name,
1195
					      MAX_CGROUP_ROOT_NAMELEN - 1,
1196 1197 1198
					      GFP_KERNEL);
			if (!opts->name)
				return -ENOMEM;
1199 1200 1201 1202 1203

			continue;
		}

		for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
1204
			struct cgroup_subsys *ss = cgroup_subsys[i];
1205 1206 1207 1208 1209 1210 1211 1212 1213 1214
			if (ss == NULL)
				continue;
			if (strcmp(token, ss->name))
				continue;
			if (ss->disabled)
				continue;

			/* Mutually exclusive option 'all' + subsystem name */
			if (all_ss)
				return -EINVAL;
1215
			set_bit(i, &opts->subsys_mask);
1216 1217 1218 1219 1220 1221 1222 1223 1224 1225
			one_ss = true;

			break;
		}
		if (i == CGROUP_SUBSYS_COUNT)
			return -ENOENT;
	}

	/*
	 * If the 'all' option was specified select all the subsystems,
1226 1227
	 * otherwise if 'none', 'name=' and a subsystem name options
	 * were not specified, let's default to 'all'
1228
	 */
1229
	if (all_ss || (!one_ss && !opts->none && !opts->name)) {
1230
		for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
1231
			struct cgroup_subsys *ss = cgroup_subsys[i];
1232 1233 1234 1235
			if (ss == NULL)
				continue;
			if (ss->disabled)
				continue;
1236
			set_bit(i, &opts->subsys_mask);
1237 1238 1239
		}
	}

1240 1241
	/* Consistency checks */

1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255
	if (opts->flags & CGRP_ROOT_SANE_BEHAVIOR) {
		pr_warning("cgroup: sane_behavior: this is still under development and its behaviors will change, proceed at your own risk\n");

		if (opts->flags & CGRP_ROOT_NOPREFIX) {
			pr_err("cgroup: sane_behavior: noprefix is not allowed\n");
			return -EINVAL;
		}

		if (opts->cpuset_clone_children) {
			pr_err("cgroup: sane_behavior: clone_children is not allowed\n");
			return -EINVAL;
		}
	}

1256 1257 1258 1259 1260
	/*
	 * Option noprefix was introduced just for backward compatibility
	 * with the old cpuset, so we allow noprefix only if mounting just
	 * the cpuset subsystem.
	 */
1261
	if ((opts->flags & CGRP_ROOT_NOPREFIX) && (opts->subsys_mask & mask))
1262 1263
		return -EINVAL;

1264 1265

	/* Can't specify "none" and some subsystems */
1266
	if (opts->subsys_mask && opts->none)
1267 1268 1269 1270 1271 1272
		return -EINVAL;

	/*
	 * We either have to specify by name or by subsystems. (So all
	 * empty hierarchies must have a name).
	 */
1273
	if (!opts->subsys_mask && !opts->name)
1274 1275
		return -EINVAL;

B
Ben Blum 已提交
1276 1277 1278 1279 1280 1281
	/*
	 * Grab references on all the modules we'll need, so the subsystems
	 * don't dance around before rebind_subsystems attaches them. This may
	 * take duplicate reference counts on a subsystem that's already used,
	 * but rebind_subsystems handles this case.
	 */
1282
	for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
B
Ben Blum 已提交
1283 1284
		unsigned long bit = 1UL << i;

1285
		if (!(bit & opts->subsys_mask))
B
Ben Blum 已提交
1286
			continue;
1287
		if (!try_module_get(cgroup_subsys[i]->module)) {
B
Ben Blum 已提交
1288 1289 1290 1291 1292 1293 1294 1295 1296 1297
			module_pin_failed = true;
			break;
		}
	}
	if (module_pin_failed) {
		/*
		 * oops, one of the modules was going away. this means that we
		 * raced with a module_delete call, and to the user this is
		 * essentially a "subsystem doesn't exist" case.
		 */
1298
		for (i--; i >= 0; i--) {
B
Ben Blum 已提交
1299 1300 1301
			/* drop refcounts only on the ones we took */
			unsigned long bit = 1UL << i;

1302
			if (!(bit & opts->subsys_mask))
B
Ben Blum 已提交
1303
				continue;
1304
			module_put(cgroup_subsys[i]->module);
B
Ben Blum 已提交
1305 1306 1307 1308
		}
		return -ENOENT;
	}

1309 1310 1311
	return 0;
}

1312
static void drop_parsed_module_refcounts(unsigned long subsys_mask)
B
Ben Blum 已提交
1313 1314
{
	int i;
1315
	for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
B
Ben Blum 已提交
1316 1317
		unsigned long bit = 1UL << i;

1318
		if (!(bit & subsys_mask))
B
Ben Blum 已提交
1319
			continue;
1320
		module_put(cgroup_subsys[i]->module);
B
Ben Blum 已提交
1321 1322 1323
	}
}

1324 1325 1326 1327
static int cgroup_remount(struct super_block *sb, int *flags, char *data)
{
	int ret = 0;
	struct cgroupfs_root *root = sb->s_fs_info;
1328
	struct cgroup *cgrp = &root->top_cgroup;
1329
	struct cgroup_sb_opts opts;
1330
	unsigned long added_mask, removed_mask;
1331

1332 1333 1334 1335 1336
	if (root->flags & CGRP_ROOT_SANE_BEHAVIOR) {
		pr_err("cgroup: sane_behavior: remount is not allowed\n");
		return -EINVAL;
	}

1337
	mutex_lock(&cgrp->dentry->d_inode->i_mutex);
1338
	mutex_lock(&cgroup_mutex);
T
Tejun Heo 已提交
1339
	mutex_lock(&cgroup_root_mutex);
1340 1341 1342 1343 1344 1345

	/* See what subsystems are wanted */
	ret = parse_cgroupfs_options(data, &opts);
	if (ret)
		goto out_unlock;

1346
	if (opts.subsys_mask != root->actual_subsys_mask || opts.release_agent)
1347 1348 1349
		pr_warning("cgroup: option changes via remount are deprecated (pid=%d comm=%s)\n",
			   task_tgid_nr(current), current->comm);

1350 1351
	added_mask = opts.subsys_mask & ~root->subsys_mask;
	removed_mask = root->subsys_mask & ~opts.subsys_mask;
1352

B
Ben Blum 已提交
1353 1354 1355
	/* Don't allow flags or name to change at remount */
	if (opts.flags != root->flags ||
	    (opts.name && strcmp(opts.name, root->name))) {
1356
		ret = -EINVAL;
1357
		drop_parsed_module_refcounts(opts.subsys_mask);
1358 1359 1360
		goto out_unlock;
	}

1361 1362 1363 1364 1365 1366 1367
	/*
	 * Clear out the files of subsystems that should be removed, do
	 * this before rebind_subsystems, since rebind_subsystems may
	 * change this hierarchy's subsys_list.
	 */
	cgroup_clear_directory(cgrp->dentry, false, removed_mask);

1368
	ret = rebind_subsystems(root, opts.subsys_mask);
B
Ben Blum 已提交
1369
	if (ret) {
1370 1371
		/* rebind_subsystems failed, re-populate the removed files */
		cgroup_populate_dir(cgrp, false, removed_mask);
1372
		drop_parsed_module_refcounts(opts.subsys_mask);
1373
		goto out_unlock;
B
Ben Blum 已提交
1374
	}
1375

1376
	/* re-populate subsystem files */
1377
	cgroup_populate_dir(cgrp, false, added_mask);
1378

1379 1380
	if (opts.release_agent)
		strcpy(root->release_agent_path, opts.release_agent);
1381
 out_unlock:
1382
	kfree(opts.release_agent);
1383
	kfree(opts.name);
T
Tejun Heo 已提交
1384
	mutex_unlock(&cgroup_root_mutex);
1385
	mutex_unlock(&cgroup_mutex);
1386
	mutex_unlock(&cgrp->dentry->d_inode->i_mutex);
1387 1388 1389
	return ret;
}

1390
static const struct super_operations cgroup_ops = {
1391 1392 1393 1394 1395 1396
	.statfs = simple_statfs,
	.drop_inode = generic_delete_inode,
	.show_options = cgroup_show_options,
	.remount_fs = cgroup_remount,
};

1397 1398 1399 1400
static void init_cgroup_housekeeping(struct cgroup *cgrp)
{
	INIT_LIST_HEAD(&cgrp->sibling);
	INIT_LIST_HEAD(&cgrp->children);
T
Tejun Heo 已提交
1401
	INIT_LIST_HEAD(&cgrp->files);
1402
	INIT_LIST_HEAD(&cgrp->cset_links);
1403
	INIT_LIST_HEAD(&cgrp->release_list);
1404 1405
	INIT_LIST_HEAD(&cgrp->pidlists);
	mutex_init(&cgrp->pidlist_mutex);
1406 1407
	INIT_LIST_HEAD(&cgrp->event_list);
	spin_lock_init(&cgrp->event_list_lock);
A
Aristeu Rozanski 已提交
1408
	simple_xattrs_init(&cgrp->xattrs);
1409
}
1410

1411 1412
static void init_cgroup_root(struct cgroupfs_root *root)
{
1413
	struct cgroup *cgrp = &root->top_cgroup;
1414

1415 1416 1417
	INIT_LIST_HEAD(&root->subsys_list);
	INIT_LIST_HEAD(&root->root_list);
	root->number_of_cgroups = 1;
1418
	cgrp->root = root;
1419
	cgrp->name = &root_cgroup_name;
1420
	init_cgroup_housekeeping(cgrp);
1421 1422
}

1423
static int cgroup_init_root_id(struct cgroupfs_root *root)
1424
{
1425
	int id;
1426

T
Tejun Heo 已提交
1427 1428 1429
	lockdep_assert_held(&cgroup_mutex);
	lockdep_assert_held(&cgroup_root_mutex);

1430 1431 1432 1433 1434
	id = idr_alloc_cyclic(&cgroup_hierarchy_idr, root, 2, 0, GFP_KERNEL);
	if (id < 0)
		return id;

	root->hierarchy_id = id;
1435 1436 1437 1438 1439
	return 0;
}

static void cgroup_exit_root_id(struct cgroupfs_root *root)
{
T
Tejun Heo 已提交
1440 1441 1442
	lockdep_assert_held(&cgroup_mutex);
	lockdep_assert_held(&cgroup_root_mutex);

1443
	if (root->hierarchy_id) {
1444
		idr_remove(&cgroup_hierarchy_idr, root->hierarchy_id);
1445 1446
		root->hierarchy_id = 0;
	}
1447 1448
}

1449 1450
static int cgroup_test_super(struct super_block *sb, void *data)
{
1451
	struct cgroup_sb_opts *opts = data;
1452 1453
	struct cgroupfs_root *root = sb->s_fs_info;

1454 1455 1456
	/* If we asked for a name then it must match */
	if (opts->name && strcmp(opts->name, root->name))
		return 0;
1457

1458 1459 1460 1461
	/*
	 * If we asked for subsystems (or explicitly for no
	 * subsystems) then they must match
	 */
1462 1463
	if ((opts->subsys_mask || opts->none)
	    && (opts->subsys_mask != root->subsys_mask))
1464 1465 1466 1467 1468
		return 0;

	return 1;
}

1469 1470 1471 1472
static struct cgroupfs_root *cgroup_root_from_opts(struct cgroup_sb_opts *opts)
{
	struct cgroupfs_root *root;

1473
	if (!opts->subsys_mask && !opts->none)
1474 1475 1476 1477 1478 1479 1480
		return NULL;

	root = kzalloc(sizeof(*root), GFP_KERNEL);
	if (!root)
		return ERR_PTR(-ENOMEM);

	init_cgroup_root(root);
1481

1482
	root->subsys_mask = opts->subsys_mask;
1483
	root->flags = opts->flags;
T
Tejun Heo 已提交
1484
	ida_init(&root->cgroup_ida);
1485 1486 1487 1488
	if (opts->release_agent)
		strcpy(root->release_agent_path, opts->release_agent);
	if (opts->name)
		strcpy(root->name, opts->name);
1489 1490
	if (opts->cpuset_clone_children)
		set_bit(CGRP_CPUSET_CLONE_CHILDREN, &root->top_cgroup.flags);
1491 1492 1493
	return root;
}

1494
static void cgroup_free_root(struct cgroupfs_root *root)
1495
{
1496 1497 1498
	if (root) {
		/* hierarhcy ID shoulid already have been released */
		WARN_ON_ONCE(root->hierarchy_id);
1499

1500 1501 1502
		ida_destroy(&root->cgroup_ida);
		kfree(root);
	}
1503 1504
}

1505 1506 1507
static int cgroup_set_super(struct super_block *sb, void *data)
{
	int ret;
1508 1509 1510 1511 1512 1513
	struct cgroup_sb_opts *opts = data;

	/* If we don't have a new root, we can't set up a new sb */
	if (!opts->new_root)
		return -EINVAL;

1514
	BUG_ON(!opts->subsys_mask && !opts->none);
1515 1516 1517 1518 1519

	ret = set_anon_super(sb, NULL);
	if (ret)
		return ret;

1520 1521
	sb->s_fs_info = opts->new_root;
	opts->new_root->sb = sb;
1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532

	sb->s_blocksize = PAGE_CACHE_SIZE;
	sb->s_blocksize_bits = PAGE_CACHE_SHIFT;
	sb->s_magic = CGROUP_SUPER_MAGIC;
	sb->s_op = &cgroup_ops;

	return 0;
}

static int cgroup_get_rootdir(struct super_block *sb)
{
A
Al Viro 已提交
1533 1534
	static const struct dentry_operations cgroup_dops = {
		.d_iput = cgroup_diput,
1535
		.d_delete = cgroup_delete,
A
Al Viro 已提交
1536 1537
	};

1538 1539 1540 1541 1542 1543 1544 1545 1546 1547
	struct inode *inode =
		cgroup_new_inode(S_IFDIR | S_IRUGO | S_IXUGO | S_IWUSR, sb);

	if (!inode)
		return -ENOMEM;

	inode->i_fop = &simple_dir_operations;
	inode->i_op = &cgroup_dir_inode_operations;
	/* directories start off with i_nlink == 2 (for "." entry) */
	inc_nlink(inode);
1548 1549
	sb->s_root = d_make_root(inode);
	if (!sb->s_root)
1550
		return -ENOMEM;
A
Al Viro 已提交
1551 1552
	/* for everything else we want ->d_op set */
	sb->s_d_op = &cgroup_dops;
1553 1554 1555
	return 0;
}

A
Al Viro 已提交
1556
static struct dentry *cgroup_mount(struct file_system_type *fs_type,
1557
			 int flags, const char *unused_dev_name,
A
Al Viro 已提交
1558
			 void *data)
1559 1560
{
	struct cgroup_sb_opts opts;
1561
	struct cgroupfs_root *root;
1562 1563
	int ret = 0;
	struct super_block *sb;
1564
	struct cgroupfs_root *new_root;
T
Tejun Heo 已提交
1565
	struct inode *inode;
1566 1567

	/* First find the desired set of subsystems */
B
Ben Blum 已提交
1568
	mutex_lock(&cgroup_mutex);
1569
	ret = parse_cgroupfs_options(data, &opts);
B
Ben Blum 已提交
1570
	mutex_unlock(&cgroup_mutex);
1571 1572
	if (ret)
		goto out_err;
1573

1574 1575 1576 1577 1578 1579 1580
	/*
	 * Allocate a new cgroup root. We may not need it if we're
	 * reusing an existing hierarchy.
	 */
	new_root = cgroup_root_from_opts(&opts);
	if (IS_ERR(new_root)) {
		ret = PTR_ERR(new_root);
B
Ben Blum 已提交
1581
		goto drop_modules;
1582
	}
1583
	opts.new_root = new_root;
1584

1585
	/* Locate an existing or new sb for this hierarchy */
D
David Howells 已提交
1586
	sb = sget(fs_type, cgroup_test_super, cgroup_set_super, 0, &opts);
1587
	if (IS_ERR(sb)) {
1588
		ret = PTR_ERR(sb);
1589
		cgroup_free_root(opts.new_root);
B
Ben Blum 已提交
1590
		goto drop_modules;
1591 1592
	}

1593 1594 1595 1596
	root = sb->s_fs_info;
	BUG_ON(!root);
	if (root == opts.new_root) {
		/* We used the new root structure, so this is a new hierarchy */
1597
		struct list_head tmp_links;
1598
		struct cgroup *root_cgrp = &root->top_cgroup;
1599
		struct cgroupfs_root *existing_root;
1600
		const struct cred *cred;
1601
		int i;
1602
		struct css_set *cset;
1603 1604 1605 1606 1607 1608

		BUG_ON(sb->s_root != NULL);

		ret = cgroup_get_rootdir(sb);
		if (ret)
			goto drop_new_super;
1609
		inode = sb->s_root->d_inode;
1610

1611
		mutex_lock(&inode->i_mutex);
1612
		mutex_lock(&cgroup_mutex);
T
Tejun Heo 已提交
1613
		mutex_lock(&cgroup_root_mutex);
1614

T
Tejun Heo 已提交
1615 1616 1617 1618 1619 1620
		/* Check for name clashes with existing mounts */
		ret = -EBUSY;
		if (strlen(root->name))
			for_each_active_root(existing_root)
				if (!strcmp(existing_root->name, root->name))
					goto unlock_drop;
1621

1622 1623 1624 1625 1626 1627 1628
		/*
		 * We're accessing css_set_count without locking
		 * css_set_lock here, but that's OK - it can only be
		 * increased by someone holding cgroup_lock, and
		 * that's us. The worst that can happen is that we
		 * have some link structures left over
		 */
1629
		ret = allocate_cgrp_cset_links(css_set_count, &tmp_links);
T
Tejun Heo 已提交
1630 1631
		if (ret)
			goto unlock_drop;
1632

1633 1634 1635 1636
		ret = cgroup_init_root_id(root);
		if (ret)
			goto unlock_drop;

1637
		ret = rebind_subsystems(root, root->subsys_mask);
1638
		if (ret == -EBUSY) {
1639
			free_cgrp_cset_links(&tmp_links);
T
Tejun Heo 已提交
1640
			goto unlock_drop;
1641
		}
B
Ben Blum 已提交
1642 1643 1644 1645 1646
		/*
		 * There must be no failure case after here, since rebinding
		 * takes care of subsystems' refcounts, which are explicitly
		 * dropped in the failure exit path.
		 */
1647 1648 1649 1650

		/* EBUSY should be the only error here */
		BUG_ON(ret);

1651 1652
		list_add(&root->root_list, &cgroup_roots);
		cgroup_root_count++;
1653

1654
		sb->s_root->d_fsdata = root_cgrp;
1655 1656
		root->top_cgroup.dentry = sb->s_root;

1657 1658 1659
		/* Link the top cgroup in this hierarchy into all
		 * the css_set objects */
		write_lock(&css_set_lock);
1660
		hash_for_each(css_set_table, i, cset, hlist)
1661
			link_css_set(&tmp_links, cset, root_cgrp);
1662 1663
		write_unlock(&css_set_lock);

1664
		free_cgrp_cset_links(&tmp_links);
1665

1666
		BUG_ON(!list_empty(&root_cgrp->children));
1667 1668
		BUG_ON(root->number_of_cgroups != 1);

1669
		cred = override_creds(&init_cred);
1670
		cgroup_populate_dir(root_cgrp, true, root->subsys_mask);
1671
		revert_creds(cred);
T
Tejun Heo 已提交
1672
		mutex_unlock(&cgroup_root_mutex);
1673
		mutex_unlock(&cgroup_mutex);
1674
		mutex_unlock(&inode->i_mutex);
1675 1676 1677 1678 1679
	} else {
		/*
		 * We re-used an existing hierarchy - the new root (if
		 * any) is not needed
		 */
1680
		cgroup_free_root(opts.new_root);
1681

1682 1683 1684 1685 1686 1687 1688 1689
		if (root->flags != opts.flags) {
			if ((root->flags | opts.flags) & CGRP_ROOT_SANE_BEHAVIOR) {
				pr_err("cgroup: sane_behavior: new mount options should match the existing superblock\n");
				ret = -EINVAL;
				goto drop_new_super;
			} else {
				pr_warning("cgroup: new mount options do not match the existing superblock, will be ignored\n");
			}
1690 1691
		}

B
Ben Blum 已提交
1692
		/* no subsys rebinding, so refcounts don't change */
1693
		drop_parsed_module_refcounts(opts.subsys_mask);
1694 1695
	}

1696 1697
	kfree(opts.release_agent);
	kfree(opts.name);
A
Al Viro 已提交
1698
	return dget(sb->s_root);
1699

T
Tejun Heo 已提交
1700
 unlock_drop:
1701
	cgroup_exit_root_id(root);
T
Tejun Heo 已提交
1702 1703 1704
	mutex_unlock(&cgroup_root_mutex);
	mutex_unlock(&cgroup_mutex);
	mutex_unlock(&inode->i_mutex);
1705
 drop_new_super:
1706
	deactivate_locked_super(sb);
B
Ben Blum 已提交
1707
 drop_modules:
1708
	drop_parsed_module_refcounts(opts.subsys_mask);
1709 1710 1711
 out_err:
	kfree(opts.release_agent);
	kfree(opts.name);
A
Al Viro 已提交
1712
	return ERR_PTR(ret);
1713 1714 1715 1716
}

static void cgroup_kill_sb(struct super_block *sb) {
	struct cgroupfs_root *root = sb->s_fs_info;
1717
	struct cgroup *cgrp = &root->top_cgroup;
1718
	struct cgrp_cset_link *link, *tmp_link;
1719 1720 1721 1722 1723
	int ret;

	BUG_ON(!root);

	BUG_ON(root->number_of_cgroups != 1);
1724
	BUG_ON(!list_empty(&cgrp->children));
1725 1726

	mutex_lock(&cgroup_mutex);
T
Tejun Heo 已提交
1727
	mutex_lock(&cgroup_root_mutex);
1728 1729 1730 1731 1732 1733

	/* Rebind all subsystems back to the default hierarchy */
	ret = rebind_subsystems(root, 0);
	/* Shouldn't be able to fail ... */
	BUG_ON(ret);

1734
	/*
1735
	 * Release all the links from cset_links to this hierarchy's
1736 1737 1738
	 * root cgroup
	 */
	write_lock(&css_set_lock);
K
KOSAKI Motohiro 已提交
1739

1740 1741 1742
	list_for_each_entry_safe(link, tmp_link, &cgrp->cset_links, cset_link) {
		list_del(&link->cset_link);
		list_del(&link->cgrp_link);
1743 1744 1745 1746
		kfree(link);
	}
	write_unlock(&css_set_lock);

1747 1748
	if (!list_empty(&root->root_list)) {
		list_del(&root->root_list);
1749
		cgroup_root_count--;
1750
	}
1751

1752 1753
	cgroup_exit_root_id(root);

T
Tejun Heo 已提交
1754
	mutex_unlock(&cgroup_root_mutex);
1755 1756
	mutex_unlock(&cgroup_mutex);

A
Aristeu Rozanski 已提交
1757 1758
	simple_xattrs_free(&cgrp->xattrs);

1759
	kill_litter_super(sb);
1760
	cgroup_free_root(root);
1761 1762 1763 1764
}

static struct file_system_type cgroup_fs_type = {
	.name = "cgroup",
A
Al Viro 已提交
1765
	.mount = cgroup_mount,
1766 1767 1768
	.kill_sb = cgroup_kill_sb,
};

1769 1770
static struct kobject *cgroup_kobj;

L
Li Zefan 已提交
1771 1772 1773 1774 1775 1776
/**
 * cgroup_path - generate the path of a cgroup
 * @cgrp: the cgroup in question
 * @buf: the buffer to write the path into
 * @buflen: the length of the buffer
 *
1777 1778 1779 1780 1781 1782
 * Writes path of cgroup into buf.  Returns 0 on success, -errno on error.
 *
 * We can't generate cgroup path using dentry->d_name, as accessing
 * dentry->name must be protected by irq-unsafe dentry->d_lock or parent
 * inode's i_mutex, while on the other hand cgroup_path() can be called
 * with some irq-safe spinlocks held.
1783
 */
1784
int cgroup_path(const struct cgroup *cgrp, char *buf, int buflen)
1785
{
1786
	int ret = -ENAMETOOLONG;
1787
	char *start;
1788

1789 1790 1791
	if (!cgrp->parent) {
		if (strlcpy(buf, "/", buflen) >= buflen)
			return -ENAMETOOLONG;
1792 1793 1794
		return 0;
	}

1795 1796
	start = buf + buflen - 1;
	*start = '\0';
1797

1798
	rcu_read_lock();
1799
	do {
1800 1801 1802 1803
		const char *name = cgroup_name(cgrp);
		int len;

		len = strlen(name);
1804
		if ((start -= len) < buf)
1805 1806
			goto out;
		memcpy(start, name, len);
1807

1808
		if (--start < buf)
1809
			goto out;
1810
		*start = '/';
1811 1812

		cgrp = cgrp->parent;
1813
	} while (cgrp->parent);
1814
	ret = 0;
1815
	memmove(buf, start, buf + buflen - start);
1816 1817 1818
out:
	rcu_read_unlock();
	return ret;
1819
}
B
Ben Blum 已提交
1820
EXPORT_SYMBOL_GPL(cgroup_path);
1821

1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853
/**
 * task_cgroup_path_from_hierarchy - cgroup path of a task on a hierarchy
 * @task: target task
 * @hierarchy_id: the hierarchy to look up @task's cgroup from
 * @buf: the buffer to write the path into
 * @buflen: the length of the buffer
 *
 * Determine @task's cgroup on the hierarchy specified by @hierarchy_id and
 * copy its path into @buf.  This function grabs cgroup_mutex and shouldn't
 * be used inside locks used by cgroup controller callbacks.
 */
int task_cgroup_path_from_hierarchy(struct task_struct *task, int hierarchy_id,
				    char *buf, size_t buflen)
{
	struct cgroupfs_root *root;
	struct cgroup *cgrp = NULL;
	int ret = -ENOENT;

	mutex_lock(&cgroup_mutex);

	root = idr_find(&cgroup_hierarchy_idr, hierarchy_id);
	if (root) {
		cgrp = task_cgroup_from_root(task, root);
		ret = cgroup_path(cgrp, buf, buflen);
	}

	mutex_unlock(&cgroup_mutex);

	return ret;
}
EXPORT_SYMBOL_GPL(task_cgroup_path_from_hierarchy);

1854 1855 1856
/*
 * Control Group taskset
 */
1857 1858 1859
struct task_and_cgroup {
	struct task_struct	*task;
	struct cgroup		*cgrp;
1860
	struct css_set		*cg;
1861 1862
};

1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933
struct cgroup_taskset {
	struct task_and_cgroup	single;
	struct flex_array	*tc_array;
	int			tc_array_len;
	int			idx;
	struct cgroup		*cur_cgrp;
};

/**
 * cgroup_taskset_first - reset taskset and return the first task
 * @tset: taskset of interest
 *
 * @tset iteration is initialized and the first task is returned.
 */
struct task_struct *cgroup_taskset_first(struct cgroup_taskset *tset)
{
	if (tset->tc_array) {
		tset->idx = 0;
		return cgroup_taskset_next(tset);
	} else {
		tset->cur_cgrp = tset->single.cgrp;
		return tset->single.task;
	}
}
EXPORT_SYMBOL_GPL(cgroup_taskset_first);

/**
 * cgroup_taskset_next - iterate to the next task in taskset
 * @tset: taskset of interest
 *
 * Return the next task in @tset.  Iteration must have been initialized
 * with cgroup_taskset_first().
 */
struct task_struct *cgroup_taskset_next(struct cgroup_taskset *tset)
{
	struct task_and_cgroup *tc;

	if (!tset->tc_array || tset->idx >= tset->tc_array_len)
		return NULL;

	tc = flex_array_get(tset->tc_array, tset->idx++);
	tset->cur_cgrp = tc->cgrp;
	return tc->task;
}
EXPORT_SYMBOL_GPL(cgroup_taskset_next);

/**
 * cgroup_taskset_cur_cgroup - return the matching cgroup for the current task
 * @tset: taskset of interest
 *
 * Return the cgroup for the current (last returned) task of @tset.  This
 * function must be preceded by either cgroup_taskset_first() or
 * cgroup_taskset_next().
 */
struct cgroup *cgroup_taskset_cur_cgroup(struct cgroup_taskset *tset)
{
	return tset->cur_cgrp;
}
EXPORT_SYMBOL_GPL(cgroup_taskset_cur_cgroup);

/**
 * cgroup_taskset_size - return the number of tasks in taskset
 * @tset: taskset of interest
 */
int cgroup_taskset_size(struct cgroup_taskset *tset)
{
	return tset->tc_array ? tset->tc_array_len : 1;
}
EXPORT_SYMBOL_GPL(cgroup_taskset_size);


B
Ben Blum 已提交
1934 1935 1936
/*
 * cgroup_task_migrate - move a task from one cgroup to another.
 *
1937
 * Must be called with cgroup_mutex and threadgroup locked.
B
Ben Blum 已提交
1938
 */
1939 1940 1941
static void cgroup_task_migrate(struct cgroup *old_cgrp,
				struct task_struct *tsk,
				struct css_set *new_cset)
B
Ben Blum 已提交
1942
{
1943
	struct css_set *old_cset;
B
Ben Blum 已提交
1944 1945

	/*
1946 1947 1948
	 * We are synchronized through threadgroup_lock() against PF_EXITING
	 * setting such that we can't race against cgroup_exit() changing the
	 * css_set to init_css_set and dropping the old one.
B
Ben Blum 已提交
1949
	 */
1950
	WARN_ON_ONCE(tsk->flags & PF_EXITING);
1951
	old_cset = tsk->cgroups;
B
Ben Blum 已提交
1952 1953

	task_lock(tsk);
1954
	rcu_assign_pointer(tsk->cgroups, new_cset);
B
Ben Blum 已提交
1955 1956 1957 1958 1959
	task_unlock(tsk);

	/* Update the css_set linked lists if we're using them */
	write_lock(&css_set_lock);
	if (!list_empty(&tsk->cg_list))
1960
		list_move(&tsk->cg_list, &new_cset->tasks);
B
Ben Blum 已提交
1961 1962 1963
	write_unlock(&css_set_lock);

	/*
1964 1965 1966
	 * We just gained a reference on old_cset by taking it from the
	 * task. As trading it for new_cset is protected by cgroup_mutex,
	 * we're safe to drop it here; it will be freed under RCU.
B
Ben Blum 已提交
1967
	 */
1968 1969
	set_bit(CGRP_RELEASABLE, &old_cgrp->flags);
	put_css_set(old_cset);
B
Ben Blum 已提交
1970 1971
}

L
Li Zefan 已提交
1972
/**
1973
 * cgroup_attach_task - attach a task or a whole threadgroup to a cgroup
B
Ben Blum 已提交
1974
 * @cgrp: the cgroup to attach to
1975 1976
 * @tsk: the task or the leader of the threadgroup to be attached
 * @threadgroup: attach the whole threadgroup?
B
Ben Blum 已提交
1977
 *
1978
 * Call holding cgroup_mutex and the group_rwsem of the leader. Will take
1979
 * task_lock of @tsk or each thread in the threadgroup individually in turn.
B
Ben Blum 已提交
1980
 */
T
Tejun Heo 已提交
1981 1982
static int cgroup_attach_task(struct cgroup *cgrp, struct task_struct *tsk,
			      bool threadgroup)
B
Ben Blum 已提交
1983 1984 1985 1986 1987
{
	int retval, i, group_size;
	struct cgroup_subsys *ss, *failed_ss = NULL;
	struct cgroupfs_root *root = cgrp->root;
	/* threadgroup list cursor and array */
1988
	struct task_struct *leader = tsk;
1989
	struct task_and_cgroup *tc;
1990
	struct flex_array *group;
1991
	struct cgroup_taskset tset = { };
B
Ben Blum 已提交
1992 1993 1994 1995 1996

	/*
	 * step 0: in order to do expensive, possibly blocking operations for
	 * every thread, we cannot iterate the thread group list, since it needs
	 * rcu or tasklist locked. instead, build an array of all threads in the
1997 1998
	 * group - group_rwsem prevents new threads from appearing, and if
	 * threads exit, this will just be an over-estimate.
B
Ben Blum 已提交
1999
	 */
2000 2001 2002 2003
	if (threadgroup)
		group_size = get_nr_threads(tsk);
	else
		group_size = 1;
2004
	/* flex_array supports very large thread-groups better than kmalloc. */
2005
	group = flex_array_alloc(sizeof(*tc), group_size, GFP_KERNEL);
B
Ben Blum 已提交
2006 2007
	if (!group)
		return -ENOMEM;
2008
	/* pre-allocate to guarantee space while iterating in rcu read-side. */
2009
	retval = flex_array_prealloc(group, 0, group_size, GFP_KERNEL);
2010 2011
	if (retval)
		goto out_free_group_list;
B
Ben Blum 已提交
2012 2013

	i = 0;
2014 2015 2016 2017 2018 2019
	/*
	 * Prevent freeing of tasks while we take a snapshot. Tasks that are
	 * already PF_EXITING could be freed from underneath us unless we
	 * take an rcu_read_lock.
	 */
	rcu_read_lock();
B
Ben Blum 已提交
2020
	do {
2021 2022
		struct task_and_cgroup ent;

2023 2024 2025 2026
		/* @tsk either already exited or can't exit until the end */
		if (tsk->flags & PF_EXITING)
			continue;

B
Ben Blum 已提交
2027 2028
		/* as per above, nr_threads may decrease, but not increase. */
		BUG_ON(i >= group_size);
2029 2030
		ent.task = tsk;
		ent.cgrp = task_cgroup_from_root(tsk, root);
2031 2032 2033
		/* nothing to do if this task is already in the cgroup */
		if (ent.cgrp == cgrp)
			continue;
2034 2035 2036 2037
		/*
		 * saying GFP_ATOMIC has no effect here because we did prealloc
		 * earlier, but it's good form to communicate our expectations.
		 */
2038
		retval = flex_array_put(group, i, &ent, GFP_ATOMIC);
2039
		BUG_ON(retval != 0);
B
Ben Blum 已提交
2040
		i++;
2041 2042 2043

		if (!threadgroup)
			break;
B
Ben Blum 已提交
2044
	} while_each_thread(leader, tsk);
2045
	rcu_read_unlock();
B
Ben Blum 已提交
2046 2047
	/* remember the number of threads in the array for later. */
	group_size = i;
2048 2049
	tset.tc_array = group;
	tset.tc_array_len = group_size;
B
Ben Blum 已提交
2050

2051 2052
	/* methods shouldn't be called if no task is actually migrating */
	retval = 0;
2053
	if (!group_size)
2054
		goto out_free_group_list;
2055

B
Ben Blum 已提交
2056 2057 2058 2059 2060
	/*
	 * step 1: check that we can legitimately attach to the cgroup.
	 */
	for_each_subsys(root, ss) {
		if (ss->can_attach) {
2061
			retval = ss->can_attach(cgrp, &tset);
B
Ben Blum 已提交
2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073
			if (retval) {
				failed_ss = ss;
				goto out_cancel_attach;
			}
		}
	}

	/*
	 * step 2: make sure css_sets exist for all threads to be migrated.
	 * we use find_css_set, which allocates a new one if necessary.
	 */
	for (i = 0; i < group_size; i++) {
2074
		tc = flex_array_get(group, i);
2075 2076 2077 2078
		tc->cg = find_css_set(tc->task->cgroups, cgrp);
		if (!tc->cg) {
			retval = -ENOMEM;
			goto out_put_css_set_refs;
B
Ben Blum 已提交
2079 2080 2081 2082
		}
	}

	/*
2083 2084 2085
	 * step 3: now that we're guaranteed success wrt the css_sets,
	 * proceed to move all tasks to the new cgroup.  There are no
	 * failure cases after here, so this is the commit point.
B
Ben Blum 已提交
2086 2087
	 */
	for (i = 0; i < group_size; i++) {
2088
		tc = flex_array_get(group, i);
2089
		cgroup_task_migrate(tc->cgrp, tc->task, tc->cg);
B
Ben Blum 已提交
2090 2091 2092 2093
	}
	/* nothing is sensitive to fork() after this point. */

	/*
2094
	 * step 4: do subsystem attach callbacks.
B
Ben Blum 已提交
2095 2096 2097
	 */
	for_each_subsys(root, ss) {
		if (ss->attach)
2098
			ss->attach(cgrp, &tset);
B
Ben Blum 已提交
2099 2100 2101 2102 2103 2104
	}

	/*
	 * step 5: success! and cleanup
	 */
	retval = 0;
2105 2106 2107 2108 2109 2110 2111 2112
out_put_css_set_refs:
	if (retval) {
		for (i = 0; i < group_size; i++) {
			tc = flex_array_get(group, i);
			if (!tc->cg)
				break;
			put_css_set(tc->cg);
		}
B
Ben Blum 已提交
2113 2114 2115 2116
	}
out_cancel_attach:
	if (retval) {
		for_each_subsys(root, ss) {
2117
			if (ss == failed_ss)
B
Ben Blum 已提交
2118 2119
				break;
			if (ss->cancel_attach)
2120
				ss->cancel_attach(cgrp, &tset);
B
Ben Blum 已提交
2121 2122 2123
		}
	}
out_free_group_list:
2124
	flex_array_free(group);
B
Ben Blum 已提交
2125 2126 2127 2128 2129
	return retval;
}

/*
 * Find the task_struct of the task to attach by vpid and pass it along to the
2130 2131
 * function to attach either it or all tasks in its threadgroup. Will lock
 * cgroup_mutex and threadgroup; may take task_lock of task.
2132
 */
B
Ben Blum 已提交
2133
static int attach_task_by_pid(struct cgroup *cgrp, u64 pid, bool threadgroup)
2134 2135
{
	struct task_struct *tsk;
2136
	const struct cred *cred = current_cred(), *tcred;
2137 2138
	int ret;

B
Ben Blum 已提交
2139 2140 2141
	if (!cgroup_lock_live_group(cgrp))
		return -ENODEV;

2142 2143
retry_find_task:
	rcu_read_lock();
2144
	if (pid) {
2145
		tsk = find_task_by_vpid(pid);
B
Ben Blum 已提交
2146 2147
		if (!tsk) {
			rcu_read_unlock();
2148 2149
			ret= -ESRCH;
			goto out_unlock_cgroup;
2150
		}
B
Ben Blum 已提交
2151 2152 2153 2154
		/*
		 * even if we're attaching all tasks in the thread group, we
		 * only need to check permissions on one of them.
		 */
2155
		tcred = __task_cred(tsk);
2156 2157 2158
		if (!uid_eq(cred->euid, GLOBAL_ROOT_UID) &&
		    !uid_eq(cred->euid, tcred->uid) &&
		    !uid_eq(cred->euid, tcred->suid)) {
2159
			rcu_read_unlock();
2160 2161
			ret = -EACCES;
			goto out_unlock_cgroup;
2162
		}
2163 2164
	} else
		tsk = current;
2165 2166

	if (threadgroup)
2167
		tsk = tsk->group_leader;
2168 2169

	/*
2170
	 * Workqueue threads may acquire PF_NO_SETAFFINITY and become
2171 2172 2173
	 * trapped in a cpuset, or RT worker may be born in a cgroup
	 * with no rt_runtime allocated.  Just say no.
	 */
2174
	if (tsk == kthreadd_task || (tsk->flags & PF_NO_SETAFFINITY)) {
2175 2176 2177 2178 2179
		ret = -EINVAL;
		rcu_read_unlock();
		goto out_unlock_cgroup;
	}

2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196
	get_task_struct(tsk);
	rcu_read_unlock();

	threadgroup_lock(tsk);
	if (threadgroup) {
		if (!thread_group_leader(tsk)) {
			/*
			 * a race with de_thread from another thread's exec()
			 * may strip us of our leadership, if this happens,
			 * there is no choice but to throw this task away and
			 * try again; this is
			 * "double-double-toil-and-trouble-check locking".
			 */
			threadgroup_unlock(tsk);
			put_task_struct(tsk);
			goto retry_find_task;
		}
2197 2198 2199 2200
	}

	ret = cgroup_attach_task(cgrp, tsk, threadgroup);

2201 2202
	threadgroup_unlock(tsk);

2203
	put_task_struct(tsk);
2204
out_unlock_cgroup:
T
Tejun Heo 已提交
2205
	mutex_unlock(&cgroup_mutex);
2206 2207 2208
	return ret;
}

2209 2210 2211 2212 2213 2214 2215 2216 2217 2218
/**
 * cgroup_attach_task_all - attach task 'tsk' to all cgroups of task 'from'
 * @from: attach to all cgroups of a given task
 * @tsk: the task to be attached
 */
int cgroup_attach_task_all(struct task_struct *from, struct task_struct *tsk)
{
	struct cgroupfs_root *root;
	int retval = 0;

T
Tejun Heo 已提交
2219
	mutex_lock(&cgroup_mutex);
2220 2221 2222 2223 2224 2225 2226
	for_each_active_root(root) {
		struct cgroup *from_cg = task_cgroup_from_root(from, root);

		retval = cgroup_attach_task(from_cg, tsk, false);
		if (retval)
			break;
	}
T
Tejun Heo 已提交
2227
	mutex_unlock(&cgroup_mutex);
2228 2229 2230 2231 2232

	return retval;
}
EXPORT_SYMBOL_GPL(cgroup_attach_task_all);

2233
static int cgroup_tasks_write(struct cgroup *cgrp, struct cftype *cft, u64 pid)
B
Ben Blum 已提交
2234 2235 2236 2237 2238
{
	return attach_task_by_pid(cgrp, pid, false);
}

static int cgroup_procs_write(struct cgroup *cgrp, struct cftype *cft, u64 tgid)
2239
{
2240
	return attach_task_by_pid(cgrp, tgid, true);
2241 2242
}

2243 2244 2245 2246
static int cgroup_release_agent_write(struct cgroup *cgrp, struct cftype *cft,
				      const char *buffer)
{
	BUILD_BUG_ON(sizeof(cgrp->root->release_agent_path) < PATH_MAX);
2247 2248
	if (strlen(buffer) >= PATH_MAX)
		return -EINVAL;
2249 2250
	if (!cgroup_lock_live_group(cgrp))
		return -ENODEV;
T
Tejun Heo 已提交
2251
	mutex_lock(&cgroup_root_mutex);
2252
	strcpy(cgrp->root->release_agent_path, buffer);
T
Tejun Heo 已提交
2253
	mutex_unlock(&cgroup_root_mutex);
T
Tejun Heo 已提交
2254
	mutex_unlock(&cgroup_mutex);
2255 2256 2257 2258 2259 2260 2261 2262 2263 2264
	return 0;
}

static int cgroup_release_agent_show(struct cgroup *cgrp, struct cftype *cft,
				     struct seq_file *seq)
{
	if (!cgroup_lock_live_group(cgrp))
		return -ENODEV;
	seq_puts(seq, cgrp->root->release_agent_path);
	seq_putc(seq, '\n');
T
Tejun Heo 已提交
2265
	mutex_unlock(&cgroup_mutex);
2266 2267 2268
	return 0;
}

2269 2270 2271 2272
static int cgroup_sane_behavior_show(struct cgroup *cgrp, struct cftype *cft,
				     struct seq_file *seq)
{
	seq_printf(seq, "%d\n", cgroup_sane_behavior(cgrp));
2273 2274 2275
	return 0;
}

2276 2277 2278
/* A buffer size big enough for numbers or short strings */
#define CGROUP_LOCAL_BUFFER_SIZE 64

2279
static ssize_t cgroup_write_X64(struct cgroup *cgrp, struct cftype *cft,
2280 2281 2282
				struct file *file,
				const char __user *userbuf,
				size_t nbytes, loff_t *unused_ppos)
2283
{
2284
	char buffer[CGROUP_LOCAL_BUFFER_SIZE];
2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295
	int retval = 0;
	char *end;

	if (!nbytes)
		return -EINVAL;
	if (nbytes >= sizeof(buffer))
		return -E2BIG;
	if (copy_from_user(buffer, userbuf, nbytes))
		return -EFAULT;

	buffer[nbytes] = 0;     /* nul-terminate */
2296
	if (cft->write_u64) {
K
KOSAKI Motohiro 已提交
2297
		u64 val = simple_strtoull(strstrip(buffer), &end, 0);
2298 2299 2300 2301
		if (*end)
			return -EINVAL;
		retval = cft->write_u64(cgrp, cft, val);
	} else {
K
KOSAKI Motohiro 已提交
2302
		s64 val = simple_strtoll(strstrip(buffer), &end, 0);
2303 2304 2305 2306
		if (*end)
			return -EINVAL;
		retval = cft->write_s64(cgrp, cft, val);
	}
2307 2308 2309 2310 2311
	if (!retval)
		retval = nbytes;
	return retval;
}

2312 2313 2314 2315 2316
static ssize_t cgroup_write_string(struct cgroup *cgrp, struct cftype *cft,
				   struct file *file,
				   const char __user *userbuf,
				   size_t nbytes, loff_t *unused_ppos)
{
2317
	char local_buffer[CGROUP_LOCAL_BUFFER_SIZE];
2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331
	int retval = 0;
	size_t max_bytes = cft->max_write_len;
	char *buffer = local_buffer;

	if (!max_bytes)
		max_bytes = sizeof(local_buffer) - 1;
	if (nbytes >= max_bytes)
		return -E2BIG;
	/* Allocate a dynamic buffer if we need one */
	if (nbytes >= sizeof(local_buffer)) {
		buffer = kmalloc(nbytes + 1, GFP_KERNEL);
		if (buffer == NULL)
			return -ENOMEM;
	}
L
Li Zefan 已提交
2332 2333 2334 2335
	if (nbytes && copy_from_user(buffer, userbuf, nbytes)) {
		retval = -EFAULT;
		goto out;
	}
2336 2337

	buffer[nbytes] = 0;     /* nul-terminate */
K
KOSAKI Motohiro 已提交
2338
	retval = cft->write_string(cgrp, cft, strstrip(buffer));
2339 2340
	if (!retval)
		retval = nbytes;
L
Li Zefan 已提交
2341
out:
2342 2343 2344 2345 2346
	if (buffer != local_buffer)
		kfree(buffer);
	return retval;
}

2347 2348 2349 2350
static ssize_t cgroup_file_write(struct file *file, const char __user *buf,
						size_t nbytes, loff_t *ppos)
{
	struct cftype *cft = __d_cft(file->f_dentry);
2351
	struct cgroup *cgrp = __d_cgrp(file->f_dentry->d_parent);
2352

2353
	if (cgroup_is_dead(cgrp))
2354
		return -ENODEV;
2355
	if (cft->write)
2356
		return cft->write(cgrp, cft, file, buf, nbytes, ppos);
2357 2358
	if (cft->write_u64 || cft->write_s64)
		return cgroup_write_X64(cgrp, cft, file, buf, nbytes, ppos);
2359 2360
	if (cft->write_string)
		return cgroup_write_string(cgrp, cft, file, buf, nbytes, ppos);
2361 2362 2363 2364
	if (cft->trigger) {
		int ret = cft->trigger(cgrp, (unsigned int)cft->private);
		return ret ? ret : nbytes;
	}
2365
	return -EINVAL;
2366 2367
}

2368 2369 2370 2371
static ssize_t cgroup_read_u64(struct cgroup *cgrp, struct cftype *cft,
			       struct file *file,
			       char __user *buf, size_t nbytes,
			       loff_t *ppos)
2372
{
2373
	char tmp[CGROUP_LOCAL_BUFFER_SIZE];
2374
	u64 val = cft->read_u64(cgrp, cft);
2375 2376 2377 2378 2379
	int len = sprintf(tmp, "%llu\n", (unsigned long long) val);

	return simple_read_from_buffer(buf, nbytes, ppos, tmp, len);
}

2380 2381 2382 2383 2384
static ssize_t cgroup_read_s64(struct cgroup *cgrp, struct cftype *cft,
			       struct file *file,
			       char __user *buf, size_t nbytes,
			       loff_t *ppos)
{
2385
	char tmp[CGROUP_LOCAL_BUFFER_SIZE];
2386 2387 2388 2389 2390 2391
	s64 val = cft->read_s64(cgrp, cft);
	int len = sprintf(tmp, "%lld\n", (long long) val);

	return simple_read_from_buffer(buf, nbytes, ppos, tmp, len);
}

2392 2393 2394 2395
static ssize_t cgroup_file_read(struct file *file, char __user *buf,
				   size_t nbytes, loff_t *ppos)
{
	struct cftype *cft = __d_cft(file->f_dentry);
2396
	struct cgroup *cgrp = __d_cgrp(file->f_dentry->d_parent);
2397

2398
	if (cgroup_is_dead(cgrp))
2399 2400 2401
		return -ENODEV;

	if (cft->read)
2402
		return cft->read(cgrp, cft, file, buf, nbytes, ppos);
2403 2404
	if (cft->read_u64)
		return cgroup_read_u64(cgrp, cft, file, buf, nbytes, ppos);
2405 2406
	if (cft->read_s64)
		return cgroup_read_s64(cgrp, cft, file, buf, nbytes, ppos);
2407 2408 2409
	return -EINVAL;
}

2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429
/*
 * seqfile ops/methods for returning structured data. Currently just
 * supports string->u64 maps, but can be extended in future.
 */

struct cgroup_seqfile_state {
	struct cftype *cft;
	struct cgroup *cgroup;
};

static int cgroup_map_add(struct cgroup_map_cb *cb, const char *key, u64 value)
{
	struct seq_file *sf = cb->state;
	return seq_printf(sf, "%s %llu\n", key, (unsigned long long)value);
}

static int cgroup_seqfile_show(struct seq_file *m, void *arg)
{
	struct cgroup_seqfile_state *state = m->private;
	struct cftype *cft = state->cft;
2430 2431 2432 2433 2434 2435 2436 2437
	if (cft->read_map) {
		struct cgroup_map_cb cb = {
			.fill = cgroup_map_add,
			.state = m,
		};
		return cft->read_map(state->cgroup, cft, &cb);
	}
	return cft->read_seq_string(state->cgroup, cft, m);
2438 2439
}

2440
static int cgroup_seqfile_release(struct inode *inode, struct file *file)
2441 2442 2443 2444 2445 2446
{
	struct seq_file *seq = file->private_data;
	kfree(seq->private);
	return single_release(inode, file);
}

2447
static const struct file_operations cgroup_seqfile_operations = {
2448
	.read = seq_read,
2449
	.write = cgroup_file_write,
2450 2451 2452 2453
	.llseek = seq_lseek,
	.release = cgroup_seqfile_release,
};

2454 2455 2456 2457 2458 2459 2460 2461 2462
static int cgroup_file_open(struct inode *inode, struct file *file)
{
	int err;
	struct cftype *cft;

	err = generic_file_open(inode, file);
	if (err)
		return err;
	cft = __d_cft(file->f_dentry);
2463

2464
	if (cft->read_map || cft->read_seq_string) {
2465 2466 2467
		struct cgroup_seqfile_state *state;

		state = kzalloc(sizeof(*state), GFP_USER);
2468 2469
		if (!state)
			return -ENOMEM;
2470

2471 2472 2473 2474 2475 2476 2477
		state->cft = cft;
		state->cgroup = __d_cgrp(file->f_dentry->d_parent);
		file->f_op = &cgroup_seqfile_operations;
		err = single_open(file, cgroup_seqfile_show, state);
		if (err < 0)
			kfree(state);
	} else if (cft->open)
2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498
		err = cft->open(inode, file);
	else
		err = 0;

	return err;
}

static int cgroup_file_release(struct inode *inode, struct file *file)
{
	struct cftype *cft = __d_cft(file->f_dentry);
	if (cft->release)
		return cft->release(inode, file);
	return 0;
}

/*
 * cgroup_rename - Only allow simple rename of directories in place.
 */
static int cgroup_rename(struct inode *old_dir, struct dentry *old_dentry,
			    struct inode *new_dir, struct dentry *new_dentry)
{
2499 2500 2501 2502 2503 2504 2505 2506 2507 2508
	int ret;
	struct cgroup_name *name, *old_name;
	struct cgroup *cgrp;

	/*
	 * It's convinient to use parent dir's i_mutex to protected
	 * cgrp->name.
	 */
	lockdep_assert_held(&old_dir->i_mutex);

2509 2510 2511 2512 2513 2514
	if (!S_ISDIR(old_dentry->d_inode->i_mode))
		return -ENOTDIR;
	if (new_dentry->d_inode)
		return -EEXIST;
	if (old_dir != new_dir)
		return -EIO;
2515 2516 2517

	cgrp = __d_cgrp(old_dentry);

2518 2519 2520 2521 2522 2523 2524
	/*
	 * This isn't a proper migration and its usefulness is very
	 * limited.  Disallow if sane_behavior.
	 */
	if (cgroup_sane_behavior(cgrp))
		return -EPERM;

2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539
	name = cgroup_alloc_name(new_dentry);
	if (!name)
		return -ENOMEM;

	ret = simple_rename(old_dir, old_dentry, new_dir, new_dentry);
	if (ret) {
		kfree(name);
		return ret;
	}

	old_name = cgrp->name;
	rcu_assign_pointer(cgrp->name, name);

	kfree_rcu(old_name, rcu_head);
	return 0;
2540 2541
}

A
Aristeu Rozanski 已提交
2542 2543 2544 2545 2546
static struct simple_xattrs *__d_xattrs(struct dentry *dentry)
{
	if (S_ISDIR(dentry->d_inode->i_mode))
		return &__d_cgrp(dentry)->xattrs;
	else
L
Li Zefan 已提交
2547
		return &__d_cfe(dentry)->xattrs;
A
Aristeu Rozanski 已提交
2548 2549 2550 2551 2552
}

static inline int xattr_enabled(struct dentry *dentry)
{
	struct cgroupfs_root *root = dentry->d_sb->s_fs_info;
2553
	return root->flags & CGRP_ROOT_XATTR;
A
Aristeu Rozanski 已提交
2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599
}

static bool is_valid_xattr(const char *name)
{
	if (!strncmp(name, XATTR_TRUSTED_PREFIX, XATTR_TRUSTED_PREFIX_LEN) ||
	    !strncmp(name, XATTR_SECURITY_PREFIX, XATTR_SECURITY_PREFIX_LEN))
		return true;
	return false;
}

static int cgroup_setxattr(struct dentry *dentry, const char *name,
			   const void *val, size_t size, int flags)
{
	if (!xattr_enabled(dentry))
		return -EOPNOTSUPP;
	if (!is_valid_xattr(name))
		return -EINVAL;
	return simple_xattr_set(__d_xattrs(dentry), name, val, size, flags);
}

static int cgroup_removexattr(struct dentry *dentry, const char *name)
{
	if (!xattr_enabled(dentry))
		return -EOPNOTSUPP;
	if (!is_valid_xattr(name))
		return -EINVAL;
	return simple_xattr_remove(__d_xattrs(dentry), name);
}

static ssize_t cgroup_getxattr(struct dentry *dentry, const char *name,
			       void *buf, size_t size)
{
	if (!xattr_enabled(dentry))
		return -EOPNOTSUPP;
	if (!is_valid_xattr(name))
		return -EINVAL;
	return simple_xattr_get(__d_xattrs(dentry), name, buf, size);
}

static ssize_t cgroup_listxattr(struct dentry *dentry, char *buf, size_t size)
{
	if (!xattr_enabled(dentry))
		return -EOPNOTSUPP;
	return simple_xattr_list(__d_xattrs(dentry), buf, size);
}

2600
static const struct file_operations cgroup_file_operations = {
2601 2602 2603 2604 2605 2606 2607
	.read = cgroup_file_read,
	.write = cgroup_file_write,
	.llseek = generic_file_llseek,
	.open = cgroup_file_open,
	.release = cgroup_file_release,
};

A
Aristeu Rozanski 已提交
2608 2609 2610 2611 2612 2613 2614
static const struct inode_operations cgroup_file_inode_operations = {
	.setxattr = cgroup_setxattr,
	.getxattr = cgroup_getxattr,
	.listxattr = cgroup_listxattr,
	.removexattr = cgroup_removexattr,
};

2615
static const struct inode_operations cgroup_dir_inode_operations = {
2616
	.lookup = cgroup_lookup,
2617 2618 2619
	.mkdir = cgroup_mkdir,
	.rmdir = cgroup_rmdir,
	.rename = cgroup_rename,
A
Aristeu Rozanski 已提交
2620 2621 2622 2623
	.setxattr = cgroup_setxattr,
	.getxattr = cgroup_getxattr,
	.listxattr = cgroup_listxattr,
	.removexattr = cgroup_removexattr,
2624 2625
};

A
Al Viro 已提交
2626
static struct dentry *cgroup_lookup(struct inode *dir, struct dentry *dentry, unsigned int flags)
2627 2628 2629 2630 2631 2632 2633
{
	if (dentry->d_name.len > NAME_MAX)
		return ERR_PTR(-ENAMETOOLONG);
	d_add(dentry, NULL);
	return NULL;
}

2634 2635 2636 2637 2638
/*
 * Check if a file is a control file
 */
static inline struct cftype *__file_cft(struct file *file)
{
A
Al Viro 已提交
2639
	if (file_inode(file)->i_fop != &cgroup_file_operations)
2640 2641 2642 2643
		return ERR_PTR(-EINVAL);
	return __d_cft(file->f_dentry);
}

A
Al Viro 已提交
2644
static int cgroup_create_file(struct dentry *dentry, umode_t mode,
2645 2646
				struct super_block *sb)
{
2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663
	struct inode *inode;

	if (!dentry)
		return -ENOENT;
	if (dentry->d_inode)
		return -EEXIST;

	inode = cgroup_new_inode(mode, sb);
	if (!inode)
		return -ENOMEM;

	if (S_ISDIR(mode)) {
		inode->i_op = &cgroup_dir_inode_operations;
		inode->i_fop = &simple_dir_operations;

		/* start off with i_nlink == 2 (for "." entry) */
		inc_nlink(inode);
T
Tejun Heo 已提交
2664
		inc_nlink(dentry->d_parent->d_inode);
2665

2666 2667 2668 2669 2670 2671 2672 2673 2674
		/*
		 * Control reaches here with cgroup_mutex held.
		 * @inode->i_mutex should nest outside cgroup_mutex but we
		 * want to populate it immediately without releasing
		 * cgroup_mutex.  As @inode isn't visible to anyone else
		 * yet, trylock will always succeed without affecting
		 * lockdep checks.
		 */
		WARN_ON_ONCE(!mutex_trylock(&inode->i_mutex));
2675 2676 2677
	} else if (S_ISREG(mode)) {
		inode->i_size = 0;
		inode->i_fop = &cgroup_file_operations;
A
Aristeu Rozanski 已提交
2678
		inode->i_op = &cgroup_file_inode_operations;
2679 2680 2681 2682 2683 2684
	}
	d_instantiate(dentry, inode);
	dget(dentry);	/* Extra count - pin the dentry in core */
	return 0;
}

L
Li Zefan 已提交
2685 2686 2687 2688 2689 2690 2691 2692 2693
/**
 * cgroup_file_mode - deduce file mode of a control file
 * @cft: the control file in question
 *
 * returns cft->mode if ->mode is not 0
 * returns S_IRUGO|S_IWUSR if it has both a read and a write handler
 * returns S_IRUGO if it has only a read handler
 * returns S_IWUSR if it has only a write hander
 */
A
Al Viro 已提交
2694
static umode_t cgroup_file_mode(const struct cftype *cft)
L
Li Zefan 已提交
2695
{
A
Al Viro 已提交
2696
	umode_t mode = 0;
L
Li Zefan 已提交
2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711

	if (cft->mode)
		return cft->mode;

	if (cft->read || cft->read_u64 || cft->read_s64 ||
	    cft->read_map || cft->read_seq_string)
		mode |= S_IRUGO;

	if (cft->write || cft->write_u64 || cft->write_s64 ||
	    cft->write_string || cft->trigger)
		mode |= S_IWUSR;

	return mode;
}

T
Tejun Heo 已提交
2712
static int cgroup_add_file(struct cgroup *cgrp, struct cgroup_subsys *subsys,
A
Aristeu Rozanski 已提交
2713
			   struct cftype *cft)
2714
{
2715
	struct dentry *dir = cgrp->dentry;
T
Tejun Heo 已提交
2716
	struct cgroup *parent = __d_cgrp(dir);
2717
	struct dentry *dentry;
T
Tejun Heo 已提交
2718
	struct cfent *cfe;
2719
	int error;
A
Al Viro 已提交
2720
	umode_t mode;
2721
	char name[MAX_CGROUP_TYPE_NAMELEN + MAX_CFTYPE_NAME + 2] = { 0 };
2722

2723
	if (subsys && !(cgrp->root->flags & CGRP_ROOT_NOPREFIX)) {
2724 2725 2726 2727
		strcpy(name, subsys->name);
		strcat(name, ".");
	}
	strcat(name, cft->name);
T
Tejun Heo 已提交
2728

2729
	BUG_ON(!mutex_is_locked(&dir->d_inode->i_mutex));
T
Tejun Heo 已提交
2730 2731 2732 2733 2734

	cfe = kzalloc(sizeof(*cfe), GFP_KERNEL);
	if (!cfe)
		return -ENOMEM;

2735
	dentry = lookup_one_len(name, dir, strlen(name));
T
Tejun Heo 已提交
2736
	if (IS_ERR(dentry)) {
2737
		error = PTR_ERR(dentry);
T
Tejun Heo 已提交
2738 2739 2740
		goto out;
	}

2741 2742 2743 2744 2745
	cfe->type = (void *)cft;
	cfe->dentry = dentry;
	dentry->d_fsdata = cfe;
	simple_xattrs_init(&cfe->xattrs);

T
Tejun Heo 已提交
2746 2747 2748 2749 2750 2751 2752 2753 2754
	mode = cgroup_file_mode(cft);
	error = cgroup_create_file(dentry, mode | S_IFREG, cgrp->root->sb);
	if (!error) {
		list_add_tail(&cfe->node, &parent->files);
		cfe = NULL;
	}
	dput(dentry);
out:
	kfree(cfe);
2755 2756 2757
	return error;
}

2758
static int cgroup_addrm_files(struct cgroup *cgrp, struct cgroup_subsys *subsys,
A
Aristeu Rozanski 已提交
2759
			      struct cftype cfts[], bool is_add)
2760
{
A
Aristeu Rozanski 已提交
2761
	struct cftype *cft;
T
Tejun Heo 已提交
2762 2763 2764
	int err, ret = 0;

	for (cft = cfts; cft->name[0] != '\0'; cft++) {
2765
		/* does cft->flags tell us to skip this file on @cgrp? */
2766 2767
		if ((cft->flags & CFTYPE_INSANE) && cgroup_sane_behavior(cgrp))
			continue;
2768 2769 2770 2771 2772
		if ((cft->flags & CFTYPE_NOT_ON_ROOT) && !cgrp->parent)
			continue;
		if ((cft->flags & CFTYPE_ONLY_ON_ROOT) && cgrp->parent)
			continue;

2773
		if (is_add) {
2774
			err = cgroup_add_file(cgrp, subsys, cft);
2775 2776 2777
			if (err)
				pr_warn("cgroup_addrm_files: failed to add %s, err=%d\n",
					cft->name, err);
T
Tejun Heo 已提交
2778
			ret = err;
2779 2780
		} else {
			cgroup_rm_file(cgrp, cft);
T
Tejun Heo 已提交
2781
		}
2782
	}
T
Tejun Heo 已提交
2783
	return ret;
2784 2785
}

2786
static void cgroup_cfts_prepare(void)
2787
	__acquires(&cgroup_mutex)
2788 2789 2790 2791
{
	/*
	 * Thanks to the entanglement with vfs inode locking, we can't walk
	 * the existing cgroups under cgroup_mutex and create files.
2792 2793
	 * Instead, we use cgroup_for_each_descendant_pre() and drop RCU
	 * read lock before calling cgroup_addrm_files().
2794 2795 2796 2797 2798
	 */
	mutex_lock(&cgroup_mutex);
}

static void cgroup_cfts_commit(struct cgroup_subsys *ss,
A
Aristeu Rozanski 已提交
2799
			       struct cftype *cfts, bool is_add)
2800
	__releases(&cgroup_mutex)
2801 2802
{
	LIST_HEAD(pending);
2803
	struct cgroup *cgrp, *root = &ss->root->top_cgroup;
2804
	struct super_block *sb = ss->root->sb;
2805 2806
	struct dentry *prev = NULL;
	struct inode *inode;
2807
	u64 update_before;
2808 2809

	/* %NULL @cfts indicates abort and don't bother if @ss isn't attached */
2810
	if (!cfts || ss->root == &cgroup_dummy_root ||
2811 2812 2813
	    !atomic_inc_not_zero(&sb->s_active)) {
		mutex_unlock(&cgroup_mutex);
		return;
2814 2815 2816
	}

	/*
2817 2818
	 * All cgroups which are created after we drop cgroup_mutex will
	 * have the updated set of files, so we only need to update the
2819
	 * cgroups created before the current @cgroup_serial_nr_next.
2820
	 */
2821
	update_before = cgroup_serial_nr_next;
2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844

	mutex_unlock(&cgroup_mutex);

	/* @root always needs to be updated */
	inode = root->dentry->d_inode;
	mutex_lock(&inode->i_mutex);
	mutex_lock(&cgroup_mutex);
	cgroup_addrm_files(root, ss, cfts, is_add);
	mutex_unlock(&cgroup_mutex);
	mutex_unlock(&inode->i_mutex);

	/* add/rm files for all cgroups created before */
	rcu_read_lock();
	cgroup_for_each_descendant_pre(cgrp, root) {
		if (cgroup_is_dead(cgrp))
			continue;

		inode = cgrp->dentry->d_inode;
		dget(cgrp->dentry);
		rcu_read_unlock();

		dput(prev);
		prev = cgrp->dentry;
2845 2846 2847

		mutex_lock(&inode->i_mutex);
		mutex_lock(&cgroup_mutex);
2848
		if (cgrp->serial_nr < update_before && !cgroup_is_dead(cgrp))
2849
			cgroup_addrm_files(cgrp, ss, cfts, is_add);
2850 2851 2852
		mutex_unlock(&cgroup_mutex);
		mutex_unlock(&inode->i_mutex);

2853
		rcu_read_lock();
2854
	}
2855 2856 2857
	rcu_read_unlock();
	dput(prev);
	deactivate_super(sb);
2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873
}

/**
 * cgroup_add_cftypes - add an array of cftypes to a subsystem
 * @ss: target cgroup subsystem
 * @cfts: zero-length name terminated array of cftypes
 *
 * Register @cfts to @ss.  Files described by @cfts are created for all
 * existing cgroups to which @ss is attached and all future cgroups will
 * have them too.  This function can be called anytime whether @ss is
 * attached or not.
 *
 * Returns 0 on successful registration, -errno on failure.  Note that this
 * function currently returns 0 as long as @cfts registration is successful
 * even if some file creation attempts on existing cgroups fail.
 */
A
Aristeu Rozanski 已提交
2874
int cgroup_add_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
2875 2876 2877 2878 2879 2880 2881 2882 2883 2884
{
	struct cftype_set *set;

	set = kzalloc(sizeof(*set), GFP_KERNEL);
	if (!set)
		return -ENOMEM;

	cgroup_cfts_prepare();
	set->cfts = cfts;
	list_add_tail(&set->node, &ss->cftsets);
2885
	cgroup_cfts_commit(ss, cfts, true);
2886 2887 2888 2889 2890

	return 0;
}
EXPORT_SYMBOL_GPL(cgroup_add_cftypes);

2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903
/**
 * cgroup_rm_cftypes - remove an array of cftypes from a subsystem
 * @ss: target cgroup subsystem
 * @cfts: zero-length name terminated array of cftypes
 *
 * Unregister @cfts from @ss.  Files described by @cfts are removed from
 * all existing cgroups to which @ss is attached and all future cgroups
 * won't have them either.  This function can be called anytime whether @ss
 * is attached or not.
 *
 * Returns 0 on successful unregistration, -ENOENT if @cfts is not
 * registered with @ss.
 */
A
Aristeu Rozanski 已提交
2904
int cgroup_rm_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
2905 2906 2907 2908 2909 2910 2911
{
	struct cftype_set *set;

	cgroup_cfts_prepare();

	list_for_each_entry(set, &ss->cftsets, node) {
		if (set->cfts == cfts) {
2912 2913
			list_del(&set->node);
			kfree(set);
2914 2915 2916 2917 2918 2919 2920 2921 2922
			cgroup_cfts_commit(ss, cfts, false);
			return 0;
		}
	}

	cgroup_cfts_commit(ss, NULL, false);
	return -ENOENT;
}

L
Li Zefan 已提交
2923 2924 2925 2926 2927 2928
/**
 * cgroup_task_count - count the number of tasks in a cgroup.
 * @cgrp: the cgroup in question
 *
 * Return the number of tasks in the cgroup.
 */
2929
int cgroup_task_count(const struct cgroup *cgrp)
2930 2931
{
	int count = 0;
2932
	struct cgrp_cset_link *link;
2933 2934

	read_lock(&css_set_lock);
2935 2936
	list_for_each_entry(link, &cgrp->cset_links, cset_link)
		count += atomic_read(&link->cset->refcount);
2937
	read_unlock(&css_set_lock);
2938 2939 2940
	return count;
}

2941 2942 2943 2944
/*
 * Advance a list_head iterator.  The iterator should be positioned at
 * the start of a css_set
 */
2945
static void cgroup_advance_iter(struct cgroup *cgrp, struct cgroup_iter *it)
2946
{
2947 2948
	struct list_head *l = it->cset_link;
	struct cgrp_cset_link *link;
2949
	struct css_set *cset;
2950 2951 2952 2953

	/* Advance to the next non-empty css_set */
	do {
		l = l->next;
2954 2955
		if (l == &cgrp->cset_links) {
			it->cset_link = NULL;
2956 2957
			return;
		}
2958 2959
		link = list_entry(l, struct cgrp_cset_link, cset_link);
		cset = link->cset;
2960
	} while (list_empty(&cset->tasks));
2961
	it->cset_link = l;
2962
	it->task = cset->tasks.next;
2963 2964
}

2965 2966 2967 2968 2969 2970
/*
 * To reduce the fork() overhead for systems that are not actually
 * using their cgroups capability, we don't maintain the lists running
 * through each css_set to its tasks until we see the list actually
 * used - in other words after the first call to cgroup_iter_start().
 */
2971
static void cgroup_enable_task_cg_lists(void)
2972 2973 2974 2975
{
	struct task_struct *p, *g;
	write_lock(&css_set_lock);
	use_task_css_set_links = 1;
2976 2977 2978 2979 2980 2981 2982 2983
	/*
	 * We need tasklist_lock because RCU is not safe against
	 * while_each_thread(). Besides, a forking task that has passed
	 * cgroup_post_fork() without seeing use_task_css_set_links = 1
	 * is not guaranteed to have its child immediately visible in the
	 * tasklist if we walk through it with RCU.
	 */
	read_lock(&tasklist_lock);
2984 2985
	do_each_thread(g, p) {
		task_lock(p);
2986 2987 2988 2989 2990 2991
		/*
		 * We should check if the process is exiting, otherwise
		 * it will race with cgroup_exit() in that the list
		 * entry won't be deleted though the process has exited.
		 */
		if (!(p->flags & PF_EXITING) && list_empty(&p->cg_list))
2992 2993 2994
			list_add(&p->cg_list, &p->cgroups->tasks);
		task_unlock(p);
	} while_each_thread(g, p);
2995
	read_unlock(&tasklist_lock);
2996 2997 2998
	write_unlock(&css_set_lock);
}

2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016
/**
 * cgroup_next_sibling - find the next sibling of a given cgroup
 * @pos: the current cgroup
 *
 * This function returns the next sibling of @pos and should be called
 * under RCU read lock.  The only requirement is that @pos is accessible.
 * The next sibling is guaranteed to be returned regardless of @pos's
 * state.
 */
struct cgroup *cgroup_next_sibling(struct cgroup *pos)
{
	struct cgroup *next;

	WARN_ON_ONCE(!rcu_read_lock_held());

	/*
	 * @pos could already have been removed.  Once a cgroup is removed,
	 * its ->sibling.next is no longer updated when its next sibling
3017 3018 3019 3020 3021 3022 3023
	 * changes.  As CGRP_DEAD assertion is serialized and happens
	 * before the cgroup is taken off the ->sibling list, if we see it
	 * unasserted, it's guaranteed that the next sibling hasn't
	 * finished its grace period even if it's already removed, and thus
	 * safe to dereference from this RCU critical section.  If
	 * ->sibling.next is inaccessible, cgroup_is_dead() is guaranteed
	 * to be visible as %true here.
3024
	 */
3025
	if (likely(!cgroup_is_dead(pos))) {
3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048
		next = list_entry_rcu(pos->sibling.next, struct cgroup, sibling);
		if (&next->sibling != &pos->parent->children)
			return next;
		return NULL;
	}

	/*
	 * Can't dereference the next pointer.  Each cgroup is given a
	 * monotonically increasing unique serial number and always
	 * appended to the sibling list, so the next one can be found by
	 * walking the parent's children until we see a cgroup with higher
	 * serial number than @pos's.
	 *
	 * While this path can be slow, it's taken only when either the
	 * current cgroup is removed or iteration and removal race.
	 */
	list_for_each_entry_rcu(next, &pos->parent->children, sibling)
		if (next->serial_nr > pos->serial_nr)
			return next;
	return NULL;
}
EXPORT_SYMBOL_GPL(cgroup_next_sibling);

3049 3050 3051 3052 3053 3054 3055
/**
 * cgroup_next_descendant_pre - find the next descendant for pre-order walk
 * @pos: the current position (%NULL to initiate traversal)
 * @cgroup: cgroup whose descendants to walk
 *
 * To be used by cgroup_for_each_descendant_pre().  Find the next
 * descendant to visit for pre-order traversal of @cgroup's descendants.
3056 3057 3058 3059 3060
 *
 * While this function requires RCU read locking, it doesn't require the
 * whole traversal to be contained in a single RCU critical section.  This
 * function will return the correct next descendant as long as both @pos
 * and @cgroup are accessible and @pos is a descendant of @cgroup.
3061 3062 3063 3064 3065 3066 3067 3068 3069
 */
struct cgroup *cgroup_next_descendant_pre(struct cgroup *pos,
					  struct cgroup *cgroup)
{
	struct cgroup *next;

	WARN_ON_ONCE(!rcu_read_lock_held());

	/* if first iteration, pretend we just visited @cgroup */
3070
	if (!pos)
3071 3072 3073 3074 3075 3076 3077 3078
		pos = cgroup;

	/* visit the first child if exists */
	next = list_first_or_null_rcu(&pos->children, struct cgroup, sibling);
	if (next)
		return next;

	/* no child, visit my or the closest ancestor's next sibling */
3079
	while (pos != cgroup) {
3080 3081
		next = cgroup_next_sibling(pos);
		if (next)
3082 3083
			return next;
		pos = pos->parent;
3084
	}
3085 3086 3087 3088 3089

	return NULL;
}
EXPORT_SYMBOL_GPL(cgroup_next_descendant_pre);

3090 3091 3092 3093 3094 3095 3096
/**
 * cgroup_rightmost_descendant - return the rightmost descendant of a cgroup
 * @pos: cgroup of interest
 *
 * Return the rightmost descendant of @pos.  If there's no descendant,
 * @pos is returned.  This can be used during pre-order traversal to skip
 * subtree of @pos.
3097 3098 3099 3100 3101
 *
 * While this function requires RCU read locking, it doesn't require the
 * whole traversal to be contained in a single RCU critical section.  This
 * function will return the correct rightmost descendant as long as @pos is
 * accessible.
3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120
 */
struct cgroup *cgroup_rightmost_descendant(struct cgroup *pos)
{
	struct cgroup *last, *tmp;

	WARN_ON_ONCE(!rcu_read_lock_held());

	do {
		last = pos;
		/* ->prev isn't RCU safe, walk ->next till the end */
		pos = NULL;
		list_for_each_entry_rcu(tmp, &last->children, sibling)
			pos = tmp;
	} while (pos);

	return last;
}
EXPORT_SYMBOL_GPL(cgroup_rightmost_descendant);

3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140
static struct cgroup *cgroup_leftmost_descendant(struct cgroup *pos)
{
	struct cgroup *last;

	do {
		last = pos;
		pos = list_first_or_null_rcu(&pos->children, struct cgroup,
					     sibling);
	} while (pos);

	return last;
}

/**
 * cgroup_next_descendant_post - find the next descendant for post-order walk
 * @pos: the current position (%NULL to initiate traversal)
 * @cgroup: cgroup whose descendants to walk
 *
 * To be used by cgroup_for_each_descendant_post().  Find the next
 * descendant to visit for post-order traversal of @cgroup's descendants.
3141 3142 3143 3144 3145
 *
 * While this function requires RCU read locking, it doesn't require the
 * whole traversal to be contained in a single RCU critical section.  This
 * function will return the correct next descendant as long as both @pos
 * and @cgroup are accessible and @pos is a descendant of @cgroup.
3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160
 */
struct cgroup *cgroup_next_descendant_post(struct cgroup *pos,
					   struct cgroup *cgroup)
{
	struct cgroup *next;

	WARN_ON_ONCE(!rcu_read_lock_held());

	/* if first iteration, visit the leftmost descendant */
	if (!pos) {
		next = cgroup_leftmost_descendant(cgroup);
		return next != cgroup ? next : NULL;
	}

	/* if there's an unvisited sibling, visit its leftmost descendant */
3161 3162
	next = cgroup_next_sibling(pos);
	if (next)
3163 3164 3165 3166 3167 3168 3169 3170
		return cgroup_leftmost_descendant(next);

	/* no sibling left, visit parent */
	next = pos->parent;
	return next != cgroup ? next : NULL;
}
EXPORT_SYMBOL_GPL(cgroup_next_descendant_post);

3171
void cgroup_iter_start(struct cgroup *cgrp, struct cgroup_iter *it)
3172
	__acquires(css_set_lock)
3173 3174 3175 3176 3177 3178
{
	/*
	 * The first time anyone tries to iterate across a cgroup,
	 * we need to enable the list linking each css_set to its
	 * tasks, and fix up all existing tasks.
	 */
3179 3180 3181
	if (!use_task_css_set_links)
		cgroup_enable_task_cg_lists();

3182
	read_lock(&css_set_lock);
3183
	it->cset_link = &cgrp->cset_links;
3184
	cgroup_advance_iter(cgrp, it);
3185 3186
}

3187
struct task_struct *cgroup_iter_next(struct cgroup *cgrp,
3188 3189 3190 3191
					struct cgroup_iter *it)
{
	struct task_struct *res;
	struct list_head *l = it->task;
3192
	struct cgrp_cset_link *link;
3193 3194

	/* If the iterator cg is NULL, we have no tasks */
3195
	if (!it->cset_link)
3196 3197 3198 3199
		return NULL;
	res = list_entry(l, struct task_struct, cg_list);
	/* Advance iterator to find next entry */
	l = l->next;
3200 3201
	link = list_entry(it->cset_link, struct cgrp_cset_link, cset_link);
	if (l == &link->cset->tasks) {
3202 3203
		/* We reached the end of this task list - move on to
		 * the next cg_cgroup_link */
3204
		cgroup_advance_iter(cgrp, it);
3205 3206 3207 3208 3209 3210
	} else {
		it->task = l;
	}
	return res;
}

3211
void cgroup_iter_end(struct cgroup *cgrp, struct cgroup_iter *it)
3212
	__releases(css_set_lock)
3213 3214 3215 3216
{
	read_unlock(&css_set_lock);
}

3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353
static inline int started_after_time(struct task_struct *t1,
				     struct timespec *time,
				     struct task_struct *t2)
{
	int start_diff = timespec_compare(&t1->start_time, time);
	if (start_diff > 0) {
		return 1;
	} else if (start_diff < 0) {
		return 0;
	} else {
		/*
		 * Arbitrarily, if two processes started at the same
		 * time, we'll say that the lower pointer value
		 * started first. Note that t2 may have exited by now
		 * so this may not be a valid pointer any longer, but
		 * that's fine - it still serves to distinguish
		 * between two tasks started (effectively) simultaneously.
		 */
		return t1 > t2;
	}
}

/*
 * This function is a callback from heap_insert() and is used to order
 * the heap.
 * In this case we order the heap in descending task start time.
 */
static inline int started_after(void *p1, void *p2)
{
	struct task_struct *t1 = p1;
	struct task_struct *t2 = p2;
	return started_after_time(t1, &t2->start_time, t2);
}

/**
 * cgroup_scan_tasks - iterate though all the tasks in a cgroup
 * @scan: struct cgroup_scanner containing arguments for the scan
 *
 * Arguments include pointers to callback functions test_task() and
 * process_task().
 * Iterate through all the tasks in a cgroup, calling test_task() for each,
 * and if it returns true, call process_task() for it also.
 * The test_task pointer may be NULL, meaning always true (select all tasks).
 * Effectively duplicates cgroup_iter_{start,next,end}()
 * but does not lock css_set_lock for the call to process_task().
 * The struct cgroup_scanner may be embedded in any structure of the caller's
 * creation.
 * It is guaranteed that process_task() will act on every task that
 * is a member of the cgroup for the duration of this call. This
 * function may or may not call process_task() for tasks that exit
 * or move to a different cgroup during the call, or are forked or
 * move into the cgroup during the call.
 *
 * Note that test_task() may be called with locks held, and may in some
 * situations be called multiple times for the same task, so it should
 * be cheap.
 * If the heap pointer in the struct cgroup_scanner is non-NULL, a heap has been
 * pre-allocated and will be used for heap operations (and its "gt" member will
 * be overwritten), else a temporary heap will be used (allocation of which
 * may cause this function to fail).
 */
int cgroup_scan_tasks(struct cgroup_scanner *scan)
{
	int retval, i;
	struct cgroup_iter it;
	struct task_struct *p, *dropped;
	/* Never dereference latest_task, since it's not refcounted */
	struct task_struct *latest_task = NULL;
	struct ptr_heap tmp_heap;
	struct ptr_heap *heap;
	struct timespec latest_time = { 0, 0 };

	if (scan->heap) {
		/* The caller supplied our heap and pre-allocated its memory */
		heap = scan->heap;
		heap->gt = &started_after;
	} else {
		/* We need to allocate our own heap memory */
		heap = &tmp_heap;
		retval = heap_init(heap, PAGE_SIZE, GFP_KERNEL, &started_after);
		if (retval)
			/* cannot allocate the heap */
			return retval;
	}

 again:
	/*
	 * Scan tasks in the cgroup, using the scanner's "test_task" callback
	 * to determine which are of interest, and using the scanner's
	 * "process_task" callback to process any of them that need an update.
	 * Since we don't want to hold any locks during the task updates,
	 * gather tasks to be processed in a heap structure.
	 * The heap is sorted by descending task start time.
	 * If the statically-sized heap fills up, we overflow tasks that
	 * started later, and in future iterations only consider tasks that
	 * started after the latest task in the previous pass. This
	 * guarantees forward progress and that we don't miss any tasks.
	 */
	heap->size = 0;
	cgroup_iter_start(scan->cg, &it);
	while ((p = cgroup_iter_next(scan->cg, &it))) {
		/*
		 * Only affect tasks that qualify per the caller's callback,
		 * if he provided one
		 */
		if (scan->test_task && !scan->test_task(p, scan))
			continue;
		/*
		 * Only process tasks that started after the last task
		 * we processed
		 */
		if (!started_after_time(p, &latest_time, latest_task))
			continue;
		dropped = heap_insert(heap, p);
		if (dropped == NULL) {
			/*
			 * The new task was inserted; the heap wasn't
			 * previously full
			 */
			get_task_struct(p);
		} else if (dropped != p) {
			/*
			 * The new task was inserted, and pushed out a
			 * different task
			 */
			get_task_struct(p);
			put_task_struct(dropped);
		}
		/*
		 * Else the new task was newer than anything already in
		 * the heap and wasn't inserted
		 */
	}
	cgroup_iter_end(scan->cg, &it);

	if (heap->size) {
		for (i = 0; i < heap->size; i++) {
3354
			struct task_struct *q = heap->ptrs[i];
3355
			if (i == 0) {
3356 3357
				latest_time = q->start_time;
				latest_task = q;
3358 3359
			}
			/* Process the task per the caller's callback */
3360 3361
			scan->process_task(q, scan);
			put_task_struct(q);
3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376
		}
		/*
		 * If we had to process any tasks at all, scan again
		 * in case some of them were in the middle of forking
		 * children that didn't get processed.
		 * Not the most efficient way to do it, but it avoids
		 * having to take callback_mutex in the fork path
		 */
		goto again;
	}
	if (heap == &tmp_heap)
		heap_free(&tmp_heap);
	return 0;
}

3377 3378 3379 3380 3381
static void cgroup_transfer_one_task(struct task_struct *task,
				     struct cgroup_scanner *scan)
{
	struct cgroup *new_cgroup = scan->data;

T
Tejun Heo 已提交
3382
	mutex_lock(&cgroup_mutex);
3383
	cgroup_attach_task(new_cgroup, task, false);
T
Tejun Heo 已提交
3384
	mutex_unlock(&cgroup_mutex);
3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404
}

/**
 * cgroup_trasnsfer_tasks - move tasks from one cgroup to another
 * @to: cgroup to which the tasks will be moved
 * @from: cgroup in which the tasks currently reside
 */
int cgroup_transfer_tasks(struct cgroup *to, struct cgroup *from)
{
	struct cgroup_scanner scan;

	scan.cg = from;
	scan.test_task = NULL; /* select all tasks in cgroup */
	scan.process_task = cgroup_transfer_one_task;
	scan.heap = NULL;
	scan.data = to;

	return cgroup_scan_tasks(&scan);
}

3405
/*
3406
 * Stuff for reading the 'tasks'/'procs' files.
3407 3408 3409 3410 3411 3412 3413 3414
 *
 * Reading this file can return large amounts of data if a cgroup has
 * *lots* of attached tasks. So it may need several calls to read(),
 * but we cannot guarantee that the information we produce is correct
 * unless we produce it entirely atomically.
 *
 */

3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446
/* which pidlist file are we talking about? */
enum cgroup_filetype {
	CGROUP_FILE_PROCS,
	CGROUP_FILE_TASKS,
};

/*
 * A pidlist is a list of pids that virtually represents the contents of one
 * of the cgroup files ("procs" or "tasks"). We keep a list of such pidlists,
 * a pair (one each for procs, tasks) for each pid namespace that's relevant
 * to the cgroup.
 */
struct cgroup_pidlist {
	/*
	 * used to find which pidlist is wanted. doesn't change as long as
	 * this particular list stays in the list.
	*/
	struct { enum cgroup_filetype type; struct pid_namespace *ns; } key;
	/* array of xids */
	pid_t *list;
	/* how many elements the above list has */
	int length;
	/* how many files are using the current array */
	int use_count;
	/* each of these stored in a list by its cgroup */
	struct list_head links;
	/* pointer to the cgroup we belong to, for list removal purposes */
	struct cgroup *owner;
	/* protects the other fields */
	struct rw_semaphore mutex;
};

3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467
/*
 * The following two functions "fix" the issue where there are more pids
 * than kmalloc will give memory for; in such cases, we use vmalloc/vfree.
 * TODO: replace with a kernel-wide solution to this problem
 */
#define PIDLIST_TOO_LARGE(c) ((c) * sizeof(pid_t) > (PAGE_SIZE * 2))
static void *pidlist_allocate(int count)
{
	if (PIDLIST_TOO_LARGE(count))
		return vmalloc(count * sizeof(pid_t));
	else
		return kmalloc(count * sizeof(pid_t), GFP_KERNEL);
}
static void pidlist_free(void *p)
{
	if (is_vmalloc_addr(p))
		vfree(p);
	else
		kfree(p);
}

3468
/*
3469
 * pidlist_uniq - given a kmalloc()ed list, strip out all duplicate entries
3470
 * Returns the number of unique elements.
3471
 */
3472
static int pidlist_uniq(pid_t *list, int length)
3473
{
3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502
	int src, dest = 1;

	/*
	 * we presume the 0th element is unique, so i starts at 1. trivial
	 * edge cases first; no work needs to be done for either
	 */
	if (length == 0 || length == 1)
		return length;
	/* src and dest walk down the list; dest counts unique elements */
	for (src = 1; src < length; src++) {
		/* find next unique element */
		while (list[src] == list[src-1]) {
			src++;
			if (src == length)
				goto after;
		}
		/* dest always points to where the next unique element goes */
		list[dest] = list[src];
		dest++;
	}
after:
	return dest;
}

static int cmppid(const void *a, const void *b)
{
	return *(pid_t *)a - *(pid_t *)b;
}

3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513
/*
 * find the appropriate pidlist for our purpose (given procs vs tasks)
 * returns with the lock on that pidlist already held, and takes care
 * of the use count, or returns NULL with no locks held if we're out of
 * memory.
 */
static struct cgroup_pidlist *cgroup_pidlist_find(struct cgroup *cgrp,
						  enum cgroup_filetype type)
{
	struct cgroup_pidlist *l;
	/* don't need task_nsproxy() if we're looking at ourself */
3514
	struct pid_namespace *ns = task_active_pid_ns(current);
3515

3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531
	/*
	 * We can't drop the pidlist_mutex before taking the l->mutex in case
	 * the last ref-holder is trying to remove l from the list at the same
	 * time. Holding the pidlist_mutex precludes somebody taking whichever
	 * list we find out from under us - compare release_pid_array().
	 */
	mutex_lock(&cgrp->pidlist_mutex);
	list_for_each_entry(l, &cgrp->pidlists, links) {
		if (l->key.type == type && l->key.ns == ns) {
			/* make sure l doesn't vanish out from under us */
			down_write(&l->mutex);
			mutex_unlock(&cgrp->pidlist_mutex);
			return l;
		}
	}
	/* entry not found; create a new one */
3532
	l = kzalloc(sizeof(struct cgroup_pidlist), GFP_KERNEL);
3533 3534 3535 3536 3537 3538 3539
	if (!l) {
		mutex_unlock(&cgrp->pidlist_mutex);
		return l;
	}
	init_rwsem(&l->mutex);
	down_write(&l->mutex);
	l->key.type = type;
3540
	l->key.ns = get_pid_ns(ns);
3541 3542 3543 3544 3545 3546
	l->owner = cgrp;
	list_add(&l->links, &cgrp->pidlists);
	mutex_unlock(&cgrp->pidlist_mutex);
	return l;
}

3547 3548 3549
/*
 * Load a cgroup's pidarray with either procs' tgids or tasks' pids
 */
3550 3551
static int pidlist_array_load(struct cgroup *cgrp, enum cgroup_filetype type,
			      struct cgroup_pidlist **lp)
3552 3553 3554 3555
{
	pid_t *array;
	int length;
	int pid, n = 0; /* used for populating the array */
3556 3557
	struct cgroup_iter it;
	struct task_struct *tsk;
3558 3559 3560 3561 3562 3563 3564 3565 3566
	struct cgroup_pidlist *l;

	/*
	 * If cgroup gets more users after we read count, we won't have
	 * enough space - tough.  This race is indistinguishable to the
	 * caller from the case that the additional cgroup users didn't
	 * show up until sometime later on.
	 */
	length = cgroup_task_count(cgrp);
3567
	array = pidlist_allocate(length);
3568 3569 3570
	if (!array)
		return -ENOMEM;
	/* now, populate the array */
3571 3572
	cgroup_iter_start(cgrp, &it);
	while ((tsk = cgroup_iter_next(cgrp, &it))) {
3573
		if (unlikely(n == length))
3574
			break;
3575
		/* get tgid or pid for procs or tasks file respectively */
3576 3577 3578 3579
		if (type == CGROUP_FILE_PROCS)
			pid = task_tgid_vnr(tsk);
		else
			pid = task_pid_vnr(tsk);
3580 3581
		if (pid > 0) /* make sure to only use valid results */
			array[n++] = pid;
3582
	}
3583
	cgroup_iter_end(cgrp, &it);
3584 3585 3586
	length = n;
	/* now sort & (if procs) strip out duplicates */
	sort(array, length, sizeof(pid_t), cmppid, NULL);
3587
	if (type == CGROUP_FILE_PROCS)
3588
		length = pidlist_uniq(array, length);
3589 3590
	l = cgroup_pidlist_find(cgrp, type);
	if (!l) {
3591
		pidlist_free(array);
3592
		return -ENOMEM;
3593
	}
3594
	/* store array, freeing old if necessary - lock already held */
3595
	pidlist_free(l->list);
3596 3597 3598 3599
	l->list = array;
	l->length = length;
	l->use_count++;
	up_write(&l->mutex);
3600
	*lp = l;
3601
	return 0;
3602 3603
}

B
Balbir Singh 已提交
3604
/**
L
Li Zefan 已提交
3605
 * cgroupstats_build - build and fill cgroupstats
B
Balbir Singh 已提交
3606 3607 3608
 * @stats: cgroupstats to fill information into
 * @dentry: A dentry entry belonging to the cgroup for which stats have
 * been requested.
L
Li Zefan 已提交
3609 3610 3611
 *
 * Build and fill cgroupstats so that taskstats can export it to user
 * space.
B
Balbir Singh 已提交
3612 3613 3614 3615
 */
int cgroupstats_build(struct cgroupstats *stats, struct dentry *dentry)
{
	int ret = -EINVAL;
3616
	struct cgroup *cgrp;
B
Balbir Singh 已提交
3617 3618
	struct cgroup_iter it;
	struct task_struct *tsk;
3619

B
Balbir Singh 已提交
3620
	/*
3621 3622
	 * Validate dentry by checking the superblock operations,
	 * and make sure it's a directory.
B
Balbir Singh 已提交
3623
	 */
3624 3625
	if (dentry->d_sb->s_op != &cgroup_ops ||
	    !S_ISDIR(dentry->d_inode->i_mode))
B
Balbir Singh 已提交
3626 3627 3628
		 goto err;

	ret = 0;
3629
	cgrp = dentry->d_fsdata;
B
Balbir Singh 已提交
3630

3631 3632
	cgroup_iter_start(cgrp, &it);
	while ((tsk = cgroup_iter_next(cgrp, &it))) {
B
Balbir Singh 已提交
3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651
		switch (tsk->state) {
		case TASK_RUNNING:
			stats->nr_running++;
			break;
		case TASK_INTERRUPTIBLE:
			stats->nr_sleeping++;
			break;
		case TASK_UNINTERRUPTIBLE:
			stats->nr_uninterruptible++;
			break;
		case TASK_STOPPED:
			stats->nr_stopped++;
			break;
		default:
			if (delayacct_is_task_waiting_on_io(tsk))
				stats->nr_io_wait++;
			break;
		}
	}
3652
	cgroup_iter_end(cgrp, &it);
B
Balbir Singh 已提交
3653 3654 3655 3656 3657

err:
	return ret;
}

3658

3659
/*
3660
 * seq_file methods for the tasks/procs files. The seq_file position is the
3661
 * next pid to display; the seq_file iterator is a pointer to the pid
3662
 * in the cgroup->l->list array.
3663
 */
3664

3665
static void *cgroup_pidlist_start(struct seq_file *s, loff_t *pos)
3666
{
3667 3668 3669 3670 3671 3672
	/*
	 * Initially we receive a position value that corresponds to
	 * one more than the last pid shown (or 0 on the first call or
	 * after a seek to the start). Use a binary-search to find the
	 * next pid to display, if any
	 */
3673
	struct cgroup_pidlist *l = s->private;
3674 3675 3676
	int index = 0, pid = *pos;
	int *iter;

3677
	down_read(&l->mutex);
3678
	if (pid) {
3679
		int end = l->length;
S
Stephen Rothwell 已提交
3680

3681 3682
		while (index < end) {
			int mid = (index + end) / 2;
3683
			if (l->list[mid] == pid) {
3684 3685
				index = mid;
				break;
3686
			} else if (l->list[mid] <= pid)
3687 3688 3689 3690 3691 3692
				index = mid + 1;
			else
				end = mid;
		}
	}
	/* If we're off the end of the array, we're done */
3693
	if (index >= l->length)
3694 3695
		return NULL;
	/* Update the abstract position to be the actual pid that we found */
3696
	iter = l->list + index;
3697 3698 3699 3700
	*pos = *iter;
	return iter;
}

3701
static void cgroup_pidlist_stop(struct seq_file *s, void *v)
3702
{
3703 3704
	struct cgroup_pidlist *l = s->private;
	up_read(&l->mutex);
3705 3706
}

3707
static void *cgroup_pidlist_next(struct seq_file *s, void *v, loff_t *pos)
3708
{
3709 3710 3711
	struct cgroup_pidlist *l = s->private;
	pid_t *p = v;
	pid_t *end = l->list + l->length;
3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724
	/*
	 * Advance to the next pid in the array. If this goes off the
	 * end, we're done
	 */
	p++;
	if (p >= end) {
		return NULL;
	} else {
		*pos = *p;
		return p;
	}
}

3725
static int cgroup_pidlist_show(struct seq_file *s, void *v)
3726 3727 3728
{
	return seq_printf(s, "%d\n", *(int *)v);
}
3729

3730 3731 3732 3733 3734 3735 3736 3737 3738
/*
 * seq_operations functions for iterating on pidlists through seq_file -
 * independent of whether it's tasks or procs
 */
static const struct seq_operations cgroup_pidlist_seq_operations = {
	.start = cgroup_pidlist_start,
	.stop = cgroup_pidlist_stop,
	.next = cgroup_pidlist_next,
	.show = cgroup_pidlist_show,
3739 3740
};

3741
static void cgroup_release_pid_array(struct cgroup_pidlist *l)
3742
{
3743 3744 3745 3746 3747 3748 3749
	/*
	 * the case where we're the last user of this particular pidlist will
	 * have us remove it from the cgroup's list, which entails taking the
	 * mutex. since in pidlist_find the pidlist->lock depends on cgroup->
	 * pidlist_mutex, we have to take pidlist_mutex first.
	 */
	mutex_lock(&l->owner->pidlist_mutex);
3750 3751 3752
	down_write(&l->mutex);
	BUG_ON(!l->use_count);
	if (!--l->use_count) {
3753 3754 3755
		/* we're the last user if refcount is 0; remove and free */
		list_del(&l->links);
		mutex_unlock(&l->owner->pidlist_mutex);
3756
		pidlist_free(l->list);
3757 3758 3759 3760
		put_pid_ns(l->key.ns);
		up_write(&l->mutex);
		kfree(l);
		return;
3761
	}
3762
	mutex_unlock(&l->owner->pidlist_mutex);
3763
	up_write(&l->mutex);
3764 3765
}

3766
static int cgroup_pidlist_release(struct inode *inode, struct file *file)
3767
{
3768
	struct cgroup_pidlist *l;
3769 3770
	if (!(file->f_mode & FMODE_READ))
		return 0;
3771 3772 3773 3774 3775 3776
	/*
	 * the seq_file will only be initialized if the file was opened for
	 * reading; hence we check if it's not null only in that case.
	 */
	l = ((struct seq_file *)file->private_data)->private;
	cgroup_release_pid_array(l);
3777 3778 3779
	return seq_release(inode, file);
}

3780
static const struct file_operations cgroup_pidlist_operations = {
3781 3782 3783
	.read = seq_read,
	.llseek = seq_lseek,
	.write = cgroup_file_write,
3784
	.release = cgroup_pidlist_release,
3785 3786
};

3787
/*
3788 3789 3790
 * The following functions handle opens on a file that displays a pidlist
 * (tasks or procs). Prepare an array of the process/thread IDs of whoever's
 * in the cgroup.
3791
 */
3792
/* helper function for the two below it */
3793
static int cgroup_pidlist_open(struct file *file, enum cgroup_filetype type)
3794
{
3795
	struct cgroup *cgrp = __d_cgrp(file->f_dentry->d_parent);
3796
	struct cgroup_pidlist *l;
3797
	int retval;
3798

3799
	/* Nothing to do for write-only files */
3800 3801 3802
	if (!(file->f_mode & FMODE_READ))
		return 0;

3803
	/* have the array populated */
3804
	retval = pidlist_array_load(cgrp, type, &l);
3805 3806 3807 3808
	if (retval)
		return retval;
	/* configure file information */
	file->f_op = &cgroup_pidlist_operations;
3809

3810
	retval = seq_open(file, &cgroup_pidlist_seq_operations);
3811
	if (retval) {
3812
		cgroup_release_pid_array(l);
3813
		return retval;
3814
	}
3815
	((struct seq_file *)file->private_data)->private = l;
3816 3817
	return 0;
}
3818 3819
static int cgroup_tasks_open(struct inode *unused, struct file *file)
{
3820
	return cgroup_pidlist_open(file, CGROUP_FILE_TASKS);
3821 3822 3823
}
static int cgroup_procs_open(struct inode *unused, struct file *file)
{
3824
	return cgroup_pidlist_open(file, CGROUP_FILE_PROCS);
3825
}
3826

3827
static u64 cgroup_read_notify_on_release(struct cgroup *cgrp,
3828 3829
					    struct cftype *cft)
{
3830
	return notify_on_release(cgrp);
3831 3832
}

3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844
static int cgroup_write_notify_on_release(struct cgroup *cgrp,
					  struct cftype *cft,
					  u64 val)
{
	clear_bit(CGRP_RELEASABLE, &cgrp->flags);
	if (val)
		set_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
	else
		clear_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
	return 0;
}

3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861
/*
 * When dput() is called asynchronously, if umount has been done and
 * then deactivate_super() in cgroup_free_fn() kills the superblock,
 * there's a small window that vfs will see the root dentry with non-zero
 * refcnt and trigger BUG().
 *
 * That's why we hold a reference before dput() and drop it right after.
 */
static void cgroup_dput(struct cgroup *cgrp)
{
	struct super_block *sb = cgrp->root->sb;

	atomic_inc(&sb->s_active);
	dput(cgrp->dentry);
	deactivate_super(sb);
}

3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872
/*
 * Unregister event and free resources.
 *
 * Gets called from workqueue.
 */
static void cgroup_event_remove(struct work_struct *work)
{
	struct cgroup_event *event = container_of(work, struct cgroup_event,
			remove);
	struct cgroup *cgrp = event->cgrp;

3873 3874
	remove_wait_queue(event->wqh, &event->wait);

3875 3876
	event->cft->unregister_event(cgrp, event->cft, event->eventfd);

3877 3878 3879
	/* Notify userspace the event is going away. */
	eventfd_signal(event->eventfd, 1);

3880 3881
	eventfd_ctx_put(event->eventfd);
	kfree(event);
3882
	cgroup_dput(cgrp);
3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899
}

/*
 * Gets called on POLLHUP on eventfd when user closes it.
 *
 * Called with wqh->lock held and interrupts disabled.
 */
static int cgroup_event_wake(wait_queue_t *wait, unsigned mode,
		int sync, void *key)
{
	struct cgroup_event *event = container_of(wait,
			struct cgroup_event, wait);
	struct cgroup *cgrp = event->cgrp;
	unsigned long flags = (unsigned long)key;

	if (flags & POLLHUP) {
		/*
3900 3901 3902 3903 3904 3905 3906
		 * If the event has been detached at cgroup removal, we
		 * can simply return knowing the other side will cleanup
		 * for us.
		 *
		 * We can't race against event freeing since the other
		 * side will require wqh->lock via remove_wait_queue(),
		 * which we hold.
3907
		 */
3908 3909 3910 3911 3912 3913 3914 3915 3916 3917
		spin_lock(&cgrp->event_list_lock);
		if (!list_empty(&event->list)) {
			list_del_init(&event->list);
			/*
			 * We are in atomic context, but cgroup_event_remove()
			 * may sleep, so we have to call it in workqueue.
			 */
			schedule_work(&event->remove);
		}
		spin_unlock(&cgrp->event_list_lock);
3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942
	}

	return 0;
}

static void cgroup_event_ptable_queue_proc(struct file *file,
		wait_queue_head_t *wqh, poll_table *pt)
{
	struct cgroup_event *event = container_of(pt,
			struct cgroup_event, pt);

	event->wqh = wqh;
	add_wait_queue(wqh, &event->wait);
}

/*
 * Parse input and register new cgroup event handler.
 *
 * Input must be in format '<event_fd> <control_fd> <args>'.
 * Interpretation of args is defined by control file implementation.
 */
static int cgroup_write_event_control(struct cgroup *cgrp, struct cftype *cft,
				      const char *buffer)
{
	struct cgroup_event *event = NULL;
3943
	struct cgroup *cgrp_cfile;
3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987
	unsigned int efd, cfd;
	struct file *efile = NULL;
	struct file *cfile = NULL;
	char *endp;
	int ret;

	efd = simple_strtoul(buffer, &endp, 10);
	if (*endp != ' ')
		return -EINVAL;
	buffer = endp + 1;

	cfd = simple_strtoul(buffer, &endp, 10);
	if ((*endp != ' ') && (*endp != '\0'))
		return -EINVAL;
	buffer = endp + 1;

	event = kzalloc(sizeof(*event), GFP_KERNEL);
	if (!event)
		return -ENOMEM;
	event->cgrp = cgrp;
	INIT_LIST_HEAD(&event->list);
	init_poll_funcptr(&event->pt, cgroup_event_ptable_queue_proc);
	init_waitqueue_func_entry(&event->wait, cgroup_event_wake);
	INIT_WORK(&event->remove, cgroup_event_remove);

	efile = eventfd_fget(efd);
	if (IS_ERR(efile)) {
		ret = PTR_ERR(efile);
		goto fail;
	}

	event->eventfd = eventfd_ctx_fileget(efile);
	if (IS_ERR(event->eventfd)) {
		ret = PTR_ERR(event->eventfd);
		goto fail;
	}

	cfile = fget(cfd);
	if (!cfile) {
		ret = -EBADF;
		goto fail;
	}

	/* the process need read permission on control file */
A
Al Viro 已提交
3988
	/* AV: shouldn't we check that it's been opened for read instead? */
A
Al Viro 已提交
3989
	ret = inode_permission(file_inode(cfile), MAY_READ);
3990 3991 3992 3993 3994 3995 3996 3997 3998
	if (ret < 0)
		goto fail;

	event->cft = __file_cft(cfile);
	if (IS_ERR(event->cft)) {
		ret = PTR_ERR(event->cft);
		goto fail;
	}

3999 4000 4001 4002 4003 4004 4005 4006 4007 4008
	/*
	 * The file to be monitored must be in the same cgroup as
	 * cgroup.event_control is.
	 */
	cgrp_cfile = __d_cgrp(cfile->f_dentry->d_parent);
	if (cgrp_cfile != cgrp) {
		ret = -EINVAL;
		goto fail;
	}

4009 4010 4011 4012 4013 4014 4015 4016 4017 4018
	if (!event->cft->register_event || !event->cft->unregister_event) {
		ret = -EINVAL;
		goto fail;
	}

	ret = event->cft->register_event(cgrp, event->cft,
			event->eventfd, buffer);
	if (ret)
		goto fail;

4019
	efile->f_op->poll(efile, &event->pt);
4020

4021 4022 4023 4024 4025 4026 4027
	/*
	 * Events should be removed after rmdir of cgroup directory, but before
	 * destroying subsystem state objects. Let's take reference to cgroup
	 * directory dentry to do that.
	 */
	dget(cgrp->dentry);

4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051
	spin_lock(&cgrp->event_list_lock);
	list_add(&event->list, &cgrp->event_list);
	spin_unlock(&cgrp->event_list_lock);

	fput(cfile);
	fput(efile);

	return 0;

fail:
	if (cfile)
		fput(cfile);

	if (event && event->eventfd && !IS_ERR(event->eventfd))
		eventfd_ctx_put(event->eventfd);

	if (!IS_ERR_OR_NULL(efile))
		fput(efile);

	kfree(event);

	return ret;
}

4052 4053 4054
static u64 cgroup_clone_children_read(struct cgroup *cgrp,
				    struct cftype *cft)
{
4055
	return test_bit(CGRP_CPUSET_CLONE_CHILDREN, &cgrp->flags);
4056 4057 4058 4059 4060 4061 4062
}

static int cgroup_clone_children_write(struct cgroup *cgrp,
				     struct cftype *cft,
				     u64 val)
{
	if (val)
4063
		set_bit(CGRP_CPUSET_CLONE_CHILDREN, &cgrp->flags);
4064
	else
4065
		clear_bit(CGRP_CPUSET_CLONE_CHILDREN, &cgrp->flags);
4066 4067 4068
	return 0;
}

4069
static struct cftype cgroup_base_files[] = {
4070
	{
4071
		.name = "cgroup.procs",
4072
		.open = cgroup_procs_open,
B
Ben Blum 已提交
4073
		.write_u64 = cgroup_procs_write,
4074
		.release = cgroup_pidlist_release,
B
Ben Blum 已提交
4075
		.mode = S_IRUGO | S_IWUSR,
4076
	},
4077
	{
4078
		.name = "cgroup.event_control",
4079 4080 4081
		.write_string = cgroup_write_event_control,
		.mode = S_IWUGO,
	},
4082 4083
	{
		.name = "cgroup.clone_children",
4084
		.flags = CFTYPE_INSANE,
4085 4086 4087
		.read_u64 = cgroup_clone_children_read,
		.write_u64 = cgroup_clone_children_write,
	},
4088 4089 4090 4091 4092
	{
		.name = "cgroup.sane_behavior",
		.flags = CFTYPE_ONLY_ON_ROOT,
		.read_seq_string = cgroup_sane_behavior_show,
	},
4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112

	/*
	 * Historical crazy stuff.  These don't have "cgroup."  prefix and
	 * don't exist if sane_behavior.  If you're depending on these, be
	 * prepared to be burned.
	 */
	{
		.name = "tasks",
		.flags = CFTYPE_INSANE,		/* use "procs" instead */
		.open = cgroup_tasks_open,
		.write_u64 = cgroup_tasks_write,
		.release = cgroup_pidlist_release,
		.mode = S_IRUGO | S_IWUSR,
	},
	{
		.name = "notify_on_release",
		.flags = CFTYPE_INSANE,
		.read_u64 = cgroup_read_notify_on_release,
		.write_u64 = cgroup_write_notify_on_release,
	},
4113 4114
	{
		.name = "release_agent",
4115
		.flags = CFTYPE_INSANE | CFTYPE_ONLY_ON_ROOT,
4116 4117 4118 4119
		.read_seq_string = cgroup_release_agent_show,
		.write_string = cgroup_release_agent_write,
		.max_write_len = PATH_MAX,
	},
T
Tejun Heo 已提交
4120
	{ }	/* terminate */
4121 4122
};

4123 4124 4125 4126 4127 4128 4129 4130
/**
 * cgroup_populate_dir - selectively creation of files in a directory
 * @cgrp: target cgroup
 * @base_files: true if the base files should be added
 * @subsys_mask: mask of the subsystem ids whose files should be added
 */
static int cgroup_populate_dir(struct cgroup *cgrp, bool base_files,
			       unsigned long subsys_mask)
4131 4132 4133 4134
{
	int err;
	struct cgroup_subsys *ss;

4135
	if (base_files) {
4136
		err = cgroup_addrm_files(cgrp, NULL, cgroup_base_files, true);
4137 4138 4139
		if (err < 0)
			return err;
	}
4140

4141
	/* process cftsets of each subsystem */
4142
	for_each_subsys(cgrp->root, ss) {
4143
		struct cftype_set *set;
4144 4145
		if (!test_bit(ss->subsys_id, &subsys_mask))
			continue;
4146

T
Tejun Heo 已提交
4147
		list_for_each_entry(set, &ss->cftsets, node)
4148
			cgroup_addrm_files(cgrp, ss, set->cfts, true);
4149
	}
4150

K
KAMEZAWA Hiroyuki 已提交
4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161
	/* This cgroup is ready now */
	for_each_subsys(cgrp->root, ss) {
		struct cgroup_subsys_state *css = cgrp->subsys[ss->subsys_id];
		/*
		 * Update id->css pointer and make this css visible from
		 * CSS ID functions. This pointer will be dereferened
		 * from RCU-read-side without locks.
		 */
		if (css->id)
			rcu_assign_pointer(css->id->css, css);
	}
4162 4163 4164 4165

	return 0;
}

4166 4167 4168 4169 4170
static void css_dput_fn(struct work_struct *work)
{
	struct cgroup_subsys_state *css =
		container_of(work, struct cgroup_subsys_state, dput_work);

4171
	cgroup_dput(css->cgroup);
4172 4173
}

4174 4175 4176 4177 4178 4179 4180 4181
static void css_release(struct percpu_ref *ref)
{
	struct cgroup_subsys_state *css =
		container_of(ref, struct cgroup_subsys_state, refcnt);

	schedule_work(&css->dput_work);
}

4182 4183
static void init_cgroup_css(struct cgroup_subsys_state *css,
			       struct cgroup_subsys *ss,
4184
			       struct cgroup *cgrp)
4185
{
4186
	css->cgroup = cgrp;
4187
	css->flags = 0;
K
KAMEZAWA Hiroyuki 已提交
4188
	css->id = NULL;
4189
	if (cgrp == cgroup_dummy_top)
4190
		css->flags |= CSS_ROOT;
4191 4192
	BUG_ON(cgrp->subsys[ss->subsys_id]);
	cgrp->subsys[ss->subsys_id] = css;
4193 4194

	/*
4195 4196 4197 4198
	 * css holds an extra ref to @cgrp->dentry which is put on the last
	 * css_put().  dput() requires process context, which css_put() may
	 * be called without.  @css->dput_work will be used to invoke
	 * dput() asynchronously from css_put().
4199 4200
	 */
	INIT_WORK(&css->dput_work, css_dput_fn);
4201 4202
}

T
Tejun Heo 已提交
4203 4204
/* invoke ->post_create() on a new CSS and mark it online if successful */
static int online_css(struct cgroup_subsys *ss, struct cgroup *cgrp)
4205
{
T
Tejun Heo 已提交
4206 4207
	int ret = 0;

4208 4209
	lockdep_assert_held(&cgroup_mutex);

4210 4211
	if (ss->css_online)
		ret = ss->css_online(cgrp);
T
Tejun Heo 已提交
4212 4213 4214
	if (!ret)
		cgrp->subsys[ss->subsys_id]->flags |= CSS_ONLINE;
	return ret;
4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227
}

/* if the CSS is online, invoke ->pre_destory() on it and mark it offline */
static void offline_css(struct cgroup_subsys *ss, struct cgroup *cgrp)
	__releases(&cgroup_mutex) __acquires(&cgroup_mutex)
{
	struct cgroup_subsys_state *css = cgrp->subsys[ss->subsys_id];

	lockdep_assert_held(&cgroup_mutex);

	if (!(css->flags & CSS_ONLINE))
		return;

4228
	if (ss->css_offline)
4229
		ss->css_offline(cgrp);
4230 4231 4232 4233

	cgrp->subsys[ss->subsys_id]->flags &= ~CSS_ONLINE;
}

4234
/*
L
Li Zefan 已提交
4235 4236 4237 4238
 * cgroup_create - create a cgroup
 * @parent: cgroup that will be parent of the new cgroup
 * @dentry: dentry of the new cgroup
 * @mode: mode to set on new inode
4239
 *
L
Li Zefan 已提交
4240
 * Must be called with the mutex on the parent inode held
4241 4242
 */
static long cgroup_create(struct cgroup *parent, struct dentry *dentry,
A
Al Viro 已提交
4243
			     umode_t mode)
4244
{
4245
	struct cgroup *cgrp;
4246
	struct cgroup_name *name;
4247 4248 4249 4250 4251
	struct cgroupfs_root *root = parent->root;
	int err = 0;
	struct cgroup_subsys *ss;
	struct super_block *sb = root->sb;

T
Tejun Heo 已提交
4252
	/* allocate the cgroup and its ID, 0 is reserved for the root */
4253 4254
	cgrp = kzalloc(sizeof(*cgrp), GFP_KERNEL);
	if (!cgrp)
4255 4256
		return -ENOMEM;

4257 4258 4259 4260 4261
	name = cgroup_alloc_name(dentry);
	if (!name)
		goto err_free_cgrp;
	rcu_assign_pointer(cgrp->name, name);

T
Tejun Heo 已提交
4262 4263
	cgrp->id = ida_simple_get(&root->cgroup_ida, 1, 0, GFP_KERNEL);
	if (cgrp->id < 0)
4264
		goto err_free_name;
T
Tejun Heo 已提交
4265

4266 4267 4268 4269 4270 4271 4272 4273 4274
	/*
	 * Only live parents can have children.  Note that the liveliness
	 * check isn't strictly necessary because cgroup_mkdir() and
	 * cgroup_rmdir() are fully synchronized by i_mutex; however, do it
	 * anyway so that locking is contained inside cgroup proper and we
	 * don't get nasty surprises if we ever grow another caller.
	 */
	if (!cgroup_lock_live_group(parent)) {
		err = -ENODEV;
T
Tejun Heo 已提交
4275
		goto err_free_id;
4276 4277
	}

4278 4279 4280 4281 4282 4283 4284
	/* Grab a reference on the superblock so the hierarchy doesn't
	 * get deleted on unmount if there are child cgroups.  This
	 * can be done outside cgroup_mutex, since the sb can't
	 * disappear while someone has an open control file on the
	 * fs */
	atomic_inc(&sb->s_active);

4285
	init_cgroup_housekeeping(cgrp);
4286

4287 4288 4289
	dentry->d_fsdata = cgrp;
	cgrp->dentry = dentry;

4290 4291
	cgrp->parent = parent;
	cgrp->root = parent->root;
4292

4293 4294 4295
	if (notify_on_release(parent))
		set_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);

4296 4297
	if (test_bit(CGRP_CPUSET_CLONE_CHILDREN, &parent->flags))
		set_bit(CGRP_CPUSET_CLONE_CHILDREN, &cgrp->flags);
4298

4299
	for_each_subsys(root, ss) {
4300
		struct cgroup_subsys_state *css;
4301

4302
		css = ss->css_alloc(cgrp);
4303 4304
		if (IS_ERR(css)) {
			err = PTR_ERR(css);
4305
			goto err_free_all;
4306
		}
4307 4308 4309 4310 4311

		err = percpu_ref_init(&css->refcnt, css_release);
		if (err)
			goto err_free_all;

4312
		init_cgroup_css(css, ss, cgrp);
4313

4314 4315 4316
		if (ss->use_id) {
			err = alloc_css_id(ss, parent, cgrp);
			if (err)
4317
				goto err_free_all;
4318
		}
4319 4320
	}

4321 4322 4323 4324 4325
	/*
	 * Create directory.  cgroup_create_file() returns with the new
	 * directory locked on success so that it can be populated without
	 * dropping cgroup_mutex.
	 */
T
Tejun Heo 已提交
4326
	err = cgroup_create_file(dentry, S_IFDIR | mode, sb);
4327
	if (err < 0)
4328
		goto err_free_all;
4329
	lockdep_assert_held(&dentry->d_inode->i_mutex);
4330

4331
	cgrp->serial_nr = cgroup_serial_nr_next++;
4332

4333 4334 4335
	/* allocation complete, commit to creation */
	list_add_tail_rcu(&cgrp->sibling, &cgrp->parent->children);
	root->number_of_cgroups++;
T
Tejun Heo 已提交
4336

T
Tejun Heo 已提交
4337 4338
	/* each css holds a ref to the cgroup's dentry */
	for_each_subsys(root, ss)
4339
		dget(dentry);
4340

4341 4342 4343
	/* hold a ref to the parent's dentry */
	dget(parent->dentry);

T
Tejun Heo 已提交
4344 4345 4346 4347 4348
	/* creation succeeded, notify subsystems */
	for_each_subsys(root, ss) {
		err = online_css(ss, cgrp);
		if (err)
			goto err_destroy;
4349 4350 4351 4352 4353 4354 4355 4356 4357

		if (ss->broken_hierarchy && !ss->warned_broken_hierarchy &&
		    parent->parent) {
			pr_warning("cgroup: %s (%d) created nested cgroup for controller \"%s\" which has incomplete hierarchy support. Nested cgroups may change behavior in the future.\n",
				   current->comm, current->pid, ss->name);
			if (!strcmp(ss->name, "memory"))
				pr_warning("cgroup: \"memory\" requires setting use_hierarchy to 1 on the root.\n");
			ss->warned_broken_hierarchy = true;
		}
4358 4359
	}

4360
	err = cgroup_populate_dir(cgrp, true, root->subsys_mask);
4361 4362
	if (err)
		goto err_destroy;
4363 4364

	mutex_unlock(&cgroup_mutex);
4365
	mutex_unlock(&cgrp->dentry->d_inode->i_mutex);
4366 4367 4368

	return 0;

4369
err_free_all:
4370
	for_each_subsys(root, ss) {
4371 4372 4373 4374
		struct cgroup_subsys_state *css = cgrp->subsys[ss->subsys_id];

		if (css) {
			percpu_ref_cancel_init(&css->refcnt);
4375
			ss->css_free(cgrp);
4376
		}
4377 4378 4379 4380
	}
	mutex_unlock(&cgroup_mutex);
	/* Release the reference count that we took on the superblock */
	deactivate_super(sb);
T
Tejun Heo 已提交
4381 4382
err_free_id:
	ida_simple_remove(&root->cgroup_ida, cgrp->id);
4383 4384
err_free_name:
	kfree(rcu_dereference_raw(cgrp->name));
4385
err_free_cgrp:
4386
	kfree(cgrp);
4387
	return err;
4388 4389 4390 4391 4392 4393

err_destroy:
	cgroup_destroy_locked(cgrp);
	mutex_unlock(&cgroup_mutex);
	mutex_unlock(&dentry->d_inode->i_mutex);
	return err;
4394 4395
}

4396
static int cgroup_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
4397 4398 4399 4400 4401 4402 4403
{
	struct cgroup *c_parent = dentry->d_parent->d_fsdata;

	/* the vfs holds inode->i_mutex already */
	return cgroup_create(c_parent, dentry, mode | S_IFDIR);
}

4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445
static void cgroup_css_killed(struct cgroup *cgrp)
{
	if (!atomic_dec_and_test(&cgrp->css_kill_cnt))
		return;

	/* percpu ref's of all css's are killed, kick off the next step */
	INIT_WORK(&cgrp->destroy_work, cgroup_offline_fn);
	schedule_work(&cgrp->destroy_work);
}

static void css_ref_killed_fn(struct percpu_ref *ref)
{
	struct cgroup_subsys_state *css =
		container_of(ref, struct cgroup_subsys_state, refcnt);

	cgroup_css_killed(css->cgroup);
}

/**
 * cgroup_destroy_locked - the first stage of cgroup destruction
 * @cgrp: cgroup to be destroyed
 *
 * css's make use of percpu refcnts whose killing latency shouldn't be
 * exposed to userland and are RCU protected.  Also, cgroup core needs to
 * guarantee that css_tryget() won't succeed by the time ->css_offline() is
 * invoked.  To satisfy all the requirements, destruction is implemented in
 * the following two steps.
 *
 * s1. Verify @cgrp can be destroyed and mark it dying.  Remove all
 *     userland visible parts and start killing the percpu refcnts of
 *     css's.  Set up so that the next stage will be kicked off once all
 *     the percpu refcnts are confirmed to be killed.
 *
 * s2. Invoke ->css_offline(), mark the cgroup dead and proceed with the
 *     rest of destruction.  Once all cgroup references are gone, the
 *     cgroup is RCU-freed.
 *
 * This function implements s1.  After this step, @cgrp is gone as far as
 * the userland is concerned and a new cgroup with the same name may be
 * created.  As cgroup doesn't care about the names internally, this
 * doesn't cause any problem.
 */
4446 4447
static int cgroup_destroy_locked(struct cgroup *cgrp)
	__releases(&cgroup_mutex) __acquires(&cgroup_mutex)
4448
{
4449
	struct dentry *d = cgrp->dentry;
4450
	struct cgroup_event *event, *tmp;
4451
	struct cgroup_subsys *ss;
4452
	bool empty;
4453

4454 4455 4456
	lockdep_assert_held(&d->d_inode->i_mutex);
	lockdep_assert_held(&cgroup_mutex);

4457
	/*
T
Tejun Heo 已提交
4458 4459
	 * css_set_lock synchronizes access to ->cset_links and prevents
	 * @cgrp from being removed while __put_css_set() is in progress.
4460 4461
	 */
	read_lock(&css_set_lock);
T
Tejun Heo 已提交
4462
	empty = list_empty(&cgrp->cset_links) && list_empty(&cgrp->children);
4463 4464
	read_unlock(&css_set_lock);
	if (!empty)
4465
		return -EBUSY;
L
Li Zefan 已提交
4466

4467
	/*
4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480
	 * Block new css_tryget() by killing css refcnts.  cgroup core
	 * guarantees that, by the time ->css_offline() is invoked, no new
	 * css reference will be given out via css_tryget().  We can't
	 * simply call percpu_ref_kill() and proceed to offlining css's
	 * because percpu_ref_kill() doesn't guarantee that the ref is seen
	 * as killed on all CPUs on return.
	 *
	 * Use percpu_ref_kill_and_confirm() to get notifications as each
	 * css is confirmed to be seen as killed on all CPUs.  The
	 * notification callback keeps track of the number of css's to be
	 * killed and schedules cgroup_offline_fn() to perform the rest of
	 * destruction once the percpu refs of all css's are confirmed to
	 * be killed.
4481
	 */
4482
	atomic_set(&cgrp->css_kill_cnt, 1);
4483 4484
	for_each_subsys(cgrp->root, ss) {
		struct cgroup_subsys_state *css = cgrp->subsys[ss->subsys_id];
4485

4486 4487 4488 4489 4490 4491 4492 4493
		/*
		 * Killing would put the base ref, but we need to keep it
		 * alive until after ->css_offline.
		 */
		percpu_ref_get(&css->refcnt);

		atomic_inc(&cgrp->css_kill_cnt);
		percpu_ref_kill_and_confirm(&css->refcnt, css_ref_killed_fn);
4494
	}
4495
	cgroup_css_killed(cgrp);
4496 4497 4498 4499 4500 4501 4502 4503

	/*
	 * Mark @cgrp dead.  This prevents further task migration and child
	 * creation by disabling cgroup_lock_live_group().  Note that
	 * CGRP_DEAD assertion is depended upon by cgroup_next_sibling() to
	 * resume iteration after dropping RCU read lock.  See
	 * cgroup_next_sibling() for details.
	 */
4504
	set_bit(CGRP_DEAD, &cgrp->flags);
4505

4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530
	/* CGRP_DEAD is set, remove from ->release_list for the last time */
	raw_spin_lock(&release_list_lock);
	if (!list_empty(&cgrp->release_list))
		list_del_init(&cgrp->release_list);
	raw_spin_unlock(&release_list_lock);

	/*
	 * Remove @cgrp directory.  The removal puts the base ref but we
	 * aren't quite done with @cgrp yet, so hold onto it.
	 */
	dget(d);
	cgroup_d_remove_dir(d);

	/*
	 * Unregister events and notify userspace.
	 * Notify userspace about cgroup removing only after rmdir of cgroup
	 * directory to avoid race between userspace and kernelspace.
	 */
	spin_lock(&cgrp->event_list_lock);
	list_for_each_entry_safe(event, tmp, &cgrp->event_list, list) {
		list_del_init(&event->list);
		schedule_work(&event->remove);
	}
	spin_unlock(&cgrp->event_list_lock);

4531 4532 4533
	return 0;
};

4534 4535 4536 4537 4538 4539 4540 4541 4542 4543
/**
 * cgroup_offline_fn - the second step of cgroup destruction
 * @work: cgroup->destroy_free_work
 *
 * This function is invoked from a work item for a cgroup which is being
 * destroyed after the percpu refcnts of all css's are guaranteed to be
 * seen as killed on all CPUs, and performs the rest of destruction.  This
 * is the second step of destruction described in the comment above
 * cgroup_destroy_locked().
 */
4544 4545 4546 4547 4548 4549 4550 4551 4552
static void cgroup_offline_fn(struct work_struct *work)
{
	struct cgroup *cgrp = container_of(work, struct cgroup, destroy_work);
	struct cgroup *parent = cgrp->parent;
	struct dentry *d = cgrp->dentry;
	struct cgroup_subsys *ss;

	mutex_lock(&cgroup_mutex);

4553 4554 4555 4556
	/*
	 * css_tryget() is guaranteed to fail now.  Tell subsystems to
	 * initate destruction.
	 */
4557
	for_each_subsys(cgrp->root, ss)
4558
		offline_css(ss, cgrp);
4559 4560

	/*
4561 4562 4563 4564 4565
	 * Put the css refs from cgroup_destroy_locked().  Each css holds
	 * an extra reference to the cgroup's dentry and cgroup removal
	 * proceeds regardless of css refs.  On the last put of each css,
	 * whenever that may be, the extra dentry ref is put so that dentry
	 * destruction happens only after all css's are released.
4566
	 */
T
Tejun Heo 已提交
4567 4568
	for_each_subsys(cgrp->root, ss)
		css_put(cgrp->subsys[ss->subsys_id]);
4569

4570
	/* delete this cgroup from parent->children */
4571
	list_del_rcu(&cgrp->sibling);
4572

4573 4574
	dput(d);

4575
	set_bit(CGRP_RELEASABLE, &parent->flags);
4576 4577
	check_for_release(parent);

4578
	mutex_unlock(&cgroup_mutex);
4579 4580
}

4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591
static int cgroup_rmdir(struct inode *unused_dir, struct dentry *dentry)
{
	int ret;

	mutex_lock(&cgroup_mutex);
	ret = cgroup_destroy_locked(dentry->d_fsdata);
	mutex_unlock(&cgroup_mutex);

	return ret;
}

4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605
static void __init_or_module cgroup_init_cftsets(struct cgroup_subsys *ss)
{
	INIT_LIST_HEAD(&ss->cftsets);

	/*
	 * base_cftset is embedded in subsys itself, no need to worry about
	 * deregistration.
	 */
	if (ss->base_cftypes) {
		ss->base_cftset.cfts = ss->base_cftypes;
		list_add_tail(&ss->base_cftset.node, &ss->cftsets);
	}
}

4606
static void __init cgroup_init_subsys(struct cgroup_subsys *ss)
4607 4608
{
	struct cgroup_subsys_state *css;
D
Diego Calleja 已提交
4609 4610

	printk(KERN_INFO "Initializing cgroup subsys %s\n", ss->name);
4611

4612 4613
	mutex_lock(&cgroup_mutex);

4614 4615 4616
	/* init base cftset */
	cgroup_init_cftsets(ss);

4617
	/* Create the top cgroup state for this subsystem */
4618 4619 4620
	list_add(&ss->sibling, &cgroup_dummy_root.subsys_list);
	ss->root = &cgroup_dummy_root;
	css = ss->css_alloc(cgroup_dummy_top);
4621 4622
	/* We don't handle early failures gracefully */
	BUG_ON(IS_ERR(css));
4623
	init_cgroup_css(css, ss, cgroup_dummy_top);
4624

L
Li Zefan 已提交
4625
	/* Update the init_css_set to contain a subsys
4626
	 * pointer to this state - since the subsystem is
L
Li Zefan 已提交
4627 4628
	 * newly registered, all tasks and hence the
	 * init_css_set is in the subsystem's top cgroup. */
4629
	init_css_set.subsys[ss->subsys_id] = css;
4630 4631 4632

	need_forkexit_callback |= ss->fork || ss->exit;

L
Li Zefan 已提交
4633 4634 4635 4636 4637
	/* At system boot, before all subsystems have been
	 * registered, no tasks have been forked, so we don't
	 * need to invoke fork callbacks here. */
	BUG_ON(!list_empty(&init_task.tasks));

4638
	BUG_ON(online_css(ss, cgroup_dummy_top));
4639

4640 4641
	mutex_unlock(&cgroup_mutex);

4642 4643 4644 4645 4646 4647 4648 4649 4650 4651
	/* this function shouldn't be used with modular subsystems, since they
	 * need to register a subsys_id, among other things */
	BUG_ON(ss->module);
}

/**
 * cgroup_load_subsys: load and register a modular subsystem at runtime
 * @ss: the subsystem to load
 *
 * This function should be called in a modular subsystem's initcall. If the
T
Thomas Weber 已提交
4652
 * subsystem is built as a module, it will be assigned a new subsys_id and set
4653 4654 4655 4656 4657 4658
 * up for use. If the subsystem is built-in anyway, work is delegated to the
 * simpler cgroup_init_subsys.
 */
int __init_or_module cgroup_load_subsys(struct cgroup_subsys *ss)
{
	struct cgroup_subsys_state *css;
4659
	int i, ret;
4660
	struct hlist_node *tmp;
4661
	struct css_set *cset;
4662
	unsigned long key;
4663 4664 4665

	/* check name and function validity */
	if (ss->name == NULL || strlen(ss->name) > MAX_CGROUP_TYPE_NAMELEN ||
4666
	    ss->css_alloc == NULL || ss->css_free == NULL)
4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682
		return -EINVAL;

	/*
	 * we don't support callbacks in modular subsystems. this check is
	 * before the ss->module check for consistency; a subsystem that could
	 * be a module should still have no callbacks even if the user isn't
	 * compiling it as one.
	 */
	if (ss->fork || ss->exit)
		return -EINVAL;

	/*
	 * an optionally modular subsystem is built-in: we want to do nothing,
	 * since cgroup_init_subsys will have already taken care of it.
	 */
	if (ss->module == NULL) {
4683
		/* a sanity check */
4684
		BUG_ON(cgroup_subsys[ss->subsys_id] != ss);
4685 4686 4687
		return 0;
	}

4688 4689 4690
	/* init base cftset */
	cgroup_init_cftsets(ss);

4691
	mutex_lock(&cgroup_mutex);
4692
	cgroup_subsys[ss->subsys_id] = ss;
4693 4694

	/*
4695
	 * no ss->css_alloc seems to need anything important in the ss
4696
	 * struct, so this can happen first (i.e. before the dummy root
4697
	 * attachment).
4698
	 */
4699
	css = ss->css_alloc(cgroup_dummy_top);
4700
	if (IS_ERR(css)) {
4701 4702
		/* failure case - need to deassign the cgroup_subsys[] slot. */
		cgroup_subsys[ss->subsys_id] = NULL;
4703 4704 4705 4706
		mutex_unlock(&cgroup_mutex);
		return PTR_ERR(css);
	}

4707 4708
	list_add(&ss->sibling, &cgroup_dummy_root.subsys_list);
	ss->root = &cgroup_dummy_root;
4709 4710

	/* our new subsystem will be attached to the dummy hierarchy. */
4711
	init_cgroup_css(css, ss, cgroup_dummy_top);
4712 4713
	/* init_idr must be after init_cgroup_css because it sets css->id. */
	if (ss->use_id) {
4714 4715 4716
		ret = cgroup_init_idr(ss, css);
		if (ret)
			goto err_unload;
4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727
	}

	/*
	 * Now we need to entangle the css into the existing css_sets. unlike
	 * in cgroup_init_subsys, there are now multiple css_sets, so each one
	 * will need a new pointer to it; done by iterating the css_set_table.
	 * furthermore, modifying the existing css_sets will corrupt the hash
	 * table state, so each changed css_set will need its hash recomputed.
	 * this is all done under the css_set_lock.
	 */
	write_lock(&css_set_lock);
4728
	hash_for_each_safe(css_set_table, i, tmp, cset, hlist) {
4729
		/* skip entries that we already rehashed */
4730
		if (cset->subsys[ss->subsys_id])
4731 4732
			continue;
		/* remove existing entry */
4733
		hash_del(&cset->hlist);
4734
		/* set new value */
4735
		cset->subsys[ss->subsys_id] = css;
4736
		/* recompute hash and restore entry */
4737 4738
		key = css_set_hash(cset->subsys);
		hash_add(css_set_table, &cset->hlist, key);
4739 4740 4741
	}
	write_unlock(&css_set_lock);

4742
	ret = online_css(ss, cgroup_dummy_top);
T
Tejun Heo 已提交
4743 4744
	if (ret)
		goto err_unload;
4745

4746 4747 4748
	/* success! */
	mutex_unlock(&cgroup_mutex);
	return 0;
4749 4750 4751 4752 4753 4754

err_unload:
	mutex_unlock(&cgroup_mutex);
	/* @ss can't be mounted here as try_module_get() would fail */
	cgroup_unload_subsys(ss);
	return ret;
4755
}
4756
EXPORT_SYMBOL_GPL(cgroup_load_subsys);
4757

B
Ben Blum 已提交
4758 4759 4760 4761 4762 4763 4764 4765 4766 4767
/**
 * cgroup_unload_subsys: unload a modular subsystem
 * @ss: the subsystem to unload
 *
 * This function should be called in a modular subsystem's exitcall. When this
 * function is invoked, the refcount on the subsystem's module will be 0, so
 * the subsystem will not be attached to any hierarchy.
 */
void cgroup_unload_subsys(struct cgroup_subsys *ss)
{
4768
	struct cgrp_cset_link *link;
B
Ben Blum 已提交
4769 4770 4771 4772 4773 4774 4775 4776

	BUG_ON(ss->module == NULL);

	/*
	 * we shouldn't be called if the subsystem is in use, and the use of
	 * try_module_get in parse_cgroupfs_options should ensure that it
	 * doesn't start being used while we're killing it off.
	 */
4777
	BUG_ON(ss->root != &cgroup_dummy_root);
B
Ben Blum 已提交
4778 4779

	mutex_lock(&cgroup_mutex);
4780

4781
	offline_css(ss, cgroup_dummy_top);
4782

T
Tejun Heo 已提交
4783
	if (ss->use_id)
4784 4785
		idr_destroy(&ss->idr);

B
Ben Blum 已提交
4786
	/* deassign the subsys_id */
4787
	cgroup_subsys[ss->subsys_id] = NULL;
B
Ben Blum 已提交
4788

4789
	/* remove subsystem from the dummy root's list of subsystems */
4790
	list_del_init(&ss->sibling);
B
Ben Blum 已提交
4791 4792

	/*
4793 4794 4795
	 * disentangle the css from all css_sets attached to the dummy
	 * top. as in loading, we need to pay our respects to the hashtable
	 * gods.
B
Ben Blum 已提交
4796 4797
	 */
	write_lock(&css_set_lock);
4798
	list_for_each_entry(link, &cgroup_dummy_top->cset_links, cset_link) {
4799
		struct css_set *cset = link->cset;
4800
		unsigned long key;
B
Ben Blum 已提交
4801

4802 4803 4804 4805
		hash_del(&cset->hlist);
		cset->subsys[ss->subsys_id] = NULL;
		key = css_set_hash(cset->subsys);
		hash_add(css_set_table, &cset->hlist, key);
B
Ben Blum 已提交
4806 4807 4808 4809
	}
	write_unlock(&css_set_lock);

	/*
4810 4811 4812 4813
	 * remove subsystem's css from the cgroup_dummy_top and free it -
	 * need to free before marking as null because ss->css_free needs
	 * the cgrp->subsys pointer to find their state. note that this
	 * also takes care of freeing the css_id.
B
Ben Blum 已提交
4814
	 */
4815 4816
	ss->css_free(cgroup_dummy_top);
	cgroup_dummy_top->subsys[ss->subsys_id] = NULL;
B
Ben Blum 已提交
4817 4818 4819 4820 4821

	mutex_unlock(&cgroup_mutex);
}
EXPORT_SYMBOL_GPL(cgroup_unload_subsys);

4822
/**
L
Li Zefan 已提交
4823 4824 4825 4826
 * cgroup_init_early - cgroup initialization at system boot
 *
 * Initialize cgroups at system boot, and initialize any
 * subsystems that request early init.
4827 4828 4829 4830
 */
int __init cgroup_init_early(void)
{
	int i;
4831
	atomic_set(&init_css_set.refcount, 1);
4832
	INIT_LIST_HEAD(&init_css_set.cgrp_links);
4833
	INIT_LIST_HEAD(&init_css_set.tasks);
4834
	INIT_HLIST_NODE(&init_css_set.hlist);
4835
	css_set_count = 1;
4836 4837
	init_cgroup_root(&cgroup_dummy_root);
	cgroup_root_count = 1;
4838 4839
	init_task.cgroups = &init_css_set;

4840
	init_cgrp_cset_link.cset = &init_css_set;
4841 4842
	init_cgrp_cset_link.cgrp = cgroup_dummy_top;
	list_add(&init_cgrp_cset_link.cset_link, &cgroup_dummy_top->cset_links);
4843
	list_add(&init_cgrp_cset_link.cgrp_link, &init_css_set.cgrp_links);
4844

4845
	for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
4846
		struct cgroup_subsys *ss = cgroup_subsys[i];
4847

4848 4849 4850 4851
		/* at bootup time, we don't worry about modular subsystems */
		if (!ss || ss->module)
			continue;

4852 4853
		BUG_ON(!ss->name);
		BUG_ON(strlen(ss->name) > MAX_CGROUP_TYPE_NAMELEN);
4854 4855
		BUG_ON(!ss->css_alloc);
		BUG_ON(!ss->css_free);
4856
		if (ss->subsys_id != i) {
D
Diego Calleja 已提交
4857
			printk(KERN_ERR "cgroup: Subsys %s id == %d\n",
4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868
			       ss->name, ss->subsys_id);
			BUG();
		}

		if (ss->early_init)
			cgroup_init_subsys(ss);
	}
	return 0;
}

/**
L
Li Zefan 已提交
4869 4870 4871 4872
 * cgroup_init - cgroup initialization
 *
 * Register cgroup filesystem and /proc file, and initialize
 * any subsystems that didn't request early init.
4873 4874 4875 4876 4877
 */
int __init cgroup_init(void)
{
	int err;
	int i;
4878
	unsigned long key;
4879 4880 4881 4882

	err = bdi_init(&cgroup_backing_dev_info);
	if (err)
		return err;
4883

4884
	for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
4885
		struct cgroup_subsys *ss = cgroup_subsys[i];
4886 4887 4888 4889

		/* at bootup time, we don't worry about modular subsystems */
		if (!ss || ss->module)
			continue;
4890 4891
		if (!ss->early_init)
			cgroup_init_subsys(ss);
K
KAMEZAWA Hiroyuki 已提交
4892
		if (ss->use_id)
4893
			cgroup_init_idr(ss, init_css_set.subsys[ss->subsys_id]);
4894 4895
	}

4896
	/* Add init_css_set to the hash table */
4897 4898
	key = css_set_hash(init_css_set.subsys);
	hash_add(css_set_table, &init_css_set.hlist, key);
4899 4900

	/* allocate id for the dummy hierarchy */
T
Tejun Heo 已提交
4901 4902 4903
	mutex_lock(&cgroup_mutex);
	mutex_lock(&cgroup_root_mutex);

4904
	BUG_ON(cgroup_init_root_id(&cgroup_dummy_root));
4905

T
Tejun Heo 已提交
4906 4907 4908
	mutex_unlock(&cgroup_root_mutex);
	mutex_unlock(&cgroup_mutex);

4909 4910 4911 4912 4913 4914
	cgroup_kobj = kobject_create_and_add("cgroup", fs_kobj);
	if (!cgroup_kobj) {
		err = -ENOMEM;
		goto out;
	}

4915
	err = register_filesystem(&cgroup_fs_type);
4916 4917
	if (err < 0) {
		kobject_put(cgroup_kobj);
4918
		goto out;
4919
	}
4920

L
Li Zefan 已提交
4921
	proc_create("cgroups", 0, NULL, &proc_cgroupstats_operations);
4922

4923
out:
4924 4925 4926
	if (err)
		bdi_destroy(&cgroup_backing_dev_info);

4927 4928
	return err;
}
4929

4930 4931 4932 4933 4934 4935
/*
 * proc_cgroup_show()
 *  - Print task's cgroup paths into seq_file, one line for each hierarchy
 *  - Used for /proc/<pid>/cgroup.
 *  - No need to task_lock(tsk) on this tsk->cgroup reference, as it
 *    doesn't really matter if tsk->cgroup changes after we read it,
4936
 *    and we take cgroup_mutex, keeping cgroup_attach_task() from changing it
4937 4938 4939 4940 4941 4942
 *    anyway.  No need to check that tsk->cgroup != NULL, thanks to
 *    the_top_cgroup_hack in cgroup_exit(), which sets an exiting tasks
 *    cgroup to top_cgroup.
 */

/* TODO: Use a proper seq_file iterator */
4943
int proc_cgroup_show(struct seq_file *m, void *v)
4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957 4958 4959 4960 4961 4962 4963 4964 4965
{
	struct pid *pid;
	struct task_struct *tsk;
	char *buf;
	int retval;
	struct cgroupfs_root *root;

	retval = -ENOMEM;
	buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
	if (!buf)
		goto out;

	retval = -ESRCH;
	pid = m->private;
	tsk = get_pid_task(pid, PIDTYPE_PID);
	if (!tsk)
		goto out_free;

	retval = 0;

	mutex_lock(&cgroup_mutex);

4966
	for_each_active_root(root) {
4967
		struct cgroup_subsys *ss;
4968
		struct cgroup *cgrp;
4969 4970
		int count = 0;

4971
		seq_printf(m, "%d:", root->hierarchy_id);
4972 4973
		for_each_subsys(root, ss)
			seq_printf(m, "%s%s", count++ ? "," : "", ss->name);
4974 4975 4976
		if (strlen(root->name))
			seq_printf(m, "%sname=%s", count ? "," : "",
				   root->name);
4977
		seq_putc(m, ':');
4978
		cgrp = task_cgroup_from_root(tsk, root);
4979
		retval = cgroup_path(cgrp, buf, PAGE_SIZE);
4980 4981 4982 4983 4984 4985 4986 4987 4988 4989 4990 4991 4992 4993 4994 4995 4996 4997 4998 4999
		if (retval < 0)
			goto out_unlock;
		seq_puts(m, buf);
		seq_putc(m, '\n');
	}

out_unlock:
	mutex_unlock(&cgroup_mutex);
	put_task_struct(tsk);
out_free:
	kfree(buf);
out:
	return retval;
}

/* Display information about each subsystem and each hierarchy */
static int proc_cgroupstats_show(struct seq_file *m, void *v)
{
	int i;

5000
	seq_puts(m, "#subsys_name\thierarchy\tnum_cgroups\tenabled\n");
B
Ben Blum 已提交
5001 5002 5003 5004 5005
	/*
	 * ideally we don't want subsystems moving around while we do this.
	 * cgroup_mutex is also necessary to guarantee an atomic snapshot of
	 * subsys/hierarchy state.
	 */
5006 5007
	mutex_lock(&cgroup_mutex);
	for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
5008
		struct cgroup_subsys *ss = cgroup_subsys[i];
B
Ben Blum 已提交
5009 5010
		if (ss == NULL)
			continue;
5011 5012
		seq_printf(m, "%s\t%d\t%d\t%d\n",
			   ss->name, ss->root->hierarchy_id,
5013
			   ss->root->number_of_cgroups, !ss->disabled);
5014 5015 5016 5017 5018 5019 5020
	}
	mutex_unlock(&cgroup_mutex);
	return 0;
}

static int cgroupstats_open(struct inode *inode, struct file *file)
{
A
Al Viro 已提交
5021
	return single_open(file, proc_cgroupstats_show, NULL);
5022 5023
}

5024
static const struct file_operations proc_cgroupstats_operations = {
5025 5026 5027 5028 5029 5030
	.open = cgroupstats_open,
	.read = seq_read,
	.llseek = seq_lseek,
	.release = single_release,
};

5031 5032
/**
 * cgroup_fork - attach newly forked task to its parents cgroup.
L
Li Zefan 已提交
5033
 * @child: pointer to task_struct of forking parent process.
5034 5035 5036 5037 5038
 *
 * Description: A task inherits its parent's cgroup at fork().
 *
 * A pointer to the shared css_set was automatically copied in
 * fork.c by dup_task_struct().  However, we ignore that copy, since
5039 5040 5041 5042
 * it was not made under the protection of RCU or cgroup_mutex, so
 * might no longer be a valid cgroup pointer.  cgroup_attach_task() might
 * have already changed current->cgroups, allowing the previously
 * referenced cgroup group to be removed and freed.
5043 5044 5045 5046 5047 5048
 *
 * At the point that cgroup_fork() is called, 'current' is the parent
 * task, and the passed argument 'child' points to the child task.
 */
void cgroup_fork(struct task_struct *child)
{
5049
	task_lock(current);
5050 5051
	child->cgroups = current->cgroups;
	get_css_set(child->cgroups);
5052
	task_unlock(current);
5053
	INIT_LIST_HEAD(&child->cg_list);
5054 5055
}

5056
/**
L
Li Zefan 已提交
5057 5058 5059
 * cgroup_post_fork - called on a new task after adding it to the task list
 * @child: the task in question
 *
5060 5061 5062 5063 5064
 * Adds the task to the list running through its css_set if necessary and
 * call the subsystem fork() callbacks.  Has to be after the task is
 * visible on the task list in case we race with the first call to
 * cgroup_iter_start() - to guarantee that the new task ends up on its
 * list.
L
Li Zefan 已提交
5065
 */
5066 5067
void cgroup_post_fork(struct task_struct *child)
{
5068 5069
	int i;

5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080
	/*
	 * use_task_css_set_links is set to 1 before we walk the tasklist
	 * under the tasklist_lock and we read it here after we added the child
	 * to the tasklist under the tasklist_lock as well. If the child wasn't
	 * yet in the tasklist when we walked through it from
	 * cgroup_enable_task_cg_lists(), then use_task_css_set_links value
	 * should be visible now due to the paired locking and barriers implied
	 * by LOCK/UNLOCK: it is written before the tasklist_lock unlock
	 * in cgroup_enable_task_cg_lists() and read here after the tasklist_lock
	 * lock on fork.
	 */
5081 5082
	if (use_task_css_set_links) {
		write_lock(&css_set_lock);
5083 5084
		task_lock(child);
		if (list_empty(&child->cg_list))
5085
			list_add(&child->cg_list, &child->cgroups->tasks);
5086
		task_unlock(child);
5087 5088
		write_unlock(&css_set_lock);
	}
5089 5090 5091 5092 5093 5094 5095

	/*
	 * Call ss->fork().  This must happen after @child is linked on
	 * css_set; otherwise, @child might change state between ->fork()
	 * and addition to css_set.
	 */
	if (need_forkexit_callback) {
5096 5097 5098 5099 5100 5101 5102 5103 5104
		/*
		 * fork/exit callbacks are supported only for builtin
		 * subsystems, and the builtin section of the subsys
		 * array is immutable, so we don't need to lock the
		 * subsys array here. On the other hand, modular section
		 * of the array can be freed at module unload, so we
		 * can't touch that.
		 */
		for (i = 0; i < CGROUP_BUILTIN_SUBSYS_COUNT; i++) {
5105
			struct cgroup_subsys *ss = cgroup_subsys[i];
5106 5107 5108 5109 5110

			if (ss->fork)
				ss->fork(child);
		}
	}
5111
}
5112

5113 5114 5115
/**
 * cgroup_exit - detach cgroup from exiting task
 * @tsk: pointer to task_struct of exiting process
L
Li Zefan 已提交
5116
 * @run_callback: run exit callbacks?
5117 5118 5119 5120 5121 5122 5123 5124 5125 5126 5127 5128 5129 5130 5131 5132 5133 5134 5135 5136 5137 5138 5139 5140 5141 5142 5143 5144
 *
 * Description: Detach cgroup from @tsk and release it.
 *
 * Note that cgroups marked notify_on_release force every task in
 * them to take the global cgroup_mutex mutex when exiting.
 * This could impact scaling on very large systems.  Be reluctant to
 * use notify_on_release cgroups where very high task exit scaling
 * is required on large systems.
 *
 * the_top_cgroup_hack:
 *
 *    Set the exiting tasks cgroup to the root cgroup (top_cgroup).
 *
 *    We call cgroup_exit() while the task is still competent to
 *    handle notify_on_release(), then leave the task attached to the
 *    root cgroup in each hierarchy for the remainder of its exit.
 *
 *    To do this properly, we would increment the reference count on
 *    top_cgroup, and near the very end of the kernel/exit.c do_exit()
 *    code we would add a second cgroup function call, to drop that
 *    reference.  This would just create an unnecessary hot spot on
 *    the top_cgroup reference count, to no avail.
 *
 *    Normally, holding a reference to a cgroup without bumping its
 *    count is unsafe.   The cgroup could go away, or someone could
 *    attach us to a different cgroup, decrementing the count on
 *    the first cgroup that we never incremented.  But in this case,
 *    top_cgroup isn't going away, and either task has PF_EXITING set,
5145 5146
 *    which wards off any cgroup_attach_task() attempts, or task is a failed
 *    fork, never visible to cgroup_attach_task.
5147 5148 5149
 */
void cgroup_exit(struct task_struct *tsk, int run_callbacks)
{
5150
	struct css_set *cset;
5151
	int i;
5152 5153 5154 5155 5156 5157 5158 5159 5160

	/*
	 * Unlink from the css_set task list if necessary.
	 * Optimistically check cg_list before taking
	 * css_set_lock
	 */
	if (!list_empty(&tsk->cg_list)) {
		write_lock(&css_set_lock);
		if (!list_empty(&tsk->cg_list))
5161
			list_del_init(&tsk->cg_list);
5162 5163 5164
		write_unlock(&css_set_lock);
	}

5165 5166
	/* Reassign the task to the init_css_set. */
	task_lock(tsk);
5167
	cset = tsk->cgroups;
5168
	tsk->cgroups = &init_css_set;
5169 5170

	if (run_callbacks && need_forkexit_callback) {
5171 5172 5173 5174 5175
		/*
		 * fork/exit callbacks are supported only for builtin
		 * subsystems, see cgroup_post_fork() for details.
		 */
		for (i = 0; i < CGROUP_BUILTIN_SUBSYS_COUNT; i++) {
5176
			struct cgroup_subsys *ss = cgroup_subsys[i];
5177

5178 5179
			if (ss->exit) {
				struct cgroup *old_cgrp =
5180
					rcu_dereference_raw(cset->subsys[i])->cgroup;
5181
				struct cgroup *cgrp = task_cgroup(tsk, i);
5182
				ss->exit(cgrp, old_cgrp, tsk);
5183 5184 5185
			}
		}
	}
5186
	task_unlock(tsk);
5187

5188
	put_css_set_taskexit(cset);
5189
}
5190

5191
static void check_for_release(struct cgroup *cgrp)
5192
{
5193
	if (cgroup_is_releasable(cgrp) &&
T
Tejun Heo 已提交
5194
	    list_empty(&cgrp->cset_links) && list_empty(&cgrp->children)) {
5195 5196
		/*
		 * Control Group is currently removeable. If it's not
5197
		 * already queued for a userspace notification, queue
5198 5199
		 * it now
		 */
5200
		int need_schedule_work = 0;
5201

5202
		raw_spin_lock(&release_list_lock);
5203
		if (!cgroup_is_dead(cgrp) &&
5204 5205
		    list_empty(&cgrp->release_list)) {
			list_add(&cgrp->release_list, &release_list);
5206 5207
			need_schedule_work = 1;
		}
5208
		raw_spin_unlock(&release_list_lock);
5209 5210 5211 5212 5213 5214 5215 5216 5217 5218 5219 5220 5221 5222 5223 5224 5225 5226 5227 5228 5229 5230 5231 5232 5233 5234 5235 5236 5237 5238 5239 5240
		if (need_schedule_work)
			schedule_work(&release_agent_work);
	}
}

/*
 * Notify userspace when a cgroup is released, by running the
 * configured release agent with the name of the cgroup (path
 * relative to the root of cgroup file system) as the argument.
 *
 * Most likely, this user command will try to rmdir this cgroup.
 *
 * This races with the possibility that some other task will be
 * attached to this cgroup before it is removed, or that some other
 * user task will 'mkdir' a child cgroup of this cgroup.  That's ok.
 * The presumed 'rmdir' will fail quietly if this cgroup is no longer
 * unused, and this cgroup will be reprieved from its death sentence,
 * to continue to serve a useful existence.  Next time it's released,
 * we will get notified again, if it still has 'notify_on_release' set.
 *
 * The final arg to call_usermodehelper() is UMH_WAIT_EXEC, which
 * means only wait until the task is successfully execve()'d.  The
 * separate release agent task is forked by call_usermodehelper(),
 * then control in this thread returns here, without waiting for the
 * release agent task.  We don't bother to wait because the caller of
 * this routine has no use for the exit status of the release agent
 * task, so no sense holding our caller up for that.
 */
static void cgroup_release_agent(struct work_struct *work)
{
	BUG_ON(work != &release_agent_work);
	mutex_lock(&cgroup_mutex);
5241
	raw_spin_lock(&release_list_lock);
5242 5243 5244
	while (!list_empty(&release_list)) {
		char *argv[3], *envp[3];
		int i;
5245
		char *pathbuf = NULL, *agentbuf = NULL;
5246
		struct cgroup *cgrp = list_entry(release_list.next,
5247 5248
						    struct cgroup,
						    release_list);
5249
		list_del_init(&cgrp->release_list);
5250
		raw_spin_unlock(&release_list_lock);
5251
		pathbuf = kmalloc(PAGE_SIZE, GFP_KERNEL);
5252 5253 5254 5255 5256 5257 5258
		if (!pathbuf)
			goto continue_free;
		if (cgroup_path(cgrp, pathbuf, PAGE_SIZE) < 0)
			goto continue_free;
		agentbuf = kstrdup(cgrp->root->release_agent_path, GFP_KERNEL);
		if (!agentbuf)
			goto continue_free;
5259 5260

		i = 0;
5261 5262
		argv[i++] = agentbuf;
		argv[i++] = pathbuf;
5263 5264 5265 5266 5267 5268 5269 5270 5271 5272 5273 5274 5275 5276
		argv[i] = NULL;

		i = 0;
		/* minimal command environment */
		envp[i++] = "HOME=/";
		envp[i++] = "PATH=/sbin:/bin:/usr/sbin:/usr/bin";
		envp[i] = NULL;

		/* Drop the lock while we invoke the usermode helper,
		 * since the exec could involve hitting disk and hence
		 * be a slow process */
		mutex_unlock(&cgroup_mutex);
		call_usermodehelper(argv[0], argv, envp, UMH_WAIT_EXEC);
		mutex_lock(&cgroup_mutex);
5277 5278 5279
 continue_free:
		kfree(pathbuf);
		kfree(agentbuf);
5280
		raw_spin_lock(&release_list_lock);
5281
	}
5282
	raw_spin_unlock(&release_list_lock);
5283 5284
	mutex_unlock(&cgroup_mutex);
}
5285 5286 5287 5288 5289 5290 5291 5292 5293

static int __init cgroup_disable(char *str)
{
	int i;
	char *token;

	while ((token = strsep(&str, ",")) != NULL) {
		if (!*token)
			continue;
5294
		for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
5295
			struct cgroup_subsys *ss = cgroup_subsys[i];
5296

5297 5298 5299 5300 5301 5302 5303 5304
			/*
			 * cgroup_disable, being at boot time, can't
			 * know about module subsystems, so we don't
			 * worry about them.
			 */
			if (!ss || ss->module)
				continue;

5305 5306 5307 5308 5309 5310 5311 5312 5313 5314 5315
			if (!strcmp(token, ss->name)) {
				ss->disabled = 1;
				printk(KERN_INFO "Disabling %s control group"
					" subsystem\n", ss->name);
				break;
			}
		}
	}
	return 1;
}
__setup("cgroup_disable=", cgroup_disable);
K
KAMEZAWA Hiroyuki 已提交
5316 5317 5318 5319 5320

/*
 * Functons for CSS ID.
 */

5321
/* to get ID other than 0, this should be called when !cgroup_is_dead() */
K
KAMEZAWA Hiroyuki 已提交
5322 5323
unsigned short css_id(struct cgroup_subsys_state *css)
{
5324 5325 5326 5327 5328 5329 5330
	struct css_id *cssid;

	/*
	 * This css_id() can return correct value when somone has refcnt
	 * on this or this is under rcu_read_lock(). Once css->id is allocated,
	 * it's unchanged until freed.
	 */
5331
	cssid = rcu_dereference_raw(css->id);
K
KAMEZAWA Hiroyuki 已提交
5332 5333 5334 5335 5336

	if (cssid)
		return cssid->id;
	return 0;
}
B
Ben Blum 已提交
5337
EXPORT_SYMBOL_GPL(css_id);
K
KAMEZAWA Hiroyuki 已提交
5338

5339 5340 5341 5342 5343 5344
/**
 *  css_is_ancestor - test "root" css is an ancestor of "child"
 * @child: the css to be tested.
 * @root: the css supporsed to be an ancestor of the child.
 *
 * Returns true if "root" is an ancestor of "child" in its hierarchy. Because
5345
 * this function reads css->id, the caller must hold rcu_read_lock().
5346 5347 5348 5349 5350 5351
 * But, considering usual usage, the csses should be valid objects after test.
 * Assuming that the caller will do some action to the child if this returns
 * returns true, the caller must take "child";s reference count.
 * If "child" is valid object and this returns true, "root" is valid, too.
 */

K
KAMEZAWA Hiroyuki 已提交
5352
bool css_is_ancestor(struct cgroup_subsys_state *child,
5353
		    const struct cgroup_subsys_state *root)
K
KAMEZAWA Hiroyuki 已提交
5354
{
5355 5356
	struct css_id *child_id;
	struct css_id *root_id;
K
KAMEZAWA Hiroyuki 已提交
5357

5358
	child_id  = rcu_dereference(child->id);
5359 5360
	if (!child_id)
		return false;
5361
	root_id = rcu_dereference(root->id);
5362 5363 5364 5365 5366 5367 5368
	if (!root_id)
		return false;
	if (child_id->depth < root_id->depth)
		return false;
	if (child_id->stack[root_id->depth] != root_id->id)
		return false;
	return true;
K
KAMEZAWA Hiroyuki 已提交
5369 5370 5371 5372 5373 5374 5375 5376 5377 5378 5379 5380 5381
}

void free_css_id(struct cgroup_subsys *ss, struct cgroup_subsys_state *css)
{
	struct css_id *id = css->id;
	/* When this is called before css_id initialization, id can be NULL */
	if (!id)
		return;

	BUG_ON(!ss->use_id);

	rcu_assign_pointer(id->css, NULL);
	rcu_assign_pointer(css->id, NULL);
5382
	spin_lock(&ss->id_lock);
K
KAMEZAWA Hiroyuki 已提交
5383
	idr_remove(&ss->idr, id->id);
5384
	spin_unlock(&ss->id_lock);
5385
	kfree_rcu(id, rcu_head);
K
KAMEZAWA Hiroyuki 已提交
5386
}
B
Ben Blum 已提交
5387
EXPORT_SYMBOL_GPL(free_css_id);
K
KAMEZAWA Hiroyuki 已提交
5388 5389 5390 5391 5392 5393 5394 5395 5396

/*
 * This is called by init or create(). Then, calls to this function are
 * always serialized (By cgroup_mutex() at create()).
 */

static struct css_id *get_new_cssid(struct cgroup_subsys *ss, int depth)
{
	struct css_id *newid;
T
Tejun Heo 已提交
5397
	int ret, size;
K
KAMEZAWA Hiroyuki 已提交
5398 5399 5400 5401 5402 5403 5404

	BUG_ON(!ss->use_id);

	size = sizeof(*newid) + sizeof(unsigned short) * (depth + 1);
	newid = kzalloc(size, GFP_KERNEL);
	if (!newid)
		return ERR_PTR(-ENOMEM);
T
Tejun Heo 已提交
5405 5406

	idr_preload(GFP_KERNEL);
5407
	spin_lock(&ss->id_lock);
K
KAMEZAWA Hiroyuki 已提交
5408
	/* Don't use 0. allocates an ID of 1-65535 */
T
Tejun Heo 已提交
5409
	ret = idr_alloc(&ss->idr, newid, 1, CSS_ID_MAX + 1, GFP_NOWAIT);
5410
	spin_unlock(&ss->id_lock);
T
Tejun Heo 已提交
5411
	idr_preload_end();
K
KAMEZAWA Hiroyuki 已提交
5412 5413

	/* Returns error when there are no free spaces for new ID.*/
T
Tejun Heo 已提交
5414
	if (ret < 0)
K
KAMEZAWA Hiroyuki 已提交
5415 5416
		goto err_out;

T
Tejun Heo 已提交
5417
	newid->id = ret;
K
KAMEZAWA Hiroyuki 已提交
5418 5419 5420 5421
	newid->depth = depth;
	return newid;
err_out:
	kfree(newid);
T
Tejun Heo 已提交
5422
	return ERR_PTR(ret);
K
KAMEZAWA Hiroyuki 已提交
5423 5424 5425

}

5426 5427
static int __init_or_module cgroup_init_idr(struct cgroup_subsys *ss,
					    struct cgroup_subsys_state *rootcss)
K
KAMEZAWA Hiroyuki 已提交
5428 5429 5430
{
	struct css_id *newid;

5431
	spin_lock_init(&ss->id_lock);
K
KAMEZAWA Hiroyuki 已提交
5432 5433 5434 5435 5436 5437 5438 5439 5440 5441 5442 5443 5444 5445 5446 5447 5448
	idr_init(&ss->idr);

	newid = get_new_cssid(ss, 0);
	if (IS_ERR(newid))
		return PTR_ERR(newid);

	newid->stack[0] = newid->id;
	newid->css = rootcss;
	rootcss->id = newid;
	return 0;
}

static int alloc_css_id(struct cgroup_subsys *ss, struct cgroup *parent,
			struct cgroup *child)
{
	int subsys_id, i, depth = 0;
	struct cgroup_subsys_state *parent_css, *child_css;
5449
	struct css_id *child_id, *parent_id;
K
KAMEZAWA Hiroyuki 已提交
5450 5451 5452 5453 5454

	subsys_id = ss->subsys_id;
	parent_css = parent->subsys[subsys_id];
	child_css = child->subsys[subsys_id];
	parent_id = parent_css->id;
5455
	depth = parent_id->depth + 1;
K
KAMEZAWA Hiroyuki 已提交
5456 5457 5458 5459 5460 5461 5462 5463 5464 5465 5466 5467 5468 5469 5470 5471 5472 5473 5474 5475 5476 5477 5478 5479 5480 5481 5482 5483 5484 5485 5486 5487 5488 5489 5490 5491 5492

	child_id = get_new_cssid(ss, depth);
	if (IS_ERR(child_id))
		return PTR_ERR(child_id);

	for (i = 0; i < depth; i++)
		child_id->stack[i] = parent_id->stack[i];
	child_id->stack[depth] = child_id->id;
	/*
	 * child_id->css pointer will be set after this cgroup is available
	 * see cgroup_populate_dir()
	 */
	rcu_assign_pointer(child_css->id, child_id);

	return 0;
}

/**
 * css_lookup - lookup css by id
 * @ss: cgroup subsys to be looked into.
 * @id: the id
 *
 * Returns pointer to cgroup_subsys_state if there is valid one with id.
 * NULL if not. Should be called under rcu_read_lock()
 */
struct cgroup_subsys_state *css_lookup(struct cgroup_subsys *ss, int id)
{
	struct css_id *cssid = NULL;

	BUG_ON(!ss->use_id);
	cssid = idr_find(&ss->idr, id);

	if (unlikely(!cssid))
		return NULL;

	return rcu_dereference(cssid->css);
}
B
Ben Blum 已提交
5493
EXPORT_SYMBOL_GPL(css_lookup);
K
KAMEZAWA Hiroyuki 已提交
5494

S
Stephane Eranian 已提交
5495 5496 5497 5498 5499 5500 5501 5502 5503
/*
 * get corresponding css from file open on cgroupfs directory
 */
struct cgroup_subsys_state *cgroup_css_from_dir(struct file *f, int id)
{
	struct cgroup *cgrp;
	struct inode *inode;
	struct cgroup_subsys_state *css;

A
Al Viro 已提交
5504
	inode = file_inode(f);
S
Stephane Eranian 已提交
5505 5506 5507 5508 5509 5510 5511 5512 5513 5514 5515 5516 5517
	/* check in cgroup filesystem dir */
	if (inode->i_op != &cgroup_dir_inode_operations)
		return ERR_PTR(-EBADF);

	if (id < 0 || id >= CGROUP_SUBSYS_COUNT)
		return ERR_PTR(-EINVAL);

	/* get cgroup */
	cgrp = __d_cgrp(f->f_dentry);
	css = cgrp->subsys[id];
	return css ? css : ERR_PTR(-ENOENT);
}

5518
#ifdef CONFIG_CGROUP_DEBUG
L
Li Zefan 已提交
5519
static struct cgroup_subsys_state *debug_css_alloc(struct cgroup *cgrp)
5520 5521 5522 5523 5524 5525 5526 5527 5528
{
	struct cgroup_subsys_state *css = kzalloc(sizeof(*css), GFP_KERNEL);

	if (!css)
		return ERR_PTR(-ENOMEM);

	return css;
}

L
Li Zefan 已提交
5529
static void debug_css_free(struct cgroup *cgrp)
5530
{
L
Li Zefan 已提交
5531
	kfree(cgrp->subsys[debug_subsys_id]);
5532 5533
}

L
Li Zefan 已提交
5534
static u64 debug_taskcount_read(struct cgroup *cgrp, struct cftype *cft)
5535
{
L
Li Zefan 已提交
5536
	return cgroup_task_count(cgrp);
5537 5538
}

L
Li Zefan 已提交
5539
static u64 current_css_set_read(struct cgroup *cgrp, struct cftype *cft)
5540 5541 5542 5543
{
	return (u64)(unsigned long)current->cgroups;
}

L
Li Zefan 已提交
5544 5545
static u64 current_css_set_refcount_read(struct cgroup *cgrp,
					 struct cftype *cft)
5546 5547 5548 5549 5550 5551 5552 5553 5554
{
	u64 count;

	rcu_read_lock();
	count = atomic_read(&current->cgroups->refcount);
	rcu_read_unlock();
	return count;
}

L
Li Zefan 已提交
5555
static int current_css_set_cg_links_read(struct cgroup *cgrp,
5556 5557 5558
					 struct cftype *cft,
					 struct seq_file *seq)
{
5559
	struct cgrp_cset_link *link;
5560
	struct css_set *cset;
5561 5562 5563

	read_lock(&css_set_lock);
	rcu_read_lock();
5564
	cset = rcu_dereference(current->cgroups);
5565
	list_for_each_entry(link, &cset->cgrp_links, cgrp_link) {
5566 5567 5568 5569 5570 5571 5572
		struct cgroup *c = link->cgrp;
		const char *name;

		if (c->dentry)
			name = c->dentry->d_name.name;
		else
			name = "?";
5573 5574
		seq_printf(seq, "Root %d group %s\n",
			   c->root->hierarchy_id, name);
5575 5576 5577 5578 5579 5580 5581
	}
	rcu_read_unlock();
	read_unlock(&css_set_lock);
	return 0;
}

#define MAX_TASKS_SHOWN_PER_CSS 25
L
Li Zefan 已提交
5582
static int cgroup_css_links_read(struct cgroup *cgrp,
5583 5584 5585
				 struct cftype *cft,
				 struct seq_file *seq)
{
5586
	struct cgrp_cset_link *link;
5587 5588

	read_lock(&css_set_lock);
L
Li Zefan 已提交
5589
	list_for_each_entry(link, &cgrp->cset_links, cset_link) {
5590
		struct css_set *cset = link->cset;
5591 5592
		struct task_struct *task;
		int count = 0;
5593 5594
		seq_printf(seq, "css_set %p\n", cset);
		list_for_each_entry(task, &cset->tasks, cg_list) {
5595 5596 5597 5598 5599 5600 5601 5602 5603 5604 5605 5606 5607
			if (count++ > MAX_TASKS_SHOWN_PER_CSS) {
				seq_puts(seq, "  ...\n");
				break;
			} else {
				seq_printf(seq, "  task %d\n",
					   task_pid_vnr(task));
			}
		}
	}
	read_unlock(&css_set_lock);
	return 0;
}

5608 5609 5610 5611 5612 5613 5614 5615 5616 5617 5618 5619 5620 5621 5622 5623 5624 5625 5626 5627 5628
static u64 releasable_read(struct cgroup *cgrp, struct cftype *cft)
{
	return test_bit(CGRP_RELEASABLE, &cgrp->flags);
}

static struct cftype debug_files[] =  {
	{
		.name = "taskcount",
		.read_u64 = debug_taskcount_read,
	},

	{
		.name = "current_css_set",
		.read_u64 = current_css_set_read,
	},

	{
		.name = "current_css_set_refcount",
		.read_u64 = current_css_set_refcount_read,
	},

5629 5630 5631 5632 5633 5634 5635 5636 5637 5638
	{
		.name = "current_css_set_cg_links",
		.read_seq_string = current_css_set_cg_links_read,
	},

	{
		.name = "cgroup_css_links",
		.read_seq_string = cgroup_css_links_read,
	},

5639 5640 5641 5642 5643
	{
		.name = "releasable",
		.read_u64 = releasable_read,
	},

5644 5645
	{ }	/* terminate */
};
5646 5647 5648

struct cgroup_subsys debug_subsys = {
	.name = "debug",
5649 5650
	.css_alloc = debug_css_alloc,
	.css_free = debug_css_free,
5651
	.subsys_id = debug_subsys_id,
5652
	.base_cftypes = debug_files,
5653 5654
};
#endif /* CONFIG_CGROUP_DEBUG */