cgroup.c 103.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
/*
 *  Generic process-grouping system.
 *
 *  Based originally on the cpuset system, extracted by Paul Menage
 *  Copyright (C) 2006 Google, Inc
 *
 *  Copyright notices from the original cpuset code:
 *  --------------------------------------------------
 *  Copyright (C) 2003 BULL SA.
 *  Copyright (C) 2004-2006 Silicon Graphics, Inc.
 *
 *  Portions derived from Patrick Mochel's sysfs code.
 *  sysfs is Copyright (c) 2001-3 Patrick Mochel
 *
 *  2003-10-10 Written by Simon Derr.
 *  2003-10-22 Updates by Stephen Hemminger.
 *  2004 May-July Rework by Paul Jackson.
 *  ---------------------------------------------------
 *
 *  This file is subject to the terms and conditions of the GNU General Public
 *  License.  See the file COPYING in the main directory of the Linux
 *  distribution for more details.
 */

#include <linux/cgroup.h>
26
#include <linux/ctype.h>
27 28 29 30 31 32 33 34
#include <linux/errno.h>
#include <linux/fs.h>
#include <linux/kernel.h>
#include <linux/list.h>
#include <linux/mm.h>
#include <linux/mutex.h>
#include <linux/mount.h>
#include <linux/pagemap.h>
35
#include <linux/proc_fs.h>
36 37
#include <linux/rcupdate.h>
#include <linux/sched.h>
38
#include <linux/backing-dev.h>
39 40 41 42 43
#include <linux/seq_file.h>
#include <linux/slab.h>
#include <linux/magic.h>
#include <linux/spinlock.h>
#include <linux/string.h>
44
#include <linux/sort.h>
45
#include <linux/kmod.h>
B
Balbir Singh 已提交
46 47
#include <linux/delayacct.h>
#include <linux/cgroupstats.h>
48
#include <linux/hash.h>
49
#include <linux/namei.h>
50
#include <linux/smp_lock.h>
L
Li Zefan 已提交
51
#include <linux/pid_namespace.h>
52
#include <linux/idr.h>
B
Balbir Singh 已提交
53

54 55
#include <asm/atomic.h>

56 57
static DEFINE_MUTEX(cgroup_mutex);

58 59 60 61 62 63 64
/* Generate an array of cgroup subsystem pointers */
#define SUBSYS(_x) &_x ## _subsys,

static struct cgroup_subsys *subsys[] = {
#include <linux/cgroup_subsys.h>
};

65 66
#define MAX_CGROUP_ROOT_NAMELEN 64

67 68 69 70 71 72 73 74 75 76 77 78 79 80
/*
 * A cgroupfs_root represents the root of a cgroup hierarchy,
 * and may be associated with a superblock to form an active
 * hierarchy
 */
struct cgroupfs_root {
	struct super_block *sb;

	/*
	 * The bitmask of subsystems intended to be attached to this
	 * hierarchy
	 */
	unsigned long subsys_bits;

81 82 83
	/* Unique id for this hierarchy. */
	int hierarchy_id;

84 85 86 87 88 89 90 91 92 93 94 95
	/* The bitmask of subsystems currently attached to this hierarchy */
	unsigned long actual_subsys_bits;

	/* A list running through the attached subsystems */
	struct list_head subsys_list;

	/* The root cgroup for this hierarchy */
	struct cgroup top_cgroup;

	/* Tracks how many cgroups are currently defined in hierarchy.*/
	int number_of_cgroups;

96
	/* A list running through the active hierarchies */
97 98 99 100
	struct list_head root_list;

	/* Hierarchy-specific flags */
	unsigned long flags;
101

102
	/* The path to use for release notifications. */
103
	char release_agent_path[PATH_MAX];
104 105 106

	/* The name for this hierarchy - may be empty */
	char name[MAX_CGROUP_ROOT_NAMELEN];
107 108 109 110 111 112 113 114 115
};

/*
 * The "rootnode" hierarchy is the "dummy hierarchy", reserved for the
 * subsystems that are otherwise unattached - it never has more than a
 * single cgroup, and all tasks are part of that cgroup.
 */
static struct cgroupfs_root rootnode;

K
KAMEZAWA Hiroyuki 已提交
116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148
/*
 * CSS ID -- ID per subsys's Cgroup Subsys State(CSS). used only when
 * cgroup_subsys->use_id != 0.
 */
#define CSS_ID_MAX	(65535)
struct css_id {
	/*
	 * The css to which this ID points. This pointer is set to valid value
	 * after cgroup is populated. If cgroup is removed, this will be NULL.
	 * This pointer is expected to be RCU-safe because destroy()
	 * is called after synchronize_rcu(). But for safe use, css_is_removed()
	 * css_tryget() should be used for avoiding race.
	 */
	struct cgroup_subsys_state *css;
	/*
	 * ID of this css.
	 */
	unsigned short id;
	/*
	 * Depth in hierarchy which this ID belongs to.
	 */
	unsigned short depth;
	/*
	 * ID is freed by RCU. (and lookup routine is RCU safe.)
	 */
	struct rcu_head rcu_head;
	/*
	 * Hierarchy of CSS ID belongs to.
	 */
	unsigned short stack[0]; /* Array of Length (depth+1) */
};


149 150 151
/* The list of hierarchy roots */

static LIST_HEAD(roots);
152
static int root_count;
153

154 155 156 157
static DEFINE_IDA(hierarchy_ida);
static int next_hierarchy_id;
static DEFINE_SPINLOCK(hierarchy_id_lock);

158 159 160 161
/* dummytop is a shorthand for the dummy hierarchy's top cgroup */
#define dummytop (&rootnode.top_cgroup)

/* This flag indicates whether tasks in the fork and exit paths should
L
Li Zefan 已提交
162 163 164
 * check for fork/exit handlers to call. This avoids us having to do
 * extra work in the fork/exit path if none of the subsystems need to
 * be called.
165
 */
166
static int need_forkexit_callback __read_mostly;
167 168

/* convenient tests for these bits */
169
inline int cgroup_is_removed(const struct cgroup *cgrp)
170
{
171
	return test_bit(CGRP_REMOVED, &cgrp->flags);
172 173 174 175 176 177 178
}

/* bits in struct cgroupfs_root flags field */
enum {
	ROOT_NOPREFIX, /* mounted subsystems have no named prefix */
};

179
static int cgroup_is_releasable(const struct cgroup *cgrp)
180 181
{
	const int bits =
182 183 184
		(1 << CGRP_RELEASABLE) |
		(1 << CGRP_NOTIFY_ON_RELEASE);
	return (cgrp->flags & bits) == bits;
185 186
}

187
static int notify_on_release(const struct cgroup *cgrp)
188
{
189
	return test_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
190 191
}

192 193 194 195 196 197 198
/*
 * for_each_subsys() allows you to iterate on each subsystem attached to
 * an active hierarchy
 */
#define for_each_subsys(_root, _ss) \
list_for_each_entry(_ss, &_root->subsys_list, sibling)

199 200
/* for_each_active_root() allows you to iterate across the active hierarchies */
#define for_each_active_root(_root) \
201 202
list_for_each_entry(_root, &roots, root_list)

203 204 205 206 207 208
/* the list of cgroups eligible for automatic release. Protected by
 * release_list_lock */
static LIST_HEAD(release_list);
static DEFINE_SPINLOCK(release_list_lock);
static void cgroup_release_agent(struct work_struct *work);
static DECLARE_WORK(release_agent_work, cgroup_release_agent);
209
static void check_for_release(struct cgroup *cgrp);
210

211 212 213 214 215 216
/* Link structure for associating css_set objects with cgroups */
struct cg_cgroup_link {
	/*
	 * List running through cg_cgroup_links associated with a
	 * cgroup, anchored on cgroup->css_sets
	 */
217
	struct list_head cgrp_link_list;
218
	struct cgroup *cgrp;
219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236
	/*
	 * List running through cg_cgroup_links pointing at a
	 * single css_set object, anchored on css_set->cg_links
	 */
	struct list_head cg_link_list;
	struct css_set *cg;
};

/* The default css_set - used by init and its children prior to any
 * hierarchies being mounted. It contains a pointer to the root state
 * for each subsystem. Also used to anchor the list of css_sets. Not
 * reference-counted, to improve performance when child cgroups
 * haven't been created.
 */

static struct css_set init_css_set;
static struct cg_cgroup_link init_css_set_link;

K
KAMEZAWA Hiroyuki 已提交
237 238
static int cgroup_subsys_init_idr(struct cgroup_subsys *ss);

239 240 241 242 243 244
/* css_set_lock protects the list of css_set objects, and the
 * chain of tasks off each css_set.  Nests outside task->alloc_lock
 * due to cgroup_iter_start() */
static DEFINE_RWLOCK(css_set_lock);
static int css_set_count;

245 246 247 248 249
/*
 * hash table for cgroup groups. This improves the performance to find
 * an existing css_set. This hash doesn't (currently) take into
 * account cgroups in empty hierarchies.
 */
250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268
#define CSS_SET_HASH_BITS	7
#define CSS_SET_TABLE_SIZE	(1 << CSS_SET_HASH_BITS)
static struct hlist_head css_set_table[CSS_SET_TABLE_SIZE];

static struct hlist_head *css_set_hash(struct cgroup_subsys_state *css[])
{
	int i;
	int index;
	unsigned long tmp = 0UL;

	for (i = 0; i < CGROUP_SUBSYS_COUNT; i++)
		tmp += (unsigned long)css[i];
	tmp = (tmp >> 16) ^ tmp;

	index = hash_long(tmp, CSS_SET_HASH_BITS);

	return &css_set_table[index];
}

269 270 271 272
/* We don't maintain the lists running through each css_set to its
 * task until after the first call to cgroup_iter_start(). This
 * reduces the fork()/exit() overhead for people who have cgroups
 * compiled into their kernel but not actually in use */
273
static int use_task_css_set_links __read_mostly;
274

275
static void __put_css_set(struct css_set *cg, int taskexit)
276
{
K
KOSAKI Motohiro 已提交
277 278
	struct cg_cgroup_link *link;
	struct cg_cgroup_link *saved_link;
279 280 281 282 283 284 285 286 287 288 289 290
	/*
	 * Ensure that the refcount doesn't hit zero while any readers
	 * can see it. Similar to atomic_dec_and_lock(), but for an
	 * rwlock
	 */
	if (atomic_add_unless(&cg->refcount, -1, 1))
		return;
	write_lock(&css_set_lock);
	if (!atomic_dec_and_test(&cg->refcount)) {
		write_unlock(&css_set_lock);
		return;
	}
291

292 293 294 295 296 297 298 299 300
	/* This css_set is dead. unlink it and release cgroup refcounts */
	hlist_del(&cg->hlist);
	css_set_count--;

	list_for_each_entry_safe(link, saved_link, &cg->cg_links,
				 cg_link_list) {
		struct cgroup *cgrp = link->cgrp;
		list_del(&link->cg_link_list);
		list_del(&link->cgrp_link_list);
301 302
		if (atomic_dec_and_test(&cgrp->count) &&
		    notify_on_release(cgrp)) {
303
			if (taskexit)
304 305
				set_bit(CGRP_RELEASABLE, &cgrp->flags);
			check_for_release(cgrp);
306
		}
307 308

		kfree(link);
309
	}
310 311

	write_unlock(&css_set_lock);
312
	kfree(cg);
313 314
}

315 316 317 318 319
/*
 * refcounted get/put for css_set objects
 */
static inline void get_css_set(struct css_set *cg)
{
320
	atomic_inc(&cg->refcount);
321 322 323 324
}

static inline void put_css_set(struct css_set *cg)
{
325
	__put_css_set(cg, 0);
326 327
}

328 329
static inline void put_css_set_taskexit(struct css_set *cg)
{
330
	__put_css_set(cg, 1);
331 332
}

333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404
/*
 * compare_css_sets - helper function for find_existing_css_set().
 * @cg: candidate css_set being tested
 * @old_cg: existing css_set for a task
 * @new_cgrp: cgroup that's being entered by the task
 * @template: desired set of css pointers in css_set (pre-calculated)
 *
 * Returns true if "cg" matches "old_cg" except for the hierarchy
 * which "new_cgrp" belongs to, for which it should match "new_cgrp".
 */
static bool compare_css_sets(struct css_set *cg,
			     struct css_set *old_cg,
			     struct cgroup *new_cgrp,
			     struct cgroup_subsys_state *template[])
{
	struct list_head *l1, *l2;

	if (memcmp(template, cg->subsys, sizeof(cg->subsys))) {
		/* Not all subsystems matched */
		return false;
	}

	/*
	 * Compare cgroup pointers in order to distinguish between
	 * different cgroups in heirarchies with no subsystems. We
	 * could get by with just this check alone (and skip the
	 * memcmp above) but on most setups the memcmp check will
	 * avoid the need for this more expensive check on almost all
	 * candidates.
	 */

	l1 = &cg->cg_links;
	l2 = &old_cg->cg_links;
	while (1) {
		struct cg_cgroup_link *cgl1, *cgl2;
		struct cgroup *cg1, *cg2;

		l1 = l1->next;
		l2 = l2->next;
		/* See if we reached the end - both lists are equal length. */
		if (l1 == &cg->cg_links) {
			BUG_ON(l2 != &old_cg->cg_links);
			break;
		} else {
			BUG_ON(l2 == &old_cg->cg_links);
		}
		/* Locate the cgroups associated with these links. */
		cgl1 = list_entry(l1, struct cg_cgroup_link, cg_link_list);
		cgl2 = list_entry(l2, struct cg_cgroup_link, cg_link_list);
		cg1 = cgl1->cgrp;
		cg2 = cgl2->cgrp;
		/* Hierarchies should be linked in the same order. */
		BUG_ON(cg1->root != cg2->root);

		/*
		 * If this hierarchy is the hierarchy of the cgroup
		 * that's changing, then we need to check that this
		 * css_set points to the new cgroup; if it's any other
		 * hierarchy, then this css_set should point to the
		 * same cgroup as the old css_set.
		 */
		if (cg1->root == new_cgrp->root) {
			if (cg1 != new_cgrp)
				return false;
		} else {
			if (cg1 != cg2)
				return false;
		}
	}
	return true;
}

405 406 407
/*
 * find_existing_css_set() is a helper for
 * find_css_set(), and checks to see whether an existing
408
 * css_set is suitable.
409 410 411 412
 *
 * oldcg: the cgroup group that we're using before the cgroup
 * transition
 *
413
 * cgrp: the cgroup that we're moving into
414 415 416 417 418 419
 *
 * template: location in which to build the desired set of subsystem
 * state objects for the new cgroup group
 */
static struct css_set *find_existing_css_set(
	struct css_set *oldcg,
420
	struct cgroup *cgrp,
421
	struct cgroup_subsys_state *template[])
422 423
{
	int i;
424
	struct cgroupfs_root *root = cgrp->root;
425 426 427
	struct hlist_head *hhead;
	struct hlist_node *node;
	struct css_set *cg;
428 429 430 431

	/* Built the set of subsystem state objects that we want to
	 * see in the new css_set */
	for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
L
Li Zefan 已提交
432
		if (root->subsys_bits & (1UL << i)) {
433 434 435
			/* Subsystem is in this hierarchy. So we want
			 * the subsystem state from the new
			 * cgroup */
436
			template[i] = cgrp->subsys[i];
437 438 439 440 441 442 443
		} else {
			/* Subsystem is not in this hierarchy, so we
			 * don't want to change the subsystem state */
			template[i] = oldcg->subsys[i];
		}
	}

444 445
	hhead = css_set_hash(template);
	hlist_for_each_entry(cg, node, hhead, hlist) {
446 447 448 449 450
		if (!compare_css_sets(cg, oldcg, cgrp, template))
			continue;

		/* This css_set matches what we need */
		return cg;
451
	}
452 453 454 455 456

	/* No existing cgroup group matched */
	return NULL;
}

457 458 459 460 461 462 463 464 465 466 467
static void free_cg_links(struct list_head *tmp)
{
	struct cg_cgroup_link *link;
	struct cg_cgroup_link *saved_link;

	list_for_each_entry_safe(link, saved_link, tmp, cgrp_link_list) {
		list_del(&link->cgrp_link_list);
		kfree(link);
	}
}

468 469
/*
 * allocate_cg_links() allocates "count" cg_cgroup_link structures
470
 * and chains them on tmp through their cgrp_link_list fields. Returns 0 on
471 472 473 474 475 476 477 478 479 480
 * success or a negative error
 */
static int allocate_cg_links(int count, struct list_head *tmp)
{
	struct cg_cgroup_link *link;
	int i;
	INIT_LIST_HEAD(tmp);
	for (i = 0; i < count; i++) {
		link = kmalloc(sizeof(*link), GFP_KERNEL);
		if (!link) {
481
			free_cg_links(tmp);
482 483
			return -ENOMEM;
		}
484
		list_add(&link->cgrp_link_list, tmp);
485 486 487 488
	}
	return 0;
}

489 490 491 492 493 494 495 496 497 498 499 500 501 502 503
/**
 * link_css_set - a helper function to link a css_set to a cgroup
 * @tmp_cg_links: cg_cgroup_link objects allocated by allocate_cg_links()
 * @cg: the css_set to be linked
 * @cgrp: the destination cgroup
 */
static void link_css_set(struct list_head *tmp_cg_links,
			 struct css_set *cg, struct cgroup *cgrp)
{
	struct cg_cgroup_link *link;

	BUG_ON(list_empty(tmp_cg_links));
	link = list_first_entry(tmp_cg_links, struct cg_cgroup_link,
				cgrp_link_list);
	link->cg = cg;
504
	link->cgrp = cgrp;
505
	atomic_inc(&cgrp->count);
506
	list_move(&link->cgrp_link_list, &cgrp->css_sets);
507 508 509 510 511
	/*
	 * Always add links to the tail of the list so that the list
	 * is sorted by order of hierarchy creation
	 */
	list_add_tail(&link->cg_link_list, &cg->cg_links);
512 513
}

514 515 516 517 518 519 520 521
/*
 * find_css_set() takes an existing cgroup group and a
 * cgroup object, and returns a css_set object that's
 * equivalent to the old group, but with the given cgroup
 * substituted into the appropriate hierarchy. Must be called with
 * cgroup_mutex held
 */
static struct css_set *find_css_set(
522
	struct css_set *oldcg, struct cgroup *cgrp)
523 524 525 526 527 528
{
	struct css_set *res;
	struct cgroup_subsys_state *template[CGROUP_SUBSYS_COUNT];

	struct list_head tmp_cg_links;

529
	struct hlist_head *hhead;
530
	struct cg_cgroup_link *link;
531

532 533
	/* First see if we already have a cgroup group that matches
	 * the desired set */
534
	read_lock(&css_set_lock);
535
	res = find_existing_css_set(oldcg, cgrp, template);
536 537
	if (res)
		get_css_set(res);
538
	read_unlock(&css_set_lock);
539 540 541 542 543 544 545 546 547 548 549 550 551 552

	if (res)
		return res;

	res = kmalloc(sizeof(*res), GFP_KERNEL);
	if (!res)
		return NULL;

	/* Allocate all the cg_cgroup_link objects that we'll need */
	if (allocate_cg_links(root_count, &tmp_cg_links) < 0) {
		kfree(res);
		return NULL;
	}

553
	atomic_set(&res->refcount, 1);
554 555
	INIT_LIST_HEAD(&res->cg_links);
	INIT_LIST_HEAD(&res->tasks);
556
	INIT_HLIST_NODE(&res->hlist);
557 558 559 560 561 562 563

	/* Copy the set of subsystem state objects generated in
	 * find_existing_css_set() */
	memcpy(res->subsys, template, sizeof(res->subsys));

	write_lock(&css_set_lock);
	/* Add reference counts and links from the new css_set. */
564 565 566 567 568 569
	list_for_each_entry(link, &oldcg->cg_links, cg_link_list) {
		struct cgroup *c = link->cgrp;
		if (c->root == cgrp->root)
			c = cgrp;
		link_css_set(&tmp_cg_links, res, c);
	}
570 571 572 573

	BUG_ON(!list_empty(&tmp_cg_links));

	css_set_count++;
574 575 576 577 578

	/* Add this cgroup group to the hash table */
	hhead = css_set_hash(res->subsys);
	hlist_add_head(&res->hlist, hhead);

579 580 581
	write_unlock(&css_set_lock);

	return res;
582 583
}

584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618
/*
 * Return the cgroup for "task" from the given hierarchy. Must be
 * called with cgroup_mutex held.
 */
static struct cgroup *task_cgroup_from_root(struct task_struct *task,
					    struct cgroupfs_root *root)
{
	struct css_set *css;
	struct cgroup *res = NULL;

	BUG_ON(!mutex_is_locked(&cgroup_mutex));
	read_lock(&css_set_lock);
	/*
	 * No need to lock the task - since we hold cgroup_mutex the
	 * task can't change groups, so the only thing that can happen
	 * is that it exits and its css is set back to init_css_set.
	 */
	css = task->cgroups;
	if (css == &init_css_set) {
		res = &root->top_cgroup;
	} else {
		struct cg_cgroup_link *link;
		list_for_each_entry(link, &css->cg_links, cg_link_list) {
			struct cgroup *c = link->cgrp;
			if (c->root == root) {
				res = c;
				break;
			}
		}
	}
	read_unlock(&css_set_lock);
	BUG_ON(!res);
	return res;
}

619 620 621 622 623 624 625 626 627 628
/*
 * There is one global cgroup mutex. We also require taking
 * task_lock() when dereferencing a task's cgroup subsys pointers.
 * See "The task_lock() exception", at the end of this comment.
 *
 * A task must hold cgroup_mutex to modify cgroups.
 *
 * Any task can increment and decrement the count field without lock.
 * So in general, code holding cgroup_mutex can't rely on the count
 * field not changing.  However, if the count goes to zero, then only
629
 * cgroup_attach_task() can increment it again.  Because a count of zero
630 631 632 633 634 635 636 637 638 639 640 641 642
 * means that no tasks are currently attached, therefore there is no
 * way a task attached to that cgroup can fork (the other way to
 * increment the count).  So code holding cgroup_mutex can safely
 * assume that if the count is zero, it will stay zero. Similarly, if
 * a task holds cgroup_mutex on a cgroup with zero count, it
 * knows that the cgroup won't be removed, as cgroup_rmdir()
 * needs that mutex.
 *
 * The fork and exit callbacks cgroup_fork() and cgroup_exit(), don't
 * (usually) take cgroup_mutex.  These are the two most performance
 * critical pieces of code here.  The exception occurs on cgroup_exit(),
 * when a task in a notify_on_release cgroup exits.  Then cgroup_mutex
 * is taken, and if the cgroup count is zero, a usermode call made
L
Li Zefan 已提交
643 644
 * to the release agent with the name of the cgroup (path relative to
 * the root of cgroup file system) as the argument.
645 646 647 648 649 650 651 652 653 654 655
 *
 * A cgroup can only be deleted if both its 'count' of using tasks
 * is zero, and its list of 'children' cgroups is empty.  Since all
 * tasks in the system use _some_ cgroup, and since there is always at
 * least one task in the system (init, pid == 1), therefore, top_cgroup
 * always has either children cgroups and/or using tasks.  So we don't
 * need a special hack to ensure that top_cgroup cannot be deleted.
 *
 *	The task_lock() exception
 *
 * The need for this exception arises from the action of
656
 * cgroup_attach_task(), which overwrites one tasks cgroup pointer with
L
Li Zefan 已提交
657
 * another.  It does so using cgroup_mutex, however there are
658 659 660
 * several performance critical places that need to reference
 * task->cgroup without the expense of grabbing a system global
 * mutex.  Therefore except as noted below, when dereferencing or, as
661
 * in cgroup_attach_task(), modifying a task'ss cgroup pointer we use
662 663 664 665
 * task_lock(), which acts on a spinlock (task->alloc_lock) already in
 * the task_struct routinely used for such matters.
 *
 * P.S.  One more locking exception.  RCU is used to guard the
666
 * update of a tasks cgroup pointer by cgroup_attach_task()
667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696
 */

/**
 * cgroup_lock - lock out any changes to cgroup structures
 *
 */
void cgroup_lock(void)
{
	mutex_lock(&cgroup_mutex);
}

/**
 * cgroup_unlock - release lock on cgroup changes
 *
 * Undo the lock taken in a previous cgroup_lock() call.
 */
void cgroup_unlock(void)
{
	mutex_unlock(&cgroup_mutex);
}

/*
 * A couple of forward declarations required, due to cyclic reference loop:
 * cgroup_mkdir -> cgroup_create -> cgroup_populate_dir ->
 * cgroup_add_file -> cgroup_create_file -> cgroup_dir_inode_operations
 * -> cgroup_mkdir.
 */

static int cgroup_mkdir(struct inode *dir, struct dentry *dentry, int mode);
static int cgroup_rmdir(struct inode *unused_dir, struct dentry *dentry);
697
static int cgroup_populate_dir(struct cgroup *cgrp);
698
static const struct inode_operations cgroup_dir_inode_operations;
699 700 701
static struct file_operations proc_cgroupstats_operations;

static struct backing_dev_info cgroup_backing_dev_info = {
702
	.name		= "cgroup",
703
	.capabilities	= BDI_CAP_NO_ACCT_AND_WRITEBACK,
704
};
705

K
KAMEZAWA Hiroyuki 已提交
706 707 708
static int alloc_css_id(struct cgroup_subsys *ss,
			struct cgroup *parent, struct cgroup *child);

709 710 711 712 713 714
static struct inode *cgroup_new_inode(mode_t mode, struct super_block *sb)
{
	struct inode *inode = new_inode(sb);

	if (inode) {
		inode->i_mode = mode;
715 716
		inode->i_uid = current_fsuid();
		inode->i_gid = current_fsgid();
717 718 719 720 721 722
		inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
		inode->i_mapping->backing_dev_info = &cgroup_backing_dev_info;
	}
	return inode;
}

723 724 725 726
/*
 * Call subsys's pre_destroy handler.
 * This is called before css refcnt check.
 */
727
static int cgroup_call_pre_destroy(struct cgroup *cgrp)
728 729
{
	struct cgroup_subsys *ss;
730 731
	int ret = 0;

732
	for_each_subsys(cgrp->root, ss)
733 734 735 736 737 738
		if (ss->pre_destroy) {
			ret = ss->pre_destroy(ss, cgrp);
			if (ret)
				break;
		}
	return ret;
739 740
}

741 742 743 744 745 746 747
static void free_cgroup_rcu(struct rcu_head *obj)
{
	struct cgroup *cgrp = container_of(obj, struct cgroup, rcu_head);

	kfree(cgrp);
}

748 749 750 751
static void cgroup_diput(struct dentry *dentry, struct inode *inode)
{
	/* is dentry a directory ? if so, kfree() associated cgroup */
	if (S_ISDIR(inode->i_mode)) {
752
		struct cgroup *cgrp = dentry->d_fsdata;
753
		struct cgroup_subsys *ss;
754
		BUG_ON(!(cgroup_is_removed(cgrp)));
755 756 757 758 759 760 761
		/* It's possible for external users to be holding css
		 * reference counts on a cgroup; css_put() needs to
		 * be able to access the cgroup after decrementing
		 * the reference count in order to know if it needs to
		 * queue the cgroup to be handled by the release
		 * agent */
		synchronize_rcu();
762 763 764 765 766

		mutex_lock(&cgroup_mutex);
		/*
		 * Release the subsystem state objects.
		 */
767 768
		for_each_subsys(cgrp->root, ss)
			ss->destroy(ss, cgrp);
769 770 771 772

		cgrp->root->number_of_cgroups--;
		mutex_unlock(&cgroup_mutex);

773 774 775 776
		/*
		 * Drop the active superblock reference that we took when we
		 * created the cgroup
		 */
777 778
		deactivate_super(cgrp->root->sb);

779
		call_rcu(&cgrp->rcu_head, free_cgroup_rcu);
780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831
	}
	iput(inode);
}

static void remove_dir(struct dentry *d)
{
	struct dentry *parent = dget(d->d_parent);

	d_delete(d);
	simple_rmdir(parent->d_inode, d);
	dput(parent);
}

static void cgroup_clear_directory(struct dentry *dentry)
{
	struct list_head *node;

	BUG_ON(!mutex_is_locked(&dentry->d_inode->i_mutex));
	spin_lock(&dcache_lock);
	node = dentry->d_subdirs.next;
	while (node != &dentry->d_subdirs) {
		struct dentry *d = list_entry(node, struct dentry, d_u.d_child);
		list_del_init(node);
		if (d->d_inode) {
			/* This should never be called on a cgroup
			 * directory with child cgroups */
			BUG_ON(d->d_inode->i_mode & S_IFDIR);
			d = dget_locked(d);
			spin_unlock(&dcache_lock);
			d_delete(d);
			simple_unlink(dentry->d_inode, d);
			dput(d);
			spin_lock(&dcache_lock);
		}
		node = dentry->d_subdirs.next;
	}
	spin_unlock(&dcache_lock);
}

/*
 * NOTE : the dentry must have been dget()'ed
 */
static void cgroup_d_remove_dir(struct dentry *dentry)
{
	cgroup_clear_directory(dentry);

	spin_lock(&dcache_lock);
	list_del_init(&dentry->d_u.d_child);
	spin_unlock(&dcache_lock);
	remove_dir(dentry);
}

832 833 834 835 836 837
/*
 * A queue for waiters to do rmdir() cgroup. A tasks will sleep when
 * cgroup->count == 0 && list_empty(&cgroup->children) && subsys has some
 * reference to css->refcnt. In general, this refcnt is expected to goes down
 * to zero, soon.
 *
838
 * CGRP_WAIT_ON_RMDIR flag is set under cgroup's inode->i_mutex;
839 840 841
 */
DECLARE_WAIT_QUEUE_HEAD(cgroup_rmdir_waitq);

842
static void cgroup_wakeup_rmdir_waiter(struct cgroup *cgrp)
843
{
844
	if (unlikely(test_and_clear_bit(CGRP_WAIT_ON_RMDIR, &cgrp->flags)))
845 846 847
		wake_up_all(&cgroup_rmdir_waitq);
}

848 849 850 851 852 853 854 855 856 857 858 859
void cgroup_exclude_rmdir(struct cgroup_subsys_state *css)
{
	css_get(css);
}

void cgroup_release_and_wakeup_rmdir(struct cgroup_subsys_state *css)
{
	cgroup_wakeup_rmdir_waiter(css->cgroup);
	css_put(css);
}


860 861 862 863
static int rebind_subsystems(struct cgroupfs_root *root,
			      unsigned long final_bits)
{
	unsigned long added_bits, removed_bits;
864
	struct cgroup *cgrp = &root->top_cgroup;
865 866 867 868 869 870
	int i;

	removed_bits = root->actual_subsys_bits & ~final_bits;
	added_bits = final_bits & ~root->actual_subsys_bits;
	/* Check that any added subsystems are currently free */
	for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
L
Li Zefan 已提交
871
		unsigned long bit = 1UL << i;
872 873 874 875 876 877 878 879 880 881 882 883 884
		struct cgroup_subsys *ss = subsys[i];
		if (!(bit & added_bits))
			continue;
		if (ss->root != &rootnode) {
			/* Subsystem isn't free */
			return -EBUSY;
		}
	}

	/* Currently we don't handle adding/removing subsystems when
	 * any child cgroups exist. This is theoretically supportable
	 * but involves complex error handling, so it's being left until
	 * later */
885
	if (root->number_of_cgroups > 1)
886 887 888 889 890 891 892 893
		return -EBUSY;

	/* Process each subsystem */
	for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
		struct cgroup_subsys *ss = subsys[i];
		unsigned long bit = 1UL << i;
		if (bit & added_bits) {
			/* We're binding this subsystem to this hierarchy */
894
			BUG_ON(cgrp->subsys[i]);
895 896
			BUG_ON(!dummytop->subsys[i]);
			BUG_ON(dummytop->subsys[i]->cgroup != dummytop);
897
			mutex_lock(&ss->hierarchy_mutex);
898 899
			cgrp->subsys[i] = dummytop->subsys[i];
			cgrp->subsys[i]->cgroup = cgrp;
900
			list_move(&ss->sibling, &root->subsys_list);
901
			ss->root = root;
902
			if (ss->bind)
903
				ss->bind(ss, cgrp);
904
			mutex_unlock(&ss->hierarchy_mutex);
905 906
		} else if (bit & removed_bits) {
			/* We're removing this subsystem */
907 908
			BUG_ON(cgrp->subsys[i] != dummytop->subsys[i]);
			BUG_ON(cgrp->subsys[i]->cgroup != cgrp);
909
			mutex_lock(&ss->hierarchy_mutex);
910 911 912
			if (ss->bind)
				ss->bind(ss, dummytop);
			dummytop->subsys[i]->cgroup = dummytop;
913
			cgrp->subsys[i] = NULL;
914
			subsys[i]->root = &rootnode;
915
			list_move(&ss->sibling, &rootnode.subsys_list);
916
			mutex_unlock(&ss->hierarchy_mutex);
917 918
		} else if (bit & final_bits) {
			/* Subsystem state should already exist */
919
			BUG_ON(!cgrp->subsys[i]);
920 921
		} else {
			/* Subsystem state shouldn't exist */
922
			BUG_ON(cgrp->subsys[i]);
923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940
		}
	}
	root->subsys_bits = root->actual_subsys_bits = final_bits;
	synchronize_rcu();

	return 0;
}

static int cgroup_show_options(struct seq_file *seq, struct vfsmount *vfs)
{
	struct cgroupfs_root *root = vfs->mnt_sb->s_fs_info;
	struct cgroup_subsys *ss;

	mutex_lock(&cgroup_mutex);
	for_each_subsys(root, ss)
		seq_printf(seq, ",%s", ss->name);
	if (test_bit(ROOT_NOPREFIX, &root->flags))
		seq_puts(seq, ",noprefix");
941 942
	if (strlen(root->release_agent_path))
		seq_printf(seq, ",release_agent=%s", root->release_agent_path);
943 944
	if (strlen(root->name))
		seq_printf(seq, ",name=%s", root->name);
945 946 947 948 949 950 951
	mutex_unlock(&cgroup_mutex);
	return 0;
}

struct cgroup_sb_opts {
	unsigned long subsys_bits;
	unsigned long flags;
952
	char *release_agent;
953
	char *name;
954 955
	/* User explicitly requested empty subsystem */
	bool none;
956 957

	struct cgroupfs_root *new_root;
958

959 960 961 962 963 964 965 966
};

/* Convert a hierarchy specifier into a bitmask of subsystems and
 * flags. */
static int parse_cgroupfs_options(char *data,
				     struct cgroup_sb_opts *opts)
{
	char *token, *o = data ?: "all";
967 968 969 970 971
	unsigned long mask = (unsigned long)-1;

#ifdef CONFIG_CPUSETS
	mask = ~(1UL << cpuset_subsys_id);
#endif
972

973
	memset(opts, 0, sizeof(*opts));
974 975 976 977 978

	while ((token = strsep(&o, ",")) != NULL) {
		if (!*token)
			return -EINVAL;
		if (!strcmp(token, "all")) {
979 980 981 982 983 984 985 986
			/* Add all non-disabled subsystems */
			int i;
			opts->subsys_bits = 0;
			for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
				struct cgroup_subsys *ss = subsys[i];
				if (!ss->disabled)
					opts->subsys_bits |= 1ul << i;
			}
987 988 989
		} else if (!strcmp(token, "none")) {
			/* Explicitly have no subsystems */
			opts->none = true;
990 991
		} else if (!strcmp(token, "noprefix")) {
			set_bit(ROOT_NOPREFIX, &opts->flags);
992 993 994 995
		} else if (!strncmp(token, "release_agent=", 14)) {
			/* Specifying two release agents is forbidden */
			if (opts->release_agent)
				return -EINVAL;
996 997
			opts->release_agent =
				kstrndup(token + 14, PATH_MAX, GFP_KERNEL);
998 999
			if (!opts->release_agent)
				return -ENOMEM;
1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022
		} else if (!strncmp(token, "name=", 5)) {
			int i;
			const char *name = token + 5;
			/* Can't specify an empty name */
			if (!strlen(name))
				return -EINVAL;
			/* Must match [\w.-]+ */
			for (i = 0; i < strlen(name); i++) {
				char c = name[i];
				if (isalnum(c))
					continue;
				if ((c == '.') || (c == '-') || (c == '_'))
					continue;
				return -EINVAL;
			}
			/* Specifying two names is forbidden */
			if (opts->name)
				return -EINVAL;
			opts->name = kstrndup(name,
					      MAX_CGROUP_ROOT_NAMELEN,
					      GFP_KERNEL);
			if (!opts->name)
				return -ENOMEM;
1023 1024 1025 1026 1027 1028
		} else {
			struct cgroup_subsys *ss;
			int i;
			for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
				ss = subsys[i];
				if (!strcmp(token, ss->name)) {
1029 1030
					if (!ss->disabled)
						set_bit(i, &opts->subsys_bits);
1031 1032 1033 1034 1035 1036 1037 1038
					break;
				}
			}
			if (i == CGROUP_SUBSYS_COUNT)
				return -ENOENT;
		}
	}

1039 1040
	/* Consistency checks */

1041 1042 1043 1044 1045 1046 1047 1048 1049
	/*
	 * Option noprefix was introduced just for backward compatibility
	 * with the old cpuset, so we allow noprefix only if mounting just
	 * the cpuset subsystem.
	 */
	if (test_bit(ROOT_NOPREFIX, &opts->flags) &&
	    (opts->subsys_bits & mask))
		return -EINVAL;

1050 1051 1052 1053 1054 1055 1056 1057 1058

	/* Can't specify "none" and some subsystems */
	if (opts->subsys_bits && opts->none)
		return -EINVAL;

	/*
	 * We either have to specify by name or by subsystems. (So all
	 * empty hierarchies must have a name).
	 */
1059
	if (!opts->subsys_bits && !opts->name)
1060 1061 1062 1063 1064 1065 1066 1067 1068
		return -EINVAL;

	return 0;
}

static int cgroup_remount(struct super_block *sb, int *flags, char *data)
{
	int ret = 0;
	struct cgroupfs_root *root = sb->s_fs_info;
1069
	struct cgroup *cgrp = &root->top_cgroup;
1070 1071
	struct cgroup_sb_opts opts;

1072
	lock_kernel();
1073
	mutex_lock(&cgrp->dentry->d_inode->i_mutex);
1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086
	mutex_lock(&cgroup_mutex);

	/* See what subsystems are wanted */
	ret = parse_cgroupfs_options(data, &opts);
	if (ret)
		goto out_unlock;

	/* Don't allow flags to change at remount */
	if (opts.flags != root->flags) {
		ret = -EINVAL;
		goto out_unlock;
	}

1087 1088 1089 1090 1091 1092
	/* Don't allow name to change at remount */
	if (opts.name && strcmp(opts.name, root->name)) {
		ret = -EINVAL;
		goto out_unlock;
	}

1093
	ret = rebind_subsystems(root, opts.subsys_bits);
1094 1095
	if (ret)
		goto out_unlock;
1096 1097

	/* (re)populate subsystem files */
1098
	cgroup_populate_dir(cgrp);
1099

1100 1101
	if (opts.release_agent)
		strcpy(root->release_agent_path, opts.release_agent);
1102
 out_unlock:
1103
	kfree(opts.release_agent);
1104
	kfree(opts.name);
1105
	mutex_unlock(&cgroup_mutex);
1106
	mutex_unlock(&cgrp->dentry->d_inode->i_mutex);
1107
	unlock_kernel();
1108 1109 1110
	return ret;
}

1111
static const struct super_operations cgroup_ops = {
1112 1113 1114 1115 1116 1117
	.statfs = simple_statfs,
	.drop_inode = generic_delete_inode,
	.show_options = cgroup_show_options,
	.remount_fs = cgroup_remount,
};

1118 1119 1120 1121 1122 1123
static void init_cgroup_housekeeping(struct cgroup *cgrp)
{
	INIT_LIST_HEAD(&cgrp->sibling);
	INIT_LIST_HEAD(&cgrp->children);
	INIT_LIST_HEAD(&cgrp->css_sets);
	INIT_LIST_HEAD(&cgrp->release_list);
L
Li Zefan 已提交
1124
	INIT_LIST_HEAD(&cgrp->pids_list);
1125 1126
	init_rwsem(&cgrp->pids_mutex);
}
1127

1128 1129
static void init_cgroup_root(struct cgroupfs_root *root)
{
1130
	struct cgroup *cgrp = &root->top_cgroup;
1131 1132 1133
	INIT_LIST_HEAD(&root->subsys_list);
	INIT_LIST_HEAD(&root->root_list);
	root->number_of_cgroups = 1;
1134 1135
	cgrp->root = root;
	cgrp->top_cgroup = cgrp;
1136
	init_cgroup_housekeeping(cgrp);
1137 1138
}

1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163
static bool init_root_id(struct cgroupfs_root *root)
{
	int ret = 0;

	do {
		if (!ida_pre_get(&hierarchy_ida, GFP_KERNEL))
			return false;
		spin_lock(&hierarchy_id_lock);
		/* Try to allocate the next unused ID */
		ret = ida_get_new_above(&hierarchy_ida, next_hierarchy_id,
					&root->hierarchy_id);
		if (ret == -ENOSPC)
			/* Try again starting from 0 */
			ret = ida_get_new(&hierarchy_ida, &root->hierarchy_id);
		if (!ret) {
			next_hierarchy_id = root->hierarchy_id + 1;
		} else if (ret != -EAGAIN) {
			/* Can only get here if the 31-bit IDR is full ... */
			BUG_ON(ret);
		}
		spin_unlock(&hierarchy_id_lock);
	} while (ret);
	return true;
}

1164 1165
static int cgroup_test_super(struct super_block *sb, void *data)
{
1166
	struct cgroup_sb_opts *opts = data;
1167 1168
	struct cgroupfs_root *root = sb->s_fs_info;

1169 1170 1171
	/* If we asked for a name then it must match */
	if (opts->name && strcmp(opts->name, root->name))
		return 0;
1172

1173 1174 1175 1176 1177 1178
	/*
	 * If we asked for subsystems (or explicitly for no
	 * subsystems) then they must match
	 */
	if ((opts->subsys_bits || opts->none)
	    && (opts->subsys_bits != root->subsys_bits))
1179 1180 1181 1182 1183
		return 0;

	return 1;
}

1184 1185 1186 1187
static struct cgroupfs_root *cgroup_root_from_opts(struct cgroup_sb_opts *opts)
{
	struct cgroupfs_root *root;

1188
	if (!opts->subsys_bits && !opts->none)
1189 1190 1191 1192 1193 1194
		return NULL;

	root = kzalloc(sizeof(*root), GFP_KERNEL);
	if (!root)
		return ERR_PTR(-ENOMEM);

1195 1196 1197 1198
	if (!init_root_id(root)) {
		kfree(root);
		return ERR_PTR(-ENOMEM);
	}
1199
	init_cgroup_root(root);
1200

1201 1202 1203 1204 1205 1206 1207 1208 1209
	root->subsys_bits = opts->subsys_bits;
	root->flags = opts->flags;
	if (opts->release_agent)
		strcpy(root->release_agent_path, opts->release_agent);
	if (opts->name)
		strcpy(root->name, opts->name);
	return root;
}

1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221
static void cgroup_drop_root(struct cgroupfs_root *root)
{
	if (!root)
		return;

	BUG_ON(!root->hierarchy_id);
	spin_lock(&hierarchy_id_lock);
	ida_remove(&hierarchy_ida, root->hierarchy_id);
	spin_unlock(&hierarchy_id_lock);
	kfree(root);
}

1222 1223 1224
static int cgroup_set_super(struct super_block *sb, void *data)
{
	int ret;
1225 1226 1227 1228 1229 1230
	struct cgroup_sb_opts *opts = data;

	/* If we don't have a new root, we can't set up a new sb */
	if (!opts->new_root)
		return -EINVAL;

1231
	BUG_ON(!opts->subsys_bits && !opts->none);
1232 1233 1234 1235 1236

	ret = set_anon_super(sb, NULL);
	if (ret)
		return ret;

1237 1238
	sb->s_fs_info = opts->new_root;
	opts->new_root->sb = sb;
1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274

	sb->s_blocksize = PAGE_CACHE_SIZE;
	sb->s_blocksize_bits = PAGE_CACHE_SHIFT;
	sb->s_magic = CGROUP_SUPER_MAGIC;
	sb->s_op = &cgroup_ops;

	return 0;
}

static int cgroup_get_rootdir(struct super_block *sb)
{
	struct inode *inode =
		cgroup_new_inode(S_IFDIR | S_IRUGO | S_IXUGO | S_IWUSR, sb);
	struct dentry *dentry;

	if (!inode)
		return -ENOMEM;

	inode->i_fop = &simple_dir_operations;
	inode->i_op = &cgroup_dir_inode_operations;
	/* directories start off with i_nlink == 2 (for "." entry) */
	inc_nlink(inode);
	dentry = d_alloc_root(inode);
	if (!dentry) {
		iput(inode);
		return -ENOMEM;
	}
	sb->s_root = dentry;
	return 0;
}

static int cgroup_get_sb(struct file_system_type *fs_type,
			 int flags, const char *unused_dev_name,
			 void *data, struct vfsmount *mnt)
{
	struct cgroup_sb_opts opts;
1275
	struct cgroupfs_root *root;
1276 1277
	int ret = 0;
	struct super_block *sb;
1278
	struct cgroupfs_root *new_root;
1279 1280 1281

	/* First find the desired set of subsystems */
	ret = parse_cgroupfs_options(data, &opts);
1282 1283
	if (ret)
		goto out_err;
1284

1285 1286 1287 1288 1289 1290 1291 1292
	/*
	 * Allocate a new cgroup root. We may not need it if we're
	 * reusing an existing hierarchy.
	 */
	new_root = cgroup_root_from_opts(&opts);
	if (IS_ERR(new_root)) {
		ret = PTR_ERR(new_root);
		goto out_err;
1293
	}
1294
	opts.new_root = new_root;
1295

1296 1297
	/* Locate an existing or new sb for this hierarchy */
	sb = sget(fs_type, cgroup_test_super, cgroup_set_super, &opts);
1298
	if (IS_ERR(sb)) {
1299
		ret = PTR_ERR(sb);
1300
		cgroup_drop_root(opts.new_root);
1301
		goto out_err;
1302 1303
	}

1304 1305 1306 1307 1308
	root = sb->s_fs_info;
	BUG_ON(!root);
	if (root == opts.new_root) {
		/* We used the new root structure, so this is a new hierarchy */
		struct list_head tmp_cg_links;
1309
		struct cgroup *root_cgrp = &root->top_cgroup;
1310
		struct inode *inode;
1311
		struct cgroupfs_root *existing_root;
1312
		int i;
1313 1314 1315 1316 1317 1318

		BUG_ON(sb->s_root != NULL);

		ret = cgroup_get_rootdir(sb);
		if (ret)
			goto drop_new_super;
1319
		inode = sb->s_root->d_inode;
1320

1321
		mutex_lock(&inode->i_mutex);
1322 1323
		mutex_lock(&cgroup_mutex);

1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335
		if (strlen(root->name)) {
			/* Check for name clashes with existing mounts */
			for_each_active_root(existing_root) {
				if (!strcmp(existing_root->name, root->name)) {
					ret = -EBUSY;
					mutex_unlock(&cgroup_mutex);
					mutex_unlock(&inode->i_mutex);
					goto drop_new_super;
				}
			}
		}

1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349
		/*
		 * We're accessing css_set_count without locking
		 * css_set_lock here, but that's OK - it can only be
		 * increased by someone holding cgroup_lock, and
		 * that's us. The worst that can happen is that we
		 * have some link structures left over
		 */
		ret = allocate_cg_links(css_set_count, &tmp_cg_links);
		if (ret) {
			mutex_unlock(&cgroup_mutex);
			mutex_unlock(&inode->i_mutex);
			goto drop_new_super;
		}

1350 1351 1352
		ret = rebind_subsystems(root, root->subsys_bits);
		if (ret == -EBUSY) {
			mutex_unlock(&cgroup_mutex);
1353
			mutex_unlock(&inode->i_mutex);
1354 1355
			free_cg_links(&tmp_cg_links);
			goto drop_new_super;
1356 1357 1358 1359 1360 1361
		}

		/* EBUSY should be the only error here */
		BUG_ON(ret);

		list_add(&root->root_list, &roots);
1362
		root_count++;
1363

1364
		sb->s_root->d_fsdata = root_cgrp;
1365 1366
		root->top_cgroup.dentry = sb->s_root;

1367 1368 1369
		/* Link the top cgroup in this hierarchy into all
		 * the css_set objects */
		write_lock(&css_set_lock);
1370 1371 1372
		for (i = 0; i < CSS_SET_TABLE_SIZE; i++) {
			struct hlist_head *hhead = &css_set_table[i];
			struct hlist_node *node;
1373
			struct css_set *cg;
1374

1375 1376
			hlist_for_each_entry(cg, node, hhead, hlist)
				link_css_set(&tmp_cg_links, cg, root_cgrp);
1377
		}
1378 1379 1380 1381
		write_unlock(&css_set_lock);

		free_cg_links(&tmp_cg_links);

1382 1383
		BUG_ON(!list_empty(&root_cgrp->sibling));
		BUG_ON(!list_empty(&root_cgrp->children));
1384 1385
		BUG_ON(root->number_of_cgroups != 1);

1386
		cgroup_populate_dir(root_cgrp);
1387
		mutex_unlock(&cgroup_mutex);
1388
		mutex_unlock(&inode->i_mutex);
1389 1390 1391 1392 1393
	} else {
		/*
		 * We re-used an existing hierarchy - the new root (if
		 * any) is not needed
		 */
1394
		cgroup_drop_root(opts.new_root);
1395 1396
	}

1397
	simple_set_mnt(mnt, sb);
1398 1399
	kfree(opts.release_agent);
	kfree(opts.name);
1400
	return 0;
1401 1402

 drop_new_super:
1403
	deactivate_locked_super(sb);
1404 1405 1406 1407
 out_err:
	kfree(opts.release_agent);
	kfree(opts.name);

1408 1409 1410 1411 1412
	return ret;
}

static void cgroup_kill_sb(struct super_block *sb) {
	struct cgroupfs_root *root = sb->s_fs_info;
1413
	struct cgroup *cgrp = &root->top_cgroup;
1414
	int ret;
K
KOSAKI Motohiro 已提交
1415 1416
	struct cg_cgroup_link *link;
	struct cg_cgroup_link *saved_link;
1417 1418 1419 1420

	BUG_ON(!root);

	BUG_ON(root->number_of_cgroups != 1);
1421 1422
	BUG_ON(!list_empty(&cgrp->children));
	BUG_ON(!list_empty(&cgrp->sibling));
1423 1424 1425 1426 1427 1428 1429 1430

	mutex_lock(&cgroup_mutex);

	/* Rebind all subsystems back to the default hierarchy */
	ret = rebind_subsystems(root, 0);
	/* Shouldn't be able to fail ... */
	BUG_ON(ret);

1431 1432 1433 1434 1435
	/*
	 * Release all the links from css_sets to this hierarchy's
	 * root cgroup
	 */
	write_lock(&css_set_lock);
K
KOSAKI Motohiro 已提交
1436 1437 1438

	list_for_each_entry_safe(link, saved_link, &cgrp->css_sets,
				 cgrp_link_list) {
1439
		list_del(&link->cg_link_list);
1440
		list_del(&link->cgrp_link_list);
1441 1442 1443 1444
		kfree(link);
	}
	write_unlock(&css_set_lock);

1445 1446 1447 1448
	if (!list_empty(&root->root_list)) {
		list_del(&root->root_list);
		root_count--;
	}
1449

1450 1451 1452
	mutex_unlock(&cgroup_mutex);

	kill_litter_super(sb);
1453
	cgroup_drop_root(root);
1454 1455 1456 1457 1458 1459 1460 1461
}

static struct file_system_type cgroup_fs_type = {
	.name = "cgroup",
	.get_sb = cgroup_get_sb,
	.kill_sb = cgroup_kill_sb,
};

1462
static inline struct cgroup *__d_cgrp(struct dentry *dentry)
1463 1464 1465 1466 1467 1468 1469 1470 1471
{
	return dentry->d_fsdata;
}

static inline struct cftype *__d_cft(struct dentry *dentry)
{
	return dentry->d_fsdata;
}

L
Li Zefan 已提交
1472 1473 1474 1475 1476 1477
/**
 * cgroup_path - generate the path of a cgroup
 * @cgrp: the cgroup in question
 * @buf: the buffer to write the path into
 * @buflen: the length of the buffer
 *
1478 1479 1480
 * Called with cgroup_mutex held or else with an RCU-protected cgroup
 * reference.  Writes path of cgroup into buf.  Returns 0 on success,
 * -errno on error.
1481
 */
1482
int cgroup_path(const struct cgroup *cgrp, char *buf, int buflen)
1483 1484
{
	char *start;
1485
	struct dentry *dentry = rcu_dereference(cgrp->dentry);
1486

1487
	if (!dentry || cgrp == dummytop) {
1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499
		/*
		 * Inactive subsystems have no dentry for their root
		 * cgroup
		 */
		strcpy(buf, "/");
		return 0;
	}

	start = buf + buflen;

	*--start = '\0';
	for (;;) {
1500
		int len = dentry->d_name.len;
1501 1502
		if ((start -= len) < buf)
			return -ENAMETOOLONG;
1503 1504 1505
		memcpy(start, cgrp->dentry->d_name.name, len);
		cgrp = cgrp->parent;
		if (!cgrp)
1506
			break;
1507
		dentry = rcu_dereference(cgrp->dentry);
1508
		if (!cgrp->parent)
1509 1510 1511 1512 1513 1514 1515 1516 1517
			continue;
		if (--start < buf)
			return -ENAMETOOLONG;
		*start = '/';
	}
	memmove(buf, start, buf + buflen - start);
	return 0;
}

L
Li Zefan 已提交
1518 1519 1520 1521
/**
 * cgroup_attach_task - attach task 'tsk' to cgroup 'cgrp'
 * @cgrp: the cgroup the task is attaching to
 * @tsk: the task to be attached
1522
 *
L
Li Zefan 已提交
1523 1524
 * Call holding cgroup_mutex. May take task_lock of
 * the task 'tsk' during call.
1525
 */
1526
int cgroup_attach_task(struct cgroup *cgrp, struct task_struct *tsk)
1527 1528 1529
{
	int retval = 0;
	struct cgroup_subsys *ss;
1530
	struct cgroup *oldcgrp;
1531
	struct css_set *cg;
1532
	struct css_set *newcg;
1533
	struct cgroupfs_root *root = cgrp->root;
1534 1535

	/* Nothing to do if the task is already in that cgroup */
1536
	oldcgrp = task_cgroup_from_root(tsk, root);
1537
	if (cgrp == oldcgrp)
1538 1539 1540 1541
		return 0;

	for_each_subsys(root, ss) {
		if (ss->can_attach) {
1542
			retval = ss->can_attach(ss, cgrp, tsk);
P
Paul Jackson 已提交
1543
			if (retval)
1544 1545 1546 1547
				return retval;
		}
	}

1548 1549 1550 1551
	task_lock(tsk);
	cg = tsk->cgroups;
	get_css_set(cg);
	task_unlock(tsk);
1552 1553 1554 1555
	/*
	 * Locate or allocate a new css_set for this task,
	 * based on its final set of cgroups
	 */
1556
	newcg = find_css_set(cg, cgrp);
1557
	put_css_set(cg);
P
Paul Jackson 已提交
1558
	if (!newcg)
1559 1560
		return -ENOMEM;

1561 1562 1563
	task_lock(tsk);
	if (tsk->flags & PF_EXITING) {
		task_unlock(tsk);
1564
		put_css_set(newcg);
1565 1566
		return -ESRCH;
	}
1567
	rcu_assign_pointer(tsk->cgroups, newcg);
1568 1569
	task_unlock(tsk);

1570 1571 1572 1573 1574 1575 1576 1577
	/* Update the css_set linked lists if we're using them */
	write_lock(&css_set_lock);
	if (!list_empty(&tsk->cg_list)) {
		list_del(&tsk->cg_list);
		list_add(&tsk->cg_list, &newcg->tasks);
	}
	write_unlock(&css_set_lock);

1578
	for_each_subsys(root, ss) {
P
Paul Jackson 已提交
1579
		if (ss->attach)
1580
			ss->attach(ss, cgrp, oldcgrp, tsk);
1581
	}
1582
	set_bit(CGRP_RELEASABLE, &oldcgrp->flags);
1583
	synchronize_rcu();
1584
	put_css_set(cg);
1585 1586 1587 1588 1589

	/*
	 * wake up rmdir() waiter. the rmdir should fail since the cgroup
	 * is no longer empty.
	 */
1590
	cgroup_wakeup_rmdir_waiter(cgrp);
1591 1592 1593 1594
	return 0;
}

/*
1595 1596
 * Attach task with pid 'pid' to cgroup 'cgrp'. Call with cgroup_mutex
 * held. May take task_lock of task
1597
 */
1598
static int attach_task_by_pid(struct cgroup *cgrp, u64 pid)
1599 1600
{
	struct task_struct *tsk;
1601
	const struct cred *cred = current_cred(), *tcred;
1602 1603 1604 1605
	int ret;

	if (pid) {
		rcu_read_lock();
1606
		tsk = find_task_by_vpid(pid);
1607 1608 1609 1610 1611
		if (!tsk || tsk->flags & PF_EXITING) {
			rcu_read_unlock();
			return -ESRCH;
		}

1612 1613 1614 1615 1616
		tcred = __task_cred(tsk);
		if (cred->euid &&
		    cred->euid != tcred->uid &&
		    cred->euid != tcred->suid) {
			rcu_read_unlock();
1617 1618
			return -EACCES;
		}
1619 1620
		get_task_struct(tsk);
		rcu_read_unlock();
1621 1622 1623 1624 1625
	} else {
		tsk = current;
		get_task_struct(tsk);
	}

1626
	ret = cgroup_attach_task(cgrp, tsk);
1627 1628 1629 1630
	put_task_struct(tsk);
	return ret;
}

1631 1632 1633 1634 1635 1636 1637 1638 1639 1640
static int cgroup_tasks_write(struct cgroup *cgrp, struct cftype *cft, u64 pid)
{
	int ret;
	if (!cgroup_lock_live_group(cgrp))
		return -ENODEV;
	ret = attach_task_by_pid(cgrp, pid);
	cgroup_unlock();
	return ret;
}

1641 1642 1643 1644 1645
/* The various types of files and directories in a cgroup file system */
enum cgroup_filetype {
	FILE_ROOT,
	FILE_DIR,
	FILE_TASKLIST,
1646 1647
	FILE_NOTIFY_ON_RELEASE,
	FILE_RELEASE_AGENT,
1648 1649
};

1650 1651 1652 1653
/**
 * cgroup_lock_live_group - take cgroup_mutex and check that cgrp is alive.
 * @cgrp: the cgroup to be checked for liveness
 *
1654 1655
 * On success, returns true; the lock should be later released with
 * cgroup_unlock(). On failure returns false with no lock held.
1656
 */
1657
bool cgroup_lock_live_group(struct cgroup *cgrp)
1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673
{
	mutex_lock(&cgroup_mutex);
	if (cgroup_is_removed(cgrp)) {
		mutex_unlock(&cgroup_mutex);
		return false;
	}
	return true;
}

static int cgroup_release_agent_write(struct cgroup *cgrp, struct cftype *cft,
				      const char *buffer)
{
	BUILD_BUG_ON(sizeof(cgrp->root->release_agent_path) < PATH_MAX);
	if (!cgroup_lock_live_group(cgrp))
		return -ENODEV;
	strcpy(cgrp->root->release_agent_path, buffer);
1674
	cgroup_unlock();
1675 1676 1677 1678 1679 1680 1681 1682 1683 1684
	return 0;
}

static int cgroup_release_agent_show(struct cgroup *cgrp, struct cftype *cft,
				     struct seq_file *seq)
{
	if (!cgroup_lock_live_group(cgrp))
		return -ENODEV;
	seq_puts(seq, cgrp->root->release_agent_path);
	seq_putc(seq, '\n');
1685
	cgroup_unlock();
1686 1687 1688
	return 0;
}

1689 1690 1691
/* A buffer size big enough for numbers or short strings */
#define CGROUP_LOCAL_BUFFER_SIZE 64

1692
static ssize_t cgroup_write_X64(struct cgroup *cgrp, struct cftype *cft,
1693 1694 1695
				struct file *file,
				const char __user *userbuf,
				size_t nbytes, loff_t *unused_ppos)
1696
{
1697
	char buffer[CGROUP_LOCAL_BUFFER_SIZE];
1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708
	int retval = 0;
	char *end;

	if (!nbytes)
		return -EINVAL;
	if (nbytes >= sizeof(buffer))
		return -E2BIG;
	if (copy_from_user(buffer, userbuf, nbytes))
		return -EFAULT;

	buffer[nbytes] = 0;     /* nul-terminate */
1709
	strstrip(buffer);
1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720
	if (cft->write_u64) {
		u64 val = simple_strtoull(buffer, &end, 0);
		if (*end)
			return -EINVAL;
		retval = cft->write_u64(cgrp, cft, val);
	} else {
		s64 val = simple_strtoll(buffer, &end, 0);
		if (*end)
			return -EINVAL;
		retval = cft->write_s64(cgrp, cft, val);
	}
1721 1722 1723 1724 1725
	if (!retval)
		retval = nbytes;
	return retval;
}

1726 1727 1728 1729 1730
static ssize_t cgroup_write_string(struct cgroup *cgrp, struct cftype *cft,
				   struct file *file,
				   const char __user *userbuf,
				   size_t nbytes, loff_t *unused_ppos)
{
1731
	char local_buffer[CGROUP_LOCAL_BUFFER_SIZE];
1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745
	int retval = 0;
	size_t max_bytes = cft->max_write_len;
	char *buffer = local_buffer;

	if (!max_bytes)
		max_bytes = sizeof(local_buffer) - 1;
	if (nbytes >= max_bytes)
		return -E2BIG;
	/* Allocate a dynamic buffer if we need one */
	if (nbytes >= sizeof(local_buffer)) {
		buffer = kmalloc(nbytes + 1, GFP_KERNEL);
		if (buffer == NULL)
			return -ENOMEM;
	}
L
Li Zefan 已提交
1746 1747 1748 1749
	if (nbytes && copy_from_user(buffer, userbuf, nbytes)) {
		retval = -EFAULT;
		goto out;
	}
1750 1751 1752 1753 1754 1755

	buffer[nbytes] = 0;     /* nul-terminate */
	strstrip(buffer);
	retval = cft->write_string(cgrp, cft, buffer);
	if (!retval)
		retval = nbytes;
L
Li Zefan 已提交
1756
out:
1757 1758 1759 1760 1761
	if (buffer != local_buffer)
		kfree(buffer);
	return retval;
}

1762 1763 1764 1765
static ssize_t cgroup_file_write(struct file *file, const char __user *buf,
						size_t nbytes, loff_t *ppos)
{
	struct cftype *cft = __d_cft(file->f_dentry);
1766
	struct cgroup *cgrp = __d_cgrp(file->f_dentry->d_parent);
1767

1768
	if (cgroup_is_removed(cgrp))
1769
		return -ENODEV;
1770
	if (cft->write)
1771
		return cft->write(cgrp, cft, file, buf, nbytes, ppos);
1772 1773
	if (cft->write_u64 || cft->write_s64)
		return cgroup_write_X64(cgrp, cft, file, buf, nbytes, ppos);
1774 1775
	if (cft->write_string)
		return cgroup_write_string(cgrp, cft, file, buf, nbytes, ppos);
1776 1777 1778 1779
	if (cft->trigger) {
		int ret = cft->trigger(cgrp, (unsigned int)cft->private);
		return ret ? ret : nbytes;
	}
1780
	return -EINVAL;
1781 1782
}

1783 1784 1785 1786
static ssize_t cgroup_read_u64(struct cgroup *cgrp, struct cftype *cft,
			       struct file *file,
			       char __user *buf, size_t nbytes,
			       loff_t *ppos)
1787
{
1788
	char tmp[CGROUP_LOCAL_BUFFER_SIZE];
1789
	u64 val = cft->read_u64(cgrp, cft);
1790 1791 1792 1793 1794
	int len = sprintf(tmp, "%llu\n", (unsigned long long) val);

	return simple_read_from_buffer(buf, nbytes, ppos, tmp, len);
}

1795 1796 1797 1798 1799
static ssize_t cgroup_read_s64(struct cgroup *cgrp, struct cftype *cft,
			       struct file *file,
			       char __user *buf, size_t nbytes,
			       loff_t *ppos)
{
1800
	char tmp[CGROUP_LOCAL_BUFFER_SIZE];
1801 1802 1803 1804 1805 1806
	s64 val = cft->read_s64(cgrp, cft);
	int len = sprintf(tmp, "%lld\n", (long long) val);

	return simple_read_from_buffer(buf, nbytes, ppos, tmp, len);
}

1807 1808 1809 1810
static ssize_t cgroup_file_read(struct file *file, char __user *buf,
				   size_t nbytes, loff_t *ppos)
{
	struct cftype *cft = __d_cft(file->f_dentry);
1811
	struct cgroup *cgrp = __d_cgrp(file->f_dentry->d_parent);
1812

1813
	if (cgroup_is_removed(cgrp))
1814 1815 1816
		return -ENODEV;

	if (cft->read)
1817
		return cft->read(cgrp, cft, file, buf, nbytes, ppos);
1818 1819
	if (cft->read_u64)
		return cgroup_read_u64(cgrp, cft, file, buf, nbytes, ppos);
1820 1821
	if (cft->read_s64)
		return cgroup_read_s64(cgrp, cft, file, buf, nbytes, ppos);
1822 1823 1824
	return -EINVAL;
}

1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844
/*
 * seqfile ops/methods for returning structured data. Currently just
 * supports string->u64 maps, but can be extended in future.
 */

struct cgroup_seqfile_state {
	struct cftype *cft;
	struct cgroup *cgroup;
};

static int cgroup_map_add(struct cgroup_map_cb *cb, const char *key, u64 value)
{
	struct seq_file *sf = cb->state;
	return seq_printf(sf, "%s %llu\n", key, (unsigned long long)value);
}

static int cgroup_seqfile_show(struct seq_file *m, void *arg)
{
	struct cgroup_seqfile_state *state = m->private;
	struct cftype *cft = state->cft;
1845 1846 1847 1848 1849 1850 1851 1852
	if (cft->read_map) {
		struct cgroup_map_cb cb = {
			.fill = cgroup_map_add,
			.state = m,
		};
		return cft->read_map(state->cgroup, cft, &cb);
	}
	return cft->read_seq_string(state->cgroup, cft, m);
1853 1854
}

1855
static int cgroup_seqfile_release(struct inode *inode, struct file *file)
1856 1857 1858 1859 1860 1861 1862 1863
{
	struct seq_file *seq = file->private_data;
	kfree(seq->private);
	return single_release(inode, file);
}

static struct file_operations cgroup_seqfile_operations = {
	.read = seq_read,
1864
	.write = cgroup_file_write,
1865 1866 1867 1868
	.llseek = seq_lseek,
	.release = cgroup_seqfile_release,
};

1869 1870 1871 1872 1873 1874 1875 1876 1877
static int cgroup_file_open(struct inode *inode, struct file *file)
{
	int err;
	struct cftype *cft;

	err = generic_file_open(inode, file);
	if (err)
		return err;
	cft = __d_cft(file->f_dentry);
1878

1879
	if (cft->read_map || cft->read_seq_string) {
1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890
		struct cgroup_seqfile_state *state =
			kzalloc(sizeof(*state), GFP_USER);
		if (!state)
			return -ENOMEM;
		state->cft = cft;
		state->cgroup = __d_cgrp(file->f_dentry->d_parent);
		file->f_op = &cgroup_seqfile_operations;
		err = single_open(file, cgroup_seqfile_show, state);
		if (err < 0)
			kfree(state);
	} else if (cft->open)
1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928
		err = cft->open(inode, file);
	else
		err = 0;

	return err;
}

static int cgroup_file_release(struct inode *inode, struct file *file)
{
	struct cftype *cft = __d_cft(file->f_dentry);
	if (cft->release)
		return cft->release(inode, file);
	return 0;
}

/*
 * cgroup_rename - Only allow simple rename of directories in place.
 */
static int cgroup_rename(struct inode *old_dir, struct dentry *old_dentry,
			    struct inode *new_dir, struct dentry *new_dentry)
{
	if (!S_ISDIR(old_dentry->d_inode->i_mode))
		return -ENOTDIR;
	if (new_dentry->d_inode)
		return -EEXIST;
	if (old_dir != new_dir)
		return -EIO;
	return simple_rename(old_dir, old_dentry, new_dir, new_dentry);
}

static struct file_operations cgroup_file_operations = {
	.read = cgroup_file_read,
	.write = cgroup_file_write,
	.llseek = generic_file_llseek,
	.open = cgroup_file_open,
	.release = cgroup_file_release,
};

1929
static const struct inode_operations cgroup_dir_inode_operations = {
1930 1931 1932 1933 1934 1935
	.lookup = simple_lookup,
	.mkdir = cgroup_mkdir,
	.rmdir = cgroup_rmdir,
	.rename = cgroup_rename,
};

L
Li Zefan 已提交
1936
static int cgroup_create_file(struct dentry *dentry, mode_t mode,
1937 1938
				struct super_block *sb)
{
A
Al Viro 已提交
1939
	static const struct dentry_operations cgroup_dops = {
1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962
		.d_iput = cgroup_diput,
	};

	struct inode *inode;

	if (!dentry)
		return -ENOENT;
	if (dentry->d_inode)
		return -EEXIST;

	inode = cgroup_new_inode(mode, sb);
	if (!inode)
		return -ENOMEM;

	if (S_ISDIR(mode)) {
		inode->i_op = &cgroup_dir_inode_operations;
		inode->i_fop = &simple_dir_operations;

		/* start off with i_nlink == 2 (for "." entry) */
		inc_nlink(inode);

		/* start with the directory inode held, so that we can
		 * populate it without racing with another mkdir */
1963
		mutex_lock_nested(&inode->i_mutex, I_MUTEX_CHILD);
1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974
	} else if (S_ISREG(mode)) {
		inode->i_size = 0;
		inode->i_fop = &cgroup_file_operations;
	}
	dentry->d_op = &cgroup_dops;
	d_instantiate(dentry, inode);
	dget(dentry);	/* Extra count - pin the dentry in core */
	return 0;
}

/*
L
Li Zefan 已提交
1975 1976 1977 1978 1979
 * cgroup_create_dir - create a directory for an object.
 * @cgrp: the cgroup we create the directory for. It must have a valid
 *        ->parent field. And we are going to fill its ->dentry field.
 * @dentry: dentry of the new cgroup
 * @mode: mode to set on new directory.
1980
 */
1981
static int cgroup_create_dir(struct cgroup *cgrp, struct dentry *dentry,
L
Li Zefan 已提交
1982
				mode_t mode)
1983 1984 1985 1986
{
	struct dentry *parent;
	int error = 0;

1987 1988
	parent = cgrp->parent->dentry;
	error = cgroup_create_file(dentry, S_IFDIR | mode, cgrp->root->sb);
1989
	if (!error) {
1990
		dentry->d_fsdata = cgrp;
1991
		inc_nlink(parent->d_inode);
1992
		rcu_assign_pointer(cgrp->dentry, dentry);
1993 1994 1995 1996 1997 1998 1999
		dget(dentry);
	}
	dput(dentry);

	return error;
}

L
Li Zefan 已提交
2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026
/**
 * cgroup_file_mode - deduce file mode of a control file
 * @cft: the control file in question
 *
 * returns cft->mode if ->mode is not 0
 * returns S_IRUGO|S_IWUSR if it has both a read and a write handler
 * returns S_IRUGO if it has only a read handler
 * returns S_IWUSR if it has only a write hander
 */
static mode_t cgroup_file_mode(const struct cftype *cft)
{
	mode_t mode = 0;

	if (cft->mode)
		return cft->mode;

	if (cft->read || cft->read_u64 || cft->read_s64 ||
	    cft->read_map || cft->read_seq_string)
		mode |= S_IRUGO;

	if (cft->write || cft->write_u64 || cft->write_s64 ||
	    cft->write_string || cft->trigger)
		mode |= S_IWUSR;

	return mode;
}

2027
int cgroup_add_file(struct cgroup *cgrp,
2028 2029 2030
		       struct cgroup_subsys *subsys,
		       const struct cftype *cft)
{
2031
	struct dentry *dir = cgrp->dentry;
2032 2033
	struct dentry *dentry;
	int error;
L
Li Zefan 已提交
2034
	mode_t mode;
2035 2036

	char name[MAX_CGROUP_TYPE_NAMELEN + MAX_CFTYPE_NAME + 2] = { 0 };
2037
	if (subsys && !test_bit(ROOT_NOPREFIX, &cgrp->root->flags)) {
2038 2039 2040 2041 2042 2043 2044
		strcpy(name, subsys->name);
		strcat(name, ".");
	}
	strcat(name, cft->name);
	BUG_ON(!mutex_is_locked(&dir->d_inode->i_mutex));
	dentry = lookup_one_len(name, dir, strlen(name));
	if (!IS_ERR(dentry)) {
L
Li Zefan 已提交
2045 2046
		mode = cgroup_file_mode(cft);
		error = cgroup_create_file(dentry, mode | S_IFREG,
2047
						cgrp->root->sb);
2048 2049 2050 2051 2052 2053 2054 2055
		if (!error)
			dentry->d_fsdata = (void *)cft;
		dput(dentry);
	} else
		error = PTR_ERR(dentry);
	return error;
}

2056
int cgroup_add_files(struct cgroup *cgrp,
2057 2058 2059 2060 2061 2062
			struct cgroup_subsys *subsys,
			const struct cftype cft[],
			int count)
{
	int i, err;
	for (i = 0; i < count; i++) {
2063
		err = cgroup_add_file(cgrp, subsys, &cft[i]);
2064 2065 2066 2067 2068 2069
		if (err)
			return err;
	}
	return 0;
}

L
Li Zefan 已提交
2070 2071 2072 2073 2074 2075
/**
 * cgroup_task_count - count the number of tasks in a cgroup.
 * @cgrp: the cgroup in question
 *
 * Return the number of tasks in the cgroup.
 */
2076
int cgroup_task_count(const struct cgroup *cgrp)
2077 2078
{
	int count = 0;
K
KOSAKI Motohiro 已提交
2079
	struct cg_cgroup_link *link;
2080 2081

	read_lock(&css_set_lock);
K
KOSAKI Motohiro 已提交
2082
	list_for_each_entry(link, &cgrp->css_sets, cgrp_link_list) {
2083
		count += atomic_read(&link->cg->refcount);
2084 2085
	}
	read_unlock(&css_set_lock);
2086 2087 2088
	return count;
}

2089 2090 2091 2092
/*
 * Advance a list_head iterator.  The iterator should be positioned at
 * the start of a css_set
 */
2093
static void cgroup_advance_iter(struct cgroup *cgrp,
2094
				struct cgroup_iter *it)
2095 2096 2097 2098 2099 2100 2101 2102
{
	struct list_head *l = it->cg_link;
	struct cg_cgroup_link *link;
	struct css_set *cg;

	/* Advance to the next non-empty css_set */
	do {
		l = l->next;
2103
		if (l == &cgrp->css_sets) {
2104 2105 2106
			it->cg_link = NULL;
			return;
		}
2107
		link = list_entry(l, struct cg_cgroup_link, cgrp_link_list);
2108 2109 2110 2111 2112 2113
		cg = link->cg;
	} while (list_empty(&cg->tasks));
	it->cg_link = l;
	it->task = cg->tasks.next;
}

2114 2115 2116 2117 2118 2119 2120 2121 2122
/*
 * To reduce the fork() overhead for systems that are not actually
 * using their cgroups capability, we don't maintain the lists running
 * through each css_set to its tasks until we see the list actually
 * used - in other words after the first call to cgroup_iter_start().
 *
 * The tasklist_lock is not held here, as do_each_thread() and
 * while_each_thread() are protected by RCU.
 */
2123
static void cgroup_enable_task_cg_lists(void)
2124 2125 2126 2127 2128 2129
{
	struct task_struct *p, *g;
	write_lock(&css_set_lock);
	use_task_css_set_links = 1;
	do_each_thread(g, p) {
		task_lock(p);
2130 2131 2132 2133 2134 2135
		/*
		 * We should check if the process is exiting, otherwise
		 * it will race with cgroup_exit() in that the list
		 * entry won't be deleted though the process has exited.
		 */
		if (!(p->flags & PF_EXITING) && list_empty(&p->cg_list))
2136 2137 2138 2139 2140 2141
			list_add(&p->cg_list, &p->cgroups->tasks);
		task_unlock(p);
	} while_each_thread(g, p);
	write_unlock(&css_set_lock);
}

2142
void cgroup_iter_start(struct cgroup *cgrp, struct cgroup_iter *it)
2143 2144 2145 2146 2147 2148
{
	/*
	 * The first time anyone tries to iterate across a cgroup,
	 * we need to enable the list linking each css_set to its
	 * tasks, and fix up all existing tasks.
	 */
2149 2150 2151
	if (!use_task_css_set_links)
		cgroup_enable_task_cg_lists();

2152
	read_lock(&css_set_lock);
2153 2154
	it->cg_link = &cgrp->css_sets;
	cgroup_advance_iter(cgrp, it);
2155 2156
}

2157
struct task_struct *cgroup_iter_next(struct cgroup *cgrp,
2158 2159 2160 2161
					struct cgroup_iter *it)
{
	struct task_struct *res;
	struct list_head *l = it->task;
2162
	struct cg_cgroup_link *link;
2163 2164 2165 2166 2167 2168 2169

	/* If the iterator cg is NULL, we have no tasks */
	if (!it->cg_link)
		return NULL;
	res = list_entry(l, struct task_struct, cg_list);
	/* Advance iterator to find next entry */
	l = l->next;
2170 2171
	link = list_entry(it->cg_link, struct cg_cgroup_link, cgrp_link_list);
	if (l == &link->cg->tasks) {
2172 2173
		/* We reached the end of this task list - move on to
		 * the next cg_cgroup_link */
2174
		cgroup_advance_iter(cgrp, it);
2175 2176 2177 2178 2179 2180
	} else {
		it->task = l;
	}
	return res;
}

2181
void cgroup_iter_end(struct cgroup *cgrp, struct cgroup_iter *it)
2182 2183 2184 2185
{
	read_unlock(&css_set_lock);
}

2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322
static inline int started_after_time(struct task_struct *t1,
				     struct timespec *time,
				     struct task_struct *t2)
{
	int start_diff = timespec_compare(&t1->start_time, time);
	if (start_diff > 0) {
		return 1;
	} else if (start_diff < 0) {
		return 0;
	} else {
		/*
		 * Arbitrarily, if two processes started at the same
		 * time, we'll say that the lower pointer value
		 * started first. Note that t2 may have exited by now
		 * so this may not be a valid pointer any longer, but
		 * that's fine - it still serves to distinguish
		 * between two tasks started (effectively) simultaneously.
		 */
		return t1 > t2;
	}
}

/*
 * This function is a callback from heap_insert() and is used to order
 * the heap.
 * In this case we order the heap in descending task start time.
 */
static inline int started_after(void *p1, void *p2)
{
	struct task_struct *t1 = p1;
	struct task_struct *t2 = p2;
	return started_after_time(t1, &t2->start_time, t2);
}

/**
 * cgroup_scan_tasks - iterate though all the tasks in a cgroup
 * @scan: struct cgroup_scanner containing arguments for the scan
 *
 * Arguments include pointers to callback functions test_task() and
 * process_task().
 * Iterate through all the tasks in a cgroup, calling test_task() for each,
 * and if it returns true, call process_task() for it also.
 * The test_task pointer may be NULL, meaning always true (select all tasks).
 * Effectively duplicates cgroup_iter_{start,next,end}()
 * but does not lock css_set_lock for the call to process_task().
 * The struct cgroup_scanner may be embedded in any structure of the caller's
 * creation.
 * It is guaranteed that process_task() will act on every task that
 * is a member of the cgroup for the duration of this call. This
 * function may or may not call process_task() for tasks that exit
 * or move to a different cgroup during the call, or are forked or
 * move into the cgroup during the call.
 *
 * Note that test_task() may be called with locks held, and may in some
 * situations be called multiple times for the same task, so it should
 * be cheap.
 * If the heap pointer in the struct cgroup_scanner is non-NULL, a heap has been
 * pre-allocated and will be used for heap operations (and its "gt" member will
 * be overwritten), else a temporary heap will be used (allocation of which
 * may cause this function to fail).
 */
int cgroup_scan_tasks(struct cgroup_scanner *scan)
{
	int retval, i;
	struct cgroup_iter it;
	struct task_struct *p, *dropped;
	/* Never dereference latest_task, since it's not refcounted */
	struct task_struct *latest_task = NULL;
	struct ptr_heap tmp_heap;
	struct ptr_heap *heap;
	struct timespec latest_time = { 0, 0 };

	if (scan->heap) {
		/* The caller supplied our heap and pre-allocated its memory */
		heap = scan->heap;
		heap->gt = &started_after;
	} else {
		/* We need to allocate our own heap memory */
		heap = &tmp_heap;
		retval = heap_init(heap, PAGE_SIZE, GFP_KERNEL, &started_after);
		if (retval)
			/* cannot allocate the heap */
			return retval;
	}

 again:
	/*
	 * Scan tasks in the cgroup, using the scanner's "test_task" callback
	 * to determine which are of interest, and using the scanner's
	 * "process_task" callback to process any of them that need an update.
	 * Since we don't want to hold any locks during the task updates,
	 * gather tasks to be processed in a heap structure.
	 * The heap is sorted by descending task start time.
	 * If the statically-sized heap fills up, we overflow tasks that
	 * started later, and in future iterations only consider tasks that
	 * started after the latest task in the previous pass. This
	 * guarantees forward progress and that we don't miss any tasks.
	 */
	heap->size = 0;
	cgroup_iter_start(scan->cg, &it);
	while ((p = cgroup_iter_next(scan->cg, &it))) {
		/*
		 * Only affect tasks that qualify per the caller's callback,
		 * if he provided one
		 */
		if (scan->test_task && !scan->test_task(p, scan))
			continue;
		/*
		 * Only process tasks that started after the last task
		 * we processed
		 */
		if (!started_after_time(p, &latest_time, latest_task))
			continue;
		dropped = heap_insert(heap, p);
		if (dropped == NULL) {
			/*
			 * The new task was inserted; the heap wasn't
			 * previously full
			 */
			get_task_struct(p);
		} else if (dropped != p) {
			/*
			 * The new task was inserted, and pushed out a
			 * different task
			 */
			get_task_struct(p);
			put_task_struct(dropped);
		}
		/*
		 * Else the new task was newer than anything already in
		 * the heap and wasn't inserted
		 */
	}
	cgroup_iter_end(scan->cg, &it);

	if (heap->size) {
		for (i = 0; i < heap->size; i++) {
2323
			struct task_struct *q = heap->ptrs[i];
2324
			if (i == 0) {
2325 2326
				latest_time = q->start_time;
				latest_task = q;
2327 2328
			}
			/* Process the task per the caller's callback */
2329 2330
			scan->process_task(q, scan);
			put_task_struct(q);
2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345
		}
		/*
		 * If we had to process any tasks at all, scan again
		 * in case some of them were in the middle of forking
		 * children that didn't get processed.
		 * Not the most efficient way to do it, but it avoids
		 * having to take callback_mutex in the fork path
		 */
		goto again;
	}
	if (heap == &tmp_heap)
		heap_free(&tmp_heap);
	return 0;
}

2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357
/*
 * Stuff for reading the 'tasks' file.
 *
 * Reading this file can return large amounts of data if a cgroup has
 * *lots* of attached tasks. So it may need several calls to read(),
 * but we cannot guarantee that the information we produce is correct
 * unless we produce it entirely atomically.
 *
 */

/*
 * Load into 'pidarray' up to 'npids' of the tasks using cgroup
2358
 * 'cgrp'.  Return actual number of pids loaded.  No need to
2359 2360 2361 2362
 * task_lock(p) when reading out p->cgroup, since we're in an RCU
 * read section, so the css_set can't go away, and is
 * immutable after creation.
 */
2363
static int pid_array_load(pid_t *pidarray, int npids, struct cgroup *cgrp)
2364
{
2365
	int n = 0, pid;
2366 2367
	struct cgroup_iter it;
	struct task_struct *tsk;
2368 2369
	cgroup_iter_start(cgrp, &it);
	while ((tsk = cgroup_iter_next(cgrp, &it))) {
2370 2371
		if (unlikely(n == npids))
			break;
2372 2373 2374
		pid = task_pid_vnr(tsk);
		if (pid > 0)
			pidarray[n++] = pid;
2375
	}
2376
	cgroup_iter_end(cgrp, &it);
2377 2378 2379
	return n;
}

B
Balbir Singh 已提交
2380
/**
L
Li Zefan 已提交
2381
 * cgroupstats_build - build and fill cgroupstats
B
Balbir Singh 已提交
2382 2383 2384
 * @stats: cgroupstats to fill information into
 * @dentry: A dentry entry belonging to the cgroup for which stats have
 * been requested.
L
Li Zefan 已提交
2385 2386 2387
 *
 * Build and fill cgroupstats so that taskstats can export it to user
 * space.
B
Balbir Singh 已提交
2388 2389 2390 2391
 */
int cgroupstats_build(struct cgroupstats *stats, struct dentry *dentry)
{
	int ret = -EINVAL;
2392
	struct cgroup *cgrp;
B
Balbir Singh 已提交
2393 2394
	struct cgroup_iter it;
	struct task_struct *tsk;
2395

B
Balbir Singh 已提交
2396
	/*
2397 2398
	 * Validate dentry by checking the superblock operations,
	 * and make sure it's a directory.
B
Balbir Singh 已提交
2399
	 */
2400 2401
	if (dentry->d_sb->s_op != &cgroup_ops ||
	    !S_ISDIR(dentry->d_inode->i_mode))
B
Balbir Singh 已提交
2402 2403 2404
		 goto err;

	ret = 0;
2405
	cgrp = dentry->d_fsdata;
B
Balbir Singh 已提交
2406

2407 2408
	cgroup_iter_start(cgrp, &it);
	while ((tsk = cgroup_iter_next(cgrp, &it))) {
B
Balbir Singh 已提交
2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427
		switch (tsk->state) {
		case TASK_RUNNING:
			stats->nr_running++;
			break;
		case TASK_INTERRUPTIBLE:
			stats->nr_sleeping++;
			break;
		case TASK_UNINTERRUPTIBLE:
			stats->nr_uninterruptible++;
			break;
		case TASK_STOPPED:
			stats->nr_stopped++;
			break;
		default:
			if (delayacct_is_task_waiting_on_io(tsk))
				stats->nr_io_wait++;
			break;
		}
	}
2428
	cgroup_iter_end(cgrp, &it);
B
Balbir Singh 已提交
2429 2430 2431 2432 2433

err:
	return ret;
}

L
Li Zefan 已提交
2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452
/*
 * Cache pids for all threads in the same pid namespace that are
 * opening the same "tasks" file.
 */
struct cgroup_pids {
	/* The node in cgrp->pids_list */
	struct list_head list;
	/* The cgroup those pids belong to */
	struct cgroup *cgrp;
	/* The namepsace those pids belong to */
	struct pid_namespace *ns;
	/* Array of process ids in the cgroup */
	pid_t *tasks_pids;
	/* How many files are using the this tasks_pids array */
	int use_count;
	/* Length of the current tasks_pids array */
	int length;
};

2453 2454 2455 2456 2457 2458
static int cmppid(const void *a, const void *b)
{
	return *(pid_t *)a - *(pid_t *)b;
}

/*
2459 2460 2461
 * seq_file methods for the "tasks" file. The seq_file position is the
 * next pid to display; the seq_file iterator is a pointer to the pid
 * in the cgroup->tasks_pids array.
2462
 */
2463 2464

static void *cgroup_tasks_start(struct seq_file *s, loff_t *pos)
2465
{
2466 2467 2468 2469 2470 2471
	/*
	 * Initially we receive a position value that corresponds to
	 * one more than the last pid shown (or 0 on the first call or
	 * after a seek to the start). Use a binary-search to find the
	 * next pid to display, if any
	 */
L
Li Zefan 已提交
2472 2473
	struct cgroup_pids *cp = s->private;
	struct cgroup *cgrp = cp->cgrp;
2474 2475 2476 2477 2478
	int index = 0, pid = *pos;
	int *iter;

	down_read(&cgrp->pids_mutex);
	if (pid) {
L
Li Zefan 已提交
2479
		int end = cp->length;
S
Stephen Rothwell 已提交
2480

2481 2482
		while (index < end) {
			int mid = (index + end) / 2;
L
Li Zefan 已提交
2483
			if (cp->tasks_pids[mid] == pid) {
2484 2485
				index = mid;
				break;
L
Li Zefan 已提交
2486
			} else if (cp->tasks_pids[mid] <= pid)
2487 2488 2489 2490 2491 2492
				index = mid + 1;
			else
				end = mid;
		}
	}
	/* If we're off the end of the array, we're done */
L
Li Zefan 已提交
2493
	if (index >= cp->length)
2494 2495
		return NULL;
	/* Update the abstract position to be the actual pid that we found */
L
Li Zefan 已提交
2496
	iter = cp->tasks_pids + index;
2497 2498 2499 2500 2501 2502
	*pos = *iter;
	return iter;
}

static void cgroup_tasks_stop(struct seq_file *s, void *v)
{
L
Li Zefan 已提交
2503 2504
	struct cgroup_pids *cp = s->private;
	struct cgroup *cgrp = cp->cgrp;
2505 2506 2507 2508 2509
	up_read(&cgrp->pids_mutex);
}

static void *cgroup_tasks_next(struct seq_file *s, void *v, loff_t *pos)
{
L
Li Zefan 已提交
2510
	struct cgroup_pids *cp = s->private;
2511
	int *p = v;
L
Li Zefan 已提交
2512
	int *end = cp->tasks_pids + cp->length;
2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530

	/*
	 * Advance to the next pid in the array. If this goes off the
	 * end, we're done
	 */
	p++;
	if (p >= end) {
		return NULL;
	} else {
		*pos = *p;
		return p;
	}
}

static int cgroup_tasks_show(struct seq_file *s, void *v)
{
	return seq_printf(s, "%d\n", *(int *)v);
}
2531

J
James Morris 已提交
2532
static const struct seq_operations cgroup_tasks_seq_operations = {
2533 2534 2535 2536 2537 2538
	.start = cgroup_tasks_start,
	.stop = cgroup_tasks_stop,
	.next = cgroup_tasks_next,
	.show = cgroup_tasks_show,
};

L
Li Zefan 已提交
2539
static void release_cgroup_pid_array(struct cgroup_pids *cp)
2540
{
L
Li Zefan 已提交
2541 2542
	struct cgroup *cgrp = cp->cgrp;

2543
	down_write(&cgrp->pids_mutex);
L
Li Zefan 已提交
2544 2545 2546 2547 2548 2549
	BUG_ON(!cp->use_count);
	if (!--cp->use_count) {
		list_del(&cp->list);
		put_pid_ns(cp->ns);
		kfree(cp->tasks_pids);
		kfree(cp);
2550 2551
	}
	up_write(&cgrp->pids_mutex);
2552 2553
}

2554 2555
static int cgroup_tasks_release(struct inode *inode, struct file *file)
{
L
Li Zefan 已提交
2556 2557
	struct seq_file *seq;
	struct cgroup_pids *cp;
2558 2559 2560 2561

	if (!(file->f_mode & FMODE_READ))
		return 0;

L
Li Zefan 已提交
2562 2563 2564 2565
	seq = file->private_data;
	cp = seq->private;

	release_cgroup_pid_array(cp);
2566 2567 2568 2569 2570 2571 2572 2573 2574 2575
	return seq_release(inode, file);
}

static struct file_operations cgroup_tasks_operations = {
	.read = seq_read,
	.llseek = seq_lseek,
	.write = cgroup_file_write,
	.release = cgroup_tasks_release,
};

2576
/*
2577
 * Handle an open on 'tasks' file.  Prepare an array containing the
2578 2579
 * process id's of tasks currently attached to the cgroup being opened.
 */
2580

2581 2582
static int cgroup_tasks_open(struct inode *unused, struct file *file)
{
2583
	struct cgroup *cgrp = __d_cgrp(file->f_dentry->d_parent);
L
Li Zefan 已提交
2584 2585
	struct pid_namespace *ns = current->nsproxy->pid_ns;
	struct cgroup_pids *cp;
2586 2587
	pid_t *pidarray;
	int npids;
2588
	int retval;
2589

2590
	/* Nothing to do for write-only files */
2591 2592 2593 2594 2595 2596 2597 2598 2599
	if (!(file->f_mode & FMODE_READ))
		return 0;

	/*
	 * If cgroup gets more users after we read count, we won't have
	 * enough space - tough.  This race is indistinguishable to the
	 * caller from the case that the additional cgroup users didn't
	 * show up until sometime later on.
	 */
2600
	npids = cgroup_task_count(cgrp);
2601 2602 2603 2604 2605
	pidarray = kmalloc(npids * sizeof(pid_t), GFP_KERNEL);
	if (!pidarray)
		return -ENOMEM;
	npids = pid_array_load(pidarray, npids, cgrp);
	sort(pidarray, npids, sizeof(pid_t), cmppid, NULL);
2606

2607 2608 2609 2610 2611
	/*
	 * Store the array in the cgroup, freeing the old
	 * array if necessary
	 */
	down_write(&cgrp->pids_mutex);
L
Li Zefan 已提交
2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632

	list_for_each_entry(cp, &cgrp->pids_list, list) {
		if (ns == cp->ns)
			goto found;
	}

	cp = kzalloc(sizeof(*cp), GFP_KERNEL);
	if (!cp) {
		up_write(&cgrp->pids_mutex);
		kfree(pidarray);
		return -ENOMEM;
	}
	cp->cgrp = cgrp;
	cp->ns = ns;
	get_pid_ns(ns);
	list_add(&cp->list, &cgrp->pids_list);
found:
	kfree(cp->tasks_pids);
	cp->tasks_pids = pidarray;
	cp->length = npids;
	cp->use_count++;
2633 2634 2635 2636 2637 2638
	up_write(&cgrp->pids_mutex);

	file->f_op = &cgroup_tasks_operations;

	retval = seq_open(file, &cgroup_tasks_seq_operations);
	if (retval) {
L
Li Zefan 已提交
2639
		release_cgroup_pid_array(cp);
2640
		return retval;
2641
	}
L
Li Zefan 已提交
2642
	((struct seq_file *)file->private_data)->private = cp;
2643 2644 2645
	return 0;
}

2646
static u64 cgroup_read_notify_on_release(struct cgroup *cgrp,
2647 2648
					    struct cftype *cft)
{
2649
	return notify_on_release(cgrp);
2650 2651
}

2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663
static int cgroup_write_notify_on_release(struct cgroup *cgrp,
					  struct cftype *cft,
					  u64 val)
{
	clear_bit(CGRP_RELEASABLE, &cgrp->flags);
	if (val)
		set_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
	else
		clear_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
	return 0;
}

2664 2665 2666
/*
 * for the common functions, 'private' gives the type of file
 */
2667 2668 2669 2670
static struct cftype files[] = {
	{
		.name = "tasks",
		.open = cgroup_tasks_open,
2671
		.write_u64 = cgroup_tasks_write,
2672 2673
		.release = cgroup_tasks_release,
		.private = FILE_TASKLIST,
L
Li Zefan 已提交
2674
		.mode = S_IRUGO | S_IWUSR,
2675 2676 2677 2678
	},

	{
		.name = "notify_on_release",
2679
		.read_u64 = cgroup_read_notify_on_release,
2680
		.write_u64 = cgroup_write_notify_on_release,
2681 2682 2683 2684 2685 2686
		.private = FILE_NOTIFY_ON_RELEASE,
	},
};

static struct cftype cft_release_agent = {
	.name = "release_agent",
2687 2688 2689
	.read_seq_string = cgroup_release_agent_show,
	.write_string = cgroup_release_agent_write,
	.max_write_len = PATH_MAX,
2690
	.private = FILE_RELEASE_AGENT,
2691 2692
};

2693
static int cgroup_populate_dir(struct cgroup *cgrp)
2694 2695 2696 2697 2698
{
	int err;
	struct cgroup_subsys *ss;

	/* First clear out any existing files */
2699
	cgroup_clear_directory(cgrp->dentry);
2700

2701
	err = cgroup_add_files(cgrp, NULL, files, ARRAY_SIZE(files));
2702 2703 2704
	if (err < 0)
		return err;

2705 2706
	if (cgrp == cgrp->top_cgroup) {
		if ((err = cgroup_add_file(cgrp, NULL, &cft_release_agent)) < 0)
2707 2708 2709
			return err;
	}

2710 2711
	for_each_subsys(cgrp->root, ss) {
		if (ss->populate && (err = ss->populate(ss, cgrp)) < 0)
2712 2713
			return err;
	}
K
KAMEZAWA Hiroyuki 已提交
2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724
	/* This cgroup is ready now */
	for_each_subsys(cgrp->root, ss) {
		struct cgroup_subsys_state *css = cgrp->subsys[ss->subsys_id];
		/*
		 * Update id->css pointer and make this css visible from
		 * CSS ID functions. This pointer will be dereferened
		 * from RCU-read-side without locks.
		 */
		if (css->id)
			rcu_assign_pointer(css->id->css, css);
	}
2725 2726 2727 2728 2729 2730

	return 0;
}

static void init_cgroup_css(struct cgroup_subsys_state *css,
			       struct cgroup_subsys *ss,
2731
			       struct cgroup *cgrp)
2732
{
2733
	css->cgroup = cgrp;
P
Paul Menage 已提交
2734
	atomic_set(&css->refcnt, 1);
2735
	css->flags = 0;
K
KAMEZAWA Hiroyuki 已提交
2736
	css->id = NULL;
2737
	if (cgrp == dummytop)
2738
		set_bit(CSS_ROOT, &css->flags);
2739 2740
	BUG_ON(cgrp->subsys[ss->subsys_id]);
	cgrp->subsys[ss->subsys_id] = css;
2741 2742
}

2743 2744 2745 2746 2747 2748 2749 2750
static void cgroup_lock_hierarchy(struct cgroupfs_root *root)
{
	/* We need to take each hierarchy_mutex in a consistent order */
	int i;

	for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
		struct cgroup_subsys *ss = subsys[i];
		if (ss->root == root)
2751
			mutex_lock(&ss->hierarchy_mutex);
2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765
	}
}

static void cgroup_unlock_hierarchy(struct cgroupfs_root *root)
{
	int i;

	for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
		struct cgroup_subsys *ss = subsys[i];
		if (ss->root == root)
			mutex_unlock(&ss->hierarchy_mutex);
	}
}

2766
/*
L
Li Zefan 已提交
2767 2768 2769 2770
 * cgroup_create - create a cgroup
 * @parent: cgroup that will be parent of the new cgroup
 * @dentry: dentry of the new cgroup
 * @mode: mode to set on new inode
2771
 *
L
Li Zefan 已提交
2772
 * Must be called with the mutex on the parent inode held
2773 2774
 */
static long cgroup_create(struct cgroup *parent, struct dentry *dentry,
L
Li Zefan 已提交
2775
			     mode_t mode)
2776
{
2777
	struct cgroup *cgrp;
2778 2779 2780 2781 2782
	struct cgroupfs_root *root = parent->root;
	int err = 0;
	struct cgroup_subsys *ss;
	struct super_block *sb = root->sb;

2783 2784
	cgrp = kzalloc(sizeof(*cgrp), GFP_KERNEL);
	if (!cgrp)
2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795
		return -ENOMEM;

	/* Grab a reference on the superblock so the hierarchy doesn't
	 * get deleted on unmount if there are child cgroups.  This
	 * can be done outside cgroup_mutex, since the sb can't
	 * disappear while someone has an open control file on the
	 * fs */
	atomic_inc(&sb->s_active);

	mutex_lock(&cgroup_mutex);

2796
	init_cgroup_housekeeping(cgrp);
2797

2798 2799 2800
	cgrp->parent = parent;
	cgrp->root = parent->root;
	cgrp->top_cgroup = parent->top_cgroup;
2801

2802 2803 2804
	if (notify_on_release(parent))
		set_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);

2805
	for_each_subsys(root, ss) {
2806
		struct cgroup_subsys_state *css = ss->create(ss, cgrp);
2807 2808 2809 2810
		if (IS_ERR(css)) {
			err = PTR_ERR(css);
			goto err_destroy;
		}
2811
		init_cgroup_css(css, ss, cgrp);
K
KAMEZAWA Hiroyuki 已提交
2812 2813 2814 2815
		if (ss->use_id)
			if (alloc_css_id(ss, parent, cgrp))
				goto err_destroy;
		/* At error, ->destroy() callback has to free assigned ID. */
2816 2817
	}

2818
	cgroup_lock_hierarchy(root);
2819
	list_add(&cgrp->sibling, &cgrp->parent->children);
2820
	cgroup_unlock_hierarchy(root);
2821 2822
	root->number_of_cgroups++;

2823
	err = cgroup_create_dir(cgrp, dentry, mode);
2824 2825 2826 2827
	if (err < 0)
		goto err_remove;

	/* The cgroup directory was pre-locked for us */
2828
	BUG_ON(!mutex_is_locked(&cgrp->dentry->d_inode->i_mutex));
2829

2830
	err = cgroup_populate_dir(cgrp);
2831 2832 2833
	/* If err < 0, we have a half-filled directory - oh well ;) */

	mutex_unlock(&cgroup_mutex);
2834
	mutex_unlock(&cgrp->dentry->d_inode->i_mutex);
2835 2836 2837 2838 2839

	return 0;

 err_remove:

2840
	cgroup_lock_hierarchy(root);
2841
	list_del(&cgrp->sibling);
2842
	cgroup_unlock_hierarchy(root);
2843 2844 2845 2846 2847
	root->number_of_cgroups--;

 err_destroy:

	for_each_subsys(root, ss) {
2848 2849
		if (cgrp->subsys[ss->subsys_id])
			ss->destroy(ss, cgrp);
2850 2851 2852 2853 2854 2855 2856
	}

	mutex_unlock(&cgroup_mutex);

	/* Release the reference count that we took on the superblock */
	deactivate_super(sb);

2857
	kfree(cgrp);
2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868
	return err;
}

static int cgroup_mkdir(struct inode *dir, struct dentry *dentry, int mode)
{
	struct cgroup *c_parent = dentry->d_parent->d_fsdata;

	/* the vfs holds inode->i_mutex already */
	return cgroup_create(c_parent, dentry, mode | S_IFDIR);
}

2869
static int cgroup_has_css_refs(struct cgroup *cgrp)
2870 2871 2872
{
	/* Check the reference count on each subsystem. Since we
	 * already established that there are no tasks in the
P
Paul Menage 已提交
2873
	 * cgroup, if the css refcount is also 1, then there should
2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884
	 * be no outstanding references, so the subsystem is safe to
	 * destroy. We scan across all subsystems rather than using
	 * the per-hierarchy linked list of mounted subsystems since
	 * we can be called via check_for_release() with no
	 * synchronization other than RCU, and the subsystem linked
	 * list isn't RCU-safe */
	int i;
	for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
		struct cgroup_subsys *ss = subsys[i];
		struct cgroup_subsys_state *css;
		/* Skip subsystems not in this hierarchy */
2885
		if (ss->root != cgrp->root)
2886
			continue;
2887
		css = cgrp->subsys[ss->subsys_id];
2888 2889 2890 2891 2892 2893
		/* When called from check_for_release() it's possible
		 * that by this point the cgroup has been removed
		 * and the css deleted. But a false-positive doesn't
		 * matter, since it can only happen if the cgroup
		 * has been deleted and hence no longer needs the
		 * release agent to be called anyway. */
P
Paul Menage 已提交
2894
		if (css && (atomic_read(&css->refcnt) > 1))
2895 2896 2897 2898 2899
			return 1;
	}
	return 0;
}

P
Paul Menage 已提交
2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914
/*
 * Atomically mark all (or else none) of the cgroup's CSS objects as
 * CSS_REMOVED. Return true on success, or false if the cgroup has
 * busy subsystems. Call with cgroup_mutex held
 */

static int cgroup_clear_css_refs(struct cgroup *cgrp)
{
	struct cgroup_subsys *ss;
	unsigned long flags;
	bool failed = false;
	local_irq_save(flags);
	for_each_subsys(cgrp->root, ss) {
		struct cgroup_subsys_state *css = cgrp->subsys[ss->subsys_id];
		int refcnt;
2915
		while (1) {
P
Paul Menage 已提交
2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928
			/* We can only remove a CSS with a refcnt==1 */
			refcnt = atomic_read(&css->refcnt);
			if (refcnt > 1) {
				failed = true;
				goto done;
			}
			BUG_ON(!refcnt);
			/*
			 * Drop the refcnt to 0 while we check other
			 * subsystems. This will cause any racing
			 * css_tryget() to spin until we set the
			 * CSS_REMOVED bits or abort
			 */
2929 2930 2931 2932
			if (atomic_cmpxchg(&css->refcnt, refcnt, 0) == refcnt)
				break;
			cpu_relax();
		}
P
Paul Menage 已提交
2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952
	}
 done:
	for_each_subsys(cgrp->root, ss) {
		struct cgroup_subsys_state *css = cgrp->subsys[ss->subsys_id];
		if (failed) {
			/*
			 * Restore old refcnt if we previously managed
			 * to clear it from 1 to 0
			 */
			if (!atomic_read(&css->refcnt))
				atomic_set(&css->refcnt, 1);
		} else {
			/* Commit the fact that the CSS is removed */
			set_bit(CSS_REMOVED, &css->flags);
		}
	}
	local_irq_restore(flags);
	return !failed;
}

2953 2954
static int cgroup_rmdir(struct inode *unused_dir, struct dentry *dentry)
{
2955
	struct cgroup *cgrp = dentry->d_fsdata;
2956 2957
	struct dentry *d;
	struct cgroup *parent;
2958 2959
	DEFINE_WAIT(wait);
	int ret;
2960 2961

	/* the vfs holds both inode->i_mutex already */
2962
again:
2963
	mutex_lock(&cgroup_mutex);
2964
	if (atomic_read(&cgrp->count) != 0) {
2965 2966 2967
		mutex_unlock(&cgroup_mutex);
		return -EBUSY;
	}
2968
	if (!list_empty(&cgrp->children)) {
2969 2970 2971
		mutex_unlock(&cgroup_mutex);
		return -EBUSY;
	}
2972
	mutex_unlock(&cgroup_mutex);
L
Li Zefan 已提交
2973

2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984
	/*
	 * In general, subsystem has no css->refcnt after pre_destroy(). But
	 * in racy cases, subsystem may have to get css->refcnt after
	 * pre_destroy() and it makes rmdir return with -EBUSY. This sometimes
	 * make rmdir return -EBUSY too often. To avoid that, we use waitqueue
	 * for cgroup's rmdir. CGRP_WAIT_ON_RMDIR is for synchronizing rmdir
	 * and subsystem's reference count handling. Please see css_get/put
	 * and css_tryget() and cgroup_wakeup_rmdir_waiter() implementation.
	 */
	set_bit(CGRP_WAIT_ON_RMDIR, &cgrp->flags);

2985
	/*
L
Li Zefan 已提交
2986 2987
	 * Call pre_destroy handlers of subsys. Notify subsystems
	 * that rmdir() request comes.
2988
	 */
2989
	ret = cgroup_call_pre_destroy(cgrp);
2990 2991
	if (ret) {
		clear_bit(CGRP_WAIT_ON_RMDIR, &cgrp->flags);
2992
		return ret;
2993
	}
2994

2995 2996
	mutex_lock(&cgroup_mutex);
	parent = cgrp->parent;
2997
	if (atomic_read(&cgrp->count) || !list_empty(&cgrp->children)) {
2998
		clear_bit(CGRP_WAIT_ON_RMDIR, &cgrp->flags);
2999 3000 3001
		mutex_unlock(&cgroup_mutex);
		return -EBUSY;
	}
3002 3003 3004
	prepare_to_wait(&cgroup_rmdir_waitq, &wait, TASK_INTERRUPTIBLE);
	if (!cgroup_clear_css_refs(cgrp)) {
		mutex_unlock(&cgroup_mutex);
3005 3006 3007 3008 3009 3010
		/*
		 * Because someone may call cgroup_wakeup_rmdir_waiter() before
		 * prepare_to_wait(), we need to check this flag.
		 */
		if (test_bit(CGRP_WAIT_ON_RMDIR, &cgrp->flags))
			schedule();
3011 3012 3013 3014 3015 3016 3017 3018 3019
		finish_wait(&cgroup_rmdir_waitq, &wait);
		clear_bit(CGRP_WAIT_ON_RMDIR, &cgrp->flags);
		if (signal_pending(current))
			return -EINTR;
		goto again;
	}
	/* NO css_tryget() can success after here. */
	finish_wait(&cgroup_rmdir_waitq, &wait);
	clear_bit(CGRP_WAIT_ON_RMDIR, &cgrp->flags);
3020

3021
	spin_lock(&release_list_lock);
3022 3023 3024
	set_bit(CGRP_REMOVED, &cgrp->flags);
	if (!list_empty(&cgrp->release_list))
		list_del(&cgrp->release_list);
3025
	spin_unlock(&release_list_lock);
3026 3027 3028

	cgroup_lock_hierarchy(cgrp->root);
	/* delete this cgroup from parent->children */
3029
	list_del(&cgrp->sibling);
3030 3031
	cgroup_unlock_hierarchy(cgrp->root);

3032 3033
	spin_lock(&cgrp->dentry->d_lock);
	d = dget(cgrp->dentry);
3034 3035 3036 3037 3038
	spin_unlock(&d->d_lock);

	cgroup_d_remove_dir(d);
	dput(d);

3039
	set_bit(CGRP_RELEASABLE, &parent->flags);
3040 3041
	check_for_release(parent);

3042 3043 3044 3045
	mutex_unlock(&cgroup_mutex);
	return 0;
}

3046
static void __init cgroup_init_subsys(struct cgroup_subsys *ss)
3047 3048
{
	struct cgroup_subsys_state *css;
D
Diego Calleja 已提交
3049 3050

	printk(KERN_INFO "Initializing cgroup subsys %s\n", ss->name);
3051 3052

	/* Create the top cgroup state for this subsystem */
3053
	list_add(&ss->sibling, &rootnode.subsys_list);
3054 3055 3056 3057 3058 3059
	ss->root = &rootnode;
	css = ss->create(ss, dummytop);
	/* We don't handle early failures gracefully */
	BUG_ON(IS_ERR(css));
	init_cgroup_css(css, ss, dummytop);

L
Li Zefan 已提交
3060
	/* Update the init_css_set to contain a subsys
3061
	 * pointer to this state - since the subsystem is
L
Li Zefan 已提交
3062 3063 3064
	 * newly registered, all tasks and hence the
	 * init_css_set is in the subsystem's top cgroup. */
	init_css_set.subsys[ss->subsys_id] = dummytop->subsys[ss->subsys_id];
3065 3066 3067

	need_forkexit_callback |= ss->fork || ss->exit;

L
Li Zefan 已提交
3068 3069 3070 3071 3072
	/* At system boot, before all subsystems have been
	 * registered, no tasks have been forked, so we don't
	 * need to invoke fork callbacks here. */
	BUG_ON(!list_empty(&init_task.tasks));

3073
	mutex_init(&ss->hierarchy_mutex);
3074
	lockdep_set_class(&ss->hierarchy_mutex, &ss->subsys_key);
3075 3076 3077 3078
	ss->active = 1;
}

/**
L
Li Zefan 已提交
3079 3080 3081 3082
 * cgroup_init_early - cgroup initialization at system boot
 *
 * Initialize cgroups at system boot, and initialize any
 * subsystems that request early init.
3083 3084 3085 3086
 */
int __init cgroup_init_early(void)
{
	int i;
3087
	atomic_set(&init_css_set.refcount, 1);
3088 3089
	INIT_LIST_HEAD(&init_css_set.cg_links);
	INIT_LIST_HEAD(&init_css_set.tasks);
3090
	INIT_HLIST_NODE(&init_css_set.hlist);
3091
	css_set_count = 1;
3092
	init_cgroup_root(&rootnode);
3093 3094 3095 3096
	root_count = 1;
	init_task.cgroups = &init_css_set;

	init_css_set_link.cg = &init_css_set;
3097
	init_css_set_link.cgrp = dummytop;
3098
	list_add(&init_css_set_link.cgrp_link_list,
3099 3100 3101
		 &rootnode.top_cgroup.css_sets);
	list_add(&init_css_set_link.cg_link_list,
		 &init_css_set.cg_links);
3102

3103 3104 3105
	for (i = 0; i < CSS_SET_TABLE_SIZE; i++)
		INIT_HLIST_HEAD(&css_set_table[i]);

3106 3107 3108 3109 3110 3111 3112 3113
	for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
		struct cgroup_subsys *ss = subsys[i];

		BUG_ON(!ss->name);
		BUG_ON(strlen(ss->name) > MAX_CGROUP_TYPE_NAMELEN);
		BUG_ON(!ss->create);
		BUG_ON(!ss->destroy);
		if (ss->subsys_id != i) {
D
Diego Calleja 已提交
3114
			printk(KERN_ERR "cgroup: Subsys %s id == %d\n",
3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125
			       ss->name, ss->subsys_id);
			BUG();
		}

		if (ss->early_init)
			cgroup_init_subsys(ss);
	}
	return 0;
}

/**
L
Li Zefan 已提交
3126 3127 3128 3129
 * cgroup_init - cgroup initialization
 *
 * Register cgroup filesystem and /proc file, and initialize
 * any subsystems that didn't request early init.
3130 3131 3132 3133 3134
 */
int __init cgroup_init(void)
{
	int err;
	int i;
3135
	struct hlist_head *hhead;
3136 3137 3138 3139

	err = bdi_init(&cgroup_backing_dev_info);
	if (err)
		return err;
3140 3141 3142 3143 3144

	for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
		struct cgroup_subsys *ss = subsys[i];
		if (!ss->early_init)
			cgroup_init_subsys(ss);
K
KAMEZAWA Hiroyuki 已提交
3145 3146
		if (ss->use_id)
			cgroup_subsys_init_idr(ss);
3147 3148
	}

3149 3150 3151
	/* Add init_css_set to the hash table */
	hhead = css_set_hash(init_css_set.subsys);
	hlist_add_head(&init_css_set.hlist, hhead);
3152
	BUG_ON(!init_root_id(&rootnode));
3153 3154 3155 3156
	err = register_filesystem(&cgroup_fs_type);
	if (err < 0)
		goto out;

L
Li Zefan 已提交
3157
	proc_create("cgroups", 0, NULL, &proc_cgroupstats_operations);
3158

3159
out:
3160 3161 3162
	if (err)
		bdi_destroy(&cgroup_backing_dev_info);

3163 3164
	return err;
}
3165

3166 3167 3168 3169 3170 3171
/*
 * proc_cgroup_show()
 *  - Print task's cgroup paths into seq_file, one line for each hierarchy
 *  - Used for /proc/<pid>/cgroup.
 *  - No need to task_lock(tsk) on this tsk->cgroup reference, as it
 *    doesn't really matter if tsk->cgroup changes after we read it,
3172
 *    and we take cgroup_mutex, keeping cgroup_attach_task() from changing it
3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201
 *    anyway.  No need to check that tsk->cgroup != NULL, thanks to
 *    the_top_cgroup_hack in cgroup_exit(), which sets an exiting tasks
 *    cgroup to top_cgroup.
 */

/* TODO: Use a proper seq_file iterator */
static int proc_cgroup_show(struct seq_file *m, void *v)
{
	struct pid *pid;
	struct task_struct *tsk;
	char *buf;
	int retval;
	struct cgroupfs_root *root;

	retval = -ENOMEM;
	buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
	if (!buf)
		goto out;

	retval = -ESRCH;
	pid = m->private;
	tsk = get_pid_task(pid, PIDTYPE_PID);
	if (!tsk)
		goto out_free;

	retval = 0;

	mutex_lock(&cgroup_mutex);

3202
	for_each_active_root(root) {
3203
		struct cgroup_subsys *ss;
3204
		struct cgroup *cgrp;
3205 3206
		int count = 0;

3207
		seq_printf(m, "%d:", root->hierarchy_id);
3208 3209
		for_each_subsys(root, ss)
			seq_printf(m, "%s%s", count++ ? "," : "", ss->name);
3210 3211 3212
		if (strlen(root->name))
			seq_printf(m, "%sname=%s", count ? "," : "",
				   root->name);
3213
		seq_putc(m, ':');
3214
		cgrp = task_cgroup_from_root(tsk, root);
3215
		retval = cgroup_path(cgrp, buf, PAGE_SIZE);
3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248
		if (retval < 0)
			goto out_unlock;
		seq_puts(m, buf);
		seq_putc(m, '\n');
	}

out_unlock:
	mutex_unlock(&cgroup_mutex);
	put_task_struct(tsk);
out_free:
	kfree(buf);
out:
	return retval;
}

static int cgroup_open(struct inode *inode, struct file *file)
{
	struct pid *pid = PROC_I(inode)->pid;
	return single_open(file, proc_cgroup_show, pid);
}

struct file_operations proc_cgroup_operations = {
	.open		= cgroup_open,
	.read		= seq_read,
	.llseek		= seq_lseek,
	.release	= single_release,
};

/* Display information about each subsystem and each hierarchy */
static int proc_cgroupstats_show(struct seq_file *m, void *v)
{
	int i;

3249
	seq_puts(m, "#subsys_name\thierarchy\tnum_cgroups\tenabled\n");
3250 3251 3252
	mutex_lock(&cgroup_mutex);
	for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
		struct cgroup_subsys *ss = subsys[i];
3253 3254
		seq_printf(m, "%s\t%d\t%d\t%d\n",
			   ss->name, ss->root->hierarchy_id,
3255
			   ss->root->number_of_cgroups, !ss->disabled);
3256 3257 3258 3259 3260 3261 3262
	}
	mutex_unlock(&cgroup_mutex);
	return 0;
}

static int cgroupstats_open(struct inode *inode, struct file *file)
{
A
Al Viro 已提交
3263
	return single_open(file, proc_cgroupstats_show, NULL);
3264 3265 3266 3267 3268 3269 3270 3271 3272
}

static struct file_operations proc_cgroupstats_operations = {
	.open = cgroupstats_open,
	.read = seq_read,
	.llseek = seq_lseek,
	.release = single_release,
};

3273 3274
/**
 * cgroup_fork - attach newly forked task to its parents cgroup.
L
Li Zefan 已提交
3275
 * @child: pointer to task_struct of forking parent process.
3276 3277 3278 3279 3280 3281
 *
 * Description: A task inherits its parent's cgroup at fork().
 *
 * A pointer to the shared css_set was automatically copied in
 * fork.c by dup_task_struct().  However, we ignore that copy, since
 * it was not made under the protection of RCU or cgroup_mutex, so
3282
 * might no longer be a valid cgroup pointer.  cgroup_attach_task() might
3283 3284
 * have already changed current->cgroups, allowing the previously
 * referenced cgroup group to be removed and freed.
3285 3286 3287 3288 3289 3290
 *
 * At the point that cgroup_fork() is called, 'current' is the parent
 * task, and the passed argument 'child' points to the child task.
 */
void cgroup_fork(struct task_struct *child)
{
3291 3292 3293 3294 3295
	task_lock(current);
	child->cgroups = current->cgroups;
	get_css_set(child->cgroups);
	task_unlock(current);
	INIT_LIST_HEAD(&child->cg_list);
3296 3297 3298
}

/**
L
Li Zefan 已提交
3299 3300 3301 3302 3303 3304
 * cgroup_fork_callbacks - run fork callbacks
 * @child: the new task
 *
 * Called on a new task very soon before adding it to the
 * tasklist. No need to take any locks since no-one can
 * be operating on this task.
3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317
 */
void cgroup_fork_callbacks(struct task_struct *child)
{
	if (need_forkexit_callback) {
		int i;
		for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
			struct cgroup_subsys *ss = subsys[i];
			if (ss->fork)
				ss->fork(ss, child);
		}
	}
}

3318
/**
L
Li Zefan 已提交
3319 3320 3321 3322 3323 3324 3325 3326
 * cgroup_post_fork - called on a new task after adding it to the task list
 * @child: the task in question
 *
 * Adds the task to the list running through its css_set if necessary.
 * Has to be after the task is visible on the task list in case we race
 * with the first call to cgroup_iter_start() - to guarantee that the
 * new task ends up on its list.
 */
3327 3328 3329 3330
void cgroup_post_fork(struct task_struct *child)
{
	if (use_task_css_set_links) {
		write_lock(&css_set_lock);
3331
		task_lock(child);
3332 3333
		if (list_empty(&child->cg_list))
			list_add(&child->cg_list, &child->cgroups->tasks);
3334
		task_unlock(child);
3335 3336 3337
		write_unlock(&css_set_lock);
	}
}
3338 3339 3340
/**
 * cgroup_exit - detach cgroup from exiting task
 * @tsk: pointer to task_struct of exiting process
L
Li Zefan 已提交
3341
 * @run_callback: run exit callbacks?
3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369
 *
 * Description: Detach cgroup from @tsk and release it.
 *
 * Note that cgroups marked notify_on_release force every task in
 * them to take the global cgroup_mutex mutex when exiting.
 * This could impact scaling on very large systems.  Be reluctant to
 * use notify_on_release cgroups where very high task exit scaling
 * is required on large systems.
 *
 * the_top_cgroup_hack:
 *
 *    Set the exiting tasks cgroup to the root cgroup (top_cgroup).
 *
 *    We call cgroup_exit() while the task is still competent to
 *    handle notify_on_release(), then leave the task attached to the
 *    root cgroup in each hierarchy for the remainder of its exit.
 *
 *    To do this properly, we would increment the reference count on
 *    top_cgroup, and near the very end of the kernel/exit.c do_exit()
 *    code we would add a second cgroup function call, to drop that
 *    reference.  This would just create an unnecessary hot spot on
 *    the top_cgroup reference count, to no avail.
 *
 *    Normally, holding a reference to a cgroup without bumping its
 *    count is unsafe.   The cgroup could go away, or someone could
 *    attach us to a different cgroup, decrementing the count on
 *    the first cgroup that we never incremented.  But in this case,
 *    top_cgroup isn't going away, and either task has PF_EXITING set,
3370 3371
 *    which wards off any cgroup_attach_task() attempts, or task is a failed
 *    fork, never visible to cgroup_attach_task.
3372 3373 3374 3375
 */
void cgroup_exit(struct task_struct *tsk, int run_callbacks)
{
	int i;
3376
	struct css_set *cg;
3377 3378 3379 3380 3381 3382 3383 3384

	if (run_callbacks && need_forkexit_callback) {
		for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
			struct cgroup_subsys *ss = subsys[i];
			if (ss->exit)
				ss->exit(ss, tsk);
		}
	}
3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397

	/*
	 * Unlink from the css_set task list if necessary.
	 * Optimistically check cg_list before taking
	 * css_set_lock
	 */
	if (!list_empty(&tsk->cg_list)) {
		write_lock(&css_set_lock);
		if (!list_empty(&tsk->cg_list))
			list_del(&tsk->cg_list);
		write_unlock(&css_set_lock);
	}

3398 3399
	/* Reassign the task to the init_css_set. */
	task_lock(tsk);
3400 3401
	cg = tsk->cgroups;
	tsk->cgroups = &init_css_set;
3402
	task_unlock(tsk);
3403
	if (cg)
3404
		put_css_set_taskexit(cg);
3405
}
3406 3407

/**
L
Li Zefan 已提交
3408 3409 3410
 * cgroup_clone - clone the cgroup the given subsystem is attached to
 * @tsk: the task to be moved
 * @subsys: the given subsystem
3411
 * @nodename: the name for the new cgroup
L
Li Zefan 已提交
3412 3413 3414 3415
 *
 * Duplicate the current cgroup in the hierarchy that the given
 * subsystem is attached to, and move this task into the new
 * child.
3416
 */
3417 3418
int cgroup_clone(struct task_struct *tsk, struct cgroup_subsys *subsys,
							char *nodename)
3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441
{
	struct dentry *dentry;
	int ret = 0;
	struct cgroup *parent, *child;
	struct inode *inode;
	struct css_set *cg;
	struct cgroupfs_root *root;
	struct cgroup_subsys *ss;

	/* We shouldn't be called by an unregistered subsystem */
	BUG_ON(!subsys->active);

	/* First figure out what hierarchy and cgroup we're dealing
	 * with, and pin them so we can drop cgroup_mutex */
	mutex_lock(&cgroup_mutex);
 again:
	root = subsys->root;
	if (root == &rootnode) {
		mutex_unlock(&cgroup_mutex);
		return 0;
	}

	/* Pin the hierarchy */
3442
	if (!atomic_inc_not_zero(&root->sb->s_active)) {
3443 3444 3445 3446
		/* We race with the final deactivate_super() */
		mutex_unlock(&cgroup_mutex);
		return 0;
	}
3447

3448
	/* Keep the cgroup alive */
3449 3450 3451
	task_lock(tsk);
	parent = task_cgroup(tsk, subsys->subsys_id);
	cg = tsk->cgroups;
3452
	get_css_set(cg);
3453
	task_unlock(tsk);
3454

3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465
	mutex_unlock(&cgroup_mutex);

	/* Now do the VFS work to create a cgroup */
	inode = parent->dentry->d_inode;

	/* Hold the parent directory mutex across this operation to
	 * stop anyone else deleting the new cgroup */
	mutex_lock(&inode->i_mutex);
	dentry = lookup_one_len(nodename, parent->dentry, strlen(nodename));
	if (IS_ERR(dentry)) {
		printk(KERN_INFO
D
Diego Calleja 已提交
3466
		       "cgroup: Couldn't allocate dentry for %s: %ld\n", nodename,
3467 3468 3469 3470 3471 3472
		       PTR_ERR(dentry));
		ret = PTR_ERR(dentry);
		goto out_release;
	}

	/* Create the cgroup directory, which also creates the cgroup */
3473
	ret = vfs_mkdir(inode, dentry, 0755);
3474
	child = __d_cgrp(dentry);
3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490
	dput(dentry);
	if (ret) {
		printk(KERN_INFO
		       "Failed to create cgroup %s: %d\n", nodename,
		       ret);
		goto out_release;
	}

	/* The cgroup now exists. Retake cgroup_mutex and check
	 * that we're still in the same state that we thought we
	 * were. */
	mutex_lock(&cgroup_mutex);
	if ((root != subsys->root) ||
	    (parent != task_cgroup(tsk, subsys->subsys_id))) {
		/* Aargh, we raced ... */
		mutex_unlock(&inode->i_mutex);
3491
		put_css_set(cg);
3492

3493
		deactivate_super(root->sb);
3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509
		/* The cgroup is still accessible in the VFS, but
		 * we're not going to try to rmdir() it at this
		 * point. */
		printk(KERN_INFO
		       "Race in cgroup_clone() - leaking cgroup %s\n",
		       nodename);
		goto again;
	}

	/* do any required auto-setup */
	for_each_subsys(root, ss) {
		if (ss->post_clone)
			ss->post_clone(ss, child);
	}

	/* All seems fine. Finish by moving the task into the new cgroup */
3510
	ret = cgroup_attach_task(child, tsk);
3511 3512 3513 3514
	mutex_unlock(&cgroup_mutex);

 out_release:
	mutex_unlock(&inode->i_mutex);
3515 3516

	mutex_lock(&cgroup_mutex);
3517
	put_css_set(cg);
3518
	mutex_unlock(&cgroup_mutex);
3519
	deactivate_super(root->sb);
3520 3521 3522
	return ret;
}

L
Li Zefan 已提交
3523
/**
3524
 * cgroup_is_descendant - see if @cgrp is a descendant of @task's cgrp
L
Li Zefan 已提交
3525
 * @cgrp: the cgroup in question
3526
 * @task: the task in question
L
Li Zefan 已提交
3527
 *
3528 3529
 * See if @cgrp is a descendant of @task's cgroup in the appropriate
 * hierarchy.
3530 3531 3532 3533 3534 3535
 *
 * If we are sending in dummytop, then presumably we are creating
 * the top cgroup in the subsystem.
 *
 * Called only by the ns (nsproxy) cgroup.
 */
3536
int cgroup_is_descendant(const struct cgroup *cgrp, struct task_struct *task)
3537 3538 3539 3540
{
	int ret;
	struct cgroup *target;

3541
	if (cgrp == dummytop)
3542 3543
		return 1;

3544
	target = task_cgroup_from_root(task, cgrp->root);
3545 3546 3547
	while (cgrp != target && cgrp!= cgrp->top_cgroup)
		cgrp = cgrp->parent;
	ret = (cgrp == target);
3548 3549
	return ret;
}
3550

3551
static void check_for_release(struct cgroup *cgrp)
3552 3553 3554
{
	/* All of these checks rely on RCU to keep the cgroup
	 * structure alive */
3555 3556
	if (cgroup_is_releasable(cgrp) && !atomic_read(&cgrp->count)
	    && list_empty(&cgrp->children) && !cgroup_has_css_refs(cgrp)) {
3557 3558 3559 3560 3561
		/* Control Group is currently removeable. If it's not
		 * already queued for a userspace notification, queue
		 * it now */
		int need_schedule_work = 0;
		spin_lock(&release_list_lock);
3562 3563 3564
		if (!cgroup_is_removed(cgrp) &&
		    list_empty(&cgrp->release_list)) {
			list_add(&cgrp->release_list, &release_list);
3565 3566 3567 3568 3569 3570 3571 3572 3573 3574
			need_schedule_work = 1;
		}
		spin_unlock(&release_list_lock);
		if (need_schedule_work)
			schedule_work(&release_agent_work);
	}
}

void __css_put(struct cgroup_subsys_state *css)
{
3575
	struct cgroup *cgrp = css->cgroup;
3576
	rcu_read_lock();
3577 3578 3579 3580 3581
	if (atomic_dec_return(&css->refcnt) == 1) {
		if (notify_on_release(cgrp)) {
			set_bit(CGRP_RELEASABLE, &cgrp->flags);
			check_for_release(cgrp);
		}
3582
		cgroup_wakeup_rmdir_waiter(cgrp);
3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617
	}
	rcu_read_unlock();
}

/*
 * Notify userspace when a cgroup is released, by running the
 * configured release agent with the name of the cgroup (path
 * relative to the root of cgroup file system) as the argument.
 *
 * Most likely, this user command will try to rmdir this cgroup.
 *
 * This races with the possibility that some other task will be
 * attached to this cgroup before it is removed, or that some other
 * user task will 'mkdir' a child cgroup of this cgroup.  That's ok.
 * The presumed 'rmdir' will fail quietly if this cgroup is no longer
 * unused, and this cgroup will be reprieved from its death sentence,
 * to continue to serve a useful existence.  Next time it's released,
 * we will get notified again, if it still has 'notify_on_release' set.
 *
 * The final arg to call_usermodehelper() is UMH_WAIT_EXEC, which
 * means only wait until the task is successfully execve()'d.  The
 * separate release agent task is forked by call_usermodehelper(),
 * then control in this thread returns here, without waiting for the
 * release agent task.  We don't bother to wait because the caller of
 * this routine has no use for the exit status of the release agent
 * task, so no sense holding our caller up for that.
 */
static void cgroup_release_agent(struct work_struct *work)
{
	BUG_ON(work != &release_agent_work);
	mutex_lock(&cgroup_mutex);
	spin_lock(&release_list_lock);
	while (!list_empty(&release_list)) {
		char *argv[3], *envp[3];
		int i;
3618
		char *pathbuf = NULL, *agentbuf = NULL;
3619
		struct cgroup *cgrp = list_entry(release_list.next,
3620 3621
						    struct cgroup,
						    release_list);
3622
		list_del_init(&cgrp->release_list);
3623 3624
		spin_unlock(&release_list_lock);
		pathbuf = kmalloc(PAGE_SIZE, GFP_KERNEL);
3625 3626 3627 3628 3629 3630 3631
		if (!pathbuf)
			goto continue_free;
		if (cgroup_path(cgrp, pathbuf, PAGE_SIZE) < 0)
			goto continue_free;
		agentbuf = kstrdup(cgrp->root->release_agent_path, GFP_KERNEL);
		if (!agentbuf)
			goto continue_free;
3632 3633

		i = 0;
3634 3635
		argv[i++] = agentbuf;
		argv[i++] = pathbuf;
3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649
		argv[i] = NULL;

		i = 0;
		/* minimal command environment */
		envp[i++] = "HOME=/";
		envp[i++] = "PATH=/sbin:/bin:/usr/sbin:/usr/bin";
		envp[i] = NULL;

		/* Drop the lock while we invoke the usermode helper,
		 * since the exec could involve hitting disk and hence
		 * be a slow process */
		mutex_unlock(&cgroup_mutex);
		call_usermodehelper(argv[0], argv, envp, UMH_WAIT_EXEC);
		mutex_lock(&cgroup_mutex);
3650 3651 3652
 continue_free:
		kfree(pathbuf);
		kfree(agentbuf);
3653 3654 3655 3656 3657
		spin_lock(&release_list_lock);
	}
	spin_unlock(&release_list_lock);
	mutex_unlock(&cgroup_mutex);
}
3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681

static int __init cgroup_disable(char *str)
{
	int i;
	char *token;

	while ((token = strsep(&str, ",")) != NULL) {
		if (!*token)
			continue;

		for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
			struct cgroup_subsys *ss = subsys[i];

			if (!strcmp(token, ss->name)) {
				ss->disabled = 1;
				printk(KERN_INFO "Disabling %s control group"
					" subsystem\n", ss->name);
				break;
			}
		}
	}
	return 1;
}
__setup("cgroup_disable=", cgroup_disable);
K
KAMEZAWA Hiroyuki 已提交
3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708

/*
 * Functons for CSS ID.
 */

/*
 *To get ID other than 0, this should be called when !cgroup_is_removed().
 */
unsigned short css_id(struct cgroup_subsys_state *css)
{
	struct css_id *cssid = rcu_dereference(css->id);

	if (cssid)
		return cssid->id;
	return 0;
}

unsigned short css_depth(struct cgroup_subsys_state *css)
{
	struct css_id *cssid = rcu_dereference(css->id);

	if (cssid)
		return cssid->depth;
	return 0;
}

bool css_is_ancestor(struct cgroup_subsys_state *child,
3709
		    const struct cgroup_subsys_state *root)
K
KAMEZAWA Hiroyuki 已提交
3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910
{
	struct css_id *child_id = rcu_dereference(child->id);
	struct css_id *root_id = rcu_dereference(root->id);

	if (!child_id || !root_id || (child_id->depth < root_id->depth))
		return false;
	return child_id->stack[root_id->depth] == root_id->id;
}

static void __free_css_id_cb(struct rcu_head *head)
{
	struct css_id *id;

	id = container_of(head, struct css_id, rcu_head);
	kfree(id);
}

void free_css_id(struct cgroup_subsys *ss, struct cgroup_subsys_state *css)
{
	struct css_id *id = css->id;
	/* When this is called before css_id initialization, id can be NULL */
	if (!id)
		return;

	BUG_ON(!ss->use_id);

	rcu_assign_pointer(id->css, NULL);
	rcu_assign_pointer(css->id, NULL);
	spin_lock(&ss->id_lock);
	idr_remove(&ss->idr, id->id);
	spin_unlock(&ss->id_lock);
	call_rcu(&id->rcu_head, __free_css_id_cb);
}

/*
 * This is called by init or create(). Then, calls to this function are
 * always serialized (By cgroup_mutex() at create()).
 */

static struct css_id *get_new_cssid(struct cgroup_subsys *ss, int depth)
{
	struct css_id *newid;
	int myid, error, size;

	BUG_ON(!ss->use_id);

	size = sizeof(*newid) + sizeof(unsigned short) * (depth + 1);
	newid = kzalloc(size, GFP_KERNEL);
	if (!newid)
		return ERR_PTR(-ENOMEM);
	/* get id */
	if (unlikely(!idr_pre_get(&ss->idr, GFP_KERNEL))) {
		error = -ENOMEM;
		goto err_out;
	}
	spin_lock(&ss->id_lock);
	/* Don't use 0. allocates an ID of 1-65535 */
	error = idr_get_new_above(&ss->idr, newid, 1, &myid);
	spin_unlock(&ss->id_lock);

	/* Returns error when there are no free spaces for new ID.*/
	if (error) {
		error = -ENOSPC;
		goto err_out;
	}
	if (myid > CSS_ID_MAX)
		goto remove_idr;

	newid->id = myid;
	newid->depth = depth;
	return newid;
remove_idr:
	error = -ENOSPC;
	spin_lock(&ss->id_lock);
	idr_remove(&ss->idr, myid);
	spin_unlock(&ss->id_lock);
err_out:
	kfree(newid);
	return ERR_PTR(error);

}

static int __init cgroup_subsys_init_idr(struct cgroup_subsys *ss)
{
	struct css_id *newid;
	struct cgroup_subsys_state *rootcss;

	spin_lock_init(&ss->id_lock);
	idr_init(&ss->idr);

	rootcss = init_css_set.subsys[ss->subsys_id];
	newid = get_new_cssid(ss, 0);
	if (IS_ERR(newid))
		return PTR_ERR(newid);

	newid->stack[0] = newid->id;
	newid->css = rootcss;
	rootcss->id = newid;
	return 0;
}

static int alloc_css_id(struct cgroup_subsys *ss, struct cgroup *parent,
			struct cgroup *child)
{
	int subsys_id, i, depth = 0;
	struct cgroup_subsys_state *parent_css, *child_css;
	struct css_id *child_id, *parent_id = NULL;

	subsys_id = ss->subsys_id;
	parent_css = parent->subsys[subsys_id];
	child_css = child->subsys[subsys_id];
	depth = css_depth(parent_css) + 1;
	parent_id = parent_css->id;

	child_id = get_new_cssid(ss, depth);
	if (IS_ERR(child_id))
		return PTR_ERR(child_id);

	for (i = 0; i < depth; i++)
		child_id->stack[i] = parent_id->stack[i];
	child_id->stack[depth] = child_id->id;
	/*
	 * child_id->css pointer will be set after this cgroup is available
	 * see cgroup_populate_dir()
	 */
	rcu_assign_pointer(child_css->id, child_id);

	return 0;
}

/**
 * css_lookup - lookup css by id
 * @ss: cgroup subsys to be looked into.
 * @id: the id
 *
 * Returns pointer to cgroup_subsys_state if there is valid one with id.
 * NULL if not. Should be called under rcu_read_lock()
 */
struct cgroup_subsys_state *css_lookup(struct cgroup_subsys *ss, int id)
{
	struct css_id *cssid = NULL;

	BUG_ON(!ss->use_id);
	cssid = idr_find(&ss->idr, id);

	if (unlikely(!cssid))
		return NULL;

	return rcu_dereference(cssid->css);
}

/**
 * css_get_next - lookup next cgroup under specified hierarchy.
 * @ss: pointer to subsystem
 * @id: current position of iteration.
 * @root: pointer to css. search tree under this.
 * @foundid: position of found object.
 *
 * Search next css under the specified hierarchy of rootid. Calling under
 * rcu_read_lock() is necessary. Returns NULL if it reaches the end.
 */
struct cgroup_subsys_state *
css_get_next(struct cgroup_subsys *ss, int id,
	     struct cgroup_subsys_state *root, int *foundid)
{
	struct cgroup_subsys_state *ret = NULL;
	struct css_id *tmp;
	int tmpid;
	int rootid = css_id(root);
	int depth = css_depth(root);

	if (!rootid)
		return NULL;

	BUG_ON(!ss->use_id);
	/* fill start point for scan */
	tmpid = id;
	while (1) {
		/*
		 * scan next entry from bitmap(tree), tmpid is updated after
		 * idr_get_next().
		 */
		spin_lock(&ss->id_lock);
		tmp = idr_get_next(&ss->idr, &tmpid);
		spin_unlock(&ss->id_lock);

		if (!tmp)
			break;
		if (tmp->depth >= depth && tmp->stack[depth] == rootid) {
			ret = rcu_dereference(tmp->css);
			if (ret) {
				*foundid = tmpid;
				break;
			}
		}
		/* continue to scan from next id */
		tmpid = tmpid + 1;
	}
	return ret;
}

3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953
#ifdef CONFIG_CGROUP_DEBUG
static struct cgroup_subsys_state *debug_create(struct cgroup_subsys *ss,
						   struct cgroup *cont)
{
	struct cgroup_subsys_state *css = kzalloc(sizeof(*css), GFP_KERNEL);

	if (!css)
		return ERR_PTR(-ENOMEM);

	return css;
}

static void debug_destroy(struct cgroup_subsys *ss, struct cgroup *cont)
{
	kfree(cont->subsys[debug_subsys_id]);
}

static u64 cgroup_refcount_read(struct cgroup *cont, struct cftype *cft)
{
	return atomic_read(&cont->count);
}

static u64 debug_taskcount_read(struct cgroup *cont, struct cftype *cft)
{
	return cgroup_task_count(cont);
}

static u64 current_css_set_read(struct cgroup *cont, struct cftype *cft)
{
	return (u64)(unsigned long)current->cgroups;
}

static u64 current_css_set_refcount_read(struct cgroup *cont,
					   struct cftype *cft)
{
	u64 count;

	rcu_read_lock();
	count = atomic_read(&current->cgroups->refcount);
	rcu_read_unlock();
	return count;
}

3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971
static int current_css_set_cg_links_read(struct cgroup *cont,
					 struct cftype *cft,
					 struct seq_file *seq)
{
	struct cg_cgroup_link *link;
	struct css_set *cg;

	read_lock(&css_set_lock);
	rcu_read_lock();
	cg = rcu_dereference(current->cgroups);
	list_for_each_entry(link, &cg->cg_links, cg_link_list) {
		struct cgroup *c = link->cgrp;
		const char *name;

		if (c->dentry)
			name = c->dentry->d_name.name;
		else
			name = "?";
3972 3973
		seq_printf(seq, "Root %d group %s\n",
			   c->root->hierarchy_id, name);
3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006
	}
	rcu_read_unlock();
	read_unlock(&css_set_lock);
	return 0;
}

#define MAX_TASKS_SHOWN_PER_CSS 25
static int cgroup_css_links_read(struct cgroup *cont,
				 struct cftype *cft,
				 struct seq_file *seq)
{
	struct cg_cgroup_link *link;

	read_lock(&css_set_lock);
	list_for_each_entry(link, &cont->css_sets, cgrp_link_list) {
		struct css_set *cg = link->cg;
		struct task_struct *task;
		int count = 0;
		seq_printf(seq, "css_set %p\n", cg);
		list_for_each_entry(task, &cg->tasks, cg_list) {
			if (count++ > MAX_TASKS_SHOWN_PER_CSS) {
				seq_puts(seq, "  ...\n");
				break;
			} else {
				seq_printf(seq, "  task %d\n",
					   task_pid_vnr(task));
			}
		}
	}
	read_unlock(&css_set_lock);
	return 0;
}

4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031
static u64 releasable_read(struct cgroup *cgrp, struct cftype *cft)
{
	return test_bit(CGRP_RELEASABLE, &cgrp->flags);
}

static struct cftype debug_files[] =  {
	{
		.name = "cgroup_refcount",
		.read_u64 = cgroup_refcount_read,
	},
	{
		.name = "taskcount",
		.read_u64 = debug_taskcount_read,
	},

	{
		.name = "current_css_set",
		.read_u64 = current_css_set_read,
	},

	{
		.name = "current_css_set_refcount",
		.read_u64 = current_css_set_refcount_read,
	},

4032 4033 4034 4035 4036 4037 4038 4039 4040 4041
	{
		.name = "current_css_set_cg_links",
		.read_seq_string = current_css_set_cg_links_read,
	},

	{
		.name = "cgroup_css_links",
		.read_seq_string = cgroup_css_links_read,
	},

4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061
	{
		.name = "releasable",
		.read_u64 = releasable_read,
	},
};

static int debug_populate(struct cgroup_subsys *ss, struct cgroup *cont)
{
	return cgroup_add_files(cont, ss, debug_files,
				ARRAY_SIZE(debug_files));
}

struct cgroup_subsys debug_subsys = {
	.name = "debug",
	.create = debug_create,
	.destroy = debug_destroy,
	.populate = debug_populate,
	.subsys_id = debug_subsys_id,
};
#endif /* CONFIG_CGROUP_DEBUG */