cpuset.c 75.3 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6
/*
 *  kernel/cpuset.c
 *
 *  Processor and Memory placement constraints for sets of tasks.
 *
 *  Copyright (C) 2003 BULL SA.
P
Paul Jackson 已提交
7
 *  Copyright (C) 2004-2007 Silicon Graphics, Inc.
8
 *  Copyright (C) 2006 Google, Inc
L
Linus Torvalds 已提交
9 10 11 12
 *
 *  Portions derived from Patrick Mochel's sysfs code.
 *  sysfs is Copyright (c) 2001-3 Patrick Mochel
 *
13
 *  2003-10-10 Written by Simon Derr.
L
Linus Torvalds 已提交
14
 *  2003-10-22 Updates by Stephen Hemminger.
15
 *  2004 May-July Rework by Paul Jackson.
16
 *  2006 Rework by Paul Menage to use generic cgroups
17 18
 *  2008 Rework of the scheduler domains and CPU hotplug handling
 *       by Max Krasnyansky
L
Linus Torvalds 已提交
19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36
 *
 *  This file is subject to the terms and conditions of the GNU General Public
 *  License.  See the file COPYING in the main directory of the Linux
 *  distribution for more details.
 */

#include <linux/cpu.h>
#include <linux/cpumask.h>
#include <linux/cpuset.h>
#include <linux/err.h>
#include <linux/errno.h>
#include <linux/file.h>
#include <linux/fs.h>
#include <linux/init.h>
#include <linux/interrupt.h>
#include <linux/kernel.h>
#include <linux/kmod.h>
#include <linux/list.h>
37
#include <linux/mempolicy.h>
L
Linus Torvalds 已提交
38
#include <linux/mm.h>
39
#include <linux/memory.h>
40
#include <linux/export.h>
L
Linus Torvalds 已提交
41 42 43 44
#include <linux/mount.h>
#include <linux/namei.h>
#include <linux/pagemap.h>
#include <linux/proc_fs.h>
45
#include <linux/rcupdate.h>
L
Linus Torvalds 已提交
46 47
#include <linux/sched.h>
#include <linux/seq_file.h>
48
#include <linux/security.h>
L
Linus Torvalds 已提交
49 50 51 52 53
#include <linux/slab.h>
#include <linux/spinlock.h>
#include <linux/stat.h>
#include <linux/string.h>
#include <linux/time.h>
54
#include <linux/time64.h>
L
Linus Torvalds 已提交
55 56 57 58
#include <linux/backing-dev.h>
#include <linux/sort.h>

#include <asm/uaccess.h>
A
Arun Sharma 已提交
59
#include <linux/atomic.h>
60
#include <linux/mutex.h>
61 62
#include <linux/workqueue.h>
#include <linux/cgroup.h>
63
#include <linux/wait.h>
L
Linus Torvalds 已提交
64

65
struct static_key cpusets_enabled_key __read_mostly = STATIC_KEY_INIT_FALSE;
66

67 68 69 70 71
/* See "Frequency meter" comments, below. */

struct fmeter {
	int cnt;		/* unprocessed events count */
	int val;		/* most recent output value */
72
	time64_t time;		/* clock (secs) when val computed */
73 74 75
	spinlock_t lock;	/* guards read or write of above */
};

L
Linus Torvalds 已提交
76
struct cpuset {
77 78
	struct cgroup_subsys_state css;

L
Linus Torvalds 已提交
79
	unsigned long flags;		/* "unsigned long" so bitops work */
80

81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100
	/*
	 * On default hierarchy:
	 *
	 * The user-configured masks can only be changed by writing to
	 * cpuset.cpus and cpuset.mems, and won't be limited by the
	 * parent masks.
	 *
	 * The effective masks is the real masks that apply to the tasks
	 * in the cpuset. They may be changed if the configured masks are
	 * changed or hotplug happens.
	 *
	 * effective_mask == configured_mask & parent's effective_mask,
	 * and if it ends up empty, it will inherit the parent's mask.
	 *
	 *
	 * On legacy hierachy:
	 *
	 * The user-configured masks are always the same with effective masks.
	 */

101 102 103 104 105 106 107
	/* user-configured CPUs and Memory Nodes allow to tasks */
	cpumask_var_t cpus_allowed;
	nodemask_t mems_allowed;

	/* effective CPUs and Memory Nodes allow to tasks */
	cpumask_var_t effective_cpus;
	nodemask_t effective_mems;
L
Linus Torvalds 已提交
108

109 110 111 112 113 114 115 116 117 118 119 120
	/*
	 * This is old Memory Nodes tasks took on.
	 *
	 * - top_cpuset.old_mems_allowed is initialized to mems_allowed.
	 * - A new cpuset's old_mems_allowed is initialized when some
	 *   task is moved into it.
	 * - old_mems_allowed is used in cpuset_migrate_mm() when we change
	 *   cpuset.mems_allowed and have tasks' nodemask updated, and
	 *   then old_mems_allowed is updated to mems_allowed.
	 */
	nodemask_t old_mems_allowed;

121
	struct fmeter fmeter;		/* memory_pressure filter */
P
Paul Jackson 已提交
122

123 124 125 126 127 128
	/*
	 * Tasks are being attached to this cpuset.  Used to prevent
	 * zeroing cpus/mems_allowed between ->can_attach() and ->attach().
	 */
	int attach_in_progress;

P
Paul Jackson 已提交
129 130
	/* partition number for rebuild_sched_domains() */
	int pn;
131

132 133
	/* for custom sched domain */
	int relax_domain_level;
L
Linus Torvalds 已提交
134 135
};

136
static inline struct cpuset *css_cs(struct cgroup_subsys_state *css)
137
{
138
	return css ? container_of(css, struct cpuset, css) : NULL;
139 140 141 142 143
}

/* Retrieve the cpuset for a task */
static inline struct cpuset *task_cs(struct task_struct *task)
{
144
	return css_cs(task_css(task, cpuset_cgrp_id));
145 146
}

147
static inline struct cpuset *parent_cs(struct cpuset *cs)
T
Tejun Heo 已提交
148
{
T
Tejun Heo 已提交
149
	return css_cs(cs->css.parent);
T
Tejun Heo 已提交
150 151
}

152 153 154 155 156 157 158 159 160 161 162 163 164
#ifdef CONFIG_NUMA
static inline bool task_has_mempolicy(struct task_struct *task)
{
	return task->mempolicy;
}
#else
static inline bool task_has_mempolicy(struct task_struct *task)
{
	return false;
}
#endif


L
Linus Torvalds 已提交
165 166
/* bits in struct cpuset flags field */
typedef enum {
T
Tejun Heo 已提交
167
	CS_ONLINE,
L
Linus Torvalds 已提交
168 169
	CS_CPU_EXCLUSIVE,
	CS_MEM_EXCLUSIVE,
170
	CS_MEM_HARDWALL,
171
	CS_MEMORY_MIGRATE,
P
Paul Jackson 已提交
172
	CS_SCHED_LOAD_BALANCE,
173 174
	CS_SPREAD_PAGE,
	CS_SPREAD_SLAB,
L
Linus Torvalds 已提交
175 176 177
} cpuset_flagbits_t;

/* convenient tests for these bits */
T
Tejun Heo 已提交
178 179 180 181 182
static inline bool is_cpuset_online(const struct cpuset *cs)
{
	return test_bit(CS_ONLINE, &cs->flags);
}

L
Linus Torvalds 已提交
183 184
static inline int is_cpu_exclusive(const struct cpuset *cs)
{
185
	return test_bit(CS_CPU_EXCLUSIVE, &cs->flags);
L
Linus Torvalds 已提交
186 187 188 189
}

static inline int is_mem_exclusive(const struct cpuset *cs)
{
190
	return test_bit(CS_MEM_EXCLUSIVE, &cs->flags);
L
Linus Torvalds 已提交
191 192
}

193 194 195 196 197
static inline int is_mem_hardwall(const struct cpuset *cs)
{
	return test_bit(CS_MEM_HARDWALL, &cs->flags);
}

P
Paul Jackson 已提交
198 199 200 201 202
static inline int is_sched_load_balance(const struct cpuset *cs)
{
	return test_bit(CS_SCHED_LOAD_BALANCE, &cs->flags);
}

203 204
static inline int is_memory_migrate(const struct cpuset *cs)
{
205
	return test_bit(CS_MEMORY_MIGRATE, &cs->flags);
206 207
}

208 209 210 211 212 213 214 215 216 217
static inline int is_spread_page(const struct cpuset *cs)
{
	return test_bit(CS_SPREAD_PAGE, &cs->flags);
}

static inline int is_spread_slab(const struct cpuset *cs)
{
	return test_bit(CS_SPREAD_SLAB, &cs->flags);
}

L
Linus Torvalds 已提交
218
static struct cpuset top_cpuset = {
T
Tejun Heo 已提交
219 220
	.flags = ((1 << CS_ONLINE) | (1 << CS_CPU_EXCLUSIVE) |
		  (1 << CS_MEM_EXCLUSIVE)),
L
Linus Torvalds 已提交
221 222
};

223 224 225
/**
 * cpuset_for_each_child - traverse online children of a cpuset
 * @child_cs: loop cursor pointing to the current child
226
 * @pos_css: used for iteration
227 228 229 230 231
 * @parent_cs: target cpuset to walk children of
 *
 * Walk @child_cs through the online children of @parent_cs.  Must be used
 * with RCU read locked.
 */
232 233 234
#define cpuset_for_each_child(child_cs, pos_css, parent_cs)		\
	css_for_each_child((pos_css), &(parent_cs)->css)		\
		if (is_cpuset_online(((child_cs) = css_cs((pos_css)))))
235

236 237 238
/**
 * cpuset_for_each_descendant_pre - pre-order walk of a cpuset's descendants
 * @des_cs: loop cursor pointing to the current descendant
239
 * @pos_css: used for iteration
240 241 242
 * @root_cs: target cpuset to walk ancestor of
 *
 * Walk @des_cs through the online descendants of @root_cs.  Must be used
243
 * with RCU read locked.  The caller may modify @pos_css by calling
244 245
 * css_rightmost_descendant() to skip subtree.  @root_cs is included in the
 * iteration and the first node to be visited.
246
 */
247 248 249
#define cpuset_for_each_descendant_pre(des_cs, pos_css, root_cs)	\
	css_for_each_descendant_pre((pos_css), &(root_cs)->css)		\
		if (is_cpuset_online(((des_cs) = css_cs((pos_css)))))
250

L
Linus Torvalds 已提交
251
/*
252 253 254 255
 * There are two global locks guarding cpuset structures - cpuset_mutex and
 * callback_lock. We also require taking task_lock() when dereferencing a
 * task's cpuset pointer. See "The task_lock() exception", at the end of this
 * comment.
256
 *
257
 * A task must hold both locks to modify cpusets.  If a task holds
258
 * cpuset_mutex, then it blocks others wanting that mutex, ensuring that it
259
 * is the only task able to also acquire callback_lock and be able to
260 261 262
 * modify cpusets.  It can perform various checks on the cpuset structure
 * first, knowing nothing will change.  It can also allocate memory while
 * just holding cpuset_mutex.  While it is performing these checks, various
263 264
 * callback routines can briefly acquire callback_lock to query cpusets.
 * Once it is ready to make the changes, it takes callback_lock, blocking
265
 * everyone else.
266 267
 *
 * Calls to the kernel memory allocator can not be made while holding
268
 * callback_lock, as that would risk double tripping on callback_lock
269 270 271
 * from one of the callbacks into the cpuset code from within
 * __alloc_pages().
 *
272
 * If a task is only holding callback_lock, then it has read-only
273 274
 * access to cpusets.
 *
275 276 277
 * Now, the task_struct fields mems_allowed and mempolicy may be changed
 * by other task, we use alloc_lock in the task_struct fields to protect
 * them.
278
 *
279
 * The cpuset_common_file_read() handlers only hold callback_lock across
280 281 282
 * small pieces of code, such as when reading out possibly multi-word
 * cpumasks and nodemasks.
 *
283 284
 * Accessing a task's cpuset should be done in accordance with the
 * guidelines for accessing subsystem state in kernel/cgroup.c
L
Linus Torvalds 已提交
285 286
 */

287
static DEFINE_MUTEX(cpuset_mutex);
288
static DEFINE_SPINLOCK(callback_lock);
289

290 291 292 293 294 295
/*
 * CPU / memory hotplug is handled asynchronously.
 */
static void cpuset_hotplug_workfn(struct work_struct *work);
static DECLARE_WORK(cpuset_hotplug_work, cpuset_hotplug_workfn);

296 297
static DECLARE_WAIT_QUEUE_HEAD(cpuset_attach_wq);

298 299
/*
 * This is ugly, but preserves the userspace API for existing cpuset
300
 * users. If someone tries to mount the "cpuset" filesystem, we
301 302
 * silently switch it to mount "cgroup" instead
 */
A
Al Viro 已提交
303 304
static struct dentry *cpuset_mount(struct file_system_type *fs_type,
			 int flags, const char *unused_dev_name, void *data)
L
Linus Torvalds 已提交
305
{
306
	struct file_system_type *cgroup_fs = get_fs_type("cgroup");
A
Al Viro 已提交
307
	struct dentry *ret = ERR_PTR(-ENODEV);
308 309 310 311
	if (cgroup_fs) {
		char mountopts[] =
			"cpuset,noprefix,"
			"release_agent=/sbin/cpuset_release_agent";
A
Al Viro 已提交
312 313
		ret = cgroup_fs->mount(cgroup_fs, flags,
					   unused_dev_name, mountopts);
314 315 316
		put_filesystem(cgroup_fs);
	}
	return ret;
L
Linus Torvalds 已提交
317 318 319 320
}

static struct file_system_type cpuset_fs_type = {
	.name = "cpuset",
A
Al Viro 已提交
321
	.mount = cpuset_mount,
L
Linus Torvalds 已提交
322 323 324
};

/*
325
 * Return in pmask the portion of a cpusets's cpus_allowed that
L
Linus Torvalds 已提交
326
 * are online.  If none are online, walk up the cpuset hierarchy
327 328
 * until we find one that does have some online cpus.  The top
 * cpuset always has some cpus online.
L
Linus Torvalds 已提交
329 330
 *
 * One way or another, we guarantee to return some non-empty subset
331
 * of cpu_online_mask.
L
Linus Torvalds 已提交
332
 *
333
 * Call with callback_lock or cpuset_mutex held.
L
Linus Torvalds 已提交
334
 */
335
static void guarantee_online_cpus(struct cpuset *cs, struct cpumask *pmask)
L
Linus Torvalds 已提交
336
{
337
	while (!cpumask_intersects(cs->effective_cpus, cpu_online_mask))
T
Tejun Heo 已提交
338
		cs = parent_cs(cs);
339
	cpumask_and(pmask, cs->effective_cpus, cpu_online_mask);
L
Linus Torvalds 已提交
340 341 342 343
}

/*
 * Return in *pmask the portion of a cpusets's mems_allowed that
344 345
 * are online, with memory.  If none are online with memory, walk
 * up the cpuset hierarchy until we find one that does have some
346
 * online mems.  The top cpuset always has some mems online.
L
Linus Torvalds 已提交
347 348
 *
 * One way or another, we guarantee to return some non-empty subset
349
 * of node_states[N_MEMORY].
L
Linus Torvalds 已提交
350
 *
351
 * Call with callback_lock or cpuset_mutex held.
L
Linus Torvalds 已提交
352
 */
353
static void guarantee_online_mems(struct cpuset *cs, nodemask_t *pmask)
L
Linus Torvalds 已提交
354
{
355
	while (!nodes_intersects(cs->effective_mems, node_states[N_MEMORY]))
T
Tejun Heo 已提交
356
		cs = parent_cs(cs);
357
	nodes_and(*pmask, cs->effective_mems, node_states[N_MEMORY]);
L
Linus Torvalds 已提交
358 359
}

360 361 362
/*
 * update task's spread flag if cpuset's page/slab spread flag is set
 *
363
 * Call with callback_lock or cpuset_mutex held.
364 365 366 367 368
 */
static void cpuset_update_task_spread_flag(struct cpuset *cs,
					struct task_struct *tsk)
{
	if (is_spread_page(cs))
369
		task_set_spread_page(tsk);
370
	else
371 372
		task_clear_spread_page(tsk);

373
	if (is_spread_slab(cs))
374
		task_set_spread_slab(tsk);
375
	else
376
		task_clear_spread_slab(tsk);
377 378
}

L
Linus Torvalds 已提交
379 380 381 382 383
/*
 * is_cpuset_subset(p, q) - Is cpuset p a subset of cpuset q?
 *
 * One cpuset is a subset of another if all its allowed CPUs and
 * Memory Nodes are a subset of the other, and its exclusive flags
384
 * are only set if the other's are set.  Call holding cpuset_mutex.
L
Linus Torvalds 已提交
385 386 387 388
 */

static int is_cpuset_subset(const struct cpuset *p, const struct cpuset *q)
{
389
	return	cpumask_subset(p->cpus_allowed, q->cpus_allowed) &&
L
Linus Torvalds 已提交
390 391 392 393 394
		nodes_subset(p->mems_allowed, q->mems_allowed) &&
		is_cpu_exclusive(p) <= is_cpu_exclusive(q) &&
		is_mem_exclusive(p) <= is_mem_exclusive(q);
}

395 396 397 398
/**
 * alloc_trial_cpuset - allocate a trial cpuset
 * @cs: the cpuset that the trial cpuset duplicates
 */
399
static struct cpuset *alloc_trial_cpuset(struct cpuset *cs)
400
{
401 402 403 404 405 406
	struct cpuset *trial;

	trial = kmemdup(cs, sizeof(*cs), GFP_KERNEL);
	if (!trial)
		return NULL;

407 408 409 410
	if (!alloc_cpumask_var(&trial->cpus_allowed, GFP_KERNEL))
		goto free_cs;
	if (!alloc_cpumask_var(&trial->effective_cpus, GFP_KERNEL))
		goto free_cpus;
411

412 413
	cpumask_copy(trial->cpus_allowed, cs->cpus_allowed);
	cpumask_copy(trial->effective_cpus, cs->effective_cpus);
414
	return trial;
415 416 417 418 419 420

free_cpus:
	free_cpumask_var(trial->cpus_allowed);
free_cs:
	kfree(trial);
	return NULL;
421 422 423 424 425 426 427 428
}

/**
 * free_trial_cpuset - free the trial cpuset
 * @trial: the trial cpuset to be freed
 */
static void free_trial_cpuset(struct cpuset *trial)
{
429
	free_cpumask_var(trial->effective_cpus);
430
	free_cpumask_var(trial->cpus_allowed);
431 432 433
	kfree(trial);
}

L
Linus Torvalds 已提交
434 435 436 437 438 439 440
/*
 * validate_change() - Used to validate that any proposed cpuset change
 *		       follows the structural rules for cpusets.
 *
 * If we replaced the flag and mask values of the current cpuset
 * (cur) with those values in the trial cpuset (trial), would
 * our various subset and exclusive rules still be valid?  Presumes
441
 * cpuset_mutex held.
L
Linus Torvalds 已提交
442 443 444 445 446 447 448 449 450 451 452 453
 *
 * 'cur' is the address of an actual, in-use cpuset.  Operations
 * such as list traversal that depend on the actual address of the
 * cpuset in the list must use cur below, not trial.
 *
 * 'trial' is the address of bulk structure copy of cur, with
 * perhaps one or more of the fields cpus_allowed, mems_allowed,
 * or flags changed to new, trial values.
 *
 * Return 0 if valid, -errno if not.
 */

454
static int validate_change(struct cpuset *cur, struct cpuset *trial)
L
Linus Torvalds 已提交
455
{
456
	struct cgroup_subsys_state *css;
L
Linus Torvalds 已提交
457
	struct cpuset *c, *par;
458 459 460
	int ret;

	rcu_read_lock();
L
Linus Torvalds 已提交
461 462

	/* Each of our child cpusets must be a subset of us */
463
	ret = -EBUSY;
464
	cpuset_for_each_child(c, css, cur)
465 466
		if (!is_cpuset_subset(c, trial))
			goto out;
L
Linus Torvalds 已提交
467 468

	/* Remaining checks don't apply to root cpuset */
469
	ret = 0;
470
	if (cur == &top_cpuset)
471
		goto out;
L
Linus Torvalds 已提交
472

T
Tejun Heo 已提交
473
	par = parent_cs(cur);
474

475
	/* On legacy hiearchy, we must be a subset of our parent cpuset. */
476
	ret = -EACCES;
477 478
	if (!cgroup_subsys_on_dfl(cpuset_cgrp_subsys) &&
	    !is_cpuset_subset(trial, par))
479
		goto out;
L
Linus Torvalds 已提交
480

481 482 483 484
	/*
	 * If either I or some sibling (!= me) is exclusive, we can't
	 * overlap
	 */
485
	ret = -EINVAL;
486
	cpuset_for_each_child(c, css, par) {
L
Linus Torvalds 已提交
487 488
		if ((is_cpu_exclusive(trial) || is_cpu_exclusive(c)) &&
		    c != cur &&
489
		    cpumask_intersects(trial->cpus_allowed, c->cpus_allowed))
490
			goto out;
L
Linus Torvalds 已提交
491 492 493
		if ((is_mem_exclusive(trial) || is_mem_exclusive(c)) &&
		    c != cur &&
		    nodes_intersects(trial->mems_allowed, c->mems_allowed))
494
			goto out;
L
Linus Torvalds 已提交
495 496
	}

497 498
	/*
	 * Cpusets with tasks - existing or newly being attached - can't
499
	 * be changed to have empty cpus_allowed or mems_allowed.
500
	 */
501
	ret = -ENOSPC;
502
	if ((cgroup_is_populated(cur->css.cgroup) || cur->attach_in_progress)) {
503 504 505 506 507 508 509
		if (!cpumask_empty(cur->cpus_allowed) &&
		    cpumask_empty(trial->cpus_allowed))
			goto out;
		if (!nodes_empty(cur->mems_allowed) &&
		    nodes_empty(trial->mems_allowed))
			goto out;
	}
510

511 512 513 514 515 516 517 518 519 520
	/*
	 * We can't shrink if we won't have enough room for SCHED_DEADLINE
	 * tasks.
	 */
	ret = -EBUSY;
	if (is_cpu_exclusive(cur) &&
	    !cpuset_cpumask_can_shrink(cur->cpus_allowed,
				       trial->cpus_allowed))
		goto out;

521 522 523 524
	ret = 0;
out:
	rcu_read_unlock();
	return ret;
L
Linus Torvalds 已提交
525 526
}

527
#ifdef CONFIG_SMP
P
Paul Jackson 已提交
528
/*
529
 * Helper routine for generate_sched_domains().
530
 * Do cpusets a, b have overlapping effective cpus_allowed masks?
P
Paul Jackson 已提交
531 532 533
 */
static int cpusets_overlap(struct cpuset *a, struct cpuset *b)
{
534
	return cpumask_intersects(a->effective_cpus, b->effective_cpus);
P
Paul Jackson 已提交
535 536
}

537 538 539 540 541 542 543 544
static void
update_domain_attr(struct sched_domain_attr *dattr, struct cpuset *c)
{
	if (dattr->relax_domain_level < c->relax_domain_level)
		dattr->relax_domain_level = c->relax_domain_level;
	return;
}

545 546
static void update_domain_attr_tree(struct sched_domain_attr *dattr,
				    struct cpuset *root_cs)
547
{
548
	struct cpuset *cp;
549
	struct cgroup_subsys_state *pos_css;
550

551
	rcu_read_lock();
552
	cpuset_for_each_descendant_pre(cp, pos_css, root_cs) {
553 554
		/* skip the whole subtree if @cp doesn't have any CPU */
		if (cpumask_empty(cp->cpus_allowed)) {
555
			pos_css = css_rightmost_descendant(pos_css);
556
			continue;
557
		}
558 559 560 561

		if (is_sched_load_balance(cp))
			update_domain_attr(dattr, cp);
	}
562
	rcu_read_unlock();
563 564
}

P
Paul Jackson 已提交
565
/*
566 567 568 569 570
 * generate_sched_domains()
 *
 * This function builds a partial partition of the systems CPUs
 * A 'partial partition' is a set of non-overlapping subsets whose
 * union is a subset of that set.
571
 * The output of this function needs to be passed to kernel/sched/core.c
572 573 574
 * partition_sched_domains() routine, which will rebuild the scheduler's
 * load balancing domains (sched domains) as specified by that partial
 * partition.
P
Paul Jackson 已提交
575
 *
L
Li Zefan 已提交
576
 * See "What is sched_load_balance" in Documentation/cgroups/cpusets.txt
P
Paul Jackson 已提交
577 578 579 580 581 582 583
 * for a background explanation of this.
 *
 * Does not return errors, on the theory that the callers of this
 * routine would rather not worry about failures to rebuild sched
 * domains when operating in the severe memory shortage situations
 * that could cause allocation failures below.
 *
584
 * Must be called with cpuset_mutex held.
P
Paul Jackson 已提交
585 586
 *
 * The three key local variables below are:
587
 *    q  - a linked-list queue of cpuset pointers, used to implement a
P
Paul Jackson 已提交
588 589 590 591 592 593 594 595 596 597 598 599
 *	   top-down scan of all cpusets.  This scan loads a pointer
 *	   to each cpuset marked is_sched_load_balance into the
 *	   array 'csa'.  For our purposes, rebuilding the schedulers
 *	   sched domains, we can ignore !is_sched_load_balance cpusets.
 *  csa  - (for CpuSet Array) Array of pointers to all the cpusets
 *	   that need to be load balanced, for convenient iterative
 *	   access by the subsequent code that finds the best partition,
 *	   i.e the set of domains (subsets) of CPUs such that the
 *	   cpus_allowed of every cpuset marked is_sched_load_balance
 *	   is a subset of one of these domains, while there are as
 *	   many such domains as possible, each as small as possible.
 * doms  - Conversion of 'csa' to an array of cpumasks, for passing to
600
 *	   the kernel/sched/core.c routine partition_sched_domains() in a
P
Paul Jackson 已提交
601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618
 *	   convenient format, that can be easily compared to the prior
 *	   value to determine what partition elements (sched domains)
 *	   were changed (added or removed.)
 *
 * Finding the best partition (set of domains):
 *	The triple nested loops below over i, j, k scan over the
 *	load balanced cpusets (using the array of cpuset pointers in
 *	csa[]) looking for pairs of cpusets that have overlapping
 *	cpus_allowed, but which don't have the same 'pn' partition
 *	number and gives them in the same partition number.  It keeps
 *	looping on the 'restart' label until it can no longer find
 *	any such pairs.
 *
 *	The union of the cpus_allowed masks from the set of
 *	all cpusets having the same 'pn' value then form the one
 *	element of the partition (one sched domain) to be passed to
 *	partition_sched_domains().
 */
619
static int generate_sched_domains(cpumask_var_t **domains,
620
			struct sched_domain_attr **attributes)
P
Paul Jackson 已提交
621 622 623 624 625
{
	struct cpuset *cp;	/* scans q */
	struct cpuset **csa;	/* array of all cpuset ptrs */
	int csn;		/* how many cpuset ptrs in csa so far */
	int i, j, k;		/* indices for partition finding loops */
626
	cpumask_var_t *doms;	/* resulting partition; i.e. sched domains */
627
	cpumask_var_t non_isolated_cpus;  /* load balanced CPUs */
628
	struct sched_domain_attr *dattr;  /* attributes for custom domains */
629
	int ndoms = 0;		/* number of sched domains in result */
630
	int nslot;		/* next empty doms[] struct cpumask slot */
631
	struct cgroup_subsys_state *pos_css;
P
Paul Jackson 已提交
632 633

	doms = NULL;
634
	dattr = NULL;
635
	csa = NULL;
P
Paul Jackson 已提交
636

637 638 639 640
	if (!alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL))
		goto done;
	cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);

P
Paul Jackson 已提交
641 642
	/* Special case for the 99% of systems with one, full, sched domain */
	if (is_sched_load_balance(&top_cpuset)) {
643 644
		ndoms = 1;
		doms = alloc_sched_domains(ndoms);
P
Paul Jackson 已提交
645
		if (!doms)
646 647
			goto done;

648 649 650
		dattr = kmalloc(sizeof(struct sched_domain_attr), GFP_KERNEL);
		if (dattr) {
			*dattr = SD_ATTR_INIT;
651
			update_domain_attr_tree(dattr, &top_cpuset);
652
		}
653 654
		cpumask_and(doms[0], top_cpuset.effective_cpus,
				     non_isolated_cpus);
655 656

		goto done;
P
Paul Jackson 已提交
657 658
	}

659
	csa = kmalloc(nr_cpusets() * sizeof(cp), GFP_KERNEL);
P
Paul Jackson 已提交
660 661 662 663
	if (!csa)
		goto done;
	csn = 0;

664
	rcu_read_lock();
665
	cpuset_for_each_descendant_pre(cp, pos_css, &top_cpuset) {
666 667
		if (cp == &top_cpuset)
			continue;
668
		/*
669 670 671 672 673 674
		 * Continue traversing beyond @cp iff @cp has some CPUs and
		 * isn't load balancing.  The former is obvious.  The
		 * latter: All child cpusets contain a subset of the
		 * parent's cpus, so just skip them, and then we call
		 * update_domain_attr_tree() to calc relax_domain_level of
		 * the corresponding sched domain.
675
		 */
676
		if (!cpumask_empty(cp->cpus_allowed) &&
677 678
		    !(is_sched_load_balance(cp) &&
		      cpumask_intersects(cp->cpus_allowed, non_isolated_cpus)))
679
			continue;
680

681 682 683 684
		if (is_sched_load_balance(cp))
			csa[csn++] = cp;

		/* skip @cp's subtree */
685
		pos_css = css_rightmost_descendant(pos_css);
686 687
	}
	rcu_read_unlock();
P
Paul Jackson 已提交
688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715

	for (i = 0; i < csn; i++)
		csa[i]->pn = i;
	ndoms = csn;

restart:
	/* Find the best partition (set of sched domains) */
	for (i = 0; i < csn; i++) {
		struct cpuset *a = csa[i];
		int apn = a->pn;

		for (j = 0; j < csn; j++) {
			struct cpuset *b = csa[j];
			int bpn = b->pn;

			if (apn != bpn && cpusets_overlap(a, b)) {
				for (k = 0; k < csn; k++) {
					struct cpuset *c = csa[k];

					if (c->pn == bpn)
						c->pn = apn;
				}
				ndoms--;	/* one less element */
				goto restart;
			}
		}
	}

716 717 718 719
	/*
	 * Now we know how many domains to create.
	 * Convert <csn, csa> to <ndoms, doms> and populate cpu masks.
	 */
720
	doms = alloc_sched_domains(ndoms);
721
	if (!doms)
722 723 724 725 726 727
		goto done;

	/*
	 * The rest of the code, including the scheduler, can deal with
	 * dattr==NULL case. No need to abort if alloc fails.
	 */
728
	dattr = kmalloc(ndoms * sizeof(struct sched_domain_attr), GFP_KERNEL);
P
Paul Jackson 已提交
729 730 731

	for (nslot = 0, i = 0; i < csn; i++) {
		struct cpuset *a = csa[i];
732
		struct cpumask *dp;
P
Paul Jackson 已提交
733 734
		int apn = a->pn;

735 736 737 738 739
		if (apn < 0) {
			/* Skip completed partitions */
			continue;
		}

740
		dp = doms[nslot];
741 742 743 744

		if (nslot == ndoms) {
			static int warnings = 10;
			if (warnings) {
745 746
				pr_warn("rebuild_sched_domains confused: nslot %d, ndoms %d, csn %d, i %d, apn %d\n",
					nslot, ndoms, csn, i, apn);
747
				warnings--;
P
Paul Jackson 已提交
748
			}
749 750
			continue;
		}
P
Paul Jackson 已提交
751

752
		cpumask_clear(dp);
753 754 755 756 757 758
		if (dattr)
			*(dattr + nslot) = SD_ATTR_INIT;
		for (j = i; j < csn; j++) {
			struct cpuset *b = csa[j];

			if (apn == b->pn) {
759
				cpumask_or(dp, dp, b->effective_cpus);
760
				cpumask_and(dp, dp, non_isolated_cpus);
761 762 763 764 765
				if (dattr)
					update_domain_attr_tree(dattr + nslot, b);

				/* Done with this partition */
				b->pn = -1;
P
Paul Jackson 已提交
766 767
			}
		}
768
		nslot++;
P
Paul Jackson 已提交
769 770 771
	}
	BUG_ON(nslot != ndoms);

772
done:
773
	free_cpumask_var(non_isolated_cpus);
774 775
	kfree(csa);

776 777 778 779 780 781 782
	/*
	 * Fallback to the default domain if kmalloc() failed.
	 * See comments in partition_sched_domains().
	 */
	if (doms == NULL)
		ndoms = 1;

783 784 785 786 787 788 789 790
	*domains    = doms;
	*attributes = dattr;
	return ndoms;
}

/*
 * Rebuild scheduler domains.
 *
791 792 793 794 795
 * If the flag 'sched_load_balance' of any cpuset with non-empty
 * 'cpus' changes, or if the 'cpus' allowed changes in any cpuset
 * which has that flag enabled, or if any cpuset with a non-empty
 * 'cpus' is removed, then call this routine to rebuild the
 * scheduler's dynamic sched domains.
796
 *
797
 * Call with cpuset_mutex held.  Takes get_online_cpus().
798
 */
799
static void rebuild_sched_domains_locked(void)
800 801
{
	struct sched_domain_attr *attr;
802
	cpumask_var_t *doms;
803 804
	int ndoms;

805
	lockdep_assert_held(&cpuset_mutex);
806
	get_online_cpus();
807

808 809 810 811 812
	/*
	 * We have raced with CPU hotplug. Don't do anything to avoid
	 * passing doms with offlined cpu to partition_sched_domains().
	 * Anyways, hotplug work item will rebuild sched domains.
	 */
813
	if (!cpumask_equal(top_cpuset.effective_cpus, cpu_active_mask))
814 815
		goto out;

816 817 818 819 820
	/* Generate domain masks and attrs */
	ndoms = generate_sched_domains(&doms, &attr);

	/* Have scheduler rebuild the domains */
	partition_sched_domains(ndoms, doms, attr);
821
out:
822
	put_online_cpus();
823
}
824
#else /* !CONFIG_SMP */
825
static void rebuild_sched_domains_locked(void)
826 827 828
{
}
#endif /* CONFIG_SMP */
P
Paul Jackson 已提交
829

830 831
void rebuild_sched_domains(void)
{
832
	mutex_lock(&cpuset_mutex);
833
	rebuild_sched_domains_locked();
834
	mutex_unlock(&cpuset_mutex);
P
Paul Jackson 已提交
835 836
}

837 838 839 840
/**
 * update_tasks_cpumask - Update the cpumasks of tasks in the cpuset.
 * @cs: the cpuset in which each task's cpus_allowed mask needs to be changed
 *
841 842 843
 * Iterate through each task of @cs updating its cpus_allowed to the
 * effective cpuset's.  As this function is called with cpuset_mutex held,
 * cpuset membership stays stable.
844
 */
845
static void update_tasks_cpumask(struct cpuset *cs)
846
{
847 848 849 850 851
	struct css_task_iter it;
	struct task_struct *task;

	css_task_iter_start(&cs->css, &it);
	while ((task = css_task_iter_next(&it)))
852
		set_cpus_allowed_ptr(task, cs->effective_cpus);
853
	css_task_iter_end(&it);
854 855
}

856
/*
857 858 859 860 861 862
 * update_cpumasks_hier - Update effective cpumasks and tasks in the subtree
 * @cs: the cpuset to consider
 * @new_cpus: temp variable for calculating new effective_cpus
 *
 * When congifured cpumask is changed, the effective cpumasks of this cpuset
 * and all its descendants need to be updated.
863
 *
864
 * On legacy hierachy, effective_cpus will be the same with cpu_allowed.
865 866 867
 *
 * Called with cpuset_mutex held
 */
868
static void update_cpumasks_hier(struct cpuset *cs, struct cpumask *new_cpus)
869 870
{
	struct cpuset *cp;
871
	struct cgroup_subsys_state *pos_css;
872
	bool need_rebuild_sched_domains = false;
873 874

	rcu_read_lock();
875 876 877 878 879
	cpuset_for_each_descendant_pre(cp, pos_css, cs) {
		struct cpuset *parent = parent_cs(cp);

		cpumask_and(new_cpus, cp->cpus_allowed, parent->effective_cpus);

880 881 882 883
		/*
		 * If it becomes empty, inherit the effective mask of the
		 * parent, which is guaranteed to have some CPUs.
		 */
884 885
		if (cgroup_subsys_on_dfl(cpuset_cgrp_subsys) &&
		    cpumask_empty(new_cpus))
886 887
			cpumask_copy(new_cpus, parent->effective_cpus);

888 889 890 891
		/* Skip the whole subtree if the cpumask remains the same. */
		if (cpumask_equal(new_cpus, cp->effective_cpus)) {
			pos_css = css_rightmost_descendant(pos_css);
			continue;
892
		}
893

894
		if (!css_tryget_online(&cp->css))
895 896 897
			continue;
		rcu_read_unlock();

898
		spin_lock_irq(&callback_lock);
899
		cpumask_copy(cp->effective_cpus, new_cpus);
900
		spin_unlock_irq(&callback_lock);
901

902
		WARN_ON(!cgroup_subsys_on_dfl(cpuset_cgrp_subsys) &&
903 904
			!cpumask_equal(cp->cpus_allowed, cp->effective_cpus));

905
		update_tasks_cpumask(cp);
906

907 908 909 910 911 912 913 914
		/*
		 * If the effective cpumask of any non-empty cpuset is changed,
		 * we need to rebuild sched domains.
		 */
		if (!cpumask_empty(cp->cpus_allowed) &&
		    is_sched_load_balance(cp))
			need_rebuild_sched_domains = true;

915 916 917 918
		rcu_read_lock();
		css_put(&cp->css);
	}
	rcu_read_unlock();
919 920 921

	if (need_rebuild_sched_domains)
		rebuild_sched_domains_locked();
922 923
}

C
Cliff Wickman 已提交
924 925 926
/**
 * update_cpumask - update the cpus_allowed mask of a cpuset and all tasks in it
 * @cs: the cpuset to consider
927
 * @trialcs: trial cpuset
C
Cliff Wickman 已提交
928 929
 * @buf: buffer of cpu numbers written to this cpuset
 */
930 931
static int update_cpumask(struct cpuset *cs, struct cpuset *trialcs,
			  const char *buf)
L
Linus Torvalds 已提交
932
{
C
Cliff Wickman 已提交
933
	int retval;
L
Linus Torvalds 已提交
934

935
	/* top_cpuset.cpus_allowed tracks cpu_online_mask; it's read-only */
936 937 938
	if (cs == &top_cpuset)
		return -EACCES;

939
	/*
940
	 * An empty cpus_allowed is ok only if the cpuset has no tasks.
941 942 943
	 * Since cpulist_parse() fails on an empty mask, we special case
	 * that parsing.  The validate_change() call ensures that cpusets
	 * with tasks have cpus.
944
	 */
945
	if (!*buf) {
946
		cpumask_clear(trialcs->cpus_allowed);
947
	} else {
948
		retval = cpulist_parse(buf, trialcs->cpus_allowed);
949 950
		if (retval < 0)
			return retval;
951

952 953
		if (!cpumask_subset(trialcs->cpus_allowed,
				    top_cpuset.cpus_allowed))
954
			return -EINVAL;
955
	}
P
Paul Jackson 已提交
956

P
Paul Menage 已提交
957
	/* Nothing to do if the cpus didn't change */
958
	if (cpumask_equal(cs->cpus_allowed, trialcs->cpus_allowed))
P
Paul Menage 已提交
959
		return 0;
C
Cliff Wickman 已提交
960

961 962 963 964
	retval = validate_change(cs, trialcs);
	if (retval < 0)
		return retval;

965
	spin_lock_irq(&callback_lock);
966
	cpumask_copy(cs->cpus_allowed, trialcs->cpus_allowed);
967
	spin_unlock_irq(&callback_lock);
P
Paul Jackson 已提交
968

969 970
	/* use trialcs->cpus_allowed as a temp variable */
	update_cpumasks_hier(cs, trialcs->cpus_allowed);
971
	return 0;
L
Linus Torvalds 已提交
972 973
}

974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996
/*
 * cpuset_migrate_mm
 *
 *    Migrate memory region from one set of nodes to another.
 *
 *    Temporarilly set tasks mems_allowed to target nodes of migration,
 *    so that the migration code can allocate pages on these nodes.
 *
 *    While the mm_struct we are migrating is typically from some
 *    other task, the task_struct mems_allowed that we are hacking
 *    is for our current task, which must allocate new pages for that
 *    migrating memory region.
 */

static void cpuset_migrate_mm(struct mm_struct *mm, const nodemask_t *from,
							const nodemask_t *to)
{
	struct task_struct *tsk = current;

	tsk->mems_allowed = *to;

	do_migrate_pages(mm, from, to, MPOL_MF_MOVE_ALL);

997
	rcu_read_lock();
998
	guarantee_online_mems(task_cs(tsk), &tsk->mems_allowed);
999
	rcu_read_unlock();
1000 1001
}

1002
/*
1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013
 * cpuset_change_task_nodemask - change task's mems_allowed and mempolicy
 * @tsk: the task to change
 * @newmems: new nodes that the task will be set
 *
 * In order to avoid seeing no nodes if the old and new nodes are disjoint,
 * we structure updates as setting all new allowed nodes, then clearing newly
 * disallowed ones.
 */
static void cpuset_change_task_nodemask(struct task_struct *tsk,
					nodemask_t *newmems)
{
1014
	bool need_loop;
1015

1016 1017 1018 1019 1020 1021 1022 1023 1024 1025
	/*
	 * Allow tasks that have access to memory reserves because they have
	 * been OOM killed to get memory anywhere.
	 */
	if (unlikely(test_thread_flag(TIF_MEMDIE)))
		return;
	if (current->flags & PF_EXITING) /* Let dying task have memory */
		return;

	task_lock(tsk);
1026 1027
	/*
	 * Determine if a loop is necessary if another thread is doing
1028
	 * read_mems_allowed_begin().  If at least one node remains unchanged and
1029 1030 1031 1032 1033
	 * tsk does not have a mempolicy, then an empty nodemask will not be
	 * possible when mems_allowed is larger than a word.
	 */
	need_loop = task_has_mempolicy(tsk) ||
			!nodes_intersects(*newmems, tsk->mems_allowed);
1034

1035 1036
	if (need_loop) {
		local_irq_disable();
1037
		write_seqcount_begin(&tsk->mems_allowed_seq);
1038
	}
1039

1040 1041
	nodes_or(tsk->mems_allowed, tsk->mems_allowed, *newmems);
	mpol_rebind_task(tsk, newmems, MPOL_REBIND_STEP1);
1042 1043

	mpol_rebind_task(tsk, newmems, MPOL_REBIND_STEP2);
1044
	tsk->mems_allowed = *newmems;
1045

1046
	if (need_loop) {
1047
		write_seqcount_end(&tsk->mems_allowed_seq);
1048 1049
		local_irq_enable();
	}
1050

1051
	task_unlock(tsk);
1052 1053
}

1054 1055
static void *cpuset_being_rebound;

1056 1057 1058 1059
/**
 * update_tasks_nodemask - Update the nodemasks of tasks in the cpuset.
 * @cs: the cpuset in which each task's mems_allowed mask needs to be changed
 *
1060 1061 1062
 * Iterate through each task of @cs updating its mems_allowed to the
 * effective cpuset's.  As this function is called with cpuset_mutex held,
 * cpuset membership stays stable.
1063
 */
1064
static void update_tasks_nodemask(struct cpuset *cs)
L
Linus Torvalds 已提交
1065
{
1066
	static nodemask_t newmems;	/* protected by cpuset_mutex */
1067 1068
	struct css_task_iter it;
	struct task_struct *task;
1069

1070
	cpuset_being_rebound = cs;		/* causes mpol_dup() rebind */
1071

1072
	guarantee_online_mems(cs, &newmems);
1073

1074
	/*
1075 1076 1077 1078
	 * The mpol_rebind_mm() call takes mmap_sem, which we couldn't
	 * take while holding tasklist_lock.  Forks can happen - the
	 * mpol_dup() cpuset_being_rebound check will catch such forks,
	 * and rebind their vma mempolicies too.  Because we still hold
1079
	 * the global cpuset_mutex, we know that no other rebind effort
1080
	 * will be contending for the global variable cpuset_being_rebound.
1081
	 * It's ok if we rebind the same mm twice; mpol_rebind_mm()
1082
	 * is idempotent.  Also migrate pages in each mm to new nodes.
1083
	 */
1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102
	css_task_iter_start(&cs->css, &it);
	while ((task = css_task_iter_next(&it))) {
		struct mm_struct *mm;
		bool migrate;

		cpuset_change_task_nodemask(task, &newmems);

		mm = get_task_mm(task);
		if (!mm)
			continue;

		migrate = is_memory_migrate(cs);

		mpol_rebind_mm(mm, &cs->mems_allowed);
		if (migrate)
			cpuset_migrate_mm(mm, &cs->old_mems_allowed, &newmems);
		mmput(mm);
	}
	css_task_iter_end(&it);
1103

1104 1105 1106 1107 1108 1109
	/*
	 * All the tasks' nodemasks have been updated, update
	 * cs->old_mems_allowed.
	 */
	cs->old_mems_allowed = newmems;

1110
	/* We're done rebinding vmas to this cpuset's new mems_allowed. */
1111
	cpuset_being_rebound = NULL;
L
Linus Torvalds 已提交
1112 1113
}

1114
/*
1115 1116 1117
 * update_nodemasks_hier - Update effective nodemasks and tasks in the subtree
 * @cs: the cpuset to consider
 * @new_mems: a temp variable for calculating new effective_mems
1118
 *
1119 1120
 * When configured nodemask is changed, the effective nodemasks of this cpuset
 * and all its descendants need to be updated.
1121
 *
1122
 * On legacy hiearchy, effective_mems will be the same with mems_allowed.
1123 1124 1125
 *
 * Called with cpuset_mutex held
 */
1126
static void update_nodemasks_hier(struct cpuset *cs, nodemask_t *new_mems)
1127 1128
{
	struct cpuset *cp;
1129
	struct cgroup_subsys_state *pos_css;
1130 1131

	rcu_read_lock();
1132 1133 1134 1135 1136
	cpuset_for_each_descendant_pre(cp, pos_css, cs) {
		struct cpuset *parent = parent_cs(cp);

		nodes_and(*new_mems, cp->mems_allowed, parent->effective_mems);

1137 1138 1139 1140
		/*
		 * If it becomes empty, inherit the effective mask of the
		 * parent, which is guaranteed to have some MEMs.
		 */
1141 1142
		if (cgroup_subsys_on_dfl(cpuset_cgrp_subsys) &&
		    nodes_empty(*new_mems))
1143 1144
			*new_mems = parent->effective_mems;

1145 1146 1147 1148
		/* Skip the whole subtree if the nodemask remains the same. */
		if (nodes_equal(*new_mems, cp->effective_mems)) {
			pos_css = css_rightmost_descendant(pos_css);
			continue;
1149
		}
1150

1151
		if (!css_tryget_online(&cp->css))
1152 1153 1154
			continue;
		rcu_read_unlock();

1155
		spin_lock_irq(&callback_lock);
1156
		cp->effective_mems = *new_mems;
1157
		spin_unlock_irq(&callback_lock);
1158

1159
		WARN_ON(!cgroup_subsys_on_dfl(cpuset_cgrp_subsys) &&
1160
			!nodes_equal(cp->mems_allowed, cp->effective_mems));
1161

1162
		update_tasks_nodemask(cp);
1163 1164 1165 1166 1167 1168 1169

		rcu_read_lock();
		css_put(&cp->css);
	}
	rcu_read_unlock();
}

1170 1171 1172
/*
 * Handle user request to change the 'mems' memory placement
 * of a cpuset.  Needs to validate the request, update the
1173 1174 1175 1176
 * cpusets mems_allowed, and for each task in the cpuset,
 * update mems_allowed and rebind task's mempolicy and any vma
 * mempolicies and if the cpuset is marked 'memory_migrate',
 * migrate the tasks pages to the new memory.
1177
 *
1178
 * Call with cpuset_mutex held. May take callback_lock during call.
1179 1180 1181 1182
 * Will take tasklist_lock, scan tasklist for tasks in cpuset cs,
 * lock each such tasks mm->mmap_sem, scan its vma's and rebind
 * their mempolicies to the cpusets new mems_allowed.
 */
1183 1184
static int update_nodemask(struct cpuset *cs, struct cpuset *trialcs,
			   const char *buf)
1185 1186 1187 1188
{
	int retval;

	/*
1189
	 * top_cpuset.mems_allowed tracks node_stats[N_MEMORY];
1190 1191
	 * it's read-only
	 */
1192 1193 1194 1195
	if (cs == &top_cpuset) {
		retval = -EACCES;
		goto done;
	}
1196 1197 1198 1199 1200 1201 1202 1203

	/*
	 * An empty mems_allowed is ok iff there are no tasks in the cpuset.
	 * Since nodelist_parse() fails on an empty mask, we special case
	 * that parsing.  The validate_change() call ensures that cpusets
	 * with tasks have memory.
	 */
	if (!*buf) {
1204
		nodes_clear(trialcs->mems_allowed);
1205
	} else {
1206
		retval = nodelist_parse(buf, trialcs->mems_allowed);
1207 1208 1209
		if (retval < 0)
			goto done;

1210
		if (!nodes_subset(trialcs->mems_allowed,
1211 1212
				  top_cpuset.mems_allowed)) {
			retval = -EINVAL;
1213 1214
			goto done;
		}
1215
	}
1216 1217

	if (nodes_equal(cs->mems_allowed, trialcs->mems_allowed)) {
1218 1219 1220
		retval = 0;		/* Too easy - nothing to do */
		goto done;
	}
1221
	retval = validate_change(cs, trialcs);
1222 1223 1224
	if (retval < 0)
		goto done;

1225
	spin_lock_irq(&callback_lock);
1226
	cs->mems_allowed = trialcs->mems_allowed;
1227
	spin_unlock_irq(&callback_lock);
1228

1229
	/* use trialcs->mems_allowed as a temp variable */
1230
	update_nodemasks_hier(cs, &trialcs->mems_allowed);
1231 1232 1233 1234
done:
	return retval;
}

1235 1236
int current_cpuset_is_being_rebound(void)
{
1237 1238 1239 1240 1241 1242 1243
	int ret;

	rcu_read_lock();
	ret = task_cs(current) == cpuset_being_rebound;
	rcu_read_unlock();

	return ret;
1244 1245
}

1246
static int update_relax_domain_level(struct cpuset *cs, s64 val)
1247
{
1248
#ifdef CONFIG_SMP
1249
	if (val < -1 || val >= sched_domain_level_max)
1250
		return -EINVAL;
1251
#endif
1252 1253 1254

	if (val != cs->relax_domain_level) {
		cs->relax_domain_level = val;
1255 1256
		if (!cpumask_empty(cs->cpus_allowed) &&
		    is_sched_load_balance(cs))
1257
			rebuild_sched_domains_locked();
1258 1259 1260 1261 1262
	}

	return 0;
}

1263
/**
1264 1265 1266
 * update_tasks_flags - update the spread flags of tasks in the cpuset.
 * @cs: the cpuset in which each task's spread flags needs to be changed
 *
1267 1268 1269
 * Iterate through each task of @cs updating its spread flags.  As this
 * function is called with cpuset_mutex held, cpuset membership stays
 * stable.
1270
 */
1271
static void update_tasks_flags(struct cpuset *cs)
1272
{
1273 1274 1275 1276 1277 1278 1279
	struct css_task_iter it;
	struct task_struct *task;

	css_task_iter_start(&cs->css, &it);
	while ((task = css_task_iter_next(&it)))
		cpuset_update_task_spread_flag(cs, task);
	css_task_iter_end(&it);
1280 1281
}

L
Linus Torvalds 已提交
1282 1283
/*
 * update_flag - read a 0 or a 1 in a file and update associated flag
1284 1285 1286
 * bit:		the bit to update (see cpuset_flagbits_t)
 * cs:		the cpuset to update
 * turning_on: 	whether the flag is being set or cleared
1287
 *
1288
 * Call with cpuset_mutex held.
L
Linus Torvalds 已提交
1289 1290
 */

1291 1292
static int update_flag(cpuset_flagbits_t bit, struct cpuset *cs,
		       int turning_on)
L
Linus Torvalds 已提交
1293
{
1294
	struct cpuset *trialcs;
R
Rakib Mullick 已提交
1295
	int balance_flag_changed;
1296 1297
	int spread_flag_changed;
	int err;
L
Linus Torvalds 已提交
1298

1299 1300 1301 1302
	trialcs = alloc_trial_cpuset(cs);
	if (!trialcs)
		return -ENOMEM;

L
Linus Torvalds 已提交
1303
	if (turning_on)
1304
		set_bit(bit, &trialcs->flags);
L
Linus Torvalds 已提交
1305
	else
1306
		clear_bit(bit, &trialcs->flags);
L
Linus Torvalds 已提交
1307

1308
	err = validate_change(cs, trialcs);
1309
	if (err < 0)
1310
		goto out;
P
Paul Jackson 已提交
1311 1312

	balance_flag_changed = (is_sched_load_balance(cs) !=
1313
				is_sched_load_balance(trialcs));
P
Paul Jackson 已提交
1314

1315 1316 1317
	spread_flag_changed = ((is_spread_slab(cs) != is_spread_slab(trialcs))
			|| (is_spread_page(cs) != is_spread_page(trialcs)));

1318
	spin_lock_irq(&callback_lock);
1319
	cs->flags = trialcs->flags;
1320
	spin_unlock_irq(&callback_lock);
1321

1322
	if (!cpumask_empty(trialcs->cpus_allowed) && balance_flag_changed)
1323
		rebuild_sched_domains_locked();
P
Paul Jackson 已提交
1324

1325
	if (spread_flag_changed)
1326
		update_tasks_flags(cs);
1327 1328 1329
out:
	free_trial_cpuset(trialcs);
	return err;
L
Linus Torvalds 已提交
1330 1331
}

1332
/*
A
Adrian Bunk 已提交
1333
 * Frequency meter - How fast is some event occurring?
1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377
 *
 * These routines manage a digitally filtered, constant time based,
 * event frequency meter.  There are four routines:
 *   fmeter_init() - initialize a frequency meter.
 *   fmeter_markevent() - called each time the event happens.
 *   fmeter_getrate() - returns the recent rate of such events.
 *   fmeter_update() - internal routine used to update fmeter.
 *
 * A common data structure is passed to each of these routines,
 * which is used to keep track of the state required to manage the
 * frequency meter and its digital filter.
 *
 * The filter works on the number of events marked per unit time.
 * The filter is single-pole low-pass recursive (IIR).  The time unit
 * is 1 second.  Arithmetic is done using 32-bit integers scaled to
 * simulate 3 decimal digits of precision (multiplied by 1000).
 *
 * With an FM_COEF of 933, and a time base of 1 second, the filter
 * has a half-life of 10 seconds, meaning that if the events quit
 * happening, then the rate returned from the fmeter_getrate()
 * will be cut in half each 10 seconds, until it converges to zero.
 *
 * It is not worth doing a real infinitely recursive filter.  If more
 * than FM_MAXTICKS ticks have elapsed since the last filter event,
 * just compute FM_MAXTICKS ticks worth, by which point the level
 * will be stable.
 *
 * Limit the count of unprocessed events to FM_MAXCNT, so as to avoid
 * arithmetic overflow in the fmeter_update() routine.
 *
 * Given the simple 32 bit integer arithmetic used, this meter works
 * best for reporting rates between one per millisecond (msec) and
 * one per 32 (approx) seconds.  At constant rates faster than one
 * per msec it maxes out at values just under 1,000,000.  At constant
 * rates between one per msec, and one per second it will stabilize
 * to a value N*1000, where N is the rate of events per second.
 * At constant rates between one per second and one per 32 seconds,
 * it will be choppy, moving up on the seconds that have an event,
 * and then decaying until the next event.  At rates slower than
 * about one in 32 seconds, it decays all the way back to zero between
 * each event.
 */

#define FM_COEF 933		/* coefficient for half-life of 10 secs */
1378
#define FM_MAXTICKS ((u32)99)   /* useless computing more ticks than this */
1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393
#define FM_MAXCNT 1000000	/* limit cnt to avoid overflow */
#define FM_SCALE 1000		/* faux fixed point scale */

/* Initialize a frequency meter */
static void fmeter_init(struct fmeter *fmp)
{
	fmp->cnt = 0;
	fmp->val = 0;
	fmp->time = 0;
	spin_lock_init(&fmp->lock);
}

/* Internal meter update - process cnt events and update value */
static void fmeter_update(struct fmeter *fmp)
{
1394 1395 1396 1397 1398
	time64_t now;
	u32 ticks;

	now = ktime_get_seconds();
	ticks = now - fmp->time;
1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432

	if (ticks == 0)
		return;

	ticks = min(FM_MAXTICKS, ticks);
	while (ticks-- > 0)
		fmp->val = (FM_COEF * fmp->val) / FM_SCALE;
	fmp->time = now;

	fmp->val += ((FM_SCALE - FM_COEF) * fmp->cnt) / FM_SCALE;
	fmp->cnt = 0;
}

/* Process any previous ticks, then bump cnt by one (times scale). */
static void fmeter_markevent(struct fmeter *fmp)
{
	spin_lock(&fmp->lock);
	fmeter_update(fmp);
	fmp->cnt = min(FM_MAXCNT, fmp->cnt + FM_SCALE);
	spin_unlock(&fmp->lock);
}

/* Process any previous ticks, then return current value. */
static int fmeter_getrate(struct fmeter *fmp)
{
	int val;

	spin_lock(&fmp->lock);
	fmeter_update(fmp);
	val = fmp->val;
	spin_unlock(&fmp->lock);
	return val;
}

1433 1434
static struct cpuset *cpuset_attach_old_cs;

1435
/* Called by cgroups to determine if a cpuset is usable; cpuset_mutex held */
1436 1437
static int cpuset_can_attach(struct cgroup_subsys_state *css,
			     struct cgroup_taskset *tset)
1438
{
1439
	struct cpuset *cs = css_cs(css);
1440 1441
	struct task_struct *task;
	int ret;
L
Linus Torvalds 已提交
1442

1443 1444 1445
	/* used later by cpuset_attach() */
	cpuset_attach_old_cs = task_cs(cgroup_taskset_first(tset));

1446 1447
	mutex_lock(&cpuset_mutex);

1448
	/* allow moving tasks into an empty cpuset if on default hierarchy */
1449
	ret = -ENOSPC;
1450
	if (!cgroup_subsys_on_dfl(cpuset_cgrp_subsys) &&
1451
	    (cpumask_empty(cs->cpus_allowed) || nodes_empty(cs->mems_allowed)))
1452
		goto out_unlock;
1453

1454
	cgroup_taskset_for_each(task, tset) {
1455 1456
		ret = task_can_attach(task, cs->cpus_allowed);
		if (ret)
1457 1458 1459 1460
			goto out_unlock;
		ret = security_task_setscheduler(task);
		if (ret)
			goto out_unlock;
1461
	}
1462

1463 1464 1465 1466 1467
	/*
	 * Mark attach is in progress.  This makes validate_change() fail
	 * changes which zero cpus/mems_allowed.
	 */
	cs->attach_in_progress++;
1468 1469 1470 1471
	ret = 0;
out_unlock:
	mutex_unlock(&cpuset_mutex);
	return ret;
1472
}
1473

1474
static void cpuset_cancel_attach(struct cgroup_subsys_state *css,
1475 1476
				 struct cgroup_taskset *tset)
{
1477
	mutex_lock(&cpuset_mutex);
1478
	css_cs(css)->attach_in_progress--;
1479
	mutex_unlock(&cpuset_mutex);
1480
}
L
Linus Torvalds 已提交
1481

1482
/*
1483
 * Protected by cpuset_mutex.  cpus_attach is used only by cpuset_attach()
1484 1485 1486 1487 1488
 * but we can't allocate it dynamically there.  Define it global and
 * allocate from cpuset_init().
 */
static cpumask_var_t cpus_attach;

1489 1490
static void cpuset_attach(struct cgroup_subsys_state *css,
			  struct cgroup_taskset *tset)
1491
{
1492
	/* static buf protected by cpuset_mutex */
1493
	static nodemask_t cpuset_attach_nodemask_to;
1494
	struct task_struct *task;
1495
	struct task_struct *leader;
1496
	struct cpuset *cs = css_cs(css);
1497
	struct cpuset *oldcs = cpuset_attach_old_cs;
1498

1499 1500
	mutex_lock(&cpuset_mutex);

1501 1502 1503 1504
	/* prepare for attach */
	if (cs == &top_cpuset)
		cpumask_copy(cpus_attach, cpu_possible_mask);
	else
1505
		guarantee_online_cpus(cs, cpus_attach);
1506

1507
	guarantee_online_mems(cs, &cpuset_attach_nodemask_to);
1508

1509
	cgroup_taskset_for_each(task, tset) {
1510 1511 1512 1513 1514 1515 1516 1517 1518
		/*
		 * can_attach beforehand should guarantee that this doesn't
		 * fail.  TODO: have a better way to handle failure here
		 */
		WARN_ON_ONCE(set_cpus_allowed_ptr(task, cpus_attach));

		cpuset_change_task_nodemask(task, &cpuset_attach_nodemask_to);
		cpuset_update_task_spread_flag(cs, task);
	}
1519

1520
	/*
1521 1522
	 * Change mm for all threadgroup leaders. This is expensive and may
	 * sleep and should be moved outside migration path proper.
1523
	 */
1524
	cpuset_attach_nodemask_to = cs->effective_mems;
1525
	cgroup_taskset_for_each_leader(leader, tset) {
1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543
		struct mm_struct *mm = get_task_mm(leader);

		if (mm) {
			mpol_rebind_mm(mm, &cpuset_attach_nodemask_to);

			/*
			 * old_mems_allowed is the same with mems_allowed
			 * here, except if this task is being moved
			 * automatically due to hotplug.  In that case
			 * @mems_allowed has been updated and is empty, so
			 * @old_mems_allowed is the right nodesets that we
			 * migrate mm from.
			 */
			if (is_memory_migrate(cs)) {
				cpuset_migrate_mm(mm, &oldcs->old_mems_allowed,
						  &cpuset_attach_nodemask_to);
			}
			mmput(mm);
1544
		}
1545
	}
1546

1547
	cs->old_mems_allowed = cpuset_attach_nodemask_to;
1548

1549
	cs->attach_in_progress--;
1550 1551
	if (!cs->attach_in_progress)
		wake_up(&cpuset_attach_wq);
1552 1553

	mutex_unlock(&cpuset_mutex);
L
Linus Torvalds 已提交
1554 1555 1556 1557 1558
}

/* The various types of files and directories in a cpuset file system */

typedef enum {
1559
	FILE_MEMORY_MIGRATE,
L
Linus Torvalds 已提交
1560 1561
	FILE_CPULIST,
	FILE_MEMLIST,
1562 1563
	FILE_EFFECTIVE_CPULIST,
	FILE_EFFECTIVE_MEMLIST,
L
Linus Torvalds 已提交
1564 1565
	FILE_CPU_EXCLUSIVE,
	FILE_MEM_EXCLUSIVE,
1566
	FILE_MEM_HARDWALL,
P
Paul Jackson 已提交
1567
	FILE_SCHED_LOAD_BALANCE,
1568
	FILE_SCHED_RELAX_DOMAIN_LEVEL,
1569 1570
	FILE_MEMORY_PRESSURE_ENABLED,
	FILE_MEMORY_PRESSURE,
1571 1572
	FILE_SPREAD_PAGE,
	FILE_SPREAD_SLAB,
L
Linus Torvalds 已提交
1573 1574
} cpuset_filetype_t;

1575 1576
static int cpuset_write_u64(struct cgroup_subsys_state *css, struct cftype *cft,
			    u64 val)
1577
{
1578
	struct cpuset *cs = css_cs(css);
1579
	cpuset_filetype_t type = cft->private;
1580
	int retval = 0;
1581

1582
	mutex_lock(&cpuset_mutex);
1583 1584
	if (!is_cpuset_online(cs)) {
		retval = -ENODEV;
1585
		goto out_unlock;
1586
	}
1587 1588

	switch (type) {
L
Linus Torvalds 已提交
1589
	case FILE_CPU_EXCLUSIVE:
1590
		retval = update_flag(CS_CPU_EXCLUSIVE, cs, val);
L
Linus Torvalds 已提交
1591 1592
		break;
	case FILE_MEM_EXCLUSIVE:
1593
		retval = update_flag(CS_MEM_EXCLUSIVE, cs, val);
L
Linus Torvalds 已提交
1594
		break;
1595 1596 1597
	case FILE_MEM_HARDWALL:
		retval = update_flag(CS_MEM_HARDWALL, cs, val);
		break;
P
Paul Jackson 已提交
1598
	case FILE_SCHED_LOAD_BALANCE:
1599
		retval = update_flag(CS_SCHED_LOAD_BALANCE, cs, val);
1600
		break;
1601
	case FILE_MEMORY_MIGRATE:
1602
		retval = update_flag(CS_MEMORY_MIGRATE, cs, val);
1603
		break;
1604
	case FILE_MEMORY_PRESSURE_ENABLED:
1605
		cpuset_memory_pressure_enabled = !!val;
1606
		break;
1607
	case FILE_SPREAD_PAGE:
1608
		retval = update_flag(CS_SPREAD_PAGE, cs, val);
1609 1610
		break;
	case FILE_SPREAD_SLAB:
1611
		retval = update_flag(CS_SPREAD_SLAB, cs, val);
1612
		break;
L
Linus Torvalds 已提交
1613 1614
	default:
		retval = -EINVAL;
1615
		break;
L
Linus Torvalds 已提交
1616
	}
1617 1618
out_unlock:
	mutex_unlock(&cpuset_mutex);
L
Linus Torvalds 已提交
1619 1620 1621
	return retval;
}

1622 1623
static int cpuset_write_s64(struct cgroup_subsys_state *css, struct cftype *cft,
			    s64 val)
1624
{
1625
	struct cpuset *cs = css_cs(css);
1626
	cpuset_filetype_t type = cft->private;
1627
	int retval = -ENODEV;
1628

1629 1630 1631
	mutex_lock(&cpuset_mutex);
	if (!is_cpuset_online(cs))
		goto out_unlock;
1632

1633 1634 1635 1636 1637 1638 1639 1640
	switch (type) {
	case FILE_SCHED_RELAX_DOMAIN_LEVEL:
		retval = update_relax_domain_level(cs, val);
		break;
	default:
		retval = -EINVAL;
		break;
	}
1641 1642
out_unlock:
	mutex_unlock(&cpuset_mutex);
1643 1644 1645
	return retval;
}

1646 1647 1648
/*
 * Common handling for a write to a "cpus" or "mems" file.
 */
1649 1650
static ssize_t cpuset_write_resmask(struct kernfs_open_file *of,
				    char *buf, size_t nbytes, loff_t off)
1651
{
1652
	struct cpuset *cs = css_cs(of_css(of));
1653
	struct cpuset *trialcs;
1654
	int retval = -ENODEV;
1655

1656 1657
	buf = strstrip(buf);

1658 1659 1660 1661 1662 1663 1664 1665 1666 1667
	/*
	 * CPU or memory hotunplug may leave @cs w/o any execution
	 * resources, in which case the hotplug code asynchronously updates
	 * configuration and transfers all tasks to the nearest ancestor
	 * which can execute.
	 *
	 * As writes to "cpus" or "mems" may restore @cs's execution
	 * resources, wait for the previously scheduled operations before
	 * proceeding, so that we don't end up keep removing tasks added
	 * after execution capability is restored.
1668 1669 1670 1671 1672 1673 1674 1675
	 *
	 * cpuset_hotplug_work calls back into cgroup core via
	 * cgroup_transfer_tasks() and waiting for it from a cgroupfs
	 * operation like this one can lead to a deadlock through kernfs
	 * active_ref protection.  Let's break the protection.  Losing the
	 * protection is okay as we check whether @cs is online after
	 * grabbing cpuset_mutex anyway.  This only happens on the legacy
	 * hierarchies.
1676
	 */
1677 1678
	css_get(&cs->css);
	kernfs_break_active_protection(of->kn);
1679 1680
	flush_work(&cpuset_hotplug_work);

1681 1682 1683
	mutex_lock(&cpuset_mutex);
	if (!is_cpuset_online(cs))
		goto out_unlock;
1684

1685
	trialcs = alloc_trial_cpuset(cs);
1686 1687
	if (!trialcs) {
		retval = -ENOMEM;
1688
		goto out_unlock;
1689
	}
1690

1691
	switch (of_cft(of)->private) {
1692
	case FILE_CPULIST:
1693
		retval = update_cpumask(cs, trialcs, buf);
1694 1695
		break;
	case FILE_MEMLIST:
1696
		retval = update_nodemask(cs, trialcs, buf);
1697 1698 1699 1700 1701
		break;
	default:
		retval = -EINVAL;
		break;
	}
1702 1703

	free_trial_cpuset(trialcs);
1704 1705
out_unlock:
	mutex_unlock(&cpuset_mutex);
1706 1707
	kernfs_unbreak_active_protection(of->kn);
	css_put(&cs->css);
1708
	return retval ?: nbytes;
1709 1710
}

L
Linus Torvalds 已提交
1711 1712 1713 1714 1715 1716 1717 1718
/*
 * These ascii lists should be read in a single call, by using a user
 * buffer large enough to hold the entire map.  If read in smaller
 * chunks, there is no guarantee of atomicity.  Since the display format
 * used, list of ranges of sequential numbers, is variable length,
 * and since these maps can change value dynamically, one could read
 * gibberish by doing partial reads while a list was changing.
 */
1719
static int cpuset_common_seq_show(struct seq_file *sf, void *v)
L
Linus Torvalds 已提交
1720
{
1721 1722
	struct cpuset *cs = css_cs(seq_css(sf));
	cpuset_filetype_t type = seq_cft(sf)->private;
1723
	int ret = 0;
L
Linus Torvalds 已提交
1724

1725
	spin_lock_irq(&callback_lock);
L
Linus Torvalds 已提交
1726 1727 1728

	switch (type) {
	case FILE_CPULIST:
1729
		seq_printf(sf, "%*pbl\n", cpumask_pr_args(cs->cpus_allowed));
L
Linus Torvalds 已提交
1730 1731
		break;
	case FILE_MEMLIST:
1732
		seq_printf(sf, "%*pbl\n", nodemask_pr_args(&cs->mems_allowed));
L
Linus Torvalds 已提交
1733
		break;
1734
	case FILE_EFFECTIVE_CPULIST:
1735
		seq_printf(sf, "%*pbl\n", cpumask_pr_args(cs->effective_cpus));
1736 1737
		break;
	case FILE_EFFECTIVE_MEMLIST:
1738
		seq_printf(sf, "%*pbl\n", nodemask_pr_args(&cs->effective_mems));
1739
		break;
L
Linus Torvalds 已提交
1740
	default:
1741
		ret = -EINVAL;
L
Linus Torvalds 已提交
1742 1743
	}

1744
	spin_unlock_irq(&callback_lock);
1745
	return ret;
L
Linus Torvalds 已提交
1746 1747
}

1748
static u64 cpuset_read_u64(struct cgroup_subsys_state *css, struct cftype *cft)
1749
{
1750
	struct cpuset *cs = css_cs(css);
1751 1752 1753 1754 1755 1756
	cpuset_filetype_t type = cft->private;
	switch (type) {
	case FILE_CPU_EXCLUSIVE:
		return is_cpu_exclusive(cs);
	case FILE_MEM_EXCLUSIVE:
		return is_mem_exclusive(cs);
1757 1758
	case FILE_MEM_HARDWALL:
		return is_mem_hardwall(cs);
1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773
	case FILE_SCHED_LOAD_BALANCE:
		return is_sched_load_balance(cs);
	case FILE_MEMORY_MIGRATE:
		return is_memory_migrate(cs);
	case FILE_MEMORY_PRESSURE_ENABLED:
		return cpuset_memory_pressure_enabled;
	case FILE_MEMORY_PRESSURE:
		return fmeter_getrate(&cs->fmeter);
	case FILE_SPREAD_PAGE:
		return is_spread_page(cs);
	case FILE_SPREAD_SLAB:
		return is_spread_slab(cs);
	default:
		BUG();
	}
1774 1775 1776

	/* Unreachable but makes gcc happy */
	return 0;
1777
}
L
Linus Torvalds 已提交
1778

1779
static s64 cpuset_read_s64(struct cgroup_subsys_state *css, struct cftype *cft)
1780
{
1781
	struct cpuset *cs = css_cs(css);
1782 1783 1784 1785 1786 1787 1788
	cpuset_filetype_t type = cft->private;
	switch (type) {
	case FILE_SCHED_RELAX_DOMAIN_LEVEL:
		return cs->relax_domain_level;
	default:
		BUG();
	}
1789 1790 1791

	/* Unrechable but makes gcc happy */
	return 0;
1792 1793
}

L
Linus Torvalds 已提交
1794 1795 1796 1797 1798

/*
 * for the common functions, 'private' gives the type of file
 */

1799 1800 1801
static struct cftype files[] = {
	{
		.name = "cpus",
1802
		.seq_show = cpuset_common_seq_show,
1803
		.write = cpuset_write_resmask,
1804
		.max_write_len = (100U + 6 * NR_CPUS),
1805 1806 1807 1808 1809
		.private = FILE_CPULIST,
	},

	{
		.name = "mems",
1810
		.seq_show = cpuset_common_seq_show,
1811
		.write = cpuset_write_resmask,
1812
		.max_write_len = (100U + 6 * MAX_NUMNODES),
1813 1814 1815
		.private = FILE_MEMLIST,
	},

1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827
	{
		.name = "effective_cpus",
		.seq_show = cpuset_common_seq_show,
		.private = FILE_EFFECTIVE_CPULIST,
	},

	{
		.name = "effective_mems",
		.seq_show = cpuset_common_seq_show,
		.private = FILE_EFFECTIVE_MEMLIST,
	},

1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841
	{
		.name = "cpu_exclusive",
		.read_u64 = cpuset_read_u64,
		.write_u64 = cpuset_write_u64,
		.private = FILE_CPU_EXCLUSIVE,
	},

	{
		.name = "mem_exclusive",
		.read_u64 = cpuset_read_u64,
		.write_u64 = cpuset_write_u64,
		.private = FILE_MEM_EXCLUSIVE,
	},

1842 1843 1844 1845 1846 1847 1848
	{
		.name = "mem_hardwall",
		.read_u64 = cpuset_read_u64,
		.write_u64 = cpuset_write_u64,
		.private = FILE_MEM_HARDWALL,
	},

1849 1850 1851 1852 1853 1854 1855 1856 1857
	{
		.name = "sched_load_balance",
		.read_u64 = cpuset_read_u64,
		.write_u64 = cpuset_write_u64,
		.private = FILE_SCHED_LOAD_BALANCE,
	},

	{
		.name = "sched_relax_domain_level",
1858 1859
		.read_s64 = cpuset_read_s64,
		.write_s64 = cpuset_write_s64,
1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887
		.private = FILE_SCHED_RELAX_DOMAIN_LEVEL,
	},

	{
		.name = "memory_migrate",
		.read_u64 = cpuset_read_u64,
		.write_u64 = cpuset_write_u64,
		.private = FILE_MEMORY_MIGRATE,
	},

	{
		.name = "memory_pressure",
		.read_u64 = cpuset_read_u64,
	},

	{
		.name = "memory_spread_page",
		.read_u64 = cpuset_read_u64,
		.write_u64 = cpuset_write_u64,
		.private = FILE_SPREAD_PAGE,
	},

	{
		.name = "memory_spread_slab",
		.read_u64 = cpuset_read_u64,
		.write_u64 = cpuset_write_u64,
		.private = FILE_SPREAD_SLAB,
	},
1888

1889 1890 1891 1892 1893 1894 1895
	{
		.name = "memory_pressure_enabled",
		.flags = CFTYPE_ONLY_ON_ROOT,
		.read_u64 = cpuset_read_u64,
		.write_u64 = cpuset_write_u64,
		.private = FILE_MEMORY_PRESSURE_ENABLED,
	},
L
Linus Torvalds 已提交
1896

1897 1898
	{ }	/* terminate */
};
L
Linus Torvalds 已提交
1899 1900

/*
1901
 *	cpuset_css_alloc - allocate a cpuset css
L
Li Zefan 已提交
1902
 *	cgrp:	control group that the new cpuset will be part of
L
Linus Torvalds 已提交
1903 1904
 */

1905 1906
static struct cgroup_subsys_state *
cpuset_css_alloc(struct cgroup_subsys_state *parent_css)
L
Linus Torvalds 已提交
1907
{
T
Tejun Heo 已提交
1908
	struct cpuset *cs;
L
Linus Torvalds 已提交
1909

1910
	if (!parent_css)
1911
		return &top_cpuset.css;
1912

T
Tejun Heo 已提交
1913
	cs = kzalloc(sizeof(*cs), GFP_KERNEL);
L
Linus Torvalds 已提交
1914
	if (!cs)
1915
		return ERR_PTR(-ENOMEM);
1916 1917 1918 1919
	if (!alloc_cpumask_var(&cs->cpus_allowed, GFP_KERNEL))
		goto free_cs;
	if (!alloc_cpumask_var(&cs->effective_cpus, GFP_KERNEL))
		goto free_cpus;
L
Linus Torvalds 已提交
1920

P
Paul Jackson 已提交
1921
	set_bit(CS_SCHED_LOAD_BALANCE, &cs->flags);
1922
	cpumask_clear(cs->cpus_allowed);
1923
	nodes_clear(cs->mems_allowed);
1924 1925
	cpumask_clear(cs->effective_cpus);
	nodes_clear(cs->effective_mems);
1926
	fmeter_init(&cs->fmeter);
1927
	cs->relax_domain_level = -1;
L
Linus Torvalds 已提交
1928

T
Tejun Heo 已提交
1929
	return &cs->css;
1930 1931 1932 1933 1934 1935

free_cpus:
	free_cpumask_var(cs->cpus_allowed);
free_cs:
	kfree(cs);
	return ERR_PTR(-ENOMEM);
T
Tejun Heo 已提交
1936 1937
}

1938
static int cpuset_css_online(struct cgroup_subsys_state *css)
T
Tejun Heo 已提交
1939
{
1940
	struct cpuset *cs = css_cs(css);
T
Tejun Heo 已提交
1941
	struct cpuset *parent = parent_cs(cs);
1942
	struct cpuset *tmp_cs;
1943
	struct cgroup_subsys_state *pos_css;
T
Tejun Heo 已提交
1944 1945 1946 1947

	if (!parent)
		return 0;

1948 1949
	mutex_lock(&cpuset_mutex);

T
Tejun Heo 已提交
1950
	set_bit(CS_ONLINE, &cs->flags);
T
Tejun Heo 已提交
1951 1952 1953 1954
	if (is_spread_page(parent))
		set_bit(CS_SPREAD_PAGE, &cs->flags);
	if (is_spread_slab(parent))
		set_bit(CS_SPREAD_SLAB, &cs->flags);
L
Linus Torvalds 已提交
1955

1956
	cpuset_inc();
1957

1958
	spin_lock_irq(&callback_lock);
1959
	if (cgroup_subsys_on_dfl(cpuset_cgrp_subsys)) {
1960 1961 1962
		cpumask_copy(cs->effective_cpus, parent->effective_cpus);
		cs->effective_mems = parent->effective_mems;
	}
1963
	spin_unlock_irq(&callback_lock);
1964

1965
	if (!test_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags))
1966
		goto out_unlock;
1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980

	/*
	 * Clone @parent's configuration if CGRP_CPUSET_CLONE_CHILDREN is
	 * set.  This flag handling is implemented in cgroup core for
	 * histrical reasons - the flag may be specified during mount.
	 *
	 * Currently, if any sibling cpusets have exclusive cpus or mem, we
	 * refuse to clone the configuration - thereby refusing the task to
	 * be entered, and as a result refusing the sys_unshare() or
	 * clone() which initiated it.  If this becomes a problem for some
	 * users who wish to allow that scenario, then this could be
	 * changed to grant parent->cpus_allowed-sibling_cpus_exclusive
	 * (and likewise for mems) to the new cgroup.
	 */
1981
	rcu_read_lock();
1982
	cpuset_for_each_child(tmp_cs, pos_css, parent) {
1983 1984
		if (is_mem_exclusive(tmp_cs) || is_cpu_exclusive(tmp_cs)) {
			rcu_read_unlock();
1985
			goto out_unlock;
1986
		}
1987
	}
1988
	rcu_read_unlock();
1989

1990
	spin_lock_irq(&callback_lock);
1991
	cs->mems_allowed = parent->mems_allowed;
1992
	cs->effective_mems = parent->mems_allowed;
1993
	cpumask_copy(cs->cpus_allowed, parent->cpus_allowed);
1994
	cpumask_copy(cs->effective_cpus, parent->cpus_allowed);
D
Dan Carpenter 已提交
1995
	spin_unlock_irq(&callback_lock);
1996 1997
out_unlock:
	mutex_unlock(&cpuset_mutex);
T
Tejun Heo 已提交
1998 1999 2000
	return 0;
}

2001 2002 2003 2004 2005 2006
/*
 * If the cpuset being removed has its flag 'sched_load_balance'
 * enabled, then simulate turning sched_load_balance off, which
 * will call rebuild_sched_domains_locked().
 */

2007
static void cpuset_css_offline(struct cgroup_subsys_state *css)
T
Tejun Heo 已提交
2008
{
2009
	struct cpuset *cs = css_cs(css);
T
Tejun Heo 已提交
2010

2011
	mutex_lock(&cpuset_mutex);
T
Tejun Heo 已提交
2012 2013 2014 2015

	if (is_sched_load_balance(cs))
		update_flag(CS_SCHED_LOAD_BALANCE, cs, 0);

2016
	cpuset_dec();
T
Tejun Heo 已提交
2017
	clear_bit(CS_ONLINE, &cs->flags);
T
Tejun Heo 已提交
2018

2019
	mutex_unlock(&cpuset_mutex);
L
Linus Torvalds 已提交
2020 2021
}

2022
static void cpuset_css_free(struct cgroup_subsys_state *css)
L
Linus Torvalds 已提交
2023
{
2024
	struct cpuset *cs = css_cs(css);
L
Linus Torvalds 已提交
2025

2026
	free_cpumask_var(cs->effective_cpus);
2027
	free_cpumask_var(cs->cpus_allowed);
2028
	kfree(cs);
L
Linus Torvalds 已提交
2029 2030
}

2031 2032 2033
static void cpuset_bind(struct cgroup_subsys_state *root_css)
{
	mutex_lock(&cpuset_mutex);
2034
	spin_lock_irq(&callback_lock);
2035

2036
	if (cgroup_subsys_on_dfl(cpuset_cgrp_subsys)) {
2037 2038 2039 2040 2041 2042 2043 2044
		cpumask_copy(top_cpuset.cpus_allowed, cpu_possible_mask);
		top_cpuset.mems_allowed = node_possible_map;
	} else {
		cpumask_copy(top_cpuset.cpus_allowed,
			     top_cpuset.effective_cpus);
		top_cpuset.mems_allowed = top_cpuset.effective_mems;
	}

2045
	spin_unlock_irq(&callback_lock);
2046 2047 2048
	mutex_unlock(&cpuset_mutex);
}

2049
struct cgroup_subsys cpuset_cgrp_subsys = {
2050 2051 2052 2053 2054 2055 2056 2057
	.css_alloc	= cpuset_css_alloc,
	.css_online	= cpuset_css_online,
	.css_offline	= cpuset_css_offline,
	.css_free	= cpuset_css_free,
	.can_attach	= cpuset_can_attach,
	.cancel_attach	= cpuset_cancel_attach,
	.attach		= cpuset_attach,
	.bind		= cpuset_bind,
2058
	.legacy_cftypes	= files,
2059
	.early_init	= 1,
2060 2061
};

L
Linus Torvalds 已提交
2062 2063 2064 2065 2066 2067 2068 2069
/**
 * cpuset_init - initialize cpusets at system boot
 *
 * Description: Initialize top_cpuset and the cpuset internal file system,
 **/

int __init cpuset_init(void)
{
2070
	int err = 0;
L
Linus Torvalds 已提交
2071

2072 2073
	if (!alloc_cpumask_var(&top_cpuset.cpus_allowed, GFP_KERNEL))
		BUG();
2074 2075
	if (!alloc_cpumask_var(&top_cpuset.effective_cpus, GFP_KERNEL))
		BUG();
2076

2077
	cpumask_setall(top_cpuset.cpus_allowed);
2078
	nodes_setall(top_cpuset.mems_allowed);
2079 2080
	cpumask_setall(top_cpuset.effective_cpus);
	nodes_setall(top_cpuset.effective_mems);
L
Linus Torvalds 已提交
2081

2082
	fmeter_init(&top_cpuset.fmeter);
P
Paul Jackson 已提交
2083
	set_bit(CS_SCHED_LOAD_BALANCE, &top_cpuset.flags);
2084
	top_cpuset.relax_domain_level = -1;
L
Linus Torvalds 已提交
2085 2086 2087

	err = register_filesystem(&cpuset_fs_type);
	if (err < 0)
2088 2089
		return err;

2090 2091 2092
	if (!alloc_cpumask_var(&cpus_attach, GFP_KERNEL))
		BUG();

2093
	return 0;
L
Linus Torvalds 已提交
2094 2095
}

2096
/*
2097
 * If CPU and/or memory hotplug handlers, below, unplug any CPUs
2098 2099
 * or memory nodes, we need to walk over the cpuset hierarchy,
 * removing that CPU or node from all cpusets.  If this removes the
2100 2101
 * last CPU or node from a cpuset, then move the tasks in the empty
 * cpuset to its next-highest non-empty parent.
2102
 */
2103 2104 2105 2106 2107 2108 2109 2110
static void remove_tasks_in_empty_cpuset(struct cpuset *cs)
{
	struct cpuset *parent;

	/*
	 * Find its next-highest non-empty parent, (top cpuset
	 * has online cpus, so can't be empty).
	 */
T
Tejun Heo 已提交
2111
	parent = parent_cs(cs);
2112
	while (cpumask_empty(parent->cpus_allowed) ||
2113
			nodes_empty(parent->mems_allowed))
T
Tejun Heo 已提交
2114
		parent = parent_cs(parent);
2115

2116
	if (cgroup_transfer_tasks(parent->css.cgroup, cs->css.cgroup)) {
2117
		pr_err("cpuset: failed to transfer tasks out of empty cpuset ");
T
Tejun Heo 已提交
2118 2119
		pr_cont_cgroup_name(cs->css.cgroup);
		pr_cont("\n");
2120
	}
2121 2122
}

2123 2124 2125 2126
static void
hotplug_update_tasks_legacy(struct cpuset *cs,
			    struct cpumask *new_cpus, nodemask_t *new_mems,
			    bool cpus_updated, bool mems_updated)
2127 2128 2129
{
	bool is_empty;

2130
	spin_lock_irq(&callback_lock);
2131 2132 2133 2134
	cpumask_copy(cs->cpus_allowed, new_cpus);
	cpumask_copy(cs->effective_cpus, new_cpus);
	cs->mems_allowed = *new_mems;
	cs->effective_mems = *new_mems;
2135
	spin_unlock_irq(&callback_lock);
2136 2137 2138 2139 2140

	/*
	 * Don't call update_tasks_cpumask() if the cpuset becomes empty,
	 * as the tasks will be migratecd to an ancestor.
	 */
2141
	if (cpus_updated && !cpumask_empty(cs->cpus_allowed))
2142
		update_tasks_cpumask(cs);
2143
	if (mems_updated && !nodes_empty(cs->mems_allowed))
2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161
		update_tasks_nodemask(cs);

	is_empty = cpumask_empty(cs->cpus_allowed) ||
		   nodes_empty(cs->mems_allowed);

	mutex_unlock(&cpuset_mutex);

	/*
	 * Move tasks to the nearest ancestor with execution resources,
	 * This is full cgroup operation which will also call back into
	 * cpuset. Should be done outside any lock.
	 */
	if (is_empty)
		remove_tasks_in_empty_cpuset(cs);

	mutex_lock(&cpuset_mutex);
}

2162 2163 2164 2165
static void
hotplug_update_tasks(struct cpuset *cs,
		     struct cpumask *new_cpus, nodemask_t *new_mems,
		     bool cpus_updated, bool mems_updated)
2166
{
2167 2168 2169 2170 2171
	if (cpumask_empty(new_cpus))
		cpumask_copy(new_cpus, parent_cs(cs)->effective_cpus);
	if (nodes_empty(*new_mems))
		*new_mems = parent_cs(cs)->effective_mems;

2172
	spin_lock_irq(&callback_lock);
2173 2174
	cpumask_copy(cs->effective_cpus, new_cpus);
	cs->effective_mems = *new_mems;
2175
	spin_unlock_irq(&callback_lock);
2176

2177
	if (cpus_updated)
2178
		update_tasks_cpumask(cs);
2179
	if (mems_updated)
2180 2181 2182
		update_tasks_nodemask(cs);
}

2183
/**
2184
 * cpuset_hotplug_update_tasks - update tasks in a cpuset for hotunplug
2185
 * @cs: cpuset in interest
2186
 *
2187 2188 2189
 * Compare @cs's cpu and mem masks against top_cpuset and if some have gone
 * offline, update @cs accordingly.  If @cs ends up with no CPU or memory,
 * all its tasks are moved to the nearest ancestor with both resources.
2190
 */
2191
static void cpuset_hotplug_update_tasks(struct cpuset *cs)
2192
{
2193 2194 2195 2196
	static cpumask_t new_cpus;
	static nodemask_t new_mems;
	bool cpus_updated;
	bool mems_updated;
2197 2198
retry:
	wait_event(cpuset_attach_wq, cs->attach_in_progress == 0);
2199

2200
	mutex_lock(&cpuset_mutex);
2201

2202 2203 2204 2205 2206 2207 2208 2209 2210
	/*
	 * We have raced with task attaching. We wait until attaching
	 * is finished, so we won't attach a task to an empty cpuset.
	 */
	if (cs->attach_in_progress) {
		mutex_unlock(&cpuset_mutex);
		goto retry;
	}

2211 2212
	cpumask_and(&new_cpus, cs->cpus_allowed, parent_cs(cs)->effective_cpus);
	nodes_and(new_mems, cs->mems_allowed, parent_cs(cs)->effective_mems);
2213

2214 2215
	cpus_updated = !cpumask_equal(&new_cpus, cs->effective_cpus);
	mems_updated = !nodes_equal(new_mems, cs->effective_mems);
2216

2217
	if (cgroup_subsys_on_dfl(cpuset_cgrp_subsys))
2218 2219
		hotplug_update_tasks(cs, &new_cpus, &new_mems,
				     cpus_updated, mems_updated);
2220
	else
2221 2222
		hotplug_update_tasks_legacy(cs, &new_cpus, &new_mems,
					    cpus_updated, mems_updated);
2223

2224
	mutex_unlock(&cpuset_mutex);
2225 2226
}

2227
/**
2228
 * cpuset_hotplug_workfn - handle CPU/memory hotunplug for a cpuset
2229
 *
2230 2231 2232 2233 2234
 * This function is called after either CPU or memory configuration has
 * changed and updates cpuset accordingly.  The top_cpuset is always
 * synchronized to cpu_active_mask and N_MEMORY, which is necessary in
 * order to make cpusets transparent (of no affect) on systems that are
 * actively using CPU hotplug but making no active use of cpusets.
2235
 *
2236
 * Non-root cpusets are only affected by offlining.  If any CPUs or memory
2237 2238
 * nodes have been taken down, cpuset_hotplug_update_tasks() is invoked on
 * all descendants.
2239
 *
2240 2241
 * Note that CPU offlining during suspend is ignored.  We don't modify
 * cpusets across suspend/resume cycles at all.
2242
 */
2243
static void cpuset_hotplug_workfn(struct work_struct *work)
2244
{
2245 2246
	static cpumask_t new_cpus;
	static nodemask_t new_mems;
2247
	bool cpus_updated, mems_updated;
2248
	bool on_dfl = cgroup_subsys_on_dfl(cpuset_cgrp_subsys);
2249

2250
	mutex_lock(&cpuset_mutex);
2251

2252 2253 2254
	/* fetch the available cpus/mems and find out which changed how */
	cpumask_copy(&new_cpus, cpu_active_mask);
	new_mems = node_states[N_MEMORY];
2255

2256 2257
	cpus_updated = !cpumask_equal(top_cpuset.effective_cpus, &new_cpus);
	mems_updated = !nodes_equal(top_cpuset.effective_mems, new_mems);
2258

2259 2260
	/* synchronize cpus_allowed to cpu_active_mask */
	if (cpus_updated) {
2261
		spin_lock_irq(&callback_lock);
2262 2263
		if (!on_dfl)
			cpumask_copy(top_cpuset.cpus_allowed, &new_cpus);
2264
		cpumask_copy(top_cpuset.effective_cpus, &new_cpus);
2265
		spin_unlock_irq(&callback_lock);
2266 2267
		/* we don't mess with cpumasks of tasks in top_cpuset */
	}
2268

2269 2270
	/* synchronize mems_allowed to N_MEMORY */
	if (mems_updated) {
2271
		spin_lock_irq(&callback_lock);
2272 2273
		if (!on_dfl)
			top_cpuset.mems_allowed = new_mems;
2274
		top_cpuset.effective_mems = new_mems;
2275
		spin_unlock_irq(&callback_lock);
2276
		update_tasks_nodemask(&top_cpuset);
2277
	}
2278

2279 2280
	mutex_unlock(&cpuset_mutex);

2281 2282
	/* if cpus or mems changed, we need to propagate to descendants */
	if (cpus_updated || mems_updated) {
2283
		struct cpuset *cs;
2284
		struct cgroup_subsys_state *pos_css;
2285

2286
		rcu_read_lock();
2287
		cpuset_for_each_descendant_pre(cs, pos_css, &top_cpuset) {
2288
			if (cs == &top_cpuset || !css_tryget_online(&cs->css))
2289 2290
				continue;
			rcu_read_unlock();
2291

2292
			cpuset_hotplug_update_tasks(cs);
2293

2294 2295 2296 2297 2298
			rcu_read_lock();
			css_put(&cs->css);
		}
		rcu_read_unlock();
	}
2299

2300
	/* rebuild sched domains if cpus_allowed has changed */
2301 2302
	if (cpus_updated)
		rebuild_sched_domains();
2303 2304
}

2305
void cpuset_update_active_cpus(bool cpu_online)
2306
{
2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318
	/*
	 * We're inside cpu hotplug critical region which usually nests
	 * inside cgroup synchronization.  Bounce actual hotplug processing
	 * to a work item to avoid reverse locking order.
	 *
	 * We still need to do partition_sched_domains() synchronously;
	 * otherwise, the scheduler will get confused and put tasks to the
	 * dead CPU.  Fall back to the default single domain.
	 * cpuset_hotplug_workfn() will rebuild it as necessary.
	 */
	partition_sched_domains(1, NULL, NULL);
	schedule_work(&cpuset_hotplug_work);
2319 2320
}

2321
/*
2322 2323
 * Keep top_cpuset.mems_allowed tracking node_states[N_MEMORY].
 * Call this routine anytime after node_states[N_MEMORY] changes.
2324
 * See cpuset_update_active_cpus() for CPU hotplug handling.
2325
 */
2326 2327
static int cpuset_track_online_nodes(struct notifier_block *self,
				unsigned long action, void *arg)
2328
{
2329
	schedule_work(&cpuset_hotplug_work);
2330
	return NOTIFY_OK;
2331
}
2332 2333 2334 2335 2336

static struct notifier_block cpuset_track_online_nodes_nb = {
	.notifier_call = cpuset_track_online_nodes,
	.priority = 10,		/* ??! */
};
2337

L
Linus Torvalds 已提交
2338 2339 2340 2341
/**
 * cpuset_init_smp - initialize cpus_allowed
 *
 * Description: Finish top cpuset after cpu, node maps are initialized
2342
 */
L
Linus Torvalds 已提交
2343 2344
void __init cpuset_init_smp(void)
{
2345
	cpumask_copy(top_cpuset.cpus_allowed, cpu_active_mask);
2346
	top_cpuset.mems_allowed = node_states[N_MEMORY];
2347
	top_cpuset.old_mems_allowed = top_cpuset.mems_allowed;
2348

2349 2350 2351
	cpumask_copy(top_cpuset.effective_cpus, cpu_active_mask);
	top_cpuset.effective_mems = node_states[N_MEMORY];

2352
	register_hotmemory_notifier(&cpuset_track_online_nodes_nb);
L
Linus Torvalds 已提交
2353 2354 2355 2356 2357
}

/**
 * cpuset_cpus_allowed - return cpus_allowed mask from a tasks cpuset.
 * @tsk: pointer to task_struct from which to obtain cpuset->cpus_allowed.
2358
 * @pmask: pointer to struct cpumask variable to receive cpus_allowed set.
L
Linus Torvalds 已提交
2359
 *
2360
 * Description: Returns the cpumask_var_t cpus_allowed of the cpuset
L
Linus Torvalds 已提交
2361
 * attached to the specified @tsk.  Guaranteed to return some non-empty
2362
 * subset of cpu_online_mask, even if this means going outside the
L
Linus Torvalds 已提交
2363 2364 2365
 * tasks cpuset.
 **/

2366
void cpuset_cpus_allowed(struct task_struct *tsk, struct cpumask *pmask)
L
Linus Torvalds 已提交
2367
{
2368 2369 2370
	unsigned long flags;

	spin_lock_irqsave(&callback_lock, flags);
2371
	rcu_read_lock();
2372
	guarantee_online_cpus(task_cs(tsk), pmask);
2373
	rcu_read_unlock();
2374
	spin_unlock_irqrestore(&callback_lock, flags);
L
Linus Torvalds 已提交
2375 2376
}

2377
void cpuset_cpus_allowed_fallback(struct task_struct *tsk)
2378 2379
{
	rcu_read_lock();
2380
	do_set_cpus_allowed(tsk, task_cs(tsk)->effective_cpus);
2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395
	rcu_read_unlock();

	/*
	 * We own tsk->cpus_allowed, nobody can change it under us.
	 *
	 * But we used cs && cs->cpus_allowed lockless and thus can
	 * race with cgroup_attach_task() or update_cpumask() and get
	 * the wrong tsk->cpus_allowed. However, both cases imply the
	 * subsequent cpuset_change_cpumask()->set_cpus_allowed_ptr()
	 * which takes task_rq_lock().
	 *
	 * If we are called after it dropped the lock we must see all
	 * changes in tsk_cs()->cpus_allowed. Otherwise we can temporary
	 * set any mask even if it is not right from task_cs() pov,
	 * the pending set_cpus_allowed_ptr() will fix things.
2396 2397 2398
	 *
	 * select_fallback_rq() will fix things ups and set cpu_possible_mask
	 * if required.
2399 2400 2401
	 */
}

2402
void __init cpuset_init_current_mems_allowed(void)
L
Linus Torvalds 已提交
2403
{
2404
	nodes_setall(current->mems_allowed);
L
Linus Torvalds 已提交
2405 2406
}

2407 2408 2409 2410 2411 2412
/**
 * cpuset_mems_allowed - return mems_allowed mask from a tasks cpuset.
 * @tsk: pointer to task_struct from which to obtain cpuset->mems_allowed.
 *
 * Description: Returns the nodemask_t mems_allowed of the cpuset
 * attached to the specified @tsk.  Guaranteed to return some non-empty
2413
 * subset of node_states[N_MEMORY], even if this means going outside the
2414 2415 2416 2417 2418 2419
 * tasks cpuset.
 **/

nodemask_t cpuset_mems_allowed(struct task_struct *tsk)
{
	nodemask_t mask;
2420
	unsigned long flags;
2421

2422
	spin_lock_irqsave(&callback_lock, flags);
2423
	rcu_read_lock();
2424
	guarantee_online_mems(task_cs(tsk), &mask);
2425
	rcu_read_unlock();
2426
	spin_unlock_irqrestore(&callback_lock, flags);
2427 2428 2429 2430

	return mask;
}

2431
/**
2432 2433
 * cpuset_nodemask_valid_mems_allowed - check nodemask vs. curremt mems_allowed
 * @nodemask: the nodemask to be checked
2434
 *
2435
 * Are any of the nodes in the nodemask allowed in current->mems_allowed?
L
Linus Torvalds 已提交
2436
 */
2437
int cpuset_nodemask_valid_mems_allowed(nodemask_t *nodemask)
L
Linus Torvalds 已提交
2438
{
2439
	return nodes_intersects(*nodemask, current->mems_allowed);
L
Linus Torvalds 已提交
2440 2441
}

2442
/*
2443 2444
 * nearest_hardwall_ancestor() - Returns the nearest mem_exclusive or
 * mem_hardwall ancestor to the specified cpuset.  Call holding
2445
 * callback_lock.  If no ancestor is mem_exclusive or mem_hardwall
2446
 * (an unusual configuration), then returns the root cpuset.
2447
 */
2448
static struct cpuset *nearest_hardwall_ancestor(struct cpuset *cs)
2449
{
T
Tejun Heo 已提交
2450 2451
	while (!(is_mem_exclusive(cs) || is_mem_hardwall(cs)) && parent_cs(cs))
		cs = parent_cs(cs);
2452 2453 2454
	return cs;
}

2455
/**
2456
 * cpuset_node_allowed - Can we allocate on a memory node?
2457
 * @node: is this an allowed node?
2458
 * @gfp_mask: memory allocation flags
2459
 *
2460 2461 2462 2463
 * If we're in interrupt, yes, we can always allocate.  If @node is set in
 * current's mems_allowed, yes.  If it's not a __GFP_HARDWALL request and this
 * node is set in the nearest hardwalled cpuset ancestor to current's cpuset,
 * yes.  If current has access to memory reserves due to TIF_MEMDIE, yes.
2464 2465 2466
 * Otherwise, no.
 *
 * GFP_USER allocations are marked with the __GFP_HARDWALL bit,
2467 2468
 * and do not allow allocations outside the current tasks cpuset
 * unless the task has been OOM killed as is marked TIF_MEMDIE.
2469
 * GFP_KERNEL allocations are not so marked, so can escape to the
2470
 * nearest enclosing hardwalled ancestor cpuset.
2471
 *
2472
 * Scanning up parent cpusets requires callback_lock.  The
2473 2474 2475 2476
 * __alloc_pages() routine only calls here with __GFP_HARDWALL bit
 * _not_ set if it's a GFP_KERNEL allocation, and all nodes in the
 * current tasks mems_allowed came up empty on the first pass over
 * the zonelist.  So only GFP_KERNEL allocations, if all nodes in the
2477
 * cpuset are short of memory, might require taking the callback_lock.
2478
 *
2479
 * The first call here from mm/page_alloc:get_page_from_freelist()
2480 2481 2482
 * has __GFP_HARDWALL set in gfp_mask, enforcing hardwall cpusets,
 * so no allocation on a node outside the cpuset is allowed (unless
 * in interrupt, of course).
2483 2484 2485 2486 2487 2488
 *
 * The second pass through get_page_from_freelist() doesn't even call
 * here for GFP_ATOMIC calls.  For those calls, the __alloc_pages()
 * variable 'wait' is not set, and the bit ALLOC_CPUSET is not set
 * in alloc_flags.  That logic and the checks below have the combined
 * affect that:
2489 2490
 *	in_interrupt - any node ok (current task context irrelevant)
 *	GFP_ATOMIC   - any node ok
2491
 *	TIF_MEMDIE   - any node ok
2492
 *	GFP_KERNEL   - any node in enclosing hardwalled cpuset ok
2493
 *	GFP_USER     - only nodes in current tasks mems allowed ok.
2494
 */
2495
int __cpuset_node_allowed(int node, gfp_t gfp_mask)
L
Linus Torvalds 已提交
2496
{
2497
	struct cpuset *cs;		/* current cpuset ancestors */
2498
	int allowed;			/* is allocation in zone z allowed? */
2499
	unsigned long flags;
2500

2501
	if (in_interrupt())
2502 2503 2504
		return 1;
	if (node_isset(node, current->mems_allowed))
		return 1;
2505 2506 2507 2508 2509 2510
	/*
	 * Allow tasks that have access to memory reserves because they have
	 * been OOM killed to get memory anywhere.
	 */
	if (unlikely(test_thread_flag(TIF_MEMDIE)))
		return 1;
2511 2512 2513
	if (gfp_mask & __GFP_HARDWALL)	/* If hardwall request, stop here */
		return 0;

2514 2515 2516
	if (current->flags & PF_EXITING) /* Let dying task have memory */
		return 1;

2517
	/* Not hardwall and node outside mems_allowed: scan up cpusets */
2518
	spin_lock_irqsave(&callback_lock, flags);
2519

2520
	rcu_read_lock();
2521
	cs = nearest_hardwall_ancestor(task_cs(current));
2522
	allowed = node_isset(node, cs->mems_allowed);
2523
	rcu_read_unlock();
2524

2525
	spin_unlock_irqrestore(&callback_lock, flags);
2526
	return allowed;
L
Linus Torvalds 已提交
2527 2528
}

2529
/**
2530 2531
 * cpuset_mem_spread_node() - On which node to begin search for a file page
 * cpuset_slab_spread_node() - On which node to begin search for a slab page
2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555
 *
 * If a task is marked PF_SPREAD_PAGE or PF_SPREAD_SLAB (as for
 * tasks in a cpuset with is_spread_page or is_spread_slab set),
 * and if the memory allocation used cpuset_mem_spread_node()
 * to determine on which node to start looking, as it will for
 * certain page cache or slab cache pages such as used for file
 * system buffers and inode caches, then instead of starting on the
 * local node to look for a free page, rather spread the starting
 * node around the tasks mems_allowed nodes.
 *
 * We don't have to worry about the returned node being offline
 * because "it can't happen", and even if it did, it would be ok.
 *
 * The routines calling guarantee_online_mems() are careful to
 * only set nodes in task->mems_allowed that are online.  So it
 * should not be possible for the following code to return an
 * offline node.  But if it did, that would be ok, as this routine
 * is not returning the node where the allocation must be, only
 * the node where the search should start.  The zonelist passed to
 * __alloc_pages() will include all nodes.  If the slab allocator
 * is passed an offline node, it will fall back to the local node.
 * See kmem_cache_alloc_node().
 */

2556
static int cpuset_spread_node(int *rotor)
2557 2558 2559
{
	int node;

2560
	node = next_node(*rotor, current->mems_allowed);
2561 2562
	if (node == MAX_NUMNODES)
		node = first_node(current->mems_allowed);
2563
	*rotor = node;
2564 2565
	return node;
}
2566 2567 2568

int cpuset_mem_spread_node(void)
{
2569 2570 2571 2572
	if (current->cpuset_mem_spread_rotor == NUMA_NO_NODE)
		current->cpuset_mem_spread_rotor =
			node_random(&current->mems_allowed);

2573 2574 2575 2576 2577
	return cpuset_spread_node(&current->cpuset_mem_spread_rotor);
}

int cpuset_slab_spread_node(void)
{
2578 2579 2580 2581
	if (current->cpuset_slab_spread_rotor == NUMA_NO_NODE)
		current->cpuset_slab_spread_rotor =
			node_random(&current->mems_allowed);

2582 2583 2584
	return cpuset_spread_node(&current->cpuset_slab_spread_rotor);
}

2585 2586
EXPORT_SYMBOL_GPL(cpuset_mem_spread_node);

2587
/**
2588 2589 2590 2591 2592 2593 2594 2595
 * cpuset_mems_allowed_intersects - Does @tsk1's mems_allowed intersect @tsk2's?
 * @tsk1: pointer to task_struct of some task.
 * @tsk2: pointer to task_struct of some other task.
 *
 * Description: Return true if @tsk1's mems_allowed intersects the
 * mems_allowed of @tsk2.  Used by the OOM killer to determine if
 * one of the task's memory usage might impact the memory available
 * to the other.
2596 2597
 **/

2598 2599
int cpuset_mems_allowed_intersects(const struct task_struct *tsk1,
				   const struct task_struct *tsk2)
2600
{
2601
	return nodes_intersects(tsk1->mems_allowed, tsk2->mems_allowed);
2602 2603
}

2604
/**
2605
 * cpuset_print_current_mems_allowed - prints current's cpuset and mems_allowed
2606
 *
2607
 * Description: Prints current's name, cpuset name, and cached copy of its
2608
 * mems_allowed to the kernel log.
2609
 */
2610
void cpuset_print_current_mems_allowed(void)
2611
{
2612
	struct cgroup *cgrp;
2613

2614
	rcu_read_lock();
2615

2616 2617
	cgrp = task_cs(current)->css.cgroup;
	pr_info("%s cpuset=", current->comm);
T
Tejun Heo 已提交
2618
	pr_cont_cgroup_name(cgrp);
2619 2620
	pr_cont(" mems_allowed=%*pbl\n",
		nodemask_pr_args(&current->mems_allowed));
2621

2622
	rcu_read_unlock();
2623 2624
}

2625 2626 2627 2628 2629 2630
/*
 * Collection of memory_pressure is suppressed unless
 * this flag is enabled by writing "1" to the special
 * cpuset file 'memory_pressure_enabled' in the root cpuset.
 */

2631
int cpuset_memory_pressure_enabled __read_mostly;
2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652

/**
 * cpuset_memory_pressure_bump - keep stats of per-cpuset reclaims.
 *
 * Keep a running average of the rate of synchronous (direct)
 * page reclaim efforts initiated by tasks in each cpuset.
 *
 * This represents the rate at which some task in the cpuset
 * ran low on memory on all nodes it was allowed to use, and
 * had to enter the kernels page reclaim code in an effort to
 * create more free memory by tossing clean pages or swapping
 * or writing dirty pages.
 *
 * Display to user space in the per-cpuset read-only file
 * "memory_pressure".  Value displayed is an integer
 * representing the recent rate of entry into the synchronous
 * (direct) page reclaim by any task attached to the cpuset.
 **/

void __cpuset_memory_pressure_bump(void)
{
2653
	rcu_read_lock();
2654
	fmeter_markevent(&task_cs(current)->fmeter);
2655
	rcu_read_unlock();
2656 2657
}

2658
#ifdef CONFIG_PROC_PID_CPUSET
L
Linus Torvalds 已提交
2659 2660 2661 2662
/*
 * proc_cpuset_show()
 *  - Print tasks cpuset path into seq_file.
 *  - Used for /proc/<pid>/cpuset.
2663 2664
 *  - No need to task_lock(tsk) on this tsk->cpuset reference, as it
 *    doesn't really matter if tsk->cpuset changes after we read it,
2665
 *    and we take cpuset_mutex, keeping cpuset_attach() from changing it
2666
 *    anyway.
L
Linus Torvalds 已提交
2667
 */
Z
Zefan Li 已提交
2668 2669
int proc_cpuset_show(struct seq_file *m, struct pid_namespace *ns,
		     struct pid *pid, struct task_struct *tsk)
L
Linus Torvalds 已提交
2670
{
T
Tejun Heo 已提交
2671
	char *buf, *p;
2672
	struct cgroup_subsys_state *css;
2673
	int retval;
L
Linus Torvalds 已提交
2674

2675
	retval = -ENOMEM;
T
Tejun Heo 已提交
2676
	buf = kmalloc(PATH_MAX, GFP_KERNEL);
L
Linus Torvalds 已提交
2677
	if (!buf)
2678 2679
		goto out;

T
Tejun Heo 已提交
2680
	retval = -ENAMETOOLONG;
L
Li Zefan 已提交
2681
	rcu_read_lock();
2682
	css = task_css(tsk, cpuset_cgrp_id);
T
Tejun Heo 已提交
2683
	p = cgroup_path(css->cgroup, buf, PATH_MAX);
L
Li Zefan 已提交
2684
	rcu_read_unlock();
T
Tejun Heo 已提交
2685
	if (!p)
Z
Zefan Li 已提交
2686
		goto out_free;
T
Tejun Heo 已提交
2687
	seq_puts(m, p);
L
Linus Torvalds 已提交
2688
	seq_putc(m, '\n');
T
Tejun Heo 已提交
2689
	retval = 0;
2690
out_free:
L
Linus Torvalds 已提交
2691
	kfree(buf);
2692
out:
L
Linus Torvalds 已提交
2693 2694
	return retval;
}
2695
#endif /* CONFIG_PROC_PID_CPUSET */
L
Linus Torvalds 已提交
2696

2697
/* Display task mems_allowed in /proc/<pid>/status file. */
2698 2699
void cpuset_task_status_allowed(struct seq_file *m, struct task_struct *task)
{
2700 2701 2702 2703
	seq_printf(m, "Mems_allowed:\t%*pb\n",
		   nodemask_pr_args(&task->mems_allowed));
	seq_printf(m, "Mems_allowed_list:\t%*pbl\n",
		   nodemask_pr_args(&task->mems_allowed));
L
Linus Torvalds 已提交
2704
}