cpuset.c 75.3 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6
/*
 *  kernel/cpuset.c
 *
 *  Processor and Memory placement constraints for sets of tasks.
 *
 *  Copyright (C) 2003 BULL SA.
P
Paul Jackson 已提交
7
 *  Copyright (C) 2004-2007 Silicon Graphics, Inc.
8
 *  Copyright (C) 2006 Google, Inc
L
Linus Torvalds 已提交
9 10 11 12
 *
 *  Portions derived from Patrick Mochel's sysfs code.
 *  sysfs is Copyright (c) 2001-3 Patrick Mochel
 *
13
 *  2003-10-10 Written by Simon Derr.
L
Linus Torvalds 已提交
14
 *  2003-10-22 Updates by Stephen Hemminger.
15
 *  2004 May-July Rework by Paul Jackson.
16
 *  2006 Rework by Paul Menage to use generic cgroups
17 18
 *  2008 Rework of the scheduler domains and CPU hotplug handling
 *       by Max Krasnyansky
L
Linus Torvalds 已提交
19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36
 *
 *  This file is subject to the terms and conditions of the GNU General Public
 *  License.  See the file COPYING in the main directory of the Linux
 *  distribution for more details.
 */

#include <linux/cpu.h>
#include <linux/cpumask.h>
#include <linux/cpuset.h>
#include <linux/err.h>
#include <linux/errno.h>
#include <linux/file.h>
#include <linux/fs.h>
#include <linux/init.h>
#include <linux/interrupt.h>
#include <linux/kernel.h>
#include <linux/kmod.h>
#include <linux/list.h>
37
#include <linux/mempolicy.h>
L
Linus Torvalds 已提交
38
#include <linux/mm.h>
39
#include <linux/memory.h>
40
#include <linux/export.h>
L
Linus Torvalds 已提交
41 42 43 44
#include <linux/mount.h>
#include <linux/namei.h>
#include <linux/pagemap.h>
#include <linux/proc_fs.h>
45
#include <linux/rcupdate.h>
L
Linus Torvalds 已提交
46 47
#include <linux/sched.h>
#include <linux/seq_file.h>
48
#include <linux/security.h>
L
Linus Torvalds 已提交
49 50 51 52 53 54 55 56 57
#include <linux/slab.h>
#include <linux/spinlock.h>
#include <linux/stat.h>
#include <linux/string.h>
#include <linux/time.h>
#include <linux/backing-dev.h>
#include <linux/sort.h>

#include <asm/uaccess.h>
A
Arun Sharma 已提交
58
#include <linux/atomic.h>
59
#include <linux/mutex.h>
60 61
#include <linux/workqueue.h>
#include <linux/cgroup.h>
L
Linus Torvalds 已提交
62

63 64 65 66 67
/*
 * Tracks how many cpusets are currently defined in system.
 * When there is only one cpuset (the root cpuset) we can
 * short circuit some hooks.
 */
68
int number_of_cpusets __read_mostly;
69

70
/* Forward declare cgroup structures */
71 72 73
struct cgroup_subsys cpuset_subsys;
struct cpuset;

74 75 76 77 78 79 80 81 82
/* See "Frequency meter" comments, below. */

struct fmeter {
	int cnt;		/* unprocessed events count */
	int val;		/* most recent output value */
	time_t time;		/* clock (secs) when val computed */
	spinlock_t lock;	/* guards read or write of above */
};

L
Linus Torvalds 已提交
83
struct cpuset {
84 85
	struct cgroup_subsys_state css;

L
Linus Torvalds 已提交
86
	unsigned long flags;		/* "unsigned long" so bitops work */
87
	cpumask_var_t cpus_allowed;	/* CPUs allowed to tasks in cpuset */
L
Linus Torvalds 已提交
88 89
	nodemask_t mems_allowed;	/* Memory Nodes allowed to tasks */

90
	struct fmeter fmeter;		/* memory_pressure filter */
P
Paul Jackson 已提交
91

92 93 94 95 96 97
	/*
	 * Tasks are being attached to this cpuset.  Used to prevent
	 * zeroing cpus/mems_allowed between ->can_attach() and ->attach().
	 */
	int attach_in_progress;

P
Paul Jackson 已提交
98 99
	/* partition number for rebuild_sched_domains() */
	int pn;
100

101 102 103
	/* for custom sched domain */
	int relax_domain_level;

104
	struct work_struct hotplug_work;
L
Linus Torvalds 已提交
105 106
};

107 108 109 110 111 112 113 114 115 116 117 118 119 120
/* Retrieve the cpuset for a cgroup */
static inline struct cpuset *cgroup_cs(struct cgroup *cont)
{
	return container_of(cgroup_subsys_state(cont, cpuset_subsys_id),
			    struct cpuset, css);
}

/* Retrieve the cpuset for a task */
static inline struct cpuset *task_cs(struct task_struct *task)
{
	return container_of(task_subsys_state(task, cpuset_subsys_id),
			    struct cpuset, css);
}

T
Tejun Heo 已提交
121 122 123 124 125 126 127 128 129
static inline struct cpuset *parent_cs(const struct cpuset *cs)
{
	struct cgroup *pcgrp = cs->css.cgroup->parent;

	if (pcgrp)
		return cgroup_cs(pcgrp);
	return NULL;
}

130 131 132 133 134 135 136 137 138 139 140 141 142
#ifdef CONFIG_NUMA
static inline bool task_has_mempolicy(struct task_struct *task)
{
	return task->mempolicy;
}
#else
static inline bool task_has_mempolicy(struct task_struct *task)
{
	return false;
}
#endif


L
Linus Torvalds 已提交
143 144
/* bits in struct cpuset flags field */
typedef enum {
T
Tejun Heo 已提交
145
	CS_ONLINE,
L
Linus Torvalds 已提交
146 147
	CS_CPU_EXCLUSIVE,
	CS_MEM_EXCLUSIVE,
148
	CS_MEM_HARDWALL,
149
	CS_MEMORY_MIGRATE,
P
Paul Jackson 已提交
150
	CS_SCHED_LOAD_BALANCE,
151 152
	CS_SPREAD_PAGE,
	CS_SPREAD_SLAB,
L
Linus Torvalds 已提交
153 154 155
} cpuset_flagbits_t;

/* convenient tests for these bits */
T
Tejun Heo 已提交
156 157 158 159 160
static inline bool is_cpuset_online(const struct cpuset *cs)
{
	return test_bit(CS_ONLINE, &cs->flags);
}

L
Linus Torvalds 已提交
161 162
static inline int is_cpu_exclusive(const struct cpuset *cs)
{
163
	return test_bit(CS_CPU_EXCLUSIVE, &cs->flags);
L
Linus Torvalds 已提交
164 165 166 167
}

static inline int is_mem_exclusive(const struct cpuset *cs)
{
168
	return test_bit(CS_MEM_EXCLUSIVE, &cs->flags);
L
Linus Torvalds 已提交
169 170
}

171 172 173 174 175
static inline int is_mem_hardwall(const struct cpuset *cs)
{
	return test_bit(CS_MEM_HARDWALL, &cs->flags);
}

P
Paul Jackson 已提交
176 177 178 179 180
static inline int is_sched_load_balance(const struct cpuset *cs)
{
	return test_bit(CS_SCHED_LOAD_BALANCE, &cs->flags);
}

181 182
static inline int is_memory_migrate(const struct cpuset *cs)
{
183
	return test_bit(CS_MEMORY_MIGRATE, &cs->flags);
184 185
}

186 187 188 189 190 191 192 193 194 195
static inline int is_spread_page(const struct cpuset *cs)
{
	return test_bit(CS_SPREAD_PAGE, &cs->flags);
}

static inline int is_spread_slab(const struct cpuset *cs)
{
	return test_bit(CS_SPREAD_SLAB, &cs->flags);
}

L
Linus Torvalds 已提交
196
static struct cpuset top_cpuset = {
T
Tejun Heo 已提交
197 198
	.flags = ((1 << CS_ONLINE) | (1 << CS_CPU_EXCLUSIVE) |
		  (1 << CS_MEM_EXCLUSIVE)),
L
Linus Torvalds 已提交
199 200
};

201 202 203 204 205 206 207 208 209 210 211 212 213
/**
 * cpuset_for_each_child - traverse online children of a cpuset
 * @child_cs: loop cursor pointing to the current child
 * @pos_cgrp: used for iteration
 * @parent_cs: target cpuset to walk children of
 *
 * Walk @child_cs through the online children of @parent_cs.  Must be used
 * with RCU read locked.
 */
#define cpuset_for_each_child(child_cs, pos_cgrp, parent_cs)		\
	cgroup_for_each_child((pos_cgrp), (parent_cs)->css.cgroup)	\
		if (is_cpuset_online(((child_cs) = cgroup_cs((pos_cgrp)))))

214 215 216 217 218 219 220 221 222 223 224 225 226 227
/**
 * cpuset_for_each_descendant_pre - pre-order walk of a cpuset's descendants
 * @des_cs: loop cursor pointing to the current descendant
 * @pos_cgrp: used for iteration
 * @root_cs: target cpuset to walk ancestor of
 *
 * Walk @des_cs through the online descendants of @root_cs.  Must be used
 * with RCU read locked.  The caller may modify @pos_cgrp by calling
 * cgroup_rightmost_descendant() to skip subtree.
 */
#define cpuset_for_each_descendant_pre(des_cs, pos_cgrp, root_cs)	\
	cgroup_for_each_descendant_pre((pos_cgrp), (root_cs)->css.cgroup) \
		if (is_cpuset_online(((des_cs) = cgroup_cs((pos_cgrp)))))

L
Linus Torvalds 已提交
228
/*
229 230 231 232 233 234 235 236 237 238 239 240 241 242
 * There are two global mutexes guarding cpuset structures - cpuset_mutex
 * and callback_mutex.  The latter may nest inside the former.  We also
 * require taking task_lock() when dereferencing a task's cpuset pointer.
 * See "The task_lock() exception", at the end of this comment.
 *
 * A task must hold both mutexes to modify cpusets.  If a task holds
 * cpuset_mutex, then it blocks others wanting that mutex, ensuring that it
 * is the only task able to also acquire callback_mutex and be able to
 * modify cpusets.  It can perform various checks on the cpuset structure
 * first, knowing nothing will change.  It can also allocate memory while
 * just holding cpuset_mutex.  While it is performing these checks, various
 * callback routines can briefly acquire callback_mutex to query cpusets.
 * Once it is ready to make the changes, it takes callback_mutex, blocking
 * everyone else.
243 244
 *
 * Calls to the kernel memory allocator can not be made while holding
245
 * callback_mutex, as that would risk double tripping on callback_mutex
246 247 248
 * from one of the callbacks into the cpuset code from within
 * __alloc_pages().
 *
249
 * If a task is only holding callback_mutex, then it has read-only
250 251
 * access to cpusets.
 *
252 253 254
 * Now, the task_struct fields mems_allowed and mempolicy may be changed
 * by other task, we use alloc_lock in the task_struct fields to protect
 * them.
255
 *
256
 * The cpuset_common_file_read() handlers only hold callback_mutex across
257 258 259
 * small pieces of code, such as when reading out possibly multi-word
 * cpumasks and nodemasks.
 *
260 261
 * Accessing a task's cpuset should be done in accordance with the
 * guidelines for accessing subsystem state in kernel/cgroup.c
L
Linus Torvalds 已提交
262 263
 */

264
static DEFINE_MUTEX(cpuset_mutex);
265
static DEFINE_MUTEX(callback_mutex);
266

267 268 269
/*
 * CPU / memory hotplug is handled asynchronously.
 */
270 271
static struct workqueue_struct *cpuset_propagate_hotplug_wq;

272
static void cpuset_hotplug_workfn(struct work_struct *work);
273
static void cpuset_propagate_hotplug_workfn(struct work_struct *work);
274
static void schedule_cpuset_propagate_hotplug(struct cpuset *cs);
275 276 277

static DECLARE_WORK(cpuset_hotplug_work, cpuset_hotplug_workfn);

278 279
/*
 * This is ugly, but preserves the userspace API for existing cpuset
280
 * users. If someone tries to mount the "cpuset" filesystem, we
281 282
 * silently switch it to mount "cgroup" instead
 */
A
Al Viro 已提交
283 284
static struct dentry *cpuset_mount(struct file_system_type *fs_type,
			 int flags, const char *unused_dev_name, void *data)
L
Linus Torvalds 已提交
285
{
286
	struct file_system_type *cgroup_fs = get_fs_type("cgroup");
A
Al Viro 已提交
287
	struct dentry *ret = ERR_PTR(-ENODEV);
288 289 290 291
	if (cgroup_fs) {
		char mountopts[] =
			"cpuset,noprefix,"
			"release_agent=/sbin/cpuset_release_agent";
A
Al Viro 已提交
292 293
		ret = cgroup_fs->mount(cgroup_fs, flags,
					   unused_dev_name, mountopts);
294 295 296
		put_filesystem(cgroup_fs);
	}
	return ret;
L
Linus Torvalds 已提交
297 298 299 300
}

static struct file_system_type cpuset_fs_type = {
	.name = "cpuset",
A
Al Viro 已提交
301
	.mount = cpuset_mount,
L
Linus Torvalds 已提交
302 303 304
};

/*
305
 * Return in pmask the portion of a cpusets's cpus_allowed that
L
Linus Torvalds 已提交
306 307 308
 * are online.  If none are online, walk up the cpuset hierarchy
 * until we find one that does have some online cpus.  If we get
 * all the way to the top and still haven't found any online cpus,
309 310
 * return cpu_online_mask.  Or if passed a NULL cs from an exit'ing
 * task, return cpu_online_mask.
L
Linus Torvalds 已提交
311 312
 *
 * One way or another, we guarantee to return some non-empty subset
313
 * of cpu_online_mask.
L
Linus Torvalds 已提交
314
 *
315
 * Call with callback_mutex held.
L
Linus Torvalds 已提交
316 317
 */

318 319
static void guarantee_online_cpus(const struct cpuset *cs,
				  struct cpumask *pmask)
L
Linus Torvalds 已提交
320
{
321
	while (cs && !cpumask_intersects(cs->cpus_allowed, cpu_online_mask))
T
Tejun Heo 已提交
322
		cs = parent_cs(cs);
L
Linus Torvalds 已提交
323
	if (cs)
324
		cpumask_and(pmask, cs->cpus_allowed, cpu_online_mask);
L
Linus Torvalds 已提交
325
	else
326 327
		cpumask_copy(pmask, cpu_online_mask);
	BUG_ON(!cpumask_intersects(pmask, cpu_online_mask));
L
Linus Torvalds 已提交
328 329 330 331
}

/*
 * Return in *pmask the portion of a cpusets's mems_allowed that
332 333 334
 * are online, with memory.  If none are online with memory, walk
 * up the cpuset hierarchy until we find one that does have some
 * online mems.  If we get all the way to the top and still haven't
335
 * found any online mems, return node_states[N_MEMORY].
L
Linus Torvalds 已提交
336 337
 *
 * One way or another, we guarantee to return some non-empty subset
338
 * of node_states[N_MEMORY].
L
Linus Torvalds 已提交
339
 *
340
 * Call with callback_mutex held.
L
Linus Torvalds 已提交
341 342 343 344
 */

static void guarantee_online_mems(const struct cpuset *cs, nodemask_t *pmask)
{
345
	while (cs && !nodes_intersects(cs->mems_allowed,
346
					node_states[N_MEMORY]))
T
Tejun Heo 已提交
347
		cs = parent_cs(cs);
L
Linus Torvalds 已提交
348
	if (cs)
349
		nodes_and(*pmask, cs->mems_allowed,
350
					node_states[N_MEMORY]);
L
Linus Torvalds 已提交
351
	else
352 353
		*pmask = node_states[N_MEMORY];
	BUG_ON(!nodes_intersects(*pmask, node_states[N_MEMORY]));
L
Linus Torvalds 已提交
354 355
}

356 357 358
/*
 * update task's spread flag if cpuset's page/slab spread flag is set
 *
359
 * Called with callback_mutex/cpuset_mutex held
360 361 362 363 364 365 366 367 368 369 370 371 372 373
 */
static void cpuset_update_task_spread_flag(struct cpuset *cs,
					struct task_struct *tsk)
{
	if (is_spread_page(cs))
		tsk->flags |= PF_SPREAD_PAGE;
	else
		tsk->flags &= ~PF_SPREAD_PAGE;
	if (is_spread_slab(cs))
		tsk->flags |= PF_SPREAD_SLAB;
	else
		tsk->flags &= ~PF_SPREAD_SLAB;
}

L
Linus Torvalds 已提交
374 375 376 377 378
/*
 * is_cpuset_subset(p, q) - Is cpuset p a subset of cpuset q?
 *
 * One cpuset is a subset of another if all its allowed CPUs and
 * Memory Nodes are a subset of the other, and its exclusive flags
379
 * are only set if the other's are set.  Call holding cpuset_mutex.
L
Linus Torvalds 已提交
380 381 382 383
 */

static int is_cpuset_subset(const struct cpuset *p, const struct cpuset *q)
{
384
	return	cpumask_subset(p->cpus_allowed, q->cpus_allowed) &&
L
Linus Torvalds 已提交
385 386 387 388 389
		nodes_subset(p->mems_allowed, q->mems_allowed) &&
		is_cpu_exclusive(p) <= is_cpu_exclusive(q) &&
		is_mem_exclusive(p) <= is_mem_exclusive(q);
}

390 391 392 393 394 395
/**
 * alloc_trial_cpuset - allocate a trial cpuset
 * @cs: the cpuset that the trial cpuset duplicates
 */
static struct cpuset *alloc_trial_cpuset(const struct cpuset *cs)
{
396 397 398 399 400 401 402 403 404 405 406 407 408
	struct cpuset *trial;

	trial = kmemdup(cs, sizeof(*cs), GFP_KERNEL);
	if (!trial)
		return NULL;

	if (!alloc_cpumask_var(&trial->cpus_allowed, GFP_KERNEL)) {
		kfree(trial);
		return NULL;
	}
	cpumask_copy(trial->cpus_allowed, cs->cpus_allowed);

	return trial;
409 410 411 412 413 414 415 416
}

/**
 * free_trial_cpuset - free the trial cpuset
 * @trial: the trial cpuset to be freed
 */
static void free_trial_cpuset(struct cpuset *trial)
{
417
	free_cpumask_var(trial->cpus_allowed);
418 419 420
	kfree(trial);
}

L
Linus Torvalds 已提交
421 422 423 424 425 426 427
/*
 * validate_change() - Used to validate that any proposed cpuset change
 *		       follows the structural rules for cpusets.
 *
 * If we replaced the flag and mask values of the current cpuset
 * (cur) with those values in the trial cpuset (trial), would
 * our various subset and exclusive rules still be valid?  Presumes
428
 * cpuset_mutex held.
L
Linus Torvalds 已提交
429 430 431 432 433 434 435 436 437 438 439 440 441 442
 *
 * 'cur' is the address of an actual, in-use cpuset.  Operations
 * such as list traversal that depend on the actual address of the
 * cpuset in the list must use cur below, not trial.
 *
 * 'trial' is the address of bulk structure copy of cur, with
 * perhaps one or more of the fields cpus_allowed, mems_allowed,
 * or flags changed to new, trial values.
 *
 * Return 0 if valid, -errno if not.
 */

static int validate_change(const struct cpuset *cur, const struct cpuset *trial)
{
443
	struct cgroup *cont;
L
Linus Torvalds 已提交
444
	struct cpuset *c, *par;
445 446 447
	int ret;

	rcu_read_lock();
L
Linus Torvalds 已提交
448 449

	/* Each of our child cpusets must be a subset of us */
450 451 452 453
	ret = -EBUSY;
	cpuset_for_each_child(c, cont, cur)
		if (!is_cpuset_subset(c, trial))
			goto out;
L
Linus Torvalds 已提交
454 455

	/* Remaining checks don't apply to root cpuset */
456
	ret = 0;
457
	if (cur == &top_cpuset)
458
		goto out;
L
Linus Torvalds 已提交
459

T
Tejun Heo 已提交
460
	par = parent_cs(cur);
461

L
Linus Torvalds 已提交
462
	/* We must be a subset of our parent cpuset */
463
	ret = -EACCES;
L
Linus Torvalds 已提交
464
	if (!is_cpuset_subset(trial, par))
465
		goto out;
L
Linus Torvalds 已提交
466

467 468 469 470
	/*
	 * If either I or some sibling (!= me) is exclusive, we can't
	 * overlap
	 */
471 472
	ret = -EINVAL;
	cpuset_for_each_child(c, cont, par) {
L
Linus Torvalds 已提交
473 474
		if ((is_cpu_exclusive(trial) || is_cpu_exclusive(c)) &&
		    c != cur &&
475
		    cpumask_intersects(trial->cpus_allowed, c->cpus_allowed))
476
			goto out;
L
Linus Torvalds 已提交
477 478 479
		if ((is_mem_exclusive(trial) || is_mem_exclusive(c)) &&
		    c != cur &&
		    nodes_intersects(trial->mems_allowed, c->mems_allowed))
480
			goto out;
L
Linus Torvalds 已提交
481 482
	}

483 484 485 486
	/*
	 * Cpusets with tasks - existing or newly being attached - can't
	 * have empty cpus_allowed or mems_allowed.
	 */
487
	ret = -ENOSPC;
488
	if ((cgroup_task_count(cur->css.cgroup) || cur->attach_in_progress) &&
489 490 491
	    (cpumask_empty(trial->cpus_allowed) ||
	     nodes_empty(trial->mems_allowed)))
		goto out;
492

493 494 495 496
	ret = 0;
out:
	rcu_read_unlock();
	return ret;
L
Linus Torvalds 已提交
497 498
}

499
#ifdef CONFIG_SMP
P
Paul Jackson 已提交
500
/*
501
 * Helper routine for generate_sched_domains().
P
Paul Jackson 已提交
502 503 504 505
 * Do cpusets a, b have overlapping cpus_allowed masks?
 */
static int cpusets_overlap(struct cpuset *a, struct cpuset *b)
{
506
	return cpumask_intersects(a->cpus_allowed, b->cpus_allowed);
P
Paul Jackson 已提交
507 508
}

509 510 511 512 513 514 515 516
static void
update_domain_attr(struct sched_domain_attr *dattr, struct cpuset *c)
{
	if (dattr->relax_domain_level < c->relax_domain_level)
		dattr->relax_domain_level = c->relax_domain_level;
	return;
}

517 518
static void update_domain_attr_tree(struct sched_domain_attr *dattr,
				    struct cpuset *root_cs)
519
{
520 521
	struct cpuset *cp;
	struct cgroup *pos_cgrp;
522

523 524 525 526 527
	rcu_read_lock();
	cpuset_for_each_descendant_pre(cp, pos_cgrp, root_cs) {
		/* skip the whole subtree if @cp doesn't have any CPU */
		if (cpumask_empty(cp->cpus_allowed)) {
			pos_cgrp = cgroup_rightmost_descendant(pos_cgrp);
528
			continue;
529
		}
530 531 532 533

		if (is_sched_load_balance(cp))
			update_domain_attr(dattr, cp);
	}
534
	rcu_read_unlock();
535 536
}

P
Paul Jackson 已提交
537
/*
538 539 540 541 542 543 544 545 546
 * generate_sched_domains()
 *
 * This function builds a partial partition of the systems CPUs
 * A 'partial partition' is a set of non-overlapping subsets whose
 * union is a subset of that set.
 * The output of this function needs to be passed to kernel/sched.c
 * partition_sched_domains() routine, which will rebuild the scheduler's
 * load balancing domains (sched domains) as specified by that partial
 * partition.
P
Paul Jackson 已提交
547
 *
L
Li Zefan 已提交
548
 * See "What is sched_load_balance" in Documentation/cgroups/cpusets.txt
P
Paul Jackson 已提交
549 550 551 552 553 554 555
 * for a background explanation of this.
 *
 * Does not return errors, on the theory that the callers of this
 * routine would rather not worry about failures to rebuild sched
 * domains when operating in the severe memory shortage situations
 * that could cause allocation failures below.
 *
556
 * Must be called with cpuset_mutex held.
P
Paul Jackson 已提交
557 558
 *
 * The three key local variables below are:
559
 *    q  - a linked-list queue of cpuset pointers, used to implement a
P
Paul Jackson 已提交
560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590
 *	   top-down scan of all cpusets.  This scan loads a pointer
 *	   to each cpuset marked is_sched_load_balance into the
 *	   array 'csa'.  For our purposes, rebuilding the schedulers
 *	   sched domains, we can ignore !is_sched_load_balance cpusets.
 *  csa  - (for CpuSet Array) Array of pointers to all the cpusets
 *	   that need to be load balanced, for convenient iterative
 *	   access by the subsequent code that finds the best partition,
 *	   i.e the set of domains (subsets) of CPUs such that the
 *	   cpus_allowed of every cpuset marked is_sched_load_balance
 *	   is a subset of one of these domains, while there are as
 *	   many such domains as possible, each as small as possible.
 * doms  - Conversion of 'csa' to an array of cpumasks, for passing to
 *	   the kernel/sched.c routine partition_sched_domains() in a
 *	   convenient format, that can be easily compared to the prior
 *	   value to determine what partition elements (sched domains)
 *	   were changed (added or removed.)
 *
 * Finding the best partition (set of domains):
 *	The triple nested loops below over i, j, k scan over the
 *	load balanced cpusets (using the array of cpuset pointers in
 *	csa[]) looking for pairs of cpusets that have overlapping
 *	cpus_allowed, but which don't have the same 'pn' partition
 *	number and gives them in the same partition number.  It keeps
 *	looping on the 'restart' label until it can no longer find
 *	any such pairs.
 *
 *	The union of the cpus_allowed masks from the set of
 *	all cpusets having the same 'pn' value then form the one
 *	element of the partition (one sched domain) to be passed to
 *	partition_sched_domains().
 */
591
static int generate_sched_domains(cpumask_var_t **domains,
592
			struct sched_domain_attr **attributes)
P
Paul Jackson 已提交
593 594 595 596 597
{
	struct cpuset *cp;	/* scans q */
	struct cpuset **csa;	/* array of all cpuset ptrs */
	int csn;		/* how many cpuset ptrs in csa so far */
	int i, j, k;		/* indices for partition finding loops */
598
	cpumask_var_t *doms;	/* resulting partition; i.e. sched domains */
599
	struct sched_domain_attr *dattr;  /* attributes for custom domains */
600
	int ndoms = 0;		/* number of sched domains in result */
601
	int nslot;		/* next empty doms[] struct cpumask slot */
602
	struct cgroup *pos_cgrp;
P
Paul Jackson 已提交
603 604

	doms = NULL;
605
	dattr = NULL;
606
	csa = NULL;
P
Paul Jackson 已提交
607 608 609

	/* Special case for the 99% of systems with one, full, sched domain */
	if (is_sched_load_balance(&top_cpuset)) {
610 611
		ndoms = 1;
		doms = alloc_sched_domains(ndoms);
P
Paul Jackson 已提交
612
		if (!doms)
613 614
			goto done;

615 616 617
		dattr = kmalloc(sizeof(struct sched_domain_attr), GFP_KERNEL);
		if (dattr) {
			*dattr = SD_ATTR_INIT;
618
			update_domain_attr_tree(dattr, &top_cpuset);
619
		}
620
		cpumask_copy(doms[0], top_cpuset.cpus_allowed);
621 622

		goto done;
P
Paul Jackson 已提交
623 624 625 626 627 628 629
	}

	csa = kmalloc(number_of_cpusets * sizeof(cp), GFP_KERNEL);
	if (!csa)
		goto done;
	csn = 0;

630 631
	rcu_read_lock();
	cpuset_for_each_descendant_pre(cp, pos_cgrp, &top_cpuset) {
632
		/*
633 634 635 636 637 638
		 * Continue traversing beyond @cp iff @cp has some CPUs and
		 * isn't load balancing.  The former is obvious.  The
		 * latter: All child cpusets contain a subset of the
		 * parent's cpus, so just skip them, and then we call
		 * update_domain_attr_tree() to calc relax_domain_level of
		 * the corresponding sched domain.
639
		 */
640 641
		if (!cpumask_empty(cp->cpus_allowed) &&
		    !is_sched_load_balance(cp))
642
			continue;
643

644 645 646 647 648 649 650
		if (is_sched_load_balance(cp))
			csa[csn++] = cp;

		/* skip @cp's subtree */
		pos_cgrp = cgroup_rightmost_descendant(pos_cgrp);
	}
	rcu_read_unlock();
P
Paul Jackson 已提交
651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678

	for (i = 0; i < csn; i++)
		csa[i]->pn = i;
	ndoms = csn;

restart:
	/* Find the best partition (set of sched domains) */
	for (i = 0; i < csn; i++) {
		struct cpuset *a = csa[i];
		int apn = a->pn;

		for (j = 0; j < csn; j++) {
			struct cpuset *b = csa[j];
			int bpn = b->pn;

			if (apn != bpn && cpusets_overlap(a, b)) {
				for (k = 0; k < csn; k++) {
					struct cpuset *c = csa[k];

					if (c->pn == bpn)
						c->pn = apn;
				}
				ndoms--;	/* one less element */
				goto restart;
			}
		}
	}

679 680 681 682
	/*
	 * Now we know how many domains to create.
	 * Convert <csn, csa> to <ndoms, doms> and populate cpu masks.
	 */
683
	doms = alloc_sched_domains(ndoms);
684
	if (!doms)
685 686 687 688 689 690
		goto done;

	/*
	 * The rest of the code, including the scheduler, can deal with
	 * dattr==NULL case. No need to abort if alloc fails.
	 */
691
	dattr = kmalloc(ndoms * sizeof(struct sched_domain_attr), GFP_KERNEL);
P
Paul Jackson 已提交
692 693 694

	for (nslot = 0, i = 0; i < csn; i++) {
		struct cpuset *a = csa[i];
695
		struct cpumask *dp;
P
Paul Jackson 已提交
696 697
		int apn = a->pn;

698 699 700 701 702
		if (apn < 0) {
			/* Skip completed partitions */
			continue;
		}

703
		dp = doms[nslot];
704 705 706 707 708 709 710 711 712 713

		if (nslot == ndoms) {
			static int warnings = 10;
			if (warnings) {
				printk(KERN_WARNING
				 "rebuild_sched_domains confused:"
				  " nslot %d, ndoms %d, csn %d, i %d,"
				  " apn %d\n",
				  nslot, ndoms, csn, i, apn);
				warnings--;
P
Paul Jackson 已提交
714
			}
715 716
			continue;
		}
P
Paul Jackson 已提交
717

718
		cpumask_clear(dp);
719 720 721 722 723 724
		if (dattr)
			*(dattr + nslot) = SD_ATTR_INIT;
		for (j = i; j < csn; j++) {
			struct cpuset *b = csa[j];

			if (apn == b->pn) {
725
				cpumask_or(dp, dp, b->cpus_allowed);
726 727 728 729 730
				if (dattr)
					update_domain_attr_tree(dattr + nslot, b);

				/* Done with this partition */
				b->pn = -1;
P
Paul Jackson 已提交
731 732
			}
		}
733
		nslot++;
P
Paul Jackson 已提交
734 735 736
	}
	BUG_ON(nslot != ndoms);

737 738 739
done:
	kfree(csa);

740 741 742 743 744 745 746
	/*
	 * Fallback to the default domain if kmalloc() failed.
	 * See comments in partition_sched_domains().
	 */
	if (doms == NULL)
		ndoms = 1;

747 748 749 750 751 752 753 754
	*domains    = doms;
	*attributes = dattr;
	return ndoms;
}

/*
 * Rebuild scheduler domains.
 *
755 756 757 758 759
 * If the flag 'sched_load_balance' of any cpuset with non-empty
 * 'cpus' changes, or if the 'cpus' allowed changes in any cpuset
 * which has that flag enabled, or if any cpuset with a non-empty
 * 'cpus' is removed, then call this routine to rebuild the
 * scheduler's dynamic sched domains.
760
 *
761
 * Call with cpuset_mutex held.  Takes get_online_cpus().
762
 */
763
static void rebuild_sched_domains_locked(void)
764 765
{
	struct sched_domain_attr *attr;
766
	cpumask_var_t *doms;
767 768
	int ndoms;

769
	lockdep_assert_held(&cpuset_mutex);
770
	get_online_cpus();
771

772 773 774 775 776 777 778 779
	/*
	 * We have raced with CPU hotplug. Don't do anything to avoid
	 * passing doms with offlined cpu to partition_sched_domains().
	 * Anyways, hotplug work item will rebuild sched domains.
	 */
	if (!cpumask_equal(top_cpuset.cpus_allowed, cpu_active_mask))
		goto out;

780 781 782 783 784
	/* Generate domain masks and attrs */
	ndoms = generate_sched_domains(&doms, &attr);

	/* Have scheduler rebuild the domains */
	partition_sched_domains(ndoms, doms, attr);
785
out:
786
	put_online_cpus();
787
}
788
#else /* !CONFIG_SMP */
789
static void rebuild_sched_domains_locked(void)
790 791 792
{
}
#endif /* CONFIG_SMP */
P
Paul Jackson 已提交
793

794 795
void rebuild_sched_domains(void)
{
796
	mutex_lock(&cpuset_mutex);
797
	rebuild_sched_domains_locked();
798
	mutex_unlock(&cpuset_mutex);
P
Paul Jackson 已提交
799 800
}

C
Cliff Wickman 已提交
801 802 803 804 805
/**
 * cpuset_test_cpumask - test a task's cpus_allowed versus its cpuset's
 * @tsk: task to test
 * @scan: struct cgroup_scanner contained in its struct cpuset_hotplug_scanner
 *
806
 * Call with cpuset_mutex held.  May take callback_mutex during call.
C
Cliff Wickman 已提交
807 808 809
 * Called for each task in a cgroup by cgroup_scan_tasks().
 * Return nonzero if this tasks's cpus_allowed mask should be changed (in other
 * words, if its mask is not equal to its cpuset's mask).
810
 */
811 812
static int cpuset_test_cpumask(struct task_struct *tsk,
			       struct cgroup_scanner *scan)
C
Cliff Wickman 已提交
813
{
814
	return !cpumask_equal(&tsk->cpus_allowed,
C
Cliff Wickman 已提交
815 816
			(cgroup_cs(scan->cg))->cpus_allowed);
}
817

C
Cliff Wickman 已提交
818 819 820 821 822 823 824 825 826
/**
 * cpuset_change_cpumask - make a task's cpus_allowed the same as its cpuset's
 * @tsk: task to test
 * @scan: struct cgroup_scanner containing the cgroup of the task
 *
 * Called by cgroup_scan_tasks() for each task in a cgroup whose
 * cpus_allowed mask needs to be changed.
 *
 * We don't need to re-check for the cgroup/cpuset membership, since we're
827
 * holding cpuset_mutex at this point.
C
Cliff Wickman 已提交
828
 */
829 830
static void cpuset_change_cpumask(struct task_struct *tsk,
				  struct cgroup_scanner *scan)
C
Cliff Wickman 已提交
831
{
832
	set_cpus_allowed_ptr(tsk, ((cgroup_cs(scan->cg))->cpus_allowed));
C
Cliff Wickman 已提交
833 834
}

835 836 837
/**
 * update_tasks_cpumask - Update the cpumasks of tasks in the cpuset.
 * @cs: the cpuset in which each task's cpus_allowed mask needs to be changed
838
 * @heap: if NULL, defer allocating heap memory to cgroup_scan_tasks()
839
 *
840
 * Called with cpuset_mutex held
841 842 843 844
 *
 * The cgroup_scan_tasks() function will scan all the tasks in a cgroup,
 * calling callback functions for each.
 *
845 846
 * No return value. It's guaranteed that cgroup_scan_tasks() always returns 0
 * if @heap != NULL.
847
 */
848
static void update_tasks_cpumask(struct cpuset *cs, struct ptr_heap *heap)
849 850 851 852 853 854
{
	struct cgroup_scanner scan;

	scan.cg = cs->css.cgroup;
	scan.test_task = cpuset_test_cpumask;
	scan.process_task = cpuset_change_cpumask;
855 856
	scan.heap = heap;
	cgroup_scan_tasks(&scan);
857 858
}

C
Cliff Wickman 已提交
859 860 861 862 863
/**
 * update_cpumask - update the cpus_allowed mask of a cpuset and all tasks in it
 * @cs: the cpuset to consider
 * @buf: buffer of cpu numbers written to this cpuset
 */
864 865
static int update_cpumask(struct cpuset *cs, struct cpuset *trialcs,
			  const char *buf)
L
Linus Torvalds 已提交
866
{
867
	struct ptr_heap heap;
C
Cliff Wickman 已提交
868 869
	int retval;
	int is_load_balanced;
L
Linus Torvalds 已提交
870

871
	/* top_cpuset.cpus_allowed tracks cpu_online_mask; it's read-only */
872 873 874
	if (cs == &top_cpuset)
		return -EACCES;

875
	/*
876
	 * An empty cpus_allowed is ok only if the cpuset has no tasks.
877 878 879
	 * Since cpulist_parse() fails on an empty mask, we special case
	 * that parsing.  The validate_change() call ensures that cpusets
	 * with tasks have cpus.
880
	 */
881
	if (!*buf) {
882
		cpumask_clear(trialcs->cpus_allowed);
883
	} else {
884
		retval = cpulist_parse(buf, trialcs->cpus_allowed);
885 886
		if (retval < 0)
			return retval;
887

888
		if (!cpumask_subset(trialcs->cpus_allowed, cpu_active_mask))
889
			return -EINVAL;
890
	}
891
	retval = validate_change(cs, trialcs);
892 893
	if (retval < 0)
		return retval;
P
Paul Jackson 已提交
894

P
Paul Menage 已提交
895
	/* Nothing to do if the cpus didn't change */
896
	if (cpumask_equal(cs->cpus_allowed, trialcs->cpus_allowed))
P
Paul Menage 已提交
897
		return 0;
C
Cliff Wickman 已提交
898

899 900 901 902
	retval = heap_init(&heap, PAGE_SIZE, GFP_KERNEL, NULL);
	if (retval)
		return retval;

903
	is_load_balanced = is_sched_load_balance(trialcs);
P
Paul Jackson 已提交
904

905
	mutex_lock(&callback_mutex);
906
	cpumask_copy(cs->cpus_allowed, trialcs->cpus_allowed);
907
	mutex_unlock(&callback_mutex);
P
Paul Jackson 已提交
908

P
Paul Menage 已提交
909 910
	/*
	 * Scan tasks in the cpuset, and update the cpumasks of any
C
Cliff Wickman 已提交
911
	 * that need an update.
P
Paul Menage 已提交
912
	 */
913 914 915
	update_tasks_cpumask(cs, &heap);

	heap_free(&heap);
C
Cliff Wickman 已提交
916

P
Paul Menage 已提交
917
	if (is_load_balanced)
918
		rebuild_sched_domains_locked();
919
	return 0;
L
Linus Torvalds 已提交
920 921
}

922 923 924 925 926 927 928 929
/*
 * cpuset_migrate_mm
 *
 *    Migrate memory region from one set of nodes to another.
 *
 *    Temporarilly set tasks mems_allowed to target nodes of migration,
 *    so that the migration code can allocate pages on these nodes.
 *
930
 *    Call holding cpuset_mutex, so current's cpuset won't change
931
 *    during this call, as manage_mutex holds off any cpuset_attach()
932 933
 *    calls.  Therefore we don't need to take task_lock around the
 *    call to guarantee_online_mems(), as we know no one is changing
934
 *    our task's cpuset.
935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950
 *
 *    While the mm_struct we are migrating is typically from some
 *    other task, the task_struct mems_allowed that we are hacking
 *    is for our current task, which must allocate new pages for that
 *    migrating memory region.
 */

static void cpuset_migrate_mm(struct mm_struct *mm, const nodemask_t *from,
							const nodemask_t *to)
{
	struct task_struct *tsk = current;

	tsk->mems_allowed = *to;

	do_migrate_pages(mm, from, to, MPOL_MF_MOVE_ALL);

951
	guarantee_online_mems(task_cs(tsk),&tsk->mems_allowed);
952 953
}

954
/*
955 956 957 958 959 960 961 962 963 964 965
 * cpuset_change_task_nodemask - change task's mems_allowed and mempolicy
 * @tsk: the task to change
 * @newmems: new nodes that the task will be set
 *
 * In order to avoid seeing no nodes if the old and new nodes are disjoint,
 * we structure updates as setting all new allowed nodes, then clearing newly
 * disallowed ones.
 */
static void cpuset_change_task_nodemask(struct task_struct *tsk,
					nodemask_t *newmems)
{
966
	bool need_loop;
967

968 969 970 971 972 973 974 975 976 977
	/*
	 * Allow tasks that have access to memory reserves because they have
	 * been OOM killed to get memory anywhere.
	 */
	if (unlikely(test_thread_flag(TIF_MEMDIE)))
		return;
	if (current->flags & PF_EXITING) /* Let dying task have memory */
		return;

	task_lock(tsk);
978 979 980 981 982 983 984 985
	/*
	 * Determine if a loop is necessary if another thread is doing
	 * get_mems_allowed().  If at least one node remains unchanged and
	 * tsk does not have a mempolicy, then an empty nodemask will not be
	 * possible when mems_allowed is larger than a word.
	 */
	need_loop = task_has_mempolicy(tsk) ||
			!nodes_intersects(*newmems, tsk->mems_allowed);
986

987 988
	if (need_loop)
		write_seqcount_begin(&tsk->mems_allowed_seq);
989

990 991
	nodes_or(tsk->mems_allowed, tsk->mems_allowed, *newmems);
	mpol_rebind_task(tsk, newmems, MPOL_REBIND_STEP1);
992 993

	mpol_rebind_task(tsk, newmems, MPOL_REBIND_STEP2);
994
	tsk->mems_allowed = *newmems;
995 996 997 998

	if (need_loop)
		write_seqcount_end(&tsk->mems_allowed_seq);

999
	task_unlock(tsk);
1000 1001 1002 1003 1004
}

/*
 * Update task's mems_allowed and rebind its mempolicy and vmas' mempolicy
 * of it to cpuset's new mems_allowed, and migrate pages to new nodes if
1005
 * memory_migrate flag is set. Called with cpuset_mutex held.
1006 1007 1008 1009 1010 1011 1012 1013
 */
static void cpuset_change_nodemask(struct task_struct *p,
				   struct cgroup_scanner *scan)
{
	struct mm_struct *mm;
	struct cpuset *cs;
	int migrate;
	const nodemask_t *oldmem = scan->data;
1014
	static nodemask_t newmems;	/* protected by cpuset_mutex */
1015 1016

	cs = cgroup_cs(scan->cg);
1017
	guarantee_online_mems(cs, &newmems);
1018

1019
	cpuset_change_task_nodemask(p, &newmems);
1020

1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032
	mm = get_task_mm(p);
	if (!mm)
		return;

	migrate = is_memory_migrate(cs);

	mpol_rebind_mm(mm, &cs->mems_allowed);
	if (migrate)
		cpuset_migrate_mm(mm, oldmem, &cs->mems_allowed);
	mmput(mm);
}

1033 1034
static void *cpuset_being_rebound;

1035 1036 1037 1038
/**
 * update_tasks_nodemask - Update the nodemasks of tasks in the cpuset.
 * @cs: the cpuset in which each task's mems_allowed mask needs to be changed
 * @oldmem: old mems_allowed of cpuset cs
1039
 * @heap: if NULL, defer allocating heap memory to cgroup_scan_tasks()
1040
 *
1041
 * Called with cpuset_mutex held
1042 1043
 * No return value. It's guaranteed that cgroup_scan_tasks() always returns 0
 * if @heap != NULL.
1044
 */
1045 1046
static void update_tasks_nodemask(struct cpuset *cs, const nodemask_t *oldmem,
				 struct ptr_heap *heap)
L
Linus Torvalds 已提交
1047
{
1048
	struct cgroup_scanner scan;
1049

1050
	cpuset_being_rebound = cs;		/* causes mpol_dup() rebind */
1051

1052 1053 1054
	scan.cg = cs->css.cgroup;
	scan.test_task = NULL;
	scan.process_task = cpuset_change_nodemask;
1055
	scan.heap = heap;
1056
	scan.data = (nodemask_t *)oldmem;
1057 1058

	/*
1059 1060 1061 1062
	 * The mpol_rebind_mm() call takes mmap_sem, which we couldn't
	 * take while holding tasklist_lock.  Forks can happen - the
	 * mpol_dup() cpuset_being_rebound check will catch such forks,
	 * and rebind their vma mempolicies too.  Because we still hold
1063
	 * the global cpuset_mutex, we know that no other rebind effort
1064
	 * will be contending for the global variable cpuset_being_rebound.
1065
	 * It's ok if we rebind the same mm twice; mpol_rebind_mm()
1066
	 * is idempotent.  Also migrate pages in each mm to new nodes.
1067
	 */
1068
	cgroup_scan_tasks(&scan);
1069

1070
	/* We're done rebinding vmas to this cpuset's new mems_allowed. */
1071
	cpuset_being_rebound = NULL;
L
Linus Torvalds 已提交
1072 1073
}

1074 1075 1076
/*
 * Handle user request to change the 'mems' memory placement
 * of a cpuset.  Needs to validate the request, update the
1077 1078 1079 1080
 * cpusets mems_allowed, and for each task in the cpuset,
 * update mems_allowed and rebind task's mempolicy and any vma
 * mempolicies and if the cpuset is marked 'memory_migrate',
 * migrate the tasks pages to the new memory.
1081
 *
1082
 * Call with cpuset_mutex held.  May take callback_mutex during call.
1083 1084 1085 1086
 * Will take tasklist_lock, scan tasklist for tasks in cpuset cs,
 * lock each such tasks mm->mmap_sem, scan its vma's and rebind
 * their mempolicies to the cpusets new mems_allowed.
 */
1087 1088
static int update_nodemask(struct cpuset *cs, struct cpuset *trialcs,
			   const char *buf)
1089
{
1090
	NODEMASK_ALLOC(nodemask_t, oldmem, GFP_KERNEL);
1091
	int retval;
1092
	struct ptr_heap heap;
1093

1094 1095 1096
	if (!oldmem)
		return -ENOMEM;

1097
	/*
1098
	 * top_cpuset.mems_allowed tracks node_stats[N_MEMORY];
1099 1100
	 * it's read-only
	 */
1101 1102 1103 1104
	if (cs == &top_cpuset) {
		retval = -EACCES;
		goto done;
	}
1105 1106 1107 1108 1109 1110 1111 1112

	/*
	 * An empty mems_allowed is ok iff there are no tasks in the cpuset.
	 * Since nodelist_parse() fails on an empty mask, we special case
	 * that parsing.  The validate_change() call ensures that cpusets
	 * with tasks have memory.
	 */
	if (!*buf) {
1113
		nodes_clear(trialcs->mems_allowed);
1114
	} else {
1115
		retval = nodelist_parse(buf, trialcs->mems_allowed);
1116 1117 1118
		if (retval < 0)
			goto done;

1119
		if (!nodes_subset(trialcs->mems_allowed,
1120
				node_states[N_MEMORY])) {
1121 1122 1123
			retval =  -EINVAL;
			goto done;
		}
1124
	}
1125 1126
	*oldmem = cs->mems_allowed;
	if (nodes_equal(*oldmem, trialcs->mems_allowed)) {
1127 1128 1129
		retval = 0;		/* Too easy - nothing to do */
		goto done;
	}
1130
	retval = validate_change(cs, trialcs);
1131 1132 1133
	if (retval < 0)
		goto done;

1134 1135 1136 1137
	retval = heap_init(&heap, PAGE_SIZE, GFP_KERNEL, NULL);
	if (retval < 0)
		goto done;

1138
	mutex_lock(&callback_mutex);
1139
	cs->mems_allowed = trialcs->mems_allowed;
1140 1141
	mutex_unlock(&callback_mutex);

1142
	update_tasks_nodemask(cs, oldmem, &heap);
1143 1144

	heap_free(&heap);
1145
done:
1146
	NODEMASK_FREE(oldmem);
1147 1148 1149
	return retval;
}

1150 1151 1152 1153 1154
int current_cpuset_is_being_rebound(void)
{
	return task_cs(current) == cpuset_being_rebound;
}

1155
static int update_relax_domain_level(struct cpuset *cs, s64 val)
1156
{
1157
#ifdef CONFIG_SMP
1158
	if (val < -1 || val >= sched_domain_level_max)
1159
		return -EINVAL;
1160
#endif
1161 1162 1163

	if (val != cs->relax_domain_level) {
		cs->relax_domain_level = val;
1164 1165
		if (!cpumask_empty(cs->cpus_allowed) &&
		    is_sched_load_balance(cs))
1166
			rebuild_sched_domains_locked();
1167 1168 1169 1170 1171
	}

	return 0;
}

1172 1173 1174 1175 1176 1177 1178 1179
/*
 * cpuset_change_flag - make a task's spread flags the same as its cpuset's
 * @tsk: task to be updated
 * @scan: struct cgroup_scanner containing the cgroup of the task
 *
 * Called by cgroup_scan_tasks() for each task in a cgroup.
 *
 * We don't need to re-check for the cgroup/cpuset membership, since we're
1180
 * holding cpuset_mutex at this point.
1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192
 */
static void cpuset_change_flag(struct task_struct *tsk,
				struct cgroup_scanner *scan)
{
	cpuset_update_task_spread_flag(cgroup_cs(scan->cg), tsk);
}

/*
 * update_tasks_flags - update the spread flags of tasks in the cpuset.
 * @cs: the cpuset in which each task's spread flags needs to be changed
 * @heap: if NULL, defer allocating heap memory to cgroup_scan_tasks()
 *
1193
 * Called with cpuset_mutex held
1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211
 *
 * The cgroup_scan_tasks() function will scan all the tasks in a cgroup,
 * calling callback functions for each.
 *
 * No return value. It's guaranteed that cgroup_scan_tasks() always returns 0
 * if @heap != NULL.
 */
static void update_tasks_flags(struct cpuset *cs, struct ptr_heap *heap)
{
	struct cgroup_scanner scan;

	scan.cg = cs->css.cgroup;
	scan.test_task = NULL;
	scan.process_task = cpuset_change_flag;
	scan.heap = heap;
	cgroup_scan_tasks(&scan);
}

L
Linus Torvalds 已提交
1212 1213
/*
 * update_flag - read a 0 or a 1 in a file and update associated flag
1214 1215 1216
 * bit:		the bit to update (see cpuset_flagbits_t)
 * cs:		the cpuset to update
 * turning_on: 	whether the flag is being set or cleared
1217
 *
1218
 * Call with cpuset_mutex held.
L
Linus Torvalds 已提交
1219 1220
 */

1221 1222
static int update_flag(cpuset_flagbits_t bit, struct cpuset *cs,
		       int turning_on)
L
Linus Torvalds 已提交
1223
{
1224
	struct cpuset *trialcs;
R
Rakib Mullick 已提交
1225
	int balance_flag_changed;
1226 1227 1228
	int spread_flag_changed;
	struct ptr_heap heap;
	int err;
L
Linus Torvalds 已提交
1229

1230 1231 1232 1233
	trialcs = alloc_trial_cpuset(cs);
	if (!trialcs)
		return -ENOMEM;

L
Linus Torvalds 已提交
1234
	if (turning_on)
1235
		set_bit(bit, &trialcs->flags);
L
Linus Torvalds 已提交
1236
	else
1237
		clear_bit(bit, &trialcs->flags);
L
Linus Torvalds 已提交
1238

1239
	err = validate_change(cs, trialcs);
1240
	if (err < 0)
1241
		goto out;
P
Paul Jackson 已提交
1242

1243 1244 1245 1246
	err = heap_init(&heap, PAGE_SIZE, GFP_KERNEL, NULL);
	if (err < 0)
		goto out;

P
Paul Jackson 已提交
1247
	balance_flag_changed = (is_sched_load_balance(cs) !=
1248
				is_sched_load_balance(trialcs));
P
Paul Jackson 已提交
1249

1250 1251 1252
	spread_flag_changed = ((is_spread_slab(cs) != is_spread_slab(trialcs))
			|| (is_spread_page(cs) != is_spread_page(trialcs)));

1253
	mutex_lock(&callback_mutex);
1254
	cs->flags = trialcs->flags;
1255
	mutex_unlock(&callback_mutex);
1256

1257
	if (!cpumask_empty(trialcs->cpus_allowed) && balance_flag_changed)
1258
		rebuild_sched_domains_locked();
P
Paul Jackson 已提交
1259

1260 1261 1262
	if (spread_flag_changed)
		update_tasks_flags(cs, &heap);
	heap_free(&heap);
1263 1264 1265
out:
	free_trial_cpuset(trialcs);
	return err;
L
Linus Torvalds 已提交
1266 1267
}

1268
/*
A
Adrian Bunk 已提交
1269
 * Frequency meter - How fast is some event occurring?
1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365
 *
 * These routines manage a digitally filtered, constant time based,
 * event frequency meter.  There are four routines:
 *   fmeter_init() - initialize a frequency meter.
 *   fmeter_markevent() - called each time the event happens.
 *   fmeter_getrate() - returns the recent rate of such events.
 *   fmeter_update() - internal routine used to update fmeter.
 *
 * A common data structure is passed to each of these routines,
 * which is used to keep track of the state required to manage the
 * frequency meter and its digital filter.
 *
 * The filter works on the number of events marked per unit time.
 * The filter is single-pole low-pass recursive (IIR).  The time unit
 * is 1 second.  Arithmetic is done using 32-bit integers scaled to
 * simulate 3 decimal digits of precision (multiplied by 1000).
 *
 * With an FM_COEF of 933, and a time base of 1 second, the filter
 * has a half-life of 10 seconds, meaning that if the events quit
 * happening, then the rate returned from the fmeter_getrate()
 * will be cut in half each 10 seconds, until it converges to zero.
 *
 * It is not worth doing a real infinitely recursive filter.  If more
 * than FM_MAXTICKS ticks have elapsed since the last filter event,
 * just compute FM_MAXTICKS ticks worth, by which point the level
 * will be stable.
 *
 * Limit the count of unprocessed events to FM_MAXCNT, so as to avoid
 * arithmetic overflow in the fmeter_update() routine.
 *
 * Given the simple 32 bit integer arithmetic used, this meter works
 * best for reporting rates between one per millisecond (msec) and
 * one per 32 (approx) seconds.  At constant rates faster than one
 * per msec it maxes out at values just under 1,000,000.  At constant
 * rates between one per msec, and one per second it will stabilize
 * to a value N*1000, where N is the rate of events per second.
 * At constant rates between one per second and one per 32 seconds,
 * it will be choppy, moving up on the seconds that have an event,
 * and then decaying until the next event.  At rates slower than
 * about one in 32 seconds, it decays all the way back to zero between
 * each event.
 */

#define FM_COEF 933		/* coefficient for half-life of 10 secs */
#define FM_MAXTICKS ((time_t)99) /* useless computing more ticks than this */
#define FM_MAXCNT 1000000	/* limit cnt to avoid overflow */
#define FM_SCALE 1000		/* faux fixed point scale */

/* Initialize a frequency meter */
static void fmeter_init(struct fmeter *fmp)
{
	fmp->cnt = 0;
	fmp->val = 0;
	fmp->time = 0;
	spin_lock_init(&fmp->lock);
}

/* Internal meter update - process cnt events and update value */
static void fmeter_update(struct fmeter *fmp)
{
	time_t now = get_seconds();
	time_t ticks = now - fmp->time;

	if (ticks == 0)
		return;

	ticks = min(FM_MAXTICKS, ticks);
	while (ticks-- > 0)
		fmp->val = (FM_COEF * fmp->val) / FM_SCALE;
	fmp->time = now;

	fmp->val += ((FM_SCALE - FM_COEF) * fmp->cnt) / FM_SCALE;
	fmp->cnt = 0;
}

/* Process any previous ticks, then bump cnt by one (times scale). */
static void fmeter_markevent(struct fmeter *fmp)
{
	spin_lock(&fmp->lock);
	fmeter_update(fmp);
	fmp->cnt = min(FM_MAXCNT, fmp->cnt + FM_SCALE);
	spin_unlock(&fmp->lock);
}

/* Process any previous ticks, then return current value. */
static int fmeter_getrate(struct fmeter *fmp)
{
	int val;

	spin_lock(&fmp->lock);
	fmeter_update(fmp);
	val = fmp->val;
	spin_unlock(&fmp->lock);
	return val;
}

1366
/* Called by cgroups to determine if a cpuset is usable; cpuset_mutex held */
1367
static int cpuset_can_attach(struct cgroup *cgrp, struct cgroup_taskset *tset)
1368
{
1369
	struct cpuset *cs = cgroup_cs(cgrp);
1370 1371
	struct task_struct *task;
	int ret;
L
Linus Torvalds 已提交
1372

1373 1374 1375
	mutex_lock(&cpuset_mutex);

	ret = -ENOSPC;
1376
	if (cpumask_empty(cs->cpus_allowed) || nodes_empty(cs->mems_allowed))
1377
		goto out_unlock;
1378

1379 1380
	cgroup_taskset_for_each(task, cgrp, tset) {
		/*
1381 1382 1383 1384 1385 1386 1387
		 * Kthreads which disallow setaffinity shouldn't be moved
		 * to a new cpuset; we don't want to change their cpu
		 * affinity and isolating such threads by their set of
		 * allowed nodes is unnecessary.  Thus, cpusets are not
		 * applicable for such threads.  This prevents checking for
		 * success of set_cpus_allowed_ptr() on all attached tasks
		 * before cpus_allowed may be changed.
1388
		 */
1389
		ret = -EINVAL;
1390
		if (task->flags & PF_NO_SETAFFINITY)
1391 1392 1393 1394
			goto out_unlock;
		ret = security_task_setscheduler(task);
		if (ret)
			goto out_unlock;
1395
	}
1396

1397 1398 1399 1400 1401
	/*
	 * Mark attach is in progress.  This makes validate_change() fail
	 * changes which zero cpus/mems_allowed.
	 */
	cs->attach_in_progress++;
1402 1403 1404 1405
	ret = 0;
out_unlock:
	mutex_unlock(&cpuset_mutex);
	return ret;
1406
}
1407

1408 1409 1410
static void cpuset_cancel_attach(struct cgroup *cgrp,
				 struct cgroup_taskset *tset)
{
1411
	mutex_lock(&cpuset_mutex);
1412
	cgroup_cs(cgrp)->attach_in_progress--;
1413
	mutex_unlock(&cpuset_mutex);
1414
}
L
Linus Torvalds 已提交
1415

1416
/*
1417
 * Protected by cpuset_mutex.  cpus_attach is used only by cpuset_attach()
1418 1419 1420 1421 1422
 * but we can't allocate it dynamically there.  Define it global and
 * allocate from cpuset_init().
 */
static cpumask_var_t cpus_attach;

1423
static void cpuset_attach(struct cgroup *cgrp, struct cgroup_taskset *tset)
1424
{
1425
	/* static bufs protected by cpuset_mutex */
1426 1427
	static nodemask_t cpuset_attach_nodemask_from;
	static nodemask_t cpuset_attach_nodemask_to;
1428
	struct mm_struct *mm;
1429 1430
	struct task_struct *task;
	struct task_struct *leader = cgroup_taskset_first(tset);
1431 1432 1433
	struct cgroup *oldcgrp = cgroup_taskset_cur_cgroup(tset);
	struct cpuset *cs = cgroup_cs(cgrp);
	struct cpuset *oldcs = cgroup_cs(oldcgrp);
1434

1435 1436
	mutex_lock(&cpuset_mutex);

1437 1438 1439 1440 1441 1442 1443 1444
	/* prepare for attach */
	if (cs == &top_cpuset)
		cpumask_copy(cpus_attach, cpu_possible_mask);
	else
		guarantee_online_cpus(cs, cpus_attach);

	guarantee_online_mems(cs, &cpuset_attach_nodemask_to);

1445 1446 1447 1448 1449 1450 1451 1452 1453 1454
	cgroup_taskset_for_each(task, cgrp, tset) {
		/*
		 * can_attach beforehand should guarantee that this doesn't
		 * fail.  TODO: have a better way to handle failure here
		 */
		WARN_ON_ONCE(set_cpus_allowed_ptr(task, cpus_attach));

		cpuset_change_task_nodemask(task, &cpuset_attach_nodemask_to);
		cpuset_update_task_spread_flag(cs, task);
	}
1455

1456 1457 1458 1459 1460 1461
	/*
	 * Change mm, possibly for multiple threads in a threadgroup. This is
	 * expensive and may sleep.
	 */
	cpuset_attach_nodemask_from = oldcs->mems_allowed;
	cpuset_attach_nodemask_to = cs->mems_allowed;
1462
	mm = get_task_mm(leader);
1463
	if (mm) {
1464
		mpol_rebind_mm(mm, &cpuset_attach_nodemask_to);
1465
		if (is_memory_migrate(cs))
1466 1467
			cpuset_migrate_mm(mm, &cpuset_attach_nodemask_from,
					  &cpuset_attach_nodemask_to);
1468 1469
		mmput(mm);
	}
1470 1471

	cs->attach_in_progress--;
1472 1473 1474 1475 1476 1477 1478 1479

	/*
	 * We may have raced with CPU/memory hotunplug.  Trigger hotplug
	 * propagation if @cs doesn't have any CPU or memory.  It will move
	 * the newly added tasks to the nearest parent which can execute.
	 */
	if (cpumask_empty(cs->cpus_allowed) || nodes_empty(cs->mems_allowed))
		schedule_cpuset_propagate_hotplug(cs);
1480 1481

	mutex_unlock(&cpuset_mutex);
L
Linus Torvalds 已提交
1482 1483 1484 1485 1486
}

/* The various types of files and directories in a cpuset file system */

typedef enum {
1487
	FILE_MEMORY_MIGRATE,
L
Linus Torvalds 已提交
1488 1489 1490 1491
	FILE_CPULIST,
	FILE_MEMLIST,
	FILE_CPU_EXCLUSIVE,
	FILE_MEM_EXCLUSIVE,
1492
	FILE_MEM_HARDWALL,
P
Paul Jackson 已提交
1493
	FILE_SCHED_LOAD_BALANCE,
1494
	FILE_SCHED_RELAX_DOMAIN_LEVEL,
1495 1496
	FILE_MEMORY_PRESSURE_ENABLED,
	FILE_MEMORY_PRESSURE,
1497 1498
	FILE_SPREAD_PAGE,
	FILE_SPREAD_SLAB,
L
Linus Torvalds 已提交
1499 1500
} cpuset_filetype_t;

1501 1502 1503 1504
static int cpuset_write_u64(struct cgroup *cgrp, struct cftype *cft, u64 val)
{
	struct cpuset *cs = cgroup_cs(cgrp);
	cpuset_filetype_t type = cft->private;
1505
	int retval = -ENODEV;
1506

1507 1508 1509
	mutex_lock(&cpuset_mutex);
	if (!is_cpuset_online(cs))
		goto out_unlock;
1510 1511

	switch (type) {
L
Linus Torvalds 已提交
1512
	case FILE_CPU_EXCLUSIVE:
1513
		retval = update_flag(CS_CPU_EXCLUSIVE, cs, val);
L
Linus Torvalds 已提交
1514 1515
		break;
	case FILE_MEM_EXCLUSIVE:
1516
		retval = update_flag(CS_MEM_EXCLUSIVE, cs, val);
L
Linus Torvalds 已提交
1517
		break;
1518 1519 1520
	case FILE_MEM_HARDWALL:
		retval = update_flag(CS_MEM_HARDWALL, cs, val);
		break;
P
Paul Jackson 已提交
1521
	case FILE_SCHED_LOAD_BALANCE:
1522
		retval = update_flag(CS_SCHED_LOAD_BALANCE, cs, val);
1523
		break;
1524
	case FILE_MEMORY_MIGRATE:
1525
		retval = update_flag(CS_MEMORY_MIGRATE, cs, val);
1526
		break;
1527
	case FILE_MEMORY_PRESSURE_ENABLED:
1528
		cpuset_memory_pressure_enabled = !!val;
1529 1530 1531 1532
		break;
	case FILE_MEMORY_PRESSURE:
		retval = -EACCES;
		break;
1533
	case FILE_SPREAD_PAGE:
1534
		retval = update_flag(CS_SPREAD_PAGE, cs, val);
1535 1536
		break;
	case FILE_SPREAD_SLAB:
1537
		retval = update_flag(CS_SPREAD_SLAB, cs, val);
1538
		break;
L
Linus Torvalds 已提交
1539 1540
	default:
		retval = -EINVAL;
1541
		break;
L
Linus Torvalds 已提交
1542
	}
1543 1544
out_unlock:
	mutex_unlock(&cpuset_mutex);
L
Linus Torvalds 已提交
1545 1546 1547
	return retval;
}

1548 1549 1550 1551
static int cpuset_write_s64(struct cgroup *cgrp, struct cftype *cft, s64 val)
{
	struct cpuset *cs = cgroup_cs(cgrp);
	cpuset_filetype_t type = cft->private;
1552
	int retval = -ENODEV;
1553

1554 1555 1556
	mutex_lock(&cpuset_mutex);
	if (!is_cpuset_online(cs))
		goto out_unlock;
1557

1558 1559 1560 1561 1562 1563 1564 1565
	switch (type) {
	case FILE_SCHED_RELAX_DOMAIN_LEVEL:
		retval = update_relax_domain_level(cs, val);
		break;
	default:
		retval = -EINVAL;
		break;
	}
1566 1567
out_unlock:
	mutex_unlock(&cpuset_mutex);
1568 1569 1570
	return retval;
}

1571 1572 1573 1574 1575 1576
/*
 * Common handling for a write to a "cpus" or "mems" file.
 */
static int cpuset_write_resmask(struct cgroup *cgrp, struct cftype *cft,
				const char *buf)
{
1577 1578
	struct cpuset *cs = cgroup_cs(cgrp);
	struct cpuset *trialcs;
1579
	int retval = -ENODEV;
1580

1581 1582 1583 1584 1585 1586 1587 1588 1589 1590
	/*
	 * CPU or memory hotunplug may leave @cs w/o any execution
	 * resources, in which case the hotplug code asynchronously updates
	 * configuration and transfers all tasks to the nearest ancestor
	 * which can execute.
	 *
	 * As writes to "cpus" or "mems" may restore @cs's execution
	 * resources, wait for the previously scheduled operations before
	 * proceeding, so that we don't end up keep removing tasks added
	 * after execution capability is restored.
1591 1592 1593 1594
	 *
	 * Flushing cpuset_hotplug_work is enough to synchronize against
	 * hotplug hanlding; however, cpuset_attach() may schedule
	 * propagation work directly.  Flush the workqueue too.
1595 1596
	 */
	flush_work(&cpuset_hotplug_work);
1597
	flush_workqueue(cpuset_propagate_hotplug_wq);
1598

1599 1600 1601
	mutex_lock(&cpuset_mutex);
	if (!is_cpuset_online(cs))
		goto out_unlock;
1602

1603
	trialcs = alloc_trial_cpuset(cs);
1604 1605
	if (!trialcs) {
		retval = -ENOMEM;
1606
		goto out_unlock;
1607
	}
1608

1609 1610
	switch (cft->private) {
	case FILE_CPULIST:
1611
		retval = update_cpumask(cs, trialcs, buf);
1612 1613
		break;
	case FILE_MEMLIST:
1614
		retval = update_nodemask(cs, trialcs, buf);
1615 1616 1617 1618 1619
		break;
	default:
		retval = -EINVAL;
		break;
	}
1620 1621

	free_trial_cpuset(trialcs);
1622 1623
out_unlock:
	mutex_unlock(&cpuset_mutex);
1624 1625 1626
	return retval;
}

L
Linus Torvalds 已提交
1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638
/*
 * These ascii lists should be read in a single call, by using a user
 * buffer large enough to hold the entire map.  If read in smaller
 * chunks, there is no guarantee of atomicity.  Since the display format
 * used, list of ranges of sequential numbers, is variable length,
 * and since these maps can change value dynamically, one could read
 * gibberish by doing partial reads while a list was changing.
 * A single large read to a buffer that crosses a page boundary is
 * ok, because the result being copied to user land is not recomputed
 * across a page fault.
 */

1639
static size_t cpuset_sprintf_cpulist(char *page, struct cpuset *cs)
L
Linus Torvalds 已提交
1640
{
1641
	size_t count;
L
Linus Torvalds 已提交
1642

1643
	mutex_lock(&callback_mutex);
1644
	count = cpulist_scnprintf(page, PAGE_SIZE, cs->cpus_allowed);
1645
	mutex_unlock(&callback_mutex);
L
Linus Torvalds 已提交
1646

1647
	return count;
L
Linus Torvalds 已提交
1648 1649
}

1650
static size_t cpuset_sprintf_memlist(char *page, struct cpuset *cs)
L
Linus Torvalds 已提交
1651
{
1652
	size_t count;
L
Linus Torvalds 已提交
1653

1654
	mutex_lock(&callback_mutex);
1655
	count = nodelist_scnprintf(page, PAGE_SIZE, cs->mems_allowed);
1656
	mutex_unlock(&callback_mutex);
L
Linus Torvalds 已提交
1657

1658
	return count;
L
Linus Torvalds 已提交
1659 1660
}

1661 1662 1663 1664 1665
static ssize_t cpuset_common_file_read(struct cgroup *cont,
				       struct cftype *cft,
				       struct file *file,
				       char __user *buf,
				       size_t nbytes, loff_t *ppos)
L
Linus Torvalds 已提交
1666
{
1667
	struct cpuset *cs = cgroup_cs(cont);
L
Linus Torvalds 已提交
1668 1669 1670 1671 1672
	cpuset_filetype_t type = cft->private;
	char *page;
	ssize_t retval = 0;
	char *s;

1673
	if (!(page = (char *)__get_free_page(GFP_TEMPORARY)))
L
Linus Torvalds 已提交
1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690
		return -ENOMEM;

	s = page;

	switch (type) {
	case FILE_CPULIST:
		s += cpuset_sprintf_cpulist(s, cs);
		break;
	case FILE_MEMLIST:
		s += cpuset_sprintf_memlist(s, cs);
		break;
	default:
		retval = -EINVAL;
		goto out;
	}
	*s++ = '\n';

A
Al Viro 已提交
1691
	retval = simple_read_from_buffer(buf, nbytes, ppos, page, s - page);
L
Linus Torvalds 已提交
1692 1693 1694 1695 1696
out:
	free_page((unsigned long)page);
	return retval;
}

1697 1698 1699 1700 1701 1702 1703 1704 1705
static u64 cpuset_read_u64(struct cgroup *cont, struct cftype *cft)
{
	struct cpuset *cs = cgroup_cs(cont);
	cpuset_filetype_t type = cft->private;
	switch (type) {
	case FILE_CPU_EXCLUSIVE:
		return is_cpu_exclusive(cs);
	case FILE_MEM_EXCLUSIVE:
		return is_mem_exclusive(cs);
1706 1707
	case FILE_MEM_HARDWALL:
		return is_mem_hardwall(cs);
1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722
	case FILE_SCHED_LOAD_BALANCE:
		return is_sched_load_balance(cs);
	case FILE_MEMORY_MIGRATE:
		return is_memory_migrate(cs);
	case FILE_MEMORY_PRESSURE_ENABLED:
		return cpuset_memory_pressure_enabled;
	case FILE_MEMORY_PRESSURE:
		return fmeter_getrate(&cs->fmeter);
	case FILE_SPREAD_PAGE:
		return is_spread_page(cs);
	case FILE_SPREAD_SLAB:
		return is_spread_slab(cs);
	default:
		BUG();
	}
1723 1724 1725

	/* Unreachable but makes gcc happy */
	return 0;
1726
}
L
Linus Torvalds 已提交
1727

1728 1729 1730 1731 1732 1733 1734 1735 1736 1737
static s64 cpuset_read_s64(struct cgroup *cont, struct cftype *cft)
{
	struct cpuset *cs = cgroup_cs(cont);
	cpuset_filetype_t type = cft->private;
	switch (type) {
	case FILE_SCHED_RELAX_DOMAIN_LEVEL:
		return cs->relax_domain_level;
	default:
		BUG();
	}
1738 1739 1740

	/* Unrechable but makes gcc happy */
	return 0;
1741 1742
}

L
Linus Torvalds 已提交
1743 1744 1745 1746 1747

/*
 * for the common functions, 'private' gives the type of file
 */

1748 1749 1750 1751
static struct cftype files[] = {
	{
		.name = "cpus",
		.read = cpuset_common_file_read,
1752 1753
		.write_string = cpuset_write_resmask,
		.max_write_len = (100U + 6 * NR_CPUS),
1754 1755 1756 1757 1758 1759
		.private = FILE_CPULIST,
	},

	{
		.name = "mems",
		.read = cpuset_common_file_read,
1760 1761
		.write_string = cpuset_write_resmask,
		.max_write_len = (100U + 6 * MAX_NUMNODES),
1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778
		.private = FILE_MEMLIST,
	},

	{
		.name = "cpu_exclusive",
		.read_u64 = cpuset_read_u64,
		.write_u64 = cpuset_write_u64,
		.private = FILE_CPU_EXCLUSIVE,
	},

	{
		.name = "mem_exclusive",
		.read_u64 = cpuset_read_u64,
		.write_u64 = cpuset_write_u64,
		.private = FILE_MEM_EXCLUSIVE,
	},

1779 1780 1781 1782 1783 1784 1785
	{
		.name = "mem_hardwall",
		.read_u64 = cpuset_read_u64,
		.write_u64 = cpuset_write_u64,
		.private = FILE_MEM_HARDWALL,
	},

1786 1787 1788 1789 1790 1791 1792 1793 1794
	{
		.name = "sched_load_balance",
		.read_u64 = cpuset_read_u64,
		.write_u64 = cpuset_write_u64,
		.private = FILE_SCHED_LOAD_BALANCE,
	},

	{
		.name = "sched_relax_domain_level",
1795 1796
		.read_s64 = cpuset_read_s64,
		.write_s64 = cpuset_write_s64,
1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811
		.private = FILE_SCHED_RELAX_DOMAIN_LEVEL,
	},

	{
		.name = "memory_migrate",
		.read_u64 = cpuset_read_u64,
		.write_u64 = cpuset_write_u64,
		.private = FILE_MEMORY_MIGRATE,
	},

	{
		.name = "memory_pressure",
		.read_u64 = cpuset_read_u64,
		.write_u64 = cpuset_write_u64,
		.private = FILE_MEMORY_PRESSURE,
L
Li Zefan 已提交
1812
		.mode = S_IRUGO,
1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827
	},

	{
		.name = "memory_spread_page",
		.read_u64 = cpuset_read_u64,
		.write_u64 = cpuset_write_u64,
		.private = FILE_SPREAD_PAGE,
	},

	{
		.name = "memory_spread_slab",
		.read_u64 = cpuset_read_u64,
		.write_u64 = cpuset_write_u64,
		.private = FILE_SPREAD_SLAB,
	},
1828

1829 1830 1831 1832 1833 1834 1835
	{
		.name = "memory_pressure_enabled",
		.flags = CFTYPE_ONLY_ON_ROOT,
		.read_u64 = cpuset_read_u64,
		.write_u64 = cpuset_write_u64,
		.private = FILE_MEMORY_PRESSURE_ENABLED,
	},
L
Linus Torvalds 已提交
1836

1837 1838
	{ }	/* terminate */
};
L
Linus Torvalds 已提交
1839 1840

/*
1841
 *	cpuset_css_alloc - allocate a cpuset css
1842
 *	cont:	control group that the new cpuset will be part of
L
Linus Torvalds 已提交
1843 1844
 */

1845
static struct cgroup_subsys_state *cpuset_css_alloc(struct cgroup *cont)
L
Linus Torvalds 已提交
1846
{
T
Tejun Heo 已提交
1847
	struct cpuset *cs;
L
Linus Torvalds 已提交
1848

T
Tejun Heo 已提交
1849
	if (!cont->parent)
1850
		return &top_cpuset.css;
1851

T
Tejun Heo 已提交
1852
	cs = kzalloc(sizeof(*cs), GFP_KERNEL);
L
Linus Torvalds 已提交
1853
	if (!cs)
1854
		return ERR_PTR(-ENOMEM);
1855 1856 1857 1858
	if (!alloc_cpumask_var(&cs->cpus_allowed, GFP_KERNEL)) {
		kfree(cs);
		return ERR_PTR(-ENOMEM);
	}
L
Linus Torvalds 已提交
1859

P
Paul Jackson 已提交
1860
	set_bit(CS_SCHED_LOAD_BALANCE, &cs->flags);
1861
	cpumask_clear(cs->cpus_allowed);
1862
	nodes_clear(cs->mems_allowed);
1863
	fmeter_init(&cs->fmeter);
1864
	INIT_WORK(&cs->hotplug_work, cpuset_propagate_hotplug_workfn);
1865
	cs->relax_domain_level = -1;
L
Linus Torvalds 已提交
1866

T
Tejun Heo 已提交
1867 1868 1869 1870 1871 1872
	return &cs->css;
}

static int cpuset_css_online(struct cgroup *cgrp)
{
	struct cpuset *cs = cgroup_cs(cgrp);
T
Tejun Heo 已提交
1873
	struct cpuset *parent = parent_cs(cs);
1874 1875
	struct cpuset *tmp_cs;
	struct cgroup *pos_cg;
T
Tejun Heo 已提交
1876 1877 1878 1879

	if (!parent)
		return 0;

1880 1881
	mutex_lock(&cpuset_mutex);

T
Tejun Heo 已提交
1882
	set_bit(CS_ONLINE, &cs->flags);
T
Tejun Heo 已提交
1883 1884 1885 1886
	if (is_spread_page(parent))
		set_bit(CS_SPREAD_PAGE, &cs->flags);
	if (is_spread_slab(parent))
		set_bit(CS_SPREAD_SLAB, &cs->flags);
L
Linus Torvalds 已提交
1887

1888
	number_of_cpusets++;
1889

T
Tejun Heo 已提交
1890
	if (!test_bit(CGRP_CPUSET_CLONE_CHILDREN, &cgrp->flags))
1891
		goto out_unlock;
1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905

	/*
	 * Clone @parent's configuration if CGRP_CPUSET_CLONE_CHILDREN is
	 * set.  This flag handling is implemented in cgroup core for
	 * histrical reasons - the flag may be specified during mount.
	 *
	 * Currently, if any sibling cpusets have exclusive cpus or mem, we
	 * refuse to clone the configuration - thereby refusing the task to
	 * be entered, and as a result refusing the sys_unshare() or
	 * clone() which initiated it.  If this becomes a problem for some
	 * users who wish to allow that scenario, then this could be
	 * changed to grant parent->cpus_allowed-sibling_cpus_exclusive
	 * (and likewise for mems) to the new cgroup.
	 */
1906 1907 1908 1909
	rcu_read_lock();
	cpuset_for_each_child(tmp_cs, pos_cg, parent) {
		if (is_mem_exclusive(tmp_cs) || is_cpu_exclusive(tmp_cs)) {
			rcu_read_unlock();
1910
			goto out_unlock;
1911
		}
1912
	}
1913
	rcu_read_unlock();
1914 1915 1916 1917 1918

	mutex_lock(&callback_mutex);
	cs->mems_allowed = parent->mems_allowed;
	cpumask_copy(cs->cpus_allowed, parent->cpus_allowed);
	mutex_unlock(&callback_mutex);
1919 1920
out_unlock:
	mutex_unlock(&cpuset_mutex);
T
Tejun Heo 已提交
1921 1922 1923 1924 1925 1926 1927
	return 0;
}

static void cpuset_css_offline(struct cgroup *cgrp)
{
	struct cpuset *cs = cgroup_cs(cgrp);

1928
	mutex_lock(&cpuset_mutex);
T
Tejun Heo 已提交
1929 1930 1931 1932 1933

	if (is_sched_load_balance(cs))
		update_flag(CS_SCHED_LOAD_BALANCE, cs, 0);

	number_of_cpusets--;
T
Tejun Heo 已提交
1934
	clear_bit(CS_ONLINE, &cs->flags);
T
Tejun Heo 已提交
1935

1936
	mutex_unlock(&cpuset_mutex);
L
Linus Torvalds 已提交
1937 1938
}

P
Paul Jackson 已提交
1939 1940 1941
/*
 * If the cpuset being removed has its flag 'sched_load_balance'
 * enabled, then simulate turning sched_load_balance off, which
1942
 * will call rebuild_sched_domains_locked().
P
Paul Jackson 已提交
1943 1944
 */

1945
static void cpuset_css_free(struct cgroup *cont)
L
Linus Torvalds 已提交
1946
{
1947
	struct cpuset *cs = cgroup_cs(cont);
L
Linus Torvalds 已提交
1948

1949
	free_cpumask_var(cs->cpus_allowed);
1950
	kfree(cs);
L
Linus Torvalds 已提交
1951 1952
}

1953 1954
struct cgroup_subsys cpuset_subsys = {
	.name = "cpuset",
1955
	.css_alloc = cpuset_css_alloc,
T
Tejun Heo 已提交
1956 1957
	.css_online = cpuset_css_online,
	.css_offline = cpuset_css_offline,
1958
	.css_free = cpuset_css_free,
1959
	.can_attach = cpuset_can_attach,
1960
	.cancel_attach = cpuset_cancel_attach,
1961 1962
	.attach = cpuset_attach,
	.subsys_id = cpuset_subsys_id,
1963
	.base_cftypes = files,
1964 1965 1966
	.early_init = 1,
};

L
Linus Torvalds 已提交
1967 1968 1969 1970 1971 1972 1973 1974
/**
 * cpuset_init - initialize cpusets at system boot
 *
 * Description: Initialize top_cpuset and the cpuset internal file system,
 **/

int __init cpuset_init(void)
{
1975
	int err = 0;
L
Linus Torvalds 已提交
1976

1977 1978 1979
	if (!alloc_cpumask_var(&top_cpuset.cpus_allowed, GFP_KERNEL))
		BUG();

1980
	cpumask_setall(top_cpuset.cpus_allowed);
1981
	nodes_setall(top_cpuset.mems_allowed);
L
Linus Torvalds 已提交
1982

1983
	fmeter_init(&top_cpuset.fmeter);
P
Paul Jackson 已提交
1984
	set_bit(CS_SCHED_LOAD_BALANCE, &top_cpuset.flags);
1985
	top_cpuset.relax_domain_level = -1;
L
Linus Torvalds 已提交
1986 1987 1988

	err = register_filesystem(&cpuset_fs_type);
	if (err < 0)
1989 1990
		return err;

1991 1992 1993
	if (!alloc_cpumask_var(&cpus_attach, GFP_KERNEL))
		BUG();

1994
	number_of_cpusets = 1;
1995
	return 0;
L
Linus Torvalds 已提交
1996 1997
}

1998
/*
1999
 * If CPU and/or memory hotplug handlers, below, unplug any CPUs
2000 2001
 * or memory nodes, we need to walk over the cpuset hierarchy,
 * removing that CPU or node from all cpusets.  If this removes the
2002 2003
 * last CPU or node from a cpuset, then move the tasks in the empty
 * cpuset to its next-highest non-empty parent.
2004
 */
2005 2006 2007 2008 2009 2010 2011 2012
static void remove_tasks_in_empty_cpuset(struct cpuset *cs)
{
	struct cpuset *parent;

	/*
	 * Find its next-highest non-empty parent, (top cpuset
	 * has online cpus, so can't be empty).
	 */
T
Tejun Heo 已提交
2013
	parent = parent_cs(cs);
2014
	while (cpumask_empty(parent->cpus_allowed) ||
2015
			nodes_empty(parent->mems_allowed))
T
Tejun Heo 已提交
2016
		parent = parent_cs(parent);
2017

2018 2019 2020 2021 2022 2023
	if (cgroup_transfer_tasks(parent->css.cgroup, cs->css.cgroup)) {
		rcu_read_lock();
		printk(KERN_ERR "cpuset: failed to transfer tasks out of empty cpuset %s\n",
		       cgroup_name(cs->css.cgroup));
		rcu_read_unlock();
	}
2024 2025
}

2026
/**
2027
 * cpuset_propagate_hotplug_workfn - propagate CPU/memory hotplug to a cpuset
2028
 * @cs: cpuset in interest
2029
 *
2030 2031 2032
 * Compare @cs's cpu and mem masks against top_cpuset and if some have gone
 * offline, update @cs accordingly.  If @cs ends up with no CPU or memory,
 * all its tasks are moved to the nearest ancestor with both resources.
2033
 */
2034
static void cpuset_propagate_hotplug_workfn(struct work_struct *work)
2035
{
2036 2037
	static cpumask_t off_cpus;
	static nodemask_t off_mems, tmp_mems;
2038
	struct cpuset *cs = container_of(work, struct cpuset, hotplug_work);
2039
	bool is_empty;
2040

2041
	mutex_lock(&cpuset_mutex);
2042

2043 2044
	cpumask_andnot(&off_cpus, cs->cpus_allowed, top_cpuset.cpus_allowed);
	nodes_andnot(off_mems, cs->mems_allowed, top_cpuset.mems_allowed);
2045

2046 2047 2048 2049 2050 2051
	/* remove offline cpus from @cs */
	if (!cpumask_empty(&off_cpus)) {
		mutex_lock(&callback_mutex);
		cpumask_andnot(cs->cpus_allowed, cs->cpus_allowed, &off_cpus);
		mutex_unlock(&callback_mutex);
		update_tasks_cpumask(cs, NULL);
2052 2053
	}

2054 2055 2056 2057 2058 2059 2060
	/* remove offline mems from @cs */
	if (!nodes_empty(off_mems)) {
		tmp_mems = cs->mems_allowed;
		mutex_lock(&callback_mutex);
		nodes_andnot(cs->mems_allowed, cs->mems_allowed, off_mems);
		mutex_unlock(&callback_mutex);
		update_tasks_nodemask(cs, &tmp_mems, NULL);
2061
	}
2062

2063 2064
	is_empty = cpumask_empty(cs->cpus_allowed) ||
		nodes_empty(cs->mems_allowed);
2065

2066 2067 2068 2069 2070 2071 2072 2073 2074
	mutex_unlock(&cpuset_mutex);

	/*
	 * If @cs became empty, move tasks to the nearest ancestor with
	 * execution resources.  This is full cgroup operation which will
	 * also call back into cpuset.  Should be done outside any lock.
	 */
	if (is_empty)
		remove_tasks_in_empty_cpuset(cs);
2075 2076 2077

	/* the following may free @cs, should be the last operation */
	css_put(&cs->css);
2078 2079
}

2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094
/**
 * schedule_cpuset_propagate_hotplug - schedule hotplug propagation to a cpuset
 * @cs: cpuset of interest
 *
 * Schedule cpuset_propagate_hotplug_workfn() which will update CPU and
 * memory masks according to top_cpuset.
 */
static void schedule_cpuset_propagate_hotplug(struct cpuset *cs)
{
	/*
	 * Pin @cs.  The refcnt will be released when the work item
	 * finishes executing.
	 */
	if (!css_tryget(&cs->css))
		return;
2095

2096 2097 2098 2099 2100 2101 2102
	/*
	 * Queue @cs->hotplug_work.  If already pending, lose the css ref.
	 * cpuset_propagate_hotplug_wq is ordered and propagation will
	 * happen in the order this function is called.
	 */
	if (!queue_work(cpuset_propagate_hotplug_wq, &cs->hotplug_work))
		css_put(&cs->css);
2103 2104
}

2105
/**
2106
 * cpuset_hotplug_workfn - handle CPU/memory hotunplug for a cpuset
2107
 *
2108 2109 2110 2111 2112
 * This function is called after either CPU or memory configuration has
 * changed and updates cpuset accordingly.  The top_cpuset is always
 * synchronized to cpu_active_mask and N_MEMORY, which is necessary in
 * order to make cpusets transparent (of no affect) on systems that are
 * actively using CPU hotplug but making no active use of cpusets.
2113
 *
2114 2115 2116
 * Non-root cpusets are only affected by offlining.  If any CPUs or memory
 * nodes have been taken down, cpuset_propagate_hotplug() is invoked on all
 * descendants.
2117
 *
2118 2119
 * Note that CPU offlining during suspend is ignored.  We don't modify
 * cpusets across suspend/resume cycles at all.
2120
 */
2121
static void cpuset_hotplug_workfn(struct work_struct *work)
2122
{
2123 2124 2125 2126
	static cpumask_t new_cpus, tmp_cpus;
	static nodemask_t new_mems, tmp_mems;
	bool cpus_updated, mems_updated;
	bool cpus_offlined, mems_offlined;
2127

2128
	mutex_lock(&cpuset_mutex);
2129

2130 2131 2132
	/* fetch the available cpus/mems and find out which changed how */
	cpumask_copy(&new_cpus, cpu_active_mask);
	new_mems = node_states[N_MEMORY];
2133

2134 2135 2136
	cpus_updated = !cpumask_equal(top_cpuset.cpus_allowed, &new_cpus);
	cpus_offlined = cpumask_andnot(&tmp_cpus, top_cpuset.cpus_allowed,
				       &new_cpus);
2137

2138 2139 2140
	mems_updated = !nodes_equal(top_cpuset.mems_allowed, new_mems);
	nodes_andnot(tmp_mems, top_cpuset.mems_allowed, new_mems);
	mems_offlined = !nodes_empty(tmp_mems);
2141

2142 2143 2144 2145 2146 2147 2148
	/* synchronize cpus_allowed to cpu_active_mask */
	if (cpus_updated) {
		mutex_lock(&callback_mutex);
		cpumask_copy(top_cpuset.cpus_allowed, &new_cpus);
		mutex_unlock(&callback_mutex);
		/* we don't mess with cpumasks of tasks in top_cpuset */
	}
2149

2150 2151 2152 2153 2154 2155 2156 2157
	/* synchronize mems_allowed to N_MEMORY */
	if (mems_updated) {
		tmp_mems = top_cpuset.mems_allowed;
		mutex_lock(&callback_mutex);
		top_cpuset.mems_allowed = new_mems;
		mutex_unlock(&callback_mutex);
		update_tasks_nodemask(&top_cpuset, &tmp_mems, NULL);
	}
2158

2159 2160 2161
	/* if cpus or mems went down, we need to propagate to descendants */
	if (cpus_offlined || mems_offlined) {
		struct cpuset *cs;
2162
		struct cgroup *pos_cgrp;
2163

2164 2165 2166 2167
		rcu_read_lock();
		cpuset_for_each_descendant_pre(cs, pos_cgrp, &top_cpuset)
			schedule_cpuset_propagate_hotplug(cs);
		rcu_read_unlock();
2168
	}
2169

2170
	mutex_unlock(&cpuset_mutex);
2171

2172 2173 2174
	/* wait for propagations to finish */
	flush_workqueue(cpuset_propagate_hotplug_wq);

2175
	/* rebuild sched domains if cpus_allowed has changed */
2176 2177
	if (cpus_updated)
		rebuild_sched_domains();
2178 2179
}

2180
void cpuset_update_active_cpus(bool cpu_online)
2181
{
2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193
	/*
	 * We're inside cpu hotplug critical region which usually nests
	 * inside cgroup synchronization.  Bounce actual hotplug processing
	 * to a work item to avoid reverse locking order.
	 *
	 * We still need to do partition_sched_domains() synchronously;
	 * otherwise, the scheduler will get confused and put tasks to the
	 * dead CPU.  Fall back to the default single domain.
	 * cpuset_hotplug_workfn() will rebuild it as necessary.
	 */
	partition_sched_domains(1, NULL, NULL);
	schedule_work(&cpuset_hotplug_work);
2194 2195
}

2196
/*
2197 2198
 * Keep top_cpuset.mems_allowed tracking node_states[N_MEMORY].
 * Call this routine anytime after node_states[N_MEMORY] changes.
2199
 * See cpuset_update_active_cpus() for CPU hotplug handling.
2200
 */
2201 2202
static int cpuset_track_online_nodes(struct notifier_block *self,
				unsigned long action, void *arg)
2203
{
2204
	schedule_work(&cpuset_hotplug_work);
2205
	return NOTIFY_OK;
2206
}
2207 2208 2209 2210 2211

static struct notifier_block cpuset_track_online_nodes_nb = {
	.notifier_call = cpuset_track_online_nodes,
	.priority = 10,		/* ??! */
};
2212

L
Linus Torvalds 已提交
2213 2214 2215 2216
/**
 * cpuset_init_smp - initialize cpus_allowed
 *
 * Description: Finish top cpuset after cpu, node maps are initialized
2217
 */
L
Linus Torvalds 已提交
2218 2219
void __init cpuset_init_smp(void)
{
2220
	cpumask_copy(top_cpuset.cpus_allowed, cpu_active_mask);
2221
	top_cpuset.mems_allowed = node_states[N_MEMORY];
2222

2223
	register_hotmemory_notifier(&cpuset_track_online_nodes_nb);
2224

2225 2226 2227
	cpuset_propagate_hotplug_wq =
		alloc_ordered_workqueue("cpuset_hotplug", 0);
	BUG_ON(!cpuset_propagate_hotplug_wq);
L
Linus Torvalds 已提交
2228 2229 2230 2231 2232
}

/**
 * cpuset_cpus_allowed - return cpus_allowed mask from a tasks cpuset.
 * @tsk: pointer to task_struct from which to obtain cpuset->cpus_allowed.
2233
 * @pmask: pointer to struct cpumask variable to receive cpus_allowed set.
L
Linus Torvalds 已提交
2234
 *
2235
 * Description: Returns the cpumask_var_t cpus_allowed of the cpuset
L
Linus Torvalds 已提交
2236
 * attached to the specified @tsk.  Guaranteed to return some non-empty
2237
 * subset of cpu_online_mask, even if this means going outside the
L
Linus Torvalds 已提交
2238 2239 2240
 * tasks cpuset.
 **/

2241
void cpuset_cpus_allowed(struct task_struct *tsk, struct cpumask *pmask)
L
Linus Torvalds 已提交
2242
{
2243
	mutex_lock(&callback_mutex);
2244
	task_lock(tsk);
2245
	guarantee_online_cpus(task_cs(tsk), pmask);
2246
	task_unlock(tsk);
2247
	mutex_unlock(&callback_mutex);
L
Linus Torvalds 已提交
2248 2249
}

2250
void cpuset_cpus_allowed_fallback(struct task_struct *tsk)
2251 2252 2253 2254 2255 2256
{
	const struct cpuset *cs;

	rcu_read_lock();
	cs = task_cs(tsk);
	if (cs)
2257
		do_set_cpus_allowed(tsk, cs->cpus_allowed);
2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272
	rcu_read_unlock();

	/*
	 * We own tsk->cpus_allowed, nobody can change it under us.
	 *
	 * But we used cs && cs->cpus_allowed lockless and thus can
	 * race with cgroup_attach_task() or update_cpumask() and get
	 * the wrong tsk->cpus_allowed. However, both cases imply the
	 * subsequent cpuset_change_cpumask()->set_cpus_allowed_ptr()
	 * which takes task_rq_lock().
	 *
	 * If we are called after it dropped the lock we must see all
	 * changes in tsk_cs()->cpus_allowed. Otherwise we can temporary
	 * set any mask even if it is not right from task_cs() pov,
	 * the pending set_cpus_allowed_ptr() will fix things.
2273 2274 2275
	 *
	 * select_fallback_rq() will fix things ups and set cpu_possible_mask
	 * if required.
2276 2277 2278
	 */
}

L
Linus Torvalds 已提交
2279 2280
void cpuset_init_current_mems_allowed(void)
{
2281
	nodes_setall(current->mems_allowed);
L
Linus Torvalds 已提交
2282 2283
}

2284 2285 2286 2287 2288 2289
/**
 * cpuset_mems_allowed - return mems_allowed mask from a tasks cpuset.
 * @tsk: pointer to task_struct from which to obtain cpuset->mems_allowed.
 *
 * Description: Returns the nodemask_t mems_allowed of the cpuset
 * attached to the specified @tsk.  Guaranteed to return some non-empty
2290
 * subset of node_states[N_MEMORY], even if this means going outside the
2291 2292 2293 2294 2295 2296 2297
 * tasks cpuset.
 **/

nodemask_t cpuset_mems_allowed(struct task_struct *tsk)
{
	nodemask_t mask;

2298
	mutex_lock(&callback_mutex);
2299
	task_lock(tsk);
2300
	guarantee_online_mems(task_cs(tsk), &mask);
2301
	task_unlock(tsk);
2302
	mutex_unlock(&callback_mutex);
2303 2304 2305 2306

	return mask;
}

2307
/**
2308 2309
 * cpuset_nodemask_valid_mems_allowed - check nodemask vs. curremt mems_allowed
 * @nodemask: the nodemask to be checked
2310
 *
2311
 * Are any of the nodes in the nodemask allowed in current->mems_allowed?
L
Linus Torvalds 已提交
2312
 */
2313
int cpuset_nodemask_valid_mems_allowed(nodemask_t *nodemask)
L
Linus Torvalds 已提交
2314
{
2315
	return nodes_intersects(*nodemask, current->mems_allowed);
L
Linus Torvalds 已提交
2316 2317
}

2318
/*
2319 2320 2321 2322
 * nearest_hardwall_ancestor() - Returns the nearest mem_exclusive or
 * mem_hardwall ancestor to the specified cpuset.  Call holding
 * callback_mutex.  If no ancestor is mem_exclusive or mem_hardwall
 * (an unusual configuration), then returns the root cpuset.
2323
 */
2324
static const struct cpuset *nearest_hardwall_ancestor(const struct cpuset *cs)
2325
{
T
Tejun Heo 已提交
2326 2327
	while (!(is_mem_exclusive(cs) || is_mem_hardwall(cs)) && parent_cs(cs))
		cs = parent_cs(cs);
2328 2329 2330
	return cs;
}

2331
/**
2332 2333
 * cpuset_node_allowed_softwall - Can we allocate on a memory node?
 * @node: is this an allowed node?
2334
 * @gfp_mask: memory allocation flags
2335
 *
2336 2337 2338 2339 2340 2341
 * If we're in interrupt, yes, we can always allocate.  If __GFP_THISNODE is
 * set, yes, we can always allocate.  If node is in our task's mems_allowed,
 * yes.  If it's not a __GFP_HARDWALL request and this node is in the nearest
 * hardwalled cpuset ancestor to this task's cpuset, yes.  If the task has been
 * OOM killed and has access to memory reserves as specified by the TIF_MEMDIE
 * flag, yes.
2342 2343
 * Otherwise, no.
 *
2344 2345 2346
 * If __GFP_HARDWALL is set, cpuset_node_allowed_softwall() reduces to
 * cpuset_node_allowed_hardwall().  Otherwise, cpuset_node_allowed_softwall()
 * might sleep, and might allow a node from an enclosing cpuset.
2347
 *
2348 2349
 * cpuset_node_allowed_hardwall() only handles the simpler case of hardwall
 * cpusets, and never sleeps.
2350 2351 2352 2353 2354 2355 2356
 *
 * The __GFP_THISNODE placement logic is really handled elsewhere,
 * by forcibly using a zonelist starting at a specified node, and by
 * (in get_page_from_freelist()) refusing to consider the zones for
 * any node on the zonelist except the first.  By the time any such
 * calls get to this routine, we should just shut up and say 'yes'.
 *
2357
 * GFP_USER allocations are marked with the __GFP_HARDWALL bit,
2358 2359
 * and do not allow allocations outside the current tasks cpuset
 * unless the task has been OOM killed as is marked TIF_MEMDIE.
2360
 * GFP_KERNEL allocations are not so marked, so can escape to the
2361
 * nearest enclosing hardwalled ancestor cpuset.
2362
 *
2363 2364 2365 2366 2367 2368 2369
 * Scanning up parent cpusets requires callback_mutex.  The
 * __alloc_pages() routine only calls here with __GFP_HARDWALL bit
 * _not_ set if it's a GFP_KERNEL allocation, and all nodes in the
 * current tasks mems_allowed came up empty on the first pass over
 * the zonelist.  So only GFP_KERNEL allocations, if all nodes in the
 * cpuset are short of memory, might require taking the callback_mutex
 * mutex.
2370
 *
2371
 * The first call here from mm/page_alloc:get_page_from_freelist()
2372 2373 2374
 * has __GFP_HARDWALL set in gfp_mask, enforcing hardwall cpusets,
 * so no allocation on a node outside the cpuset is allowed (unless
 * in interrupt, of course).
2375 2376 2377 2378 2379 2380
 *
 * The second pass through get_page_from_freelist() doesn't even call
 * here for GFP_ATOMIC calls.  For those calls, the __alloc_pages()
 * variable 'wait' is not set, and the bit ALLOC_CPUSET is not set
 * in alloc_flags.  That logic and the checks below have the combined
 * affect that:
2381 2382
 *	in_interrupt - any node ok (current task context irrelevant)
 *	GFP_ATOMIC   - any node ok
2383
 *	TIF_MEMDIE   - any node ok
2384
 *	GFP_KERNEL   - any node in enclosing hardwalled cpuset ok
2385
 *	GFP_USER     - only nodes in current tasks mems allowed ok.
2386 2387
 *
 * Rule:
2388
 *    Don't call cpuset_node_allowed_softwall if you can't sleep, unless you
2389 2390
 *    pass in the __GFP_HARDWALL flag set in gfp_flag, which disables
 *    the code that might scan up ancestor cpusets and sleep.
2391
 */
2392
int __cpuset_node_allowed_softwall(int node, gfp_t gfp_mask)
L
Linus Torvalds 已提交
2393
{
2394
	const struct cpuset *cs;	/* current cpuset ancestors */
2395
	int allowed;			/* is allocation in zone z allowed? */
2396

2397
	if (in_interrupt() || (gfp_mask & __GFP_THISNODE))
2398
		return 1;
2399
	might_sleep_if(!(gfp_mask & __GFP_HARDWALL));
2400 2401
	if (node_isset(node, current->mems_allowed))
		return 1;
2402 2403 2404 2405 2406 2407
	/*
	 * Allow tasks that have access to memory reserves because they have
	 * been OOM killed to get memory anywhere.
	 */
	if (unlikely(test_thread_flag(TIF_MEMDIE)))
		return 1;
2408 2409 2410
	if (gfp_mask & __GFP_HARDWALL)	/* If hardwall request, stop here */
		return 0;

2411 2412 2413
	if (current->flags & PF_EXITING) /* Let dying task have memory */
		return 1;

2414
	/* Not hardwall and node outside mems_allowed: scan up cpusets */
2415
	mutex_lock(&callback_mutex);
2416 2417

	task_lock(current);
2418
	cs = nearest_hardwall_ancestor(task_cs(current));
2419 2420
	task_unlock(current);

2421
	allowed = node_isset(node, cs->mems_allowed);
2422
	mutex_unlock(&callback_mutex);
2423
	return allowed;
L
Linus Torvalds 已提交
2424 2425
}

2426
/*
2427 2428
 * cpuset_node_allowed_hardwall - Can we allocate on a memory node?
 * @node: is this an allowed node?
2429 2430
 * @gfp_mask: memory allocation flags
 *
2431 2432 2433 2434 2435
 * If we're in interrupt, yes, we can always allocate.  If __GFP_THISNODE is
 * set, yes, we can always allocate.  If node is in our task's mems_allowed,
 * yes.  If the task has been OOM killed and has access to memory reserves as
 * specified by the TIF_MEMDIE flag, yes.
 * Otherwise, no.
2436 2437 2438 2439 2440 2441 2442
 *
 * The __GFP_THISNODE placement logic is really handled elsewhere,
 * by forcibly using a zonelist starting at a specified node, and by
 * (in get_page_from_freelist()) refusing to consider the zones for
 * any node on the zonelist except the first.  By the time any such
 * calls get to this routine, we should just shut up and say 'yes'.
 *
2443 2444
 * Unlike the cpuset_node_allowed_softwall() variant, above,
 * this variant requires that the node be in the current task's
2445 2446 2447 2448
 * mems_allowed or that we're in interrupt.  It does not scan up the
 * cpuset hierarchy for the nearest enclosing mem_exclusive cpuset.
 * It never sleeps.
 */
2449
int __cpuset_node_allowed_hardwall(int node, gfp_t gfp_mask)
2450 2451 2452 2453 2454
{
	if (in_interrupt() || (gfp_mask & __GFP_THISNODE))
		return 1;
	if (node_isset(node, current->mems_allowed))
		return 1;
D
Daniel Walker 已提交
2455 2456 2457 2458 2459 2460
	/*
	 * Allow tasks that have access to memory reserves because they have
	 * been OOM killed to get memory anywhere.
	 */
	if (unlikely(test_thread_flag(TIF_MEMDIE)))
		return 1;
2461 2462 2463
	return 0;
}

2464
/**
2465 2466
 * cpuset_mem_spread_node() - On which node to begin search for a file page
 * cpuset_slab_spread_node() - On which node to begin search for a slab page
2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490
 *
 * If a task is marked PF_SPREAD_PAGE or PF_SPREAD_SLAB (as for
 * tasks in a cpuset with is_spread_page or is_spread_slab set),
 * and if the memory allocation used cpuset_mem_spread_node()
 * to determine on which node to start looking, as it will for
 * certain page cache or slab cache pages such as used for file
 * system buffers and inode caches, then instead of starting on the
 * local node to look for a free page, rather spread the starting
 * node around the tasks mems_allowed nodes.
 *
 * We don't have to worry about the returned node being offline
 * because "it can't happen", and even if it did, it would be ok.
 *
 * The routines calling guarantee_online_mems() are careful to
 * only set nodes in task->mems_allowed that are online.  So it
 * should not be possible for the following code to return an
 * offline node.  But if it did, that would be ok, as this routine
 * is not returning the node where the allocation must be, only
 * the node where the search should start.  The zonelist passed to
 * __alloc_pages() will include all nodes.  If the slab allocator
 * is passed an offline node, it will fall back to the local node.
 * See kmem_cache_alloc_node().
 */

2491
static int cpuset_spread_node(int *rotor)
2492 2493 2494
{
	int node;

2495
	node = next_node(*rotor, current->mems_allowed);
2496 2497
	if (node == MAX_NUMNODES)
		node = first_node(current->mems_allowed);
2498
	*rotor = node;
2499 2500
	return node;
}
2501 2502 2503

int cpuset_mem_spread_node(void)
{
2504 2505 2506 2507
	if (current->cpuset_mem_spread_rotor == NUMA_NO_NODE)
		current->cpuset_mem_spread_rotor =
			node_random(&current->mems_allowed);

2508 2509 2510 2511 2512
	return cpuset_spread_node(&current->cpuset_mem_spread_rotor);
}

int cpuset_slab_spread_node(void)
{
2513 2514 2515 2516
	if (current->cpuset_slab_spread_rotor == NUMA_NO_NODE)
		current->cpuset_slab_spread_rotor =
			node_random(&current->mems_allowed);

2517 2518 2519
	return cpuset_spread_node(&current->cpuset_slab_spread_rotor);
}

2520 2521
EXPORT_SYMBOL_GPL(cpuset_mem_spread_node);

2522
/**
2523 2524 2525 2526 2527 2528 2529 2530
 * cpuset_mems_allowed_intersects - Does @tsk1's mems_allowed intersect @tsk2's?
 * @tsk1: pointer to task_struct of some task.
 * @tsk2: pointer to task_struct of some other task.
 *
 * Description: Return true if @tsk1's mems_allowed intersects the
 * mems_allowed of @tsk2.  Used by the OOM killer to determine if
 * one of the task's memory usage might impact the memory available
 * to the other.
2531 2532
 **/

2533 2534
int cpuset_mems_allowed_intersects(const struct task_struct *tsk1,
				   const struct task_struct *tsk2)
2535
{
2536
	return nodes_intersects(tsk1->mems_allowed, tsk2->mems_allowed);
2537 2538
}

2539 2540
#define CPUSET_NODELIST_LEN	(256)

2541 2542 2543 2544 2545 2546 2547 2548 2549 2550
/**
 * cpuset_print_task_mems_allowed - prints task's cpuset and mems_allowed
 * @task: pointer to task_struct of some task.
 *
 * Description: Prints @task's name, cpuset name, and cached copy of its
 * mems_allowed to the kernel log.  Must hold task_lock(task) to allow
 * dereferencing task_cs(task).
 */
void cpuset_print_task_mems_allowed(struct task_struct *tsk)
{
2551 2552 2553
	 /* Statically allocated to prevent using excess stack. */
	static char cpuset_nodelist[CPUSET_NODELIST_LEN];
	static DEFINE_SPINLOCK(cpuset_buffer_lock);
2554

2555
	struct cgroup *cgrp = task_cs(tsk)->css.cgroup;
2556

2557
	rcu_read_lock();
2558
	spin_lock(&cpuset_buffer_lock);
2559

2560 2561 2562
	nodelist_scnprintf(cpuset_nodelist, CPUSET_NODELIST_LEN,
			   tsk->mems_allowed);
	printk(KERN_INFO "%s cpuset=%s mems_allowed=%s\n",
2563 2564
	       tsk->comm, cgroup_name(cgrp), cpuset_nodelist);

2565
	spin_unlock(&cpuset_buffer_lock);
2566
	rcu_read_unlock();
2567 2568
}

2569 2570 2571 2572 2573 2574
/*
 * Collection of memory_pressure is suppressed unless
 * this flag is enabled by writing "1" to the special
 * cpuset file 'memory_pressure_enabled' in the root cpuset.
 */

2575
int cpuset_memory_pressure_enabled __read_mostly;
2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597

/**
 * cpuset_memory_pressure_bump - keep stats of per-cpuset reclaims.
 *
 * Keep a running average of the rate of synchronous (direct)
 * page reclaim efforts initiated by tasks in each cpuset.
 *
 * This represents the rate at which some task in the cpuset
 * ran low on memory on all nodes it was allowed to use, and
 * had to enter the kernels page reclaim code in an effort to
 * create more free memory by tossing clean pages or swapping
 * or writing dirty pages.
 *
 * Display to user space in the per-cpuset read-only file
 * "memory_pressure".  Value displayed is an integer
 * representing the recent rate of entry into the synchronous
 * (direct) page reclaim by any task attached to the cpuset.
 **/

void __cpuset_memory_pressure_bump(void)
{
	task_lock(current);
2598
	fmeter_markevent(&task_cs(current)->fmeter);
2599 2600 2601
	task_unlock(current);
}

2602
#ifdef CONFIG_PROC_PID_CPUSET
L
Linus Torvalds 已提交
2603 2604 2605 2606
/*
 * proc_cpuset_show()
 *  - Print tasks cpuset path into seq_file.
 *  - Used for /proc/<pid>/cpuset.
2607 2608
 *  - No need to task_lock(tsk) on this tsk->cpuset reference, as it
 *    doesn't really matter if tsk->cpuset changes after we read it,
2609
 *    and we take cpuset_mutex, keeping cpuset_attach() from changing it
2610
 *    anyway.
L
Linus Torvalds 已提交
2611
 */
2612
int proc_cpuset_show(struct seq_file *m, void *unused_v)
L
Linus Torvalds 已提交
2613
{
2614
	struct pid *pid;
L
Linus Torvalds 已提交
2615 2616
	struct task_struct *tsk;
	char *buf;
2617
	struct cgroup_subsys_state *css;
2618
	int retval;
L
Linus Torvalds 已提交
2619

2620
	retval = -ENOMEM;
L
Linus Torvalds 已提交
2621 2622
	buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
	if (!buf)
2623 2624 2625
		goto out;

	retval = -ESRCH;
2626 2627
	pid = m->private;
	tsk = get_pid_task(pid, PIDTYPE_PID);
2628 2629
	if (!tsk)
		goto out_free;
L
Linus Torvalds 已提交
2630

L
Li Zefan 已提交
2631
	rcu_read_lock();
2632 2633
	css = task_subsys_state(tsk, cpuset_subsys_id);
	retval = cgroup_path(css->cgroup, buf, PAGE_SIZE);
L
Li Zefan 已提交
2634
	rcu_read_unlock();
L
Linus Torvalds 已提交
2635
	if (retval < 0)
L
Li Zefan 已提交
2636
		goto out_put_task;
L
Linus Torvalds 已提交
2637 2638
	seq_puts(m, buf);
	seq_putc(m, '\n');
L
Li Zefan 已提交
2639
out_put_task:
2640 2641
	put_task_struct(tsk);
out_free:
L
Linus Torvalds 已提交
2642
	kfree(buf);
2643
out:
L
Linus Torvalds 已提交
2644 2645
	return retval;
}
2646
#endif /* CONFIG_PROC_PID_CPUSET */
L
Linus Torvalds 已提交
2647

2648
/* Display task mems_allowed in /proc/<pid>/status file. */
2649 2650 2651
void cpuset_task_status_allowed(struct seq_file *m, struct task_struct *task)
{
	seq_printf(m, "Mems_allowed:\t");
2652
	seq_nodemask(m, &task->mems_allowed);
2653
	seq_printf(m, "\n");
2654
	seq_printf(m, "Mems_allowed_list:\t");
2655
	seq_nodemask_list(m, &task->mems_allowed);
2656
	seq_printf(m, "\n");
L
Linus Torvalds 已提交
2657
}