cpuset.c 75.4 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6
/*
 *  kernel/cpuset.c
 *
 *  Processor and Memory placement constraints for sets of tasks.
 *
 *  Copyright (C) 2003 BULL SA.
P
Paul Jackson 已提交
7
 *  Copyright (C) 2004-2007 Silicon Graphics, Inc.
8
 *  Copyright (C) 2006 Google, Inc
L
Linus Torvalds 已提交
9 10 11 12
 *
 *  Portions derived from Patrick Mochel's sysfs code.
 *  sysfs is Copyright (c) 2001-3 Patrick Mochel
 *
13
 *  2003-10-10 Written by Simon Derr.
L
Linus Torvalds 已提交
14
 *  2003-10-22 Updates by Stephen Hemminger.
15
 *  2004 May-July Rework by Paul Jackson.
16
 *  2006 Rework by Paul Menage to use generic cgroups
17 18
 *  2008 Rework of the scheduler domains and CPU hotplug handling
 *       by Max Krasnyansky
L
Linus Torvalds 已提交
19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36
 *
 *  This file is subject to the terms and conditions of the GNU General Public
 *  License.  See the file COPYING in the main directory of the Linux
 *  distribution for more details.
 */

#include <linux/cpu.h>
#include <linux/cpumask.h>
#include <linux/cpuset.h>
#include <linux/err.h>
#include <linux/errno.h>
#include <linux/file.h>
#include <linux/fs.h>
#include <linux/init.h>
#include <linux/interrupt.h>
#include <linux/kernel.h>
#include <linux/kmod.h>
#include <linux/list.h>
37
#include <linux/mempolicy.h>
L
Linus Torvalds 已提交
38
#include <linux/mm.h>
39
#include <linux/memory.h>
40
#include <linux/export.h>
L
Linus Torvalds 已提交
41 42 43 44
#include <linux/mount.h>
#include <linux/namei.h>
#include <linux/pagemap.h>
#include <linux/proc_fs.h>
45
#include <linux/rcupdate.h>
L
Linus Torvalds 已提交
46 47
#include <linux/sched.h>
#include <linux/seq_file.h>
48
#include <linux/security.h>
L
Linus Torvalds 已提交
49 50 51 52 53 54 55 56 57
#include <linux/slab.h>
#include <linux/spinlock.h>
#include <linux/stat.h>
#include <linux/string.h>
#include <linux/time.h>
#include <linux/backing-dev.h>
#include <linux/sort.h>

#include <asm/uaccess.h>
A
Arun Sharma 已提交
58
#include <linux/atomic.h>
59
#include <linux/mutex.h>
60 61
#include <linux/workqueue.h>
#include <linux/cgroup.h>
62
#include <linux/wait.h>
L
Linus Torvalds 已提交
63

64
struct static_key cpusets_enabled_key __read_mostly = STATIC_KEY_INIT_FALSE;
65

66 67 68 69 70 71 72 73 74
/* See "Frequency meter" comments, below. */

struct fmeter {
	int cnt;		/* unprocessed events count */
	int val;		/* most recent output value */
	time_t time;		/* clock (secs) when val computed */
	spinlock_t lock;	/* guards read or write of above */
};

L
Linus Torvalds 已提交
75
struct cpuset {
76 77
	struct cgroup_subsys_state css;

L
Linus Torvalds 已提交
78
	unsigned long flags;		/* "unsigned long" so bitops work */
79 80 81 82 83 84 85 86

	/* user-configured CPUs and Memory Nodes allow to tasks */
	cpumask_var_t cpus_allowed;
	nodemask_t mems_allowed;

	/* effective CPUs and Memory Nodes allow to tasks */
	cpumask_var_t effective_cpus;
	nodemask_t effective_mems;
L
Linus Torvalds 已提交
87

88 89 90 91 92 93 94 95 96 97 98 99
	/*
	 * This is old Memory Nodes tasks took on.
	 *
	 * - top_cpuset.old_mems_allowed is initialized to mems_allowed.
	 * - A new cpuset's old_mems_allowed is initialized when some
	 *   task is moved into it.
	 * - old_mems_allowed is used in cpuset_migrate_mm() when we change
	 *   cpuset.mems_allowed and have tasks' nodemask updated, and
	 *   then old_mems_allowed is updated to mems_allowed.
	 */
	nodemask_t old_mems_allowed;

100
	struct fmeter fmeter;		/* memory_pressure filter */
P
Paul Jackson 已提交
101

102 103 104 105 106 107
	/*
	 * Tasks are being attached to this cpuset.  Used to prevent
	 * zeroing cpus/mems_allowed between ->can_attach() and ->attach().
	 */
	int attach_in_progress;

P
Paul Jackson 已提交
108 109
	/* partition number for rebuild_sched_domains() */
	int pn;
110

111 112
	/* for custom sched domain */
	int relax_domain_level;
L
Linus Torvalds 已提交
113 114
};

115
static inline struct cpuset *css_cs(struct cgroup_subsys_state *css)
116
{
117
	return css ? container_of(css, struct cpuset, css) : NULL;
118 119 120 121 122
}

/* Retrieve the cpuset for a task */
static inline struct cpuset *task_cs(struct task_struct *task)
{
123
	return css_cs(task_css(task, cpuset_cgrp_id));
124 125
}

126
static inline struct cpuset *parent_cs(struct cpuset *cs)
T
Tejun Heo 已提交
127
{
T
Tejun Heo 已提交
128
	return css_cs(cs->css.parent);
T
Tejun Heo 已提交
129 130
}

131 132 133 134 135 136 137 138 139 140 141 142 143
#ifdef CONFIG_NUMA
static inline bool task_has_mempolicy(struct task_struct *task)
{
	return task->mempolicy;
}
#else
static inline bool task_has_mempolicy(struct task_struct *task)
{
	return false;
}
#endif


L
Linus Torvalds 已提交
144 145
/* bits in struct cpuset flags field */
typedef enum {
T
Tejun Heo 已提交
146
	CS_ONLINE,
L
Linus Torvalds 已提交
147 148
	CS_CPU_EXCLUSIVE,
	CS_MEM_EXCLUSIVE,
149
	CS_MEM_HARDWALL,
150
	CS_MEMORY_MIGRATE,
P
Paul Jackson 已提交
151
	CS_SCHED_LOAD_BALANCE,
152 153
	CS_SPREAD_PAGE,
	CS_SPREAD_SLAB,
L
Linus Torvalds 已提交
154 155 156
} cpuset_flagbits_t;

/* convenient tests for these bits */
T
Tejun Heo 已提交
157 158 159 160 161
static inline bool is_cpuset_online(const struct cpuset *cs)
{
	return test_bit(CS_ONLINE, &cs->flags);
}

L
Linus Torvalds 已提交
162 163
static inline int is_cpu_exclusive(const struct cpuset *cs)
{
164
	return test_bit(CS_CPU_EXCLUSIVE, &cs->flags);
L
Linus Torvalds 已提交
165 166 167 168
}

static inline int is_mem_exclusive(const struct cpuset *cs)
{
169
	return test_bit(CS_MEM_EXCLUSIVE, &cs->flags);
L
Linus Torvalds 已提交
170 171
}

172 173 174 175 176
static inline int is_mem_hardwall(const struct cpuset *cs)
{
	return test_bit(CS_MEM_HARDWALL, &cs->flags);
}

P
Paul Jackson 已提交
177 178 179 180 181
static inline int is_sched_load_balance(const struct cpuset *cs)
{
	return test_bit(CS_SCHED_LOAD_BALANCE, &cs->flags);
}

182 183
static inline int is_memory_migrate(const struct cpuset *cs)
{
184
	return test_bit(CS_MEMORY_MIGRATE, &cs->flags);
185 186
}

187 188 189 190 191 192 193 194 195 196
static inline int is_spread_page(const struct cpuset *cs)
{
	return test_bit(CS_SPREAD_PAGE, &cs->flags);
}

static inline int is_spread_slab(const struct cpuset *cs)
{
	return test_bit(CS_SPREAD_SLAB, &cs->flags);
}

L
Linus Torvalds 已提交
197
static struct cpuset top_cpuset = {
T
Tejun Heo 已提交
198 199
	.flags = ((1 << CS_ONLINE) | (1 << CS_CPU_EXCLUSIVE) |
		  (1 << CS_MEM_EXCLUSIVE)),
L
Linus Torvalds 已提交
200 201
};

202 203 204
/**
 * cpuset_for_each_child - traverse online children of a cpuset
 * @child_cs: loop cursor pointing to the current child
205
 * @pos_css: used for iteration
206 207 208 209 210
 * @parent_cs: target cpuset to walk children of
 *
 * Walk @child_cs through the online children of @parent_cs.  Must be used
 * with RCU read locked.
 */
211 212 213
#define cpuset_for_each_child(child_cs, pos_css, parent_cs)		\
	css_for_each_child((pos_css), &(parent_cs)->css)		\
		if (is_cpuset_online(((child_cs) = css_cs((pos_css)))))
214

215 216 217
/**
 * cpuset_for_each_descendant_pre - pre-order walk of a cpuset's descendants
 * @des_cs: loop cursor pointing to the current descendant
218
 * @pos_css: used for iteration
219 220 221
 * @root_cs: target cpuset to walk ancestor of
 *
 * Walk @des_cs through the online descendants of @root_cs.  Must be used
222
 * with RCU read locked.  The caller may modify @pos_css by calling
223 224
 * css_rightmost_descendant() to skip subtree.  @root_cs is included in the
 * iteration and the first node to be visited.
225
 */
226 227 228
#define cpuset_for_each_descendant_pre(des_cs, pos_css, root_cs)	\
	css_for_each_descendant_pre((pos_css), &(root_cs)->css)		\
		if (is_cpuset_online(((des_cs) = css_cs((pos_css)))))
229

L
Linus Torvalds 已提交
230
/*
231 232 233 234 235 236 237 238 239 240 241 242 243 244
 * There are two global mutexes guarding cpuset structures - cpuset_mutex
 * and callback_mutex.  The latter may nest inside the former.  We also
 * require taking task_lock() when dereferencing a task's cpuset pointer.
 * See "The task_lock() exception", at the end of this comment.
 *
 * A task must hold both mutexes to modify cpusets.  If a task holds
 * cpuset_mutex, then it blocks others wanting that mutex, ensuring that it
 * is the only task able to also acquire callback_mutex and be able to
 * modify cpusets.  It can perform various checks on the cpuset structure
 * first, knowing nothing will change.  It can also allocate memory while
 * just holding cpuset_mutex.  While it is performing these checks, various
 * callback routines can briefly acquire callback_mutex to query cpusets.
 * Once it is ready to make the changes, it takes callback_mutex, blocking
 * everyone else.
245 246
 *
 * Calls to the kernel memory allocator can not be made while holding
247
 * callback_mutex, as that would risk double tripping on callback_mutex
248 249 250
 * from one of the callbacks into the cpuset code from within
 * __alloc_pages().
 *
251
 * If a task is only holding callback_mutex, then it has read-only
252 253
 * access to cpusets.
 *
254 255 256
 * Now, the task_struct fields mems_allowed and mempolicy may be changed
 * by other task, we use alloc_lock in the task_struct fields to protect
 * them.
257
 *
258
 * The cpuset_common_file_read() handlers only hold callback_mutex across
259 260 261
 * small pieces of code, such as when reading out possibly multi-word
 * cpumasks and nodemasks.
 *
262 263
 * Accessing a task's cpuset should be done in accordance with the
 * guidelines for accessing subsystem state in kernel/cgroup.c
L
Linus Torvalds 已提交
264 265
 */

266
static DEFINE_MUTEX(cpuset_mutex);
267
static DEFINE_MUTEX(callback_mutex);
268

269 270 271 272 273 274
/*
 * CPU / memory hotplug is handled asynchronously.
 */
static void cpuset_hotplug_workfn(struct work_struct *work);
static DECLARE_WORK(cpuset_hotplug_work, cpuset_hotplug_workfn);

275 276
static DECLARE_WAIT_QUEUE_HEAD(cpuset_attach_wq);

277 278
/*
 * This is ugly, but preserves the userspace API for existing cpuset
279
 * users. If someone tries to mount the "cpuset" filesystem, we
280 281
 * silently switch it to mount "cgroup" instead
 */
A
Al Viro 已提交
282 283
static struct dentry *cpuset_mount(struct file_system_type *fs_type,
			 int flags, const char *unused_dev_name, void *data)
L
Linus Torvalds 已提交
284
{
285
	struct file_system_type *cgroup_fs = get_fs_type("cgroup");
A
Al Viro 已提交
286
	struct dentry *ret = ERR_PTR(-ENODEV);
287 288 289 290
	if (cgroup_fs) {
		char mountopts[] =
			"cpuset,noprefix,"
			"release_agent=/sbin/cpuset_release_agent";
A
Al Viro 已提交
291 292
		ret = cgroup_fs->mount(cgroup_fs, flags,
					   unused_dev_name, mountopts);
293 294 295
		put_filesystem(cgroup_fs);
	}
	return ret;
L
Linus Torvalds 已提交
296 297 298 299
}

static struct file_system_type cpuset_fs_type = {
	.name = "cpuset",
A
Al Viro 已提交
300
	.mount = cpuset_mount,
L
Linus Torvalds 已提交
301 302 303
};

/*
304
 * Return in pmask the portion of a cpusets's cpus_allowed that
L
Linus Torvalds 已提交
305
 * are online.  If none are online, walk up the cpuset hierarchy
306 307
 * until we find one that does have some online cpus.  The top
 * cpuset always has some cpus online.
L
Linus Torvalds 已提交
308 309
 *
 * One way or another, we guarantee to return some non-empty subset
310
 * of cpu_online_mask.
L
Linus Torvalds 已提交
311
 *
312
 * Call with callback_mutex held.
L
Linus Torvalds 已提交
313
 */
314
static void guarantee_online_cpus(struct cpuset *cs, struct cpumask *pmask)
L
Linus Torvalds 已提交
315
{
316
	while (!cpumask_intersects(cs->cpus_allowed, cpu_online_mask))
T
Tejun Heo 已提交
317
		cs = parent_cs(cs);
318
	cpumask_and(pmask, cs->cpus_allowed, cpu_online_mask);
L
Linus Torvalds 已提交
319 320 321 322
}

/*
 * Return in *pmask the portion of a cpusets's mems_allowed that
323 324
 * are online, with memory.  If none are online with memory, walk
 * up the cpuset hierarchy until we find one that does have some
325
 * online mems.  The top cpuset always has some mems online.
L
Linus Torvalds 已提交
326 327
 *
 * One way or another, we guarantee to return some non-empty subset
328
 * of node_states[N_MEMORY].
L
Linus Torvalds 已提交
329
 *
330
 * Call with callback_mutex held.
L
Linus Torvalds 已提交
331
 */
332
static void guarantee_online_mems(struct cpuset *cs, nodemask_t *pmask)
L
Linus Torvalds 已提交
333
{
334
	while (!nodes_intersects(cs->mems_allowed, node_states[N_MEMORY]))
T
Tejun Heo 已提交
335
		cs = parent_cs(cs);
336
	nodes_and(*pmask, cs->mems_allowed, node_states[N_MEMORY]);
L
Linus Torvalds 已提交
337 338
}

339 340 341
/*
 * update task's spread flag if cpuset's page/slab spread flag is set
 *
342
 * Called with callback_mutex/cpuset_mutex held
343 344 345 346 347 348 349 350 351 352 353 354 355 356
 */
static void cpuset_update_task_spread_flag(struct cpuset *cs,
					struct task_struct *tsk)
{
	if (is_spread_page(cs))
		tsk->flags |= PF_SPREAD_PAGE;
	else
		tsk->flags &= ~PF_SPREAD_PAGE;
	if (is_spread_slab(cs))
		tsk->flags |= PF_SPREAD_SLAB;
	else
		tsk->flags &= ~PF_SPREAD_SLAB;
}

L
Linus Torvalds 已提交
357 358 359 360 361
/*
 * is_cpuset_subset(p, q) - Is cpuset p a subset of cpuset q?
 *
 * One cpuset is a subset of another if all its allowed CPUs and
 * Memory Nodes are a subset of the other, and its exclusive flags
362
 * are only set if the other's are set.  Call holding cpuset_mutex.
L
Linus Torvalds 已提交
363 364 365 366
 */

static int is_cpuset_subset(const struct cpuset *p, const struct cpuset *q)
{
367
	return	cpumask_subset(p->cpus_allowed, q->cpus_allowed) &&
L
Linus Torvalds 已提交
368 369 370 371 372
		nodes_subset(p->mems_allowed, q->mems_allowed) &&
		is_cpu_exclusive(p) <= is_cpu_exclusive(q) &&
		is_mem_exclusive(p) <= is_mem_exclusive(q);
}

373 374 375 376
/**
 * alloc_trial_cpuset - allocate a trial cpuset
 * @cs: the cpuset that the trial cpuset duplicates
 */
377
static struct cpuset *alloc_trial_cpuset(struct cpuset *cs)
378
{
379 380 381 382 383 384
	struct cpuset *trial;

	trial = kmemdup(cs, sizeof(*cs), GFP_KERNEL);
	if (!trial)
		return NULL;

385 386 387 388
	if (!alloc_cpumask_var(&trial->cpus_allowed, GFP_KERNEL))
		goto free_cs;
	if (!alloc_cpumask_var(&trial->effective_cpus, GFP_KERNEL))
		goto free_cpus;
389

390 391
	cpumask_copy(trial->cpus_allowed, cs->cpus_allowed);
	cpumask_copy(trial->effective_cpus, cs->effective_cpus);
392
	return trial;
393 394 395 396 397 398

free_cpus:
	free_cpumask_var(trial->cpus_allowed);
free_cs:
	kfree(trial);
	return NULL;
399 400 401 402 403 404 405 406
}

/**
 * free_trial_cpuset - free the trial cpuset
 * @trial: the trial cpuset to be freed
 */
static void free_trial_cpuset(struct cpuset *trial)
{
407
	free_cpumask_var(trial->effective_cpus);
408
	free_cpumask_var(trial->cpus_allowed);
409 410 411
	kfree(trial);
}

L
Linus Torvalds 已提交
412 413 414 415 416 417 418
/*
 * validate_change() - Used to validate that any proposed cpuset change
 *		       follows the structural rules for cpusets.
 *
 * If we replaced the flag and mask values of the current cpuset
 * (cur) with those values in the trial cpuset (trial), would
 * our various subset and exclusive rules still be valid?  Presumes
419
 * cpuset_mutex held.
L
Linus Torvalds 已提交
420 421 422 423 424 425 426 427 428 429 430 431
 *
 * 'cur' is the address of an actual, in-use cpuset.  Operations
 * such as list traversal that depend on the actual address of the
 * cpuset in the list must use cur below, not trial.
 *
 * 'trial' is the address of bulk structure copy of cur, with
 * perhaps one or more of the fields cpus_allowed, mems_allowed,
 * or flags changed to new, trial values.
 *
 * Return 0 if valid, -errno if not.
 */

432
static int validate_change(struct cpuset *cur, struct cpuset *trial)
L
Linus Torvalds 已提交
433
{
434
	struct cgroup_subsys_state *css;
L
Linus Torvalds 已提交
435
	struct cpuset *c, *par;
436 437 438
	int ret;

	rcu_read_lock();
L
Linus Torvalds 已提交
439 440

	/* Each of our child cpusets must be a subset of us */
441
	ret = -EBUSY;
442
	cpuset_for_each_child(c, css, cur)
443 444
		if (!is_cpuset_subset(c, trial))
			goto out;
L
Linus Torvalds 已提交
445 446

	/* Remaining checks don't apply to root cpuset */
447
	ret = 0;
448
	if (cur == &top_cpuset)
449
		goto out;
L
Linus Torvalds 已提交
450

T
Tejun Heo 已提交
451
	par = parent_cs(cur);
452

L
Linus Torvalds 已提交
453
	/* We must be a subset of our parent cpuset */
454
	ret = -EACCES;
L
Linus Torvalds 已提交
455
	if (!is_cpuset_subset(trial, par))
456
		goto out;
L
Linus Torvalds 已提交
457

458 459 460 461
	/*
	 * If either I or some sibling (!= me) is exclusive, we can't
	 * overlap
	 */
462
	ret = -EINVAL;
463
	cpuset_for_each_child(c, css, par) {
L
Linus Torvalds 已提交
464 465
		if ((is_cpu_exclusive(trial) || is_cpu_exclusive(c)) &&
		    c != cur &&
466
		    cpumask_intersects(trial->cpus_allowed, c->cpus_allowed))
467
			goto out;
L
Linus Torvalds 已提交
468 469 470
		if ((is_mem_exclusive(trial) || is_mem_exclusive(c)) &&
		    c != cur &&
		    nodes_intersects(trial->mems_allowed, c->mems_allowed))
471
			goto out;
L
Linus Torvalds 已提交
472 473
	}

474 475
	/*
	 * Cpusets with tasks - existing or newly being attached - can't
476
	 * be changed to have empty cpus_allowed or mems_allowed.
477
	 */
478
	ret = -ENOSPC;
479
	if ((cgroup_has_tasks(cur->css.cgroup) || cur->attach_in_progress)) {
480 481 482 483 484 485 486
		if (!cpumask_empty(cur->cpus_allowed) &&
		    cpumask_empty(trial->cpus_allowed))
			goto out;
		if (!nodes_empty(cur->mems_allowed) &&
		    nodes_empty(trial->mems_allowed))
			goto out;
	}
487

488 489 490 491
	ret = 0;
out:
	rcu_read_unlock();
	return ret;
L
Linus Torvalds 已提交
492 493
}

494
#ifdef CONFIG_SMP
P
Paul Jackson 已提交
495
/*
496
 * Helper routine for generate_sched_domains().
P
Paul Jackson 已提交
497 498 499 500
 * Do cpusets a, b have overlapping cpus_allowed masks?
 */
static int cpusets_overlap(struct cpuset *a, struct cpuset *b)
{
501
	return cpumask_intersects(a->cpus_allowed, b->cpus_allowed);
P
Paul Jackson 已提交
502 503
}

504 505 506 507 508 509 510 511
static void
update_domain_attr(struct sched_domain_attr *dattr, struct cpuset *c)
{
	if (dattr->relax_domain_level < c->relax_domain_level)
		dattr->relax_domain_level = c->relax_domain_level;
	return;
}

512 513
static void update_domain_attr_tree(struct sched_domain_attr *dattr,
				    struct cpuset *root_cs)
514
{
515
	struct cpuset *cp;
516
	struct cgroup_subsys_state *pos_css;
517

518
	rcu_read_lock();
519
	cpuset_for_each_descendant_pre(cp, pos_css, root_cs) {
520 521 522
		if (cp == root_cs)
			continue;

523 524
		/* skip the whole subtree if @cp doesn't have any CPU */
		if (cpumask_empty(cp->cpus_allowed)) {
525
			pos_css = css_rightmost_descendant(pos_css);
526
			continue;
527
		}
528 529 530 531

		if (is_sched_load_balance(cp))
			update_domain_attr(dattr, cp);
	}
532
	rcu_read_unlock();
533 534
}

P
Paul Jackson 已提交
535
/*
536 537 538 539 540
 * generate_sched_domains()
 *
 * This function builds a partial partition of the systems CPUs
 * A 'partial partition' is a set of non-overlapping subsets whose
 * union is a subset of that set.
541
 * The output of this function needs to be passed to kernel/sched/core.c
542 543 544
 * partition_sched_domains() routine, which will rebuild the scheduler's
 * load balancing domains (sched domains) as specified by that partial
 * partition.
P
Paul Jackson 已提交
545
 *
L
Li Zefan 已提交
546
 * See "What is sched_load_balance" in Documentation/cgroups/cpusets.txt
P
Paul Jackson 已提交
547 548 549 550 551 552 553
 * for a background explanation of this.
 *
 * Does not return errors, on the theory that the callers of this
 * routine would rather not worry about failures to rebuild sched
 * domains when operating in the severe memory shortage situations
 * that could cause allocation failures below.
 *
554
 * Must be called with cpuset_mutex held.
P
Paul Jackson 已提交
555 556
 *
 * The three key local variables below are:
557
 *    q  - a linked-list queue of cpuset pointers, used to implement a
P
Paul Jackson 已提交
558 559 560 561 562 563 564 565 566 567 568 569
 *	   top-down scan of all cpusets.  This scan loads a pointer
 *	   to each cpuset marked is_sched_load_balance into the
 *	   array 'csa'.  For our purposes, rebuilding the schedulers
 *	   sched domains, we can ignore !is_sched_load_balance cpusets.
 *  csa  - (for CpuSet Array) Array of pointers to all the cpusets
 *	   that need to be load balanced, for convenient iterative
 *	   access by the subsequent code that finds the best partition,
 *	   i.e the set of domains (subsets) of CPUs such that the
 *	   cpus_allowed of every cpuset marked is_sched_load_balance
 *	   is a subset of one of these domains, while there are as
 *	   many such domains as possible, each as small as possible.
 * doms  - Conversion of 'csa' to an array of cpumasks, for passing to
570
 *	   the kernel/sched/core.c routine partition_sched_domains() in a
P
Paul Jackson 已提交
571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588
 *	   convenient format, that can be easily compared to the prior
 *	   value to determine what partition elements (sched domains)
 *	   were changed (added or removed.)
 *
 * Finding the best partition (set of domains):
 *	The triple nested loops below over i, j, k scan over the
 *	load balanced cpusets (using the array of cpuset pointers in
 *	csa[]) looking for pairs of cpusets that have overlapping
 *	cpus_allowed, but which don't have the same 'pn' partition
 *	number and gives them in the same partition number.  It keeps
 *	looping on the 'restart' label until it can no longer find
 *	any such pairs.
 *
 *	The union of the cpus_allowed masks from the set of
 *	all cpusets having the same 'pn' value then form the one
 *	element of the partition (one sched domain) to be passed to
 *	partition_sched_domains().
 */
589
static int generate_sched_domains(cpumask_var_t **domains,
590
			struct sched_domain_attr **attributes)
P
Paul Jackson 已提交
591 592 593 594 595
{
	struct cpuset *cp;	/* scans q */
	struct cpuset **csa;	/* array of all cpuset ptrs */
	int csn;		/* how many cpuset ptrs in csa so far */
	int i, j, k;		/* indices for partition finding loops */
596
	cpumask_var_t *doms;	/* resulting partition; i.e. sched domains */
597
	struct sched_domain_attr *dattr;  /* attributes for custom domains */
598
	int ndoms = 0;		/* number of sched domains in result */
599
	int nslot;		/* next empty doms[] struct cpumask slot */
600
	struct cgroup_subsys_state *pos_css;
P
Paul Jackson 已提交
601 602

	doms = NULL;
603
	dattr = NULL;
604
	csa = NULL;
P
Paul Jackson 已提交
605 606 607

	/* Special case for the 99% of systems with one, full, sched domain */
	if (is_sched_load_balance(&top_cpuset)) {
608 609
		ndoms = 1;
		doms = alloc_sched_domains(ndoms);
P
Paul Jackson 已提交
610
		if (!doms)
611 612
			goto done;

613 614 615
		dattr = kmalloc(sizeof(struct sched_domain_attr), GFP_KERNEL);
		if (dattr) {
			*dattr = SD_ATTR_INIT;
616
			update_domain_attr_tree(dattr, &top_cpuset);
617
		}
618
		cpumask_copy(doms[0], top_cpuset.cpus_allowed);
619 620

		goto done;
P
Paul Jackson 已提交
621 622
	}

623
	csa = kmalloc(nr_cpusets() * sizeof(cp), GFP_KERNEL);
P
Paul Jackson 已提交
624 625 626 627
	if (!csa)
		goto done;
	csn = 0;

628
	rcu_read_lock();
629
	cpuset_for_each_descendant_pre(cp, pos_css, &top_cpuset) {
630 631
		if (cp == &top_cpuset)
			continue;
632
		/*
633 634 635 636 637 638
		 * Continue traversing beyond @cp iff @cp has some CPUs and
		 * isn't load balancing.  The former is obvious.  The
		 * latter: All child cpusets contain a subset of the
		 * parent's cpus, so just skip them, and then we call
		 * update_domain_attr_tree() to calc relax_domain_level of
		 * the corresponding sched domain.
639
		 */
640 641
		if (!cpumask_empty(cp->cpus_allowed) &&
		    !is_sched_load_balance(cp))
642
			continue;
643

644 645 646 647
		if (is_sched_load_balance(cp))
			csa[csn++] = cp;

		/* skip @cp's subtree */
648
		pos_css = css_rightmost_descendant(pos_css);
649 650
	}
	rcu_read_unlock();
P
Paul Jackson 已提交
651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678

	for (i = 0; i < csn; i++)
		csa[i]->pn = i;
	ndoms = csn;

restart:
	/* Find the best partition (set of sched domains) */
	for (i = 0; i < csn; i++) {
		struct cpuset *a = csa[i];
		int apn = a->pn;

		for (j = 0; j < csn; j++) {
			struct cpuset *b = csa[j];
			int bpn = b->pn;

			if (apn != bpn && cpusets_overlap(a, b)) {
				for (k = 0; k < csn; k++) {
					struct cpuset *c = csa[k];

					if (c->pn == bpn)
						c->pn = apn;
				}
				ndoms--;	/* one less element */
				goto restart;
			}
		}
	}

679 680 681 682
	/*
	 * Now we know how many domains to create.
	 * Convert <csn, csa> to <ndoms, doms> and populate cpu masks.
	 */
683
	doms = alloc_sched_domains(ndoms);
684
	if (!doms)
685 686 687 688 689 690
		goto done;

	/*
	 * The rest of the code, including the scheduler, can deal with
	 * dattr==NULL case. No need to abort if alloc fails.
	 */
691
	dattr = kmalloc(ndoms * sizeof(struct sched_domain_attr), GFP_KERNEL);
P
Paul Jackson 已提交
692 693 694

	for (nslot = 0, i = 0; i < csn; i++) {
		struct cpuset *a = csa[i];
695
		struct cpumask *dp;
P
Paul Jackson 已提交
696 697
		int apn = a->pn;

698 699 700 701 702
		if (apn < 0) {
			/* Skip completed partitions */
			continue;
		}

703
		dp = doms[nslot];
704 705 706 707

		if (nslot == ndoms) {
			static int warnings = 10;
			if (warnings) {
708 709
				pr_warn("rebuild_sched_domains confused: nslot %d, ndoms %d, csn %d, i %d, apn %d\n",
					nslot, ndoms, csn, i, apn);
710
				warnings--;
P
Paul Jackson 已提交
711
			}
712 713
			continue;
		}
P
Paul Jackson 已提交
714

715
		cpumask_clear(dp);
716 717 718 719 720 721
		if (dattr)
			*(dattr + nslot) = SD_ATTR_INIT;
		for (j = i; j < csn; j++) {
			struct cpuset *b = csa[j];

			if (apn == b->pn) {
722
				cpumask_or(dp, dp, b->cpus_allowed);
723 724 725 726 727
				if (dattr)
					update_domain_attr_tree(dattr + nslot, b);

				/* Done with this partition */
				b->pn = -1;
P
Paul Jackson 已提交
728 729
			}
		}
730
		nslot++;
P
Paul Jackson 已提交
731 732 733
	}
	BUG_ON(nslot != ndoms);

734 735 736
done:
	kfree(csa);

737 738 739 740 741 742 743
	/*
	 * Fallback to the default domain if kmalloc() failed.
	 * See comments in partition_sched_domains().
	 */
	if (doms == NULL)
		ndoms = 1;

744 745 746 747 748 749 750 751
	*domains    = doms;
	*attributes = dattr;
	return ndoms;
}

/*
 * Rebuild scheduler domains.
 *
752 753 754 755 756
 * If the flag 'sched_load_balance' of any cpuset with non-empty
 * 'cpus' changes, or if the 'cpus' allowed changes in any cpuset
 * which has that flag enabled, or if any cpuset with a non-empty
 * 'cpus' is removed, then call this routine to rebuild the
 * scheduler's dynamic sched domains.
757
 *
758
 * Call with cpuset_mutex held.  Takes get_online_cpus().
759
 */
760
static void rebuild_sched_domains_locked(void)
761 762
{
	struct sched_domain_attr *attr;
763
	cpumask_var_t *doms;
764 765
	int ndoms;

766
	lockdep_assert_held(&cpuset_mutex);
767
	get_online_cpus();
768

769 770 771 772 773 774 775 776
	/*
	 * We have raced with CPU hotplug. Don't do anything to avoid
	 * passing doms with offlined cpu to partition_sched_domains().
	 * Anyways, hotplug work item will rebuild sched domains.
	 */
	if (!cpumask_equal(top_cpuset.cpus_allowed, cpu_active_mask))
		goto out;

777 778 779 780 781
	/* Generate domain masks and attrs */
	ndoms = generate_sched_domains(&doms, &attr);

	/* Have scheduler rebuild the domains */
	partition_sched_domains(ndoms, doms, attr);
782
out:
783
	put_online_cpus();
784
}
785
#else /* !CONFIG_SMP */
786
static void rebuild_sched_domains_locked(void)
787 788 789
{
}
#endif /* CONFIG_SMP */
P
Paul Jackson 已提交
790

791 792
void rebuild_sched_domains(void)
{
793
	mutex_lock(&cpuset_mutex);
794
	rebuild_sched_domains_locked();
795
	mutex_unlock(&cpuset_mutex);
P
Paul Jackson 已提交
796 797
}

798 799 800
/*
 * effective_cpumask_cpuset - return nearest ancestor with non-empty cpus
 * @cs: the cpuset in interest
C
Cliff Wickman 已提交
801
 *
802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828
 * A cpuset's effective cpumask is the cpumask of the nearest ancestor
 * with non-empty cpus. We use effective cpumask whenever:
 * - we update tasks' cpus_allowed. (they take on the ancestor's cpumask
 *   if the cpuset they reside in has no cpus)
 * - we want to retrieve task_cs(tsk)'s cpus_allowed.
 *
 * Called with cpuset_mutex held. cpuset_cpus_allowed_fallback() is an
 * exception. See comments there.
 */
static struct cpuset *effective_cpumask_cpuset(struct cpuset *cs)
{
	while (cpumask_empty(cs->cpus_allowed))
		cs = parent_cs(cs);
	return cs;
}

/*
 * effective_nodemask_cpuset - return nearest ancestor with non-empty mems
 * @cs: the cpuset in interest
 *
 * A cpuset's effective nodemask is the nodemask of the nearest ancestor
 * with non-empty memss. We use effective nodemask whenever:
 * - we update tasks' mems_allowed. (they take on the ancestor's nodemask
 *   if the cpuset they reside in has no mems)
 * - we want to retrieve task_cs(tsk)'s mems_allowed.
 *
 * Called with cpuset_mutex held.
829
 */
830
static struct cpuset *effective_nodemask_cpuset(struct cpuset *cs)
C
Cliff Wickman 已提交
831
{
832 833 834
	while (nodes_empty(cs->mems_allowed))
		cs = parent_cs(cs);
	return cs;
C
Cliff Wickman 已提交
835
}
836

837 838 839 840
/**
 * update_tasks_cpumask - Update the cpumasks of tasks in the cpuset.
 * @cs: the cpuset in which each task's cpus_allowed mask needs to be changed
 *
841 842 843
 * Iterate through each task of @cs updating its cpus_allowed to the
 * effective cpuset's.  As this function is called with cpuset_mutex held,
 * cpuset membership stays stable.
844
 */
845
static void update_tasks_cpumask(struct cpuset *cs)
846
{
847 848 849 850 851 852 853 854
	struct cpuset *cpus_cs = effective_cpumask_cpuset(cs);
	struct css_task_iter it;
	struct task_struct *task;

	css_task_iter_start(&cs->css, &it);
	while ((task = css_task_iter_next(&it)))
		set_cpus_allowed_ptr(task, cpus_cs->cpus_allowed);
	css_task_iter_end(&it);
855 856
}

857 858 859 860 861 862 863 864 865 866
/*
 * update_tasks_cpumask_hier - Update the cpumasks of tasks in the hierarchy.
 * @root_cs: the root cpuset of the hierarchy
 * @update_root: update root cpuset or not?
 *
 * This will update cpumasks of tasks in @root_cs and all other empty cpusets
 * which take on cpumask of @root_cs.
 *
 * Called with cpuset_mutex held
 */
867
static void update_tasks_cpumask_hier(struct cpuset *root_cs, bool update_root)
868 869
{
	struct cpuset *cp;
870
	struct cgroup_subsys_state *pos_css;
871 872

	rcu_read_lock();
873
	cpuset_for_each_descendant_pre(cp, pos_css, root_cs) {
874 875 876 877 878 879 880 881 882
		if (cp == root_cs) {
			if (!update_root)
				continue;
		} else {
			/* skip the whole subtree if @cp have some CPU */
			if (!cpumask_empty(cp->cpus_allowed)) {
				pos_css = css_rightmost_descendant(pos_css);
				continue;
			}
883
		}
884
		if (!css_tryget_online(&cp->css))
885 886 887
			continue;
		rcu_read_unlock();

888
		update_tasks_cpumask(cp);
889 890 891 892 893 894 895

		rcu_read_lock();
		css_put(&cp->css);
	}
	rcu_read_unlock();
}

C
Cliff Wickman 已提交
896 897 898
/**
 * update_cpumask - update the cpus_allowed mask of a cpuset and all tasks in it
 * @cs: the cpuset to consider
899
 * @trialcs: trial cpuset
C
Cliff Wickman 已提交
900 901
 * @buf: buffer of cpu numbers written to this cpuset
 */
902 903
static int update_cpumask(struct cpuset *cs, struct cpuset *trialcs,
			  const char *buf)
L
Linus Torvalds 已提交
904
{
C
Cliff Wickman 已提交
905 906
	int retval;
	int is_load_balanced;
L
Linus Torvalds 已提交
907

908
	/* top_cpuset.cpus_allowed tracks cpu_online_mask; it's read-only */
909 910 911
	if (cs == &top_cpuset)
		return -EACCES;

912
	/*
913
	 * An empty cpus_allowed is ok only if the cpuset has no tasks.
914 915 916
	 * Since cpulist_parse() fails on an empty mask, we special case
	 * that parsing.  The validate_change() call ensures that cpusets
	 * with tasks have cpus.
917
	 */
918
	if (!*buf) {
919
		cpumask_clear(trialcs->cpus_allowed);
920
	} else {
921
		retval = cpulist_parse(buf, trialcs->cpus_allowed);
922 923
		if (retval < 0)
			return retval;
924

925
		if (!cpumask_subset(trialcs->cpus_allowed, cpu_active_mask))
926
			return -EINVAL;
927
	}
P
Paul Jackson 已提交
928

P
Paul Menage 已提交
929
	/* Nothing to do if the cpus didn't change */
930
	if (cpumask_equal(cs->cpus_allowed, trialcs->cpus_allowed))
P
Paul Menage 已提交
931
		return 0;
C
Cliff Wickman 已提交
932

933 934 935 936
	retval = validate_change(cs, trialcs);
	if (retval < 0)
		return retval;

937
	is_load_balanced = is_sched_load_balance(trialcs);
P
Paul Jackson 已提交
938

939
	mutex_lock(&callback_mutex);
940
	cpumask_copy(cs->cpus_allowed, trialcs->cpus_allowed);
941
	mutex_unlock(&callback_mutex);
P
Paul Jackson 已提交
942

943
	update_tasks_cpumask_hier(cs, true);
C
Cliff Wickman 已提交
944

P
Paul Menage 已提交
945
	if (is_load_balanced)
946
		rebuild_sched_domains_locked();
947
	return 0;
L
Linus Torvalds 已提交
948 949
}

950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967
/*
 * cpuset_migrate_mm
 *
 *    Migrate memory region from one set of nodes to another.
 *
 *    Temporarilly set tasks mems_allowed to target nodes of migration,
 *    so that the migration code can allocate pages on these nodes.
 *
 *    While the mm_struct we are migrating is typically from some
 *    other task, the task_struct mems_allowed that we are hacking
 *    is for our current task, which must allocate new pages for that
 *    migrating memory region.
 */

static void cpuset_migrate_mm(struct mm_struct *mm, const nodemask_t *from,
							const nodemask_t *to)
{
	struct task_struct *tsk = current;
968
	struct cpuset *mems_cs;
969 970 971 972 973

	tsk->mems_allowed = *to;

	do_migrate_pages(mm, from, to, MPOL_MF_MOVE_ALL);

974
	rcu_read_lock();
975 976
	mems_cs = effective_nodemask_cpuset(task_cs(tsk));
	guarantee_online_mems(mems_cs, &tsk->mems_allowed);
977
	rcu_read_unlock();
978 979
}

980
/*
981 982 983 984 985 986 987 988 989 990 991
 * cpuset_change_task_nodemask - change task's mems_allowed and mempolicy
 * @tsk: the task to change
 * @newmems: new nodes that the task will be set
 *
 * In order to avoid seeing no nodes if the old and new nodes are disjoint,
 * we structure updates as setting all new allowed nodes, then clearing newly
 * disallowed ones.
 */
static void cpuset_change_task_nodemask(struct task_struct *tsk,
					nodemask_t *newmems)
{
992
	bool need_loop;
993

994 995 996 997 998 999 1000 1001 1002 1003
	/*
	 * Allow tasks that have access to memory reserves because they have
	 * been OOM killed to get memory anywhere.
	 */
	if (unlikely(test_thread_flag(TIF_MEMDIE)))
		return;
	if (current->flags & PF_EXITING) /* Let dying task have memory */
		return;

	task_lock(tsk);
1004 1005
	/*
	 * Determine if a loop is necessary if another thread is doing
1006
	 * read_mems_allowed_begin().  If at least one node remains unchanged and
1007 1008 1009 1010 1011
	 * tsk does not have a mempolicy, then an empty nodemask will not be
	 * possible when mems_allowed is larger than a word.
	 */
	need_loop = task_has_mempolicy(tsk) ||
			!nodes_intersects(*newmems, tsk->mems_allowed);
1012

1013 1014
	if (need_loop) {
		local_irq_disable();
1015
		write_seqcount_begin(&tsk->mems_allowed_seq);
1016
	}
1017

1018 1019
	nodes_or(tsk->mems_allowed, tsk->mems_allowed, *newmems);
	mpol_rebind_task(tsk, newmems, MPOL_REBIND_STEP1);
1020 1021

	mpol_rebind_task(tsk, newmems, MPOL_REBIND_STEP2);
1022
	tsk->mems_allowed = *newmems;
1023

1024
	if (need_loop) {
1025
		write_seqcount_end(&tsk->mems_allowed_seq);
1026 1027
		local_irq_enable();
	}
1028

1029
	task_unlock(tsk);
1030 1031
}

1032 1033
static void *cpuset_being_rebound;

1034 1035 1036 1037
/**
 * update_tasks_nodemask - Update the nodemasks of tasks in the cpuset.
 * @cs: the cpuset in which each task's mems_allowed mask needs to be changed
 *
1038 1039 1040
 * Iterate through each task of @cs updating its mems_allowed to the
 * effective cpuset's.  As this function is called with cpuset_mutex held,
 * cpuset membership stays stable.
1041
 */
1042
static void update_tasks_nodemask(struct cpuset *cs)
L
Linus Torvalds 已提交
1043
{
1044
	static nodemask_t newmems;	/* protected by cpuset_mutex */
1045
	struct cpuset *mems_cs = effective_nodemask_cpuset(cs);
1046 1047
	struct css_task_iter it;
	struct task_struct *task;
1048

1049
	cpuset_being_rebound = cs;		/* causes mpol_dup() rebind */
1050

1051
	guarantee_online_mems(mems_cs, &newmems);
1052

1053
	/*
1054 1055 1056 1057
	 * The mpol_rebind_mm() call takes mmap_sem, which we couldn't
	 * take while holding tasklist_lock.  Forks can happen - the
	 * mpol_dup() cpuset_being_rebound check will catch such forks,
	 * and rebind their vma mempolicies too.  Because we still hold
1058
	 * the global cpuset_mutex, we know that no other rebind effort
1059
	 * will be contending for the global variable cpuset_being_rebound.
1060
	 * It's ok if we rebind the same mm twice; mpol_rebind_mm()
1061
	 * is idempotent.  Also migrate pages in each mm to new nodes.
1062
	 */
1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081
	css_task_iter_start(&cs->css, &it);
	while ((task = css_task_iter_next(&it))) {
		struct mm_struct *mm;
		bool migrate;

		cpuset_change_task_nodemask(task, &newmems);

		mm = get_task_mm(task);
		if (!mm)
			continue;

		migrate = is_memory_migrate(cs);

		mpol_rebind_mm(mm, &cs->mems_allowed);
		if (migrate)
			cpuset_migrate_mm(mm, &cs->old_mems_allowed, &newmems);
		mmput(mm);
	}
	css_task_iter_end(&it);
1082

1083 1084 1085 1086 1087 1088
	/*
	 * All the tasks' nodemasks have been updated, update
	 * cs->old_mems_allowed.
	 */
	cs->old_mems_allowed = newmems;

1089
	/* We're done rebinding vmas to this cpuset's new mems_allowed. */
1090
	cpuset_being_rebound = NULL;
L
Linus Torvalds 已提交
1091 1092
}

1093 1094 1095 1096 1097 1098 1099 1100 1101 1102
/*
 * update_tasks_nodemask_hier - Update the nodemasks of tasks in the hierarchy.
 * @cs: the root cpuset of the hierarchy
 * @update_root: update the root cpuset or not?
 *
 * This will update nodemasks of tasks in @root_cs and all other empty cpusets
 * which take on nodemask of @root_cs.
 *
 * Called with cpuset_mutex held
 */
1103
static void update_tasks_nodemask_hier(struct cpuset *root_cs, bool update_root)
1104 1105
{
	struct cpuset *cp;
1106
	struct cgroup_subsys_state *pos_css;
1107 1108

	rcu_read_lock();
1109
	cpuset_for_each_descendant_pre(cp, pos_css, root_cs) {
1110 1111 1112 1113 1114 1115 1116 1117 1118
		if (cp == root_cs) {
			if (!update_root)
				continue;
		} else {
			/* skip the whole subtree if @cp have some CPU */
			if (!nodes_empty(cp->mems_allowed)) {
				pos_css = css_rightmost_descendant(pos_css);
				continue;
			}
1119
		}
1120
		if (!css_tryget_online(&cp->css))
1121 1122 1123
			continue;
		rcu_read_unlock();

1124
		update_tasks_nodemask(cp);
1125 1126 1127 1128 1129 1130 1131

		rcu_read_lock();
		css_put(&cp->css);
	}
	rcu_read_unlock();
}

1132 1133 1134
/*
 * Handle user request to change the 'mems' memory placement
 * of a cpuset.  Needs to validate the request, update the
1135 1136 1137 1138
 * cpusets mems_allowed, and for each task in the cpuset,
 * update mems_allowed and rebind task's mempolicy and any vma
 * mempolicies and if the cpuset is marked 'memory_migrate',
 * migrate the tasks pages to the new memory.
1139
 *
1140
 * Call with cpuset_mutex held.  May take callback_mutex during call.
1141 1142 1143 1144
 * Will take tasklist_lock, scan tasklist for tasks in cpuset cs,
 * lock each such tasks mm->mmap_sem, scan its vma's and rebind
 * their mempolicies to the cpusets new mems_allowed.
 */
1145 1146
static int update_nodemask(struct cpuset *cs, struct cpuset *trialcs,
			   const char *buf)
1147 1148 1149 1150
{
	int retval;

	/*
1151
	 * top_cpuset.mems_allowed tracks node_stats[N_MEMORY];
1152 1153
	 * it's read-only
	 */
1154 1155 1156 1157
	if (cs == &top_cpuset) {
		retval = -EACCES;
		goto done;
	}
1158 1159 1160 1161 1162 1163 1164 1165

	/*
	 * An empty mems_allowed is ok iff there are no tasks in the cpuset.
	 * Since nodelist_parse() fails on an empty mask, we special case
	 * that parsing.  The validate_change() call ensures that cpusets
	 * with tasks have memory.
	 */
	if (!*buf) {
1166
		nodes_clear(trialcs->mems_allowed);
1167
	} else {
1168
		retval = nodelist_parse(buf, trialcs->mems_allowed);
1169 1170 1171
		if (retval < 0)
			goto done;

1172
		if (!nodes_subset(trialcs->mems_allowed,
1173
				node_states[N_MEMORY])) {
1174 1175 1176
			retval =  -EINVAL;
			goto done;
		}
1177
	}
1178 1179

	if (nodes_equal(cs->mems_allowed, trialcs->mems_allowed)) {
1180 1181 1182
		retval = 0;		/* Too easy - nothing to do */
		goto done;
	}
1183
	retval = validate_change(cs, trialcs);
1184 1185 1186 1187
	if (retval < 0)
		goto done;

	mutex_lock(&callback_mutex);
1188
	cs->mems_allowed = trialcs->mems_allowed;
1189 1190
	mutex_unlock(&callback_mutex);

1191
	update_tasks_nodemask_hier(cs, true);
1192 1193 1194 1195
done:
	return retval;
}

1196 1197 1198 1199 1200
int current_cpuset_is_being_rebound(void)
{
	return task_cs(current) == cpuset_being_rebound;
}

1201
static int update_relax_domain_level(struct cpuset *cs, s64 val)
1202
{
1203
#ifdef CONFIG_SMP
1204
	if (val < -1 || val >= sched_domain_level_max)
1205
		return -EINVAL;
1206
#endif
1207 1208 1209

	if (val != cs->relax_domain_level) {
		cs->relax_domain_level = val;
1210 1211
		if (!cpumask_empty(cs->cpus_allowed) &&
		    is_sched_load_balance(cs))
1212
			rebuild_sched_domains_locked();
1213 1214 1215 1216 1217
	}

	return 0;
}

1218
/**
1219 1220 1221
 * update_tasks_flags - update the spread flags of tasks in the cpuset.
 * @cs: the cpuset in which each task's spread flags needs to be changed
 *
1222 1223 1224
 * Iterate through each task of @cs updating its spread flags.  As this
 * function is called with cpuset_mutex held, cpuset membership stays
 * stable.
1225
 */
1226
static void update_tasks_flags(struct cpuset *cs)
1227
{
1228 1229 1230 1231 1232 1233 1234
	struct css_task_iter it;
	struct task_struct *task;

	css_task_iter_start(&cs->css, &it);
	while ((task = css_task_iter_next(&it)))
		cpuset_update_task_spread_flag(cs, task);
	css_task_iter_end(&it);
1235 1236
}

L
Linus Torvalds 已提交
1237 1238
/*
 * update_flag - read a 0 or a 1 in a file and update associated flag
1239 1240 1241
 * bit:		the bit to update (see cpuset_flagbits_t)
 * cs:		the cpuset to update
 * turning_on: 	whether the flag is being set or cleared
1242
 *
1243
 * Call with cpuset_mutex held.
L
Linus Torvalds 已提交
1244 1245
 */

1246 1247
static int update_flag(cpuset_flagbits_t bit, struct cpuset *cs,
		       int turning_on)
L
Linus Torvalds 已提交
1248
{
1249
	struct cpuset *trialcs;
R
Rakib Mullick 已提交
1250
	int balance_flag_changed;
1251 1252
	int spread_flag_changed;
	int err;
L
Linus Torvalds 已提交
1253

1254 1255 1256 1257
	trialcs = alloc_trial_cpuset(cs);
	if (!trialcs)
		return -ENOMEM;

L
Linus Torvalds 已提交
1258
	if (turning_on)
1259
		set_bit(bit, &trialcs->flags);
L
Linus Torvalds 已提交
1260
	else
1261
		clear_bit(bit, &trialcs->flags);
L
Linus Torvalds 已提交
1262

1263
	err = validate_change(cs, trialcs);
1264
	if (err < 0)
1265
		goto out;
P
Paul Jackson 已提交
1266 1267

	balance_flag_changed = (is_sched_load_balance(cs) !=
1268
				is_sched_load_balance(trialcs));
P
Paul Jackson 已提交
1269

1270 1271 1272
	spread_flag_changed = ((is_spread_slab(cs) != is_spread_slab(trialcs))
			|| (is_spread_page(cs) != is_spread_page(trialcs)));

1273
	mutex_lock(&callback_mutex);
1274
	cs->flags = trialcs->flags;
1275
	mutex_unlock(&callback_mutex);
1276

1277
	if (!cpumask_empty(trialcs->cpus_allowed) && balance_flag_changed)
1278
		rebuild_sched_domains_locked();
P
Paul Jackson 已提交
1279

1280
	if (spread_flag_changed)
1281
		update_tasks_flags(cs);
1282 1283 1284
out:
	free_trial_cpuset(trialcs);
	return err;
L
Linus Torvalds 已提交
1285 1286
}

1287
/*
A
Adrian Bunk 已提交
1288
 * Frequency meter - How fast is some event occurring?
1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384
 *
 * These routines manage a digitally filtered, constant time based,
 * event frequency meter.  There are four routines:
 *   fmeter_init() - initialize a frequency meter.
 *   fmeter_markevent() - called each time the event happens.
 *   fmeter_getrate() - returns the recent rate of such events.
 *   fmeter_update() - internal routine used to update fmeter.
 *
 * A common data structure is passed to each of these routines,
 * which is used to keep track of the state required to manage the
 * frequency meter and its digital filter.
 *
 * The filter works on the number of events marked per unit time.
 * The filter is single-pole low-pass recursive (IIR).  The time unit
 * is 1 second.  Arithmetic is done using 32-bit integers scaled to
 * simulate 3 decimal digits of precision (multiplied by 1000).
 *
 * With an FM_COEF of 933, and a time base of 1 second, the filter
 * has a half-life of 10 seconds, meaning that if the events quit
 * happening, then the rate returned from the fmeter_getrate()
 * will be cut in half each 10 seconds, until it converges to zero.
 *
 * It is not worth doing a real infinitely recursive filter.  If more
 * than FM_MAXTICKS ticks have elapsed since the last filter event,
 * just compute FM_MAXTICKS ticks worth, by which point the level
 * will be stable.
 *
 * Limit the count of unprocessed events to FM_MAXCNT, so as to avoid
 * arithmetic overflow in the fmeter_update() routine.
 *
 * Given the simple 32 bit integer arithmetic used, this meter works
 * best for reporting rates between one per millisecond (msec) and
 * one per 32 (approx) seconds.  At constant rates faster than one
 * per msec it maxes out at values just under 1,000,000.  At constant
 * rates between one per msec, and one per second it will stabilize
 * to a value N*1000, where N is the rate of events per second.
 * At constant rates between one per second and one per 32 seconds,
 * it will be choppy, moving up on the seconds that have an event,
 * and then decaying until the next event.  At rates slower than
 * about one in 32 seconds, it decays all the way back to zero between
 * each event.
 */

#define FM_COEF 933		/* coefficient for half-life of 10 secs */
#define FM_MAXTICKS ((time_t)99) /* useless computing more ticks than this */
#define FM_MAXCNT 1000000	/* limit cnt to avoid overflow */
#define FM_SCALE 1000		/* faux fixed point scale */

/* Initialize a frequency meter */
static void fmeter_init(struct fmeter *fmp)
{
	fmp->cnt = 0;
	fmp->val = 0;
	fmp->time = 0;
	spin_lock_init(&fmp->lock);
}

/* Internal meter update - process cnt events and update value */
static void fmeter_update(struct fmeter *fmp)
{
	time_t now = get_seconds();
	time_t ticks = now - fmp->time;

	if (ticks == 0)
		return;

	ticks = min(FM_MAXTICKS, ticks);
	while (ticks-- > 0)
		fmp->val = (FM_COEF * fmp->val) / FM_SCALE;
	fmp->time = now;

	fmp->val += ((FM_SCALE - FM_COEF) * fmp->cnt) / FM_SCALE;
	fmp->cnt = 0;
}

/* Process any previous ticks, then bump cnt by one (times scale). */
static void fmeter_markevent(struct fmeter *fmp)
{
	spin_lock(&fmp->lock);
	fmeter_update(fmp);
	fmp->cnt = min(FM_MAXCNT, fmp->cnt + FM_SCALE);
	spin_unlock(&fmp->lock);
}

/* Process any previous ticks, then return current value. */
static int fmeter_getrate(struct fmeter *fmp)
{
	int val;

	spin_lock(&fmp->lock);
	fmeter_update(fmp);
	val = fmp->val;
	spin_unlock(&fmp->lock);
	return val;
}

1385 1386
static struct cpuset *cpuset_attach_old_cs;

1387
/* Called by cgroups to determine if a cpuset is usable; cpuset_mutex held */
1388 1389
static int cpuset_can_attach(struct cgroup_subsys_state *css,
			     struct cgroup_taskset *tset)
1390
{
1391
	struct cpuset *cs = css_cs(css);
1392 1393
	struct task_struct *task;
	int ret;
L
Linus Torvalds 已提交
1394

1395 1396 1397
	/* used later by cpuset_attach() */
	cpuset_attach_old_cs = task_cs(cgroup_taskset_first(tset));

1398 1399
	mutex_lock(&cpuset_mutex);

1400
	/* allow moving tasks into an empty cpuset if on default hierarchy */
1401
	ret = -ENOSPC;
1402
	if (!cgroup_on_dfl(css->cgroup) &&
1403
	    (cpumask_empty(cs->cpus_allowed) || nodes_empty(cs->mems_allowed)))
1404
		goto out_unlock;
1405

1406
	cgroup_taskset_for_each(task, tset) {
1407
		/*
1408 1409 1410 1411 1412 1413 1414
		 * Kthreads which disallow setaffinity shouldn't be moved
		 * to a new cpuset; we don't want to change their cpu
		 * affinity and isolating such threads by their set of
		 * allowed nodes is unnecessary.  Thus, cpusets are not
		 * applicable for such threads.  This prevents checking for
		 * success of set_cpus_allowed_ptr() on all attached tasks
		 * before cpus_allowed may be changed.
1415
		 */
1416
		ret = -EINVAL;
1417
		if (task->flags & PF_NO_SETAFFINITY)
1418 1419 1420 1421
			goto out_unlock;
		ret = security_task_setscheduler(task);
		if (ret)
			goto out_unlock;
1422
	}
1423

1424 1425 1426 1427 1428
	/*
	 * Mark attach is in progress.  This makes validate_change() fail
	 * changes which zero cpus/mems_allowed.
	 */
	cs->attach_in_progress++;
1429 1430 1431 1432
	ret = 0;
out_unlock:
	mutex_unlock(&cpuset_mutex);
	return ret;
1433
}
1434

1435
static void cpuset_cancel_attach(struct cgroup_subsys_state *css,
1436 1437
				 struct cgroup_taskset *tset)
{
1438
	mutex_lock(&cpuset_mutex);
1439
	css_cs(css)->attach_in_progress--;
1440
	mutex_unlock(&cpuset_mutex);
1441
}
L
Linus Torvalds 已提交
1442

1443
/*
1444
 * Protected by cpuset_mutex.  cpus_attach is used only by cpuset_attach()
1445 1446 1447 1448 1449
 * but we can't allocate it dynamically there.  Define it global and
 * allocate from cpuset_init().
 */
static cpumask_var_t cpus_attach;

1450 1451
static void cpuset_attach(struct cgroup_subsys_state *css,
			  struct cgroup_taskset *tset)
1452
{
1453
	/* static buf protected by cpuset_mutex */
1454
	static nodemask_t cpuset_attach_nodemask_to;
1455
	struct mm_struct *mm;
1456 1457
	struct task_struct *task;
	struct task_struct *leader = cgroup_taskset_first(tset);
1458
	struct cpuset *cs = css_cs(css);
1459
	struct cpuset *oldcs = cpuset_attach_old_cs;
1460 1461
	struct cpuset *cpus_cs = effective_cpumask_cpuset(cs);
	struct cpuset *mems_cs = effective_nodemask_cpuset(cs);
1462

1463 1464
	mutex_lock(&cpuset_mutex);

1465 1466 1467 1468
	/* prepare for attach */
	if (cs == &top_cpuset)
		cpumask_copy(cpus_attach, cpu_possible_mask);
	else
1469
		guarantee_online_cpus(cpus_cs, cpus_attach);
1470

1471
	guarantee_online_mems(mems_cs, &cpuset_attach_nodemask_to);
1472

1473
	cgroup_taskset_for_each(task, tset) {
1474 1475 1476 1477 1478 1479 1480 1481 1482
		/*
		 * can_attach beforehand should guarantee that this doesn't
		 * fail.  TODO: have a better way to handle failure here
		 */
		WARN_ON_ONCE(set_cpus_allowed_ptr(task, cpus_attach));

		cpuset_change_task_nodemask(task, &cpuset_attach_nodemask_to);
		cpuset_update_task_spread_flag(cs, task);
	}
1483

1484 1485 1486 1487 1488
	/*
	 * Change mm, possibly for multiple threads in a threadgroup. This is
	 * expensive and may sleep.
	 */
	cpuset_attach_nodemask_to = cs->mems_allowed;
1489
	mm = get_task_mm(leader);
1490
	if (mm) {
1491 1492
		struct cpuset *mems_oldcs = effective_nodemask_cpuset(oldcs);

1493
		mpol_rebind_mm(mm, &cpuset_attach_nodemask_to);
1494 1495 1496 1497 1498 1499 1500 1501 1502 1503

		/*
		 * old_mems_allowed is the same with mems_allowed here, except
		 * if this task is being moved automatically due to hotplug.
		 * In that case @mems_allowed has been updated and is empty,
		 * so @old_mems_allowed is the right nodesets that we migrate
		 * mm from.
		 */
		if (is_memory_migrate(cs)) {
			cpuset_migrate_mm(mm, &mems_oldcs->old_mems_allowed,
1504
					  &cpuset_attach_nodemask_to);
1505
		}
1506 1507
		mmput(mm);
	}
1508

1509
	cs->old_mems_allowed = cpuset_attach_nodemask_to;
1510

1511
	cs->attach_in_progress--;
1512 1513
	if (!cs->attach_in_progress)
		wake_up(&cpuset_attach_wq);
1514 1515

	mutex_unlock(&cpuset_mutex);
L
Linus Torvalds 已提交
1516 1517 1518 1519 1520
}

/* The various types of files and directories in a cpuset file system */

typedef enum {
1521
	FILE_MEMORY_MIGRATE,
L
Linus Torvalds 已提交
1522 1523 1524 1525
	FILE_CPULIST,
	FILE_MEMLIST,
	FILE_CPU_EXCLUSIVE,
	FILE_MEM_EXCLUSIVE,
1526
	FILE_MEM_HARDWALL,
P
Paul Jackson 已提交
1527
	FILE_SCHED_LOAD_BALANCE,
1528
	FILE_SCHED_RELAX_DOMAIN_LEVEL,
1529 1530
	FILE_MEMORY_PRESSURE_ENABLED,
	FILE_MEMORY_PRESSURE,
1531 1532
	FILE_SPREAD_PAGE,
	FILE_SPREAD_SLAB,
L
Linus Torvalds 已提交
1533 1534
} cpuset_filetype_t;

1535 1536
static int cpuset_write_u64(struct cgroup_subsys_state *css, struct cftype *cft,
			    u64 val)
1537
{
1538
	struct cpuset *cs = css_cs(css);
1539
	cpuset_filetype_t type = cft->private;
1540
	int retval = 0;
1541

1542
	mutex_lock(&cpuset_mutex);
1543 1544
	if (!is_cpuset_online(cs)) {
		retval = -ENODEV;
1545
		goto out_unlock;
1546
	}
1547 1548

	switch (type) {
L
Linus Torvalds 已提交
1549
	case FILE_CPU_EXCLUSIVE:
1550
		retval = update_flag(CS_CPU_EXCLUSIVE, cs, val);
L
Linus Torvalds 已提交
1551 1552
		break;
	case FILE_MEM_EXCLUSIVE:
1553
		retval = update_flag(CS_MEM_EXCLUSIVE, cs, val);
L
Linus Torvalds 已提交
1554
		break;
1555 1556 1557
	case FILE_MEM_HARDWALL:
		retval = update_flag(CS_MEM_HARDWALL, cs, val);
		break;
P
Paul Jackson 已提交
1558
	case FILE_SCHED_LOAD_BALANCE:
1559
		retval = update_flag(CS_SCHED_LOAD_BALANCE, cs, val);
1560
		break;
1561
	case FILE_MEMORY_MIGRATE:
1562
		retval = update_flag(CS_MEMORY_MIGRATE, cs, val);
1563
		break;
1564
	case FILE_MEMORY_PRESSURE_ENABLED:
1565
		cpuset_memory_pressure_enabled = !!val;
1566 1567 1568 1569
		break;
	case FILE_MEMORY_PRESSURE:
		retval = -EACCES;
		break;
1570
	case FILE_SPREAD_PAGE:
1571
		retval = update_flag(CS_SPREAD_PAGE, cs, val);
1572 1573
		break;
	case FILE_SPREAD_SLAB:
1574
		retval = update_flag(CS_SPREAD_SLAB, cs, val);
1575
		break;
L
Linus Torvalds 已提交
1576 1577
	default:
		retval = -EINVAL;
1578
		break;
L
Linus Torvalds 已提交
1579
	}
1580 1581
out_unlock:
	mutex_unlock(&cpuset_mutex);
L
Linus Torvalds 已提交
1582 1583 1584
	return retval;
}

1585 1586
static int cpuset_write_s64(struct cgroup_subsys_state *css, struct cftype *cft,
			    s64 val)
1587
{
1588
	struct cpuset *cs = css_cs(css);
1589
	cpuset_filetype_t type = cft->private;
1590
	int retval = -ENODEV;
1591

1592 1593 1594
	mutex_lock(&cpuset_mutex);
	if (!is_cpuset_online(cs))
		goto out_unlock;
1595

1596 1597 1598 1599 1600 1601 1602 1603
	switch (type) {
	case FILE_SCHED_RELAX_DOMAIN_LEVEL:
		retval = update_relax_domain_level(cs, val);
		break;
	default:
		retval = -EINVAL;
		break;
	}
1604 1605
out_unlock:
	mutex_unlock(&cpuset_mutex);
1606 1607 1608
	return retval;
}

1609 1610 1611
/*
 * Common handling for a write to a "cpus" or "mems" file.
 */
1612 1613
static ssize_t cpuset_write_resmask(struct kernfs_open_file *of,
				    char *buf, size_t nbytes, loff_t off)
1614
{
1615
	struct cpuset *cs = css_cs(of_css(of));
1616
	struct cpuset *trialcs;
1617
	int retval = -ENODEV;
1618

1619 1620
	buf = strstrip(buf);

1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633
	/*
	 * CPU or memory hotunplug may leave @cs w/o any execution
	 * resources, in which case the hotplug code asynchronously updates
	 * configuration and transfers all tasks to the nearest ancestor
	 * which can execute.
	 *
	 * As writes to "cpus" or "mems" may restore @cs's execution
	 * resources, wait for the previously scheduled operations before
	 * proceeding, so that we don't end up keep removing tasks added
	 * after execution capability is restored.
	 */
	flush_work(&cpuset_hotplug_work);

1634 1635 1636
	mutex_lock(&cpuset_mutex);
	if (!is_cpuset_online(cs))
		goto out_unlock;
1637

1638
	trialcs = alloc_trial_cpuset(cs);
1639 1640
	if (!trialcs) {
		retval = -ENOMEM;
1641
		goto out_unlock;
1642
	}
1643

1644
	switch (of_cft(of)->private) {
1645
	case FILE_CPULIST:
1646
		retval = update_cpumask(cs, trialcs, buf);
1647 1648
		break;
	case FILE_MEMLIST:
1649
		retval = update_nodemask(cs, trialcs, buf);
1650 1651 1652 1653 1654
		break;
	default:
		retval = -EINVAL;
		break;
	}
1655 1656

	free_trial_cpuset(trialcs);
1657 1658
out_unlock:
	mutex_unlock(&cpuset_mutex);
1659
	return retval ?: nbytes;
1660 1661
}

L
Linus Torvalds 已提交
1662 1663 1664 1665 1666 1667 1668 1669
/*
 * These ascii lists should be read in a single call, by using a user
 * buffer large enough to hold the entire map.  If read in smaller
 * chunks, there is no guarantee of atomicity.  Since the display format
 * used, list of ranges of sequential numbers, is variable length,
 * and since these maps can change value dynamically, one could read
 * gibberish by doing partial reads while a list was changing.
 */
1670
static int cpuset_common_seq_show(struct seq_file *sf, void *v)
L
Linus Torvalds 已提交
1671
{
1672 1673
	struct cpuset *cs = css_cs(seq_css(sf));
	cpuset_filetype_t type = seq_cft(sf)->private;
1674 1675 1676
	ssize_t count;
	char *buf, *s;
	int ret = 0;
L
Linus Torvalds 已提交
1677

1678 1679
	count = seq_get_buf(sf, &buf);
	s = buf;
L
Linus Torvalds 已提交
1680

1681
	mutex_lock(&callback_mutex);
L
Linus Torvalds 已提交
1682 1683 1684

	switch (type) {
	case FILE_CPULIST:
1685
		s += cpulist_scnprintf(s, count, cs->cpus_allowed);
L
Linus Torvalds 已提交
1686 1687
		break;
	case FILE_MEMLIST:
1688
		s += nodelist_scnprintf(s, count, cs->mems_allowed);
L
Linus Torvalds 已提交
1689 1690
		break;
	default:
1691 1692
		ret = -EINVAL;
		goto out_unlock;
L
Linus Torvalds 已提交
1693 1694
	}

1695 1696 1697 1698 1699 1700 1701 1702 1703
	if (s < buf + count - 1) {
		*s++ = '\n';
		seq_commit(sf, s - buf);
	} else {
		seq_commit(sf, -1);
	}
out_unlock:
	mutex_unlock(&callback_mutex);
	return ret;
L
Linus Torvalds 已提交
1704 1705
}

1706
static u64 cpuset_read_u64(struct cgroup_subsys_state *css, struct cftype *cft)
1707
{
1708
	struct cpuset *cs = css_cs(css);
1709 1710 1711 1712 1713 1714
	cpuset_filetype_t type = cft->private;
	switch (type) {
	case FILE_CPU_EXCLUSIVE:
		return is_cpu_exclusive(cs);
	case FILE_MEM_EXCLUSIVE:
		return is_mem_exclusive(cs);
1715 1716
	case FILE_MEM_HARDWALL:
		return is_mem_hardwall(cs);
1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731
	case FILE_SCHED_LOAD_BALANCE:
		return is_sched_load_balance(cs);
	case FILE_MEMORY_MIGRATE:
		return is_memory_migrate(cs);
	case FILE_MEMORY_PRESSURE_ENABLED:
		return cpuset_memory_pressure_enabled;
	case FILE_MEMORY_PRESSURE:
		return fmeter_getrate(&cs->fmeter);
	case FILE_SPREAD_PAGE:
		return is_spread_page(cs);
	case FILE_SPREAD_SLAB:
		return is_spread_slab(cs);
	default:
		BUG();
	}
1732 1733 1734

	/* Unreachable but makes gcc happy */
	return 0;
1735
}
L
Linus Torvalds 已提交
1736

1737
static s64 cpuset_read_s64(struct cgroup_subsys_state *css, struct cftype *cft)
1738
{
1739
	struct cpuset *cs = css_cs(css);
1740 1741 1742 1743 1744 1745 1746
	cpuset_filetype_t type = cft->private;
	switch (type) {
	case FILE_SCHED_RELAX_DOMAIN_LEVEL:
		return cs->relax_domain_level;
	default:
		BUG();
	}
1747 1748 1749

	/* Unrechable but makes gcc happy */
	return 0;
1750 1751
}

L
Linus Torvalds 已提交
1752 1753 1754 1755 1756

/*
 * for the common functions, 'private' gives the type of file
 */

1757 1758 1759
static struct cftype files[] = {
	{
		.name = "cpus",
1760
		.seq_show = cpuset_common_seq_show,
1761
		.write = cpuset_write_resmask,
1762
		.max_write_len = (100U + 6 * NR_CPUS),
1763 1764 1765 1766 1767
		.private = FILE_CPULIST,
	},

	{
		.name = "mems",
1768
		.seq_show = cpuset_common_seq_show,
1769
		.write = cpuset_write_resmask,
1770
		.max_write_len = (100U + 6 * MAX_NUMNODES),
1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787
		.private = FILE_MEMLIST,
	},

	{
		.name = "cpu_exclusive",
		.read_u64 = cpuset_read_u64,
		.write_u64 = cpuset_write_u64,
		.private = FILE_CPU_EXCLUSIVE,
	},

	{
		.name = "mem_exclusive",
		.read_u64 = cpuset_read_u64,
		.write_u64 = cpuset_write_u64,
		.private = FILE_MEM_EXCLUSIVE,
	},

1788 1789 1790 1791 1792 1793 1794
	{
		.name = "mem_hardwall",
		.read_u64 = cpuset_read_u64,
		.write_u64 = cpuset_write_u64,
		.private = FILE_MEM_HARDWALL,
	},

1795 1796 1797 1798 1799 1800 1801 1802 1803
	{
		.name = "sched_load_balance",
		.read_u64 = cpuset_read_u64,
		.write_u64 = cpuset_write_u64,
		.private = FILE_SCHED_LOAD_BALANCE,
	},

	{
		.name = "sched_relax_domain_level",
1804 1805
		.read_s64 = cpuset_read_s64,
		.write_s64 = cpuset_write_s64,
1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820
		.private = FILE_SCHED_RELAX_DOMAIN_LEVEL,
	},

	{
		.name = "memory_migrate",
		.read_u64 = cpuset_read_u64,
		.write_u64 = cpuset_write_u64,
		.private = FILE_MEMORY_MIGRATE,
	},

	{
		.name = "memory_pressure",
		.read_u64 = cpuset_read_u64,
		.write_u64 = cpuset_write_u64,
		.private = FILE_MEMORY_PRESSURE,
L
Li Zefan 已提交
1821
		.mode = S_IRUGO,
1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836
	},

	{
		.name = "memory_spread_page",
		.read_u64 = cpuset_read_u64,
		.write_u64 = cpuset_write_u64,
		.private = FILE_SPREAD_PAGE,
	},

	{
		.name = "memory_spread_slab",
		.read_u64 = cpuset_read_u64,
		.write_u64 = cpuset_write_u64,
		.private = FILE_SPREAD_SLAB,
	},
1837

1838 1839 1840 1841 1842 1843 1844
	{
		.name = "memory_pressure_enabled",
		.flags = CFTYPE_ONLY_ON_ROOT,
		.read_u64 = cpuset_read_u64,
		.write_u64 = cpuset_write_u64,
		.private = FILE_MEMORY_PRESSURE_ENABLED,
	},
L
Linus Torvalds 已提交
1845

1846 1847
	{ }	/* terminate */
};
L
Linus Torvalds 已提交
1848 1849

/*
1850
 *	cpuset_css_alloc - allocate a cpuset css
L
Li Zefan 已提交
1851
 *	cgrp:	control group that the new cpuset will be part of
L
Linus Torvalds 已提交
1852 1853
 */

1854 1855
static struct cgroup_subsys_state *
cpuset_css_alloc(struct cgroup_subsys_state *parent_css)
L
Linus Torvalds 已提交
1856
{
T
Tejun Heo 已提交
1857
	struct cpuset *cs;
L
Linus Torvalds 已提交
1858

1859
	if (!parent_css)
1860
		return &top_cpuset.css;
1861

T
Tejun Heo 已提交
1862
	cs = kzalloc(sizeof(*cs), GFP_KERNEL);
L
Linus Torvalds 已提交
1863
	if (!cs)
1864
		return ERR_PTR(-ENOMEM);
1865 1866 1867 1868
	if (!alloc_cpumask_var(&cs->cpus_allowed, GFP_KERNEL))
		goto free_cs;
	if (!alloc_cpumask_var(&cs->effective_cpus, GFP_KERNEL))
		goto free_cpus;
L
Linus Torvalds 已提交
1869

P
Paul Jackson 已提交
1870
	set_bit(CS_SCHED_LOAD_BALANCE, &cs->flags);
1871
	cpumask_clear(cs->cpus_allowed);
1872
	nodes_clear(cs->mems_allowed);
1873 1874
	cpumask_clear(cs->effective_cpus);
	nodes_clear(cs->effective_mems);
1875
	fmeter_init(&cs->fmeter);
1876
	cs->relax_domain_level = -1;
L
Linus Torvalds 已提交
1877

T
Tejun Heo 已提交
1878
	return &cs->css;
1879 1880 1881 1882 1883 1884

free_cpus:
	free_cpumask_var(cs->cpus_allowed);
free_cs:
	kfree(cs);
	return ERR_PTR(-ENOMEM);
T
Tejun Heo 已提交
1885 1886
}

1887
static int cpuset_css_online(struct cgroup_subsys_state *css)
T
Tejun Heo 已提交
1888
{
1889
	struct cpuset *cs = css_cs(css);
T
Tejun Heo 已提交
1890
	struct cpuset *parent = parent_cs(cs);
1891
	struct cpuset *tmp_cs;
1892
	struct cgroup_subsys_state *pos_css;
T
Tejun Heo 已提交
1893 1894 1895 1896

	if (!parent)
		return 0;

1897 1898
	mutex_lock(&cpuset_mutex);

T
Tejun Heo 已提交
1899
	set_bit(CS_ONLINE, &cs->flags);
T
Tejun Heo 已提交
1900 1901 1902 1903
	if (is_spread_page(parent))
		set_bit(CS_SPREAD_PAGE, &cs->flags);
	if (is_spread_slab(parent))
		set_bit(CS_SPREAD_SLAB, &cs->flags);
L
Linus Torvalds 已提交
1904

1905
	cpuset_inc();
1906

1907 1908 1909 1910 1911 1912 1913
	mutex_lock(&callback_mutex);
	if (cgroup_on_dfl(cs->css.cgroup)) {
		cpumask_copy(cs->effective_cpus, parent->effective_cpus);
		cs->effective_mems = parent->effective_mems;
	}
	mutex_unlock(&callback_mutex);

1914
	if (!test_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags))
1915
		goto out_unlock;
1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929

	/*
	 * Clone @parent's configuration if CGRP_CPUSET_CLONE_CHILDREN is
	 * set.  This flag handling is implemented in cgroup core for
	 * histrical reasons - the flag may be specified during mount.
	 *
	 * Currently, if any sibling cpusets have exclusive cpus or mem, we
	 * refuse to clone the configuration - thereby refusing the task to
	 * be entered, and as a result refusing the sys_unshare() or
	 * clone() which initiated it.  If this becomes a problem for some
	 * users who wish to allow that scenario, then this could be
	 * changed to grant parent->cpus_allowed-sibling_cpus_exclusive
	 * (and likewise for mems) to the new cgroup.
	 */
1930
	rcu_read_lock();
1931
	cpuset_for_each_child(tmp_cs, pos_css, parent) {
1932 1933
		if (is_mem_exclusive(tmp_cs) || is_cpu_exclusive(tmp_cs)) {
			rcu_read_unlock();
1934
			goto out_unlock;
1935
		}
1936
	}
1937
	rcu_read_unlock();
1938 1939 1940 1941 1942

	mutex_lock(&callback_mutex);
	cs->mems_allowed = parent->mems_allowed;
	cpumask_copy(cs->cpus_allowed, parent->cpus_allowed);
	mutex_unlock(&callback_mutex);
1943 1944
out_unlock:
	mutex_unlock(&cpuset_mutex);
T
Tejun Heo 已提交
1945 1946 1947
	return 0;
}

1948 1949 1950 1951 1952 1953
/*
 * If the cpuset being removed has its flag 'sched_load_balance'
 * enabled, then simulate turning sched_load_balance off, which
 * will call rebuild_sched_domains_locked().
 */

1954
static void cpuset_css_offline(struct cgroup_subsys_state *css)
T
Tejun Heo 已提交
1955
{
1956
	struct cpuset *cs = css_cs(css);
T
Tejun Heo 已提交
1957

1958
	mutex_lock(&cpuset_mutex);
T
Tejun Heo 已提交
1959 1960 1961 1962

	if (is_sched_load_balance(cs))
		update_flag(CS_SCHED_LOAD_BALANCE, cs, 0);

1963
	cpuset_dec();
T
Tejun Heo 已提交
1964
	clear_bit(CS_ONLINE, &cs->flags);
T
Tejun Heo 已提交
1965

1966
	mutex_unlock(&cpuset_mutex);
L
Linus Torvalds 已提交
1967 1968
}

1969
static void cpuset_css_free(struct cgroup_subsys_state *css)
L
Linus Torvalds 已提交
1970
{
1971
	struct cpuset *cs = css_cs(css);
L
Linus Torvalds 已提交
1972

1973
	free_cpumask_var(cs->effective_cpus);
1974
	free_cpumask_var(cs->cpus_allowed);
1975
	kfree(cs);
L
Linus Torvalds 已提交
1976 1977
}

1978
struct cgroup_subsys cpuset_cgrp_subsys = {
1979
	.css_alloc = cpuset_css_alloc,
T
Tejun Heo 已提交
1980 1981
	.css_online = cpuset_css_online,
	.css_offline = cpuset_css_offline,
1982
	.css_free = cpuset_css_free,
1983
	.can_attach = cpuset_can_attach,
1984
	.cancel_attach = cpuset_cancel_attach,
1985
	.attach = cpuset_attach,
1986
	.base_cftypes = files,
1987 1988 1989
	.early_init = 1,
};

L
Linus Torvalds 已提交
1990 1991 1992 1993 1994 1995 1996 1997
/**
 * cpuset_init - initialize cpusets at system boot
 *
 * Description: Initialize top_cpuset and the cpuset internal file system,
 **/

int __init cpuset_init(void)
{
1998
	int err = 0;
L
Linus Torvalds 已提交
1999

2000 2001
	if (!alloc_cpumask_var(&top_cpuset.cpus_allowed, GFP_KERNEL))
		BUG();
2002 2003
	if (!alloc_cpumask_var(&top_cpuset.effective_cpus, GFP_KERNEL))
		BUG();
2004

2005
	cpumask_setall(top_cpuset.cpus_allowed);
2006
	nodes_setall(top_cpuset.mems_allowed);
2007 2008
	cpumask_setall(top_cpuset.effective_cpus);
	nodes_setall(top_cpuset.effective_mems);
L
Linus Torvalds 已提交
2009

2010
	fmeter_init(&top_cpuset.fmeter);
P
Paul Jackson 已提交
2011
	set_bit(CS_SCHED_LOAD_BALANCE, &top_cpuset.flags);
2012
	top_cpuset.relax_domain_level = -1;
L
Linus Torvalds 已提交
2013 2014 2015

	err = register_filesystem(&cpuset_fs_type);
	if (err < 0)
2016 2017
		return err;

2018 2019 2020
	if (!alloc_cpumask_var(&cpus_attach, GFP_KERNEL))
		BUG();

2021
	return 0;
L
Linus Torvalds 已提交
2022 2023
}

2024
/*
2025
 * If CPU and/or memory hotplug handlers, below, unplug any CPUs
2026 2027
 * or memory nodes, we need to walk over the cpuset hierarchy,
 * removing that CPU or node from all cpusets.  If this removes the
2028 2029
 * last CPU or node from a cpuset, then move the tasks in the empty
 * cpuset to its next-highest non-empty parent.
2030
 */
2031 2032 2033 2034 2035 2036 2037 2038
static void remove_tasks_in_empty_cpuset(struct cpuset *cs)
{
	struct cpuset *parent;

	/*
	 * Find its next-highest non-empty parent, (top cpuset
	 * has online cpus, so can't be empty).
	 */
T
Tejun Heo 已提交
2039
	parent = parent_cs(cs);
2040
	while (cpumask_empty(parent->cpus_allowed) ||
2041
			nodes_empty(parent->mems_allowed))
T
Tejun Heo 已提交
2042
		parent = parent_cs(parent);
2043

2044
	if (cgroup_transfer_tasks(parent->css.cgroup, cs->css.cgroup)) {
2045
		pr_err("cpuset: failed to transfer tasks out of empty cpuset ");
T
Tejun Heo 已提交
2046 2047
		pr_cont_cgroup_name(cs->css.cgroup);
		pr_cont("\n");
2048
	}
2049 2050
}

2051
/**
2052
 * cpuset_hotplug_update_tasks - update tasks in a cpuset for hotunplug
2053
 * @cs: cpuset in interest
2054
 *
2055 2056 2057
 * Compare @cs's cpu and mem masks against top_cpuset and if some have gone
 * offline, update @cs accordingly.  If @cs ends up with no CPU or memory,
 * all its tasks are moved to the nearest ancestor with both resources.
2058
 */
2059
static void cpuset_hotplug_update_tasks(struct cpuset *cs)
2060
{
2061
	static cpumask_t off_cpus;
2062
	static nodemask_t off_mems;
2063
	bool is_empty;
2064
	bool on_dfl = cgroup_on_dfl(cs->css.cgroup);
2065

2066 2067
retry:
	wait_event(cpuset_attach_wq, cs->attach_in_progress == 0);
2068

2069
	mutex_lock(&cpuset_mutex);
2070

2071 2072 2073 2074 2075 2076 2077 2078 2079
	/*
	 * We have raced with task attaching. We wait until attaching
	 * is finished, so we won't attach a task to an empty cpuset.
	 */
	if (cs->attach_in_progress) {
		mutex_unlock(&cpuset_mutex);
		goto retry;
	}

2080 2081
	cpumask_andnot(&off_cpus, cs->cpus_allowed, top_cpuset.cpus_allowed);
	nodes_andnot(off_mems, cs->mems_allowed, top_cpuset.mems_allowed);
2082

2083 2084 2085 2086 2087
	mutex_lock(&callback_mutex);
	cpumask_andnot(cs->cpus_allowed, cs->cpus_allowed, &off_cpus);
	mutex_unlock(&callback_mutex);

	/*
2088 2089 2090 2091
	 * If on_dfl, we need to update tasks' cpumask for empty cpuset to
	 * take on ancestor's cpumask. Otherwise, don't call
	 * update_tasks_cpumask() if the cpuset becomes empty, as the tasks
	 * in it will be migrated to an ancestor.
2092
	 */
2093
	if ((on_dfl && cpumask_empty(cs->cpus_allowed)) ||
2094
	    (!cpumask_empty(&off_cpus) && !cpumask_empty(cs->cpus_allowed)))
2095
		update_tasks_cpumask(cs);
2096

2097 2098 2099 2100 2101
	mutex_lock(&callback_mutex);
	nodes_andnot(cs->mems_allowed, cs->mems_allowed, off_mems);
	mutex_unlock(&callback_mutex);

	/*
2102 2103 2104 2105
	 * If on_dfl, we need to update tasks' nodemask for empty cpuset to
	 * take on ancestor's nodemask. Otherwise, don't call
	 * update_tasks_nodemask() if the cpuset becomes empty, as the
	 * tasks in it will be migratd to an ancestor.
2106
	 */
2107
	if ((on_dfl && nodes_empty(cs->mems_allowed)) ||
2108
	    (!nodes_empty(off_mems) && !nodes_empty(cs->mems_allowed)))
2109
		update_tasks_nodemask(cs);
2110

2111 2112
	is_empty = cpumask_empty(cs->cpus_allowed) ||
		nodes_empty(cs->mems_allowed);
2113

2114 2115 2116
	mutex_unlock(&cpuset_mutex);

	/*
2117
	 * If on_dfl, we'll keep tasks in empty cpusets.
2118 2119 2120
	 *
	 * Otherwise move tasks to the nearest ancestor with execution
	 * resources.  This is full cgroup operation which will
2121 2122
	 * also call back into cpuset.  Should be done outside any lock.
	 */
2123
	if (!on_dfl && is_empty)
2124
		remove_tasks_in_empty_cpuset(cs);
2125 2126
}

2127
/**
2128
 * cpuset_hotplug_workfn - handle CPU/memory hotunplug for a cpuset
2129
 *
2130 2131 2132 2133 2134
 * This function is called after either CPU or memory configuration has
 * changed and updates cpuset accordingly.  The top_cpuset is always
 * synchronized to cpu_active_mask and N_MEMORY, which is necessary in
 * order to make cpusets transparent (of no affect) on systems that are
 * actively using CPU hotplug but making no active use of cpusets.
2135
 *
2136
 * Non-root cpusets are only affected by offlining.  If any CPUs or memory
2137 2138
 * nodes have been taken down, cpuset_hotplug_update_tasks() is invoked on
 * all descendants.
2139
 *
2140 2141
 * Note that CPU offlining during suspend is ignored.  We don't modify
 * cpusets across suspend/resume cycles at all.
2142
 */
2143
static void cpuset_hotplug_workfn(struct work_struct *work)
2144
{
2145 2146
	static cpumask_t new_cpus;
	static nodemask_t new_mems;
2147
	bool cpus_updated, mems_updated;
2148

2149
	mutex_lock(&cpuset_mutex);
2150

2151 2152 2153
	/* fetch the available cpus/mems and find out which changed how */
	cpumask_copy(&new_cpus, cpu_active_mask);
	new_mems = node_states[N_MEMORY];
2154

2155 2156
	cpus_updated = !cpumask_equal(top_cpuset.cpus_allowed, &new_cpus);
	mems_updated = !nodes_equal(top_cpuset.mems_allowed, new_mems);
2157

2158 2159 2160 2161 2162 2163 2164
	/* synchronize cpus_allowed to cpu_active_mask */
	if (cpus_updated) {
		mutex_lock(&callback_mutex);
		cpumask_copy(top_cpuset.cpus_allowed, &new_cpus);
		mutex_unlock(&callback_mutex);
		/* we don't mess with cpumasks of tasks in top_cpuset */
	}
2165

2166 2167 2168 2169 2170
	/* synchronize mems_allowed to N_MEMORY */
	if (mems_updated) {
		mutex_lock(&callback_mutex);
		top_cpuset.mems_allowed = new_mems;
		mutex_unlock(&callback_mutex);
2171
		update_tasks_nodemask(&top_cpuset);
2172
	}
2173

2174 2175
	mutex_unlock(&cpuset_mutex);

2176 2177
	/* if cpus or mems changed, we need to propagate to descendants */
	if (cpus_updated || mems_updated) {
2178
		struct cpuset *cs;
2179
		struct cgroup_subsys_state *pos_css;
2180

2181
		rcu_read_lock();
2182
		cpuset_for_each_descendant_pre(cs, pos_css, &top_cpuset) {
2183
			if (cs == &top_cpuset || !css_tryget_online(&cs->css))
2184 2185
				continue;
			rcu_read_unlock();
2186

2187
			cpuset_hotplug_update_tasks(cs);
2188

2189 2190 2191 2192 2193
			rcu_read_lock();
			css_put(&cs->css);
		}
		rcu_read_unlock();
	}
2194

2195
	/* rebuild sched domains if cpus_allowed has changed */
2196 2197
	if (cpus_updated)
		rebuild_sched_domains();
2198 2199
}

2200
void cpuset_update_active_cpus(bool cpu_online)
2201
{
2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213
	/*
	 * We're inside cpu hotplug critical region which usually nests
	 * inside cgroup synchronization.  Bounce actual hotplug processing
	 * to a work item to avoid reverse locking order.
	 *
	 * We still need to do partition_sched_domains() synchronously;
	 * otherwise, the scheduler will get confused and put tasks to the
	 * dead CPU.  Fall back to the default single domain.
	 * cpuset_hotplug_workfn() will rebuild it as necessary.
	 */
	partition_sched_domains(1, NULL, NULL);
	schedule_work(&cpuset_hotplug_work);
2214 2215
}

2216
/*
2217 2218
 * Keep top_cpuset.mems_allowed tracking node_states[N_MEMORY].
 * Call this routine anytime after node_states[N_MEMORY] changes.
2219
 * See cpuset_update_active_cpus() for CPU hotplug handling.
2220
 */
2221 2222
static int cpuset_track_online_nodes(struct notifier_block *self,
				unsigned long action, void *arg)
2223
{
2224
	schedule_work(&cpuset_hotplug_work);
2225
	return NOTIFY_OK;
2226
}
2227 2228 2229 2230 2231

static struct notifier_block cpuset_track_online_nodes_nb = {
	.notifier_call = cpuset_track_online_nodes,
	.priority = 10,		/* ??! */
};
2232

L
Linus Torvalds 已提交
2233 2234 2235 2236
/**
 * cpuset_init_smp - initialize cpus_allowed
 *
 * Description: Finish top cpuset after cpu, node maps are initialized
2237
 */
L
Linus Torvalds 已提交
2238 2239
void __init cpuset_init_smp(void)
{
2240
	cpumask_copy(top_cpuset.cpus_allowed, cpu_active_mask);
2241
	top_cpuset.mems_allowed = node_states[N_MEMORY];
2242
	top_cpuset.old_mems_allowed = top_cpuset.mems_allowed;
2243

2244 2245 2246
	cpumask_copy(top_cpuset.effective_cpus, cpu_active_mask);
	top_cpuset.effective_mems = node_states[N_MEMORY];

2247
	register_hotmemory_notifier(&cpuset_track_online_nodes_nb);
L
Linus Torvalds 已提交
2248 2249 2250 2251 2252
}

/**
 * cpuset_cpus_allowed - return cpus_allowed mask from a tasks cpuset.
 * @tsk: pointer to task_struct from which to obtain cpuset->cpus_allowed.
2253
 * @pmask: pointer to struct cpumask variable to receive cpus_allowed set.
L
Linus Torvalds 已提交
2254
 *
2255
 * Description: Returns the cpumask_var_t cpus_allowed of the cpuset
L
Linus Torvalds 已提交
2256
 * attached to the specified @tsk.  Guaranteed to return some non-empty
2257
 * subset of cpu_online_mask, even if this means going outside the
L
Linus Torvalds 已提交
2258 2259 2260
 * tasks cpuset.
 **/

2261
void cpuset_cpus_allowed(struct task_struct *tsk, struct cpumask *pmask)
L
Linus Torvalds 已提交
2262
{
2263 2264
	struct cpuset *cpus_cs;

2265
	mutex_lock(&callback_mutex);
2266
	rcu_read_lock();
2267 2268
	cpus_cs = effective_cpumask_cpuset(task_cs(tsk));
	guarantee_online_cpus(cpus_cs, pmask);
2269
	rcu_read_unlock();
2270
	mutex_unlock(&callback_mutex);
L
Linus Torvalds 已提交
2271 2272
}

2273
void cpuset_cpus_allowed_fallback(struct task_struct *tsk)
2274
{
2275
	struct cpuset *cpus_cs;
2276 2277

	rcu_read_lock();
2278 2279
	cpus_cs = effective_cpumask_cpuset(task_cs(tsk));
	do_set_cpus_allowed(tsk, cpus_cs->cpus_allowed);
2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294
	rcu_read_unlock();

	/*
	 * We own tsk->cpus_allowed, nobody can change it under us.
	 *
	 * But we used cs && cs->cpus_allowed lockless and thus can
	 * race with cgroup_attach_task() or update_cpumask() and get
	 * the wrong tsk->cpus_allowed. However, both cases imply the
	 * subsequent cpuset_change_cpumask()->set_cpus_allowed_ptr()
	 * which takes task_rq_lock().
	 *
	 * If we are called after it dropped the lock we must see all
	 * changes in tsk_cs()->cpus_allowed. Otherwise we can temporary
	 * set any mask even if it is not right from task_cs() pov,
	 * the pending set_cpus_allowed_ptr() will fix things.
2295 2296 2297
	 *
	 * select_fallback_rq() will fix things ups and set cpu_possible_mask
	 * if required.
2298 2299 2300
	 */
}

L
Linus Torvalds 已提交
2301 2302
void cpuset_init_current_mems_allowed(void)
{
2303
	nodes_setall(current->mems_allowed);
L
Linus Torvalds 已提交
2304 2305
}

2306 2307 2308 2309 2310 2311
/**
 * cpuset_mems_allowed - return mems_allowed mask from a tasks cpuset.
 * @tsk: pointer to task_struct from which to obtain cpuset->mems_allowed.
 *
 * Description: Returns the nodemask_t mems_allowed of the cpuset
 * attached to the specified @tsk.  Guaranteed to return some non-empty
2312
 * subset of node_states[N_MEMORY], even if this means going outside the
2313 2314 2315 2316 2317
 * tasks cpuset.
 **/

nodemask_t cpuset_mems_allowed(struct task_struct *tsk)
{
2318
	struct cpuset *mems_cs;
2319 2320
	nodemask_t mask;

2321
	mutex_lock(&callback_mutex);
2322
	rcu_read_lock();
2323 2324
	mems_cs = effective_nodemask_cpuset(task_cs(tsk));
	guarantee_online_mems(mems_cs, &mask);
2325
	rcu_read_unlock();
2326
	mutex_unlock(&callback_mutex);
2327 2328 2329 2330

	return mask;
}

2331
/**
2332 2333
 * cpuset_nodemask_valid_mems_allowed - check nodemask vs. curremt mems_allowed
 * @nodemask: the nodemask to be checked
2334
 *
2335
 * Are any of the nodes in the nodemask allowed in current->mems_allowed?
L
Linus Torvalds 已提交
2336
 */
2337
int cpuset_nodemask_valid_mems_allowed(nodemask_t *nodemask)
L
Linus Torvalds 已提交
2338
{
2339
	return nodes_intersects(*nodemask, current->mems_allowed);
L
Linus Torvalds 已提交
2340 2341
}

2342
/*
2343 2344 2345 2346
 * nearest_hardwall_ancestor() - Returns the nearest mem_exclusive or
 * mem_hardwall ancestor to the specified cpuset.  Call holding
 * callback_mutex.  If no ancestor is mem_exclusive or mem_hardwall
 * (an unusual configuration), then returns the root cpuset.
2347
 */
2348
static struct cpuset *nearest_hardwall_ancestor(struct cpuset *cs)
2349
{
T
Tejun Heo 已提交
2350 2351
	while (!(is_mem_exclusive(cs) || is_mem_hardwall(cs)) && parent_cs(cs))
		cs = parent_cs(cs);
2352 2353 2354
	return cs;
}

2355
/**
2356 2357
 * cpuset_node_allowed_softwall - Can we allocate on a memory node?
 * @node: is this an allowed node?
2358
 * @gfp_mask: memory allocation flags
2359
 *
2360 2361 2362 2363 2364 2365
 * If we're in interrupt, yes, we can always allocate.  If __GFP_THISNODE is
 * set, yes, we can always allocate.  If node is in our task's mems_allowed,
 * yes.  If it's not a __GFP_HARDWALL request and this node is in the nearest
 * hardwalled cpuset ancestor to this task's cpuset, yes.  If the task has been
 * OOM killed and has access to memory reserves as specified by the TIF_MEMDIE
 * flag, yes.
2366 2367
 * Otherwise, no.
 *
2368 2369 2370
 * If __GFP_HARDWALL is set, cpuset_node_allowed_softwall() reduces to
 * cpuset_node_allowed_hardwall().  Otherwise, cpuset_node_allowed_softwall()
 * might sleep, and might allow a node from an enclosing cpuset.
2371
 *
2372 2373
 * cpuset_node_allowed_hardwall() only handles the simpler case of hardwall
 * cpusets, and never sleeps.
2374 2375 2376 2377 2378 2379 2380
 *
 * The __GFP_THISNODE placement logic is really handled elsewhere,
 * by forcibly using a zonelist starting at a specified node, and by
 * (in get_page_from_freelist()) refusing to consider the zones for
 * any node on the zonelist except the first.  By the time any such
 * calls get to this routine, we should just shut up and say 'yes'.
 *
2381
 * GFP_USER allocations are marked with the __GFP_HARDWALL bit,
2382 2383
 * and do not allow allocations outside the current tasks cpuset
 * unless the task has been OOM killed as is marked TIF_MEMDIE.
2384
 * GFP_KERNEL allocations are not so marked, so can escape to the
2385
 * nearest enclosing hardwalled ancestor cpuset.
2386
 *
2387 2388 2389 2390 2391 2392 2393
 * Scanning up parent cpusets requires callback_mutex.  The
 * __alloc_pages() routine only calls here with __GFP_HARDWALL bit
 * _not_ set if it's a GFP_KERNEL allocation, and all nodes in the
 * current tasks mems_allowed came up empty on the first pass over
 * the zonelist.  So only GFP_KERNEL allocations, if all nodes in the
 * cpuset are short of memory, might require taking the callback_mutex
 * mutex.
2394
 *
2395
 * The first call here from mm/page_alloc:get_page_from_freelist()
2396 2397 2398
 * has __GFP_HARDWALL set in gfp_mask, enforcing hardwall cpusets,
 * so no allocation on a node outside the cpuset is allowed (unless
 * in interrupt, of course).
2399 2400 2401 2402 2403 2404
 *
 * The second pass through get_page_from_freelist() doesn't even call
 * here for GFP_ATOMIC calls.  For those calls, the __alloc_pages()
 * variable 'wait' is not set, and the bit ALLOC_CPUSET is not set
 * in alloc_flags.  That logic and the checks below have the combined
 * affect that:
2405 2406
 *	in_interrupt - any node ok (current task context irrelevant)
 *	GFP_ATOMIC   - any node ok
2407
 *	TIF_MEMDIE   - any node ok
2408
 *	GFP_KERNEL   - any node in enclosing hardwalled cpuset ok
2409
 *	GFP_USER     - only nodes in current tasks mems allowed ok.
2410 2411
 *
 * Rule:
2412
 *    Don't call cpuset_node_allowed_softwall if you can't sleep, unless you
2413 2414
 *    pass in the __GFP_HARDWALL flag set in gfp_flag, which disables
 *    the code that might scan up ancestor cpusets and sleep.
2415
 */
2416
int __cpuset_node_allowed_softwall(int node, gfp_t gfp_mask)
L
Linus Torvalds 已提交
2417
{
2418
	struct cpuset *cs;		/* current cpuset ancestors */
2419
	int allowed;			/* is allocation in zone z allowed? */
2420

2421
	if (in_interrupt() || (gfp_mask & __GFP_THISNODE))
2422
		return 1;
2423
	might_sleep_if(!(gfp_mask & __GFP_HARDWALL));
2424 2425
	if (node_isset(node, current->mems_allowed))
		return 1;
2426 2427 2428 2429 2430 2431
	/*
	 * Allow tasks that have access to memory reserves because they have
	 * been OOM killed to get memory anywhere.
	 */
	if (unlikely(test_thread_flag(TIF_MEMDIE)))
		return 1;
2432 2433 2434
	if (gfp_mask & __GFP_HARDWALL)	/* If hardwall request, stop here */
		return 0;

2435 2436 2437
	if (current->flags & PF_EXITING) /* Let dying task have memory */
		return 1;

2438
	/* Not hardwall and node outside mems_allowed: scan up cpusets */
2439
	mutex_lock(&callback_mutex);
2440

2441
	rcu_read_lock();
2442
	cs = nearest_hardwall_ancestor(task_cs(current));
2443
	allowed = node_isset(node, cs->mems_allowed);
2444
	rcu_read_unlock();
2445

2446
	mutex_unlock(&callback_mutex);
2447
	return allowed;
L
Linus Torvalds 已提交
2448 2449
}

2450
/*
2451 2452
 * cpuset_node_allowed_hardwall - Can we allocate on a memory node?
 * @node: is this an allowed node?
2453 2454
 * @gfp_mask: memory allocation flags
 *
2455 2456 2457 2458 2459
 * If we're in interrupt, yes, we can always allocate.  If __GFP_THISNODE is
 * set, yes, we can always allocate.  If node is in our task's mems_allowed,
 * yes.  If the task has been OOM killed and has access to memory reserves as
 * specified by the TIF_MEMDIE flag, yes.
 * Otherwise, no.
2460 2461 2462 2463 2464 2465 2466
 *
 * The __GFP_THISNODE placement logic is really handled elsewhere,
 * by forcibly using a zonelist starting at a specified node, and by
 * (in get_page_from_freelist()) refusing to consider the zones for
 * any node on the zonelist except the first.  By the time any such
 * calls get to this routine, we should just shut up and say 'yes'.
 *
2467 2468
 * Unlike the cpuset_node_allowed_softwall() variant, above,
 * this variant requires that the node be in the current task's
2469 2470 2471 2472
 * mems_allowed or that we're in interrupt.  It does not scan up the
 * cpuset hierarchy for the nearest enclosing mem_exclusive cpuset.
 * It never sleeps.
 */
2473
int __cpuset_node_allowed_hardwall(int node, gfp_t gfp_mask)
2474 2475 2476 2477 2478
{
	if (in_interrupt() || (gfp_mask & __GFP_THISNODE))
		return 1;
	if (node_isset(node, current->mems_allowed))
		return 1;
D
Daniel Walker 已提交
2479 2480 2481 2482 2483 2484
	/*
	 * Allow tasks that have access to memory reserves because they have
	 * been OOM killed to get memory anywhere.
	 */
	if (unlikely(test_thread_flag(TIF_MEMDIE)))
		return 1;
2485 2486 2487
	return 0;
}

2488
/**
2489 2490
 * cpuset_mem_spread_node() - On which node to begin search for a file page
 * cpuset_slab_spread_node() - On which node to begin search for a slab page
2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514
 *
 * If a task is marked PF_SPREAD_PAGE or PF_SPREAD_SLAB (as for
 * tasks in a cpuset with is_spread_page or is_spread_slab set),
 * and if the memory allocation used cpuset_mem_spread_node()
 * to determine on which node to start looking, as it will for
 * certain page cache or slab cache pages such as used for file
 * system buffers and inode caches, then instead of starting on the
 * local node to look for a free page, rather spread the starting
 * node around the tasks mems_allowed nodes.
 *
 * We don't have to worry about the returned node being offline
 * because "it can't happen", and even if it did, it would be ok.
 *
 * The routines calling guarantee_online_mems() are careful to
 * only set nodes in task->mems_allowed that are online.  So it
 * should not be possible for the following code to return an
 * offline node.  But if it did, that would be ok, as this routine
 * is not returning the node where the allocation must be, only
 * the node where the search should start.  The zonelist passed to
 * __alloc_pages() will include all nodes.  If the slab allocator
 * is passed an offline node, it will fall back to the local node.
 * See kmem_cache_alloc_node().
 */

2515
static int cpuset_spread_node(int *rotor)
2516 2517 2518
{
	int node;

2519
	node = next_node(*rotor, current->mems_allowed);
2520 2521
	if (node == MAX_NUMNODES)
		node = first_node(current->mems_allowed);
2522
	*rotor = node;
2523 2524
	return node;
}
2525 2526 2527

int cpuset_mem_spread_node(void)
{
2528 2529 2530 2531
	if (current->cpuset_mem_spread_rotor == NUMA_NO_NODE)
		current->cpuset_mem_spread_rotor =
			node_random(&current->mems_allowed);

2532 2533 2534 2535 2536
	return cpuset_spread_node(&current->cpuset_mem_spread_rotor);
}

int cpuset_slab_spread_node(void)
{
2537 2538 2539 2540
	if (current->cpuset_slab_spread_rotor == NUMA_NO_NODE)
		current->cpuset_slab_spread_rotor =
			node_random(&current->mems_allowed);

2541 2542 2543
	return cpuset_spread_node(&current->cpuset_slab_spread_rotor);
}

2544 2545
EXPORT_SYMBOL_GPL(cpuset_mem_spread_node);

2546
/**
2547 2548 2549 2550 2551 2552 2553 2554
 * cpuset_mems_allowed_intersects - Does @tsk1's mems_allowed intersect @tsk2's?
 * @tsk1: pointer to task_struct of some task.
 * @tsk2: pointer to task_struct of some other task.
 *
 * Description: Return true if @tsk1's mems_allowed intersects the
 * mems_allowed of @tsk2.  Used by the OOM killer to determine if
 * one of the task's memory usage might impact the memory available
 * to the other.
2555 2556
 **/

2557 2558
int cpuset_mems_allowed_intersects(const struct task_struct *tsk1,
				   const struct task_struct *tsk2)
2559
{
2560
	return nodes_intersects(tsk1->mems_allowed, tsk2->mems_allowed);
2561 2562
}

2563 2564
#define CPUSET_NODELIST_LEN	(256)

2565 2566
/**
 * cpuset_print_task_mems_allowed - prints task's cpuset and mems_allowed
2567
 * @tsk: pointer to task_struct of some task.
2568 2569
 *
 * Description: Prints @task's name, cpuset name, and cached copy of its
2570
 * mems_allowed to the kernel log.
2571 2572 2573
 */
void cpuset_print_task_mems_allowed(struct task_struct *tsk)
{
2574 2575 2576
	 /* Statically allocated to prevent using excess stack. */
	static char cpuset_nodelist[CPUSET_NODELIST_LEN];
	static DEFINE_SPINLOCK(cpuset_buffer_lock);
2577
	struct cgroup *cgrp;
2578

2579
	spin_lock(&cpuset_buffer_lock);
2580
	rcu_read_lock();
2581

2582
	cgrp = task_cs(tsk)->css.cgroup;
2583 2584
	nodelist_scnprintf(cpuset_nodelist, CPUSET_NODELIST_LEN,
			   tsk->mems_allowed);
2585
	pr_info("%s cpuset=", tsk->comm);
T
Tejun Heo 已提交
2586 2587
	pr_cont_cgroup_name(cgrp);
	pr_cont(" mems_allowed=%s\n", cpuset_nodelist);
2588

2589
	rcu_read_unlock();
2590 2591 2592
	spin_unlock(&cpuset_buffer_lock);
}

2593 2594 2595 2596 2597 2598
/*
 * Collection of memory_pressure is suppressed unless
 * this flag is enabled by writing "1" to the special
 * cpuset file 'memory_pressure_enabled' in the root cpuset.
 */

2599
int cpuset_memory_pressure_enabled __read_mostly;
2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620

/**
 * cpuset_memory_pressure_bump - keep stats of per-cpuset reclaims.
 *
 * Keep a running average of the rate of synchronous (direct)
 * page reclaim efforts initiated by tasks in each cpuset.
 *
 * This represents the rate at which some task in the cpuset
 * ran low on memory on all nodes it was allowed to use, and
 * had to enter the kernels page reclaim code in an effort to
 * create more free memory by tossing clean pages or swapping
 * or writing dirty pages.
 *
 * Display to user space in the per-cpuset read-only file
 * "memory_pressure".  Value displayed is an integer
 * representing the recent rate of entry into the synchronous
 * (direct) page reclaim by any task attached to the cpuset.
 **/

void __cpuset_memory_pressure_bump(void)
{
2621
	rcu_read_lock();
2622
	fmeter_markevent(&task_cs(current)->fmeter);
2623
	rcu_read_unlock();
2624 2625
}

2626
#ifdef CONFIG_PROC_PID_CPUSET
L
Linus Torvalds 已提交
2627 2628 2629 2630
/*
 * proc_cpuset_show()
 *  - Print tasks cpuset path into seq_file.
 *  - Used for /proc/<pid>/cpuset.
2631 2632
 *  - No need to task_lock(tsk) on this tsk->cpuset reference, as it
 *    doesn't really matter if tsk->cpuset changes after we read it,
2633
 *    and we take cpuset_mutex, keeping cpuset_attach() from changing it
2634
 *    anyway.
L
Linus Torvalds 已提交
2635
 */
2636
int proc_cpuset_show(struct seq_file *m, void *unused_v)
L
Linus Torvalds 已提交
2637
{
2638
	struct pid *pid;
L
Linus Torvalds 已提交
2639
	struct task_struct *tsk;
T
Tejun Heo 已提交
2640
	char *buf, *p;
2641
	struct cgroup_subsys_state *css;
2642
	int retval;
L
Linus Torvalds 已提交
2643

2644
	retval = -ENOMEM;
T
Tejun Heo 已提交
2645
	buf = kmalloc(PATH_MAX, GFP_KERNEL);
L
Linus Torvalds 已提交
2646
	if (!buf)
2647 2648 2649
		goto out;

	retval = -ESRCH;
2650 2651
	pid = m->private;
	tsk = get_pid_task(pid, PIDTYPE_PID);
2652 2653
	if (!tsk)
		goto out_free;
L
Linus Torvalds 已提交
2654

T
Tejun Heo 已提交
2655
	retval = -ENAMETOOLONG;
L
Li Zefan 已提交
2656
	rcu_read_lock();
2657
	css = task_css(tsk, cpuset_cgrp_id);
T
Tejun Heo 已提交
2658
	p = cgroup_path(css->cgroup, buf, PATH_MAX);
L
Li Zefan 已提交
2659
	rcu_read_unlock();
T
Tejun Heo 已提交
2660
	if (!p)
L
Li Zefan 已提交
2661
		goto out_put_task;
T
Tejun Heo 已提交
2662
	seq_puts(m, p);
L
Linus Torvalds 已提交
2663
	seq_putc(m, '\n');
T
Tejun Heo 已提交
2664
	retval = 0;
L
Li Zefan 已提交
2665
out_put_task:
2666 2667
	put_task_struct(tsk);
out_free:
L
Linus Torvalds 已提交
2668
	kfree(buf);
2669
out:
L
Linus Torvalds 已提交
2670 2671
	return retval;
}
2672
#endif /* CONFIG_PROC_PID_CPUSET */
L
Linus Torvalds 已提交
2673

2674
/* Display task mems_allowed in /proc/<pid>/status file. */
2675 2676
void cpuset_task_status_allowed(struct seq_file *m, struct task_struct *task)
{
2677
	seq_puts(m, "Mems_allowed:\t");
2678
	seq_nodemask(m, &task->mems_allowed);
2679 2680
	seq_puts(m, "\n");
	seq_puts(m, "Mems_allowed_list:\t");
2681
	seq_nodemask_list(m, &task->mems_allowed);
2682
	seq_puts(m, "\n");
L
Linus Torvalds 已提交
2683
}