cpuset.c 76.5 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6
/*
 *  kernel/cpuset.c
 *
 *  Processor and Memory placement constraints for sets of tasks.
 *
 *  Copyright (C) 2003 BULL SA.
P
Paul Jackson 已提交
7
 *  Copyright (C) 2004-2007 Silicon Graphics, Inc.
8
 *  Copyright (C) 2006 Google, Inc
L
Linus Torvalds 已提交
9 10 11 12
 *
 *  Portions derived from Patrick Mochel's sysfs code.
 *  sysfs is Copyright (c) 2001-3 Patrick Mochel
 *
13
 *  2003-10-10 Written by Simon Derr.
L
Linus Torvalds 已提交
14
 *  2003-10-22 Updates by Stephen Hemminger.
15
 *  2004 May-July Rework by Paul Jackson.
16
 *  2006 Rework by Paul Menage to use generic cgroups
17 18
 *  2008 Rework of the scheduler domains and CPU hotplug handling
 *       by Max Krasnyansky
L
Linus Torvalds 已提交
19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36
 *
 *  This file is subject to the terms and conditions of the GNU General Public
 *  License.  See the file COPYING in the main directory of the Linux
 *  distribution for more details.
 */

#include <linux/cpu.h>
#include <linux/cpumask.h>
#include <linux/cpuset.h>
#include <linux/err.h>
#include <linux/errno.h>
#include <linux/file.h>
#include <linux/fs.h>
#include <linux/init.h>
#include <linux/interrupt.h>
#include <linux/kernel.h>
#include <linux/kmod.h>
#include <linux/list.h>
37
#include <linux/mempolicy.h>
L
Linus Torvalds 已提交
38
#include <linux/mm.h>
39
#include <linux/memory.h>
40
#include <linux/export.h>
L
Linus Torvalds 已提交
41 42 43 44
#include <linux/mount.h>
#include <linux/namei.h>
#include <linux/pagemap.h>
#include <linux/proc_fs.h>
45
#include <linux/rcupdate.h>
L
Linus Torvalds 已提交
46 47
#include <linux/sched.h>
#include <linux/seq_file.h>
48
#include <linux/security.h>
L
Linus Torvalds 已提交
49 50 51 52 53 54 55 56 57
#include <linux/slab.h>
#include <linux/spinlock.h>
#include <linux/stat.h>
#include <linux/string.h>
#include <linux/time.h>
#include <linux/backing-dev.h>
#include <linux/sort.h>

#include <asm/uaccess.h>
A
Arun Sharma 已提交
58
#include <linux/atomic.h>
59
#include <linux/mutex.h>
60 61
#include <linux/workqueue.h>
#include <linux/cgroup.h>
L
Linus Torvalds 已提交
62

63 64 65 66 67
/*
 * Tracks how many cpusets are currently defined in system.
 * When there is only one cpuset (the root cpuset) we can
 * short circuit some hooks.
 */
68
int number_of_cpusets __read_mostly;
69

70
/* Forward declare cgroup structures */
71 72 73
struct cgroup_subsys cpuset_subsys;
struct cpuset;

74 75 76 77 78 79 80 81 82
/* See "Frequency meter" comments, below. */

struct fmeter {
	int cnt;		/* unprocessed events count */
	int val;		/* most recent output value */
	time_t time;		/* clock (secs) when val computed */
	spinlock_t lock;	/* guards read or write of above */
};

L
Linus Torvalds 已提交
83
struct cpuset {
84 85
	struct cgroup_subsys_state css;

L
Linus Torvalds 已提交
86
	unsigned long flags;		/* "unsigned long" so bitops work */
87
	cpumask_var_t cpus_allowed;	/* CPUs allowed to tasks in cpuset */
L
Linus Torvalds 已提交
88 89 90 91
	nodemask_t mems_allowed;	/* Memory Nodes allowed to tasks */

	struct cpuset *parent;		/* my parent */

92
	struct fmeter fmeter;		/* memory_pressure filter */
P
Paul Jackson 已提交
93

94 95 96 97 98 99
	/*
	 * Tasks are being attached to this cpuset.  Used to prevent
	 * zeroing cpus/mems_allowed between ->can_attach() and ->attach().
	 */
	int attach_in_progress;

P
Paul Jackson 已提交
100 101
	/* partition number for rebuild_sched_domains() */
	int pn;
102

103 104 105
	/* for custom sched domain */
	int relax_domain_level;

106
	/* used for walking a cpuset hierarchy */
107
	struct list_head stack_list;
108 109

	struct work_struct hotplug_work;
L
Linus Torvalds 已提交
110 111
};

112 113 114 115 116 117 118 119 120 121 122 123 124 125
/* Retrieve the cpuset for a cgroup */
static inline struct cpuset *cgroup_cs(struct cgroup *cont)
{
	return container_of(cgroup_subsys_state(cont, cpuset_subsys_id),
			    struct cpuset, css);
}

/* Retrieve the cpuset for a task */
static inline struct cpuset *task_cs(struct task_struct *task)
{
	return container_of(task_subsys_state(task, cpuset_subsys_id),
			    struct cpuset, css);
}

126 127 128 129 130 131 132 133 134 135 136 137 138
#ifdef CONFIG_NUMA
static inline bool task_has_mempolicy(struct task_struct *task)
{
	return task->mempolicy;
}
#else
static inline bool task_has_mempolicy(struct task_struct *task)
{
	return false;
}
#endif


L
Linus Torvalds 已提交
139 140
/* bits in struct cpuset flags field */
typedef enum {
T
Tejun Heo 已提交
141
	CS_ONLINE,
L
Linus Torvalds 已提交
142 143
	CS_CPU_EXCLUSIVE,
	CS_MEM_EXCLUSIVE,
144
	CS_MEM_HARDWALL,
145
	CS_MEMORY_MIGRATE,
P
Paul Jackson 已提交
146
	CS_SCHED_LOAD_BALANCE,
147 148
	CS_SPREAD_PAGE,
	CS_SPREAD_SLAB,
L
Linus Torvalds 已提交
149 150 151
} cpuset_flagbits_t;

/* convenient tests for these bits */
T
Tejun Heo 已提交
152 153 154 155 156
static inline bool is_cpuset_online(const struct cpuset *cs)
{
	return test_bit(CS_ONLINE, &cs->flags);
}

L
Linus Torvalds 已提交
157 158
static inline int is_cpu_exclusive(const struct cpuset *cs)
{
159
	return test_bit(CS_CPU_EXCLUSIVE, &cs->flags);
L
Linus Torvalds 已提交
160 161 162 163
}

static inline int is_mem_exclusive(const struct cpuset *cs)
{
164
	return test_bit(CS_MEM_EXCLUSIVE, &cs->flags);
L
Linus Torvalds 已提交
165 166
}

167 168 169 170 171
static inline int is_mem_hardwall(const struct cpuset *cs)
{
	return test_bit(CS_MEM_HARDWALL, &cs->flags);
}

P
Paul Jackson 已提交
172 173 174 175 176
static inline int is_sched_load_balance(const struct cpuset *cs)
{
	return test_bit(CS_SCHED_LOAD_BALANCE, &cs->flags);
}

177 178
static inline int is_memory_migrate(const struct cpuset *cs)
{
179
	return test_bit(CS_MEMORY_MIGRATE, &cs->flags);
180 181
}

182 183 184 185 186 187 188 189 190 191
static inline int is_spread_page(const struct cpuset *cs)
{
	return test_bit(CS_SPREAD_PAGE, &cs->flags);
}

static inline int is_spread_slab(const struct cpuset *cs)
{
	return test_bit(CS_SPREAD_SLAB, &cs->flags);
}

L
Linus Torvalds 已提交
192
static struct cpuset top_cpuset = {
T
Tejun Heo 已提交
193 194
	.flags = ((1 << CS_ONLINE) | (1 << CS_CPU_EXCLUSIVE) |
		  (1 << CS_MEM_EXCLUSIVE)),
L
Linus Torvalds 已提交
195 196
};

197 198 199 200 201 202 203 204 205 206 207 208 209
/**
 * cpuset_for_each_child - traverse online children of a cpuset
 * @child_cs: loop cursor pointing to the current child
 * @pos_cgrp: used for iteration
 * @parent_cs: target cpuset to walk children of
 *
 * Walk @child_cs through the online children of @parent_cs.  Must be used
 * with RCU read locked.
 */
#define cpuset_for_each_child(child_cs, pos_cgrp, parent_cs)		\
	cgroup_for_each_child((pos_cgrp), (parent_cs)->css.cgroup)	\
		if (is_cpuset_online(((child_cs) = cgroup_cs((pos_cgrp)))))

L
Linus Torvalds 已提交
210
/*
211 212 213 214 215 216 217
 * There are two global mutexes guarding cpuset structures.  The first
 * is the main control groups cgroup_mutex, accessed via
 * cgroup_lock()/cgroup_unlock().  The second is the cpuset-specific
 * callback_mutex, below. They can nest.  It is ok to first take
 * cgroup_mutex, then nest callback_mutex.  We also require taking
 * task_lock() when dereferencing a task's cpuset pointer.  See "The
 * task_lock() exception", at the end of this comment.
218
 *
219
 * A task must hold both mutexes to modify cpusets.  If a task
220
 * holds cgroup_mutex, then it blocks others wanting that mutex,
221
 * ensuring that it is the only task able to also acquire callback_mutex
222 223
 * and be able to modify cpusets.  It can perform various checks on
 * the cpuset structure first, knowing nothing will change.  It can
224
 * also allocate memory while just holding cgroup_mutex.  While it is
225
 * performing these checks, various callback routines can briefly
226 227
 * acquire callback_mutex to query cpusets.  Once it is ready to make
 * the changes, it takes callback_mutex, blocking everyone else.
228 229
 *
 * Calls to the kernel memory allocator can not be made while holding
230
 * callback_mutex, as that would risk double tripping on callback_mutex
231 232 233
 * from one of the callbacks into the cpuset code from within
 * __alloc_pages().
 *
234
 * If a task is only holding callback_mutex, then it has read-only
235 236
 * access to cpusets.
 *
237 238 239
 * Now, the task_struct fields mems_allowed and mempolicy may be changed
 * by other task, we use alloc_lock in the task_struct fields to protect
 * them.
240
 *
241
 * The cpuset_common_file_read() handlers only hold callback_mutex across
242 243 244
 * small pieces of code, such as when reading out possibly multi-word
 * cpumasks and nodemasks.
 *
245 246
 * Accessing a task's cpuset should be done in accordance with the
 * guidelines for accessing subsystem state in kernel/cgroup.c
L
Linus Torvalds 已提交
247 248
 */

249
static DEFINE_MUTEX(callback_mutex);
250

251 252 253 254 255 256 257 258 259 260 261
/*
 * cpuset_buffer_lock protects both the cpuset_name and cpuset_nodelist
 * buffers.  They are statically allocated to prevent using excess stack
 * when calling cpuset_print_task_mems_allowed().
 */
#define CPUSET_NAME_LEN		(128)
#define	CPUSET_NODELIST_LEN	(256)
static char cpuset_name[CPUSET_NAME_LEN];
static char cpuset_nodelist[CPUSET_NODELIST_LEN];
static DEFINE_SPINLOCK(cpuset_buffer_lock);

262 263 264
/*
 * CPU / memory hotplug is handled asynchronously.
 */
265 266
static struct workqueue_struct *cpuset_propagate_hotplug_wq;

267
static void cpuset_hotplug_workfn(struct work_struct *work);
268
static void cpuset_propagate_hotplug_workfn(struct work_struct *work);
269
static void schedule_cpuset_propagate_hotplug(struct cpuset *cs);
270 271 272

static DECLARE_WORK(cpuset_hotplug_work, cpuset_hotplug_workfn);

273 274
/*
 * This is ugly, but preserves the userspace API for existing cpuset
275
 * users. If someone tries to mount the "cpuset" filesystem, we
276 277
 * silently switch it to mount "cgroup" instead
 */
A
Al Viro 已提交
278 279
static struct dentry *cpuset_mount(struct file_system_type *fs_type,
			 int flags, const char *unused_dev_name, void *data)
L
Linus Torvalds 已提交
280
{
281
	struct file_system_type *cgroup_fs = get_fs_type("cgroup");
A
Al Viro 已提交
282
	struct dentry *ret = ERR_PTR(-ENODEV);
283 284 285 286
	if (cgroup_fs) {
		char mountopts[] =
			"cpuset,noprefix,"
			"release_agent=/sbin/cpuset_release_agent";
A
Al Viro 已提交
287 288
		ret = cgroup_fs->mount(cgroup_fs, flags,
					   unused_dev_name, mountopts);
289 290 291
		put_filesystem(cgroup_fs);
	}
	return ret;
L
Linus Torvalds 已提交
292 293 294 295
}

static struct file_system_type cpuset_fs_type = {
	.name = "cpuset",
A
Al Viro 已提交
296
	.mount = cpuset_mount,
L
Linus Torvalds 已提交
297 298 299
};

/*
300
 * Return in pmask the portion of a cpusets's cpus_allowed that
L
Linus Torvalds 已提交
301 302 303
 * are online.  If none are online, walk up the cpuset hierarchy
 * until we find one that does have some online cpus.  If we get
 * all the way to the top and still haven't found any online cpus,
304 305
 * return cpu_online_mask.  Or if passed a NULL cs from an exit'ing
 * task, return cpu_online_mask.
L
Linus Torvalds 已提交
306 307
 *
 * One way or another, we guarantee to return some non-empty subset
308
 * of cpu_online_mask.
L
Linus Torvalds 已提交
309
 *
310
 * Call with callback_mutex held.
L
Linus Torvalds 已提交
311 312
 */

313 314
static void guarantee_online_cpus(const struct cpuset *cs,
				  struct cpumask *pmask)
L
Linus Torvalds 已提交
315
{
316
	while (cs && !cpumask_intersects(cs->cpus_allowed, cpu_online_mask))
L
Linus Torvalds 已提交
317 318
		cs = cs->parent;
	if (cs)
319
		cpumask_and(pmask, cs->cpus_allowed, cpu_online_mask);
L
Linus Torvalds 已提交
320
	else
321 322
		cpumask_copy(pmask, cpu_online_mask);
	BUG_ON(!cpumask_intersects(pmask, cpu_online_mask));
L
Linus Torvalds 已提交
323 324 325 326
}

/*
 * Return in *pmask the portion of a cpusets's mems_allowed that
327 328 329
 * are online, with memory.  If none are online with memory, walk
 * up the cpuset hierarchy until we find one that does have some
 * online mems.  If we get all the way to the top and still haven't
330
 * found any online mems, return node_states[N_MEMORY].
L
Linus Torvalds 已提交
331 332
 *
 * One way or another, we guarantee to return some non-empty subset
333
 * of node_states[N_MEMORY].
L
Linus Torvalds 已提交
334
 *
335
 * Call with callback_mutex held.
L
Linus Torvalds 已提交
336 337 338 339
 */

static void guarantee_online_mems(const struct cpuset *cs, nodemask_t *pmask)
{
340
	while (cs && !nodes_intersects(cs->mems_allowed,
341
					node_states[N_MEMORY]))
L
Linus Torvalds 已提交
342 343
		cs = cs->parent;
	if (cs)
344
		nodes_and(*pmask, cs->mems_allowed,
345
					node_states[N_MEMORY]);
L
Linus Torvalds 已提交
346
	else
347 348
		*pmask = node_states[N_MEMORY];
	BUG_ON(!nodes_intersects(*pmask, node_states[N_MEMORY]));
L
Linus Torvalds 已提交
349 350
}

351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368
/*
 * update task's spread flag if cpuset's page/slab spread flag is set
 *
 * Called with callback_mutex/cgroup_mutex held
 */
static void cpuset_update_task_spread_flag(struct cpuset *cs,
					struct task_struct *tsk)
{
	if (is_spread_page(cs))
		tsk->flags |= PF_SPREAD_PAGE;
	else
		tsk->flags &= ~PF_SPREAD_PAGE;
	if (is_spread_slab(cs))
		tsk->flags |= PF_SPREAD_SLAB;
	else
		tsk->flags &= ~PF_SPREAD_SLAB;
}

L
Linus Torvalds 已提交
369 370 371 372 373
/*
 * is_cpuset_subset(p, q) - Is cpuset p a subset of cpuset q?
 *
 * One cpuset is a subset of another if all its allowed CPUs and
 * Memory Nodes are a subset of the other, and its exclusive flags
374
 * are only set if the other's are set.  Call holding cgroup_mutex.
L
Linus Torvalds 已提交
375 376 377 378
 */

static int is_cpuset_subset(const struct cpuset *p, const struct cpuset *q)
{
379
	return	cpumask_subset(p->cpus_allowed, q->cpus_allowed) &&
L
Linus Torvalds 已提交
380 381 382 383 384
		nodes_subset(p->mems_allowed, q->mems_allowed) &&
		is_cpu_exclusive(p) <= is_cpu_exclusive(q) &&
		is_mem_exclusive(p) <= is_mem_exclusive(q);
}

385 386 387 388 389 390
/**
 * alloc_trial_cpuset - allocate a trial cpuset
 * @cs: the cpuset that the trial cpuset duplicates
 */
static struct cpuset *alloc_trial_cpuset(const struct cpuset *cs)
{
391 392 393 394 395 396 397 398 399 400 401 402 403
	struct cpuset *trial;

	trial = kmemdup(cs, sizeof(*cs), GFP_KERNEL);
	if (!trial)
		return NULL;

	if (!alloc_cpumask_var(&trial->cpus_allowed, GFP_KERNEL)) {
		kfree(trial);
		return NULL;
	}
	cpumask_copy(trial->cpus_allowed, cs->cpus_allowed);

	return trial;
404 405 406 407 408 409 410 411
}

/**
 * free_trial_cpuset - free the trial cpuset
 * @trial: the trial cpuset to be freed
 */
static void free_trial_cpuset(struct cpuset *trial)
{
412
	free_cpumask_var(trial->cpus_allowed);
413 414 415
	kfree(trial);
}

L
Linus Torvalds 已提交
416 417 418 419 420 421 422
/*
 * validate_change() - Used to validate that any proposed cpuset change
 *		       follows the structural rules for cpusets.
 *
 * If we replaced the flag and mask values of the current cpuset
 * (cur) with those values in the trial cpuset (trial), would
 * our various subset and exclusive rules still be valid?  Presumes
423
 * cgroup_mutex held.
L
Linus Torvalds 已提交
424 425 426 427 428 429 430 431 432 433 434 435 436 437
 *
 * 'cur' is the address of an actual, in-use cpuset.  Operations
 * such as list traversal that depend on the actual address of the
 * cpuset in the list must use cur below, not trial.
 *
 * 'trial' is the address of bulk structure copy of cur, with
 * perhaps one or more of the fields cpus_allowed, mems_allowed,
 * or flags changed to new, trial values.
 *
 * Return 0 if valid, -errno if not.
 */

static int validate_change(const struct cpuset *cur, const struct cpuset *trial)
{
438
	struct cgroup *cont;
L
Linus Torvalds 已提交
439
	struct cpuset *c, *par;
440 441 442
	int ret;

	rcu_read_lock();
L
Linus Torvalds 已提交
443 444

	/* Each of our child cpusets must be a subset of us */
445 446 447 448
	ret = -EBUSY;
	cpuset_for_each_child(c, cont, cur)
		if (!is_cpuset_subset(c, trial))
			goto out;
L
Linus Torvalds 已提交
449 450

	/* Remaining checks don't apply to root cpuset */
451
	ret = 0;
452
	if (cur == &top_cpuset)
453
		goto out;
L
Linus Torvalds 已提交
454

455 456
	par = cur->parent;

L
Linus Torvalds 已提交
457
	/* We must be a subset of our parent cpuset */
458
	ret = -EACCES;
L
Linus Torvalds 已提交
459
	if (!is_cpuset_subset(trial, par))
460
		goto out;
L
Linus Torvalds 已提交
461

462 463 464 465
	/*
	 * If either I or some sibling (!= me) is exclusive, we can't
	 * overlap
	 */
466 467
	ret = -EINVAL;
	cpuset_for_each_child(c, cont, par) {
L
Linus Torvalds 已提交
468 469
		if ((is_cpu_exclusive(trial) || is_cpu_exclusive(c)) &&
		    c != cur &&
470
		    cpumask_intersects(trial->cpus_allowed, c->cpus_allowed))
471
			goto out;
L
Linus Torvalds 已提交
472 473 474
		if ((is_mem_exclusive(trial) || is_mem_exclusive(c)) &&
		    c != cur &&
		    nodes_intersects(trial->mems_allowed, c->mems_allowed))
475
			goto out;
L
Linus Torvalds 已提交
476 477
	}

478 479 480 481
	/*
	 * Cpusets with tasks - existing or newly being attached - can't
	 * have empty cpus_allowed or mems_allowed.
	 */
482
	ret = -ENOSPC;
483
	if ((cgroup_task_count(cur->css.cgroup) || cur->attach_in_progress) &&
484 485 486
	    (cpumask_empty(trial->cpus_allowed) ||
	     nodes_empty(trial->mems_allowed)))
		goto out;
487

488 489 490 491
	ret = 0;
out:
	rcu_read_unlock();
	return ret;
L
Linus Torvalds 已提交
492 493
}

494
#ifdef CONFIG_SMP
P
Paul Jackson 已提交
495
/*
496
 * Helper routine for generate_sched_domains().
P
Paul Jackson 已提交
497 498 499 500
 * Do cpusets a, b have overlapping cpus_allowed masks?
 */
static int cpusets_overlap(struct cpuset *a, struct cpuset *b)
{
501
	return cpumask_intersects(a->cpus_allowed, b->cpus_allowed);
P
Paul Jackson 已提交
502 503
}

504 505 506 507 508 509 510 511
static void
update_domain_attr(struct sched_domain_attr *dattr, struct cpuset *c)
{
	if (dattr->relax_domain_level < c->relax_domain_level)
		dattr->relax_domain_level = c->relax_domain_level;
	return;
}

512 513 514 515 516 517 518 519 520 521 522 523 524 525
static void
update_domain_attr_tree(struct sched_domain_attr *dattr, struct cpuset *c)
{
	LIST_HEAD(q);

	list_add(&c->stack_list, &q);
	while (!list_empty(&q)) {
		struct cpuset *cp;
		struct cgroup *cont;
		struct cpuset *child;

		cp = list_first_entry(&q, struct cpuset, stack_list);
		list_del(q.next);

526
		if (cpumask_empty(cp->cpus_allowed))
527 528 529 530 531
			continue;

		if (is_sched_load_balance(cp))
			update_domain_attr(dattr, cp);

532 533
		rcu_read_lock();
		cpuset_for_each_child(child, cont, cp)
534
			list_add_tail(&child->stack_list, &q);
535
		rcu_read_unlock();
536 537 538
	}
}

P
Paul Jackson 已提交
539
/*
540 541 542 543 544 545 546 547 548
 * generate_sched_domains()
 *
 * This function builds a partial partition of the systems CPUs
 * A 'partial partition' is a set of non-overlapping subsets whose
 * union is a subset of that set.
 * The output of this function needs to be passed to kernel/sched.c
 * partition_sched_domains() routine, which will rebuild the scheduler's
 * load balancing domains (sched domains) as specified by that partial
 * partition.
P
Paul Jackson 已提交
549
 *
L
Li Zefan 已提交
550
 * See "What is sched_load_balance" in Documentation/cgroups/cpusets.txt
P
Paul Jackson 已提交
551 552 553 554 555 556 557
 * for a background explanation of this.
 *
 * Does not return errors, on the theory that the callers of this
 * routine would rather not worry about failures to rebuild sched
 * domains when operating in the severe memory shortage situations
 * that could cause allocation failures below.
 *
558
 * Must be called with cgroup_lock held.
P
Paul Jackson 已提交
559 560
 *
 * The three key local variables below are:
561
 *    q  - a linked-list queue of cpuset pointers, used to implement a
P
Paul Jackson 已提交
562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592
 *	   top-down scan of all cpusets.  This scan loads a pointer
 *	   to each cpuset marked is_sched_load_balance into the
 *	   array 'csa'.  For our purposes, rebuilding the schedulers
 *	   sched domains, we can ignore !is_sched_load_balance cpusets.
 *  csa  - (for CpuSet Array) Array of pointers to all the cpusets
 *	   that need to be load balanced, for convenient iterative
 *	   access by the subsequent code that finds the best partition,
 *	   i.e the set of domains (subsets) of CPUs such that the
 *	   cpus_allowed of every cpuset marked is_sched_load_balance
 *	   is a subset of one of these domains, while there are as
 *	   many such domains as possible, each as small as possible.
 * doms  - Conversion of 'csa' to an array of cpumasks, for passing to
 *	   the kernel/sched.c routine partition_sched_domains() in a
 *	   convenient format, that can be easily compared to the prior
 *	   value to determine what partition elements (sched domains)
 *	   were changed (added or removed.)
 *
 * Finding the best partition (set of domains):
 *	The triple nested loops below over i, j, k scan over the
 *	load balanced cpusets (using the array of cpuset pointers in
 *	csa[]) looking for pairs of cpusets that have overlapping
 *	cpus_allowed, but which don't have the same 'pn' partition
 *	number and gives them in the same partition number.  It keeps
 *	looping on the 'restart' label until it can no longer find
 *	any such pairs.
 *
 *	The union of the cpus_allowed masks from the set of
 *	all cpusets having the same 'pn' value then form the one
 *	element of the partition (one sched domain) to be passed to
 *	partition_sched_domains().
 */
593
static int generate_sched_domains(cpumask_var_t **domains,
594
			struct sched_domain_attr **attributes)
P
Paul Jackson 已提交
595
{
596
	LIST_HEAD(q);		/* queue of cpusets to be scanned */
P
Paul Jackson 已提交
597 598 599 600
	struct cpuset *cp;	/* scans q */
	struct cpuset **csa;	/* array of all cpuset ptrs */
	int csn;		/* how many cpuset ptrs in csa so far */
	int i, j, k;		/* indices for partition finding loops */
601
	cpumask_var_t *doms;	/* resulting partition; i.e. sched domains */
602
	struct sched_domain_attr *dattr;  /* attributes for custom domains */
603
	int ndoms = 0;		/* number of sched domains in result */
604
	int nslot;		/* next empty doms[] struct cpumask slot */
P
Paul Jackson 已提交
605 606

	doms = NULL;
607
	dattr = NULL;
608
	csa = NULL;
P
Paul Jackson 已提交
609 610 611

	/* Special case for the 99% of systems with one, full, sched domain */
	if (is_sched_load_balance(&top_cpuset)) {
612 613
		ndoms = 1;
		doms = alloc_sched_domains(ndoms);
P
Paul Jackson 已提交
614
		if (!doms)
615 616
			goto done;

617 618 619
		dattr = kmalloc(sizeof(struct sched_domain_attr), GFP_KERNEL);
		if (dattr) {
			*dattr = SD_ATTR_INIT;
620
			update_domain_attr_tree(dattr, &top_cpuset);
621
		}
622
		cpumask_copy(doms[0], top_cpuset.cpus_allowed);
623 624

		goto done;
P
Paul Jackson 已提交
625 626 627 628 629 630 631
	}

	csa = kmalloc(number_of_cpusets * sizeof(cp), GFP_KERNEL);
	if (!csa)
		goto done;
	csn = 0;

632 633
	list_add(&top_cpuset.stack_list, &q);
	while (!list_empty(&q)) {
P
Paul Jackson 已提交
634 635
		struct cgroup *cont;
		struct cpuset *child;   /* scans child cpusets of cp */
636

637 638 639
		cp = list_first_entry(&q, struct cpuset, stack_list);
		list_del(q.next);

640
		if (cpumask_empty(cp->cpus_allowed))
641 642
			continue;

643 644 645 646 647 648 649
		/*
		 * All child cpusets contain a subset of the parent's cpus, so
		 * just skip them, and then we call update_domain_attr_tree()
		 * to calc relax_domain_level of the corresponding sched
		 * domain.
		 */
		if (is_sched_load_balance(cp)) {
P
Paul Jackson 已提交
650
			csa[csn++] = cp;
651 652
			continue;
		}
653

654 655
		rcu_read_lock();
		cpuset_for_each_child(child, cont, cp)
656
			list_add_tail(&child->stack_list, &q);
657
		rcu_read_unlock();
P
Paul Jackson 已提交
658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686
  	}

	for (i = 0; i < csn; i++)
		csa[i]->pn = i;
	ndoms = csn;

restart:
	/* Find the best partition (set of sched domains) */
	for (i = 0; i < csn; i++) {
		struct cpuset *a = csa[i];
		int apn = a->pn;

		for (j = 0; j < csn; j++) {
			struct cpuset *b = csa[j];
			int bpn = b->pn;

			if (apn != bpn && cpusets_overlap(a, b)) {
				for (k = 0; k < csn; k++) {
					struct cpuset *c = csa[k];

					if (c->pn == bpn)
						c->pn = apn;
				}
				ndoms--;	/* one less element */
				goto restart;
			}
		}
	}

687 688 689 690
	/*
	 * Now we know how many domains to create.
	 * Convert <csn, csa> to <ndoms, doms> and populate cpu masks.
	 */
691
	doms = alloc_sched_domains(ndoms);
692
	if (!doms)
693 694 695 696 697 698
		goto done;

	/*
	 * The rest of the code, including the scheduler, can deal with
	 * dattr==NULL case. No need to abort if alloc fails.
	 */
699
	dattr = kmalloc(ndoms * sizeof(struct sched_domain_attr), GFP_KERNEL);
P
Paul Jackson 已提交
700 701 702

	for (nslot = 0, i = 0; i < csn; i++) {
		struct cpuset *a = csa[i];
703
		struct cpumask *dp;
P
Paul Jackson 已提交
704 705
		int apn = a->pn;

706 707 708 709 710
		if (apn < 0) {
			/* Skip completed partitions */
			continue;
		}

711
		dp = doms[nslot];
712 713 714 715 716 717 718 719 720 721

		if (nslot == ndoms) {
			static int warnings = 10;
			if (warnings) {
				printk(KERN_WARNING
				 "rebuild_sched_domains confused:"
				  " nslot %d, ndoms %d, csn %d, i %d,"
				  " apn %d\n",
				  nslot, ndoms, csn, i, apn);
				warnings--;
P
Paul Jackson 已提交
722
			}
723 724
			continue;
		}
P
Paul Jackson 已提交
725

726
		cpumask_clear(dp);
727 728 729 730 731 732
		if (dattr)
			*(dattr + nslot) = SD_ATTR_INIT;
		for (j = i; j < csn; j++) {
			struct cpuset *b = csa[j];

			if (apn == b->pn) {
733
				cpumask_or(dp, dp, b->cpus_allowed);
734 735 736 737 738
				if (dattr)
					update_domain_attr_tree(dattr + nslot, b);

				/* Done with this partition */
				b->pn = -1;
P
Paul Jackson 已提交
739 740
			}
		}
741
		nslot++;
P
Paul Jackson 已提交
742 743 744
	}
	BUG_ON(nslot != ndoms);

745 746 747
done:
	kfree(csa);

748 749 750 751 752 753 754
	/*
	 * Fallback to the default domain if kmalloc() failed.
	 * See comments in partition_sched_domains().
	 */
	if (doms == NULL)
		ndoms = 1;

755 756 757 758 759 760 761 762
	*domains    = doms;
	*attributes = dattr;
	return ndoms;
}

/*
 * Rebuild scheduler domains.
 *
763 764 765 766 767
 * If the flag 'sched_load_balance' of any cpuset with non-empty
 * 'cpus' changes, or if the 'cpus' allowed changes in any cpuset
 * which has that flag enabled, or if any cpuset with a non-empty
 * 'cpus' is removed, then call this routine to rebuild the
 * scheduler's dynamic sched domains.
768
 *
769
 * Call with cgroup_mutex held.  Takes get_online_cpus().
770
 */
771
static void rebuild_sched_domains_locked(void)
772 773
{
	struct sched_domain_attr *attr;
774
	cpumask_var_t *doms;
775 776
	int ndoms;

777
	WARN_ON_ONCE(!cgroup_lock_is_held());
778
	get_online_cpus();
779 780 781 782 783 784 785

	/* Generate domain masks and attrs */
	ndoms = generate_sched_domains(&doms, &attr);

	/* Have scheduler rebuild the domains */
	partition_sched_domains(ndoms, doms, attr);

786
	put_online_cpus();
787
}
788
#else /* !CONFIG_SMP */
789
static void rebuild_sched_domains_locked(void)
790 791 792
{
}

793
static int generate_sched_domains(cpumask_var_t **domains,
794 795 796 797 798 799
			struct sched_domain_attr **attributes)
{
	*domains = NULL;
	return 1;
}
#endif /* CONFIG_SMP */
P
Paul Jackson 已提交
800

801 802
void rebuild_sched_domains(void)
{
803 804 805
	cgroup_lock();
	rebuild_sched_domains_locked();
	cgroup_unlock();
P
Paul Jackson 已提交
806 807
}

C
Cliff Wickman 已提交
808 809 810 811 812
/**
 * cpuset_test_cpumask - test a task's cpus_allowed versus its cpuset's
 * @tsk: task to test
 * @scan: struct cgroup_scanner contained in its struct cpuset_hotplug_scanner
 *
813
 * Call with cgroup_mutex held.  May take callback_mutex during call.
C
Cliff Wickman 已提交
814 815 816
 * Called for each task in a cgroup by cgroup_scan_tasks().
 * Return nonzero if this tasks's cpus_allowed mask should be changed (in other
 * words, if its mask is not equal to its cpuset's mask).
817
 */
818 819
static int cpuset_test_cpumask(struct task_struct *tsk,
			       struct cgroup_scanner *scan)
C
Cliff Wickman 已提交
820
{
821
	return !cpumask_equal(&tsk->cpus_allowed,
C
Cliff Wickman 已提交
822 823
			(cgroup_cs(scan->cg))->cpus_allowed);
}
824

C
Cliff Wickman 已提交
825 826 827 828 829 830 831 832 833 834 835
/**
 * cpuset_change_cpumask - make a task's cpus_allowed the same as its cpuset's
 * @tsk: task to test
 * @scan: struct cgroup_scanner containing the cgroup of the task
 *
 * Called by cgroup_scan_tasks() for each task in a cgroup whose
 * cpus_allowed mask needs to be changed.
 *
 * We don't need to re-check for the cgroup/cpuset membership, since we're
 * holding cgroup_lock() at this point.
 */
836 837
static void cpuset_change_cpumask(struct task_struct *tsk,
				  struct cgroup_scanner *scan)
C
Cliff Wickman 已提交
838
{
839
	set_cpus_allowed_ptr(tsk, ((cgroup_cs(scan->cg))->cpus_allowed));
C
Cliff Wickman 已提交
840 841
}

842 843 844
/**
 * update_tasks_cpumask - Update the cpumasks of tasks in the cpuset.
 * @cs: the cpuset in which each task's cpus_allowed mask needs to be changed
845
 * @heap: if NULL, defer allocating heap memory to cgroup_scan_tasks()
846 847 848 849 850 851
 *
 * Called with cgroup_mutex held
 *
 * The cgroup_scan_tasks() function will scan all the tasks in a cgroup,
 * calling callback functions for each.
 *
852 853
 * No return value. It's guaranteed that cgroup_scan_tasks() always returns 0
 * if @heap != NULL.
854
 */
855
static void update_tasks_cpumask(struct cpuset *cs, struct ptr_heap *heap)
856 857 858 859 860 861
{
	struct cgroup_scanner scan;

	scan.cg = cs->css.cgroup;
	scan.test_task = cpuset_test_cpumask;
	scan.process_task = cpuset_change_cpumask;
862 863
	scan.heap = heap;
	cgroup_scan_tasks(&scan);
864 865
}

C
Cliff Wickman 已提交
866 867 868 869 870
/**
 * update_cpumask - update the cpus_allowed mask of a cpuset and all tasks in it
 * @cs: the cpuset to consider
 * @buf: buffer of cpu numbers written to this cpuset
 */
871 872
static int update_cpumask(struct cpuset *cs, struct cpuset *trialcs,
			  const char *buf)
L
Linus Torvalds 已提交
873
{
874
	struct ptr_heap heap;
C
Cliff Wickman 已提交
875 876
	int retval;
	int is_load_balanced;
L
Linus Torvalds 已提交
877

878
	/* top_cpuset.cpus_allowed tracks cpu_online_mask; it's read-only */
879 880 881
	if (cs == &top_cpuset)
		return -EACCES;

882
	/*
883
	 * An empty cpus_allowed is ok only if the cpuset has no tasks.
884 885 886
	 * Since cpulist_parse() fails on an empty mask, we special case
	 * that parsing.  The validate_change() call ensures that cpusets
	 * with tasks have cpus.
887
	 */
888
	if (!*buf) {
889
		cpumask_clear(trialcs->cpus_allowed);
890
	} else {
891
		retval = cpulist_parse(buf, trialcs->cpus_allowed);
892 893
		if (retval < 0)
			return retval;
894

895
		if (!cpumask_subset(trialcs->cpus_allowed, cpu_active_mask))
896
			return -EINVAL;
897
	}
898
	retval = validate_change(cs, trialcs);
899 900
	if (retval < 0)
		return retval;
P
Paul Jackson 已提交
901

P
Paul Menage 已提交
902
	/* Nothing to do if the cpus didn't change */
903
	if (cpumask_equal(cs->cpus_allowed, trialcs->cpus_allowed))
P
Paul Menage 已提交
904
		return 0;
C
Cliff Wickman 已提交
905

906 907 908 909
	retval = heap_init(&heap, PAGE_SIZE, GFP_KERNEL, NULL);
	if (retval)
		return retval;

910
	is_load_balanced = is_sched_load_balance(trialcs);
P
Paul Jackson 已提交
911

912
	mutex_lock(&callback_mutex);
913
	cpumask_copy(cs->cpus_allowed, trialcs->cpus_allowed);
914
	mutex_unlock(&callback_mutex);
P
Paul Jackson 已提交
915

P
Paul Menage 已提交
916 917
	/*
	 * Scan tasks in the cpuset, and update the cpumasks of any
C
Cliff Wickman 已提交
918
	 * that need an update.
P
Paul Menage 已提交
919
	 */
920 921 922
	update_tasks_cpumask(cs, &heap);

	heap_free(&heap);
C
Cliff Wickman 已提交
923

P
Paul Menage 已提交
924
	if (is_load_balanced)
925
		rebuild_sched_domains_locked();
926
	return 0;
L
Linus Torvalds 已提交
927 928
}

929 930 931 932 933 934 935 936
/*
 * cpuset_migrate_mm
 *
 *    Migrate memory region from one set of nodes to another.
 *
 *    Temporarilly set tasks mems_allowed to target nodes of migration,
 *    so that the migration code can allocate pages on these nodes.
 *
937
 *    Call holding cgroup_mutex, so current's cpuset won't change
938
 *    during this call, as manage_mutex holds off any cpuset_attach()
939 940
 *    calls.  Therefore we don't need to take task_lock around the
 *    call to guarantee_online_mems(), as we know no one is changing
941
 *    our task's cpuset.
942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957
 *
 *    While the mm_struct we are migrating is typically from some
 *    other task, the task_struct mems_allowed that we are hacking
 *    is for our current task, which must allocate new pages for that
 *    migrating memory region.
 */

static void cpuset_migrate_mm(struct mm_struct *mm, const nodemask_t *from,
							const nodemask_t *to)
{
	struct task_struct *tsk = current;

	tsk->mems_allowed = *to;

	do_migrate_pages(mm, from, to, MPOL_MF_MOVE_ALL);

958
	guarantee_online_mems(task_cs(tsk),&tsk->mems_allowed);
959 960
}

961
/*
962 963 964 965 966 967 968 969 970 971 972
 * cpuset_change_task_nodemask - change task's mems_allowed and mempolicy
 * @tsk: the task to change
 * @newmems: new nodes that the task will be set
 *
 * In order to avoid seeing no nodes if the old and new nodes are disjoint,
 * we structure updates as setting all new allowed nodes, then clearing newly
 * disallowed ones.
 */
static void cpuset_change_task_nodemask(struct task_struct *tsk,
					nodemask_t *newmems)
{
973
	bool need_loop;
974

975 976 977 978 979 980 981 982 983 984
	/*
	 * Allow tasks that have access to memory reserves because they have
	 * been OOM killed to get memory anywhere.
	 */
	if (unlikely(test_thread_flag(TIF_MEMDIE)))
		return;
	if (current->flags & PF_EXITING) /* Let dying task have memory */
		return;

	task_lock(tsk);
985 986 987 988 989 990 991 992
	/*
	 * Determine if a loop is necessary if another thread is doing
	 * get_mems_allowed().  If at least one node remains unchanged and
	 * tsk does not have a mempolicy, then an empty nodemask will not be
	 * possible when mems_allowed is larger than a word.
	 */
	need_loop = task_has_mempolicy(tsk) ||
			!nodes_intersects(*newmems, tsk->mems_allowed);
993

994 995
	if (need_loop)
		write_seqcount_begin(&tsk->mems_allowed_seq);
996

997 998
	nodes_or(tsk->mems_allowed, tsk->mems_allowed, *newmems);
	mpol_rebind_task(tsk, newmems, MPOL_REBIND_STEP1);
999 1000

	mpol_rebind_task(tsk, newmems, MPOL_REBIND_STEP2);
1001
	tsk->mems_allowed = *newmems;
1002 1003 1004 1005

	if (need_loop)
		write_seqcount_end(&tsk->mems_allowed_seq);

1006
	task_unlock(tsk);
1007 1008 1009 1010 1011 1012
}

/*
 * Update task's mems_allowed and rebind its mempolicy and vmas' mempolicy
 * of it to cpuset's new mems_allowed, and migrate pages to new nodes if
 * memory_migrate flag is set. Called with cgroup_mutex held.
1013 1014 1015 1016 1017 1018 1019 1020
 */
static void cpuset_change_nodemask(struct task_struct *p,
				   struct cgroup_scanner *scan)
{
	struct mm_struct *mm;
	struct cpuset *cs;
	int migrate;
	const nodemask_t *oldmem = scan->data;
1021
	static nodemask_t newmems;	/* protected by cgroup_mutex */
1022 1023

	cs = cgroup_cs(scan->cg);
1024
	guarantee_online_mems(cs, &newmems);
1025

1026
	cpuset_change_task_nodemask(p, &newmems);
1027

1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039
	mm = get_task_mm(p);
	if (!mm)
		return;

	migrate = is_memory_migrate(cs);

	mpol_rebind_mm(mm, &cs->mems_allowed);
	if (migrate)
		cpuset_migrate_mm(mm, oldmem, &cs->mems_allowed);
	mmput(mm);
}

1040 1041
static void *cpuset_being_rebound;

1042 1043 1044 1045
/**
 * update_tasks_nodemask - Update the nodemasks of tasks in the cpuset.
 * @cs: the cpuset in which each task's mems_allowed mask needs to be changed
 * @oldmem: old mems_allowed of cpuset cs
1046
 * @heap: if NULL, defer allocating heap memory to cgroup_scan_tasks()
1047 1048
 *
 * Called with cgroup_mutex held
1049 1050
 * No return value. It's guaranteed that cgroup_scan_tasks() always returns 0
 * if @heap != NULL.
1051
 */
1052 1053
static void update_tasks_nodemask(struct cpuset *cs, const nodemask_t *oldmem,
				 struct ptr_heap *heap)
L
Linus Torvalds 已提交
1054
{
1055
	struct cgroup_scanner scan;
1056

1057
	cpuset_being_rebound = cs;		/* causes mpol_dup() rebind */
1058

1059 1060 1061
	scan.cg = cs->css.cgroup;
	scan.test_task = NULL;
	scan.process_task = cpuset_change_nodemask;
1062
	scan.heap = heap;
1063
	scan.data = (nodemask_t *)oldmem;
1064 1065

	/*
1066 1067 1068 1069 1070 1071
	 * The mpol_rebind_mm() call takes mmap_sem, which we couldn't
	 * take while holding tasklist_lock.  Forks can happen - the
	 * mpol_dup() cpuset_being_rebound check will catch such forks,
	 * and rebind their vma mempolicies too.  Because we still hold
	 * the global cgroup_mutex, we know that no other rebind effort
	 * will be contending for the global variable cpuset_being_rebound.
1072
	 * It's ok if we rebind the same mm twice; mpol_rebind_mm()
1073
	 * is idempotent.  Also migrate pages in each mm to new nodes.
1074
	 */
1075
	cgroup_scan_tasks(&scan);
1076

1077
	/* We're done rebinding vmas to this cpuset's new mems_allowed. */
1078
	cpuset_being_rebound = NULL;
L
Linus Torvalds 已提交
1079 1080
}

1081 1082 1083
/*
 * Handle user request to change the 'mems' memory placement
 * of a cpuset.  Needs to validate the request, update the
1084 1085 1086 1087
 * cpusets mems_allowed, and for each task in the cpuset,
 * update mems_allowed and rebind task's mempolicy and any vma
 * mempolicies and if the cpuset is marked 'memory_migrate',
 * migrate the tasks pages to the new memory.
1088 1089 1090 1091 1092 1093
 *
 * Call with cgroup_mutex held.  May take callback_mutex during call.
 * Will take tasklist_lock, scan tasklist for tasks in cpuset cs,
 * lock each such tasks mm->mmap_sem, scan its vma's and rebind
 * their mempolicies to the cpusets new mems_allowed.
 */
1094 1095
static int update_nodemask(struct cpuset *cs, struct cpuset *trialcs,
			   const char *buf)
1096
{
1097
	NODEMASK_ALLOC(nodemask_t, oldmem, GFP_KERNEL);
1098
	int retval;
1099
	struct ptr_heap heap;
1100

1101 1102 1103
	if (!oldmem)
		return -ENOMEM;

1104
	/*
1105
	 * top_cpuset.mems_allowed tracks node_stats[N_MEMORY];
1106 1107
	 * it's read-only
	 */
1108 1109 1110 1111
	if (cs == &top_cpuset) {
		retval = -EACCES;
		goto done;
	}
1112 1113 1114 1115 1116 1117 1118 1119

	/*
	 * An empty mems_allowed is ok iff there are no tasks in the cpuset.
	 * Since nodelist_parse() fails on an empty mask, we special case
	 * that parsing.  The validate_change() call ensures that cpusets
	 * with tasks have memory.
	 */
	if (!*buf) {
1120
		nodes_clear(trialcs->mems_allowed);
1121
	} else {
1122
		retval = nodelist_parse(buf, trialcs->mems_allowed);
1123 1124 1125
		if (retval < 0)
			goto done;

1126
		if (!nodes_subset(trialcs->mems_allowed,
1127
				node_states[N_MEMORY])) {
1128 1129 1130
			retval =  -EINVAL;
			goto done;
		}
1131
	}
1132 1133
	*oldmem = cs->mems_allowed;
	if (nodes_equal(*oldmem, trialcs->mems_allowed)) {
1134 1135 1136
		retval = 0;		/* Too easy - nothing to do */
		goto done;
	}
1137
	retval = validate_change(cs, trialcs);
1138 1139 1140
	if (retval < 0)
		goto done;

1141 1142 1143 1144
	retval = heap_init(&heap, PAGE_SIZE, GFP_KERNEL, NULL);
	if (retval < 0)
		goto done;

1145
	mutex_lock(&callback_mutex);
1146
	cs->mems_allowed = trialcs->mems_allowed;
1147 1148
	mutex_unlock(&callback_mutex);

1149
	update_tasks_nodemask(cs, oldmem, &heap);
1150 1151

	heap_free(&heap);
1152
done:
1153
	NODEMASK_FREE(oldmem);
1154 1155 1156
	return retval;
}

1157 1158 1159 1160 1161
int current_cpuset_is_being_rebound(void)
{
	return task_cs(current) == cpuset_being_rebound;
}

1162
static int update_relax_domain_level(struct cpuset *cs, s64 val)
1163
{
1164
#ifdef CONFIG_SMP
1165
	if (val < -1 || val >= sched_domain_level_max)
1166
		return -EINVAL;
1167
#endif
1168 1169 1170

	if (val != cs->relax_domain_level) {
		cs->relax_domain_level = val;
1171 1172
		if (!cpumask_empty(cs->cpus_allowed) &&
		    is_sched_load_balance(cs))
1173
			rebuild_sched_domains_locked();
1174 1175 1176 1177 1178
	}

	return 0;
}

1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218
/*
 * cpuset_change_flag - make a task's spread flags the same as its cpuset's
 * @tsk: task to be updated
 * @scan: struct cgroup_scanner containing the cgroup of the task
 *
 * Called by cgroup_scan_tasks() for each task in a cgroup.
 *
 * We don't need to re-check for the cgroup/cpuset membership, since we're
 * holding cgroup_lock() at this point.
 */
static void cpuset_change_flag(struct task_struct *tsk,
				struct cgroup_scanner *scan)
{
	cpuset_update_task_spread_flag(cgroup_cs(scan->cg), tsk);
}

/*
 * update_tasks_flags - update the spread flags of tasks in the cpuset.
 * @cs: the cpuset in which each task's spread flags needs to be changed
 * @heap: if NULL, defer allocating heap memory to cgroup_scan_tasks()
 *
 * Called with cgroup_mutex held
 *
 * The cgroup_scan_tasks() function will scan all the tasks in a cgroup,
 * calling callback functions for each.
 *
 * No return value. It's guaranteed that cgroup_scan_tasks() always returns 0
 * if @heap != NULL.
 */
static void update_tasks_flags(struct cpuset *cs, struct ptr_heap *heap)
{
	struct cgroup_scanner scan;

	scan.cg = cs->css.cgroup;
	scan.test_task = NULL;
	scan.process_task = cpuset_change_flag;
	scan.heap = heap;
	cgroup_scan_tasks(&scan);
}

L
Linus Torvalds 已提交
1219 1220
/*
 * update_flag - read a 0 or a 1 in a file and update associated flag
1221 1222 1223
 * bit:		the bit to update (see cpuset_flagbits_t)
 * cs:		the cpuset to update
 * turning_on: 	whether the flag is being set or cleared
1224
 *
1225
 * Call with cgroup_mutex held.
L
Linus Torvalds 已提交
1226 1227
 */

1228 1229
static int update_flag(cpuset_flagbits_t bit, struct cpuset *cs,
		       int turning_on)
L
Linus Torvalds 已提交
1230
{
1231
	struct cpuset *trialcs;
R
Rakib Mullick 已提交
1232
	int balance_flag_changed;
1233 1234 1235
	int spread_flag_changed;
	struct ptr_heap heap;
	int err;
L
Linus Torvalds 已提交
1236

1237 1238 1239 1240
	trialcs = alloc_trial_cpuset(cs);
	if (!trialcs)
		return -ENOMEM;

L
Linus Torvalds 已提交
1241
	if (turning_on)
1242
		set_bit(bit, &trialcs->flags);
L
Linus Torvalds 已提交
1243
	else
1244
		clear_bit(bit, &trialcs->flags);
L
Linus Torvalds 已提交
1245

1246
	err = validate_change(cs, trialcs);
1247
	if (err < 0)
1248
		goto out;
P
Paul Jackson 已提交
1249

1250 1251 1252 1253
	err = heap_init(&heap, PAGE_SIZE, GFP_KERNEL, NULL);
	if (err < 0)
		goto out;

P
Paul Jackson 已提交
1254
	balance_flag_changed = (is_sched_load_balance(cs) !=
1255
				is_sched_load_balance(trialcs));
P
Paul Jackson 已提交
1256

1257 1258 1259
	spread_flag_changed = ((is_spread_slab(cs) != is_spread_slab(trialcs))
			|| (is_spread_page(cs) != is_spread_page(trialcs)));

1260
	mutex_lock(&callback_mutex);
1261
	cs->flags = trialcs->flags;
1262
	mutex_unlock(&callback_mutex);
1263

1264
	if (!cpumask_empty(trialcs->cpus_allowed) && balance_flag_changed)
1265
		rebuild_sched_domains_locked();
P
Paul Jackson 已提交
1266

1267 1268 1269
	if (spread_flag_changed)
		update_tasks_flags(cs, &heap);
	heap_free(&heap);
1270 1271 1272
out:
	free_trial_cpuset(trialcs);
	return err;
L
Linus Torvalds 已提交
1273 1274
}

1275
/*
A
Adrian Bunk 已提交
1276
 * Frequency meter - How fast is some event occurring?
1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372
 *
 * These routines manage a digitally filtered, constant time based,
 * event frequency meter.  There are four routines:
 *   fmeter_init() - initialize a frequency meter.
 *   fmeter_markevent() - called each time the event happens.
 *   fmeter_getrate() - returns the recent rate of such events.
 *   fmeter_update() - internal routine used to update fmeter.
 *
 * A common data structure is passed to each of these routines,
 * which is used to keep track of the state required to manage the
 * frequency meter and its digital filter.
 *
 * The filter works on the number of events marked per unit time.
 * The filter is single-pole low-pass recursive (IIR).  The time unit
 * is 1 second.  Arithmetic is done using 32-bit integers scaled to
 * simulate 3 decimal digits of precision (multiplied by 1000).
 *
 * With an FM_COEF of 933, and a time base of 1 second, the filter
 * has a half-life of 10 seconds, meaning that if the events quit
 * happening, then the rate returned from the fmeter_getrate()
 * will be cut in half each 10 seconds, until it converges to zero.
 *
 * It is not worth doing a real infinitely recursive filter.  If more
 * than FM_MAXTICKS ticks have elapsed since the last filter event,
 * just compute FM_MAXTICKS ticks worth, by which point the level
 * will be stable.
 *
 * Limit the count of unprocessed events to FM_MAXCNT, so as to avoid
 * arithmetic overflow in the fmeter_update() routine.
 *
 * Given the simple 32 bit integer arithmetic used, this meter works
 * best for reporting rates between one per millisecond (msec) and
 * one per 32 (approx) seconds.  At constant rates faster than one
 * per msec it maxes out at values just under 1,000,000.  At constant
 * rates between one per msec, and one per second it will stabilize
 * to a value N*1000, where N is the rate of events per second.
 * At constant rates between one per second and one per 32 seconds,
 * it will be choppy, moving up on the seconds that have an event,
 * and then decaying until the next event.  At rates slower than
 * about one in 32 seconds, it decays all the way back to zero between
 * each event.
 */

#define FM_COEF 933		/* coefficient for half-life of 10 secs */
#define FM_MAXTICKS ((time_t)99) /* useless computing more ticks than this */
#define FM_MAXCNT 1000000	/* limit cnt to avoid overflow */
#define FM_SCALE 1000		/* faux fixed point scale */

/* Initialize a frequency meter */
static void fmeter_init(struct fmeter *fmp)
{
	fmp->cnt = 0;
	fmp->val = 0;
	fmp->time = 0;
	spin_lock_init(&fmp->lock);
}

/* Internal meter update - process cnt events and update value */
static void fmeter_update(struct fmeter *fmp)
{
	time_t now = get_seconds();
	time_t ticks = now - fmp->time;

	if (ticks == 0)
		return;

	ticks = min(FM_MAXTICKS, ticks);
	while (ticks-- > 0)
		fmp->val = (FM_COEF * fmp->val) / FM_SCALE;
	fmp->time = now;

	fmp->val += ((FM_SCALE - FM_COEF) * fmp->cnt) / FM_SCALE;
	fmp->cnt = 0;
}

/* Process any previous ticks, then bump cnt by one (times scale). */
static void fmeter_markevent(struct fmeter *fmp)
{
	spin_lock(&fmp->lock);
	fmeter_update(fmp);
	fmp->cnt = min(FM_MAXCNT, fmp->cnt + FM_SCALE);
	spin_unlock(&fmp->lock);
}

/* Process any previous ticks, then return current value. */
static int fmeter_getrate(struct fmeter *fmp)
{
	int val;

	spin_lock(&fmp->lock);
	fmeter_update(fmp);
	val = fmp->val;
	spin_unlock(&fmp->lock);
	return val;
}

1373
/* Called by cgroups to determine if a cpuset is usable; cgroup_mutex held */
1374
static int cpuset_can_attach(struct cgroup *cgrp, struct cgroup_taskset *tset)
1375
{
1376
	struct cpuset *cs = cgroup_cs(cgrp);
1377 1378
	struct task_struct *task;
	int ret;
L
Linus Torvalds 已提交
1379

1380
	if (cpumask_empty(cs->cpus_allowed) || nodes_empty(cs->mems_allowed))
L
Linus Torvalds 已提交
1381
		return -ENOSPC;
1382

1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397
	cgroup_taskset_for_each(task, cgrp, tset) {
		/*
		 * Kthreads bound to specific cpus cannot be moved to a new
		 * cpuset; we cannot change their cpu affinity and
		 * isolating such threads by their set of allowed nodes is
		 * unnecessary.  Thus, cpusets are not applicable for such
		 * threads.  This prevents checking for success of
		 * set_cpus_allowed_ptr() on all attached tasks before
		 * cpus_allowed may be changed.
		 */
		if (task->flags & PF_THREAD_BOUND)
			return -EINVAL;
		if ((ret = security_task_setscheduler(task)))
			return ret;
	}
1398

1399 1400 1401 1402 1403 1404
	/*
	 * Mark attach is in progress.  This makes validate_change() fail
	 * changes which zero cpus/mems_allowed.
	 */
	cs->attach_in_progress++;

1405
	return 0;
1406
}
L
Linus Torvalds 已提交
1407

1408 1409 1410 1411 1412 1413
static void cpuset_cancel_attach(struct cgroup *cgrp,
				 struct cgroup_taskset *tset)
{
	cgroup_cs(cgrp)->attach_in_progress--;
}

1414 1415 1416 1417 1418 1419 1420
/*
 * Protected by cgroup_mutex.  cpus_attach is used only by cpuset_attach()
 * but we can't allocate it dynamically there.  Define it global and
 * allocate from cpuset_init().
 */
static cpumask_var_t cpus_attach;

1421
static void cpuset_attach(struct cgroup *cgrp, struct cgroup_taskset *tset)
1422
{
1423 1424 1425
	/* static bufs protected by cgroup_mutex */
	static nodemask_t cpuset_attach_nodemask_from;
	static nodemask_t cpuset_attach_nodemask_to;
1426
	struct mm_struct *mm;
1427 1428
	struct task_struct *task;
	struct task_struct *leader = cgroup_taskset_first(tset);
1429 1430 1431
	struct cgroup *oldcgrp = cgroup_taskset_cur_cgroup(tset);
	struct cpuset *cs = cgroup_cs(cgrp);
	struct cpuset *oldcs = cgroup_cs(oldcgrp);
1432

1433 1434 1435 1436 1437 1438 1439 1440
	/* prepare for attach */
	if (cs == &top_cpuset)
		cpumask_copy(cpus_attach, cpu_possible_mask);
	else
		guarantee_online_cpus(cs, cpus_attach);

	guarantee_online_mems(cs, &cpuset_attach_nodemask_to);

1441 1442 1443 1444 1445 1446 1447 1448 1449 1450
	cgroup_taskset_for_each(task, cgrp, tset) {
		/*
		 * can_attach beforehand should guarantee that this doesn't
		 * fail.  TODO: have a better way to handle failure here
		 */
		WARN_ON_ONCE(set_cpus_allowed_ptr(task, cpus_attach));

		cpuset_change_task_nodemask(task, &cpuset_attach_nodemask_to);
		cpuset_update_task_spread_flag(cs, task);
	}
1451

1452 1453 1454 1455 1456 1457
	/*
	 * Change mm, possibly for multiple threads in a threadgroup. This is
	 * expensive and may sleep.
	 */
	cpuset_attach_nodemask_from = oldcs->mems_allowed;
	cpuset_attach_nodemask_to = cs->mems_allowed;
1458
	mm = get_task_mm(leader);
1459
	if (mm) {
1460
		mpol_rebind_mm(mm, &cpuset_attach_nodemask_to);
1461
		if (is_memory_migrate(cs))
1462 1463
			cpuset_migrate_mm(mm, &cpuset_attach_nodemask_from,
					  &cpuset_attach_nodemask_to);
1464 1465
		mmput(mm);
	}
1466 1467

	cs->attach_in_progress--;
1468 1469 1470 1471 1472 1473 1474 1475

	/*
	 * We may have raced with CPU/memory hotunplug.  Trigger hotplug
	 * propagation if @cs doesn't have any CPU or memory.  It will move
	 * the newly added tasks to the nearest parent which can execute.
	 */
	if (cpumask_empty(cs->cpus_allowed) || nodes_empty(cs->mems_allowed))
		schedule_cpuset_propagate_hotplug(cs);
L
Linus Torvalds 已提交
1476 1477 1478 1479 1480
}

/* The various types of files and directories in a cpuset file system */

typedef enum {
1481
	FILE_MEMORY_MIGRATE,
L
Linus Torvalds 已提交
1482 1483 1484 1485
	FILE_CPULIST,
	FILE_MEMLIST,
	FILE_CPU_EXCLUSIVE,
	FILE_MEM_EXCLUSIVE,
1486
	FILE_MEM_HARDWALL,
P
Paul Jackson 已提交
1487
	FILE_SCHED_LOAD_BALANCE,
1488
	FILE_SCHED_RELAX_DOMAIN_LEVEL,
1489 1490
	FILE_MEMORY_PRESSURE_ENABLED,
	FILE_MEMORY_PRESSURE,
1491 1492
	FILE_SPREAD_PAGE,
	FILE_SPREAD_SLAB,
L
Linus Torvalds 已提交
1493 1494
} cpuset_filetype_t;

1495 1496 1497 1498 1499 1500
static int cpuset_write_u64(struct cgroup *cgrp, struct cftype *cft, u64 val)
{
	int retval = 0;
	struct cpuset *cs = cgroup_cs(cgrp);
	cpuset_filetype_t type = cft->private;

1501
	if (!cgroup_lock_live_group(cgrp))
1502 1503 1504
		return -ENODEV;

	switch (type) {
L
Linus Torvalds 已提交
1505
	case FILE_CPU_EXCLUSIVE:
1506
		retval = update_flag(CS_CPU_EXCLUSIVE, cs, val);
L
Linus Torvalds 已提交
1507 1508
		break;
	case FILE_MEM_EXCLUSIVE:
1509
		retval = update_flag(CS_MEM_EXCLUSIVE, cs, val);
L
Linus Torvalds 已提交
1510
		break;
1511 1512 1513
	case FILE_MEM_HARDWALL:
		retval = update_flag(CS_MEM_HARDWALL, cs, val);
		break;
P
Paul Jackson 已提交
1514
	case FILE_SCHED_LOAD_BALANCE:
1515
		retval = update_flag(CS_SCHED_LOAD_BALANCE, cs, val);
1516
		break;
1517
	case FILE_MEMORY_MIGRATE:
1518
		retval = update_flag(CS_MEMORY_MIGRATE, cs, val);
1519
		break;
1520
	case FILE_MEMORY_PRESSURE_ENABLED:
1521
		cpuset_memory_pressure_enabled = !!val;
1522 1523 1524 1525
		break;
	case FILE_MEMORY_PRESSURE:
		retval = -EACCES;
		break;
1526
	case FILE_SPREAD_PAGE:
1527
		retval = update_flag(CS_SPREAD_PAGE, cs, val);
1528 1529
		break;
	case FILE_SPREAD_SLAB:
1530
		retval = update_flag(CS_SPREAD_SLAB, cs, val);
1531
		break;
L
Linus Torvalds 已提交
1532 1533
	default:
		retval = -EINVAL;
1534
		break;
L
Linus Torvalds 已提交
1535
	}
1536
	cgroup_unlock();
L
Linus Torvalds 已提交
1537 1538 1539
	return retval;
}

1540 1541 1542 1543 1544 1545
static int cpuset_write_s64(struct cgroup *cgrp, struct cftype *cft, s64 val)
{
	int retval = 0;
	struct cpuset *cs = cgroup_cs(cgrp);
	cpuset_filetype_t type = cft->private;

1546
	if (!cgroup_lock_live_group(cgrp))
1547
		return -ENODEV;
1548

1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560
	switch (type) {
	case FILE_SCHED_RELAX_DOMAIN_LEVEL:
		retval = update_relax_domain_level(cs, val);
		break;
	default:
		retval = -EINVAL;
		break;
	}
	cgroup_unlock();
	return retval;
}

1561 1562 1563 1564 1565 1566 1567
/*
 * Common handling for a write to a "cpus" or "mems" file.
 */
static int cpuset_write_resmask(struct cgroup *cgrp, struct cftype *cft,
				const char *buf)
{
	int retval = 0;
1568 1569
	struct cpuset *cs = cgroup_cs(cgrp);
	struct cpuset *trialcs;
1570

1571 1572 1573 1574 1575 1576 1577 1578 1579 1580
	/*
	 * CPU or memory hotunplug may leave @cs w/o any execution
	 * resources, in which case the hotplug code asynchronously updates
	 * configuration and transfers all tasks to the nearest ancestor
	 * which can execute.
	 *
	 * As writes to "cpus" or "mems" may restore @cs's execution
	 * resources, wait for the previously scheduled operations before
	 * proceeding, so that we don't end up keep removing tasks added
	 * after execution capability is restored.
1581 1582 1583 1584
	 *
	 * Flushing cpuset_hotplug_work is enough to synchronize against
	 * hotplug hanlding; however, cpuset_attach() may schedule
	 * propagation work directly.  Flush the workqueue too.
1585 1586
	 */
	flush_work(&cpuset_hotplug_work);
1587
	flush_workqueue(cpuset_propagate_hotplug_wq);
1588

1589 1590 1591
	if (!cgroup_lock_live_group(cgrp))
		return -ENODEV;

1592
	trialcs = alloc_trial_cpuset(cs);
1593 1594 1595 1596
	if (!trialcs) {
		retval = -ENOMEM;
		goto out;
	}
1597

1598 1599
	switch (cft->private) {
	case FILE_CPULIST:
1600
		retval = update_cpumask(cs, trialcs, buf);
1601 1602
		break;
	case FILE_MEMLIST:
1603
		retval = update_nodemask(cs, trialcs, buf);
1604 1605 1606 1607 1608
		break;
	default:
		retval = -EINVAL;
		break;
	}
1609 1610

	free_trial_cpuset(trialcs);
1611
out:
1612 1613 1614 1615
	cgroup_unlock();
	return retval;
}

L
Linus Torvalds 已提交
1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627
/*
 * These ascii lists should be read in a single call, by using a user
 * buffer large enough to hold the entire map.  If read in smaller
 * chunks, there is no guarantee of atomicity.  Since the display format
 * used, list of ranges of sequential numbers, is variable length,
 * and since these maps can change value dynamically, one could read
 * gibberish by doing partial reads while a list was changing.
 * A single large read to a buffer that crosses a page boundary is
 * ok, because the result being copied to user land is not recomputed
 * across a page fault.
 */

1628
static size_t cpuset_sprintf_cpulist(char *page, struct cpuset *cs)
L
Linus Torvalds 已提交
1629
{
1630
	size_t count;
L
Linus Torvalds 已提交
1631

1632
	mutex_lock(&callback_mutex);
1633
	count = cpulist_scnprintf(page, PAGE_SIZE, cs->cpus_allowed);
1634
	mutex_unlock(&callback_mutex);
L
Linus Torvalds 已提交
1635

1636
	return count;
L
Linus Torvalds 已提交
1637 1638
}

1639
static size_t cpuset_sprintf_memlist(char *page, struct cpuset *cs)
L
Linus Torvalds 已提交
1640
{
1641
	size_t count;
L
Linus Torvalds 已提交
1642

1643
	mutex_lock(&callback_mutex);
1644
	count = nodelist_scnprintf(page, PAGE_SIZE, cs->mems_allowed);
1645
	mutex_unlock(&callback_mutex);
L
Linus Torvalds 已提交
1646

1647
	return count;
L
Linus Torvalds 已提交
1648 1649
}

1650 1651 1652 1653 1654
static ssize_t cpuset_common_file_read(struct cgroup *cont,
				       struct cftype *cft,
				       struct file *file,
				       char __user *buf,
				       size_t nbytes, loff_t *ppos)
L
Linus Torvalds 已提交
1655
{
1656
	struct cpuset *cs = cgroup_cs(cont);
L
Linus Torvalds 已提交
1657 1658 1659 1660 1661
	cpuset_filetype_t type = cft->private;
	char *page;
	ssize_t retval = 0;
	char *s;

1662
	if (!(page = (char *)__get_free_page(GFP_TEMPORARY)))
L
Linus Torvalds 已提交
1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679
		return -ENOMEM;

	s = page;

	switch (type) {
	case FILE_CPULIST:
		s += cpuset_sprintf_cpulist(s, cs);
		break;
	case FILE_MEMLIST:
		s += cpuset_sprintf_memlist(s, cs);
		break;
	default:
		retval = -EINVAL;
		goto out;
	}
	*s++ = '\n';

A
Al Viro 已提交
1680
	retval = simple_read_from_buffer(buf, nbytes, ppos, page, s - page);
L
Linus Torvalds 已提交
1681 1682 1683 1684 1685
out:
	free_page((unsigned long)page);
	return retval;
}

1686 1687 1688 1689 1690 1691 1692 1693 1694
static u64 cpuset_read_u64(struct cgroup *cont, struct cftype *cft)
{
	struct cpuset *cs = cgroup_cs(cont);
	cpuset_filetype_t type = cft->private;
	switch (type) {
	case FILE_CPU_EXCLUSIVE:
		return is_cpu_exclusive(cs);
	case FILE_MEM_EXCLUSIVE:
		return is_mem_exclusive(cs);
1695 1696
	case FILE_MEM_HARDWALL:
		return is_mem_hardwall(cs);
1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711
	case FILE_SCHED_LOAD_BALANCE:
		return is_sched_load_balance(cs);
	case FILE_MEMORY_MIGRATE:
		return is_memory_migrate(cs);
	case FILE_MEMORY_PRESSURE_ENABLED:
		return cpuset_memory_pressure_enabled;
	case FILE_MEMORY_PRESSURE:
		return fmeter_getrate(&cs->fmeter);
	case FILE_SPREAD_PAGE:
		return is_spread_page(cs);
	case FILE_SPREAD_SLAB:
		return is_spread_slab(cs);
	default:
		BUG();
	}
1712 1713 1714

	/* Unreachable but makes gcc happy */
	return 0;
1715
}
L
Linus Torvalds 已提交
1716

1717 1718 1719 1720 1721 1722 1723 1724 1725 1726
static s64 cpuset_read_s64(struct cgroup *cont, struct cftype *cft)
{
	struct cpuset *cs = cgroup_cs(cont);
	cpuset_filetype_t type = cft->private;
	switch (type) {
	case FILE_SCHED_RELAX_DOMAIN_LEVEL:
		return cs->relax_domain_level;
	default:
		BUG();
	}
1727 1728 1729

	/* Unrechable but makes gcc happy */
	return 0;
1730 1731
}

L
Linus Torvalds 已提交
1732 1733 1734 1735 1736

/*
 * for the common functions, 'private' gives the type of file
 */

1737 1738 1739 1740
static struct cftype files[] = {
	{
		.name = "cpus",
		.read = cpuset_common_file_read,
1741 1742
		.write_string = cpuset_write_resmask,
		.max_write_len = (100U + 6 * NR_CPUS),
1743 1744 1745 1746 1747 1748
		.private = FILE_CPULIST,
	},

	{
		.name = "mems",
		.read = cpuset_common_file_read,
1749 1750
		.write_string = cpuset_write_resmask,
		.max_write_len = (100U + 6 * MAX_NUMNODES),
1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767
		.private = FILE_MEMLIST,
	},

	{
		.name = "cpu_exclusive",
		.read_u64 = cpuset_read_u64,
		.write_u64 = cpuset_write_u64,
		.private = FILE_CPU_EXCLUSIVE,
	},

	{
		.name = "mem_exclusive",
		.read_u64 = cpuset_read_u64,
		.write_u64 = cpuset_write_u64,
		.private = FILE_MEM_EXCLUSIVE,
	},

1768 1769 1770 1771 1772 1773 1774
	{
		.name = "mem_hardwall",
		.read_u64 = cpuset_read_u64,
		.write_u64 = cpuset_write_u64,
		.private = FILE_MEM_HARDWALL,
	},

1775 1776 1777 1778 1779 1780 1781 1782 1783
	{
		.name = "sched_load_balance",
		.read_u64 = cpuset_read_u64,
		.write_u64 = cpuset_write_u64,
		.private = FILE_SCHED_LOAD_BALANCE,
	},

	{
		.name = "sched_relax_domain_level",
1784 1785
		.read_s64 = cpuset_read_s64,
		.write_s64 = cpuset_write_s64,
1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800
		.private = FILE_SCHED_RELAX_DOMAIN_LEVEL,
	},

	{
		.name = "memory_migrate",
		.read_u64 = cpuset_read_u64,
		.write_u64 = cpuset_write_u64,
		.private = FILE_MEMORY_MIGRATE,
	},

	{
		.name = "memory_pressure",
		.read_u64 = cpuset_read_u64,
		.write_u64 = cpuset_write_u64,
		.private = FILE_MEMORY_PRESSURE,
L
Li Zefan 已提交
1801
		.mode = S_IRUGO,
1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816
	},

	{
		.name = "memory_spread_page",
		.read_u64 = cpuset_read_u64,
		.write_u64 = cpuset_write_u64,
		.private = FILE_SPREAD_PAGE,
	},

	{
		.name = "memory_spread_slab",
		.read_u64 = cpuset_read_u64,
		.write_u64 = cpuset_write_u64,
		.private = FILE_SPREAD_SLAB,
	},
1817

1818 1819 1820 1821 1822 1823 1824
	{
		.name = "memory_pressure_enabled",
		.flags = CFTYPE_ONLY_ON_ROOT,
		.read_u64 = cpuset_read_u64,
		.write_u64 = cpuset_write_u64,
		.private = FILE_MEMORY_PRESSURE_ENABLED,
	},
L
Linus Torvalds 已提交
1825

1826 1827
	{ }	/* terminate */
};
L
Linus Torvalds 已提交
1828 1829

/*
1830
 *	cpuset_css_alloc - allocate a cpuset css
1831
 *	cont:	control group that the new cpuset will be part of
L
Linus Torvalds 已提交
1832 1833
 */

1834
static struct cgroup_subsys_state *cpuset_css_alloc(struct cgroup *cont)
L
Linus Torvalds 已提交
1835
{
T
Tejun Heo 已提交
1836
	struct cpuset *cs;
L
Linus Torvalds 已提交
1837

T
Tejun Heo 已提交
1838
	if (!cont->parent)
1839
		return &top_cpuset.css;
1840

T
Tejun Heo 已提交
1841
	cs = kzalloc(sizeof(*cs), GFP_KERNEL);
L
Linus Torvalds 已提交
1842
	if (!cs)
1843
		return ERR_PTR(-ENOMEM);
1844 1845 1846 1847
	if (!alloc_cpumask_var(&cs->cpus_allowed, GFP_KERNEL)) {
		kfree(cs);
		return ERR_PTR(-ENOMEM);
	}
L
Linus Torvalds 已提交
1848

P
Paul Jackson 已提交
1849
	set_bit(CS_SCHED_LOAD_BALANCE, &cs->flags);
1850
	cpumask_clear(cs->cpus_allowed);
1851
	nodes_clear(cs->mems_allowed);
1852
	fmeter_init(&cs->fmeter);
1853
	INIT_WORK(&cs->hotplug_work, cpuset_propagate_hotplug_workfn);
1854
	cs->relax_domain_level = -1;
T
Tejun Heo 已提交
1855 1856 1857 1858 1859 1860 1861 1862 1863
	cs->parent = cgroup_cs(cont->parent);

	return &cs->css;
}

static int cpuset_css_online(struct cgroup *cgrp)
{
	struct cpuset *cs = cgroup_cs(cgrp);
	struct cpuset *parent = cs->parent;
1864 1865
	struct cpuset *tmp_cs;
	struct cgroup *pos_cg;
T
Tejun Heo 已提交
1866 1867 1868 1869

	if (!parent)
		return 0;

T
Tejun Heo 已提交
1870
	set_bit(CS_ONLINE, &cs->flags);
T
Tejun Heo 已提交
1871 1872 1873 1874
	if (is_spread_page(parent))
		set_bit(CS_SPREAD_PAGE, &cs->flags);
	if (is_spread_slab(parent))
		set_bit(CS_SPREAD_SLAB, &cs->flags);
L
Linus Torvalds 已提交
1875

1876
	number_of_cpusets++;
1877

T
Tejun Heo 已提交
1878 1879
	if (!test_bit(CGRP_CPUSET_CLONE_CHILDREN, &cgrp->flags))
		return 0;
1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893

	/*
	 * Clone @parent's configuration if CGRP_CPUSET_CLONE_CHILDREN is
	 * set.  This flag handling is implemented in cgroup core for
	 * histrical reasons - the flag may be specified during mount.
	 *
	 * Currently, if any sibling cpusets have exclusive cpus or mem, we
	 * refuse to clone the configuration - thereby refusing the task to
	 * be entered, and as a result refusing the sys_unshare() or
	 * clone() which initiated it.  If this becomes a problem for some
	 * users who wish to allow that scenario, then this could be
	 * changed to grant parent->cpus_allowed-sibling_cpus_exclusive
	 * (and likewise for mems) to the new cgroup.
	 */
1894 1895 1896 1897
	rcu_read_lock();
	cpuset_for_each_child(tmp_cs, pos_cg, parent) {
		if (is_mem_exclusive(tmp_cs) || is_cpu_exclusive(tmp_cs)) {
			rcu_read_unlock();
T
Tejun Heo 已提交
1898
			return 0;
1899
		}
1900
	}
1901
	rcu_read_unlock();
1902 1903 1904 1905 1906

	mutex_lock(&callback_mutex);
	cs->mems_allowed = parent->mems_allowed;
	cpumask_copy(cs->cpus_allowed, parent->cpus_allowed);
	mutex_unlock(&callback_mutex);
T
Tejun Heo 已提交
1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921

	return 0;
}

static void cpuset_css_offline(struct cgroup *cgrp)
{
	struct cpuset *cs = cgroup_cs(cgrp);

	/* css_offline is called w/o cgroup_mutex, grab it */
	cgroup_lock();

	if (is_sched_load_balance(cs))
		update_flag(CS_SCHED_LOAD_BALANCE, cs, 0);

	number_of_cpusets--;
T
Tejun Heo 已提交
1922
	clear_bit(CS_ONLINE, &cs->flags);
T
Tejun Heo 已提交
1923 1924

	cgroup_unlock();
L
Linus Torvalds 已提交
1925 1926
}

P
Paul Jackson 已提交
1927 1928 1929
/*
 * If the cpuset being removed has its flag 'sched_load_balance'
 * enabled, then simulate turning sched_load_balance off, which
1930
 * will call rebuild_sched_domains_locked().
P
Paul Jackson 已提交
1931 1932
 */

1933
static void cpuset_css_free(struct cgroup *cont)
L
Linus Torvalds 已提交
1934
{
1935
	struct cpuset *cs = cgroup_cs(cont);
L
Linus Torvalds 已提交
1936

1937
	free_cpumask_var(cs->cpus_allowed);
1938
	kfree(cs);
L
Linus Torvalds 已提交
1939 1940
}

1941 1942
struct cgroup_subsys cpuset_subsys = {
	.name = "cpuset",
1943
	.css_alloc = cpuset_css_alloc,
T
Tejun Heo 已提交
1944 1945
	.css_online = cpuset_css_online,
	.css_offline = cpuset_css_offline,
1946
	.css_free = cpuset_css_free,
1947
	.can_attach = cpuset_can_attach,
1948
	.cancel_attach = cpuset_cancel_attach,
1949 1950
	.attach = cpuset_attach,
	.subsys_id = cpuset_subsys_id,
1951
	.base_cftypes = files,
1952 1953 1954
	.early_init = 1,
};

L
Linus Torvalds 已提交
1955 1956 1957 1958 1959 1960 1961 1962
/**
 * cpuset_init - initialize cpusets at system boot
 *
 * Description: Initialize top_cpuset and the cpuset internal file system,
 **/

int __init cpuset_init(void)
{
1963
	int err = 0;
L
Linus Torvalds 已提交
1964

1965 1966 1967
	if (!alloc_cpumask_var(&top_cpuset.cpus_allowed, GFP_KERNEL))
		BUG();

1968
	cpumask_setall(top_cpuset.cpus_allowed);
1969
	nodes_setall(top_cpuset.mems_allowed);
L
Linus Torvalds 已提交
1970

1971
	fmeter_init(&top_cpuset.fmeter);
P
Paul Jackson 已提交
1972
	set_bit(CS_SCHED_LOAD_BALANCE, &top_cpuset.flags);
1973
	top_cpuset.relax_domain_level = -1;
L
Linus Torvalds 已提交
1974 1975 1976

	err = register_filesystem(&cpuset_fs_type);
	if (err < 0)
1977 1978
		return err;

1979 1980 1981
	if (!alloc_cpumask_var(&cpus_attach, GFP_KERNEL))
		BUG();

1982
	number_of_cpusets = 1;
1983
	return 0;
L
Linus Torvalds 已提交
1984 1985
}

1986 1987 1988 1989 1990 1991 1992 1993
/**
 * cpuset_do_move_task - move a given task to another cpuset
 * @tsk: pointer to task_struct the task to move
 * @scan: struct cgroup_scanner contained in its struct cpuset_hotplug_scanner
 *
 * Called by cgroup_scan_tasks() for each task in a cgroup.
 * Return nonzero to stop the walk through the tasks.
 */
1994 1995
static void cpuset_do_move_task(struct task_struct *tsk,
				struct cgroup_scanner *scan)
1996
{
1997
	struct cgroup *new_cgroup = scan->data;
1998

1999
	cgroup_attach_task(new_cgroup, tsk);
2000 2001 2002 2003 2004 2005 2006
}

/**
 * move_member_tasks_to_cpuset - move tasks from one cpuset to another
 * @from: cpuset in which the tasks currently reside
 * @to: cpuset to which the tasks will be moved
 *
2007 2008
 * Called with cgroup_mutex held
 * callback_mutex must not be held, as cpuset_attach() will take it.
2009 2010 2011 2012 2013 2014
 *
 * The cgroup_scan_tasks() function will scan all the tasks in a cgroup,
 * calling callback functions for each.
 */
static void move_member_tasks_to_cpuset(struct cpuset *from, struct cpuset *to)
{
2015
	struct cgroup_scanner scan;
2016

2017 2018 2019 2020 2021
	scan.cg = from->css.cgroup;
	scan.test_task = NULL; /* select all tasks in cgroup */
	scan.process_task = cpuset_do_move_task;
	scan.heap = NULL;
	scan.data = to->css.cgroup;
2022

2023
	if (cgroup_scan_tasks(&scan))
2024 2025 2026 2027
		printk(KERN_ERR "move_member_tasks_to_cpuset: "
				"cgroup_scan_tasks failed\n");
}

2028
/*
2029
 * If CPU and/or memory hotplug handlers, below, unplug any CPUs
2030 2031
 * or memory nodes, we need to walk over the cpuset hierarchy,
 * removing that CPU or node from all cpusets.  If this removes the
2032 2033
 * last CPU or node from a cpuset, then move the tasks in the empty
 * cpuset to its next-highest non-empty parent.
2034
 *
2035 2036
 * Called with cgroup_mutex held
 * callback_mutex must not be held, as cpuset_attach() will take it.
2037
 */
2038 2039 2040 2041 2042 2043 2044 2045 2046
static void remove_tasks_in_empty_cpuset(struct cpuset *cs)
{
	struct cpuset *parent;

	/*
	 * Find its next-highest non-empty parent, (top cpuset
	 * has online cpus, so can't be empty).
	 */
	parent = cs->parent;
2047
	while (cpumask_empty(parent->cpus_allowed) ||
2048
			nodes_empty(parent->mems_allowed))
2049 2050 2051 2052 2053
		parent = parent->parent;

	move_member_tasks_to_cpuset(cs, parent);
}

2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070
/*
 * Helper function to traverse cpusets.
 * It can be used to walk the cpuset tree from top to bottom, completing
 * one layer before dropping down to the next (thus always processing a
 * node before any of its children).
 */
static struct cpuset *cpuset_next(struct list_head *queue)
{
	struct cpuset *cp;
	struct cpuset *child;	/* scans child cpusets of cp */
	struct cgroup *cont;

	if (list_empty(queue))
		return NULL;

	cp = list_first_entry(queue, struct cpuset, stack_list);
	list_del(queue->next);
2071 2072
	rcu_read_lock();
	cpuset_for_each_child(child, cont, cp)
2073
		list_add_tail(&child->stack_list, queue);
2074
	rcu_read_unlock();
2075 2076 2077 2078

	return cp;
}

2079
/**
2080
 * cpuset_propagate_hotplug_workfn - propagate CPU/memory hotplug to a cpuset
2081
 * @cs: cpuset in interest
2082
 *
2083 2084 2085
 * Compare @cs's cpu and mem masks against top_cpuset and if some have gone
 * offline, update @cs accordingly.  If @cs ends up with no CPU or memory,
 * all its tasks are moved to the nearest ancestor with both resources.
2086
 */
2087
static void cpuset_propagate_hotplug_workfn(struct work_struct *work)
2088
{
2089 2090
	static cpumask_t off_cpus;
	static nodemask_t off_mems, tmp_mems;
2091
	struct cpuset *cs = container_of(work, struct cpuset, hotplug_work);
2092

2093
	cgroup_lock();
2094

2095 2096
	cpumask_andnot(&off_cpus, cs->cpus_allowed, top_cpuset.cpus_allowed);
	nodes_andnot(off_mems, cs->mems_allowed, top_cpuset.mems_allowed);
2097

2098 2099 2100 2101 2102 2103 2104
	/* remove offline cpus from @cs */
	if (!cpumask_empty(&off_cpus)) {
		mutex_lock(&callback_mutex);
		cpumask_andnot(cs->cpus_allowed, cs->cpus_allowed, &off_cpus);
		mutex_unlock(&callback_mutex);
		update_tasks_cpumask(cs, NULL);
	}
2105

2106 2107 2108 2109 2110 2111 2112
	/* remove offline mems from @cs */
	if (!nodes_empty(off_mems)) {
		tmp_mems = cs->mems_allowed;
		mutex_lock(&callback_mutex);
		nodes_andnot(cs->mems_allowed, cs->mems_allowed, off_mems);
		mutex_unlock(&callback_mutex);
		update_tasks_nodemask(cs, &tmp_mems, NULL);
2113
	}
2114 2115 2116

	if (cpumask_empty(cs->cpus_allowed) || nodes_empty(cs->mems_allowed))
		remove_tasks_in_empty_cpuset(cs);
2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146

	cgroup_unlock();

	/* the following may free @cs, should be the last operation */
	css_put(&cs->css);
}

/**
 * schedule_cpuset_propagate_hotplug - schedule hotplug propagation to a cpuset
 * @cs: cpuset of interest
 *
 * Schedule cpuset_propagate_hotplug_workfn() which will update CPU and
 * memory masks according to top_cpuset.
 */
static void schedule_cpuset_propagate_hotplug(struct cpuset *cs)
{
	/*
	 * Pin @cs.  The refcnt will be released when the work item
	 * finishes executing.
	 */
	if (!css_tryget(&cs->css))
		return;

	/*
	 * Queue @cs->hotplug_work.  If already pending, lose the css ref.
	 * cpuset_propagate_hotplug_wq is ordered and propagation will
	 * happen in the order this function is called.
	 */
	if (!queue_work(cpuset_propagate_hotplug_wq, &cs->hotplug_work))
		css_put(&cs->css);
2147 2148
}

2149
/**
2150
 * cpuset_hotplug_workfn - handle CPU/memory hotunplug for a cpuset
2151
 *
2152 2153 2154 2155 2156
 * This function is called after either CPU or memory configuration has
 * changed and updates cpuset accordingly.  The top_cpuset is always
 * synchronized to cpu_active_mask and N_MEMORY, which is necessary in
 * order to make cpusets transparent (of no affect) on systems that are
 * actively using CPU hotplug but making no active use of cpusets.
2157
 *
2158 2159 2160
 * Non-root cpusets are only affected by offlining.  If any CPUs or memory
 * nodes have been taken down, cpuset_propagate_hotplug() is invoked on all
 * descendants.
2161
 *
2162 2163
 * Note that CPU offlining during suspend is ignored.  We don't modify
 * cpusets across suspend/resume cycles at all.
2164
 */
2165
static void cpuset_hotplug_workfn(struct work_struct *work)
2166
{
2167 2168 2169 2170
	static cpumask_t new_cpus, tmp_cpus;
	static nodemask_t new_mems, tmp_mems;
	bool cpus_updated, mems_updated;
	bool cpus_offlined, mems_offlined;
2171 2172

	cgroup_lock();
2173

2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210
	/* fetch the available cpus/mems and find out which changed how */
	cpumask_copy(&new_cpus, cpu_active_mask);
	new_mems = node_states[N_MEMORY];

	cpus_updated = !cpumask_equal(top_cpuset.cpus_allowed, &new_cpus);
	cpus_offlined = cpumask_andnot(&tmp_cpus, top_cpuset.cpus_allowed,
				       &new_cpus);

	mems_updated = !nodes_equal(top_cpuset.mems_allowed, new_mems);
	nodes_andnot(tmp_mems, top_cpuset.mems_allowed, new_mems);
	mems_offlined = !nodes_empty(tmp_mems);

	/* synchronize cpus_allowed to cpu_active_mask */
	if (cpus_updated) {
		mutex_lock(&callback_mutex);
		cpumask_copy(top_cpuset.cpus_allowed, &new_cpus);
		mutex_unlock(&callback_mutex);
		/* we don't mess with cpumasks of tasks in top_cpuset */
	}

	/* synchronize mems_allowed to N_MEMORY */
	if (mems_updated) {
		tmp_mems = top_cpuset.mems_allowed;
		mutex_lock(&callback_mutex);
		top_cpuset.mems_allowed = new_mems;
		mutex_unlock(&callback_mutex);
		update_tasks_nodemask(&top_cpuset, &tmp_mems, NULL);
	}

	/* if cpus or mems went down, we need to propagate to descendants */
	if (cpus_offlined || mems_offlined) {
		struct cpuset *cs;
		LIST_HEAD(queue);

		list_add_tail(&top_cpuset.stack_list, &queue);
		while ((cs = cpuset_next(&queue)))
			if (cs != &top_cpuset)
2211
				schedule_cpuset_propagate_hotplug(cs);
2212
	}
2213

2214 2215
	cgroup_unlock();

2216 2217 2218
	/* wait for propagations to finish */
	flush_workqueue(cpuset_propagate_hotplug_wq);

2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234
	/* rebuild sched domains if cpus_allowed has changed */
	if (cpus_updated) {
		struct sched_domain_attr *attr;
		cpumask_var_t *doms;
		int ndoms;

		cgroup_lock();
		ndoms = generate_sched_domains(&doms, &attr);
		cgroup_unlock();

		partition_sched_domains(ndoms, doms, attr);
	}
}

void cpuset_update_active_cpus(bool cpu_online)
{
2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246
	/*
	 * We're inside cpu hotplug critical region which usually nests
	 * inside cgroup synchronization.  Bounce actual hotplug processing
	 * to a work item to avoid reverse locking order.
	 *
	 * We still need to do partition_sched_domains() synchronously;
	 * otherwise, the scheduler will get confused and put tasks to the
	 * dead CPU.  Fall back to the default single domain.
	 * cpuset_hotplug_workfn() will rebuild it as necessary.
	 */
	partition_sched_domains(1, NULL, NULL);
	schedule_work(&cpuset_hotplug_work);
2247 2248
}

2249
#ifdef CONFIG_MEMORY_HOTPLUG
2250
/*
2251 2252
 * Keep top_cpuset.mems_allowed tracking node_states[N_MEMORY].
 * Call this routine anytime after node_states[N_MEMORY] changes.
2253
 * See cpuset_update_active_cpus() for CPU hotplug handling.
2254
 */
2255 2256
static int cpuset_track_online_nodes(struct notifier_block *self,
				unsigned long action, void *arg)
2257
{
2258
	schedule_work(&cpuset_hotplug_work);
2259
	return NOTIFY_OK;
2260 2261 2262
}
#endif

L
Linus Torvalds 已提交
2263 2264 2265 2266 2267 2268 2269 2270
/**
 * cpuset_init_smp - initialize cpus_allowed
 *
 * Description: Finish top cpuset after cpu, node maps are initialized
 **/

void __init cpuset_init_smp(void)
{
2271
	cpumask_copy(top_cpuset.cpus_allowed, cpu_active_mask);
2272
	top_cpuset.mems_allowed = node_states[N_MEMORY];
2273

2274
	hotplug_memory_notifier(cpuset_track_online_nodes, 10);
2275 2276 2277 2278

	cpuset_propagate_hotplug_wq =
		alloc_ordered_workqueue("cpuset_hotplug", 0);
	BUG_ON(!cpuset_propagate_hotplug_wq);
L
Linus Torvalds 已提交
2279 2280 2281 2282 2283
}

/**
 * cpuset_cpus_allowed - return cpus_allowed mask from a tasks cpuset.
 * @tsk: pointer to task_struct from which to obtain cpuset->cpus_allowed.
2284
 * @pmask: pointer to struct cpumask variable to receive cpus_allowed set.
L
Linus Torvalds 已提交
2285
 *
2286
 * Description: Returns the cpumask_var_t cpus_allowed of the cpuset
L
Linus Torvalds 已提交
2287
 * attached to the specified @tsk.  Guaranteed to return some non-empty
2288
 * subset of cpu_online_mask, even if this means going outside the
L
Linus Torvalds 已提交
2289 2290 2291
 * tasks cpuset.
 **/

2292
void cpuset_cpus_allowed(struct task_struct *tsk, struct cpumask *pmask)
L
Linus Torvalds 已提交
2293
{
2294
	mutex_lock(&callback_mutex);
2295
	task_lock(tsk);
2296
	guarantee_online_cpus(task_cs(tsk), pmask);
2297
	task_unlock(tsk);
2298
	mutex_unlock(&callback_mutex);
L
Linus Torvalds 已提交
2299 2300
}

2301
void cpuset_cpus_allowed_fallback(struct task_struct *tsk)
2302 2303 2304 2305 2306 2307
{
	const struct cpuset *cs;

	rcu_read_lock();
	cs = task_cs(tsk);
	if (cs)
2308
		do_set_cpus_allowed(tsk, cs->cpus_allowed);
2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323
	rcu_read_unlock();

	/*
	 * We own tsk->cpus_allowed, nobody can change it under us.
	 *
	 * But we used cs && cs->cpus_allowed lockless and thus can
	 * race with cgroup_attach_task() or update_cpumask() and get
	 * the wrong tsk->cpus_allowed. However, both cases imply the
	 * subsequent cpuset_change_cpumask()->set_cpus_allowed_ptr()
	 * which takes task_rq_lock().
	 *
	 * If we are called after it dropped the lock we must see all
	 * changes in tsk_cs()->cpus_allowed. Otherwise we can temporary
	 * set any mask even if it is not right from task_cs() pov,
	 * the pending set_cpus_allowed_ptr() will fix things.
2324 2325 2326
	 *
	 * select_fallback_rq() will fix things ups and set cpu_possible_mask
	 * if required.
2327 2328 2329
	 */
}

L
Linus Torvalds 已提交
2330 2331
void cpuset_init_current_mems_allowed(void)
{
2332
	nodes_setall(current->mems_allowed);
L
Linus Torvalds 已提交
2333 2334
}

2335 2336 2337 2338 2339 2340
/**
 * cpuset_mems_allowed - return mems_allowed mask from a tasks cpuset.
 * @tsk: pointer to task_struct from which to obtain cpuset->mems_allowed.
 *
 * Description: Returns the nodemask_t mems_allowed of the cpuset
 * attached to the specified @tsk.  Guaranteed to return some non-empty
2341
 * subset of node_states[N_MEMORY], even if this means going outside the
2342 2343 2344 2345 2346 2347 2348
 * tasks cpuset.
 **/

nodemask_t cpuset_mems_allowed(struct task_struct *tsk)
{
	nodemask_t mask;

2349
	mutex_lock(&callback_mutex);
2350
	task_lock(tsk);
2351
	guarantee_online_mems(task_cs(tsk), &mask);
2352
	task_unlock(tsk);
2353
	mutex_unlock(&callback_mutex);
2354 2355 2356 2357

	return mask;
}

2358
/**
2359 2360
 * cpuset_nodemask_valid_mems_allowed - check nodemask vs. curremt mems_allowed
 * @nodemask: the nodemask to be checked
2361
 *
2362
 * Are any of the nodes in the nodemask allowed in current->mems_allowed?
L
Linus Torvalds 已提交
2363
 */
2364
int cpuset_nodemask_valid_mems_allowed(nodemask_t *nodemask)
L
Linus Torvalds 已提交
2365
{
2366
	return nodes_intersects(*nodemask, current->mems_allowed);
L
Linus Torvalds 已提交
2367 2368
}

2369
/*
2370 2371 2372 2373
 * nearest_hardwall_ancestor() - Returns the nearest mem_exclusive or
 * mem_hardwall ancestor to the specified cpuset.  Call holding
 * callback_mutex.  If no ancestor is mem_exclusive or mem_hardwall
 * (an unusual configuration), then returns the root cpuset.
2374
 */
2375
static const struct cpuset *nearest_hardwall_ancestor(const struct cpuset *cs)
2376
{
2377
	while (!(is_mem_exclusive(cs) || is_mem_hardwall(cs)) && cs->parent)
2378 2379 2380 2381
		cs = cs->parent;
	return cs;
}

2382
/**
2383 2384
 * cpuset_node_allowed_softwall - Can we allocate on a memory node?
 * @node: is this an allowed node?
2385
 * @gfp_mask: memory allocation flags
2386
 *
2387 2388 2389 2390 2391 2392
 * If we're in interrupt, yes, we can always allocate.  If __GFP_THISNODE is
 * set, yes, we can always allocate.  If node is in our task's mems_allowed,
 * yes.  If it's not a __GFP_HARDWALL request and this node is in the nearest
 * hardwalled cpuset ancestor to this task's cpuset, yes.  If the task has been
 * OOM killed and has access to memory reserves as specified by the TIF_MEMDIE
 * flag, yes.
2393 2394
 * Otherwise, no.
 *
2395 2396 2397
 * If __GFP_HARDWALL is set, cpuset_node_allowed_softwall() reduces to
 * cpuset_node_allowed_hardwall().  Otherwise, cpuset_node_allowed_softwall()
 * might sleep, and might allow a node from an enclosing cpuset.
2398
 *
2399 2400
 * cpuset_node_allowed_hardwall() only handles the simpler case of hardwall
 * cpusets, and never sleeps.
2401 2402 2403 2404 2405 2406 2407
 *
 * The __GFP_THISNODE placement logic is really handled elsewhere,
 * by forcibly using a zonelist starting at a specified node, and by
 * (in get_page_from_freelist()) refusing to consider the zones for
 * any node on the zonelist except the first.  By the time any such
 * calls get to this routine, we should just shut up and say 'yes'.
 *
2408
 * GFP_USER allocations are marked with the __GFP_HARDWALL bit,
2409 2410
 * and do not allow allocations outside the current tasks cpuset
 * unless the task has been OOM killed as is marked TIF_MEMDIE.
2411
 * GFP_KERNEL allocations are not so marked, so can escape to the
2412
 * nearest enclosing hardwalled ancestor cpuset.
2413
 *
2414 2415 2416 2417 2418 2419 2420
 * Scanning up parent cpusets requires callback_mutex.  The
 * __alloc_pages() routine only calls here with __GFP_HARDWALL bit
 * _not_ set if it's a GFP_KERNEL allocation, and all nodes in the
 * current tasks mems_allowed came up empty on the first pass over
 * the zonelist.  So only GFP_KERNEL allocations, if all nodes in the
 * cpuset are short of memory, might require taking the callback_mutex
 * mutex.
2421
 *
2422
 * The first call here from mm/page_alloc:get_page_from_freelist()
2423 2424 2425
 * has __GFP_HARDWALL set in gfp_mask, enforcing hardwall cpusets,
 * so no allocation on a node outside the cpuset is allowed (unless
 * in interrupt, of course).
2426 2427 2428 2429 2430 2431
 *
 * The second pass through get_page_from_freelist() doesn't even call
 * here for GFP_ATOMIC calls.  For those calls, the __alloc_pages()
 * variable 'wait' is not set, and the bit ALLOC_CPUSET is not set
 * in alloc_flags.  That logic and the checks below have the combined
 * affect that:
2432 2433
 *	in_interrupt - any node ok (current task context irrelevant)
 *	GFP_ATOMIC   - any node ok
2434
 *	TIF_MEMDIE   - any node ok
2435
 *	GFP_KERNEL   - any node in enclosing hardwalled cpuset ok
2436
 *	GFP_USER     - only nodes in current tasks mems allowed ok.
2437 2438
 *
 * Rule:
2439
 *    Don't call cpuset_node_allowed_softwall if you can't sleep, unless you
2440 2441
 *    pass in the __GFP_HARDWALL flag set in gfp_flag, which disables
 *    the code that might scan up ancestor cpusets and sleep.
2442
 */
2443
int __cpuset_node_allowed_softwall(int node, gfp_t gfp_mask)
L
Linus Torvalds 已提交
2444
{
2445
	const struct cpuset *cs;	/* current cpuset ancestors */
2446
	int allowed;			/* is allocation in zone z allowed? */
2447

2448
	if (in_interrupt() || (gfp_mask & __GFP_THISNODE))
2449
		return 1;
2450
	might_sleep_if(!(gfp_mask & __GFP_HARDWALL));
2451 2452
	if (node_isset(node, current->mems_allowed))
		return 1;
2453 2454 2455 2456 2457 2458
	/*
	 * Allow tasks that have access to memory reserves because they have
	 * been OOM killed to get memory anywhere.
	 */
	if (unlikely(test_thread_flag(TIF_MEMDIE)))
		return 1;
2459 2460 2461
	if (gfp_mask & __GFP_HARDWALL)	/* If hardwall request, stop here */
		return 0;

2462 2463 2464
	if (current->flags & PF_EXITING) /* Let dying task have memory */
		return 1;

2465
	/* Not hardwall and node outside mems_allowed: scan up cpusets */
2466
	mutex_lock(&callback_mutex);
2467 2468

	task_lock(current);
2469
	cs = nearest_hardwall_ancestor(task_cs(current));
2470 2471
	task_unlock(current);

2472
	allowed = node_isset(node, cs->mems_allowed);
2473
	mutex_unlock(&callback_mutex);
2474
	return allowed;
L
Linus Torvalds 已提交
2475 2476
}

2477
/*
2478 2479
 * cpuset_node_allowed_hardwall - Can we allocate on a memory node?
 * @node: is this an allowed node?
2480 2481
 * @gfp_mask: memory allocation flags
 *
2482 2483 2484 2485 2486
 * If we're in interrupt, yes, we can always allocate.  If __GFP_THISNODE is
 * set, yes, we can always allocate.  If node is in our task's mems_allowed,
 * yes.  If the task has been OOM killed and has access to memory reserves as
 * specified by the TIF_MEMDIE flag, yes.
 * Otherwise, no.
2487 2488 2489 2490 2491 2492 2493
 *
 * The __GFP_THISNODE placement logic is really handled elsewhere,
 * by forcibly using a zonelist starting at a specified node, and by
 * (in get_page_from_freelist()) refusing to consider the zones for
 * any node on the zonelist except the first.  By the time any such
 * calls get to this routine, we should just shut up and say 'yes'.
 *
2494 2495
 * Unlike the cpuset_node_allowed_softwall() variant, above,
 * this variant requires that the node be in the current task's
2496 2497 2498 2499
 * mems_allowed or that we're in interrupt.  It does not scan up the
 * cpuset hierarchy for the nearest enclosing mem_exclusive cpuset.
 * It never sleeps.
 */
2500
int __cpuset_node_allowed_hardwall(int node, gfp_t gfp_mask)
2501 2502 2503 2504 2505
{
	if (in_interrupt() || (gfp_mask & __GFP_THISNODE))
		return 1;
	if (node_isset(node, current->mems_allowed))
		return 1;
D
Daniel Walker 已提交
2506 2507 2508 2509 2510 2511
	/*
	 * Allow tasks that have access to memory reserves because they have
	 * been OOM killed to get memory anywhere.
	 */
	if (unlikely(test_thread_flag(TIF_MEMDIE)))
		return 1;
2512 2513 2514
	return 0;
}

2515
/**
2516 2517
 * cpuset_mem_spread_node() - On which node to begin search for a file page
 * cpuset_slab_spread_node() - On which node to begin search for a slab page
2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541
 *
 * If a task is marked PF_SPREAD_PAGE or PF_SPREAD_SLAB (as for
 * tasks in a cpuset with is_spread_page or is_spread_slab set),
 * and if the memory allocation used cpuset_mem_spread_node()
 * to determine on which node to start looking, as it will for
 * certain page cache or slab cache pages such as used for file
 * system buffers and inode caches, then instead of starting on the
 * local node to look for a free page, rather spread the starting
 * node around the tasks mems_allowed nodes.
 *
 * We don't have to worry about the returned node being offline
 * because "it can't happen", and even if it did, it would be ok.
 *
 * The routines calling guarantee_online_mems() are careful to
 * only set nodes in task->mems_allowed that are online.  So it
 * should not be possible for the following code to return an
 * offline node.  But if it did, that would be ok, as this routine
 * is not returning the node where the allocation must be, only
 * the node where the search should start.  The zonelist passed to
 * __alloc_pages() will include all nodes.  If the slab allocator
 * is passed an offline node, it will fall back to the local node.
 * See kmem_cache_alloc_node().
 */

2542
static int cpuset_spread_node(int *rotor)
2543 2544 2545
{
	int node;

2546
	node = next_node(*rotor, current->mems_allowed);
2547 2548
	if (node == MAX_NUMNODES)
		node = first_node(current->mems_allowed);
2549
	*rotor = node;
2550 2551
	return node;
}
2552 2553 2554

int cpuset_mem_spread_node(void)
{
2555 2556 2557 2558
	if (current->cpuset_mem_spread_rotor == NUMA_NO_NODE)
		current->cpuset_mem_spread_rotor =
			node_random(&current->mems_allowed);

2559 2560 2561 2562 2563
	return cpuset_spread_node(&current->cpuset_mem_spread_rotor);
}

int cpuset_slab_spread_node(void)
{
2564 2565 2566 2567
	if (current->cpuset_slab_spread_rotor == NUMA_NO_NODE)
		current->cpuset_slab_spread_rotor =
			node_random(&current->mems_allowed);

2568 2569 2570
	return cpuset_spread_node(&current->cpuset_slab_spread_rotor);
}

2571 2572
EXPORT_SYMBOL_GPL(cpuset_mem_spread_node);

2573
/**
2574 2575 2576 2577 2578 2579 2580 2581
 * cpuset_mems_allowed_intersects - Does @tsk1's mems_allowed intersect @tsk2's?
 * @tsk1: pointer to task_struct of some task.
 * @tsk2: pointer to task_struct of some other task.
 *
 * Description: Return true if @tsk1's mems_allowed intersects the
 * mems_allowed of @tsk2.  Used by the OOM killer to determine if
 * one of the task's memory usage might impact the memory available
 * to the other.
2582 2583
 **/

2584 2585
int cpuset_mems_allowed_intersects(const struct task_struct *tsk1,
				   const struct task_struct *tsk2)
2586
{
2587
	return nodes_intersects(tsk1->mems_allowed, tsk2->mems_allowed);
2588 2589
}

2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612
/**
 * cpuset_print_task_mems_allowed - prints task's cpuset and mems_allowed
 * @task: pointer to task_struct of some task.
 *
 * Description: Prints @task's name, cpuset name, and cached copy of its
 * mems_allowed to the kernel log.  Must hold task_lock(task) to allow
 * dereferencing task_cs(task).
 */
void cpuset_print_task_mems_allowed(struct task_struct *tsk)
{
	struct dentry *dentry;

	dentry = task_cs(tsk)->css.cgroup->dentry;
	spin_lock(&cpuset_buffer_lock);
	snprintf(cpuset_name, CPUSET_NAME_LEN,
		 dentry ? (const char *)dentry->d_name.name : "/");
	nodelist_scnprintf(cpuset_nodelist, CPUSET_NODELIST_LEN,
			   tsk->mems_allowed);
	printk(KERN_INFO "%s cpuset=%s mems_allowed=%s\n",
	       tsk->comm, cpuset_name, cpuset_nodelist);
	spin_unlock(&cpuset_buffer_lock);
}

2613 2614 2615 2616 2617 2618
/*
 * Collection of memory_pressure is suppressed unless
 * this flag is enabled by writing "1" to the special
 * cpuset file 'memory_pressure_enabled' in the root cpuset.
 */

2619
int cpuset_memory_pressure_enabled __read_mostly;
2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641

/**
 * cpuset_memory_pressure_bump - keep stats of per-cpuset reclaims.
 *
 * Keep a running average of the rate of synchronous (direct)
 * page reclaim efforts initiated by tasks in each cpuset.
 *
 * This represents the rate at which some task in the cpuset
 * ran low on memory on all nodes it was allowed to use, and
 * had to enter the kernels page reclaim code in an effort to
 * create more free memory by tossing clean pages or swapping
 * or writing dirty pages.
 *
 * Display to user space in the per-cpuset read-only file
 * "memory_pressure".  Value displayed is an integer
 * representing the recent rate of entry into the synchronous
 * (direct) page reclaim by any task attached to the cpuset.
 **/

void __cpuset_memory_pressure_bump(void)
{
	task_lock(current);
2642
	fmeter_markevent(&task_cs(current)->fmeter);
2643 2644 2645
	task_unlock(current);
}

2646
#ifdef CONFIG_PROC_PID_CPUSET
L
Linus Torvalds 已提交
2647 2648 2649 2650
/*
 * proc_cpuset_show()
 *  - Print tasks cpuset path into seq_file.
 *  - Used for /proc/<pid>/cpuset.
2651 2652
 *  - No need to task_lock(tsk) on this tsk->cpuset reference, as it
 *    doesn't really matter if tsk->cpuset changes after we read it,
2653
 *    and we take cgroup_mutex, keeping cpuset_attach() from changing it
2654
 *    anyway.
L
Linus Torvalds 已提交
2655
 */
P
Paul Jackson 已提交
2656
static int proc_cpuset_show(struct seq_file *m, void *unused_v)
L
Linus Torvalds 已提交
2657
{
2658
	struct pid *pid;
L
Linus Torvalds 已提交
2659 2660
	struct task_struct *tsk;
	char *buf;
2661
	struct cgroup_subsys_state *css;
2662
	int retval;
L
Linus Torvalds 已提交
2663

2664
	retval = -ENOMEM;
L
Linus Torvalds 已提交
2665 2666
	buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
	if (!buf)
2667 2668 2669
		goto out;

	retval = -ESRCH;
2670 2671
	pid = m->private;
	tsk = get_pid_task(pid, PIDTYPE_PID);
2672 2673
	if (!tsk)
		goto out_free;
L
Linus Torvalds 已提交
2674

2675
	retval = -EINVAL;
2676 2677 2678
	cgroup_lock();
	css = task_subsys_state(tsk, cpuset_subsys_id);
	retval = cgroup_path(css->cgroup, buf, PAGE_SIZE);
L
Linus Torvalds 已提交
2679
	if (retval < 0)
2680
		goto out_unlock;
L
Linus Torvalds 已提交
2681 2682
	seq_puts(m, buf);
	seq_putc(m, '\n');
2683
out_unlock:
2684
	cgroup_unlock();
2685 2686
	put_task_struct(tsk);
out_free:
L
Linus Torvalds 已提交
2687
	kfree(buf);
2688
out:
L
Linus Torvalds 已提交
2689 2690 2691 2692 2693
	return retval;
}

static int cpuset_open(struct inode *inode, struct file *file)
{
2694 2695
	struct pid *pid = PROC_I(inode)->pid;
	return single_open(file, proc_cpuset_show, pid);
L
Linus Torvalds 已提交
2696 2697
}

2698
const struct file_operations proc_cpuset_operations = {
L
Linus Torvalds 已提交
2699 2700 2701 2702 2703
	.open		= cpuset_open,
	.read		= seq_read,
	.llseek		= seq_lseek,
	.release	= single_release,
};
2704
#endif /* CONFIG_PROC_PID_CPUSET */
L
Linus Torvalds 已提交
2705

2706
/* Display task mems_allowed in /proc/<pid>/status file. */
2707 2708 2709
void cpuset_task_status_allowed(struct seq_file *m, struct task_struct *task)
{
	seq_printf(m, "Mems_allowed:\t");
2710
	seq_nodemask(m, &task->mems_allowed);
2711
	seq_printf(m, "\n");
2712
	seq_printf(m, "Mems_allowed_list:\t");
2713
	seq_nodemask_list(m, &task->mems_allowed);
2714
	seq_printf(m, "\n");
L
Linus Torvalds 已提交
2715
}