cpuset.c 77.6 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6
/*
 *  kernel/cpuset.c
 *
 *  Processor and Memory placement constraints for sets of tasks.
 *
 *  Copyright (C) 2003 BULL SA.
P
Paul Jackson 已提交
7
 *  Copyright (C) 2004-2007 Silicon Graphics, Inc.
8
 *  Copyright (C) 2006 Google, Inc
L
Linus Torvalds 已提交
9 10 11 12
 *
 *  Portions derived from Patrick Mochel's sysfs code.
 *  sysfs is Copyright (c) 2001-3 Patrick Mochel
 *
13
 *  2003-10-10 Written by Simon Derr.
L
Linus Torvalds 已提交
14
 *  2003-10-22 Updates by Stephen Hemminger.
15
 *  2004 May-July Rework by Paul Jackson.
16
 *  2006 Rework by Paul Menage to use generic cgroups
17 18
 *  2008 Rework of the scheduler domains and CPU hotplug handling
 *       by Max Krasnyansky
L
Linus Torvalds 已提交
19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36
 *
 *  This file is subject to the terms and conditions of the GNU General Public
 *  License.  See the file COPYING in the main directory of the Linux
 *  distribution for more details.
 */

#include <linux/cpu.h>
#include <linux/cpumask.h>
#include <linux/cpuset.h>
#include <linux/err.h>
#include <linux/errno.h>
#include <linux/file.h>
#include <linux/fs.h>
#include <linux/init.h>
#include <linux/interrupt.h>
#include <linux/kernel.h>
#include <linux/kmod.h>
#include <linux/list.h>
37
#include <linux/mempolicy.h>
L
Linus Torvalds 已提交
38
#include <linux/mm.h>
39
#include <linux/memory.h>
40
#include <linux/export.h>
L
Linus Torvalds 已提交
41 42 43 44
#include <linux/mount.h>
#include <linux/namei.h>
#include <linux/pagemap.h>
#include <linux/proc_fs.h>
45
#include <linux/rcupdate.h>
L
Linus Torvalds 已提交
46 47
#include <linux/sched.h>
#include <linux/seq_file.h>
48
#include <linux/security.h>
L
Linus Torvalds 已提交
49 50 51 52 53 54 55 56 57
#include <linux/slab.h>
#include <linux/spinlock.h>
#include <linux/stat.h>
#include <linux/string.h>
#include <linux/time.h>
#include <linux/backing-dev.h>
#include <linux/sort.h>

#include <asm/uaccess.h>
A
Arun Sharma 已提交
58
#include <linux/atomic.h>
59
#include <linux/mutex.h>
60 61
#include <linux/workqueue.h>
#include <linux/cgroup.h>
62
#include <linux/wait.h>
L
Linus Torvalds 已提交
63

64 65 66 67 68
/*
 * Tracks how many cpusets are currently defined in system.
 * When there is only one cpuset (the root cpuset) we can
 * short circuit some hooks.
 */
69
int number_of_cpusets __read_mostly;
70

71
/* Forward declare cgroup structures */
72 73
struct cgroup_subsys cpuset_subsys;

74 75 76 77 78 79 80 81 82
/* See "Frequency meter" comments, below. */

struct fmeter {
	int cnt;		/* unprocessed events count */
	int val;		/* most recent output value */
	time_t time;		/* clock (secs) when val computed */
	spinlock_t lock;	/* guards read or write of above */
};

L
Linus Torvalds 已提交
83
struct cpuset {
84 85
	struct cgroup_subsys_state css;

L
Linus Torvalds 已提交
86
	unsigned long flags;		/* "unsigned long" so bitops work */
87
	cpumask_var_t cpus_allowed;	/* CPUs allowed to tasks in cpuset */
L
Linus Torvalds 已提交
88 89
	nodemask_t mems_allowed;	/* Memory Nodes allowed to tasks */

90 91 92 93 94 95 96 97 98 99 100 101
	/*
	 * This is old Memory Nodes tasks took on.
	 *
	 * - top_cpuset.old_mems_allowed is initialized to mems_allowed.
	 * - A new cpuset's old_mems_allowed is initialized when some
	 *   task is moved into it.
	 * - old_mems_allowed is used in cpuset_migrate_mm() when we change
	 *   cpuset.mems_allowed and have tasks' nodemask updated, and
	 *   then old_mems_allowed is updated to mems_allowed.
	 */
	nodemask_t old_mems_allowed;

102
	struct fmeter fmeter;		/* memory_pressure filter */
P
Paul Jackson 已提交
103

104 105 106 107 108 109
	/*
	 * Tasks are being attached to this cpuset.  Used to prevent
	 * zeroing cpus/mems_allowed between ->can_attach() and ->attach().
	 */
	int attach_in_progress;

P
Paul Jackson 已提交
110 111
	/* partition number for rebuild_sched_domains() */
	int pn;
112

113 114
	/* for custom sched domain */
	int relax_domain_level;
L
Linus Torvalds 已提交
115 116
};

117
/* Retrieve the cpuset for a cgroup */
L
Li Zefan 已提交
118
static inline struct cpuset *cgroup_cs(struct cgroup *cgrp)
119
{
L
Li Zefan 已提交
120
	return container_of(cgroup_subsys_state(cgrp, cpuset_subsys_id),
121 122 123 124 125 126 127 128 129 130
			    struct cpuset, css);
}

/* Retrieve the cpuset for a task */
static inline struct cpuset *task_cs(struct task_struct *task)
{
	return container_of(task_subsys_state(task, cpuset_subsys_id),
			    struct cpuset, css);
}

T
Tejun Heo 已提交
131 132 133 134 135 136 137 138 139
static inline struct cpuset *parent_cs(const struct cpuset *cs)
{
	struct cgroup *pcgrp = cs->css.cgroup->parent;

	if (pcgrp)
		return cgroup_cs(pcgrp);
	return NULL;
}

140 141 142 143 144 145 146 147 148 149 150 151 152
#ifdef CONFIG_NUMA
static inline bool task_has_mempolicy(struct task_struct *task)
{
	return task->mempolicy;
}
#else
static inline bool task_has_mempolicy(struct task_struct *task)
{
	return false;
}
#endif


L
Linus Torvalds 已提交
153 154
/* bits in struct cpuset flags field */
typedef enum {
T
Tejun Heo 已提交
155
	CS_ONLINE,
L
Linus Torvalds 已提交
156 157
	CS_CPU_EXCLUSIVE,
	CS_MEM_EXCLUSIVE,
158
	CS_MEM_HARDWALL,
159
	CS_MEMORY_MIGRATE,
P
Paul Jackson 已提交
160
	CS_SCHED_LOAD_BALANCE,
161 162
	CS_SPREAD_PAGE,
	CS_SPREAD_SLAB,
L
Linus Torvalds 已提交
163 164 165
} cpuset_flagbits_t;

/* convenient tests for these bits */
T
Tejun Heo 已提交
166 167 168 169 170
static inline bool is_cpuset_online(const struct cpuset *cs)
{
	return test_bit(CS_ONLINE, &cs->flags);
}

L
Linus Torvalds 已提交
171 172
static inline int is_cpu_exclusive(const struct cpuset *cs)
{
173
	return test_bit(CS_CPU_EXCLUSIVE, &cs->flags);
L
Linus Torvalds 已提交
174 175 176 177
}

static inline int is_mem_exclusive(const struct cpuset *cs)
{
178
	return test_bit(CS_MEM_EXCLUSIVE, &cs->flags);
L
Linus Torvalds 已提交
179 180
}

181 182 183 184 185
static inline int is_mem_hardwall(const struct cpuset *cs)
{
	return test_bit(CS_MEM_HARDWALL, &cs->flags);
}

P
Paul Jackson 已提交
186 187 188 189 190
static inline int is_sched_load_balance(const struct cpuset *cs)
{
	return test_bit(CS_SCHED_LOAD_BALANCE, &cs->flags);
}

191 192
static inline int is_memory_migrate(const struct cpuset *cs)
{
193
	return test_bit(CS_MEMORY_MIGRATE, &cs->flags);
194 195
}

196 197 198 199 200 201 202 203 204 205
static inline int is_spread_page(const struct cpuset *cs)
{
	return test_bit(CS_SPREAD_PAGE, &cs->flags);
}

static inline int is_spread_slab(const struct cpuset *cs)
{
	return test_bit(CS_SPREAD_SLAB, &cs->flags);
}

L
Linus Torvalds 已提交
206
static struct cpuset top_cpuset = {
T
Tejun Heo 已提交
207 208
	.flags = ((1 << CS_ONLINE) | (1 << CS_CPU_EXCLUSIVE) |
		  (1 << CS_MEM_EXCLUSIVE)),
L
Linus Torvalds 已提交
209 210
};

211 212 213 214 215 216 217 218 219 220 221 222 223
/**
 * cpuset_for_each_child - traverse online children of a cpuset
 * @child_cs: loop cursor pointing to the current child
 * @pos_cgrp: used for iteration
 * @parent_cs: target cpuset to walk children of
 *
 * Walk @child_cs through the online children of @parent_cs.  Must be used
 * with RCU read locked.
 */
#define cpuset_for_each_child(child_cs, pos_cgrp, parent_cs)		\
	cgroup_for_each_child((pos_cgrp), (parent_cs)->css.cgroup)	\
		if (is_cpuset_online(((child_cs) = cgroup_cs((pos_cgrp)))))

224 225 226 227 228 229 230 231 232 233 234 235 236 237
/**
 * cpuset_for_each_descendant_pre - pre-order walk of a cpuset's descendants
 * @des_cs: loop cursor pointing to the current descendant
 * @pos_cgrp: used for iteration
 * @root_cs: target cpuset to walk ancestor of
 *
 * Walk @des_cs through the online descendants of @root_cs.  Must be used
 * with RCU read locked.  The caller may modify @pos_cgrp by calling
 * cgroup_rightmost_descendant() to skip subtree.
 */
#define cpuset_for_each_descendant_pre(des_cs, pos_cgrp, root_cs)	\
	cgroup_for_each_descendant_pre((pos_cgrp), (root_cs)->css.cgroup) \
		if (is_cpuset_online(((des_cs) = cgroup_cs((pos_cgrp)))))

L
Linus Torvalds 已提交
238
/*
239 240 241 242 243 244 245 246 247 248 249 250 251 252
 * There are two global mutexes guarding cpuset structures - cpuset_mutex
 * and callback_mutex.  The latter may nest inside the former.  We also
 * require taking task_lock() when dereferencing a task's cpuset pointer.
 * See "The task_lock() exception", at the end of this comment.
 *
 * A task must hold both mutexes to modify cpusets.  If a task holds
 * cpuset_mutex, then it blocks others wanting that mutex, ensuring that it
 * is the only task able to also acquire callback_mutex and be able to
 * modify cpusets.  It can perform various checks on the cpuset structure
 * first, knowing nothing will change.  It can also allocate memory while
 * just holding cpuset_mutex.  While it is performing these checks, various
 * callback routines can briefly acquire callback_mutex to query cpusets.
 * Once it is ready to make the changes, it takes callback_mutex, blocking
 * everyone else.
253 254
 *
 * Calls to the kernel memory allocator can not be made while holding
255
 * callback_mutex, as that would risk double tripping on callback_mutex
256 257 258
 * from one of the callbacks into the cpuset code from within
 * __alloc_pages().
 *
259
 * If a task is only holding callback_mutex, then it has read-only
260 261
 * access to cpusets.
 *
262 263 264
 * Now, the task_struct fields mems_allowed and mempolicy may be changed
 * by other task, we use alloc_lock in the task_struct fields to protect
 * them.
265
 *
266
 * The cpuset_common_file_read() handlers only hold callback_mutex across
267 268 269
 * small pieces of code, such as when reading out possibly multi-word
 * cpumasks and nodemasks.
 *
270 271
 * Accessing a task's cpuset should be done in accordance with the
 * guidelines for accessing subsystem state in kernel/cgroup.c
L
Linus Torvalds 已提交
272 273
 */

274
static DEFINE_MUTEX(cpuset_mutex);
275
static DEFINE_MUTEX(callback_mutex);
276

277 278 279 280 281 282
/*
 * CPU / memory hotplug is handled asynchronously.
 */
static void cpuset_hotplug_workfn(struct work_struct *work);
static DECLARE_WORK(cpuset_hotplug_work, cpuset_hotplug_workfn);

283 284
static DECLARE_WAIT_QUEUE_HEAD(cpuset_attach_wq);

285 286
/*
 * This is ugly, but preserves the userspace API for existing cpuset
287
 * users. If someone tries to mount the "cpuset" filesystem, we
288 289
 * silently switch it to mount "cgroup" instead
 */
A
Al Viro 已提交
290 291
static struct dentry *cpuset_mount(struct file_system_type *fs_type,
			 int flags, const char *unused_dev_name, void *data)
L
Linus Torvalds 已提交
292
{
293
	struct file_system_type *cgroup_fs = get_fs_type("cgroup");
A
Al Viro 已提交
294
	struct dentry *ret = ERR_PTR(-ENODEV);
295 296 297 298
	if (cgroup_fs) {
		char mountopts[] =
			"cpuset,noprefix,"
			"release_agent=/sbin/cpuset_release_agent";
A
Al Viro 已提交
299 300
		ret = cgroup_fs->mount(cgroup_fs, flags,
					   unused_dev_name, mountopts);
301 302 303
		put_filesystem(cgroup_fs);
	}
	return ret;
L
Linus Torvalds 已提交
304 305 306 307
}

static struct file_system_type cpuset_fs_type = {
	.name = "cpuset",
A
Al Viro 已提交
308
	.mount = cpuset_mount,
L
Linus Torvalds 已提交
309 310 311
};

/*
312
 * Return in pmask the portion of a cpusets's cpus_allowed that
L
Linus Torvalds 已提交
313
 * are online.  If none are online, walk up the cpuset hierarchy
314 315
 * until we find one that does have some online cpus.  The top
 * cpuset always has some cpus online.
L
Linus Torvalds 已提交
316 317
 *
 * One way or another, we guarantee to return some non-empty subset
318
 * of cpu_online_mask.
L
Linus Torvalds 已提交
319
 *
320
 * Call with callback_mutex held.
L
Linus Torvalds 已提交
321
 */
322 323
static void guarantee_online_cpus(const struct cpuset *cs,
				  struct cpumask *pmask)
L
Linus Torvalds 已提交
324
{
325
	while (!cpumask_intersects(cs->cpus_allowed, cpu_online_mask))
T
Tejun Heo 已提交
326
		cs = parent_cs(cs);
327
	cpumask_and(pmask, cs->cpus_allowed, cpu_online_mask);
L
Linus Torvalds 已提交
328 329 330 331
}

/*
 * Return in *pmask the portion of a cpusets's mems_allowed that
332 333
 * are online, with memory.  If none are online with memory, walk
 * up the cpuset hierarchy until we find one that does have some
334
 * online mems.  The top cpuset always has some mems online.
L
Linus Torvalds 已提交
335 336
 *
 * One way or another, we guarantee to return some non-empty subset
337
 * of node_states[N_MEMORY].
L
Linus Torvalds 已提交
338
 *
339
 * Call with callback_mutex held.
L
Linus Torvalds 已提交
340 341 342
 */
static void guarantee_online_mems(const struct cpuset *cs, nodemask_t *pmask)
{
343
	while (!nodes_intersects(cs->mems_allowed, node_states[N_MEMORY]))
T
Tejun Heo 已提交
344
		cs = parent_cs(cs);
345
	nodes_and(*pmask, cs->mems_allowed, node_states[N_MEMORY]);
L
Linus Torvalds 已提交
346 347
}

348 349 350
/*
 * update task's spread flag if cpuset's page/slab spread flag is set
 *
351
 * Called with callback_mutex/cpuset_mutex held
352 353 354 355 356 357 358 359 360 361 362 363 364 365
 */
static void cpuset_update_task_spread_flag(struct cpuset *cs,
					struct task_struct *tsk)
{
	if (is_spread_page(cs))
		tsk->flags |= PF_SPREAD_PAGE;
	else
		tsk->flags &= ~PF_SPREAD_PAGE;
	if (is_spread_slab(cs))
		tsk->flags |= PF_SPREAD_SLAB;
	else
		tsk->flags &= ~PF_SPREAD_SLAB;
}

L
Linus Torvalds 已提交
366 367 368 369 370
/*
 * is_cpuset_subset(p, q) - Is cpuset p a subset of cpuset q?
 *
 * One cpuset is a subset of another if all its allowed CPUs and
 * Memory Nodes are a subset of the other, and its exclusive flags
371
 * are only set if the other's are set.  Call holding cpuset_mutex.
L
Linus Torvalds 已提交
372 373 374 375
 */

static int is_cpuset_subset(const struct cpuset *p, const struct cpuset *q)
{
376
	return	cpumask_subset(p->cpus_allowed, q->cpus_allowed) &&
L
Linus Torvalds 已提交
377 378 379 380 381
		nodes_subset(p->mems_allowed, q->mems_allowed) &&
		is_cpu_exclusive(p) <= is_cpu_exclusive(q) &&
		is_mem_exclusive(p) <= is_mem_exclusive(q);
}

382 383 384 385 386 387
/**
 * alloc_trial_cpuset - allocate a trial cpuset
 * @cs: the cpuset that the trial cpuset duplicates
 */
static struct cpuset *alloc_trial_cpuset(const struct cpuset *cs)
{
388 389 390 391 392 393 394 395 396 397 398 399 400
	struct cpuset *trial;

	trial = kmemdup(cs, sizeof(*cs), GFP_KERNEL);
	if (!trial)
		return NULL;

	if (!alloc_cpumask_var(&trial->cpus_allowed, GFP_KERNEL)) {
		kfree(trial);
		return NULL;
	}
	cpumask_copy(trial->cpus_allowed, cs->cpus_allowed);

	return trial;
401 402 403 404 405 406 407 408
}

/**
 * free_trial_cpuset - free the trial cpuset
 * @trial: the trial cpuset to be freed
 */
static void free_trial_cpuset(struct cpuset *trial)
{
409
	free_cpumask_var(trial->cpus_allowed);
410 411 412
	kfree(trial);
}

L
Linus Torvalds 已提交
413 414 415 416 417 418 419
/*
 * validate_change() - Used to validate that any proposed cpuset change
 *		       follows the structural rules for cpusets.
 *
 * If we replaced the flag and mask values of the current cpuset
 * (cur) with those values in the trial cpuset (trial), would
 * our various subset and exclusive rules still be valid?  Presumes
420
 * cpuset_mutex held.
L
Linus Torvalds 已提交
421 422 423 424 425 426 427 428 429 430 431 432 433 434
 *
 * 'cur' is the address of an actual, in-use cpuset.  Operations
 * such as list traversal that depend on the actual address of the
 * cpuset in the list must use cur below, not trial.
 *
 * 'trial' is the address of bulk structure copy of cur, with
 * perhaps one or more of the fields cpus_allowed, mems_allowed,
 * or flags changed to new, trial values.
 *
 * Return 0 if valid, -errno if not.
 */

static int validate_change(const struct cpuset *cur, const struct cpuset *trial)
{
L
Li Zefan 已提交
435
	struct cgroup *cgrp;
L
Linus Torvalds 已提交
436
	struct cpuset *c, *par;
437 438 439
	int ret;

	rcu_read_lock();
L
Linus Torvalds 已提交
440 441

	/* Each of our child cpusets must be a subset of us */
442
	ret = -EBUSY;
L
Li Zefan 已提交
443
	cpuset_for_each_child(c, cgrp, cur)
444 445
		if (!is_cpuset_subset(c, trial))
			goto out;
L
Linus Torvalds 已提交
446 447

	/* Remaining checks don't apply to root cpuset */
448
	ret = 0;
449
	if (cur == &top_cpuset)
450
		goto out;
L
Linus Torvalds 已提交
451

T
Tejun Heo 已提交
452
	par = parent_cs(cur);
453

L
Linus Torvalds 已提交
454
	/* We must be a subset of our parent cpuset */
455
	ret = -EACCES;
L
Linus Torvalds 已提交
456
	if (!is_cpuset_subset(trial, par))
457
		goto out;
L
Linus Torvalds 已提交
458

459 460 461 462
	/*
	 * If either I or some sibling (!= me) is exclusive, we can't
	 * overlap
	 */
463
	ret = -EINVAL;
L
Li Zefan 已提交
464
	cpuset_for_each_child(c, cgrp, par) {
L
Linus Torvalds 已提交
465 466
		if ((is_cpu_exclusive(trial) || is_cpu_exclusive(c)) &&
		    c != cur &&
467
		    cpumask_intersects(trial->cpus_allowed, c->cpus_allowed))
468
			goto out;
L
Linus Torvalds 已提交
469 470 471
		if ((is_mem_exclusive(trial) || is_mem_exclusive(c)) &&
		    c != cur &&
		    nodes_intersects(trial->mems_allowed, c->mems_allowed))
472
			goto out;
L
Linus Torvalds 已提交
473 474
	}

475 476 477 478
	/*
	 * Cpusets with tasks - existing or newly being attached - can't
	 * have empty cpus_allowed or mems_allowed.
	 */
479
	ret = -ENOSPC;
480
	if ((cgroup_task_count(cur->css.cgroup) || cur->attach_in_progress) &&
481
	    (cpumask_empty(trial->cpus_allowed) &&
482 483
	     nodes_empty(trial->mems_allowed)))
		goto out;
484

485 486 487 488
	ret = 0;
out:
	rcu_read_unlock();
	return ret;
L
Linus Torvalds 已提交
489 490
}

491
#ifdef CONFIG_SMP
P
Paul Jackson 已提交
492
/*
493
 * Helper routine for generate_sched_domains().
P
Paul Jackson 已提交
494 495 496 497
 * Do cpusets a, b have overlapping cpus_allowed masks?
 */
static int cpusets_overlap(struct cpuset *a, struct cpuset *b)
{
498
	return cpumask_intersects(a->cpus_allowed, b->cpus_allowed);
P
Paul Jackson 已提交
499 500
}

501 502 503 504 505 506 507 508
static void
update_domain_attr(struct sched_domain_attr *dattr, struct cpuset *c)
{
	if (dattr->relax_domain_level < c->relax_domain_level)
		dattr->relax_domain_level = c->relax_domain_level;
	return;
}

509 510
static void update_domain_attr_tree(struct sched_domain_attr *dattr,
				    struct cpuset *root_cs)
511
{
512 513
	struct cpuset *cp;
	struct cgroup *pos_cgrp;
514

515 516 517 518 519
	rcu_read_lock();
	cpuset_for_each_descendant_pre(cp, pos_cgrp, root_cs) {
		/* skip the whole subtree if @cp doesn't have any CPU */
		if (cpumask_empty(cp->cpus_allowed)) {
			pos_cgrp = cgroup_rightmost_descendant(pos_cgrp);
520
			continue;
521
		}
522 523 524 525

		if (is_sched_load_balance(cp))
			update_domain_attr(dattr, cp);
	}
526
	rcu_read_unlock();
527 528
}

P
Paul Jackson 已提交
529
/*
530 531 532 533 534
 * generate_sched_domains()
 *
 * This function builds a partial partition of the systems CPUs
 * A 'partial partition' is a set of non-overlapping subsets whose
 * union is a subset of that set.
535
 * The output of this function needs to be passed to kernel/sched/core.c
536 537 538
 * partition_sched_domains() routine, which will rebuild the scheduler's
 * load balancing domains (sched domains) as specified by that partial
 * partition.
P
Paul Jackson 已提交
539
 *
L
Li Zefan 已提交
540
 * See "What is sched_load_balance" in Documentation/cgroups/cpusets.txt
P
Paul Jackson 已提交
541 542 543 544 545 546 547
 * for a background explanation of this.
 *
 * Does not return errors, on the theory that the callers of this
 * routine would rather not worry about failures to rebuild sched
 * domains when operating in the severe memory shortage situations
 * that could cause allocation failures below.
 *
548
 * Must be called with cpuset_mutex held.
P
Paul Jackson 已提交
549 550
 *
 * The three key local variables below are:
551
 *    q  - a linked-list queue of cpuset pointers, used to implement a
P
Paul Jackson 已提交
552 553 554 555 556 557 558 559 560 561 562 563
 *	   top-down scan of all cpusets.  This scan loads a pointer
 *	   to each cpuset marked is_sched_load_balance into the
 *	   array 'csa'.  For our purposes, rebuilding the schedulers
 *	   sched domains, we can ignore !is_sched_load_balance cpusets.
 *  csa  - (for CpuSet Array) Array of pointers to all the cpusets
 *	   that need to be load balanced, for convenient iterative
 *	   access by the subsequent code that finds the best partition,
 *	   i.e the set of domains (subsets) of CPUs such that the
 *	   cpus_allowed of every cpuset marked is_sched_load_balance
 *	   is a subset of one of these domains, while there are as
 *	   many such domains as possible, each as small as possible.
 * doms  - Conversion of 'csa' to an array of cpumasks, for passing to
564
 *	   the kernel/sched/core.c routine partition_sched_domains() in a
P
Paul Jackson 已提交
565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582
 *	   convenient format, that can be easily compared to the prior
 *	   value to determine what partition elements (sched domains)
 *	   were changed (added or removed.)
 *
 * Finding the best partition (set of domains):
 *	The triple nested loops below over i, j, k scan over the
 *	load balanced cpusets (using the array of cpuset pointers in
 *	csa[]) looking for pairs of cpusets that have overlapping
 *	cpus_allowed, but which don't have the same 'pn' partition
 *	number and gives them in the same partition number.  It keeps
 *	looping on the 'restart' label until it can no longer find
 *	any such pairs.
 *
 *	The union of the cpus_allowed masks from the set of
 *	all cpusets having the same 'pn' value then form the one
 *	element of the partition (one sched domain) to be passed to
 *	partition_sched_domains().
 */
583
static int generate_sched_domains(cpumask_var_t **domains,
584
			struct sched_domain_attr **attributes)
P
Paul Jackson 已提交
585 586 587 588 589
{
	struct cpuset *cp;	/* scans q */
	struct cpuset **csa;	/* array of all cpuset ptrs */
	int csn;		/* how many cpuset ptrs in csa so far */
	int i, j, k;		/* indices for partition finding loops */
590
	cpumask_var_t *doms;	/* resulting partition; i.e. sched domains */
591
	struct sched_domain_attr *dattr;  /* attributes for custom domains */
592
	int ndoms = 0;		/* number of sched domains in result */
593
	int nslot;		/* next empty doms[] struct cpumask slot */
594
	struct cgroup *pos_cgrp;
P
Paul Jackson 已提交
595 596

	doms = NULL;
597
	dattr = NULL;
598
	csa = NULL;
P
Paul Jackson 已提交
599 600 601

	/* Special case for the 99% of systems with one, full, sched domain */
	if (is_sched_load_balance(&top_cpuset)) {
602 603
		ndoms = 1;
		doms = alloc_sched_domains(ndoms);
P
Paul Jackson 已提交
604
		if (!doms)
605 606
			goto done;

607 608 609
		dattr = kmalloc(sizeof(struct sched_domain_attr), GFP_KERNEL);
		if (dattr) {
			*dattr = SD_ATTR_INIT;
610
			update_domain_attr_tree(dattr, &top_cpuset);
611
		}
612
		cpumask_copy(doms[0], top_cpuset.cpus_allowed);
613 614

		goto done;
P
Paul Jackson 已提交
615 616 617 618 619 620 621
	}

	csa = kmalloc(number_of_cpusets * sizeof(cp), GFP_KERNEL);
	if (!csa)
		goto done;
	csn = 0;

622 623
	rcu_read_lock();
	cpuset_for_each_descendant_pre(cp, pos_cgrp, &top_cpuset) {
624
		/*
625 626 627 628 629 630
		 * Continue traversing beyond @cp iff @cp has some CPUs and
		 * isn't load balancing.  The former is obvious.  The
		 * latter: All child cpusets contain a subset of the
		 * parent's cpus, so just skip them, and then we call
		 * update_domain_attr_tree() to calc relax_domain_level of
		 * the corresponding sched domain.
631
		 */
632 633
		if (!cpumask_empty(cp->cpus_allowed) &&
		    !is_sched_load_balance(cp))
634
			continue;
635

636 637 638 639 640 641 642
		if (is_sched_load_balance(cp))
			csa[csn++] = cp;

		/* skip @cp's subtree */
		pos_cgrp = cgroup_rightmost_descendant(pos_cgrp);
	}
	rcu_read_unlock();
P
Paul Jackson 已提交
643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670

	for (i = 0; i < csn; i++)
		csa[i]->pn = i;
	ndoms = csn;

restart:
	/* Find the best partition (set of sched domains) */
	for (i = 0; i < csn; i++) {
		struct cpuset *a = csa[i];
		int apn = a->pn;

		for (j = 0; j < csn; j++) {
			struct cpuset *b = csa[j];
			int bpn = b->pn;

			if (apn != bpn && cpusets_overlap(a, b)) {
				for (k = 0; k < csn; k++) {
					struct cpuset *c = csa[k];

					if (c->pn == bpn)
						c->pn = apn;
				}
				ndoms--;	/* one less element */
				goto restart;
			}
		}
	}

671 672 673 674
	/*
	 * Now we know how many domains to create.
	 * Convert <csn, csa> to <ndoms, doms> and populate cpu masks.
	 */
675
	doms = alloc_sched_domains(ndoms);
676
	if (!doms)
677 678 679 680 681 682
		goto done;

	/*
	 * The rest of the code, including the scheduler, can deal with
	 * dattr==NULL case. No need to abort if alloc fails.
	 */
683
	dattr = kmalloc(ndoms * sizeof(struct sched_domain_attr), GFP_KERNEL);
P
Paul Jackson 已提交
684 685 686

	for (nslot = 0, i = 0; i < csn; i++) {
		struct cpuset *a = csa[i];
687
		struct cpumask *dp;
P
Paul Jackson 已提交
688 689
		int apn = a->pn;

690 691 692 693 694
		if (apn < 0) {
			/* Skip completed partitions */
			continue;
		}

695
		dp = doms[nslot];
696 697 698 699 700 701 702 703 704 705

		if (nslot == ndoms) {
			static int warnings = 10;
			if (warnings) {
				printk(KERN_WARNING
				 "rebuild_sched_domains confused:"
				  " nslot %d, ndoms %d, csn %d, i %d,"
				  " apn %d\n",
				  nslot, ndoms, csn, i, apn);
				warnings--;
P
Paul Jackson 已提交
706
			}
707 708
			continue;
		}
P
Paul Jackson 已提交
709

710
		cpumask_clear(dp);
711 712 713 714 715 716
		if (dattr)
			*(dattr + nslot) = SD_ATTR_INIT;
		for (j = i; j < csn; j++) {
			struct cpuset *b = csa[j];

			if (apn == b->pn) {
717
				cpumask_or(dp, dp, b->cpus_allowed);
718 719 720 721 722
				if (dattr)
					update_domain_attr_tree(dattr + nslot, b);

				/* Done with this partition */
				b->pn = -1;
P
Paul Jackson 已提交
723 724
			}
		}
725
		nslot++;
P
Paul Jackson 已提交
726 727 728
	}
	BUG_ON(nslot != ndoms);

729 730 731
done:
	kfree(csa);

732 733 734 735 736 737 738
	/*
	 * Fallback to the default domain if kmalloc() failed.
	 * See comments in partition_sched_domains().
	 */
	if (doms == NULL)
		ndoms = 1;

739 740 741 742 743 744 745 746
	*domains    = doms;
	*attributes = dattr;
	return ndoms;
}

/*
 * Rebuild scheduler domains.
 *
747 748 749 750 751
 * If the flag 'sched_load_balance' of any cpuset with non-empty
 * 'cpus' changes, or if the 'cpus' allowed changes in any cpuset
 * which has that flag enabled, or if any cpuset with a non-empty
 * 'cpus' is removed, then call this routine to rebuild the
 * scheduler's dynamic sched domains.
752
 *
753
 * Call with cpuset_mutex held.  Takes get_online_cpus().
754
 */
755
static void rebuild_sched_domains_locked(void)
756 757
{
	struct sched_domain_attr *attr;
758
	cpumask_var_t *doms;
759 760
	int ndoms;

761
	lockdep_assert_held(&cpuset_mutex);
762
	get_online_cpus();
763

764 765 766 767 768 769 770 771
	/*
	 * We have raced with CPU hotplug. Don't do anything to avoid
	 * passing doms with offlined cpu to partition_sched_domains().
	 * Anyways, hotplug work item will rebuild sched domains.
	 */
	if (!cpumask_equal(top_cpuset.cpus_allowed, cpu_active_mask))
		goto out;

772 773 774 775 776
	/* Generate domain masks and attrs */
	ndoms = generate_sched_domains(&doms, &attr);

	/* Have scheduler rebuild the domains */
	partition_sched_domains(ndoms, doms, attr);
777
out:
778
	put_online_cpus();
779
}
780
#else /* !CONFIG_SMP */
781
static void rebuild_sched_domains_locked(void)
782 783 784
{
}
#endif /* CONFIG_SMP */
P
Paul Jackson 已提交
785

786 787
void rebuild_sched_domains(void)
{
788
	mutex_lock(&cpuset_mutex);
789
	rebuild_sched_domains_locked();
790
	mutex_unlock(&cpuset_mutex);
P
Paul Jackson 已提交
791 792
}

793 794 795
/*
 * effective_cpumask_cpuset - return nearest ancestor with non-empty cpus
 * @cs: the cpuset in interest
C
Cliff Wickman 已提交
796
 *
797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823
 * A cpuset's effective cpumask is the cpumask of the nearest ancestor
 * with non-empty cpus. We use effective cpumask whenever:
 * - we update tasks' cpus_allowed. (they take on the ancestor's cpumask
 *   if the cpuset they reside in has no cpus)
 * - we want to retrieve task_cs(tsk)'s cpus_allowed.
 *
 * Called with cpuset_mutex held. cpuset_cpus_allowed_fallback() is an
 * exception. See comments there.
 */
static struct cpuset *effective_cpumask_cpuset(struct cpuset *cs)
{
	while (cpumask_empty(cs->cpus_allowed))
		cs = parent_cs(cs);
	return cs;
}

/*
 * effective_nodemask_cpuset - return nearest ancestor with non-empty mems
 * @cs: the cpuset in interest
 *
 * A cpuset's effective nodemask is the nodemask of the nearest ancestor
 * with non-empty memss. We use effective nodemask whenever:
 * - we update tasks' mems_allowed. (they take on the ancestor's nodemask
 *   if the cpuset they reside in has no mems)
 * - we want to retrieve task_cs(tsk)'s mems_allowed.
 *
 * Called with cpuset_mutex held.
824
 */
825
static struct cpuset *effective_nodemask_cpuset(struct cpuset *cs)
C
Cliff Wickman 已提交
826
{
827 828 829
	while (nodes_empty(cs->mems_allowed))
		cs = parent_cs(cs);
	return cs;
C
Cliff Wickman 已提交
830
}
831

C
Cliff Wickman 已提交
832 833 834 835 836 837 838 839 840
/**
 * cpuset_change_cpumask - make a task's cpus_allowed the same as its cpuset's
 * @tsk: task to test
 * @scan: struct cgroup_scanner containing the cgroup of the task
 *
 * Called by cgroup_scan_tasks() for each task in a cgroup whose
 * cpus_allowed mask needs to be changed.
 *
 * We don't need to re-check for the cgroup/cpuset membership, since we're
841
 * holding cpuset_mutex at this point.
C
Cliff Wickman 已提交
842
 */
843 844
static void cpuset_change_cpumask(struct task_struct *tsk,
				  struct cgroup_scanner *scan)
C
Cliff Wickman 已提交
845
{
846 847 848 849
	struct cpuset *cpus_cs;

	cpus_cs = effective_cpumask_cpuset(cgroup_cs(scan->cg));
	set_cpus_allowed_ptr(tsk, cpus_cs->cpus_allowed);
C
Cliff Wickman 已提交
850 851
}

852 853 854
/**
 * update_tasks_cpumask - Update the cpumasks of tasks in the cpuset.
 * @cs: the cpuset in which each task's cpus_allowed mask needs to be changed
855
 * @heap: if NULL, defer allocating heap memory to cgroup_scan_tasks()
856
 *
857
 * Called with cpuset_mutex held
858 859 860 861
 *
 * The cgroup_scan_tasks() function will scan all the tasks in a cgroup,
 * calling callback functions for each.
 *
862 863
 * No return value. It's guaranteed that cgroup_scan_tasks() always returns 0
 * if @heap != NULL.
864
 */
865
static void update_tasks_cpumask(struct cpuset *cs, struct ptr_heap *heap)
866 867 868 869
{
	struct cgroup_scanner scan;

	scan.cg = cs->css.cgroup;
L
Li Zefan 已提交
870
	scan.test_task = NULL;
871
	scan.process_task = cpuset_change_cpumask;
872 873
	scan.heap = heap;
	cgroup_scan_tasks(&scan);
874 875
}

876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914
/*
 * update_tasks_cpumask_hier - Update the cpumasks of tasks in the hierarchy.
 * @root_cs: the root cpuset of the hierarchy
 * @update_root: update root cpuset or not?
 * @heap: the heap used by cgroup_scan_tasks()
 *
 * This will update cpumasks of tasks in @root_cs and all other empty cpusets
 * which take on cpumask of @root_cs.
 *
 * Called with cpuset_mutex held
 */
static void update_tasks_cpumask_hier(struct cpuset *root_cs,
				      bool update_root, struct ptr_heap *heap)
{
	struct cpuset *cp;
	struct cgroup *pos_cgrp;

	if (update_root)
		update_tasks_cpumask(root_cs, heap);

	rcu_read_lock();
	cpuset_for_each_descendant_pre(cp, pos_cgrp, root_cs) {
		/* skip the whole subtree if @cp have some CPU */
		if (!cpumask_empty(cp->cpus_allowed)) {
			pos_cgrp = cgroup_rightmost_descendant(pos_cgrp);
			continue;
		}
		if (!css_tryget(&cp->css))
			continue;
		rcu_read_unlock();

		update_tasks_cpumask(cp, heap);

		rcu_read_lock();
		css_put(&cp->css);
	}
	rcu_read_unlock();
}

C
Cliff Wickman 已提交
915 916 917 918 919
/**
 * update_cpumask - update the cpus_allowed mask of a cpuset and all tasks in it
 * @cs: the cpuset to consider
 * @buf: buffer of cpu numbers written to this cpuset
 */
920 921
static int update_cpumask(struct cpuset *cs, struct cpuset *trialcs,
			  const char *buf)
L
Linus Torvalds 已提交
922
{
923
	struct ptr_heap heap;
C
Cliff Wickman 已提交
924 925
	int retval;
	int is_load_balanced;
L
Linus Torvalds 已提交
926

927
	/* top_cpuset.cpus_allowed tracks cpu_online_mask; it's read-only */
928 929 930
	if (cs == &top_cpuset)
		return -EACCES;

931
	/*
932
	 * An empty cpus_allowed is ok only if the cpuset has no tasks.
933 934 935
	 * Since cpulist_parse() fails on an empty mask, we special case
	 * that parsing.  The validate_change() call ensures that cpusets
	 * with tasks have cpus.
936
	 */
937
	if (!*buf) {
938
		cpumask_clear(trialcs->cpus_allowed);
939
	} else {
940
		retval = cpulist_parse(buf, trialcs->cpus_allowed);
941 942
		if (retval < 0)
			return retval;
943

944
		if (!cpumask_subset(trialcs->cpus_allowed, cpu_active_mask))
945
			return -EINVAL;
946
	}
P
Paul Jackson 已提交
947

P
Paul Menage 已提交
948
	/* Nothing to do if the cpus didn't change */
949
	if (cpumask_equal(cs->cpus_allowed, trialcs->cpus_allowed))
P
Paul Menage 已提交
950
		return 0;
C
Cliff Wickman 已提交
951

952 953 954 955
	retval = validate_change(cs, trialcs);
	if (retval < 0)
		return retval;

956 957 958 959
	retval = heap_init(&heap, PAGE_SIZE, GFP_KERNEL, NULL);
	if (retval)
		return retval;

960
	is_load_balanced = is_sched_load_balance(trialcs);
P
Paul Jackson 已提交
961

962
	mutex_lock(&callback_mutex);
963
	cpumask_copy(cs->cpus_allowed, trialcs->cpus_allowed);
964
	mutex_unlock(&callback_mutex);
P
Paul Jackson 已提交
965

966
	update_tasks_cpumask_hier(cs, true, &heap);
967 968

	heap_free(&heap);
C
Cliff Wickman 已提交
969

P
Paul Menage 已提交
970
	if (is_load_balanced)
971
		rebuild_sched_domains_locked();
972
	return 0;
L
Linus Torvalds 已提交
973 974
}

975 976 977 978 979 980 981 982
/*
 * cpuset_migrate_mm
 *
 *    Migrate memory region from one set of nodes to another.
 *
 *    Temporarilly set tasks mems_allowed to target nodes of migration,
 *    so that the migration code can allocate pages on these nodes.
 *
983
 *    Call holding cpuset_mutex, so current's cpuset won't change
984
 *    during this call, as manage_mutex holds off any cpuset_attach()
985 986
 *    calls.  Therefore we don't need to take task_lock around the
 *    call to guarantee_online_mems(), as we know no one is changing
987
 *    our task's cpuset.
988 989 990 991 992 993 994 995 996 997 998
 *
 *    While the mm_struct we are migrating is typically from some
 *    other task, the task_struct mems_allowed that we are hacking
 *    is for our current task, which must allocate new pages for that
 *    migrating memory region.
 */

static void cpuset_migrate_mm(struct mm_struct *mm, const nodemask_t *from,
							const nodemask_t *to)
{
	struct task_struct *tsk = current;
999
	struct cpuset *mems_cs;
1000 1001 1002 1003 1004

	tsk->mems_allowed = *to;

	do_migrate_pages(mm, from, to, MPOL_MF_MOVE_ALL);

1005 1006
	mems_cs = effective_nodemask_cpuset(task_cs(tsk));
	guarantee_online_mems(mems_cs, &tsk->mems_allowed);
1007 1008
}

1009
/*
1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020
 * cpuset_change_task_nodemask - change task's mems_allowed and mempolicy
 * @tsk: the task to change
 * @newmems: new nodes that the task will be set
 *
 * In order to avoid seeing no nodes if the old and new nodes are disjoint,
 * we structure updates as setting all new allowed nodes, then clearing newly
 * disallowed ones.
 */
static void cpuset_change_task_nodemask(struct task_struct *tsk,
					nodemask_t *newmems)
{
1021
	bool need_loop;
1022

1023 1024 1025 1026 1027 1028 1029 1030 1031 1032
	/*
	 * Allow tasks that have access to memory reserves because they have
	 * been OOM killed to get memory anywhere.
	 */
	if (unlikely(test_thread_flag(TIF_MEMDIE)))
		return;
	if (current->flags & PF_EXITING) /* Let dying task have memory */
		return;

	task_lock(tsk);
1033 1034 1035 1036 1037 1038 1039 1040
	/*
	 * Determine if a loop is necessary if another thread is doing
	 * get_mems_allowed().  If at least one node remains unchanged and
	 * tsk does not have a mempolicy, then an empty nodemask will not be
	 * possible when mems_allowed is larger than a word.
	 */
	need_loop = task_has_mempolicy(tsk) ||
			!nodes_intersects(*newmems, tsk->mems_allowed);
1041

1042 1043
	if (need_loop)
		write_seqcount_begin(&tsk->mems_allowed_seq);
1044

1045 1046
	nodes_or(tsk->mems_allowed, tsk->mems_allowed, *newmems);
	mpol_rebind_task(tsk, newmems, MPOL_REBIND_STEP1);
1047 1048

	mpol_rebind_task(tsk, newmems, MPOL_REBIND_STEP2);
1049
	tsk->mems_allowed = *newmems;
1050 1051 1052 1053

	if (need_loop)
		write_seqcount_end(&tsk->mems_allowed_seq);

1054
	task_unlock(tsk);
1055 1056 1057 1058 1059
}

/*
 * Update task's mems_allowed and rebind its mempolicy and vmas' mempolicy
 * of it to cpuset's new mems_allowed, and migrate pages to new nodes if
1060
 * memory_migrate flag is set. Called with cpuset_mutex held.
1061 1062 1063 1064
 */
static void cpuset_change_nodemask(struct task_struct *p,
				   struct cgroup_scanner *scan)
{
1065
	struct cpuset *cs = cgroup_cs(scan->cg);
1066 1067
	struct mm_struct *mm;
	int migrate;
1068
	nodemask_t *newmems = scan->data;
1069

1070
	cpuset_change_task_nodemask(p, newmems);
1071

1072 1073 1074 1075 1076 1077 1078 1079
	mm = get_task_mm(p);
	if (!mm)
		return;

	migrate = is_memory_migrate(cs);

	mpol_rebind_mm(mm, &cs->mems_allowed);
	if (migrate)
1080
		cpuset_migrate_mm(mm, &cs->old_mems_allowed, newmems);
1081 1082 1083
	mmput(mm);
}

1084 1085
static void *cpuset_being_rebound;

1086 1087 1088
/**
 * update_tasks_nodemask - Update the nodemasks of tasks in the cpuset.
 * @cs: the cpuset in which each task's mems_allowed mask needs to be changed
1089
 * @heap: if NULL, defer allocating heap memory to cgroup_scan_tasks()
1090
 *
1091
 * Called with cpuset_mutex held
1092 1093
 * No return value. It's guaranteed that cgroup_scan_tasks() always returns 0
 * if @heap != NULL.
1094
 */
1095
static void update_tasks_nodemask(struct cpuset *cs, struct ptr_heap *heap)
L
Linus Torvalds 已提交
1096
{
1097
	static nodemask_t newmems;	/* protected by cpuset_mutex */
1098
	struct cgroup_scanner scan;
1099
	struct cpuset *mems_cs = effective_nodemask_cpuset(cs);
1100

1101
	cpuset_being_rebound = cs;		/* causes mpol_dup() rebind */
1102

1103
	guarantee_online_mems(mems_cs, &newmems);
1104

1105 1106 1107
	scan.cg = cs->css.cgroup;
	scan.test_task = NULL;
	scan.process_task = cpuset_change_nodemask;
1108
	scan.heap = heap;
1109
	scan.data = &newmems;
1110 1111

	/*
1112 1113 1114 1115
	 * The mpol_rebind_mm() call takes mmap_sem, which we couldn't
	 * take while holding tasklist_lock.  Forks can happen - the
	 * mpol_dup() cpuset_being_rebound check will catch such forks,
	 * and rebind their vma mempolicies too.  Because we still hold
1116
	 * the global cpuset_mutex, we know that no other rebind effort
1117
	 * will be contending for the global variable cpuset_being_rebound.
1118
	 * It's ok if we rebind the same mm twice; mpol_rebind_mm()
1119
	 * is idempotent.  Also migrate pages in each mm to new nodes.
1120
	 */
1121
	cgroup_scan_tasks(&scan);
1122

1123 1124 1125 1126 1127 1128
	/*
	 * All the tasks' nodemasks have been updated, update
	 * cs->old_mems_allowed.
	 */
	cs->old_mems_allowed = newmems;

1129
	/* We're done rebinding vmas to this cpuset's new mems_allowed. */
1130
	cpuset_being_rebound = NULL;
L
Linus Torvalds 已提交
1131 1132
}

1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171
/*
 * update_tasks_nodemask_hier - Update the nodemasks of tasks in the hierarchy.
 * @cs: the root cpuset of the hierarchy
 * @update_root: update the root cpuset or not?
 * @heap: the heap used by cgroup_scan_tasks()
 *
 * This will update nodemasks of tasks in @root_cs and all other empty cpusets
 * which take on nodemask of @root_cs.
 *
 * Called with cpuset_mutex held
 */
static void update_tasks_nodemask_hier(struct cpuset *root_cs,
				       bool update_root, struct ptr_heap *heap)
{
	struct cpuset *cp;
	struct cgroup *pos_cgrp;

	if (update_root)
		update_tasks_nodemask(root_cs, heap);

	rcu_read_lock();
	cpuset_for_each_descendant_pre(cp, pos_cgrp, root_cs) {
		/* skip the whole subtree if @cp have some CPU */
		if (!nodes_empty(cp->mems_allowed)) {
			pos_cgrp = cgroup_rightmost_descendant(pos_cgrp);
			continue;
		}
		if (!css_tryget(&cp->css))
			continue;
		rcu_read_unlock();

		update_tasks_nodemask(cp, heap);

		rcu_read_lock();
		css_put(&cp->css);
	}
	rcu_read_unlock();
}

1172 1173 1174
/*
 * Handle user request to change the 'mems' memory placement
 * of a cpuset.  Needs to validate the request, update the
1175 1176 1177 1178
 * cpusets mems_allowed, and for each task in the cpuset,
 * update mems_allowed and rebind task's mempolicy and any vma
 * mempolicies and if the cpuset is marked 'memory_migrate',
 * migrate the tasks pages to the new memory.
1179
 *
1180
 * Call with cpuset_mutex held.  May take callback_mutex during call.
1181 1182 1183 1184
 * Will take tasklist_lock, scan tasklist for tasks in cpuset cs,
 * lock each such tasks mm->mmap_sem, scan its vma's and rebind
 * their mempolicies to the cpusets new mems_allowed.
 */
1185 1186
static int update_nodemask(struct cpuset *cs, struct cpuset *trialcs,
			   const char *buf)
1187 1188
{
	int retval;
1189
	struct ptr_heap heap;
1190 1191

	/*
1192
	 * top_cpuset.mems_allowed tracks node_stats[N_MEMORY];
1193 1194
	 * it's read-only
	 */
1195 1196 1197 1198
	if (cs == &top_cpuset) {
		retval = -EACCES;
		goto done;
	}
1199 1200 1201 1202 1203 1204 1205 1206

	/*
	 * An empty mems_allowed is ok iff there are no tasks in the cpuset.
	 * Since nodelist_parse() fails on an empty mask, we special case
	 * that parsing.  The validate_change() call ensures that cpusets
	 * with tasks have memory.
	 */
	if (!*buf) {
1207
		nodes_clear(trialcs->mems_allowed);
1208
	} else {
1209
		retval = nodelist_parse(buf, trialcs->mems_allowed);
1210 1211 1212
		if (retval < 0)
			goto done;

1213
		if (!nodes_subset(trialcs->mems_allowed,
1214
				node_states[N_MEMORY])) {
1215 1216 1217
			retval =  -EINVAL;
			goto done;
		}
1218
	}
1219 1220

	if (nodes_equal(cs->mems_allowed, trialcs->mems_allowed)) {
1221 1222 1223
		retval = 0;		/* Too easy - nothing to do */
		goto done;
	}
1224
	retval = validate_change(cs, trialcs);
1225 1226 1227
	if (retval < 0)
		goto done;

1228 1229 1230 1231
	retval = heap_init(&heap, PAGE_SIZE, GFP_KERNEL, NULL);
	if (retval < 0)
		goto done;

1232
	mutex_lock(&callback_mutex);
1233
	cs->mems_allowed = trialcs->mems_allowed;
1234 1235
	mutex_unlock(&callback_mutex);

1236
	update_tasks_nodemask_hier(cs, true, &heap);
1237 1238

	heap_free(&heap);
1239 1240 1241 1242
done:
	return retval;
}

1243 1244 1245 1246 1247
int current_cpuset_is_being_rebound(void)
{
	return task_cs(current) == cpuset_being_rebound;
}

1248
static int update_relax_domain_level(struct cpuset *cs, s64 val)
1249
{
1250
#ifdef CONFIG_SMP
1251
	if (val < -1 || val >= sched_domain_level_max)
1252
		return -EINVAL;
1253
#endif
1254 1255 1256

	if (val != cs->relax_domain_level) {
		cs->relax_domain_level = val;
1257 1258
		if (!cpumask_empty(cs->cpus_allowed) &&
		    is_sched_load_balance(cs))
1259
			rebuild_sched_domains_locked();
1260 1261 1262 1263 1264
	}

	return 0;
}

1265 1266 1267 1268 1269 1270 1271 1272
/*
 * cpuset_change_flag - make a task's spread flags the same as its cpuset's
 * @tsk: task to be updated
 * @scan: struct cgroup_scanner containing the cgroup of the task
 *
 * Called by cgroup_scan_tasks() for each task in a cgroup.
 *
 * We don't need to re-check for the cgroup/cpuset membership, since we're
1273
 * holding cpuset_mutex at this point.
1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285
 */
static void cpuset_change_flag(struct task_struct *tsk,
				struct cgroup_scanner *scan)
{
	cpuset_update_task_spread_flag(cgroup_cs(scan->cg), tsk);
}

/*
 * update_tasks_flags - update the spread flags of tasks in the cpuset.
 * @cs: the cpuset in which each task's spread flags needs to be changed
 * @heap: if NULL, defer allocating heap memory to cgroup_scan_tasks()
 *
1286
 * Called with cpuset_mutex held
1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304
 *
 * The cgroup_scan_tasks() function will scan all the tasks in a cgroup,
 * calling callback functions for each.
 *
 * No return value. It's guaranteed that cgroup_scan_tasks() always returns 0
 * if @heap != NULL.
 */
static void update_tasks_flags(struct cpuset *cs, struct ptr_heap *heap)
{
	struct cgroup_scanner scan;

	scan.cg = cs->css.cgroup;
	scan.test_task = NULL;
	scan.process_task = cpuset_change_flag;
	scan.heap = heap;
	cgroup_scan_tasks(&scan);
}

L
Linus Torvalds 已提交
1305 1306
/*
 * update_flag - read a 0 or a 1 in a file and update associated flag
1307 1308 1309
 * bit:		the bit to update (see cpuset_flagbits_t)
 * cs:		the cpuset to update
 * turning_on: 	whether the flag is being set or cleared
1310
 *
1311
 * Call with cpuset_mutex held.
L
Linus Torvalds 已提交
1312 1313
 */

1314 1315
static int update_flag(cpuset_flagbits_t bit, struct cpuset *cs,
		       int turning_on)
L
Linus Torvalds 已提交
1316
{
1317
	struct cpuset *trialcs;
R
Rakib Mullick 已提交
1318
	int balance_flag_changed;
1319 1320 1321
	int spread_flag_changed;
	struct ptr_heap heap;
	int err;
L
Linus Torvalds 已提交
1322

1323 1324 1325 1326
	trialcs = alloc_trial_cpuset(cs);
	if (!trialcs)
		return -ENOMEM;

L
Linus Torvalds 已提交
1327
	if (turning_on)
1328
		set_bit(bit, &trialcs->flags);
L
Linus Torvalds 已提交
1329
	else
1330
		clear_bit(bit, &trialcs->flags);
L
Linus Torvalds 已提交
1331

1332
	err = validate_change(cs, trialcs);
1333
	if (err < 0)
1334
		goto out;
P
Paul Jackson 已提交
1335

1336 1337 1338 1339
	err = heap_init(&heap, PAGE_SIZE, GFP_KERNEL, NULL);
	if (err < 0)
		goto out;

P
Paul Jackson 已提交
1340
	balance_flag_changed = (is_sched_load_balance(cs) !=
1341
				is_sched_load_balance(trialcs));
P
Paul Jackson 已提交
1342

1343 1344 1345
	spread_flag_changed = ((is_spread_slab(cs) != is_spread_slab(trialcs))
			|| (is_spread_page(cs) != is_spread_page(trialcs)));

1346
	mutex_lock(&callback_mutex);
1347
	cs->flags = trialcs->flags;
1348
	mutex_unlock(&callback_mutex);
1349

1350
	if (!cpumask_empty(trialcs->cpus_allowed) && balance_flag_changed)
1351
		rebuild_sched_domains_locked();
P
Paul Jackson 已提交
1352

1353 1354 1355
	if (spread_flag_changed)
		update_tasks_flags(cs, &heap);
	heap_free(&heap);
1356 1357 1358
out:
	free_trial_cpuset(trialcs);
	return err;
L
Linus Torvalds 已提交
1359 1360
}

1361
/*
A
Adrian Bunk 已提交
1362
 * Frequency meter - How fast is some event occurring?
1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458
 *
 * These routines manage a digitally filtered, constant time based,
 * event frequency meter.  There are four routines:
 *   fmeter_init() - initialize a frequency meter.
 *   fmeter_markevent() - called each time the event happens.
 *   fmeter_getrate() - returns the recent rate of such events.
 *   fmeter_update() - internal routine used to update fmeter.
 *
 * A common data structure is passed to each of these routines,
 * which is used to keep track of the state required to manage the
 * frequency meter and its digital filter.
 *
 * The filter works on the number of events marked per unit time.
 * The filter is single-pole low-pass recursive (IIR).  The time unit
 * is 1 second.  Arithmetic is done using 32-bit integers scaled to
 * simulate 3 decimal digits of precision (multiplied by 1000).
 *
 * With an FM_COEF of 933, and a time base of 1 second, the filter
 * has a half-life of 10 seconds, meaning that if the events quit
 * happening, then the rate returned from the fmeter_getrate()
 * will be cut in half each 10 seconds, until it converges to zero.
 *
 * It is not worth doing a real infinitely recursive filter.  If more
 * than FM_MAXTICKS ticks have elapsed since the last filter event,
 * just compute FM_MAXTICKS ticks worth, by which point the level
 * will be stable.
 *
 * Limit the count of unprocessed events to FM_MAXCNT, so as to avoid
 * arithmetic overflow in the fmeter_update() routine.
 *
 * Given the simple 32 bit integer arithmetic used, this meter works
 * best for reporting rates between one per millisecond (msec) and
 * one per 32 (approx) seconds.  At constant rates faster than one
 * per msec it maxes out at values just under 1,000,000.  At constant
 * rates between one per msec, and one per second it will stabilize
 * to a value N*1000, where N is the rate of events per second.
 * At constant rates between one per second and one per 32 seconds,
 * it will be choppy, moving up on the seconds that have an event,
 * and then decaying until the next event.  At rates slower than
 * about one in 32 seconds, it decays all the way back to zero between
 * each event.
 */

#define FM_COEF 933		/* coefficient for half-life of 10 secs */
#define FM_MAXTICKS ((time_t)99) /* useless computing more ticks than this */
#define FM_MAXCNT 1000000	/* limit cnt to avoid overflow */
#define FM_SCALE 1000		/* faux fixed point scale */

/* Initialize a frequency meter */
static void fmeter_init(struct fmeter *fmp)
{
	fmp->cnt = 0;
	fmp->val = 0;
	fmp->time = 0;
	spin_lock_init(&fmp->lock);
}

/* Internal meter update - process cnt events and update value */
static void fmeter_update(struct fmeter *fmp)
{
	time_t now = get_seconds();
	time_t ticks = now - fmp->time;

	if (ticks == 0)
		return;

	ticks = min(FM_MAXTICKS, ticks);
	while (ticks-- > 0)
		fmp->val = (FM_COEF * fmp->val) / FM_SCALE;
	fmp->time = now;

	fmp->val += ((FM_SCALE - FM_COEF) * fmp->cnt) / FM_SCALE;
	fmp->cnt = 0;
}

/* Process any previous ticks, then bump cnt by one (times scale). */
static void fmeter_markevent(struct fmeter *fmp)
{
	spin_lock(&fmp->lock);
	fmeter_update(fmp);
	fmp->cnt = min(FM_MAXCNT, fmp->cnt + FM_SCALE);
	spin_unlock(&fmp->lock);
}

/* Process any previous ticks, then return current value. */
static int fmeter_getrate(struct fmeter *fmp)
{
	int val;

	spin_lock(&fmp->lock);
	fmeter_update(fmp);
	val = fmp->val;
	spin_unlock(&fmp->lock);
	return val;
}

1459
/* Called by cgroups to determine if a cpuset is usable; cpuset_mutex held */
1460
static int cpuset_can_attach(struct cgroup *cgrp, struct cgroup_taskset *tset)
1461
{
1462
	struct cpuset *cs = cgroup_cs(cgrp);
1463 1464
	struct task_struct *task;
	int ret;
L
Linus Torvalds 已提交
1465

1466 1467
	mutex_lock(&cpuset_mutex);

1468 1469 1470 1471
	/*
	 * We allow to move tasks into an empty cpuset if sane_behavior
	 * flag is set.
	 */
1472
	ret = -ENOSPC;
1473 1474
	if (!cgroup_sane_behavior(cgrp) &&
	    (cpumask_empty(cs->cpus_allowed) || nodes_empty(cs->mems_allowed)))
1475
		goto out_unlock;
1476

1477 1478
	cgroup_taskset_for_each(task, cgrp, tset) {
		/*
1479 1480 1481 1482 1483 1484 1485
		 * Kthreads which disallow setaffinity shouldn't be moved
		 * to a new cpuset; we don't want to change their cpu
		 * affinity and isolating such threads by their set of
		 * allowed nodes is unnecessary.  Thus, cpusets are not
		 * applicable for such threads.  This prevents checking for
		 * success of set_cpus_allowed_ptr() on all attached tasks
		 * before cpus_allowed may be changed.
1486
		 */
1487
		ret = -EINVAL;
1488
		if (task->flags & PF_NO_SETAFFINITY)
1489 1490 1491 1492
			goto out_unlock;
		ret = security_task_setscheduler(task);
		if (ret)
			goto out_unlock;
1493
	}
1494

1495 1496 1497 1498 1499
	/*
	 * Mark attach is in progress.  This makes validate_change() fail
	 * changes which zero cpus/mems_allowed.
	 */
	cs->attach_in_progress++;
1500 1501 1502 1503
	ret = 0;
out_unlock:
	mutex_unlock(&cpuset_mutex);
	return ret;
1504
}
1505

1506 1507 1508
static void cpuset_cancel_attach(struct cgroup *cgrp,
				 struct cgroup_taskset *tset)
{
1509
	mutex_lock(&cpuset_mutex);
1510
	cgroup_cs(cgrp)->attach_in_progress--;
1511
	mutex_unlock(&cpuset_mutex);
1512
}
L
Linus Torvalds 已提交
1513

1514
/*
1515
 * Protected by cpuset_mutex.  cpus_attach is used only by cpuset_attach()
1516 1517 1518 1519 1520
 * but we can't allocate it dynamically there.  Define it global and
 * allocate from cpuset_init().
 */
static cpumask_var_t cpus_attach;

1521
static void cpuset_attach(struct cgroup *cgrp, struct cgroup_taskset *tset)
1522
{
1523
	/* static buf protected by cpuset_mutex */
1524
	static nodemask_t cpuset_attach_nodemask_to;
1525
	struct mm_struct *mm;
1526 1527
	struct task_struct *task;
	struct task_struct *leader = cgroup_taskset_first(tset);
1528 1529 1530
	struct cgroup *oldcgrp = cgroup_taskset_cur_cgroup(tset);
	struct cpuset *cs = cgroup_cs(cgrp);
	struct cpuset *oldcs = cgroup_cs(oldcgrp);
1531 1532
	struct cpuset *cpus_cs = effective_cpumask_cpuset(cs);
	struct cpuset *mems_cs = effective_nodemask_cpuset(cs);
1533

1534 1535
	mutex_lock(&cpuset_mutex);

1536 1537 1538 1539
	/* prepare for attach */
	if (cs == &top_cpuset)
		cpumask_copy(cpus_attach, cpu_possible_mask);
	else
1540
		guarantee_online_cpus(cpus_cs, cpus_attach);
1541

1542
	guarantee_online_mems(mems_cs, &cpuset_attach_nodemask_to);
1543

1544 1545 1546 1547 1548 1549 1550 1551 1552 1553
	cgroup_taskset_for_each(task, cgrp, tset) {
		/*
		 * can_attach beforehand should guarantee that this doesn't
		 * fail.  TODO: have a better way to handle failure here
		 */
		WARN_ON_ONCE(set_cpus_allowed_ptr(task, cpus_attach));

		cpuset_change_task_nodemask(task, &cpuset_attach_nodemask_to);
		cpuset_update_task_spread_flag(cs, task);
	}
1554

1555 1556 1557 1558 1559
	/*
	 * Change mm, possibly for multiple threads in a threadgroup. This is
	 * expensive and may sleep.
	 */
	cpuset_attach_nodemask_to = cs->mems_allowed;
1560
	mm = get_task_mm(leader);
1561
	if (mm) {
1562 1563
		struct cpuset *mems_oldcs = effective_nodemask_cpuset(oldcs);

1564
		mpol_rebind_mm(mm, &cpuset_attach_nodemask_to);
1565 1566 1567 1568 1569 1570 1571 1572 1573 1574

		/*
		 * old_mems_allowed is the same with mems_allowed here, except
		 * if this task is being moved automatically due to hotplug.
		 * In that case @mems_allowed has been updated and is empty,
		 * so @old_mems_allowed is the right nodesets that we migrate
		 * mm from.
		 */
		if (is_memory_migrate(cs)) {
			cpuset_migrate_mm(mm, &mems_oldcs->old_mems_allowed,
1575
					  &cpuset_attach_nodemask_to);
1576
		}
1577 1578
		mmput(mm);
	}
1579

1580
	cs->old_mems_allowed = cpuset_attach_nodemask_to;
1581

1582
	cs->attach_in_progress--;
1583 1584
	if (!cs->attach_in_progress)
		wake_up(&cpuset_attach_wq);
1585 1586

	mutex_unlock(&cpuset_mutex);
L
Linus Torvalds 已提交
1587 1588 1589 1590 1591
}

/* The various types of files and directories in a cpuset file system */

typedef enum {
1592
	FILE_MEMORY_MIGRATE,
L
Linus Torvalds 已提交
1593 1594 1595 1596
	FILE_CPULIST,
	FILE_MEMLIST,
	FILE_CPU_EXCLUSIVE,
	FILE_MEM_EXCLUSIVE,
1597
	FILE_MEM_HARDWALL,
P
Paul Jackson 已提交
1598
	FILE_SCHED_LOAD_BALANCE,
1599
	FILE_SCHED_RELAX_DOMAIN_LEVEL,
1600 1601
	FILE_MEMORY_PRESSURE_ENABLED,
	FILE_MEMORY_PRESSURE,
1602 1603
	FILE_SPREAD_PAGE,
	FILE_SPREAD_SLAB,
L
Linus Torvalds 已提交
1604 1605
} cpuset_filetype_t;

1606 1607 1608 1609
static int cpuset_write_u64(struct cgroup *cgrp, struct cftype *cft, u64 val)
{
	struct cpuset *cs = cgroup_cs(cgrp);
	cpuset_filetype_t type = cft->private;
1610
	int retval = -ENODEV;
1611

1612 1613 1614
	mutex_lock(&cpuset_mutex);
	if (!is_cpuset_online(cs))
		goto out_unlock;
1615 1616

	switch (type) {
L
Linus Torvalds 已提交
1617
	case FILE_CPU_EXCLUSIVE:
1618
		retval = update_flag(CS_CPU_EXCLUSIVE, cs, val);
L
Linus Torvalds 已提交
1619 1620
		break;
	case FILE_MEM_EXCLUSIVE:
1621
		retval = update_flag(CS_MEM_EXCLUSIVE, cs, val);
L
Linus Torvalds 已提交
1622
		break;
1623 1624 1625
	case FILE_MEM_HARDWALL:
		retval = update_flag(CS_MEM_HARDWALL, cs, val);
		break;
P
Paul Jackson 已提交
1626
	case FILE_SCHED_LOAD_BALANCE:
1627
		retval = update_flag(CS_SCHED_LOAD_BALANCE, cs, val);
1628
		break;
1629
	case FILE_MEMORY_MIGRATE:
1630
		retval = update_flag(CS_MEMORY_MIGRATE, cs, val);
1631
		break;
1632
	case FILE_MEMORY_PRESSURE_ENABLED:
1633
		cpuset_memory_pressure_enabled = !!val;
1634 1635 1636 1637
		break;
	case FILE_MEMORY_PRESSURE:
		retval = -EACCES;
		break;
1638
	case FILE_SPREAD_PAGE:
1639
		retval = update_flag(CS_SPREAD_PAGE, cs, val);
1640 1641
		break;
	case FILE_SPREAD_SLAB:
1642
		retval = update_flag(CS_SPREAD_SLAB, cs, val);
1643
		break;
L
Linus Torvalds 已提交
1644 1645
	default:
		retval = -EINVAL;
1646
		break;
L
Linus Torvalds 已提交
1647
	}
1648 1649
out_unlock:
	mutex_unlock(&cpuset_mutex);
L
Linus Torvalds 已提交
1650 1651 1652
	return retval;
}

1653 1654 1655 1656
static int cpuset_write_s64(struct cgroup *cgrp, struct cftype *cft, s64 val)
{
	struct cpuset *cs = cgroup_cs(cgrp);
	cpuset_filetype_t type = cft->private;
1657
	int retval = -ENODEV;
1658

1659 1660 1661
	mutex_lock(&cpuset_mutex);
	if (!is_cpuset_online(cs))
		goto out_unlock;
1662

1663 1664 1665 1666 1667 1668 1669 1670
	switch (type) {
	case FILE_SCHED_RELAX_DOMAIN_LEVEL:
		retval = update_relax_domain_level(cs, val);
		break;
	default:
		retval = -EINVAL;
		break;
	}
1671 1672
out_unlock:
	mutex_unlock(&cpuset_mutex);
1673 1674 1675
	return retval;
}

1676 1677 1678 1679 1680 1681
/*
 * Common handling for a write to a "cpus" or "mems" file.
 */
static int cpuset_write_resmask(struct cgroup *cgrp, struct cftype *cft,
				const char *buf)
{
1682 1683
	struct cpuset *cs = cgroup_cs(cgrp);
	struct cpuset *trialcs;
1684
	int retval = -ENODEV;
1685

1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698
	/*
	 * CPU or memory hotunplug may leave @cs w/o any execution
	 * resources, in which case the hotplug code asynchronously updates
	 * configuration and transfers all tasks to the nearest ancestor
	 * which can execute.
	 *
	 * As writes to "cpus" or "mems" may restore @cs's execution
	 * resources, wait for the previously scheduled operations before
	 * proceeding, so that we don't end up keep removing tasks added
	 * after execution capability is restored.
	 */
	flush_work(&cpuset_hotplug_work);

1699 1700 1701
	mutex_lock(&cpuset_mutex);
	if (!is_cpuset_online(cs))
		goto out_unlock;
1702

1703
	trialcs = alloc_trial_cpuset(cs);
1704 1705
	if (!trialcs) {
		retval = -ENOMEM;
1706
		goto out_unlock;
1707
	}
1708

1709 1710
	switch (cft->private) {
	case FILE_CPULIST:
1711
		retval = update_cpumask(cs, trialcs, buf);
1712 1713
		break;
	case FILE_MEMLIST:
1714
		retval = update_nodemask(cs, trialcs, buf);
1715 1716 1717 1718 1719
		break;
	default:
		retval = -EINVAL;
		break;
	}
1720 1721

	free_trial_cpuset(trialcs);
1722 1723
out_unlock:
	mutex_unlock(&cpuset_mutex);
1724 1725 1726
	return retval;
}

L
Linus Torvalds 已提交
1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738
/*
 * These ascii lists should be read in a single call, by using a user
 * buffer large enough to hold the entire map.  If read in smaller
 * chunks, there is no guarantee of atomicity.  Since the display format
 * used, list of ranges of sequential numbers, is variable length,
 * and since these maps can change value dynamically, one could read
 * gibberish by doing partial reads while a list was changing.
 * A single large read to a buffer that crosses a page boundary is
 * ok, because the result being copied to user land is not recomputed
 * across a page fault.
 */

1739
static size_t cpuset_sprintf_cpulist(char *page, struct cpuset *cs)
L
Linus Torvalds 已提交
1740
{
1741
	size_t count;
L
Linus Torvalds 已提交
1742

1743
	mutex_lock(&callback_mutex);
1744
	count = cpulist_scnprintf(page, PAGE_SIZE, cs->cpus_allowed);
1745
	mutex_unlock(&callback_mutex);
L
Linus Torvalds 已提交
1746

1747
	return count;
L
Linus Torvalds 已提交
1748 1749
}

1750
static size_t cpuset_sprintf_memlist(char *page, struct cpuset *cs)
L
Linus Torvalds 已提交
1751
{
1752
	size_t count;
L
Linus Torvalds 已提交
1753

1754
	mutex_lock(&callback_mutex);
1755
	count = nodelist_scnprintf(page, PAGE_SIZE, cs->mems_allowed);
1756
	mutex_unlock(&callback_mutex);
L
Linus Torvalds 已提交
1757

1758
	return count;
L
Linus Torvalds 已提交
1759 1760
}

L
Li Zefan 已提交
1761
static ssize_t cpuset_common_file_read(struct cgroup *cgrp,
1762 1763 1764 1765
				       struct cftype *cft,
				       struct file *file,
				       char __user *buf,
				       size_t nbytes, loff_t *ppos)
L
Linus Torvalds 已提交
1766
{
L
Li Zefan 已提交
1767
	struct cpuset *cs = cgroup_cs(cgrp);
L
Linus Torvalds 已提交
1768 1769 1770 1771 1772
	cpuset_filetype_t type = cft->private;
	char *page;
	ssize_t retval = 0;
	char *s;

1773
	if (!(page = (char *)__get_free_page(GFP_TEMPORARY)))
L
Linus Torvalds 已提交
1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790
		return -ENOMEM;

	s = page;

	switch (type) {
	case FILE_CPULIST:
		s += cpuset_sprintf_cpulist(s, cs);
		break;
	case FILE_MEMLIST:
		s += cpuset_sprintf_memlist(s, cs);
		break;
	default:
		retval = -EINVAL;
		goto out;
	}
	*s++ = '\n';

A
Al Viro 已提交
1791
	retval = simple_read_from_buffer(buf, nbytes, ppos, page, s - page);
L
Linus Torvalds 已提交
1792 1793 1794 1795 1796
out:
	free_page((unsigned long)page);
	return retval;
}

L
Li Zefan 已提交
1797
static u64 cpuset_read_u64(struct cgroup *cgrp, struct cftype *cft)
1798
{
L
Li Zefan 已提交
1799
	struct cpuset *cs = cgroup_cs(cgrp);
1800 1801 1802 1803 1804 1805
	cpuset_filetype_t type = cft->private;
	switch (type) {
	case FILE_CPU_EXCLUSIVE:
		return is_cpu_exclusive(cs);
	case FILE_MEM_EXCLUSIVE:
		return is_mem_exclusive(cs);
1806 1807
	case FILE_MEM_HARDWALL:
		return is_mem_hardwall(cs);
1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822
	case FILE_SCHED_LOAD_BALANCE:
		return is_sched_load_balance(cs);
	case FILE_MEMORY_MIGRATE:
		return is_memory_migrate(cs);
	case FILE_MEMORY_PRESSURE_ENABLED:
		return cpuset_memory_pressure_enabled;
	case FILE_MEMORY_PRESSURE:
		return fmeter_getrate(&cs->fmeter);
	case FILE_SPREAD_PAGE:
		return is_spread_page(cs);
	case FILE_SPREAD_SLAB:
		return is_spread_slab(cs);
	default:
		BUG();
	}
1823 1824 1825

	/* Unreachable but makes gcc happy */
	return 0;
1826
}
L
Linus Torvalds 已提交
1827

L
Li Zefan 已提交
1828
static s64 cpuset_read_s64(struct cgroup *cgrp, struct cftype *cft)
1829
{
L
Li Zefan 已提交
1830
	struct cpuset *cs = cgroup_cs(cgrp);
1831 1832 1833 1834 1835 1836 1837
	cpuset_filetype_t type = cft->private;
	switch (type) {
	case FILE_SCHED_RELAX_DOMAIN_LEVEL:
		return cs->relax_domain_level;
	default:
		BUG();
	}
1838 1839 1840

	/* Unrechable but makes gcc happy */
	return 0;
1841 1842
}

L
Linus Torvalds 已提交
1843 1844 1845 1846 1847

/*
 * for the common functions, 'private' gives the type of file
 */

1848 1849 1850 1851
static struct cftype files[] = {
	{
		.name = "cpus",
		.read = cpuset_common_file_read,
1852 1853
		.write_string = cpuset_write_resmask,
		.max_write_len = (100U + 6 * NR_CPUS),
1854 1855 1856 1857 1858 1859
		.private = FILE_CPULIST,
	},

	{
		.name = "mems",
		.read = cpuset_common_file_read,
1860 1861
		.write_string = cpuset_write_resmask,
		.max_write_len = (100U + 6 * MAX_NUMNODES),
1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878
		.private = FILE_MEMLIST,
	},

	{
		.name = "cpu_exclusive",
		.read_u64 = cpuset_read_u64,
		.write_u64 = cpuset_write_u64,
		.private = FILE_CPU_EXCLUSIVE,
	},

	{
		.name = "mem_exclusive",
		.read_u64 = cpuset_read_u64,
		.write_u64 = cpuset_write_u64,
		.private = FILE_MEM_EXCLUSIVE,
	},

1879 1880 1881 1882 1883 1884 1885
	{
		.name = "mem_hardwall",
		.read_u64 = cpuset_read_u64,
		.write_u64 = cpuset_write_u64,
		.private = FILE_MEM_HARDWALL,
	},

1886 1887 1888 1889 1890 1891 1892 1893 1894
	{
		.name = "sched_load_balance",
		.read_u64 = cpuset_read_u64,
		.write_u64 = cpuset_write_u64,
		.private = FILE_SCHED_LOAD_BALANCE,
	},

	{
		.name = "sched_relax_domain_level",
1895 1896
		.read_s64 = cpuset_read_s64,
		.write_s64 = cpuset_write_s64,
1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911
		.private = FILE_SCHED_RELAX_DOMAIN_LEVEL,
	},

	{
		.name = "memory_migrate",
		.read_u64 = cpuset_read_u64,
		.write_u64 = cpuset_write_u64,
		.private = FILE_MEMORY_MIGRATE,
	},

	{
		.name = "memory_pressure",
		.read_u64 = cpuset_read_u64,
		.write_u64 = cpuset_write_u64,
		.private = FILE_MEMORY_PRESSURE,
L
Li Zefan 已提交
1912
		.mode = S_IRUGO,
1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927
	},

	{
		.name = "memory_spread_page",
		.read_u64 = cpuset_read_u64,
		.write_u64 = cpuset_write_u64,
		.private = FILE_SPREAD_PAGE,
	},

	{
		.name = "memory_spread_slab",
		.read_u64 = cpuset_read_u64,
		.write_u64 = cpuset_write_u64,
		.private = FILE_SPREAD_SLAB,
	},
1928

1929 1930 1931 1932 1933 1934 1935
	{
		.name = "memory_pressure_enabled",
		.flags = CFTYPE_ONLY_ON_ROOT,
		.read_u64 = cpuset_read_u64,
		.write_u64 = cpuset_write_u64,
		.private = FILE_MEMORY_PRESSURE_ENABLED,
	},
L
Linus Torvalds 已提交
1936

1937 1938
	{ }	/* terminate */
};
L
Linus Torvalds 已提交
1939 1940

/*
1941
 *	cpuset_css_alloc - allocate a cpuset css
L
Li Zefan 已提交
1942
 *	cgrp:	control group that the new cpuset will be part of
L
Linus Torvalds 已提交
1943 1944
 */

L
Li Zefan 已提交
1945
static struct cgroup_subsys_state *cpuset_css_alloc(struct cgroup *cgrp)
L
Linus Torvalds 已提交
1946
{
T
Tejun Heo 已提交
1947
	struct cpuset *cs;
L
Linus Torvalds 已提交
1948

L
Li Zefan 已提交
1949
	if (!cgrp->parent)
1950
		return &top_cpuset.css;
1951

T
Tejun Heo 已提交
1952
	cs = kzalloc(sizeof(*cs), GFP_KERNEL);
L
Linus Torvalds 已提交
1953
	if (!cs)
1954
		return ERR_PTR(-ENOMEM);
1955 1956 1957 1958
	if (!alloc_cpumask_var(&cs->cpus_allowed, GFP_KERNEL)) {
		kfree(cs);
		return ERR_PTR(-ENOMEM);
	}
L
Linus Torvalds 已提交
1959

P
Paul Jackson 已提交
1960
	set_bit(CS_SCHED_LOAD_BALANCE, &cs->flags);
1961
	cpumask_clear(cs->cpus_allowed);
1962
	nodes_clear(cs->mems_allowed);
1963
	fmeter_init(&cs->fmeter);
1964
	cs->relax_domain_level = -1;
L
Linus Torvalds 已提交
1965

T
Tejun Heo 已提交
1966 1967 1968 1969 1970 1971
	return &cs->css;
}

static int cpuset_css_online(struct cgroup *cgrp)
{
	struct cpuset *cs = cgroup_cs(cgrp);
T
Tejun Heo 已提交
1972
	struct cpuset *parent = parent_cs(cs);
1973 1974
	struct cpuset *tmp_cs;
	struct cgroup *pos_cg;
T
Tejun Heo 已提交
1975 1976 1977 1978

	if (!parent)
		return 0;

1979 1980
	mutex_lock(&cpuset_mutex);

T
Tejun Heo 已提交
1981
	set_bit(CS_ONLINE, &cs->flags);
T
Tejun Heo 已提交
1982 1983 1984 1985
	if (is_spread_page(parent))
		set_bit(CS_SPREAD_PAGE, &cs->flags);
	if (is_spread_slab(parent))
		set_bit(CS_SPREAD_SLAB, &cs->flags);
L
Linus Torvalds 已提交
1986

1987
	number_of_cpusets++;
1988

T
Tejun Heo 已提交
1989
	if (!test_bit(CGRP_CPUSET_CLONE_CHILDREN, &cgrp->flags))
1990
		goto out_unlock;
1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004

	/*
	 * Clone @parent's configuration if CGRP_CPUSET_CLONE_CHILDREN is
	 * set.  This flag handling is implemented in cgroup core for
	 * histrical reasons - the flag may be specified during mount.
	 *
	 * Currently, if any sibling cpusets have exclusive cpus or mem, we
	 * refuse to clone the configuration - thereby refusing the task to
	 * be entered, and as a result refusing the sys_unshare() or
	 * clone() which initiated it.  If this becomes a problem for some
	 * users who wish to allow that scenario, then this could be
	 * changed to grant parent->cpus_allowed-sibling_cpus_exclusive
	 * (and likewise for mems) to the new cgroup.
	 */
2005 2006 2007 2008
	rcu_read_lock();
	cpuset_for_each_child(tmp_cs, pos_cg, parent) {
		if (is_mem_exclusive(tmp_cs) || is_cpu_exclusive(tmp_cs)) {
			rcu_read_unlock();
2009
			goto out_unlock;
2010
		}
2011
	}
2012
	rcu_read_unlock();
2013 2014 2015 2016 2017

	mutex_lock(&callback_mutex);
	cs->mems_allowed = parent->mems_allowed;
	cpumask_copy(cs->cpus_allowed, parent->cpus_allowed);
	mutex_unlock(&callback_mutex);
2018 2019
out_unlock:
	mutex_unlock(&cpuset_mutex);
T
Tejun Heo 已提交
2020 2021 2022 2023 2024 2025 2026
	return 0;
}

static void cpuset_css_offline(struct cgroup *cgrp)
{
	struct cpuset *cs = cgroup_cs(cgrp);

2027
	mutex_lock(&cpuset_mutex);
T
Tejun Heo 已提交
2028 2029 2030 2031 2032

	if (is_sched_load_balance(cs))
		update_flag(CS_SCHED_LOAD_BALANCE, cs, 0);

	number_of_cpusets--;
T
Tejun Heo 已提交
2033
	clear_bit(CS_ONLINE, &cs->flags);
T
Tejun Heo 已提交
2034

2035
	mutex_unlock(&cpuset_mutex);
L
Linus Torvalds 已提交
2036 2037
}

P
Paul Jackson 已提交
2038 2039 2040
/*
 * If the cpuset being removed has its flag 'sched_load_balance'
 * enabled, then simulate turning sched_load_balance off, which
2041
 * will call rebuild_sched_domains_locked().
P
Paul Jackson 已提交
2042 2043
 */

L
Li Zefan 已提交
2044
static void cpuset_css_free(struct cgroup *cgrp)
L
Linus Torvalds 已提交
2045
{
L
Li Zefan 已提交
2046
	struct cpuset *cs = cgroup_cs(cgrp);
L
Linus Torvalds 已提交
2047

2048
	free_cpumask_var(cs->cpus_allowed);
2049
	kfree(cs);
L
Linus Torvalds 已提交
2050 2051
}

2052 2053
struct cgroup_subsys cpuset_subsys = {
	.name = "cpuset",
2054
	.css_alloc = cpuset_css_alloc,
T
Tejun Heo 已提交
2055 2056
	.css_online = cpuset_css_online,
	.css_offline = cpuset_css_offline,
2057
	.css_free = cpuset_css_free,
2058
	.can_attach = cpuset_can_attach,
2059
	.cancel_attach = cpuset_cancel_attach,
2060 2061
	.attach = cpuset_attach,
	.subsys_id = cpuset_subsys_id,
2062
	.base_cftypes = files,
2063 2064 2065
	.early_init = 1,
};

L
Linus Torvalds 已提交
2066 2067 2068 2069 2070 2071 2072 2073
/**
 * cpuset_init - initialize cpusets at system boot
 *
 * Description: Initialize top_cpuset and the cpuset internal file system,
 **/

int __init cpuset_init(void)
{
2074
	int err = 0;
L
Linus Torvalds 已提交
2075

2076 2077 2078
	if (!alloc_cpumask_var(&top_cpuset.cpus_allowed, GFP_KERNEL))
		BUG();

2079
	cpumask_setall(top_cpuset.cpus_allowed);
2080
	nodes_setall(top_cpuset.mems_allowed);
L
Linus Torvalds 已提交
2081

2082
	fmeter_init(&top_cpuset.fmeter);
P
Paul Jackson 已提交
2083
	set_bit(CS_SCHED_LOAD_BALANCE, &top_cpuset.flags);
2084
	top_cpuset.relax_domain_level = -1;
L
Linus Torvalds 已提交
2085 2086 2087

	err = register_filesystem(&cpuset_fs_type);
	if (err < 0)
2088 2089
		return err;

2090 2091 2092
	if (!alloc_cpumask_var(&cpus_attach, GFP_KERNEL))
		BUG();

2093
	number_of_cpusets = 1;
2094
	return 0;
L
Linus Torvalds 已提交
2095 2096
}

2097
/*
2098
 * If CPU and/or memory hotplug handlers, below, unplug any CPUs
2099 2100
 * or memory nodes, we need to walk over the cpuset hierarchy,
 * removing that CPU or node from all cpusets.  If this removes the
2101 2102
 * last CPU or node from a cpuset, then move the tasks in the empty
 * cpuset to its next-highest non-empty parent.
2103
 */
2104 2105 2106 2107 2108 2109 2110 2111
static void remove_tasks_in_empty_cpuset(struct cpuset *cs)
{
	struct cpuset *parent;

	/*
	 * Find its next-highest non-empty parent, (top cpuset
	 * has online cpus, so can't be empty).
	 */
T
Tejun Heo 已提交
2112
	parent = parent_cs(cs);
2113
	while (cpumask_empty(parent->cpus_allowed) ||
2114
			nodes_empty(parent->mems_allowed))
T
Tejun Heo 已提交
2115
		parent = parent_cs(parent);
2116

2117 2118 2119 2120 2121 2122
	if (cgroup_transfer_tasks(parent->css.cgroup, cs->css.cgroup)) {
		rcu_read_lock();
		printk(KERN_ERR "cpuset: failed to transfer tasks out of empty cpuset %s\n",
		       cgroup_name(cs->css.cgroup));
		rcu_read_unlock();
	}
2123 2124
}

2125
/**
2126
 * cpuset_hotplug_update_tasks - update tasks in a cpuset for hotunplug
2127
 * @cs: cpuset in interest
2128
 *
2129 2130 2131
 * Compare @cs's cpu and mem masks against top_cpuset and if some have gone
 * offline, update @cs accordingly.  If @cs ends up with no CPU or memory,
 * all its tasks are moved to the nearest ancestor with both resources.
2132
 */
2133
static void cpuset_hotplug_update_tasks(struct cpuset *cs)
2134
{
2135
	static cpumask_t off_cpus;
2136
	static nodemask_t off_mems;
2137
	bool is_empty;
2138
	bool sane = cgroup_sane_behavior(cs->css.cgroup);
2139

2140 2141
retry:
	wait_event(cpuset_attach_wq, cs->attach_in_progress == 0);
2142

2143
	mutex_lock(&cpuset_mutex);
2144

2145 2146 2147 2148 2149 2150 2151 2152 2153
	/*
	 * We have raced with task attaching. We wait until attaching
	 * is finished, so we won't attach a task to an empty cpuset.
	 */
	if (cs->attach_in_progress) {
		mutex_unlock(&cpuset_mutex);
		goto retry;
	}

2154 2155
	cpumask_andnot(&off_cpus, cs->cpus_allowed, top_cpuset.cpus_allowed);
	nodes_andnot(off_mems, cs->mems_allowed, top_cpuset.mems_allowed);
2156

2157 2158 2159 2160 2161 2162
	mutex_lock(&callback_mutex);
	cpumask_andnot(cs->cpus_allowed, cs->cpus_allowed, &off_cpus);
	mutex_unlock(&callback_mutex);

	/*
	 * If sane_behavior flag is set, we need to update tasks' cpumask
2163 2164 2165
	 * for empty cpuset to take on ancestor's cpumask. Otherwise, don't
	 * call update_tasks_cpumask() if the cpuset becomes empty, as
	 * the tasks in it will be migrated to an ancestor.
2166 2167
	 */
	if ((sane && cpumask_empty(cs->cpus_allowed)) ||
2168
	    (!cpumask_empty(&off_cpus) && !cpumask_empty(cs->cpus_allowed)))
2169
		update_tasks_cpumask(cs, NULL);
2170

2171 2172 2173 2174 2175 2176
	mutex_lock(&callback_mutex);
	nodes_andnot(cs->mems_allowed, cs->mems_allowed, off_mems);
	mutex_unlock(&callback_mutex);

	/*
	 * If sane_behavior flag is set, we need to update tasks' nodemask
2177 2178 2179
	 * for empty cpuset to take on ancestor's nodemask. Otherwise, don't
	 * call update_tasks_nodemask() if the cpuset becomes empty, as
	 * the tasks in it will be migratd to an ancestor.
2180 2181
	 */
	if ((sane && nodes_empty(cs->mems_allowed)) ||
2182
	    (!nodes_empty(off_mems) && !nodes_empty(cs->mems_allowed)))
2183
		update_tasks_nodemask(cs, NULL);
2184

2185 2186
	is_empty = cpumask_empty(cs->cpus_allowed) ||
		nodes_empty(cs->mems_allowed);
2187

2188 2189 2190
	mutex_unlock(&cpuset_mutex);

	/*
2191 2192 2193 2194
	 * If sane_behavior flag is set, we'll keep tasks in empty cpusets.
	 *
	 * Otherwise move tasks to the nearest ancestor with execution
	 * resources.  This is full cgroup operation which will
2195 2196
	 * also call back into cpuset.  Should be done outside any lock.
	 */
2197
	if (!sane && is_empty)
2198
		remove_tasks_in_empty_cpuset(cs);
2199 2200
}

2201
/**
2202
 * cpuset_hotplug_workfn - handle CPU/memory hotunplug for a cpuset
2203
 *
2204 2205 2206 2207 2208
 * This function is called after either CPU or memory configuration has
 * changed and updates cpuset accordingly.  The top_cpuset is always
 * synchronized to cpu_active_mask and N_MEMORY, which is necessary in
 * order to make cpusets transparent (of no affect) on systems that are
 * actively using CPU hotplug but making no active use of cpusets.
2209
 *
2210
 * Non-root cpusets are only affected by offlining.  If any CPUs or memory
2211 2212
 * nodes have been taken down, cpuset_hotplug_update_tasks() is invoked on
 * all descendants.
2213
 *
2214 2215
 * Note that CPU offlining during suspend is ignored.  We don't modify
 * cpusets across suspend/resume cycles at all.
2216
 */
2217
static void cpuset_hotplug_workfn(struct work_struct *work)
2218
{
2219 2220
	static cpumask_t new_cpus;
	static nodemask_t new_mems;
2221
	bool cpus_updated, mems_updated;
2222

2223
	mutex_lock(&cpuset_mutex);
2224

2225 2226 2227
	/* fetch the available cpus/mems and find out which changed how */
	cpumask_copy(&new_cpus, cpu_active_mask);
	new_mems = node_states[N_MEMORY];
2228

2229 2230
	cpus_updated = !cpumask_equal(top_cpuset.cpus_allowed, &new_cpus);
	mems_updated = !nodes_equal(top_cpuset.mems_allowed, new_mems);
2231

2232 2233 2234 2235 2236 2237 2238
	/* synchronize cpus_allowed to cpu_active_mask */
	if (cpus_updated) {
		mutex_lock(&callback_mutex);
		cpumask_copy(top_cpuset.cpus_allowed, &new_cpus);
		mutex_unlock(&callback_mutex);
		/* we don't mess with cpumasks of tasks in top_cpuset */
	}
2239

2240 2241 2242 2243 2244
	/* synchronize mems_allowed to N_MEMORY */
	if (mems_updated) {
		mutex_lock(&callback_mutex);
		top_cpuset.mems_allowed = new_mems;
		mutex_unlock(&callback_mutex);
2245
		update_tasks_nodemask(&top_cpuset, NULL);
2246
	}
2247

2248 2249
	mutex_unlock(&cpuset_mutex);

2250 2251
	/* if cpus or mems changed, we need to propagate to descendants */
	if (cpus_updated || mems_updated) {
2252
		struct cpuset *cs;
2253
		struct cgroup *pos_cgrp;
2254

2255
		rcu_read_lock();
2256 2257 2258 2259
		cpuset_for_each_descendant_pre(cs, pos_cgrp, &top_cpuset) {
			if (!css_tryget(&cs->css))
				continue;
			rcu_read_unlock();
2260

2261
			cpuset_hotplug_update_tasks(cs);
2262

2263 2264 2265 2266 2267
			rcu_read_lock();
			css_put(&cs->css);
		}
		rcu_read_unlock();
	}
2268

2269
	/* rebuild sched domains if cpus_allowed has changed */
2270 2271
	if (cpus_updated)
		rebuild_sched_domains();
2272 2273
}

2274
void cpuset_update_active_cpus(bool cpu_online)
2275
{
2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287
	/*
	 * We're inside cpu hotplug critical region which usually nests
	 * inside cgroup synchronization.  Bounce actual hotplug processing
	 * to a work item to avoid reverse locking order.
	 *
	 * We still need to do partition_sched_domains() synchronously;
	 * otherwise, the scheduler will get confused and put tasks to the
	 * dead CPU.  Fall back to the default single domain.
	 * cpuset_hotplug_workfn() will rebuild it as necessary.
	 */
	partition_sched_domains(1, NULL, NULL);
	schedule_work(&cpuset_hotplug_work);
2288 2289
}

2290
/*
2291 2292
 * Keep top_cpuset.mems_allowed tracking node_states[N_MEMORY].
 * Call this routine anytime after node_states[N_MEMORY] changes.
2293
 * See cpuset_update_active_cpus() for CPU hotplug handling.
2294
 */
2295 2296
static int cpuset_track_online_nodes(struct notifier_block *self,
				unsigned long action, void *arg)
2297
{
2298
	schedule_work(&cpuset_hotplug_work);
2299
	return NOTIFY_OK;
2300
}
2301 2302 2303 2304 2305

static struct notifier_block cpuset_track_online_nodes_nb = {
	.notifier_call = cpuset_track_online_nodes,
	.priority = 10,		/* ??! */
};
2306

L
Linus Torvalds 已提交
2307 2308 2309 2310
/**
 * cpuset_init_smp - initialize cpus_allowed
 *
 * Description: Finish top cpuset after cpu, node maps are initialized
2311
 */
L
Linus Torvalds 已提交
2312 2313
void __init cpuset_init_smp(void)
{
2314
	cpumask_copy(top_cpuset.cpus_allowed, cpu_active_mask);
2315
	top_cpuset.mems_allowed = node_states[N_MEMORY];
2316
	top_cpuset.old_mems_allowed = top_cpuset.mems_allowed;
2317

2318
	register_hotmemory_notifier(&cpuset_track_online_nodes_nb);
L
Linus Torvalds 已提交
2319 2320 2321 2322 2323
}

/**
 * cpuset_cpus_allowed - return cpus_allowed mask from a tasks cpuset.
 * @tsk: pointer to task_struct from which to obtain cpuset->cpus_allowed.
2324
 * @pmask: pointer to struct cpumask variable to receive cpus_allowed set.
L
Linus Torvalds 已提交
2325
 *
2326
 * Description: Returns the cpumask_var_t cpus_allowed of the cpuset
L
Linus Torvalds 已提交
2327
 * attached to the specified @tsk.  Guaranteed to return some non-empty
2328
 * subset of cpu_online_mask, even if this means going outside the
L
Linus Torvalds 已提交
2329 2330 2331
 * tasks cpuset.
 **/

2332
void cpuset_cpus_allowed(struct task_struct *tsk, struct cpumask *pmask)
L
Linus Torvalds 已提交
2333
{
2334 2335
	struct cpuset *cpus_cs;

2336
	mutex_lock(&callback_mutex);
2337
	task_lock(tsk);
2338 2339
	cpus_cs = effective_cpumask_cpuset(task_cs(tsk));
	guarantee_online_cpus(cpus_cs, pmask);
2340
	task_unlock(tsk);
2341
	mutex_unlock(&callback_mutex);
L
Linus Torvalds 已提交
2342 2343
}

2344
void cpuset_cpus_allowed_fallback(struct task_struct *tsk)
2345
{
2346
	const struct cpuset *cpus_cs;
2347 2348

	rcu_read_lock();
2349 2350
	cpus_cs = effective_cpumask_cpuset(task_cs(tsk));
	do_set_cpus_allowed(tsk, cpus_cs->cpus_allowed);
2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365
	rcu_read_unlock();

	/*
	 * We own tsk->cpus_allowed, nobody can change it under us.
	 *
	 * But we used cs && cs->cpus_allowed lockless and thus can
	 * race with cgroup_attach_task() or update_cpumask() and get
	 * the wrong tsk->cpus_allowed. However, both cases imply the
	 * subsequent cpuset_change_cpumask()->set_cpus_allowed_ptr()
	 * which takes task_rq_lock().
	 *
	 * If we are called after it dropped the lock we must see all
	 * changes in tsk_cs()->cpus_allowed. Otherwise we can temporary
	 * set any mask even if it is not right from task_cs() pov,
	 * the pending set_cpus_allowed_ptr() will fix things.
2366 2367 2368
	 *
	 * select_fallback_rq() will fix things ups and set cpu_possible_mask
	 * if required.
2369 2370 2371
	 */
}

L
Linus Torvalds 已提交
2372 2373
void cpuset_init_current_mems_allowed(void)
{
2374
	nodes_setall(current->mems_allowed);
L
Linus Torvalds 已提交
2375 2376
}

2377 2378 2379 2380 2381 2382
/**
 * cpuset_mems_allowed - return mems_allowed mask from a tasks cpuset.
 * @tsk: pointer to task_struct from which to obtain cpuset->mems_allowed.
 *
 * Description: Returns the nodemask_t mems_allowed of the cpuset
 * attached to the specified @tsk.  Guaranteed to return some non-empty
2383
 * subset of node_states[N_MEMORY], even if this means going outside the
2384 2385 2386 2387 2388
 * tasks cpuset.
 **/

nodemask_t cpuset_mems_allowed(struct task_struct *tsk)
{
2389
	struct cpuset *mems_cs;
2390 2391
	nodemask_t mask;

2392
	mutex_lock(&callback_mutex);
2393
	task_lock(tsk);
2394 2395
	mems_cs = effective_nodemask_cpuset(task_cs(tsk));
	guarantee_online_mems(mems_cs, &mask);
2396
	task_unlock(tsk);
2397
	mutex_unlock(&callback_mutex);
2398 2399 2400 2401

	return mask;
}

2402
/**
2403 2404
 * cpuset_nodemask_valid_mems_allowed - check nodemask vs. curremt mems_allowed
 * @nodemask: the nodemask to be checked
2405
 *
2406
 * Are any of the nodes in the nodemask allowed in current->mems_allowed?
L
Linus Torvalds 已提交
2407
 */
2408
int cpuset_nodemask_valid_mems_allowed(nodemask_t *nodemask)
L
Linus Torvalds 已提交
2409
{
2410
	return nodes_intersects(*nodemask, current->mems_allowed);
L
Linus Torvalds 已提交
2411 2412
}

2413
/*
2414 2415 2416 2417
 * nearest_hardwall_ancestor() - Returns the nearest mem_exclusive or
 * mem_hardwall ancestor to the specified cpuset.  Call holding
 * callback_mutex.  If no ancestor is mem_exclusive or mem_hardwall
 * (an unusual configuration), then returns the root cpuset.
2418
 */
2419
static const struct cpuset *nearest_hardwall_ancestor(const struct cpuset *cs)
2420
{
T
Tejun Heo 已提交
2421 2422
	while (!(is_mem_exclusive(cs) || is_mem_hardwall(cs)) && parent_cs(cs))
		cs = parent_cs(cs);
2423 2424 2425
	return cs;
}

2426
/**
2427 2428
 * cpuset_node_allowed_softwall - Can we allocate on a memory node?
 * @node: is this an allowed node?
2429
 * @gfp_mask: memory allocation flags
2430
 *
2431 2432 2433 2434 2435 2436
 * If we're in interrupt, yes, we can always allocate.  If __GFP_THISNODE is
 * set, yes, we can always allocate.  If node is in our task's mems_allowed,
 * yes.  If it's not a __GFP_HARDWALL request and this node is in the nearest
 * hardwalled cpuset ancestor to this task's cpuset, yes.  If the task has been
 * OOM killed and has access to memory reserves as specified by the TIF_MEMDIE
 * flag, yes.
2437 2438
 * Otherwise, no.
 *
2439 2440 2441
 * If __GFP_HARDWALL is set, cpuset_node_allowed_softwall() reduces to
 * cpuset_node_allowed_hardwall().  Otherwise, cpuset_node_allowed_softwall()
 * might sleep, and might allow a node from an enclosing cpuset.
2442
 *
2443 2444
 * cpuset_node_allowed_hardwall() only handles the simpler case of hardwall
 * cpusets, and never sleeps.
2445 2446 2447 2448 2449 2450 2451
 *
 * The __GFP_THISNODE placement logic is really handled elsewhere,
 * by forcibly using a zonelist starting at a specified node, and by
 * (in get_page_from_freelist()) refusing to consider the zones for
 * any node on the zonelist except the first.  By the time any such
 * calls get to this routine, we should just shut up and say 'yes'.
 *
2452
 * GFP_USER allocations are marked with the __GFP_HARDWALL bit,
2453 2454
 * and do not allow allocations outside the current tasks cpuset
 * unless the task has been OOM killed as is marked TIF_MEMDIE.
2455
 * GFP_KERNEL allocations are not so marked, so can escape to the
2456
 * nearest enclosing hardwalled ancestor cpuset.
2457
 *
2458 2459 2460 2461 2462 2463 2464
 * Scanning up parent cpusets requires callback_mutex.  The
 * __alloc_pages() routine only calls here with __GFP_HARDWALL bit
 * _not_ set if it's a GFP_KERNEL allocation, and all nodes in the
 * current tasks mems_allowed came up empty on the first pass over
 * the zonelist.  So only GFP_KERNEL allocations, if all nodes in the
 * cpuset are short of memory, might require taking the callback_mutex
 * mutex.
2465
 *
2466
 * The first call here from mm/page_alloc:get_page_from_freelist()
2467 2468 2469
 * has __GFP_HARDWALL set in gfp_mask, enforcing hardwall cpusets,
 * so no allocation on a node outside the cpuset is allowed (unless
 * in interrupt, of course).
2470 2471 2472 2473 2474 2475
 *
 * The second pass through get_page_from_freelist() doesn't even call
 * here for GFP_ATOMIC calls.  For those calls, the __alloc_pages()
 * variable 'wait' is not set, and the bit ALLOC_CPUSET is not set
 * in alloc_flags.  That logic and the checks below have the combined
 * affect that:
2476 2477
 *	in_interrupt - any node ok (current task context irrelevant)
 *	GFP_ATOMIC   - any node ok
2478
 *	TIF_MEMDIE   - any node ok
2479
 *	GFP_KERNEL   - any node in enclosing hardwalled cpuset ok
2480
 *	GFP_USER     - only nodes in current tasks mems allowed ok.
2481 2482
 *
 * Rule:
2483
 *    Don't call cpuset_node_allowed_softwall if you can't sleep, unless you
2484 2485
 *    pass in the __GFP_HARDWALL flag set in gfp_flag, which disables
 *    the code that might scan up ancestor cpusets and sleep.
2486
 */
2487
int __cpuset_node_allowed_softwall(int node, gfp_t gfp_mask)
L
Linus Torvalds 已提交
2488
{
2489
	const struct cpuset *cs;	/* current cpuset ancestors */
2490
	int allowed;			/* is allocation in zone z allowed? */
2491

2492
	if (in_interrupt() || (gfp_mask & __GFP_THISNODE))
2493
		return 1;
2494
	might_sleep_if(!(gfp_mask & __GFP_HARDWALL));
2495 2496
	if (node_isset(node, current->mems_allowed))
		return 1;
2497 2498 2499 2500 2501 2502
	/*
	 * Allow tasks that have access to memory reserves because they have
	 * been OOM killed to get memory anywhere.
	 */
	if (unlikely(test_thread_flag(TIF_MEMDIE)))
		return 1;
2503 2504 2505
	if (gfp_mask & __GFP_HARDWALL)	/* If hardwall request, stop here */
		return 0;

2506 2507 2508
	if (current->flags & PF_EXITING) /* Let dying task have memory */
		return 1;

2509
	/* Not hardwall and node outside mems_allowed: scan up cpusets */
2510
	mutex_lock(&callback_mutex);
2511 2512

	task_lock(current);
2513
	cs = nearest_hardwall_ancestor(task_cs(current));
2514 2515
	task_unlock(current);

2516
	allowed = node_isset(node, cs->mems_allowed);
2517
	mutex_unlock(&callback_mutex);
2518
	return allowed;
L
Linus Torvalds 已提交
2519 2520
}

2521
/*
2522 2523
 * cpuset_node_allowed_hardwall - Can we allocate on a memory node?
 * @node: is this an allowed node?
2524 2525
 * @gfp_mask: memory allocation flags
 *
2526 2527 2528 2529 2530
 * If we're in interrupt, yes, we can always allocate.  If __GFP_THISNODE is
 * set, yes, we can always allocate.  If node is in our task's mems_allowed,
 * yes.  If the task has been OOM killed and has access to memory reserves as
 * specified by the TIF_MEMDIE flag, yes.
 * Otherwise, no.
2531 2532 2533 2534 2535 2536 2537
 *
 * The __GFP_THISNODE placement logic is really handled elsewhere,
 * by forcibly using a zonelist starting at a specified node, and by
 * (in get_page_from_freelist()) refusing to consider the zones for
 * any node on the zonelist except the first.  By the time any such
 * calls get to this routine, we should just shut up and say 'yes'.
 *
2538 2539
 * Unlike the cpuset_node_allowed_softwall() variant, above,
 * this variant requires that the node be in the current task's
2540 2541 2542 2543
 * mems_allowed or that we're in interrupt.  It does not scan up the
 * cpuset hierarchy for the nearest enclosing mem_exclusive cpuset.
 * It never sleeps.
 */
2544
int __cpuset_node_allowed_hardwall(int node, gfp_t gfp_mask)
2545 2546 2547 2548 2549
{
	if (in_interrupt() || (gfp_mask & __GFP_THISNODE))
		return 1;
	if (node_isset(node, current->mems_allowed))
		return 1;
D
Daniel Walker 已提交
2550 2551 2552 2553 2554 2555
	/*
	 * Allow tasks that have access to memory reserves because they have
	 * been OOM killed to get memory anywhere.
	 */
	if (unlikely(test_thread_flag(TIF_MEMDIE)))
		return 1;
2556 2557 2558
	return 0;
}

2559
/**
2560 2561
 * cpuset_mem_spread_node() - On which node to begin search for a file page
 * cpuset_slab_spread_node() - On which node to begin search for a slab page
2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585
 *
 * If a task is marked PF_SPREAD_PAGE or PF_SPREAD_SLAB (as for
 * tasks in a cpuset with is_spread_page or is_spread_slab set),
 * and if the memory allocation used cpuset_mem_spread_node()
 * to determine on which node to start looking, as it will for
 * certain page cache or slab cache pages such as used for file
 * system buffers and inode caches, then instead of starting on the
 * local node to look for a free page, rather spread the starting
 * node around the tasks mems_allowed nodes.
 *
 * We don't have to worry about the returned node being offline
 * because "it can't happen", and even if it did, it would be ok.
 *
 * The routines calling guarantee_online_mems() are careful to
 * only set nodes in task->mems_allowed that are online.  So it
 * should not be possible for the following code to return an
 * offline node.  But if it did, that would be ok, as this routine
 * is not returning the node where the allocation must be, only
 * the node where the search should start.  The zonelist passed to
 * __alloc_pages() will include all nodes.  If the slab allocator
 * is passed an offline node, it will fall back to the local node.
 * See kmem_cache_alloc_node().
 */

2586
static int cpuset_spread_node(int *rotor)
2587 2588 2589
{
	int node;

2590
	node = next_node(*rotor, current->mems_allowed);
2591 2592
	if (node == MAX_NUMNODES)
		node = first_node(current->mems_allowed);
2593
	*rotor = node;
2594 2595
	return node;
}
2596 2597 2598

int cpuset_mem_spread_node(void)
{
2599 2600 2601 2602
	if (current->cpuset_mem_spread_rotor == NUMA_NO_NODE)
		current->cpuset_mem_spread_rotor =
			node_random(&current->mems_allowed);

2603 2604 2605 2606 2607
	return cpuset_spread_node(&current->cpuset_mem_spread_rotor);
}

int cpuset_slab_spread_node(void)
{
2608 2609 2610 2611
	if (current->cpuset_slab_spread_rotor == NUMA_NO_NODE)
		current->cpuset_slab_spread_rotor =
			node_random(&current->mems_allowed);

2612 2613 2614
	return cpuset_spread_node(&current->cpuset_slab_spread_rotor);
}

2615 2616
EXPORT_SYMBOL_GPL(cpuset_mem_spread_node);

2617
/**
2618 2619 2620 2621 2622 2623 2624 2625
 * cpuset_mems_allowed_intersects - Does @tsk1's mems_allowed intersect @tsk2's?
 * @tsk1: pointer to task_struct of some task.
 * @tsk2: pointer to task_struct of some other task.
 *
 * Description: Return true if @tsk1's mems_allowed intersects the
 * mems_allowed of @tsk2.  Used by the OOM killer to determine if
 * one of the task's memory usage might impact the memory available
 * to the other.
2626 2627
 **/

2628 2629
int cpuset_mems_allowed_intersects(const struct task_struct *tsk1,
				   const struct task_struct *tsk2)
2630
{
2631
	return nodes_intersects(tsk1->mems_allowed, tsk2->mems_allowed);
2632 2633
}

2634 2635
#define CPUSET_NODELIST_LEN	(256)

2636 2637 2638 2639 2640 2641 2642 2643 2644 2645
/**
 * cpuset_print_task_mems_allowed - prints task's cpuset and mems_allowed
 * @task: pointer to task_struct of some task.
 *
 * Description: Prints @task's name, cpuset name, and cached copy of its
 * mems_allowed to the kernel log.  Must hold task_lock(task) to allow
 * dereferencing task_cs(task).
 */
void cpuset_print_task_mems_allowed(struct task_struct *tsk)
{
2646 2647 2648
	 /* Statically allocated to prevent using excess stack. */
	static char cpuset_nodelist[CPUSET_NODELIST_LEN];
	static DEFINE_SPINLOCK(cpuset_buffer_lock);
2649

2650
	struct cgroup *cgrp = task_cs(tsk)->css.cgroup;
2651

2652
	rcu_read_lock();
2653
	spin_lock(&cpuset_buffer_lock);
2654

2655 2656 2657
	nodelist_scnprintf(cpuset_nodelist, CPUSET_NODELIST_LEN,
			   tsk->mems_allowed);
	printk(KERN_INFO "%s cpuset=%s mems_allowed=%s\n",
2658 2659
	       tsk->comm, cgroup_name(cgrp), cpuset_nodelist);

2660
	spin_unlock(&cpuset_buffer_lock);
2661
	rcu_read_unlock();
2662 2663
}

2664 2665 2666 2667 2668 2669
/*
 * Collection of memory_pressure is suppressed unless
 * this flag is enabled by writing "1" to the special
 * cpuset file 'memory_pressure_enabled' in the root cpuset.
 */

2670
int cpuset_memory_pressure_enabled __read_mostly;
2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692

/**
 * cpuset_memory_pressure_bump - keep stats of per-cpuset reclaims.
 *
 * Keep a running average of the rate of synchronous (direct)
 * page reclaim efforts initiated by tasks in each cpuset.
 *
 * This represents the rate at which some task in the cpuset
 * ran low on memory on all nodes it was allowed to use, and
 * had to enter the kernels page reclaim code in an effort to
 * create more free memory by tossing clean pages or swapping
 * or writing dirty pages.
 *
 * Display to user space in the per-cpuset read-only file
 * "memory_pressure".  Value displayed is an integer
 * representing the recent rate of entry into the synchronous
 * (direct) page reclaim by any task attached to the cpuset.
 **/

void __cpuset_memory_pressure_bump(void)
{
	task_lock(current);
2693
	fmeter_markevent(&task_cs(current)->fmeter);
2694 2695 2696
	task_unlock(current);
}

2697
#ifdef CONFIG_PROC_PID_CPUSET
L
Linus Torvalds 已提交
2698 2699 2700 2701
/*
 * proc_cpuset_show()
 *  - Print tasks cpuset path into seq_file.
 *  - Used for /proc/<pid>/cpuset.
2702 2703
 *  - No need to task_lock(tsk) on this tsk->cpuset reference, as it
 *    doesn't really matter if tsk->cpuset changes after we read it,
2704
 *    and we take cpuset_mutex, keeping cpuset_attach() from changing it
2705
 *    anyway.
L
Linus Torvalds 已提交
2706
 */
2707
int proc_cpuset_show(struct seq_file *m, void *unused_v)
L
Linus Torvalds 已提交
2708
{
2709
	struct pid *pid;
L
Linus Torvalds 已提交
2710 2711
	struct task_struct *tsk;
	char *buf;
2712
	struct cgroup_subsys_state *css;
2713
	int retval;
L
Linus Torvalds 已提交
2714

2715
	retval = -ENOMEM;
L
Linus Torvalds 已提交
2716 2717
	buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
	if (!buf)
2718 2719 2720
		goto out;

	retval = -ESRCH;
2721 2722
	pid = m->private;
	tsk = get_pid_task(pid, PIDTYPE_PID);
2723 2724
	if (!tsk)
		goto out_free;
L
Linus Torvalds 已提交
2725

L
Li Zefan 已提交
2726
	rcu_read_lock();
2727 2728
	css = task_subsys_state(tsk, cpuset_subsys_id);
	retval = cgroup_path(css->cgroup, buf, PAGE_SIZE);
L
Li Zefan 已提交
2729
	rcu_read_unlock();
L
Linus Torvalds 已提交
2730
	if (retval < 0)
L
Li Zefan 已提交
2731
		goto out_put_task;
L
Linus Torvalds 已提交
2732 2733
	seq_puts(m, buf);
	seq_putc(m, '\n');
L
Li Zefan 已提交
2734
out_put_task:
2735 2736
	put_task_struct(tsk);
out_free:
L
Linus Torvalds 已提交
2737
	kfree(buf);
2738
out:
L
Linus Torvalds 已提交
2739 2740
	return retval;
}
2741
#endif /* CONFIG_PROC_PID_CPUSET */
L
Linus Torvalds 已提交
2742

2743
/* Display task mems_allowed in /proc/<pid>/status file. */
2744 2745 2746
void cpuset_task_status_allowed(struct seq_file *m, struct task_struct *task)
{
	seq_printf(m, "Mems_allowed:\t");
2747
	seq_nodemask(m, &task->mems_allowed);
2748
	seq_printf(m, "\n");
2749
	seq_printf(m, "Mems_allowed_list:\t");
2750
	seq_nodemask_list(m, &task->mems_allowed);
2751
	seq_printf(m, "\n");
L
Linus Torvalds 已提交
2752
}