cpuset.c 74.8 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6
/*
 *  kernel/cpuset.c
 *
 *  Processor and Memory placement constraints for sets of tasks.
 *
 *  Copyright (C) 2003 BULL SA.
P
Paul Jackson 已提交
7
 *  Copyright (C) 2004-2007 Silicon Graphics, Inc.
8
 *  Copyright (C) 2006 Google, Inc
L
Linus Torvalds 已提交
9 10 11 12
 *
 *  Portions derived from Patrick Mochel's sysfs code.
 *  sysfs is Copyright (c) 2001-3 Patrick Mochel
 *
13
 *  2003-10-10 Written by Simon Derr.
L
Linus Torvalds 已提交
14
 *  2003-10-22 Updates by Stephen Hemminger.
15
 *  2004 May-July Rework by Paul Jackson.
16
 *  2006 Rework by Paul Menage to use generic cgroups
17 18
 *  2008 Rework of the scheduler domains and CPU hotplug handling
 *       by Max Krasnyansky
L
Linus Torvalds 已提交
19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36
 *
 *  This file is subject to the terms and conditions of the GNU General Public
 *  License.  See the file COPYING in the main directory of the Linux
 *  distribution for more details.
 */

#include <linux/cpu.h>
#include <linux/cpumask.h>
#include <linux/cpuset.h>
#include <linux/err.h>
#include <linux/errno.h>
#include <linux/file.h>
#include <linux/fs.h>
#include <linux/init.h>
#include <linux/interrupt.h>
#include <linux/kernel.h>
#include <linux/kmod.h>
#include <linux/list.h>
37
#include <linux/mempolicy.h>
L
Linus Torvalds 已提交
38
#include <linux/mm.h>
39
#include <linux/memory.h>
40
#include <linux/export.h>
L
Linus Torvalds 已提交
41 42 43 44
#include <linux/mount.h>
#include <linux/namei.h>
#include <linux/pagemap.h>
#include <linux/proc_fs.h>
45
#include <linux/rcupdate.h>
L
Linus Torvalds 已提交
46 47
#include <linux/sched.h>
#include <linux/seq_file.h>
48
#include <linux/security.h>
L
Linus Torvalds 已提交
49 50 51 52 53 54 55 56 57
#include <linux/slab.h>
#include <linux/spinlock.h>
#include <linux/stat.h>
#include <linux/string.h>
#include <linux/time.h>
#include <linux/backing-dev.h>
#include <linux/sort.h>

#include <asm/uaccess.h>
A
Arun Sharma 已提交
58
#include <linux/atomic.h>
59
#include <linux/mutex.h>
60 61
#include <linux/workqueue.h>
#include <linux/cgroup.h>
62
#include <linux/wait.h>
L
Linus Torvalds 已提交
63

64 65 66 67 68
/*
 * Tracks how many cpusets are currently defined in system.
 * When there is only one cpuset (the root cpuset) we can
 * short circuit some hooks.
 */
69
int number_of_cpusets __read_mostly;
70

71
/* Forward declare cgroup structures */
72 73 74
struct cgroup_subsys cpuset_subsys;
struct cpuset;

75 76 77 78 79 80 81 82 83
/* See "Frequency meter" comments, below. */

struct fmeter {
	int cnt;		/* unprocessed events count */
	int val;		/* most recent output value */
	time_t time;		/* clock (secs) when val computed */
	spinlock_t lock;	/* guards read or write of above */
};

L
Linus Torvalds 已提交
84
struct cpuset {
85 86
	struct cgroup_subsys_state css;

L
Linus Torvalds 已提交
87
	unsigned long flags;		/* "unsigned long" so bitops work */
88
	cpumask_var_t cpus_allowed;	/* CPUs allowed to tasks in cpuset */
L
Linus Torvalds 已提交
89 90
	nodemask_t mems_allowed;	/* Memory Nodes allowed to tasks */

91 92 93 94 95 96 97 98 99 100 101 102
	/*
	 * This is old Memory Nodes tasks took on.
	 *
	 * - top_cpuset.old_mems_allowed is initialized to mems_allowed.
	 * - A new cpuset's old_mems_allowed is initialized when some
	 *   task is moved into it.
	 * - old_mems_allowed is used in cpuset_migrate_mm() when we change
	 *   cpuset.mems_allowed and have tasks' nodemask updated, and
	 *   then old_mems_allowed is updated to mems_allowed.
	 */
	nodemask_t old_mems_allowed;

103
	struct fmeter fmeter;		/* memory_pressure filter */
P
Paul Jackson 已提交
104

105 106 107 108 109 110
	/*
	 * Tasks are being attached to this cpuset.  Used to prevent
	 * zeroing cpus/mems_allowed between ->can_attach() and ->attach().
	 */
	int attach_in_progress;

P
Paul Jackson 已提交
111 112
	/* partition number for rebuild_sched_domains() */
	int pn;
113

114 115
	/* for custom sched domain */
	int relax_domain_level;
L
Linus Torvalds 已提交
116 117
};

118 119 120 121 122 123 124 125 126 127 128 129 130 131
/* Retrieve the cpuset for a cgroup */
static inline struct cpuset *cgroup_cs(struct cgroup *cont)
{
	return container_of(cgroup_subsys_state(cont, cpuset_subsys_id),
			    struct cpuset, css);
}

/* Retrieve the cpuset for a task */
static inline struct cpuset *task_cs(struct task_struct *task)
{
	return container_of(task_subsys_state(task, cpuset_subsys_id),
			    struct cpuset, css);
}

T
Tejun Heo 已提交
132 133 134 135 136 137 138 139 140
static inline struct cpuset *parent_cs(const struct cpuset *cs)
{
	struct cgroup *pcgrp = cs->css.cgroup->parent;

	if (pcgrp)
		return cgroup_cs(pcgrp);
	return NULL;
}

141 142 143 144 145 146 147 148 149 150 151 152 153
#ifdef CONFIG_NUMA
static inline bool task_has_mempolicy(struct task_struct *task)
{
	return task->mempolicy;
}
#else
static inline bool task_has_mempolicy(struct task_struct *task)
{
	return false;
}
#endif


L
Linus Torvalds 已提交
154 155
/* bits in struct cpuset flags field */
typedef enum {
T
Tejun Heo 已提交
156
	CS_ONLINE,
L
Linus Torvalds 已提交
157 158
	CS_CPU_EXCLUSIVE,
	CS_MEM_EXCLUSIVE,
159
	CS_MEM_HARDWALL,
160
	CS_MEMORY_MIGRATE,
P
Paul Jackson 已提交
161
	CS_SCHED_LOAD_BALANCE,
162 163
	CS_SPREAD_PAGE,
	CS_SPREAD_SLAB,
L
Linus Torvalds 已提交
164 165 166
} cpuset_flagbits_t;

/* convenient tests for these bits */
T
Tejun Heo 已提交
167 168 169 170 171
static inline bool is_cpuset_online(const struct cpuset *cs)
{
	return test_bit(CS_ONLINE, &cs->flags);
}

L
Linus Torvalds 已提交
172 173
static inline int is_cpu_exclusive(const struct cpuset *cs)
{
174
	return test_bit(CS_CPU_EXCLUSIVE, &cs->flags);
L
Linus Torvalds 已提交
175 176 177 178
}

static inline int is_mem_exclusive(const struct cpuset *cs)
{
179
	return test_bit(CS_MEM_EXCLUSIVE, &cs->flags);
L
Linus Torvalds 已提交
180 181
}

182 183 184 185 186
static inline int is_mem_hardwall(const struct cpuset *cs)
{
	return test_bit(CS_MEM_HARDWALL, &cs->flags);
}

P
Paul Jackson 已提交
187 188 189 190 191
static inline int is_sched_load_balance(const struct cpuset *cs)
{
	return test_bit(CS_SCHED_LOAD_BALANCE, &cs->flags);
}

192 193
static inline int is_memory_migrate(const struct cpuset *cs)
{
194
	return test_bit(CS_MEMORY_MIGRATE, &cs->flags);
195 196
}

197 198 199 200 201 202 203 204 205 206
static inline int is_spread_page(const struct cpuset *cs)
{
	return test_bit(CS_SPREAD_PAGE, &cs->flags);
}

static inline int is_spread_slab(const struct cpuset *cs)
{
	return test_bit(CS_SPREAD_SLAB, &cs->flags);
}

L
Linus Torvalds 已提交
207
static struct cpuset top_cpuset = {
T
Tejun Heo 已提交
208 209
	.flags = ((1 << CS_ONLINE) | (1 << CS_CPU_EXCLUSIVE) |
		  (1 << CS_MEM_EXCLUSIVE)),
L
Linus Torvalds 已提交
210 211
};

212 213 214 215 216 217 218 219 220 221 222 223 224
/**
 * cpuset_for_each_child - traverse online children of a cpuset
 * @child_cs: loop cursor pointing to the current child
 * @pos_cgrp: used for iteration
 * @parent_cs: target cpuset to walk children of
 *
 * Walk @child_cs through the online children of @parent_cs.  Must be used
 * with RCU read locked.
 */
#define cpuset_for_each_child(child_cs, pos_cgrp, parent_cs)		\
	cgroup_for_each_child((pos_cgrp), (parent_cs)->css.cgroup)	\
		if (is_cpuset_online(((child_cs) = cgroup_cs((pos_cgrp)))))

225 226 227 228 229 230 231 232 233 234 235 236 237 238
/**
 * cpuset_for_each_descendant_pre - pre-order walk of a cpuset's descendants
 * @des_cs: loop cursor pointing to the current descendant
 * @pos_cgrp: used for iteration
 * @root_cs: target cpuset to walk ancestor of
 *
 * Walk @des_cs through the online descendants of @root_cs.  Must be used
 * with RCU read locked.  The caller may modify @pos_cgrp by calling
 * cgroup_rightmost_descendant() to skip subtree.
 */
#define cpuset_for_each_descendant_pre(des_cs, pos_cgrp, root_cs)	\
	cgroup_for_each_descendant_pre((pos_cgrp), (root_cs)->css.cgroup) \
		if (is_cpuset_online(((des_cs) = cgroup_cs((pos_cgrp)))))

L
Linus Torvalds 已提交
239
/*
240 241 242 243 244 245 246 247 248 249 250 251 252 253
 * There are two global mutexes guarding cpuset structures - cpuset_mutex
 * and callback_mutex.  The latter may nest inside the former.  We also
 * require taking task_lock() when dereferencing a task's cpuset pointer.
 * See "The task_lock() exception", at the end of this comment.
 *
 * A task must hold both mutexes to modify cpusets.  If a task holds
 * cpuset_mutex, then it blocks others wanting that mutex, ensuring that it
 * is the only task able to also acquire callback_mutex and be able to
 * modify cpusets.  It can perform various checks on the cpuset structure
 * first, knowing nothing will change.  It can also allocate memory while
 * just holding cpuset_mutex.  While it is performing these checks, various
 * callback routines can briefly acquire callback_mutex to query cpusets.
 * Once it is ready to make the changes, it takes callback_mutex, blocking
 * everyone else.
254 255
 *
 * Calls to the kernel memory allocator can not be made while holding
256
 * callback_mutex, as that would risk double tripping on callback_mutex
257 258 259
 * from one of the callbacks into the cpuset code from within
 * __alloc_pages().
 *
260
 * If a task is only holding callback_mutex, then it has read-only
261 262
 * access to cpusets.
 *
263 264 265
 * Now, the task_struct fields mems_allowed and mempolicy may be changed
 * by other task, we use alloc_lock in the task_struct fields to protect
 * them.
266
 *
267
 * The cpuset_common_file_read() handlers only hold callback_mutex across
268 269 270
 * small pieces of code, such as when reading out possibly multi-word
 * cpumasks and nodemasks.
 *
271 272
 * Accessing a task's cpuset should be done in accordance with the
 * guidelines for accessing subsystem state in kernel/cgroup.c
L
Linus Torvalds 已提交
273 274
 */

275
static DEFINE_MUTEX(cpuset_mutex);
276
static DEFINE_MUTEX(callback_mutex);
277

278 279 280 281 282 283
/*
 * CPU / memory hotplug is handled asynchronously.
 */
static void cpuset_hotplug_workfn(struct work_struct *work);
static DECLARE_WORK(cpuset_hotplug_work, cpuset_hotplug_workfn);

284 285
static DECLARE_WAIT_QUEUE_HEAD(cpuset_attach_wq);

286 287
/*
 * This is ugly, but preserves the userspace API for existing cpuset
288
 * users. If someone tries to mount the "cpuset" filesystem, we
289 290
 * silently switch it to mount "cgroup" instead
 */
A
Al Viro 已提交
291 292
static struct dentry *cpuset_mount(struct file_system_type *fs_type,
			 int flags, const char *unused_dev_name, void *data)
L
Linus Torvalds 已提交
293
{
294
	struct file_system_type *cgroup_fs = get_fs_type("cgroup");
A
Al Viro 已提交
295
	struct dentry *ret = ERR_PTR(-ENODEV);
296 297 298 299
	if (cgroup_fs) {
		char mountopts[] =
			"cpuset,noprefix,"
			"release_agent=/sbin/cpuset_release_agent";
A
Al Viro 已提交
300 301
		ret = cgroup_fs->mount(cgroup_fs, flags,
					   unused_dev_name, mountopts);
302 303 304
		put_filesystem(cgroup_fs);
	}
	return ret;
L
Linus Torvalds 已提交
305 306 307 308
}

static struct file_system_type cpuset_fs_type = {
	.name = "cpuset",
A
Al Viro 已提交
309
	.mount = cpuset_mount,
L
Linus Torvalds 已提交
310 311 312
};

/*
313
 * Return in pmask the portion of a cpusets's cpus_allowed that
L
Linus Torvalds 已提交
314
 * are online.  If none are online, walk up the cpuset hierarchy
315 316
 * until we find one that does have some online cpus.  The top
 * cpuset always has some cpus online.
L
Linus Torvalds 已提交
317 318
 *
 * One way or another, we guarantee to return some non-empty subset
319
 * of cpu_online_mask.
L
Linus Torvalds 已提交
320
 *
321
 * Call with callback_mutex held.
L
Linus Torvalds 已提交
322
 */
323 324
static void guarantee_online_cpus(const struct cpuset *cs,
				  struct cpumask *pmask)
L
Linus Torvalds 已提交
325
{
326
	while (!cpumask_intersects(cs->cpus_allowed, cpu_online_mask))
T
Tejun Heo 已提交
327
		cs = parent_cs(cs);
328
	cpumask_and(pmask, cs->cpus_allowed, cpu_online_mask);
L
Linus Torvalds 已提交
329 330 331 332
}

/*
 * Return in *pmask the portion of a cpusets's mems_allowed that
333 334
 * are online, with memory.  If none are online with memory, walk
 * up the cpuset hierarchy until we find one that does have some
335
 * online mems.  The top cpuset always has some mems online.
L
Linus Torvalds 已提交
336 337
 *
 * One way or another, we guarantee to return some non-empty subset
338
 * of node_states[N_MEMORY].
L
Linus Torvalds 已提交
339
 *
340
 * Call with callback_mutex held.
L
Linus Torvalds 已提交
341 342 343
 */
static void guarantee_online_mems(const struct cpuset *cs, nodemask_t *pmask)
{
344
	while (!nodes_intersects(cs->mems_allowed, node_states[N_MEMORY]))
T
Tejun Heo 已提交
345
		cs = parent_cs(cs);
346
	nodes_and(*pmask, cs->mems_allowed, node_states[N_MEMORY]);
L
Linus Torvalds 已提交
347 348
}

349 350 351
/*
 * update task's spread flag if cpuset's page/slab spread flag is set
 *
352
 * Called with callback_mutex/cpuset_mutex held
353 354 355 356 357 358 359 360 361 362 363 364 365 366
 */
static void cpuset_update_task_spread_flag(struct cpuset *cs,
					struct task_struct *tsk)
{
	if (is_spread_page(cs))
		tsk->flags |= PF_SPREAD_PAGE;
	else
		tsk->flags &= ~PF_SPREAD_PAGE;
	if (is_spread_slab(cs))
		tsk->flags |= PF_SPREAD_SLAB;
	else
		tsk->flags &= ~PF_SPREAD_SLAB;
}

L
Linus Torvalds 已提交
367 368 369 370 371
/*
 * is_cpuset_subset(p, q) - Is cpuset p a subset of cpuset q?
 *
 * One cpuset is a subset of another if all its allowed CPUs and
 * Memory Nodes are a subset of the other, and its exclusive flags
372
 * are only set if the other's are set.  Call holding cpuset_mutex.
L
Linus Torvalds 已提交
373 374 375 376
 */

static int is_cpuset_subset(const struct cpuset *p, const struct cpuset *q)
{
377
	return	cpumask_subset(p->cpus_allowed, q->cpus_allowed) &&
L
Linus Torvalds 已提交
378 379 380 381 382
		nodes_subset(p->mems_allowed, q->mems_allowed) &&
		is_cpu_exclusive(p) <= is_cpu_exclusive(q) &&
		is_mem_exclusive(p) <= is_mem_exclusive(q);
}

383 384 385 386 387 388
/**
 * alloc_trial_cpuset - allocate a trial cpuset
 * @cs: the cpuset that the trial cpuset duplicates
 */
static struct cpuset *alloc_trial_cpuset(const struct cpuset *cs)
{
389 390 391 392 393 394 395 396 397 398 399 400 401
	struct cpuset *trial;

	trial = kmemdup(cs, sizeof(*cs), GFP_KERNEL);
	if (!trial)
		return NULL;

	if (!alloc_cpumask_var(&trial->cpus_allowed, GFP_KERNEL)) {
		kfree(trial);
		return NULL;
	}
	cpumask_copy(trial->cpus_allowed, cs->cpus_allowed);

	return trial;
402 403 404 405 406 407 408 409
}

/**
 * free_trial_cpuset - free the trial cpuset
 * @trial: the trial cpuset to be freed
 */
static void free_trial_cpuset(struct cpuset *trial)
{
410
	free_cpumask_var(trial->cpus_allowed);
411 412 413
	kfree(trial);
}

L
Linus Torvalds 已提交
414 415 416 417 418 419 420
/*
 * validate_change() - Used to validate that any proposed cpuset change
 *		       follows the structural rules for cpusets.
 *
 * If we replaced the flag and mask values of the current cpuset
 * (cur) with those values in the trial cpuset (trial), would
 * our various subset and exclusive rules still be valid?  Presumes
421
 * cpuset_mutex held.
L
Linus Torvalds 已提交
422 423 424 425 426 427 428 429 430 431 432 433 434 435
 *
 * 'cur' is the address of an actual, in-use cpuset.  Operations
 * such as list traversal that depend on the actual address of the
 * cpuset in the list must use cur below, not trial.
 *
 * 'trial' is the address of bulk structure copy of cur, with
 * perhaps one or more of the fields cpus_allowed, mems_allowed,
 * or flags changed to new, trial values.
 *
 * Return 0 if valid, -errno if not.
 */

static int validate_change(const struct cpuset *cur, const struct cpuset *trial)
{
436
	struct cgroup *cont;
L
Linus Torvalds 已提交
437
	struct cpuset *c, *par;
438 439 440
	int ret;

	rcu_read_lock();
L
Linus Torvalds 已提交
441 442

	/* Each of our child cpusets must be a subset of us */
443 444 445 446
	ret = -EBUSY;
	cpuset_for_each_child(c, cont, cur)
		if (!is_cpuset_subset(c, trial))
			goto out;
L
Linus Torvalds 已提交
447 448

	/* Remaining checks don't apply to root cpuset */
449
	ret = 0;
450
	if (cur == &top_cpuset)
451
		goto out;
L
Linus Torvalds 已提交
452

T
Tejun Heo 已提交
453
	par = parent_cs(cur);
454

L
Linus Torvalds 已提交
455
	/* We must be a subset of our parent cpuset */
456
	ret = -EACCES;
L
Linus Torvalds 已提交
457
	if (!is_cpuset_subset(trial, par))
458
		goto out;
L
Linus Torvalds 已提交
459

460 461 462 463
	/*
	 * If either I or some sibling (!= me) is exclusive, we can't
	 * overlap
	 */
464 465
	ret = -EINVAL;
	cpuset_for_each_child(c, cont, par) {
L
Linus Torvalds 已提交
466 467
		if ((is_cpu_exclusive(trial) || is_cpu_exclusive(c)) &&
		    c != cur &&
468
		    cpumask_intersects(trial->cpus_allowed, c->cpus_allowed))
469
			goto out;
L
Linus Torvalds 已提交
470 471 472
		if ((is_mem_exclusive(trial) || is_mem_exclusive(c)) &&
		    c != cur &&
		    nodes_intersects(trial->mems_allowed, c->mems_allowed))
473
			goto out;
L
Linus Torvalds 已提交
474 475
	}

476 477 478 479
	/*
	 * Cpusets with tasks - existing or newly being attached - can't
	 * have empty cpus_allowed or mems_allowed.
	 */
480
	ret = -ENOSPC;
481
	if ((cgroup_task_count(cur->css.cgroup) || cur->attach_in_progress) &&
482 483 484
	    (cpumask_empty(trial->cpus_allowed) ||
	     nodes_empty(trial->mems_allowed)))
		goto out;
485

486 487 488 489
	ret = 0;
out:
	rcu_read_unlock();
	return ret;
L
Linus Torvalds 已提交
490 491
}

492
#ifdef CONFIG_SMP
P
Paul Jackson 已提交
493
/*
494
 * Helper routine for generate_sched_domains().
P
Paul Jackson 已提交
495 496 497 498
 * Do cpusets a, b have overlapping cpus_allowed masks?
 */
static int cpusets_overlap(struct cpuset *a, struct cpuset *b)
{
499
	return cpumask_intersects(a->cpus_allowed, b->cpus_allowed);
P
Paul Jackson 已提交
500 501
}

502 503 504 505 506 507 508 509
static void
update_domain_attr(struct sched_domain_attr *dattr, struct cpuset *c)
{
	if (dattr->relax_domain_level < c->relax_domain_level)
		dattr->relax_domain_level = c->relax_domain_level;
	return;
}

510 511
static void update_domain_attr_tree(struct sched_domain_attr *dattr,
				    struct cpuset *root_cs)
512
{
513 514
	struct cpuset *cp;
	struct cgroup *pos_cgrp;
515

516 517 518 519 520
	rcu_read_lock();
	cpuset_for_each_descendant_pre(cp, pos_cgrp, root_cs) {
		/* skip the whole subtree if @cp doesn't have any CPU */
		if (cpumask_empty(cp->cpus_allowed)) {
			pos_cgrp = cgroup_rightmost_descendant(pos_cgrp);
521
			continue;
522
		}
523 524 525 526

		if (is_sched_load_balance(cp))
			update_domain_attr(dattr, cp);
	}
527
	rcu_read_unlock();
528 529
}

P
Paul Jackson 已提交
530
/*
531 532 533 534 535 536 537 538 539
 * generate_sched_domains()
 *
 * This function builds a partial partition of the systems CPUs
 * A 'partial partition' is a set of non-overlapping subsets whose
 * union is a subset of that set.
 * The output of this function needs to be passed to kernel/sched.c
 * partition_sched_domains() routine, which will rebuild the scheduler's
 * load balancing domains (sched domains) as specified by that partial
 * partition.
P
Paul Jackson 已提交
540
 *
L
Li Zefan 已提交
541
 * See "What is sched_load_balance" in Documentation/cgroups/cpusets.txt
P
Paul Jackson 已提交
542 543 544 545 546 547 548
 * for a background explanation of this.
 *
 * Does not return errors, on the theory that the callers of this
 * routine would rather not worry about failures to rebuild sched
 * domains when operating in the severe memory shortage situations
 * that could cause allocation failures below.
 *
549
 * Must be called with cpuset_mutex held.
P
Paul Jackson 已提交
550 551
 *
 * The three key local variables below are:
552
 *    q  - a linked-list queue of cpuset pointers, used to implement a
P
Paul Jackson 已提交
553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583
 *	   top-down scan of all cpusets.  This scan loads a pointer
 *	   to each cpuset marked is_sched_load_balance into the
 *	   array 'csa'.  For our purposes, rebuilding the schedulers
 *	   sched domains, we can ignore !is_sched_load_balance cpusets.
 *  csa  - (for CpuSet Array) Array of pointers to all the cpusets
 *	   that need to be load balanced, for convenient iterative
 *	   access by the subsequent code that finds the best partition,
 *	   i.e the set of domains (subsets) of CPUs such that the
 *	   cpus_allowed of every cpuset marked is_sched_load_balance
 *	   is a subset of one of these domains, while there are as
 *	   many such domains as possible, each as small as possible.
 * doms  - Conversion of 'csa' to an array of cpumasks, for passing to
 *	   the kernel/sched.c routine partition_sched_domains() in a
 *	   convenient format, that can be easily compared to the prior
 *	   value to determine what partition elements (sched domains)
 *	   were changed (added or removed.)
 *
 * Finding the best partition (set of domains):
 *	The triple nested loops below over i, j, k scan over the
 *	load balanced cpusets (using the array of cpuset pointers in
 *	csa[]) looking for pairs of cpusets that have overlapping
 *	cpus_allowed, but which don't have the same 'pn' partition
 *	number and gives them in the same partition number.  It keeps
 *	looping on the 'restart' label until it can no longer find
 *	any such pairs.
 *
 *	The union of the cpus_allowed masks from the set of
 *	all cpusets having the same 'pn' value then form the one
 *	element of the partition (one sched domain) to be passed to
 *	partition_sched_domains().
 */
584
static int generate_sched_domains(cpumask_var_t **domains,
585
			struct sched_domain_attr **attributes)
P
Paul Jackson 已提交
586 587 588 589 590
{
	struct cpuset *cp;	/* scans q */
	struct cpuset **csa;	/* array of all cpuset ptrs */
	int csn;		/* how many cpuset ptrs in csa so far */
	int i, j, k;		/* indices for partition finding loops */
591
	cpumask_var_t *doms;	/* resulting partition; i.e. sched domains */
592
	struct sched_domain_attr *dattr;  /* attributes for custom domains */
593
	int ndoms = 0;		/* number of sched domains in result */
594
	int nslot;		/* next empty doms[] struct cpumask slot */
595
	struct cgroup *pos_cgrp;
P
Paul Jackson 已提交
596 597

	doms = NULL;
598
	dattr = NULL;
599
	csa = NULL;
P
Paul Jackson 已提交
600 601 602

	/* Special case for the 99% of systems with one, full, sched domain */
	if (is_sched_load_balance(&top_cpuset)) {
603 604
		ndoms = 1;
		doms = alloc_sched_domains(ndoms);
P
Paul Jackson 已提交
605
		if (!doms)
606 607
			goto done;

608 609 610
		dattr = kmalloc(sizeof(struct sched_domain_attr), GFP_KERNEL);
		if (dattr) {
			*dattr = SD_ATTR_INIT;
611
			update_domain_attr_tree(dattr, &top_cpuset);
612
		}
613
		cpumask_copy(doms[0], top_cpuset.cpus_allowed);
614 615

		goto done;
P
Paul Jackson 已提交
616 617 618 619 620 621 622
	}

	csa = kmalloc(number_of_cpusets * sizeof(cp), GFP_KERNEL);
	if (!csa)
		goto done;
	csn = 0;

623 624
	rcu_read_lock();
	cpuset_for_each_descendant_pre(cp, pos_cgrp, &top_cpuset) {
625
		/*
626 627 628 629 630 631
		 * Continue traversing beyond @cp iff @cp has some CPUs and
		 * isn't load balancing.  The former is obvious.  The
		 * latter: All child cpusets contain a subset of the
		 * parent's cpus, so just skip them, and then we call
		 * update_domain_attr_tree() to calc relax_domain_level of
		 * the corresponding sched domain.
632
		 */
633 634
		if (!cpumask_empty(cp->cpus_allowed) &&
		    !is_sched_load_balance(cp))
635
			continue;
636

637 638 639 640 641 642 643
		if (is_sched_load_balance(cp))
			csa[csn++] = cp;

		/* skip @cp's subtree */
		pos_cgrp = cgroup_rightmost_descendant(pos_cgrp);
	}
	rcu_read_unlock();
P
Paul Jackson 已提交
644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671

	for (i = 0; i < csn; i++)
		csa[i]->pn = i;
	ndoms = csn;

restart:
	/* Find the best partition (set of sched domains) */
	for (i = 0; i < csn; i++) {
		struct cpuset *a = csa[i];
		int apn = a->pn;

		for (j = 0; j < csn; j++) {
			struct cpuset *b = csa[j];
			int bpn = b->pn;

			if (apn != bpn && cpusets_overlap(a, b)) {
				for (k = 0; k < csn; k++) {
					struct cpuset *c = csa[k];

					if (c->pn == bpn)
						c->pn = apn;
				}
				ndoms--;	/* one less element */
				goto restart;
			}
		}
	}

672 673 674 675
	/*
	 * Now we know how many domains to create.
	 * Convert <csn, csa> to <ndoms, doms> and populate cpu masks.
	 */
676
	doms = alloc_sched_domains(ndoms);
677
	if (!doms)
678 679 680 681 682 683
		goto done;

	/*
	 * The rest of the code, including the scheduler, can deal with
	 * dattr==NULL case. No need to abort if alloc fails.
	 */
684
	dattr = kmalloc(ndoms * sizeof(struct sched_domain_attr), GFP_KERNEL);
P
Paul Jackson 已提交
685 686 687

	for (nslot = 0, i = 0; i < csn; i++) {
		struct cpuset *a = csa[i];
688
		struct cpumask *dp;
P
Paul Jackson 已提交
689 690
		int apn = a->pn;

691 692 693 694 695
		if (apn < 0) {
			/* Skip completed partitions */
			continue;
		}

696
		dp = doms[nslot];
697 698 699 700 701 702 703 704 705 706

		if (nslot == ndoms) {
			static int warnings = 10;
			if (warnings) {
				printk(KERN_WARNING
				 "rebuild_sched_domains confused:"
				  " nslot %d, ndoms %d, csn %d, i %d,"
				  " apn %d\n",
				  nslot, ndoms, csn, i, apn);
				warnings--;
P
Paul Jackson 已提交
707
			}
708 709
			continue;
		}
P
Paul Jackson 已提交
710

711
		cpumask_clear(dp);
712 713 714 715 716 717
		if (dattr)
			*(dattr + nslot) = SD_ATTR_INIT;
		for (j = i; j < csn; j++) {
			struct cpuset *b = csa[j];

			if (apn == b->pn) {
718
				cpumask_or(dp, dp, b->cpus_allowed);
719 720 721 722 723
				if (dattr)
					update_domain_attr_tree(dattr + nslot, b);

				/* Done with this partition */
				b->pn = -1;
P
Paul Jackson 已提交
724 725
			}
		}
726
		nslot++;
P
Paul Jackson 已提交
727 728 729
	}
	BUG_ON(nslot != ndoms);

730 731 732
done:
	kfree(csa);

733 734 735 736 737 738 739
	/*
	 * Fallback to the default domain if kmalloc() failed.
	 * See comments in partition_sched_domains().
	 */
	if (doms == NULL)
		ndoms = 1;

740 741 742 743 744 745 746 747
	*domains    = doms;
	*attributes = dattr;
	return ndoms;
}

/*
 * Rebuild scheduler domains.
 *
748 749 750 751 752
 * If the flag 'sched_load_balance' of any cpuset with non-empty
 * 'cpus' changes, or if the 'cpus' allowed changes in any cpuset
 * which has that flag enabled, or if any cpuset with a non-empty
 * 'cpus' is removed, then call this routine to rebuild the
 * scheduler's dynamic sched domains.
753
 *
754
 * Call with cpuset_mutex held.  Takes get_online_cpus().
755
 */
756
static void rebuild_sched_domains_locked(void)
757 758
{
	struct sched_domain_attr *attr;
759
	cpumask_var_t *doms;
760 761
	int ndoms;

762
	lockdep_assert_held(&cpuset_mutex);
763
	get_online_cpus();
764

765 766 767 768 769 770 771 772
	/*
	 * We have raced with CPU hotplug. Don't do anything to avoid
	 * passing doms with offlined cpu to partition_sched_domains().
	 * Anyways, hotplug work item will rebuild sched domains.
	 */
	if (!cpumask_equal(top_cpuset.cpus_allowed, cpu_active_mask))
		goto out;

773 774 775 776 777
	/* Generate domain masks and attrs */
	ndoms = generate_sched_domains(&doms, &attr);

	/* Have scheduler rebuild the domains */
	partition_sched_domains(ndoms, doms, attr);
778
out:
779
	put_online_cpus();
780
}
781
#else /* !CONFIG_SMP */
782
static void rebuild_sched_domains_locked(void)
783 784 785
{
}
#endif /* CONFIG_SMP */
P
Paul Jackson 已提交
786

787 788
void rebuild_sched_domains(void)
{
789
	mutex_lock(&cpuset_mutex);
790
	rebuild_sched_domains_locked();
791
	mutex_unlock(&cpuset_mutex);
P
Paul Jackson 已提交
792 793
}

794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832
/*
 * effective_cpumask_cpuset - return nearest ancestor with non-empty cpus
 * @cs: the cpuset in interest
 *
 * A cpuset's effective cpumask is the cpumask of the nearest ancestor
 * with non-empty cpus. We use effective cpumask whenever:
 * - we update tasks' cpus_allowed. (they take on the ancestor's cpumask
 *   if the cpuset they reside in has no cpus)
 * - we want to retrieve task_cs(tsk)'s cpus_allowed.
 *
 * Called with cpuset_mutex held. cpuset_cpus_allowed_fallback() is an
 * exception. See comments there.
 */
static struct cpuset *effective_cpumask_cpuset(struct cpuset *cs)
{
	while (cpumask_empty(cs->cpus_allowed))
		cs = parent_cs(cs);
	return cs;
}

/*
 * effective_nodemask_cpuset - return nearest ancestor with non-empty mems
 * @cs: the cpuset in interest
 *
 * A cpuset's effective nodemask is the nodemask of the nearest ancestor
 * with non-empty memss. We use effective nodemask whenever:
 * - we update tasks' mems_allowed. (they take on the ancestor's nodemask
 *   if the cpuset they reside in has no mems)
 * - we want to retrieve task_cs(tsk)'s mems_allowed.
 *
 * Called with cpuset_mutex held.
 */
static struct cpuset *effective_nodemask_cpuset(struct cpuset *cs)
{
	while (nodes_empty(cs->mems_allowed))
		cs = parent_cs(cs);
	return cs;
}

C
Cliff Wickman 已提交
833 834 835 836 837 838 839 840 841
/**
 * cpuset_change_cpumask - make a task's cpus_allowed the same as its cpuset's
 * @tsk: task to test
 * @scan: struct cgroup_scanner containing the cgroup of the task
 *
 * Called by cgroup_scan_tasks() for each task in a cgroup whose
 * cpus_allowed mask needs to be changed.
 *
 * We don't need to re-check for the cgroup/cpuset membership, since we're
842
 * holding cpuset_mutex at this point.
C
Cliff Wickman 已提交
843
 */
844 845
static void cpuset_change_cpumask(struct task_struct *tsk,
				  struct cgroup_scanner *scan)
C
Cliff Wickman 已提交
846
{
847 848 849 850
	struct cpuset *cpus_cs;

	cpus_cs = effective_cpumask_cpuset(cgroup_cs(scan->cg));
	set_cpus_allowed_ptr(tsk, cpus_cs->cpus_allowed);
C
Cliff Wickman 已提交
851 852
}

853 854 855
/**
 * update_tasks_cpumask - Update the cpumasks of tasks in the cpuset.
 * @cs: the cpuset in which each task's cpus_allowed mask needs to be changed
856
 * @heap: if NULL, defer allocating heap memory to cgroup_scan_tasks()
857
 *
858
 * Called with cpuset_mutex held
859 860 861 862
 *
 * The cgroup_scan_tasks() function will scan all the tasks in a cgroup,
 * calling callback functions for each.
 *
863 864
 * No return value. It's guaranteed that cgroup_scan_tasks() always returns 0
 * if @heap != NULL.
865
 */
866
static void update_tasks_cpumask(struct cpuset *cs, struct ptr_heap *heap)
867 868 869 870
{
	struct cgroup_scanner scan;

	scan.cg = cs->css.cgroup;
L
Li Zefan 已提交
871
	scan.test_task = NULL;
872
	scan.process_task = cpuset_change_cpumask;
873 874
	scan.heap = heap;
	cgroup_scan_tasks(&scan);
875 876
}

C
Cliff Wickman 已提交
877 878 879 880 881
/**
 * update_cpumask - update the cpus_allowed mask of a cpuset and all tasks in it
 * @cs: the cpuset to consider
 * @buf: buffer of cpu numbers written to this cpuset
 */
882 883
static int update_cpumask(struct cpuset *cs, struct cpuset *trialcs,
			  const char *buf)
L
Linus Torvalds 已提交
884
{
885
	struct ptr_heap heap;
C
Cliff Wickman 已提交
886 887
	int retval;
	int is_load_balanced;
L
Linus Torvalds 已提交
888

889
	/* top_cpuset.cpus_allowed tracks cpu_online_mask; it's read-only */
890 891 892
	if (cs == &top_cpuset)
		return -EACCES;

893
	/*
894
	 * An empty cpus_allowed is ok only if the cpuset has no tasks.
895 896 897
	 * Since cpulist_parse() fails on an empty mask, we special case
	 * that parsing.  The validate_change() call ensures that cpusets
	 * with tasks have cpus.
898
	 */
899
	if (!*buf) {
900
		cpumask_clear(trialcs->cpus_allowed);
901
	} else {
902
		retval = cpulist_parse(buf, trialcs->cpus_allowed);
903 904
		if (retval < 0)
			return retval;
905

906
		if (!cpumask_subset(trialcs->cpus_allowed, cpu_active_mask))
907
			return -EINVAL;
908
	}
P
Paul Jackson 已提交
909

P
Paul Menage 已提交
910
	/* Nothing to do if the cpus didn't change */
911
	if (cpumask_equal(cs->cpus_allowed, trialcs->cpus_allowed))
P
Paul Menage 已提交
912
		return 0;
C
Cliff Wickman 已提交
913

914 915 916 917
	retval = validate_change(cs, trialcs);
	if (retval < 0)
		return retval;

918 919 920 921
	retval = heap_init(&heap, PAGE_SIZE, GFP_KERNEL, NULL);
	if (retval)
		return retval;

922
	is_load_balanced = is_sched_load_balance(trialcs);
P
Paul Jackson 已提交
923

924
	mutex_lock(&callback_mutex);
925
	cpumask_copy(cs->cpus_allowed, trialcs->cpus_allowed);
926
	mutex_unlock(&callback_mutex);
P
Paul Jackson 已提交
927

P
Paul Menage 已提交
928 929
	/*
	 * Scan tasks in the cpuset, and update the cpumasks of any
C
Cliff Wickman 已提交
930
	 * that need an update.
P
Paul Menage 已提交
931
	 */
932 933 934
	update_tasks_cpumask(cs, &heap);

	heap_free(&heap);
C
Cliff Wickman 已提交
935

P
Paul Menage 已提交
936
	if (is_load_balanced)
937
		rebuild_sched_domains_locked();
938
	return 0;
L
Linus Torvalds 已提交
939 940
}

941 942 943 944 945 946 947 948
/*
 * cpuset_migrate_mm
 *
 *    Migrate memory region from one set of nodes to another.
 *
 *    Temporarilly set tasks mems_allowed to target nodes of migration,
 *    so that the migration code can allocate pages on these nodes.
 *
949
 *    Call holding cpuset_mutex, so current's cpuset won't change
950
 *    during this call, as manage_mutex holds off any cpuset_attach()
951 952
 *    calls.  Therefore we don't need to take task_lock around the
 *    call to guarantee_online_mems(), as we know no one is changing
953
 *    our task's cpuset.
954 955 956 957 958 959 960 961 962 963 964
 *
 *    While the mm_struct we are migrating is typically from some
 *    other task, the task_struct mems_allowed that we are hacking
 *    is for our current task, which must allocate new pages for that
 *    migrating memory region.
 */

static void cpuset_migrate_mm(struct mm_struct *mm, const nodemask_t *from,
							const nodemask_t *to)
{
	struct task_struct *tsk = current;
965
	struct cpuset *mems_cs;
966 967 968 969 970

	tsk->mems_allowed = *to;

	do_migrate_pages(mm, from, to, MPOL_MF_MOVE_ALL);

971 972
	mems_cs = effective_nodemask_cpuset(task_cs(tsk));
	guarantee_online_mems(mems_cs, &tsk->mems_allowed);
973 974
}

975
/*
976 977 978 979 980 981 982 983 984 985 986
 * cpuset_change_task_nodemask - change task's mems_allowed and mempolicy
 * @tsk: the task to change
 * @newmems: new nodes that the task will be set
 *
 * In order to avoid seeing no nodes if the old and new nodes are disjoint,
 * we structure updates as setting all new allowed nodes, then clearing newly
 * disallowed ones.
 */
static void cpuset_change_task_nodemask(struct task_struct *tsk,
					nodemask_t *newmems)
{
987
	bool need_loop;
988

989 990 991 992 993 994 995 996 997 998
	/*
	 * Allow tasks that have access to memory reserves because they have
	 * been OOM killed to get memory anywhere.
	 */
	if (unlikely(test_thread_flag(TIF_MEMDIE)))
		return;
	if (current->flags & PF_EXITING) /* Let dying task have memory */
		return;

	task_lock(tsk);
999 1000 1001 1002 1003 1004 1005 1006
	/*
	 * Determine if a loop is necessary if another thread is doing
	 * get_mems_allowed().  If at least one node remains unchanged and
	 * tsk does not have a mempolicy, then an empty nodemask will not be
	 * possible when mems_allowed is larger than a word.
	 */
	need_loop = task_has_mempolicy(tsk) ||
			!nodes_intersects(*newmems, tsk->mems_allowed);
1007

1008 1009
	if (need_loop)
		write_seqcount_begin(&tsk->mems_allowed_seq);
1010

1011 1012
	nodes_or(tsk->mems_allowed, tsk->mems_allowed, *newmems);
	mpol_rebind_task(tsk, newmems, MPOL_REBIND_STEP1);
1013 1014

	mpol_rebind_task(tsk, newmems, MPOL_REBIND_STEP2);
1015
	tsk->mems_allowed = *newmems;
1016 1017 1018 1019

	if (need_loop)
		write_seqcount_end(&tsk->mems_allowed_seq);

1020
	task_unlock(tsk);
1021 1022 1023 1024 1025
}

/*
 * Update task's mems_allowed and rebind its mempolicy and vmas' mempolicy
 * of it to cpuset's new mems_allowed, and migrate pages to new nodes if
1026
 * memory_migrate flag is set. Called with cpuset_mutex held.
1027 1028 1029 1030
 */
static void cpuset_change_nodemask(struct task_struct *p,
				   struct cgroup_scanner *scan)
{
1031
	struct cpuset *cs = cgroup_cs(scan->cg);
1032 1033
	struct mm_struct *mm;
	int migrate;
1034
	nodemask_t *newmems = scan->data;
1035

1036
	cpuset_change_task_nodemask(p, newmems);
1037

1038 1039 1040 1041 1042 1043 1044 1045
	mm = get_task_mm(p);
	if (!mm)
		return;

	migrate = is_memory_migrate(cs);

	mpol_rebind_mm(mm, &cs->mems_allowed);
	if (migrate)
1046
		cpuset_migrate_mm(mm, &cs->old_mems_allowed, newmems);
1047 1048 1049
	mmput(mm);
}

1050 1051
static void *cpuset_being_rebound;

1052 1053 1054
/**
 * update_tasks_nodemask - Update the nodemasks of tasks in the cpuset.
 * @cs: the cpuset in which each task's mems_allowed mask needs to be changed
1055
 * @heap: if NULL, defer allocating heap memory to cgroup_scan_tasks()
1056
 *
1057
 * Called with cpuset_mutex held
1058 1059
 * No return value. It's guaranteed that cgroup_scan_tasks() always returns 0
 * if @heap != NULL.
1060
 */
1061
static void update_tasks_nodemask(struct cpuset *cs, struct ptr_heap *heap)
L
Linus Torvalds 已提交
1062
{
1063
	static nodemask_t newmems;	/* protected by cpuset_mutex */
1064
	struct cgroup_scanner scan;
1065
	struct cpuset *mems_cs = effective_nodemask_cpuset(cs);
1066

1067
	cpuset_being_rebound = cs;		/* causes mpol_dup() rebind */
1068

1069
	guarantee_online_mems(mems_cs, &newmems);
1070

1071 1072 1073
	scan.cg = cs->css.cgroup;
	scan.test_task = NULL;
	scan.process_task = cpuset_change_nodemask;
1074
	scan.heap = heap;
1075
	scan.data = &newmems;
1076 1077

	/*
1078 1079 1080 1081
	 * The mpol_rebind_mm() call takes mmap_sem, which we couldn't
	 * take while holding tasklist_lock.  Forks can happen - the
	 * mpol_dup() cpuset_being_rebound check will catch such forks,
	 * and rebind their vma mempolicies too.  Because we still hold
1082
	 * the global cpuset_mutex, we know that no other rebind effort
1083
	 * will be contending for the global variable cpuset_being_rebound.
1084
	 * It's ok if we rebind the same mm twice; mpol_rebind_mm()
1085
	 * is idempotent.  Also migrate pages in each mm to new nodes.
1086
	 */
1087
	cgroup_scan_tasks(&scan);
1088

1089 1090 1091 1092 1093 1094
	/*
	 * All the tasks' nodemasks have been updated, update
	 * cs->old_mems_allowed.
	 */
	cs->old_mems_allowed = newmems;

1095
	/* We're done rebinding vmas to this cpuset's new mems_allowed. */
1096
	cpuset_being_rebound = NULL;
L
Linus Torvalds 已提交
1097 1098
}

1099 1100 1101
/*
 * Handle user request to change the 'mems' memory placement
 * of a cpuset.  Needs to validate the request, update the
1102 1103 1104 1105
 * cpusets mems_allowed, and for each task in the cpuset,
 * update mems_allowed and rebind task's mempolicy and any vma
 * mempolicies and if the cpuset is marked 'memory_migrate',
 * migrate the tasks pages to the new memory.
1106
 *
1107
 * Call with cpuset_mutex held.  May take callback_mutex during call.
1108 1109 1110 1111
 * Will take tasklist_lock, scan tasklist for tasks in cpuset cs,
 * lock each such tasks mm->mmap_sem, scan its vma's and rebind
 * their mempolicies to the cpusets new mems_allowed.
 */
1112 1113
static int update_nodemask(struct cpuset *cs, struct cpuset *trialcs,
			   const char *buf)
1114 1115
{
	int retval;
1116
	struct ptr_heap heap;
1117 1118

	/*
1119
	 * top_cpuset.mems_allowed tracks node_stats[N_MEMORY];
1120 1121
	 * it's read-only
	 */
1122 1123 1124 1125
	if (cs == &top_cpuset) {
		retval = -EACCES;
		goto done;
	}
1126 1127 1128 1129 1130 1131 1132 1133

	/*
	 * An empty mems_allowed is ok iff there are no tasks in the cpuset.
	 * Since nodelist_parse() fails on an empty mask, we special case
	 * that parsing.  The validate_change() call ensures that cpusets
	 * with tasks have memory.
	 */
	if (!*buf) {
1134
		nodes_clear(trialcs->mems_allowed);
1135
	} else {
1136
		retval = nodelist_parse(buf, trialcs->mems_allowed);
1137 1138 1139
		if (retval < 0)
			goto done;

1140
		if (!nodes_subset(trialcs->mems_allowed,
1141
				node_states[N_MEMORY])) {
1142 1143 1144
			retval =  -EINVAL;
			goto done;
		}
1145
	}
1146 1147

	if (nodes_equal(cs->mems_allowed, trialcs->mems_allowed)) {
1148 1149 1150
		retval = 0;		/* Too easy - nothing to do */
		goto done;
	}
1151
	retval = validate_change(cs, trialcs);
1152 1153 1154
	if (retval < 0)
		goto done;

1155 1156 1157 1158
	retval = heap_init(&heap, PAGE_SIZE, GFP_KERNEL, NULL);
	if (retval < 0)
		goto done;

1159
	mutex_lock(&callback_mutex);
1160
	cs->mems_allowed = trialcs->mems_allowed;
1161 1162
	mutex_unlock(&callback_mutex);

1163
	update_tasks_nodemask(cs, &heap);
1164 1165

	heap_free(&heap);
1166 1167 1168 1169
done:
	return retval;
}

1170 1171 1172 1173 1174
int current_cpuset_is_being_rebound(void)
{
	return task_cs(current) == cpuset_being_rebound;
}

1175
static int update_relax_domain_level(struct cpuset *cs, s64 val)
1176
{
1177
#ifdef CONFIG_SMP
1178
	if (val < -1 || val >= sched_domain_level_max)
1179
		return -EINVAL;
1180
#endif
1181 1182 1183

	if (val != cs->relax_domain_level) {
		cs->relax_domain_level = val;
1184 1185
		if (!cpumask_empty(cs->cpus_allowed) &&
		    is_sched_load_balance(cs))
1186
			rebuild_sched_domains_locked();
1187 1188 1189 1190 1191
	}

	return 0;
}

1192 1193 1194 1195 1196 1197 1198 1199
/*
 * cpuset_change_flag - make a task's spread flags the same as its cpuset's
 * @tsk: task to be updated
 * @scan: struct cgroup_scanner containing the cgroup of the task
 *
 * Called by cgroup_scan_tasks() for each task in a cgroup.
 *
 * We don't need to re-check for the cgroup/cpuset membership, since we're
1200
 * holding cpuset_mutex at this point.
1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212
 */
static void cpuset_change_flag(struct task_struct *tsk,
				struct cgroup_scanner *scan)
{
	cpuset_update_task_spread_flag(cgroup_cs(scan->cg), tsk);
}

/*
 * update_tasks_flags - update the spread flags of tasks in the cpuset.
 * @cs: the cpuset in which each task's spread flags needs to be changed
 * @heap: if NULL, defer allocating heap memory to cgroup_scan_tasks()
 *
1213
 * Called with cpuset_mutex held
1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231
 *
 * The cgroup_scan_tasks() function will scan all the tasks in a cgroup,
 * calling callback functions for each.
 *
 * No return value. It's guaranteed that cgroup_scan_tasks() always returns 0
 * if @heap != NULL.
 */
static void update_tasks_flags(struct cpuset *cs, struct ptr_heap *heap)
{
	struct cgroup_scanner scan;

	scan.cg = cs->css.cgroup;
	scan.test_task = NULL;
	scan.process_task = cpuset_change_flag;
	scan.heap = heap;
	cgroup_scan_tasks(&scan);
}

L
Linus Torvalds 已提交
1232 1233
/*
 * update_flag - read a 0 or a 1 in a file and update associated flag
1234 1235 1236
 * bit:		the bit to update (see cpuset_flagbits_t)
 * cs:		the cpuset to update
 * turning_on: 	whether the flag is being set or cleared
1237
 *
1238
 * Call with cpuset_mutex held.
L
Linus Torvalds 已提交
1239 1240
 */

1241 1242
static int update_flag(cpuset_flagbits_t bit, struct cpuset *cs,
		       int turning_on)
L
Linus Torvalds 已提交
1243
{
1244
	struct cpuset *trialcs;
R
Rakib Mullick 已提交
1245
	int balance_flag_changed;
1246 1247 1248
	int spread_flag_changed;
	struct ptr_heap heap;
	int err;
L
Linus Torvalds 已提交
1249

1250 1251 1252 1253
	trialcs = alloc_trial_cpuset(cs);
	if (!trialcs)
		return -ENOMEM;

L
Linus Torvalds 已提交
1254
	if (turning_on)
1255
		set_bit(bit, &trialcs->flags);
L
Linus Torvalds 已提交
1256
	else
1257
		clear_bit(bit, &trialcs->flags);
L
Linus Torvalds 已提交
1258

1259
	err = validate_change(cs, trialcs);
1260
	if (err < 0)
1261
		goto out;
P
Paul Jackson 已提交
1262

1263 1264 1265 1266
	err = heap_init(&heap, PAGE_SIZE, GFP_KERNEL, NULL);
	if (err < 0)
		goto out;

P
Paul Jackson 已提交
1267
	balance_flag_changed = (is_sched_load_balance(cs) !=
1268
				is_sched_load_balance(trialcs));
P
Paul Jackson 已提交
1269

1270 1271 1272
	spread_flag_changed = ((is_spread_slab(cs) != is_spread_slab(trialcs))
			|| (is_spread_page(cs) != is_spread_page(trialcs)));

1273
	mutex_lock(&callback_mutex);
1274
	cs->flags = trialcs->flags;
1275
	mutex_unlock(&callback_mutex);
1276

1277
	if (!cpumask_empty(trialcs->cpus_allowed) && balance_flag_changed)
1278
		rebuild_sched_domains_locked();
P
Paul Jackson 已提交
1279

1280 1281 1282
	if (spread_flag_changed)
		update_tasks_flags(cs, &heap);
	heap_free(&heap);
1283 1284 1285
out:
	free_trial_cpuset(trialcs);
	return err;
L
Linus Torvalds 已提交
1286 1287
}

1288
/*
A
Adrian Bunk 已提交
1289
 * Frequency meter - How fast is some event occurring?
1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385
 *
 * These routines manage a digitally filtered, constant time based,
 * event frequency meter.  There are four routines:
 *   fmeter_init() - initialize a frequency meter.
 *   fmeter_markevent() - called each time the event happens.
 *   fmeter_getrate() - returns the recent rate of such events.
 *   fmeter_update() - internal routine used to update fmeter.
 *
 * A common data structure is passed to each of these routines,
 * which is used to keep track of the state required to manage the
 * frequency meter and its digital filter.
 *
 * The filter works on the number of events marked per unit time.
 * The filter is single-pole low-pass recursive (IIR).  The time unit
 * is 1 second.  Arithmetic is done using 32-bit integers scaled to
 * simulate 3 decimal digits of precision (multiplied by 1000).
 *
 * With an FM_COEF of 933, and a time base of 1 second, the filter
 * has a half-life of 10 seconds, meaning that if the events quit
 * happening, then the rate returned from the fmeter_getrate()
 * will be cut in half each 10 seconds, until it converges to zero.
 *
 * It is not worth doing a real infinitely recursive filter.  If more
 * than FM_MAXTICKS ticks have elapsed since the last filter event,
 * just compute FM_MAXTICKS ticks worth, by which point the level
 * will be stable.
 *
 * Limit the count of unprocessed events to FM_MAXCNT, so as to avoid
 * arithmetic overflow in the fmeter_update() routine.
 *
 * Given the simple 32 bit integer arithmetic used, this meter works
 * best for reporting rates between one per millisecond (msec) and
 * one per 32 (approx) seconds.  At constant rates faster than one
 * per msec it maxes out at values just under 1,000,000.  At constant
 * rates between one per msec, and one per second it will stabilize
 * to a value N*1000, where N is the rate of events per second.
 * At constant rates between one per second and one per 32 seconds,
 * it will be choppy, moving up on the seconds that have an event,
 * and then decaying until the next event.  At rates slower than
 * about one in 32 seconds, it decays all the way back to zero between
 * each event.
 */

#define FM_COEF 933		/* coefficient for half-life of 10 secs */
#define FM_MAXTICKS ((time_t)99) /* useless computing more ticks than this */
#define FM_MAXCNT 1000000	/* limit cnt to avoid overflow */
#define FM_SCALE 1000		/* faux fixed point scale */

/* Initialize a frequency meter */
static void fmeter_init(struct fmeter *fmp)
{
	fmp->cnt = 0;
	fmp->val = 0;
	fmp->time = 0;
	spin_lock_init(&fmp->lock);
}

/* Internal meter update - process cnt events and update value */
static void fmeter_update(struct fmeter *fmp)
{
	time_t now = get_seconds();
	time_t ticks = now - fmp->time;

	if (ticks == 0)
		return;

	ticks = min(FM_MAXTICKS, ticks);
	while (ticks-- > 0)
		fmp->val = (FM_COEF * fmp->val) / FM_SCALE;
	fmp->time = now;

	fmp->val += ((FM_SCALE - FM_COEF) * fmp->cnt) / FM_SCALE;
	fmp->cnt = 0;
}

/* Process any previous ticks, then bump cnt by one (times scale). */
static void fmeter_markevent(struct fmeter *fmp)
{
	spin_lock(&fmp->lock);
	fmeter_update(fmp);
	fmp->cnt = min(FM_MAXCNT, fmp->cnt + FM_SCALE);
	spin_unlock(&fmp->lock);
}

/* Process any previous ticks, then return current value. */
static int fmeter_getrate(struct fmeter *fmp)
{
	int val;

	spin_lock(&fmp->lock);
	fmeter_update(fmp);
	val = fmp->val;
	spin_unlock(&fmp->lock);
	return val;
}

1386
/* Called by cgroups to determine if a cpuset is usable; cpuset_mutex held */
1387
static int cpuset_can_attach(struct cgroup *cgrp, struct cgroup_taskset *tset)
1388
{
1389
	struct cpuset *cs = cgroup_cs(cgrp);
1390 1391
	struct task_struct *task;
	int ret;
L
Linus Torvalds 已提交
1392

1393 1394 1395
	mutex_lock(&cpuset_mutex);

	ret = -ENOSPC;
1396
	if (cpumask_empty(cs->cpus_allowed) || nodes_empty(cs->mems_allowed))
1397
		goto out_unlock;
1398

1399 1400
	cgroup_taskset_for_each(task, cgrp, tset) {
		/*
1401 1402 1403 1404 1405 1406 1407
		 * Kthreads which disallow setaffinity shouldn't be moved
		 * to a new cpuset; we don't want to change their cpu
		 * affinity and isolating such threads by their set of
		 * allowed nodes is unnecessary.  Thus, cpusets are not
		 * applicable for such threads.  This prevents checking for
		 * success of set_cpus_allowed_ptr() on all attached tasks
		 * before cpus_allowed may be changed.
1408
		 */
1409
		ret = -EINVAL;
1410
		if (task->flags & PF_NO_SETAFFINITY)
1411 1412 1413 1414
			goto out_unlock;
		ret = security_task_setscheduler(task);
		if (ret)
			goto out_unlock;
1415
	}
1416

1417 1418 1419 1420 1421
	/*
	 * Mark attach is in progress.  This makes validate_change() fail
	 * changes which zero cpus/mems_allowed.
	 */
	cs->attach_in_progress++;
1422 1423 1424 1425
	ret = 0;
out_unlock:
	mutex_unlock(&cpuset_mutex);
	return ret;
1426
}
1427

1428 1429 1430
static void cpuset_cancel_attach(struct cgroup *cgrp,
				 struct cgroup_taskset *tset)
{
1431
	mutex_lock(&cpuset_mutex);
1432
	cgroup_cs(cgrp)->attach_in_progress--;
1433
	mutex_unlock(&cpuset_mutex);
1434
}
L
Linus Torvalds 已提交
1435

1436
/*
1437
 * Protected by cpuset_mutex.  cpus_attach is used only by cpuset_attach()
1438 1439 1440 1441 1442
 * but we can't allocate it dynamically there.  Define it global and
 * allocate from cpuset_init().
 */
static cpumask_var_t cpus_attach;

1443
static void cpuset_attach(struct cgroup *cgrp, struct cgroup_taskset *tset)
1444
{
1445
	/* static buf protected by cpuset_mutex */
1446
	static nodemask_t cpuset_attach_nodemask_to;
1447
	struct mm_struct *mm;
1448 1449
	struct task_struct *task;
	struct task_struct *leader = cgroup_taskset_first(tset);
1450 1451 1452
	struct cgroup *oldcgrp = cgroup_taskset_cur_cgroup(tset);
	struct cpuset *cs = cgroup_cs(cgrp);
	struct cpuset *oldcs = cgroup_cs(oldcgrp);
1453 1454
	struct cpuset *cpus_cs = effective_cpumask_cpuset(cs);
	struct cpuset *mems_cs = effective_nodemask_cpuset(cs);
1455

1456 1457
	mutex_lock(&cpuset_mutex);

1458 1459 1460 1461
	/* prepare for attach */
	if (cs == &top_cpuset)
		cpumask_copy(cpus_attach, cpu_possible_mask);
	else
1462
		guarantee_online_cpus(cpus_cs, cpus_attach);
1463

1464
	guarantee_online_mems(mems_cs, &cpuset_attach_nodemask_to);
1465

1466 1467 1468 1469 1470 1471 1472 1473 1474 1475
	cgroup_taskset_for_each(task, cgrp, tset) {
		/*
		 * can_attach beforehand should guarantee that this doesn't
		 * fail.  TODO: have a better way to handle failure here
		 */
		WARN_ON_ONCE(set_cpus_allowed_ptr(task, cpus_attach));

		cpuset_change_task_nodemask(task, &cpuset_attach_nodemask_to);
		cpuset_update_task_spread_flag(cs, task);
	}
1476

1477 1478 1479 1480 1481
	/*
	 * Change mm, possibly for multiple threads in a threadgroup. This is
	 * expensive and may sleep.
	 */
	cpuset_attach_nodemask_to = cs->mems_allowed;
1482
	mm = get_task_mm(leader);
1483
	if (mm) {
1484 1485
		struct cpuset *mems_oldcs = effective_nodemask_cpuset(oldcs);

1486
		mpol_rebind_mm(mm, &cpuset_attach_nodemask_to);
1487
		if (is_memory_migrate(cs))
1488
			cpuset_migrate_mm(mm, &mems_oldcs->mems_allowed,
1489
					  &cpuset_attach_nodemask_to);
1490 1491
		mmput(mm);
	}
1492

1493 1494
	cs->old_mems_allowed = cpuset_attach_nodemask_to;

1495
	cs->attach_in_progress--;
1496 1497
	if (!cs->attach_in_progress)
		wake_up(&cpuset_attach_wq);
1498 1499

	mutex_unlock(&cpuset_mutex);
L
Linus Torvalds 已提交
1500 1501 1502 1503 1504
}

/* The various types of files and directories in a cpuset file system */

typedef enum {
1505
	FILE_MEMORY_MIGRATE,
L
Linus Torvalds 已提交
1506 1507 1508 1509
	FILE_CPULIST,
	FILE_MEMLIST,
	FILE_CPU_EXCLUSIVE,
	FILE_MEM_EXCLUSIVE,
1510
	FILE_MEM_HARDWALL,
P
Paul Jackson 已提交
1511
	FILE_SCHED_LOAD_BALANCE,
1512
	FILE_SCHED_RELAX_DOMAIN_LEVEL,
1513 1514
	FILE_MEMORY_PRESSURE_ENABLED,
	FILE_MEMORY_PRESSURE,
1515 1516
	FILE_SPREAD_PAGE,
	FILE_SPREAD_SLAB,
L
Linus Torvalds 已提交
1517 1518
} cpuset_filetype_t;

1519 1520 1521 1522
static int cpuset_write_u64(struct cgroup *cgrp, struct cftype *cft, u64 val)
{
	struct cpuset *cs = cgroup_cs(cgrp);
	cpuset_filetype_t type = cft->private;
1523
	int retval = -ENODEV;
1524

1525 1526 1527
	mutex_lock(&cpuset_mutex);
	if (!is_cpuset_online(cs))
		goto out_unlock;
1528 1529

	switch (type) {
L
Linus Torvalds 已提交
1530
	case FILE_CPU_EXCLUSIVE:
1531
		retval = update_flag(CS_CPU_EXCLUSIVE, cs, val);
L
Linus Torvalds 已提交
1532 1533
		break;
	case FILE_MEM_EXCLUSIVE:
1534
		retval = update_flag(CS_MEM_EXCLUSIVE, cs, val);
L
Linus Torvalds 已提交
1535
		break;
1536 1537 1538
	case FILE_MEM_HARDWALL:
		retval = update_flag(CS_MEM_HARDWALL, cs, val);
		break;
P
Paul Jackson 已提交
1539
	case FILE_SCHED_LOAD_BALANCE:
1540
		retval = update_flag(CS_SCHED_LOAD_BALANCE, cs, val);
1541
		break;
1542
	case FILE_MEMORY_MIGRATE:
1543
		retval = update_flag(CS_MEMORY_MIGRATE, cs, val);
1544
		break;
1545
	case FILE_MEMORY_PRESSURE_ENABLED:
1546
		cpuset_memory_pressure_enabled = !!val;
1547 1548 1549 1550
		break;
	case FILE_MEMORY_PRESSURE:
		retval = -EACCES;
		break;
1551
	case FILE_SPREAD_PAGE:
1552
		retval = update_flag(CS_SPREAD_PAGE, cs, val);
1553 1554
		break;
	case FILE_SPREAD_SLAB:
1555
		retval = update_flag(CS_SPREAD_SLAB, cs, val);
1556
		break;
L
Linus Torvalds 已提交
1557 1558
	default:
		retval = -EINVAL;
1559
		break;
L
Linus Torvalds 已提交
1560
	}
1561 1562
out_unlock:
	mutex_unlock(&cpuset_mutex);
L
Linus Torvalds 已提交
1563 1564 1565
	return retval;
}

1566 1567 1568 1569
static int cpuset_write_s64(struct cgroup *cgrp, struct cftype *cft, s64 val)
{
	struct cpuset *cs = cgroup_cs(cgrp);
	cpuset_filetype_t type = cft->private;
1570
	int retval = -ENODEV;
1571

1572 1573 1574
	mutex_lock(&cpuset_mutex);
	if (!is_cpuset_online(cs))
		goto out_unlock;
1575

1576 1577 1578 1579 1580 1581 1582 1583
	switch (type) {
	case FILE_SCHED_RELAX_DOMAIN_LEVEL:
		retval = update_relax_domain_level(cs, val);
		break;
	default:
		retval = -EINVAL;
		break;
	}
1584 1585
out_unlock:
	mutex_unlock(&cpuset_mutex);
1586 1587 1588
	return retval;
}

1589 1590 1591 1592 1593 1594
/*
 * Common handling for a write to a "cpus" or "mems" file.
 */
static int cpuset_write_resmask(struct cgroup *cgrp, struct cftype *cft,
				const char *buf)
{
1595 1596
	struct cpuset *cs = cgroup_cs(cgrp);
	struct cpuset *trialcs;
1597
	int retval = -ENODEV;
1598

1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611
	/*
	 * CPU or memory hotunplug may leave @cs w/o any execution
	 * resources, in which case the hotplug code asynchronously updates
	 * configuration and transfers all tasks to the nearest ancestor
	 * which can execute.
	 *
	 * As writes to "cpus" or "mems" may restore @cs's execution
	 * resources, wait for the previously scheduled operations before
	 * proceeding, so that we don't end up keep removing tasks added
	 * after execution capability is restored.
	 */
	flush_work(&cpuset_hotplug_work);

1612 1613 1614
	mutex_lock(&cpuset_mutex);
	if (!is_cpuset_online(cs))
		goto out_unlock;
1615

1616
	trialcs = alloc_trial_cpuset(cs);
1617 1618
	if (!trialcs) {
		retval = -ENOMEM;
1619
		goto out_unlock;
1620
	}
1621

1622 1623
	switch (cft->private) {
	case FILE_CPULIST:
1624
		retval = update_cpumask(cs, trialcs, buf);
1625 1626
		break;
	case FILE_MEMLIST:
1627
		retval = update_nodemask(cs, trialcs, buf);
1628 1629 1630 1631 1632
		break;
	default:
		retval = -EINVAL;
		break;
	}
1633 1634

	free_trial_cpuset(trialcs);
1635 1636
out_unlock:
	mutex_unlock(&cpuset_mutex);
1637 1638 1639
	return retval;
}

L
Linus Torvalds 已提交
1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651
/*
 * These ascii lists should be read in a single call, by using a user
 * buffer large enough to hold the entire map.  If read in smaller
 * chunks, there is no guarantee of atomicity.  Since the display format
 * used, list of ranges of sequential numbers, is variable length,
 * and since these maps can change value dynamically, one could read
 * gibberish by doing partial reads while a list was changing.
 * A single large read to a buffer that crosses a page boundary is
 * ok, because the result being copied to user land is not recomputed
 * across a page fault.
 */

1652
static size_t cpuset_sprintf_cpulist(char *page, struct cpuset *cs)
L
Linus Torvalds 已提交
1653
{
1654
	size_t count;
L
Linus Torvalds 已提交
1655

1656
	mutex_lock(&callback_mutex);
1657
	count = cpulist_scnprintf(page, PAGE_SIZE, cs->cpus_allowed);
1658
	mutex_unlock(&callback_mutex);
L
Linus Torvalds 已提交
1659

1660
	return count;
L
Linus Torvalds 已提交
1661 1662
}

1663
static size_t cpuset_sprintf_memlist(char *page, struct cpuset *cs)
L
Linus Torvalds 已提交
1664
{
1665
	size_t count;
L
Linus Torvalds 已提交
1666

1667
	mutex_lock(&callback_mutex);
1668
	count = nodelist_scnprintf(page, PAGE_SIZE, cs->mems_allowed);
1669
	mutex_unlock(&callback_mutex);
L
Linus Torvalds 已提交
1670

1671
	return count;
L
Linus Torvalds 已提交
1672 1673
}

1674 1675 1676 1677 1678
static ssize_t cpuset_common_file_read(struct cgroup *cont,
				       struct cftype *cft,
				       struct file *file,
				       char __user *buf,
				       size_t nbytes, loff_t *ppos)
L
Linus Torvalds 已提交
1679
{
1680
	struct cpuset *cs = cgroup_cs(cont);
L
Linus Torvalds 已提交
1681 1682 1683 1684 1685
	cpuset_filetype_t type = cft->private;
	char *page;
	ssize_t retval = 0;
	char *s;

1686
	if (!(page = (char *)__get_free_page(GFP_TEMPORARY)))
L
Linus Torvalds 已提交
1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703
		return -ENOMEM;

	s = page;

	switch (type) {
	case FILE_CPULIST:
		s += cpuset_sprintf_cpulist(s, cs);
		break;
	case FILE_MEMLIST:
		s += cpuset_sprintf_memlist(s, cs);
		break;
	default:
		retval = -EINVAL;
		goto out;
	}
	*s++ = '\n';

A
Al Viro 已提交
1704
	retval = simple_read_from_buffer(buf, nbytes, ppos, page, s - page);
L
Linus Torvalds 已提交
1705 1706 1707 1708 1709
out:
	free_page((unsigned long)page);
	return retval;
}

1710 1711 1712 1713 1714 1715 1716 1717 1718
static u64 cpuset_read_u64(struct cgroup *cont, struct cftype *cft)
{
	struct cpuset *cs = cgroup_cs(cont);
	cpuset_filetype_t type = cft->private;
	switch (type) {
	case FILE_CPU_EXCLUSIVE:
		return is_cpu_exclusive(cs);
	case FILE_MEM_EXCLUSIVE:
		return is_mem_exclusive(cs);
1719 1720
	case FILE_MEM_HARDWALL:
		return is_mem_hardwall(cs);
1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735
	case FILE_SCHED_LOAD_BALANCE:
		return is_sched_load_balance(cs);
	case FILE_MEMORY_MIGRATE:
		return is_memory_migrate(cs);
	case FILE_MEMORY_PRESSURE_ENABLED:
		return cpuset_memory_pressure_enabled;
	case FILE_MEMORY_PRESSURE:
		return fmeter_getrate(&cs->fmeter);
	case FILE_SPREAD_PAGE:
		return is_spread_page(cs);
	case FILE_SPREAD_SLAB:
		return is_spread_slab(cs);
	default:
		BUG();
	}
1736 1737 1738

	/* Unreachable but makes gcc happy */
	return 0;
1739
}
L
Linus Torvalds 已提交
1740

1741 1742 1743 1744 1745 1746 1747 1748 1749 1750
static s64 cpuset_read_s64(struct cgroup *cont, struct cftype *cft)
{
	struct cpuset *cs = cgroup_cs(cont);
	cpuset_filetype_t type = cft->private;
	switch (type) {
	case FILE_SCHED_RELAX_DOMAIN_LEVEL:
		return cs->relax_domain_level;
	default:
		BUG();
	}
1751 1752 1753

	/* Unrechable but makes gcc happy */
	return 0;
1754 1755
}

L
Linus Torvalds 已提交
1756 1757 1758 1759 1760

/*
 * for the common functions, 'private' gives the type of file
 */

1761 1762 1763 1764
static struct cftype files[] = {
	{
		.name = "cpus",
		.read = cpuset_common_file_read,
1765 1766
		.write_string = cpuset_write_resmask,
		.max_write_len = (100U + 6 * NR_CPUS),
1767 1768 1769 1770 1771 1772
		.private = FILE_CPULIST,
	},

	{
		.name = "mems",
		.read = cpuset_common_file_read,
1773 1774
		.write_string = cpuset_write_resmask,
		.max_write_len = (100U + 6 * MAX_NUMNODES),
1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791
		.private = FILE_MEMLIST,
	},

	{
		.name = "cpu_exclusive",
		.read_u64 = cpuset_read_u64,
		.write_u64 = cpuset_write_u64,
		.private = FILE_CPU_EXCLUSIVE,
	},

	{
		.name = "mem_exclusive",
		.read_u64 = cpuset_read_u64,
		.write_u64 = cpuset_write_u64,
		.private = FILE_MEM_EXCLUSIVE,
	},

1792 1793 1794 1795 1796 1797 1798
	{
		.name = "mem_hardwall",
		.read_u64 = cpuset_read_u64,
		.write_u64 = cpuset_write_u64,
		.private = FILE_MEM_HARDWALL,
	},

1799 1800 1801 1802 1803 1804 1805 1806 1807
	{
		.name = "sched_load_balance",
		.read_u64 = cpuset_read_u64,
		.write_u64 = cpuset_write_u64,
		.private = FILE_SCHED_LOAD_BALANCE,
	},

	{
		.name = "sched_relax_domain_level",
1808 1809
		.read_s64 = cpuset_read_s64,
		.write_s64 = cpuset_write_s64,
1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824
		.private = FILE_SCHED_RELAX_DOMAIN_LEVEL,
	},

	{
		.name = "memory_migrate",
		.read_u64 = cpuset_read_u64,
		.write_u64 = cpuset_write_u64,
		.private = FILE_MEMORY_MIGRATE,
	},

	{
		.name = "memory_pressure",
		.read_u64 = cpuset_read_u64,
		.write_u64 = cpuset_write_u64,
		.private = FILE_MEMORY_PRESSURE,
L
Li Zefan 已提交
1825
		.mode = S_IRUGO,
1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840
	},

	{
		.name = "memory_spread_page",
		.read_u64 = cpuset_read_u64,
		.write_u64 = cpuset_write_u64,
		.private = FILE_SPREAD_PAGE,
	},

	{
		.name = "memory_spread_slab",
		.read_u64 = cpuset_read_u64,
		.write_u64 = cpuset_write_u64,
		.private = FILE_SPREAD_SLAB,
	},
1841

1842 1843 1844 1845 1846 1847 1848
	{
		.name = "memory_pressure_enabled",
		.flags = CFTYPE_ONLY_ON_ROOT,
		.read_u64 = cpuset_read_u64,
		.write_u64 = cpuset_write_u64,
		.private = FILE_MEMORY_PRESSURE_ENABLED,
	},
L
Linus Torvalds 已提交
1849

1850 1851
	{ }	/* terminate */
};
L
Linus Torvalds 已提交
1852 1853

/*
1854
 *	cpuset_css_alloc - allocate a cpuset css
1855
 *	cont:	control group that the new cpuset will be part of
L
Linus Torvalds 已提交
1856 1857
 */

1858
static struct cgroup_subsys_state *cpuset_css_alloc(struct cgroup *cont)
L
Linus Torvalds 已提交
1859
{
T
Tejun Heo 已提交
1860
	struct cpuset *cs;
L
Linus Torvalds 已提交
1861

T
Tejun Heo 已提交
1862
	if (!cont->parent)
1863
		return &top_cpuset.css;
1864

T
Tejun Heo 已提交
1865
	cs = kzalloc(sizeof(*cs), GFP_KERNEL);
L
Linus Torvalds 已提交
1866
	if (!cs)
1867
		return ERR_PTR(-ENOMEM);
1868 1869 1870 1871
	if (!alloc_cpumask_var(&cs->cpus_allowed, GFP_KERNEL)) {
		kfree(cs);
		return ERR_PTR(-ENOMEM);
	}
L
Linus Torvalds 已提交
1872

P
Paul Jackson 已提交
1873
	set_bit(CS_SCHED_LOAD_BALANCE, &cs->flags);
1874
	cpumask_clear(cs->cpus_allowed);
1875
	nodes_clear(cs->mems_allowed);
1876
	fmeter_init(&cs->fmeter);
1877
	cs->relax_domain_level = -1;
L
Linus Torvalds 已提交
1878

T
Tejun Heo 已提交
1879 1880 1881 1882 1883 1884
	return &cs->css;
}

static int cpuset_css_online(struct cgroup *cgrp)
{
	struct cpuset *cs = cgroup_cs(cgrp);
T
Tejun Heo 已提交
1885
	struct cpuset *parent = parent_cs(cs);
1886 1887
	struct cpuset *tmp_cs;
	struct cgroup *pos_cg;
T
Tejun Heo 已提交
1888 1889 1890 1891

	if (!parent)
		return 0;

1892 1893
	mutex_lock(&cpuset_mutex);

T
Tejun Heo 已提交
1894
	set_bit(CS_ONLINE, &cs->flags);
T
Tejun Heo 已提交
1895 1896 1897 1898
	if (is_spread_page(parent))
		set_bit(CS_SPREAD_PAGE, &cs->flags);
	if (is_spread_slab(parent))
		set_bit(CS_SPREAD_SLAB, &cs->flags);
L
Linus Torvalds 已提交
1899

1900
	number_of_cpusets++;
1901

T
Tejun Heo 已提交
1902
	if (!test_bit(CGRP_CPUSET_CLONE_CHILDREN, &cgrp->flags))
1903
		goto out_unlock;
1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917

	/*
	 * Clone @parent's configuration if CGRP_CPUSET_CLONE_CHILDREN is
	 * set.  This flag handling is implemented in cgroup core for
	 * histrical reasons - the flag may be specified during mount.
	 *
	 * Currently, if any sibling cpusets have exclusive cpus or mem, we
	 * refuse to clone the configuration - thereby refusing the task to
	 * be entered, and as a result refusing the sys_unshare() or
	 * clone() which initiated it.  If this becomes a problem for some
	 * users who wish to allow that scenario, then this could be
	 * changed to grant parent->cpus_allowed-sibling_cpus_exclusive
	 * (and likewise for mems) to the new cgroup.
	 */
1918 1919 1920 1921
	rcu_read_lock();
	cpuset_for_each_child(tmp_cs, pos_cg, parent) {
		if (is_mem_exclusive(tmp_cs) || is_cpu_exclusive(tmp_cs)) {
			rcu_read_unlock();
1922
			goto out_unlock;
1923
		}
1924
	}
1925
	rcu_read_unlock();
1926 1927 1928 1929 1930

	mutex_lock(&callback_mutex);
	cs->mems_allowed = parent->mems_allowed;
	cpumask_copy(cs->cpus_allowed, parent->cpus_allowed);
	mutex_unlock(&callback_mutex);
1931 1932
out_unlock:
	mutex_unlock(&cpuset_mutex);
T
Tejun Heo 已提交
1933 1934 1935 1936 1937 1938 1939
	return 0;
}

static void cpuset_css_offline(struct cgroup *cgrp)
{
	struct cpuset *cs = cgroup_cs(cgrp);

1940
	mutex_lock(&cpuset_mutex);
T
Tejun Heo 已提交
1941 1942 1943 1944 1945

	if (is_sched_load_balance(cs))
		update_flag(CS_SCHED_LOAD_BALANCE, cs, 0);

	number_of_cpusets--;
T
Tejun Heo 已提交
1946
	clear_bit(CS_ONLINE, &cs->flags);
T
Tejun Heo 已提交
1947

1948
	mutex_unlock(&cpuset_mutex);
L
Linus Torvalds 已提交
1949 1950
}

P
Paul Jackson 已提交
1951 1952 1953
/*
 * If the cpuset being removed has its flag 'sched_load_balance'
 * enabled, then simulate turning sched_load_balance off, which
1954
 * will call rebuild_sched_domains_locked().
P
Paul Jackson 已提交
1955 1956
 */

1957
static void cpuset_css_free(struct cgroup *cont)
L
Linus Torvalds 已提交
1958
{
1959
	struct cpuset *cs = cgroup_cs(cont);
L
Linus Torvalds 已提交
1960

1961
	free_cpumask_var(cs->cpus_allowed);
1962
	kfree(cs);
L
Linus Torvalds 已提交
1963 1964
}

1965 1966
struct cgroup_subsys cpuset_subsys = {
	.name = "cpuset",
1967
	.css_alloc = cpuset_css_alloc,
T
Tejun Heo 已提交
1968 1969
	.css_online = cpuset_css_online,
	.css_offline = cpuset_css_offline,
1970
	.css_free = cpuset_css_free,
1971
	.can_attach = cpuset_can_attach,
1972
	.cancel_attach = cpuset_cancel_attach,
1973 1974
	.attach = cpuset_attach,
	.subsys_id = cpuset_subsys_id,
1975
	.base_cftypes = files,
1976 1977 1978
	.early_init = 1,
};

L
Linus Torvalds 已提交
1979 1980 1981 1982 1983 1984 1985 1986
/**
 * cpuset_init - initialize cpusets at system boot
 *
 * Description: Initialize top_cpuset and the cpuset internal file system,
 **/

int __init cpuset_init(void)
{
1987
	int err = 0;
L
Linus Torvalds 已提交
1988

1989 1990 1991
	if (!alloc_cpumask_var(&top_cpuset.cpus_allowed, GFP_KERNEL))
		BUG();

1992
	cpumask_setall(top_cpuset.cpus_allowed);
1993
	nodes_setall(top_cpuset.mems_allowed);
L
Linus Torvalds 已提交
1994

1995
	fmeter_init(&top_cpuset.fmeter);
P
Paul Jackson 已提交
1996
	set_bit(CS_SCHED_LOAD_BALANCE, &top_cpuset.flags);
1997
	top_cpuset.relax_domain_level = -1;
L
Linus Torvalds 已提交
1998 1999 2000

	err = register_filesystem(&cpuset_fs_type);
	if (err < 0)
2001 2002
		return err;

2003 2004 2005
	if (!alloc_cpumask_var(&cpus_attach, GFP_KERNEL))
		BUG();

2006
	number_of_cpusets = 1;
2007
	return 0;
L
Linus Torvalds 已提交
2008 2009
}

2010
/*
2011
 * If CPU and/or memory hotplug handlers, below, unplug any CPUs
2012 2013
 * or memory nodes, we need to walk over the cpuset hierarchy,
 * removing that CPU or node from all cpusets.  If this removes the
2014 2015
 * last CPU or node from a cpuset, then move the tasks in the empty
 * cpuset to its next-highest non-empty parent.
2016
 */
2017 2018 2019 2020 2021 2022 2023 2024
static void remove_tasks_in_empty_cpuset(struct cpuset *cs)
{
	struct cpuset *parent;

	/*
	 * Find its next-highest non-empty parent, (top cpuset
	 * has online cpus, so can't be empty).
	 */
T
Tejun Heo 已提交
2025
	parent = parent_cs(cs);
2026
	while (cpumask_empty(parent->cpus_allowed) ||
2027
			nodes_empty(parent->mems_allowed))
T
Tejun Heo 已提交
2028
		parent = parent_cs(parent);
2029

2030 2031 2032 2033 2034 2035
	if (cgroup_transfer_tasks(parent->css.cgroup, cs->css.cgroup)) {
		rcu_read_lock();
		printk(KERN_ERR "cpuset: failed to transfer tasks out of empty cpuset %s\n",
		       cgroup_name(cs->css.cgroup));
		rcu_read_unlock();
	}
2036 2037
}

2038
/**
2039
 * cpuset_hotplug_update_tasks - update tasks in a cpuset for hotunplug
2040
 * @cs: cpuset in interest
2041
 *
2042 2043 2044
 * Compare @cs's cpu and mem masks against top_cpuset and if some have gone
 * offline, update @cs accordingly.  If @cs ends up with no CPU or memory,
 * all its tasks are moved to the nearest ancestor with both resources.
2045
 */
2046
static void cpuset_hotplug_update_tasks(struct cpuset *cs)
2047
{
2048
	static cpumask_t off_cpus;
2049
	static nodemask_t off_mems;
2050
	bool is_empty;
2051

2052 2053 2054
retry:
	wait_event(cpuset_attach_wq, cs->attach_in_progress == 0);

2055
	mutex_lock(&cpuset_mutex);
2056

2057 2058 2059 2060 2061 2062 2063 2064 2065
	/*
	 * We have raced with task attaching. We wait until attaching
	 * is finished, so we won't attach a task to an empty cpuset.
	 */
	if (cs->attach_in_progress) {
		mutex_unlock(&cpuset_mutex);
		goto retry;
	}

2066 2067
	cpumask_andnot(&off_cpus, cs->cpus_allowed, top_cpuset.cpus_allowed);
	nodes_andnot(off_mems, cs->mems_allowed, top_cpuset.mems_allowed);
2068

2069 2070 2071 2072 2073 2074
	/* remove offline cpus from @cs */
	if (!cpumask_empty(&off_cpus)) {
		mutex_lock(&callback_mutex);
		cpumask_andnot(cs->cpus_allowed, cs->cpus_allowed, &off_cpus);
		mutex_unlock(&callback_mutex);
		update_tasks_cpumask(cs, NULL);
2075 2076
	}

2077 2078 2079 2080 2081
	/* remove offline mems from @cs */
	if (!nodes_empty(off_mems)) {
		mutex_lock(&callback_mutex);
		nodes_andnot(cs->mems_allowed, cs->mems_allowed, off_mems);
		mutex_unlock(&callback_mutex);
2082
		update_tasks_nodemask(cs, NULL);
2083
	}
2084

2085 2086
	is_empty = cpumask_empty(cs->cpus_allowed) ||
		nodes_empty(cs->mems_allowed);
2087

2088 2089 2090 2091 2092 2093 2094 2095 2096
	mutex_unlock(&cpuset_mutex);

	/*
	 * If @cs became empty, move tasks to the nearest ancestor with
	 * execution resources.  This is full cgroup operation which will
	 * also call back into cpuset.  Should be done outside any lock.
	 */
	if (is_empty)
		remove_tasks_in_empty_cpuset(cs);
2097 2098
}

2099
/**
2100
 * cpuset_hotplug_workfn - handle CPU/memory hotunplug for a cpuset
2101
 *
2102 2103 2104 2105 2106
 * This function is called after either CPU or memory configuration has
 * changed and updates cpuset accordingly.  The top_cpuset is always
 * synchronized to cpu_active_mask and N_MEMORY, which is necessary in
 * order to make cpusets transparent (of no affect) on systems that are
 * actively using CPU hotplug but making no active use of cpusets.
2107
 *
2108
 * Non-root cpusets are only affected by offlining.  If any CPUs or memory
2109 2110
 * nodes have been taken down, cpuset_hotplug_update_tasks() is invoked on
 * all descendants.
2111
 *
2112 2113
 * Note that CPU offlining during suspend is ignored.  We don't modify
 * cpusets across suspend/resume cycles at all.
2114
 */
2115
static void cpuset_hotplug_workfn(struct work_struct *work)
2116
{
2117 2118 2119 2120
	static cpumask_t new_cpus, tmp_cpus;
	static nodemask_t new_mems, tmp_mems;
	bool cpus_updated, mems_updated;
	bool cpus_offlined, mems_offlined;
2121

2122
	mutex_lock(&cpuset_mutex);
2123

2124 2125 2126
	/* fetch the available cpus/mems and find out which changed how */
	cpumask_copy(&new_cpus, cpu_active_mask);
	new_mems = node_states[N_MEMORY];
2127

2128 2129 2130
	cpus_updated = !cpumask_equal(top_cpuset.cpus_allowed, &new_cpus);
	cpus_offlined = cpumask_andnot(&tmp_cpus, top_cpuset.cpus_allowed,
				       &new_cpus);
2131

2132 2133 2134
	mems_updated = !nodes_equal(top_cpuset.mems_allowed, new_mems);
	nodes_andnot(tmp_mems, top_cpuset.mems_allowed, new_mems);
	mems_offlined = !nodes_empty(tmp_mems);
2135

2136 2137 2138 2139 2140 2141 2142
	/* synchronize cpus_allowed to cpu_active_mask */
	if (cpus_updated) {
		mutex_lock(&callback_mutex);
		cpumask_copy(top_cpuset.cpus_allowed, &new_cpus);
		mutex_unlock(&callback_mutex);
		/* we don't mess with cpumasks of tasks in top_cpuset */
	}
2143

2144 2145 2146 2147 2148
	/* synchronize mems_allowed to N_MEMORY */
	if (mems_updated) {
		mutex_lock(&callback_mutex);
		top_cpuset.mems_allowed = new_mems;
		mutex_unlock(&callback_mutex);
2149
		update_tasks_nodemask(&top_cpuset, NULL);
2150
	}
2151

2152 2153
	mutex_unlock(&cpuset_mutex);

2154 2155 2156
	/* if cpus or mems went down, we need to propagate to descendants */
	if (cpus_offlined || mems_offlined) {
		struct cpuset *cs;
2157
		struct cgroup *pos_cgrp;
2158

2159
		rcu_read_lock();
2160 2161 2162 2163
		cpuset_for_each_descendant_pre(cs, pos_cgrp, &top_cpuset) {
			if (!css_tryget(&cs->css))
				continue;
			rcu_read_unlock();
2164

2165
			cpuset_hotplug_update_tasks(cs);
2166

2167 2168 2169 2170 2171
			rcu_read_lock();
			css_put(&cs->css);
		}
		rcu_read_unlock();
	}
2172

2173
	/* rebuild sched domains if cpus_allowed has changed */
2174 2175
	if (cpus_updated)
		rebuild_sched_domains();
2176 2177
}

2178
void cpuset_update_active_cpus(bool cpu_online)
2179
{
2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191
	/*
	 * We're inside cpu hotplug critical region which usually nests
	 * inside cgroup synchronization.  Bounce actual hotplug processing
	 * to a work item to avoid reverse locking order.
	 *
	 * We still need to do partition_sched_domains() synchronously;
	 * otherwise, the scheduler will get confused and put tasks to the
	 * dead CPU.  Fall back to the default single domain.
	 * cpuset_hotplug_workfn() will rebuild it as necessary.
	 */
	partition_sched_domains(1, NULL, NULL);
	schedule_work(&cpuset_hotplug_work);
2192 2193
}

2194
/*
2195 2196
 * Keep top_cpuset.mems_allowed tracking node_states[N_MEMORY].
 * Call this routine anytime after node_states[N_MEMORY] changes.
2197
 * See cpuset_update_active_cpus() for CPU hotplug handling.
2198
 */
2199 2200
static int cpuset_track_online_nodes(struct notifier_block *self,
				unsigned long action, void *arg)
2201
{
2202
	schedule_work(&cpuset_hotplug_work);
2203
	return NOTIFY_OK;
2204
}
2205 2206 2207 2208 2209

static struct notifier_block cpuset_track_online_nodes_nb = {
	.notifier_call = cpuset_track_online_nodes,
	.priority = 10,		/* ??! */
};
2210

L
Linus Torvalds 已提交
2211 2212 2213 2214
/**
 * cpuset_init_smp - initialize cpus_allowed
 *
 * Description: Finish top cpuset after cpu, node maps are initialized
2215
 */
L
Linus Torvalds 已提交
2216 2217
void __init cpuset_init_smp(void)
{
2218
	cpumask_copy(top_cpuset.cpus_allowed, cpu_active_mask);
2219
	top_cpuset.mems_allowed = node_states[N_MEMORY];
2220
	top_cpuset.old_mems_allowed = top_cpuset.mems_allowed;
2221

2222
	register_hotmemory_notifier(&cpuset_track_online_nodes_nb);
L
Linus Torvalds 已提交
2223 2224 2225 2226 2227
}

/**
 * cpuset_cpus_allowed - return cpus_allowed mask from a tasks cpuset.
 * @tsk: pointer to task_struct from which to obtain cpuset->cpus_allowed.
2228
 * @pmask: pointer to struct cpumask variable to receive cpus_allowed set.
L
Linus Torvalds 已提交
2229
 *
2230
 * Description: Returns the cpumask_var_t cpus_allowed of the cpuset
L
Linus Torvalds 已提交
2231
 * attached to the specified @tsk.  Guaranteed to return some non-empty
2232
 * subset of cpu_online_mask, even if this means going outside the
L
Linus Torvalds 已提交
2233 2234 2235
 * tasks cpuset.
 **/

2236
void cpuset_cpus_allowed(struct task_struct *tsk, struct cpumask *pmask)
L
Linus Torvalds 已提交
2237
{
2238 2239
	struct cpuset *cpus_cs;

2240
	mutex_lock(&callback_mutex);
2241
	task_lock(tsk);
2242 2243
	cpus_cs = effective_cpumask_cpuset(task_cs(tsk));
	guarantee_online_cpus(cpus_cs, pmask);
2244
	task_unlock(tsk);
2245
	mutex_unlock(&callback_mutex);
L
Linus Torvalds 已提交
2246 2247
}

2248
void cpuset_cpus_allowed_fallback(struct task_struct *tsk)
2249
{
2250
	const struct cpuset *cpus_cs;
2251 2252

	rcu_read_lock();
2253 2254
	cpus_cs = effective_cpumask_cpuset(task_cs(tsk));
	do_set_cpus_allowed(tsk, cpus_cs->cpus_allowed);
2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269
	rcu_read_unlock();

	/*
	 * We own tsk->cpus_allowed, nobody can change it under us.
	 *
	 * But we used cs && cs->cpus_allowed lockless and thus can
	 * race with cgroup_attach_task() or update_cpumask() and get
	 * the wrong tsk->cpus_allowed. However, both cases imply the
	 * subsequent cpuset_change_cpumask()->set_cpus_allowed_ptr()
	 * which takes task_rq_lock().
	 *
	 * If we are called after it dropped the lock we must see all
	 * changes in tsk_cs()->cpus_allowed. Otherwise we can temporary
	 * set any mask even if it is not right from task_cs() pov,
	 * the pending set_cpus_allowed_ptr() will fix things.
2270 2271 2272
	 *
	 * select_fallback_rq() will fix things ups and set cpu_possible_mask
	 * if required.
2273 2274 2275
	 */
}

L
Linus Torvalds 已提交
2276 2277
void cpuset_init_current_mems_allowed(void)
{
2278
	nodes_setall(current->mems_allowed);
L
Linus Torvalds 已提交
2279 2280
}

2281 2282 2283 2284 2285 2286
/**
 * cpuset_mems_allowed - return mems_allowed mask from a tasks cpuset.
 * @tsk: pointer to task_struct from which to obtain cpuset->mems_allowed.
 *
 * Description: Returns the nodemask_t mems_allowed of the cpuset
 * attached to the specified @tsk.  Guaranteed to return some non-empty
2287
 * subset of node_states[N_MEMORY], even if this means going outside the
2288 2289 2290 2291 2292
 * tasks cpuset.
 **/

nodemask_t cpuset_mems_allowed(struct task_struct *tsk)
{
2293
	struct cpuset *mems_cs;
2294 2295
	nodemask_t mask;

2296
	mutex_lock(&callback_mutex);
2297
	task_lock(tsk);
2298 2299
	mems_cs = effective_nodemask_cpuset(task_cs(tsk));
	guarantee_online_mems(mems_cs, &mask);
2300
	task_unlock(tsk);
2301
	mutex_unlock(&callback_mutex);
2302 2303 2304 2305

	return mask;
}

2306
/**
2307 2308
 * cpuset_nodemask_valid_mems_allowed - check nodemask vs. curremt mems_allowed
 * @nodemask: the nodemask to be checked
2309
 *
2310
 * Are any of the nodes in the nodemask allowed in current->mems_allowed?
L
Linus Torvalds 已提交
2311
 */
2312
int cpuset_nodemask_valid_mems_allowed(nodemask_t *nodemask)
L
Linus Torvalds 已提交
2313
{
2314
	return nodes_intersects(*nodemask, current->mems_allowed);
L
Linus Torvalds 已提交
2315 2316
}

2317
/*
2318 2319 2320 2321
 * nearest_hardwall_ancestor() - Returns the nearest mem_exclusive or
 * mem_hardwall ancestor to the specified cpuset.  Call holding
 * callback_mutex.  If no ancestor is mem_exclusive or mem_hardwall
 * (an unusual configuration), then returns the root cpuset.
2322
 */
2323
static const struct cpuset *nearest_hardwall_ancestor(const struct cpuset *cs)
2324
{
T
Tejun Heo 已提交
2325 2326
	while (!(is_mem_exclusive(cs) || is_mem_hardwall(cs)) && parent_cs(cs))
		cs = parent_cs(cs);
2327 2328 2329
	return cs;
}

2330
/**
2331 2332
 * cpuset_node_allowed_softwall - Can we allocate on a memory node?
 * @node: is this an allowed node?
2333
 * @gfp_mask: memory allocation flags
2334
 *
2335 2336 2337 2338 2339 2340
 * If we're in interrupt, yes, we can always allocate.  If __GFP_THISNODE is
 * set, yes, we can always allocate.  If node is in our task's mems_allowed,
 * yes.  If it's not a __GFP_HARDWALL request and this node is in the nearest
 * hardwalled cpuset ancestor to this task's cpuset, yes.  If the task has been
 * OOM killed and has access to memory reserves as specified by the TIF_MEMDIE
 * flag, yes.
2341 2342
 * Otherwise, no.
 *
2343 2344 2345
 * If __GFP_HARDWALL is set, cpuset_node_allowed_softwall() reduces to
 * cpuset_node_allowed_hardwall().  Otherwise, cpuset_node_allowed_softwall()
 * might sleep, and might allow a node from an enclosing cpuset.
2346
 *
2347 2348
 * cpuset_node_allowed_hardwall() only handles the simpler case of hardwall
 * cpusets, and never sleeps.
2349 2350 2351 2352 2353 2354 2355
 *
 * The __GFP_THISNODE placement logic is really handled elsewhere,
 * by forcibly using a zonelist starting at a specified node, and by
 * (in get_page_from_freelist()) refusing to consider the zones for
 * any node on the zonelist except the first.  By the time any such
 * calls get to this routine, we should just shut up and say 'yes'.
 *
2356
 * GFP_USER allocations are marked with the __GFP_HARDWALL bit,
2357 2358
 * and do not allow allocations outside the current tasks cpuset
 * unless the task has been OOM killed as is marked TIF_MEMDIE.
2359
 * GFP_KERNEL allocations are not so marked, so can escape to the
2360
 * nearest enclosing hardwalled ancestor cpuset.
2361
 *
2362 2363 2364 2365 2366 2367 2368
 * Scanning up parent cpusets requires callback_mutex.  The
 * __alloc_pages() routine only calls here with __GFP_HARDWALL bit
 * _not_ set if it's a GFP_KERNEL allocation, and all nodes in the
 * current tasks mems_allowed came up empty on the first pass over
 * the zonelist.  So only GFP_KERNEL allocations, if all nodes in the
 * cpuset are short of memory, might require taking the callback_mutex
 * mutex.
2369
 *
2370
 * The first call here from mm/page_alloc:get_page_from_freelist()
2371 2372 2373
 * has __GFP_HARDWALL set in gfp_mask, enforcing hardwall cpusets,
 * so no allocation on a node outside the cpuset is allowed (unless
 * in interrupt, of course).
2374 2375 2376 2377 2378 2379
 *
 * The second pass through get_page_from_freelist() doesn't even call
 * here for GFP_ATOMIC calls.  For those calls, the __alloc_pages()
 * variable 'wait' is not set, and the bit ALLOC_CPUSET is not set
 * in alloc_flags.  That logic and the checks below have the combined
 * affect that:
2380 2381
 *	in_interrupt - any node ok (current task context irrelevant)
 *	GFP_ATOMIC   - any node ok
2382
 *	TIF_MEMDIE   - any node ok
2383
 *	GFP_KERNEL   - any node in enclosing hardwalled cpuset ok
2384
 *	GFP_USER     - only nodes in current tasks mems allowed ok.
2385 2386
 *
 * Rule:
2387
 *    Don't call cpuset_node_allowed_softwall if you can't sleep, unless you
2388 2389
 *    pass in the __GFP_HARDWALL flag set in gfp_flag, which disables
 *    the code that might scan up ancestor cpusets and sleep.
2390
 */
2391
int __cpuset_node_allowed_softwall(int node, gfp_t gfp_mask)
L
Linus Torvalds 已提交
2392
{
2393
	const struct cpuset *cs;	/* current cpuset ancestors */
2394
	int allowed;			/* is allocation in zone z allowed? */
2395

2396
	if (in_interrupt() || (gfp_mask & __GFP_THISNODE))
2397
		return 1;
2398
	might_sleep_if(!(gfp_mask & __GFP_HARDWALL));
2399 2400
	if (node_isset(node, current->mems_allowed))
		return 1;
2401 2402 2403 2404 2405 2406
	/*
	 * Allow tasks that have access to memory reserves because they have
	 * been OOM killed to get memory anywhere.
	 */
	if (unlikely(test_thread_flag(TIF_MEMDIE)))
		return 1;
2407 2408 2409
	if (gfp_mask & __GFP_HARDWALL)	/* If hardwall request, stop here */
		return 0;

2410 2411 2412
	if (current->flags & PF_EXITING) /* Let dying task have memory */
		return 1;

2413
	/* Not hardwall and node outside mems_allowed: scan up cpusets */
2414
	mutex_lock(&callback_mutex);
2415 2416

	task_lock(current);
2417
	cs = nearest_hardwall_ancestor(task_cs(current));
2418 2419
	task_unlock(current);

2420
	allowed = node_isset(node, cs->mems_allowed);
2421
	mutex_unlock(&callback_mutex);
2422
	return allowed;
L
Linus Torvalds 已提交
2423 2424
}

2425
/*
2426 2427
 * cpuset_node_allowed_hardwall - Can we allocate on a memory node?
 * @node: is this an allowed node?
2428 2429
 * @gfp_mask: memory allocation flags
 *
2430 2431 2432 2433 2434
 * If we're in interrupt, yes, we can always allocate.  If __GFP_THISNODE is
 * set, yes, we can always allocate.  If node is in our task's mems_allowed,
 * yes.  If the task has been OOM killed and has access to memory reserves as
 * specified by the TIF_MEMDIE flag, yes.
 * Otherwise, no.
2435 2436 2437 2438 2439 2440 2441
 *
 * The __GFP_THISNODE placement logic is really handled elsewhere,
 * by forcibly using a zonelist starting at a specified node, and by
 * (in get_page_from_freelist()) refusing to consider the zones for
 * any node on the zonelist except the first.  By the time any such
 * calls get to this routine, we should just shut up and say 'yes'.
 *
2442 2443
 * Unlike the cpuset_node_allowed_softwall() variant, above,
 * this variant requires that the node be in the current task's
2444 2445 2446 2447
 * mems_allowed or that we're in interrupt.  It does not scan up the
 * cpuset hierarchy for the nearest enclosing mem_exclusive cpuset.
 * It never sleeps.
 */
2448
int __cpuset_node_allowed_hardwall(int node, gfp_t gfp_mask)
2449 2450 2451 2452 2453
{
	if (in_interrupt() || (gfp_mask & __GFP_THISNODE))
		return 1;
	if (node_isset(node, current->mems_allowed))
		return 1;
D
Daniel Walker 已提交
2454 2455 2456 2457 2458 2459
	/*
	 * Allow tasks that have access to memory reserves because they have
	 * been OOM killed to get memory anywhere.
	 */
	if (unlikely(test_thread_flag(TIF_MEMDIE)))
		return 1;
2460 2461 2462
	return 0;
}

2463
/**
2464 2465
 * cpuset_mem_spread_node() - On which node to begin search for a file page
 * cpuset_slab_spread_node() - On which node to begin search for a slab page
2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489
 *
 * If a task is marked PF_SPREAD_PAGE or PF_SPREAD_SLAB (as for
 * tasks in a cpuset with is_spread_page or is_spread_slab set),
 * and if the memory allocation used cpuset_mem_spread_node()
 * to determine on which node to start looking, as it will for
 * certain page cache or slab cache pages such as used for file
 * system buffers and inode caches, then instead of starting on the
 * local node to look for a free page, rather spread the starting
 * node around the tasks mems_allowed nodes.
 *
 * We don't have to worry about the returned node being offline
 * because "it can't happen", and even if it did, it would be ok.
 *
 * The routines calling guarantee_online_mems() are careful to
 * only set nodes in task->mems_allowed that are online.  So it
 * should not be possible for the following code to return an
 * offline node.  But if it did, that would be ok, as this routine
 * is not returning the node where the allocation must be, only
 * the node where the search should start.  The zonelist passed to
 * __alloc_pages() will include all nodes.  If the slab allocator
 * is passed an offline node, it will fall back to the local node.
 * See kmem_cache_alloc_node().
 */

2490
static int cpuset_spread_node(int *rotor)
2491 2492 2493
{
	int node;

2494
	node = next_node(*rotor, current->mems_allowed);
2495 2496
	if (node == MAX_NUMNODES)
		node = first_node(current->mems_allowed);
2497
	*rotor = node;
2498 2499
	return node;
}
2500 2501 2502

int cpuset_mem_spread_node(void)
{
2503 2504 2505 2506
	if (current->cpuset_mem_spread_rotor == NUMA_NO_NODE)
		current->cpuset_mem_spread_rotor =
			node_random(&current->mems_allowed);

2507 2508 2509 2510 2511
	return cpuset_spread_node(&current->cpuset_mem_spread_rotor);
}

int cpuset_slab_spread_node(void)
{
2512 2513 2514 2515
	if (current->cpuset_slab_spread_rotor == NUMA_NO_NODE)
		current->cpuset_slab_spread_rotor =
			node_random(&current->mems_allowed);

2516 2517 2518
	return cpuset_spread_node(&current->cpuset_slab_spread_rotor);
}

2519 2520
EXPORT_SYMBOL_GPL(cpuset_mem_spread_node);

2521
/**
2522 2523 2524 2525 2526 2527 2528 2529
 * cpuset_mems_allowed_intersects - Does @tsk1's mems_allowed intersect @tsk2's?
 * @tsk1: pointer to task_struct of some task.
 * @tsk2: pointer to task_struct of some other task.
 *
 * Description: Return true if @tsk1's mems_allowed intersects the
 * mems_allowed of @tsk2.  Used by the OOM killer to determine if
 * one of the task's memory usage might impact the memory available
 * to the other.
2530 2531
 **/

2532 2533
int cpuset_mems_allowed_intersects(const struct task_struct *tsk1,
				   const struct task_struct *tsk2)
2534
{
2535
	return nodes_intersects(tsk1->mems_allowed, tsk2->mems_allowed);
2536 2537
}

2538 2539
#define CPUSET_NODELIST_LEN	(256)

2540 2541 2542 2543 2544 2545 2546 2547 2548 2549
/**
 * cpuset_print_task_mems_allowed - prints task's cpuset and mems_allowed
 * @task: pointer to task_struct of some task.
 *
 * Description: Prints @task's name, cpuset name, and cached copy of its
 * mems_allowed to the kernel log.  Must hold task_lock(task) to allow
 * dereferencing task_cs(task).
 */
void cpuset_print_task_mems_allowed(struct task_struct *tsk)
{
2550 2551 2552
	 /* Statically allocated to prevent using excess stack. */
	static char cpuset_nodelist[CPUSET_NODELIST_LEN];
	static DEFINE_SPINLOCK(cpuset_buffer_lock);
2553

2554
	struct cgroup *cgrp = task_cs(tsk)->css.cgroup;
2555

2556
	rcu_read_lock();
2557
	spin_lock(&cpuset_buffer_lock);
2558

2559 2560 2561
	nodelist_scnprintf(cpuset_nodelist, CPUSET_NODELIST_LEN,
			   tsk->mems_allowed);
	printk(KERN_INFO "%s cpuset=%s mems_allowed=%s\n",
2562 2563
	       tsk->comm, cgroup_name(cgrp), cpuset_nodelist);

2564
	spin_unlock(&cpuset_buffer_lock);
2565
	rcu_read_unlock();
2566 2567
}

2568 2569 2570 2571 2572 2573
/*
 * Collection of memory_pressure is suppressed unless
 * this flag is enabled by writing "1" to the special
 * cpuset file 'memory_pressure_enabled' in the root cpuset.
 */

2574
int cpuset_memory_pressure_enabled __read_mostly;
2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596

/**
 * cpuset_memory_pressure_bump - keep stats of per-cpuset reclaims.
 *
 * Keep a running average of the rate of synchronous (direct)
 * page reclaim efforts initiated by tasks in each cpuset.
 *
 * This represents the rate at which some task in the cpuset
 * ran low on memory on all nodes it was allowed to use, and
 * had to enter the kernels page reclaim code in an effort to
 * create more free memory by tossing clean pages or swapping
 * or writing dirty pages.
 *
 * Display to user space in the per-cpuset read-only file
 * "memory_pressure".  Value displayed is an integer
 * representing the recent rate of entry into the synchronous
 * (direct) page reclaim by any task attached to the cpuset.
 **/

void __cpuset_memory_pressure_bump(void)
{
	task_lock(current);
2597
	fmeter_markevent(&task_cs(current)->fmeter);
2598 2599 2600
	task_unlock(current);
}

2601
#ifdef CONFIG_PROC_PID_CPUSET
L
Linus Torvalds 已提交
2602 2603 2604 2605
/*
 * proc_cpuset_show()
 *  - Print tasks cpuset path into seq_file.
 *  - Used for /proc/<pid>/cpuset.
2606 2607
 *  - No need to task_lock(tsk) on this tsk->cpuset reference, as it
 *    doesn't really matter if tsk->cpuset changes after we read it,
2608
 *    and we take cpuset_mutex, keeping cpuset_attach() from changing it
2609
 *    anyway.
L
Linus Torvalds 已提交
2610
 */
2611
int proc_cpuset_show(struct seq_file *m, void *unused_v)
L
Linus Torvalds 已提交
2612
{
2613
	struct pid *pid;
L
Linus Torvalds 已提交
2614 2615
	struct task_struct *tsk;
	char *buf;
2616
	struct cgroup_subsys_state *css;
2617
	int retval;
L
Linus Torvalds 已提交
2618

2619
	retval = -ENOMEM;
L
Linus Torvalds 已提交
2620 2621
	buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
	if (!buf)
2622 2623 2624
		goto out;

	retval = -ESRCH;
2625 2626
	pid = m->private;
	tsk = get_pid_task(pid, PIDTYPE_PID);
2627 2628
	if (!tsk)
		goto out_free;
L
Linus Torvalds 已提交
2629

L
Li Zefan 已提交
2630
	rcu_read_lock();
2631 2632
	css = task_subsys_state(tsk, cpuset_subsys_id);
	retval = cgroup_path(css->cgroup, buf, PAGE_SIZE);
L
Li Zefan 已提交
2633
	rcu_read_unlock();
L
Linus Torvalds 已提交
2634
	if (retval < 0)
L
Li Zefan 已提交
2635
		goto out_put_task;
L
Linus Torvalds 已提交
2636 2637
	seq_puts(m, buf);
	seq_putc(m, '\n');
L
Li Zefan 已提交
2638
out_put_task:
2639 2640
	put_task_struct(tsk);
out_free:
L
Linus Torvalds 已提交
2641
	kfree(buf);
2642
out:
L
Linus Torvalds 已提交
2643 2644
	return retval;
}
2645
#endif /* CONFIG_PROC_PID_CPUSET */
L
Linus Torvalds 已提交
2646

2647
/* Display task mems_allowed in /proc/<pid>/status file. */
2648 2649 2650
void cpuset_task_status_allowed(struct seq_file *m, struct task_struct *task)
{
	seq_printf(m, "Mems_allowed:\t");
2651
	seq_nodemask(m, &task->mems_allowed);
2652
	seq_printf(m, "\n");
2653
	seq_printf(m, "Mems_allowed_list:\t");
2654
	seq_nodemask_list(m, &task->mems_allowed);
2655
	seq_printf(m, "\n");
L
Linus Torvalds 已提交
2656
}