cpuset.c 74.6 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6
/*
 *  kernel/cpuset.c
 *
 *  Processor and Memory placement constraints for sets of tasks.
 *
 *  Copyright (C) 2003 BULL SA.
P
Paul Jackson 已提交
7
 *  Copyright (C) 2004-2007 Silicon Graphics, Inc.
8
 *  Copyright (C) 2006 Google, Inc
L
Linus Torvalds 已提交
9 10 11 12
 *
 *  Portions derived from Patrick Mochel's sysfs code.
 *  sysfs is Copyright (c) 2001-3 Patrick Mochel
 *
13
 *  2003-10-10 Written by Simon Derr.
L
Linus Torvalds 已提交
14
 *  2003-10-22 Updates by Stephen Hemminger.
15
 *  2004 May-July Rework by Paul Jackson.
16
 *  2006 Rework by Paul Menage to use generic cgroups
17 18
 *  2008 Rework of the scheduler domains and CPU hotplug handling
 *       by Max Krasnyansky
L
Linus Torvalds 已提交
19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36
 *
 *  This file is subject to the terms and conditions of the GNU General Public
 *  License.  See the file COPYING in the main directory of the Linux
 *  distribution for more details.
 */

#include <linux/cpu.h>
#include <linux/cpumask.h>
#include <linux/cpuset.h>
#include <linux/err.h>
#include <linux/errno.h>
#include <linux/file.h>
#include <linux/fs.h>
#include <linux/init.h>
#include <linux/interrupt.h>
#include <linux/kernel.h>
#include <linux/kmod.h>
#include <linux/list.h>
37
#include <linux/mempolicy.h>
L
Linus Torvalds 已提交
38
#include <linux/mm.h>
39
#include <linux/memory.h>
40
#include <linux/export.h>
L
Linus Torvalds 已提交
41 42 43 44
#include <linux/mount.h>
#include <linux/namei.h>
#include <linux/pagemap.h>
#include <linux/proc_fs.h>
45
#include <linux/rcupdate.h>
L
Linus Torvalds 已提交
46 47
#include <linux/sched.h>
#include <linux/seq_file.h>
48
#include <linux/security.h>
L
Linus Torvalds 已提交
49 50 51 52 53 54 55 56 57
#include <linux/slab.h>
#include <linux/spinlock.h>
#include <linux/stat.h>
#include <linux/string.h>
#include <linux/time.h>
#include <linux/backing-dev.h>
#include <linux/sort.h>

#include <asm/uaccess.h>
A
Arun Sharma 已提交
58
#include <linux/atomic.h>
59
#include <linux/mutex.h>
60 61
#include <linux/workqueue.h>
#include <linux/cgroup.h>
62
#include <linux/wait.h>
L
Linus Torvalds 已提交
63

64 65 66 67 68
/*
 * Tracks how many cpusets are currently defined in system.
 * When there is only one cpuset (the root cpuset) we can
 * short circuit some hooks.
 */
69
int number_of_cpusets __read_mostly;
70

71 72 73 74 75 76 77 78 79
/* See "Frequency meter" comments, below. */

struct fmeter {
	int cnt;		/* unprocessed events count */
	int val;		/* most recent output value */
	time_t time;		/* clock (secs) when val computed */
	spinlock_t lock;	/* guards read or write of above */
};

L
Linus Torvalds 已提交
80
struct cpuset {
81 82
	struct cgroup_subsys_state css;

L
Linus Torvalds 已提交
83
	unsigned long flags;		/* "unsigned long" so bitops work */
84
	cpumask_var_t cpus_allowed;	/* CPUs allowed to tasks in cpuset */
L
Linus Torvalds 已提交
85 86
	nodemask_t mems_allowed;	/* Memory Nodes allowed to tasks */

87 88 89 90 91 92 93 94 95 96 97 98
	/*
	 * This is old Memory Nodes tasks took on.
	 *
	 * - top_cpuset.old_mems_allowed is initialized to mems_allowed.
	 * - A new cpuset's old_mems_allowed is initialized when some
	 *   task is moved into it.
	 * - old_mems_allowed is used in cpuset_migrate_mm() when we change
	 *   cpuset.mems_allowed and have tasks' nodemask updated, and
	 *   then old_mems_allowed is updated to mems_allowed.
	 */
	nodemask_t old_mems_allowed;

99
	struct fmeter fmeter;		/* memory_pressure filter */
P
Paul Jackson 已提交
100

101 102 103 104 105 106
	/*
	 * Tasks are being attached to this cpuset.  Used to prevent
	 * zeroing cpus/mems_allowed between ->can_attach() and ->attach().
	 */
	int attach_in_progress;

P
Paul Jackson 已提交
107 108
	/* partition number for rebuild_sched_domains() */
	int pn;
109

110 111
	/* for custom sched domain */
	int relax_domain_level;
L
Linus Torvalds 已提交
112 113
};

114
static inline struct cpuset *css_cs(struct cgroup_subsys_state *css)
115
{
116
	return css ? container_of(css, struct cpuset, css) : NULL;
117 118 119 120 121
}

/* Retrieve the cpuset for a task */
static inline struct cpuset *task_cs(struct task_struct *task)
{
122
	return css_cs(task_css(task, cpuset_cgrp_id));
123 124
}

125
static inline struct cpuset *parent_cs(struct cpuset *cs)
T
Tejun Heo 已提交
126
{
T
Tejun Heo 已提交
127
	return css_cs(css_parent(&cs->css));
T
Tejun Heo 已提交
128 129
}

130 131 132 133 134 135 136 137 138 139 140 141 142
#ifdef CONFIG_NUMA
static inline bool task_has_mempolicy(struct task_struct *task)
{
	return task->mempolicy;
}
#else
static inline bool task_has_mempolicy(struct task_struct *task)
{
	return false;
}
#endif


L
Linus Torvalds 已提交
143 144
/* bits in struct cpuset flags field */
typedef enum {
T
Tejun Heo 已提交
145
	CS_ONLINE,
L
Linus Torvalds 已提交
146 147
	CS_CPU_EXCLUSIVE,
	CS_MEM_EXCLUSIVE,
148
	CS_MEM_HARDWALL,
149
	CS_MEMORY_MIGRATE,
P
Paul Jackson 已提交
150
	CS_SCHED_LOAD_BALANCE,
151 152
	CS_SPREAD_PAGE,
	CS_SPREAD_SLAB,
L
Linus Torvalds 已提交
153 154 155
} cpuset_flagbits_t;

/* convenient tests for these bits */
T
Tejun Heo 已提交
156 157 158 159 160
static inline bool is_cpuset_online(const struct cpuset *cs)
{
	return test_bit(CS_ONLINE, &cs->flags);
}

L
Linus Torvalds 已提交
161 162
static inline int is_cpu_exclusive(const struct cpuset *cs)
{
163
	return test_bit(CS_CPU_EXCLUSIVE, &cs->flags);
L
Linus Torvalds 已提交
164 165 166 167
}

static inline int is_mem_exclusive(const struct cpuset *cs)
{
168
	return test_bit(CS_MEM_EXCLUSIVE, &cs->flags);
L
Linus Torvalds 已提交
169 170
}

171 172 173 174 175
static inline int is_mem_hardwall(const struct cpuset *cs)
{
	return test_bit(CS_MEM_HARDWALL, &cs->flags);
}

P
Paul Jackson 已提交
176 177 178 179 180
static inline int is_sched_load_balance(const struct cpuset *cs)
{
	return test_bit(CS_SCHED_LOAD_BALANCE, &cs->flags);
}

181 182
static inline int is_memory_migrate(const struct cpuset *cs)
{
183
	return test_bit(CS_MEMORY_MIGRATE, &cs->flags);
184 185
}

186 187 188 189 190 191 192 193 194 195
static inline int is_spread_page(const struct cpuset *cs)
{
	return test_bit(CS_SPREAD_PAGE, &cs->flags);
}

static inline int is_spread_slab(const struct cpuset *cs)
{
	return test_bit(CS_SPREAD_SLAB, &cs->flags);
}

L
Linus Torvalds 已提交
196
static struct cpuset top_cpuset = {
T
Tejun Heo 已提交
197 198
	.flags = ((1 << CS_ONLINE) | (1 << CS_CPU_EXCLUSIVE) |
		  (1 << CS_MEM_EXCLUSIVE)),
L
Linus Torvalds 已提交
199 200
};

201 202 203
/**
 * cpuset_for_each_child - traverse online children of a cpuset
 * @child_cs: loop cursor pointing to the current child
204
 * @pos_css: used for iteration
205 206 207 208 209
 * @parent_cs: target cpuset to walk children of
 *
 * Walk @child_cs through the online children of @parent_cs.  Must be used
 * with RCU read locked.
 */
210 211 212
#define cpuset_for_each_child(child_cs, pos_css, parent_cs)		\
	css_for_each_child((pos_css), &(parent_cs)->css)		\
		if (is_cpuset_online(((child_cs) = css_cs((pos_css)))))
213

214 215 216
/**
 * cpuset_for_each_descendant_pre - pre-order walk of a cpuset's descendants
 * @des_cs: loop cursor pointing to the current descendant
217
 * @pos_css: used for iteration
218 219 220
 * @root_cs: target cpuset to walk ancestor of
 *
 * Walk @des_cs through the online descendants of @root_cs.  Must be used
221
 * with RCU read locked.  The caller may modify @pos_css by calling
222 223
 * css_rightmost_descendant() to skip subtree.  @root_cs is included in the
 * iteration and the first node to be visited.
224
 */
225 226 227
#define cpuset_for_each_descendant_pre(des_cs, pos_css, root_cs)	\
	css_for_each_descendant_pre((pos_css), &(root_cs)->css)		\
		if (is_cpuset_online(((des_cs) = css_cs((pos_css)))))
228

L
Linus Torvalds 已提交
229
/*
230 231 232 233 234 235 236 237 238 239 240 241 242 243
 * There are two global mutexes guarding cpuset structures - cpuset_mutex
 * and callback_mutex.  The latter may nest inside the former.  We also
 * require taking task_lock() when dereferencing a task's cpuset pointer.
 * See "The task_lock() exception", at the end of this comment.
 *
 * A task must hold both mutexes to modify cpusets.  If a task holds
 * cpuset_mutex, then it blocks others wanting that mutex, ensuring that it
 * is the only task able to also acquire callback_mutex and be able to
 * modify cpusets.  It can perform various checks on the cpuset structure
 * first, knowing nothing will change.  It can also allocate memory while
 * just holding cpuset_mutex.  While it is performing these checks, various
 * callback routines can briefly acquire callback_mutex to query cpusets.
 * Once it is ready to make the changes, it takes callback_mutex, blocking
 * everyone else.
244 245
 *
 * Calls to the kernel memory allocator can not be made while holding
246
 * callback_mutex, as that would risk double tripping on callback_mutex
247 248 249
 * from one of the callbacks into the cpuset code from within
 * __alloc_pages().
 *
250
 * If a task is only holding callback_mutex, then it has read-only
251 252
 * access to cpusets.
 *
253 254 255
 * Now, the task_struct fields mems_allowed and mempolicy may be changed
 * by other task, we use alloc_lock in the task_struct fields to protect
 * them.
256
 *
257
 * The cpuset_common_file_read() handlers only hold callback_mutex across
258 259 260
 * small pieces of code, such as when reading out possibly multi-word
 * cpumasks and nodemasks.
 *
261 262
 * Accessing a task's cpuset should be done in accordance with the
 * guidelines for accessing subsystem state in kernel/cgroup.c
L
Linus Torvalds 已提交
263 264
 */

265
static DEFINE_MUTEX(cpuset_mutex);
266
static DEFINE_MUTEX(callback_mutex);
267

268 269 270 271 272 273
/*
 * CPU / memory hotplug is handled asynchronously.
 */
static void cpuset_hotplug_workfn(struct work_struct *work);
static DECLARE_WORK(cpuset_hotplug_work, cpuset_hotplug_workfn);

274 275
static DECLARE_WAIT_QUEUE_HEAD(cpuset_attach_wq);

276 277
/*
 * This is ugly, but preserves the userspace API for existing cpuset
278
 * users. If someone tries to mount the "cpuset" filesystem, we
279 280
 * silently switch it to mount "cgroup" instead
 */
A
Al Viro 已提交
281 282
static struct dentry *cpuset_mount(struct file_system_type *fs_type,
			 int flags, const char *unused_dev_name, void *data)
L
Linus Torvalds 已提交
283
{
284
	struct file_system_type *cgroup_fs = get_fs_type("cgroup");
A
Al Viro 已提交
285
	struct dentry *ret = ERR_PTR(-ENODEV);
286 287 288 289
	if (cgroup_fs) {
		char mountopts[] =
			"cpuset,noprefix,"
			"release_agent=/sbin/cpuset_release_agent";
A
Al Viro 已提交
290 291
		ret = cgroup_fs->mount(cgroup_fs, flags,
					   unused_dev_name, mountopts);
292 293 294
		put_filesystem(cgroup_fs);
	}
	return ret;
L
Linus Torvalds 已提交
295 296 297 298
}

static struct file_system_type cpuset_fs_type = {
	.name = "cpuset",
A
Al Viro 已提交
299
	.mount = cpuset_mount,
L
Linus Torvalds 已提交
300 301 302
};

/*
303
 * Return in pmask the portion of a cpusets's cpus_allowed that
L
Linus Torvalds 已提交
304
 * are online.  If none are online, walk up the cpuset hierarchy
305 306
 * until we find one that does have some online cpus.  The top
 * cpuset always has some cpus online.
L
Linus Torvalds 已提交
307 308
 *
 * One way or another, we guarantee to return some non-empty subset
309
 * of cpu_online_mask.
L
Linus Torvalds 已提交
310
 *
311
 * Call with callback_mutex held.
L
Linus Torvalds 已提交
312
 */
313
static void guarantee_online_cpus(struct cpuset *cs, struct cpumask *pmask)
L
Linus Torvalds 已提交
314
{
315
	while (!cpumask_intersects(cs->cpus_allowed, cpu_online_mask))
T
Tejun Heo 已提交
316
		cs = parent_cs(cs);
317
	cpumask_and(pmask, cs->cpus_allowed, cpu_online_mask);
L
Linus Torvalds 已提交
318 319 320 321
}

/*
 * Return in *pmask the portion of a cpusets's mems_allowed that
322 323
 * are online, with memory.  If none are online with memory, walk
 * up the cpuset hierarchy until we find one that does have some
324
 * online mems.  The top cpuset always has some mems online.
L
Linus Torvalds 已提交
325 326
 *
 * One way or another, we guarantee to return some non-empty subset
327
 * of node_states[N_MEMORY].
L
Linus Torvalds 已提交
328
 *
329
 * Call with callback_mutex held.
L
Linus Torvalds 已提交
330
 */
331
static void guarantee_online_mems(struct cpuset *cs, nodemask_t *pmask)
L
Linus Torvalds 已提交
332
{
333
	while (!nodes_intersects(cs->mems_allowed, node_states[N_MEMORY]))
T
Tejun Heo 已提交
334
		cs = parent_cs(cs);
335
	nodes_and(*pmask, cs->mems_allowed, node_states[N_MEMORY]);
L
Linus Torvalds 已提交
336 337
}

338 339 340
/*
 * update task's spread flag if cpuset's page/slab spread flag is set
 *
341
 * Called with callback_mutex/cpuset_mutex held
342 343 344 345 346 347 348 349 350 351 352 353 354 355
 */
static void cpuset_update_task_spread_flag(struct cpuset *cs,
					struct task_struct *tsk)
{
	if (is_spread_page(cs))
		tsk->flags |= PF_SPREAD_PAGE;
	else
		tsk->flags &= ~PF_SPREAD_PAGE;
	if (is_spread_slab(cs))
		tsk->flags |= PF_SPREAD_SLAB;
	else
		tsk->flags &= ~PF_SPREAD_SLAB;
}

L
Linus Torvalds 已提交
356 357 358 359 360
/*
 * is_cpuset_subset(p, q) - Is cpuset p a subset of cpuset q?
 *
 * One cpuset is a subset of another if all its allowed CPUs and
 * Memory Nodes are a subset of the other, and its exclusive flags
361
 * are only set if the other's are set.  Call holding cpuset_mutex.
L
Linus Torvalds 已提交
362 363 364 365
 */

static int is_cpuset_subset(const struct cpuset *p, const struct cpuset *q)
{
366
	return	cpumask_subset(p->cpus_allowed, q->cpus_allowed) &&
L
Linus Torvalds 已提交
367 368 369 370 371
		nodes_subset(p->mems_allowed, q->mems_allowed) &&
		is_cpu_exclusive(p) <= is_cpu_exclusive(q) &&
		is_mem_exclusive(p) <= is_mem_exclusive(q);
}

372 373 374 375
/**
 * alloc_trial_cpuset - allocate a trial cpuset
 * @cs: the cpuset that the trial cpuset duplicates
 */
376
static struct cpuset *alloc_trial_cpuset(struct cpuset *cs)
377
{
378 379 380 381 382 383 384 385 386 387 388 389 390
	struct cpuset *trial;

	trial = kmemdup(cs, sizeof(*cs), GFP_KERNEL);
	if (!trial)
		return NULL;

	if (!alloc_cpumask_var(&trial->cpus_allowed, GFP_KERNEL)) {
		kfree(trial);
		return NULL;
	}
	cpumask_copy(trial->cpus_allowed, cs->cpus_allowed);

	return trial;
391 392 393 394 395 396 397 398
}

/**
 * free_trial_cpuset - free the trial cpuset
 * @trial: the trial cpuset to be freed
 */
static void free_trial_cpuset(struct cpuset *trial)
{
399
	free_cpumask_var(trial->cpus_allowed);
400 401 402
	kfree(trial);
}

L
Linus Torvalds 已提交
403 404 405 406 407 408 409
/*
 * validate_change() - Used to validate that any proposed cpuset change
 *		       follows the structural rules for cpusets.
 *
 * If we replaced the flag and mask values of the current cpuset
 * (cur) with those values in the trial cpuset (trial), would
 * our various subset and exclusive rules still be valid?  Presumes
410
 * cpuset_mutex held.
L
Linus Torvalds 已提交
411 412 413 414 415 416 417 418 419 420 421 422
 *
 * 'cur' is the address of an actual, in-use cpuset.  Operations
 * such as list traversal that depend on the actual address of the
 * cpuset in the list must use cur below, not trial.
 *
 * 'trial' is the address of bulk structure copy of cur, with
 * perhaps one or more of the fields cpus_allowed, mems_allowed,
 * or flags changed to new, trial values.
 *
 * Return 0 if valid, -errno if not.
 */

423
static int validate_change(struct cpuset *cur, struct cpuset *trial)
L
Linus Torvalds 已提交
424
{
425
	struct cgroup_subsys_state *css;
L
Linus Torvalds 已提交
426
	struct cpuset *c, *par;
427 428 429
	int ret;

	rcu_read_lock();
L
Linus Torvalds 已提交
430 431

	/* Each of our child cpusets must be a subset of us */
432
	ret = -EBUSY;
433
	cpuset_for_each_child(c, css, cur)
434 435
		if (!is_cpuset_subset(c, trial))
			goto out;
L
Linus Torvalds 已提交
436 437

	/* Remaining checks don't apply to root cpuset */
438
	ret = 0;
439
	if (cur == &top_cpuset)
440
		goto out;
L
Linus Torvalds 已提交
441

T
Tejun Heo 已提交
442
	par = parent_cs(cur);
443

L
Linus Torvalds 已提交
444
	/* We must be a subset of our parent cpuset */
445
	ret = -EACCES;
L
Linus Torvalds 已提交
446
	if (!is_cpuset_subset(trial, par))
447
		goto out;
L
Linus Torvalds 已提交
448

449 450 451 452
	/*
	 * If either I or some sibling (!= me) is exclusive, we can't
	 * overlap
	 */
453
	ret = -EINVAL;
454
	cpuset_for_each_child(c, css, par) {
L
Linus Torvalds 已提交
455 456
		if ((is_cpu_exclusive(trial) || is_cpu_exclusive(c)) &&
		    c != cur &&
457
		    cpumask_intersects(trial->cpus_allowed, c->cpus_allowed))
458
			goto out;
L
Linus Torvalds 已提交
459 460 461
		if ((is_mem_exclusive(trial) || is_mem_exclusive(c)) &&
		    c != cur &&
		    nodes_intersects(trial->mems_allowed, c->mems_allowed))
462
			goto out;
L
Linus Torvalds 已提交
463 464
	}

465 466
	/*
	 * Cpusets with tasks - existing or newly being attached - can't
467
	 * be changed to have empty cpus_allowed or mems_allowed.
468
	 */
469
	ret = -ENOSPC;
470
	if ((cgroup_has_tasks(cur->css.cgroup) || cur->attach_in_progress)) {
471 472 473 474 475 476 477
		if (!cpumask_empty(cur->cpus_allowed) &&
		    cpumask_empty(trial->cpus_allowed))
			goto out;
		if (!nodes_empty(cur->mems_allowed) &&
		    nodes_empty(trial->mems_allowed))
			goto out;
	}
478

479 480 481 482
	ret = 0;
out:
	rcu_read_unlock();
	return ret;
L
Linus Torvalds 已提交
483 484
}

485
#ifdef CONFIG_SMP
P
Paul Jackson 已提交
486
/*
487
 * Helper routine for generate_sched_domains().
P
Paul Jackson 已提交
488 489 490 491
 * Do cpusets a, b have overlapping cpus_allowed masks?
 */
static int cpusets_overlap(struct cpuset *a, struct cpuset *b)
{
492
	return cpumask_intersects(a->cpus_allowed, b->cpus_allowed);
P
Paul Jackson 已提交
493 494
}

495 496 497 498 499 500 501 502
static void
update_domain_attr(struct sched_domain_attr *dattr, struct cpuset *c)
{
	if (dattr->relax_domain_level < c->relax_domain_level)
		dattr->relax_domain_level = c->relax_domain_level;
	return;
}

503 504
static void update_domain_attr_tree(struct sched_domain_attr *dattr,
				    struct cpuset *root_cs)
505
{
506
	struct cpuset *cp;
507
	struct cgroup_subsys_state *pos_css;
508

509
	rcu_read_lock();
510
	cpuset_for_each_descendant_pre(cp, pos_css, root_cs) {
511 512 513
		if (cp == root_cs)
			continue;

514 515
		/* skip the whole subtree if @cp doesn't have any CPU */
		if (cpumask_empty(cp->cpus_allowed)) {
516
			pos_css = css_rightmost_descendant(pos_css);
517
			continue;
518
		}
519 520 521 522

		if (is_sched_load_balance(cp))
			update_domain_attr(dattr, cp);
	}
523
	rcu_read_unlock();
524 525
}

P
Paul Jackson 已提交
526
/*
527 528 529 530 531
 * generate_sched_domains()
 *
 * This function builds a partial partition of the systems CPUs
 * A 'partial partition' is a set of non-overlapping subsets whose
 * union is a subset of that set.
532
 * The output of this function needs to be passed to kernel/sched/core.c
533 534 535
 * partition_sched_domains() routine, which will rebuild the scheduler's
 * load balancing domains (sched domains) as specified by that partial
 * partition.
P
Paul Jackson 已提交
536
 *
L
Li Zefan 已提交
537
 * See "What is sched_load_balance" in Documentation/cgroups/cpusets.txt
P
Paul Jackson 已提交
538 539 540 541 542 543 544
 * for a background explanation of this.
 *
 * Does not return errors, on the theory that the callers of this
 * routine would rather not worry about failures to rebuild sched
 * domains when operating in the severe memory shortage situations
 * that could cause allocation failures below.
 *
545
 * Must be called with cpuset_mutex held.
P
Paul Jackson 已提交
546 547
 *
 * The three key local variables below are:
548
 *    q  - a linked-list queue of cpuset pointers, used to implement a
P
Paul Jackson 已提交
549 550 551 552 553 554 555 556 557 558 559 560
 *	   top-down scan of all cpusets.  This scan loads a pointer
 *	   to each cpuset marked is_sched_load_balance into the
 *	   array 'csa'.  For our purposes, rebuilding the schedulers
 *	   sched domains, we can ignore !is_sched_load_balance cpusets.
 *  csa  - (for CpuSet Array) Array of pointers to all the cpusets
 *	   that need to be load balanced, for convenient iterative
 *	   access by the subsequent code that finds the best partition,
 *	   i.e the set of domains (subsets) of CPUs such that the
 *	   cpus_allowed of every cpuset marked is_sched_load_balance
 *	   is a subset of one of these domains, while there are as
 *	   many such domains as possible, each as small as possible.
 * doms  - Conversion of 'csa' to an array of cpumasks, for passing to
561
 *	   the kernel/sched/core.c routine partition_sched_domains() in a
P
Paul Jackson 已提交
562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579
 *	   convenient format, that can be easily compared to the prior
 *	   value to determine what partition elements (sched domains)
 *	   were changed (added or removed.)
 *
 * Finding the best partition (set of domains):
 *	The triple nested loops below over i, j, k scan over the
 *	load balanced cpusets (using the array of cpuset pointers in
 *	csa[]) looking for pairs of cpusets that have overlapping
 *	cpus_allowed, but which don't have the same 'pn' partition
 *	number and gives them in the same partition number.  It keeps
 *	looping on the 'restart' label until it can no longer find
 *	any such pairs.
 *
 *	The union of the cpus_allowed masks from the set of
 *	all cpusets having the same 'pn' value then form the one
 *	element of the partition (one sched domain) to be passed to
 *	partition_sched_domains().
 */
580
static int generate_sched_domains(cpumask_var_t **domains,
581
			struct sched_domain_attr **attributes)
P
Paul Jackson 已提交
582 583 584 585 586
{
	struct cpuset *cp;	/* scans q */
	struct cpuset **csa;	/* array of all cpuset ptrs */
	int csn;		/* how many cpuset ptrs in csa so far */
	int i, j, k;		/* indices for partition finding loops */
587
	cpumask_var_t *doms;	/* resulting partition; i.e. sched domains */
588
	struct sched_domain_attr *dattr;  /* attributes for custom domains */
589
	int ndoms = 0;		/* number of sched domains in result */
590
	int nslot;		/* next empty doms[] struct cpumask slot */
591
	struct cgroup_subsys_state *pos_css;
P
Paul Jackson 已提交
592 593

	doms = NULL;
594
	dattr = NULL;
595
	csa = NULL;
P
Paul Jackson 已提交
596 597 598

	/* Special case for the 99% of systems with one, full, sched domain */
	if (is_sched_load_balance(&top_cpuset)) {
599 600
		ndoms = 1;
		doms = alloc_sched_domains(ndoms);
P
Paul Jackson 已提交
601
		if (!doms)
602 603
			goto done;

604 605 606
		dattr = kmalloc(sizeof(struct sched_domain_attr), GFP_KERNEL);
		if (dattr) {
			*dattr = SD_ATTR_INIT;
607
			update_domain_attr_tree(dattr, &top_cpuset);
608
		}
609
		cpumask_copy(doms[0], top_cpuset.cpus_allowed);
610 611

		goto done;
P
Paul Jackson 已提交
612 613 614 615 616 617 618
	}

	csa = kmalloc(number_of_cpusets * sizeof(cp), GFP_KERNEL);
	if (!csa)
		goto done;
	csn = 0;

619
	rcu_read_lock();
620
	cpuset_for_each_descendant_pre(cp, pos_css, &top_cpuset) {
621 622
		if (cp == &top_cpuset)
			continue;
623
		/*
624 625 626 627 628 629
		 * Continue traversing beyond @cp iff @cp has some CPUs and
		 * isn't load balancing.  The former is obvious.  The
		 * latter: All child cpusets contain a subset of the
		 * parent's cpus, so just skip them, and then we call
		 * update_domain_attr_tree() to calc relax_domain_level of
		 * the corresponding sched domain.
630
		 */
631 632
		if (!cpumask_empty(cp->cpus_allowed) &&
		    !is_sched_load_balance(cp))
633
			continue;
634

635 636 637 638
		if (is_sched_load_balance(cp))
			csa[csn++] = cp;

		/* skip @cp's subtree */
639
		pos_css = css_rightmost_descendant(pos_css);
640 641
	}
	rcu_read_unlock();
P
Paul Jackson 已提交
642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669

	for (i = 0; i < csn; i++)
		csa[i]->pn = i;
	ndoms = csn;

restart:
	/* Find the best partition (set of sched domains) */
	for (i = 0; i < csn; i++) {
		struct cpuset *a = csa[i];
		int apn = a->pn;

		for (j = 0; j < csn; j++) {
			struct cpuset *b = csa[j];
			int bpn = b->pn;

			if (apn != bpn && cpusets_overlap(a, b)) {
				for (k = 0; k < csn; k++) {
					struct cpuset *c = csa[k];

					if (c->pn == bpn)
						c->pn = apn;
				}
				ndoms--;	/* one less element */
				goto restart;
			}
		}
	}

670 671 672 673
	/*
	 * Now we know how many domains to create.
	 * Convert <csn, csa> to <ndoms, doms> and populate cpu masks.
	 */
674
	doms = alloc_sched_domains(ndoms);
675
	if (!doms)
676 677 678 679 680 681
		goto done;

	/*
	 * The rest of the code, including the scheduler, can deal with
	 * dattr==NULL case. No need to abort if alloc fails.
	 */
682
	dattr = kmalloc(ndoms * sizeof(struct sched_domain_attr), GFP_KERNEL);
P
Paul Jackson 已提交
683 684 685

	for (nslot = 0, i = 0; i < csn; i++) {
		struct cpuset *a = csa[i];
686
		struct cpumask *dp;
P
Paul Jackson 已提交
687 688
		int apn = a->pn;

689 690 691 692 693
		if (apn < 0) {
			/* Skip completed partitions */
			continue;
		}

694
		dp = doms[nslot];
695 696 697 698 699 700 701 702 703 704

		if (nslot == ndoms) {
			static int warnings = 10;
			if (warnings) {
				printk(KERN_WARNING
				 "rebuild_sched_domains confused:"
				  " nslot %d, ndoms %d, csn %d, i %d,"
				  " apn %d\n",
				  nslot, ndoms, csn, i, apn);
				warnings--;
P
Paul Jackson 已提交
705
			}
706 707
			continue;
		}
P
Paul Jackson 已提交
708

709
		cpumask_clear(dp);
710 711 712 713 714 715
		if (dattr)
			*(dattr + nslot) = SD_ATTR_INIT;
		for (j = i; j < csn; j++) {
			struct cpuset *b = csa[j];

			if (apn == b->pn) {
716
				cpumask_or(dp, dp, b->cpus_allowed);
717 718 719 720 721
				if (dattr)
					update_domain_attr_tree(dattr + nslot, b);

				/* Done with this partition */
				b->pn = -1;
P
Paul Jackson 已提交
722 723
			}
		}
724
		nslot++;
P
Paul Jackson 已提交
725 726 727
	}
	BUG_ON(nslot != ndoms);

728 729 730
done:
	kfree(csa);

731 732 733 734 735 736 737
	/*
	 * Fallback to the default domain if kmalloc() failed.
	 * See comments in partition_sched_domains().
	 */
	if (doms == NULL)
		ndoms = 1;

738 739 740 741 742 743 744 745
	*domains    = doms;
	*attributes = dattr;
	return ndoms;
}

/*
 * Rebuild scheduler domains.
 *
746 747 748 749 750
 * If the flag 'sched_load_balance' of any cpuset with non-empty
 * 'cpus' changes, or if the 'cpus' allowed changes in any cpuset
 * which has that flag enabled, or if any cpuset with a non-empty
 * 'cpus' is removed, then call this routine to rebuild the
 * scheduler's dynamic sched domains.
751
 *
752
 * Call with cpuset_mutex held.  Takes get_online_cpus().
753
 */
754
static void rebuild_sched_domains_locked(void)
755 756
{
	struct sched_domain_attr *attr;
757
	cpumask_var_t *doms;
758 759
	int ndoms;

760
	lockdep_assert_held(&cpuset_mutex);
761
	get_online_cpus();
762

763 764 765 766 767 768 769 770
	/*
	 * We have raced with CPU hotplug. Don't do anything to avoid
	 * passing doms with offlined cpu to partition_sched_domains().
	 * Anyways, hotplug work item will rebuild sched domains.
	 */
	if (!cpumask_equal(top_cpuset.cpus_allowed, cpu_active_mask))
		goto out;

771 772 773 774 775
	/* Generate domain masks and attrs */
	ndoms = generate_sched_domains(&doms, &attr);

	/* Have scheduler rebuild the domains */
	partition_sched_domains(ndoms, doms, attr);
776
out:
777
	put_online_cpus();
778
}
779
#else /* !CONFIG_SMP */
780
static void rebuild_sched_domains_locked(void)
781 782 783
{
}
#endif /* CONFIG_SMP */
P
Paul Jackson 已提交
784

785 786
void rebuild_sched_domains(void)
{
787
	mutex_lock(&cpuset_mutex);
788
	rebuild_sched_domains_locked();
789
	mutex_unlock(&cpuset_mutex);
P
Paul Jackson 已提交
790 791
}

792 793 794
/*
 * effective_cpumask_cpuset - return nearest ancestor with non-empty cpus
 * @cs: the cpuset in interest
C
Cliff Wickman 已提交
795
 *
796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822
 * A cpuset's effective cpumask is the cpumask of the nearest ancestor
 * with non-empty cpus. We use effective cpumask whenever:
 * - we update tasks' cpus_allowed. (they take on the ancestor's cpumask
 *   if the cpuset they reside in has no cpus)
 * - we want to retrieve task_cs(tsk)'s cpus_allowed.
 *
 * Called with cpuset_mutex held. cpuset_cpus_allowed_fallback() is an
 * exception. See comments there.
 */
static struct cpuset *effective_cpumask_cpuset(struct cpuset *cs)
{
	while (cpumask_empty(cs->cpus_allowed))
		cs = parent_cs(cs);
	return cs;
}

/*
 * effective_nodemask_cpuset - return nearest ancestor with non-empty mems
 * @cs: the cpuset in interest
 *
 * A cpuset's effective nodemask is the nodemask of the nearest ancestor
 * with non-empty memss. We use effective nodemask whenever:
 * - we update tasks' mems_allowed. (they take on the ancestor's nodemask
 *   if the cpuset they reside in has no mems)
 * - we want to retrieve task_cs(tsk)'s mems_allowed.
 *
 * Called with cpuset_mutex held.
823
 */
824
static struct cpuset *effective_nodemask_cpuset(struct cpuset *cs)
C
Cliff Wickman 已提交
825
{
826 827 828
	while (nodes_empty(cs->mems_allowed))
		cs = parent_cs(cs);
	return cs;
C
Cliff Wickman 已提交
829
}
830

831 832 833 834
/**
 * update_tasks_cpumask - Update the cpumasks of tasks in the cpuset.
 * @cs: the cpuset in which each task's cpus_allowed mask needs to be changed
 *
835 836 837
 * Iterate through each task of @cs updating its cpus_allowed to the
 * effective cpuset's.  As this function is called with cpuset_mutex held,
 * cpuset membership stays stable.
838
 */
839
static void update_tasks_cpumask(struct cpuset *cs)
840
{
841 842 843 844 845 846 847 848
	struct cpuset *cpus_cs = effective_cpumask_cpuset(cs);
	struct css_task_iter it;
	struct task_struct *task;

	css_task_iter_start(&cs->css, &it);
	while ((task = css_task_iter_next(&it)))
		set_cpus_allowed_ptr(task, cpus_cs->cpus_allowed);
	css_task_iter_end(&it);
849 850
}

851 852 853 854 855 856 857 858 859 860
/*
 * update_tasks_cpumask_hier - Update the cpumasks of tasks in the hierarchy.
 * @root_cs: the root cpuset of the hierarchy
 * @update_root: update root cpuset or not?
 *
 * This will update cpumasks of tasks in @root_cs and all other empty cpusets
 * which take on cpumask of @root_cs.
 *
 * Called with cpuset_mutex held
 */
861
static void update_tasks_cpumask_hier(struct cpuset *root_cs, bool update_root)
862 863
{
	struct cpuset *cp;
864
	struct cgroup_subsys_state *pos_css;
865 866

	rcu_read_lock();
867
	cpuset_for_each_descendant_pre(cp, pos_css, root_cs) {
868 869 870 871 872 873 874 875 876
		if (cp == root_cs) {
			if (!update_root)
				continue;
		} else {
			/* skip the whole subtree if @cp have some CPU */
			if (!cpumask_empty(cp->cpus_allowed)) {
				pos_css = css_rightmost_descendant(pos_css);
				continue;
			}
877 878 879 880 881
		}
		if (!css_tryget(&cp->css))
			continue;
		rcu_read_unlock();

882
		update_tasks_cpumask(cp);
883 884 885 886 887 888 889

		rcu_read_lock();
		css_put(&cp->css);
	}
	rcu_read_unlock();
}

C
Cliff Wickman 已提交
890 891 892
/**
 * update_cpumask - update the cpus_allowed mask of a cpuset and all tasks in it
 * @cs: the cpuset to consider
893
 * @trialcs: trial cpuset
C
Cliff Wickman 已提交
894 895
 * @buf: buffer of cpu numbers written to this cpuset
 */
896 897
static int update_cpumask(struct cpuset *cs, struct cpuset *trialcs,
			  const char *buf)
L
Linus Torvalds 已提交
898
{
C
Cliff Wickman 已提交
899 900
	int retval;
	int is_load_balanced;
L
Linus Torvalds 已提交
901

902
	/* top_cpuset.cpus_allowed tracks cpu_online_mask; it's read-only */
903 904 905
	if (cs == &top_cpuset)
		return -EACCES;

906
	/*
907
	 * An empty cpus_allowed is ok only if the cpuset has no tasks.
908 909 910
	 * Since cpulist_parse() fails on an empty mask, we special case
	 * that parsing.  The validate_change() call ensures that cpusets
	 * with tasks have cpus.
911
	 */
912
	if (!*buf) {
913
		cpumask_clear(trialcs->cpus_allowed);
914
	} else {
915
		retval = cpulist_parse(buf, trialcs->cpus_allowed);
916 917
		if (retval < 0)
			return retval;
918

919
		if (!cpumask_subset(trialcs->cpus_allowed, cpu_active_mask))
920
			return -EINVAL;
921
	}
P
Paul Jackson 已提交
922

P
Paul Menage 已提交
923
	/* Nothing to do if the cpus didn't change */
924
	if (cpumask_equal(cs->cpus_allowed, trialcs->cpus_allowed))
P
Paul Menage 已提交
925
		return 0;
C
Cliff Wickman 已提交
926

927 928 929 930
	retval = validate_change(cs, trialcs);
	if (retval < 0)
		return retval;

931
	is_load_balanced = is_sched_load_balance(trialcs);
P
Paul Jackson 已提交
932

933
	mutex_lock(&callback_mutex);
934
	cpumask_copy(cs->cpus_allowed, trialcs->cpus_allowed);
935
	mutex_unlock(&callback_mutex);
P
Paul Jackson 已提交
936

937
	update_tasks_cpumask_hier(cs, true);
C
Cliff Wickman 已提交
938

P
Paul Menage 已提交
939
	if (is_load_balanced)
940
		rebuild_sched_domains_locked();
941
	return 0;
L
Linus Torvalds 已提交
942 943
}

944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961
/*
 * cpuset_migrate_mm
 *
 *    Migrate memory region from one set of nodes to another.
 *
 *    Temporarilly set tasks mems_allowed to target nodes of migration,
 *    so that the migration code can allocate pages on these nodes.
 *
 *    While the mm_struct we are migrating is typically from some
 *    other task, the task_struct mems_allowed that we are hacking
 *    is for our current task, which must allocate new pages for that
 *    migrating memory region.
 */

static void cpuset_migrate_mm(struct mm_struct *mm, const nodemask_t *from,
							const nodemask_t *to)
{
	struct task_struct *tsk = current;
962
	struct cpuset *mems_cs;
963 964 965 966 967

	tsk->mems_allowed = *to;

	do_migrate_pages(mm, from, to, MPOL_MF_MOVE_ALL);

968
	rcu_read_lock();
969 970
	mems_cs = effective_nodemask_cpuset(task_cs(tsk));
	guarantee_online_mems(mems_cs, &tsk->mems_allowed);
971
	rcu_read_unlock();
972 973
}

974
/*
975 976 977 978 979 980 981 982 983 984 985
 * cpuset_change_task_nodemask - change task's mems_allowed and mempolicy
 * @tsk: the task to change
 * @newmems: new nodes that the task will be set
 *
 * In order to avoid seeing no nodes if the old and new nodes are disjoint,
 * we structure updates as setting all new allowed nodes, then clearing newly
 * disallowed ones.
 */
static void cpuset_change_task_nodemask(struct task_struct *tsk,
					nodemask_t *newmems)
{
986
	bool need_loop;
987

988 989 990 991 992 993 994 995 996 997
	/*
	 * Allow tasks that have access to memory reserves because they have
	 * been OOM killed to get memory anywhere.
	 */
	if (unlikely(test_thread_flag(TIF_MEMDIE)))
		return;
	if (current->flags & PF_EXITING) /* Let dying task have memory */
		return;

	task_lock(tsk);
998 999
	/*
	 * Determine if a loop is necessary if another thread is doing
1000
	 * read_mems_allowed_begin().  If at least one node remains unchanged and
1001 1002 1003 1004 1005
	 * tsk does not have a mempolicy, then an empty nodemask will not be
	 * possible when mems_allowed is larger than a word.
	 */
	need_loop = task_has_mempolicy(tsk) ||
			!nodes_intersects(*newmems, tsk->mems_allowed);
1006

1007 1008
	if (need_loop) {
		local_irq_disable();
1009
		write_seqcount_begin(&tsk->mems_allowed_seq);
1010
	}
1011

1012 1013
	nodes_or(tsk->mems_allowed, tsk->mems_allowed, *newmems);
	mpol_rebind_task(tsk, newmems, MPOL_REBIND_STEP1);
1014 1015

	mpol_rebind_task(tsk, newmems, MPOL_REBIND_STEP2);
1016
	tsk->mems_allowed = *newmems;
1017

1018
	if (need_loop) {
1019
		write_seqcount_end(&tsk->mems_allowed_seq);
1020 1021
		local_irq_enable();
	}
1022

1023
	task_unlock(tsk);
1024 1025
}

1026 1027
static void *cpuset_being_rebound;

1028 1029 1030 1031
/**
 * update_tasks_nodemask - Update the nodemasks of tasks in the cpuset.
 * @cs: the cpuset in which each task's mems_allowed mask needs to be changed
 *
1032 1033 1034
 * Iterate through each task of @cs updating its mems_allowed to the
 * effective cpuset's.  As this function is called with cpuset_mutex held,
 * cpuset membership stays stable.
1035
 */
1036
static void update_tasks_nodemask(struct cpuset *cs)
L
Linus Torvalds 已提交
1037
{
1038
	static nodemask_t newmems;	/* protected by cpuset_mutex */
1039
	struct cpuset *mems_cs = effective_nodemask_cpuset(cs);
1040 1041
	struct css_task_iter it;
	struct task_struct *task;
1042

1043
	cpuset_being_rebound = cs;		/* causes mpol_dup() rebind */
1044

1045
	guarantee_online_mems(mems_cs, &newmems);
1046

1047
	/*
1048 1049 1050 1051
	 * The mpol_rebind_mm() call takes mmap_sem, which we couldn't
	 * take while holding tasklist_lock.  Forks can happen - the
	 * mpol_dup() cpuset_being_rebound check will catch such forks,
	 * and rebind their vma mempolicies too.  Because we still hold
1052
	 * the global cpuset_mutex, we know that no other rebind effort
1053
	 * will be contending for the global variable cpuset_being_rebound.
1054
	 * It's ok if we rebind the same mm twice; mpol_rebind_mm()
1055
	 * is idempotent.  Also migrate pages in each mm to new nodes.
1056
	 */
1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075
	css_task_iter_start(&cs->css, &it);
	while ((task = css_task_iter_next(&it))) {
		struct mm_struct *mm;
		bool migrate;

		cpuset_change_task_nodemask(task, &newmems);

		mm = get_task_mm(task);
		if (!mm)
			continue;

		migrate = is_memory_migrate(cs);

		mpol_rebind_mm(mm, &cs->mems_allowed);
		if (migrate)
			cpuset_migrate_mm(mm, &cs->old_mems_allowed, &newmems);
		mmput(mm);
	}
	css_task_iter_end(&it);
1076

1077 1078 1079 1080 1081 1082
	/*
	 * All the tasks' nodemasks have been updated, update
	 * cs->old_mems_allowed.
	 */
	cs->old_mems_allowed = newmems;

1083
	/* We're done rebinding vmas to this cpuset's new mems_allowed. */
1084
	cpuset_being_rebound = NULL;
L
Linus Torvalds 已提交
1085 1086
}

1087 1088 1089 1090 1091 1092 1093 1094 1095 1096
/*
 * update_tasks_nodemask_hier - Update the nodemasks of tasks in the hierarchy.
 * @cs: the root cpuset of the hierarchy
 * @update_root: update the root cpuset or not?
 *
 * This will update nodemasks of tasks in @root_cs and all other empty cpusets
 * which take on nodemask of @root_cs.
 *
 * Called with cpuset_mutex held
 */
1097
static void update_tasks_nodemask_hier(struct cpuset *root_cs, bool update_root)
1098 1099
{
	struct cpuset *cp;
1100
	struct cgroup_subsys_state *pos_css;
1101 1102

	rcu_read_lock();
1103
	cpuset_for_each_descendant_pre(cp, pos_css, root_cs) {
1104 1105 1106 1107 1108 1109 1110 1111 1112
		if (cp == root_cs) {
			if (!update_root)
				continue;
		} else {
			/* skip the whole subtree if @cp have some CPU */
			if (!nodes_empty(cp->mems_allowed)) {
				pos_css = css_rightmost_descendant(pos_css);
				continue;
			}
1113 1114 1115 1116 1117
		}
		if (!css_tryget(&cp->css))
			continue;
		rcu_read_unlock();

1118
		update_tasks_nodemask(cp);
1119 1120 1121 1122 1123 1124 1125

		rcu_read_lock();
		css_put(&cp->css);
	}
	rcu_read_unlock();
}

1126 1127 1128
/*
 * Handle user request to change the 'mems' memory placement
 * of a cpuset.  Needs to validate the request, update the
1129 1130 1131 1132
 * cpusets mems_allowed, and for each task in the cpuset,
 * update mems_allowed and rebind task's mempolicy and any vma
 * mempolicies and if the cpuset is marked 'memory_migrate',
 * migrate the tasks pages to the new memory.
1133
 *
1134
 * Call with cpuset_mutex held.  May take callback_mutex during call.
1135 1136 1137 1138
 * Will take tasklist_lock, scan tasklist for tasks in cpuset cs,
 * lock each such tasks mm->mmap_sem, scan its vma's and rebind
 * their mempolicies to the cpusets new mems_allowed.
 */
1139 1140
static int update_nodemask(struct cpuset *cs, struct cpuset *trialcs,
			   const char *buf)
1141 1142 1143 1144
{
	int retval;

	/*
1145
	 * top_cpuset.mems_allowed tracks node_stats[N_MEMORY];
1146 1147
	 * it's read-only
	 */
1148 1149 1150 1151
	if (cs == &top_cpuset) {
		retval = -EACCES;
		goto done;
	}
1152 1153 1154 1155 1156 1157 1158 1159

	/*
	 * An empty mems_allowed is ok iff there are no tasks in the cpuset.
	 * Since nodelist_parse() fails on an empty mask, we special case
	 * that parsing.  The validate_change() call ensures that cpusets
	 * with tasks have memory.
	 */
	if (!*buf) {
1160
		nodes_clear(trialcs->mems_allowed);
1161
	} else {
1162
		retval = nodelist_parse(buf, trialcs->mems_allowed);
1163 1164 1165
		if (retval < 0)
			goto done;

1166
		if (!nodes_subset(trialcs->mems_allowed,
1167
				node_states[N_MEMORY])) {
1168 1169 1170
			retval =  -EINVAL;
			goto done;
		}
1171
	}
1172 1173

	if (nodes_equal(cs->mems_allowed, trialcs->mems_allowed)) {
1174 1175 1176
		retval = 0;		/* Too easy - nothing to do */
		goto done;
	}
1177
	retval = validate_change(cs, trialcs);
1178 1179 1180 1181
	if (retval < 0)
		goto done;

	mutex_lock(&callback_mutex);
1182
	cs->mems_allowed = trialcs->mems_allowed;
1183 1184
	mutex_unlock(&callback_mutex);

1185
	update_tasks_nodemask_hier(cs, true);
1186 1187 1188 1189
done:
	return retval;
}

1190 1191 1192 1193 1194
int current_cpuset_is_being_rebound(void)
{
	return task_cs(current) == cpuset_being_rebound;
}

1195
static int update_relax_domain_level(struct cpuset *cs, s64 val)
1196
{
1197
#ifdef CONFIG_SMP
1198
	if (val < -1 || val >= sched_domain_level_max)
1199
		return -EINVAL;
1200
#endif
1201 1202 1203

	if (val != cs->relax_domain_level) {
		cs->relax_domain_level = val;
1204 1205
		if (!cpumask_empty(cs->cpus_allowed) &&
		    is_sched_load_balance(cs))
1206
			rebuild_sched_domains_locked();
1207 1208 1209 1210 1211
	}

	return 0;
}

1212
/**
1213 1214 1215
 * update_tasks_flags - update the spread flags of tasks in the cpuset.
 * @cs: the cpuset in which each task's spread flags needs to be changed
 *
1216 1217 1218
 * Iterate through each task of @cs updating its spread flags.  As this
 * function is called with cpuset_mutex held, cpuset membership stays
 * stable.
1219
 */
1220
static void update_tasks_flags(struct cpuset *cs)
1221
{
1222 1223 1224 1225 1226 1227 1228
	struct css_task_iter it;
	struct task_struct *task;

	css_task_iter_start(&cs->css, &it);
	while ((task = css_task_iter_next(&it)))
		cpuset_update_task_spread_flag(cs, task);
	css_task_iter_end(&it);
1229 1230
}

L
Linus Torvalds 已提交
1231 1232
/*
 * update_flag - read a 0 or a 1 in a file and update associated flag
1233 1234 1235
 * bit:		the bit to update (see cpuset_flagbits_t)
 * cs:		the cpuset to update
 * turning_on: 	whether the flag is being set or cleared
1236
 *
1237
 * Call with cpuset_mutex held.
L
Linus Torvalds 已提交
1238 1239
 */

1240 1241
static int update_flag(cpuset_flagbits_t bit, struct cpuset *cs,
		       int turning_on)
L
Linus Torvalds 已提交
1242
{
1243
	struct cpuset *trialcs;
R
Rakib Mullick 已提交
1244
	int balance_flag_changed;
1245 1246
	int spread_flag_changed;
	int err;
L
Linus Torvalds 已提交
1247

1248 1249 1250 1251
	trialcs = alloc_trial_cpuset(cs);
	if (!trialcs)
		return -ENOMEM;

L
Linus Torvalds 已提交
1252
	if (turning_on)
1253
		set_bit(bit, &trialcs->flags);
L
Linus Torvalds 已提交
1254
	else
1255
		clear_bit(bit, &trialcs->flags);
L
Linus Torvalds 已提交
1256

1257
	err = validate_change(cs, trialcs);
1258
	if (err < 0)
1259
		goto out;
P
Paul Jackson 已提交
1260 1261

	balance_flag_changed = (is_sched_load_balance(cs) !=
1262
				is_sched_load_balance(trialcs));
P
Paul Jackson 已提交
1263

1264 1265 1266
	spread_flag_changed = ((is_spread_slab(cs) != is_spread_slab(trialcs))
			|| (is_spread_page(cs) != is_spread_page(trialcs)));

1267
	mutex_lock(&callback_mutex);
1268
	cs->flags = trialcs->flags;
1269
	mutex_unlock(&callback_mutex);
1270

1271
	if (!cpumask_empty(trialcs->cpus_allowed) && balance_flag_changed)
1272
		rebuild_sched_domains_locked();
P
Paul Jackson 已提交
1273

1274
	if (spread_flag_changed)
1275
		update_tasks_flags(cs);
1276 1277 1278
out:
	free_trial_cpuset(trialcs);
	return err;
L
Linus Torvalds 已提交
1279 1280
}

1281
/*
A
Adrian Bunk 已提交
1282
 * Frequency meter - How fast is some event occurring?
1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378
 *
 * These routines manage a digitally filtered, constant time based,
 * event frequency meter.  There are four routines:
 *   fmeter_init() - initialize a frequency meter.
 *   fmeter_markevent() - called each time the event happens.
 *   fmeter_getrate() - returns the recent rate of such events.
 *   fmeter_update() - internal routine used to update fmeter.
 *
 * A common data structure is passed to each of these routines,
 * which is used to keep track of the state required to manage the
 * frequency meter and its digital filter.
 *
 * The filter works on the number of events marked per unit time.
 * The filter is single-pole low-pass recursive (IIR).  The time unit
 * is 1 second.  Arithmetic is done using 32-bit integers scaled to
 * simulate 3 decimal digits of precision (multiplied by 1000).
 *
 * With an FM_COEF of 933, and a time base of 1 second, the filter
 * has a half-life of 10 seconds, meaning that if the events quit
 * happening, then the rate returned from the fmeter_getrate()
 * will be cut in half each 10 seconds, until it converges to zero.
 *
 * It is not worth doing a real infinitely recursive filter.  If more
 * than FM_MAXTICKS ticks have elapsed since the last filter event,
 * just compute FM_MAXTICKS ticks worth, by which point the level
 * will be stable.
 *
 * Limit the count of unprocessed events to FM_MAXCNT, so as to avoid
 * arithmetic overflow in the fmeter_update() routine.
 *
 * Given the simple 32 bit integer arithmetic used, this meter works
 * best for reporting rates between one per millisecond (msec) and
 * one per 32 (approx) seconds.  At constant rates faster than one
 * per msec it maxes out at values just under 1,000,000.  At constant
 * rates between one per msec, and one per second it will stabilize
 * to a value N*1000, where N is the rate of events per second.
 * At constant rates between one per second and one per 32 seconds,
 * it will be choppy, moving up on the seconds that have an event,
 * and then decaying until the next event.  At rates slower than
 * about one in 32 seconds, it decays all the way back to zero between
 * each event.
 */

#define FM_COEF 933		/* coefficient for half-life of 10 secs */
#define FM_MAXTICKS ((time_t)99) /* useless computing more ticks than this */
#define FM_MAXCNT 1000000	/* limit cnt to avoid overflow */
#define FM_SCALE 1000		/* faux fixed point scale */

/* Initialize a frequency meter */
static void fmeter_init(struct fmeter *fmp)
{
	fmp->cnt = 0;
	fmp->val = 0;
	fmp->time = 0;
	spin_lock_init(&fmp->lock);
}

/* Internal meter update - process cnt events and update value */
static void fmeter_update(struct fmeter *fmp)
{
	time_t now = get_seconds();
	time_t ticks = now - fmp->time;

	if (ticks == 0)
		return;

	ticks = min(FM_MAXTICKS, ticks);
	while (ticks-- > 0)
		fmp->val = (FM_COEF * fmp->val) / FM_SCALE;
	fmp->time = now;

	fmp->val += ((FM_SCALE - FM_COEF) * fmp->cnt) / FM_SCALE;
	fmp->cnt = 0;
}

/* Process any previous ticks, then bump cnt by one (times scale). */
static void fmeter_markevent(struct fmeter *fmp)
{
	spin_lock(&fmp->lock);
	fmeter_update(fmp);
	fmp->cnt = min(FM_MAXCNT, fmp->cnt + FM_SCALE);
	spin_unlock(&fmp->lock);
}

/* Process any previous ticks, then return current value. */
static int fmeter_getrate(struct fmeter *fmp)
{
	int val;

	spin_lock(&fmp->lock);
	fmeter_update(fmp);
	val = fmp->val;
	spin_unlock(&fmp->lock);
	return val;
}

1379 1380
static struct cpuset *cpuset_attach_old_cs;

1381
/* Called by cgroups to determine if a cpuset is usable; cpuset_mutex held */
1382 1383
static int cpuset_can_attach(struct cgroup_subsys_state *css,
			     struct cgroup_taskset *tset)
1384
{
1385
	struct cpuset *cs = css_cs(css);
1386 1387
	struct task_struct *task;
	int ret;
L
Linus Torvalds 已提交
1388

1389 1390 1391
	/* used later by cpuset_attach() */
	cpuset_attach_old_cs = task_cs(cgroup_taskset_first(tset));

1392 1393
	mutex_lock(&cpuset_mutex);

1394 1395 1396 1397
	/*
	 * We allow to move tasks into an empty cpuset if sane_behavior
	 * flag is set.
	 */
1398
	ret = -ENOSPC;
1399
	if (!cgroup_sane_behavior(css->cgroup) &&
1400
	    (cpumask_empty(cs->cpus_allowed) || nodes_empty(cs->mems_allowed)))
1401
		goto out_unlock;
1402

1403
	cgroup_taskset_for_each(task, tset) {
1404
		/*
1405 1406 1407 1408 1409 1410 1411
		 * Kthreads which disallow setaffinity shouldn't be moved
		 * to a new cpuset; we don't want to change their cpu
		 * affinity and isolating such threads by their set of
		 * allowed nodes is unnecessary.  Thus, cpusets are not
		 * applicable for such threads.  This prevents checking for
		 * success of set_cpus_allowed_ptr() on all attached tasks
		 * before cpus_allowed may be changed.
1412
		 */
1413
		ret = -EINVAL;
1414
		if (task->flags & PF_NO_SETAFFINITY)
1415 1416 1417 1418
			goto out_unlock;
		ret = security_task_setscheduler(task);
		if (ret)
			goto out_unlock;
1419
	}
1420

1421 1422 1423 1424 1425
	/*
	 * Mark attach is in progress.  This makes validate_change() fail
	 * changes which zero cpus/mems_allowed.
	 */
	cs->attach_in_progress++;
1426 1427 1428 1429
	ret = 0;
out_unlock:
	mutex_unlock(&cpuset_mutex);
	return ret;
1430
}
1431

1432
static void cpuset_cancel_attach(struct cgroup_subsys_state *css,
1433 1434
				 struct cgroup_taskset *tset)
{
1435
	mutex_lock(&cpuset_mutex);
1436
	css_cs(css)->attach_in_progress--;
1437
	mutex_unlock(&cpuset_mutex);
1438
}
L
Linus Torvalds 已提交
1439

1440
/*
1441
 * Protected by cpuset_mutex.  cpus_attach is used only by cpuset_attach()
1442 1443 1444 1445 1446
 * but we can't allocate it dynamically there.  Define it global and
 * allocate from cpuset_init().
 */
static cpumask_var_t cpus_attach;

1447 1448
static void cpuset_attach(struct cgroup_subsys_state *css,
			  struct cgroup_taskset *tset)
1449
{
1450
	/* static buf protected by cpuset_mutex */
1451
	static nodemask_t cpuset_attach_nodemask_to;
1452
	struct mm_struct *mm;
1453 1454
	struct task_struct *task;
	struct task_struct *leader = cgroup_taskset_first(tset);
1455
	struct cpuset *cs = css_cs(css);
1456
	struct cpuset *oldcs = cpuset_attach_old_cs;
1457 1458
	struct cpuset *cpus_cs = effective_cpumask_cpuset(cs);
	struct cpuset *mems_cs = effective_nodemask_cpuset(cs);
1459

1460 1461
	mutex_lock(&cpuset_mutex);

1462 1463 1464 1465
	/* prepare for attach */
	if (cs == &top_cpuset)
		cpumask_copy(cpus_attach, cpu_possible_mask);
	else
1466
		guarantee_online_cpus(cpus_cs, cpus_attach);
1467

1468
	guarantee_online_mems(mems_cs, &cpuset_attach_nodemask_to);
1469

1470
	cgroup_taskset_for_each(task, tset) {
1471 1472 1473 1474 1475 1476 1477 1478 1479
		/*
		 * can_attach beforehand should guarantee that this doesn't
		 * fail.  TODO: have a better way to handle failure here
		 */
		WARN_ON_ONCE(set_cpus_allowed_ptr(task, cpus_attach));

		cpuset_change_task_nodemask(task, &cpuset_attach_nodemask_to);
		cpuset_update_task_spread_flag(cs, task);
	}
1480

1481 1482 1483 1484 1485
	/*
	 * Change mm, possibly for multiple threads in a threadgroup. This is
	 * expensive and may sleep.
	 */
	cpuset_attach_nodemask_to = cs->mems_allowed;
1486
	mm = get_task_mm(leader);
1487
	if (mm) {
1488 1489
		struct cpuset *mems_oldcs = effective_nodemask_cpuset(oldcs);

1490
		mpol_rebind_mm(mm, &cpuset_attach_nodemask_to);
1491 1492 1493 1494 1495 1496 1497 1498 1499 1500

		/*
		 * old_mems_allowed is the same with mems_allowed here, except
		 * if this task is being moved automatically due to hotplug.
		 * In that case @mems_allowed has been updated and is empty,
		 * so @old_mems_allowed is the right nodesets that we migrate
		 * mm from.
		 */
		if (is_memory_migrate(cs)) {
			cpuset_migrate_mm(mm, &mems_oldcs->old_mems_allowed,
1501
					  &cpuset_attach_nodemask_to);
1502
		}
1503 1504
		mmput(mm);
	}
1505

1506
	cs->old_mems_allowed = cpuset_attach_nodemask_to;
1507

1508
	cs->attach_in_progress--;
1509 1510
	if (!cs->attach_in_progress)
		wake_up(&cpuset_attach_wq);
1511 1512

	mutex_unlock(&cpuset_mutex);
L
Linus Torvalds 已提交
1513 1514 1515 1516 1517
}

/* The various types of files and directories in a cpuset file system */

typedef enum {
1518
	FILE_MEMORY_MIGRATE,
L
Linus Torvalds 已提交
1519 1520 1521 1522
	FILE_CPULIST,
	FILE_MEMLIST,
	FILE_CPU_EXCLUSIVE,
	FILE_MEM_EXCLUSIVE,
1523
	FILE_MEM_HARDWALL,
P
Paul Jackson 已提交
1524
	FILE_SCHED_LOAD_BALANCE,
1525
	FILE_SCHED_RELAX_DOMAIN_LEVEL,
1526 1527
	FILE_MEMORY_PRESSURE_ENABLED,
	FILE_MEMORY_PRESSURE,
1528 1529
	FILE_SPREAD_PAGE,
	FILE_SPREAD_SLAB,
L
Linus Torvalds 已提交
1530 1531
} cpuset_filetype_t;

1532 1533
static int cpuset_write_u64(struct cgroup_subsys_state *css, struct cftype *cft,
			    u64 val)
1534
{
1535
	struct cpuset *cs = css_cs(css);
1536
	cpuset_filetype_t type = cft->private;
1537
	int retval = 0;
1538

1539
	mutex_lock(&cpuset_mutex);
1540 1541
	if (!is_cpuset_online(cs)) {
		retval = -ENODEV;
1542
		goto out_unlock;
1543
	}
1544 1545

	switch (type) {
L
Linus Torvalds 已提交
1546
	case FILE_CPU_EXCLUSIVE:
1547
		retval = update_flag(CS_CPU_EXCLUSIVE, cs, val);
L
Linus Torvalds 已提交
1548 1549
		break;
	case FILE_MEM_EXCLUSIVE:
1550
		retval = update_flag(CS_MEM_EXCLUSIVE, cs, val);
L
Linus Torvalds 已提交
1551
		break;
1552 1553 1554
	case FILE_MEM_HARDWALL:
		retval = update_flag(CS_MEM_HARDWALL, cs, val);
		break;
P
Paul Jackson 已提交
1555
	case FILE_SCHED_LOAD_BALANCE:
1556
		retval = update_flag(CS_SCHED_LOAD_BALANCE, cs, val);
1557
		break;
1558
	case FILE_MEMORY_MIGRATE:
1559
		retval = update_flag(CS_MEMORY_MIGRATE, cs, val);
1560
		break;
1561
	case FILE_MEMORY_PRESSURE_ENABLED:
1562
		cpuset_memory_pressure_enabled = !!val;
1563 1564 1565 1566
		break;
	case FILE_MEMORY_PRESSURE:
		retval = -EACCES;
		break;
1567
	case FILE_SPREAD_PAGE:
1568
		retval = update_flag(CS_SPREAD_PAGE, cs, val);
1569 1570
		break;
	case FILE_SPREAD_SLAB:
1571
		retval = update_flag(CS_SPREAD_SLAB, cs, val);
1572
		break;
L
Linus Torvalds 已提交
1573 1574
	default:
		retval = -EINVAL;
1575
		break;
L
Linus Torvalds 已提交
1576
	}
1577 1578
out_unlock:
	mutex_unlock(&cpuset_mutex);
L
Linus Torvalds 已提交
1579 1580 1581
	return retval;
}

1582 1583
static int cpuset_write_s64(struct cgroup_subsys_state *css, struct cftype *cft,
			    s64 val)
1584
{
1585
	struct cpuset *cs = css_cs(css);
1586
	cpuset_filetype_t type = cft->private;
1587
	int retval = -ENODEV;
1588

1589 1590 1591
	mutex_lock(&cpuset_mutex);
	if (!is_cpuset_online(cs))
		goto out_unlock;
1592

1593 1594 1595 1596 1597 1598 1599 1600
	switch (type) {
	case FILE_SCHED_RELAX_DOMAIN_LEVEL:
		retval = update_relax_domain_level(cs, val);
		break;
	default:
		retval = -EINVAL;
		break;
	}
1601 1602
out_unlock:
	mutex_unlock(&cpuset_mutex);
1603 1604 1605
	return retval;
}

1606 1607 1608
/*
 * Common handling for a write to a "cpus" or "mems" file.
 */
1609
static int cpuset_write_resmask(struct cgroup_subsys_state *css,
1610
				struct cftype *cft, char *buf)
1611
{
1612
	struct cpuset *cs = css_cs(css);
1613
	struct cpuset *trialcs;
1614
	int retval = -ENODEV;
1615

1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628
	/*
	 * CPU or memory hotunplug may leave @cs w/o any execution
	 * resources, in which case the hotplug code asynchronously updates
	 * configuration and transfers all tasks to the nearest ancestor
	 * which can execute.
	 *
	 * As writes to "cpus" or "mems" may restore @cs's execution
	 * resources, wait for the previously scheduled operations before
	 * proceeding, so that we don't end up keep removing tasks added
	 * after execution capability is restored.
	 */
	flush_work(&cpuset_hotplug_work);

1629 1630 1631
	mutex_lock(&cpuset_mutex);
	if (!is_cpuset_online(cs))
		goto out_unlock;
1632

1633
	trialcs = alloc_trial_cpuset(cs);
1634 1635
	if (!trialcs) {
		retval = -ENOMEM;
1636
		goto out_unlock;
1637
	}
1638

1639 1640
	switch (cft->private) {
	case FILE_CPULIST:
1641
		retval = update_cpumask(cs, trialcs, buf);
1642 1643
		break;
	case FILE_MEMLIST:
1644
		retval = update_nodemask(cs, trialcs, buf);
1645 1646 1647 1648 1649
		break;
	default:
		retval = -EINVAL;
		break;
	}
1650 1651

	free_trial_cpuset(trialcs);
1652 1653
out_unlock:
	mutex_unlock(&cpuset_mutex);
1654 1655 1656
	return retval;
}

L
Linus Torvalds 已提交
1657 1658 1659 1660 1661 1662 1663 1664
/*
 * These ascii lists should be read in a single call, by using a user
 * buffer large enough to hold the entire map.  If read in smaller
 * chunks, there is no guarantee of atomicity.  Since the display format
 * used, list of ranges of sequential numbers, is variable length,
 * and since these maps can change value dynamically, one could read
 * gibberish by doing partial reads while a list was changing.
 */
1665
static int cpuset_common_seq_show(struct seq_file *sf, void *v)
L
Linus Torvalds 已提交
1666
{
1667 1668
	struct cpuset *cs = css_cs(seq_css(sf));
	cpuset_filetype_t type = seq_cft(sf)->private;
1669 1670 1671
	ssize_t count;
	char *buf, *s;
	int ret = 0;
L
Linus Torvalds 已提交
1672

1673 1674
	count = seq_get_buf(sf, &buf);
	s = buf;
L
Linus Torvalds 已提交
1675

1676
	mutex_lock(&callback_mutex);
L
Linus Torvalds 已提交
1677 1678 1679

	switch (type) {
	case FILE_CPULIST:
1680
		s += cpulist_scnprintf(s, count, cs->cpus_allowed);
L
Linus Torvalds 已提交
1681 1682
		break;
	case FILE_MEMLIST:
1683
		s += nodelist_scnprintf(s, count, cs->mems_allowed);
L
Linus Torvalds 已提交
1684 1685
		break;
	default:
1686 1687
		ret = -EINVAL;
		goto out_unlock;
L
Linus Torvalds 已提交
1688 1689
	}

1690 1691 1692 1693 1694 1695 1696 1697 1698
	if (s < buf + count - 1) {
		*s++ = '\n';
		seq_commit(sf, s - buf);
	} else {
		seq_commit(sf, -1);
	}
out_unlock:
	mutex_unlock(&callback_mutex);
	return ret;
L
Linus Torvalds 已提交
1699 1700
}

1701
static u64 cpuset_read_u64(struct cgroup_subsys_state *css, struct cftype *cft)
1702
{
1703
	struct cpuset *cs = css_cs(css);
1704 1705 1706 1707 1708 1709
	cpuset_filetype_t type = cft->private;
	switch (type) {
	case FILE_CPU_EXCLUSIVE:
		return is_cpu_exclusive(cs);
	case FILE_MEM_EXCLUSIVE:
		return is_mem_exclusive(cs);
1710 1711
	case FILE_MEM_HARDWALL:
		return is_mem_hardwall(cs);
1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726
	case FILE_SCHED_LOAD_BALANCE:
		return is_sched_load_balance(cs);
	case FILE_MEMORY_MIGRATE:
		return is_memory_migrate(cs);
	case FILE_MEMORY_PRESSURE_ENABLED:
		return cpuset_memory_pressure_enabled;
	case FILE_MEMORY_PRESSURE:
		return fmeter_getrate(&cs->fmeter);
	case FILE_SPREAD_PAGE:
		return is_spread_page(cs);
	case FILE_SPREAD_SLAB:
		return is_spread_slab(cs);
	default:
		BUG();
	}
1727 1728 1729

	/* Unreachable but makes gcc happy */
	return 0;
1730
}
L
Linus Torvalds 已提交
1731

1732
static s64 cpuset_read_s64(struct cgroup_subsys_state *css, struct cftype *cft)
1733
{
1734
	struct cpuset *cs = css_cs(css);
1735 1736 1737 1738 1739 1740 1741
	cpuset_filetype_t type = cft->private;
	switch (type) {
	case FILE_SCHED_RELAX_DOMAIN_LEVEL:
		return cs->relax_domain_level;
	default:
		BUG();
	}
1742 1743 1744

	/* Unrechable but makes gcc happy */
	return 0;
1745 1746
}

L
Linus Torvalds 已提交
1747 1748 1749 1750 1751

/*
 * for the common functions, 'private' gives the type of file
 */

1752 1753 1754
static struct cftype files[] = {
	{
		.name = "cpus",
1755
		.seq_show = cpuset_common_seq_show,
1756 1757
		.write_string = cpuset_write_resmask,
		.max_write_len = (100U + 6 * NR_CPUS),
1758 1759 1760 1761 1762
		.private = FILE_CPULIST,
	},

	{
		.name = "mems",
1763
		.seq_show = cpuset_common_seq_show,
1764 1765
		.write_string = cpuset_write_resmask,
		.max_write_len = (100U + 6 * MAX_NUMNODES),
1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782
		.private = FILE_MEMLIST,
	},

	{
		.name = "cpu_exclusive",
		.read_u64 = cpuset_read_u64,
		.write_u64 = cpuset_write_u64,
		.private = FILE_CPU_EXCLUSIVE,
	},

	{
		.name = "mem_exclusive",
		.read_u64 = cpuset_read_u64,
		.write_u64 = cpuset_write_u64,
		.private = FILE_MEM_EXCLUSIVE,
	},

1783 1784 1785 1786 1787 1788 1789
	{
		.name = "mem_hardwall",
		.read_u64 = cpuset_read_u64,
		.write_u64 = cpuset_write_u64,
		.private = FILE_MEM_HARDWALL,
	},

1790 1791 1792 1793 1794 1795 1796 1797 1798
	{
		.name = "sched_load_balance",
		.read_u64 = cpuset_read_u64,
		.write_u64 = cpuset_write_u64,
		.private = FILE_SCHED_LOAD_BALANCE,
	},

	{
		.name = "sched_relax_domain_level",
1799 1800
		.read_s64 = cpuset_read_s64,
		.write_s64 = cpuset_write_s64,
1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815
		.private = FILE_SCHED_RELAX_DOMAIN_LEVEL,
	},

	{
		.name = "memory_migrate",
		.read_u64 = cpuset_read_u64,
		.write_u64 = cpuset_write_u64,
		.private = FILE_MEMORY_MIGRATE,
	},

	{
		.name = "memory_pressure",
		.read_u64 = cpuset_read_u64,
		.write_u64 = cpuset_write_u64,
		.private = FILE_MEMORY_PRESSURE,
L
Li Zefan 已提交
1816
		.mode = S_IRUGO,
1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831
	},

	{
		.name = "memory_spread_page",
		.read_u64 = cpuset_read_u64,
		.write_u64 = cpuset_write_u64,
		.private = FILE_SPREAD_PAGE,
	},

	{
		.name = "memory_spread_slab",
		.read_u64 = cpuset_read_u64,
		.write_u64 = cpuset_write_u64,
		.private = FILE_SPREAD_SLAB,
	},
1832

1833 1834 1835 1836 1837 1838 1839
	{
		.name = "memory_pressure_enabled",
		.flags = CFTYPE_ONLY_ON_ROOT,
		.read_u64 = cpuset_read_u64,
		.write_u64 = cpuset_write_u64,
		.private = FILE_MEMORY_PRESSURE_ENABLED,
	},
L
Linus Torvalds 已提交
1840

1841 1842
	{ }	/* terminate */
};
L
Linus Torvalds 已提交
1843 1844

/*
1845
 *	cpuset_css_alloc - allocate a cpuset css
L
Li Zefan 已提交
1846
 *	cgrp:	control group that the new cpuset will be part of
L
Linus Torvalds 已提交
1847 1848
 */

1849 1850
static struct cgroup_subsys_state *
cpuset_css_alloc(struct cgroup_subsys_state *parent_css)
L
Linus Torvalds 已提交
1851
{
T
Tejun Heo 已提交
1852
	struct cpuset *cs;
L
Linus Torvalds 已提交
1853

1854
	if (!parent_css)
1855
		return &top_cpuset.css;
1856

T
Tejun Heo 已提交
1857
	cs = kzalloc(sizeof(*cs), GFP_KERNEL);
L
Linus Torvalds 已提交
1858
	if (!cs)
1859
		return ERR_PTR(-ENOMEM);
1860 1861 1862 1863
	if (!alloc_cpumask_var(&cs->cpus_allowed, GFP_KERNEL)) {
		kfree(cs);
		return ERR_PTR(-ENOMEM);
	}
L
Linus Torvalds 已提交
1864

P
Paul Jackson 已提交
1865
	set_bit(CS_SCHED_LOAD_BALANCE, &cs->flags);
1866
	cpumask_clear(cs->cpus_allowed);
1867
	nodes_clear(cs->mems_allowed);
1868
	fmeter_init(&cs->fmeter);
1869
	cs->relax_domain_level = -1;
L
Linus Torvalds 已提交
1870

T
Tejun Heo 已提交
1871 1872 1873
	return &cs->css;
}

1874
static int cpuset_css_online(struct cgroup_subsys_state *css)
T
Tejun Heo 已提交
1875
{
1876
	struct cpuset *cs = css_cs(css);
T
Tejun Heo 已提交
1877
	struct cpuset *parent = parent_cs(cs);
1878
	struct cpuset *tmp_cs;
1879
	struct cgroup_subsys_state *pos_css;
T
Tejun Heo 已提交
1880 1881 1882 1883

	if (!parent)
		return 0;

1884 1885
	mutex_lock(&cpuset_mutex);

T
Tejun Heo 已提交
1886
	set_bit(CS_ONLINE, &cs->flags);
T
Tejun Heo 已提交
1887 1888 1889 1890
	if (is_spread_page(parent))
		set_bit(CS_SPREAD_PAGE, &cs->flags);
	if (is_spread_slab(parent))
		set_bit(CS_SPREAD_SLAB, &cs->flags);
L
Linus Torvalds 已提交
1891

1892
	number_of_cpusets++;
1893

1894
	if (!test_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags))
1895
		goto out_unlock;
1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909

	/*
	 * Clone @parent's configuration if CGRP_CPUSET_CLONE_CHILDREN is
	 * set.  This flag handling is implemented in cgroup core for
	 * histrical reasons - the flag may be specified during mount.
	 *
	 * Currently, if any sibling cpusets have exclusive cpus or mem, we
	 * refuse to clone the configuration - thereby refusing the task to
	 * be entered, and as a result refusing the sys_unshare() or
	 * clone() which initiated it.  If this becomes a problem for some
	 * users who wish to allow that scenario, then this could be
	 * changed to grant parent->cpus_allowed-sibling_cpus_exclusive
	 * (and likewise for mems) to the new cgroup.
	 */
1910
	rcu_read_lock();
1911
	cpuset_for_each_child(tmp_cs, pos_css, parent) {
1912 1913
		if (is_mem_exclusive(tmp_cs) || is_cpu_exclusive(tmp_cs)) {
			rcu_read_unlock();
1914
			goto out_unlock;
1915
		}
1916
	}
1917
	rcu_read_unlock();
1918 1919 1920 1921 1922

	mutex_lock(&callback_mutex);
	cs->mems_allowed = parent->mems_allowed;
	cpumask_copy(cs->cpus_allowed, parent->cpus_allowed);
	mutex_unlock(&callback_mutex);
1923 1924
out_unlock:
	mutex_unlock(&cpuset_mutex);
T
Tejun Heo 已提交
1925 1926 1927
	return 0;
}

1928 1929 1930 1931 1932 1933
/*
 * If the cpuset being removed has its flag 'sched_load_balance'
 * enabled, then simulate turning sched_load_balance off, which
 * will call rebuild_sched_domains_locked().
 */

1934
static void cpuset_css_offline(struct cgroup_subsys_state *css)
T
Tejun Heo 已提交
1935
{
1936
	struct cpuset *cs = css_cs(css);
T
Tejun Heo 已提交
1937

1938
	mutex_lock(&cpuset_mutex);
T
Tejun Heo 已提交
1939 1940 1941 1942 1943

	if (is_sched_load_balance(cs))
		update_flag(CS_SCHED_LOAD_BALANCE, cs, 0);

	number_of_cpusets--;
T
Tejun Heo 已提交
1944
	clear_bit(CS_ONLINE, &cs->flags);
T
Tejun Heo 已提交
1945

1946
	mutex_unlock(&cpuset_mutex);
L
Linus Torvalds 已提交
1947 1948
}

1949
static void cpuset_css_free(struct cgroup_subsys_state *css)
L
Linus Torvalds 已提交
1950
{
1951
	struct cpuset *cs = css_cs(css);
L
Linus Torvalds 已提交
1952

1953
	free_cpumask_var(cs->cpus_allowed);
1954
	kfree(cs);
L
Linus Torvalds 已提交
1955 1956
}

1957
struct cgroup_subsys cpuset_cgrp_subsys = {
1958
	.css_alloc = cpuset_css_alloc,
T
Tejun Heo 已提交
1959 1960
	.css_online = cpuset_css_online,
	.css_offline = cpuset_css_offline,
1961
	.css_free = cpuset_css_free,
1962
	.can_attach = cpuset_can_attach,
1963
	.cancel_attach = cpuset_cancel_attach,
1964
	.attach = cpuset_attach,
1965
	.base_cftypes = files,
1966 1967 1968
	.early_init = 1,
};

L
Linus Torvalds 已提交
1969 1970 1971 1972 1973 1974 1975 1976
/**
 * cpuset_init - initialize cpusets at system boot
 *
 * Description: Initialize top_cpuset and the cpuset internal file system,
 **/

int __init cpuset_init(void)
{
1977
	int err = 0;
L
Linus Torvalds 已提交
1978

1979 1980 1981
	if (!alloc_cpumask_var(&top_cpuset.cpus_allowed, GFP_KERNEL))
		BUG();

1982
	cpumask_setall(top_cpuset.cpus_allowed);
1983
	nodes_setall(top_cpuset.mems_allowed);
L
Linus Torvalds 已提交
1984

1985
	fmeter_init(&top_cpuset.fmeter);
P
Paul Jackson 已提交
1986
	set_bit(CS_SCHED_LOAD_BALANCE, &top_cpuset.flags);
1987
	top_cpuset.relax_domain_level = -1;
L
Linus Torvalds 已提交
1988 1989 1990

	err = register_filesystem(&cpuset_fs_type);
	if (err < 0)
1991 1992
		return err;

1993 1994 1995
	if (!alloc_cpumask_var(&cpus_attach, GFP_KERNEL))
		BUG();

1996
	number_of_cpusets = 1;
1997
	return 0;
L
Linus Torvalds 已提交
1998 1999
}

2000
/*
2001
 * If CPU and/or memory hotplug handlers, below, unplug any CPUs
2002 2003
 * or memory nodes, we need to walk over the cpuset hierarchy,
 * removing that CPU or node from all cpusets.  If this removes the
2004 2005
 * last CPU or node from a cpuset, then move the tasks in the empty
 * cpuset to its next-highest non-empty parent.
2006
 */
2007 2008 2009 2010 2011 2012 2013 2014
static void remove_tasks_in_empty_cpuset(struct cpuset *cs)
{
	struct cpuset *parent;

	/*
	 * Find its next-highest non-empty parent, (top cpuset
	 * has online cpus, so can't be empty).
	 */
T
Tejun Heo 已提交
2015
	parent = parent_cs(cs);
2016
	while (cpumask_empty(parent->cpus_allowed) ||
2017
			nodes_empty(parent->mems_allowed))
T
Tejun Heo 已提交
2018
		parent = parent_cs(parent);
2019

2020
	if (cgroup_transfer_tasks(parent->css.cgroup, cs->css.cgroup)) {
T
Tejun Heo 已提交
2021 2022 2023
		printk(KERN_ERR "cpuset: failed to transfer tasks out of empty cpuset ");
		pr_cont_cgroup_name(cs->css.cgroup);
		pr_cont("\n");
2024
	}
2025 2026
}

2027
/**
2028
 * cpuset_hotplug_update_tasks - update tasks in a cpuset for hotunplug
2029
 * @cs: cpuset in interest
2030
 *
2031 2032 2033
 * Compare @cs's cpu and mem masks against top_cpuset and if some have gone
 * offline, update @cs accordingly.  If @cs ends up with no CPU or memory,
 * all its tasks are moved to the nearest ancestor with both resources.
2034
 */
2035
static void cpuset_hotplug_update_tasks(struct cpuset *cs)
2036
{
2037
	static cpumask_t off_cpus;
2038
	static nodemask_t off_mems;
2039
	bool is_empty;
2040
	bool sane = cgroup_sane_behavior(cs->css.cgroup);
2041

2042 2043
retry:
	wait_event(cpuset_attach_wq, cs->attach_in_progress == 0);
2044

2045
	mutex_lock(&cpuset_mutex);
2046

2047 2048 2049 2050 2051 2052 2053 2054 2055
	/*
	 * We have raced with task attaching. We wait until attaching
	 * is finished, so we won't attach a task to an empty cpuset.
	 */
	if (cs->attach_in_progress) {
		mutex_unlock(&cpuset_mutex);
		goto retry;
	}

2056 2057
	cpumask_andnot(&off_cpus, cs->cpus_allowed, top_cpuset.cpus_allowed);
	nodes_andnot(off_mems, cs->mems_allowed, top_cpuset.mems_allowed);
2058

2059 2060 2061 2062 2063 2064
	mutex_lock(&callback_mutex);
	cpumask_andnot(cs->cpus_allowed, cs->cpus_allowed, &off_cpus);
	mutex_unlock(&callback_mutex);

	/*
	 * If sane_behavior flag is set, we need to update tasks' cpumask
2065 2066 2067
	 * for empty cpuset to take on ancestor's cpumask. Otherwise, don't
	 * call update_tasks_cpumask() if the cpuset becomes empty, as
	 * the tasks in it will be migrated to an ancestor.
2068 2069
	 */
	if ((sane && cpumask_empty(cs->cpus_allowed)) ||
2070
	    (!cpumask_empty(&off_cpus) && !cpumask_empty(cs->cpus_allowed)))
2071
		update_tasks_cpumask(cs);
2072

2073 2074 2075 2076 2077 2078
	mutex_lock(&callback_mutex);
	nodes_andnot(cs->mems_allowed, cs->mems_allowed, off_mems);
	mutex_unlock(&callback_mutex);

	/*
	 * If sane_behavior flag is set, we need to update tasks' nodemask
2079 2080 2081
	 * for empty cpuset to take on ancestor's nodemask. Otherwise, don't
	 * call update_tasks_nodemask() if the cpuset becomes empty, as
	 * the tasks in it will be migratd to an ancestor.
2082 2083
	 */
	if ((sane && nodes_empty(cs->mems_allowed)) ||
2084
	    (!nodes_empty(off_mems) && !nodes_empty(cs->mems_allowed)))
2085
		update_tasks_nodemask(cs);
2086

2087 2088
	is_empty = cpumask_empty(cs->cpus_allowed) ||
		nodes_empty(cs->mems_allowed);
2089

2090 2091 2092
	mutex_unlock(&cpuset_mutex);

	/*
2093 2094 2095 2096
	 * If sane_behavior flag is set, we'll keep tasks in empty cpusets.
	 *
	 * Otherwise move tasks to the nearest ancestor with execution
	 * resources.  This is full cgroup operation which will
2097 2098
	 * also call back into cpuset.  Should be done outside any lock.
	 */
2099
	if (!sane && is_empty)
2100
		remove_tasks_in_empty_cpuset(cs);
2101 2102
}

2103
/**
2104
 * cpuset_hotplug_workfn - handle CPU/memory hotunplug for a cpuset
2105
 *
2106 2107 2108 2109 2110
 * This function is called after either CPU or memory configuration has
 * changed and updates cpuset accordingly.  The top_cpuset is always
 * synchronized to cpu_active_mask and N_MEMORY, which is necessary in
 * order to make cpusets transparent (of no affect) on systems that are
 * actively using CPU hotplug but making no active use of cpusets.
2111
 *
2112
 * Non-root cpusets are only affected by offlining.  If any CPUs or memory
2113 2114
 * nodes have been taken down, cpuset_hotplug_update_tasks() is invoked on
 * all descendants.
2115
 *
2116 2117
 * Note that CPU offlining during suspend is ignored.  We don't modify
 * cpusets across suspend/resume cycles at all.
2118
 */
2119
static void cpuset_hotplug_workfn(struct work_struct *work)
2120
{
2121 2122
	static cpumask_t new_cpus;
	static nodemask_t new_mems;
2123
	bool cpus_updated, mems_updated;
2124

2125
	mutex_lock(&cpuset_mutex);
2126

2127 2128 2129
	/* fetch the available cpus/mems and find out which changed how */
	cpumask_copy(&new_cpus, cpu_active_mask);
	new_mems = node_states[N_MEMORY];
2130

2131 2132
	cpus_updated = !cpumask_equal(top_cpuset.cpus_allowed, &new_cpus);
	mems_updated = !nodes_equal(top_cpuset.mems_allowed, new_mems);
2133

2134 2135 2136 2137 2138 2139 2140
	/* synchronize cpus_allowed to cpu_active_mask */
	if (cpus_updated) {
		mutex_lock(&callback_mutex);
		cpumask_copy(top_cpuset.cpus_allowed, &new_cpus);
		mutex_unlock(&callback_mutex);
		/* we don't mess with cpumasks of tasks in top_cpuset */
	}
2141

2142 2143 2144 2145 2146
	/* synchronize mems_allowed to N_MEMORY */
	if (mems_updated) {
		mutex_lock(&callback_mutex);
		top_cpuset.mems_allowed = new_mems;
		mutex_unlock(&callback_mutex);
2147
		update_tasks_nodemask(&top_cpuset);
2148
	}
2149

2150 2151
	mutex_unlock(&cpuset_mutex);

2152 2153
	/* if cpus or mems changed, we need to propagate to descendants */
	if (cpus_updated || mems_updated) {
2154
		struct cpuset *cs;
2155
		struct cgroup_subsys_state *pos_css;
2156

2157
		rcu_read_lock();
2158
		cpuset_for_each_descendant_pre(cs, pos_css, &top_cpuset) {
2159
			if (cs == &top_cpuset || !css_tryget(&cs->css))
2160 2161
				continue;
			rcu_read_unlock();
2162

2163
			cpuset_hotplug_update_tasks(cs);
2164

2165 2166 2167 2168 2169
			rcu_read_lock();
			css_put(&cs->css);
		}
		rcu_read_unlock();
	}
2170

2171
	/* rebuild sched domains if cpus_allowed has changed */
2172 2173
	if (cpus_updated)
		rebuild_sched_domains();
2174 2175
}

2176
void cpuset_update_active_cpus(bool cpu_online)
2177
{
2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189
	/*
	 * We're inside cpu hotplug critical region which usually nests
	 * inside cgroup synchronization.  Bounce actual hotplug processing
	 * to a work item to avoid reverse locking order.
	 *
	 * We still need to do partition_sched_domains() synchronously;
	 * otherwise, the scheduler will get confused and put tasks to the
	 * dead CPU.  Fall back to the default single domain.
	 * cpuset_hotplug_workfn() will rebuild it as necessary.
	 */
	partition_sched_domains(1, NULL, NULL);
	schedule_work(&cpuset_hotplug_work);
2190 2191
}

2192
/*
2193 2194
 * Keep top_cpuset.mems_allowed tracking node_states[N_MEMORY].
 * Call this routine anytime after node_states[N_MEMORY] changes.
2195
 * See cpuset_update_active_cpus() for CPU hotplug handling.
2196
 */
2197 2198
static int cpuset_track_online_nodes(struct notifier_block *self,
				unsigned long action, void *arg)
2199
{
2200
	schedule_work(&cpuset_hotplug_work);
2201
	return NOTIFY_OK;
2202
}
2203 2204 2205 2206 2207

static struct notifier_block cpuset_track_online_nodes_nb = {
	.notifier_call = cpuset_track_online_nodes,
	.priority = 10,		/* ??! */
};
2208

L
Linus Torvalds 已提交
2209 2210 2211 2212
/**
 * cpuset_init_smp - initialize cpus_allowed
 *
 * Description: Finish top cpuset after cpu, node maps are initialized
2213
 */
L
Linus Torvalds 已提交
2214 2215
void __init cpuset_init_smp(void)
{
2216
	cpumask_copy(top_cpuset.cpus_allowed, cpu_active_mask);
2217
	top_cpuset.mems_allowed = node_states[N_MEMORY];
2218
	top_cpuset.old_mems_allowed = top_cpuset.mems_allowed;
2219

2220
	register_hotmemory_notifier(&cpuset_track_online_nodes_nb);
L
Linus Torvalds 已提交
2221 2222 2223 2224 2225
}

/**
 * cpuset_cpus_allowed - return cpus_allowed mask from a tasks cpuset.
 * @tsk: pointer to task_struct from which to obtain cpuset->cpus_allowed.
2226
 * @pmask: pointer to struct cpumask variable to receive cpus_allowed set.
L
Linus Torvalds 已提交
2227
 *
2228
 * Description: Returns the cpumask_var_t cpus_allowed of the cpuset
L
Linus Torvalds 已提交
2229
 * attached to the specified @tsk.  Guaranteed to return some non-empty
2230
 * subset of cpu_online_mask, even if this means going outside the
L
Linus Torvalds 已提交
2231 2232 2233
 * tasks cpuset.
 **/

2234
void cpuset_cpus_allowed(struct task_struct *tsk, struct cpumask *pmask)
L
Linus Torvalds 已提交
2235
{
2236 2237
	struct cpuset *cpus_cs;

2238
	mutex_lock(&callback_mutex);
2239
	rcu_read_lock();
2240 2241
	cpus_cs = effective_cpumask_cpuset(task_cs(tsk));
	guarantee_online_cpus(cpus_cs, pmask);
2242
	rcu_read_unlock();
2243
	mutex_unlock(&callback_mutex);
L
Linus Torvalds 已提交
2244 2245
}

2246
void cpuset_cpus_allowed_fallback(struct task_struct *tsk)
2247
{
2248
	struct cpuset *cpus_cs;
2249 2250

	rcu_read_lock();
2251 2252
	cpus_cs = effective_cpumask_cpuset(task_cs(tsk));
	do_set_cpus_allowed(tsk, cpus_cs->cpus_allowed);
2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267
	rcu_read_unlock();

	/*
	 * We own tsk->cpus_allowed, nobody can change it under us.
	 *
	 * But we used cs && cs->cpus_allowed lockless and thus can
	 * race with cgroup_attach_task() or update_cpumask() and get
	 * the wrong tsk->cpus_allowed. However, both cases imply the
	 * subsequent cpuset_change_cpumask()->set_cpus_allowed_ptr()
	 * which takes task_rq_lock().
	 *
	 * If we are called after it dropped the lock we must see all
	 * changes in tsk_cs()->cpus_allowed. Otherwise we can temporary
	 * set any mask even if it is not right from task_cs() pov,
	 * the pending set_cpus_allowed_ptr() will fix things.
2268 2269 2270
	 *
	 * select_fallback_rq() will fix things ups and set cpu_possible_mask
	 * if required.
2271 2272 2273
	 */
}

L
Linus Torvalds 已提交
2274 2275
void cpuset_init_current_mems_allowed(void)
{
2276
	nodes_setall(current->mems_allowed);
L
Linus Torvalds 已提交
2277 2278
}

2279 2280 2281 2282 2283 2284
/**
 * cpuset_mems_allowed - return mems_allowed mask from a tasks cpuset.
 * @tsk: pointer to task_struct from which to obtain cpuset->mems_allowed.
 *
 * Description: Returns the nodemask_t mems_allowed of the cpuset
 * attached to the specified @tsk.  Guaranteed to return some non-empty
2285
 * subset of node_states[N_MEMORY], even if this means going outside the
2286 2287 2288 2289 2290
 * tasks cpuset.
 **/

nodemask_t cpuset_mems_allowed(struct task_struct *tsk)
{
2291
	struct cpuset *mems_cs;
2292 2293
	nodemask_t mask;

2294
	mutex_lock(&callback_mutex);
2295
	rcu_read_lock();
2296 2297
	mems_cs = effective_nodemask_cpuset(task_cs(tsk));
	guarantee_online_mems(mems_cs, &mask);
2298
	rcu_read_unlock();
2299
	mutex_unlock(&callback_mutex);
2300 2301 2302 2303

	return mask;
}

2304
/**
2305 2306
 * cpuset_nodemask_valid_mems_allowed - check nodemask vs. curremt mems_allowed
 * @nodemask: the nodemask to be checked
2307
 *
2308
 * Are any of the nodes in the nodemask allowed in current->mems_allowed?
L
Linus Torvalds 已提交
2309
 */
2310
int cpuset_nodemask_valid_mems_allowed(nodemask_t *nodemask)
L
Linus Torvalds 已提交
2311
{
2312
	return nodes_intersects(*nodemask, current->mems_allowed);
L
Linus Torvalds 已提交
2313 2314
}

2315
/*
2316 2317 2318 2319
 * nearest_hardwall_ancestor() - Returns the nearest mem_exclusive or
 * mem_hardwall ancestor to the specified cpuset.  Call holding
 * callback_mutex.  If no ancestor is mem_exclusive or mem_hardwall
 * (an unusual configuration), then returns the root cpuset.
2320
 */
2321
static struct cpuset *nearest_hardwall_ancestor(struct cpuset *cs)
2322
{
T
Tejun Heo 已提交
2323 2324
	while (!(is_mem_exclusive(cs) || is_mem_hardwall(cs)) && parent_cs(cs))
		cs = parent_cs(cs);
2325 2326 2327
	return cs;
}

2328
/**
2329 2330
 * cpuset_node_allowed_softwall - Can we allocate on a memory node?
 * @node: is this an allowed node?
2331
 * @gfp_mask: memory allocation flags
2332
 *
2333 2334 2335 2336 2337 2338
 * If we're in interrupt, yes, we can always allocate.  If __GFP_THISNODE is
 * set, yes, we can always allocate.  If node is in our task's mems_allowed,
 * yes.  If it's not a __GFP_HARDWALL request and this node is in the nearest
 * hardwalled cpuset ancestor to this task's cpuset, yes.  If the task has been
 * OOM killed and has access to memory reserves as specified by the TIF_MEMDIE
 * flag, yes.
2339 2340
 * Otherwise, no.
 *
2341 2342 2343
 * If __GFP_HARDWALL is set, cpuset_node_allowed_softwall() reduces to
 * cpuset_node_allowed_hardwall().  Otherwise, cpuset_node_allowed_softwall()
 * might sleep, and might allow a node from an enclosing cpuset.
2344
 *
2345 2346
 * cpuset_node_allowed_hardwall() only handles the simpler case of hardwall
 * cpusets, and never sleeps.
2347 2348 2349 2350 2351 2352 2353
 *
 * The __GFP_THISNODE placement logic is really handled elsewhere,
 * by forcibly using a zonelist starting at a specified node, and by
 * (in get_page_from_freelist()) refusing to consider the zones for
 * any node on the zonelist except the first.  By the time any such
 * calls get to this routine, we should just shut up and say 'yes'.
 *
2354
 * GFP_USER allocations are marked with the __GFP_HARDWALL bit,
2355 2356
 * and do not allow allocations outside the current tasks cpuset
 * unless the task has been OOM killed as is marked TIF_MEMDIE.
2357
 * GFP_KERNEL allocations are not so marked, so can escape to the
2358
 * nearest enclosing hardwalled ancestor cpuset.
2359
 *
2360 2361 2362 2363 2364 2365 2366
 * Scanning up parent cpusets requires callback_mutex.  The
 * __alloc_pages() routine only calls here with __GFP_HARDWALL bit
 * _not_ set if it's a GFP_KERNEL allocation, and all nodes in the
 * current tasks mems_allowed came up empty on the first pass over
 * the zonelist.  So only GFP_KERNEL allocations, if all nodes in the
 * cpuset are short of memory, might require taking the callback_mutex
 * mutex.
2367
 *
2368
 * The first call here from mm/page_alloc:get_page_from_freelist()
2369 2370 2371
 * has __GFP_HARDWALL set in gfp_mask, enforcing hardwall cpusets,
 * so no allocation on a node outside the cpuset is allowed (unless
 * in interrupt, of course).
2372 2373 2374 2375 2376 2377
 *
 * The second pass through get_page_from_freelist() doesn't even call
 * here for GFP_ATOMIC calls.  For those calls, the __alloc_pages()
 * variable 'wait' is not set, and the bit ALLOC_CPUSET is not set
 * in alloc_flags.  That logic and the checks below have the combined
 * affect that:
2378 2379
 *	in_interrupt - any node ok (current task context irrelevant)
 *	GFP_ATOMIC   - any node ok
2380
 *	TIF_MEMDIE   - any node ok
2381
 *	GFP_KERNEL   - any node in enclosing hardwalled cpuset ok
2382
 *	GFP_USER     - only nodes in current tasks mems allowed ok.
2383 2384
 *
 * Rule:
2385
 *    Don't call cpuset_node_allowed_softwall if you can't sleep, unless you
2386 2387
 *    pass in the __GFP_HARDWALL flag set in gfp_flag, which disables
 *    the code that might scan up ancestor cpusets and sleep.
2388
 */
2389
int __cpuset_node_allowed_softwall(int node, gfp_t gfp_mask)
L
Linus Torvalds 已提交
2390
{
2391
	struct cpuset *cs;		/* current cpuset ancestors */
2392
	int allowed;			/* is allocation in zone z allowed? */
2393

2394
	if (in_interrupt() || (gfp_mask & __GFP_THISNODE))
2395
		return 1;
2396
	might_sleep_if(!(gfp_mask & __GFP_HARDWALL));
2397 2398
	if (node_isset(node, current->mems_allowed))
		return 1;
2399 2400 2401 2402 2403 2404
	/*
	 * Allow tasks that have access to memory reserves because they have
	 * been OOM killed to get memory anywhere.
	 */
	if (unlikely(test_thread_flag(TIF_MEMDIE)))
		return 1;
2405 2406 2407
	if (gfp_mask & __GFP_HARDWALL)	/* If hardwall request, stop here */
		return 0;

2408 2409 2410
	if (current->flags & PF_EXITING) /* Let dying task have memory */
		return 1;

2411
	/* Not hardwall and node outside mems_allowed: scan up cpusets */
2412
	mutex_lock(&callback_mutex);
2413

2414
	rcu_read_lock();
2415
	cs = nearest_hardwall_ancestor(task_cs(current));
2416
	allowed = node_isset(node, cs->mems_allowed);
2417
	rcu_read_unlock();
2418

2419
	mutex_unlock(&callback_mutex);
2420
	return allowed;
L
Linus Torvalds 已提交
2421 2422
}

2423
/*
2424 2425
 * cpuset_node_allowed_hardwall - Can we allocate on a memory node?
 * @node: is this an allowed node?
2426 2427
 * @gfp_mask: memory allocation flags
 *
2428 2429 2430 2431 2432
 * If we're in interrupt, yes, we can always allocate.  If __GFP_THISNODE is
 * set, yes, we can always allocate.  If node is in our task's mems_allowed,
 * yes.  If the task has been OOM killed and has access to memory reserves as
 * specified by the TIF_MEMDIE flag, yes.
 * Otherwise, no.
2433 2434 2435 2436 2437 2438 2439
 *
 * The __GFP_THISNODE placement logic is really handled elsewhere,
 * by forcibly using a zonelist starting at a specified node, and by
 * (in get_page_from_freelist()) refusing to consider the zones for
 * any node on the zonelist except the first.  By the time any such
 * calls get to this routine, we should just shut up and say 'yes'.
 *
2440 2441
 * Unlike the cpuset_node_allowed_softwall() variant, above,
 * this variant requires that the node be in the current task's
2442 2443 2444 2445
 * mems_allowed or that we're in interrupt.  It does not scan up the
 * cpuset hierarchy for the nearest enclosing mem_exclusive cpuset.
 * It never sleeps.
 */
2446
int __cpuset_node_allowed_hardwall(int node, gfp_t gfp_mask)
2447 2448 2449 2450 2451
{
	if (in_interrupt() || (gfp_mask & __GFP_THISNODE))
		return 1;
	if (node_isset(node, current->mems_allowed))
		return 1;
D
Daniel Walker 已提交
2452 2453 2454 2455 2456 2457
	/*
	 * Allow tasks that have access to memory reserves because they have
	 * been OOM killed to get memory anywhere.
	 */
	if (unlikely(test_thread_flag(TIF_MEMDIE)))
		return 1;
2458 2459 2460
	return 0;
}

2461
/**
2462 2463
 * cpuset_mem_spread_node() - On which node to begin search for a file page
 * cpuset_slab_spread_node() - On which node to begin search for a slab page
2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487
 *
 * If a task is marked PF_SPREAD_PAGE or PF_SPREAD_SLAB (as for
 * tasks in a cpuset with is_spread_page or is_spread_slab set),
 * and if the memory allocation used cpuset_mem_spread_node()
 * to determine on which node to start looking, as it will for
 * certain page cache or slab cache pages such as used for file
 * system buffers and inode caches, then instead of starting on the
 * local node to look for a free page, rather spread the starting
 * node around the tasks mems_allowed nodes.
 *
 * We don't have to worry about the returned node being offline
 * because "it can't happen", and even if it did, it would be ok.
 *
 * The routines calling guarantee_online_mems() are careful to
 * only set nodes in task->mems_allowed that are online.  So it
 * should not be possible for the following code to return an
 * offline node.  But if it did, that would be ok, as this routine
 * is not returning the node where the allocation must be, only
 * the node where the search should start.  The zonelist passed to
 * __alloc_pages() will include all nodes.  If the slab allocator
 * is passed an offline node, it will fall back to the local node.
 * See kmem_cache_alloc_node().
 */

2488
static int cpuset_spread_node(int *rotor)
2489 2490 2491
{
	int node;

2492
	node = next_node(*rotor, current->mems_allowed);
2493 2494
	if (node == MAX_NUMNODES)
		node = first_node(current->mems_allowed);
2495
	*rotor = node;
2496 2497
	return node;
}
2498 2499 2500

int cpuset_mem_spread_node(void)
{
2501 2502 2503 2504
	if (current->cpuset_mem_spread_rotor == NUMA_NO_NODE)
		current->cpuset_mem_spread_rotor =
			node_random(&current->mems_allowed);

2505 2506 2507 2508 2509
	return cpuset_spread_node(&current->cpuset_mem_spread_rotor);
}

int cpuset_slab_spread_node(void)
{
2510 2511 2512 2513
	if (current->cpuset_slab_spread_rotor == NUMA_NO_NODE)
		current->cpuset_slab_spread_rotor =
			node_random(&current->mems_allowed);

2514 2515 2516
	return cpuset_spread_node(&current->cpuset_slab_spread_rotor);
}

2517 2518
EXPORT_SYMBOL_GPL(cpuset_mem_spread_node);

2519
/**
2520 2521 2522 2523 2524 2525 2526 2527
 * cpuset_mems_allowed_intersects - Does @tsk1's mems_allowed intersect @tsk2's?
 * @tsk1: pointer to task_struct of some task.
 * @tsk2: pointer to task_struct of some other task.
 *
 * Description: Return true if @tsk1's mems_allowed intersects the
 * mems_allowed of @tsk2.  Used by the OOM killer to determine if
 * one of the task's memory usage might impact the memory available
 * to the other.
2528 2529
 **/

2530 2531
int cpuset_mems_allowed_intersects(const struct task_struct *tsk1,
				   const struct task_struct *tsk2)
2532
{
2533
	return nodes_intersects(tsk1->mems_allowed, tsk2->mems_allowed);
2534 2535
}

2536 2537
#define CPUSET_NODELIST_LEN	(256)

2538 2539
/**
 * cpuset_print_task_mems_allowed - prints task's cpuset and mems_allowed
2540
 * @tsk: pointer to task_struct of some task.
2541 2542
 *
 * Description: Prints @task's name, cpuset name, and cached copy of its
2543
 * mems_allowed to the kernel log.
2544 2545 2546
 */
void cpuset_print_task_mems_allowed(struct task_struct *tsk)
{
2547 2548 2549
	 /* Statically allocated to prevent using excess stack. */
	static char cpuset_nodelist[CPUSET_NODELIST_LEN];
	static DEFINE_SPINLOCK(cpuset_buffer_lock);
2550
	struct cgroup *cgrp;
2551

2552
	spin_lock(&cpuset_buffer_lock);
2553
	rcu_read_lock();
2554

2555
	cgrp = task_cs(tsk)->css.cgroup;
2556 2557
	nodelist_scnprintf(cpuset_nodelist, CPUSET_NODELIST_LEN,
			   tsk->mems_allowed);
T
Tejun Heo 已提交
2558 2559 2560
	printk(KERN_INFO "%s cpuset=", tsk->comm);
	pr_cont_cgroup_name(cgrp);
	pr_cont(" mems_allowed=%s\n", cpuset_nodelist);
2561

2562
	rcu_read_unlock();
2563 2564 2565
	spin_unlock(&cpuset_buffer_lock);
}

2566 2567 2568 2569 2570 2571
/*
 * Collection of memory_pressure is suppressed unless
 * this flag is enabled by writing "1" to the special
 * cpuset file 'memory_pressure_enabled' in the root cpuset.
 */

2572
int cpuset_memory_pressure_enabled __read_mostly;
2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593

/**
 * cpuset_memory_pressure_bump - keep stats of per-cpuset reclaims.
 *
 * Keep a running average of the rate of synchronous (direct)
 * page reclaim efforts initiated by tasks in each cpuset.
 *
 * This represents the rate at which some task in the cpuset
 * ran low on memory on all nodes it was allowed to use, and
 * had to enter the kernels page reclaim code in an effort to
 * create more free memory by tossing clean pages or swapping
 * or writing dirty pages.
 *
 * Display to user space in the per-cpuset read-only file
 * "memory_pressure".  Value displayed is an integer
 * representing the recent rate of entry into the synchronous
 * (direct) page reclaim by any task attached to the cpuset.
 **/

void __cpuset_memory_pressure_bump(void)
{
2594
	rcu_read_lock();
2595
	fmeter_markevent(&task_cs(current)->fmeter);
2596
	rcu_read_unlock();
2597 2598
}

2599
#ifdef CONFIG_PROC_PID_CPUSET
L
Linus Torvalds 已提交
2600 2601 2602 2603
/*
 * proc_cpuset_show()
 *  - Print tasks cpuset path into seq_file.
 *  - Used for /proc/<pid>/cpuset.
2604 2605
 *  - No need to task_lock(tsk) on this tsk->cpuset reference, as it
 *    doesn't really matter if tsk->cpuset changes after we read it,
2606
 *    and we take cpuset_mutex, keeping cpuset_attach() from changing it
2607
 *    anyway.
L
Linus Torvalds 已提交
2608
 */
2609
int proc_cpuset_show(struct seq_file *m, void *unused_v)
L
Linus Torvalds 已提交
2610
{
2611
	struct pid *pid;
L
Linus Torvalds 已提交
2612
	struct task_struct *tsk;
T
Tejun Heo 已提交
2613
	char *buf, *p;
2614
	struct cgroup_subsys_state *css;
2615
	int retval;
L
Linus Torvalds 已提交
2616

2617
	retval = -ENOMEM;
T
Tejun Heo 已提交
2618
	buf = kmalloc(PATH_MAX, GFP_KERNEL);
L
Linus Torvalds 已提交
2619
	if (!buf)
2620 2621 2622
		goto out;

	retval = -ESRCH;
2623 2624
	pid = m->private;
	tsk = get_pid_task(pid, PIDTYPE_PID);
2625 2626
	if (!tsk)
		goto out_free;
L
Linus Torvalds 已提交
2627

T
Tejun Heo 已提交
2628
	retval = -ENAMETOOLONG;
L
Li Zefan 已提交
2629
	rcu_read_lock();
2630
	css = task_css(tsk, cpuset_cgrp_id);
T
Tejun Heo 已提交
2631
	p = cgroup_path(css->cgroup, buf, PATH_MAX);
L
Li Zefan 已提交
2632
	rcu_read_unlock();
T
Tejun Heo 已提交
2633
	if (!p)
L
Li Zefan 已提交
2634
		goto out_put_task;
T
Tejun Heo 已提交
2635
	seq_puts(m, p);
L
Linus Torvalds 已提交
2636
	seq_putc(m, '\n');
T
Tejun Heo 已提交
2637
	retval = 0;
L
Li Zefan 已提交
2638
out_put_task:
2639 2640
	put_task_struct(tsk);
out_free:
L
Linus Torvalds 已提交
2641
	kfree(buf);
2642
out:
L
Linus Torvalds 已提交
2643 2644
	return retval;
}
2645
#endif /* CONFIG_PROC_PID_CPUSET */
L
Linus Torvalds 已提交
2646

2647
/* Display task mems_allowed in /proc/<pid>/status file. */
2648 2649
void cpuset_task_status_allowed(struct seq_file *m, struct task_struct *task)
{
2650
	seq_puts(m, "Mems_allowed:\t");
2651
	seq_nodemask(m, &task->mems_allowed);
2652 2653
	seq_puts(m, "\n");
	seq_puts(m, "Mems_allowed_list:\t");
2654
	seq_nodemask_list(m, &task->mems_allowed);
2655
	seq_puts(m, "\n");
L
Linus Torvalds 已提交
2656
}