cpuset.c 74.7 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6
/*
 *  kernel/cpuset.c
 *
 *  Processor and Memory placement constraints for sets of tasks.
 *
 *  Copyright (C) 2003 BULL SA.
P
Paul Jackson 已提交
7
 *  Copyright (C) 2004-2007 Silicon Graphics, Inc.
8
 *  Copyright (C) 2006 Google, Inc
L
Linus Torvalds 已提交
9 10 11 12
 *
 *  Portions derived from Patrick Mochel's sysfs code.
 *  sysfs is Copyright (c) 2001-3 Patrick Mochel
 *
13
 *  2003-10-10 Written by Simon Derr.
L
Linus Torvalds 已提交
14
 *  2003-10-22 Updates by Stephen Hemminger.
15
 *  2004 May-July Rework by Paul Jackson.
16
 *  2006 Rework by Paul Menage to use generic cgroups
17 18
 *  2008 Rework of the scheduler domains and CPU hotplug handling
 *       by Max Krasnyansky
L
Linus Torvalds 已提交
19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36
 *
 *  This file is subject to the terms and conditions of the GNU General Public
 *  License.  See the file COPYING in the main directory of the Linux
 *  distribution for more details.
 */

#include <linux/cpu.h>
#include <linux/cpumask.h>
#include <linux/cpuset.h>
#include <linux/err.h>
#include <linux/errno.h>
#include <linux/file.h>
#include <linux/fs.h>
#include <linux/init.h>
#include <linux/interrupt.h>
#include <linux/kernel.h>
#include <linux/kmod.h>
#include <linux/list.h>
37
#include <linux/mempolicy.h>
L
Linus Torvalds 已提交
38
#include <linux/mm.h>
39
#include <linux/memory.h>
L
Linus Torvalds 已提交
40 41 42 43 44
#include <linux/module.h>
#include <linux/mount.h>
#include <linux/namei.h>
#include <linux/pagemap.h>
#include <linux/proc_fs.h>
45
#include <linux/rcupdate.h>
L
Linus Torvalds 已提交
46 47
#include <linux/sched.h>
#include <linux/seq_file.h>
48
#include <linux/security.h>
L
Linus Torvalds 已提交
49 50 51 52 53 54 55 56 57 58
#include <linux/slab.h>
#include <linux/spinlock.h>
#include <linux/stat.h>
#include <linux/string.h>
#include <linux/time.h>
#include <linux/backing-dev.h>
#include <linux/sort.h>

#include <asm/uaccess.h>
#include <asm/atomic.h>
59
#include <linux/mutex.h>
60 61
#include <linux/workqueue.h>
#include <linux/cgroup.h>
L
Linus Torvalds 已提交
62

63 64 65 66 67 68 69 70
/*
 * Workqueue for cpuset related tasks.
 *
 * Using kevent workqueue may cause deadlock when memory_migrate
 * is set. So we create a separate workqueue thread for cpuset.
 */
static struct workqueue_struct *cpuset_wq;

71 72 73 74 75
/*
 * Tracks how many cpusets are currently defined in system.
 * When there is only one cpuset (the root cpuset) we can
 * short circuit some hooks.
 */
76
int number_of_cpusets __read_mostly;
77

78
/* Forward declare cgroup structures */
79 80 81
struct cgroup_subsys cpuset_subsys;
struct cpuset;

82 83 84 85 86 87 88 89 90
/* See "Frequency meter" comments, below. */

struct fmeter {
	int cnt;		/* unprocessed events count */
	int val;		/* most recent output value */
	time_t time;		/* clock (secs) when val computed */
	spinlock_t lock;	/* guards read or write of above */
};

L
Linus Torvalds 已提交
91
struct cpuset {
92 93
	struct cgroup_subsys_state css;

L
Linus Torvalds 已提交
94
	unsigned long flags;		/* "unsigned long" so bitops work */
95
	cpumask_var_t cpus_allowed;	/* CPUs allowed to tasks in cpuset */
L
Linus Torvalds 已提交
96 97 98 99 100 101 102 103
	nodemask_t mems_allowed;	/* Memory Nodes allowed to tasks */

	struct cpuset *parent;		/* my parent */

	/*
	 * Copy of global cpuset_mems_generation as of the most
	 * recent time this cpuset changed its mems_allowed.
	 */
104 105 106
	int mems_generation;

	struct fmeter fmeter;		/* memory_pressure filter */
P
Paul Jackson 已提交
107 108 109

	/* partition number for rebuild_sched_domains() */
	int pn;
110

111 112 113
	/* for custom sched domain */
	int relax_domain_level;

114 115
	/* used for walking a cpuset heirarchy */
	struct list_head stack_list;
L
Linus Torvalds 已提交
116 117
};

118 119 120 121 122 123 124 125 126 127 128 129 130 131
/* Retrieve the cpuset for a cgroup */
static inline struct cpuset *cgroup_cs(struct cgroup *cont)
{
	return container_of(cgroup_subsys_state(cont, cpuset_subsys_id),
			    struct cpuset, css);
}

/* Retrieve the cpuset for a task */
static inline struct cpuset *task_cs(struct task_struct *task)
{
	return container_of(task_subsys_state(task, cpuset_subsys_id),
			    struct cpuset, css);
}

L
Linus Torvalds 已提交
132 133 134 135
/* bits in struct cpuset flags field */
typedef enum {
	CS_CPU_EXCLUSIVE,
	CS_MEM_EXCLUSIVE,
136
	CS_MEM_HARDWALL,
137
	CS_MEMORY_MIGRATE,
P
Paul Jackson 已提交
138
	CS_SCHED_LOAD_BALANCE,
139 140
	CS_SPREAD_PAGE,
	CS_SPREAD_SLAB,
L
Linus Torvalds 已提交
141 142 143 144 145
} cpuset_flagbits_t;

/* convenient tests for these bits */
static inline int is_cpu_exclusive(const struct cpuset *cs)
{
146
	return test_bit(CS_CPU_EXCLUSIVE, &cs->flags);
L
Linus Torvalds 已提交
147 148 149 150
}

static inline int is_mem_exclusive(const struct cpuset *cs)
{
151
	return test_bit(CS_MEM_EXCLUSIVE, &cs->flags);
L
Linus Torvalds 已提交
152 153
}

154 155 156 157 158
static inline int is_mem_hardwall(const struct cpuset *cs)
{
	return test_bit(CS_MEM_HARDWALL, &cs->flags);
}

P
Paul Jackson 已提交
159 160 161 162 163
static inline int is_sched_load_balance(const struct cpuset *cs)
{
	return test_bit(CS_SCHED_LOAD_BALANCE, &cs->flags);
}

164 165
static inline int is_memory_migrate(const struct cpuset *cs)
{
166
	return test_bit(CS_MEMORY_MIGRATE, &cs->flags);
167 168
}

169 170 171 172 173 174 175 176 177 178
static inline int is_spread_page(const struct cpuset *cs)
{
	return test_bit(CS_SPREAD_PAGE, &cs->flags);
}

static inline int is_spread_slab(const struct cpuset *cs)
{
	return test_bit(CS_SPREAD_SLAB, &cs->flags);
}

L
Linus Torvalds 已提交
179
/*
180
 * Increment this integer everytime any cpuset changes its
L
Linus Torvalds 已提交
181 182 183 184
 * mems_allowed value.  Users of cpusets can track this generation
 * number, and avoid having to lock and reload mems_allowed unless
 * the cpuset they're using changes generation.
 *
185
 * A single, global generation is needed because cpuset_attach_task() could
L
Linus Torvalds 已提交
186 187 188 189
 * reattach a task to a different cpuset, which must not have its
 * generation numbers aliased with those of that tasks previous cpuset.
 *
 * Generations are needed for mems_allowed because one task cannot
190
 * modify another's memory placement.  So we must enable every task,
L
Linus Torvalds 已提交
191 192 193
 * on every visit to __alloc_pages(), to efficiently check whether
 * its current->cpuset->mems_allowed has changed, requiring an update
 * of its current->mems_allowed.
194
 *
195
 * Since writes to cpuset_mems_generation are guarded by the cgroup lock
196
 * there is no need to mark it atomic.
L
Linus Torvalds 已提交
197
 */
198
static int cpuset_mems_generation;
L
Linus Torvalds 已提交
199 200 201 202 203 204

static struct cpuset top_cpuset = {
	.flags = ((1 << CS_CPU_EXCLUSIVE) | (1 << CS_MEM_EXCLUSIVE)),
};

/*
205 206 207 208 209 210 211
 * There are two global mutexes guarding cpuset structures.  The first
 * is the main control groups cgroup_mutex, accessed via
 * cgroup_lock()/cgroup_unlock().  The second is the cpuset-specific
 * callback_mutex, below. They can nest.  It is ok to first take
 * cgroup_mutex, then nest callback_mutex.  We also require taking
 * task_lock() when dereferencing a task's cpuset pointer.  See "The
 * task_lock() exception", at the end of this comment.
212
 *
213
 * A task must hold both mutexes to modify cpusets.  If a task
214
 * holds cgroup_mutex, then it blocks others wanting that mutex,
215
 * ensuring that it is the only task able to also acquire callback_mutex
216 217
 * and be able to modify cpusets.  It can perform various checks on
 * the cpuset structure first, knowing nothing will change.  It can
218
 * also allocate memory while just holding cgroup_mutex.  While it is
219
 * performing these checks, various callback routines can briefly
220 221
 * acquire callback_mutex to query cpusets.  Once it is ready to make
 * the changes, it takes callback_mutex, blocking everyone else.
222 223
 *
 * Calls to the kernel memory allocator can not be made while holding
224
 * callback_mutex, as that would risk double tripping on callback_mutex
225 226 227
 * from one of the callbacks into the cpuset code from within
 * __alloc_pages().
 *
228
 * If a task is only holding callback_mutex, then it has read-only
229 230 231 232 233
 * access to cpusets.
 *
 * The task_struct fields mems_allowed and mems_generation may only
 * be accessed in the context of that task, so require no locks.
 *
234
 * The cpuset_common_file_read() handlers only hold callback_mutex across
235 236 237
 * small pieces of code, such as when reading out possibly multi-word
 * cpumasks and nodemasks.
 *
238 239
 * Accessing a task's cpuset should be done in accordance with the
 * guidelines for accessing subsystem state in kernel/cgroup.c
L
Linus Torvalds 已提交
240 241
 */

242
static DEFINE_MUTEX(callback_mutex);
243

244 245 246 247 248 249 250 251 252 253 254
/*
 * cpuset_buffer_lock protects both the cpuset_name and cpuset_nodelist
 * buffers.  They are statically allocated to prevent using excess stack
 * when calling cpuset_print_task_mems_allowed().
 */
#define CPUSET_NAME_LEN		(128)
#define	CPUSET_NODELIST_LEN	(256)
static char cpuset_name[CPUSET_NAME_LEN];
static char cpuset_nodelist[CPUSET_NODELIST_LEN];
static DEFINE_SPINLOCK(cpuset_buffer_lock);

255 256
/*
 * This is ugly, but preserves the userspace API for existing cpuset
257
 * users. If someone tries to mount the "cpuset" filesystem, we
258 259
 * silently switch it to mount "cgroup" instead
 */
260 261 262
static int cpuset_get_sb(struct file_system_type *fs_type,
			 int flags, const char *unused_dev_name,
			 void *data, struct vfsmount *mnt)
L
Linus Torvalds 已提交
263
{
264 265 266 267 268 269 270 271 272 273 274
	struct file_system_type *cgroup_fs = get_fs_type("cgroup");
	int ret = -ENODEV;
	if (cgroup_fs) {
		char mountopts[] =
			"cpuset,noprefix,"
			"release_agent=/sbin/cpuset_release_agent";
		ret = cgroup_fs->get_sb(cgroup_fs, flags,
					   unused_dev_name, mountopts, mnt);
		put_filesystem(cgroup_fs);
	}
	return ret;
L
Linus Torvalds 已提交
275 276 277 278 279 280 281 282
}

static struct file_system_type cpuset_fs_type = {
	.name = "cpuset",
	.get_sb = cpuset_get_sb,
};

/*
283
 * Return in pmask the portion of a cpusets's cpus_allowed that
L
Linus Torvalds 已提交
284 285 286 287 288 289 290 291 292
 * are online.  If none are online, walk up the cpuset hierarchy
 * until we find one that does have some online cpus.  If we get
 * all the way to the top and still haven't found any online cpus,
 * return cpu_online_map.  Or if passed a NULL cs from an exit'ing
 * task, return cpu_online_map.
 *
 * One way or another, we guarantee to return some non-empty subset
 * of cpu_online_map.
 *
293
 * Call with callback_mutex held.
L
Linus Torvalds 已提交
294 295
 */

296 297
static void guarantee_online_cpus(const struct cpuset *cs,
				  struct cpumask *pmask)
L
Linus Torvalds 已提交
298
{
299
	while (cs && !cpumask_intersects(cs->cpus_allowed, cpu_online_mask))
L
Linus Torvalds 已提交
300 301
		cs = cs->parent;
	if (cs)
302
		cpumask_and(pmask, cs->cpus_allowed, cpu_online_mask);
L
Linus Torvalds 已提交
303
	else
304 305
		cpumask_copy(pmask, cpu_online_mask);
	BUG_ON(!cpumask_intersects(pmask, cpu_online_mask));
L
Linus Torvalds 已提交
306 307 308 309
}

/*
 * Return in *pmask the portion of a cpusets's mems_allowed that
310 311 312 313
 * are online, with memory.  If none are online with memory, walk
 * up the cpuset hierarchy until we find one that does have some
 * online mems.  If we get all the way to the top and still haven't
 * found any online mems, return node_states[N_HIGH_MEMORY].
L
Linus Torvalds 已提交
314 315
 *
 * One way or another, we guarantee to return some non-empty subset
316
 * of node_states[N_HIGH_MEMORY].
L
Linus Torvalds 已提交
317
 *
318
 * Call with callback_mutex held.
L
Linus Torvalds 已提交
319 320 321 322
 */

static void guarantee_online_mems(const struct cpuset *cs, nodemask_t *pmask)
{
323 324
	while (cs && !nodes_intersects(cs->mems_allowed,
					node_states[N_HIGH_MEMORY]))
L
Linus Torvalds 已提交
325 326
		cs = cs->parent;
	if (cs)
327 328
		nodes_and(*pmask, cs->mems_allowed,
					node_states[N_HIGH_MEMORY]);
L
Linus Torvalds 已提交
329
	else
330 331
		*pmask = node_states[N_HIGH_MEMORY];
	BUG_ON(!nodes_intersects(*pmask, node_states[N_HIGH_MEMORY]));
L
Linus Torvalds 已提交
332 333
}

334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351
/*
 * update task's spread flag if cpuset's page/slab spread flag is set
 *
 * Called with callback_mutex/cgroup_mutex held
 */
static void cpuset_update_task_spread_flag(struct cpuset *cs,
					struct task_struct *tsk)
{
	if (is_spread_page(cs))
		tsk->flags |= PF_SPREAD_PAGE;
	else
		tsk->flags &= ~PF_SPREAD_PAGE;
	if (is_spread_slab(cs))
		tsk->flags |= PF_SPREAD_SLAB;
	else
		tsk->flags &= ~PF_SPREAD_SLAB;
}

352 353 354 355 356 357
/**
 * cpuset_update_task_memory_state - update task memory placement
 *
 * If the current tasks cpusets mems_allowed changed behind our
 * backs, update current->mems_allowed, mems_generation and task NUMA
 * mempolicy to the new value.
358
 *
359 360 361 362
 * Task mempolicy is updated by rebinding it relative to the
 * current->cpuset if a task has its memory placement changed.
 * Do not call this routine if in_interrupt().
 *
363
 * Call without callback_mutex or task_lock() held.  May be
364 365
 * called with or without cgroup_mutex held.  Thanks in part to
 * 'the_top_cpuset_hack', the task's cpuset pointer will never
D
David Rientjes 已提交
366 367
 * be NULL.  This routine also might acquire callback_mutex during
 * call.
368
 *
369 370
 * Reading current->cpuset->mems_generation doesn't need task_lock
 * to guard the current->cpuset derefence, because it is guarded
371
 * from concurrent freeing of current->cpuset using RCU.
372 373 374 375 376 377 378 379 380 381 382 383 384 385
 *
 * The rcu_dereference() is technically probably not needed,
 * as I don't actually mind if I see a new cpuset pointer but
 * an old value of mems_generation.  However this really only
 * matters on alpha systems using cpusets heavily.  If I dropped
 * that rcu_dereference(), it would save them a memory barrier.
 * For all other arch's, rcu_dereference is a no-op anyway, and for
 * alpha systems not using cpusets, another planned optimization,
 * avoiding the rcu critical section for tasks in the root cpuset
 * which is statically allocated, so can't vanish, will make this
 * irrelevant.  Better to use RCU as intended, than to engage in
 * some cute trick to save a memory barrier that is impossible to
 * test, for alpha systems using cpusets heavily, which might not
 * even exist.
386 387 388 389 390
 *
 * This routine is needed to update the per-task mems_allowed data,
 * within the tasks context, when it is trying to allocate memory
 * (in various mm/mempolicy.c routines) and notices that some other
 * task has been modifying its cpuset.
L
Linus Torvalds 已提交
391 392
 */

393
void cpuset_update_task_memory_state(void)
L
Linus Torvalds 已提交
394
{
395
	int my_cpusets_mem_gen;
396
	struct task_struct *tsk = current;
397
	struct cpuset *cs;
398

399 400 401
	rcu_read_lock();
	my_cpusets_mem_gen = task_cs(tsk)->mems_generation;
	rcu_read_unlock();
L
Linus Torvalds 已提交
402

403
	if (my_cpusets_mem_gen != tsk->cpuset_mems_generation) {
404
		mutex_lock(&callback_mutex);
405
		task_lock(tsk);
406
		cs = task_cs(tsk); /* Maybe changed when task not locked */
407 408 409
		guarantee_online_mems(cs, &tsk->mems_allowed);
		tsk->cpuset_mems_generation = cs->mems_generation;
		task_unlock(tsk);
410
		mutex_unlock(&callback_mutex);
411
		mpol_rebind_task(tsk, &tsk->mems_allowed);
L
Linus Torvalds 已提交
412 413 414 415 416 417 418 419
	}
}

/*
 * is_cpuset_subset(p, q) - Is cpuset p a subset of cpuset q?
 *
 * One cpuset is a subset of another if all its allowed CPUs and
 * Memory Nodes are a subset of the other, and its exclusive flags
420
 * are only set if the other's are set.  Call holding cgroup_mutex.
L
Linus Torvalds 已提交
421 422 423 424
 */

static int is_cpuset_subset(const struct cpuset *p, const struct cpuset *q)
{
425
	return	cpumask_subset(p->cpus_allowed, q->cpus_allowed) &&
L
Linus Torvalds 已提交
426 427 428 429 430
		nodes_subset(p->mems_allowed, q->mems_allowed) &&
		is_cpu_exclusive(p) <= is_cpu_exclusive(q) &&
		is_mem_exclusive(p) <= is_mem_exclusive(q);
}

431 432 433 434 435 436
/**
 * alloc_trial_cpuset - allocate a trial cpuset
 * @cs: the cpuset that the trial cpuset duplicates
 */
static struct cpuset *alloc_trial_cpuset(const struct cpuset *cs)
{
437 438 439 440 441 442 443 444 445 446 447 448 449
	struct cpuset *trial;

	trial = kmemdup(cs, sizeof(*cs), GFP_KERNEL);
	if (!trial)
		return NULL;

	if (!alloc_cpumask_var(&trial->cpus_allowed, GFP_KERNEL)) {
		kfree(trial);
		return NULL;
	}
	cpumask_copy(trial->cpus_allowed, cs->cpus_allowed);

	return trial;
450 451 452 453 454 455 456 457
}

/**
 * free_trial_cpuset - free the trial cpuset
 * @trial: the trial cpuset to be freed
 */
static void free_trial_cpuset(struct cpuset *trial)
{
458
	free_cpumask_var(trial->cpus_allowed);
459 460 461
	kfree(trial);
}

L
Linus Torvalds 已提交
462 463 464 465 466 467 468
/*
 * validate_change() - Used to validate that any proposed cpuset change
 *		       follows the structural rules for cpusets.
 *
 * If we replaced the flag and mask values of the current cpuset
 * (cur) with those values in the trial cpuset (trial), would
 * our various subset and exclusive rules still be valid?  Presumes
469
 * cgroup_mutex held.
L
Linus Torvalds 已提交
470 471 472 473 474 475 476 477 478 479 480 481 482 483
 *
 * 'cur' is the address of an actual, in-use cpuset.  Operations
 * such as list traversal that depend on the actual address of the
 * cpuset in the list must use cur below, not trial.
 *
 * 'trial' is the address of bulk structure copy of cur, with
 * perhaps one or more of the fields cpus_allowed, mems_allowed,
 * or flags changed to new, trial values.
 *
 * Return 0 if valid, -errno if not.
 */

static int validate_change(const struct cpuset *cur, const struct cpuset *trial)
{
484
	struct cgroup *cont;
L
Linus Torvalds 已提交
485 486 487
	struct cpuset *c, *par;

	/* Each of our child cpusets must be a subset of us */
488 489
	list_for_each_entry(cont, &cur->css.cgroup->children, sibling) {
		if (!is_cpuset_subset(cgroup_cs(cont), trial))
L
Linus Torvalds 已提交
490 491 492 493
			return -EBUSY;
	}

	/* Remaining checks don't apply to root cpuset */
494
	if (cur == &top_cpuset)
L
Linus Torvalds 已提交
495 496
		return 0;

497 498
	par = cur->parent;

L
Linus Torvalds 已提交
499 500 501 502
	/* We must be a subset of our parent cpuset */
	if (!is_cpuset_subset(trial, par))
		return -EACCES;

503 504 505 506
	/*
	 * If either I or some sibling (!= me) is exclusive, we can't
	 * overlap
	 */
507 508
	list_for_each_entry(cont, &par->css.cgroup->children, sibling) {
		c = cgroup_cs(cont);
L
Linus Torvalds 已提交
509 510
		if ((is_cpu_exclusive(trial) || is_cpu_exclusive(c)) &&
		    c != cur &&
511
		    cpumask_intersects(trial->cpus_allowed, c->cpus_allowed))
L
Linus Torvalds 已提交
512 513 514 515 516 517 518
			return -EINVAL;
		if ((is_mem_exclusive(trial) || is_mem_exclusive(c)) &&
		    c != cur &&
		    nodes_intersects(trial->mems_allowed, c->mems_allowed))
			return -EINVAL;
	}

519 520
	/* Cpusets with tasks can't have empty cpus_allowed or mems_allowed */
	if (cgroup_task_count(cur->css.cgroup)) {
521
		if (cpumask_empty(trial->cpus_allowed) ||
522 523 524 525 526
		    nodes_empty(trial->mems_allowed)) {
			return -ENOSPC;
		}
	}

L
Linus Torvalds 已提交
527 528 529
	return 0;
}

530
#ifdef CONFIG_SMP
P
Paul Jackson 已提交
531
/*
532
 * Helper routine for generate_sched_domains().
P
Paul Jackson 已提交
533 534 535 536
 * Do cpusets a, b have overlapping cpus_allowed masks?
 */
static int cpusets_overlap(struct cpuset *a, struct cpuset *b)
{
537
	return cpumask_intersects(a->cpus_allowed, b->cpus_allowed);
P
Paul Jackson 已提交
538 539
}

540 541 542 543 544 545 546 547
static void
update_domain_attr(struct sched_domain_attr *dattr, struct cpuset *c)
{
	if (dattr->relax_domain_level < c->relax_domain_level)
		dattr->relax_domain_level = c->relax_domain_level;
	return;
}

548 549 550 551 552 553 554 555 556 557 558 559 560 561
static void
update_domain_attr_tree(struct sched_domain_attr *dattr, struct cpuset *c)
{
	LIST_HEAD(q);

	list_add(&c->stack_list, &q);
	while (!list_empty(&q)) {
		struct cpuset *cp;
		struct cgroup *cont;
		struct cpuset *child;

		cp = list_first_entry(&q, struct cpuset, stack_list);
		list_del(q.next);

562
		if (cpumask_empty(cp->cpus_allowed))
563 564 565 566 567 568 569 570 571 572 573 574
			continue;

		if (is_sched_load_balance(cp))
			update_domain_attr(dattr, cp);

		list_for_each_entry(cont, &cp->css.cgroup->children, sibling) {
			child = cgroup_cs(cont);
			list_add_tail(&child->stack_list, &q);
		}
	}
}

P
Paul Jackson 已提交
575
/*
576 577 578 579 580 581 582 583 584
 * generate_sched_domains()
 *
 * This function builds a partial partition of the systems CPUs
 * A 'partial partition' is a set of non-overlapping subsets whose
 * union is a subset of that set.
 * The output of this function needs to be passed to kernel/sched.c
 * partition_sched_domains() routine, which will rebuild the scheduler's
 * load balancing domains (sched domains) as specified by that partial
 * partition.
P
Paul Jackson 已提交
585
 *
L
Li Zefan 已提交
586
 * See "What is sched_load_balance" in Documentation/cgroups/cpusets.txt
P
Paul Jackson 已提交
587 588 589 590 591 592 593
 * for a background explanation of this.
 *
 * Does not return errors, on the theory that the callers of this
 * routine would rather not worry about failures to rebuild sched
 * domains when operating in the severe memory shortage situations
 * that could cause allocation failures below.
 *
594
 * Must be called with cgroup_lock held.
P
Paul Jackson 已提交
595 596
 *
 * The three key local variables below are:
597
 *    q  - a linked-list queue of cpuset pointers, used to implement a
P
Paul Jackson 已提交
598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628
 *	   top-down scan of all cpusets.  This scan loads a pointer
 *	   to each cpuset marked is_sched_load_balance into the
 *	   array 'csa'.  For our purposes, rebuilding the schedulers
 *	   sched domains, we can ignore !is_sched_load_balance cpusets.
 *  csa  - (for CpuSet Array) Array of pointers to all the cpusets
 *	   that need to be load balanced, for convenient iterative
 *	   access by the subsequent code that finds the best partition,
 *	   i.e the set of domains (subsets) of CPUs such that the
 *	   cpus_allowed of every cpuset marked is_sched_load_balance
 *	   is a subset of one of these domains, while there are as
 *	   many such domains as possible, each as small as possible.
 * doms  - Conversion of 'csa' to an array of cpumasks, for passing to
 *	   the kernel/sched.c routine partition_sched_domains() in a
 *	   convenient format, that can be easily compared to the prior
 *	   value to determine what partition elements (sched domains)
 *	   were changed (added or removed.)
 *
 * Finding the best partition (set of domains):
 *	The triple nested loops below over i, j, k scan over the
 *	load balanced cpusets (using the array of cpuset pointers in
 *	csa[]) looking for pairs of cpusets that have overlapping
 *	cpus_allowed, but which don't have the same 'pn' partition
 *	number and gives them in the same partition number.  It keeps
 *	looping on the 'restart' label until it can no longer find
 *	any such pairs.
 *
 *	The union of the cpus_allowed masks from the set of
 *	all cpusets having the same 'pn' value then form the one
 *	element of the partition (one sched domain) to be passed to
 *	partition_sched_domains().
 */
629 630
/* FIXME: see the FIXME in partition_sched_domains() */
static int generate_sched_domains(struct cpumask **domains,
631
			struct sched_domain_attr **attributes)
P
Paul Jackson 已提交
632
{
633
	LIST_HEAD(q);		/* queue of cpusets to be scanned */
P
Paul Jackson 已提交
634 635 636 637
	struct cpuset *cp;	/* scans q */
	struct cpuset **csa;	/* array of all cpuset ptrs */
	int csn;		/* how many cpuset ptrs in csa so far */
	int i, j, k;		/* indices for partition finding loops */
638
	struct cpumask *doms;	/* resulting partition; i.e. sched domains */
639
	struct sched_domain_attr *dattr;  /* attributes for custom domains */
640
	int ndoms = 0;		/* number of sched domains in result */
641
	int nslot;		/* next empty doms[] struct cpumask slot */
P
Paul Jackson 已提交
642 643

	doms = NULL;
644
	dattr = NULL;
645
	csa = NULL;
P
Paul Jackson 已提交
646 647 648

	/* Special case for the 99% of systems with one, full, sched domain */
	if (is_sched_load_balance(&top_cpuset)) {
649
		doms = kmalloc(cpumask_size(), GFP_KERNEL);
P
Paul Jackson 已提交
650
		if (!doms)
651 652
			goto done;

653 654 655
		dattr = kmalloc(sizeof(struct sched_domain_attr), GFP_KERNEL);
		if (dattr) {
			*dattr = SD_ATTR_INIT;
656
			update_domain_attr_tree(dattr, &top_cpuset);
657
		}
658
		cpumask_copy(doms, top_cpuset.cpus_allowed);
659 660 661

		ndoms = 1;
		goto done;
P
Paul Jackson 已提交
662 663 664 665 666 667 668
	}

	csa = kmalloc(number_of_cpusets * sizeof(cp), GFP_KERNEL);
	if (!csa)
		goto done;
	csn = 0;

669 670
	list_add(&top_cpuset.stack_list, &q);
	while (!list_empty(&q)) {
P
Paul Jackson 已提交
671 672
		struct cgroup *cont;
		struct cpuset *child;   /* scans child cpusets of cp */
673

674 675 676
		cp = list_first_entry(&q, struct cpuset, stack_list);
		list_del(q.next);

677
		if (cpumask_empty(cp->cpus_allowed))
678 679
			continue;

680 681 682 683 684 685 686
		/*
		 * All child cpusets contain a subset of the parent's cpus, so
		 * just skip them, and then we call update_domain_attr_tree()
		 * to calc relax_domain_level of the corresponding sched
		 * domain.
		 */
		if (is_sched_load_balance(cp)) {
P
Paul Jackson 已提交
687
			csa[csn++] = cp;
688 689
			continue;
		}
690

P
Paul Jackson 已提交
691 692
		list_for_each_entry(cont, &cp->css.cgroup->children, sibling) {
			child = cgroup_cs(cont);
693
			list_add_tail(&child->stack_list, &q);
P
Paul Jackson 已提交
694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723
		}
  	}

	for (i = 0; i < csn; i++)
		csa[i]->pn = i;
	ndoms = csn;

restart:
	/* Find the best partition (set of sched domains) */
	for (i = 0; i < csn; i++) {
		struct cpuset *a = csa[i];
		int apn = a->pn;

		for (j = 0; j < csn; j++) {
			struct cpuset *b = csa[j];
			int bpn = b->pn;

			if (apn != bpn && cpusets_overlap(a, b)) {
				for (k = 0; k < csn; k++) {
					struct cpuset *c = csa[k];

					if (c->pn == bpn)
						c->pn = apn;
				}
				ndoms--;	/* one less element */
				goto restart;
			}
		}
	}

724 725 726 727
	/*
	 * Now we know how many domains to create.
	 * Convert <csn, csa> to <ndoms, doms> and populate cpu masks.
	 */
728
	doms = kmalloc(ndoms * cpumask_size(), GFP_KERNEL);
729
	if (!doms)
730 731 732 733 734 735
		goto done;

	/*
	 * The rest of the code, including the scheduler, can deal with
	 * dattr==NULL case. No need to abort if alloc fails.
	 */
736
	dattr = kmalloc(ndoms * sizeof(struct sched_domain_attr), GFP_KERNEL);
P
Paul Jackson 已提交
737 738 739

	for (nslot = 0, i = 0; i < csn; i++) {
		struct cpuset *a = csa[i];
740
		struct cpumask *dp;
P
Paul Jackson 已提交
741 742
		int apn = a->pn;

743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758
		if (apn < 0) {
			/* Skip completed partitions */
			continue;
		}

		dp = doms + nslot;

		if (nslot == ndoms) {
			static int warnings = 10;
			if (warnings) {
				printk(KERN_WARNING
				 "rebuild_sched_domains confused:"
				  " nslot %d, ndoms %d, csn %d, i %d,"
				  " apn %d\n",
				  nslot, ndoms, csn, i, apn);
				warnings--;
P
Paul Jackson 已提交
759
			}
760 761
			continue;
		}
P
Paul Jackson 已提交
762

763
		cpumask_clear(dp);
764 765 766 767 768 769
		if (dattr)
			*(dattr + nslot) = SD_ATTR_INIT;
		for (j = i; j < csn; j++) {
			struct cpuset *b = csa[j];

			if (apn == b->pn) {
770
				cpumask_or(dp, dp, b->cpus_allowed);
771 772 773 774 775
				if (dattr)
					update_domain_attr_tree(dattr + nslot, b);

				/* Done with this partition */
				b->pn = -1;
P
Paul Jackson 已提交
776 777
			}
		}
778
		nslot++;
P
Paul Jackson 已提交
779 780 781
	}
	BUG_ON(nslot != ndoms);

782 783 784
done:
	kfree(csa);

785 786 787 788 789 790 791
	/*
	 * Fallback to the default domain if kmalloc() failed.
	 * See comments in partition_sched_domains().
	 */
	if (doms == NULL)
		ndoms = 1;

792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809
	*domains    = doms;
	*attributes = dattr;
	return ndoms;
}

/*
 * Rebuild scheduler domains.
 *
 * Call with neither cgroup_mutex held nor within get_online_cpus().
 * Takes both cgroup_mutex and get_online_cpus().
 *
 * Cannot be directly called from cpuset code handling changes
 * to the cpuset pseudo-filesystem, because it cannot be called
 * from code that already holds cgroup_mutex.
 */
static void do_rebuild_sched_domains(struct work_struct *unused)
{
	struct sched_domain_attr *attr;
810
	struct cpumask *doms;
811 812
	int ndoms;

813
	get_online_cpus();
814 815 816 817 818 819 820 821 822

	/* Generate domain masks and attrs */
	cgroup_lock();
	ndoms = generate_sched_domains(&doms, &attr);
	cgroup_unlock();

	/* Have scheduler rebuild the domains */
	partition_sched_domains(ndoms, doms, attr);

823
	put_online_cpus();
824
}
825 826 827 828 829 830 831 832 833 834 835 836
#else /* !CONFIG_SMP */
static void do_rebuild_sched_domains(struct work_struct *unused)
{
}

static int generate_sched_domains(struct cpumask **domains,
			struct sched_domain_attr **attributes)
{
	*domains = NULL;
	return 1;
}
#endif /* CONFIG_SMP */
P
Paul Jackson 已提交
837

838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860
static DECLARE_WORK(rebuild_sched_domains_work, do_rebuild_sched_domains);

/*
 * Rebuild scheduler domains, asynchronously via workqueue.
 *
 * If the flag 'sched_load_balance' of any cpuset with non-empty
 * 'cpus' changes, or if the 'cpus' allowed changes in any cpuset
 * which has that flag enabled, or if any cpuset with a non-empty
 * 'cpus' is removed, then call this routine to rebuild the
 * scheduler's dynamic sched domains.
 *
 * The rebuild_sched_domains() and partition_sched_domains()
 * routines must nest cgroup_lock() inside get_online_cpus(),
 * but such cpuset changes as these must nest that locking the
 * other way, holding cgroup_lock() for much of the code.
 *
 * So in order to avoid an ABBA deadlock, the cpuset code handling
 * these user changes delegates the actual sched domain rebuilding
 * to a separate workqueue thread, which ends up processing the
 * above do_rebuild_sched_domains() function.
 */
static void async_rebuild_sched_domains(void)
{
861
	queue_work(cpuset_wq, &rebuild_sched_domains_work);
862 863 864 865 866 867 868 869 870 871 872 873 874 875
}

/*
 * Accomplishes the same scheduler domain rebuild as the above
 * async_rebuild_sched_domains(), however it directly calls the
 * rebuild routine synchronously rather than calling it via an
 * asynchronous work thread.
 *
 * This can only be called from code that is not holding
 * cgroup_mutex (not nested in a cgroup_lock() call.)
 */
void rebuild_sched_domains(void)
{
	do_rebuild_sched_domains(NULL);
P
Paul Jackson 已提交
876 877
}

C
Cliff Wickman 已提交
878 879 880 881 882
/**
 * cpuset_test_cpumask - test a task's cpus_allowed versus its cpuset's
 * @tsk: task to test
 * @scan: struct cgroup_scanner contained in its struct cpuset_hotplug_scanner
 *
883
 * Call with cgroup_mutex held.  May take callback_mutex during call.
C
Cliff Wickman 已提交
884 885 886
 * Called for each task in a cgroup by cgroup_scan_tasks().
 * Return nonzero if this tasks's cpus_allowed mask should be changed (in other
 * words, if its mask is not equal to its cpuset's mask).
887
 */
888 889
static int cpuset_test_cpumask(struct task_struct *tsk,
			       struct cgroup_scanner *scan)
C
Cliff Wickman 已提交
890
{
891
	return !cpumask_equal(&tsk->cpus_allowed,
C
Cliff Wickman 已提交
892 893
			(cgroup_cs(scan->cg))->cpus_allowed);
}
894

C
Cliff Wickman 已提交
895 896 897 898 899 900 901 902 903 904 905
/**
 * cpuset_change_cpumask - make a task's cpus_allowed the same as its cpuset's
 * @tsk: task to test
 * @scan: struct cgroup_scanner containing the cgroup of the task
 *
 * Called by cgroup_scan_tasks() for each task in a cgroup whose
 * cpus_allowed mask needs to be changed.
 *
 * We don't need to re-check for the cgroup/cpuset membership, since we're
 * holding cgroup_lock() at this point.
 */
906 907
static void cpuset_change_cpumask(struct task_struct *tsk,
				  struct cgroup_scanner *scan)
C
Cliff Wickman 已提交
908
{
909
	set_cpus_allowed_ptr(tsk, ((cgroup_cs(scan->cg))->cpus_allowed));
C
Cliff Wickman 已提交
910 911
}

912 913 914
/**
 * update_tasks_cpumask - Update the cpumasks of tasks in the cpuset.
 * @cs: the cpuset in which each task's cpus_allowed mask needs to be changed
915
 * @heap: if NULL, defer allocating heap memory to cgroup_scan_tasks()
916 917 918 919 920 921
 *
 * Called with cgroup_mutex held
 *
 * The cgroup_scan_tasks() function will scan all the tasks in a cgroup,
 * calling callback functions for each.
 *
922 923
 * No return value. It's guaranteed that cgroup_scan_tasks() always returns 0
 * if @heap != NULL.
924
 */
925
static void update_tasks_cpumask(struct cpuset *cs, struct ptr_heap *heap)
926 927 928 929 930 931
{
	struct cgroup_scanner scan;

	scan.cg = cs->css.cgroup;
	scan.test_task = cpuset_test_cpumask;
	scan.process_task = cpuset_change_cpumask;
932 933
	scan.heap = heap;
	cgroup_scan_tasks(&scan);
934 935
}

C
Cliff Wickman 已提交
936 937 938 939 940
/**
 * update_cpumask - update the cpus_allowed mask of a cpuset and all tasks in it
 * @cs: the cpuset to consider
 * @buf: buffer of cpu numbers written to this cpuset
 */
941 942
static int update_cpumask(struct cpuset *cs, struct cpuset *trialcs,
			  const char *buf)
L
Linus Torvalds 已提交
943
{
944
	struct ptr_heap heap;
C
Cliff Wickman 已提交
945 946
	int retval;
	int is_load_balanced;
L
Linus Torvalds 已提交
947

948 949 950 951
	/* top_cpuset.cpus_allowed tracks cpu_online_map; it's read-only */
	if (cs == &top_cpuset)
		return -EACCES;

952
	/*
953
	 * An empty cpus_allowed is ok only if the cpuset has no tasks.
954 955 956
	 * Since cpulist_parse() fails on an empty mask, we special case
	 * that parsing.  The validate_change() call ensures that cpusets
	 * with tasks have cpus.
957
	 */
958
	if (!*buf) {
959
		cpumask_clear(trialcs->cpus_allowed);
960
	} else {
961
		retval = cpulist_parse(buf, trialcs->cpus_allowed);
962 963
		if (retval < 0)
			return retval;
964

965
		if (!cpumask_subset(trialcs->cpus_allowed, cpu_online_mask))
966
			return -EINVAL;
967
	}
968
	retval = validate_change(cs, trialcs);
969 970
	if (retval < 0)
		return retval;
P
Paul Jackson 已提交
971

P
Paul Menage 已提交
972
	/* Nothing to do if the cpus didn't change */
973
	if (cpumask_equal(cs->cpus_allowed, trialcs->cpus_allowed))
P
Paul Menage 已提交
974
		return 0;
C
Cliff Wickman 已提交
975

976 977 978 979
	retval = heap_init(&heap, PAGE_SIZE, GFP_KERNEL, NULL);
	if (retval)
		return retval;

980
	is_load_balanced = is_sched_load_balance(trialcs);
P
Paul Jackson 已提交
981

982
	mutex_lock(&callback_mutex);
983
	cpumask_copy(cs->cpus_allowed, trialcs->cpus_allowed);
984
	mutex_unlock(&callback_mutex);
P
Paul Jackson 已提交
985

P
Paul Menage 已提交
986 987
	/*
	 * Scan tasks in the cpuset, and update the cpumasks of any
C
Cliff Wickman 已提交
988
	 * that need an update.
P
Paul Menage 已提交
989
	 */
990 991 992
	update_tasks_cpumask(cs, &heap);

	heap_free(&heap);
C
Cliff Wickman 已提交
993

P
Paul Menage 已提交
994
	if (is_load_balanced)
995
		async_rebuild_sched_domains();
996
	return 0;
L
Linus Torvalds 已提交
997 998
}

999 1000 1001 1002 1003 1004 1005 1006
/*
 * cpuset_migrate_mm
 *
 *    Migrate memory region from one set of nodes to another.
 *
 *    Temporarilly set tasks mems_allowed to target nodes of migration,
 *    so that the migration code can allocate pages on these nodes.
 *
1007
 *    Call holding cgroup_mutex, so current's cpuset won't change
1008
 *    during this call, as manage_mutex holds off any cpuset_attach()
1009 1010
 *    calls.  Therefore we don't need to take task_lock around the
 *    call to guarantee_online_mems(), as we know no one is changing
1011
 *    our task's cpuset.
1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043
 *
 *    Hold callback_mutex around the two modifications of our tasks
 *    mems_allowed to synchronize with cpuset_mems_allowed().
 *
 *    While the mm_struct we are migrating is typically from some
 *    other task, the task_struct mems_allowed that we are hacking
 *    is for our current task, which must allocate new pages for that
 *    migrating memory region.
 *
 *    We call cpuset_update_task_memory_state() before hacking
 *    our tasks mems_allowed, so that we are assured of being in
 *    sync with our tasks cpuset, and in particular, callbacks to
 *    cpuset_update_task_memory_state() from nested page allocations
 *    won't see any mismatch of our cpuset and task mems_generation
 *    values, so won't overwrite our hacked tasks mems_allowed
 *    nodemask.
 */

static void cpuset_migrate_mm(struct mm_struct *mm, const nodemask_t *from,
							const nodemask_t *to)
{
	struct task_struct *tsk = current;

	cpuset_update_task_memory_state();

	mutex_lock(&callback_mutex);
	tsk->mems_allowed = *to;
	mutex_unlock(&callback_mutex);

	do_migrate_pages(mm, from, to, MPOL_MF_MOVE_ALL);

	mutex_lock(&callback_mutex);
1044
	guarantee_online_mems(task_cs(tsk),&tsk->mems_allowed);
1045 1046 1047
	mutex_unlock(&callback_mutex);
}

1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072
/*
 * Rebind task's vmas to cpuset's new mems_allowed, and migrate pages to new
 * nodes if memory_migrate flag is set. Called with cgroup_mutex held.
 */
static void cpuset_change_nodemask(struct task_struct *p,
				   struct cgroup_scanner *scan)
{
	struct mm_struct *mm;
	struct cpuset *cs;
	int migrate;
	const nodemask_t *oldmem = scan->data;

	mm = get_task_mm(p);
	if (!mm)
		return;

	cs = cgroup_cs(scan->cg);
	migrate = is_memory_migrate(cs);

	mpol_rebind_mm(mm, &cs->mems_allowed);
	if (migrate)
		cpuset_migrate_mm(mm, oldmem, &cs->mems_allowed);
	mmput(mm);
}

1073 1074
static void *cpuset_being_rebound;

1075 1076 1077 1078
/**
 * update_tasks_nodemask - Update the nodemasks of tasks in the cpuset.
 * @cs: the cpuset in which each task's mems_allowed mask needs to be changed
 * @oldmem: old mems_allowed of cpuset cs
1079
 * @heap: if NULL, defer allocating heap memory to cgroup_scan_tasks()
1080 1081
 *
 * Called with cgroup_mutex held
1082 1083
 * No return value. It's guaranteed that cgroup_scan_tasks() always returns 0
 * if @heap != NULL.
1084
 */
1085 1086
static void update_tasks_nodemask(struct cpuset *cs, const nodemask_t *oldmem,
				 struct ptr_heap *heap)
L
Linus Torvalds 已提交
1087
{
1088
	struct cgroup_scanner scan;
1089

1090
	cpuset_being_rebound = cs;		/* causes mpol_dup() rebind */
1091

1092 1093 1094
	scan.cg = cs->css.cgroup;
	scan.test_task = NULL;
	scan.process_task = cpuset_change_nodemask;
1095
	scan.heap = heap;
1096
	scan.data = (nodemask_t *)oldmem;
1097 1098

	/*
1099 1100 1101 1102 1103 1104
	 * The mpol_rebind_mm() call takes mmap_sem, which we couldn't
	 * take while holding tasklist_lock.  Forks can happen - the
	 * mpol_dup() cpuset_being_rebound check will catch such forks,
	 * and rebind their vma mempolicies too.  Because we still hold
	 * the global cgroup_mutex, we know that no other rebind effort
	 * will be contending for the global variable cpuset_being_rebound.
1105
	 * It's ok if we rebind the same mm twice; mpol_rebind_mm()
1106
	 * is idempotent.  Also migrate pages in each mm to new nodes.
1107
	 */
1108
	cgroup_scan_tasks(&scan);
1109

1110
	/* We're done rebinding vmas to this cpuset's new mems_allowed. */
1111
	cpuset_being_rebound = NULL;
L
Linus Torvalds 已提交
1112 1113
}

1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126
/*
 * Handle user request to change the 'mems' memory placement
 * of a cpuset.  Needs to validate the request, update the
 * cpusets mems_allowed and mems_generation, and for each
 * task in the cpuset, rebind any vma mempolicies and if
 * the cpuset is marked 'memory_migrate', migrate the tasks
 * pages to the new memory.
 *
 * Call with cgroup_mutex held.  May take callback_mutex during call.
 * Will take tasklist_lock, scan tasklist for tasks in cpuset cs,
 * lock each such tasks mm->mmap_sem, scan its vma's and rebind
 * their mempolicies to the cpusets new mems_allowed.
 */
1127 1128
static int update_nodemask(struct cpuset *cs, struct cpuset *trialcs,
			   const char *buf)
1129 1130 1131
{
	nodemask_t oldmem;
	int retval;
1132
	struct ptr_heap heap;
1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147

	/*
	 * top_cpuset.mems_allowed tracks node_stats[N_HIGH_MEMORY];
	 * it's read-only
	 */
	if (cs == &top_cpuset)
		return -EACCES;

	/*
	 * An empty mems_allowed is ok iff there are no tasks in the cpuset.
	 * Since nodelist_parse() fails on an empty mask, we special case
	 * that parsing.  The validate_change() call ensures that cpusets
	 * with tasks have memory.
	 */
	if (!*buf) {
1148
		nodes_clear(trialcs->mems_allowed);
1149
	} else {
1150
		retval = nodelist_parse(buf, trialcs->mems_allowed);
1151 1152 1153
		if (retval < 0)
			goto done;

1154
		if (!nodes_subset(trialcs->mems_allowed,
1155 1156 1157 1158
				node_states[N_HIGH_MEMORY]))
			return -EINVAL;
	}
	oldmem = cs->mems_allowed;
1159
	if (nodes_equal(oldmem, trialcs->mems_allowed)) {
1160 1161 1162
		retval = 0;		/* Too easy - nothing to do */
		goto done;
	}
1163
	retval = validate_change(cs, trialcs);
1164 1165 1166
	if (retval < 0)
		goto done;

1167 1168 1169 1170
	retval = heap_init(&heap, PAGE_SIZE, GFP_KERNEL, NULL);
	if (retval < 0)
		goto done;

1171
	mutex_lock(&callback_mutex);
1172
	cs->mems_allowed = trialcs->mems_allowed;
1173 1174 1175
	cs->mems_generation = cpuset_mems_generation++;
	mutex_unlock(&callback_mutex);

1176 1177 1178
	update_tasks_nodemask(cs, &oldmem, &heap);

	heap_free(&heap);
1179 1180 1181 1182
done:
	return retval;
}

1183 1184 1185 1186 1187
int current_cpuset_is_being_rebound(void)
{
	return task_cs(current) == cpuset_being_rebound;
}

1188
static int update_relax_domain_level(struct cpuset *cs, s64 val)
1189
{
1190
#ifdef CONFIG_SMP
1191 1192
	if (val < -1 || val >= SD_LV_MAX)
		return -EINVAL;
1193
#endif
1194 1195 1196

	if (val != cs->relax_domain_level) {
		cs->relax_domain_level = val;
1197 1198
		if (!cpumask_empty(cs->cpus_allowed) &&
		    is_sched_load_balance(cs))
1199
			async_rebuild_sched_domains();
1200 1201 1202 1203 1204
	}

	return 0;
}

1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244
/*
 * cpuset_change_flag - make a task's spread flags the same as its cpuset's
 * @tsk: task to be updated
 * @scan: struct cgroup_scanner containing the cgroup of the task
 *
 * Called by cgroup_scan_tasks() for each task in a cgroup.
 *
 * We don't need to re-check for the cgroup/cpuset membership, since we're
 * holding cgroup_lock() at this point.
 */
static void cpuset_change_flag(struct task_struct *tsk,
				struct cgroup_scanner *scan)
{
	cpuset_update_task_spread_flag(cgroup_cs(scan->cg), tsk);
}

/*
 * update_tasks_flags - update the spread flags of tasks in the cpuset.
 * @cs: the cpuset in which each task's spread flags needs to be changed
 * @heap: if NULL, defer allocating heap memory to cgroup_scan_tasks()
 *
 * Called with cgroup_mutex held
 *
 * The cgroup_scan_tasks() function will scan all the tasks in a cgroup,
 * calling callback functions for each.
 *
 * No return value. It's guaranteed that cgroup_scan_tasks() always returns 0
 * if @heap != NULL.
 */
static void update_tasks_flags(struct cpuset *cs, struct ptr_heap *heap)
{
	struct cgroup_scanner scan;

	scan.cg = cs->css.cgroup;
	scan.test_task = NULL;
	scan.process_task = cpuset_change_flag;
	scan.heap = heap;
	cgroup_scan_tasks(&scan);
}

L
Linus Torvalds 已提交
1245 1246
/*
 * update_flag - read a 0 or a 1 in a file and update associated flag
1247 1248 1249
 * bit:		the bit to update (see cpuset_flagbits_t)
 * cs:		the cpuset to update
 * turning_on: 	whether the flag is being set or cleared
1250
 *
1251
 * Call with cgroup_mutex held.
L
Linus Torvalds 已提交
1252 1253
 */

1254 1255
static int update_flag(cpuset_flagbits_t bit, struct cpuset *cs,
		       int turning_on)
L
Linus Torvalds 已提交
1256
{
1257
	struct cpuset *trialcs;
R
Rakib Mullick 已提交
1258
	int balance_flag_changed;
1259 1260 1261
	int spread_flag_changed;
	struct ptr_heap heap;
	int err;
L
Linus Torvalds 已提交
1262

1263 1264 1265 1266
	trialcs = alloc_trial_cpuset(cs);
	if (!trialcs)
		return -ENOMEM;

L
Linus Torvalds 已提交
1267
	if (turning_on)
1268
		set_bit(bit, &trialcs->flags);
L
Linus Torvalds 已提交
1269
	else
1270
		clear_bit(bit, &trialcs->flags);
L
Linus Torvalds 已提交
1271

1272
	err = validate_change(cs, trialcs);
1273
	if (err < 0)
1274
		goto out;
P
Paul Jackson 已提交
1275

1276 1277 1278 1279
	err = heap_init(&heap, PAGE_SIZE, GFP_KERNEL, NULL);
	if (err < 0)
		goto out;

P
Paul Jackson 已提交
1280
	balance_flag_changed = (is_sched_load_balance(cs) !=
1281
				is_sched_load_balance(trialcs));
P
Paul Jackson 已提交
1282

1283 1284 1285
	spread_flag_changed = ((is_spread_slab(cs) != is_spread_slab(trialcs))
			|| (is_spread_page(cs) != is_spread_page(trialcs)));

1286
	mutex_lock(&callback_mutex);
1287
	cs->flags = trialcs->flags;
1288
	mutex_unlock(&callback_mutex);
1289

1290
	if (!cpumask_empty(trialcs->cpus_allowed) && balance_flag_changed)
1291
		async_rebuild_sched_domains();
P
Paul Jackson 已提交
1292

1293 1294 1295
	if (spread_flag_changed)
		update_tasks_flags(cs, &heap);
	heap_free(&heap);
1296 1297 1298
out:
	free_trial_cpuset(trialcs);
	return err;
L
Linus Torvalds 已提交
1299 1300
}

1301
/*
A
Adrian Bunk 已提交
1302
 * Frequency meter - How fast is some event occurring?
1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398
 *
 * These routines manage a digitally filtered, constant time based,
 * event frequency meter.  There are four routines:
 *   fmeter_init() - initialize a frequency meter.
 *   fmeter_markevent() - called each time the event happens.
 *   fmeter_getrate() - returns the recent rate of such events.
 *   fmeter_update() - internal routine used to update fmeter.
 *
 * A common data structure is passed to each of these routines,
 * which is used to keep track of the state required to manage the
 * frequency meter and its digital filter.
 *
 * The filter works on the number of events marked per unit time.
 * The filter is single-pole low-pass recursive (IIR).  The time unit
 * is 1 second.  Arithmetic is done using 32-bit integers scaled to
 * simulate 3 decimal digits of precision (multiplied by 1000).
 *
 * With an FM_COEF of 933, and a time base of 1 second, the filter
 * has a half-life of 10 seconds, meaning that if the events quit
 * happening, then the rate returned from the fmeter_getrate()
 * will be cut in half each 10 seconds, until it converges to zero.
 *
 * It is not worth doing a real infinitely recursive filter.  If more
 * than FM_MAXTICKS ticks have elapsed since the last filter event,
 * just compute FM_MAXTICKS ticks worth, by which point the level
 * will be stable.
 *
 * Limit the count of unprocessed events to FM_MAXCNT, so as to avoid
 * arithmetic overflow in the fmeter_update() routine.
 *
 * Given the simple 32 bit integer arithmetic used, this meter works
 * best for reporting rates between one per millisecond (msec) and
 * one per 32 (approx) seconds.  At constant rates faster than one
 * per msec it maxes out at values just under 1,000,000.  At constant
 * rates between one per msec, and one per second it will stabilize
 * to a value N*1000, where N is the rate of events per second.
 * At constant rates between one per second and one per 32 seconds,
 * it will be choppy, moving up on the seconds that have an event,
 * and then decaying until the next event.  At rates slower than
 * about one in 32 seconds, it decays all the way back to zero between
 * each event.
 */

#define FM_COEF 933		/* coefficient for half-life of 10 secs */
#define FM_MAXTICKS ((time_t)99) /* useless computing more ticks than this */
#define FM_MAXCNT 1000000	/* limit cnt to avoid overflow */
#define FM_SCALE 1000		/* faux fixed point scale */

/* Initialize a frequency meter */
static void fmeter_init(struct fmeter *fmp)
{
	fmp->cnt = 0;
	fmp->val = 0;
	fmp->time = 0;
	spin_lock_init(&fmp->lock);
}

/* Internal meter update - process cnt events and update value */
static void fmeter_update(struct fmeter *fmp)
{
	time_t now = get_seconds();
	time_t ticks = now - fmp->time;

	if (ticks == 0)
		return;

	ticks = min(FM_MAXTICKS, ticks);
	while (ticks-- > 0)
		fmp->val = (FM_COEF * fmp->val) / FM_SCALE;
	fmp->time = now;

	fmp->val += ((FM_SCALE - FM_COEF) * fmp->cnt) / FM_SCALE;
	fmp->cnt = 0;
}

/* Process any previous ticks, then bump cnt by one (times scale). */
static void fmeter_markevent(struct fmeter *fmp)
{
	spin_lock(&fmp->lock);
	fmeter_update(fmp);
	fmp->cnt = min(FM_MAXCNT, fmp->cnt + FM_SCALE);
	spin_unlock(&fmp->lock);
}

/* Process any previous ticks, then return current value. */
static int fmeter_getrate(struct fmeter *fmp)
{
	int val;

	spin_lock(&fmp->lock);
	fmeter_update(fmp);
	val = fmp->val;
	spin_unlock(&fmp->lock);
	return val;
}

1399 1400 1401
/* Protected by cgroup_lock */
static cpumask_var_t cpus_attach;

1402
/* Called by cgroups to determine if a cpuset is usable; cgroup_mutex held */
1403 1404
static int cpuset_can_attach(struct cgroup_subsys *ss,
			     struct cgroup *cont, struct task_struct *tsk)
L
Linus Torvalds 已提交
1405
{
1406
	struct cpuset *cs = cgroup_cs(cont);
L
Linus Torvalds 已提交
1407

1408
	if (cpumask_empty(cs->cpus_allowed) || nodes_empty(cs->mems_allowed))
L
Linus Torvalds 已提交
1409
		return -ENOSPC;
1410

1411 1412 1413 1414 1415 1416 1417 1418 1419 1420
	/*
	 * Kthreads bound to specific cpus cannot be moved to a new cpuset; we
	 * cannot change their cpu affinity and isolating such threads by their
	 * set of allowed nodes is unnecessary.  Thus, cpusets are not
	 * applicable for such threads.  This prevents checking for success of
	 * set_cpus_allowed_ptr() on all attached tasks before cpus_allowed may
	 * be changed.
	 */
	if (tsk->flags & PF_THREAD_BOUND)
		return -EINVAL;
L
Linus Torvalds 已提交
1421

1422
	return security_task_setscheduler(tsk, 0, NULL);
1423
}
L
Linus Torvalds 已提交
1424

1425 1426 1427 1428 1429 1430 1431 1432
static void cpuset_attach(struct cgroup_subsys *ss,
			  struct cgroup *cont, struct cgroup *oldcont,
			  struct task_struct *tsk)
{
	nodemask_t from, to;
	struct mm_struct *mm;
	struct cpuset *cs = cgroup_cs(cont);
	struct cpuset *oldcs = cgroup_cs(oldcont);
1433
	int err;
1434

1435
	if (cs == &top_cpuset) {
1436
		cpumask_copy(cpus_attach, cpu_possible_mask);
1437 1438
	} else {
		mutex_lock(&callback_mutex);
1439
		guarantee_online_cpus(cs, cpus_attach);
1440 1441
		mutex_unlock(&callback_mutex);
	}
1442
	err = set_cpus_allowed_ptr(tsk, cpus_attach);
1443 1444
	if (err)
		return;
L
Linus Torvalds 已提交
1445

1446 1447
	cpuset_update_task_spread_flag(cs, tsk);

1448 1449
	from = oldcs->mems_allowed;
	to = cs->mems_allowed;
1450 1451 1452
	mm = get_task_mm(tsk);
	if (mm) {
		mpol_rebind_mm(mm, &to);
1453
		if (is_memory_migrate(cs))
1454
			cpuset_migrate_mm(mm, &from, &to);
1455 1456
		mmput(mm);
	}
L
Linus Torvalds 已提交
1457 1458 1459 1460 1461
}

/* The various types of files and directories in a cpuset file system */

typedef enum {
1462
	FILE_MEMORY_MIGRATE,
L
Linus Torvalds 已提交
1463 1464 1465 1466
	FILE_CPULIST,
	FILE_MEMLIST,
	FILE_CPU_EXCLUSIVE,
	FILE_MEM_EXCLUSIVE,
1467
	FILE_MEM_HARDWALL,
P
Paul Jackson 已提交
1468
	FILE_SCHED_LOAD_BALANCE,
1469
	FILE_SCHED_RELAX_DOMAIN_LEVEL,
1470 1471
	FILE_MEMORY_PRESSURE_ENABLED,
	FILE_MEMORY_PRESSURE,
1472 1473
	FILE_SPREAD_PAGE,
	FILE_SPREAD_SLAB,
L
Linus Torvalds 已提交
1474 1475
} cpuset_filetype_t;

1476 1477 1478 1479 1480 1481
static int cpuset_write_u64(struct cgroup *cgrp, struct cftype *cft, u64 val)
{
	int retval = 0;
	struct cpuset *cs = cgroup_cs(cgrp);
	cpuset_filetype_t type = cft->private;

1482
	if (!cgroup_lock_live_group(cgrp))
1483 1484 1485
		return -ENODEV;

	switch (type) {
L
Linus Torvalds 已提交
1486
	case FILE_CPU_EXCLUSIVE:
1487
		retval = update_flag(CS_CPU_EXCLUSIVE, cs, val);
L
Linus Torvalds 已提交
1488 1489
		break;
	case FILE_MEM_EXCLUSIVE:
1490
		retval = update_flag(CS_MEM_EXCLUSIVE, cs, val);
L
Linus Torvalds 已提交
1491
		break;
1492 1493 1494
	case FILE_MEM_HARDWALL:
		retval = update_flag(CS_MEM_HARDWALL, cs, val);
		break;
P
Paul Jackson 已提交
1495
	case FILE_SCHED_LOAD_BALANCE:
1496
		retval = update_flag(CS_SCHED_LOAD_BALANCE, cs, val);
1497
		break;
1498
	case FILE_MEMORY_MIGRATE:
1499
		retval = update_flag(CS_MEMORY_MIGRATE, cs, val);
1500
		break;
1501
	case FILE_MEMORY_PRESSURE_ENABLED:
1502
		cpuset_memory_pressure_enabled = !!val;
1503 1504 1505 1506
		break;
	case FILE_MEMORY_PRESSURE:
		retval = -EACCES;
		break;
1507
	case FILE_SPREAD_PAGE:
1508
		retval = update_flag(CS_SPREAD_PAGE, cs, val);
1509 1510
		break;
	case FILE_SPREAD_SLAB:
1511
		retval = update_flag(CS_SPREAD_SLAB, cs, val);
1512
		break;
L
Linus Torvalds 已提交
1513 1514
	default:
		retval = -EINVAL;
1515
		break;
L
Linus Torvalds 已提交
1516
	}
1517
	cgroup_unlock();
L
Linus Torvalds 已提交
1518 1519 1520
	return retval;
}

1521 1522 1523 1524 1525 1526
static int cpuset_write_s64(struct cgroup *cgrp, struct cftype *cft, s64 val)
{
	int retval = 0;
	struct cpuset *cs = cgroup_cs(cgrp);
	cpuset_filetype_t type = cft->private;

1527
	if (!cgroup_lock_live_group(cgrp))
1528
		return -ENODEV;
1529

1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541
	switch (type) {
	case FILE_SCHED_RELAX_DOMAIN_LEVEL:
		retval = update_relax_domain_level(cs, val);
		break;
	default:
		retval = -EINVAL;
		break;
	}
	cgroup_unlock();
	return retval;
}

1542 1543 1544 1545 1546 1547 1548
/*
 * Common handling for a write to a "cpus" or "mems" file.
 */
static int cpuset_write_resmask(struct cgroup *cgrp, struct cftype *cft,
				const char *buf)
{
	int retval = 0;
1549 1550
	struct cpuset *cs = cgroup_cs(cgrp);
	struct cpuset *trialcs;
1551 1552 1553 1554

	if (!cgroup_lock_live_group(cgrp))
		return -ENODEV;

1555 1556 1557 1558
	trialcs = alloc_trial_cpuset(cs);
	if (!trialcs)
		return -ENOMEM;

1559 1560
	switch (cft->private) {
	case FILE_CPULIST:
1561
		retval = update_cpumask(cs, trialcs, buf);
1562 1563
		break;
	case FILE_MEMLIST:
1564
		retval = update_nodemask(cs, trialcs, buf);
1565 1566 1567 1568 1569
		break;
	default:
		retval = -EINVAL;
		break;
	}
1570 1571

	free_trial_cpuset(trialcs);
1572 1573 1574 1575
	cgroup_unlock();
	return retval;
}

L
Linus Torvalds 已提交
1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589
/*
 * These ascii lists should be read in a single call, by using a user
 * buffer large enough to hold the entire map.  If read in smaller
 * chunks, there is no guarantee of atomicity.  Since the display format
 * used, list of ranges of sequential numbers, is variable length,
 * and since these maps can change value dynamically, one could read
 * gibberish by doing partial reads while a list was changing.
 * A single large read to a buffer that crosses a page boundary is
 * ok, because the result being copied to user land is not recomputed
 * across a page fault.
 */

static int cpuset_sprintf_cpulist(char *page, struct cpuset *cs)
{
1590
	int ret;
L
Linus Torvalds 已提交
1591

1592
	mutex_lock(&callback_mutex);
1593
	ret = cpulist_scnprintf(page, PAGE_SIZE, cs->cpus_allowed);
1594
	mutex_unlock(&callback_mutex);
L
Linus Torvalds 已提交
1595

1596
	return ret;
L
Linus Torvalds 已提交
1597 1598 1599 1600 1601 1602
}

static int cpuset_sprintf_memlist(char *page, struct cpuset *cs)
{
	nodemask_t mask;

1603
	mutex_lock(&callback_mutex);
L
Linus Torvalds 已提交
1604
	mask = cs->mems_allowed;
1605
	mutex_unlock(&callback_mutex);
L
Linus Torvalds 已提交
1606 1607 1608 1609

	return nodelist_scnprintf(page, PAGE_SIZE, mask);
}

1610 1611 1612 1613 1614
static ssize_t cpuset_common_file_read(struct cgroup *cont,
				       struct cftype *cft,
				       struct file *file,
				       char __user *buf,
				       size_t nbytes, loff_t *ppos)
L
Linus Torvalds 已提交
1615
{
1616
	struct cpuset *cs = cgroup_cs(cont);
L
Linus Torvalds 已提交
1617 1618 1619 1620 1621
	cpuset_filetype_t type = cft->private;
	char *page;
	ssize_t retval = 0;
	char *s;

1622
	if (!(page = (char *)__get_free_page(GFP_TEMPORARY)))
L
Linus Torvalds 已提交
1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639
		return -ENOMEM;

	s = page;

	switch (type) {
	case FILE_CPULIST:
		s += cpuset_sprintf_cpulist(s, cs);
		break;
	case FILE_MEMLIST:
		s += cpuset_sprintf_memlist(s, cs);
		break;
	default:
		retval = -EINVAL;
		goto out;
	}
	*s++ = '\n';

A
Al Viro 已提交
1640
	retval = simple_read_from_buffer(buf, nbytes, ppos, page, s - page);
L
Linus Torvalds 已提交
1641 1642 1643 1644 1645
out:
	free_page((unsigned long)page);
	return retval;
}

1646 1647 1648 1649 1650 1651 1652 1653 1654
static u64 cpuset_read_u64(struct cgroup *cont, struct cftype *cft)
{
	struct cpuset *cs = cgroup_cs(cont);
	cpuset_filetype_t type = cft->private;
	switch (type) {
	case FILE_CPU_EXCLUSIVE:
		return is_cpu_exclusive(cs);
	case FILE_MEM_EXCLUSIVE:
		return is_mem_exclusive(cs);
1655 1656
	case FILE_MEM_HARDWALL:
		return is_mem_hardwall(cs);
1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671
	case FILE_SCHED_LOAD_BALANCE:
		return is_sched_load_balance(cs);
	case FILE_MEMORY_MIGRATE:
		return is_memory_migrate(cs);
	case FILE_MEMORY_PRESSURE_ENABLED:
		return cpuset_memory_pressure_enabled;
	case FILE_MEMORY_PRESSURE:
		return fmeter_getrate(&cs->fmeter);
	case FILE_SPREAD_PAGE:
		return is_spread_page(cs);
	case FILE_SPREAD_SLAB:
		return is_spread_slab(cs);
	default:
		BUG();
	}
1672 1673 1674

	/* Unreachable but makes gcc happy */
	return 0;
1675
}
L
Linus Torvalds 已提交
1676

1677 1678 1679 1680 1681 1682 1683 1684 1685 1686
static s64 cpuset_read_s64(struct cgroup *cont, struct cftype *cft)
{
	struct cpuset *cs = cgroup_cs(cont);
	cpuset_filetype_t type = cft->private;
	switch (type) {
	case FILE_SCHED_RELAX_DOMAIN_LEVEL:
		return cs->relax_domain_level;
	default:
		BUG();
	}
1687 1688 1689

	/* Unrechable but makes gcc happy */
	return 0;
1690 1691
}

L
Linus Torvalds 已提交
1692 1693 1694 1695 1696

/*
 * for the common functions, 'private' gives the type of file
 */

1697 1698 1699 1700
static struct cftype files[] = {
	{
		.name = "cpus",
		.read = cpuset_common_file_read,
1701 1702
		.write_string = cpuset_write_resmask,
		.max_write_len = (100U + 6 * NR_CPUS),
1703 1704 1705 1706 1707 1708
		.private = FILE_CPULIST,
	},

	{
		.name = "mems",
		.read = cpuset_common_file_read,
1709 1710
		.write_string = cpuset_write_resmask,
		.max_write_len = (100U + 6 * MAX_NUMNODES),
1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727
		.private = FILE_MEMLIST,
	},

	{
		.name = "cpu_exclusive",
		.read_u64 = cpuset_read_u64,
		.write_u64 = cpuset_write_u64,
		.private = FILE_CPU_EXCLUSIVE,
	},

	{
		.name = "mem_exclusive",
		.read_u64 = cpuset_read_u64,
		.write_u64 = cpuset_write_u64,
		.private = FILE_MEM_EXCLUSIVE,
	},

1728 1729 1730 1731 1732 1733 1734
	{
		.name = "mem_hardwall",
		.read_u64 = cpuset_read_u64,
		.write_u64 = cpuset_write_u64,
		.private = FILE_MEM_HARDWALL,
	},

1735 1736 1737 1738 1739 1740 1741 1742 1743
	{
		.name = "sched_load_balance",
		.read_u64 = cpuset_read_u64,
		.write_u64 = cpuset_write_u64,
		.private = FILE_SCHED_LOAD_BALANCE,
	},

	{
		.name = "sched_relax_domain_level",
1744 1745
		.read_s64 = cpuset_read_s64,
		.write_s64 = cpuset_write_s64,
1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760
		.private = FILE_SCHED_RELAX_DOMAIN_LEVEL,
	},

	{
		.name = "memory_migrate",
		.read_u64 = cpuset_read_u64,
		.write_u64 = cpuset_write_u64,
		.private = FILE_MEMORY_MIGRATE,
	},

	{
		.name = "memory_pressure",
		.read_u64 = cpuset_read_u64,
		.write_u64 = cpuset_write_u64,
		.private = FILE_MEMORY_PRESSURE,
L
Li Zefan 已提交
1761
		.mode = S_IRUGO,
1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776
	},

	{
		.name = "memory_spread_page",
		.read_u64 = cpuset_read_u64,
		.write_u64 = cpuset_write_u64,
		.private = FILE_SPREAD_PAGE,
	},

	{
		.name = "memory_spread_slab",
		.read_u64 = cpuset_read_u64,
		.write_u64 = cpuset_write_u64,
		.private = FILE_SPREAD_SLAB,
	},
1777 1778
};

1779 1780
static struct cftype cft_memory_pressure_enabled = {
	.name = "memory_pressure_enabled",
1781 1782
	.read_u64 = cpuset_read_u64,
	.write_u64 = cpuset_write_u64,
1783 1784 1785
	.private = FILE_MEMORY_PRESSURE_ENABLED,
};

1786
static int cpuset_populate(struct cgroup_subsys *ss, struct cgroup *cont)
L
Linus Torvalds 已提交
1787 1788 1789
{
	int err;

1790 1791
	err = cgroup_add_files(cont, ss, files, ARRAY_SIZE(files));
	if (err)
L
Linus Torvalds 已提交
1792
		return err;
1793
	/* memory_pressure_enabled is in root cpuset only */
1794
	if (!cont->parent)
1795
		err = cgroup_add_file(cont, ss,
1796 1797
				      &cft_memory_pressure_enabled);
	return err;
L
Linus Torvalds 已提交
1798 1799
}

1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813
/*
 * post_clone() is called at the end of cgroup_clone().
 * 'cgroup' was just created automatically as a result of
 * a cgroup_clone(), and the current task is about to
 * be moved into 'cgroup'.
 *
 * Currently we refuse to set up the cgroup - thereby
 * refusing the task to be entered, and as a result refusing
 * the sys_unshare() or clone() which initiated it - if any
 * sibling cpusets have exclusive cpus or mem.
 *
 * If this becomes a problem for some users who wish to
 * allow that scenario, then cpuset_post_clone() could be
 * changed to grant parent->cpus_allowed-sibling_cpus_exclusive
1814 1815
 * (and likewise for mems) to the new cgroup. Called with cgroup_mutex
 * held.
1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832
 */
static void cpuset_post_clone(struct cgroup_subsys *ss,
			      struct cgroup *cgroup)
{
	struct cgroup *parent, *child;
	struct cpuset *cs, *parent_cs;

	parent = cgroup->parent;
	list_for_each_entry(child, &parent->children, sibling) {
		cs = cgroup_cs(child);
		if (is_mem_exclusive(cs) || is_cpu_exclusive(cs))
			return;
	}
	cs = cgroup_cs(cgroup);
	parent_cs = cgroup_cs(parent);

	cs->mems_allowed = parent_cs->mems_allowed;
1833
	cpumask_copy(cs->cpus_allowed, parent_cs->cpus_allowed);
1834 1835 1836
	return;
}

L
Linus Torvalds 已提交
1837 1838
/*
 *	cpuset_create - create a cpuset
1839 1840
 *	ss:	cpuset cgroup subsystem
 *	cont:	control group that the new cpuset will be part of
L
Linus Torvalds 已提交
1841 1842
 */

1843 1844 1845
static struct cgroup_subsys_state *cpuset_create(
	struct cgroup_subsys *ss,
	struct cgroup *cont)
L
Linus Torvalds 已提交
1846 1847
{
	struct cpuset *cs;
1848
	struct cpuset *parent;
L
Linus Torvalds 已提交
1849

1850 1851 1852 1853 1854 1855
	if (!cont->parent) {
		/* This is early initialization for the top cgroup */
		top_cpuset.mems_generation = cpuset_mems_generation++;
		return &top_cpuset.css;
	}
	parent = cgroup_cs(cont->parent);
L
Linus Torvalds 已提交
1856 1857
	cs = kmalloc(sizeof(*cs), GFP_KERNEL);
	if (!cs)
1858
		return ERR_PTR(-ENOMEM);
1859 1860 1861 1862
	if (!alloc_cpumask_var(&cs->cpus_allowed, GFP_KERNEL)) {
		kfree(cs);
		return ERR_PTR(-ENOMEM);
	}
L
Linus Torvalds 已提交
1863

1864
	cpuset_update_task_memory_state();
L
Linus Torvalds 已提交
1865
	cs->flags = 0;
1866 1867 1868 1869
	if (is_spread_page(parent))
		set_bit(CS_SPREAD_PAGE, &cs->flags);
	if (is_spread_slab(parent))
		set_bit(CS_SPREAD_SLAB, &cs->flags);
P
Paul Jackson 已提交
1870
	set_bit(CS_SCHED_LOAD_BALANCE, &cs->flags);
1871
	cpumask_clear(cs->cpus_allowed);
1872
	nodes_clear(cs->mems_allowed);
1873
	cs->mems_generation = cpuset_mems_generation++;
1874
	fmeter_init(&cs->fmeter);
1875
	cs->relax_domain_level = -1;
L
Linus Torvalds 已提交
1876 1877

	cs->parent = parent;
1878
	number_of_cpusets++;
1879
	return &cs->css ;
L
Linus Torvalds 已提交
1880 1881
}

P
Paul Jackson 已提交
1882 1883 1884
/*
 * If the cpuset being removed has its flag 'sched_load_balance'
 * enabled, then simulate turning sched_load_balance off, which
1885
 * will call async_rebuild_sched_domains().
P
Paul Jackson 已提交
1886 1887
 */

1888
static void cpuset_destroy(struct cgroup_subsys *ss, struct cgroup *cont)
L
Linus Torvalds 已提交
1889
{
1890
	struct cpuset *cs = cgroup_cs(cont);
L
Linus Torvalds 已提交
1891

1892
	cpuset_update_task_memory_state();
P
Paul Jackson 已提交
1893 1894

	if (is_sched_load_balance(cs))
1895
		update_flag(CS_SCHED_LOAD_BALANCE, cs, 0);
P
Paul Jackson 已提交
1896

1897
	number_of_cpusets--;
1898
	free_cpumask_var(cs->cpus_allowed);
1899
	kfree(cs);
L
Linus Torvalds 已提交
1900 1901
}

1902 1903 1904
struct cgroup_subsys cpuset_subsys = {
	.name = "cpuset",
	.create = cpuset_create,
1905
	.destroy = cpuset_destroy,
1906 1907 1908 1909 1910 1911 1912 1913
	.can_attach = cpuset_can_attach,
	.attach = cpuset_attach,
	.populate = cpuset_populate,
	.post_clone = cpuset_post_clone,
	.subsys_id = cpuset_subsys_id,
	.early_init = 1,
};

1914 1915 1916 1917 1918 1919 1920 1921
/*
 * cpuset_init_early - just enough so that the calls to
 * cpuset_update_task_memory_state() in early init code
 * are harmless.
 */

int __init cpuset_init_early(void)
{
1922
	alloc_cpumask_var(&top_cpuset.cpus_allowed, GFP_NOWAIT);
1923

1924
	top_cpuset.mems_generation = cpuset_mems_generation++;
1925 1926 1927
	return 0;
}

1928

L
Linus Torvalds 已提交
1929 1930 1931 1932 1933 1934 1935 1936
/**
 * cpuset_init - initialize cpusets at system boot
 *
 * Description: Initialize top_cpuset and the cpuset internal file system,
 **/

int __init cpuset_init(void)
{
1937
	int err = 0;
L
Linus Torvalds 已提交
1938

1939
	cpumask_setall(top_cpuset.cpus_allowed);
1940
	nodes_setall(top_cpuset.mems_allowed);
L
Linus Torvalds 已提交
1941

1942
	fmeter_init(&top_cpuset.fmeter);
1943
	top_cpuset.mems_generation = cpuset_mems_generation++;
P
Paul Jackson 已提交
1944
	set_bit(CS_SCHED_LOAD_BALANCE, &top_cpuset.flags);
1945
	top_cpuset.relax_domain_level = -1;
L
Linus Torvalds 已提交
1946 1947 1948

	err = register_filesystem(&cpuset_fs_type);
	if (err < 0)
1949 1950
		return err;

1951 1952 1953
	if (!alloc_cpumask_var(&cpus_attach, GFP_KERNEL))
		BUG();

1954
	number_of_cpusets = 1;
1955
	return 0;
L
Linus Torvalds 已提交
1956 1957
}

1958 1959 1960 1961 1962 1963 1964 1965
/**
 * cpuset_do_move_task - move a given task to another cpuset
 * @tsk: pointer to task_struct the task to move
 * @scan: struct cgroup_scanner contained in its struct cpuset_hotplug_scanner
 *
 * Called by cgroup_scan_tasks() for each task in a cgroup.
 * Return nonzero to stop the walk through the tasks.
 */
1966 1967
static void cpuset_do_move_task(struct task_struct *tsk,
				struct cgroup_scanner *scan)
1968
{
1969
	struct cgroup *new_cgroup = scan->data;
1970

1971
	cgroup_attach_task(new_cgroup, tsk);
1972 1973 1974 1975 1976 1977 1978
}

/**
 * move_member_tasks_to_cpuset - move tasks from one cpuset to another
 * @from: cpuset in which the tasks currently reside
 * @to: cpuset to which the tasks will be moved
 *
1979 1980
 * Called with cgroup_mutex held
 * callback_mutex must not be held, as cpuset_attach() will take it.
1981 1982 1983 1984 1985 1986
 *
 * The cgroup_scan_tasks() function will scan all the tasks in a cgroup,
 * calling callback functions for each.
 */
static void move_member_tasks_to_cpuset(struct cpuset *from, struct cpuset *to)
{
1987
	struct cgroup_scanner scan;
1988

1989 1990 1991 1992 1993
	scan.cg = from->css.cgroup;
	scan.test_task = NULL; /* select all tasks in cgroup */
	scan.process_task = cpuset_do_move_task;
	scan.heap = NULL;
	scan.data = to->css.cgroup;
1994

1995
	if (cgroup_scan_tasks(&scan))
1996 1997 1998 1999
		printk(KERN_ERR "move_member_tasks_to_cpuset: "
				"cgroup_scan_tasks failed\n");
}

2000
/*
2001
 * If CPU and/or memory hotplug handlers, below, unplug any CPUs
2002 2003
 * or memory nodes, we need to walk over the cpuset hierarchy,
 * removing that CPU or node from all cpusets.  If this removes the
2004 2005
 * last CPU or node from a cpuset, then move the tasks in the empty
 * cpuset to its next-highest non-empty parent.
2006
 *
2007 2008
 * Called with cgroup_mutex held
 * callback_mutex must not be held, as cpuset_attach() will take it.
2009
 */
2010 2011 2012 2013
static void remove_tasks_in_empty_cpuset(struct cpuset *cs)
{
	struct cpuset *parent;

2014 2015 2016 2017 2018
	/*
	 * The cgroup's css_sets list is in use if there are tasks
	 * in the cpuset; the list is empty if there are none;
	 * the cs->css.refcnt seems always 0.
	 */
2019 2020
	if (list_empty(&cs->css.cgroup->css_sets))
		return;
2021

2022 2023 2024 2025 2026
	/*
	 * Find its next-highest non-empty parent, (top cpuset
	 * has online cpus, so can't be empty).
	 */
	parent = cs->parent;
2027
	while (cpumask_empty(parent->cpus_allowed) ||
2028
			nodes_empty(parent->mems_allowed))
2029 2030 2031 2032 2033 2034 2035 2036 2037
		parent = parent->parent;

	move_member_tasks_to_cpuset(cs, parent);
}

/*
 * Walk the specified cpuset subtree and look for empty cpusets.
 * The tasks of such cpuset must be moved to a parent cpuset.
 *
2038
 * Called with cgroup_mutex held.  We take callback_mutex to modify
2039 2040 2041 2042 2043 2044 2045 2046 2047 2048
 * cpus_allowed and mems_allowed.
 *
 * This walk processes the tree from top to bottom, completing one layer
 * before dropping down to the next.  It always processes a node before
 * any of its children.
 *
 * For now, since we lack memory hot unplug, we'll never see a cpuset
 * that has tasks along with an empty 'mems'.  But if we did see such
 * a cpuset, we'd handle it just like we do if its 'cpus' was empty.
 */
2049
static void scan_for_empty_cpusets(struct cpuset *root)
2050
{
2051
	LIST_HEAD(queue);
2052 2053
	struct cpuset *cp;	/* scans cpusets being updated */
	struct cpuset *child;	/* scans child cpusets of cp */
2054
	struct cgroup *cont;
2055
	nodemask_t oldmems;
2056

2057 2058 2059
	list_add_tail((struct list_head *)&root->stack_list, &queue);

	while (!list_empty(&queue)) {
2060
		cp = list_first_entry(&queue, struct cpuset, stack_list);
2061 2062 2063 2064 2065
		list_del(queue.next);
		list_for_each_entry(cont, &cp->css.cgroup->children, sibling) {
			child = cgroup_cs(cont);
			list_add_tail(&child->stack_list, &queue);
		}
2066 2067

		/* Continue past cpusets with all cpus, mems online */
2068
		if (cpumask_subset(cp->cpus_allowed, cpu_online_mask) &&
2069 2070 2071
		    nodes_subset(cp->mems_allowed, node_states[N_HIGH_MEMORY]))
			continue;

2072 2073
		oldmems = cp->mems_allowed;

2074
		/* Remove offline cpus and mems from this cpuset. */
2075
		mutex_lock(&callback_mutex);
2076 2077
		cpumask_and(cp->cpus_allowed, cp->cpus_allowed,
			    cpu_online_mask);
2078 2079
		nodes_and(cp->mems_allowed, cp->mems_allowed,
						node_states[N_HIGH_MEMORY]);
2080 2081 2082
		mutex_unlock(&callback_mutex);

		/* Move tasks from the empty cpuset to a parent */
2083
		if (cpumask_empty(cp->cpus_allowed) ||
2084
		     nodes_empty(cp->mems_allowed))
2085
			remove_tasks_in_empty_cpuset(cp);
2086
		else {
2087
			update_tasks_cpumask(cp, NULL);
2088
			update_tasks_nodemask(cp, &oldmems, NULL);
2089
		}
2090 2091 2092
	}
}

2093 2094 2095 2096 2097 2098
/*
 * The top_cpuset tracks what CPUs and Memory Nodes are online,
 * period.  This is necessary in order to make cpusets transparent
 * (of no affect) on systems that are actively using CPU hotplug
 * but making no active use of cpusets.
 *
2099 2100
 * This routine ensures that top_cpuset.cpus_allowed tracks
 * cpu_online_map on each CPU hotplug (cpuhp) event.
2101 2102 2103
 *
 * Called within get_online_cpus().  Needs to call cgroup_lock()
 * before calling generate_sched_domains().
2104
 */
2105
static int cpuset_track_online_cpus(struct notifier_block *unused_nb,
P
Paul Jackson 已提交
2106
				unsigned long phase, void *unused_cpu)
2107
{
2108
	struct sched_domain_attr *attr;
2109
	struct cpumask *doms;
2110 2111
	int ndoms;

2112 2113 2114 2115 2116 2117
	switch (phase) {
	case CPU_ONLINE:
	case CPU_ONLINE_FROZEN:
	case CPU_DEAD:
	case CPU_DEAD_FROZEN:
		break;
2118

2119
	default:
2120
		return NOTIFY_DONE;
2121
	}
2122

2123
	cgroup_lock();
2124
	mutex_lock(&callback_mutex);
2125
	cpumask_copy(top_cpuset.cpus_allowed, cpu_online_mask);
2126
	mutex_unlock(&callback_mutex);
2127 2128 2129 2130 2131 2132 2133
	scan_for_empty_cpusets(&top_cpuset);
	ndoms = generate_sched_domains(&doms, &attr);
	cgroup_unlock();

	/* Have scheduler rebuild the domains */
	partition_sched_domains(ndoms, doms, attr);

2134
	return NOTIFY_OK;
2135 2136
}

2137
#ifdef CONFIG_MEMORY_HOTPLUG
2138
/*
2139
 * Keep top_cpuset.mems_allowed tracking node_states[N_HIGH_MEMORY].
2140 2141
 * Call this routine anytime after node_states[N_HIGH_MEMORY] changes.
 * See also the previous routine cpuset_track_online_cpus().
2142
 */
2143 2144
static int cpuset_track_online_nodes(struct notifier_block *self,
				unsigned long action, void *arg)
2145
{
2146
	cgroup_lock();
2147 2148 2149
	switch (action) {
	case MEM_ONLINE:
	case MEM_OFFLINE:
2150
		mutex_lock(&callback_mutex);
2151
		top_cpuset.mems_allowed = node_states[N_HIGH_MEMORY];
2152 2153 2154
		mutex_unlock(&callback_mutex);
		if (action == MEM_OFFLINE)
			scan_for_empty_cpusets(&top_cpuset);
2155 2156 2157 2158
		break;
	default:
		break;
	}
2159
	cgroup_unlock();
2160
	return NOTIFY_OK;
2161 2162 2163
}
#endif

L
Linus Torvalds 已提交
2164 2165 2166 2167 2168 2169 2170 2171
/**
 * cpuset_init_smp - initialize cpus_allowed
 *
 * Description: Finish top cpuset after cpu, node maps are initialized
 **/

void __init cpuset_init_smp(void)
{
2172
	cpumask_copy(top_cpuset.cpus_allowed, cpu_online_mask);
2173
	top_cpuset.mems_allowed = node_states[N_HIGH_MEMORY];
2174

2175
	hotcpu_notifier(cpuset_track_online_cpus, 0);
2176
	hotplug_memory_notifier(cpuset_track_online_nodes, 10);
2177 2178 2179

	cpuset_wq = create_singlethread_workqueue("cpuset");
	BUG_ON(!cpuset_wq);
L
Linus Torvalds 已提交
2180 2181 2182 2183 2184
}

/**
 * cpuset_cpus_allowed - return cpus_allowed mask from a tasks cpuset.
 * @tsk: pointer to task_struct from which to obtain cpuset->cpus_allowed.
2185
 * @pmask: pointer to struct cpumask variable to receive cpus_allowed set.
L
Linus Torvalds 已提交
2186
 *
2187
 * Description: Returns the cpumask_var_t cpus_allowed of the cpuset
L
Linus Torvalds 已提交
2188 2189 2190 2191 2192
 * attached to the specified @tsk.  Guaranteed to return some non-empty
 * subset of cpu_online_map, even if this means going outside the
 * tasks cpuset.
 **/

2193
void cpuset_cpus_allowed(struct task_struct *tsk, struct cpumask *pmask)
L
Linus Torvalds 已提交
2194
{
2195
	mutex_lock(&callback_mutex);
2196
	cpuset_cpus_allowed_locked(tsk, pmask);
2197 2198 2199 2200 2201
	mutex_unlock(&callback_mutex);
}

/**
 * cpuset_cpus_allowed_locked - return cpus_allowed mask from a tasks cpuset.
2202
 * Must be called with callback_mutex held.
2203
 **/
2204
void cpuset_cpus_allowed_locked(struct task_struct *tsk, struct cpumask *pmask)
2205
{
2206
	task_lock(tsk);
2207
	guarantee_online_cpus(task_cs(tsk), pmask);
2208
	task_unlock(tsk);
L
Linus Torvalds 已提交
2209 2210 2211 2212
}

void cpuset_init_current_mems_allowed(void)
{
2213
	nodes_setall(current->mems_allowed);
L
Linus Torvalds 已提交
2214 2215
}

2216 2217 2218 2219 2220 2221
/**
 * cpuset_mems_allowed - return mems_allowed mask from a tasks cpuset.
 * @tsk: pointer to task_struct from which to obtain cpuset->mems_allowed.
 *
 * Description: Returns the nodemask_t mems_allowed of the cpuset
 * attached to the specified @tsk.  Guaranteed to return some non-empty
2222
 * subset of node_states[N_HIGH_MEMORY], even if this means going outside the
2223 2224 2225 2226 2227 2228 2229
 * tasks cpuset.
 **/

nodemask_t cpuset_mems_allowed(struct task_struct *tsk)
{
	nodemask_t mask;

2230
	mutex_lock(&callback_mutex);
2231
	task_lock(tsk);
2232
	guarantee_online_mems(task_cs(tsk), &mask);
2233
	task_unlock(tsk);
2234
	mutex_unlock(&callback_mutex);
2235 2236 2237 2238

	return mask;
}

2239
/**
2240 2241
 * cpuset_nodemask_valid_mems_allowed - check nodemask vs. curremt mems_allowed
 * @nodemask: the nodemask to be checked
2242
 *
2243
 * Are any of the nodes in the nodemask allowed in current->mems_allowed?
L
Linus Torvalds 已提交
2244
 */
2245
int cpuset_nodemask_valid_mems_allowed(nodemask_t *nodemask)
L
Linus Torvalds 已提交
2246
{
2247
	return nodes_intersects(*nodemask, current->mems_allowed);
L
Linus Torvalds 已提交
2248 2249
}

2250
/*
2251 2252 2253 2254
 * nearest_hardwall_ancestor() - Returns the nearest mem_exclusive or
 * mem_hardwall ancestor to the specified cpuset.  Call holding
 * callback_mutex.  If no ancestor is mem_exclusive or mem_hardwall
 * (an unusual configuration), then returns the root cpuset.
2255
 */
2256
static const struct cpuset *nearest_hardwall_ancestor(const struct cpuset *cs)
2257
{
2258
	while (!(is_mem_exclusive(cs) || is_mem_hardwall(cs)) && cs->parent)
2259 2260 2261 2262
		cs = cs->parent;
	return cs;
}

2263
/**
2264 2265
 * cpuset_node_allowed_softwall - Can we allocate on a memory node?
 * @node: is this an allowed node?
2266
 * @gfp_mask: memory allocation flags
2267
 *
2268 2269 2270 2271 2272 2273
 * If we're in interrupt, yes, we can always allocate.  If __GFP_THISNODE is
 * set, yes, we can always allocate.  If node is in our task's mems_allowed,
 * yes.  If it's not a __GFP_HARDWALL request and this node is in the nearest
 * hardwalled cpuset ancestor to this task's cpuset, yes.  If the task has been
 * OOM killed and has access to memory reserves as specified by the TIF_MEMDIE
 * flag, yes.
2274 2275
 * Otherwise, no.
 *
2276 2277 2278
 * If __GFP_HARDWALL is set, cpuset_node_allowed_softwall() reduces to
 * cpuset_node_allowed_hardwall().  Otherwise, cpuset_node_allowed_softwall()
 * might sleep, and might allow a node from an enclosing cpuset.
2279
 *
2280 2281
 * cpuset_node_allowed_hardwall() only handles the simpler case of hardwall
 * cpusets, and never sleeps.
2282 2283 2284 2285 2286 2287 2288
 *
 * The __GFP_THISNODE placement logic is really handled elsewhere,
 * by forcibly using a zonelist starting at a specified node, and by
 * (in get_page_from_freelist()) refusing to consider the zones for
 * any node on the zonelist except the first.  By the time any such
 * calls get to this routine, we should just shut up and say 'yes'.
 *
2289
 * GFP_USER allocations are marked with the __GFP_HARDWALL bit,
2290 2291
 * and do not allow allocations outside the current tasks cpuset
 * unless the task has been OOM killed as is marked TIF_MEMDIE.
2292
 * GFP_KERNEL allocations are not so marked, so can escape to the
2293
 * nearest enclosing hardwalled ancestor cpuset.
2294
 *
2295 2296 2297 2298 2299 2300 2301
 * Scanning up parent cpusets requires callback_mutex.  The
 * __alloc_pages() routine only calls here with __GFP_HARDWALL bit
 * _not_ set if it's a GFP_KERNEL allocation, and all nodes in the
 * current tasks mems_allowed came up empty on the first pass over
 * the zonelist.  So only GFP_KERNEL allocations, if all nodes in the
 * cpuset are short of memory, might require taking the callback_mutex
 * mutex.
2302
 *
2303
 * The first call here from mm/page_alloc:get_page_from_freelist()
2304 2305 2306
 * has __GFP_HARDWALL set in gfp_mask, enforcing hardwall cpusets,
 * so no allocation on a node outside the cpuset is allowed (unless
 * in interrupt, of course).
2307 2308 2309 2310 2311 2312
 *
 * The second pass through get_page_from_freelist() doesn't even call
 * here for GFP_ATOMIC calls.  For those calls, the __alloc_pages()
 * variable 'wait' is not set, and the bit ALLOC_CPUSET is not set
 * in alloc_flags.  That logic and the checks below have the combined
 * affect that:
2313 2314
 *	in_interrupt - any node ok (current task context irrelevant)
 *	GFP_ATOMIC   - any node ok
2315
 *	TIF_MEMDIE   - any node ok
2316
 *	GFP_KERNEL   - any node in enclosing hardwalled cpuset ok
2317
 *	GFP_USER     - only nodes in current tasks mems allowed ok.
2318 2319
 *
 * Rule:
2320
 *    Don't call cpuset_node_allowed_softwall if you can't sleep, unless you
2321 2322
 *    pass in the __GFP_HARDWALL flag set in gfp_flag, which disables
 *    the code that might scan up ancestor cpusets and sleep.
2323
 */
2324
int __cpuset_node_allowed_softwall(int node, gfp_t gfp_mask)
L
Linus Torvalds 已提交
2325
{
2326
	const struct cpuset *cs;	/* current cpuset ancestors */
2327
	int allowed;			/* is allocation in zone z allowed? */
2328

2329
	if (in_interrupt() || (gfp_mask & __GFP_THISNODE))
2330
		return 1;
2331
	might_sleep_if(!(gfp_mask & __GFP_HARDWALL));
2332 2333
	if (node_isset(node, current->mems_allowed))
		return 1;
2334 2335 2336 2337 2338 2339
	/*
	 * Allow tasks that have access to memory reserves because they have
	 * been OOM killed to get memory anywhere.
	 */
	if (unlikely(test_thread_flag(TIF_MEMDIE)))
		return 1;
2340 2341 2342
	if (gfp_mask & __GFP_HARDWALL)	/* If hardwall request, stop here */
		return 0;

2343 2344 2345
	if (current->flags & PF_EXITING) /* Let dying task have memory */
		return 1;

2346
	/* Not hardwall and node outside mems_allowed: scan up cpusets */
2347
	mutex_lock(&callback_mutex);
2348 2349

	task_lock(current);
2350
	cs = nearest_hardwall_ancestor(task_cs(current));
2351 2352
	task_unlock(current);

2353
	allowed = node_isset(node, cs->mems_allowed);
2354
	mutex_unlock(&callback_mutex);
2355
	return allowed;
L
Linus Torvalds 已提交
2356 2357
}

2358
/*
2359 2360
 * cpuset_node_allowed_hardwall - Can we allocate on a memory node?
 * @node: is this an allowed node?
2361 2362
 * @gfp_mask: memory allocation flags
 *
2363 2364 2365 2366 2367
 * If we're in interrupt, yes, we can always allocate.  If __GFP_THISNODE is
 * set, yes, we can always allocate.  If node is in our task's mems_allowed,
 * yes.  If the task has been OOM killed and has access to memory reserves as
 * specified by the TIF_MEMDIE flag, yes.
 * Otherwise, no.
2368 2369 2370 2371 2372 2373 2374
 *
 * The __GFP_THISNODE placement logic is really handled elsewhere,
 * by forcibly using a zonelist starting at a specified node, and by
 * (in get_page_from_freelist()) refusing to consider the zones for
 * any node on the zonelist except the first.  By the time any such
 * calls get to this routine, we should just shut up and say 'yes'.
 *
2375 2376
 * Unlike the cpuset_node_allowed_softwall() variant, above,
 * this variant requires that the node be in the current task's
2377 2378 2379 2380
 * mems_allowed or that we're in interrupt.  It does not scan up the
 * cpuset hierarchy for the nearest enclosing mem_exclusive cpuset.
 * It never sleeps.
 */
2381
int __cpuset_node_allowed_hardwall(int node, gfp_t gfp_mask)
2382 2383 2384 2385 2386
{
	if (in_interrupt() || (gfp_mask & __GFP_THISNODE))
		return 1;
	if (node_isset(node, current->mems_allowed))
		return 1;
D
Daniel Walker 已提交
2387 2388 2389 2390 2391 2392
	/*
	 * Allow tasks that have access to memory reserves because they have
	 * been OOM killed to get memory anywhere.
	 */
	if (unlikely(test_thread_flag(TIF_MEMDIE)))
		return 1;
2393 2394 2395
	return 0;
}

P
Paul Jackson 已提交
2396 2397 2398
/**
 * cpuset_lock - lock out any changes to cpuset structures
 *
2399
 * The out of memory (oom) code needs to mutex_lock cpusets
P
Paul Jackson 已提交
2400
 * from being changed while it scans the tasklist looking for a
2401
 * task in an overlapping cpuset.  Expose callback_mutex via this
P
Paul Jackson 已提交
2402 2403
 * cpuset_lock() routine, so the oom code can lock it, before
 * locking the task list.  The tasklist_lock is a spinlock, so
2404
 * must be taken inside callback_mutex.
P
Paul Jackson 已提交
2405 2406 2407 2408
 */

void cpuset_lock(void)
{
2409
	mutex_lock(&callback_mutex);
P
Paul Jackson 已提交
2410 2411 2412 2413 2414 2415 2416 2417 2418 2419
}

/**
 * cpuset_unlock - release lock on cpuset changes
 *
 * Undo the lock taken in a previous cpuset_lock() call.
 */

void cpuset_unlock(void)
{
2420
	mutex_unlock(&callback_mutex);
P
Paul Jackson 已提交
2421 2422
}

2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460
/**
 * cpuset_mem_spread_node() - On which node to begin search for a page
 *
 * If a task is marked PF_SPREAD_PAGE or PF_SPREAD_SLAB (as for
 * tasks in a cpuset with is_spread_page or is_spread_slab set),
 * and if the memory allocation used cpuset_mem_spread_node()
 * to determine on which node to start looking, as it will for
 * certain page cache or slab cache pages such as used for file
 * system buffers and inode caches, then instead of starting on the
 * local node to look for a free page, rather spread the starting
 * node around the tasks mems_allowed nodes.
 *
 * We don't have to worry about the returned node being offline
 * because "it can't happen", and even if it did, it would be ok.
 *
 * The routines calling guarantee_online_mems() are careful to
 * only set nodes in task->mems_allowed that are online.  So it
 * should not be possible for the following code to return an
 * offline node.  But if it did, that would be ok, as this routine
 * is not returning the node where the allocation must be, only
 * the node where the search should start.  The zonelist passed to
 * __alloc_pages() will include all nodes.  If the slab allocator
 * is passed an offline node, it will fall back to the local node.
 * See kmem_cache_alloc_node().
 */

int cpuset_mem_spread_node(void)
{
	int node;

	node = next_node(current->cpuset_mem_spread_rotor, current->mems_allowed);
	if (node == MAX_NUMNODES)
		node = first_node(current->mems_allowed);
	current->cpuset_mem_spread_rotor = node;
	return node;
}
EXPORT_SYMBOL_GPL(cpuset_mem_spread_node);

2461
/**
2462 2463 2464 2465 2466 2467 2468 2469
 * cpuset_mems_allowed_intersects - Does @tsk1's mems_allowed intersect @tsk2's?
 * @tsk1: pointer to task_struct of some task.
 * @tsk2: pointer to task_struct of some other task.
 *
 * Description: Return true if @tsk1's mems_allowed intersects the
 * mems_allowed of @tsk2.  Used by the OOM killer to determine if
 * one of the task's memory usage might impact the memory available
 * to the other.
2470 2471
 **/

2472 2473
int cpuset_mems_allowed_intersects(const struct task_struct *tsk1,
				   const struct task_struct *tsk2)
2474
{
2475
	return nodes_intersects(tsk1->mems_allowed, tsk2->mems_allowed);
2476 2477
}

2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500
/**
 * cpuset_print_task_mems_allowed - prints task's cpuset and mems_allowed
 * @task: pointer to task_struct of some task.
 *
 * Description: Prints @task's name, cpuset name, and cached copy of its
 * mems_allowed to the kernel log.  Must hold task_lock(task) to allow
 * dereferencing task_cs(task).
 */
void cpuset_print_task_mems_allowed(struct task_struct *tsk)
{
	struct dentry *dentry;

	dentry = task_cs(tsk)->css.cgroup->dentry;
	spin_lock(&cpuset_buffer_lock);
	snprintf(cpuset_name, CPUSET_NAME_LEN,
		 dentry ? (const char *)dentry->d_name.name : "/");
	nodelist_scnprintf(cpuset_nodelist, CPUSET_NODELIST_LEN,
			   tsk->mems_allowed);
	printk(KERN_INFO "%s cpuset=%s mems_allowed=%s\n",
	       tsk->comm, cpuset_name, cpuset_nodelist);
	spin_unlock(&cpuset_buffer_lock);
}

2501 2502 2503 2504 2505 2506
/*
 * Collection of memory_pressure is suppressed unless
 * this flag is enabled by writing "1" to the special
 * cpuset file 'memory_pressure_enabled' in the root cpuset.
 */

2507
int cpuset_memory_pressure_enabled __read_mostly;
2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529

/**
 * cpuset_memory_pressure_bump - keep stats of per-cpuset reclaims.
 *
 * Keep a running average of the rate of synchronous (direct)
 * page reclaim efforts initiated by tasks in each cpuset.
 *
 * This represents the rate at which some task in the cpuset
 * ran low on memory on all nodes it was allowed to use, and
 * had to enter the kernels page reclaim code in an effort to
 * create more free memory by tossing clean pages or swapping
 * or writing dirty pages.
 *
 * Display to user space in the per-cpuset read-only file
 * "memory_pressure".  Value displayed is an integer
 * representing the recent rate of entry into the synchronous
 * (direct) page reclaim by any task attached to the cpuset.
 **/

void __cpuset_memory_pressure_bump(void)
{
	task_lock(current);
2530
	fmeter_markevent(&task_cs(current)->fmeter);
2531 2532 2533
	task_unlock(current);
}

2534
#ifdef CONFIG_PROC_PID_CPUSET
L
Linus Torvalds 已提交
2535 2536 2537 2538
/*
 * proc_cpuset_show()
 *  - Print tasks cpuset path into seq_file.
 *  - Used for /proc/<pid>/cpuset.
2539 2540
 *  - No need to task_lock(tsk) on this tsk->cpuset reference, as it
 *    doesn't really matter if tsk->cpuset changes after we read it,
2541
 *    and we take cgroup_mutex, keeping cpuset_attach() from changing it
2542
 *    anyway.
L
Linus Torvalds 已提交
2543
 */
P
Paul Jackson 已提交
2544
static int proc_cpuset_show(struct seq_file *m, void *unused_v)
L
Linus Torvalds 已提交
2545
{
2546
	struct pid *pid;
L
Linus Torvalds 已提交
2547 2548
	struct task_struct *tsk;
	char *buf;
2549
	struct cgroup_subsys_state *css;
2550
	int retval;
L
Linus Torvalds 已提交
2551

2552
	retval = -ENOMEM;
L
Linus Torvalds 已提交
2553 2554
	buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
	if (!buf)
2555 2556 2557
		goto out;

	retval = -ESRCH;
2558 2559
	pid = m->private;
	tsk = get_pid_task(pid, PIDTYPE_PID);
2560 2561
	if (!tsk)
		goto out_free;
L
Linus Torvalds 已提交
2562

2563
	retval = -EINVAL;
2564 2565 2566
	cgroup_lock();
	css = task_subsys_state(tsk, cpuset_subsys_id);
	retval = cgroup_path(css->cgroup, buf, PAGE_SIZE);
L
Linus Torvalds 已提交
2567
	if (retval < 0)
2568
		goto out_unlock;
L
Linus Torvalds 已提交
2569 2570
	seq_puts(m, buf);
	seq_putc(m, '\n');
2571
out_unlock:
2572
	cgroup_unlock();
2573 2574
	put_task_struct(tsk);
out_free:
L
Linus Torvalds 已提交
2575
	kfree(buf);
2576
out:
L
Linus Torvalds 已提交
2577 2578 2579 2580 2581
	return retval;
}

static int cpuset_open(struct inode *inode, struct file *file)
{
2582 2583
	struct pid *pid = PROC_I(inode)->pid;
	return single_open(file, proc_cpuset_show, pid);
L
Linus Torvalds 已提交
2584 2585
}

2586
const struct file_operations proc_cpuset_operations = {
L
Linus Torvalds 已提交
2587 2588 2589 2590 2591
	.open		= cpuset_open,
	.read		= seq_read,
	.llseek		= seq_lseek,
	.release	= single_release,
};
2592
#endif /* CONFIG_PROC_PID_CPUSET */
L
Linus Torvalds 已提交
2593 2594

/* Display task cpus_allowed, mems_allowed in /proc/<pid>/status file. */
2595 2596 2597
void cpuset_task_status_allowed(struct seq_file *m, struct task_struct *task)
{
	seq_printf(m, "Cpus_allowed:\t");
2598
	seq_cpumask(m, &task->cpus_allowed);
2599
	seq_printf(m, "\n");
2600
	seq_printf(m, "Cpus_allowed_list:\t");
2601
	seq_cpumask_list(m, &task->cpus_allowed);
2602
	seq_printf(m, "\n");
2603
	seq_printf(m, "Mems_allowed:\t");
2604
	seq_nodemask(m, &task->mems_allowed);
2605
	seq_printf(m, "\n");
2606
	seq_printf(m, "Mems_allowed_list:\t");
2607
	seq_nodemask_list(m, &task->mems_allowed);
2608
	seq_printf(m, "\n");
L
Linus Torvalds 已提交
2609
}