cpuset.c 77.0 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6
/*
 *  kernel/cpuset.c
 *
 *  Processor and Memory placement constraints for sets of tasks.
 *
 *  Copyright (C) 2003 BULL SA.
P
Paul Jackson 已提交
7
 *  Copyright (C) 2004-2007 Silicon Graphics, Inc.
8
 *  Copyright (C) 2006 Google, Inc
L
Linus Torvalds 已提交
9 10 11 12
 *
 *  Portions derived from Patrick Mochel's sysfs code.
 *  sysfs is Copyright (c) 2001-3 Patrick Mochel
 *
13
 *  2003-10-10 Written by Simon Derr.
L
Linus Torvalds 已提交
14
 *  2003-10-22 Updates by Stephen Hemminger.
15
 *  2004 May-July Rework by Paul Jackson.
16
 *  2006 Rework by Paul Menage to use generic cgroups
17 18
 *  2008 Rework of the scheduler domains and CPU hotplug handling
 *       by Max Krasnyansky
L
Linus Torvalds 已提交
19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36
 *
 *  This file is subject to the terms and conditions of the GNU General Public
 *  License.  See the file COPYING in the main directory of the Linux
 *  distribution for more details.
 */

#include <linux/cpu.h>
#include <linux/cpumask.h>
#include <linux/cpuset.h>
#include <linux/err.h>
#include <linux/errno.h>
#include <linux/file.h>
#include <linux/fs.h>
#include <linux/init.h>
#include <linux/interrupt.h>
#include <linux/kernel.h>
#include <linux/kmod.h>
#include <linux/list.h>
37
#include <linux/mempolicy.h>
L
Linus Torvalds 已提交
38
#include <linux/mm.h>
39
#include <linux/memory.h>
40
#include <linux/export.h>
L
Linus Torvalds 已提交
41 42 43 44
#include <linux/mount.h>
#include <linux/namei.h>
#include <linux/pagemap.h>
#include <linux/proc_fs.h>
45
#include <linux/rcupdate.h>
L
Linus Torvalds 已提交
46 47
#include <linux/sched.h>
#include <linux/seq_file.h>
48
#include <linux/security.h>
L
Linus Torvalds 已提交
49 50 51 52 53 54 55 56 57
#include <linux/slab.h>
#include <linux/spinlock.h>
#include <linux/stat.h>
#include <linux/string.h>
#include <linux/time.h>
#include <linux/backing-dev.h>
#include <linux/sort.h>

#include <asm/uaccess.h>
A
Arun Sharma 已提交
58
#include <linux/atomic.h>
59
#include <linux/mutex.h>
60 61
#include <linux/workqueue.h>
#include <linux/cgroup.h>
62
#include <linux/wait.h>
L
Linus Torvalds 已提交
63

64 65 66 67 68
/*
 * Tracks how many cpusets are currently defined in system.
 * When there is only one cpuset (the root cpuset) we can
 * short circuit some hooks.
 */
69
int number_of_cpusets __read_mostly;
70

71
/* Forward declare cgroup structures */
72 73 74
struct cgroup_subsys cpuset_subsys;
struct cpuset;

75 76 77 78 79 80 81 82 83
/* See "Frequency meter" comments, below. */

struct fmeter {
	int cnt;		/* unprocessed events count */
	int val;		/* most recent output value */
	time_t time;		/* clock (secs) when val computed */
	spinlock_t lock;	/* guards read or write of above */
};

L
Linus Torvalds 已提交
84
struct cpuset {
85 86
	struct cgroup_subsys_state css;

L
Linus Torvalds 已提交
87
	unsigned long flags;		/* "unsigned long" so bitops work */
88
	cpumask_var_t cpus_allowed;	/* CPUs allowed to tasks in cpuset */
L
Linus Torvalds 已提交
89 90
	nodemask_t mems_allowed;	/* Memory Nodes allowed to tasks */

91 92 93 94 95 96 97 98 99 100 101 102
	/*
	 * This is old Memory Nodes tasks took on.
	 *
	 * - top_cpuset.old_mems_allowed is initialized to mems_allowed.
	 * - A new cpuset's old_mems_allowed is initialized when some
	 *   task is moved into it.
	 * - old_mems_allowed is used in cpuset_migrate_mm() when we change
	 *   cpuset.mems_allowed and have tasks' nodemask updated, and
	 *   then old_mems_allowed is updated to mems_allowed.
	 */
	nodemask_t old_mems_allowed;

103
	struct fmeter fmeter;		/* memory_pressure filter */
P
Paul Jackson 已提交
104

105 106 107 108 109 110
	/*
	 * Tasks are being attached to this cpuset.  Used to prevent
	 * zeroing cpus/mems_allowed between ->can_attach() and ->attach().
	 */
	int attach_in_progress;

P
Paul Jackson 已提交
111 112
	/* partition number for rebuild_sched_domains() */
	int pn;
113

114 115
	/* for custom sched domain */
	int relax_domain_level;
L
Linus Torvalds 已提交
116 117
};

118 119 120 121 122 123 124 125 126 127 128 129 130 131
/* Retrieve the cpuset for a cgroup */
static inline struct cpuset *cgroup_cs(struct cgroup *cont)
{
	return container_of(cgroup_subsys_state(cont, cpuset_subsys_id),
			    struct cpuset, css);
}

/* Retrieve the cpuset for a task */
static inline struct cpuset *task_cs(struct task_struct *task)
{
	return container_of(task_subsys_state(task, cpuset_subsys_id),
			    struct cpuset, css);
}

T
Tejun Heo 已提交
132 133 134 135 136 137 138 139 140
static inline struct cpuset *parent_cs(const struct cpuset *cs)
{
	struct cgroup *pcgrp = cs->css.cgroup->parent;

	if (pcgrp)
		return cgroup_cs(pcgrp);
	return NULL;
}

141 142 143 144 145 146 147 148 149 150 151 152 153
#ifdef CONFIG_NUMA
static inline bool task_has_mempolicy(struct task_struct *task)
{
	return task->mempolicy;
}
#else
static inline bool task_has_mempolicy(struct task_struct *task)
{
	return false;
}
#endif


L
Linus Torvalds 已提交
154 155
/* bits in struct cpuset flags field */
typedef enum {
T
Tejun Heo 已提交
156
	CS_ONLINE,
L
Linus Torvalds 已提交
157 158
	CS_CPU_EXCLUSIVE,
	CS_MEM_EXCLUSIVE,
159
	CS_MEM_HARDWALL,
160
	CS_MEMORY_MIGRATE,
P
Paul Jackson 已提交
161
	CS_SCHED_LOAD_BALANCE,
162 163
	CS_SPREAD_PAGE,
	CS_SPREAD_SLAB,
L
Linus Torvalds 已提交
164 165 166
} cpuset_flagbits_t;

/* convenient tests for these bits */
T
Tejun Heo 已提交
167 168 169 170 171
static inline bool is_cpuset_online(const struct cpuset *cs)
{
	return test_bit(CS_ONLINE, &cs->flags);
}

L
Linus Torvalds 已提交
172 173
static inline int is_cpu_exclusive(const struct cpuset *cs)
{
174
	return test_bit(CS_CPU_EXCLUSIVE, &cs->flags);
L
Linus Torvalds 已提交
175 176 177 178
}

static inline int is_mem_exclusive(const struct cpuset *cs)
{
179
	return test_bit(CS_MEM_EXCLUSIVE, &cs->flags);
L
Linus Torvalds 已提交
180 181
}

182 183 184 185 186
static inline int is_mem_hardwall(const struct cpuset *cs)
{
	return test_bit(CS_MEM_HARDWALL, &cs->flags);
}

P
Paul Jackson 已提交
187 188 189 190 191
static inline int is_sched_load_balance(const struct cpuset *cs)
{
	return test_bit(CS_SCHED_LOAD_BALANCE, &cs->flags);
}

192 193
static inline int is_memory_migrate(const struct cpuset *cs)
{
194
	return test_bit(CS_MEMORY_MIGRATE, &cs->flags);
195 196
}

197 198 199 200 201 202 203 204 205 206
static inline int is_spread_page(const struct cpuset *cs)
{
	return test_bit(CS_SPREAD_PAGE, &cs->flags);
}

static inline int is_spread_slab(const struct cpuset *cs)
{
	return test_bit(CS_SPREAD_SLAB, &cs->flags);
}

L
Linus Torvalds 已提交
207
static struct cpuset top_cpuset = {
T
Tejun Heo 已提交
208 209
	.flags = ((1 << CS_ONLINE) | (1 << CS_CPU_EXCLUSIVE) |
		  (1 << CS_MEM_EXCLUSIVE)),
L
Linus Torvalds 已提交
210 211
};

212 213 214 215 216 217 218 219 220 221 222 223 224
/**
 * cpuset_for_each_child - traverse online children of a cpuset
 * @child_cs: loop cursor pointing to the current child
 * @pos_cgrp: used for iteration
 * @parent_cs: target cpuset to walk children of
 *
 * Walk @child_cs through the online children of @parent_cs.  Must be used
 * with RCU read locked.
 */
#define cpuset_for_each_child(child_cs, pos_cgrp, parent_cs)		\
	cgroup_for_each_child((pos_cgrp), (parent_cs)->css.cgroup)	\
		if (is_cpuset_online(((child_cs) = cgroup_cs((pos_cgrp)))))

225 226 227 228 229 230 231 232 233 234 235 236 237 238
/**
 * cpuset_for_each_descendant_pre - pre-order walk of a cpuset's descendants
 * @des_cs: loop cursor pointing to the current descendant
 * @pos_cgrp: used for iteration
 * @root_cs: target cpuset to walk ancestor of
 *
 * Walk @des_cs through the online descendants of @root_cs.  Must be used
 * with RCU read locked.  The caller may modify @pos_cgrp by calling
 * cgroup_rightmost_descendant() to skip subtree.
 */
#define cpuset_for_each_descendant_pre(des_cs, pos_cgrp, root_cs)	\
	cgroup_for_each_descendant_pre((pos_cgrp), (root_cs)->css.cgroup) \
		if (is_cpuset_online(((des_cs) = cgroup_cs((pos_cgrp)))))

L
Linus Torvalds 已提交
239
/*
240 241 242 243 244 245 246 247 248 249 250 251 252 253
 * There are two global mutexes guarding cpuset structures - cpuset_mutex
 * and callback_mutex.  The latter may nest inside the former.  We also
 * require taking task_lock() when dereferencing a task's cpuset pointer.
 * See "The task_lock() exception", at the end of this comment.
 *
 * A task must hold both mutexes to modify cpusets.  If a task holds
 * cpuset_mutex, then it blocks others wanting that mutex, ensuring that it
 * is the only task able to also acquire callback_mutex and be able to
 * modify cpusets.  It can perform various checks on the cpuset structure
 * first, knowing nothing will change.  It can also allocate memory while
 * just holding cpuset_mutex.  While it is performing these checks, various
 * callback routines can briefly acquire callback_mutex to query cpusets.
 * Once it is ready to make the changes, it takes callback_mutex, blocking
 * everyone else.
254 255
 *
 * Calls to the kernel memory allocator can not be made while holding
256
 * callback_mutex, as that would risk double tripping on callback_mutex
257 258 259
 * from one of the callbacks into the cpuset code from within
 * __alloc_pages().
 *
260
 * If a task is only holding callback_mutex, then it has read-only
261 262
 * access to cpusets.
 *
263 264 265
 * Now, the task_struct fields mems_allowed and mempolicy may be changed
 * by other task, we use alloc_lock in the task_struct fields to protect
 * them.
266
 *
267
 * The cpuset_common_file_read() handlers only hold callback_mutex across
268 269 270
 * small pieces of code, such as when reading out possibly multi-word
 * cpumasks and nodemasks.
 *
271 272
 * Accessing a task's cpuset should be done in accordance with the
 * guidelines for accessing subsystem state in kernel/cgroup.c
L
Linus Torvalds 已提交
273 274
 */

275
static DEFINE_MUTEX(cpuset_mutex);
276
static DEFINE_MUTEX(callback_mutex);
277

278 279 280 281 282 283
/*
 * CPU / memory hotplug is handled asynchronously.
 */
static void cpuset_hotplug_workfn(struct work_struct *work);
static DECLARE_WORK(cpuset_hotplug_work, cpuset_hotplug_workfn);

284 285
static DECLARE_WAIT_QUEUE_HEAD(cpuset_attach_wq);

286 287
/*
 * This is ugly, but preserves the userspace API for existing cpuset
288
 * users. If someone tries to mount the "cpuset" filesystem, we
289 290
 * silently switch it to mount "cgroup" instead
 */
A
Al Viro 已提交
291 292
static struct dentry *cpuset_mount(struct file_system_type *fs_type,
			 int flags, const char *unused_dev_name, void *data)
L
Linus Torvalds 已提交
293
{
294
	struct file_system_type *cgroup_fs = get_fs_type("cgroup");
A
Al Viro 已提交
295
	struct dentry *ret = ERR_PTR(-ENODEV);
296 297 298 299
	if (cgroup_fs) {
		char mountopts[] =
			"cpuset,noprefix,"
			"release_agent=/sbin/cpuset_release_agent";
A
Al Viro 已提交
300 301
		ret = cgroup_fs->mount(cgroup_fs, flags,
					   unused_dev_name, mountopts);
302 303 304
		put_filesystem(cgroup_fs);
	}
	return ret;
L
Linus Torvalds 已提交
305 306 307 308
}

static struct file_system_type cpuset_fs_type = {
	.name = "cpuset",
A
Al Viro 已提交
309
	.mount = cpuset_mount,
L
Linus Torvalds 已提交
310 311 312
};

/*
313
 * Return in pmask the portion of a cpusets's cpus_allowed that
L
Linus Torvalds 已提交
314
 * are online.  If none are online, walk up the cpuset hierarchy
315 316
 * until we find one that does have some online cpus.  The top
 * cpuset always has some cpus online.
L
Linus Torvalds 已提交
317 318
 *
 * One way or another, we guarantee to return some non-empty subset
319
 * of cpu_online_mask.
L
Linus Torvalds 已提交
320
 *
321
 * Call with callback_mutex held.
L
Linus Torvalds 已提交
322
 */
323 324
static void guarantee_online_cpus(const struct cpuset *cs,
				  struct cpumask *pmask)
L
Linus Torvalds 已提交
325
{
326
	while (!cpumask_intersects(cs->cpus_allowed, cpu_online_mask))
T
Tejun Heo 已提交
327
		cs = parent_cs(cs);
328
	cpumask_and(pmask, cs->cpus_allowed, cpu_online_mask);
L
Linus Torvalds 已提交
329 330 331 332
}

/*
 * Return in *pmask the portion of a cpusets's mems_allowed that
333 334
 * are online, with memory.  If none are online with memory, walk
 * up the cpuset hierarchy until we find one that does have some
335
 * online mems.  The top cpuset always has some mems online.
L
Linus Torvalds 已提交
336 337
 *
 * One way or another, we guarantee to return some non-empty subset
338
 * of node_states[N_MEMORY].
L
Linus Torvalds 已提交
339
 *
340
 * Call with callback_mutex held.
L
Linus Torvalds 已提交
341 342 343
 */
static void guarantee_online_mems(const struct cpuset *cs, nodemask_t *pmask)
{
344
	while (!nodes_intersects(cs->mems_allowed, node_states[N_MEMORY]))
T
Tejun Heo 已提交
345
		cs = parent_cs(cs);
346
	nodes_and(*pmask, cs->mems_allowed, node_states[N_MEMORY]);
L
Linus Torvalds 已提交
347 348
}

349 350 351
/*
 * update task's spread flag if cpuset's page/slab spread flag is set
 *
352
 * Called with callback_mutex/cpuset_mutex held
353 354 355 356 357 358 359 360 361 362 363 364 365 366
 */
static void cpuset_update_task_spread_flag(struct cpuset *cs,
					struct task_struct *tsk)
{
	if (is_spread_page(cs))
		tsk->flags |= PF_SPREAD_PAGE;
	else
		tsk->flags &= ~PF_SPREAD_PAGE;
	if (is_spread_slab(cs))
		tsk->flags |= PF_SPREAD_SLAB;
	else
		tsk->flags &= ~PF_SPREAD_SLAB;
}

L
Linus Torvalds 已提交
367 368 369 370 371
/*
 * is_cpuset_subset(p, q) - Is cpuset p a subset of cpuset q?
 *
 * One cpuset is a subset of another if all its allowed CPUs and
 * Memory Nodes are a subset of the other, and its exclusive flags
372
 * are only set if the other's are set.  Call holding cpuset_mutex.
L
Linus Torvalds 已提交
373 374 375 376
 */

static int is_cpuset_subset(const struct cpuset *p, const struct cpuset *q)
{
377
	return	cpumask_subset(p->cpus_allowed, q->cpus_allowed) &&
L
Linus Torvalds 已提交
378 379 380 381 382
		nodes_subset(p->mems_allowed, q->mems_allowed) &&
		is_cpu_exclusive(p) <= is_cpu_exclusive(q) &&
		is_mem_exclusive(p) <= is_mem_exclusive(q);
}

383 384 385 386 387 388
/**
 * alloc_trial_cpuset - allocate a trial cpuset
 * @cs: the cpuset that the trial cpuset duplicates
 */
static struct cpuset *alloc_trial_cpuset(const struct cpuset *cs)
{
389 390 391 392 393 394 395 396 397 398 399 400 401
	struct cpuset *trial;

	trial = kmemdup(cs, sizeof(*cs), GFP_KERNEL);
	if (!trial)
		return NULL;

	if (!alloc_cpumask_var(&trial->cpus_allowed, GFP_KERNEL)) {
		kfree(trial);
		return NULL;
	}
	cpumask_copy(trial->cpus_allowed, cs->cpus_allowed);

	return trial;
402 403 404 405 406 407 408 409
}

/**
 * free_trial_cpuset - free the trial cpuset
 * @trial: the trial cpuset to be freed
 */
static void free_trial_cpuset(struct cpuset *trial)
{
410
	free_cpumask_var(trial->cpus_allowed);
411 412 413
	kfree(trial);
}

L
Linus Torvalds 已提交
414 415 416 417 418 419 420
/*
 * validate_change() - Used to validate that any proposed cpuset change
 *		       follows the structural rules for cpusets.
 *
 * If we replaced the flag and mask values of the current cpuset
 * (cur) with those values in the trial cpuset (trial), would
 * our various subset and exclusive rules still be valid?  Presumes
421
 * cpuset_mutex held.
L
Linus Torvalds 已提交
422 423 424 425 426 427 428 429 430 431 432 433 434 435
 *
 * 'cur' is the address of an actual, in-use cpuset.  Operations
 * such as list traversal that depend on the actual address of the
 * cpuset in the list must use cur below, not trial.
 *
 * 'trial' is the address of bulk structure copy of cur, with
 * perhaps one or more of the fields cpus_allowed, mems_allowed,
 * or flags changed to new, trial values.
 *
 * Return 0 if valid, -errno if not.
 */

static int validate_change(const struct cpuset *cur, const struct cpuset *trial)
{
436
	struct cgroup *cont;
L
Linus Torvalds 已提交
437
	struct cpuset *c, *par;
438 439 440
	int ret;

	rcu_read_lock();
L
Linus Torvalds 已提交
441 442

	/* Each of our child cpusets must be a subset of us */
443 444 445 446
	ret = -EBUSY;
	cpuset_for_each_child(c, cont, cur)
		if (!is_cpuset_subset(c, trial))
			goto out;
L
Linus Torvalds 已提交
447 448

	/* Remaining checks don't apply to root cpuset */
449
	ret = 0;
450
	if (cur == &top_cpuset)
451
		goto out;
L
Linus Torvalds 已提交
452

T
Tejun Heo 已提交
453
	par = parent_cs(cur);
454

L
Linus Torvalds 已提交
455
	/* We must be a subset of our parent cpuset */
456
	ret = -EACCES;
L
Linus Torvalds 已提交
457
	if (!is_cpuset_subset(trial, par))
458
		goto out;
L
Linus Torvalds 已提交
459

460 461 462 463
	/*
	 * If either I or some sibling (!= me) is exclusive, we can't
	 * overlap
	 */
464 465
	ret = -EINVAL;
	cpuset_for_each_child(c, cont, par) {
L
Linus Torvalds 已提交
466 467
		if ((is_cpu_exclusive(trial) || is_cpu_exclusive(c)) &&
		    c != cur &&
468
		    cpumask_intersects(trial->cpus_allowed, c->cpus_allowed))
469
			goto out;
L
Linus Torvalds 已提交
470 471 472
		if ((is_mem_exclusive(trial) || is_mem_exclusive(c)) &&
		    c != cur &&
		    nodes_intersects(trial->mems_allowed, c->mems_allowed))
473
			goto out;
L
Linus Torvalds 已提交
474 475
	}

476 477 478 479
	/*
	 * Cpusets with tasks - existing or newly being attached - can't
	 * have empty cpus_allowed or mems_allowed.
	 */
480
	ret = -ENOSPC;
481
	if ((cgroup_task_count(cur->css.cgroup) || cur->attach_in_progress) &&
482
	    (cpumask_empty(trial->cpus_allowed) &&
483 484
	     nodes_empty(trial->mems_allowed)))
		goto out;
485

486 487 488 489
	ret = 0;
out:
	rcu_read_unlock();
	return ret;
L
Linus Torvalds 已提交
490 491
}

492
#ifdef CONFIG_SMP
P
Paul Jackson 已提交
493
/*
494
 * Helper routine for generate_sched_domains().
P
Paul Jackson 已提交
495 496 497 498
 * Do cpusets a, b have overlapping cpus_allowed masks?
 */
static int cpusets_overlap(struct cpuset *a, struct cpuset *b)
{
499
	return cpumask_intersects(a->cpus_allowed, b->cpus_allowed);
P
Paul Jackson 已提交
500 501
}

502 503 504 505 506 507 508 509
static void
update_domain_attr(struct sched_domain_attr *dattr, struct cpuset *c)
{
	if (dattr->relax_domain_level < c->relax_domain_level)
		dattr->relax_domain_level = c->relax_domain_level;
	return;
}

510 511
static void update_domain_attr_tree(struct sched_domain_attr *dattr,
				    struct cpuset *root_cs)
512
{
513 514
	struct cpuset *cp;
	struct cgroup *pos_cgrp;
515

516 517 518 519 520
	rcu_read_lock();
	cpuset_for_each_descendant_pre(cp, pos_cgrp, root_cs) {
		/* skip the whole subtree if @cp doesn't have any CPU */
		if (cpumask_empty(cp->cpus_allowed)) {
			pos_cgrp = cgroup_rightmost_descendant(pos_cgrp);
521
			continue;
522
		}
523 524 525 526

		if (is_sched_load_balance(cp))
			update_domain_attr(dattr, cp);
	}
527
	rcu_read_unlock();
528 529
}

P
Paul Jackson 已提交
530
/*
531 532 533 534 535 536 537 538 539
 * generate_sched_domains()
 *
 * This function builds a partial partition of the systems CPUs
 * A 'partial partition' is a set of non-overlapping subsets whose
 * union is a subset of that set.
 * The output of this function needs to be passed to kernel/sched.c
 * partition_sched_domains() routine, which will rebuild the scheduler's
 * load balancing domains (sched domains) as specified by that partial
 * partition.
P
Paul Jackson 已提交
540
 *
L
Li Zefan 已提交
541
 * See "What is sched_load_balance" in Documentation/cgroups/cpusets.txt
P
Paul Jackson 已提交
542 543 544 545 546 547 548
 * for a background explanation of this.
 *
 * Does not return errors, on the theory that the callers of this
 * routine would rather not worry about failures to rebuild sched
 * domains when operating in the severe memory shortage situations
 * that could cause allocation failures below.
 *
549
 * Must be called with cpuset_mutex held.
P
Paul Jackson 已提交
550 551
 *
 * The three key local variables below are:
552
 *    q  - a linked-list queue of cpuset pointers, used to implement a
P
Paul Jackson 已提交
553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583
 *	   top-down scan of all cpusets.  This scan loads a pointer
 *	   to each cpuset marked is_sched_load_balance into the
 *	   array 'csa'.  For our purposes, rebuilding the schedulers
 *	   sched domains, we can ignore !is_sched_load_balance cpusets.
 *  csa  - (for CpuSet Array) Array of pointers to all the cpusets
 *	   that need to be load balanced, for convenient iterative
 *	   access by the subsequent code that finds the best partition,
 *	   i.e the set of domains (subsets) of CPUs such that the
 *	   cpus_allowed of every cpuset marked is_sched_load_balance
 *	   is a subset of one of these domains, while there are as
 *	   many such domains as possible, each as small as possible.
 * doms  - Conversion of 'csa' to an array of cpumasks, for passing to
 *	   the kernel/sched.c routine partition_sched_domains() in a
 *	   convenient format, that can be easily compared to the prior
 *	   value to determine what partition elements (sched domains)
 *	   were changed (added or removed.)
 *
 * Finding the best partition (set of domains):
 *	The triple nested loops below over i, j, k scan over the
 *	load balanced cpusets (using the array of cpuset pointers in
 *	csa[]) looking for pairs of cpusets that have overlapping
 *	cpus_allowed, but which don't have the same 'pn' partition
 *	number and gives them in the same partition number.  It keeps
 *	looping on the 'restart' label until it can no longer find
 *	any such pairs.
 *
 *	The union of the cpus_allowed masks from the set of
 *	all cpusets having the same 'pn' value then form the one
 *	element of the partition (one sched domain) to be passed to
 *	partition_sched_domains().
 */
584
static int generate_sched_domains(cpumask_var_t **domains,
585
			struct sched_domain_attr **attributes)
P
Paul Jackson 已提交
586 587 588 589 590
{
	struct cpuset *cp;	/* scans q */
	struct cpuset **csa;	/* array of all cpuset ptrs */
	int csn;		/* how many cpuset ptrs in csa so far */
	int i, j, k;		/* indices for partition finding loops */
591
	cpumask_var_t *doms;	/* resulting partition; i.e. sched domains */
592
	struct sched_domain_attr *dattr;  /* attributes for custom domains */
593
	int ndoms = 0;		/* number of sched domains in result */
594
	int nslot;		/* next empty doms[] struct cpumask slot */
595
	struct cgroup *pos_cgrp;
P
Paul Jackson 已提交
596 597

	doms = NULL;
598
	dattr = NULL;
599
	csa = NULL;
P
Paul Jackson 已提交
600 601 602

	/* Special case for the 99% of systems with one, full, sched domain */
	if (is_sched_load_balance(&top_cpuset)) {
603 604
		ndoms = 1;
		doms = alloc_sched_domains(ndoms);
P
Paul Jackson 已提交
605
		if (!doms)
606 607
			goto done;

608 609 610
		dattr = kmalloc(sizeof(struct sched_domain_attr), GFP_KERNEL);
		if (dattr) {
			*dattr = SD_ATTR_INIT;
611
			update_domain_attr_tree(dattr, &top_cpuset);
612
		}
613
		cpumask_copy(doms[0], top_cpuset.cpus_allowed);
614 615

		goto done;
P
Paul Jackson 已提交
616 617 618 619 620 621 622
	}

	csa = kmalloc(number_of_cpusets * sizeof(cp), GFP_KERNEL);
	if (!csa)
		goto done;
	csn = 0;

623 624
	rcu_read_lock();
	cpuset_for_each_descendant_pre(cp, pos_cgrp, &top_cpuset) {
625
		/*
626 627 628 629 630 631
		 * Continue traversing beyond @cp iff @cp has some CPUs and
		 * isn't load balancing.  The former is obvious.  The
		 * latter: All child cpusets contain a subset of the
		 * parent's cpus, so just skip them, and then we call
		 * update_domain_attr_tree() to calc relax_domain_level of
		 * the corresponding sched domain.
632
		 */
633 634
		if (!cpumask_empty(cp->cpus_allowed) &&
		    !is_sched_load_balance(cp))
635
			continue;
636

637 638 639 640 641 642 643
		if (is_sched_load_balance(cp))
			csa[csn++] = cp;

		/* skip @cp's subtree */
		pos_cgrp = cgroup_rightmost_descendant(pos_cgrp);
	}
	rcu_read_unlock();
P
Paul Jackson 已提交
644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671

	for (i = 0; i < csn; i++)
		csa[i]->pn = i;
	ndoms = csn;

restart:
	/* Find the best partition (set of sched domains) */
	for (i = 0; i < csn; i++) {
		struct cpuset *a = csa[i];
		int apn = a->pn;

		for (j = 0; j < csn; j++) {
			struct cpuset *b = csa[j];
			int bpn = b->pn;

			if (apn != bpn && cpusets_overlap(a, b)) {
				for (k = 0; k < csn; k++) {
					struct cpuset *c = csa[k];

					if (c->pn == bpn)
						c->pn = apn;
				}
				ndoms--;	/* one less element */
				goto restart;
			}
		}
	}

672 673 674 675
	/*
	 * Now we know how many domains to create.
	 * Convert <csn, csa> to <ndoms, doms> and populate cpu masks.
	 */
676
	doms = alloc_sched_domains(ndoms);
677
	if (!doms)
678 679 680 681 682 683
		goto done;

	/*
	 * The rest of the code, including the scheduler, can deal with
	 * dattr==NULL case. No need to abort if alloc fails.
	 */
684
	dattr = kmalloc(ndoms * sizeof(struct sched_domain_attr), GFP_KERNEL);
P
Paul Jackson 已提交
685 686 687

	for (nslot = 0, i = 0; i < csn; i++) {
		struct cpuset *a = csa[i];
688
		struct cpumask *dp;
P
Paul Jackson 已提交
689 690
		int apn = a->pn;

691 692 693 694 695
		if (apn < 0) {
			/* Skip completed partitions */
			continue;
		}

696
		dp = doms[nslot];
697 698 699 700 701 702 703 704 705 706

		if (nslot == ndoms) {
			static int warnings = 10;
			if (warnings) {
				printk(KERN_WARNING
				 "rebuild_sched_domains confused:"
				  " nslot %d, ndoms %d, csn %d, i %d,"
				  " apn %d\n",
				  nslot, ndoms, csn, i, apn);
				warnings--;
P
Paul Jackson 已提交
707
			}
708 709
			continue;
		}
P
Paul Jackson 已提交
710

711
		cpumask_clear(dp);
712 713 714 715 716 717
		if (dattr)
			*(dattr + nslot) = SD_ATTR_INIT;
		for (j = i; j < csn; j++) {
			struct cpuset *b = csa[j];

			if (apn == b->pn) {
718
				cpumask_or(dp, dp, b->cpus_allowed);
719 720 721 722 723
				if (dattr)
					update_domain_attr_tree(dattr + nslot, b);

				/* Done with this partition */
				b->pn = -1;
P
Paul Jackson 已提交
724 725
			}
		}
726
		nslot++;
P
Paul Jackson 已提交
727 728 729
	}
	BUG_ON(nslot != ndoms);

730 731 732
done:
	kfree(csa);

733 734 735 736 737 738 739
	/*
	 * Fallback to the default domain if kmalloc() failed.
	 * See comments in partition_sched_domains().
	 */
	if (doms == NULL)
		ndoms = 1;

740 741 742 743 744 745 746 747
	*domains    = doms;
	*attributes = dattr;
	return ndoms;
}

/*
 * Rebuild scheduler domains.
 *
748 749 750 751 752
 * If the flag 'sched_load_balance' of any cpuset with non-empty
 * 'cpus' changes, or if the 'cpus' allowed changes in any cpuset
 * which has that flag enabled, or if any cpuset with a non-empty
 * 'cpus' is removed, then call this routine to rebuild the
 * scheduler's dynamic sched domains.
753
 *
754
 * Call with cpuset_mutex held.  Takes get_online_cpus().
755
 */
756
static void rebuild_sched_domains_locked(void)
757 758
{
	struct sched_domain_attr *attr;
759
	cpumask_var_t *doms;
760 761
	int ndoms;

762
	lockdep_assert_held(&cpuset_mutex);
763
	get_online_cpus();
764

765 766 767 768 769 770 771 772
	/*
	 * We have raced with CPU hotplug. Don't do anything to avoid
	 * passing doms with offlined cpu to partition_sched_domains().
	 * Anyways, hotplug work item will rebuild sched domains.
	 */
	if (!cpumask_equal(top_cpuset.cpus_allowed, cpu_active_mask))
		goto out;

773 774 775 776 777
	/* Generate domain masks and attrs */
	ndoms = generate_sched_domains(&doms, &attr);

	/* Have scheduler rebuild the domains */
	partition_sched_domains(ndoms, doms, attr);
778
out:
779
	put_online_cpus();
780
}
781
#else /* !CONFIG_SMP */
782
static void rebuild_sched_domains_locked(void)
783 784 785
{
}
#endif /* CONFIG_SMP */
P
Paul Jackson 已提交
786

787 788
void rebuild_sched_domains(void)
{
789
	mutex_lock(&cpuset_mutex);
790
	rebuild_sched_domains_locked();
791
	mutex_unlock(&cpuset_mutex);
P
Paul Jackson 已提交
792 793
}

794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832
/*
 * effective_cpumask_cpuset - return nearest ancestor with non-empty cpus
 * @cs: the cpuset in interest
 *
 * A cpuset's effective cpumask is the cpumask of the nearest ancestor
 * with non-empty cpus. We use effective cpumask whenever:
 * - we update tasks' cpus_allowed. (they take on the ancestor's cpumask
 *   if the cpuset they reside in has no cpus)
 * - we want to retrieve task_cs(tsk)'s cpus_allowed.
 *
 * Called with cpuset_mutex held. cpuset_cpus_allowed_fallback() is an
 * exception. See comments there.
 */
static struct cpuset *effective_cpumask_cpuset(struct cpuset *cs)
{
	while (cpumask_empty(cs->cpus_allowed))
		cs = parent_cs(cs);
	return cs;
}

/*
 * effective_nodemask_cpuset - return nearest ancestor with non-empty mems
 * @cs: the cpuset in interest
 *
 * A cpuset's effective nodemask is the nodemask of the nearest ancestor
 * with non-empty memss. We use effective nodemask whenever:
 * - we update tasks' mems_allowed. (they take on the ancestor's nodemask
 *   if the cpuset they reside in has no mems)
 * - we want to retrieve task_cs(tsk)'s mems_allowed.
 *
 * Called with cpuset_mutex held.
 */
static struct cpuset *effective_nodemask_cpuset(struct cpuset *cs)
{
	while (nodes_empty(cs->mems_allowed))
		cs = parent_cs(cs);
	return cs;
}

C
Cliff Wickman 已提交
833 834 835 836 837 838 839 840 841
/**
 * cpuset_change_cpumask - make a task's cpus_allowed the same as its cpuset's
 * @tsk: task to test
 * @scan: struct cgroup_scanner containing the cgroup of the task
 *
 * Called by cgroup_scan_tasks() for each task in a cgroup whose
 * cpus_allowed mask needs to be changed.
 *
 * We don't need to re-check for the cgroup/cpuset membership, since we're
842
 * holding cpuset_mutex at this point.
C
Cliff Wickman 已提交
843
 */
844 845
static void cpuset_change_cpumask(struct task_struct *tsk,
				  struct cgroup_scanner *scan)
C
Cliff Wickman 已提交
846
{
847 848 849 850
	struct cpuset *cpus_cs;

	cpus_cs = effective_cpumask_cpuset(cgroup_cs(scan->cg));
	set_cpus_allowed_ptr(tsk, cpus_cs->cpus_allowed);
C
Cliff Wickman 已提交
851 852
}

853 854 855
/**
 * update_tasks_cpumask - Update the cpumasks of tasks in the cpuset.
 * @cs: the cpuset in which each task's cpus_allowed mask needs to be changed
856
 * @heap: if NULL, defer allocating heap memory to cgroup_scan_tasks()
857
 *
858
 * Called with cpuset_mutex held
859 860 861 862
 *
 * The cgroup_scan_tasks() function will scan all the tasks in a cgroup,
 * calling callback functions for each.
 *
863 864
 * No return value. It's guaranteed that cgroup_scan_tasks() always returns 0
 * if @heap != NULL.
865
 */
866
static void update_tasks_cpumask(struct cpuset *cs, struct ptr_heap *heap)
867 868 869 870
{
	struct cgroup_scanner scan;

	scan.cg = cs->css.cgroup;
L
Li Zefan 已提交
871
	scan.test_task = NULL;
872
	scan.process_task = cpuset_change_cpumask;
873 874
	scan.heap = heap;
	cgroup_scan_tasks(&scan);
875 876
}

877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915
/*
 * update_tasks_cpumask_hier - Update the cpumasks of tasks in the hierarchy.
 * @root_cs: the root cpuset of the hierarchy
 * @update_root: update root cpuset or not?
 * @heap: the heap used by cgroup_scan_tasks()
 *
 * This will update cpumasks of tasks in @root_cs and all other empty cpusets
 * which take on cpumask of @root_cs.
 *
 * Called with cpuset_mutex held
 */
static void update_tasks_cpumask_hier(struct cpuset *root_cs,
				      bool update_root, struct ptr_heap *heap)
{
	struct cpuset *cp;
	struct cgroup *pos_cgrp;

	if (update_root)
		update_tasks_cpumask(root_cs, heap);

	rcu_read_lock();
	cpuset_for_each_descendant_pre(cp, pos_cgrp, root_cs) {
		/* skip the whole subtree if @cp have some CPU */
		if (!cpumask_empty(cp->cpus_allowed)) {
			pos_cgrp = cgroup_rightmost_descendant(pos_cgrp);
			continue;
		}
		if (!css_tryget(&cp->css))
			continue;
		rcu_read_unlock();

		update_tasks_cpumask(cp, heap);

		rcu_read_lock();
		css_put(&cp->css);
	}
	rcu_read_unlock();
}

C
Cliff Wickman 已提交
916 917 918 919 920
/**
 * update_cpumask - update the cpus_allowed mask of a cpuset and all tasks in it
 * @cs: the cpuset to consider
 * @buf: buffer of cpu numbers written to this cpuset
 */
921 922
static int update_cpumask(struct cpuset *cs, struct cpuset *trialcs,
			  const char *buf)
L
Linus Torvalds 已提交
923
{
924
	struct ptr_heap heap;
C
Cliff Wickman 已提交
925 926
	int retval;
	int is_load_balanced;
L
Linus Torvalds 已提交
927

928
	/* top_cpuset.cpus_allowed tracks cpu_online_mask; it's read-only */
929 930 931
	if (cs == &top_cpuset)
		return -EACCES;

932
	/*
933
	 * An empty cpus_allowed is ok only if the cpuset has no tasks.
934 935 936
	 * Since cpulist_parse() fails on an empty mask, we special case
	 * that parsing.  The validate_change() call ensures that cpusets
	 * with tasks have cpus.
937
	 */
938
	if (!*buf) {
939
		cpumask_clear(trialcs->cpus_allowed);
940
	} else {
941
		retval = cpulist_parse(buf, trialcs->cpus_allowed);
942 943
		if (retval < 0)
			return retval;
944

945
		if (!cpumask_subset(trialcs->cpus_allowed, cpu_active_mask))
946
			return -EINVAL;
947
	}
P
Paul Jackson 已提交
948

P
Paul Menage 已提交
949
	/* Nothing to do if the cpus didn't change */
950
	if (cpumask_equal(cs->cpus_allowed, trialcs->cpus_allowed))
P
Paul Menage 已提交
951
		return 0;
C
Cliff Wickman 已提交
952

953 954 955 956
	retval = validate_change(cs, trialcs);
	if (retval < 0)
		return retval;

957 958 959 960
	retval = heap_init(&heap, PAGE_SIZE, GFP_KERNEL, NULL);
	if (retval)
		return retval;

961
	is_load_balanced = is_sched_load_balance(trialcs);
P
Paul Jackson 已提交
962

963
	mutex_lock(&callback_mutex);
964
	cpumask_copy(cs->cpus_allowed, trialcs->cpus_allowed);
965
	mutex_unlock(&callback_mutex);
P
Paul Jackson 已提交
966

967
	update_tasks_cpumask_hier(cs, true, &heap);
968 969

	heap_free(&heap);
C
Cliff Wickman 已提交
970

P
Paul Menage 已提交
971
	if (is_load_balanced)
972
		rebuild_sched_domains_locked();
973
	return 0;
L
Linus Torvalds 已提交
974 975
}

976 977 978 979 980 981 982 983
/*
 * cpuset_migrate_mm
 *
 *    Migrate memory region from one set of nodes to another.
 *
 *    Temporarilly set tasks mems_allowed to target nodes of migration,
 *    so that the migration code can allocate pages on these nodes.
 *
984
 *    Call holding cpuset_mutex, so current's cpuset won't change
985
 *    during this call, as manage_mutex holds off any cpuset_attach()
986 987
 *    calls.  Therefore we don't need to take task_lock around the
 *    call to guarantee_online_mems(), as we know no one is changing
988
 *    our task's cpuset.
989 990 991 992 993 994 995 996 997 998 999
 *
 *    While the mm_struct we are migrating is typically from some
 *    other task, the task_struct mems_allowed that we are hacking
 *    is for our current task, which must allocate new pages for that
 *    migrating memory region.
 */

static void cpuset_migrate_mm(struct mm_struct *mm, const nodemask_t *from,
							const nodemask_t *to)
{
	struct task_struct *tsk = current;
1000
	struct cpuset *mems_cs;
1001 1002 1003 1004 1005

	tsk->mems_allowed = *to;

	do_migrate_pages(mm, from, to, MPOL_MF_MOVE_ALL);

1006 1007
	mems_cs = effective_nodemask_cpuset(task_cs(tsk));
	guarantee_online_mems(mems_cs, &tsk->mems_allowed);
1008 1009
}

1010
/*
1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021
 * cpuset_change_task_nodemask - change task's mems_allowed and mempolicy
 * @tsk: the task to change
 * @newmems: new nodes that the task will be set
 *
 * In order to avoid seeing no nodes if the old and new nodes are disjoint,
 * we structure updates as setting all new allowed nodes, then clearing newly
 * disallowed ones.
 */
static void cpuset_change_task_nodemask(struct task_struct *tsk,
					nodemask_t *newmems)
{
1022
	bool need_loop;
1023

1024 1025 1026 1027 1028 1029 1030 1031 1032 1033
	/*
	 * Allow tasks that have access to memory reserves because they have
	 * been OOM killed to get memory anywhere.
	 */
	if (unlikely(test_thread_flag(TIF_MEMDIE)))
		return;
	if (current->flags & PF_EXITING) /* Let dying task have memory */
		return;

	task_lock(tsk);
1034 1035 1036 1037 1038 1039 1040 1041
	/*
	 * Determine if a loop is necessary if another thread is doing
	 * get_mems_allowed().  If at least one node remains unchanged and
	 * tsk does not have a mempolicy, then an empty nodemask will not be
	 * possible when mems_allowed is larger than a word.
	 */
	need_loop = task_has_mempolicy(tsk) ||
			!nodes_intersects(*newmems, tsk->mems_allowed);
1042

1043 1044
	if (need_loop)
		write_seqcount_begin(&tsk->mems_allowed_seq);
1045

1046 1047
	nodes_or(tsk->mems_allowed, tsk->mems_allowed, *newmems);
	mpol_rebind_task(tsk, newmems, MPOL_REBIND_STEP1);
1048 1049

	mpol_rebind_task(tsk, newmems, MPOL_REBIND_STEP2);
1050
	tsk->mems_allowed = *newmems;
1051 1052 1053 1054

	if (need_loop)
		write_seqcount_end(&tsk->mems_allowed_seq);

1055
	task_unlock(tsk);
1056 1057 1058 1059 1060
}

/*
 * Update task's mems_allowed and rebind its mempolicy and vmas' mempolicy
 * of it to cpuset's new mems_allowed, and migrate pages to new nodes if
1061
 * memory_migrate flag is set. Called with cpuset_mutex held.
1062 1063 1064 1065
 */
static void cpuset_change_nodemask(struct task_struct *p,
				   struct cgroup_scanner *scan)
{
1066
	struct cpuset *cs = cgroup_cs(scan->cg);
1067 1068
	struct mm_struct *mm;
	int migrate;
1069
	nodemask_t *newmems = scan->data;
1070

1071
	cpuset_change_task_nodemask(p, newmems);
1072

1073 1074 1075 1076 1077 1078 1079 1080
	mm = get_task_mm(p);
	if (!mm)
		return;

	migrate = is_memory_migrate(cs);

	mpol_rebind_mm(mm, &cs->mems_allowed);
	if (migrate)
1081
		cpuset_migrate_mm(mm, &cs->old_mems_allowed, newmems);
1082 1083 1084
	mmput(mm);
}

1085 1086
static void *cpuset_being_rebound;

1087 1088 1089
/**
 * update_tasks_nodemask - Update the nodemasks of tasks in the cpuset.
 * @cs: the cpuset in which each task's mems_allowed mask needs to be changed
1090
 * @heap: if NULL, defer allocating heap memory to cgroup_scan_tasks()
1091
 *
1092
 * Called with cpuset_mutex held
1093 1094
 * No return value. It's guaranteed that cgroup_scan_tasks() always returns 0
 * if @heap != NULL.
1095
 */
1096
static void update_tasks_nodemask(struct cpuset *cs, struct ptr_heap *heap)
L
Linus Torvalds 已提交
1097
{
1098
	static nodemask_t newmems;	/* protected by cpuset_mutex */
1099
	struct cgroup_scanner scan;
1100
	struct cpuset *mems_cs = effective_nodemask_cpuset(cs);
1101

1102
	cpuset_being_rebound = cs;		/* causes mpol_dup() rebind */
1103

1104
	guarantee_online_mems(mems_cs, &newmems);
1105

1106 1107 1108
	scan.cg = cs->css.cgroup;
	scan.test_task = NULL;
	scan.process_task = cpuset_change_nodemask;
1109
	scan.heap = heap;
1110
	scan.data = &newmems;
1111 1112

	/*
1113 1114 1115 1116
	 * The mpol_rebind_mm() call takes mmap_sem, which we couldn't
	 * take while holding tasklist_lock.  Forks can happen - the
	 * mpol_dup() cpuset_being_rebound check will catch such forks,
	 * and rebind their vma mempolicies too.  Because we still hold
1117
	 * the global cpuset_mutex, we know that no other rebind effort
1118
	 * will be contending for the global variable cpuset_being_rebound.
1119
	 * It's ok if we rebind the same mm twice; mpol_rebind_mm()
1120
	 * is idempotent.  Also migrate pages in each mm to new nodes.
1121
	 */
1122
	cgroup_scan_tasks(&scan);
1123

1124 1125 1126 1127 1128 1129
	/*
	 * All the tasks' nodemasks have been updated, update
	 * cs->old_mems_allowed.
	 */
	cs->old_mems_allowed = newmems;

1130
	/* We're done rebinding vmas to this cpuset's new mems_allowed. */
1131
	cpuset_being_rebound = NULL;
L
Linus Torvalds 已提交
1132 1133
}

1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172
/*
 * update_tasks_nodemask_hier - Update the nodemasks of tasks in the hierarchy.
 * @cs: the root cpuset of the hierarchy
 * @update_root: update the root cpuset or not?
 * @heap: the heap used by cgroup_scan_tasks()
 *
 * This will update nodemasks of tasks in @root_cs and all other empty cpusets
 * which take on nodemask of @root_cs.
 *
 * Called with cpuset_mutex held
 */
static void update_tasks_nodemask_hier(struct cpuset *root_cs,
				       bool update_root, struct ptr_heap *heap)
{
	struct cpuset *cp;
	struct cgroup *pos_cgrp;

	if (update_root)
		update_tasks_nodemask(root_cs, heap);

	rcu_read_lock();
	cpuset_for_each_descendant_pre(cp, pos_cgrp, root_cs) {
		/* skip the whole subtree if @cp have some CPU */
		if (!nodes_empty(cp->mems_allowed)) {
			pos_cgrp = cgroup_rightmost_descendant(pos_cgrp);
			continue;
		}
		if (!css_tryget(&cp->css))
			continue;
		rcu_read_unlock();

		update_tasks_nodemask(cp, heap);

		rcu_read_lock();
		css_put(&cp->css);
	}
	rcu_read_unlock();
}

1173 1174 1175
/*
 * Handle user request to change the 'mems' memory placement
 * of a cpuset.  Needs to validate the request, update the
1176 1177 1178 1179
 * cpusets mems_allowed, and for each task in the cpuset,
 * update mems_allowed and rebind task's mempolicy and any vma
 * mempolicies and if the cpuset is marked 'memory_migrate',
 * migrate the tasks pages to the new memory.
1180
 *
1181
 * Call with cpuset_mutex held.  May take callback_mutex during call.
1182 1183 1184 1185
 * Will take tasklist_lock, scan tasklist for tasks in cpuset cs,
 * lock each such tasks mm->mmap_sem, scan its vma's and rebind
 * their mempolicies to the cpusets new mems_allowed.
 */
1186 1187
static int update_nodemask(struct cpuset *cs, struct cpuset *trialcs,
			   const char *buf)
1188 1189
{
	int retval;
1190
	struct ptr_heap heap;
1191 1192

	/*
1193
	 * top_cpuset.mems_allowed tracks node_stats[N_MEMORY];
1194 1195
	 * it's read-only
	 */
1196 1197 1198 1199
	if (cs == &top_cpuset) {
		retval = -EACCES;
		goto done;
	}
1200 1201 1202 1203 1204 1205 1206 1207

	/*
	 * An empty mems_allowed is ok iff there are no tasks in the cpuset.
	 * Since nodelist_parse() fails on an empty mask, we special case
	 * that parsing.  The validate_change() call ensures that cpusets
	 * with tasks have memory.
	 */
	if (!*buf) {
1208
		nodes_clear(trialcs->mems_allowed);
1209
	} else {
1210
		retval = nodelist_parse(buf, trialcs->mems_allowed);
1211 1212 1213
		if (retval < 0)
			goto done;

1214
		if (!nodes_subset(trialcs->mems_allowed,
1215
				node_states[N_MEMORY])) {
1216 1217 1218
			retval =  -EINVAL;
			goto done;
		}
1219
	}
1220 1221

	if (nodes_equal(cs->mems_allowed, trialcs->mems_allowed)) {
1222 1223 1224
		retval = 0;		/* Too easy - nothing to do */
		goto done;
	}
1225
	retval = validate_change(cs, trialcs);
1226 1227 1228
	if (retval < 0)
		goto done;

1229 1230 1231 1232
	retval = heap_init(&heap, PAGE_SIZE, GFP_KERNEL, NULL);
	if (retval < 0)
		goto done;

1233
	mutex_lock(&callback_mutex);
1234
	cs->mems_allowed = trialcs->mems_allowed;
1235 1236
	mutex_unlock(&callback_mutex);

1237
	update_tasks_nodemask_hier(cs, true, &heap);
1238 1239

	heap_free(&heap);
1240 1241 1242 1243
done:
	return retval;
}

1244 1245 1246 1247 1248
int current_cpuset_is_being_rebound(void)
{
	return task_cs(current) == cpuset_being_rebound;
}

1249
static int update_relax_domain_level(struct cpuset *cs, s64 val)
1250
{
1251
#ifdef CONFIG_SMP
1252
	if (val < -1 || val >= sched_domain_level_max)
1253
		return -EINVAL;
1254
#endif
1255 1256 1257

	if (val != cs->relax_domain_level) {
		cs->relax_domain_level = val;
1258 1259
		if (!cpumask_empty(cs->cpus_allowed) &&
		    is_sched_load_balance(cs))
1260
			rebuild_sched_domains_locked();
1261 1262 1263 1264 1265
	}

	return 0;
}

1266 1267 1268 1269 1270 1271 1272 1273
/*
 * cpuset_change_flag - make a task's spread flags the same as its cpuset's
 * @tsk: task to be updated
 * @scan: struct cgroup_scanner containing the cgroup of the task
 *
 * Called by cgroup_scan_tasks() for each task in a cgroup.
 *
 * We don't need to re-check for the cgroup/cpuset membership, since we're
1274
 * holding cpuset_mutex at this point.
1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286
 */
static void cpuset_change_flag(struct task_struct *tsk,
				struct cgroup_scanner *scan)
{
	cpuset_update_task_spread_flag(cgroup_cs(scan->cg), tsk);
}

/*
 * update_tasks_flags - update the spread flags of tasks in the cpuset.
 * @cs: the cpuset in which each task's spread flags needs to be changed
 * @heap: if NULL, defer allocating heap memory to cgroup_scan_tasks()
 *
1287
 * Called with cpuset_mutex held
1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305
 *
 * The cgroup_scan_tasks() function will scan all the tasks in a cgroup,
 * calling callback functions for each.
 *
 * No return value. It's guaranteed that cgroup_scan_tasks() always returns 0
 * if @heap != NULL.
 */
static void update_tasks_flags(struct cpuset *cs, struct ptr_heap *heap)
{
	struct cgroup_scanner scan;

	scan.cg = cs->css.cgroup;
	scan.test_task = NULL;
	scan.process_task = cpuset_change_flag;
	scan.heap = heap;
	cgroup_scan_tasks(&scan);
}

L
Linus Torvalds 已提交
1306 1307
/*
 * update_flag - read a 0 or a 1 in a file and update associated flag
1308 1309 1310
 * bit:		the bit to update (see cpuset_flagbits_t)
 * cs:		the cpuset to update
 * turning_on: 	whether the flag is being set or cleared
1311
 *
1312
 * Call with cpuset_mutex held.
L
Linus Torvalds 已提交
1313 1314
 */

1315 1316
static int update_flag(cpuset_flagbits_t bit, struct cpuset *cs,
		       int turning_on)
L
Linus Torvalds 已提交
1317
{
1318
	struct cpuset *trialcs;
R
Rakib Mullick 已提交
1319
	int balance_flag_changed;
1320 1321 1322
	int spread_flag_changed;
	struct ptr_heap heap;
	int err;
L
Linus Torvalds 已提交
1323

1324 1325 1326 1327
	trialcs = alloc_trial_cpuset(cs);
	if (!trialcs)
		return -ENOMEM;

L
Linus Torvalds 已提交
1328
	if (turning_on)
1329
		set_bit(bit, &trialcs->flags);
L
Linus Torvalds 已提交
1330
	else
1331
		clear_bit(bit, &trialcs->flags);
L
Linus Torvalds 已提交
1332

1333
	err = validate_change(cs, trialcs);
1334
	if (err < 0)
1335
		goto out;
P
Paul Jackson 已提交
1336

1337 1338 1339 1340
	err = heap_init(&heap, PAGE_SIZE, GFP_KERNEL, NULL);
	if (err < 0)
		goto out;

P
Paul Jackson 已提交
1341
	balance_flag_changed = (is_sched_load_balance(cs) !=
1342
				is_sched_load_balance(trialcs));
P
Paul Jackson 已提交
1343

1344 1345 1346
	spread_flag_changed = ((is_spread_slab(cs) != is_spread_slab(trialcs))
			|| (is_spread_page(cs) != is_spread_page(trialcs)));

1347
	mutex_lock(&callback_mutex);
1348
	cs->flags = trialcs->flags;
1349
	mutex_unlock(&callback_mutex);
1350

1351
	if (!cpumask_empty(trialcs->cpus_allowed) && balance_flag_changed)
1352
		rebuild_sched_domains_locked();
P
Paul Jackson 已提交
1353

1354 1355 1356
	if (spread_flag_changed)
		update_tasks_flags(cs, &heap);
	heap_free(&heap);
1357 1358 1359
out:
	free_trial_cpuset(trialcs);
	return err;
L
Linus Torvalds 已提交
1360 1361
}

1362
/*
A
Adrian Bunk 已提交
1363
 * Frequency meter - How fast is some event occurring?
1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459
 *
 * These routines manage a digitally filtered, constant time based,
 * event frequency meter.  There are four routines:
 *   fmeter_init() - initialize a frequency meter.
 *   fmeter_markevent() - called each time the event happens.
 *   fmeter_getrate() - returns the recent rate of such events.
 *   fmeter_update() - internal routine used to update fmeter.
 *
 * A common data structure is passed to each of these routines,
 * which is used to keep track of the state required to manage the
 * frequency meter and its digital filter.
 *
 * The filter works on the number of events marked per unit time.
 * The filter is single-pole low-pass recursive (IIR).  The time unit
 * is 1 second.  Arithmetic is done using 32-bit integers scaled to
 * simulate 3 decimal digits of precision (multiplied by 1000).
 *
 * With an FM_COEF of 933, and a time base of 1 second, the filter
 * has a half-life of 10 seconds, meaning that if the events quit
 * happening, then the rate returned from the fmeter_getrate()
 * will be cut in half each 10 seconds, until it converges to zero.
 *
 * It is not worth doing a real infinitely recursive filter.  If more
 * than FM_MAXTICKS ticks have elapsed since the last filter event,
 * just compute FM_MAXTICKS ticks worth, by which point the level
 * will be stable.
 *
 * Limit the count of unprocessed events to FM_MAXCNT, so as to avoid
 * arithmetic overflow in the fmeter_update() routine.
 *
 * Given the simple 32 bit integer arithmetic used, this meter works
 * best for reporting rates between one per millisecond (msec) and
 * one per 32 (approx) seconds.  At constant rates faster than one
 * per msec it maxes out at values just under 1,000,000.  At constant
 * rates between one per msec, and one per second it will stabilize
 * to a value N*1000, where N is the rate of events per second.
 * At constant rates between one per second and one per 32 seconds,
 * it will be choppy, moving up on the seconds that have an event,
 * and then decaying until the next event.  At rates slower than
 * about one in 32 seconds, it decays all the way back to zero between
 * each event.
 */

#define FM_COEF 933		/* coefficient for half-life of 10 secs */
#define FM_MAXTICKS ((time_t)99) /* useless computing more ticks than this */
#define FM_MAXCNT 1000000	/* limit cnt to avoid overflow */
#define FM_SCALE 1000		/* faux fixed point scale */

/* Initialize a frequency meter */
static void fmeter_init(struct fmeter *fmp)
{
	fmp->cnt = 0;
	fmp->val = 0;
	fmp->time = 0;
	spin_lock_init(&fmp->lock);
}

/* Internal meter update - process cnt events and update value */
static void fmeter_update(struct fmeter *fmp)
{
	time_t now = get_seconds();
	time_t ticks = now - fmp->time;

	if (ticks == 0)
		return;

	ticks = min(FM_MAXTICKS, ticks);
	while (ticks-- > 0)
		fmp->val = (FM_COEF * fmp->val) / FM_SCALE;
	fmp->time = now;

	fmp->val += ((FM_SCALE - FM_COEF) * fmp->cnt) / FM_SCALE;
	fmp->cnt = 0;
}

/* Process any previous ticks, then bump cnt by one (times scale). */
static void fmeter_markevent(struct fmeter *fmp)
{
	spin_lock(&fmp->lock);
	fmeter_update(fmp);
	fmp->cnt = min(FM_MAXCNT, fmp->cnt + FM_SCALE);
	spin_unlock(&fmp->lock);
}

/* Process any previous ticks, then return current value. */
static int fmeter_getrate(struct fmeter *fmp)
{
	int val;

	spin_lock(&fmp->lock);
	fmeter_update(fmp);
	val = fmp->val;
	spin_unlock(&fmp->lock);
	return val;
}

1460
/* Called by cgroups to determine if a cpuset is usable; cpuset_mutex held */
1461
static int cpuset_can_attach(struct cgroup *cgrp, struct cgroup_taskset *tset)
1462
{
1463
	struct cpuset *cs = cgroup_cs(cgrp);
1464 1465
	struct task_struct *task;
	int ret;
L
Linus Torvalds 已提交
1466

1467 1468
	mutex_lock(&cpuset_mutex);

1469 1470 1471 1472
	/*
	 * We allow to move tasks into an empty cpuset if sane_behavior
	 * flag is set.
	 */
1473
	ret = -ENOSPC;
1474 1475
	if (!cgroup_sane_behavior(cgrp) &&
	    (cpumask_empty(cs->cpus_allowed) || nodes_empty(cs->mems_allowed)))
1476
		goto out_unlock;
1477

1478 1479
	cgroup_taskset_for_each(task, cgrp, tset) {
		/*
1480 1481 1482 1483 1484 1485 1486
		 * Kthreads which disallow setaffinity shouldn't be moved
		 * to a new cpuset; we don't want to change their cpu
		 * affinity and isolating such threads by their set of
		 * allowed nodes is unnecessary.  Thus, cpusets are not
		 * applicable for such threads.  This prevents checking for
		 * success of set_cpus_allowed_ptr() on all attached tasks
		 * before cpus_allowed may be changed.
1487
		 */
1488
		ret = -EINVAL;
1489
		if (task->flags & PF_NO_SETAFFINITY)
1490 1491 1492 1493
			goto out_unlock;
		ret = security_task_setscheduler(task);
		if (ret)
			goto out_unlock;
1494
	}
1495

1496 1497 1498 1499 1500
	/*
	 * Mark attach is in progress.  This makes validate_change() fail
	 * changes which zero cpus/mems_allowed.
	 */
	cs->attach_in_progress++;
1501 1502 1503 1504
	ret = 0;
out_unlock:
	mutex_unlock(&cpuset_mutex);
	return ret;
1505
}
1506

1507 1508 1509
static void cpuset_cancel_attach(struct cgroup *cgrp,
				 struct cgroup_taskset *tset)
{
1510
	mutex_lock(&cpuset_mutex);
1511
	cgroup_cs(cgrp)->attach_in_progress--;
1512
	mutex_unlock(&cpuset_mutex);
1513
}
L
Linus Torvalds 已提交
1514

1515
/*
1516
 * Protected by cpuset_mutex.  cpus_attach is used only by cpuset_attach()
1517 1518 1519 1520 1521
 * but we can't allocate it dynamically there.  Define it global and
 * allocate from cpuset_init().
 */
static cpumask_var_t cpus_attach;

1522
static void cpuset_attach(struct cgroup *cgrp, struct cgroup_taskset *tset)
1523
{
1524
	/* static buf protected by cpuset_mutex */
1525
	static nodemask_t cpuset_attach_nodemask_to;
1526
	struct mm_struct *mm;
1527 1528
	struct task_struct *task;
	struct task_struct *leader = cgroup_taskset_first(tset);
1529 1530 1531
	struct cgroup *oldcgrp = cgroup_taskset_cur_cgroup(tset);
	struct cpuset *cs = cgroup_cs(cgrp);
	struct cpuset *oldcs = cgroup_cs(oldcgrp);
1532 1533
	struct cpuset *cpus_cs = effective_cpumask_cpuset(cs);
	struct cpuset *mems_cs = effective_nodemask_cpuset(cs);
1534

1535 1536
	mutex_lock(&cpuset_mutex);

1537 1538 1539 1540
	/* prepare for attach */
	if (cs == &top_cpuset)
		cpumask_copy(cpus_attach, cpu_possible_mask);
	else
1541
		guarantee_online_cpus(cpus_cs, cpus_attach);
1542

1543
	guarantee_online_mems(mems_cs, &cpuset_attach_nodemask_to);
1544

1545 1546 1547 1548 1549 1550 1551 1552 1553 1554
	cgroup_taskset_for_each(task, cgrp, tset) {
		/*
		 * can_attach beforehand should guarantee that this doesn't
		 * fail.  TODO: have a better way to handle failure here
		 */
		WARN_ON_ONCE(set_cpus_allowed_ptr(task, cpus_attach));

		cpuset_change_task_nodemask(task, &cpuset_attach_nodemask_to);
		cpuset_update_task_spread_flag(cs, task);
	}
1555

1556 1557 1558 1559 1560
	/*
	 * Change mm, possibly for multiple threads in a threadgroup. This is
	 * expensive and may sleep.
	 */
	cpuset_attach_nodemask_to = cs->mems_allowed;
1561
	mm = get_task_mm(leader);
1562
	if (mm) {
1563 1564
		struct cpuset *mems_oldcs = effective_nodemask_cpuset(oldcs);

1565
		mpol_rebind_mm(mm, &cpuset_attach_nodemask_to);
1566
		if (is_memory_migrate(cs))
1567
			cpuset_migrate_mm(mm, &mems_oldcs->mems_allowed,
1568
					  &cpuset_attach_nodemask_to);
1569 1570
		mmput(mm);
	}
1571

1572 1573
	cs->old_mems_allowed = cpuset_attach_nodemask_to;

1574
	cs->attach_in_progress--;
1575 1576
	if (!cs->attach_in_progress)
		wake_up(&cpuset_attach_wq);
1577 1578

	mutex_unlock(&cpuset_mutex);
L
Linus Torvalds 已提交
1579 1580 1581 1582 1583
}

/* The various types of files and directories in a cpuset file system */

typedef enum {
1584
	FILE_MEMORY_MIGRATE,
L
Linus Torvalds 已提交
1585 1586 1587 1588
	FILE_CPULIST,
	FILE_MEMLIST,
	FILE_CPU_EXCLUSIVE,
	FILE_MEM_EXCLUSIVE,
1589
	FILE_MEM_HARDWALL,
P
Paul Jackson 已提交
1590
	FILE_SCHED_LOAD_BALANCE,
1591
	FILE_SCHED_RELAX_DOMAIN_LEVEL,
1592 1593
	FILE_MEMORY_PRESSURE_ENABLED,
	FILE_MEMORY_PRESSURE,
1594 1595
	FILE_SPREAD_PAGE,
	FILE_SPREAD_SLAB,
L
Linus Torvalds 已提交
1596 1597
} cpuset_filetype_t;

1598 1599 1600 1601
static int cpuset_write_u64(struct cgroup *cgrp, struct cftype *cft, u64 val)
{
	struct cpuset *cs = cgroup_cs(cgrp);
	cpuset_filetype_t type = cft->private;
1602
	int retval = -ENODEV;
1603

1604 1605 1606
	mutex_lock(&cpuset_mutex);
	if (!is_cpuset_online(cs))
		goto out_unlock;
1607 1608

	switch (type) {
L
Linus Torvalds 已提交
1609
	case FILE_CPU_EXCLUSIVE:
1610
		retval = update_flag(CS_CPU_EXCLUSIVE, cs, val);
L
Linus Torvalds 已提交
1611 1612
		break;
	case FILE_MEM_EXCLUSIVE:
1613
		retval = update_flag(CS_MEM_EXCLUSIVE, cs, val);
L
Linus Torvalds 已提交
1614
		break;
1615 1616 1617
	case FILE_MEM_HARDWALL:
		retval = update_flag(CS_MEM_HARDWALL, cs, val);
		break;
P
Paul Jackson 已提交
1618
	case FILE_SCHED_LOAD_BALANCE:
1619
		retval = update_flag(CS_SCHED_LOAD_BALANCE, cs, val);
1620
		break;
1621
	case FILE_MEMORY_MIGRATE:
1622
		retval = update_flag(CS_MEMORY_MIGRATE, cs, val);
1623
		break;
1624
	case FILE_MEMORY_PRESSURE_ENABLED:
1625
		cpuset_memory_pressure_enabled = !!val;
1626 1627 1628 1629
		break;
	case FILE_MEMORY_PRESSURE:
		retval = -EACCES;
		break;
1630
	case FILE_SPREAD_PAGE:
1631
		retval = update_flag(CS_SPREAD_PAGE, cs, val);
1632 1633
		break;
	case FILE_SPREAD_SLAB:
1634
		retval = update_flag(CS_SPREAD_SLAB, cs, val);
1635
		break;
L
Linus Torvalds 已提交
1636 1637
	default:
		retval = -EINVAL;
1638
		break;
L
Linus Torvalds 已提交
1639
	}
1640 1641
out_unlock:
	mutex_unlock(&cpuset_mutex);
L
Linus Torvalds 已提交
1642 1643 1644
	return retval;
}

1645 1646 1647 1648
static int cpuset_write_s64(struct cgroup *cgrp, struct cftype *cft, s64 val)
{
	struct cpuset *cs = cgroup_cs(cgrp);
	cpuset_filetype_t type = cft->private;
1649
	int retval = -ENODEV;
1650

1651 1652 1653
	mutex_lock(&cpuset_mutex);
	if (!is_cpuset_online(cs))
		goto out_unlock;
1654

1655 1656 1657 1658 1659 1660 1661 1662
	switch (type) {
	case FILE_SCHED_RELAX_DOMAIN_LEVEL:
		retval = update_relax_domain_level(cs, val);
		break;
	default:
		retval = -EINVAL;
		break;
	}
1663 1664
out_unlock:
	mutex_unlock(&cpuset_mutex);
1665 1666 1667
	return retval;
}

1668 1669 1670 1671 1672 1673
/*
 * Common handling for a write to a "cpus" or "mems" file.
 */
static int cpuset_write_resmask(struct cgroup *cgrp, struct cftype *cft,
				const char *buf)
{
1674 1675
	struct cpuset *cs = cgroup_cs(cgrp);
	struct cpuset *trialcs;
1676
	int retval = -ENODEV;
1677

1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690
	/*
	 * CPU or memory hotunplug may leave @cs w/o any execution
	 * resources, in which case the hotplug code asynchronously updates
	 * configuration and transfers all tasks to the nearest ancestor
	 * which can execute.
	 *
	 * As writes to "cpus" or "mems" may restore @cs's execution
	 * resources, wait for the previously scheduled operations before
	 * proceeding, so that we don't end up keep removing tasks added
	 * after execution capability is restored.
	 */
	flush_work(&cpuset_hotplug_work);

1691 1692 1693
	mutex_lock(&cpuset_mutex);
	if (!is_cpuset_online(cs))
		goto out_unlock;
1694

1695
	trialcs = alloc_trial_cpuset(cs);
1696 1697
	if (!trialcs) {
		retval = -ENOMEM;
1698
		goto out_unlock;
1699
	}
1700

1701 1702
	switch (cft->private) {
	case FILE_CPULIST:
1703
		retval = update_cpumask(cs, trialcs, buf);
1704 1705
		break;
	case FILE_MEMLIST:
1706
		retval = update_nodemask(cs, trialcs, buf);
1707 1708 1709 1710 1711
		break;
	default:
		retval = -EINVAL;
		break;
	}
1712 1713

	free_trial_cpuset(trialcs);
1714 1715
out_unlock:
	mutex_unlock(&cpuset_mutex);
1716 1717 1718
	return retval;
}

L
Linus Torvalds 已提交
1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730
/*
 * These ascii lists should be read in a single call, by using a user
 * buffer large enough to hold the entire map.  If read in smaller
 * chunks, there is no guarantee of atomicity.  Since the display format
 * used, list of ranges of sequential numbers, is variable length,
 * and since these maps can change value dynamically, one could read
 * gibberish by doing partial reads while a list was changing.
 * A single large read to a buffer that crosses a page boundary is
 * ok, because the result being copied to user land is not recomputed
 * across a page fault.
 */

1731
static size_t cpuset_sprintf_cpulist(char *page, struct cpuset *cs)
L
Linus Torvalds 已提交
1732
{
1733
	size_t count;
L
Linus Torvalds 已提交
1734

1735
	mutex_lock(&callback_mutex);
1736
	count = cpulist_scnprintf(page, PAGE_SIZE, cs->cpus_allowed);
1737
	mutex_unlock(&callback_mutex);
L
Linus Torvalds 已提交
1738

1739
	return count;
L
Linus Torvalds 已提交
1740 1741
}

1742
static size_t cpuset_sprintf_memlist(char *page, struct cpuset *cs)
L
Linus Torvalds 已提交
1743
{
1744
	size_t count;
L
Linus Torvalds 已提交
1745

1746
	mutex_lock(&callback_mutex);
1747
	count = nodelist_scnprintf(page, PAGE_SIZE, cs->mems_allowed);
1748
	mutex_unlock(&callback_mutex);
L
Linus Torvalds 已提交
1749

1750
	return count;
L
Linus Torvalds 已提交
1751 1752
}

1753 1754 1755 1756 1757
static ssize_t cpuset_common_file_read(struct cgroup *cont,
				       struct cftype *cft,
				       struct file *file,
				       char __user *buf,
				       size_t nbytes, loff_t *ppos)
L
Linus Torvalds 已提交
1758
{
1759
	struct cpuset *cs = cgroup_cs(cont);
L
Linus Torvalds 已提交
1760 1761 1762 1763 1764
	cpuset_filetype_t type = cft->private;
	char *page;
	ssize_t retval = 0;
	char *s;

1765
	if (!(page = (char *)__get_free_page(GFP_TEMPORARY)))
L
Linus Torvalds 已提交
1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782
		return -ENOMEM;

	s = page;

	switch (type) {
	case FILE_CPULIST:
		s += cpuset_sprintf_cpulist(s, cs);
		break;
	case FILE_MEMLIST:
		s += cpuset_sprintf_memlist(s, cs);
		break;
	default:
		retval = -EINVAL;
		goto out;
	}
	*s++ = '\n';

A
Al Viro 已提交
1783
	retval = simple_read_from_buffer(buf, nbytes, ppos, page, s - page);
L
Linus Torvalds 已提交
1784 1785 1786 1787 1788
out:
	free_page((unsigned long)page);
	return retval;
}

1789 1790 1791 1792 1793 1794 1795 1796 1797
static u64 cpuset_read_u64(struct cgroup *cont, struct cftype *cft)
{
	struct cpuset *cs = cgroup_cs(cont);
	cpuset_filetype_t type = cft->private;
	switch (type) {
	case FILE_CPU_EXCLUSIVE:
		return is_cpu_exclusive(cs);
	case FILE_MEM_EXCLUSIVE:
		return is_mem_exclusive(cs);
1798 1799
	case FILE_MEM_HARDWALL:
		return is_mem_hardwall(cs);
1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814
	case FILE_SCHED_LOAD_BALANCE:
		return is_sched_load_balance(cs);
	case FILE_MEMORY_MIGRATE:
		return is_memory_migrate(cs);
	case FILE_MEMORY_PRESSURE_ENABLED:
		return cpuset_memory_pressure_enabled;
	case FILE_MEMORY_PRESSURE:
		return fmeter_getrate(&cs->fmeter);
	case FILE_SPREAD_PAGE:
		return is_spread_page(cs);
	case FILE_SPREAD_SLAB:
		return is_spread_slab(cs);
	default:
		BUG();
	}
1815 1816 1817

	/* Unreachable but makes gcc happy */
	return 0;
1818
}
L
Linus Torvalds 已提交
1819

1820 1821 1822 1823 1824 1825 1826 1827 1828 1829
static s64 cpuset_read_s64(struct cgroup *cont, struct cftype *cft)
{
	struct cpuset *cs = cgroup_cs(cont);
	cpuset_filetype_t type = cft->private;
	switch (type) {
	case FILE_SCHED_RELAX_DOMAIN_LEVEL:
		return cs->relax_domain_level;
	default:
		BUG();
	}
1830 1831 1832

	/* Unrechable but makes gcc happy */
	return 0;
1833 1834
}

L
Linus Torvalds 已提交
1835 1836 1837 1838 1839

/*
 * for the common functions, 'private' gives the type of file
 */

1840 1841 1842 1843
static struct cftype files[] = {
	{
		.name = "cpus",
		.read = cpuset_common_file_read,
1844 1845
		.write_string = cpuset_write_resmask,
		.max_write_len = (100U + 6 * NR_CPUS),
1846 1847 1848 1849 1850 1851
		.private = FILE_CPULIST,
	},

	{
		.name = "mems",
		.read = cpuset_common_file_read,
1852 1853
		.write_string = cpuset_write_resmask,
		.max_write_len = (100U + 6 * MAX_NUMNODES),
1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870
		.private = FILE_MEMLIST,
	},

	{
		.name = "cpu_exclusive",
		.read_u64 = cpuset_read_u64,
		.write_u64 = cpuset_write_u64,
		.private = FILE_CPU_EXCLUSIVE,
	},

	{
		.name = "mem_exclusive",
		.read_u64 = cpuset_read_u64,
		.write_u64 = cpuset_write_u64,
		.private = FILE_MEM_EXCLUSIVE,
	},

1871 1872 1873 1874 1875 1876 1877
	{
		.name = "mem_hardwall",
		.read_u64 = cpuset_read_u64,
		.write_u64 = cpuset_write_u64,
		.private = FILE_MEM_HARDWALL,
	},

1878 1879 1880 1881 1882 1883 1884 1885 1886
	{
		.name = "sched_load_balance",
		.read_u64 = cpuset_read_u64,
		.write_u64 = cpuset_write_u64,
		.private = FILE_SCHED_LOAD_BALANCE,
	},

	{
		.name = "sched_relax_domain_level",
1887 1888
		.read_s64 = cpuset_read_s64,
		.write_s64 = cpuset_write_s64,
1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903
		.private = FILE_SCHED_RELAX_DOMAIN_LEVEL,
	},

	{
		.name = "memory_migrate",
		.read_u64 = cpuset_read_u64,
		.write_u64 = cpuset_write_u64,
		.private = FILE_MEMORY_MIGRATE,
	},

	{
		.name = "memory_pressure",
		.read_u64 = cpuset_read_u64,
		.write_u64 = cpuset_write_u64,
		.private = FILE_MEMORY_PRESSURE,
L
Li Zefan 已提交
1904
		.mode = S_IRUGO,
1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919
	},

	{
		.name = "memory_spread_page",
		.read_u64 = cpuset_read_u64,
		.write_u64 = cpuset_write_u64,
		.private = FILE_SPREAD_PAGE,
	},

	{
		.name = "memory_spread_slab",
		.read_u64 = cpuset_read_u64,
		.write_u64 = cpuset_write_u64,
		.private = FILE_SPREAD_SLAB,
	},
1920

1921 1922 1923 1924 1925 1926 1927
	{
		.name = "memory_pressure_enabled",
		.flags = CFTYPE_ONLY_ON_ROOT,
		.read_u64 = cpuset_read_u64,
		.write_u64 = cpuset_write_u64,
		.private = FILE_MEMORY_PRESSURE_ENABLED,
	},
L
Linus Torvalds 已提交
1928

1929 1930
	{ }	/* terminate */
};
L
Linus Torvalds 已提交
1931 1932

/*
1933
 *	cpuset_css_alloc - allocate a cpuset css
1934
 *	cont:	control group that the new cpuset will be part of
L
Linus Torvalds 已提交
1935 1936
 */

1937
static struct cgroup_subsys_state *cpuset_css_alloc(struct cgroup *cont)
L
Linus Torvalds 已提交
1938
{
T
Tejun Heo 已提交
1939
	struct cpuset *cs;
L
Linus Torvalds 已提交
1940

T
Tejun Heo 已提交
1941
	if (!cont->parent)
1942
		return &top_cpuset.css;
1943

T
Tejun Heo 已提交
1944
	cs = kzalloc(sizeof(*cs), GFP_KERNEL);
L
Linus Torvalds 已提交
1945
	if (!cs)
1946
		return ERR_PTR(-ENOMEM);
1947 1948 1949 1950
	if (!alloc_cpumask_var(&cs->cpus_allowed, GFP_KERNEL)) {
		kfree(cs);
		return ERR_PTR(-ENOMEM);
	}
L
Linus Torvalds 已提交
1951

P
Paul Jackson 已提交
1952
	set_bit(CS_SCHED_LOAD_BALANCE, &cs->flags);
1953
	cpumask_clear(cs->cpus_allowed);
1954
	nodes_clear(cs->mems_allowed);
1955
	fmeter_init(&cs->fmeter);
1956
	cs->relax_domain_level = -1;
L
Linus Torvalds 已提交
1957

T
Tejun Heo 已提交
1958 1959 1960 1961 1962 1963
	return &cs->css;
}

static int cpuset_css_online(struct cgroup *cgrp)
{
	struct cpuset *cs = cgroup_cs(cgrp);
T
Tejun Heo 已提交
1964
	struct cpuset *parent = parent_cs(cs);
1965 1966
	struct cpuset *tmp_cs;
	struct cgroup *pos_cg;
T
Tejun Heo 已提交
1967 1968 1969 1970

	if (!parent)
		return 0;

1971 1972
	mutex_lock(&cpuset_mutex);

T
Tejun Heo 已提交
1973
	set_bit(CS_ONLINE, &cs->flags);
T
Tejun Heo 已提交
1974 1975 1976 1977
	if (is_spread_page(parent))
		set_bit(CS_SPREAD_PAGE, &cs->flags);
	if (is_spread_slab(parent))
		set_bit(CS_SPREAD_SLAB, &cs->flags);
L
Linus Torvalds 已提交
1978

1979
	number_of_cpusets++;
1980

T
Tejun Heo 已提交
1981
	if (!test_bit(CGRP_CPUSET_CLONE_CHILDREN, &cgrp->flags))
1982
		goto out_unlock;
1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996

	/*
	 * Clone @parent's configuration if CGRP_CPUSET_CLONE_CHILDREN is
	 * set.  This flag handling is implemented in cgroup core for
	 * histrical reasons - the flag may be specified during mount.
	 *
	 * Currently, if any sibling cpusets have exclusive cpus or mem, we
	 * refuse to clone the configuration - thereby refusing the task to
	 * be entered, and as a result refusing the sys_unshare() or
	 * clone() which initiated it.  If this becomes a problem for some
	 * users who wish to allow that scenario, then this could be
	 * changed to grant parent->cpus_allowed-sibling_cpus_exclusive
	 * (and likewise for mems) to the new cgroup.
	 */
1997 1998 1999 2000
	rcu_read_lock();
	cpuset_for_each_child(tmp_cs, pos_cg, parent) {
		if (is_mem_exclusive(tmp_cs) || is_cpu_exclusive(tmp_cs)) {
			rcu_read_unlock();
2001
			goto out_unlock;
2002
		}
2003
	}
2004
	rcu_read_unlock();
2005 2006 2007 2008 2009

	mutex_lock(&callback_mutex);
	cs->mems_allowed = parent->mems_allowed;
	cpumask_copy(cs->cpus_allowed, parent->cpus_allowed);
	mutex_unlock(&callback_mutex);
2010 2011
out_unlock:
	mutex_unlock(&cpuset_mutex);
T
Tejun Heo 已提交
2012 2013 2014 2015 2016 2017 2018
	return 0;
}

static void cpuset_css_offline(struct cgroup *cgrp)
{
	struct cpuset *cs = cgroup_cs(cgrp);

2019
	mutex_lock(&cpuset_mutex);
T
Tejun Heo 已提交
2020 2021 2022 2023 2024

	if (is_sched_load_balance(cs))
		update_flag(CS_SCHED_LOAD_BALANCE, cs, 0);

	number_of_cpusets--;
T
Tejun Heo 已提交
2025
	clear_bit(CS_ONLINE, &cs->flags);
T
Tejun Heo 已提交
2026

2027
	mutex_unlock(&cpuset_mutex);
L
Linus Torvalds 已提交
2028 2029
}

P
Paul Jackson 已提交
2030 2031 2032
/*
 * If the cpuset being removed has its flag 'sched_load_balance'
 * enabled, then simulate turning sched_load_balance off, which
2033
 * will call rebuild_sched_domains_locked().
P
Paul Jackson 已提交
2034 2035
 */

2036
static void cpuset_css_free(struct cgroup *cont)
L
Linus Torvalds 已提交
2037
{
2038
	struct cpuset *cs = cgroup_cs(cont);
L
Linus Torvalds 已提交
2039

2040
	free_cpumask_var(cs->cpus_allowed);
2041
	kfree(cs);
L
Linus Torvalds 已提交
2042 2043
}

2044 2045
struct cgroup_subsys cpuset_subsys = {
	.name = "cpuset",
2046
	.css_alloc = cpuset_css_alloc,
T
Tejun Heo 已提交
2047 2048
	.css_online = cpuset_css_online,
	.css_offline = cpuset_css_offline,
2049
	.css_free = cpuset_css_free,
2050
	.can_attach = cpuset_can_attach,
2051
	.cancel_attach = cpuset_cancel_attach,
2052 2053
	.attach = cpuset_attach,
	.subsys_id = cpuset_subsys_id,
2054
	.base_cftypes = files,
2055 2056 2057
	.early_init = 1,
};

L
Linus Torvalds 已提交
2058 2059 2060 2061 2062 2063 2064 2065
/**
 * cpuset_init - initialize cpusets at system boot
 *
 * Description: Initialize top_cpuset and the cpuset internal file system,
 **/

int __init cpuset_init(void)
{
2066
	int err = 0;
L
Linus Torvalds 已提交
2067

2068 2069 2070
	if (!alloc_cpumask_var(&top_cpuset.cpus_allowed, GFP_KERNEL))
		BUG();

2071
	cpumask_setall(top_cpuset.cpus_allowed);
2072
	nodes_setall(top_cpuset.mems_allowed);
L
Linus Torvalds 已提交
2073

2074
	fmeter_init(&top_cpuset.fmeter);
P
Paul Jackson 已提交
2075
	set_bit(CS_SCHED_LOAD_BALANCE, &top_cpuset.flags);
2076
	top_cpuset.relax_domain_level = -1;
L
Linus Torvalds 已提交
2077 2078 2079

	err = register_filesystem(&cpuset_fs_type);
	if (err < 0)
2080 2081
		return err;

2082 2083 2084
	if (!alloc_cpumask_var(&cpus_attach, GFP_KERNEL))
		BUG();

2085
	number_of_cpusets = 1;
2086
	return 0;
L
Linus Torvalds 已提交
2087 2088
}

2089
/*
2090
 * If CPU and/or memory hotplug handlers, below, unplug any CPUs
2091 2092
 * or memory nodes, we need to walk over the cpuset hierarchy,
 * removing that CPU or node from all cpusets.  If this removes the
2093 2094
 * last CPU or node from a cpuset, then move the tasks in the empty
 * cpuset to its next-highest non-empty parent.
2095
 */
2096 2097 2098 2099 2100 2101 2102 2103
static void remove_tasks_in_empty_cpuset(struct cpuset *cs)
{
	struct cpuset *parent;

	/*
	 * Find its next-highest non-empty parent, (top cpuset
	 * has online cpus, so can't be empty).
	 */
T
Tejun Heo 已提交
2104
	parent = parent_cs(cs);
2105
	while (cpumask_empty(parent->cpus_allowed) ||
2106
			nodes_empty(parent->mems_allowed))
T
Tejun Heo 已提交
2107
		parent = parent_cs(parent);
2108

2109 2110 2111 2112 2113 2114
	if (cgroup_transfer_tasks(parent->css.cgroup, cs->css.cgroup)) {
		rcu_read_lock();
		printk(KERN_ERR "cpuset: failed to transfer tasks out of empty cpuset %s\n",
		       cgroup_name(cs->css.cgroup));
		rcu_read_unlock();
	}
2115 2116
}

2117
/**
2118
 * cpuset_hotplug_update_tasks - update tasks in a cpuset for hotunplug
2119
 * @cs: cpuset in interest
2120
 *
2121 2122 2123
 * Compare @cs's cpu and mem masks against top_cpuset and if some have gone
 * offline, update @cs accordingly.  If @cs ends up with no CPU or memory,
 * all its tasks are moved to the nearest ancestor with both resources.
2124
 */
2125
static void cpuset_hotplug_update_tasks(struct cpuset *cs)
2126
{
2127
	static cpumask_t off_cpus;
2128
	static nodemask_t off_mems;
2129
	bool is_empty;
2130
	bool sane = cgroup_sane_behavior(cs->css.cgroup);
2131

2132 2133 2134
retry:
	wait_event(cpuset_attach_wq, cs->attach_in_progress == 0);

2135
	mutex_lock(&cpuset_mutex);
2136

2137 2138 2139 2140 2141 2142 2143 2144 2145
	/*
	 * We have raced with task attaching. We wait until attaching
	 * is finished, so we won't attach a task to an empty cpuset.
	 */
	if (cs->attach_in_progress) {
		mutex_unlock(&cpuset_mutex);
		goto retry;
	}

2146 2147
	cpumask_andnot(&off_cpus, cs->cpus_allowed, top_cpuset.cpus_allowed);
	nodes_andnot(off_mems, cs->mems_allowed, top_cpuset.mems_allowed);
2148

2149 2150 2151 2152 2153 2154 2155 2156 2157 2158
	mutex_lock(&callback_mutex);
	cpumask_andnot(cs->cpus_allowed, cs->cpus_allowed, &off_cpus);
	mutex_unlock(&callback_mutex);

	/*
	 * If sane_behavior flag is set, we need to update tasks' cpumask
	 * for empty cpuset to take on ancestor's cpumask.
	 */
	if ((sane && cpumask_empty(cs->cpus_allowed)) ||
	    !cpumask_empty(&off_cpus))
2159
		update_tasks_cpumask(cs, NULL);
2160

2161 2162 2163 2164 2165 2166 2167 2168 2169 2170
	mutex_lock(&callback_mutex);
	nodes_andnot(cs->mems_allowed, cs->mems_allowed, off_mems);
	mutex_unlock(&callback_mutex);

	/*
	 * If sane_behavior flag is set, we need to update tasks' nodemask
	 * for empty cpuset to take on ancestor's nodemask.
	 */
	if ((sane && nodes_empty(cs->mems_allowed)) ||
	    !nodes_empty(off_mems))
2171
		update_tasks_nodemask(cs, NULL);
2172

2173 2174
	is_empty = cpumask_empty(cs->cpus_allowed) ||
		nodes_empty(cs->mems_allowed);
2175

2176 2177 2178
	mutex_unlock(&cpuset_mutex);

	/*
2179 2180 2181 2182
	 * If sane_behavior flag is set, we'll keep tasks in empty cpusets.
	 *
	 * Otherwise move tasks to the nearest ancestor with execution
	 * resources.  This is full cgroup operation which will
2183 2184
	 * also call back into cpuset.  Should be done outside any lock.
	 */
2185
	if (!sane && is_empty)
2186
		remove_tasks_in_empty_cpuset(cs);
2187 2188
}

2189
/**
2190
 * cpuset_hotplug_workfn - handle CPU/memory hotunplug for a cpuset
2191
 *
2192 2193 2194 2195 2196
 * This function is called after either CPU or memory configuration has
 * changed and updates cpuset accordingly.  The top_cpuset is always
 * synchronized to cpu_active_mask and N_MEMORY, which is necessary in
 * order to make cpusets transparent (of no affect) on systems that are
 * actively using CPU hotplug but making no active use of cpusets.
2197
 *
2198
 * Non-root cpusets are only affected by offlining.  If any CPUs or memory
2199 2200
 * nodes have been taken down, cpuset_hotplug_update_tasks() is invoked on
 * all descendants.
2201
 *
2202 2203
 * Note that CPU offlining during suspend is ignored.  We don't modify
 * cpusets across suspend/resume cycles at all.
2204
 */
2205
static void cpuset_hotplug_workfn(struct work_struct *work)
2206
{
2207 2208
	static cpumask_t new_cpus;
	static nodemask_t new_mems;
2209
	bool cpus_updated, mems_updated;
2210

2211
	mutex_lock(&cpuset_mutex);
2212

2213 2214 2215
	/* fetch the available cpus/mems and find out which changed how */
	cpumask_copy(&new_cpus, cpu_active_mask);
	new_mems = node_states[N_MEMORY];
2216

2217 2218
	cpus_updated = !cpumask_equal(top_cpuset.cpus_allowed, &new_cpus);
	mems_updated = !nodes_equal(top_cpuset.mems_allowed, new_mems);
2219

2220 2221 2222 2223 2224 2225 2226
	/* synchronize cpus_allowed to cpu_active_mask */
	if (cpus_updated) {
		mutex_lock(&callback_mutex);
		cpumask_copy(top_cpuset.cpus_allowed, &new_cpus);
		mutex_unlock(&callback_mutex);
		/* we don't mess with cpumasks of tasks in top_cpuset */
	}
2227

2228 2229 2230 2231 2232
	/* synchronize mems_allowed to N_MEMORY */
	if (mems_updated) {
		mutex_lock(&callback_mutex);
		top_cpuset.mems_allowed = new_mems;
		mutex_unlock(&callback_mutex);
2233
		update_tasks_nodemask(&top_cpuset, NULL);
2234
	}
2235

2236 2237
	mutex_unlock(&cpuset_mutex);

2238 2239
	/* if cpus or mems changed, we need to propagate to descendants */
	if (cpus_updated || mems_updated) {
2240
		struct cpuset *cs;
2241
		struct cgroup *pos_cgrp;
2242

2243
		rcu_read_lock();
2244 2245 2246 2247
		cpuset_for_each_descendant_pre(cs, pos_cgrp, &top_cpuset) {
			if (!css_tryget(&cs->css))
				continue;
			rcu_read_unlock();
2248

2249
			cpuset_hotplug_update_tasks(cs);
2250

2251 2252 2253 2254 2255
			rcu_read_lock();
			css_put(&cs->css);
		}
		rcu_read_unlock();
	}
2256

2257
	/* rebuild sched domains if cpus_allowed has changed */
2258 2259
	if (cpus_updated)
		rebuild_sched_domains();
2260 2261
}

2262
void cpuset_update_active_cpus(bool cpu_online)
2263
{
2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275
	/*
	 * We're inside cpu hotplug critical region which usually nests
	 * inside cgroup synchronization.  Bounce actual hotplug processing
	 * to a work item to avoid reverse locking order.
	 *
	 * We still need to do partition_sched_domains() synchronously;
	 * otherwise, the scheduler will get confused and put tasks to the
	 * dead CPU.  Fall back to the default single domain.
	 * cpuset_hotplug_workfn() will rebuild it as necessary.
	 */
	partition_sched_domains(1, NULL, NULL);
	schedule_work(&cpuset_hotplug_work);
2276 2277
}

2278
/*
2279 2280
 * Keep top_cpuset.mems_allowed tracking node_states[N_MEMORY].
 * Call this routine anytime after node_states[N_MEMORY] changes.
2281
 * See cpuset_update_active_cpus() for CPU hotplug handling.
2282
 */
2283 2284
static int cpuset_track_online_nodes(struct notifier_block *self,
				unsigned long action, void *arg)
2285
{
2286
	schedule_work(&cpuset_hotplug_work);
2287
	return NOTIFY_OK;
2288
}
2289 2290 2291 2292 2293

static struct notifier_block cpuset_track_online_nodes_nb = {
	.notifier_call = cpuset_track_online_nodes,
	.priority = 10,		/* ??! */
};
2294

L
Linus Torvalds 已提交
2295 2296 2297 2298
/**
 * cpuset_init_smp - initialize cpus_allowed
 *
 * Description: Finish top cpuset after cpu, node maps are initialized
2299
 */
L
Linus Torvalds 已提交
2300 2301
void __init cpuset_init_smp(void)
{
2302
	cpumask_copy(top_cpuset.cpus_allowed, cpu_active_mask);
2303
	top_cpuset.mems_allowed = node_states[N_MEMORY];
2304
	top_cpuset.old_mems_allowed = top_cpuset.mems_allowed;
2305

2306
	register_hotmemory_notifier(&cpuset_track_online_nodes_nb);
L
Linus Torvalds 已提交
2307 2308 2309 2310 2311
}

/**
 * cpuset_cpus_allowed - return cpus_allowed mask from a tasks cpuset.
 * @tsk: pointer to task_struct from which to obtain cpuset->cpus_allowed.
2312
 * @pmask: pointer to struct cpumask variable to receive cpus_allowed set.
L
Linus Torvalds 已提交
2313
 *
2314
 * Description: Returns the cpumask_var_t cpus_allowed of the cpuset
L
Linus Torvalds 已提交
2315
 * attached to the specified @tsk.  Guaranteed to return some non-empty
2316
 * subset of cpu_online_mask, even if this means going outside the
L
Linus Torvalds 已提交
2317 2318 2319
 * tasks cpuset.
 **/

2320
void cpuset_cpus_allowed(struct task_struct *tsk, struct cpumask *pmask)
L
Linus Torvalds 已提交
2321
{
2322 2323
	struct cpuset *cpus_cs;

2324
	mutex_lock(&callback_mutex);
2325
	task_lock(tsk);
2326 2327
	cpus_cs = effective_cpumask_cpuset(task_cs(tsk));
	guarantee_online_cpus(cpus_cs, pmask);
2328
	task_unlock(tsk);
2329
	mutex_unlock(&callback_mutex);
L
Linus Torvalds 已提交
2330 2331
}

2332
void cpuset_cpus_allowed_fallback(struct task_struct *tsk)
2333
{
2334
	const struct cpuset *cpus_cs;
2335 2336

	rcu_read_lock();
2337 2338
	cpus_cs = effective_cpumask_cpuset(task_cs(tsk));
	do_set_cpus_allowed(tsk, cpus_cs->cpus_allowed);
2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353
	rcu_read_unlock();

	/*
	 * We own tsk->cpus_allowed, nobody can change it under us.
	 *
	 * But we used cs && cs->cpus_allowed lockless and thus can
	 * race with cgroup_attach_task() or update_cpumask() and get
	 * the wrong tsk->cpus_allowed. However, both cases imply the
	 * subsequent cpuset_change_cpumask()->set_cpus_allowed_ptr()
	 * which takes task_rq_lock().
	 *
	 * If we are called after it dropped the lock we must see all
	 * changes in tsk_cs()->cpus_allowed. Otherwise we can temporary
	 * set any mask even if it is not right from task_cs() pov,
	 * the pending set_cpus_allowed_ptr() will fix things.
2354 2355 2356
	 *
	 * select_fallback_rq() will fix things ups and set cpu_possible_mask
	 * if required.
2357 2358 2359
	 */
}

L
Linus Torvalds 已提交
2360 2361
void cpuset_init_current_mems_allowed(void)
{
2362
	nodes_setall(current->mems_allowed);
L
Linus Torvalds 已提交
2363 2364
}

2365 2366 2367 2368 2369 2370
/**
 * cpuset_mems_allowed - return mems_allowed mask from a tasks cpuset.
 * @tsk: pointer to task_struct from which to obtain cpuset->mems_allowed.
 *
 * Description: Returns the nodemask_t mems_allowed of the cpuset
 * attached to the specified @tsk.  Guaranteed to return some non-empty
2371
 * subset of node_states[N_MEMORY], even if this means going outside the
2372 2373 2374 2375 2376
 * tasks cpuset.
 **/

nodemask_t cpuset_mems_allowed(struct task_struct *tsk)
{
2377
	struct cpuset *mems_cs;
2378 2379
	nodemask_t mask;

2380
	mutex_lock(&callback_mutex);
2381
	task_lock(tsk);
2382 2383
	mems_cs = effective_nodemask_cpuset(task_cs(tsk));
	guarantee_online_mems(mems_cs, &mask);
2384
	task_unlock(tsk);
2385
	mutex_unlock(&callback_mutex);
2386 2387 2388 2389

	return mask;
}

2390
/**
2391 2392
 * cpuset_nodemask_valid_mems_allowed - check nodemask vs. curremt mems_allowed
 * @nodemask: the nodemask to be checked
2393
 *
2394
 * Are any of the nodes in the nodemask allowed in current->mems_allowed?
L
Linus Torvalds 已提交
2395
 */
2396
int cpuset_nodemask_valid_mems_allowed(nodemask_t *nodemask)
L
Linus Torvalds 已提交
2397
{
2398
	return nodes_intersects(*nodemask, current->mems_allowed);
L
Linus Torvalds 已提交
2399 2400
}

2401
/*
2402 2403 2404 2405
 * nearest_hardwall_ancestor() - Returns the nearest mem_exclusive or
 * mem_hardwall ancestor to the specified cpuset.  Call holding
 * callback_mutex.  If no ancestor is mem_exclusive or mem_hardwall
 * (an unusual configuration), then returns the root cpuset.
2406
 */
2407
static const struct cpuset *nearest_hardwall_ancestor(const struct cpuset *cs)
2408
{
T
Tejun Heo 已提交
2409 2410
	while (!(is_mem_exclusive(cs) || is_mem_hardwall(cs)) && parent_cs(cs))
		cs = parent_cs(cs);
2411 2412 2413
	return cs;
}

2414
/**
2415 2416
 * cpuset_node_allowed_softwall - Can we allocate on a memory node?
 * @node: is this an allowed node?
2417
 * @gfp_mask: memory allocation flags
2418
 *
2419 2420 2421 2422 2423 2424
 * If we're in interrupt, yes, we can always allocate.  If __GFP_THISNODE is
 * set, yes, we can always allocate.  If node is in our task's mems_allowed,
 * yes.  If it's not a __GFP_HARDWALL request and this node is in the nearest
 * hardwalled cpuset ancestor to this task's cpuset, yes.  If the task has been
 * OOM killed and has access to memory reserves as specified by the TIF_MEMDIE
 * flag, yes.
2425 2426
 * Otherwise, no.
 *
2427 2428 2429
 * If __GFP_HARDWALL is set, cpuset_node_allowed_softwall() reduces to
 * cpuset_node_allowed_hardwall().  Otherwise, cpuset_node_allowed_softwall()
 * might sleep, and might allow a node from an enclosing cpuset.
2430
 *
2431 2432
 * cpuset_node_allowed_hardwall() only handles the simpler case of hardwall
 * cpusets, and never sleeps.
2433 2434 2435 2436 2437 2438 2439
 *
 * The __GFP_THISNODE placement logic is really handled elsewhere,
 * by forcibly using a zonelist starting at a specified node, and by
 * (in get_page_from_freelist()) refusing to consider the zones for
 * any node on the zonelist except the first.  By the time any such
 * calls get to this routine, we should just shut up and say 'yes'.
 *
2440
 * GFP_USER allocations are marked with the __GFP_HARDWALL bit,
2441 2442
 * and do not allow allocations outside the current tasks cpuset
 * unless the task has been OOM killed as is marked TIF_MEMDIE.
2443
 * GFP_KERNEL allocations are not so marked, so can escape to the
2444
 * nearest enclosing hardwalled ancestor cpuset.
2445
 *
2446 2447 2448 2449 2450 2451 2452
 * Scanning up parent cpusets requires callback_mutex.  The
 * __alloc_pages() routine only calls here with __GFP_HARDWALL bit
 * _not_ set if it's a GFP_KERNEL allocation, and all nodes in the
 * current tasks mems_allowed came up empty on the first pass over
 * the zonelist.  So only GFP_KERNEL allocations, if all nodes in the
 * cpuset are short of memory, might require taking the callback_mutex
 * mutex.
2453
 *
2454
 * The first call here from mm/page_alloc:get_page_from_freelist()
2455 2456 2457
 * has __GFP_HARDWALL set in gfp_mask, enforcing hardwall cpusets,
 * so no allocation on a node outside the cpuset is allowed (unless
 * in interrupt, of course).
2458 2459 2460 2461 2462 2463
 *
 * The second pass through get_page_from_freelist() doesn't even call
 * here for GFP_ATOMIC calls.  For those calls, the __alloc_pages()
 * variable 'wait' is not set, and the bit ALLOC_CPUSET is not set
 * in alloc_flags.  That logic and the checks below have the combined
 * affect that:
2464 2465
 *	in_interrupt - any node ok (current task context irrelevant)
 *	GFP_ATOMIC   - any node ok
2466
 *	TIF_MEMDIE   - any node ok
2467
 *	GFP_KERNEL   - any node in enclosing hardwalled cpuset ok
2468
 *	GFP_USER     - only nodes in current tasks mems allowed ok.
2469 2470
 *
 * Rule:
2471
 *    Don't call cpuset_node_allowed_softwall if you can't sleep, unless you
2472 2473
 *    pass in the __GFP_HARDWALL flag set in gfp_flag, which disables
 *    the code that might scan up ancestor cpusets and sleep.
2474
 */
2475
int __cpuset_node_allowed_softwall(int node, gfp_t gfp_mask)
L
Linus Torvalds 已提交
2476
{
2477
	const struct cpuset *cs;	/* current cpuset ancestors */
2478
	int allowed;			/* is allocation in zone z allowed? */
2479

2480
	if (in_interrupt() || (gfp_mask & __GFP_THISNODE))
2481
		return 1;
2482
	might_sleep_if(!(gfp_mask & __GFP_HARDWALL));
2483 2484
	if (node_isset(node, current->mems_allowed))
		return 1;
2485 2486 2487 2488 2489 2490
	/*
	 * Allow tasks that have access to memory reserves because they have
	 * been OOM killed to get memory anywhere.
	 */
	if (unlikely(test_thread_flag(TIF_MEMDIE)))
		return 1;
2491 2492 2493
	if (gfp_mask & __GFP_HARDWALL)	/* If hardwall request, stop here */
		return 0;

2494 2495 2496
	if (current->flags & PF_EXITING) /* Let dying task have memory */
		return 1;

2497
	/* Not hardwall and node outside mems_allowed: scan up cpusets */
2498
	mutex_lock(&callback_mutex);
2499 2500

	task_lock(current);
2501
	cs = nearest_hardwall_ancestor(task_cs(current));
2502 2503
	task_unlock(current);

2504
	allowed = node_isset(node, cs->mems_allowed);
2505
	mutex_unlock(&callback_mutex);
2506
	return allowed;
L
Linus Torvalds 已提交
2507 2508
}

2509
/*
2510 2511
 * cpuset_node_allowed_hardwall - Can we allocate on a memory node?
 * @node: is this an allowed node?
2512 2513
 * @gfp_mask: memory allocation flags
 *
2514 2515 2516 2517 2518
 * If we're in interrupt, yes, we can always allocate.  If __GFP_THISNODE is
 * set, yes, we can always allocate.  If node is in our task's mems_allowed,
 * yes.  If the task has been OOM killed and has access to memory reserves as
 * specified by the TIF_MEMDIE flag, yes.
 * Otherwise, no.
2519 2520 2521 2522 2523 2524 2525
 *
 * The __GFP_THISNODE placement logic is really handled elsewhere,
 * by forcibly using a zonelist starting at a specified node, and by
 * (in get_page_from_freelist()) refusing to consider the zones for
 * any node on the zonelist except the first.  By the time any such
 * calls get to this routine, we should just shut up and say 'yes'.
 *
2526 2527
 * Unlike the cpuset_node_allowed_softwall() variant, above,
 * this variant requires that the node be in the current task's
2528 2529 2530 2531
 * mems_allowed or that we're in interrupt.  It does not scan up the
 * cpuset hierarchy for the nearest enclosing mem_exclusive cpuset.
 * It never sleeps.
 */
2532
int __cpuset_node_allowed_hardwall(int node, gfp_t gfp_mask)
2533 2534 2535 2536 2537
{
	if (in_interrupt() || (gfp_mask & __GFP_THISNODE))
		return 1;
	if (node_isset(node, current->mems_allowed))
		return 1;
D
Daniel Walker 已提交
2538 2539 2540 2541 2542 2543
	/*
	 * Allow tasks that have access to memory reserves because they have
	 * been OOM killed to get memory anywhere.
	 */
	if (unlikely(test_thread_flag(TIF_MEMDIE)))
		return 1;
2544 2545 2546
	return 0;
}

2547
/**
2548 2549
 * cpuset_mem_spread_node() - On which node to begin search for a file page
 * cpuset_slab_spread_node() - On which node to begin search for a slab page
2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573
 *
 * If a task is marked PF_SPREAD_PAGE or PF_SPREAD_SLAB (as for
 * tasks in a cpuset with is_spread_page or is_spread_slab set),
 * and if the memory allocation used cpuset_mem_spread_node()
 * to determine on which node to start looking, as it will for
 * certain page cache or slab cache pages such as used for file
 * system buffers and inode caches, then instead of starting on the
 * local node to look for a free page, rather spread the starting
 * node around the tasks mems_allowed nodes.
 *
 * We don't have to worry about the returned node being offline
 * because "it can't happen", and even if it did, it would be ok.
 *
 * The routines calling guarantee_online_mems() are careful to
 * only set nodes in task->mems_allowed that are online.  So it
 * should not be possible for the following code to return an
 * offline node.  But if it did, that would be ok, as this routine
 * is not returning the node where the allocation must be, only
 * the node where the search should start.  The zonelist passed to
 * __alloc_pages() will include all nodes.  If the slab allocator
 * is passed an offline node, it will fall back to the local node.
 * See kmem_cache_alloc_node().
 */

2574
static int cpuset_spread_node(int *rotor)
2575 2576 2577
{
	int node;

2578
	node = next_node(*rotor, current->mems_allowed);
2579 2580
	if (node == MAX_NUMNODES)
		node = first_node(current->mems_allowed);
2581
	*rotor = node;
2582 2583
	return node;
}
2584 2585 2586

int cpuset_mem_spread_node(void)
{
2587 2588 2589 2590
	if (current->cpuset_mem_spread_rotor == NUMA_NO_NODE)
		current->cpuset_mem_spread_rotor =
			node_random(&current->mems_allowed);

2591 2592 2593 2594 2595
	return cpuset_spread_node(&current->cpuset_mem_spread_rotor);
}

int cpuset_slab_spread_node(void)
{
2596 2597 2598 2599
	if (current->cpuset_slab_spread_rotor == NUMA_NO_NODE)
		current->cpuset_slab_spread_rotor =
			node_random(&current->mems_allowed);

2600 2601 2602
	return cpuset_spread_node(&current->cpuset_slab_spread_rotor);
}

2603 2604
EXPORT_SYMBOL_GPL(cpuset_mem_spread_node);

2605
/**
2606 2607 2608 2609 2610 2611 2612 2613
 * cpuset_mems_allowed_intersects - Does @tsk1's mems_allowed intersect @tsk2's?
 * @tsk1: pointer to task_struct of some task.
 * @tsk2: pointer to task_struct of some other task.
 *
 * Description: Return true if @tsk1's mems_allowed intersects the
 * mems_allowed of @tsk2.  Used by the OOM killer to determine if
 * one of the task's memory usage might impact the memory available
 * to the other.
2614 2615
 **/

2616 2617
int cpuset_mems_allowed_intersects(const struct task_struct *tsk1,
				   const struct task_struct *tsk2)
2618
{
2619
	return nodes_intersects(tsk1->mems_allowed, tsk2->mems_allowed);
2620 2621
}

2622 2623
#define CPUSET_NODELIST_LEN	(256)

2624 2625 2626 2627 2628 2629 2630 2631 2632 2633
/**
 * cpuset_print_task_mems_allowed - prints task's cpuset and mems_allowed
 * @task: pointer to task_struct of some task.
 *
 * Description: Prints @task's name, cpuset name, and cached copy of its
 * mems_allowed to the kernel log.  Must hold task_lock(task) to allow
 * dereferencing task_cs(task).
 */
void cpuset_print_task_mems_allowed(struct task_struct *tsk)
{
2634 2635 2636
	 /* Statically allocated to prevent using excess stack. */
	static char cpuset_nodelist[CPUSET_NODELIST_LEN];
	static DEFINE_SPINLOCK(cpuset_buffer_lock);
2637

2638
	struct cgroup *cgrp = task_cs(tsk)->css.cgroup;
2639

2640
	rcu_read_lock();
2641
	spin_lock(&cpuset_buffer_lock);
2642

2643 2644 2645
	nodelist_scnprintf(cpuset_nodelist, CPUSET_NODELIST_LEN,
			   tsk->mems_allowed);
	printk(KERN_INFO "%s cpuset=%s mems_allowed=%s\n",
2646 2647
	       tsk->comm, cgroup_name(cgrp), cpuset_nodelist);

2648
	spin_unlock(&cpuset_buffer_lock);
2649
	rcu_read_unlock();
2650 2651
}

2652 2653 2654 2655 2656 2657
/*
 * Collection of memory_pressure is suppressed unless
 * this flag is enabled by writing "1" to the special
 * cpuset file 'memory_pressure_enabled' in the root cpuset.
 */

2658
int cpuset_memory_pressure_enabled __read_mostly;
2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680

/**
 * cpuset_memory_pressure_bump - keep stats of per-cpuset reclaims.
 *
 * Keep a running average of the rate of synchronous (direct)
 * page reclaim efforts initiated by tasks in each cpuset.
 *
 * This represents the rate at which some task in the cpuset
 * ran low on memory on all nodes it was allowed to use, and
 * had to enter the kernels page reclaim code in an effort to
 * create more free memory by tossing clean pages or swapping
 * or writing dirty pages.
 *
 * Display to user space in the per-cpuset read-only file
 * "memory_pressure".  Value displayed is an integer
 * representing the recent rate of entry into the synchronous
 * (direct) page reclaim by any task attached to the cpuset.
 **/

void __cpuset_memory_pressure_bump(void)
{
	task_lock(current);
2681
	fmeter_markevent(&task_cs(current)->fmeter);
2682 2683 2684
	task_unlock(current);
}

2685
#ifdef CONFIG_PROC_PID_CPUSET
L
Linus Torvalds 已提交
2686 2687 2688 2689
/*
 * proc_cpuset_show()
 *  - Print tasks cpuset path into seq_file.
 *  - Used for /proc/<pid>/cpuset.
2690 2691
 *  - No need to task_lock(tsk) on this tsk->cpuset reference, as it
 *    doesn't really matter if tsk->cpuset changes after we read it,
2692
 *    and we take cpuset_mutex, keeping cpuset_attach() from changing it
2693
 *    anyway.
L
Linus Torvalds 已提交
2694
 */
2695
int proc_cpuset_show(struct seq_file *m, void *unused_v)
L
Linus Torvalds 已提交
2696
{
2697
	struct pid *pid;
L
Linus Torvalds 已提交
2698 2699
	struct task_struct *tsk;
	char *buf;
2700
	struct cgroup_subsys_state *css;
2701
	int retval;
L
Linus Torvalds 已提交
2702

2703
	retval = -ENOMEM;
L
Linus Torvalds 已提交
2704 2705
	buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
	if (!buf)
2706 2707 2708
		goto out;

	retval = -ESRCH;
2709 2710
	pid = m->private;
	tsk = get_pid_task(pid, PIDTYPE_PID);
2711 2712
	if (!tsk)
		goto out_free;
L
Linus Torvalds 已提交
2713

L
Li Zefan 已提交
2714
	rcu_read_lock();
2715 2716
	css = task_subsys_state(tsk, cpuset_subsys_id);
	retval = cgroup_path(css->cgroup, buf, PAGE_SIZE);
L
Li Zefan 已提交
2717
	rcu_read_unlock();
L
Linus Torvalds 已提交
2718
	if (retval < 0)
L
Li Zefan 已提交
2719
		goto out_put_task;
L
Linus Torvalds 已提交
2720 2721
	seq_puts(m, buf);
	seq_putc(m, '\n');
L
Li Zefan 已提交
2722
out_put_task:
2723 2724
	put_task_struct(tsk);
out_free:
L
Linus Torvalds 已提交
2725
	kfree(buf);
2726
out:
L
Linus Torvalds 已提交
2727 2728
	return retval;
}
2729
#endif /* CONFIG_PROC_PID_CPUSET */
L
Linus Torvalds 已提交
2730

2731
/* Display task mems_allowed in /proc/<pid>/status file. */
2732 2733 2734
void cpuset_task_status_allowed(struct seq_file *m, struct task_struct *task)
{
	seq_printf(m, "Mems_allowed:\t");
2735
	seq_nodemask(m, &task->mems_allowed);
2736
	seq_printf(m, "\n");
2737
	seq_printf(m, "Mems_allowed_list:\t");
2738
	seq_nodemask_list(m, &task->mems_allowed);
2739
	seq_printf(m, "\n");
L
Linus Torvalds 已提交
2740
}