cpuset.c 76.7 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6
/*
 *  kernel/cpuset.c
 *
 *  Processor and Memory placement constraints for sets of tasks.
 *
 *  Copyright (C) 2003 BULL SA.
P
Paul Jackson 已提交
7
 *  Copyright (C) 2004-2007 Silicon Graphics, Inc.
8
 *  Copyright (C) 2006 Google, Inc
L
Linus Torvalds 已提交
9 10 11 12
 *
 *  Portions derived from Patrick Mochel's sysfs code.
 *  sysfs is Copyright (c) 2001-3 Patrick Mochel
 *
13
 *  2003-10-10 Written by Simon Derr.
L
Linus Torvalds 已提交
14
 *  2003-10-22 Updates by Stephen Hemminger.
15
 *  2004 May-July Rework by Paul Jackson.
16
 *  2006 Rework by Paul Menage to use generic cgroups
17 18
 *  2008 Rework of the scheduler domains and CPU hotplug handling
 *       by Max Krasnyansky
L
Linus Torvalds 已提交
19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36
 *
 *  This file is subject to the terms and conditions of the GNU General Public
 *  License.  See the file COPYING in the main directory of the Linux
 *  distribution for more details.
 */

#include <linux/cpu.h>
#include <linux/cpumask.h>
#include <linux/cpuset.h>
#include <linux/err.h>
#include <linux/errno.h>
#include <linux/file.h>
#include <linux/fs.h>
#include <linux/init.h>
#include <linux/interrupt.h>
#include <linux/kernel.h>
#include <linux/kmod.h>
#include <linux/list.h>
37
#include <linux/mempolicy.h>
L
Linus Torvalds 已提交
38
#include <linux/mm.h>
39
#include <linux/memory.h>
40
#include <linux/export.h>
L
Linus Torvalds 已提交
41 42 43 44
#include <linux/mount.h>
#include <linux/namei.h>
#include <linux/pagemap.h>
#include <linux/proc_fs.h>
45
#include <linux/rcupdate.h>
L
Linus Torvalds 已提交
46 47
#include <linux/sched.h>
#include <linux/seq_file.h>
48
#include <linux/security.h>
L
Linus Torvalds 已提交
49 50 51 52 53 54 55 56 57
#include <linux/slab.h>
#include <linux/spinlock.h>
#include <linux/stat.h>
#include <linux/string.h>
#include <linux/time.h>
#include <linux/backing-dev.h>
#include <linux/sort.h>

#include <asm/uaccess.h>
A
Arun Sharma 已提交
58
#include <linux/atomic.h>
59
#include <linux/mutex.h>
60 61
#include <linux/workqueue.h>
#include <linux/cgroup.h>
62
#include <linux/wait.h>
L
Linus Torvalds 已提交
63

64 65 66 67 68
/*
 * Tracks how many cpusets are currently defined in system.
 * When there is only one cpuset (the root cpuset) we can
 * short circuit some hooks.
 */
69
int number_of_cpusets __read_mostly;
70

71 72 73 74 75 76 77 78 79
/* See "Frequency meter" comments, below. */

struct fmeter {
	int cnt;		/* unprocessed events count */
	int val;		/* most recent output value */
	time_t time;		/* clock (secs) when val computed */
	spinlock_t lock;	/* guards read or write of above */
};

L
Linus Torvalds 已提交
80
struct cpuset {
81 82
	struct cgroup_subsys_state css;

L
Linus Torvalds 已提交
83
	unsigned long flags;		/* "unsigned long" so bitops work */
84
	cpumask_var_t cpus_allowed;	/* CPUs allowed to tasks in cpuset */
L
Linus Torvalds 已提交
85 86
	nodemask_t mems_allowed;	/* Memory Nodes allowed to tasks */

87 88 89 90 91 92 93 94 95 96 97 98
	/*
	 * This is old Memory Nodes tasks took on.
	 *
	 * - top_cpuset.old_mems_allowed is initialized to mems_allowed.
	 * - A new cpuset's old_mems_allowed is initialized when some
	 *   task is moved into it.
	 * - old_mems_allowed is used in cpuset_migrate_mm() when we change
	 *   cpuset.mems_allowed and have tasks' nodemask updated, and
	 *   then old_mems_allowed is updated to mems_allowed.
	 */
	nodemask_t old_mems_allowed;

99
	struct fmeter fmeter;		/* memory_pressure filter */
P
Paul Jackson 已提交
100

101 102 103 104 105 106
	/*
	 * Tasks are being attached to this cpuset.  Used to prevent
	 * zeroing cpus/mems_allowed between ->can_attach() and ->attach().
	 */
	int attach_in_progress;

P
Paul Jackson 已提交
107 108
	/* partition number for rebuild_sched_domains() */
	int pn;
109

110 111
	/* for custom sched domain */
	int relax_domain_level;
L
Linus Torvalds 已提交
112 113
};

114
static inline struct cpuset *css_cs(struct cgroup_subsys_state *css)
115
{
116
	return css ? container_of(css, struct cpuset, css) : NULL;
117 118 119 120 121
}

/* Retrieve the cpuset for a task */
static inline struct cpuset *task_cs(struct task_struct *task)
{
122
	return css_cs(task_css(task, cpuset_subsys_id));
123 124
}

125
static inline struct cpuset *parent_cs(struct cpuset *cs)
T
Tejun Heo 已提交
126
{
T
Tejun Heo 已提交
127
	return css_cs(css_parent(&cs->css));
T
Tejun Heo 已提交
128 129
}

130 131 132 133 134 135 136 137 138 139 140 141 142
#ifdef CONFIG_NUMA
static inline bool task_has_mempolicy(struct task_struct *task)
{
	return task->mempolicy;
}
#else
static inline bool task_has_mempolicy(struct task_struct *task)
{
	return false;
}
#endif


L
Linus Torvalds 已提交
143 144
/* bits in struct cpuset flags field */
typedef enum {
T
Tejun Heo 已提交
145
	CS_ONLINE,
L
Linus Torvalds 已提交
146 147
	CS_CPU_EXCLUSIVE,
	CS_MEM_EXCLUSIVE,
148
	CS_MEM_HARDWALL,
149
	CS_MEMORY_MIGRATE,
P
Paul Jackson 已提交
150
	CS_SCHED_LOAD_BALANCE,
151 152
	CS_SPREAD_PAGE,
	CS_SPREAD_SLAB,
L
Linus Torvalds 已提交
153 154 155
} cpuset_flagbits_t;

/* convenient tests for these bits */
T
Tejun Heo 已提交
156 157 158 159 160
static inline bool is_cpuset_online(const struct cpuset *cs)
{
	return test_bit(CS_ONLINE, &cs->flags);
}

L
Linus Torvalds 已提交
161 162
static inline int is_cpu_exclusive(const struct cpuset *cs)
{
163
	return test_bit(CS_CPU_EXCLUSIVE, &cs->flags);
L
Linus Torvalds 已提交
164 165 166 167
}

static inline int is_mem_exclusive(const struct cpuset *cs)
{
168
	return test_bit(CS_MEM_EXCLUSIVE, &cs->flags);
L
Linus Torvalds 已提交
169 170
}

171 172 173 174 175
static inline int is_mem_hardwall(const struct cpuset *cs)
{
	return test_bit(CS_MEM_HARDWALL, &cs->flags);
}

P
Paul Jackson 已提交
176 177 178 179 180
static inline int is_sched_load_balance(const struct cpuset *cs)
{
	return test_bit(CS_SCHED_LOAD_BALANCE, &cs->flags);
}

181 182
static inline int is_memory_migrate(const struct cpuset *cs)
{
183
	return test_bit(CS_MEMORY_MIGRATE, &cs->flags);
184 185
}

186 187 188 189 190 191 192 193 194 195
static inline int is_spread_page(const struct cpuset *cs)
{
	return test_bit(CS_SPREAD_PAGE, &cs->flags);
}

static inline int is_spread_slab(const struct cpuset *cs)
{
	return test_bit(CS_SPREAD_SLAB, &cs->flags);
}

L
Linus Torvalds 已提交
196
static struct cpuset top_cpuset = {
T
Tejun Heo 已提交
197 198
	.flags = ((1 << CS_ONLINE) | (1 << CS_CPU_EXCLUSIVE) |
		  (1 << CS_MEM_EXCLUSIVE)),
L
Linus Torvalds 已提交
199 200
};

201 202 203
/**
 * cpuset_for_each_child - traverse online children of a cpuset
 * @child_cs: loop cursor pointing to the current child
204
 * @pos_css: used for iteration
205 206 207 208 209
 * @parent_cs: target cpuset to walk children of
 *
 * Walk @child_cs through the online children of @parent_cs.  Must be used
 * with RCU read locked.
 */
210 211 212
#define cpuset_for_each_child(child_cs, pos_css, parent_cs)		\
	css_for_each_child((pos_css), &(parent_cs)->css)		\
		if (is_cpuset_online(((child_cs) = css_cs((pos_css)))))
213

214 215 216
/**
 * cpuset_for_each_descendant_pre - pre-order walk of a cpuset's descendants
 * @des_cs: loop cursor pointing to the current descendant
217
 * @pos_css: used for iteration
218 219 220
 * @root_cs: target cpuset to walk ancestor of
 *
 * Walk @des_cs through the online descendants of @root_cs.  Must be used
221
 * with RCU read locked.  The caller may modify @pos_css by calling
222 223
 * css_rightmost_descendant() to skip subtree.  @root_cs is included in the
 * iteration and the first node to be visited.
224
 */
225 226 227
#define cpuset_for_each_descendant_pre(des_cs, pos_css, root_cs)	\
	css_for_each_descendant_pre((pos_css), &(root_cs)->css)		\
		if (is_cpuset_online(((des_cs) = css_cs((pos_css)))))
228

L
Linus Torvalds 已提交
229
/*
230 231 232 233 234 235 236 237 238 239 240 241 242 243
 * There are two global mutexes guarding cpuset structures - cpuset_mutex
 * and callback_mutex.  The latter may nest inside the former.  We also
 * require taking task_lock() when dereferencing a task's cpuset pointer.
 * See "The task_lock() exception", at the end of this comment.
 *
 * A task must hold both mutexes to modify cpusets.  If a task holds
 * cpuset_mutex, then it blocks others wanting that mutex, ensuring that it
 * is the only task able to also acquire callback_mutex and be able to
 * modify cpusets.  It can perform various checks on the cpuset structure
 * first, knowing nothing will change.  It can also allocate memory while
 * just holding cpuset_mutex.  While it is performing these checks, various
 * callback routines can briefly acquire callback_mutex to query cpusets.
 * Once it is ready to make the changes, it takes callback_mutex, blocking
 * everyone else.
244 245
 *
 * Calls to the kernel memory allocator can not be made while holding
246
 * callback_mutex, as that would risk double tripping on callback_mutex
247 248 249
 * from one of the callbacks into the cpuset code from within
 * __alloc_pages().
 *
250
 * If a task is only holding callback_mutex, then it has read-only
251 252
 * access to cpusets.
 *
253 254 255
 * Now, the task_struct fields mems_allowed and mempolicy may be changed
 * by other task, we use alloc_lock in the task_struct fields to protect
 * them.
256
 *
257
 * The cpuset_common_file_read() handlers only hold callback_mutex across
258 259 260
 * small pieces of code, such as when reading out possibly multi-word
 * cpumasks and nodemasks.
 *
261 262
 * Accessing a task's cpuset should be done in accordance with the
 * guidelines for accessing subsystem state in kernel/cgroup.c
L
Linus Torvalds 已提交
263 264
 */

265
static DEFINE_MUTEX(cpuset_mutex);
266
static DEFINE_MUTEX(callback_mutex);
267

268 269 270 271 272 273
/*
 * CPU / memory hotplug is handled asynchronously.
 */
static void cpuset_hotplug_workfn(struct work_struct *work);
static DECLARE_WORK(cpuset_hotplug_work, cpuset_hotplug_workfn);

274 275
static DECLARE_WAIT_QUEUE_HEAD(cpuset_attach_wq);

276 277
/*
 * This is ugly, but preserves the userspace API for existing cpuset
278
 * users. If someone tries to mount the "cpuset" filesystem, we
279 280
 * silently switch it to mount "cgroup" instead
 */
A
Al Viro 已提交
281 282
static struct dentry *cpuset_mount(struct file_system_type *fs_type,
			 int flags, const char *unused_dev_name, void *data)
L
Linus Torvalds 已提交
283
{
284
	struct file_system_type *cgroup_fs = get_fs_type("cgroup");
A
Al Viro 已提交
285
	struct dentry *ret = ERR_PTR(-ENODEV);
286 287 288 289
	if (cgroup_fs) {
		char mountopts[] =
			"cpuset,noprefix,"
			"release_agent=/sbin/cpuset_release_agent";
A
Al Viro 已提交
290 291
		ret = cgroup_fs->mount(cgroup_fs, flags,
					   unused_dev_name, mountopts);
292 293 294
		put_filesystem(cgroup_fs);
	}
	return ret;
L
Linus Torvalds 已提交
295 296 297 298
}

static struct file_system_type cpuset_fs_type = {
	.name = "cpuset",
A
Al Viro 已提交
299
	.mount = cpuset_mount,
L
Linus Torvalds 已提交
300 301 302
};

/*
303
 * Return in pmask the portion of a cpusets's cpus_allowed that
L
Linus Torvalds 已提交
304
 * are online.  If none are online, walk up the cpuset hierarchy
305 306
 * until we find one that does have some online cpus.  The top
 * cpuset always has some cpus online.
L
Linus Torvalds 已提交
307 308
 *
 * One way or another, we guarantee to return some non-empty subset
309
 * of cpu_online_mask.
L
Linus Torvalds 已提交
310
 *
311
 * Call with callback_mutex held.
L
Linus Torvalds 已提交
312
 */
313
static void guarantee_online_cpus(struct cpuset *cs, struct cpumask *pmask)
L
Linus Torvalds 已提交
314
{
315
	while (!cpumask_intersects(cs->cpus_allowed, cpu_online_mask))
T
Tejun Heo 已提交
316
		cs = parent_cs(cs);
317
	cpumask_and(pmask, cs->cpus_allowed, cpu_online_mask);
L
Linus Torvalds 已提交
318 319 320 321
}

/*
 * Return in *pmask the portion of a cpusets's mems_allowed that
322 323
 * are online, with memory.  If none are online with memory, walk
 * up the cpuset hierarchy until we find one that does have some
324
 * online mems.  The top cpuset always has some mems online.
L
Linus Torvalds 已提交
325 326
 *
 * One way or another, we guarantee to return some non-empty subset
327
 * of node_states[N_MEMORY].
L
Linus Torvalds 已提交
328
 *
329
 * Call with callback_mutex held.
L
Linus Torvalds 已提交
330
 */
331
static void guarantee_online_mems(struct cpuset *cs, nodemask_t *pmask)
L
Linus Torvalds 已提交
332
{
333
	while (!nodes_intersects(cs->mems_allowed, node_states[N_MEMORY]))
T
Tejun Heo 已提交
334
		cs = parent_cs(cs);
335
	nodes_and(*pmask, cs->mems_allowed, node_states[N_MEMORY]);
L
Linus Torvalds 已提交
336 337
}

338 339 340
/*
 * update task's spread flag if cpuset's page/slab spread flag is set
 *
341
 * Called with callback_mutex/cpuset_mutex held
342 343 344 345 346 347 348 349 350 351 352 353 354 355
 */
static void cpuset_update_task_spread_flag(struct cpuset *cs,
					struct task_struct *tsk)
{
	if (is_spread_page(cs))
		tsk->flags |= PF_SPREAD_PAGE;
	else
		tsk->flags &= ~PF_SPREAD_PAGE;
	if (is_spread_slab(cs))
		tsk->flags |= PF_SPREAD_SLAB;
	else
		tsk->flags &= ~PF_SPREAD_SLAB;
}

L
Linus Torvalds 已提交
356 357 358 359 360
/*
 * is_cpuset_subset(p, q) - Is cpuset p a subset of cpuset q?
 *
 * One cpuset is a subset of another if all its allowed CPUs and
 * Memory Nodes are a subset of the other, and its exclusive flags
361
 * are only set if the other's are set.  Call holding cpuset_mutex.
L
Linus Torvalds 已提交
362 363 364 365
 */

static int is_cpuset_subset(const struct cpuset *p, const struct cpuset *q)
{
366
	return	cpumask_subset(p->cpus_allowed, q->cpus_allowed) &&
L
Linus Torvalds 已提交
367 368 369 370 371
		nodes_subset(p->mems_allowed, q->mems_allowed) &&
		is_cpu_exclusive(p) <= is_cpu_exclusive(q) &&
		is_mem_exclusive(p) <= is_mem_exclusive(q);
}

372 373 374 375
/**
 * alloc_trial_cpuset - allocate a trial cpuset
 * @cs: the cpuset that the trial cpuset duplicates
 */
376
static struct cpuset *alloc_trial_cpuset(struct cpuset *cs)
377
{
378 379 380 381 382 383 384 385 386 387 388 389 390
	struct cpuset *trial;

	trial = kmemdup(cs, sizeof(*cs), GFP_KERNEL);
	if (!trial)
		return NULL;

	if (!alloc_cpumask_var(&trial->cpus_allowed, GFP_KERNEL)) {
		kfree(trial);
		return NULL;
	}
	cpumask_copy(trial->cpus_allowed, cs->cpus_allowed);

	return trial;
391 392 393 394 395 396 397 398
}

/**
 * free_trial_cpuset - free the trial cpuset
 * @trial: the trial cpuset to be freed
 */
static void free_trial_cpuset(struct cpuset *trial)
{
399
	free_cpumask_var(trial->cpus_allowed);
400 401 402
	kfree(trial);
}

L
Linus Torvalds 已提交
403 404 405 406 407 408 409
/*
 * validate_change() - Used to validate that any proposed cpuset change
 *		       follows the structural rules for cpusets.
 *
 * If we replaced the flag and mask values of the current cpuset
 * (cur) with those values in the trial cpuset (trial), would
 * our various subset and exclusive rules still be valid?  Presumes
410
 * cpuset_mutex held.
L
Linus Torvalds 已提交
411 412 413 414 415 416 417 418 419 420 421 422
 *
 * 'cur' is the address of an actual, in-use cpuset.  Operations
 * such as list traversal that depend on the actual address of the
 * cpuset in the list must use cur below, not trial.
 *
 * 'trial' is the address of bulk structure copy of cur, with
 * perhaps one or more of the fields cpus_allowed, mems_allowed,
 * or flags changed to new, trial values.
 *
 * Return 0 if valid, -errno if not.
 */

423
static int validate_change(struct cpuset *cur, struct cpuset *trial)
L
Linus Torvalds 已提交
424
{
425
	struct cgroup_subsys_state *css;
L
Linus Torvalds 已提交
426
	struct cpuset *c, *par;
427 428 429
	int ret;

	rcu_read_lock();
L
Linus Torvalds 已提交
430 431

	/* Each of our child cpusets must be a subset of us */
432
	ret = -EBUSY;
433
	cpuset_for_each_child(c, css, cur)
434 435
		if (!is_cpuset_subset(c, trial))
			goto out;
L
Linus Torvalds 已提交
436 437

	/* Remaining checks don't apply to root cpuset */
438
	ret = 0;
439
	if (cur == &top_cpuset)
440
		goto out;
L
Linus Torvalds 已提交
441

T
Tejun Heo 已提交
442
	par = parent_cs(cur);
443

L
Linus Torvalds 已提交
444
	/* We must be a subset of our parent cpuset */
445
	ret = -EACCES;
L
Linus Torvalds 已提交
446
	if (!is_cpuset_subset(trial, par))
447
		goto out;
L
Linus Torvalds 已提交
448

449 450 451 452
	/*
	 * If either I or some sibling (!= me) is exclusive, we can't
	 * overlap
	 */
453
	ret = -EINVAL;
454
	cpuset_for_each_child(c, css, par) {
L
Linus Torvalds 已提交
455 456
		if ((is_cpu_exclusive(trial) || is_cpu_exclusive(c)) &&
		    c != cur &&
457
		    cpumask_intersects(trial->cpus_allowed, c->cpus_allowed))
458
			goto out;
L
Linus Torvalds 已提交
459 460 461
		if ((is_mem_exclusive(trial) || is_mem_exclusive(c)) &&
		    c != cur &&
		    nodes_intersects(trial->mems_allowed, c->mems_allowed))
462
			goto out;
L
Linus Torvalds 已提交
463 464
	}

465 466
	/*
	 * Cpusets with tasks - existing or newly being attached - can't
467
	 * be changed to have empty cpus_allowed or mems_allowed.
468
	 */
469
	ret = -ENOSPC;
470 471 472 473 474 475 476 477
	if ((cgroup_task_count(cur->css.cgroup) || cur->attach_in_progress)) {
		if (!cpumask_empty(cur->cpus_allowed) &&
		    cpumask_empty(trial->cpus_allowed))
			goto out;
		if (!nodes_empty(cur->mems_allowed) &&
		    nodes_empty(trial->mems_allowed))
			goto out;
	}
478

479 480 481 482
	ret = 0;
out:
	rcu_read_unlock();
	return ret;
L
Linus Torvalds 已提交
483 484
}

485
#ifdef CONFIG_SMP
P
Paul Jackson 已提交
486
/*
487
 * Helper routine for generate_sched_domains().
P
Paul Jackson 已提交
488 489 490 491
 * Do cpusets a, b have overlapping cpus_allowed masks?
 */
static int cpusets_overlap(struct cpuset *a, struct cpuset *b)
{
492
	return cpumask_intersects(a->cpus_allowed, b->cpus_allowed);
P
Paul Jackson 已提交
493 494
}

495 496 497 498 499 500 501 502
static void
update_domain_attr(struct sched_domain_attr *dattr, struct cpuset *c)
{
	if (dattr->relax_domain_level < c->relax_domain_level)
		dattr->relax_domain_level = c->relax_domain_level;
	return;
}

503 504
static void update_domain_attr_tree(struct sched_domain_attr *dattr,
				    struct cpuset *root_cs)
505
{
506
	struct cpuset *cp;
507
	struct cgroup_subsys_state *pos_css;
508

509
	rcu_read_lock();
510
	cpuset_for_each_descendant_pre(cp, pos_css, root_cs) {
511 512 513
		if (cp == root_cs)
			continue;

514 515
		/* skip the whole subtree if @cp doesn't have any CPU */
		if (cpumask_empty(cp->cpus_allowed)) {
516
			pos_css = css_rightmost_descendant(pos_css);
517
			continue;
518
		}
519 520 521 522

		if (is_sched_load_balance(cp))
			update_domain_attr(dattr, cp);
	}
523
	rcu_read_unlock();
524 525
}

P
Paul Jackson 已提交
526
/*
527 528 529 530 531
 * generate_sched_domains()
 *
 * This function builds a partial partition of the systems CPUs
 * A 'partial partition' is a set of non-overlapping subsets whose
 * union is a subset of that set.
532
 * The output of this function needs to be passed to kernel/sched/core.c
533 534 535
 * partition_sched_domains() routine, which will rebuild the scheduler's
 * load balancing domains (sched domains) as specified by that partial
 * partition.
P
Paul Jackson 已提交
536
 *
L
Li Zefan 已提交
537
 * See "What is sched_load_balance" in Documentation/cgroups/cpusets.txt
P
Paul Jackson 已提交
538 539 540 541 542 543 544
 * for a background explanation of this.
 *
 * Does not return errors, on the theory that the callers of this
 * routine would rather not worry about failures to rebuild sched
 * domains when operating in the severe memory shortage situations
 * that could cause allocation failures below.
 *
545
 * Must be called with cpuset_mutex held.
P
Paul Jackson 已提交
546 547
 *
 * The three key local variables below are:
548
 *    q  - a linked-list queue of cpuset pointers, used to implement a
P
Paul Jackson 已提交
549 550 551 552 553 554 555 556 557 558 559 560
 *	   top-down scan of all cpusets.  This scan loads a pointer
 *	   to each cpuset marked is_sched_load_balance into the
 *	   array 'csa'.  For our purposes, rebuilding the schedulers
 *	   sched domains, we can ignore !is_sched_load_balance cpusets.
 *  csa  - (for CpuSet Array) Array of pointers to all the cpusets
 *	   that need to be load balanced, for convenient iterative
 *	   access by the subsequent code that finds the best partition,
 *	   i.e the set of domains (subsets) of CPUs such that the
 *	   cpus_allowed of every cpuset marked is_sched_load_balance
 *	   is a subset of one of these domains, while there are as
 *	   many such domains as possible, each as small as possible.
 * doms  - Conversion of 'csa' to an array of cpumasks, for passing to
561
 *	   the kernel/sched/core.c routine partition_sched_domains() in a
P
Paul Jackson 已提交
562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579
 *	   convenient format, that can be easily compared to the prior
 *	   value to determine what partition elements (sched domains)
 *	   were changed (added or removed.)
 *
 * Finding the best partition (set of domains):
 *	The triple nested loops below over i, j, k scan over the
 *	load balanced cpusets (using the array of cpuset pointers in
 *	csa[]) looking for pairs of cpusets that have overlapping
 *	cpus_allowed, but which don't have the same 'pn' partition
 *	number and gives them in the same partition number.  It keeps
 *	looping on the 'restart' label until it can no longer find
 *	any such pairs.
 *
 *	The union of the cpus_allowed masks from the set of
 *	all cpusets having the same 'pn' value then form the one
 *	element of the partition (one sched domain) to be passed to
 *	partition_sched_domains().
 */
580
static int generate_sched_domains(cpumask_var_t **domains,
581
			struct sched_domain_attr **attributes)
P
Paul Jackson 已提交
582 583 584 585 586
{
	struct cpuset *cp;	/* scans q */
	struct cpuset **csa;	/* array of all cpuset ptrs */
	int csn;		/* how many cpuset ptrs in csa so far */
	int i, j, k;		/* indices for partition finding loops */
587
	cpumask_var_t *doms;	/* resulting partition; i.e. sched domains */
588
	struct sched_domain_attr *dattr;  /* attributes for custom domains */
589
	int ndoms = 0;		/* number of sched domains in result */
590
	int nslot;		/* next empty doms[] struct cpumask slot */
591
	struct cgroup_subsys_state *pos_css;
P
Paul Jackson 已提交
592 593

	doms = NULL;
594
	dattr = NULL;
595
	csa = NULL;
P
Paul Jackson 已提交
596 597 598

	/* Special case for the 99% of systems with one, full, sched domain */
	if (is_sched_load_balance(&top_cpuset)) {
599 600
		ndoms = 1;
		doms = alloc_sched_domains(ndoms);
P
Paul Jackson 已提交
601
		if (!doms)
602 603
			goto done;

604 605 606
		dattr = kmalloc(sizeof(struct sched_domain_attr), GFP_KERNEL);
		if (dattr) {
			*dattr = SD_ATTR_INIT;
607
			update_domain_attr_tree(dattr, &top_cpuset);
608
		}
609
		cpumask_copy(doms[0], top_cpuset.cpus_allowed);
610 611

		goto done;
P
Paul Jackson 已提交
612 613 614 615 616 617 618
	}

	csa = kmalloc(number_of_cpusets * sizeof(cp), GFP_KERNEL);
	if (!csa)
		goto done;
	csn = 0;

619
	rcu_read_lock();
620
	cpuset_for_each_descendant_pre(cp, pos_css, &top_cpuset) {
621 622
		if (cp == &top_cpuset)
			continue;
623
		/*
624 625 626 627 628 629
		 * Continue traversing beyond @cp iff @cp has some CPUs and
		 * isn't load balancing.  The former is obvious.  The
		 * latter: All child cpusets contain a subset of the
		 * parent's cpus, so just skip them, and then we call
		 * update_domain_attr_tree() to calc relax_domain_level of
		 * the corresponding sched domain.
630
		 */
631 632
		if (!cpumask_empty(cp->cpus_allowed) &&
		    !is_sched_load_balance(cp))
633
			continue;
634

635 636 637 638
		if (is_sched_load_balance(cp))
			csa[csn++] = cp;

		/* skip @cp's subtree */
639
		pos_css = css_rightmost_descendant(pos_css);
640 641
	}
	rcu_read_unlock();
P
Paul Jackson 已提交
642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669

	for (i = 0; i < csn; i++)
		csa[i]->pn = i;
	ndoms = csn;

restart:
	/* Find the best partition (set of sched domains) */
	for (i = 0; i < csn; i++) {
		struct cpuset *a = csa[i];
		int apn = a->pn;

		for (j = 0; j < csn; j++) {
			struct cpuset *b = csa[j];
			int bpn = b->pn;

			if (apn != bpn && cpusets_overlap(a, b)) {
				for (k = 0; k < csn; k++) {
					struct cpuset *c = csa[k];

					if (c->pn == bpn)
						c->pn = apn;
				}
				ndoms--;	/* one less element */
				goto restart;
			}
		}
	}

670 671 672 673
	/*
	 * Now we know how many domains to create.
	 * Convert <csn, csa> to <ndoms, doms> and populate cpu masks.
	 */
674
	doms = alloc_sched_domains(ndoms);
675
	if (!doms)
676 677 678 679 680 681
		goto done;

	/*
	 * The rest of the code, including the scheduler, can deal with
	 * dattr==NULL case. No need to abort if alloc fails.
	 */
682
	dattr = kmalloc(ndoms * sizeof(struct sched_domain_attr), GFP_KERNEL);
P
Paul Jackson 已提交
683 684 685

	for (nslot = 0, i = 0; i < csn; i++) {
		struct cpuset *a = csa[i];
686
		struct cpumask *dp;
P
Paul Jackson 已提交
687 688
		int apn = a->pn;

689 690 691 692 693
		if (apn < 0) {
			/* Skip completed partitions */
			continue;
		}

694
		dp = doms[nslot];
695 696 697 698 699 700 701 702 703 704

		if (nslot == ndoms) {
			static int warnings = 10;
			if (warnings) {
				printk(KERN_WARNING
				 "rebuild_sched_domains confused:"
				  " nslot %d, ndoms %d, csn %d, i %d,"
				  " apn %d\n",
				  nslot, ndoms, csn, i, apn);
				warnings--;
P
Paul Jackson 已提交
705
			}
706 707
			continue;
		}
P
Paul Jackson 已提交
708

709
		cpumask_clear(dp);
710 711 712 713 714 715
		if (dattr)
			*(dattr + nslot) = SD_ATTR_INIT;
		for (j = i; j < csn; j++) {
			struct cpuset *b = csa[j];

			if (apn == b->pn) {
716
				cpumask_or(dp, dp, b->cpus_allowed);
717 718 719 720 721
				if (dattr)
					update_domain_attr_tree(dattr + nslot, b);

				/* Done with this partition */
				b->pn = -1;
P
Paul Jackson 已提交
722 723
			}
		}
724
		nslot++;
P
Paul Jackson 已提交
725 726 727
	}
	BUG_ON(nslot != ndoms);

728 729 730
done:
	kfree(csa);

731 732 733 734 735 736 737
	/*
	 * Fallback to the default domain if kmalloc() failed.
	 * See comments in partition_sched_domains().
	 */
	if (doms == NULL)
		ndoms = 1;

738 739 740 741 742 743 744 745
	*domains    = doms;
	*attributes = dattr;
	return ndoms;
}

/*
 * Rebuild scheduler domains.
 *
746 747 748 749 750
 * If the flag 'sched_load_balance' of any cpuset with non-empty
 * 'cpus' changes, or if the 'cpus' allowed changes in any cpuset
 * which has that flag enabled, or if any cpuset with a non-empty
 * 'cpus' is removed, then call this routine to rebuild the
 * scheduler's dynamic sched domains.
751
 *
752
 * Call with cpuset_mutex held.  Takes get_online_cpus().
753
 */
754
static void rebuild_sched_domains_locked(void)
755 756
{
	struct sched_domain_attr *attr;
757
	cpumask_var_t *doms;
758 759
	int ndoms;

760
	lockdep_assert_held(&cpuset_mutex);
761
	get_online_cpus();
762

763 764 765 766 767 768 769 770
	/*
	 * We have raced with CPU hotplug. Don't do anything to avoid
	 * passing doms with offlined cpu to partition_sched_domains().
	 * Anyways, hotplug work item will rebuild sched domains.
	 */
	if (!cpumask_equal(top_cpuset.cpus_allowed, cpu_active_mask))
		goto out;

771 772 773 774 775
	/* Generate domain masks and attrs */
	ndoms = generate_sched_domains(&doms, &attr);

	/* Have scheduler rebuild the domains */
	partition_sched_domains(ndoms, doms, attr);
776
out:
777
	put_online_cpus();
778
}
779
#else /* !CONFIG_SMP */
780
static void rebuild_sched_domains_locked(void)
781 782 783
{
}
#endif /* CONFIG_SMP */
P
Paul Jackson 已提交
784

785 786
void rebuild_sched_domains(void)
{
787
	mutex_lock(&cpuset_mutex);
788
	rebuild_sched_domains_locked();
789
	mutex_unlock(&cpuset_mutex);
P
Paul Jackson 已提交
790 791
}

792 793 794
/*
 * effective_cpumask_cpuset - return nearest ancestor with non-empty cpus
 * @cs: the cpuset in interest
C
Cliff Wickman 已提交
795
 *
796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822
 * A cpuset's effective cpumask is the cpumask of the nearest ancestor
 * with non-empty cpus. We use effective cpumask whenever:
 * - we update tasks' cpus_allowed. (they take on the ancestor's cpumask
 *   if the cpuset they reside in has no cpus)
 * - we want to retrieve task_cs(tsk)'s cpus_allowed.
 *
 * Called with cpuset_mutex held. cpuset_cpus_allowed_fallback() is an
 * exception. See comments there.
 */
static struct cpuset *effective_cpumask_cpuset(struct cpuset *cs)
{
	while (cpumask_empty(cs->cpus_allowed))
		cs = parent_cs(cs);
	return cs;
}

/*
 * effective_nodemask_cpuset - return nearest ancestor with non-empty mems
 * @cs: the cpuset in interest
 *
 * A cpuset's effective nodemask is the nodemask of the nearest ancestor
 * with non-empty memss. We use effective nodemask whenever:
 * - we update tasks' mems_allowed. (they take on the ancestor's nodemask
 *   if the cpuset they reside in has no mems)
 * - we want to retrieve task_cs(tsk)'s mems_allowed.
 *
 * Called with cpuset_mutex held.
823
 */
824
static struct cpuset *effective_nodemask_cpuset(struct cpuset *cs)
C
Cliff Wickman 已提交
825
{
826 827 828
	while (nodes_empty(cs->mems_allowed))
		cs = parent_cs(cs);
	return cs;
C
Cliff Wickman 已提交
829
}
830

C
Cliff Wickman 已提交
831 832 833
/**
 * cpuset_change_cpumask - make a task's cpus_allowed the same as its cpuset's
 * @tsk: task to test
T
Tejun Heo 已提交
834
 * @data: cpuset to @tsk belongs to
C
Cliff Wickman 已提交
835
 *
836 837
 * Called by css_scan_tasks() for each task in a cgroup whose cpus_allowed
 * mask needs to be changed.
C
Cliff Wickman 已提交
838 839
 *
 * We don't need to re-check for the cgroup/cpuset membership, since we're
840
 * holding cpuset_mutex at this point.
C
Cliff Wickman 已提交
841
 */
T
Tejun Heo 已提交
842
static void cpuset_change_cpumask(struct task_struct *tsk, void *data)
C
Cliff Wickman 已提交
843
{
T
Tejun Heo 已提交
844 845
	struct cpuset *cs = data;
	struct cpuset *cpus_cs = effective_cpumask_cpuset(cs);
846 847

	set_cpus_allowed_ptr(tsk, cpus_cs->cpus_allowed);
C
Cliff Wickman 已提交
848 849
}

850 851 852
/**
 * update_tasks_cpumask - Update the cpumasks of tasks in the cpuset.
 * @cs: the cpuset in which each task's cpus_allowed mask needs to be changed
853
 * @heap: if NULL, defer allocating heap memory to css_scan_tasks()
854
 *
855
 * Called with cpuset_mutex held
856
 *
857
 * The css_scan_tasks() function will scan all the tasks in a cgroup,
858 859
 * calling callback functions for each.
 *
860
 * No return value. It's guaranteed that css_scan_tasks() always returns 0
861
 * if @heap != NULL.
862
 */
863
static void update_tasks_cpumask(struct cpuset *cs, struct ptr_heap *heap)
864
{
865
	css_scan_tasks(&cs->css, NULL, cpuset_change_cpumask, cs, heap);
866 867
}

868 869 870 871
/*
 * update_tasks_cpumask_hier - Update the cpumasks of tasks in the hierarchy.
 * @root_cs: the root cpuset of the hierarchy
 * @update_root: update root cpuset or not?
872
 * @heap: the heap used by css_scan_tasks()
873 874 875 876 877 878 879 880 881 882
 *
 * This will update cpumasks of tasks in @root_cs and all other empty cpusets
 * which take on cpumask of @root_cs.
 *
 * Called with cpuset_mutex held
 */
static void update_tasks_cpumask_hier(struct cpuset *root_cs,
				      bool update_root, struct ptr_heap *heap)
{
	struct cpuset *cp;
883
	struct cgroup_subsys_state *pos_css;
884 885

	rcu_read_lock();
886
	cpuset_for_each_descendant_pre(cp, pos_css, root_cs) {
887 888 889 890 891 892 893 894 895
		if (cp == root_cs) {
			if (!update_root)
				continue;
		} else {
			/* skip the whole subtree if @cp have some CPU */
			if (!cpumask_empty(cp->cpus_allowed)) {
				pos_css = css_rightmost_descendant(pos_css);
				continue;
			}
896 897 898 899 900 901 902 903 904 905 906 907 908
		}
		if (!css_tryget(&cp->css))
			continue;
		rcu_read_unlock();

		update_tasks_cpumask(cp, heap);

		rcu_read_lock();
		css_put(&cp->css);
	}
	rcu_read_unlock();
}

C
Cliff Wickman 已提交
909 910 911 912 913
/**
 * update_cpumask - update the cpus_allowed mask of a cpuset and all tasks in it
 * @cs: the cpuset to consider
 * @buf: buffer of cpu numbers written to this cpuset
 */
914 915
static int update_cpumask(struct cpuset *cs, struct cpuset *trialcs,
			  const char *buf)
L
Linus Torvalds 已提交
916
{
917
	struct ptr_heap heap;
C
Cliff Wickman 已提交
918 919
	int retval;
	int is_load_balanced;
L
Linus Torvalds 已提交
920

921
	/* top_cpuset.cpus_allowed tracks cpu_online_mask; it's read-only */
922 923 924
	if (cs == &top_cpuset)
		return -EACCES;

925
	/*
926
	 * An empty cpus_allowed is ok only if the cpuset has no tasks.
927 928 929
	 * Since cpulist_parse() fails on an empty mask, we special case
	 * that parsing.  The validate_change() call ensures that cpusets
	 * with tasks have cpus.
930
	 */
931
	if (!*buf) {
932
		cpumask_clear(trialcs->cpus_allowed);
933
	} else {
934
		retval = cpulist_parse(buf, trialcs->cpus_allowed);
935 936
		if (retval < 0)
			return retval;
937

938
		if (!cpumask_subset(trialcs->cpus_allowed, cpu_active_mask))
939
			return -EINVAL;
940
	}
P
Paul Jackson 已提交
941

P
Paul Menage 已提交
942
	/* Nothing to do if the cpus didn't change */
943
	if (cpumask_equal(cs->cpus_allowed, trialcs->cpus_allowed))
P
Paul Menage 已提交
944
		return 0;
C
Cliff Wickman 已提交
945

946 947 948 949
	retval = validate_change(cs, trialcs);
	if (retval < 0)
		return retval;

950 951 952 953
	retval = heap_init(&heap, PAGE_SIZE, GFP_KERNEL, NULL);
	if (retval)
		return retval;

954
	is_load_balanced = is_sched_load_balance(trialcs);
P
Paul Jackson 已提交
955

956
	mutex_lock(&callback_mutex);
957
	cpumask_copy(cs->cpus_allowed, trialcs->cpus_allowed);
958
	mutex_unlock(&callback_mutex);
P
Paul Jackson 已提交
959

960
	update_tasks_cpumask_hier(cs, true, &heap);
961 962

	heap_free(&heap);
C
Cliff Wickman 已提交
963

P
Paul Menage 已提交
964
	if (is_load_balanced)
965
		rebuild_sched_domains_locked();
966
	return 0;
L
Linus Torvalds 已提交
967 968
}

969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986
/*
 * cpuset_migrate_mm
 *
 *    Migrate memory region from one set of nodes to another.
 *
 *    Temporarilly set tasks mems_allowed to target nodes of migration,
 *    so that the migration code can allocate pages on these nodes.
 *
 *    While the mm_struct we are migrating is typically from some
 *    other task, the task_struct mems_allowed that we are hacking
 *    is for our current task, which must allocate new pages for that
 *    migrating memory region.
 */

static void cpuset_migrate_mm(struct mm_struct *mm, const nodemask_t *from,
							const nodemask_t *to)
{
	struct task_struct *tsk = current;
987
	struct cpuset *mems_cs;
988 989 990 991 992

	tsk->mems_allowed = *to;

	do_migrate_pages(mm, from, to, MPOL_MF_MOVE_ALL);

993
	rcu_read_lock();
994 995
	mems_cs = effective_nodemask_cpuset(task_cs(tsk));
	guarantee_online_mems(mems_cs, &tsk->mems_allowed);
996
	rcu_read_unlock();
997 998
}

999
/*
1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010
 * cpuset_change_task_nodemask - change task's mems_allowed and mempolicy
 * @tsk: the task to change
 * @newmems: new nodes that the task will be set
 *
 * In order to avoid seeing no nodes if the old and new nodes are disjoint,
 * we structure updates as setting all new allowed nodes, then clearing newly
 * disallowed ones.
 */
static void cpuset_change_task_nodemask(struct task_struct *tsk,
					nodemask_t *newmems)
{
1011
	bool need_loop;
1012

1013 1014 1015 1016 1017 1018 1019 1020 1021 1022
	/*
	 * Allow tasks that have access to memory reserves because they have
	 * been OOM killed to get memory anywhere.
	 */
	if (unlikely(test_thread_flag(TIF_MEMDIE)))
		return;
	if (current->flags & PF_EXITING) /* Let dying task have memory */
		return;

	task_lock(tsk);
1023 1024 1025 1026 1027 1028 1029 1030
	/*
	 * Determine if a loop is necessary if another thread is doing
	 * get_mems_allowed().  If at least one node remains unchanged and
	 * tsk does not have a mempolicy, then an empty nodemask will not be
	 * possible when mems_allowed is larger than a word.
	 */
	need_loop = task_has_mempolicy(tsk) ||
			!nodes_intersects(*newmems, tsk->mems_allowed);
1031

1032 1033
	if (need_loop) {
		local_irq_disable();
1034
		write_seqcount_begin(&tsk->mems_allowed_seq);
1035
	}
1036

1037 1038
	nodes_or(tsk->mems_allowed, tsk->mems_allowed, *newmems);
	mpol_rebind_task(tsk, newmems, MPOL_REBIND_STEP1);
1039 1040

	mpol_rebind_task(tsk, newmems, MPOL_REBIND_STEP2);
1041
	tsk->mems_allowed = *newmems;
1042

1043
	if (need_loop) {
1044
		write_seqcount_end(&tsk->mems_allowed_seq);
1045 1046
		local_irq_enable();
	}
1047

1048
	task_unlock(tsk);
1049 1050
}

T
Tejun Heo 已提交
1051 1052 1053 1054 1055
struct cpuset_change_nodemask_arg {
	struct cpuset		*cs;
	nodemask_t		*newmems;
};

1056 1057 1058
/*
 * Update task's mems_allowed and rebind its mempolicy and vmas' mempolicy
 * of it to cpuset's new mems_allowed, and migrate pages to new nodes if
1059
 * memory_migrate flag is set. Called with cpuset_mutex held.
1060
 */
T
Tejun Heo 已提交
1061
static void cpuset_change_nodemask(struct task_struct *p, void *data)
1062
{
T
Tejun Heo 已提交
1063 1064
	struct cpuset_change_nodemask_arg *arg = data;
	struct cpuset *cs = arg->cs;
1065 1066
	struct mm_struct *mm;
	int migrate;
1067

T
Tejun Heo 已提交
1068
	cpuset_change_task_nodemask(p, arg->newmems);
1069

1070 1071 1072 1073 1074 1075 1076 1077
	mm = get_task_mm(p);
	if (!mm)
		return;

	migrate = is_memory_migrate(cs);

	mpol_rebind_mm(mm, &cs->mems_allowed);
	if (migrate)
T
Tejun Heo 已提交
1078
		cpuset_migrate_mm(mm, &cs->old_mems_allowed, arg->newmems);
1079 1080 1081
	mmput(mm);
}

1082 1083
static void *cpuset_being_rebound;

1084 1085 1086
/**
 * update_tasks_nodemask - Update the nodemasks of tasks in the cpuset.
 * @cs: the cpuset in which each task's mems_allowed mask needs to be changed
1087
 * @heap: if NULL, defer allocating heap memory to css_scan_tasks()
1088
 *
1089 1090
 * Called with cpuset_mutex held.  No return value. It's guaranteed that
 * css_scan_tasks() always returns 0 if @heap != NULL.
1091
 */
1092
static void update_tasks_nodemask(struct cpuset *cs, struct ptr_heap *heap)
L
Linus Torvalds 已提交
1093
{
1094
	static nodemask_t newmems;	/* protected by cpuset_mutex */
1095
	struct cpuset *mems_cs = effective_nodemask_cpuset(cs);
T
Tejun Heo 已提交
1096 1097
	struct cpuset_change_nodemask_arg arg = { .cs = cs,
						  .newmems = &newmems };
1098

1099
	cpuset_being_rebound = cs;		/* causes mpol_dup() rebind */
1100

1101
	guarantee_online_mems(mems_cs, &newmems);
1102

1103
	/*
1104 1105 1106 1107
	 * The mpol_rebind_mm() call takes mmap_sem, which we couldn't
	 * take while holding tasklist_lock.  Forks can happen - the
	 * mpol_dup() cpuset_being_rebound check will catch such forks,
	 * and rebind their vma mempolicies too.  Because we still hold
1108
	 * the global cpuset_mutex, we know that no other rebind effort
1109
	 * will be contending for the global variable cpuset_being_rebound.
1110
	 * It's ok if we rebind the same mm twice; mpol_rebind_mm()
1111
	 * is idempotent.  Also migrate pages in each mm to new nodes.
1112
	 */
1113
	css_scan_tasks(&cs->css, NULL, cpuset_change_nodemask, &arg, heap);
1114

1115 1116 1117 1118 1119 1120
	/*
	 * All the tasks' nodemasks have been updated, update
	 * cs->old_mems_allowed.
	 */
	cs->old_mems_allowed = newmems;

1121
	/* We're done rebinding vmas to this cpuset's new mems_allowed. */
1122
	cpuset_being_rebound = NULL;
L
Linus Torvalds 已提交
1123 1124
}

1125 1126 1127 1128
/*
 * update_tasks_nodemask_hier - Update the nodemasks of tasks in the hierarchy.
 * @cs: the root cpuset of the hierarchy
 * @update_root: update the root cpuset or not?
1129
 * @heap: the heap used by css_scan_tasks()
1130 1131 1132 1133 1134 1135 1136 1137 1138 1139
 *
 * This will update nodemasks of tasks in @root_cs and all other empty cpusets
 * which take on nodemask of @root_cs.
 *
 * Called with cpuset_mutex held
 */
static void update_tasks_nodemask_hier(struct cpuset *root_cs,
				       bool update_root, struct ptr_heap *heap)
{
	struct cpuset *cp;
1140
	struct cgroup_subsys_state *pos_css;
1141 1142

	rcu_read_lock();
1143
	cpuset_for_each_descendant_pre(cp, pos_css, root_cs) {
1144 1145 1146 1147 1148 1149 1150 1151 1152
		if (cp == root_cs) {
			if (!update_root)
				continue;
		} else {
			/* skip the whole subtree if @cp have some CPU */
			if (!nodes_empty(cp->mems_allowed)) {
				pos_css = css_rightmost_descendant(pos_css);
				continue;
			}
1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165
		}
		if (!css_tryget(&cp->css))
			continue;
		rcu_read_unlock();

		update_tasks_nodemask(cp, heap);

		rcu_read_lock();
		css_put(&cp->css);
	}
	rcu_read_unlock();
}

1166 1167 1168
/*
 * Handle user request to change the 'mems' memory placement
 * of a cpuset.  Needs to validate the request, update the
1169 1170 1171 1172
 * cpusets mems_allowed, and for each task in the cpuset,
 * update mems_allowed and rebind task's mempolicy and any vma
 * mempolicies and if the cpuset is marked 'memory_migrate',
 * migrate the tasks pages to the new memory.
1173
 *
1174
 * Call with cpuset_mutex held.  May take callback_mutex during call.
1175 1176 1177 1178
 * Will take tasklist_lock, scan tasklist for tasks in cpuset cs,
 * lock each such tasks mm->mmap_sem, scan its vma's and rebind
 * their mempolicies to the cpusets new mems_allowed.
 */
1179 1180
static int update_nodemask(struct cpuset *cs, struct cpuset *trialcs,
			   const char *buf)
1181 1182
{
	int retval;
1183
	struct ptr_heap heap;
1184 1185

	/*
1186
	 * top_cpuset.mems_allowed tracks node_stats[N_MEMORY];
1187 1188
	 * it's read-only
	 */
1189 1190 1191 1192
	if (cs == &top_cpuset) {
		retval = -EACCES;
		goto done;
	}
1193 1194 1195 1196 1197 1198 1199 1200

	/*
	 * An empty mems_allowed is ok iff there are no tasks in the cpuset.
	 * Since nodelist_parse() fails on an empty mask, we special case
	 * that parsing.  The validate_change() call ensures that cpusets
	 * with tasks have memory.
	 */
	if (!*buf) {
1201
		nodes_clear(trialcs->mems_allowed);
1202
	} else {
1203
		retval = nodelist_parse(buf, trialcs->mems_allowed);
1204 1205 1206
		if (retval < 0)
			goto done;

1207
		if (!nodes_subset(trialcs->mems_allowed,
1208
				node_states[N_MEMORY])) {
1209 1210 1211
			retval =  -EINVAL;
			goto done;
		}
1212
	}
1213 1214

	if (nodes_equal(cs->mems_allowed, trialcs->mems_allowed)) {
1215 1216 1217
		retval = 0;		/* Too easy - nothing to do */
		goto done;
	}
1218
	retval = validate_change(cs, trialcs);
1219 1220 1221
	if (retval < 0)
		goto done;

1222 1223 1224 1225
	retval = heap_init(&heap, PAGE_SIZE, GFP_KERNEL, NULL);
	if (retval < 0)
		goto done;

1226
	mutex_lock(&callback_mutex);
1227
	cs->mems_allowed = trialcs->mems_allowed;
1228 1229
	mutex_unlock(&callback_mutex);

1230
	update_tasks_nodemask_hier(cs, true, &heap);
1231 1232

	heap_free(&heap);
1233 1234 1235 1236
done:
	return retval;
}

1237 1238 1239 1240 1241
int current_cpuset_is_being_rebound(void)
{
	return task_cs(current) == cpuset_being_rebound;
}

1242
static int update_relax_domain_level(struct cpuset *cs, s64 val)
1243
{
1244
#ifdef CONFIG_SMP
1245
	if (val < -1 || val >= sched_domain_level_max)
1246
		return -EINVAL;
1247
#endif
1248 1249 1250

	if (val != cs->relax_domain_level) {
		cs->relax_domain_level = val;
1251 1252
		if (!cpumask_empty(cs->cpus_allowed) &&
		    is_sched_load_balance(cs))
1253
			rebuild_sched_domains_locked();
1254 1255 1256 1257 1258
	}

	return 0;
}

1259
/**
1260 1261
 * cpuset_change_flag - make a task's spread flags the same as its cpuset's
 * @tsk: task to be updated
T
Tejun Heo 已提交
1262
 * @data: cpuset to @tsk belongs to
1263
 *
1264
 * Called by css_scan_tasks() for each task in a cgroup.
1265 1266
 *
 * We don't need to re-check for the cgroup/cpuset membership, since we're
1267
 * holding cpuset_mutex at this point.
1268
 */
T
Tejun Heo 已提交
1269
static void cpuset_change_flag(struct task_struct *tsk, void *data)
1270
{
T
Tejun Heo 已提交
1271 1272 1273
	struct cpuset *cs = data;

	cpuset_update_task_spread_flag(cs, tsk);
1274 1275
}

1276
/**
1277 1278
 * update_tasks_flags - update the spread flags of tasks in the cpuset.
 * @cs: the cpuset in which each task's spread flags needs to be changed
1279
 * @heap: if NULL, defer allocating heap memory to css_scan_tasks()
1280
 *
1281
 * Called with cpuset_mutex held
1282
 *
1283
 * The css_scan_tasks() function will scan all the tasks in a cgroup,
1284 1285
 * calling callback functions for each.
 *
1286
 * No return value. It's guaranteed that css_scan_tasks() always returns 0
1287 1288 1289 1290
 * if @heap != NULL.
 */
static void update_tasks_flags(struct cpuset *cs, struct ptr_heap *heap)
{
1291
	css_scan_tasks(&cs->css, NULL, cpuset_change_flag, cs, heap);
1292 1293
}

L
Linus Torvalds 已提交
1294 1295
/*
 * update_flag - read a 0 or a 1 in a file and update associated flag
1296 1297 1298
 * bit:		the bit to update (see cpuset_flagbits_t)
 * cs:		the cpuset to update
 * turning_on: 	whether the flag is being set or cleared
1299
 *
1300
 * Call with cpuset_mutex held.
L
Linus Torvalds 已提交
1301 1302
 */

1303 1304
static int update_flag(cpuset_flagbits_t bit, struct cpuset *cs,
		       int turning_on)
L
Linus Torvalds 已提交
1305
{
1306
	struct cpuset *trialcs;
R
Rakib Mullick 已提交
1307
	int balance_flag_changed;
1308 1309 1310
	int spread_flag_changed;
	struct ptr_heap heap;
	int err;
L
Linus Torvalds 已提交
1311

1312 1313 1314 1315
	trialcs = alloc_trial_cpuset(cs);
	if (!trialcs)
		return -ENOMEM;

L
Linus Torvalds 已提交
1316
	if (turning_on)
1317
		set_bit(bit, &trialcs->flags);
L
Linus Torvalds 已提交
1318
	else
1319
		clear_bit(bit, &trialcs->flags);
L
Linus Torvalds 已提交
1320

1321
	err = validate_change(cs, trialcs);
1322
	if (err < 0)
1323
		goto out;
P
Paul Jackson 已提交
1324

1325 1326 1327 1328
	err = heap_init(&heap, PAGE_SIZE, GFP_KERNEL, NULL);
	if (err < 0)
		goto out;

P
Paul Jackson 已提交
1329
	balance_flag_changed = (is_sched_load_balance(cs) !=
1330
				is_sched_load_balance(trialcs));
P
Paul Jackson 已提交
1331

1332 1333 1334
	spread_flag_changed = ((is_spread_slab(cs) != is_spread_slab(trialcs))
			|| (is_spread_page(cs) != is_spread_page(trialcs)));

1335
	mutex_lock(&callback_mutex);
1336
	cs->flags = trialcs->flags;
1337
	mutex_unlock(&callback_mutex);
1338

1339
	if (!cpumask_empty(trialcs->cpus_allowed) && balance_flag_changed)
1340
		rebuild_sched_domains_locked();
P
Paul Jackson 已提交
1341

1342 1343 1344
	if (spread_flag_changed)
		update_tasks_flags(cs, &heap);
	heap_free(&heap);
1345 1346 1347
out:
	free_trial_cpuset(trialcs);
	return err;
L
Linus Torvalds 已提交
1348 1349
}

1350
/*
A
Adrian Bunk 已提交
1351
 * Frequency meter - How fast is some event occurring?
1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447
 *
 * These routines manage a digitally filtered, constant time based,
 * event frequency meter.  There are four routines:
 *   fmeter_init() - initialize a frequency meter.
 *   fmeter_markevent() - called each time the event happens.
 *   fmeter_getrate() - returns the recent rate of such events.
 *   fmeter_update() - internal routine used to update fmeter.
 *
 * A common data structure is passed to each of these routines,
 * which is used to keep track of the state required to manage the
 * frequency meter and its digital filter.
 *
 * The filter works on the number of events marked per unit time.
 * The filter is single-pole low-pass recursive (IIR).  The time unit
 * is 1 second.  Arithmetic is done using 32-bit integers scaled to
 * simulate 3 decimal digits of precision (multiplied by 1000).
 *
 * With an FM_COEF of 933, and a time base of 1 second, the filter
 * has a half-life of 10 seconds, meaning that if the events quit
 * happening, then the rate returned from the fmeter_getrate()
 * will be cut in half each 10 seconds, until it converges to zero.
 *
 * It is not worth doing a real infinitely recursive filter.  If more
 * than FM_MAXTICKS ticks have elapsed since the last filter event,
 * just compute FM_MAXTICKS ticks worth, by which point the level
 * will be stable.
 *
 * Limit the count of unprocessed events to FM_MAXCNT, so as to avoid
 * arithmetic overflow in the fmeter_update() routine.
 *
 * Given the simple 32 bit integer arithmetic used, this meter works
 * best for reporting rates between one per millisecond (msec) and
 * one per 32 (approx) seconds.  At constant rates faster than one
 * per msec it maxes out at values just under 1,000,000.  At constant
 * rates between one per msec, and one per second it will stabilize
 * to a value N*1000, where N is the rate of events per second.
 * At constant rates between one per second and one per 32 seconds,
 * it will be choppy, moving up on the seconds that have an event,
 * and then decaying until the next event.  At rates slower than
 * about one in 32 seconds, it decays all the way back to zero between
 * each event.
 */

#define FM_COEF 933		/* coefficient for half-life of 10 secs */
#define FM_MAXTICKS ((time_t)99) /* useless computing more ticks than this */
#define FM_MAXCNT 1000000	/* limit cnt to avoid overflow */
#define FM_SCALE 1000		/* faux fixed point scale */

/* Initialize a frequency meter */
static void fmeter_init(struct fmeter *fmp)
{
	fmp->cnt = 0;
	fmp->val = 0;
	fmp->time = 0;
	spin_lock_init(&fmp->lock);
}

/* Internal meter update - process cnt events and update value */
static void fmeter_update(struct fmeter *fmp)
{
	time_t now = get_seconds();
	time_t ticks = now - fmp->time;

	if (ticks == 0)
		return;

	ticks = min(FM_MAXTICKS, ticks);
	while (ticks-- > 0)
		fmp->val = (FM_COEF * fmp->val) / FM_SCALE;
	fmp->time = now;

	fmp->val += ((FM_SCALE - FM_COEF) * fmp->cnt) / FM_SCALE;
	fmp->cnt = 0;
}

/* Process any previous ticks, then bump cnt by one (times scale). */
static void fmeter_markevent(struct fmeter *fmp)
{
	spin_lock(&fmp->lock);
	fmeter_update(fmp);
	fmp->cnt = min(FM_MAXCNT, fmp->cnt + FM_SCALE);
	spin_unlock(&fmp->lock);
}

/* Process any previous ticks, then return current value. */
static int fmeter_getrate(struct fmeter *fmp)
{
	int val;

	spin_lock(&fmp->lock);
	fmeter_update(fmp);
	val = fmp->val;
	spin_unlock(&fmp->lock);
	return val;
}

1448
/* Called by cgroups to determine if a cpuset is usable; cpuset_mutex held */
1449 1450
static int cpuset_can_attach(struct cgroup_subsys_state *css,
			     struct cgroup_taskset *tset)
1451
{
1452
	struct cpuset *cs = css_cs(css);
1453 1454
	struct task_struct *task;
	int ret;
L
Linus Torvalds 已提交
1455

1456 1457
	mutex_lock(&cpuset_mutex);

1458 1459 1460 1461
	/*
	 * We allow to move tasks into an empty cpuset if sane_behavior
	 * flag is set.
	 */
1462
	ret = -ENOSPC;
1463
	if (!cgroup_sane_behavior(css->cgroup) &&
1464
	    (cpumask_empty(cs->cpus_allowed) || nodes_empty(cs->mems_allowed)))
1465
		goto out_unlock;
1466

1467
	cgroup_taskset_for_each(task, css, tset) {
1468
		/*
1469 1470 1471 1472 1473 1474 1475
		 * Kthreads which disallow setaffinity shouldn't be moved
		 * to a new cpuset; we don't want to change their cpu
		 * affinity and isolating such threads by their set of
		 * allowed nodes is unnecessary.  Thus, cpusets are not
		 * applicable for such threads.  This prevents checking for
		 * success of set_cpus_allowed_ptr() on all attached tasks
		 * before cpus_allowed may be changed.
1476
		 */
1477
		ret = -EINVAL;
1478
		if (task->flags & PF_NO_SETAFFINITY)
1479 1480 1481 1482
			goto out_unlock;
		ret = security_task_setscheduler(task);
		if (ret)
			goto out_unlock;
1483
	}
1484

1485 1486 1487 1488 1489
	/*
	 * Mark attach is in progress.  This makes validate_change() fail
	 * changes which zero cpus/mems_allowed.
	 */
	cs->attach_in_progress++;
1490 1491 1492 1493
	ret = 0;
out_unlock:
	mutex_unlock(&cpuset_mutex);
	return ret;
1494
}
1495

1496
static void cpuset_cancel_attach(struct cgroup_subsys_state *css,
1497 1498
				 struct cgroup_taskset *tset)
{
1499
	mutex_lock(&cpuset_mutex);
1500
	css_cs(css)->attach_in_progress--;
1501
	mutex_unlock(&cpuset_mutex);
1502
}
L
Linus Torvalds 已提交
1503

1504
/*
1505
 * Protected by cpuset_mutex.  cpus_attach is used only by cpuset_attach()
1506 1507 1508 1509 1510
 * but we can't allocate it dynamically there.  Define it global and
 * allocate from cpuset_init().
 */
static cpumask_var_t cpus_attach;

1511 1512
static void cpuset_attach(struct cgroup_subsys_state *css,
			  struct cgroup_taskset *tset)
1513
{
1514
	/* static buf protected by cpuset_mutex */
1515
	static nodemask_t cpuset_attach_nodemask_to;
1516
	struct mm_struct *mm;
1517 1518
	struct task_struct *task;
	struct task_struct *leader = cgroup_taskset_first(tset);
1519 1520
	struct cgroup_subsys_state *oldcss = cgroup_taskset_cur_css(tset,
							cpuset_subsys_id);
1521
	struct cpuset *cs = css_cs(css);
1522
	struct cpuset *oldcs = css_cs(oldcss);
1523 1524
	struct cpuset *cpus_cs = effective_cpumask_cpuset(cs);
	struct cpuset *mems_cs = effective_nodemask_cpuset(cs);
1525

1526 1527
	mutex_lock(&cpuset_mutex);

1528 1529 1530 1531
	/* prepare for attach */
	if (cs == &top_cpuset)
		cpumask_copy(cpus_attach, cpu_possible_mask);
	else
1532
		guarantee_online_cpus(cpus_cs, cpus_attach);
1533

1534
	guarantee_online_mems(mems_cs, &cpuset_attach_nodemask_to);
1535

1536
	cgroup_taskset_for_each(task, css, tset) {
1537 1538 1539 1540 1541 1542 1543 1544 1545
		/*
		 * can_attach beforehand should guarantee that this doesn't
		 * fail.  TODO: have a better way to handle failure here
		 */
		WARN_ON_ONCE(set_cpus_allowed_ptr(task, cpus_attach));

		cpuset_change_task_nodemask(task, &cpuset_attach_nodemask_to);
		cpuset_update_task_spread_flag(cs, task);
	}
1546

1547 1548 1549 1550 1551
	/*
	 * Change mm, possibly for multiple threads in a threadgroup. This is
	 * expensive and may sleep.
	 */
	cpuset_attach_nodemask_to = cs->mems_allowed;
1552
	mm = get_task_mm(leader);
1553
	if (mm) {
1554 1555
		struct cpuset *mems_oldcs = effective_nodemask_cpuset(oldcs);

1556
		mpol_rebind_mm(mm, &cpuset_attach_nodemask_to);
1557 1558 1559 1560 1561 1562 1563 1564 1565 1566

		/*
		 * old_mems_allowed is the same with mems_allowed here, except
		 * if this task is being moved automatically due to hotplug.
		 * In that case @mems_allowed has been updated and is empty,
		 * so @old_mems_allowed is the right nodesets that we migrate
		 * mm from.
		 */
		if (is_memory_migrate(cs)) {
			cpuset_migrate_mm(mm, &mems_oldcs->old_mems_allowed,
1567
					  &cpuset_attach_nodemask_to);
1568
		}
1569 1570
		mmput(mm);
	}
1571

1572
	cs->old_mems_allowed = cpuset_attach_nodemask_to;
1573

1574
	cs->attach_in_progress--;
1575 1576
	if (!cs->attach_in_progress)
		wake_up(&cpuset_attach_wq);
1577 1578

	mutex_unlock(&cpuset_mutex);
L
Linus Torvalds 已提交
1579 1580 1581 1582 1583
}

/* The various types of files and directories in a cpuset file system */

typedef enum {
1584
	FILE_MEMORY_MIGRATE,
L
Linus Torvalds 已提交
1585 1586 1587 1588
	FILE_CPULIST,
	FILE_MEMLIST,
	FILE_CPU_EXCLUSIVE,
	FILE_MEM_EXCLUSIVE,
1589
	FILE_MEM_HARDWALL,
P
Paul Jackson 已提交
1590
	FILE_SCHED_LOAD_BALANCE,
1591
	FILE_SCHED_RELAX_DOMAIN_LEVEL,
1592 1593
	FILE_MEMORY_PRESSURE_ENABLED,
	FILE_MEMORY_PRESSURE,
1594 1595
	FILE_SPREAD_PAGE,
	FILE_SPREAD_SLAB,
L
Linus Torvalds 已提交
1596 1597
} cpuset_filetype_t;

1598 1599
static int cpuset_write_u64(struct cgroup_subsys_state *css, struct cftype *cft,
			    u64 val)
1600
{
1601
	struct cpuset *cs = css_cs(css);
1602
	cpuset_filetype_t type = cft->private;
1603
	int retval = 0;
1604

1605
	mutex_lock(&cpuset_mutex);
1606 1607
	if (!is_cpuset_online(cs)) {
		retval = -ENODEV;
1608
		goto out_unlock;
1609
	}
1610 1611

	switch (type) {
L
Linus Torvalds 已提交
1612
	case FILE_CPU_EXCLUSIVE:
1613
		retval = update_flag(CS_CPU_EXCLUSIVE, cs, val);
L
Linus Torvalds 已提交
1614 1615
		break;
	case FILE_MEM_EXCLUSIVE:
1616
		retval = update_flag(CS_MEM_EXCLUSIVE, cs, val);
L
Linus Torvalds 已提交
1617
		break;
1618 1619 1620
	case FILE_MEM_HARDWALL:
		retval = update_flag(CS_MEM_HARDWALL, cs, val);
		break;
P
Paul Jackson 已提交
1621
	case FILE_SCHED_LOAD_BALANCE:
1622
		retval = update_flag(CS_SCHED_LOAD_BALANCE, cs, val);
1623
		break;
1624
	case FILE_MEMORY_MIGRATE:
1625
		retval = update_flag(CS_MEMORY_MIGRATE, cs, val);
1626
		break;
1627
	case FILE_MEMORY_PRESSURE_ENABLED:
1628
		cpuset_memory_pressure_enabled = !!val;
1629 1630 1631 1632
		break;
	case FILE_MEMORY_PRESSURE:
		retval = -EACCES;
		break;
1633
	case FILE_SPREAD_PAGE:
1634
		retval = update_flag(CS_SPREAD_PAGE, cs, val);
1635 1636
		break;
	case FILE_SPREAD_SLAB:
1637
		retval = update_flag(CS_SPREAD_SLAB, cs, val);
1638
		break;
L
Linus Torvalds 已提交
1639 1640
	default:
		retval = -EINVAL;
1641
		break;
L
Linus Torvalds 已提交
1642
	}
1643 1644
out_unlock:
	mutex_unlock(&cpuset_mutex);
L
Linus Torvalds 已提交
1645 1646 1647
	return retval;
}

1648 1649
static int cpuset_write_s64(struct cgroup_subsys_state *css, struct cftype *cft,
			    s64 val)
1650
{
1651
	struct cpuset *cs = css_cs(css);
1652
	cpuset_filetype_t type = cft->private;
1653
	int retval = -ENODEV;
1654

1655 1656 1657
	mutex_lock(&cpuset_mutex);
	if (!is_cpuset_online(cs))
		goto out_unlock;
1658

1659 1660 1661 1662 1663 1664 1665 1666
	switch (type) {
	case FILE_SCHED_RELAX_DOMAIN_LEVEL:
		retval = update_relax_domain_level(cs, val);
		break;
	default:
		retval = -EINVAL;
		break;
	}
1667 1668
out_unlock:
	mutex_unlock(&cpuset_mutex);
1669 1670 1671
	return retval;
}

1672 1673 1674
/*
 * Common handling for a write to a "cpus" or "mems" file.
 */
1675 1676
static int cpuset_write_resmask(struct cgroup_subsys_state *css,
				struct cftype *cft, const char *buf)
1677
{
1678
	struct cpuset *cs = css_cs(css);
1679
	struct cpuset *trialcs;
1680
	int retval = -ENODEV;
1681

1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694
	/*
	 * CPU or memory hotunplug may leave @cs w/o any execution
	 * resources, in which case the hotplug code asynchronously updates
	 * configuration and transfers all tasks to the nearest ancestor
	 * which can execute.
	 *
	 * As writes to "cpus" or "mems" may restore @cs's execution
	 * resources, wait for the previously scheduled operations before
	 * proceeding, so that we don't end up keep removing tasks added
	 * after execution capability is restored.
	 */
	flush_work(&cpuset_hotplug_work);

1695 1696 1697
	mutex_lock(&cpuset_mutex);
	if (!is_cpuset_online(cs))
		goto out_unlock;
1698

1699
	trialcs = alloc_trial_cpuset(cs);
1700 1701
	if (!trialcs) {
		retval = -ENOMEM;
1702
		goto out_unlock;
1703
	}
1704

1705 1706
	switch (cft->private) {
	case FILE_CPULIST:
1707
		retval = update_cpumask(cs, trialcs, buf);
1708 1709
		break;
	case FILE_MEMLIST:
1710
		retval = update_nodemask(cs, trialcs, buf);
1711 1712 1713 1714 1715
		break;
	default:
		retval = -EINVAL;
		break;
	}
1716 1717

	free_trial_cpuset(trialcs);
1718 1719
out_unlock:
	mutex_unlock(&cpuset_mutex);
1720 1721 1722
	return retval;
}

L
Linus Torvalds 已提交
1723 1724 1725 1726 1727 1728 1729 1730
/*
 * These ascii lists should be read in a single call, by using a user
 * buffer large enough to hold the entire map.  If read in smaller
 * chunks, there is no guarantee of atomicity.  Since the display format
 * used, list of ranges of sequential numbers, is variable length,
 * and since these maps can change value dynamically, one could read
 * gibberish by doing partial reads while a list was changing.
 */
1731
static int cpuset_common_seq_show(struct seq_file *sf, void *v)
L
Linus Torvalds 已提交
1732
{
1733 1734
	struct cpuset *cs = css_cs(seq_css(sf));
	cpuset_filetype_t type = seq_cft(sf)->private;
1735 1736 1737
	ssize_t count;
	char *buf, *s;
	int ret = 0;
L
Linus Torvalds 已提交
1738

1739 1740
	count = seq_get_buf(sf, &buf);
	s = buf;
L
Linus Torvalds 已提交
1741

1742
	mutex_lock(&callback_mutex);
L
Linus Torvalds 已提交
1743 1744 1745

	switch (type) {
	case FILE_CPULIST:
1746
		s += cpulist_scnprintf(s, count, cs->cpus_allowed);
L
Linus Torvalds 已提交
1747 1748
		break;
	case FILE_MEMLIST:
1749
		s += nodelist_scnprintf(s, count, cs->mems_allowed);
L
Linus Torvalds 已提交
1750 1751
		break;
	default:
1752 1753
		ret = -EINVAL;
		goto out_unlock;
L
Linus Torvalds 已提交
1754 1755
	}

1756 1757 1758 1759 1760 1761 1762 1763 1764
	if (s < buf + count - 1) {
		*s++ = '\n';
		seq_commit(sf, s - buf);
	} else {
		seq_commit(sf, -1);
	}
out_unlock:
	mutex_unlock(&callback_mutex);
	return ret;
L
Linus Torvalds 已提交
1765 1766
}

1767
static u64 cpuset_read_u64(struct cgroup_subsys_state *css, struct cftype *cft)
1768
{
1769
	struct cpuset *cs = css_cs(css);
1770 1771 1772 1773 1774 1775
	cpuset_filetype_t type = cft->private;
	switch (type) {
	case FILE_CPU_EXCLUSIVE:
		return is_cpu_exclusive(cs);
	case FILE_MEM_EXCLUSIVE:
		return is_mem_exclusive(cs);
1776 1777
	case FILE_MEM_HARDWALL:
		return is_mem_hardwall(cs);
1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792
	case FILE_SCHED_LOAD_BALANCE:
		return is_sched_load_balance(cs);
	case FILE_MEMORY_MIGRATE:
		return is_memory_migrate(cs);
	case FILE_MEMORY_PRESSURE_ENABLED:
		return cpuset_memory_pressure_enabled;
	case FILE_MEMORY_PRESSURE:
		return fmeter_getrate(&cs->fmeter);
	case FILE_SPREAD_PAGE:
		return is_spread_page(cs);
	case FILE_SPREAD_SLAB:
		return is_spread_slab(cs);
	default:
		BUG();
	}
1793 1794 1795

	/* Unreachable but makes gcc happy */
	return 0;
1796
}
L
Linus Torvalds 已提交
1797

1798
static s64 cpuset_read_s64(struct cgroup_subsys_state *css, struct cftype *cft)
1799
{
1800
	struct cpuset *cs = css_cs(css);
1801 1802 1803 1804 1805 1806 1807
	cpuset_filetype_t type = cft->private;
	switch (type) {
	case FILE_SCHED_RELAX_DOMAIN_LEVEL:
		return cs->relax_domain_level;
	default:
		BUG();
	}
1808 1809 1810

	/* Unrechable but makes gcc happy */
	return 0;
1811 1812
}

L
Linus Torvalds 已提交
1813 1814 1815 1816 1817

/*
 * for the common functions, 'private' gives the type of file
 */

1818 1819 1820
static struct cftype files[] = {
	{
		.name = "cpus",
1821
		.seq_show = cpuset_common_seq_show,
1822 1823
		.write_string = cpuset_write_resmask,
		.max_write_len = (100U + 6 * NR_CPUS),
1824 1825 1826 1827 1828
		.private = FILE_CPULIST,
	},

	{
		.name = "mems",
1829
		.seq_show = cpuset_common_seq_show,
1830 1831
		.write_string = cpuset_write_resmask,
		.max_write_len = (100U + 6 * MAX_NUMNODES),
1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848
		.private = FILE_MEMLIST,
	},

	{
		.name = "cpu_exclusive",
		.read_u64 = cpuset_read_u64,
		.write_u64 = cpuset_write_u64,
		.private = FILE_CPU_EXCLUSIVE,
	},

	{
		.name = "mem_exclusive",
		.read_u64 = cpuset_read_u64,
		.write_u64 = cpuset_write_u64,
		.private = FILE_MEM_EXCLUSIVE,
	},

1849 1850 1851 1852 1853 1854 1855
	{
		.name = "mem_hardwall",
		.read_u64 = cpuset_read_u64,
		.write_u64 = cpuset_write_u64,
		.private = FILE_MEM_HARDWALL,
	},

1856 1857 1858 1859 1860 1861 1862 1863 1864
	{
		.name = "sched_load_balance",
		.read_u64 = cpuset_read_u64,
		.write_u64 = cpuset_write_u64,
		.private = FILE_SCHED_LOAD_BALANCE,
	},

	{
		.name = "sched_relax_domain_level",
1865 1866
		.read_s64 = cpuset_read_s64,
		.write_s64 = cpuset_write_s64,
1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881
		.private = FILE_SCHED_RELAX_DOMAIN_LEVEL,
	},

	{
		.name = "memory_migrate",
		.read_u64 = cpuset_read_u64,
		.write_u64 = cpuset_write_u64,
		.private = FILE_MEMORY_MIGRATE,
	},

	{
		.name = "memory_pressure",
		.read_u64 = cpuset_read_u64,
		.write_u64 = cpuset_write_u64,
		.private = FILE_MEMORY_PRESSURE,
L
Li Zefan 已提交
1882
		.mode = S_IRUGO,
1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897
	},

	{
		.name = "memory_spread_page",
		.read_u64 = cpuset_read_u64,
		.write_u64 = cpuset_write_u64,
		.private = FILE_SPREAD_PAGE,
	},

	{
		.name = "memory_spread_slab",
		.read_u64 = cpuset_read_u64,
		.write_u64 = cpuset_write_u64,
		.private = FILE_SPREAD_SLAB,
	},
1898

1899 1900 1901 1902 1903 1904 1905
	{
		.name = "memory_pressure_enabled",
		.flags = CFTYPE_ONLY_ON_ROOT,
		.read_u64 = cpuset_read_u64,
		.write_u64 = cpuset_write_u64,
		.private = FILE_MEMORY_PRESSURE_ENABLED,
	},
L
Linus Torvalds 已提交
1906

1907 1908
	{ }	/* terminate */
};
L
Linus Torvalds 已提交
1909 1910

/*
1911
 *	cpuset_css_alloc - allocate a cpuset css
L
Li Zefan 已提交
1912
 *	cgrp:	control group that the new cpuset will be part of
L
Linus Torvalds 已提交
1913 1914
 */

1915 1916
static struct cgroup_subsys_state *
cpuset_css_alloc(struct cgroup_subsys_state *parent_css)
L
Linus Torvalds 已提交
1917
{
T
Tejun Heo 已提交
1918
	struct cpuset *cs;
L
Linus Torvalds 已提交
1919

1920
	if (!parent_css)
1921
		return &top_cpuset.css;
1922

T
Tejun Heo 已提交
1923
	cs = kzalloc(sizeof(*cs), GFP_KERNEL);
L
Linus Torvalds 已提交
1924
	if (!cs)
1925
		return ERR_PTR(-ENOMEM);
1926 1927 1928 1929
	if (!alloc_cpumask_var(&cs->cpus_allowed, GFP_KERNEL)) {
		kfree(cs);
		return ERR_PTR(-ENOMEM);
	}
L
Linus Torvalds 已提交
1930

P
Paul Jackson 已提交
1931
	set_bit(CS_SCHED_LOAD_BALANCE, &cs->flags);
1932
	cpumask_clear(cs->cpus_allowed);
1933
	nodes_clear(cs->mems_allowed);
1934
	fmeter_init(&cs->fmeter);
1935
	cs->relax_domain_level = -1;
L
Linus Torvalds 已提交
1936

T
Tejun Heo 已提交
1937 1938 1939
	return &cs->css;
}

1940
static int cpuset_css_online(struct cgroup_subsys_state *css)
T
Tejun Heo 已提交
1941
{
1942
	struct cpuset *cs = css_cs(css);
T
Tejun Heo 已提交
1943
	struct cpuset *parent = parent_cs(cs);
1944
	struct cpuset *tmp_cs;
1945
	struct cgroup_subsys_state *pos_css;
T
Tejun Heo 已提交
1946 1947 1948 1949

	if (!parent)
		return 0;

1950 1951
	mutex_lock(&cpuset_mutex);

T
Tejun Heo 已提交
1952
	set_bit(CS_ONLINE, &cs->flags);
T
Tejun Heo 已提交
1953 1954 1955 1956
	if (is_spread_page(parent))
		set_bit(CS_SPREAD_PAGE, &cs->flags);
	if (is_spread_slab(parent))
		set_bit(CS_SPREAD_SLAB, &cs->flags);
L
Linus Torvalds 已提交
1957

1958
	number_of_cpusets++;
1959

1960
	if (!test_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags))
1961
		goto out_unlock;
1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975

	/*
	 * Clone @parent's configuration if CGRP_CPUSET_CLONE_CHILDREN is
	 * set.  This flag handling is implemented in cgroup core for
	 * histrical reasons - the flag may be specified during mount.
	 *
	 * Currently, if any sibling cpusets have exclusive cpus or mem, we
	 * refuse to clone the configuration - thereby refusing the task to
	 * be entered, and as a result refusing the sys_unshare() or
	 * clone() which initiated it.  If this becomes a problem for some
	 * users who wish to allow that scenario, then this could be
	 * changed to grant parent->cpus_allowed-sibling_cpus_exclusive
	 * (and likewise for mems) to the new cgroup.
	 */
1976
	rcu_read_lock();
1977
	cpuset_for_each_child(tmp_cs, pos_css, parent) {
1978 1979
		if (is_mem_exclusive(tmp_cs) || is_cpu_exclusive(tmp_cs)) {
			rcu_read_unlock();
1980
			goto out_unlock;
1981
		}
1982
	}
1983
	rcu_read_unlock();
1984 1985 1986 1987 1988

	mutex_lock(&callback_mutex);
	cs->mems_allowed = parent->mems_allowed;
	cpumask_copy(cs->cpus_allowed, parent->cpus_allowed);
	mutex_unlock(&callback_mutex);
1989 1990
out_unlock:
	mutex_unlock(&cpuset_mutex);
T
Tejun Heo 已提交
1991 1992 1993
	return 0;
}

1994 1995 1996 1997 1998 1999
/*
 * If the cpuset being removed has its flag 'sched_load_balance'
 * enabled, then simulate turning sched_load_balance off, which
 * will call rebuild_sched_domains_locked().
 */

2000
static void cpuset_css_offline(struct cgroup_subsys_state *css)
T
Tejun Heo 已提交
2001
{
2002
	struct cpuset *cs = css_cs(css);
T
Tejun Heo 已提交
2003

2004
	mutex_lock(&cpuset_mutex);
T
Tejun Heo 已提交
2005 2006 2007 2008 2009

	if (is_sched_load_balance(cs))
		update_flag(CS_SCHED_LOAD_BALANCE, cs, 0);

	number_of_cpusets--;
T
Tejun Heo 已提交
2010
	clear_bit(CS_ONLINE, &cs->flags);
T
Tejun Heo 已提交
2011

2012
	mutex_unlock(&cpuset_mutex);
L
Linus Torvalds 已提交
2013 2014
}

2015
static void cpuset_css_free(struct cgroup_subsys_state *css)
L
Linus Torvalds 已提交
2016
{
2017
	struct cpuset *cs = css_cs(css);
L
Linus Torvalds 已提交
2018

2019
	free_cpumask_var(cs->cpus_allowed);
2020
	kfree(cs);
L
Linus Torvalds 已提交
2021 2022
}

2023 2024
struct cgroup_subsys cpuset_subsys = {
	.name = "cpuset",
2025
	.css_alloc = cpuset_css_alloc,
T
Tejun Heo 已提交
2026 2027
	.css_online = cpuset_css_online,
	.css_offline = cpuset_css_offline,
2028
	.css_free = cpuset_css_free,
2029
	.can_attach = cpuset_can_attach,
2030
	.cancel_attach = cpuset_cancel_attach,
2031 2032
	.attach = cpuset_attach,
	.subsys_id = cpuset_subsys_id,
2033
	.base_cftypes = files,
2034 2035 2036
	.early_init = 1,
};

L
Linus Torvalds 已提交
2037 2038 2039 2040 2041 2042 2043 2044
/**
 * cpuset_init - initialize cpusets at system boot
 *
 * Description: Initialize top_cpuset and the cpuset internal file system,
 **/

int __init cpuset_init(void)
{
2045
	int err = 0;
L
Linus Torvalds 已提交
2046

2047 2048 2049
	if (!alloc_cpumask_var(&top_cpuset.cpus_allowed, GFP_KERNEL))
		BUG();

2050
	cpumask_setall(top_cpuset.cpus_allowed);
2051
	nodes_setall(top_cpuset.mems_allowed);
L
Linus Torvalds 已提交
2052

2053
	fmeter_init(&top_cpuset.fmeter);
P
Paul Jackson 已提交
2054
	set_bit(CS_SCHED_LOAD_BALANCE, &top_cpuset.flags);
2055
	top_cpuset.relax_domain_level = -1;
L
Linus Torvalds 已提交
2056 2057 2058

	err = register_filesystem(&cpuset_fs_type);
	if (err < 0)
2059 2060
		return err;

2061 2062 2063
	if (!alloc_cpumask_var(&cpus_attach, GFP_KERNEL))
		BUG();

2064
	number_of_cpusets = 1;
2065
	return 0;
L
Linus Torvalds 已提交
2066 2067
}

2068
/*
2069
 * If CPU and/or memory hotplug handlers, below, unplug any CPUs
2070 2071
 * or memory nodes, we need to walk over the cpuset hierarchy,
 * removing that CPU or node from all cpusets.  If this removes the
2072 2073
 * last CPU or node from a cpuset, then move the tasks in the empty
 * cpuset to its next-highest non-empty parent.
2074
 */
2075 2076 2077 2078 2079 2080 2081 2082
static void remove_tasks_in_empty_cpuset(struct cpuset *cs)
{
	struct cpuset *parent;

	/*
	 * Find its next-highest non-empty parent, (top cpuset
	 * has online cpus, so can't be empty).
	 */
T
Tejun Heo 已提交
2083
	parent = parent_cs(cs);
2084
	while (cpumask_empty(parent->cpus_allowed) ||
2085
			nodes_empty(parent->mems_allowed))
T
Tejun Heo 已提交
2086
		parent = parent_cs(parent);
2087

2088 2089 2090 2091 2092 2093
	if (cgroup_transfer_tasks(parent->css.cgroup, cs->css.cgroup)) {
		rcu_read_lock();
		printk(KERN_ERR "cpuset: failed to transfer tasks out of empty cpuset %s\n",
		       cgroup_name(cs->css.cgroup));
		rcu_read_unlock();
	}
2094 2095
}

2096
/**
2097
 * cpuset_hotplug_update_tasks - update tasks in a cpuset for hotunplug
2098
 * @cs: cpuset in interest
2099
 *
2100 2101 2102
 * Compare @cs's cpu and mem masks against top_cpuset and if some have gone
 * offline, update @cs accordingly.  If @cs ends up with no CPU or memory,
 * all its tasks are moved to the nearest ancestor with both resources.
2103
 */
2104
static void cpuset_hotplug_update_tasks(struct cpuset *cs)
2105
{
2106
	static cpumask_t off_cpus;
2107
	static nodemask_t off_mems;
2108
	bool is_empty;
2109
	bool sane = cgroup_sane_behavior(cs->css.cgroup);
2110

2111 2112
retry:
	wait_event(cpuset_attach_wq, cs->attach_in_progress == 0);
2113

2114
	mutex_lock(&cpuset_mutex);
2115

2116 2117 2118 2119 2120 2121 2122 2123 2124
	/*
	 * We have raced with task attaching. We wait until attaching
	 * is finished, so we won't attach a task to an empty cpuset.
	 */
	if (cs->attach_in_progress) {
		mutex_unlock(&cpuset_mutex);
		goto retry;
	}

2125 2126
	cpumask_andnot(&off_cpus, cs->cpus_allowed, top_cpuset.cpus_allowed);
	nodes_andnot(off_mems, cs->mems_allowed, top_cpuset.mems_allowed);
2127

2128 2129 2130 2131 2132 2133
	mutex_lock(&callback_mutex);
	cpumask_andnot(cs->cpus_allowed, cs->cpus_allowed, &off_cpus);
	mutex_unlock(&callback_mutex);

	/*
	 * If sane_behavior flag is set, we need to update tasks' cpumask
2134 2135 2136
	 * for empty cpuset to take on ancestor's cpumask. Otherwise, don't
	 * call update_tasks_cpumask() if the cpuset becomes empty, as
	 * the tasks in it will be migrated to an ancestor.
2137 2138
	 */
	if ((sane && cpumask_empty(cs->cpus_allowed)) ||
2139
	    (!cpumask_empty(&off_cpus) && !cpumask_empty(cs->cpus_allowed)))
2140
		update_tasks_cpumask(cs, NULL);
2141

2142 2143 2144 2145 2146 2147
	mutex_lock(&callback_mutex);
	nodes_andnot(cs->mems_allowed, cs->mems_allowed, off_mems);
	mutex_unlock(&callback_mutex);

	/*
	 * If sane_behavior flag is set, we need to update tasks' nodemask
2148 2149 2150
	 * for empty cpuset to take on ancestor's nodemask. Otherwise, don't
	 * call update_tasks_nodemask() if the cpuset becomes empty, as
	 * the tasks in it will be migratd to an ancestor.
2151 2152
	 */
	if ((sane && nodes_empty(cs->mems_allowed)) ||
2153
	    (!nodes_empty(off_mems) && !nodes_empty(cs->mems_allowed)))
2154
		update_tasks_nodemask(cs, NULL);
2155

2156 2157
	is_empty = cpumask_empty(cs->cpus_allowed) ||
		nodes_empty(cs->mems_allowed);
2158

2159 2160 2161
	mutex_unlock(&cpuset_mutex);

	/*
2162 2163 2164 2165
	 * If sane_behavior flag is set, we'll keep tasks in empty cpusets.
	 *
	 * Otherwise move tasks to the nearest ancestor with execution
	 * resources.  This is full cgroup operation which will
2166 2167
	 * also call back into cpuset.  Should be done outside any lock.
	 */
2168
	if (!sane && is_empty)
2169
		remove_tasks_in_empty_cpuset(cs);
2170 2171
}

2172
/**
2173
 * cpuset_hotplug_workfn - handle CPU/memory hotunplug for a cpuset
2174
 *
2175 2176 2177 2178 2179
 * This function is called after either CPU or memory configuration has
 * changed and updates cpuset accordingly.  The top_cpuset is always
 * synchronized to cpu_active_mask and N_MEMORY, which is necessary in
 * order to make cpusets transparent (of no affect) on systems that are
 * actively using CPU hotplug but making no active use of cpusets.
2180
 *
2181
 * Non-root cpusets are only affected by offlining.  If any CPUs or memory
2182 2183
 * nodes have been taken down, cpuset_hotplug_update_tasks() is invoked on
 * all descendants.
2184
 *
2185 2186
 * Note that CPU offlining during suspend is ignored.  We don't modify
 * cpusets across suspend/resume cycles at all.
2187
 */
2188
static void cpuset_hotplug_workfn(struct work_struct *work)
2189
{
2190 2191
	static cpumask_t new_cpus;
	static nodemask_t new_mems;
2192
	bool cpus_updated, mems_updated;
2193

2194
	mutex_lock(&cpuset_mutex);
2195

2196 2197 2198
	/* fetch the available cpus/mems and find out which changed how */
	cpumask_copy(&new_cpus, cpu_active_mask);
	new_mems = node_states[N_MEMORY];
2199

2200 2201
	cpus_updated = !cpumask_equal(top_cpuset.cpus_allowed, &new_cpus);
	mems_updated = !nodes_equal(top_cpuset.mems_allowed, new_mems);
2202

2203 2204 2205 2206 2207 2208 2209
	/* synchronize cpus_allowed to cpu_active_mask */
	if (cpus_updated) {
		mutex_lock(&callback_mutex);
		cpumask_copy(top_cpuset.cpus_allowed, &new_cpus);
		mutex_unlock(&callback_mutex);
		/* we don't mess with cpumasks of tasks in top_cpuset */
	}
2210

2211 2212 2213 2214 2215
	/* synchronize mems_allowed to N_MEMORY */
	if (mems_updated) {
		mutex_lock(&callback_mutex);
		top_cpuset.mems_allowed = new_mems;
		mutex_unlock(&callback_mutex);
2216
		update_tasks_nodemask(&top_cpuset, NULL);
2217
	}
2218

2219 2220
	mutex_unlock(&cpuset_mutex);

2221 2222
	/* if cpus or mems changed, we need to propagate to descendants */
	if (cpus_updated || mems_updated) {
2223
		struct cpuset *cs;
2224
		struct cgroup_subsys_state *pos_css;
2225

2226
		rcu_read_lock();
2227
		cpuset_for_each_descendant_pre(cs, pos_css, &top_cpuset) {
2228
			if (cs == &top_cpuset || !css_tryget(&cs->css))
2229 2230
				continue;
			rcu_read_unlock();
2231

2232
			cpuset_hotplug_update_tasks(cs);
2233

2234 2235 2236 2237 2238
			rcu_read_lock();
			css_put(&cs->css);
		}
		rcu_read_unlock();
	}
2239

2240
	/* rebuild sched domains if cpus_allowed has changed */
2241 2242
	if (cpus_updated)
		rebuild_sched_domains();
2243 2244
}

2245
void cpuset_update_active_cpus(bool cpu_online)
2246
{
2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258
	/*
	 * We're inside cpu hotplug critical region which usually nests
	 * inside cgroup synchronization.  Bounce actual hotplug processing
	 * to a work item to avoid reverse locking order.
	 *
	 * We still need to do partition_sched_domains() synchronously;
	 * otherwise, the scheduler will get confused and put tasks to the
	 * dead CPU.  Fall back to the default single domain.
	 * cpuset_hotplug_workfn() will rebuild it as necessary.
	 */
	partition_sched_domains(1, NULL, NULL);
	schedule_work(&cpuset_hotplug_work);
2259 2260
}

2261
/*
2262 2263
 * Keep top_cpuset.mems_allowed tracking node_states[N_MEMORY].
 * Call this routine anytime after node_states[N_MEMORY] changes.
2264
 * See cpuset_update_active_cpus() for CPU hotplug handling.
2265
 */
2266 2267
static int cpuset_track_online_nodes(struct notifier_block *self,
				unsigned long action, void *arg)
2268
{
2269
	schedule_work(&cpuset_hotplug_work);
2270
	return NOTIFY_OK;
2271
}
2272 2273 2274 2275 2276

static struct notifier_block cpuset_track_online_nodes_nb = {
	.notifier_call = cpuset_track_online_nodes,
	.priority = 10,		/* ??! */
};
2277

L
Linus Torvalds 已提交
2278 2279 2280 2281
/**
 * cpuset_init_smp - initialize cpus_allowed
 *
 * Description: Finish top cpuset after cpu, node maps are initialized
2282
 */
L
Linus Torvalds 已提交
2283 2284
void __init cpuset_init_smp(void)
{
2285
	cpumask_copy(top_cpuset.cpus_allowed, cpu_active_mask);
2286
	top_cpuset.mems_allowed = node_states[N_MEMORY];
2287
	top_cpuset.old_mems_allowed = top_cpuset.mems_allowed;
2288

2289
	register_hotmemory_notifier(&cpuset_track_online_nodes_nb);
L
Linus Torvalds 已提交
2290 2291 2292 2293 2294
}

/**
 * cpuset_cpus_allowed - return cpus_allowed mask from a tasks cpuset.
 * @tsk: pointer to task_struct from which to obtain cpuset->cpus_allowed.
2295
 * @pmask: pointer to struct cpumask variable to receive cpus_allowed set.
L
Linus Torvalds 已提交
2296
 *
2297
 * Description: Returns the cpumask_var_t cpus_allowed of the cpuset
L
Linus Torvalds 已提交
2298
 * attached to the specified @tsk.  Guaranteed to return some non-empty
2299
 * subset of cpu_online_mask, even if this means going outside the
L
Linus Torvalds 已提交
2300 2301 2302
 * tasks cpuset.
 **/

2303
void cpuset_cpus_allowed(struct task_struct *tsk, struct cpumask *pmask)
L
Linus Torvalds 已提交
2304
{
2305 2306
	struct cpuset *cpus_cs;

2307
	mutex_lock(&callback_mutex);
2308
	task_lock(tsk);
2309 2310
	cpus_cs = effective_cpumask_cpuset(task_cs(tsk));
	guarantee_online_cpus(cpus_cs, pmask);
2311
	task_unlock(tsk);
2312
	mutex_unlock(&callback_mutex);
L
Linus Torvalds 已提交
2313 2314
}

2315
void cpuset_cpus_allowed_fallback(struct task_struct *tsk)
2316
{
2317
	struct cpuset *cpus_cs;
2318 2319

	rcu_read_lock();
2320 2321
	cpus_cs = effective_cpumask_cpuset(task_cs(tsk));
	do_set_cpus_allowed(tsk, cpus_cs->cpus_allowed);
2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336
	rcu_read_unlock();

	/*
	 * We own tsk->cpus_allowed, nobody can change it under us.
	 *
	 * But we used cs && cs->cpus_allowed lockless and thus can
	 * race with cgroup_attach_task() or update_cpumask() and get
	 * the wrong tsk->cpus_allowed. However, both cases imply the
	 * subsequent cpuset_change_cpumask()->set_cpus_allowed_ptr()
	 * which takes task_rq_lock().
	 *
	 * If we are called after it dropped the lock we must see all
	 * changes in tsk_cs()->cpus_allowed. Otherwise we can temporary
	 * set any mask even if it is not right from task_cs() pov,
	 * the pending set_cpus_allowed_ptr() will fix things.
2337 2338 2339
	 *
	 * select_fallback_rq() will fix things ups and set cpu_possible_mask
	 * if required.
2340 2341 2342
	 */
}

L
Linus Torvalds 已提交
2343 2344
void cpuset_init_current_mems_allowed(void)
{
2345
	nodes_setall(current->mems_allowed);
L
Linus Torvalds 已提交
2346 2347
}

2348 2349 2350 2351 2352 2353
/**
 * cpuset_mems_allowed - return mems_allowed mask from a tasks cpuset.
 * @tsk: pointer to task_struct from which to obtain cpuset->mems_allowed.
 *
 * Description: Returns the nodemask_t mems_allowed of the cpuset
 * attached to the specified @tsk.  Guaranteed to return some non-empty
2354
 * subset of node_states[N_MEMORY], even if this means going outside the
2355 2356 2357 2358 2359
 * tasks cpuset.
 **/

nodemask_t cpuset_mems_allowed(struct task_struct *tsk)
{
2360
	struct cpuset *mems_cs;
2361 2362
	nodemask_t mask;

2363
	mutex_lock(&callback_mutex);
2364
	task_lock(tsk);
2365 2366
	mems_cs = effective_nodemask_cpuset(task_cs(tsk));
	guarantee_online_mems(mems_cs, &mask);
2367
	task_unlock(tsk);
2368
	mutex_unlock(&callback_mutex);
2369 2370 2371 2372

	return mask;
}

2373
/**
2374 2375
 * cpuset_nodemask_valid_mems_allowed - check nodemask vs. curremt mems_allowed
 * @nodemask: the nodemask to be checked
2376
 *
2377
 * Are any of the nodes in the nodemask allowed in current->mems_allowed?
L
Linus Torvalds 已提交
2378
 */
2379
int cpuset_nodemask_valid_mems_allowed(nodemask_t *nodemask)
L
Linus Torvalds 已提交
2380
{
2381
	return nodes_intersects(*nodemask, current->mems_allowed);
L
Linus Torvalds 已提交
2382 2383
}

2384
/*
2385 2386 2387 2388
 * nearest_hardwall_ancestor() - Returns the nearest mem_exclusive or
 * mem_hardwall ancestor to the specified cpuset.  Call holding
 * callback_mutex.  If no ancestor is mem_exclusive or mem_hardwall
 * (an unusual configuration), then returns the root cpuset.
2389
 */
2390
static struct cpuset *nearest_hardwall_ancestor(struct cpuset *cs)
2391
{
T
Tejun Heo 已提交
2392 2393
	while (!(is_mem_exclusive(cs) || is_mem_hardwall(cs)) && parent_cs(cs))
		cs = parent_cs(cs);
2394 2395 2396
	return cs;
}

2397
/**
2398 2399
 * cpuset_node_allowed_softwall - Can we allocate on a memory node?
 * @node: is this an allowed node?
2400
 * @gfp_mask: memory allocation flags
2401
 *
2402 2403 2404 2405 2406 2407
 * If we're in interrupt, yes, we can always allocate.  If __GFP_THISNODE is
 * set, yes, we can always allocate.  If node is in our task's mems_allowed,
 * yes.  If it's not a __GFP_HARDWALL request and this node is in the nearest
 * hardwalled cpuset ancestor to this task's cpuset, yes.  If the task has been
 * OOM killed and has access to memory reserves as specified by the TIF_MEMDIE
 * flag, yes.
2408 2409
 * Otherwise, no.
 *
2410 2411 2412
 * If __GFP_HARDWALL is set, cpuset_node_allowed_softwall() reduces to
 * cpuset_node_allowed_hardwall().  Otherwise, cpuset_node_allowed_softwall()
 * might sleep, and might allow a node from an enclosing cpuset.
2413
 *
2414 2415
 * cpuset_node_allowed_hardwall() only handles the simpler case of hardwall
 * cpusets, and never sleeps.
2416 2417 2418 2419 2420 2421 2422
 *
 * The __GFP_THISNODE placement logic is really handled elsewhere,
 * by forcibly using a zonelist starting at a specified node, and by
 * (in get_page_from_freelist()) refusing to consider the zones for
 * any node on the zonelist except the first.  By the time any such
 * calls get to this routine, we should just shut up and say 'yes'.
 *
2423
 * GFP_USER allocations are marked with the __GFP_HARDWALL bit,
2424 2425
 * and do not allow allocations outside the current tasks cpuset
 * unless the task has been OOM killed as is marked TIF_MEMDIE.
2426
 * GFP_KERNEL allocations are not so marked, so can escape to the
2427
 * nearest enclosing hardwalled ancestor cpuset.
2428
 *
2429 2430 2431 2432 2433 2434 2435
 * Scanning up parent cpusets requires callback_mutex.  The
 * __alloc_pages() routine only calls here with __GFP_HARDWALL bit
 * _not_ set if it's a GFP_KERNEL allocation, and all nodes in the
 * current tasks mems_allowed came up empty on the first pass over
 * the zonelist.  So only GFP_KERNEL allocations, if all nodes in the
 * cpuset are short of memory, might require taking the callback_mutex
 * mutex.
2436
 *
2437
 * The first call here from mm/page_alloc:get_page_from_freelist()
2438 2439 2440
 * has __GFP_HARDWALL set in gfp_mask, enforcing hardwall cpusets,
 * so no allocation on a node outside the cpuset is allowed (unless
 * in interrupt, of course).
2441 2442 2443 2444 2445 2446
 *
 * The second pass through get_page_from_freelist() doesn't even call
 * here for GFP_ATOMIC calls.  For those calls, the __alloc_pages()
 * variable 'wait' is not set, and the bit ALLOC_CPUSET is not set
 * in alloc_flags.  That logic and the checks below have the combined
 * affect that:
2447 2448
 *	in_interrupt - any node ok (current task context irrelevant)
 *	GFP_ATOMIC   - any node ok
2449
 *	TIF_MEMDIE   - any node ok
2450
 *	GFP_KERNEL   - any node in enclosing hardwalled cpuset ok
2451
 *	GFP_USER     - only nodes in current tasks mems allowed ok.
2452 2453
 *
 * Rule:
2454
 *    Don't call cpuset_node_allowed_softwall if you can't sleep, unless you
2455 2456
 *    pass in the __GFP_HARDWALL flag set in gfp_flag, which disables
 *    the code that might scan up ancestor cpusets and sleep.
2457
 */
2458
int __cpuset_node_allowed_softwall(int node, gfp_t gfp_mask)
L
Linus Torvalds 已提交
2459
{
2460
	struct cpuset *cs;		/* current cpuset ancestors */
2461
	int allowed;			/* is allocation in zone z allowed? */
2462

2463
	if (in_interrupt() || (gfp_mask & __GFP_THISNODE))
2464
		return 1;
2465
	might_sleep_if(!(gfp_mask & __GFP_HARDWALL));
2466 2467
	if (node_isset(node, current->mems_allowed))
		return 1;
2468 2469 2470 2471 2472 2473
	/*
	 * Allow tasks that have access to memory reserves because they have
	 * been OOM killed to get memory anywhere.
	 */
	if (unlikely(test_thread_flag(TIF_MEMDIE)))
		return 1;
2474 2475 2476
	if (gfp_mask & __GFP_HARDWALL)	/* If hardwall request, stop here */
		return 0;

2477 2478 2479
	if (current->flags & PF_EXITING) /* Let dying task have memory */
		return 1;

2480
	/* Not hardwall and node outside mems_allowed: scan up cpusets */
2481
	mutex_lock(&callback_mutex);
2482 2483

	task_lock(current);
2484
	cs = nearest_hardwall_ancestor(task_cs(current));
2485
	allowed = node_isset(node, cs->mems_allowed);
2486 2487
	task_unlock(current);

2488
	mutex_unlock(&callback_mutex);
2489
	return allowed;
L
Linus Torvalds 已提交
2490 2491
}

2492
/*
2493 2494
 * cpuset_node_allowed_hardwall - Can we allocate on a memory node?
 * @node: is this an allowed node?
2495 2496
 * @gfp_mask: memory allocation flags
 *
2497 2498 2499 2500 2501
 * If we're in interrupt, yes, we can always allocate.  If __GFP_THISNODE is
 * set, yes, we can always allocate.  If node is in our task's mems_allowed,
 * yes.  If the task has been OOM killed and has access to memory reserves as
 * specified by the TIF_MEMDIE flag, yes.
 * Otherwise, no.
2502 2503 2504 2505 2506 2507 2508
 *
 * The __GFP_THISNODE placement logic is really handled elsewhere,
 * by forcibly using a zonelist starting at a specified node, and by
 * (in get_page_from_freelist()) refusing to consider the zones for
 * any node on the zonelist except the first.  By the time any such
 * calls get to this routine, we should just shut up and say 'yes'.
 *
2509 2510
 * Unlike the cpuset_node_allowed_softwall() variant, above,
 * this variant requires that the node be in the current task's
2511 2512 2513 2514
 * mems_allowed or that we're in interrupt.  It does not scan up the
 * cpuset hierarchy for the nearest enclosing mem_exclusive cpuset.
 * It never sleeps.
 */
2515
int __cpuset_node_allowed_hardwall(int node, gfp_t gfp_mask)
2516 2517 2518 2519 2520
{
	if (in_interrupt() || (gfp_mask & __GFP_THISNODE))
		return 1;
	if (node_isset(node, current->mems_allowed))
		return 1;
D
Daniel Walker 已提交
2521 2522 2523 2524 2525 2526
	/*
	 * Allow tasks that have access to memory reserves because they have
	 * been OOM killed to get memory anywhere.
	 */
	if (unlikely(test_thread_flag(TIF_MEMDIE)))
		return 1;
2527 2528 2529
	return 0;
}

2530
/**
2531 2532
 * cpuset_mem_spread_node() - On which node to begin search for a file page
 * cpuset_slab_spread_node() - On which node to begin search for a slab page
2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556
 *
 * If a task is marked PF_SPREAD_PAGE or PF_SPREAD_SLAB (as for
 * tasks in a cpuset with is_spread_page or is_spread_slab set),
 * and if the memory allocation used cpuset_mem_spread_node()
 * to determine on which node to start looking, as it will for
 * certain page cache or slab cache pages such as used for file
 * system buffers and inode caches, then instead of starting on the
 * local node to look for a free page, rather spread the starting
 * node around the tasks mems_allowed nodes.
 *
 * We don't have to worry about the returned node being offline
 * because "it can't happen", and even if it did, it would be ok.
 *
 * The routines calling guarantee_online_mems() are careful to
 * only set nodes in task->mems_allowed that are online.  So it
 * should not be possible for the following code to return an
 * offline node.  But if it did, that would be ok, as this routine
 * is not returning the node where the allocation must be, only
 * the node where the search should start.  The zonelist passed to
 * __alloc_pages() will include all nodes.  If the slab allocator
 * is passed an offline node, it will fall back to the local node.
 * See kmem_cache_alloc_node().
 */

2557
static int cpuset_spread_node(int *rotor)
2558 2559 2560
{
	int node;

2561
	node = next_node(*rotor, current->mems_allowed);
2562 2563
	if (node == MAX_NUMNODES)
		node = first_node(current->mems_allowed);
2564
	*rotor = node;
2565 2566
	return node;
}
2567 2568 2569

int cpuset_mem_spread_node(void)
{
2570 2571 2572 2573
	if (current->cpuset_mem_spread_rotor == NUMA_NO_NODE)
		current->cpuset_mem_spread_rotor =
			node_random(&current->mems_allowed);

2574 2575 2576 2577 2578
	return cpuset_spread_node(&current->cpuset_mem_spread_rotor);
}

int cpuset_slab_spread_node(void)
{
2579 2580 2581 2582
	if (current->cpuset_slab_spread_rotor == NUMA_NO_NODE)
		current->cpuset_slab_spread_rotor =
			node_random(&current->mems_allowed);

2583 2584 2585
	return cpuset_spread_node(&current->cpuset_slab_spread_rotor);
}

2586 2587
EXPORT_SYMBOL_GPL(cpuset_mem_spread_node);

2588
/**
2589 2590 2591 2592 2593 2594 2595 2596
 * cpuset_mems_allowed_intersects - Does @tsk1's mems_allowed intersect @tsk2's?
 * @tsk1: pointer to task_struct of some task.
 * @tsk2: pointer to task_struct of some other task.
 *
 * Description: Return true if @tsk1's mems_allowed intersects the
 * mems_allowed of @tsk2.  Used by the OOM killer to determine if
 * one of the task's memory usage might impact the memory available
 * to the other.
2597 2598
 **/

2599 2600
int cpuset_mems_allowed_intersects(const struct task_struct *tsk1,
				   const struct task_struct *tsk2)
2601
{
2602
	return nodes_intersects(tsk1->mems_allowed, tsk2->mems_allowed);
2603 2604
}

2605 2606
#define CPUSET_NODELIST_LEN	(256)

2607 2608 2609 2610 2611 2612 2613 2614 2615 2616
/**
 * cpuset_print_task_mems_allowed - prints task's cpuset and mems_allowed
 * @task: pointer to task_struct of some task.
 *
 * Description: Prints @task's name, cpuset name, and cached copy of its
 * mems_allowed to the kernel log.  Must hold task_lock(task) to allow
 * dereferencing task_cs(task).
 */
void cpuset_print_task_mems_allowed(struct task_struct *tsk)
{
2617 2618 2619
	 /* Statically allocated to prevent using excess stack. */
	static char cpuset_nodelist[CPUSET_NODELIST_LEN];
	static DEFINE_SPINLOCK(cpuset_buffer_lock);
2620

2621
	struct cgroup *cgrp = task_cs(tsk)->css.cgroup;
2622

2623
	rcu_read_lock();
2624
	spin_lock(&cpuset_buffer_lock);
2625

2626 2627 2628
	nodelist_scnprintf(cpuset_nodelist, CPUSET_NODELIST_LEN,
			   tsk->mems_allowed);
	printk(KERN_INFO "%s cpuset=%s mems_allowed=%s\n",
2629 2630
	       tsk->comm, cgroup_name(cgrp), cpuset_nodelist);

2631
	spin_unlock(&cpuset_buffer_lock);
2632
	rcu_read_unlock();
2633 2634
}

2635 2636 2637 2638 2639 2640
/*
 * Collection of memory_pressure is suppressed unless
 * this flag is enabled by writing "1" to the special
 * cpuset file 'memory_pressure_enabled' in the root cpuset.
 */

2641
int cpuset_memory_pressure_enabled __read_mostly;
2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663

/**
 * cpuset_memory_pressure_bump - keep stats of per-cpuset reclaims.
 *
 * Keep a running average of the rate of synchronous (direct)
 * page reclaim efforts initiated by tasks in each cpuset.
 *
 * This represents the rate at which some task in the cpuset
 * ran low on memory on all nodes it was allowed to use, and
 * had to enter the kernels page reclaim code in an effort to
 * create more free memory by tossing clean pages or swapping
 * or writing dirty pages.
 *
 * Display to user space in the per-cpuset read-only file
 * "memory_pressure".  Value displayed is an integer
 * representing the recent rate of entry into the synchronous
 * (direct) page reclaim by any task attached to the cpuset.
 **/

void __cpuset_memory_pressure_bump(void)
{
	task_lock(current);
2664
	fmeter_markevent(&task_cs(current)->fmeter);
2665 2666 2667
	task_unlock(current);
}

2668
#ifdef CONFIG_PROC_PID_CPUSET
L
Linus Torvalds 已提交
2669 2670 2671 2672
/*
 * proc_cpuset_show()
 *  - Print tasks cpuset path into seq_file.
 *  - Used for /proc/<pid>/cpuset.
2673 2674
 *  - No need to task_lock(tsk) on this tsk->cpuset reference, as it
 *    doesn't really matter if tsk->cpuset changes after we read it,
2675
 *    and we take cpuset_mutex, keeping cpuset_attach() from changing it
2676
 *    anyway.
L
Linus Torvalds 已提交
2677
 */
2678
int proc_cpuset_show(struct seq_file *m, void *unused_v)
L
Linus Torvalds 已提交
2679
{
2680
	struct pid *pid;
L
Linus Torvalds 已提交
2681 2682
	struct task_struct *tsk;
	char *buf;
2683
	struct cgroup_subsys_state *css;
2684
	int retval;
L
Linus Torvalds 已提交
2685

2686
	retval = -ENOMEM;
L
Linus Torvalds 已提交
2687 2688
	buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
	if (!buf)
2689 2690 2691
		goto out;

	retval = -ESRCH;
2692 2693
	pid = m->private;
	tsk = get_pid_task(pid, PIDTYPE_PID);
2694 2695
	if (!tsk)
		goto out_free;
L
Linus Torvalds 已提交
2696

L
Li Zefan 已提交
2697
	rcu_read_lock();
2698
	css = task_css(tsk, cpuset_subsys_id);
2699
	retval = cgroup_path(css->cgroup, buf, PAGE_SIZE);
L
Li Zefan 已提交
2700
	rcu_read_unlock();
L
Linus Torvalds 已提交
2701
	if (retval < 0)
L
Li Zefan 已提交
2702
		goto out_put_task;
L
Linus Torvalds 已提交
2703 2704
	seq_puts(m, buf);
	seq_putc(m, '\n');
L
Li Zefan 已提交
2705
out_put_task:
2706 2707
	put_task_struct(tsk);
out_free:
L
Linus Torvalds 已提交
2708
	kfree(buf);
2709
out:
L
Linus Torvalds 已提交
2710 2711
	return retval;
}
2712
#endif /* CONFIG_PROC_PID_CPUSET */
L
Linus Torvalds 已提交
2713

2714
/* Display task mems_allowed in /proc/<pid>/status file. */
2715 2716 2717
void cpuset_task_status_allowed(struct seq_file *m, struct task_struct *task)
{
	seq_printf(m, "Mems_allowed:\t");
2718
	seq_nodemask(m, &task->mems_allowed);
2719
	seq_printf(m, "\n");
2720
	seq_printf(m, "Mems_allowed_list:\t");
2721
	seq_nodemask_list(m, &task->mems_allowed);
2722
	seq_printf(m, "\n");
L
Linus Torvalds 已提交
2723
}