cpuset.c 69.9 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6
/*
 *  kernel/cpuset.c
 *
 *  Processor and Memory placement constraints for sets of tasks.
 *
 *  Copyright (C) 2003 BULL SA.
P
Paul Jackson 已提交
7
 *  Copyright (C) 2004-2007 Silicon Graphics, Inc.
8
 *  Copyright (C) 2006 Google, Inc
L
Linus Torvalds 已提交
9 10 11 12
 *
 *  Portions derived from Patrick Mochel's sysfs code.
 *  sysfs is Copyright (c) 2001-3 Patrick Mochel
 *
13
 *  2003-10-10 Written by Simon Derr.
L
Linus Torvalds 已提交
14
 *  2003-10-22 Updates by Stephen Hemminger.
15
 *  2004 May-July Rework by Paul Jackson.
16
 *  2006 Rework by Paul Menage to use generic cgroups
L
Linus Torvalds 已提交
17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34
 *
 *  This file is subject to the terms and conditions of the GNU General Public
 *  License.  See the file COPYING in the main directory of the Linux
 *  distribution for more details.
 */

#include <linux/cpu.h>
#include <linux/cpumask.h>
#include <linux/cpuset.h>
#include <linux/err.h>
#include <linux/errno.h>
#include <linux/file.h>
#include <linux/fs.h>
#include <linux/init.h>
#include <linux/interrupt.h>
#include <linux/kernel.h>
#include <linux/kmod.h>
#include <linux/list.h>
35
#include <linux/mempolicy.h>
L
Linus Torvalds 已提交
36 37 38 39 40 41
#include <linux/mm.h>
#include <linux/module.h>
#include <linux/mount.h>
#include <linux/namei.h>
#include <linux/pagemap.h>
#include <linux/proc_fs.h>
42
#include <linux/rcupdate.h>
L
Linus Torvalds 已提交
43 44
#include <linux/sched.h>
#include <linux/seq_file.h>
45
#include <linux/security.h>
L
Linus Torvalds 已提交
46 47 48 49 50 51 52 53 54 55
#include <linux/slab.h>
#include <linux/spinlock.h>
#include <linux/stat.h>
#include <linux/string.h>
#include <linux/time.h>
#include <linux/backing-dev.h>
#include <linux/sort.h>

#include <asm/uaccess.h>
#include <asm/atomic.h>
56
#include <linux/mutex.h>
P
Paul Jackson 已提交
57
#include <linux/kfifo.h>
58 59
#include <linux/workqueue.h>
#include <linux/cgroup.h>
L
Linus Torvalds 已提交
60

61 62 63 64 65
/*
 * Tracks how many cpusets are currently defined in system.
 * When there is only one cpuset (the root cpuset) we can
 * short circuit some hooks.
 */
66
int number_of_cpusets __read_mostly;
67

68
/* Forward declare cgroup structures */
69 70 71
struct cgroup_subsys cpuset_subsys;
struct cpuset;

72 73 74 75 76 77 78 79 80
/* See "Frequency meter" comments, below. */

struct fmeter {
	int cnt;		/* unprocessed events count */
	int val;		/* most recent output value */
	time_t time;		/* clock (secs) when val computed */
	spinlock_t lock;	/* guards read or write of above */
};

L
Linus Torvalds 已提交
81
struct cpuset {
82 83
	struct cgroup_subsys_state css;

L
Linus Torvalds 已提交
84 85 86 87 88 89 90 91 92 93
	unsigned long flags;		/* "unsigned long" so bitops work */
	cpumask_t cpus_allowed;		/* CPUs allowed to tasks in cpuset */
	nodemask_t mems_allowed;	/* Memory Nodes allowed to tasks */

	struct cpuset *parent;		/* my parent */

	/*
	 * Copy of global cpuset_mems_generation as of the most
	 * recent time this cpuset changed its mems_allowed.
	 */
94 95 96
	int mems_generation;

	struct fmeter fmeter;		/* memory_pressure filter */
P
Paul Jackson 已提交
97 98 99

	/* partition number for rebuild_sched_domains() */
	int pn;
100

101 102 103
	/* for custom sched domain */
	int relax_domain_level;

104 105
	/* used for walking a cpuset heirarchy */
	struct list_head stack_list;
L
Linus Torvalds 已提交
106 107
};

108 109 110 111 112 113 114 115 116 117 118 119 120
/* Retrieve the cpuset for a cgroup */
static inline struct cpuset *cgroup_cs(struct cgroup *cont)
{
	return container_of(cgroup_subsys_state(cont, cpuset_subsys_id),
			    struct cpuset, css);
}

/* Retrieve the cpuset for a task */
static inline struct cpuset *task_cs(struct task_struct *task)
{
	return container_of(task_subsys_state(task, cpuset_subsys_id),
			    struct cpuset, css);
}
121 122 123 124
struct cpuset_hotplug_scanner {
	struct cgroup_scanner scan;
	struct cgroup *to;
};
125

L
Linus Torvalds 已提交
126 127 128 129
/* bits in struct cpuset flags field */
typedef enum {
	CS_CPU_EXCLUSIVE,
	CS_MEM_EXCLUSIVE,
130
	CS_MEM_HARDWALL,
131
	CS_MEMORY_MIGRATE,
P
Paul Jackson 已提交
132
	CS_SCHED_LOAD_BALANCE,
133 134
	CS_SPREAD_PAGE,
	CS_SPREAD_SLAB,
L
Linus Torvalds 已提交
135 136 137 138 139
} cpuset_flagbits_t;

/* convenient tests for these bits */
static inline int is_cpu_exclusive(const struct cpuset *cs)
{
140
	return test_bit(CS_CPU_EXCLUSIVE, &cs->flags);
L
Linus Torvalds 已提交
141 142 143 144
}

static inline int is_mem_exclusive(const struct cpuset *cs)
{
145
	return test_bit(CS_MEM_EXCLUSIVE, &cs->flags);
L
Linus Torvalds 已提交
146 147
}

148 149 150 151 152
static inline int is_mem_hardwall(const struct cpuset *cs)
{
	return test_bit(CS_MEM_HARDWALL, &cs->flags);
}

P
Paul Jackson 已提交
153 154 155 156 157
static inline int is_sched_load_balance(const struct cpuset *cs)
{
	return test_bit(CS_SCHED_LOAD_BALANCE, &cs->flags);
}

158 159
static inline int is_memory_migrate(const struct cpuset *cs)
{
160
	return test_bit(CS_MEMORY_MIGRATE, &cs->flags);
161 162
}

163 164 165 166 167 168 169 170 171 172
static inline int is_spread_page(const struct cpuset *cs)
{
	return test_bit(CS_SPREAD_PAGE, &cs->flags);
}

static inline int is_spread_slab(const struct cpuset *cs)
{
	return test_bit(CS_SPREAD_SLAB, &cs->flags);
}

L
Linus Torvalds 已提交
173
/*
174
 * Increment this integer everytime any cpuset changes its
L
Linus Torvalds 已提交
175 176 177 178
 * mems_allowed value.  Users of cpusets can track this generation
 * number, and avoid having to lock and reload mems_allowed unless
 * the cpuset they're using changes generation.
 *
179
 * A single, global generation is needed because cpuset_attach_task() could
L
Linus Torvalds 已提交
180 181 182 183
 * reattach a task to a different cpuset, which must not have its
 * generation numbers aliased with those of that tasks previous cpuset.
 *
 * Generations are needed for mems_allowed because one task cannot
184
 * modify another's memory placement.  So we must enable every task,
L
Linus Torvalds 已提交
185 186 187
 * on every visit to __alloc_pages(), to efficiently check whether
 * its current->cpuset->mems_allowed has changed, requiring an update
 * of its current->mems_allowed.
188
 *
189
 * Since writes to cpuset_mems_generation are guarded by the cgroup lock
190
 * there is no need to mark it atomic.
L
Linus Torvalds 已提交
191
 */
192
static int cpuset_mems_generation;
L
Linus Torvalds 已提交
193 194 195 196 197 198 199 200

static struct cpuset top_cpuset = {
	.flags = ((1 << CS_CPU_EXCLUSIVE) | (1 << CS_MEM_EXCLUSIVE)),
	.cpus_allowed = CPU_MASK_ALL,
	.mems_allowed = NODE_MASK_ALL,
};

/*
201 202 203 204 205 206 207
 * There are two global mutexes guarding cpuset structures.  The first
 * is the main control groups cgroup_mutex, accessed via
 * cgroup_lock()/cgroup_unlock().  The second is the cpuset-specific
 * callback_mutex, below. They can nest.  It is ok to first take
 * cgroup_mutex, then nest callback_mutex.  We also require taking
 * task_lock() when dereferencing a task's cpuset pointer.  See "The
 * task_lock() exception", at the end of this comment.
208
 *
209
 * A task must hold both mutexes to modify cpusets.  If a task
210
 * holds cgroup_mutex, then it blocks others wanting that mutex,
211
 * ensuring that it is the only task able to also acquire callback_mutex
212 213
 * and be able to modify cpusets.  It can perform various checks on
 * the cpuset structure first, knowing nothing will change.  It can
214
 * also allocate memory while just holding cgroup_mutex.  While it is
215
 * performing these checks, various callback routines can briefly
216 217
 * acquire callback_mutex to query cpusets.  Once it is ready to make
 * the changes, it takes callback_mutex, blocking everyone else.
218 219
 *
 * Calls to the kernel memory allocator can not be made while holding
220
 * callback_mutex, as that would risk double tripping on callback_mutex
221 222 223
 * from one of the callbacks into the cpuset code from within
 * __alloc_pages().
 *
224
 * If a task is only holding callback_mutex, then it has read-only
225 226 227 228 229
 * access to cpusets.
 *
 * The task_struct fields mems_allowed and mems_generation may only
 * be accessed in the context of that task, so require no locks.
 *
230
 * The cpuset_common_file_read() handlers only hold callback_mutex across
231 232 233
 * small pieces of code, such as when reading out possibly multi-word
 * cpumasks and nodemasks.
 *
234 235
 * Accessing a task's cpuset should be done in accordance with the
 * guidelines for accessing subsystem state in kernel/cgroup.c
L
Linus Torvalds 已提交
236 237
 */

238
static DEFINE_MUTEX(callback_mutex);
239

240 241 242
/* This is ugly, but preserves the userspace API for existing cpuset
 * users. If someone tries to mount the "cpuset" filesystem, we
 * silently switch it to mount "cgroup" instead */
243 244 245
static int cpuset_get_sb(struct file_system_type *fs_type,
			 int flags, const char *unused_dev_name,
			 void *data, struct vfsmount *mnt)
L
Linus Torvalds 已提交
246
{
247 248 249 250 251 252 253 254 255 256 257
	struct file_system_type *cgroup_fs = get_fs_type("cgroup");
	int ret = -ENODEV;
	if (cgroup_fs) {
		char mountopts[] =
			"cpuset,noprefix,"
			"release_agent=/sbin/cpuset_release_agent";
		ret = cgroup_fs->get_sb(cgroup_fs, flags,
					   unused_dev_name, mountopts, mnt);
		put_filesystem(cgroup_fs);
	}
	return ret;
L
Linus Torvalds 已提交
258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275
}

static struct file_system_type cpuset_fs_type = {
	.name = "cpuset",
	.get_sb = cpuset_get_sb,
};

/*
 * Return in *pmask the portion of a cpusets's cpus_allowed that
 * are online.  If none are online, walk up the cpuset hierarchy
 * until we find one that does have some online cpus.  If we get
 * all the way to the top and still haven't found any online cpus,
 * return cpu_online_map.  Or if passed a NULL cs from an exit'ing
 * task, return cpu_online_map.
 *
 * One way or another, we guarantee to return some non-empty subset
 * of cpu_online_map.
 *
276
 * Call with callback_mutex held.
L
Linus Torvalds 已提交
277 278 279 280 281 282 283 284 285 286 287 288 289 290 291
 */

static void guarantee_online_cpus(const struct cpuset *cs, cpumask_t *pmask)
{
	while (cs && !cpus_intersects(cs->cpus_allowed, cpu_online_map))
		cs = cs->parent;
	if (cs)
		cpus_and(*pmask, cs->cpus_allowed, cpu_online_map);
	else
		*pmask = cpu_online_map;
	BUG_ON(!cpus_intersects(*pmask, cpu_online_map));
}

/*
 * Return in *pmask the portion of a cpusets's mems_allowed that
292 293 294 295
 * are online, with memory.  If none are online with memory, walk
 * up the cpuset hierarchy until we find one that does have some
 * online mems.  If we get all the way to the top and still haven't
 * found any online mems, return node_states[N_HIGH_MEMORY].
L
Linus Torvalds 已提交
296 297
 *
 * One way or another, we guarantee to return some non-empty subset
298
 * of node_states[N_HIGH_MEMORY].
L
Linus Torvalds 已提交
299
 *
300
 * Call with callback_mutex held.
L
Linus Torvalds 已提交
301 302 303 304
 */

static void guarantee_online_mems(const struct cpuset *cs, nodemask_t *pmask)
{
305 306
	while (cs && !nodes_intersects(cs->mems_allowed,
					node_states[N_HIGH_MEMORY]))
L
Linus Torvalds 已提交
307 308
		cs = cs->parent;
	if (cs)
309 310
		nodes_and(*pmask, cs->mems_allowed,
					node_states[N_HIGH_MEMORY]);
L
Linus Torvalds 已提交
311
	else
312 313
		*pmask = node_states[N_HIGH_MEMORY];
	BUG_ON(!nodes_intersects(*pmask, node_states[N_HIGH_MEMORY]));
L
Linus Torvalds 已提交
314 315
}

316 317 318 319 320 321
/**
 * cpuset_update_task_memory_state - update task memory placement
 *
 * If the current tasks cpusets mems_allowed changed behind our
 * backs, update current->mems_allowed, mems_generation and task NUMA
 * mempolicy to the new value.
322
 *
323 324 325 326
 * Task mempolicy is updated by rebinding it relative to the
 * current->cpuset if a task has its memory placement changed.
 * Do not call this routine if in_interrupt().
 *
327
 * Call without callback_mutex or task_lock() held.  May be
328 329
 * called with or without cgroup_mutex held.  Thanks in part to
 * 'the_top_cpuset_hack', the task's cpuset pointer will never
D
David Rientjes 已提交
330 331
 * be NULL.  This routine also might acquire callback_mutex during
 * call.
332
 *
333 334
 * Reading current->cpuset->mems_generation doesn't need task_lock
 * to guard the current->cpuset derefence, because it is guarded
335
 * from concurrent freeing of current->cpuset using RCU.
336 337 338 339 340 341 342 343 344 345 346 347 348 349
 *
 * The rcu_dereference() is technically probably not needed,
 * as I don't actually mind if I see a new cpuset pointer but
 * an old value of mems_generation.  However this really only
 * matters on alpha systems using cpusets heavily.  If I dropped
 * that rcu_dereference(), it would save them a memory barrier.
 * For all other arch's, rcu_dereference is a no-op anyway, and for
 * alpha systems not using cpusets, another planned optimization,
 * avoiding the rcu critical section for tasks in the root cpuset
 * which is statically allocated, so can't vanish, will make this
 * irrelevant.  Better to use RCU as intended, than to engage in
 * some cute trick to save a memory barrier that is impossible to
 * test, for alpha systems using cpusets heavily, which might not
 * even exist.
350 351 352 353 354
 *
 * This routine is needed to update the per-task mems_allowed data,
 * within the tasks context, when it is trying to allocate memory
 * (in various mm/mempolicy.c routines) and notices that some other
 * task has been modifying its cpuset.
L
Linus Torvalds 已提交
355 356
 */

357
void cpuset_update_task_memory_state(void)
L
Linus Torvalds 已提交
358
{
359
	int my_cpusets_mem_gen;
360
	struct task_struct *tsk = current;
361
	struct cpuset *cs;
362

363
	if (task_cs(tsk) == &top_cpuset) {
364 365 366 367
		/* Don't need rcu for top_cpuset.  It's never freed. */
		my_cpusets_mem_gen = top_cpuset.mems_generation;
	} else {
		rcu_read_lock();
368
		my_cpusets_mem_gen = task_cs(current)->mems_generation;
369 370
		rcu_read_unlock();
	}
L
Linus Torvalds 已提交
371

372
	if (my_cpusets_mem_gen != tsk->cpuset_mems_generation) {
373
		mutex_lock(&callback_mutex);
374
		task_lock(tsk);
375
		cs = task_cs(tsk); /* Maybe changed when task not locked */
376 377
		guarantee_online_mems(cs, &tsk->mems_allowed);
		tsk->cpuset_mems_generation = cs->mems_generation;
378 379 380 381 382 383 384 385
		if (is_spread_page(cs))
			tsk->flags |= PF_SPREAD_PAGE;
		else
			tsk->flags &= ~PF_SPREAD_PAGE;
		if (is_spread_slab(cs))
			tsk->flags |= PF_SPREAD_SLAB;
		else
			tsk->flags &= ~PF_SPREAD_SLAB;
386
		task_unlock(tsk);
387
		mutex_unlock(&callback_mutex);
388
		mpol_rebind_task(tsk, &tsk->mems_allowed);
L
Linus Torvalds 已提交
389 390 391 392 393 394 395 396
	}
}

/*
 * is_cpuset_subset(p, q) - Is cpuset p a subset of cpuset q?
 *
 * One cpuset is a subset of another if all its allowed CPUs and
 * Memory Nodes are a subset of the other, and its exclusive flags
397
 * are only set if the other's are set.  Call holding cgroup_mutex.
L
Linus Torvalds 已提交
398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414
 */

static int is_cpuset_subset(const struct cpuset *p, const struct cpuset *q)
{
	return	cpus_subset(p->cpus_allowed, q->cpus_allowed) &&
		nodes_subset(p->mems_allowed, q->mems_allowed) &&
		is_cpu_exclusive(p) <= is_cpu_exclusive(q) &&
		is_mem_exclusive(p) <= is_mem_exclusive(q);
}

/*
 * validate_change() - Used to validate that any proposed cpuset change
 *		       follows the structural rules for cpusets.
 *
 * If we replaced the flag and mask values of the current cpuset
 * (cur) with those values in the trial cpuset (trial), would
 * our various subset and exclusive rules still be valid?  Presumes
415
 * cgroup_mutex held.
L
Linus Torvalds 已提交
416 417 418 419 420 421 422 423 424 425 426 427 428 429
 *
 * 'cur' is the address of an actual, in-use cpuset.  Operations
 * such as list traversal that depend on the actual address of the
 * cpuset in the list must use cur below, not trial.
 *
 * 'trial' is the address of bulk structure copy of cur, with
 * perhaps one or more of the fields cpus_allowed, mems_allowed,
 * or flags changed to new, trial values.
 *
 * Return 0 if valid, -errno if not.
 */

static int validate_change(const struct cpuset *cur, const struct cpuset *trial)
{
430
	struct cgroup *cont;
L
Linus Torvalds 已提交
431 432 433
	struct cpuset *c, *par;

	/* Each of our child cpusets must be a subset of us */
434 435
	list_for_each_entry(cont, &cur->css.cgroup->children, sibling) {
		if (!is_cpuset_subset(cgroup_cs(cont), trial))
L
Linus Torvalds 已提交
436 437 438 439
			return -EBUSY;
	}

	/* Remaining checks don't apply to root cpuset */
440
	if (cur == &top_cpuset)
L
Linus Torvalds 已提交
441 442
		return 0;

443 444
	par = cur->parent;

L
Linus Torvalds 已提交
445 446 447 448
	/* We must be a subset of our parent cpuset */
	if (!is_cpuset_subset(trial, par))
		return -EACCES;

449 450 451 452
	/*
	 * If either I or some sibling (!= me) is exclusive, we can't
	 * overlap
	 */
453 454
	list_for_each_entry(cont, &par->css.cgroup->children, sibling) {
		c = cgroup_cs(cont);
L
Linus Torvalds 已提交
455 456 457 458 459 460 461 462 463 464
		if ((is_cpu_exclusive(trial) || is_cpu_exclusive(c)) &&
		    c != cur &&
		    cpus_intersects(trial->cpus_allowed, c->cpus_allowed))
			return -EINVAL;
		if ((is_mem_exclusive(trial) || is_mem_exclusive(c)) &&
		    c != cur &&
		    nodes_intersects(trial->mems_allowed, c->mems_allowed))
			return -EINVAL;
	}

465 466 467 468 469 470 471 472
	/* Cpusets with tasks can't have empty cpus_allowed or mems_allowed */
	if (cgroup_task_count(cur->css.cgroup)) {
		if (cpus_empty(trial->cpus_allowed) ||
		    nodes_empty(trial->mems_allowed)) {
			return -ENOSPC;
		}
	}

L
Linus Torvalds 已提交
473 474 475
	return 0;
}

P
Paul Jackson 已提交
476 477 478 479 480 481 482 483 484 485
/*
 * Helper routine for rebuild_sched_domains().
 * Do cpusets a, b have overlapping cpus_allowed masks?
 */

static int cpusets_overlap(struct cpuset *a, struct cpuset *b)
{
	return cpus_intersects(a->cpus_allowed, b->cpus_allowed);
}

486 487 488 489 490 491 492 493 494 495
static void
update_domain_attr(struct sched_domain_attr *dattr, struct cpuset *c)
{
	if (!dattr)
		return;
	if (dattr->relax_domain_level < c->relax_domain_level)
		dattr->relax_domain_level = c->relax_domain_level;
	return;
}

P
Paul Jackson 已提交
496 497 498
/*
 * rebuild_sched_domains()
 *
499 500 501 502 503 504 505 506 507 508
 * This routine will be called to rebuild the scheduler's dynamic
 * sched domains:
 * - if the flag 'sched_load_balance' of any cpuset with non-empty
 *   'cpus' changes,
 * - or if the 'cpus' allowed changes in any cpuset which has that
 *   flag enabled,
 * - or if the 'sched_relax_domain_level' of any cpuset which has
 *   that flag enabled and with non-empty 'cpus' changes,
 * - or if any cpuset with non-empty 'cpus' is removed,
 * - or if a cpu gets offlined.
P
Paul Jackson 已提交
509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527
 *
 * This routine builds a partial partition of the systems CPUs
 * (the set of non-overlappping cpumask_t's in the array 'part'
 * below), and passes that partial partition to the kernel/sched.c
 * partition_sched_domains() routine, which will rebuild the
 * schedulers load balancing domains (sched domains) as specified
 * by that partial partition.  A 'partial partition' is a set of
 * non-overlapping subsets whose union is a subset of that set.
 *
 * See "What is sched_load_balance" in Documentation/cpusets.txt
 * for a background explanation of this.
 *
 * Does not return errors, on the theory that the callers of this
 * routine would rather not worry about failures to rebuild sched
 * domains when operating in the severe memory shortage situations
 * that could cause allocation failures below.
 *
 * Call with cgroup_mutex held.  May take callback_mutex during
 * call due to the kfifo_alloc() and kmalloc() calls.  May nest
528
 * a call to the get_online_cpus()/put_online_cpus() pair.
P
Paul Jackson 已提交
529
 * Must not be called holding callback_mutex, because we must not
530 531
 * call get_online_cpus() while holding callback_mutex.  Elsewhere
 * the kernel nests callback_mutex inside get_online_cpus() calls.
P
Paul Jackson 已提交
532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567
 * So the reverse nesting would risk an ABBA deadlock.
 *
 * The three key local variables below are:
 *    q  - a kfifo queue of cpuset pointers, used to implement a
 *	   top-down scan of all cpusets.  This scan loads a pointer
 *	   to each cpuset marked is_sched_load_balance into the
 *	   array 'csa'.  For our purposes, rebuilding the schedulers
 *	   sched domains, we can ignore !is_sched_load_balance cpusets.
 *  csa  - (for CpuSet Array) Array of pointers to all the cpusets
 *	   that need to be load balanced, for convenient iterative
 *	   access by the subsequent code that finds the best partition,
 *	   i.e the set of domains (subsets) of CPUs such that the
 *	   cpus_allowed of every cpuset marked is_sched_load_balance
 *	   is a subset of one of these domains, while there are as
 *	   many such domains as possible, each as small as possible.
 * doms  - Conversion of 'csa' to an array of cpumasks, for passing to
 *	   the kernel/sched.c routine partition_sched_domains() in a
 *	   convenient format, that can be easily compared to the prior
 *	   value to determine what partition elements (sched domains)
 *	   were changed (added or removed.)
 *
 * Finding the best partition (set of domains):
 *	The triple nested loops below over i, j, k scan over the
 *	load balanced cpusets (using the array of cpuset pointers in
 *	csa[]) looking for pairs of cpusets that have overlapping
 *	cpus_allowed, but which don't have the same 'pn' partition
 *	number and gives them in the same partition number.  It keeps
 *	looping on the 'restart' label until it can no longer find
 *	any such pairs.
 *
 *	The union of the cpus_allowed masks from the set of
 *	all cpusets having the same 'pn' value then form the one
 *	element of the partition (one sched domain) to be passed to
 *	partition_sched_domains().
 */

568
void rebuild_sched_domains(void)
P
Paul Jackson 已提交
569 570 571 572 573 574 575
{
	struct kfifo *q;	/* queue of cpusets to be scanned */
	struct cpuset *cp;	/* scans q */
	struct cpuset **csa;	/* array of all cpuset ptrs */
	int csn;		/* how many cpuset ptrs in csa so far */
	int i, j, k;		/* indices for partition finding loops */
	cpumask_t *doms;	/* resulting partition; i.e. sched domains */
576
	struct sched_domain_attr *dattr;  /* attributes for custom domains */
P
Paul Jackson 已提交
577 578 579 580 581 582
	int ndoms;		/* number of sched domains in result */
	int nslot;		/* next empty doms[] cpumask_t slot */

	q = NULL;
	csa = NULL;
	doms = NULL;
583
	dattr = NULL;
P
Paul Jackson 已提交
584 585 586 587 588 589 590

	/* Special case for the 99% of systems with one, full, sched domain */
	if (is_sched_load_balance(&top_cpuset)) {
		ndoms = 1;
		doms = kmalloc(sizeof(cpumask_t), GFP_KERNEL);
		if (!doms)
			goto rebuild;
591 592 593 594 595
		dattr = kmalloc(sizeof(struct sched_domain_attr), GFP_KERNEL);
		if (dattr) {
			*dattr = SD_ATTR_INIT;
			update_domain_attr(dattr, &top_cpuset);
		}
P
Paul Jackson 已提交
596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651
		*doms = top_cpuset.cpus_allowed;
		goto rebuild;
	}

	q = kfifo_alloc(number_of_cpusets * sizeof(cp), GFP_KERNEL, NULL);
	if (IS_ERR(q))
		goto done;
	csa = kmalloc(number_of_cpusets * sizeof(cp), GFP_KERNEL);
	if (!csa)
		goto done;
	csn = 0;

	cp = &top_cpuset;
	__kfifo_put(q, (void *)&cp, sizeof(cp));
	while (__kfifo_get(q, (void *)&cp, sizeof(cp))) {
		struct cgroup *cont;
		struct cpuset *child;   /* scans child cpusets of cp */
		if (is_sched_load_balance(cp))
			csa[csn++] = cp;
		list_for_each_entry(cont, &cp->css.cgroup->children, sibling) {
			child = cgroup_cs(cont);
			__kfifo_put(q, (void *)&child, sizeof(cp));
		}
  	}

	for (i = 0; i < csn; i++)
		csa[i]->pn = i;
	ndoms = csn;

restart:
	/* Find the best partition (set of sched domains) */
	for (i = 0; i < csn; i++) {
		struct cpuset *a = csa[i];
		int apn = a->pn;

		for (j = 0; j < csn; j++) {
			struct cpuset *b = csa[j];
			int bpn = b->pn;

			if (apn != bpn && cpusets_overlap(a, b)) {
				for (k = 0; k < csn; k++) {
					struct cpuset *c = csa[k];

					if (c->pn == bpn)
						c->pn = apn;
				}
				ndoms--;	/* one less element */
				goto restart;
			}
		}
	}

	/* Convert <csn, csa> to <ndoms, doms> */
	doms = kmalloc(ndoms * sizeof(cpumask_t), GFP_KERNEL);
	if (!doms)
		goto rebuild;
652
	dattr = kmalloc(ndoms * sizeof(struct sched_domain_attr), GFP_KERNEL);
P
Paul Jackson 已提交
653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674

	for (nslot = 0, i = 0; i < csn; i++) {
		struct cpuset *a = csa[i];
		int apn = a->pn;

		if (apn >= 0) {
			cpumask_t *dp = doms + nslot;

			if (nslot == ndoms) {
				static int warnings = 10;
				if (warnings) {
					printk(KERN_WARNING
					 "rebuild_sched_domains confused:"
					  " nslot %d, ndoms %d, csn %d, i %d,"
					  " apn %d\n",
					  nslot, ndoms, csn, i, apn);
					warnings--;
				}
				continue;
			}

			cpus_clear(*dp);
675 676
			if (dattr)
				*(dattr + nslot) = SD_ATTR_INIT;
P
Paul Jackson 已提交
677 678 679 680 681 682
			for (j = i; j < csn; j++) {
				struct cpuset *b = csa[j];

				if (apn == b->pn) {
					cpus_or(*dp, *dp, b->cpus_allowed);
					b->pn = -1;
683 684 685
					if (dattr)
						update_domain_attr(dattr
								   + nslot, b);
P
Paul Jackson 已提交
686 687 688 689 690 691 692 693 694
				}
			}
			nslot++;
		}
	}
	BUG_ON(nslot != ndoms);

rebuild:
	/* Have scheduler rebuild sched domains */
695
	get_online_cpus();
696
	partition_sched_domains(ndoms, doms, dattr);
697
	put_online_cpus();
P
Paul Jackson 已提交
698 699 700 701 702 703

done:
	if (q && !IS_ERR(q))
		kfifo_free(q);
	kfree(csa);
	/* Don't kfree(doms) -- partition_sched_domains() does that. */
704
	/* Don't kfree(dattr) -- partition_sched_domains() does that. */
P
Paul Jackson 已提交
705 706
}

P
Paul Menage 已提交
707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736
static inline int started_after_time(struct task_struct *t1,
				     struct timespec *time,
				     struct task_struct *t2)
{
	int start_diff = timespec_compare(&t1->start_time, time);
	if (start_diff > 0) {
		return 1;
	} else if (start_diff < 0) {
		return 0;
	} else {
		/*
		 * Arbitrarily, if two processes started at the same
		 * time, we'll say that the lower pointer value
		 * started first. Note that t2 may have exited by now
		 * so this may not be a valid pointer any longer, but
		 * that's fine - it still serves to distinguish
		 * between two tasks started (effectively)
		 * simultaneously.
		 */
		return t1 > t2;
	}
}

static inline int started_after(void *p1, void *p2)
{
	struct task_struct *t1 = p1;
	struct task_struct *t2 = p2;
	return started_after_time(t1, &t2->start_time, t2);
}

C
Cliff Wickman 已提交
737 738 739 740 741
/**
 * cpuset_test_cpumask - test a task's cpus_allowed versus its cpuset's
 * @tsk: task to test
 * @scan: struct cgroup_scanner contained in its struct cpuset_hotplug_scanner
 *
742
 * Call with cgroup_mutex held.  May take callback_mutex during call.
C
Cliff Wickman 已提交
743 744 745
 * Called for each task in a cgroup by cgroup_scan_tasks().
 * Return nonzero if this tasks's cpus_allowed mask should be changed (in other
 * words, if its mask is not equal to its cpuset's mask).
746
 */
747 748
static int cpuset_test_cpumask(struct task_struct *tsk,
			       struct cgroup_scanner *scan)
C
Cliff Wickman 已提交
749 750 751 752
{
	return !cpus_equal(tsk->cpus_allowed,
			(cgroup_cs(scan->cg))->cpus_allowed);
}
753

C
Cliff Wickman 已提交
754 755 756 757 758 759 760 761 762 763 764
/**
 * cpuset_change_cpumask - make a task's cpus_allowed the same as its cpuset's
 * @tsk: task to test
 * @scan: struct cgroup_scanner containing the cgroup of the task
 *
 * Called by cgroup_scan_tasks() for each task in a cgroup whose
 * cpus_allowed mask needs to be changed.
 *
 * We don't need to re-check for the cgroup/cpuset membership, since we're
 * holding cgroup_lock() at this point.
 */
765 766
static void cpuset_change_cpumask(struct task_struct *tsk,
				  struct cgroup_scanner *scan)
C
Cliff Wickman 已提交
767
{
768
	set_cpus_allowed_ptr(tsk, &((cgroup_cs(scan->cg))->cpus_allowed));
C
Cliff Wickman 已提交
769 770
}

771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801
/**
 * update_tasks_cpumask - Update the cpumasks of tasks in the cpuset.
 * @cs: the cpuset in which each task's cpus_allowed mask needs to be changed
 *
 * Called with cgroup_mutex held
 *
 * The cgroup_scan_tasks() function will scan all the tasks in a cgroup,
 * calling callback functions for each.
 *
 * Return 0 if successful, -errno if not.
 */
static int update_tasks_cpumask(struct cpuset *cs)
{
	struct cgroup_scanner scan;
	struct ptr_heap heap;
	int retval;

	retval = heap_init(&heap, PAGE_SIZE, GFP_KERNEL, &started_after);
	if (retval)
		return retval;

	scan.cg = cs->css.cgroup;
	scan.test_task = cpuset_test_cpumask;
	scan.process_task = cpuset_change_cpumask;
	scan.heap = &heap;
	retval = cgroup_scan_tasks(&scan);

	heap_free(&heap);
	return retval;
}

C
Cliff Wickman 已提交
802 803 804 805 806
/**
 * update_cpumask - update the cpus_allowed mask of a cpuset and all tasks in it
 * @cs: the cpuset to consider
 * @buf: buffer of cpu numbers written to this cpuset
 */
807
static int update_cpumask(struct cpuset *cs, const char *buf)
L
Linus Torvalds 已提交
808 809
{
	struct cpuset trialcs;
C
Cliff Wickman 已提交
810 811
	int retval;
	int is_load_balanced;
L
Linus Torvalds 已提交
812

813 814 815 816
	/* top_cpuset.cpus_allowed tracks cpu_online_map; it's read-only */
	if (cs == &top_cpuset)
		return -EACCES;

L
Linus Torvalds 已提交
817
	trialcs = *cs;
818 819

	/*
820
	 * An empty cpus_allowed is ok only if the cpuset has no tasks.
821 822 823
	 * Since cpulist_parse() fails on an empty mask, we special case
	 * that parsing.  The validate_change() call ensures that cpusets
	 * with tasks have cpus.
824
	 */
825
	if (!*buf) {
826 827 828 829 830
		cpus_clear(trialcs.cpus_allowed);
	} else {
		retval = cpulist_parse(buf, trialcs.cpus_allowed);
		if (retval < 0)
			return retval;
831 832 833

		if (!cpus_subset(trialcs.cpus_allowed, cpu_online_map))
			return -EINVAL;
834
	}
L
Linus Torvalds 已提交
835
	retval = validate_change(cs, &trialcs);
836 837
	if (retval < 0)
		return retval;
P
Paul Jackson 已提交
838

P
Paul Menage 已提交
839 840 841
	/* Nothing to do if the cpus didn't change */
	if (cpus_equal(cs->cpus_allowed, trialcs.cpus_allowed))
		return 0;
C
Cliff Wickman 已提交
842

P
Paul Jackson 已提交
843 844
	is_load_balanced = is_sched_load_balance(&trialcs);

845
	mutex_lock(&callback_mutex);
846
	cs->cpus_allowed = trialcs.cpus_allowed;
847
	mutex_unlock(&callback_mutex);
P
Paul Jackson 已提交
848

P
Paul Menage 已提交
849 850
	/*
	 * Scan tasks in the cpuset, and update the cpumasks of any
C
Cliff Wickman 已提交
851
	 * that need an update.
P
Paul Menage 已提交
852
	 */
853 854 855
	retval = update_tasks_cpumask(cs);
	if (retval < 0)
		return retval;
C
Cliff Wickman 已提交
856

P
Paul Menage 已提交
857
	if (is_load_balanced)
P
Paul Jackson 已提交
858
		rebuild_sched_domains();
859
	return 0;
L
Linus Torvalds 已提交
860 861
}

862 863 864 865 866 867 868 869
/*
 * cpuset_migrate_mm
 *
 *    Migrate memory region from one set of nodes to another.
 *
 *    Temporarilly set tasks mems_allowed to target nodes of migration,
 *    so that the migration code can allocate pages on these nodes.
 *
870
 *    Call holding cgroup_mutex, so current's cpuset won't change
871
 *    during this call, as manage_mutex holds off any cpuset_attach()
872 873
 *    calls.  Therefore we don't need to take task_lock around the
 *    call to guarantee_online_mems(), as we know no one is changing
874
 *    our task's cpuset.
875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906
 *
 *    Hold callback_mutex around the two modifications of our tasks
 *    mems_allowed to synchronize with cpuset_mems_allowed().
 *
 *    While the mm_struct we are migrating is typically from some
 *    other task, the task_struct mems_allowed that we are hacking
 *    is for our current task, which must allocate new pages for that
 *    migrating memory region.
 *
 *    We call cpuset_update_task_memory_state() before hacking
 *    our tasks mems_allowed, so that we are assured of being in
 *    sync with our tasks cpuset, and in particular, callbacks to
 *    cpuset_update_task_memory_state() from nested page allocations
 *    won't see any mismatch of our cpuset and task mems_generation
 *    values, so won't overwrite our hacked tasks mems_allowed
 *    nodemask.
 */

static void cpuset_migrate_mm(struct mm_struct *mm, const nodemask_t *from,
							const nodemask_t *to)
{
	struct task_struct *tsk = current;

	cpuset_update_task_memory_state();

	mutex_lock(&callback_mutex);
	tsk->mems_allowed = *to;
	mutex_unlock(&callback_mutex);

	do_migrate_pages(mm, from, to, MPOL_MF_MOVE_ALL);

	mutex_lock(&callback_mutex);
907
	guarantee_online_mems(task_cs(tsk),&tsk->mems_allowed);
908 909 910
	mutex_unlock(&callback_mutex);
}

911 912
static void *cpuset_being_rebound;

913 914 915 916 917 918 919 920 921
/**
 * update_tasks_nodemask - Update the nodemasks of tasks in the cpuset.
 * @cs: the cpuset in which each task's mems_allowed mask needs to be changed
 * @oldmem: old mems_allowed of cpuset cs
 *
 * Called with cgroup_mutex held
 * Return 0 if successful, -errno if not.
 */
static int update_tasks_nodemask(struct cpuset *cs, const nodemask_t *oldmem)
L
Linus Torvalds 已提交
922
{
923
	struct task_struct *p;
924 925
	struct mm_struct **mmarray;
	int i, n, ntasks;
926
	int migrate;
927
	int fudge;
928
	struct cgroup_iter it;
929
	int retval;
930

931
	cpuset_being_rebound = cs;		/* causes mpol_dup() rebind */
932 933 934 935 936 937 938 939 940 941 942 943 944

	fudge = 10;				/* spare mmarray[] slots */
	fudge += cpus_weight(cs->cpus_allowed);	/* imagine one fork-bomb/cpu */
	retval = -ENOMEM;

	/*
	 * Allocate mmarray[] to hold mm reference for each task
	 * in cpuset cs.  Can't kmalloc GFP_KERNEL while holding
	 * tasklist_lock.  We could use GFP_ATOMIC, but with a
	 * few more lines of code, we can retry until we get a big
	 * enough mmarray[] w/o using GFP_ATOMIC.
	 */
	while (1) {
945
		ntasks = cgroup_task_count(cs->css.cgroup);  /* guess */
946 947 948 949
		ntasks += fudge;
		mmarray = kmalloc(ntasks * sizeof(*mmarray), GFP_KERNEL);
		if (!mmarray)
			goto done;
950
		read_lock(&tasklist_lock);		/* block fork */
951
		if (cgroup_task_count(cs->css.cgroup) <= ntasks)
952
			break;				/* got enough */
953
		read_unlock(&tasklist_lock);		/* try again */
954 955 956 957 958 959
		kfree(mmarray);
	}

	n = 0;

	/* Load up mmarray[] with mm reference for each task in cpuset. */
960 961
	cgroup_iter_start(cs->css.cgroup, &it);
	while ((p = cgroup_iter_next(cs->css.cgroup, &it))) {
962 963 964 965 966
		struct mm_struct *mm;

		if (n >= ntasks) {
			printk(KERN_WARNING
				"Cpuset mempolicy rebind incomplete.\n");
967
			break;
968 969 970 971 972
		}
		mm = get_task_mm(p);
		if (!mm)
			continue;
		mmarray[n++] = mm;
973 974
	}
	cgroup_iter_end(cs->css.cgroup, &it);
975
	read_unlock(&tasklist_lock);
976 977 978 979 980 981

	/*
	 * Now that we've dropped the tasklist spinlock, we can
	 * rebind the vma mempolicies of each mm in mmarray[] to their
	 * new cpuset, and release that mm.  The mpol_rebind_mm()
	 * call takes mmap_sem, which we couldn't take while holding
982
	 * tasklist_lock.  Forks can happen again now - the mpol_dup()
983 984
	 * cpuset_being_rebound check will catch such forks, and rebind
	 * their vma mempolicies too.  Because we still hold the global
985
	 * cgroup_mutex, we know that no other rebind effort will
986 987
	 * be contending for the global variable cpuset_being_rebound.
	 * It's ok if we rebind the same mm twice; mpol_rebind_mm()
988
	 * is idempotent.  Also migrate pages in each mm to new nodes.
989
	 */
990
	migrate = is_memory_migrate(cs);
991 992 993 994
	for (i = 0; i < n; i++) {
		struct mm_struct *mm = mmarray[i];

		mpol_rebind_mm(mm, &cs->mems_allowed);
995
		if (migrate)
996
			cpuset_migrate_mm(mm, oldmem, &cs->mems_allowed);
997 998 999
		mmput(mm);
	}

1000
	/* We're done rebinding vmas to this cpuset's new mems_allowed. */
1001
	kfree(mmarray);
1002
	cpuset_being_rebound = NULL;
1003
	retval = 0;
1004
done:
L
Linus Torvalds 已提交
1005 1006 1007
	return retval;
}

1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071
/*
 * Handle user request to change the 'mems' memory placement
 * of a cpuset.  Needs to validate the request, update the
 * cpusets mems_allowed and mems_generation, and for each
 * task in the cpuset, rebind any vma mempolicies and if
 * the cpuset is marked 'memory_migrate', migrate the tasks
 * pages to the new memory.
 *
 * Call with cgroup_mutex held.  May take callback_mutex during call.
 * Will take tasklist_lock, scan tasklist for tasks in cpuset cs,
 * lock each such tasks mm->mmap_sem, scan its vma's and rebind
 * their mempolicies to the cpusets new mems_allowed.
 */
static int update_nodemask(struct cpuset *cs, const char *buf)
{
	struct cpuset trialcs;
	nodemask_t oldmem;
	int retval;

	/*
	 * top_cpuset.mems_allowed tracks node_stats[N_HIGH_MEMORY];
	 * it's read-only
	 */
	if (cs == &top_cpuset)
		return -EACCES;

	trialcs = *cs;

	/*
	 * An empty mems_allowed is ok iff there are no tasks in the cpuset.
	 * Since nodelist_parse() fails on an empty mask, we special case
	 * that parsing.  The validate_change() call ensures that cpusets
	 * with tasks have memory.
	 */
	if (!*buf) {
		nodes_clear(trialcs.mems_allowed);
	} else {
		retval = nodelist_parse(buf, trialcs.mems_allowed);
		if (retval < 0)
			goto done;

		if (!nodes_subset(trialcs.mems_allowed,
				node_states[N_HIGH_MEMORY]))
			return -EINVAL;
	}
	oldmem = cs->mems_allowed;
	if (nodes_equal(oldmem, trialcs.mems_allowed)) {
		retval = 0;		/* Too easy - nothing to do */
		goto done;
	}
	retval = validate_change(cs, &trialcs);
	if (retval < 0)
		goto done;

	mutex_lock(&callback_mutex);
	cs->mems_allowed = trialcs.mems_allowed;
	cs->mems_generation = cpuset_mems_generation++;
	mutex_unlock(&callback_mutex);

	retval = update_tasks_nodemask(cs, &oldmem);
done:
	return retval;
}

1072 1073 1074 1075 1076
int current_cpuset_is_being_rebound(void)
{
	return task_cs(current) == cpuset_being_rebound;
}

1077
static int update_relax_domain_level(struct cpuset *cs, s64 val)
1078
{
1079 1080
	if (val < -1 || val >= SD_LV_MAX)
		return -EINVAL;
1081 1082 1083

	if (val != cs->relax_domain_level) {
		cs->relax_domain_level = val;
1084 1085
		if (!cpus_empty(cs->cpus_allowed) && is_sched_load_balance(cs))
			rebuild_sched_domains();
1086 1087 1088 1089 1090
	}

	return 0;
}

L
Linus Torvalds 已提交
1091 1092
/*
 * update_flag - read a 0 or a 1 in a file and update associated flag
1093 1094 1095
 * bit:		the bit to update (see cpuset_flagbits_t)
 * cs:		the cpuset to update
 * turning_on: 	whether the flag is being set or cleared
1096
 *
1097
 * Call with cgroup_mutex held.
L
Linus Torvalds 已提交
1098 1099
 */

1100 1101
static int update_flag(cpuset_flagbits_t bit, struct cpuset *cs,
		       int turning_on)
L
Linus Torvalds 已提交
1102 1103
{
	struct cpuset trialcs;
1104
	int err;
P
Paul Jackson 已提交
1105
	int cpus_nonempty, balance_flag_changed;
L
Linus Torvalds 已提交
1106 1107 1108 1109 1110 1111 1112 1113

	trialcs = *cs;
	if (turning_on)
		set_bit(bit, &trialcs.flags);
	else
		clear_bit(bit, &trialcs.flags);

	err = validate_change(cs, &trialcs);
1114 1115
	if (err < 0)
		return err;
P
Paul Jackson 已提交
1116 1117 1118 1119 1120

	cpus_nonempty = !cpus_empty(trialcs.cpus_allowed);
	balance_flag_changed = (is_sched_load_balance(cs) !=
		 			is_sched_load_balance(&trialcs));

1121
	mutex_lock(&callback_mutex);
1122
	cs->flags = trialcs.flags;
1123
	mutex_unlock(&callback_mutex);
1124

P
Paul Jackson 已提交
1125 1126 1127
	if (cpus_nonempty && balance_flag_changed)
		rebuild_sched_domains();

1128
	return 0;
L
Linus Torvalds 已提交
1129 1130
}

1131
/*
A
Adrian Bunk 已提交
1132
 * Frequency meter - How fast is some event occurring?
1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228
 *
 * These routines manage a digitally filtered, constant time based,
 * event frequency meter.  There are four routines:
 *   fmeter_init() - initialize a frequency meter.
 *   fmeter_markevent() - called each time the event happens.
 *   fmeter_getrate() - returns the recent rate of such events.
 *   fmeter_update() - internal routine used to update fmeter.
 *
 * A common data structure is passed to each of these routines,
 * which is used to keep track of the state required to manage the
 * frequency meter and its digital filter.
 *
 * The filter works on the number of events marked per unit time.
 * The filter is single-pole low-pass recursive (IIR).  The time unit
 * is 1 second.  Arithmetic is done using 32-bit integers scaled to
 * simulate 3 decimal digits of precision (multiplied by 1000).
 *
 * With an FM_COEF of 933, and a time base of 1 second, the filter
 * has a half-life of 10 seconds, meaning that if the events quit
 * happening, then the rate returned from the fmeter_getrate()
 * will be cut in half each 10 seconds, until it converges to zero.
 *
 * It is not worth doing a real infinitely recursive filter.  If more
 * than FM_MAXTICKS ticks have elapsed since the last filter event,
 * just compute FM_MAXTICKS ticks worth, by which point the level
 * will be stable.
 *
 * Limit the count of unprocessed events to FM_MAXCNT, so as to avoid
 * arithmetic overflow in the fmeter_update() routine.
 *
 * Given the simple 32 bit integer arithmetic used, this meter works
 * best for reporting rates between one per millisecond (msec) and
 * one per 32 (approx) seconds.  At constant rates faster than one
 * per msec it maxes out at values just under 1,000,000.  At constant
 * rates between one per msec, and one per second it will stabilize
 * to a value N*1000, where N is the rate of events per second.
 * At constant rates between one per second and one per 32 seconds,
 * it will be choppy, moving up on the seconds that have an event,
 * and then decaying until the next event.  At rates slower than
 * about one in 32 seconds, it decays all the way back to zero between
 * each event.
 */

#define FM_COEF 933		/* coefficient for half-life of 10 secs */
#define FM_MAXTICKS ((time_t)99) /* useless computing more ticks than this */
#define FM_MAXCNT 1000000	/* limit cnt to avoid overflow */
#define FM_SCALE 1000		/* faux fixed point scale */

/* Initialize a frequency meter */
static void fmeter_init(struct fmeter *fmp)
{
	fmp->cnt = 0;
	fmp->val = 0;
	fmp->time = 0;
	spin_lock_init(&fmp->lock);
}

/* Internal meter update - process cnt events and update value */
static void fmeter_update(struct fmeter *fmp)
{
	time_t now = get_seconds();
	time_t ticks = now - fmp->time;

	if (ticks == 0)
		return;

	ticks = min(FM_MAXTICKS, ticks);
	while (ticks-- > 0)
		fmp->val = (FM_COEF * fmp->val) / FM_SCALE;
	fmp->time = now;

	fmp->val += ((FM_SCALE - FM_COEF) * fmp->cnt) / FM_SCALE;
	fmp->cnt = 0;
}

/* Process any previous ticks, then bump cnt by one (times scale). */
static void fmeter_markevent(struct fmeter *fmp)
{
	spin_lock(&fmp->lock);
	fmeter_update(fmp);
	fmp->cnt = min(FM_MAXCNT, fmp->cnt + FM_SCALE);
	spin_unlock(&fmp->lock);
}

/* Process any previous ticks, then return current value. */
static int fmeter_getrate(struct fmeter *fmp)
{
	int val;

	spin_lock(&fmp->lock);
	fmeter_update(fmp);
	val = fmp->val;
	spin_unlock(&fmp->lock);
	return val;
}

1229
/* Called by cgroups to determine if a cpuset is usable; cgroup_mutex held */
1230 1231
static int cpuset_can_attach(struct cgroup_subsys *ss,
			     struct cgroup *cont, struct task_struct *tsk)
L
Linus Torvalds 已提交
1232
{
1233
	struct cpuset *cs = cgroup_cs(cont);
L
Linus Torvalds 已提交
1234 1235 1236

	if (cpus_empty(cs->cpus_allowed) || nodes_empty(cs->mems_allowed))
		return -ENOSPC;
1237 1238 1239 1240 1241 1242 1243 1244 1245
	if (tsk->flags & PF_THREAD_BOUND) {
		cpumask_t mask;

		mutex_lock(&callback_mutex);
		mask = cs->cpus_allowed;
		mutex_unlock(&callback_mutex);
		if (!cpus_equal(tsk->cpus_allowed, mask))
			return -EINVAL;
	}
L
Linus Torvalds 已提交
1246

1247 1248
	return security_task_setscheduler(tsk, 0, NULL);
}
L
Linus Torvalds 已提交
1249

1250 1251 1252 1253 1254 1255 1256 1257 1258
static void cpuset_attach(struct cgroup_subsys *ss,
			  struct cgroup *cont, struct cgroup *oldcont,
			  struct task_struct *tsk)
{
	cpumask_t cpus;
	nodemask_t from, to;
	struct mm_struct *mm;
	struct cpuset *cs = cgroup_cs(cont);
	struct cpuset *oldcs = cgroup_cs(oldcont);
1259
	int err;
1260

1261
	mutex_lock(&callback_mutex);
L
Linus Torvalds 已提交
1262
	guarantee_online_cpus(cs, &cpus);
1263
	err = set_cpus_allowed_ptr(tsk, &cpus);
1264
	mutex_unlock(&callback_mutex);
1265 1266
	if (err)
		return;
L
Linus Torvalds 已提交
1267

1268 1269
	from = oldcs->mems_allowed;
	to = cs->mems_allowed;
1270 1271 1272
	mm = get_task_mm(tsk);
	if (mm) {
		mpol_rebind_mm(mm, &to);
1273
		if (is_memory_migrate(cs))
1274
			cpuset_migrate_mm(mm, &from, &to);
1275 1276 1277
		mmput(mm);
	}

L
Linus Torvalds 已提交
1278 1279 1280 1281 1282
}

/* The various types of files and directories in a cpuset file system */

typedef enum {
1283
	FILE_MEMORY_MIGRATE,
L
Linus Torvalds 已提交
1284 1285 1286 1287
	FILE_CPULIST,
	FILE_MEMLIST,
	FILE_CPU_EXCLUSIVE,
	FILE_MEM_EXCLUSIVE,
1288
	FILE_MEM_HARDWALL,
P
Paul Jackson 已提交
1289
	FILE_SCHED_LOAD_BALANCE,
1290
	FILE_SCHED_RELAX_DOMAIN_LEVEL,
1291 1292
	FILE_MEMORY_PRESSURE_ENABLED,
	FILE_MEMORY_PRESSURE,
1293 1294
	FILE_SPREAD_PAGE,
	FILE_SPREAD_SLAB,
L
Linus Torvalds 已提交
1295 1296
} cpuset_filetype_t;

1297 1298 1299 1300 1301 1302
static int cpuset_write_u64(struct cgroup *cgrp, struct cftype *cft, u64 val)
{
	int retval = 0;
	struct cpuset *cs = cgroup_cs(cgrp);
	cpuset_filetype_t type = cft->private;

1303
	if (!cgroup_lock_live_group(cgrp))
1304 1305 1306
		return -ENODEV;

	switch (type) {
L
Linus Torvalds 已提交
1307
	case FILE_CPU_EXCLUSIVE:
1308
		retval = update_flag(CS_CPU_EXCLUSIVE, cs, val);
L
Linus Torvalds 已提交
1309 1310
		break;
	case FILE_MEM_EXCLUSIVE:
1311
		retval = update_flag(CS_MEM_EXCLUSIVE, cs, val);
L
Linus Torvalds 已提交
1312
		break;
1313 1314 1315
	case FILE_MEM_HARDWALL:
		retval = update_flag(CS_MEM_HARDWALL, cs, val);
		break;
P
Paul Jackson 已提交
1316
	case FILE_SCHED_LOAD_BALANCE:
1317
		retval = update_flag(CS_SCHED_LOAD_BALANCE, cs, val);
1318
		break;
1319
	case FILE_MEMORY_MIGRATE:
1320
		retval = update_flag(CS_MEMORY_MIGRATE, cs, val);
1321
		break;
1322
	case FILE_MEMORY_PRESSURE_ENABLED:
1323
		cpuset_memory_pressure_enabled = !!val;
1324 1325 1326 1327
		break;
	case FILE_MEMORY_PRESSURE:
		retval = -EACCES;
		break;
1328
	case FILE_SPREAD_PAGE:
1329
		retval = update_flag(CS_SPREAD_PAGE, cs, val);
1330
		cs->mems_generation = cpuset_mems_generation++;
1331 1332
		break;
	case FILE_SPREAD_SLAB:
1333
		retval = update_flag(CS_SPREAD_SLAB, cs, val);
1334
		cs->mems_generation = cpuset_mems_generation++;
1335
		break;
L
Linus Torvalds 已提交
1336 1337
	default:
		retval = -EINVAL;
1338
		break;
L
Linus Torvalds 已提交
1339
	}
1340
	cgroup_unlock();
L
Linus Torvalds 已提交
1341 1342 1343
	return retval;
}

1344 1345 1346 1347 1348 1349
static int cpuset_write_s64(struct cgroup *cgrp, struct cftype *cft, s64 val)
{
	int retval = 0;
	struct cpuset *cs = cgroup_cs(cgrp);
	cpuset_filetype_t type = cft->private;

1350
	if (!cgroup_lock_live_group(cgrp))
1351
		return -ENODEV;
1352

1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364
	switch (type) {
	case FILE_SCHED_RELAX_DOMAIN_LEVEL:
		retval = update_relax_domain_level(cs, val);
		break;
	default:
		retval = -EINVAL;
		break;
	}
	cgroup_unlock();
	return retval;
}

1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390
/*
 * Common handling for a write to a "cpus" or "mems" file.
 */
static int cpuset_write_resmask(struct cgroup *cgrp, struct cftype *cft,
				const char *buf)
{
	int retval = 0;

	if (!cgroup_lock_live_group(cgrp))
		return -ENODEV;

	switch (cft->private) {
	case FILE_CPULIST:
		retval = update_cpumask(cgroup_cs(cgrp), buf);
		break;
	case FILE_MEMLIST:
		retval = update_nodemask(cgroup_cs(cgrp), buf);
		break;
	default:
		retval = -EINVAL;
		break;
	}
	cgroup_unlock();
	return retval;
}

L
Linus Torvalds 已提交
1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406
/*
 * These ascii lists should be read in a single call, by using a user
 * buffer large enough to hold the entire map.  If read in smaller
 * chunks, there is no guarantee of atomicity.  Since the display format
 * used, list of ranges of sequential numbers, is variable length,
 * and since these maps can change value dynamically, one could read
 * gibberish by doing partial reads while a list was changing.
 * A single large read to a buffer that crosses a page boundary is
 * ok, because the result being copied to user land is not recomputed
 * across a page fault.
 */

static int cpuset_sprintf_cpulist(char *page, struct cpuset *cs)
{
	cpumask_t mask;

1407
	mutex_lock(&callback_mutex);
L
Linus Torvalds 已提交
1408
	mask = cs->cpus_allowed;
1409
	mutex_unlock(&callback_mutex);
L
Linus Torvalds 已提交
1410 1411 1412 1413 1414 1415 1416 1417

	return cpulist_scnprintf(page, PAGE_SIZE, mask);
}

static int cpuset_sprintf_memlist(char *page, struct cpuset *cs)
{
	nodemask_t mask;

1418
	mutex_lock(&callback_mutex);
L
Linus Torvalds 已提交
1419
	mask = cs->mems_allowed;
1420
	mutex_unlock(&callback_mutex);
L
Linus Torvalds 已提交
1421 1422 1423 1424

	return nodelist_scnprintf(page, PAGE_SIZE, mask);
}

1425 1426 1427 1428 1429
static ssize_t cpuset_common_file_read(struct cgroup *cont,
				       struct cftype *cft,
				       struct file *file,
				       char __user *buf,
				       size_t nbytes, loff_t *ppos)
L
Linus Torvalds 已提交
1430
{
1431
	struct cpuset *cs = cgroup_cs(cont);
L
Linus Torvalds 已提交
1432 1433 1434 1435 1436
	cpuset_filetype_t type = cft->private;
	char *page;
	ssize_t retval = 0;
	char *s;

1437
	if (!(page = (char *)__get_free_page(GFP_TEMPORARY)))
L
Linus Torvalds 已提交
1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454
		return -ENOMEM;

	s = page;

	switch (type) {
	case FILE_CPULIST:
		s += cpuset_sprintf_cpulist(s, cs);
		break;
	case FILE_MEMLIST:
		s += cpuset_sprintf_memlist(s, cs);
		break;
	default:
		retval = -EINVAL;
		goto out;
	}
	*s++ = '\n';

A
Al Viro 已提交
1455
	retval = simple_read_from_buffer(buf, nbytes, ppos, page, s - page);
L
Linus Torvalds 已提交
1456 1457 1458 1459 1460
out:
	free_page((unsigned long)page);
	return retval;
}

1461 1462 1463 1464 1465 1466 1467 1468 1469
static u64 cpuset_read_u64(struct cgroup *cont, struct cftype *cft)
{
	struct cpuset *cs = cgroup_cs(cont);
	cpuset_filetype_t type = cft->private;
	switch (type) {
	case FILE_CPU_EXCLUSIVE:
		return is_cpu_exclusive(cs);
	case FILE_MEM_EXCLUSIVE:
		return is_mem_exclusive(cs);
1470 1471
	case FILE_MEM_HARDWALL:
		return is_mem_hardwall(cs);
1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487
	case FILE_SCHED_LOAD_BALANCE:
		return is_sched_load_balance(cs);
	case FILE_MEMORY_MIGRATE:
		return is_memory_migrate(cs);
	case FILE_MEMORY_PRESSURE_ENABLED:
		return cpuset_memory_pressure_enabled;
	case FILE_MEMORY_PRESSURE:
		return fmeter_getrate(&cs->fmeter);
	case FILE_SPREAD_PAGE:
		return is_spread_page(cs);
	case FILE_SPREAD_SLAB:
		return is_spread_slab(cs);
	default:
		BUG();
	}
}
L
Linus Torvalds 已提交
1488

1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500
static s64 cpuset_read_s64(struct cgroup *cont, struct cftype *cft)
{
	struct cpuset *cs = cgroup_cs(cont);
	cpuset_filetype_t type = cft->private;
	switch (type) {
	case FILE_SCHED_RELAX_DOMAIN_LEVEL:
		return cs->relax_domain_level;
	default:
		BUG();
	}
}

L
Linus Torvalds 已提交
1501 1502 1503 1504 1505

/*
 * for the common functions, 'private' gives the type of file
 */

1506 1507 1508 1509
static struct cftype files[] = {
	{
		.name = "cpus",
		.read = cpuset_common_file_read,
1510 1511
		.write_string = cpuset_write_resmask,
		.max_write_len = (100U + 6 * NR_CPUS),
1512 1513 1514 1515 1516 1517
		.private = FILE_CPULIST,
	},

	{
		.name = "mems",
		.read = cpuset_common_file_read,
1518 1519
		.write_string = cpuset_write_resmask,
		.max_write_len = (100U + 6 * MAX_NUMNODES),
1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536
		.private = FILE_MEMLIST,
	},

	{
		.name = "cpu_exclusive",
		.read_u64 = cpuset_read_u64,
		.write_u64 = cpuset_write_u64,
		.private = FILE_CPU_EXCLUSIVE,
	},

	{
		.name = "mem_exclusive",
		.read_u64 = cpuset_read_u64,
		.write_u64 = cpuset_write_u64,
		.private = FILE_MEM_EXCLUSIVE,
	},

1537 1538 1539 1540 1541 1542 1543
	{
		.name = "mem_hardwall",
		.read_u64 = cpuset_read_u64,
		.write_u64 = cpuset_write_u64,
		.private = FILE_MEM_HARDWALL,
	},

1544 1545 1546 1547 1548 1549 1550 1551 1552
	{
		.name = "sched_load_balance",
		.read_u64 = cpuset_read_u64,
		.write_u64 = cpuset_write_u64,
		.private = FILE_SCHED_LOAD_BALANCE,
	},

	{
		.name = "sched_relax_domain_level",
1553 1554
		.read_s64 = cpuset_read_s64,
		.write_s64 = cpuset_write_s64,
1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584
		.private = FILE_SCHED_RELAX_DOMAIN_LEVEL,
	},

	{
		.name = "memory_migrate",
		.read_u64 = cpuset_read_u64,
		.write_u64 = cpuset_write_u64,
		.private = FILE_MEMORY_MIGRATE,
	},

	{
		.name = "memory_pressure",
		.read_u64 = cpuset_read_u64,
		.write_u64 = cpuset_write_u64,
		.private = FILE_MEMORY_PRESSURE,
	},

	{
		.name = "memory_spread_page",
		.read_u64 = cpuset_read_u64,
		.write_u64 = cpuset_write_u64,
		.private = FILE_SPREAD_PAGE,
	},

	{
		.name = "memory_spread_slab",
		.read_u64 = cpuset_read_u64,
		.write_u64 = cpuset_write_u64,
		.private = FILE_SPREAD_SLAB,
	},
1585 1586
};

1587 1588
static struct cftype cft_memory_pressure_enabled = {
	.name = "memory_pressure_enabled",
1589 1590
	.read_u64 = cpuset_read_u64,
	.write_u64 = cpuset_write_u64,
1591 1592 1593
	.private = FILE_MEMORY_PRESSURE_ENABLED,
};

1594
static int cpuset_populate(struct cgroup_subsys *ss, struct cgroup *cont)
L
Linus Torvalds 已提交
1595 1596 1597
{
	int err;

1598 1599
	err = cgroup_add_files(cont, ss, files, ARRAY_SIZE(files));
	if (err)
L
Linus Torvalds 已提交
1600
		return err;
1601
	/* memory_pressure_enabled is in root cpuset only */
1602
	if (!cont->parent)
1603
		err = cgroup_add_file(cont, ss,
1604 1605
				      &cft_memory_pressure_enabled);
	return err;
L
Linus Torvalds 已提交
1606 1607
}

1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621
/*
 * post_clone() is called at the end of cgroup_clone().
 * 'cgroup' was just created automatically as a result of
 * a cgroup_clone(), and the current task is about to
 * be moved into 'cgroup'.
 *
 * Currently we refuse to set up the cgroup - thereby
 * refusing the task to be entered, and as a result refusing
 * the sys_unshare() or clone() which initiated it - if any
 * sibling cpusets have exclusive cpus or mem.
 *
 * If this becomes a problem for some users who wish to
 * allow that scenario, then cpuset_post_clone() could be
 * changed to grant parent->cpus_allowed-sibling_cpus_exclusive
1622 1623
 * (and likewise for mems) to the new cgroup. Called with cgroup_mutex
 * held.
1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644
 */
static void cpuset_post_clone(struct cgroup_subsys *ss,
			      struct cgroup *cgroup)
{
	struct cgroup *parent, *child;
	struct cpuset *cs, *parent_cs;

	parent = cgroup->parent;
	list_for_each_entry(child, &parent->children, sibling) {
		cs = cgroup_cs(child);
		if (is_mem_exclusive(cs) || is_cpu_exclusive(cs))
			return;
	}
	cs = cgroup_cs(cgroup);
	parent_cs = cgroup_cs(parent);

	cs->mems_allowed = parent_cs->mems_allowed;
	cs->cpus_allowed = parent_cs->cpus_allowed;
	return;
}

L
Linus Torvalds 已提交
1645 1646
/*
 *	cpuset_create - create a cpuset
1647 1648
 *	ss:	cpuset cgroup subsystem
 *	cont:	control group that the new cpuset will be part of
L
Linus Torvalds 已提交
1649 1650
 */

1651 1652 1653
static struct cgroup_subsys_state *cpuset_create(
	struct cgroup_subsys *ss,
	struct cgroup *cont)
L
Linus Torvalds 已提交
1654 1655
{
	struct cpuset *cs;
1656
	struct cpuset *parent;
L
Linus Torvalds 已提交
1657

1658 1659 1660 1661 1662 1663
	if (!cont->parent) {
		/* This is early initialization for the top cgroup */
		top_cpuset.mems_generation = cpuset_mems_generation++;
		return &top_cpuset.css;
	}
	parent = cgroup_cs(cont->parent);
L
Linus Torvalds 已提交
1664 1665
	cs = kmalloc(sizeof(*cs), GFP_KERNEL);
	if (!cs)
1666
		return ERR_PTR(-ENOMEM);
L
Linus Torvalds 已提交
1667

1668
	cpuset_update_task_memory_state();
L
Linus Torvalds 已提交
1669
	cs->flags = 0;
1670 1671 1672 1673
	if (is_spread_page(parent))
		set_bit(CS_SPREAD_PAGE, &cs->flags);
	if (is_spread_slab(parent))
		set_bit(CS_SPREAD_SLAB, &cs->flags);
P
Paul Jackson 已提交
1674
	set_bit(CS_SCHED_LOAD_BALANCE, &cs->flags);
1675 1676
	cpus_clear(cs->cpus_allowed);
	nodes_clear(cs->mems_allowed);
1677
	cs->mems_generation = cpuset_mems_generation++;
1678
	fmeter_init(&cs->fmeter);
1679
	cs->relax_domain_level = -1;
L
Linus Torvalds 已提交
1680 1681

	cs->parent = parent;
1682
	number_of_cpusets++;
1683
	return &cs->css ;
L
Linus Torvalds 已提交
1684 1685
}

P
Paul Jackson 已提交
1686 1687 1688 1689 1690
/*
 * Locking note on the strange update_flag() call below:
 *
 * If the cpuset being removed has its flag 'sched_load_balance'
 * enabled, then simulate turning sched_load_balance off, which
1691
 * will call rebuild_sched_domains().  The get_online_cpus()
P
Paul Jackson 已提交
1692 1693
 * call in rebuild_sched_domains() must not be made while holding
 * callback_mutex.  Elsewhere the kernel nests callback_mutex inside
1694
 * get_online_cpus() calls.  So the reverse nesting would risk an
P
Paul Jackson 已提交
1695 1696 1697
 * ABBA deadlock.
 */

1698
static void cpuset_destroy(struct cgroup_subsys *ss, struct cgroup *cont)
L
Linus Torvalds 已提交
1699
{
1700
	struct cpuset *cs = cgroup_cs(cont);
L
Linus Torvalds 已提交
1701

1702
	cpuset_update_task_memory_state();
P
Paul Jackson 已提交
1703 1704

	if (is_sched_load_balance(cs))
1705
		update_flag(CS_SCHED_LOAD_BALANCE, cs, 0);
P
Paul Jackson 已提交
1706

1707
	number_of_cpusets--;
1708
	kfree(cs);
L
Linus Torvalds 已提交
1709 1710
}

1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722
struct cgroup_subsys cpuset_subsys = {
	.name = "cpuset",
	.create = cpuset_create,
	.destroy  = cpuset_destroy,
	.can_attach = cpuset_can_attach,
	.attach = cpuset_attach,
	.populate = cpuset_populate,
	.post_clone = cpuset_post_clone,
	.subsys_id = cpuset_subsys_id,
	.early_init = 1,
};

1723 1724 1725 1726 1727 1728 1729 1730
/*
 * cpuset_init_early - just enough so that the calls to
 * cpuset_update_task_memory_state() in early init code
 * are harmless.
 */

int __init cpuset_init_early(void)
{
1731
	top_cpuset.mems_generation = cpuset_mems_generation++;
1732 1733 1734
	return 0;
}

1735

L
Linus Torvalds 已提交
1736 1737 1738 1739 1740 1741 1742 1743
/**
 * cpuset_init - initialize cpusets at system boot
 *
 * Description: Initialize top_cpuset and the cpuset internal file system,
 **/

int __init cpuset_init(void)
{
1744
	int err = 0;
L
Linus Torvalds 已提交
1745

1746 1747
	cpus_setall(top_cpuset.cpus_allowed);
	nodes_setall(top_cpuset.mems_allowed);
L
Linus Torvalds 已提交
1748

1749
	fmeter_init(&top_cpuset.fmeter);
1750
	top_cpuset.mems_generation = cpuset_mems_generation++;
P
Paul Jackson 已提交
1751
	set_bit(CS_SCHED_LOAD_BALANCE, &top_cpuset.flags);
1752
	top_cpuset.relax_domain_level = -1;
L
Linus Torvalds 已提交
1753 1754 1755

	err = register_filesystem(&cpuset_fs_type);
	if (err < 0)
1756 1757
		return err;

1758
	number_of_cpusets = 1;
1759
	return 0;
L
Linus Torvalds 已提交
1760 1761
}

1762 1763 1764 1765 1766 1767 1768 1769
/**
 * cpuset_do_move_task - move a given task to another cpuset
 * @tsk: pointer to task_struct the task to move
 * @scan: struct cgroup_scanner contained in its struct cpuset_hotplug_scanner
 *
 * Called by cgroup_scan_tasks() for each task in a cgroup.
 * Return nonzero to stop the walk through the tasks.
 */
1770 1771
static void cpuset_do_move_task(struct task_struct *tsk,
				struct cgroup_scanner *scan)
1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783
{
	struct cpuset_hotplug_scanner *chsp;

	chsp = container_of(scan, struct cpuset_hotplug_scanner, scan);
	cgroup_attach_task(chsp->to, tsk);
}

/**
 * move_member_tasks_to_cpuset - move tasks from one cpuset to another
 * @from: cpuset in which the tasks currently reside
 * @to: cpuset to which the tasks will be moved
 *
1784 1785
 * Called with cgroup_mutex held
 * callback_mutex must not be held, as cpuset_attach() will take it.
1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804
 *
 * The cgroup_scan_tasks() function will scan all the tasks in a cgroup,
 * calling callback functions for each.
 */
static void move_member_tasks_to_cpuset(struct cpuset *from, struct cpuset *to)
{
	struct cpuset_hotplug_scanner scan;

	scan.scan.cg = from->css.cgroup;
	scan.scan.test_task = NULL; /* select all tasks in cgroup */
	scan.scan.process_task = cpuset_do_move_task;
	scan.scan.heap = NULL;
	scan.to = to->css.cgroup;

	if (cgroup_scan_tasks((struct cgroup_scanner *)&scan))
		printk(KERN_ERR "move_member_tasks_to_cpuset: "
				"cgroup_scan_tasks failed\n");
}

1805 1806 1807 1808
/*
 * If common_cpu_mem_hotplug_unplug(), below, unplugs any CPUs
 * or memory nodes, we need to walk over the cpuset hierarchy,
 * removing that CPU or node from all cpusets.  If this removes the
1809 1810
 * last CPU or node from a cpuset, then move the tasks in the empty
 * cpuset to its next-highest non-empty parent.
1811
 *
1812 1813
 * Called with cgroup_mutex held
 * callback_mutex must not be held, as cpuset_attach() will take it.
1814
 */
1815 1816 1817 1818
static void remove_tasks_in_empty_cpuset(struct cpuset *cs)
{
	struct cpuset *parent;

1819 1820 1821 1822 1823
	/*
	 * The cgroup's css_sets list is in use if there are tasks
	 * in the cpuset; the list is empty if there are none;
	 * the cs->css.refcnt seems always 0.
	 */
1824 1825
	if (list_empty(&cs->css.cgroup->css_sets))
		return;
1826

1827 1828 1829 1830 1831
	/*
	 * Find its next-highest non-empty parent, (top cpuset
	 * has online cpus, so can't be empty).
	 */
	parent = cs->parent;
1832 1833
	while (cpus_empty(parent->cpus_allowed) ||
			nodes_empty(parent->mems_allowed))
1834 1835 1836 1837 1838 1839 1840 1841 1842
		parent = parent->parent;

	move_member_tasks_to_cpuset(cs, parent);
}

/*
 * Walk the specified cpuset subtree and look for empty cpusets.
 * The tasks of such cpuset must be moved to a parent cpuset.
 *
1843
 * Called with cgroup_mutex held.  We take callback_mutex to modify
1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854
 * cpus_allowed and mems_allowed.
 *
 * This walk processes the tree from top to bottom, completing one layer
 * before dropping down to the next.  It always processes a node before
 * any of its children.
 *
 * For now, since we lack memory hot unplug, we'll never see a cpuset
 * that has tasks along with an empty 'mems'.  But if we did see such
 * a cpuset, we'd handle it just like we do if its 'cpus' was empty.
 */
static void scan_for_empty_cpusets(const struct cpuset *root)
1855
{
1856 1857 1858
	struct cpuset *cp;	/* scans cpusets being updated */
	struct cpuset *child;	/* scans child cpusets of cp */
	struct list_head queue;
1859
	struct cgroup *cont;
1860
	nodemask_t oldmems;
1861

1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873
	INIT_LIST_HEAD(&queue);

	list_add_tail((struct list_head *)&root->stack_list, &queue);

	while (!list_empty(&queue)) {
		cp = container_of(queue.next, struct cpuset, stack_list);
		list_del(queue.next);
		list_for_each_entry(cont, &cp->css.cgroup->children, sibling) {
			child = cgroup_cs(cont);
			list_add_tail(&child->stack_list, &queue);
		}
		cont = cp->css.cgroup;
1874 1875 1876 1877 1878 1879

		/* Continue past cpusets with all cpus, mems online */
		if (cpus_subset(cp->cpus_allowed, cpu_online_map) &&
		    nodes_subset(cp->mems_allowed, node_states[N_HIGH_MEMORY]))
			continue;

1880 1881
		oldmems = cp->mems_allowed;

1882
		/* Remove offline cpus and mems from this cpuset. */
1883
		mutex_lock(&callback_mutex);
1884 1885 1886
		cpus_and(cp->cpus_allowed, cp->cpus_allowed, cpu_online_map);
		nodes_and(cp->mems_allowed, cp->mems_allowed,
						node_states[N_HIGH_MEMORY]);
1887 1888 1889
		mutex_unlock(&callback_mutex);

		/* Move tasks from the empty cpuset to a parent */
1890
		if (cpus_empty(cp->cpus_allowed) ||
1891
		     nodes_empty(cp->mems_allowed))
1892
			remove_tasks_in_empty_cpuset(cp);
1893 1894 1895 1896
		else {
			update_tasks_cpumask(cp);
			update_tasks_nodemask(cp, &oldmems);
		}
1897 1898 1899 1900 1901
	}
}

/*
 * The cpus_allowed and mems_allowed nodemasks in the top_cpuset track
1902
 * cpu_online_map and node_states[N_HIGH_MEMORY].  Force the top cpuset to
1903
 * track what's online after any CPU or memory node hotplug or unplug event.
1904 1905 1906 1907 1908 1909 1910
 *
 * Since there are two callers of this routine, one for CPU hotplug
 * events and one for memory node hotplug events, we could have coded
 * two separate routines here.  We code it as a single common routine
 * in order to minimize text size.
 */

1911
static void common_cpu_mem_hotplug_unplug(int rebuild_sd)
1912
{
1913
	cgroup_lock();
1914 1915

	top_cpuset.cpus_allowed = cpu_online_map;
1916
	top_cpuset.mems_allowed = node_states[N_HIGH_MEMORY];
1917
	scan_for_empty_cpusets(&top_cpuset);
1918

1919 1920 1921 1922
	/*
	 * Scheduler destroys domains on hotplug events.
	 * Rebuild them based on the current settings.
	 */
1923 1924
	if (rebuild_sd)
		rebuild_sched_domains();
1925

1926
	cgroup_unlock();
1927 1928
}

1929 1930 1931 1932 1933 1934
/*
 * The top_cpuset tracks what CPUs and Memory Nodes are online,
 * period.  This is necessary in order to make cpusets transparent
 * (of no affect) on systems that are actively using CPU hotplug
 * but making no active use of cpusets.
 *
1935 1936
 * This routine ensures that top_cpuset.cpus_allowed tracks
 * cpu_online_map on each CPU hotplug (cpuhp) event.
1937 1938
 */

P
Paul Jackson 已提交
1939 1940
static int cpuset_handle_cpuhp(struct notifier_block *unused_nb,
				unsigned long phase, void *unused_cpu)
1941
{
1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953
	switch (phase) {
	case CPU_UP_CANCELED:
	case CPU_UP_CANCELED_FROZEN:
	case CPU_DOWN_FAILED:
	case CPU_DOWN_FAILED_FROZEN:
	case CPU_ONLINE:
	case CPU_ONLINE_FROZEN:
	case CPU_DEAD:
	case CPU_DEAD_FROZEN:
		common_cpu_mem_hotplug_unplug(1);
		break;
	default:
1954
		return NOTIFY_DONE;
1955
	}
1956

1957
	return NOTIFY_OK;
1958 1959
}

1960
#ifdef CONFIG_MEMORY_HOTPLUG
1961
/*
1962 1963 1964
 * Keep top_cpuset.mems_allowed tracking node_states[N_HIGH_MEMORY].
 * Call this routine anytime after you change
 * node_states[N_HIGH_MEMORY].
1965 1966 1967
 * See also the previous routine cpuset_handle_cpuhp().
 */

A
Al Viro 已提交
1968
void cpuset_track_online_nodes(void)
1969
{
1970
	common_cpu_mem_hotplug_unplug(0);
1971 1972 1973
}
#endif

L
Linus Torvalds 已提交
1974 1975 1976 1977 1978 1979 1980 1981 1982
/**
 * cpuset_init_smp - initialize cpus_allowed
 *
 * Description: Finish top cpuset after cpu, node maps are initialized
 **/

void __init cpuset_init_smp(void)
{
	top_cpuset.cpus_allowed = cpu_online_map;
1983
	top_cpuset.mems_allowed = node_states[N_HIGH_MEMORY];
1984 1985

	hotcpu_notifier(cpuset_handle_cpuhp, 0);
L
Linus Torvalds 已提交
1986 1987 1988 1989 1990
}

/**
 * cpuset_cpus_allowed - return cpus_allowed mask from a tasks cpuset.
 * @tsk: pointer to task_struct from which to obtain cpuset->cpus_allowed.
1991
 * @pmask: pointer to cpumask_t variable to receive cpus_allowed set.
L
Linus Torvalds 已提交
1992 1993 1994 1995 1996 1997 1998
 *
 * Description: Returns the cpumask_t cpus_allowed of the cpuset
 * attached to the specified @tsk.  Guaranteed to return some non-empty
 * subset of cpu_online_map, even if this means going outside the
 * tasks cpuset.
 **/

1999
void cpuset_cpus_allowed(struct task_struct *tsk, cpumask_t *pmask)
L
Linus Torvalds 已提交
2000
{
2001
	mutex_lock(&callback_mutex);
2002
	cpuset_cpus_allowed_locked(tsk, pmask);
2003 2004 2005 2006 2007
	mutex_unlock(&callback_mutex);
}

/**
 * cpuset_cpus_allowed_locked - return cpus_allowed mask from a tasks cpuset.
2008
 * Must be called with callback_mutex held.
2009
 **/
2010
void cpuset_cpus_allowed_locked(struct task_struct *tsk, cpumask_t *pmask)
2011
{
2012
	task_lock(tsk);
2013
	guarantee_online_cpus(task_cs(tsk), pmask);
2014
	task_unlock(tsk);
L
Linus Torvalds 已提交
2015 2016 2017 2018
}

void cpuset_init_current_mems_allowed(void)
{
2019
	nodes_setall(current->mems_allowed);
L
Linus Torvalds 已提交
2020 2021
}

2022 2023 2024 2025 2026 2027
/**
 * cpuset_mems_allowed - return mems_allowed mask from a tasks cpuset.
 * @tsk: pointer to task_struct from which to obtain cpuset->mems_allowed.
 *
 * Description: Returns the nodemask_t mems_allowed of the cpuset
 * attached to the specified @tsk.  Guaranteed to return some non-empty
2028
 * subset of node_states[N_HIGH_MEMORY], even if this means going outside the
2029 2030 2031 2032 2033 2034 2035
 * tasks cpuset.
 **/

nodemask_t cpuset_mems_allowed(struct task_struct *tsk)
{
	nodemask_t mask;

2036
	mutex_lock(&callback_mutex);
2037
	task_lock(tsk);
2038
	guarantee_online_mems(task_cs(tsk), &mask);
2039
	task_unlock(tsk);
2040
	mutex_unlock(&callback_mutex);
2041 2042 2043 2044

	return mask;
}

2045
/**
2046 2047
 * cpuset_nodemask_valid_mems_allowed - check nodemask vs. curremt mems_allowed
 * @nodemask: the nodemask to be checked
2048
 *
2049
 * Are any of the nodes in the nodemask allowed in current->mems_allowed?
L
Linus Torvalds 已提交
2050
 */
2051
int cpuset_nodemask_valid_mems_allowed(nodemask_t *nodemask)
L
Linus Torvalds 已提交
2052
{
2053
	return nodes_intersects(*nodemask, current->mems_allowed);
L
Linus Torvalds 已提交
2054 2055
}

2056
/*
2057 2058 2059 2060
 * nearest_hardwall_ancestor() - Returns the nearest mem_exclusive or
 * mem_hardwall ancestor to the specified cpuset.  Call holding
 * callback_mutex.  If no ancestor is mem_exclusive or mem_hardwall
 * (an unusual configuration), then returns the root cpuset.
2061
 */
2062
static const struct cpuset *nearest_hardwall_ancestor(const struct cpuset *cs)
2063
{
2064
	while (!(is_mem_exclusive(cs) || is_mem_hardwall(cs)) && cs->parent)
2065 2066 2067 2068
		cs = cs->parent;
	return cs;
}

2069
/**
2070
 * cpuset_zone_allowed_softwall - Can we allocate on zone z's memory node?
2071
 * @z: is this zone on an allowed node?
2072
 * @gfp_mask: memory allocation flags
2073
 *
2074 2075
 * If we're in interrupt, yes, we can always allocate.  If
 * __GFP_THISNODE is set, yes, we can always allocate.  If zone
2076 2077
 * z's node is in our tasks mems_allowed, yes.  If it's not a
 * __GFP_HARDWALL request and this zone's nodes is in the nearest
2078
 * hardwalled cpuset ancestor to this tasks cpuset, yes.
2079 2080
 * If the task has been OOM killed and has access to memory reserves
 * as specified by the TIF_MEMDIE flag, yes.
2081 2082
 * Otherwise, no.
 *
2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096
 * If __GFP_HARDWALL is set, cpuset_zone_allowed_softwall()
 * reduces to cpuset_zone_allowed_hardwall().  Otherwise,
 * cpuset_zone_allowed_softwall() might sleep, and might allow a zone
 * from an enclosing cpuset.
 *
 * cpuset_zone_allowed_hardwall() only handles the simpler case of
 * hardwall cpusets, and never sleeps.
 *
 * The __GFP_THISNODE placement logic is really handled elsewhere,
 * by forcibly using a zonelist starting at a specified node, and by
 * (in get_page_from_freelist()) refusing to consider the zones for
 * any node on the zonelist except the first.  By the time any such
 * calls get to this routine, we should just shut up and say 'yes'.
 *
2097
 * GFP_USER allocations are marked with the __GFP_HARDWALL bit,
2098 2099
 * and do not allow allocations outside the current tasks cpuset
 * unless the task has been OOM killed as is marked TIF_MEMDIE.
2100
 * GFP_KERNEL allocations are not so marked, so can escape to the
2101
 * nearest enclosing hardwalled ancestor cpuset.
2102
 *
2103 2104 2105 2106 2107 2108 2109
 * Scanning up parent cpusets requires callback_mutex.  The
 * __alloc_pages() routine only calls here with __GFP_HARDWALL bit
 * _not_ set if it's a GFP_KERNEL allocation, and all nodes in the
 * current tasks mems_allowed came up empty on the first pass over
 * the zonelist.  So only GFP_KERNEL allocations, if all nodes in the
 * cpuset are short of memory, might require taking the callback_mutex
 * mutex.
2110
 *
2111
 * The first call here from mm/page_alloc:get_page_from_freelist()
2112 2113 2114
 * has __GFP_HARDWALL set in gfp_mask, enforcing hardwall cpusets,
 * so no allocation on a node outside the cpuset is allowed (unless
 * in interrupt, of course).
2115 2116 2117 2118 2119 2120
 *
 * The second pass through get_page_from_freelist() doesn't even call
 * here for GFP_ATOMIC calls.  For those calls, the __alloc_pages()
 * variable 'wait' is not set, and the bit ALLOC_CPUSET is not set
 * in alloc_flags.  That logic and the checks below have the combined
 * affect that:
2121 2122
 *	in_interrupt - any node ok (current task context irrelevant)
 *	GFP_ATOMIC   - any node ok
2123
 *	TIF_MEMDIE   - any node ok
2124
 *	GFP_KERNEL   - any node in enclosing hardwalled cpuset ok
2125
 *	GFP_USER     - only nodes in current tasks mems allowed ok.
2126 2127
 *
 * Rule:
2128
 *    Don't call cpuset_zone_allowed_softwall if you can't sleep, unless you
2129 2130
 *    pass in the __GFP_HARDWALL flag set in gfp_flag, which disables
 *    the code that might scan up ancestor cpusets and sleep.
2131
 */
2132

2133
int __cpuset_zone_allowed_softwall(struct zone *z, gfp_t gfp_mask)
L
Linus Torvalds 已提交
2134
{
2135 2136
	int node;			/* node that zone z is on */
	const struct cpuset *cs;	/* current cpuset ancestors */
2137
	int allowed;			/* is allocation in zone z allowed? */
2138

2139
	if (in_interrupt() || (gfp_mask & __GFP_THISNODE))
2140
		return 1;
2141
	node = zone_to_nid(z);
2142
	might_sleep_if(!(gfp_mask & __GFP_HARDWALL));
2143 2144
	if (node_isset(node, current->mems_allowed))
		return 1;
2145 2146 2147 2148 2149 2150
	/*
	 * Allow tasks that have access to memory reserves because they have
	 * been OOM killed to get memory anywhere.
	 */
	if (unlikely(test_thread_flag(TIF_MEMDIE)))
		return 1;
2151 2152 2153
	if (gfp_mask & __GFP_HARDWALL)	/* If hardwall request, stop here */
		return 0;

2154 2155 2156
	if (current->flags & PF_EXITING) /* Let dying task have memory */
		return 1;

2157
	/* Not hardwall and node outside mems_allowed: scan up cpusets */
2158
	mutex_lock(&callback_mutex);
2159 2160

	task_lock(current);
2161
	cs = nearest_hardwall_ancestor(task_cs(current));
2162 2163
	task_unlock(current);

2164
	allowed = node_isset(node, cs->mems_allowed);
2165
	mutex_unlock(&callback_mutex);
2166
	return allowed;
L
Linus Torvalds 已提交
2167 2168
}

2169 2170 2171 2172 2173 2174 2175
/*
 * cpuset_zone_allowed_hardwall - Can we allocate on zone z's memory node?
 * @z: is this zone on an allowed node?
 * @gfp_mask: memory allocation flags
 *
 * If we're in interrupt, yes, we can always allocate.
 * If __GFP_THISNODE is set, yes, we can always allocate.  If zone
2176 2177 2178
 * z's node is in our tasks mems_allowed, yes.   If the task has been
 * OOM killed and has access to memory reserves as specified by the
 * TIF_MEMDIE flag, yes.  Otherwise, no.
2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201
 *
 * The __GFP_THISNODE placement logic is really handled elsewhere,
 * by forcibly using a zonelist starting at a specified node, and by
 * (in get_page_from_freelist()) refusing to consider the zones for
 * any node on the zonelist except the first.  By the time any such
 * calls get to this routine, we should just shut up and say 'yes'.
 *
 * Unlike the cpuset_zone_allowed_softwall() variant, above,
 * this variant requires that the zone be in the current tasks
 * mems_allowed or that we're in interrupt.  It does not scan up the
 * cpuset hierarchy for the nearest enclosing mem_exclusive cpuset.
 * It never sleeps.
 */

int __cpuset_zone_allowed_hardwall(struct zone *z, gfp_t gfp_mask)
{
	int node;			/* node that zone z is on */

	if (in_interrupt() || (gfp_mask & __GFP_THISNODE))
		return 1;
	node = zone_to_nid(z);
	if (node_isset(node, current->mems_allowed))
		return 1;
D
Daniel Walker 已提交
2202 2203 2204 2205 2206 2207
	/*
	 * Allow tasks that have access to memory reserves because they have
	 * been OOM killed to get memory anywhere.
	 */
	if (unlikely(test_thread_flag(TIF_MEMDIE)))
		return 1;
2208 2209 2210
	return 0;
}

P
Paul Jackson 已提交
2211 2212 2213
/**
 * cpuset_lock - lock out any changes to cpuset structures
 *
2214
 * The out of memory (oom) code needs to mutex_lock cpusets
P
Paul Jackson 已提交
2215
 * from being changed while it scans the tasklist looking for a
2216
 * task in an overlapping cpuset.  Expose callback_mutex via this
P
Paul Jackson 已提交
2217 2218
 * cpuset_lock() routine, so the oom code can lock it, before
 * locking the task list.  The tasklist_lock is a spinlock, so
2219
 * must be taken inside callback_mutex.
P
Paul Jackson 已提交
2220 2221 2222 2223
 */

void cpuset_lock(void)
{
2224
	mutex_lock(&callback_mutex);
P
Paul Jackson 已提交
2225 2226 2227 2228 2229 2230 2231 2232 2233 2234
}

/**
 * cpuset_unlock - release lock on cpuset changes
 *
 * Undo the lock taken in a previous cpuset_lock() call.
 */

void cpuset_unlock(void)
{
2235
	mutex_unlock(&callback_mutex);
P
Paul Jackson 已提交
2236 2237
}

2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275
/**
 * cpuset_mem_spread_node() - On which node to begin search for a page
 *
 * If a task is marked PF_SPREAD_PAGE or PF_SPREAD_SLAB (as for
 * tasks in a cpuset with is_spread_page or is_spread_slab set),
 * and if the memory allocation used cpuset_mem_spread_node()
 * to determine on which node to start looking, as it will for
 * certain page cache or slab cache pages such as used for file
 * system buffers and inode caches, then instead of starting on the
 * local node to look for a free page, rather spread the starting
 * node around the tasks mems_allowed nodes.
 *
 * We don't have to worry about the returned node being offline
 * because "it can't happen", and even if it did, it would be ok.
 *
 * The routines calling guarantee_online_mems() are careful to
 * only set nodes in task->mems_allowed that are online.  So it
 * should not be possible for the following code to return an
 * offline node.  But if it did, that would be ok, as this routine
 * is not returning the node where the allocation must be, only
 * the node where the search should start.  The zonelist passed to
 * __alloc_pages() will include all nodes.  If the slab allocator
 * is passed an offline node, it will fall back to the local node.
 * See kmem_cache_alloc_node().
 */

int cpuset_mem_spread_node(void)
{
	int node;

	node = next_node(current->cpuset_mem_spread_rotor, current->mems_allowed);
	if (node == MAX_NUMNODES)
		node = first_node(current->mems_allowed);
	current->cpuset_mem_spread_rotor = node;
	return node;
}
EXPORT_SYMBOL_GPL(cpuset_mem_spread_node);

2276
/**
2277 2278 2279 2280 2281 2282 2283 2284
 * cpuset_mems_allowed_intersects - Does @tsk1's mems_allowed intersect @tsk2's?
 * @tsk1: pointer to task_struct of some task.
 * @tsk2: pointer to task_struct of some other task.
 *
 * Description: Return true if @tsk1's mems_allowed intersects the
 * mems_allowed of @tsk2.  Used by the OOM killer to determine if
 * one of the task's memory usage might impact the memory available
 * to the other.
2285 2286
 **/

2287 2288
int cpuset_mems_allowed_intersects(const struct task_struct *tsk1,
				   const struct task_struct *tsk2)
2289
{
2290
	return nodes_intersects(tsk1->mems_allowed, tsk2->mems_allowed);
2291 2292
}

2293 2294 2295 2296 2297 2298
/*
 * Collection of memory_pressure is suppressed unless
 * this flag is enabled by writing "1" to the special
 * cpuset file 'memory_pressure_enabled' in the root cpuset.
 */

2299
int cpuset_memory_pressure_enabled __read_mostly;
2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321

/**
 * cpuset_memory_pressure_bump - keep stats of per-cpuset reclaims.
 *
 * Keep a running average of the rate of synchronous (direct)
 * page reclaim efforts initiated by tasks in each cpuset.
 *
 * This represents the rate at which some task in the cpuset
 * ran low on memory on all nodes it was allowed to use, and
 * had to enter the kernels page reclaim code in an effort to
 * create more free memory by tossing clean pages or swapping
 * or writing dirty pages.
 *
 * Display to user space in the per-cpuset read-only file
 * "memory_pressure".  Value displayed is an integer
 * representing the recent rate of entry into the synchronous
 * (direct) page reclaim by any task attached to the cpuset.
 **/

void __cpuset_memory_pressure_bump(void)
{
	task_lock(current);
2322
	fmeter_markevent(&task_cs(current)->fmeter);
2323 2324 2325
	task_unlock(current);
}

2326
#ifdef CONFIG_PROC_PID_CPUSET
L
Linus Torvalds 已提交
2327 2328 2329 2330
/*
 * proc_cpuset_show()
 *  - Print tasks cpuset path into seq_file.
 *  - Used for /proc/<pid>/cpuset.
2331 2332
 *  - No need to task_lock(tsk) on this tsk->cpuset reference, as it
 *    doesn't really matter if tsk->cpuset changes after we read it,
2333
 *    and we take cgroup_mutex, keeping cpuset_attach() from changing it
2334
 *    anyway.
L
Linus Torvalds 已提交
2335
 */
P
Paul Jackson 已提交
2336
static int proc_cpuset_show(struct seq_file *m, void *unused_v)
L
Linus Torvalds 已提交
2337
{
2338
	struct pid *pid;
L
Linus Torvalds 已提交
2339 2340
	struct task_struct *tsk;
	char *buf;
2341
	struct cgroup_subsys_state *css;
2342
	int retval;
L
Linus Torvalds 已提交
2343

2344
	retval = -ENOMEM;
L
Linus Torvalds 已提交
2345 2346
	buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
	if (!buf)
2347 2348 2349
		goto out;

	retval = -ESRCH;
2350 2351
	pid = m->private;
	tsk = get_pid_task(pid, PIDTYPE_PID);
2352 2353
	if (!tsk)
		goto out_free;
L
Linus Torvalds 已提交
2354

2355
	retval = -EINVAL;
2356 2357 2358
	cgroup_lock();
	css = task_subsys_state(tsk, cpuset_subsys_id);
	retval = cgroup_path(css->cgroup, buf, PAGE_SIZE);
L
Linus Torvalds 已提交
2359
	if (retval < 0)
2360
		goto out_unlock;
L
Linus Torvalds 已提交
2361 2362
	seq_puts(m, buf);
	seq_putc(m, '\n');
2363
out_unlock:
2364
	cgroup_unlock();
2365 2366
	put_task_struct(tsk);
out_free:
L
Linus Torvalds 已提交
2367
	kfree(buf);
2368
out:
L
Linus Torvalds 已提交
2369 2370 2371 2372 2373
	return retval;
}

static int cpuset_open(struct inode *inode, struct file *file)
{
2374 2375
	struct pid *pid = PROC_I(inode)->pid;
	return single_open(file, proc_cpuset_show, pid);
L
Linus Torvalds 已提交
2376 2377
}

2378
const struct file_operations proc_cpuset_operations = {
L
Linus Torvalds 已提交
2379 2380 2381 2382 2383
	.open		= cpuset_open,
	.read		= seq_read,
	.llseek		= seq_lseek,
	.release	= single_release,
};
2384
#endif /* CONFIG_PROC_PID_CPUSET */
L
Linus Torvalds 已提交
2385 2386

/* Display task cpus_allowed, mems_allowed in /proc/<pid>/status file. */
2387 2388 2389 2390 2391 2392
void cpuset_task_status_allowed(struct seq_file *m, struct task_struct *task)
{
	seq_printf(m, "Cpus_allowed:\t");
	m->count += cpumask_scnprintf(m->buf + m->count, m->size - m->count,
					task->cpus_allowed);
	seq_printf(m, "\n");
2393 2394 2395 2396
	seq_printf(m, "Cpus_allowed_list:\t");
	m->count += cpulist_scnprintf(m->buf + m->count, m->size - m->count,
					task->cpus_allowed);
	seq_printf(m, "\n");
2397 2398 2399 2400
	seq_printf(m, "Mems_allowed:\t");
	m->count += nodemask_scnprintf(m->buf + m->count, m->size - m->count,
					task->mems_allowed);
	seq_printf(m, "\n");
2401 2402 2403 2404
	seq_printf(m, "Mems_allowed_list:\t");
	m->count += nodelist_scnprintf(m->buf + m->count, m->size - m->count,
					task->mems_allowed);
	seq_printf(m, "\n");
L
Linus Torvalds 已提交
2405
}