cpuset.c 76.7 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6
/*
 *  kernel/cpuset.c
 *
 *  Processor and Memory placement constraints for sets of tasks.
 *
 *  Copyright (C) 2003 BULL SA.
P
Paul Jackson 已提交
7
 *  Copyright (C) 2004-2007 Silicon Graphics, Inc.
8
 *  Copyright (C) 2006 Google, Inc
L
Linus Torvalds 已提交
9 10 11 12
 *
 *  Portions derived from Patrick Mochel's sysfs code.
 *  sysfs is Copyright (c) 2001-3 Patrick Mochel
 *
13
 *  2003-10-10 Written by Simon Derr.
L
Linus Torvalds 已提交
14
 *  2003-10-22 Updates by Stephen Hemminger.
15
 *  2004 May-July Rework by Paul Jackson.
16
 *  2006 Rework by Paul Menage to use generic cgroups
17 18
 *  2008 Rework of the scheduler domains and CPU hotplug handling
 *       by Max Krasnyansky
L
Linus Torvalds 已提交
19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36
 *
 *  This file is subject to the terms and conditions of the GNU General Public
 *  License.  See the file COPYING in the main directory of the Linux
 *  distribution for more details.
 */

#include <linux/cpu.h>
#include <linux/cpumask.h>
#include <linux/cpuset.h>
#include <linux/err.h>
#include <linux/errno.h>
#include <linux/file.h>
#include <linux/fs.h>
#include <linux/init.h>
#include <linux/interrupt.h>
#include <linux/kernel.h>
#include <linux/kmod.h>
#include <linux/list.h>
37
#include <linux/mempolicy.h>
L
Linus Torvalds 已提交
38
#include <linux/mm.h>
39
#include <linux/memory.h>
40
#include <linux/export.h>
L
Linus Torvalds 已提交
41 42 43 44
#include <linux/mount.h>
#include <linux/namei.h>
#include <linux/pagemap.h>
#include <linux/proc_fs.h>
45
#include <linux/rcupdate.h>
L
Linus Torvalds 已提交
46 47
#include <linux/sched.h>
#include <linux/seq_file.h>
48
#include <linux/security.h>
L
Linus Torvalds 已提交
49 50 51 52 53 54 55 56 57
#include <linux/slab.h>
#include <linux/spinlock.h>
#include <linux/stat.h>
#include <linux/string.h>
#include <linux/time.h>
#include <linux/backing-dev.h>
#include <linux/sort.h>

#include <asm/uaccess.h>
A
Arun Sharma 已提交
58
#include <linux/atomic.h>
59
#include <linux/mutex.h>
60 61
#include <linux/workqueue.h>
#include <linux/cgroup.h>
62
#include <linux/wait.h>
L
Linus Torvalds 已提交
63

64
struct static_key cpusets_enabled_key __read_mostly = STATIC_KEY_INIT_FALSE;
65

66 67 68 69 70 71 72 73 74
/* See "Frequency meter" comments, below. */

struct fmeter {
	int cnt;		/* unprocessed events count */
	int val;		/* most recent output value */
	time_t time;		/* clock (secs) when val computed */
	spinlock_t lock;	/* guards read or write of above */
};

L
Linus Torvalds 已提交
75
struct cpuset {
76 77
	struct cgroup_subsys_state css;

L
Linus Torvalds 已提交
78
	unsigned long flags;		/* "unsigned long" so bitops work */
79

80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99
	/*
	 * On default hierarchy:
	 *
	 * The user-configured masks can only be changed by writing to
	 * cpuset.cpus and cpuset.mems, and won't be limited by the
	 * parent masks.
	 *
	 * The effective masks is the real masks that apply to the tasks
	 * in the cpuset. They may be changed if the configured masks are
	 * changed or hotplug happens.
	 *
	 * effective_mask == configured_mask & parent's effective_mask,
	 * and if it ends up empty, it will inherit the parent's mask.
	 *
	 *
	 * On legacy hierachy:
	 *
	 * The user-configured masks are always the same with effective masks.
	 */

100 101 102 103 104 105 106
	/* user-configured CPUs and Memory Nodes allow to tasks */
	cpumask_var_t cpus_allowed;
	nodemask_t mems_allowed;

	/* effective CPUs and Memory Nodes allow to tasks */
	cpumask_var_t effective_cpus;
	nodemask_t effective_mems;
L
Linus Torvalds 已提交
107

108 109 110 111 112 113 114 115 116 117 118 119
	/*
	 * This is old Memory Nodes tasks took on.
	 *
	 * - top_cpuset.old_mems_allowed is initialized to mems_allowed.
	 * - A new cpuset's old_mems_allowed is initialized when some
	 *   task is moved into it.
	 * - old_mems_allowed is used in cpuset_migrate_mm() when we change
	 *   cpuset.mems_allowed and have tasks' nodemask updated, and
	 *   then old_mems_allowed is updated to mems_allowed.
	 */
	nodemask_t old_mems_allowed;

120
	struct fmeter fmeter;		/* memory_pressure filter */
P
Paul Jackson 已提交
121

122 123 124 125 126 127
	/*
	 * Tasks are being attached to this cpuset.  Used to prevent
	 * zeroing cpus/mems_allowed between ->can_attach() and ->attach().
	 */
	int attach_in_progress;

P
Paul Jackson 已提交
128 129
	/* partition number for rebuild_sched_domains() */
	int pn;
130

131 132
	/* for custom sched domain */
	int relax_domain_level;
L
Linus Torvalds 已提交
133 134
};

135
static inline struct cpuset *css_cs(struct cgroup_subsys_state *css)
136
{
137
	return css ? container_of(css, struct cpuset, css) : NULL;
138 139 140 141 142
}

/* Retrieve the cpuset for a task */
static inline struct cpuset *task_cs(struct task_struct *task)
{
143
	return css_cs(task_css(task, cpuset_cgrp_id));
144 145
}

146
static inline struct cpuset *parent_cs(struct cpuset *cs)
T
Tejun Heo 已提交
147
{
T
Tejun Heo 已提交
148
	return css_cs(cs->css.parent);
T
Tejun Heo 已提交
149 150
}

151 152 153 154 155 156 157 158 159 160 161 162 163
#ifdef CONFIG_NUMA
static inline bool task_has_mempolicy(struct task_struct *task)
{
	return task->mempolicy;
}
#else
static inline bool task_has_mempolicy(struct task_struct *task)
{
	return false;
}
#endif


L
Linus Torvalds 已提交
164 165
/* bits in struct cpuset flags field */
typedef enum {
T
Tejun Heo 已提交
166
	CS_ONLINE,
L
Linus Torvalds 已提交
167 168
	CS_CPU_EXCLUSIVE,
	CS_MEM_EXCLUSIVE,
169
	CS_MEM_HARDWALL,
170
	CS_MEMORY_MIGRATE,
P
Paul Jackson 已提交
171
	CS_SCHED_LOAD_BALANCE,
172 173
	CS_SPREAD_PAGE,
	CS_SPREAD_SLAB,
L
Linus Torvalds 已提交
174 175 176
} cpuset_flagbits_t;

/* convenient tests for these bits */
T
Tejun Heo 已提交
177 178 179 180 181
static inline bool is_cpuset_online(const struct cpuset *cs)
{
	return test_bit(CS_ONLINE, &cs->flags);
}

L
Linus Torvalds 已提交
182 183
static inline int is_cpu_exclusive(const struct cpuset *cs)
{
184
	return test_bit(CS_CPU_EXCLUSIVE, &cs->flags);
L
Linus Torvalds 已提交
185 186 187 188
}

static inline int is_mem_exclusive(const struct cpuset *cs)
{
189
	return test_bit(CS_MEM_EXCLUSIVE, &cs->flags);
L
Linus Torvalds 已提交
190 191
}

192 193 194 195 196
static inline int is_mem_hardwall(const struct cpuset *cs)
{
	return test_bit(CS_MEM_HARDWALL, &cs->flags);
}

P
Paul Jackson 已提交
197 198 199 200 201
static inline int is_sched_load_balance(const struct cpuset *cs)
{
	return test_bit(CS_SCHED_LOAD_BALANCE, &cs->flags);
}

202 203
static inline int is_memory_migrate(const struct cpuset *cs)
{
204
	return test_bit(CS_MEMORY_MIGRATE, &cs->flags);
205 206
}

207 208 209 210 211 212 213 214 215 216
static inline int is_spread_page(const struct cpuset *cs)
{
	return test_bit(CS_SPREAD_PAGE, &cs->flags);
}

static inline int is_spread_slab(const struct cpuset *cs)
{
	return test_bit(CS_SPREAD_SLAB, &cs->flags);
}

L
Linus Torvalds 已提交
217
static struct cpuset top_cpuset = {
T
Tejun Heo 已提交
218 219
	.flags = ((1 << CS_ONLINE) | (1 << CS_CPU_EXCLUSIVE) |
		  (1 << CS_MEM_EXCLUSIVE)),
L
Linus Torvalds 已提交
220 221
};

222 223 224
/**
 * cpuset_for_each_child - traverse online children of a cpuset
 * @child_cs: loop cursor pointing to the current child
225
 * @pos_css: used for iteration
226 227 228 229 230
 * @parent_cs: target cpuset to walk children of
 *
 * Walk @child_cs through the online children of @parent_cs.  Must be used
 * with RCU read locked.
 */
231 232 233
#define cpuset_for_each_child(child_cs, pos_css, parent_cs)		\
	css_for_each_child((pos_css), &(parent_cs)->css)		\
		if (is_cpuset_online(((child_cs) = css_cs((pos_css)))))
234

235 236 237
/**
 * cpuset_for_each_descendant_pre - pre-order walk of a cpuset's descendants
 * @des_cs: loop cursor pointing to the current descendant
238
 * @pos_css: used for iteration
239 240 241
 * @root_cs: target cpuset to walk ancestor of
 *
 * Walk @des_cs through the online descendants of @root_cs.  Must be used
242
 * with RCU read locked.  The caller may modify @pos_css by calling
243 244
 * css_rightmost_descendant() to skip subtree.  @root_cs is included in the
 * iteration and the first node to be visited.
245
 */
246 247 248
#define cpuset_for_each_descendant_pre(des_cs, pos_css, root_cs)	\
	css_for_each_descendant_pre((pos_css), &(root_cs)->css)		\
		if (is_cpuset_online(((des_cs) = css_cs((pos_css)))))
249

L
Linus Torvalds 已提交
250
/*
251 252 253 254 255 256 257 258 259 260 261 262 263 264
 * There are two global mutexes guarding cpuset structures - cpuset_mutex
 * and callback_mutex.  The latter may nest inside the former.  We also
 * require taking task_lock() when dereferencing a task's cpuset pointer.
 * See "The task_lock() exception", at the end of this comment.
 *
 * A task must hold both mutexes to modify cpusets.  If a task holds
 * cpuset_mutex, then it blocks others wanting that mutex, ensuring that it
 * is the only task able to also acquire callback_mutex and be able to
 * modify cpusets.  It can perform various checks on the cpuset structure
 * first, knowing nothing will change.  It can also allocate memory while
 * just holding cpuset_mutex.  While it is performing these checks, various
 * callback routines can briefly acquire callback_mutex to query cpusets.
 * Once it is ready to make the changes, it takes callback_mutex, blocking
 * everyone else.
265 266
 *
 * Calls to the kernel memory allocator can not be made while holding
267
 * callback_mutex, as that would risk double tripping on callback_mutex
268 269 270
 * from one of the callbacks into the cpuset code from within
 * __alloc_pages().
 *
271
 * If a task is only holding callback_mutex, then it has read-only
272 273
 * access to cpusets.
 *
274 275 276
 * Now, the task_struct fields mems_allowed and mempolicy may be changed
 * by other task, we use alloc_lock in the task_struct fields to protect
 * them.
277
 *
278
 * The cpuset_common_file_read() handlers only hold callback_mutex across
279 280 281
 * small pieces of code, such as when reading out possibly multi-word
 * cpumasks and nodemasks.
 *
282 283
 * Accessing a task's cpuset should be done in accordance with the
 * guidelines for accessing subsystem state in kernel/cgroup.c
L
Linus Torvalds 已提交
284 285
 */

286
static DEFINE_MUTEX(cpuset_mutex);
287
static DEFINE_MUTEX(callback_mutex);
288

289 290 291 292 293 294
/*
 * CPU / memory hotplug is handled asynchronously.
 */
static void cpuset_hotplug_workfn(struct work_struct *work);
static DECLARE_WORK(cpuset_hotplug_work, cpuset_hotplug_workfn);

295 296
static DECLARE_WAIT_QUEUE_HEAD(cpuset_attach_wq);

297 298
/*
 * This is ugly, but preserves the userspace API for existing cpuset
299
 * users. If someone tries to mount the "cpuset" filesystem, we
300 301
 * silently switch it to mount "cgroup" instead
 */
A
Al Viro 已提交
302 303
static struct dentry *cpuset_mount(struct file_system_type *fs_type,
			 int flags, const char *unused_dev_name, void *data)
L
Linus Torvalds 已提交
304
{
305
	struct file_system_type *cgroup_fs = get_fs_type("cgroup");
A
Al Viro 已提交
306
	struct dentry *ret = ERR_PTR(-ENODEV);
307 308 309 310
	if (cgroup_fs) {
		char mountopts[] =
			"cpuset,noprefix,"
			"release_agent=/sbin/cpuset_release_agent";
A
Al Viro 已提交
311 312
		ret = cgroup_fs->mount(cgroup_fs, flags,
					   unused_dev_name, mountopts);
313 314 315
		put_filesystem(cgroup_fs);
	}
	return ret;
L
Linus Torvalds 已提交
316 317 318 319
}

static struct file_system_type cpuset_fs_type = {
	.name = "cpuset",
A
Al Viro 已提交
320
	.mount = cpuset_mount,
L
Linus Torvalds 已提交
321 322 323
};

/*
324
 * Return in pmask the portion of a cpusets's cpus_allowed that
L
Linus Torvalds 已提交
325
 * are online.  If none are online, walk up the cpuset hierarchy
326 327
 * until we find one that does have some online cpus.  The top
 * cpuset always has some cpus online.
L
Linus Torvalds 已提交
328 329
 *
 * One way or another, we guarantee to return some non-empty subset
330
 * of cpu_online_mask.
L
Linus Torvalds 已提交
331
 *
332
 * Call with callback_mutex held.
L
Linus Torvalds 已提交
333
 */
334
static void guarantee_online_cpus(struct cpuset *cs, struct cpumask *pmask)
L
Linus Torvalds 已提交
335
{
336
	while (!cpumask_intersects(cs->effective_cpus, cpu_online_mask))
T
Tejun Heo 已提交
337
		cs = parent_cs(cs);
338
	cpumask_and(pmask, cs->effective_cpus, cpu_online_mask);
L
Linus Torvalds 已提交
339 340 341 342
}

/*
 * Return in *pmask the portion of a cpusets's mems_allowed that
343 344
 * are online, with memory.  If none are online with memory, walk
 * up the cpuset hierarchy until we find one that does have some
345
 * online mems.  The top cpuset always has some mems online.
L
Linus Torvalds 已提交
346 347
 *
 * One way or another, we guarantee to return some non-empty subset
348
 * of node_states[N_MEMORY].
L
Linus Torvalds 已提交
349
 *
350
 * Call with callback_mutex held.
L
Linus Torvalds 已提交
351
 */
352
static void guarantee_online_mems(struct cpuset *cs, nodemask_t *pmask)
L
Linus Torvalds 已提交
353
{
354
	while (!nodes_intersects(cs->effective_mems, node_states[N_MEMORY]))
T
Tejun Heo 已提交
355
		cs = parent_cs(cs);
356
	nodes_and(*pmask, cs->effective_mems, node_states[N_MEMORY]);
L
Linus Torvalds 已提交
357 358
}

359 360 361
/*
 * update task's spread flag if cpuset's page/slab spread flag is set
 *
362
 * Called with callback_mutex/cpuset_mutex held
363 364 365 366 367 368 369 370 371 372 373 374 375 376
 */
static void cpuset_update_task_spread_flag(struct cpuset *cs,
					struct task_struct *tsk)
{
	if (is_spread_page(cs))
		tsk->flags |= PF_SPREAD_PAGE;
	else
		tsk->flags &= ~PF_SPREAD_PAGE;
	if (is_spread_slab(cs))
		tsk->flags |= PF_SPREAD_SLAB;
	else
		tsk->flags &= ~PF_SPREAD_SLAB;
}

L
Linus Torvalds 已提交
377 378 379 380 381
/*
 * is_cpuset_subset(p, q) - Is cpuset p a subset of cpuset q?
 *
 * One cpuset is a subset of another if all its allowed CPUs and
 * Memory Nodes are a subset of the other, and its exclusive flags
382
 * are only set if the other's are set.  Call holding cpuset_mutex.
L
Linus Torvalds 已提交
383 384 385 386
 */

static int is_cpuset_subset(const struct cpuset *p, const struct cpuset *q)
{
387
	return	cpumask_subset(p->cpus_allowed, q->cpus_allowed) &&
L
Linus Torvalds 已提交
388 389 390 391 392
		nodes_subset(p->mems_allowed, q->mems_allowed) &&
		is_cpu_exclusive(p) <= is_cpu_exclusive(q) &&
		is_mem_exclusive(p) <= is_mem_exclusive(q);
}

393 394 395 396
/**
 * alloc_trial_cpuset - allocate a trial cpuset
 * @cs: the cpuset that the trial cpuset duplicates
 */
397
static struct cpuset *alloc_trial_cpuset(struct cpuset *cs)
398
{
399 400 401 402 403 404
	struct cpuset *trial;

	trial = kmemdup(cs, sizeof(*cs), GFP_KERNEL);
	if (!trial)
		return NULL;

405 406 407 408
	if (!alloc_cpumask_var(&trial->cpus_allowed, GFP_KERNEL))
		goto free_cs;
	if (!alloc_cpumask_var(&trial->effective_cpus, GFP_KERNEL))
		goto free_cpus;
409

410 411
	cpumask_copy(trial->cpus_allowed, cs->cpus_allowed);
	cpumask_copy(trial->effective_cpus, cs->effective_cpus);
412
	return trial;
413 414 415 416 417 418

free_cpus:
	free_cpumask_var(trial->cpus_allowed);
free_cs:
	kfree(trial);
	return NULL;
419 420 421 422 423 424 425 426
}

/**
 * free_trial_cpuset - free the trial cpuset
 * @trial: the trial cpuset to be freed
 */
static void free_trial_cpuset(struct cpuset *trial)
{
427
	free_cpumask_var(trial->effective_cpus);
428
	free_cpumask_var(trial->cpus_allowed);
429 430 431
	kfree(trial);
}

L
Linus Torvalds 已提交
432 433 434 435 436 437 438
/*
 * validate_change() - Used to validate that any proposed cpuset change
 *		       follows the structural rules for cpusets.
 *
 * If we replaced the flag and mask values of the current cpuset
 * (cur) with those values in the trial cpuset (trial), would
 * our various subset and exclusive rules still be valid?  Presumes
439
 * cpuset_mutex held.
L
Linus Torvalds 已提交
440 441 442 443 444 445 446 447 448 449 450 451
 *
 * 'cur' is the address of an actual, in-use cpuset.  Operations
 * such as list traversal that depend on the actual address of the
 * cpuset in the list must use cur below, not trial.
 *
 * 'trial' is the address of bulk structure copy of cur, with
 * perhaps one or more of the fields cpus_allowed, mems_allowed,
 * or flags changed to new, trial values.
 *
 * Return 0 if valid, -errno if not.
 */

452
static int validate_change(struct cpuset *cur, struct cpuset *trial)
L
Linus Torvalds 已提交
453
{
454
	struct cgroup_subsys_state *css;
L
Linus Torvalds 已提交
455
	struct cpuset *c, *par;
456 457 458
	int ret;

	rcu_read_lock();
L
Linus Torvalds 已提交
459 460

	/* Each of our child cpusets must be a subset of us */
461
	ret = -EBUSY;
462
	cpuset_for_each_child(c, css, cur)
463 464
		if (!is_cpuset_subset(c, trial))
			goto out;
L
Linus Torvalds 已提交
465 466

	/* Remaining checks don't apply to root cpuset */
467
	ret = 0;
468
	if (cur == &top_cpuset)
469
		goto out;
L
Linus Torvalds 已提交
470

T
Tejun Heo 已提交
471
	par = parent_cs(cur);
472

473
	/* On legacy hiearchy, we must be a subset of our parent cpuset. */
474
	ret = -EACCES;
475
	if (!cgroup_on_dfl(cur->css.cgroup) && !is_cpuset_subset(trial, par))
476
		goto out;
L
Linus Torvalds 已提交
477

478 479 480 481
	/*
	 * If either I or some sibling (!= me) is exclusive, we can't
	 * overlap
	 */
482
	ret = -EINVAL;
483
	cpuset_for_each_child(c, css, par) {
L
Linus Torvalds 已提交
484 485
		if ((is_cpu_exclusive(trial) || is_cpu_exclusive(c)) &&
		    c != cur &&
486
		    cpumask_intersects(trial->cpus_allowed, c->cpus_allowed))
487
			goto out;
L
Linus Torvalds 已提交
488 489 490
		if ((is_mem_exclusive(trial) || is_mem_exclusive(c)) &&
		    c != cur &&
		    nodes_intersects(trial->mems_allowed, c->mems_allowed))
491
			goto out;
L
Linus Torvalds 已提交
492 493
	}

494 495
	/*
	 * Cpusets with tasks - existing or newly being attached - can't
496
	 * be changed to have empty cpus_allowed or mems_allowed.
497
	 */
498
	ret = -ENOSPC;
499
	if ((cgroup_has_tasks(cur->css.cgroup) || cur->attach_in_progress)) {
500 501 502 503 504 505 506
		if (!cpumask_empty(cur->cpus_allowed) &&
		    cpumask_empty(trial->cpus_allowed))
			goto out;
		if (!nodes_empty(cur->mems_allowed) &&
		    nodes_empty(trial->mems_allowed))
			goto out;
	}
507

508 509 510 511
	ret = 0;
out:
	rcu_read_unlock();
	return ret;
L
Linus Torvalds 已提交
512 513
}

514
#ifdef CONFIG_SMP
P
Paul Jackson 已提交
515
/*
516
 * Helper routine for generate_sched_domains().
517
 * Do cpusets a, b have overlapping effective cpus_allowed masks?
P
Paul Jackson 已提交
518 519 520
 */
static int cpusets_overlap(struct cpuset *a, struct cpuset *b)
{
521
	return cpumask_intersects(a->effective_cpus, b->effective_cpus);
P
Paul Jackson 已提交
522 523
}

524 525 526 527 528 529 530 531
static void
update_domain_attr(struct sched_domain_attr *dattr, struct cpuset *c)
{
	if (dattr->relax_domain_level < c->relax_domain_level)
		dattr->relax_domain_level = c->relax_domain_level;
	return;
}

532 533
static void update_domain_attr_tree(struct sched_domain_attr *dattr,
				    struct cpuset *root_cs)
534
{
535
	struct cpuset *cp;
536
	struct cgroup_subsys_state *pos_css;
537

538
	rcu_read_lock();
539
	cpuset_for_each_descendant_pre(cp, pos_css, root_cs) {
540 541 542
		if (cp == root_cs)
			continue;

543 544
		/* skip the whole subtree if @cp doesn't have any CPU */
		if (cpumask_empty(cp->cpus_allowed)) {
545
			pos_css = css_rightmost_descendant(pos_css);
546
			continue;
547
		}
548 549 550 551

		if (is_sched_load_balance(cp))
			update_domain_attr(dattr, cp);
	}
552
	rcu_read_unlock();
553 554
}

P
Paul Jackson 已提交
555
/*
556 557 558 559 560
 * generate_sched_domains()
 *
 * This function builds a partial partition of the systems CPUs
 * A 'partial partition' is a set of non-overlapping subsets whose
 * union is a subset of that set.
561
 * The output of this function needs to be passed to kernel/sched/core.c
562 563 564
 * partition_sched_domains() routine, which will rebuild the scheduler's
 * load balancing domains (sched domains) as specified by that partial
 * partition.
P
Paul Jackson 已提交
565
 *
L
Li Zefan 已提交
566
 * See "What is sched_load_balance" in Documentation/cgroups/cpusets.txt
P
Paul Jackson 已提交
567 568 569 570 571 572 573
 * for a background explanation of this.
 *
 * Does not return errors, on the theory that the callers of this
 * routine would rather not worry about failures to rebuild sched
 * domains when operating in the severe memory shortage situations
 * that could cause allocation failures below.
 *
574
 * Must be called with cpuset_mutex held.
P
Paul Jackson 已提交
575 576
 *
 * The three key local variables below are:
577
 *    q  - a linked-list queue of cpuset pointers, used to implement a
P
Paul Jackson 已提交
578 579 580 581 582 583 584 585 586 587 588 589
 *	   top-down scan of all cpusets.  This scan loads a pointer
 *	   to each cpuset marked is_sched_load_balance into the
 *	   array 'csa'.  For our purposes, rebuilding the schedulers
 *	   sched domains, we can ignore !is_sched_load_balance cpusets.
 *  csa  - (for CpuSet Array) Array of pointers to all the cpusets
 *	   that need to be load balanced, for convenient iterative
 *	   access by the subsequent code that finds the best partition,
 *	   i.e the set of domains (subsets) of CPUs such that the
 *	   cpus_allowed of every cpuset marked is_sched_load_balance
 *	   is a subset of one of these domains, while there are as
 *	   many such domains as possible, each as small as possible.
 * doms  - Conversion of 'csa' to an array of cpumasks, for passing to
590
 *	   the kernel/sched/core.c routine partition_sched_domains() in a
P
Paul Jackson 已提交
591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608
 *	   convenient format, that can be easily compared to the prior
 *	   value to determine what partition elements (sched domains)
 *	   were changed (added or removed.)
 *
 * Finding the best partition (set of domains):
 *	The triple nested loops below over i, j, k scan over the
 *	load balanced cpusets (using the array of cpuset pointers in
 *	csa[]) looking for pairs of cpusets that have overlapping
 *	cpus_allowed, but which don't have the same 'pn' partition
 *	number and gives them in the same partition number.  It keeps
 *	looping on the 'restart' label until it can no longer find
 *	any such pairs.
 *
 *	The union of the cpus_allowed masks from the set of
 *	all cpusets having the same 'pn' value then form the one
 *	element of the partition (one sched domain) to be passed to
 *	partition_sched_domains().
 */
609
static int generate_sched_domains(cpumask_var_t **domains,
610
			struct sched_domain_attr **attributes)
P
Paul Jackson 已提交
611 612 613 614 615
{
	struct cpuset *cp;	/* scans q */
	struct cpuset **csa;	/* array of all cpuset ptrs */
	int csn;		/* how many cpuset ptrs in csa so far */
	int i, j, k;		/* indices for partition finding loops */
616
	cpumask_var_t *doms;	/* resulting partition; i.e. sched domains */
617
	struct sched_domain_attr *dattr;  /* attributes for custom domains */
618
	int ndoms = 0;		/* number of sched domains in result */
619
	int nslot;		/* next empty doms[] struct cpumask slot */
620
	struct cgroup_subsys_state *pos_css;
P
Paul Jackson 已提交
621 622

	doms = NULL;
623
	dattr = NULL;
624
	csa = NULL;
P
Paul Jackson 已提交
625 626 627

	/* Special case for the 99% of systems with one, full, sched domain */
	if (is_sched_load_balance(&top_cpuset)) {
628 629
		ndoms = 1;
		doms = alloc_sched_domains(ndoms);
P
Paul Jackson 已提交
630
		if (!doms)
631 632
			goto done;

633 634 635
		dattr = kmalloc(sizeof(struct sched_domain_attr), GFP_KERNEL);
		if (dattr) {
			*dattr = SD_ATTR_INIT;
636
			update_domain_attr_tree(dattr, &top_cpuset);
637
		}
638
		cpumask_copy(doms[0], top_cpuset.effective_cpus);
639 640

		goto done;
P
Paul Jackson 已提交
641 642
	}

643
	csa = kmalloc(nr_cpusets() * sizeof(cp), GFP_KERNEL);
P
Paul Jackson 已提交
644 645 646 647
	if (!csa)
		goto done;
	csn = 0;

648
	rcu_read_lock();
649
	cpuset_for_each_descendant_pre(cp, pos_css, &top_cpuset) {
650 651
		if (cp == &top_cpuset)
			continue;
652
		/*
653 654 655 656 657 658
		 * Continue traversing beyond @cp iff @cp has some CPUs and
		 * isn't load balancing.  The former is obvious.  The
		 * latter: All child cpusets contain a subset of the
		 * parent's cpus, so just skip them, and then we call
		 * update_domain_attr_tree() to calc relax_domain_level of
		 * the corresponding sched domain.
659
		 */
660 661
		if (!cpumask_empty(cp->cpus_allowed) &&
		    !is_sched_load_balance(cp))
662
			continue;
663

664 665 666 667
		if (is_sched_load_balance(cp))
			csa[csn++] = cp;

		/* skip @cp's subtree */
668
		pos_css = css_rightmost_descendant(pos_css);
669 670
	}
	rcu_read_unlock();
P
Paul Jackson 已提交
671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698

	for (i = 0; i < csn; i++)
		csa[i]->pn = i;
	ndoms = csn;

restart:
	/* Find the best partition (set of sched domains) */
	for (i = 0; i < csn; i++) {
		struct cpuset *a = csa[i];
		int apn = a->pn;

		for (j = 0; j < csn; j++) {
			struct cpuset *b = csa[j];
			int bpn = b->pn;

			if (apn != bpn && cpusets_overlap(a, b)) {
				for (k = 0; k < csn; k++) {
					struct cpuset *c = csa[k];

					if (c->pn == bpn)
						c->pn = apn;
				}
				ndoms--;	/* one less element */
				goto restart;
			}
		}
	}

699 700 701 702
	/*
	 * Now we know how many domains to create.
	 * Convert <csn, csa> to <ndoms, doms> and populate cpu masks.
	 */
703
	doms = alloc_sched_domains(ndoms);
704
	if (!doms)
705 706 707 708 709 710
		goto done;

	/*
	 * The rest of the code, including the scheduler, can deal with
	 * dattr==NULL case. No need to abort if alloc fails.
	 */
711
	dattr = kmalloc(ndoms * sizeof(struct sched_domain_attr), GFP_KERNEL);
P
Paul Jackson 已提交
712 713 714

	for (nslot = 0, i = 0; i < csn; i++) {
		struct cpuset *a = csa[i];
715
		struct cpumask *dp;
P
Paul Jackson 已提交
716 717
		int apn = a->pn;

718 719 720 721 722
		if (apn < 0) {
			/* Skip completed partitions */
			continue;
		}

723
		dp = doms[nslot];
724 725 726 727

		if (nslot == ndoms) {
			static int warnings = 10;
			if (warnings) {
728 729
				pr_warn("rebuild_sched_domains confused: nslot %d, ndoms %d, csn %d, i %d, apn %d\n",
					nslot, ndoms, csn, i, apn);
730
				warnings--;
P
Paul Jackson 已提交
731
			}
732 733
			continue;
		}
P
Paul Jackson 已提交
734

735
		cpumask_clear(dp);
736 737 738 739 740 741
		if (dattr)
			*(dattr + nslot) = SD_ATTR_INIT;
		for (j = i; j < csn; j++) {
			struct cpuset *b = csa[j];

			if (apn == b->pn) {
742
				cpumask_or(dp, dp, b->effective_cpus);
743 744 745 746 747
				if (dattr)
					update_domain_attr_tree(dattr + nslot, b);

				/* Done with this partition */
				b->pn = -1;
P
Paul Jackson 已提交
748 749
			}
		}
750
		nslot++;
P
Paul Jackson 已提交
751 752 753
	}
	BUG_ON(nslot != ndoms);

754 755 756
done:
	kfree(csa);

757 758 759 760 761 762 763
	/*
	 * Fallback to the default domain if kmalloc() failed.
	 * See comments in partition_sched_domains().
	 */
	if (doms == NULL)
		ndoms = 1;

764 765 766 767 768 769 770 771
	*domains    = doms;
	*attributes = dattr;
	return ndoms;
}

/*
 * Rebuild scheduler domains.
 *
772 773 774 775 776
 * If the flag 'sched_load_balance' of any cpuset with non-empty
 * 'cpus' changes, or if the 'cpus' allowed changes in any cpuset
 * which has that flag enabled, or if any cpuset with a non-empty
 * 'cpus' is removed, then call this routine to rebuild the
 * scheduler's dynamic sched domains.
777
 *
778
 * Call with cpuset_mutex held.  Takes get_online_cpus().
779
 */
780
static void rebuild_sched_domains_locked(void)
781 782
{
	struct sched_domain_attr *attr;
783
	cpumask_var_t *doms;
784 785
	int ndoms;

786
	lockdep_assert_held(&cpuset_mutex);
787
	get_online_cpus();
788

789 790 791 792 793
	/*
	 * We have raced with CPU hotplug. Don't do anything to avoid
	 * passing doms with offlined cpu to partition_sched_domains().
	 * Anyways, hotplug work item will rebuild sched domains.
	 */
794
	if (!cpumask_equal(top_cpuset.effective_cpus, cpu_active_mask))
795 796
		goto out;

797 798 799 800 801
	/* Generate domain masks and attrs */
	ndoms = generate_sched_domains(&doms, &attr);

	/* Have scheduler rebuild the domains */
	partition_sched_domains(ndoms, doms, attr);
802
out:
803
	put_online_cpus();
804
}
805
#else /* !CONFIG_SMP */
806
static void rebuild_sched_domains_locked(void)
807 808 809
{
}
#endif /* CONFIG_SMP */
P
Paul Jackson 已提交
810

811 812
void rebuild_sched_domains(void)
{
813
	mutex_lock(&cpuset_mutex);
814
	rebuild_sched_domains_locked();
815
	mutex_unlock(&cpuset_mutex);
P
Paul Jackson 已提交
816 817
}

818 819 820 821
/**
 * update_tasks_cpumask - Update the cpumasks of tasks in the cpuset.
 * @cs: the cpuset in which each task's cpus_allowed mask needs to be changed
 *
822 823 824
 * Iterate through each task of @cs updating its cpus_allowed to the
 * effective cpuset's.  As this function is called with cpuset_mutex held,
 * cpuset membership stays stable.
825
 */
826
static void update_tasks_cpumask(struct cpuset *cs)
827
{
828 829 830 831 832
	struct css_task_iter it;
	struct task_struct *task;

	css_task_iter_start(&cs->css, &it);
	while ((task = css_task_iter_next(&it)))
833
		set_cpus_allowed_ptr(task, cs->effective_cpus);
834
	css_task_iter_end(&it);
835 836
}

837
/*
838 839 840 841 842 843
 * update_cpumasks_hier - Update effective cpumasks and tasks in the subtree
 * @cs: the cpuset to consider
 * @new_cpus: temp variable for calculating new effective_cpus
 *
 * When congifured cpumask is changed, the effective cpumasks of this cpuset
 * and all its descendants need to be updated.
844
 *
845
 * On legacy hierachy, effective_cpus will be the same with cpu_allowed.
846 847 848
 *
 * Called with cpuset_mutex held
 */
849
static void update_cpumasks_hier(struct cpuset *cs, struct cpumask *new_cpus)
850 851
{
	struct cpuset *cp;
852
	struct cgroup_subsys_state *pos_css;
853
	bool need_rebuild_sched_domains = false;
854 855

	rcu_read_lock();
856 857 858 859 860
	cpuset_for_each_descendant_pre(cp, pos_css, cs) {
		struct cpuset *parent = parent_cs(cp);

		cpumask_and(new_cpus, cp->cpus_allowed, parent->effective_cpus);

861 862 863 864 865 866 867
		/*
		 * If it becomes empty, inherit the effective mask of the
		 * parent, which is guaranteed to have some CPUs.
		 */
		if (cpumask_empty(new_cpus))
			cpumask_copy(new_cpus, parent->effective_cpus);

868 869 870 871
		/* Skip the whole subtree if the cpumask remains the same. */
		if (cpumask_equal(new_cpus, cp->effective_cpus)) {
			pos_css = css_rightmost_descendant(pos_css);
			continue;
872
		}
873

874
		if (!css_tryget_online(&cp->css))
875 876 877
			continue;
		rcu_read_unlock();

878 879 880 881 882 883 884
		mutex_lock(&callback_mutex);
		cpumask_copy(cp->effective_cpus, new_cpus);
		mutex_unlock(&callback_mutex);

		WARN_ON(!cgroup_on_dfl(cp->css.cgroup) &&
			!cpumask_equal(cp->cpus_allowed, cp->effective_cpus));

885
		update_tasks_cpumask(cp);
886

887 888 889 890 891 892 893 894
		/*
		 * If the effective cpumask of any non-empty cpuset is changed,
		 * we need to rebuild sched domains.
		 */
		if (!cpumask_empty(cp->cpus_allowed) &&
		    is_sched_load_balance(cp))
			need_rebuild_sched_domains = true;

895 896 897 898
		rcu_read_lock();
		css_put(&cp->css);
	}
	rcu_read_unlock();
899 900 901

	if (need_rebuild_sched_domains)
		rebuild_sched_domains_locked();
902 903
}

C
Cliff Wickman 已提交
904 905 906
/**
 * update_cpumask - update the cpus_allowed mask of a cpuset and all tasks in it
 * @cs: the cpuset to consider
907
 * @trialcs: trial cpuset
C
Cliff Wickman 已提交
908 909
 * @buf: buffer of cpu numbers written to this cpuset
 */
910 911
static int update_cpumask(struct cpuset *cs, struct cpuset *trialcs,
			  const char *buf)
L
Linus Torvalds 已提交
912
{
C
Cliff Wickman 已提交
913
	int retval;
L
Linus Torvalds 已提交
914

915
	/* top_cpuset.cpus_allowed tracks cpu_online_mask; it's read-only */
916 917 918
	if (cs == &top_cpuset)
		return -EACCES;

919
	/*
920
	 * An empty cpus_allowed is ok only if the cpuset has no tasks.
921 922 923
	 * Since cpulist_parse() fails on an empty mask, we special case
	 * that parsing.  The validate_change() call ensures that cpusets
	 * with tasks have cpus.
924
	 */
925
	if (!*buf) {
926
		cpumask_clear(trialcs->cpus_allowed);
927
	} else {
928
		retval = cpulist_parse(buf, trialcs->cpus_allowed);
929 930
		if (retval < 0)
			return retval;
931

932
		if (!cpumask_subset(trialcs->cpus_allowed, cpu_active_mask))
933
			return -EINVAL;
934
	}
P
Paul Jackson 已提交
935

P
Paul Menage 已提交
936
	/* Nothing to do if the cpus didn't change */
937
	if (cpumask_equal(cs->cpus_allowed, trialcs->cpus_allowed))
P
Paul Menage 已提交
938
		return 0;
C
Cliff Wickman 已提交
939

940 941 942 943
	retval = validate_change(cs, trialcs);
	if (retval < 0)
		return retval;

944
	mutex_lock(&callback_mutex);
945
	cpumask_copy(cs->cpus_allowed, trialcs->cpus_allowed);
946
	mutex_unlock(&callback_mutex);
P
Paul Jackson 已提交
947

948 949
	/* use trialcs->cpus_allowed as a temp variable */
	update_cpumasks_hier(cs, trialcs->cpus_allowed);
950
	return 0;
L
Linus Torvalds 已提交
951 952
}

953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975
/*
 * cpuset_migrate_mm
 *
 *    Migrate memory region from one set of nodes to another.
 *
 *    Temporarilly set tasks mems_allowed to target nodes of migration,
 *    so that the migration code can allocate pages on these nodes.
 *
 *    While the mm_struct we are migrating is typically from some
 *    other task, the task_struct mems_allowed that we are hacking
 *    is for our current task, which must allocate new pages for that
 *    migrating memory region.
 */

static void cpuset_migrate_mm(struct mm_struct *mm, const nodemask_t *from,
							const nodemask_t *to)
{
	struct task_struct *tsk = current;

	tsk->mems_allowed = *to;

	do_migrate_pages(mm, from, to, MPOL_MF_MOVE_ALL);

976
	rcu_read_lock();
977
	guarantee_online_mems(task_cs(tsk), &tsk->mems_allowed);
978
	rcu_read_unlock();
979 980
}

981
/*
982 983 984 985 986 987 988 989 990 991 992
 * cpuset_change_task_nodemask - change task's mems_allowed and mempolicy
 * @tsk: the task to change
 * @newmems: new nodes that the task will be set
 *
 * In order to avoid seeing no nodes if the old and new nodes are disjoint,
 * we structure updates as setting all new allowed nodes, then clearing newly
 * disallowed ones.
 */
static void cpuset_change_task_nodemask(struct task_struct *tsk,
					nodemask_t *newmems)
{
993
	bool need_loop;
994

995 996 997 998 999 1000 1001 1002 1003 1004
	/*
	 * Allow tasks that have access to memory reserves because they have
	 * been OOM killed to get memory anywhere.
	 */
	if (unlikely(test_thread_flag(TIF_MEMDIE)))
		return;
	if (current->flags & PF_EXITING) /* Let dying task have memory */
		return;

	task_lock(tsk);
1005 1006
	/*
	 * Determine if a loop is necessary if another thread is doing
1007
	 * read_mems_allowed_begin().  If at least one node remains unchanged and
1008 1009 1010 1011 1012
	 * tsk does not have a mempolicy, then an empty nodemask will not be
	 * possible when mems_allowed is larger than a word.
	 */
	need_loop = task_has_mempolicy(tsk) ||
			!nodes_intersects(*newmems, tsk->mems_allowed);
1013

1014 1015
	if (need_loop) {
		local_irq_disable();
1016
		write_seqcount_begin(&tsk->mems_allowed_seq);
1017
	}
1018

1019 1020
	nodes_or(tsk->mems_allowed, tsk->mems_allowed, *newmems);
	mpol_rebind_task(tsk, newmems, MPOL_REBIND_STEP1);
1021 1022

	mpol_rebind_task(tsk, newmems, MPOL_REBIND_STEP2);
1023
	tsk->mems_allowed = *newmems;
1024

1025
	if (need_loop) {
1026
		write_seqcount_end(&tsk->mems_allowed_seq);
1027 1028
		local_irq_enable();
	}
1029

1030
	task_unlock(tsk);
1031 1032
}

1033 1034
static void *cpuset_being_rebound;

1035 1036 1037 1038
/**
 * update_tasks_nodemask - Update the nodemasks of tasks in the cpuset.
 * @cs: the cpuset in which each task's mems_allowed mask needs to be changed
 *
1039 1040 1041
 * Iterate through each task of @cs updating its mems_allowed to the
 * effective cpuset's.  As this function is called with cpuset_mutex held,
 * cpuset membership stays stable.
1042
 */
1043
static void update_tasks_nodemask(struct cpuset *cs)
L
Linus Torvalds 已提交
1044
{
1045
	static nodemask_t newmems;	/* protected by cpuset_mutex */
1046 1047
	struct css_task_iter it;
	struct task_struct *task;
1048

1049
	cpuset_being_rebound = cs;		/* causes mpol_dup() rebind */
1050

1051
	guarantee_online_mems(cs, &newmems);
1052

1053
	/*
1054 1055 1056 1057
	 * The mpol_rebind_mm() call takes mmap_sem, which we couldn't
	 * take while holding tasklist_lock.  Forks can happen - the
	 * mpol_dup() cpuset_being_rebound check will catch such forks,
	 * and rebind their vma mempolicies too.  Because we still hold
1058
	 * the global cpuset_mutex, we know that no other rebind effort
1059
	 * will be contending for the global variable cpuset_being_rebound.
1060
	 * It's ok if we rebind the same mm twice; mpol_rebind_mm()
1061
	 * is idempotent.  Also migrate pages in each mm to new nodes.
1062
	 */
1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081
	css_task_iter_start(&cs->css, &it);
	while ((task = css_task_iter_next(&it))) {
		struct mm_struct *mm;
		bool migrate;

		cpuset_change_task_nodemask(task, &newmems);

		mm = get_task_mm(task);
		if (!mm)
			continue;

		migrate = is_memory_migrate(cs);

		mpol_rebind_mm(mm, &cs->mems_allowed);
		if (migrate)
			cpuset_migrate_mm(mm, &cs->old_mems_allowed, &newmems);
		mmput(mm);
	}
	css_task_iter_end(&it);
1082

1083 1084 1085 1086 1087 1088
	/*
	 * All the tasks' nodemasks have been updated, update
	 * cs->old_mems_allowed.
	 */
	cs->old_mems_allowed = newmems;

1089
	/* We're done rebinding vmas to this cpuset's new mems_allowed. */
1090
	cpuset_being_rebound = NULL;
L
Linus Torvalds 已提交
1091 1092
}

1093
/*
1094 1095 1096 1097 1098 1099
 * update_nodemasks_hier - Update effective nodemasks and tasks in the subtree
 * @cs: the cpuset to consider
 * @new_mems: a temp variable for calculating new effective_mems
 *
 * When configured nodemask is changed, the effective nodemasks of this cpuset
 * and all its descendants need to be updated.
1100
 *
1101
 * On legacy hiearchy, effective_mems will be the same with mems_allowed.
1102 1103 1104
 *
 * Called with cpuset_mutex held
 */
1105
static void update_nodemasks_hier(struct cpuset *cs, nodemask_t *new_mems)
1106 1107
{
	struct cpuset *cp;
1108
	struct cgroup_subsys_state *pos_css;
1109 1110

	rcu_read_lock();
1111 1112 1113 1114 1115
	cpuset_for_each_descendant_pre(cp, pos_css, cs) {
		struct cpuset *parent = parent_cs(cp);

		nodes_and(*new_mems, cp->mems_allowed, parent->effective_mems);

1116 1117 1118 1119 1120 1121 1122
		/*
		 * If it becomes empty, inherit the effective mask of the
		 * parent, which is guaranteed to have some MEMs.
		 */
		if (nodes_empty(*new_mems))
			*new_mems = parent->effective_mems;

1123 1124 1125 1126
		/* Skip the whole subtree if the nodemask remains the same. */
		if (nodes_equal(*new_mems, cp->effective_mems)) {
			pos_css = css_rightmost_descendant(pos_css);
			continue;
1127
		}
1128

1129
		if (!css_tryget_online(&cp->css))
1130 1131 1132
			continue;
		rcu_read_unlock();

1133 1134 1135 1136 1137 1138 1139
		mutex_lock(&callback_mutex);
		cp->effective_mems = *new_mems;
		mutex_unlock(&callback_mutex);

		WARN_ON(!cgroup_on_dfl(cp->css.cgroup) &&
			nodes_equal(cp->mems_allowed, cp->effective_mems));

1140
		update_tasks_nodemask(cp);
1141 1142 1143 1144 1145 1146 1147

		rcu_read_lock();
		css_put(&cp->css);
	}
	rcu_read_unlock();
}

1148 1149 1150
/*
 * Handle user request to change the 'mems' memory placement
 * of a cpuset.  Needs to validate the request, update the
1151 1152 1153 1154
 * cpusets mems_allowed, and for each task in the cpuset,
 * update mems_allowed and rebind task's mempolicy and any vma
 * mempolicies and if the cpuset is marked 'memory_migrate',
 * migrate the tasks pages to the new memory.
1155
 *
1156
 * Call with cpuset_mutex held.  May take callback_mutex during call.
1157 1158 1159 1160
 * Will take tasklist_lock, scan tasklist for tasks in cpuset cs,
 * lock each such tasks mm->mmap_sem, scan its vma's and rebind
 * their mempolicies to the cpusets new mems_allowed.
 */
1161 1162
static int update_nodemask(struct cpuset *cs, struct cpuset *trialcs,
			   const char *buf)
1163 1164 1165 1166
{
	int retval;

	/*
1167
	 * top_cpuset.mems_allowed tracks node_stats[N_MEMORY];
1168 1169
	 * it's read-only
	 */
1170 1171 1172 1173
	if (cs == &top_cpuset) {
		retval = -EACCES;
		goto done;
	}
1174 1175 1176 1177 1178 1179 1180 1181

	/*
	 * An empty mems_allowed is ok iff there are no tasks in the cpuset.
	 * Since nodelist_parse() fails on an empty mask, we special case
	 * that parsing.  The validate_change() call ensures that cpusets
	 * with tasks have memory.
	 */
	if (!*buf) {
1182
		nodes_clear(trialcs->mems_allowed);
1183
	} else {
1184
		retval = nodelist_parse(buf, trialcs->mems_allowed);
1185 1186 1187
		if (retval < 0)
			goto done;

1188
		if (!nodes_subset(trialcs->mems_allowed,
1189
				node_states[N_MEMORY])) {
1190 1191 1192
			retval =  -EINVAL;
			goto done;
		}
1193
	}
1194 1195

	if (nodes_equal(cs->mems_allowed, trialcs->mems_allowed)) {
1196 1197 1198
		retval = 0;		/* Too easy - nothing to do */
		goto done;
	}
1199
	retval = validate_change(cs, trialcs);
1200 1201 1202 1203
	if (retval < 0)
		goto done;

	mutex_lock(&callback_mutex);
1204
	cs->mems_allowed = trialcs->mems_allowed;
1205 1206
	mutex_unlock(&callback_mutex);

1207 1208
	/* use trialcs->mems_allowed as a temp variable */
	update_nodemasks_hier(cs, &cs->mems_allowed);
1209 1210 1211 1212
done:
	return retval;
}

1213 1214 1215 1216 1217
int current_cpuset_is_being_rebound(void)
{
	return task_cs(current) == cpuset_being_rebound;
}

1218
static int update_relax_domain_level(struct cpuset *cs, s64 val)
1219
{
1220
#ifdef CONFIG_SMP
1221
	if (val < -1 || val >= sched_domain_level_max)
1222
		return -EINVAL;
1223
#endif
1224 1225 1226

	if (val != cs->relax_domain_level) {
		cs->relax_domain_level = val;
1227 1228
		if (!cpumask_empty(cs->cpus_allowed) &&
		    is_sched_load_balance(cs))
1229
			rebuild_sched_domains_locked();
1230 1231 1232 1233 1234
	}

	return 0;
}

1235
/**
1236 1237 1238
 * update_tasks_flags - update the spread flags of tasks in the cpuset.
 * @cs: the cpuset in which each task's spread flags needs to be changed
 *
1239 1240 1241
 * Iterate through each task of @cs updating its spread flags.  As this
 * function is called with cpuset_mutex held, cpuset membership stays
 * stable.
1242
 */
1243
static void update_tasks_flags(struct cpuset *cs)
1244
{
1245 1246 1247 1248 1249 1250 1251
	struct css_task_iter it;
	struct task_struct *task;

	css_task_iter_start(&cs->css, &it);
	while ((task = css_task_iter_next(&it)))
		cpuset_update_task_spread_flag(cs, task);
	css_task_iter_end(&it);
1252 1253
}

L
Linus Torvalds 已提交
1254 1255
/*
 * update_flag - read a 0 or a 1 in a file and update associated flag
1256 1257 1258
 * bit:		the bit to update (see cpuset_flagbits_t)
 * cs:		the cpuset to update
 * turning_on: 	whether the flag is being set or cleared
1259
 *
1260
 * Call with cpuset_mutex held.
L
Linus Torvalds 已提交
1261 1262
 */

1263 1264
static int update_flag(cpuset_flagbits_t bit, struct cpuset *cs,
		       int turning_on)
L
Linus Torvalds 已提交
1265
{
1266
	struct cpuset *trialcs;
R
Rakib Mullick 已提交
1267
	int balance_flag_changed;
1268 1269
	int spread_flag_changed;
	int err;
L
Linus Torvalds 已提交
1270

1271 1272 1273 1274
	trialcs = alloc_trial_cpuset(cs);
	if (!trialcs)
		return -ENOMEM;

L
Linus Torvalds 已提交
1275
	if (turning_on)
1276
		set_bit(bit, &trialcs->flags);
L
Linus Torvalds 已提交
1277
	else
1278
		clear_bit(bit, &trialcs->flags);
L
Linus Torvalds 已提交
1279

1280
	err = validate_change(cs, trialcs);
1281
	if (err < 0)
1282
		goto out;
P
Paul Jackson 已提交
1283 1284

	balance_flag_changed = (is_sched_load_balance(cs) !=
1285
				is_sched_load_balance(trialcs));
P
Paul Jackson 已提交
1286

1287 1288 1289
	spread_flag_changed = ((is_spread_slab(cs) != is_spread_slab(trialcs))
			|| (is_spread_page(cs) != is_spread_page(trialcs)));

1290
	mutex_lock(&callback_mutex);
1291
	cs->flags = trialcs->flags;
1292
	mutex_unlock(&callback_mutex);
1293

1294
	if (!cpumask_empty(trialcs->cpus_allowed) && balance_flag_changed)
1295
		rebuild_sched_domains_locked();
P
Paul Jackson 已提交
1296

1297
	if (spread_flag_changed)
1298
		update_tasks_flags(cs);
1299 1300 1301
out:
	free_trial_cpuset(trialcs);
	return err;
L
Linus Torvalds 已提交
1302 1303
}

1304
/*
A
Adrian Bunk 已提交
1305
 * Frequency meter - How fast is some event occurring?
1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401
 *
 * These routines manage a digitally filtered, constant time based,
 * event frequency meter.  There are four routines:
 *   fmeter_init() - initialize a frequency meter.
 *   fmeter_markevent() - called each time the event happens.
 *   fmeter_getrate() - returns the recent rate of such events.
 *   fmeter_update() - internal routine used to update fmeter.
 *
 * A common data structure is passed to each of these routines,
 * which is used to keep track of the state required to manage the
 * frequency meter and its digital filter.
 *
 * The filter works on the number of events marked per unit time.
 * The filter is single-pole low-pass recursive (IIR).  The time unit
 * is 1 second.  Arithmetic is done using 32-bit integers scaled to
 * simulate 3 decimal digits of precision (multiplied by 1000).
 *
 * With an FM_COEF of 933, and a time base of 1 second, the filter
 * has a half-life of 10 seconds, meaning that if the events quit
 * happening, then the rate returned from the fmeter_getrate()
 * will be cut in half each 10 seconds, until it converges to zero.
 *
 * It is not worth doing a real infinitely recursive filter.  If more
 * than FM_MAXTICKS ticks have elapsed since the last filter event,
 * just compute FM_MAXTICKS ticks worth, by which point the level
 * will be stable.
 *
 * Limit the count of unprocessed events to FM_MAXCNT, so as to avoid
 * arithmetic overflow in the fmeter_update() routine.
 *
 * Given the simple 32 bit integer arithmetic used, this meter works
 * best for reporting rates between one per millisecond (msec) and
 * one per 32 (approx) seconds.  At constant rates faster than one
 * per msec it maxes out at values just under 1,000,000.  At constant
 * rates between one per msec, and one per second it will stabilize
 * to a value N*1000, where N is the rate of events per second.
 * At constant rates between one per second and one per 32 seconds,
 * it will be choppy, moving up on the seconds that have an event,
 * and then decaying until the next event.  At rates slower than
 * about one in 32 seconds, it decays all the way back to zero between
 * each event.
 */

#define FM_COEF 933		/* coefficient for half-life of 10 secs */
#define FM_MAXTICKS ((time_t)99) /* useless computing more ticks than this */
#define FM_MAXCNT 1000000	/* limit cnt to avoid overflow */
#define FM_SCALE 1000		/* faux fixed point scale */

/* Initialize a frequency meter */
static void fmeter_init(struct fmeter *fmp)
{
	fmp->cnt = 0;
	fmp->val = 0;
	fmp->time = 0;
	spin_lock_init(&fmp->lock);
}

/* Internal meter update - process cnt events and update value */
static void fmeter_update(struct fmeter *fmp)
{
	time_t now = get_seconds();
	time_t ticks = now - fmp->time;

	if (ticks == 0)
		return;

	ticks = min(FM_MAXTICKS, ticks);
	while (ticks-- > 0)
		fmp->val = (FM_COEF * fmp->val) / FM_SCALE;
	fmp->time = now;

	fmp->val += ((FM_SCALE - FM_COEF) * fmp->cnt) / FM_SCALE;
	fmp->cnt = 0;
}

/* Process any previous ticks, then bump cnt by one (times scale). */
static void fmeter_markevent(struct fmeter *fmp)
{
	spin_lock(&fmp->lock);
	fmeter_update(fmp);
	fmp->cnt = min(FM_MAXCNT, fmp->cnt + FM_SCALE);
	spin_unlock(&fmp->lock);
}

/* Process any previous ticks, then return current value. */
static int fmeter_getrate(struct fmeter *fmp)
{
	int val;

	spin_lock(&fmp->lock);
	fmeter_update(fmp);
	val = fmp->val;
	spin_unlock(&fmp->lock);
	return val;
}

1402 1403
static struct cpuset *cpuset_attach_old_cs;

1404
/* Called by cgroups to determine if a cpuset is usable; cpuset_mutex held */
1405 1406
static int cpuset_can_attach(struct cgroup_subsys_state *css,
			     struct cgroup_taskset *tset)
1407
{
1408
	struct cpuset *cs = css_cs(css);
1409 1410
	struct task_struct *task;
	int ret;
L
Linus Torvalds 已提交
1411

1412 1413 1414
	/* used later by cpuset_attach() */
	cpuset_attach_old_cs = task_cs(cgroup_taskset_first(tset));

1415 1416
	mutex_lock(&cpuset_mutex);

1417
	/* allow moving tasks into an empty cpuset if on default hierarchy */
1418
	ret = -ENOSPC;
1419
	if (!cgroup_on_dfl(css->cgroup) &&
1420
	    (cpumask_empty(cs->cpus_allowed) || nodes_empty(cs->mems_allowed)))
1421
		goto out_unlock;
1422

1423
	cgroup_taskset_for_each(task, tset) {
1424
		/*
1425 1426 1427 1428 1429 1430 1431
		 * Kthreads which disallow setaffinity shouldn't be moved
		 * to a new cpuset; we don't want to change their cpu
		 * affinity and isolating such threads by their set of
		 * allowed nodes is unnecessary.  Thus, cpusets are not
		 * applicable for such threads.  This prevents checking for
		 * success of set_cpus_allowed_ptr() on all attached tasks
		 * before cpus_allowed may be changed.
1432
		 */
1433
		ret = -EINVAL;
1434
		if (task->flags & PF_NO_SETAFFINITY)
1435 1436 1437 1438
			goto out_unlock;
		ret = security_task_setscheduler(task);
		if (ret)
			goto out_unlock;
1439
	}
1440

1441 1442 1443 1444 1445
	/*
	 * Mark attach is in progress.  This makes validate_change() fail
	 * changes which zero cpus/mems_allowed.
	 */
	cs->attach_in_progress++;
1446 1447 1448 1449
	ret = 0;
out_unlock:
	mutex_unlock(&cpuset_mutex);
	return ret;
1450
}
1451

1452
static void cpuset_cancel_attach(struct cgroup_subsys_state *css,
1453 1454
				 struct cgroup_taskset *tset)
{
1455
	mutex_lock(&cpuset_mutex);
1456
	css_cs(css)->attach_in_progress--;
1457
	mutex_unlock(&cpuset_mutex);
1458
}
L
Linus Torvalds 已提交
1459

1460
/*
1461
 * Protected by cpuset_mutex.  cpus_attach is used only by cpuset_attach()
1462 1463 1464 1465 1466
 * but we can't allocate it dynamically there.  Define it global and
 * allocate from cpuset_init().
 */
static cpumask_var_t cpus_attach;

1467 1468
static void cpuset_attach(struct cgroup_subsys_state *css,
			  struct cgroup_taskset *tset)
1469
{
1470
	/* static buf protected by cpuset_mutex */
1471
	static nodemask_t cpuset_attach_nodemask_to;
1472
	struct mm_struct *mm;
1473 1474
	struct task_struct *task;
	struct task_struct *leader = cgroup_taskset_first(tset);
1475
	struct cpuset *cs = css_cs(css);
1476
	struct cpuset *oldcs = cpuset_attach_old_cs;
1477

1478 1479
	mutex_lock(&cpuset_mutex);

1480 1481 1482 1483
	/* prepare for attach */
	if (cs == &top_cpuset)
		cpumask_copy(cpus_attach, cpu_possible_mask);
	else
1484
		guarantee_online_cpus(cs, cpus_attach);
1485

1486
	guarantee_online_mems(cs, &cpuset_attach_nodemask_to);
1487

1488
	cgroup_taskset_for_each(task, tset) {
1489 1490 1491 1492 1493 1494 1495 1496 1497
		/*
		 * can_attach beforehand should guarantee that this doesn't
		 * fail.  TODO: have a better way to handle failure here
		 */
		WARN_ON_ONCE(set_cpus_allowed_ptr(task, cpus_attach));

		cpuset_change_task_nodemask(task, &cpuset_attach_nodemask_to);
		cpuset_update_task_spread_flag(cs, task);
	}
1498

1499 1500 1501 1502
	/*
	 * Change mm, possibly for multiple threads in a threadgroup. This is
	 * expensive and may sleep.
	 */
1503
	cpuset_attach_nodemask_to = cs->effective_mems;
1504
	mm = get_task_mm(leader);
1505
	if (mm) {
1506
		mpol_rebind_mm(mm, &cpuset_attach_nodemask_to);
1507 1508 1509 1510 1511 1512 1513 1514 1515

		/*
		 * old_mems_allowed is the same with mems_allowed here, except
		 * if this task is being moved automatically due to hotplug.
		 * In that case @mems_allowed has been updated and is empty,
		 * so @old_mems_allowed is the right nodesets that we migrate
		 * mm from.
		 */
		if (is_memory_migrate(cs)) {
1516
			cpuset_migrate_mm(mm, &oldcs->old_mems_allowed,
1517
					  &cpuset_attach_nodemask_to);
1518
		}
1519 1520
		mmput(mm);
	}
1521

1522
	cs->old_mems_allowed = cpuset_attach_nodemask_to;
1523

1524
	cs->attach_in_progress--;
1525 1526
	if (!cs->attach_in_progress)
		wake_up(&cpuset_attach_wq);
1527 1528

	mutex_unlock(&cpuset_mutex);
L
Linus Torvalds 已提交
1529 1530 1531 1532 1533
}

/* The various types of files and directories in a cpuset file system */

typedef enum {
1534
	FILE_MEMORY_MIGRATE,
L
Linus Torvalds 已提交
1535 1536 1537 1538
	FILE_CPULIST,
	FILE_MEMLIST,
	FILE_CPU_EXCLUSIVE,
	FILE_MEM_EXCLUSIVE,
1539
	FILE_MEM_HARDWALL,
P
Paul Jackson 已提交
1540
	FILE_SCHED_LOAD_BALANCE,
1541
	FILE_SCHED_RELAX_DOMAIN_LEVEL,
1542 1543
	FILE_MEMORY_PRESSURE_ENABLED,
	FILE_MEMORY_PRESSURE,
1544 1545
	FILE_SPREAD_PAGE,
	FILE_SPREAD_SLAB,
L
Linus Torvalds 已提交
1546 1547
} cpuset_filetype_t;

1548 1549
static int cpuset_write_u64(struct cgroup_subsys_state *css, struct cftype *cft,
			    u64 val)
1550
{
1551
	struct cpuset *cs = css_cs(css);
1552
	cpuset_filetype_t type = cft->private;
1553
	int retval = 0;
1554

1555
	mutex_lock(&cpuset_mutex);
1556 1557
	if (!is_cpuset_online(cs)) {
		retval = -ENODEV;
1558
		goto out_unlock;
1559
	}
1560 1561

	switch (type) {
L
Linus Torvalds 已提交
1562
	case FILE_CPU_EXCLUSIVE:
1563
		retval = update_flag(CS_CPU_EXCLUSIVE, cs, val);
L
Linus Torvalds 已提交
1564 1565
		break;
	case FILE_MEM_EXCLUSIVE:
1566
		retval = update_flag(CS_MEM_EXCLUSIVE, cs, val);
L
Linus Torvalds 已提交
1567
		break;
1568 1569 1570
	case FILE_MEM_HARDWALL:
		retval = update_flag(CS_MEM_HARDWALL, cs, val);
		break;
P
Paul Jackson 已提交
1571
	case FILE_SCHED_LOAD_BALANCE:
1572
		retval = update_flag(CS_SCHED_LOAD_BALANCE, cs, val);
1573
		break;
1574
	case FILE_MEMORY_MIGRATE:
1575
		retval = update_flag(CS_MEMORY_MIGRATE, cs, val);
1576
		break;
1577
	case FILE_MEMORY_PRESSURE_ENABLED:
1578
		cpuset_memory_pressure_enabled = !!val;
1579 1580 1581 1582
		break;
	case FILE_MEMORY_PRESSURE:
		retval = -EACCES;
		break;
1583
	case FILE_SPREAD_PAGE:
1584
		retval = update_flag(CS_SPREAD_PAGE, cs, val);
1585 1586
		break;
	case FILE_SPREAD_SLAB:
1587
		retval = update_flag(CS_SPREAD_SLAB, cs, val);
1588
		break;
L
Linus Torvalds 已提交
1589 1590
	default:
		retval = -EINVAL;
1591
		break;
L
Linus Torvalds 已提交
1592
	}
1593 1594
out_unlock:
	mutex_unlock(&cpuset_mutex);
L
Linus Torvalds 已提交
1595 1596 1597
	return retval;
}

1598 1599
static int cpuset_write_s64(struct cgroup_subsys_state *css, struct cftype *cft,
			    s64 val)
1600
{
1601
	struct cpuset *cs = css_cs(css);
1602
	cpuset_filetype_t type = cft->private;
1603
	int retval = -ENODEV;
1604

1605 1606 1607
	mutex_lock(&cpuset_mutex);
	if (!is_cpuset_online(cs))
		goto out_unlock;
1608

1609 1610 1611 1612 1613 1614 1615 1616
	switch (type) {
	case FILE_SCHED_RELAX_DOMAIN_LEVEL:
		retval = update_relax_domain_level(cs, val);
		break;
	default:
		retval = -EINVAL;
		break;
	}
1617 1618
out_unlock:
	mutex_unlock(&cpuset_mutex);
1619 1620 1621
	return retval;
}

1622 1623 1624
/*
 * Common handling for a write to a "cpus" or "mems" file.
 */
1625 1626
static ssize_t cpuset_write_resmask(struct kernfs_open_file *of,
				    char *buf, size_t nbytes, loff_t off)
1627
{
1628
	struct cpuset *cs = css_cs(of_css(of));
1629
	struct cpuset *trialcs;
1630
	int retval = -ENODEV;
1631

1632 1633
	buf = strstrip(buf);

1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646
	/*
	 * CPU or memory hotunplug may leave @cs w/o any execution
	 * resources, in which case the hotplug code asynchronously updates
	 * configuration and transfers all tasks to the nearest ancestor
	 * which can execute.
	 *
	 * As writes to "cpus" or "mems" may restore @cs's execution
	 * resources, wait for the previously scheduled operations before
	 * proceeding, so that we don't end up keep removing tasks added
	 * after execution capability is restored.
	 */
	flush_work(&cpuset_hotplug_work);

1647 1648 1649
	mutex_lock(&cpuset_mutex);
	if (!is_cpuset_online(cs))
		goto out_unlock;
1650

1651
	trialcs = alloc_trial_cpuset(cs);
1652 1653
	if (!trialcs) {
		retval = -ENOMEM;
1654
		goto out_unlock;
1655
	}
1656

1657
	switch (of_cft(of)->private) {
1658
	case FILE_CPULIST:
1659
		retval = update_cpumask(cs, trialcs, buf);
1660 1661
		break;
	case FILE_MEMLIST:
1662
		retval = update_nodemask(cs, trialcs, buf);
1663 1664 1665 1666 1667
		break;
	default:
		retval = -EINVAL;
		break;
	}
1668 1669

	free_trial_cpuset(trialcs);
1670 1671
out_unlock:
	mutex_unlock(&cpuset_mutex);
1672
	return retval ?: nbytes;
1673 1674
}

L
Linus Torvalds 已提交
1675 1676 1677 1678 1679 1680 1681 1682
/*
 * These ascii lists should be read in a single call, by using a user
 * buffer large enough to hold the entire map.  If read in smaller
 * chunks, there is no guarantee of atomicity.  Since the display format
 * used, list of ranges of sequential numbers, is variable length,
 * and since these maps can change value dynamically, one could read
 * gibberish by doing partial reads while a list was changing.
 */
1683
static int cpuset_common_seq_show(struct seq_file *sf, void *v)
L
Linus Torvalds 已提交
1684
{
1685 1686
	struct cpuset *cs = css_cs(seq_css(sf));
	cpuset_filetype_t type = seq_cft(sf)->private;
1687 1688 1689
	ssize_t count;
	char *buf, *s;
	int ret = 0;
L
Linus Torvalds 已提交
1690

1691 1692
	count = seq_get_buf(sf, &buf);
	s = buf;
L
Linus Torvalds 已提交
1693

1694
	mutex_lock(&callback_mutex);
L
Linus Torvalds 已提交
1695 1696 1697

	switch (type) {
	case FILE_CPULIST:
1698
		s += cpulist_scnprintf(s, count, cs->cpus_allowed);
L
Linus Torvalds 已提交
1699 1700
		break;
	case FILE_MEMLIST:
1701
		s += nodelist_scnprintf(s, count, cs->mems_allowed);
L
Linus Torvalds 已提交
1702 1703
		break;
	default:
1704 1705
		ret = -EINVAL;
		goto out_unlock;
L
Linus Torvalds 已提交
1706 1707
	}

1708 1709 1710 1711 1712 1713 1714 1715 1716
	if (s < buf + count - 1) {
		*s++ = '\n';
		seq_commit(sf, s - buf);
	} else {
		seq_commit(sf, -1);
	}
out_unlock:
	mutex_unlock(&callback_mutex);
	return ret;
L
Linus Torvalds 已提交
1717 1718
}

1719
static u64 cpuset_read_u64(struct cgroup_subsys_state *css, struct cftype *cft)
1720
{
1721
	struct cpuset *cs = css_cs(css);
1722 1723 1724 1725 1726 1727
	cpuset_filetype_t type = cft->private;
	switch (type) {
	case FILE_CPU_EXCLUSIVE:
		return is_cpu_exclusive(cs);
	case FILE_MEM_EXCLUSIVE:
		return is_mem_exclusive(cs);
1728 1729
	case FILE_MEM_HARDWALL:
		return is_mem_hardwall(cs);
1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744
	case FILE_SCHED_LOAD_BALANCE:
		return is_sched_load_balance(cs);
	case FILE_MEMORY_MIGRATE:
		return is_memory_migrate(cs);
	case FILE_MEMORY_PRESSURE_ENABLED:
		return cpuset_memory_pressure_enabled;
	case FILE_MEMORY_PRESSURE:
		return fmeter_getrate(&cs->fmeter);
	case FILE_SPREAD_PAGE:
		return is_spread_page(cs);
	case FILE_SPREAD_SLAB:
		return is_spread_slab(cs);
	default:
		BUG();
	}
1745 1746 1747

	/* Unreachable but makes gcc happy */
	return 0;
1748
}
L
Linus Torvalds 已提交
1749

1750
static s64 cpuset_read_s64(struct cgroup_subsys_state *css, struct cftype *cft)
1751
{
1752
	struct cpuset *cs = css_cs(css);
1753 1754 1755 1756 1757 1758 1759
	cpuset_filetype_t type = cft->private;
	switch (type) {
	case FILE_SCHED_RELAX_DOMAIN_LEVEL:
		return cs->relax_domain_level;
	default:
		BUG();
	}
1760 1761 1762

	/* Unrechable but makes gcc happy */
	return 0;
1763 1764
}

L
Linus Torvalds 已提交
1765 1766 1767 1768 1769

/*
 * for the common functions, 'private' gives the type of file
 */

1770 1771 1772
static struct cftype files[] = {
	{
		.name = "cpus",
1773
		.seq_show = cpuset_common_seq_show,
1774
		.write = cpuset_write_resmask,
1775
		.max_write_len = (100U + 6 * NR_CPUS),
1776 1777 1778 1779 1780
		.private = FILE_CPULIST,
	},

	{
		.name = "mems",
1781
		.seq_show = cpuset_common_seq_show,
1782
		.write = cpuset_write_resmask,
1783
		.max_write_len = (100U + 6 * MAX_NUMNODES),
1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800
		.private = FILE_MEMLIST,
	},

	{
		.name = "cpu_exclusive",
		.read_u64 = cpuset_read_u64,
		.write_u64 = cpuset_write_u64,
		.private = FILE_CPU_EXCLUSIVE,
	},

	{
		.name = "mem_exclusive",
		.read_u64 = cpuset_read_u64,
		.write_u64 = cpuset_write_u64,
		.private = FILE_MEM_EXCLUSIVE,
	},

1801 1802 1803 1804 1805 1806 1807
	{
		.name = "mem_hardwall",
		.read_u64 = cpuset_read_u64,
		.write_u64 = cpuset_write_u64,
		.private = FILE_MEM_HARDWALL,
	},

1808 1809 1810 1811 1812 1813 1814 1815 1816
	{
		.name = "sched_load_balance",
		.read_u64 = cpuset_read_u64,
		.write_u64 = cpuset_write_u64,
		.private = FILE_SCHED_LOAD_BALANCE,
	},

	{
		.name = "sched_relax_domain_level",
1817 1818
		.read_s64 = cpuset_read_s64,
		.write_s64 = cpuset_write_s64,
1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833
		.private = FILE_SCHED_RELAX_DOMAIN_LEVEL,
	},

	{
		.name = "memory_migrate",
		.read_u64 = cpuset_read_u64,
		.write_u64 = cpuset_write_u64,
		.private = FILE_MEMORY_MIGRATE,
	},

	{
		.name = "memory_pressure",
		.read_u64 = cpuset_read_u64,
		.write_u64 = cpuset_write_u64,
		.private = FILE_MEMORY_PRESSURE,
L
Li Zefan 已提交
1834
		.mode = S_IRUGO,
1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849
	},

	{
		.name = "memory_spread_page",
		.read_u64 = cpuset_read_u64,
		.write_u64 = cpuset_write_u64,
		.private = FILE_SPREAD_PAGE,
	},

	{
		.name = "memory_spread_slab",
		.read_u64 = cpuset_read_u64,
		.write_u64 = cpuset_write_u64,
		.private = FILE_SPREAD_SLAB,
	},
1850

1851 1852 1853 1854 1855 1856 1857
	{
		.name = "memory_pressure_enabled",
		.flags = CFTYPE_ONLY_ON_ROOT,
		.read_u64 = cpuset_read_u64,
		.write_u64 = cpuset_write_u64,
		.private = FILE_MEMORY_PRESSURE_ENABLED,
	},
L
Linus Torvalds 已提交
1858

1859 1860
	{ }	/* terminate */
};
L
Linus Torvalds 已提交
1861 1862

/*
1863
 *	cpuset_css_alloc - allocate a cpuset css
L
Li Zefan 已提交
1864
 *	cgrp:	control group that the new cpuset will be part of
L
Linus Torvalds 已提交
1865 1866
 */

1867 1868
static struct cgroup_subsys_state *
cpuset_css_alloc(struct cgroup_subsys_state *parent_css)
L
Linus Torvalds 已提交
1869
{
T
Tejun Heo 已提交
1870
	struct cpuset *cs;
L
Linus Torvalds 已提交
1871

1872
	if (!parent_css)
1873
		return &top_cpuset.css;
1874

T
Tejun Heo 已提交
1875
	cs = kzalloc(sizeof(*cs), GFP_KERNEL);
L
Linus Torvalds 已提交
1876
	if (!cs)
1877
		return ERR_PTR(-ENOMEM);
1878 1879 1880 1881
	if (!alloc_cpumask_var(&cs->cpus_allowed, GFP_KERNEL))
		goto free_cs;
	if (!alloc_cpumask_var(&cs->effective_cpus, GFP_KERNEL))
		goto free_cpus;
L
Linus Torvalds 已提交
1882

P
Paul Jackson 已提交
1883
	set_bit(CS_SCHED_LOAD_BALANCE, &cs->flags);
1884
	cpumask_clear(cs->cpus_allowed);
1885
	nodes_clear(cs->mems_allowed);
1886 1887
	cpumask_clear(cs->effective_cpus);
	nodes_clear(cs->effective_mems);
1888
	fmeter_init(&cs->fmeter);
1889
	cs->relax_domain_level = -1;
L
Linus Torvalds 已提交
1890

T
Tejun Heo 已提交
1891
	return &cs->css;
1892 1893 1894 1895 1896 1897

free_cpus:
	free_cpumask_var(cs->cpus_allowed);
free_cs:
	kfree(cs);
	return ERR_PTR(-ENOMEM);
T
Tejun Heo 已提交
1898 1899
}

1900
static int cpuset_css_online(struct cgroup_subsys_state *css)
T
Tejun Heo 已提交
1901
{
1902
	struct cpuset *cs = css_cs(css);
T
Tejun Heo 已提交
1903
	struct cpuset *parent = parent_cs(cs);
1904
	struct cpuset *tmp_cs;
1905
	struct cgroup_subsys_state *pos_css;
T
Tejun Heo 已提交
1906 1907 1908 1909

	if (!parent)
		return 0;

1910 1911
	mutex_lock(&cpuset_mutex);

T
Tejun Heo 已提交
1912
	set_bit(CS_ONLINE, &cs->flags);
T
Tejun Heo 已提交
1913 1914 1915 1916
	if (is_spread_page(parent))
		set_bit(CS_SPREAD_PAGE, &cs->flags);
	if (is_spread_slab(parent))
		set_bit(CS_SPREAD_SLAB, &cs->flags);
L
Linus Torvalds 已提交
1917

1918
	cpuset_inc();
1919

1920 1921 1922 1923 1924 1925 1926
	mutex_lock(&callback_mutex);
	if (cgroup_on_dfl(cs->css.cgroup)) {
		cpumask_copy(cs->effective_cpus, parent->effective_cpus);
		cs->effective_mems = parent->effective_mems;
	}
	mutex_unlock(&callback_mutex);

1927
	if (!test_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags))
1928
		goto out_unlock;
1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942

	/*
	 * Clone @parent's configuration if CGRP_CPUSET_CLONE_CHILDREN is
	 * set.  This flag handling is implemented in cgroup core for
	 * histrical reasons - the flag may be specified during mount.
	 *
	 * Currently, if any sibling cpusets have exclusive cpus or mem, we
	 * refuse to clone the configuration - thereby refusing the task to
	 * be entered, and as a result refusing the sys_unshare() or
	 * clone() which initiated it.  If this becomes a problem for some
	 * users who wish to allow that scenario, then this could be
	 * changed to grant parent->cpus_allowed-sibling_cpus_exclusive
	 * (and likewise for mems) to the new cgroup.
	 */
1943
	rcu_read_lock();
1944
	cpuset_for_each_child(tmp_cs, pos_css, parent) {
1945 1946
		if (is_mem_exclusive(tmp_cs) || is_cpu_exclusive(tmp_cs)) {
			rcu_read_unlock();
1947
			goto out_unlock;
1948
		}
1949
	}
1950
	rcu_read_unlock();
1951 1952 1953 1954 1955

	mutex_lock(&callback_mutex);
	cs->mems_allowed = parent->mems_allowed;
	cpumask_copy(cs->cpus_allowed, parent->cpus_allowed);
	mutex_unlock(&callback_mutex);
1956 1957
out_unlock:
	mutex_unlock(&cpuset_mutex);
T
Tejun Heo 已提交
1958 1959 1960
	return 0;
}

1961 1962 1963 1964 1965 1966
/*
 * If the cpuset being removed has its flag 'sched_load_balance'
 * enabled, then simulate turning sched_load_balance off, which
 * will call rebuild_sched_domains_locked().
 */

1967
static void cpuset_css_offline(struct cgroup_subsys_state *css)
T
Tejun Heo 已提交
1968
{
1969
	struct cpuset *cs = css_cs(css);
T
Tejun Heo 已提交
1970

1971
	mutex_lock(&cpuset_mutex);
T
Tejun Heo 已提交
1972 1973 1974 1975

	if (is_sched_load_balance(cs))
		update_flag(CS_SCHED_LOAD_BALANCE, cs, 0);

1976
	cpuset_dec();
T
Tejun Heo 已提交
1977
	clear_bit(CS_ONLINE, &cs->flags);
T
Tejun Heo 已提交
1978

1979
	mutex_unlock(&cpuset_mutex);
L
Linus Torvalds 已提交
1980 1981
}

1982
static void cpuset_css_free(struct cgroup_subsys_state *css)
L
Linus Torvalds 已提交
1983
{
1984
	struct cpuset *cs = css_cs(css);
L
Linus Torvalds 已提交
1985

1986
	free_cpumask_var(cs->effective_cpus);
1987
	free_cpumask_var(cs->cpus_allowed);
1988
	kfree(cs);
L
Linus Torvalds 已提交
1989 1990
}

1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008
static void cpuset_bind(struct cgroup_subsys_state *root_css)
{
	mutex_lock(&cpuset_mutex);
	mutex_lock(&callback_mutex);

	if (cgroup_on_dfl(root_css->cgroup)) {
		cpumask_copy(top_cpuset.cpus_allowed, cpu_possible_mask);
		top_cpuset.mems_allowed = node_possible_map;
	} else {
		cpumask_copy(top_cpuset.cpus_allowed,
			     top_cpuset.effective_cpus);
		top_cpuset.mems_allowed = top_cpuset.effective_mems;
	}

	mutex_unlock(&callback_mutex);
	mutex_unlock(&cpuset_mutex);
}

2009
struct cgroup_subsys cpuset_cgrp_subsys = {
2010 2011 2012 2013 2014 2015 2016 2017 2018 2019
	.css_alloc	= cpuset_css_alloc,
	.css_online	= cpuset_css_online,
	.css_offline	= cpuset_css_offline,
	.css_free	= cpuset_css_free,
	.can_attach	= cpuset_can_attach,
	.cancel_attach	= cpuset_cancel_attach,
	.attach		= cpuset_attach,
	.bind		= cpuset_bind,
	.base_cftypes	= files,
	.early_init	= 1,
2020 2021
};

L
Linus Torvalds 已提交
2022 2023 2024 2025 2026 2027 2028 2029
/**
 * cpuset_init - initialize cpusets at system boot
 *
 * Description: Initialize top_cpuset and the cpuset internal file system,
 **/

int __init cpuset_init(void)
{
2030
	int err = 0;
L
Linus Torvalds 已提交
2031

2032 2033
	if (!alloc_cpumask_var(&top_cpuset.cpus_allowed, GFP_KERNEL))
		BUG();
2034 2035
	if (!alloc_cpumask_var(&top_cpuset.effective_cpus, GFP_KERNEL))
		BUG();
2036

2037
	cpumask_setall(top_cpuset.cpus_allowed);
2038
	nodes_setall(top_cpuset.mems_allowed);
2039 2040
	cpumask_setall(top_cpuset.effective_cpus);
	nodes_setall(top_cpuset.effective_mems);
L
Linus Torvalds 已提交
2041

2042
	fmeter_init(&top_cpuset.fmeter);
P
Paul Jackson 已提交
2043
	set_bit(CS_SCHED_LOAD_BALANCE, &top_cpuset.flags);
2044
	top_cpuset.relax_domain_level = -1;
L
Linus Torvalds 已提交
2045 2046 2047

	err = register_filesystem(&cpuset_fs_type);
	if (err < 0)
2048 2049
		return err;

2050 2051 2052
	if (!alloc_cpumask_var(&cpus_attach, GFP_KERNEL))
		BUG();

2053
	return 0;
L
Linus Torvalds 已提交
2054 2055
}

2056
/*
2057
 * If CPU and/or memory hotplug handlers, below, unplug any CPUs
2058 2059
 * or memory nodes, we need to walk over the cpuset hierarchy,
 * removing that CPU or node from all cpusets.  If this removes the
2060 2061
 * last CPU or node from a cpuset, then move the tasks in the empty
 * cpuset to its next-highest non-empty parent.
2062
 */
2063 2064 2065 2066 2067 2068 2069 2070
static void remove_tasks_in_empty_cpuset(struct cpuset *cs)
{
	struct cpuset *parent;

	/*
	 * Find its next-highest non-empty parent, (top cpuset
	 * has online cpus, so can't be empty).
	 */
T
Tejun Heo 已提交
2071
	parent = parent_cs(cs);
2072
	while (cpumask_empty(parent->cpus_allowed) ||
2073
			nodes_empty(parent->mems_allowed))
T
Tejun Heo 已提交
2074
		parent = parent_cs(parent);
2075

2076
	if (cgroup_transfer_tasks(parent->css.cgroup, cs->css.cgroup)) {
2077
		pr_err("cpuset: failed to transfer tasks out of empty cpuset ");
T
Tejun Heo 已提交
2078 2079
		pr_cont_cgroup_name(cs->css.cgroup);
		pr_cont("\n");
2080
	}
2081 2082
}

2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141
static void hotplug_update_tasks_legacy(struct cpuset *cs,
					struct cpumask *off_cpus,
					nodemask_t *off_mems)
{
	bool is_empty;

	mutex_lock(&callback_mutex);
	cpumask_andnot(cs->cpus_allowed, cs->cpus_allowed, off_cpus);
	cpumask_andnot(cs->effective_cpus, cs->effective_cpus, off_cpus);
	nodes_andnot(cs->mems_allowed, cs->mems_allowed, *off_mems);
	nodes_andnot(cs->effective_mems, cs->effective_mems, *off_mems);
	mutex_unlock(&callback_mutex);

	/*
	 * Don't call update_tasks_cpumask() if the cpuset becomes empty,
	 * as the tasks will be migratecd to an ancestor.
	 */
	if (!cpumask_empty(off_cpus) && !cpumask_empty(cs->cpus_allowed))
		update_tasks_cpumask(cs);
	if (!nodes_empty(*off_mems) && !nodes_empty(cs->mems_allowed))
		update_tasks_nodemask(cs);

	is_empty = cpumask_empty(cs->cpus_allowed) ||
		   nodes_empty(cs->mems_allowed);

	mutex_unlock(&cpuset_mutex);

	/*
	 * Move tasks to the nearest ancestor with execution resources,
	 * This is full cgroup operation which will also call back into
	 * cpuset. Should be done outside any lock.
	 */
	if (is_empty)
		remove_tasks_in_empty_cpuset(cs);

	mutex_lock(&cpuset_mutex);
}

static void hotplug_update_tasks(struct cpuset *cs,
				 struct cpumask *off_cpus,
				 nodemask_t *off_mems)
{
	mutex_lock(&callback_mutex);
	cpumask_andnot(cs->effective_cpus, cs->effective_cpus, off_cpus);
	if (cpumask_empty(cs->effective_cpus))
		cpumask_copy(cs->effective_cpus,
			     parent_cs(cs)->effective_cpus);

	nodes_andnot(cs->effective_mems, cs->effective_mems, *off_mems);
	if (nodes_empty(cs->effective_mems))
		cs->effective_mems = parent_cs(cs)->effective_mems;
	mutex_unlock(&callback_mutex);

	if (!cpumask_empty(off_cpus))
		update_tasks_cpumask(cs);
	if (!nodes_empty(*off_mems))
		update_tasks_nodemask(cs);
}

2142
/**
2143
 * cpuset_hotplug_update_tasks - update tasks in a cpuset for hotunplug
2144
 * @cs: cpuset in interest
2145
 *
2146 2147 2148
 * Compare @cs's cpu and mem masks against top_cpuset and if some have gone
 * offline, update @cs accordingly.  If @cs ends up with no CPU or memory,
 * all its tasks are moved to the nearest ancestor with both resources.
2149
 */
2150
static void cpuset_hotplug_update_tasks(struct cpuset *cs)
2151
{
2152
	static cpumask_t off_cpus;
2153
	static nodemask_t off_mems;
2154 2155
retry:
	wait_event(cpuset_attach_wq, cs->attach_in_progress == 0);
2156

2157
	mutex_lock(&cpuset_mutex);
2158

2159 2160 2161 2162 2163 2164 2165 2166 2167
	/*
	 * We have raced with task attaching. We wait until attaching
	 * is finished, so we won't attach a task to an empty cpuset.
	 */
	if (cs->attach_in_progress) {
		mutex_unlock(&cpuset_mutex);
		goto retry;
	}

2168 2169 2170
	cpumask_andnot(&off_cpus, cs->effective_cpus,
		       top_cpuset.effective_cpus);
	nodes_andnot(off_mems, cs->effective_mems, top_cpuset.effective_mems);
2171

2172 2173 2174 2175
	if (cgroup_on_dfl(cs->css.cgroup))
		hotplug_update_tasks(cs, &off_cpus, &off_mems);
	else
		hotplug_update_tasks_legacy(cs, &off_cpus, &off_mems);
2176

2177
	mutex_unlock(&cpuset_mutex);
2178 2179
}

2180
/**
2181
 * cpuset_hotplug_workfn - handle CPU/memory hotunplug for a cpuset
2182
 *
2183 2184 2185 2186 2187
 * This function is called after either CPU or memory configuration has
 * changed and updates cpuset accordingly.  The top_cpuset is always
 * synchronized to cpu_active_mask and N_MEMORY, which is necessary in
 * order to make cpusets transparent (of no affect) on systems that are
 * actively using CPU hotplug but making no active use of cpusets.
2188
 *
2189
 * Non-root cpusets are only affected by offlining.  If any CPUs or memory
2190 2191
 * nodes have been taken down, cpuset_hotplug_update_tasks() is invoked on
 * all descendants.
2192
 *
2193 2194
 * Note that CPU offlining during suspend is ignored.  We don't modify
 * cpusets across suspend/resume cycles at all.
2195
 */
2196
static void cpuset_hotplug_workfn(struct work_struct *work)
2197
{
2198 2199
	static cpumask_t new_cpus;
	static nodemask_t new_mems;
2200
	bool cpus_updated, mems_updated;
2201
	bool on_dfl = cgroup_on_dfl(top_cpuset.css.cgroup);
2202

2203
	mutex_lock(&cpuset_mutex);
2204

2205 2206 2207
	/* fetch the available cpus/mems and find out which changed how */
	cpumask_copy(&new_cpus, cpu_active_mask);
	new_mems = node_states[N_MEMORY];
2208

2209 2210
	cpus_updated = !cpumask_equal(top_cpuset.effective_cpus, &new_cpus);
	mems_updated = !nodes_equal(top_cpuset.effective_mems, new_mems);
2211

2212 2213 2214
	/* synchronize cpus_allowed to cpu_active_mask */
	if (cpus_updated) {
		mutex_lock(&callback_mutex);
2215 2216
		if (!on_dfl)
			cpumask_copy(top_cpuset.cpus_allowed, &new_cpus);
2217
		cpumask_copy(top_cpuset.effective_cpus, &new_cpus);
2218 2219 2220
		mutex_unlock(&callback_mutex);
		/* we don't mess with cpumasks of tasks in top_cpuset */
	}
2221

2222 2223 2224
	/* synchronize mems_allowed to N_MEMORY */
	if (mems_updated) {
		mutex_lock(&callback_mutex);
2225 2226
		if (!on_dfl)
			top_cpuset.mems_allowed = new_mems;
2227
		top_cpuset.effective_mems = new_mems;
2228
		mutex_unlock(&callback_mutex);
2229
		update_tasks_nodemask(&top_cpuset);
2230
	}
2231

2232 2233
	mutex_unlock(&cpuset_mutex);

2234 2235
	/* if cpus or mems changed, we need to propagate to descendants */
	if (cpus_updated || mems_updated) {
2236
		struct cpuset *cs;
2237
		struct cgroup_subsys_state *pos_css;
2238

2239
		rcu_read_lock();
2240
		cpuset_for_each_descendant_pre(cs, pos_css, &top_cpuset) {
2241
			if (cs == &top_cpuset || !css_tryget_online(&cs->css))
2242 2243
				continue;
			rcu_read_unlock();
2244

2245
			cpuset_hotplug_update_tasks(cs);
2246

2247 2248 2249 2250 2251
			rcu_read_lock();
			css_put(&cs->css);
		}
		rcu_read_unlock();
	}
2252

2253
	/* rebuild sched domains if cpus_allowed has changed */
2254 2255
	if (cpus_updated)
		rebuild_sched_domains();
2256 2257
}

2258
void cpuset_update_active_cpus(bool cpu_online)
2259
{
2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271
	/*
	 * We're inside cpu hotplug critical region which usually nests
	 * inside cgroup synchronization.  Bounce actual hotplug processing
	 * to a work item to avoid reverse locking order.
	 *
	 * We still need to do partition_sched_domains() synchronously;
	 * otherwise, the scheduler will get confused and put tasks to the
	 * dead CPU.  Fall back to the default single domain.
	 * cpuset_hotplug_workfn() will rebuild it as necessary.
	 */
	partition_sched_domains(1, NULL, NULL);
	schedule_work(&cpuset_hotplug_work);
2272 2273
}

2274
/*
2275 2276
 * Keep top_cpuset.mems_allowed tracking node_states[N_MEMORY].
 * Call this routine anytime after node_states[N_MEMORY] changes.
2277
 * See cpuset_update_active_cpus() for CPU hotplug handling.
2278
 */
2279 2280
static int cpuset_track_online_nodes(struct notifier_block *self,
				unsigned long action, void *arg)
2281
{
2282
	schedule_work(&cpuset_hotplug_work);
2283
	return NOTIFY_OK;
2284
}
2285 2286 2287 2288 2289

static struct notifier_block cpuset_track_online_nodes_nb = {
	.notifier_call = cpuset_track_online_nodes,
	.priority = 10,		/* ??! */
};
2290

L
Linus Torvalds 已提交
2291 2292 2293 2294
/**
 * cpuset_init_smp - initialize cpus_allowed
 *
 * Description: Finish top cpuset after cpu, node maps are initialized
2295
 */
L
Linus Torvalds 已提交
2296 2297
void __init cpuset_init_smp(void)
{
2298
	cpumask_copy(top_cpuset.cpus_allowed, cpu_active_mask);
2299
	top_cpuset.mems_allowed = node_states[N_MEMORY];
2300
	top_cpuset.old_mems_allowed = top_cpuset.mems_allowed;
2301

2302 2303 2304
	cpumask_copy(top_cpuset.effective_cpus, cpu_active_mask);
	top_cpuset.effective_mems = node_states[N_MEMORY];

2305
	register_hotmemory_notifier(&cpuset_track_online_nodes_nb);
L
Linus Torvalds 已提交
2306 2307 2308 2309 2310
}

/**
 * cpuset_cpus_allowed - return cpus_allowed mask from a tasks cpuset.
 * @tsk: pointer to task_struct from which to obtain cpuset->cpus_allowed.
2311
 * @pmask: pointer to struct cpumask variable to receive cpus_allowed set.
L
Linus Torvalds 已提交
2312
 *
2313
 * Description: Returns the cpumask_var_t cpus_allowed of the cpuset
L
Linus Torvalds 已提交
2314
 * attached to the specified @tsk.  Guaranteed to return some non-empty
2315
 * subset of cpu_online_mask, even if this means going outside the
L
Linus Torvalds 已提交
2316 2317 2318
 * tasks cpuset.
 **/

2319
void cpuset_cpus_allowed(struct task_struct *tsk, struct cpumask *pmask)
L
Linus Torvalds 已提交
2320
{
2321
	mutex_lock(&callback_mutex);
2322
	rcu_read_lock();
2323
	guarantee_online_cpus(task_cs(tsk), pmask);
2324
	rcu_read_unlock();
2325
	mutex_unlock(&callback_mutex);
L
Linus Torvalds 已提交
2326 2327
}

2328
void cpuset_cpus_allowed_fallback(struct task_struct *tsk)
2329 2330
{
	rcu_read_lock();
2331
	do_set_cpus_allowed(tsk, task_cs(tsk)->effective_cpus);
2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346
	rcu_read_unlock();

	/*
	 * We own tsk->cpus_allowed, nobody can change it under us.
	 *
	 * But we used cs && cs->cpus_allowed lockless and thus can
	 * race with cgroup_attach_task() or update_cpumask() and get
	 * the wrong tsk->cpus_allowed. However, both cases imply the
	 * subsequent cpuset_change_cpumask()->set_cpus_allowed_ptr()
	 * which takes task_rq_lock().
	 *
	 * If we are called after it dropped the lock we must see all
	 * changes in tsk_cs()->cpus_allowed. Otherwise we can temporary
	 * set any mask even if it is not right from task_cs() pov,
	 * the pending set_cpus_allowed_ptr() will fix things.
2347 2348 2349
	 *
	 * select_fallback_rq() will fix things ups and set cpu_possible_mask
	 * if required.
2350 2351 2352
	 */
}

L
Linus Torvalds 已提交
2353 2354
void cpuset_init_current_mems_allowed(void)
{
2355
	nodes_setall(current->mems_allowed);
L
Linus Torvalds 已提交
2356 2357
}

2358 2359 2360 2361 2362 2363
/**
 * cpuset_mems_allowed - return mems_allowed mask from a tasks cpuset.
 * @tsk: pointer to task_struct from which to obtain cpuset->mems_allowed.
 *
 * Description: Returns the nodemask_t mems_allowed of the cpuset
 * attached to the specified @tsk.  Guaranteed to return some non-empty
2364
 * subset of node_states[N_MEMORY], even if this means going outside the
2365 2366 2367 2368 2369 2370 2371
 * tasks cpuset.
 **/

nodemask_t cpuset_mems_allowed(struct task_struct *tsk)
{
	nodemask_t mask;

2372
	mutex_lock(&callback_mutex);
2373
	rcu_read_lock();
2374
	guarantee_online_mems(task_cs(tsk), &mask);
2375
	rcu_read_unlock();
2376
	mutex_unlock(&callback_mutex);
2377 2378 2379 2380

	return mask;
}

2381
/**
2382 2383
 * cpuset_nodemask_valid_mems_allowed - check nodemask vs. curremt mems_allowed
 * @nodemask: the nodemask to be checked
2384
 *
2385
 * Are any of the nodes in the nodemask allowed in current->mems_allowed?
L
Linus Torvalds 已提交
2386
 */
2387
int cpuset_nodemask_valid_mems_allowed(nodemask_t *nodemask)
L
Linus Torvalds 已提交
2388
{
2389
	return nodes_intersects(*nodemask, current->mems_allowed);
L
Linus Torvalds 已提交
2390 2391
}

2392
/*
2393 2394 2395 2396
 * nearest_hardwall_ancestor() - Returns the nearest mem_exclusive or
 * mem_hardwall ancestor to the specified cpuset.  Call holding
 * callback_mutex.  If no ancestor is mem_exclusive or mem_hardwall
 * (an unusual configuration), then returns the root cpuset.
2397
 */
2398
static struct cpuset *nearest_hardwall_ancestor(struct cpuset *cs)
2399
{
T
Tejun Heo 已提交
2400 2401
	while (!(is_mem_exclusive(cs) || is_mem_hardwall(cs)) && parent_cs(cs))
		cs = parent_cs(cs);
2402 2403 2404
	return cs;
}

2405
/**
2406 2407
 * cpuset_node_allowed_softwall - Can we allocate on a memory node?
 * @node: is this an allowed node?
2408
 * @gfp_mask: memory allocation flags
2409
 *
2410 2411 2412 2413 2414 2415
 * If we're in interrupt, yes, we can always allocate.  If __GFP_THISNODE is
 * set, yes, we can always allocate.  If node is in our task's mems_allowed,
 * yes.  If it's not a __GFP_HARDWALL request and this node is in the nearest
 * hardwalled cpuset ancestor to this task's cpuset, yes.  If the task has been
 * OOM killed and has access to memory reserves as specified by the TIF_MEMDIE
 * flag, yes.
2416 2417
 * Otherwise, no.
 *
2418 2419 2420
 * If __GFP_HARDWALL is set, cpuset_node_allowed_softwall() reduces to
 * cpuset_node_allowed_hardwall().  Otherwise, cpuset_node_allowed_softwall()
 * might sleep, and might allow a node from an enclosing cpuset.
2421
 *
2422 2423
 * cpuset_node_allowed_hardwall() only handles the simpler case of hardwall
 * cpusets, and never sleeps.
2424 2425 2426 2427 2428 2429 2430
 *
 * The __GFP_THISNODE placement logic is really handled elsewhere,
 * by forcibly using a zonelist starting at a specified node, and by
 * (in get_page_from_freelist()) refusing to consider the zones for
 * any node on the zonelist except the first.  By the time any such
 * calls get to this routine, we should just shut up and say 'yes'.
 *
2431
 * GFP_USER allocations are marked with the __GFP_HARDWALL bit,
2432 2433
 * and do not allow allocations outside the current tasks cpuset
 * unless the task has been OOM killed as is marked TIF_MEMDIE.
2434
 * GFP_KERNEL allocations are not so marked, so can escape to the
2435
 * nearest enclosing hardwalled ancestor cpuset.
2436
 *
2437 2438 2439 2440 2441 2442 2443
 * Scanning up parent cpusets requires callback_mutex.  The
 * __alloc_pages() routine only calls here with __GFP_HARDWALL bit
 * _not_ set if it's a GFP_KERNEL allocation, and all nodes in the
 * current tasks mems_allowed came up empty on the first pass over
 * the zonelist.  So only GFP_KERNEL allocations, if all nodes in the
 * cpuset are short of memory, might require taking the callback_mutex
 * mutex.
2444
 *
2445
 * The first call here from mm/page_alloc:get_page_from_freelist()
2446 2447 2448
 * has __GFP_HARDWALL set in gfp_mask, enforcing hardwall cpusets,
 * so no allocation on a node outside the cpuset is allowed (unless
 * in interrupt, of course).
2449 2450 2451 2452 2453 2454
 *
 * The second pass through get_page_from_freelist() doesn't even call
 * here for GFP_ATOMIC calls.  For those calls, the __alloc_pages()
 * variable 'wait' is not set, and the bit ALLOC_CPUSET is not set
 * in alloc_flags.  That logic and the checks below have the combined
 * affect that:
2455 2456
 *	in_interrupt - any node ok (current task context irrelevant)
 *	GFP_ATOMIC   - any node ok
2457
 *	TIF_MEMDIE   - any node ok
2458
 *	GFP_KERNEL   - any node in enclosing hardwalled cpuset ok
2459
 *	GFP_USER     - only nodes in current tasks mems allowed ok.
2460 2461
 *
 * Rule:
2462
 *    Don't call cpuset_node_allowed_softwall if you can't sleep, unless you
2463 2464
 *    pass in the __GFP_HARDWALL flag set in gfp_flag, which disables
 *    the code that might scan up ancestor cpusets and sleep.
2465
 */
2466
int __cpuset_node_allowed_softwall(int node, gfp_t gfp_mask)
L
Linus Torvalds 已提交
2467
{
2468
	struct cpuset *cs;		/* current cpuset ancestors */
2469
	int allowed;			/* is allocation in zone z allowed? */
2470

2471
	if (in_interrupt() || (gfp_mask & __GFP_THISNODE))
2472
		return 1;
2473
	might_sleep_if(!(gfp_mask & __GFP_HARDWALL));
2474 2475
	if (node_isset(node, current->mems_allowed))
		return 1;
2476 2477 2478 2479 2480 2481
	/*
	 * Allow tasks that have access to memory reserves because they have
	 * been OOM killed to get memory anywhere.
	 */
	if (unlikely(test_thread_flag(TIF_MEMDIE)))
		return 1;
2482 2483 2484
	if (gfp_mask & __GFP_HARDWALL)	/* If hardwall request, stop here */
		return 0;

2485 2486 2487
	if (current->flags & PF_EXITING) /* Let dying task have memory */
		return 1;

2488
	/* Not hardwall and node outside mems_allowed: scan up cpusets */
2489
	mutex_lock(&callback_mutex);
2490

2491
	rcu_read_lock();
2492
	cs = nearest_hardwall_ancestor(task_cs(current));
2493
	allowed = node_isset(node, cs->mems_allowed);
2494
	rcu_read_unlock();
2495

2496
	mutex_unlock(&callback_mutex);
2497
	return allowed;
L
Linus Torvalds 已提交
2498 2499
}

2500
/*
2501 2502
 * cpuset_node_allowed_hardwall - Can we allocate on a memory node?
 * @node: is this an allowed node?
2503 2504
 * @gfp_mask: memory allocation flags
 *
2505 2506 2507 2508 2509
 * If we're in interrupt, yes, we can always allocate.  If __GFP_THISNODE is
 * set, yes, we can always allocate.  If node is in our task's mems_allowed,
 * yes.  If the task has been OOM killed and has access to memory reserves as
 * specified by the TIF_MEMDIE flag, yes.
 * Otherwise, no.
2510 2511 2512 2513 2514 2515 2516
 *
 * The __GFP_THISNODE placement logic is really handled elsewhere,
 * by forcibly using a zonelist starting at a specified node, and by
 * (in get_page_from_freelist()) refusing to consider the zones for
 * any node on the zonelist except the first.  By the time any such
 * calls get to this routine, we should just shut up and say 'yes'.
 *
2517 2518
 * Unlike the cpuset_node_allowed_softwall() variant, above,
 * this variant requires that the node be in the current task's
2519 2520 2521 2522
 * mems_allowed or that we're in interrupt.  It does not scan up the
 * cpuset hierarchy for the nearest enclosing mem_exclusive cpuset.
 * It never sleeps.
 */
2523
int __cpuset_node_allowed_hardwall(int node, gfp_t gfp_mask)
2524 2525 2526 2527 2528
{
	if (in_interrupt() || (gfp_mask & __GFP_THISNODE))
		return 1;
	if (node_isset(node, current->mems_allowed))
		return 1;
D
Daniel Walker 已提交
2529 2530 2531 2532 2533 2534
	/*
	 * Allow tasks that have access to memory reserves because they have
	 * been OOM killed to get memory anywhere.
	 */
	if (unlikely(test_thread_flag(TIF_MEMDIE)))
		return 1;
2535 2536 2537
	return 0;
}

2538
/**
2539 2540
 * cpuset_mem_spread_node() - On which node to begin search for a file page
 * cpuset_slab_spread_node() - On which node to begin search for a slab page
2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564
 *
 * If a task is marked PF_SPREAD_PAGE or PF_SPREAD_SLAB (as for
 * tasks in a cpuset with is_spread_page or is_spread_slab set),
 * and if the memory allocation used cpuset_mem_spread_node()
 * to determine on which node to start looking, as it will for
 * certain page cache or slab cache pages such as used for file
 * system buffers and inode caches, then instead of starting on the
 * local node to look for a free page, rather spread the starting
 * node around the tasks mems_allowed nodes.
 *
 * We don't have to worry about the returned node being offline
 * because "it can't happen", and even if it did, it would be ok.
 *
 * The routines calling guarantee_online_mems() are careful to
 * only set nodes in task->mems_allowed that are online.  So it
 * should not be possible for the following code to return an
 * offline node.  But if it did, that would be ok, as this routine
 * is not returning the node where the allocation must be, only
 * the node where the search should start.  The zonelist passed to
 * __alloc_pages() will include all nodes.  If the slab allocator
 * is passed an offline node, it will fall back to the local node.
 * See kmem_cache_alloc_node().
 */

2565
static int cpuset_spread_node(int *rotor)
2566 2567 2568
{
	int node;

2569
	node = next_node(*rotor, current->mems_allowed);
2570 2571
	if (node == MAX_NUMNODES)
		node = first_node(current->mems_allowed);
2572
	*rotor = node;
2573 2574
	return node;
}
2575 2576 2577

int cpuset_mem_spread_node(void)
{
2578 2579 2580 2581
	if (current->cpuset_mem_spread_rotor == NUMA_NO_NODE)
		current->cpuset_mem_spread_rotor =
			node_random(&current->mems_allowed);

2582 2583 2584 2585 2586
	return cpuset_spread_node(&current->cpuset_mem_spread_rotor);
}

int cpuset_slab_spread_node(void)
{
2587 2588 2589 2590
	if (current->cpuset_slab_spread_rotor == NUMA_NO_NODE)
		current->cpuset_slab_spread_rotor =
			node_random(&current->mems_allowed);

2591 2592 2593
	return cpuset_spread_node(&current->cpuset_slab_spread_rotor);
}

2594 2595
EXPORT_SYMBOL_GPL(cpuset_mem_spread_node);

2596
/**
2597 2598 2599 2600 2601 2602 2603 2604
 * cpuset_mems_allowed_intersects - Does @tsk1's mems_allowed intersect @tsk2's?
 * @tsk1: pointer to task_struct of some task.
 * @tsk2: pointer to task_struct of some other task.
 *
 * Description: Return true if @tsk1's mems_allowed intersects the
 * mems_allowed of @tsk2.  Used by the OOM killer to determine if
 * one of the task's memory usage might impact the memory available
 * to the other.
2605 2606
 **/

2607 2608
int cpuset_mems_allowed_intersects(const struct task_struct *tsk1,
				   const struct task_struct *tsk2)
2609
{
2610
	return nodes_intersects(tsk1->mems_allowed, tsk2->mems_allowed);
2611 2612
}

2613 2614
#define CPUSET_NODELIST_LEN	(256)

2615 2616
/**
 * cpuset_print_task_mems_allowed - prints task's cpuset and mems_allowed
2617
 * @tsk: pointer to task_struct of some task.
2618 2619
 *
 * Description: Prints @task's name, cpuset name, and cached copy of its
2620
 * mems_allowed to the kernel log.
2621 2622 2623
 */
void cpuset_print_task_mems_allowed(struct task_struct *tsk)
{
2624 2625 2626
	 /* Statically allocated to prevent using excess stack. */
	static char cpuset_nodelist[CPUSET_NODELIST_LEN];
	static DEFINE_SPINLOCK(cpuset_buffer_lock);
2627
	struct cgroup *cgrp;
2628

2629
	spin_lock(&cpuset_buffer_lock);
2630
	rcu_read_lock();
2631

2632
	cgrp = task_cs(tsk)->css.cgroup;
2633 2634
	nodelist_scnprintf(cpuset_nodelist, CPUSET_NODELIST_LEN,
			   tsk->mems_allowed);
2635
	pr_info("%s cpuset=", tsk->comm);
T
Tejun Heo 已提交
2636 2637
	pr_cont_cgroup_name(cgrp);
	pr_cont(" mems_allowed=%s\n", cpuset_nodelist);
2638

2639
	rcu_read_unlock();
2640 2641 2642
	spin_unlock(&cpuset_buffer_lock);
}

2643 2644 2645 2646 2647 2648
/*
 * Collection of memory_pressure is suppressed unless
 * this flag is enabled by writing "1" to the special
 * cpuset file 'memory_pressure_enabled' in the root cpuset.
 */

2649
int cpuset_memory_pressure_enabled __read_mostly;
2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670

/**
 * cpuset_memory_pressure_bump - keep stats of per-cpuset reclaims.
 *
 * Keep a running average of the rate of synchronous (direct)
 * page reclaim efforts initiated by tasks in each cpuset.
 *
 * This represents the rate at which some task in the cpuset
 * ran low on memory on all nodes it was allowed to use, and
 * had to enter the kernels page reclaim code in an effort to
 * create more free memory by tossing clean pages or swapping
 * or writing dirty pages.
 *
 * Display to user space in the per-cpuset read-only file
 * "memory_pressure".  Value displayed is an integer
 * representing the recent rate of entry into the synchronous
 * (direct) page reclaim by any task attached to the cpuset.
 **/

void __cpuset_memory_pressure_bump(void)
{
2671
	rcu_read_lock();
2672
	fmeter_markevent(&task_cs(current)->fmeter);
2673
	rcu_read_unlock();
2674 2675
}

2676
#ifdef CONFIG_PROC_PID_CPUSET
L
Linus Torvalds 已提交
2677 2678 2679 2680
/*
 * proc_cpuset_show()
 *  - Print tasks cpuset path into seq_file.
 *  - Used for /proc/<pid>/cpuset.
2681 2682
 *  - No need to task_lock(tsk) on this tsk->cpuset reference, as it
 *    doesn't really matter if tsk->cpuset changes after we read it,
2683
 *    and we take cpuset_mutex, keeping cpuset_attach() from changing it
2684
 *    anyway.
L
Linus Torvalds 已提交
2685
 */
2686
int proc_cpuset_show(struct seq_file *m, void *unused_v)
L
Linus Torvalds 已提交
2687
{
2688
	struct pid *pid;
L
Linus Torvalds 已提交
2689
	struct task_struct *tsk;
T
Tejun Heo 已提交
2690
	char *buf, *p;
2691
	struct cgroup_subsys_state *css;
2692
	int retval;
L
Linus Torvalds 已提交
2693

2694
	retval = -ENOMEM;
T
Tejun Heo 已提交
2695
	buf = kmalloc(PATH_MAX, GFP_KERNEL);
L
Linus Torvalds 已提交
2696
	if (!buf)
2697 2698 2699
		goto out;

	retval = -ESRCH;
2700 2701
	pid = m->private;
	tsk = get_pid_task(pid, PIDTYPE_PID);
2702 2703
	if (!tsk)
		goto out_free;
L
Linus Torvalds 已提交
2704

T
Tejun Heo 已提交
2705
	retval = -ENAMETOOLONG;
L
Li Zefan 已提交
2706
	rcu_read_lock();
2707
	css = task_css(tsk, cpuset_cgrp_id);
T
Tejun Heo 已提交
2708
	p = cgroup_path(css->cgroup, buf, PATH_MAX);
L
Li Zefan 已提交
2709
	rcu_read_unlock();
T
Tejun Heo 已提交
2710
	if (!p)
L
Li Zefan 已提交
2711
		goto out_put_task;
T
Tejun Heo 已提交
2712
	seq_puts(m, p);
L
Linus Torvalds 已提交
2713
	seq_putc(m, '\n');
T
Tejun Heo 已提交
2714
	retval = 0;
L
Li Zefan 已提交
2715
out_put_task:
2716 2717
	put_task_struct(tsk);
out_free:
L
Linus Torvalds 已提交
2718
	kfree(buf);
2719
out:
L
Linus Torvalds 已提交
2720 2721
	return retval;
}
2722
#endif /* CONFIG_PROC_PID_CPUSET */
L
Linus Torvalds 已提交
2723

2724
/* Display task mems_allowed in /proc/<pid>/status file. */
2725 2726
void cpuset_task_status_allowed(struct seq_file *m, struct task_struct *task)
{
2727
	seq_puts(m, "Mems_allowed:\t");
2728
	seq_nodemask(m, &task->mems_allowed);
2729 2730
	seq_puts(m, "\n");
	seq_puts(m, "Mems_allowed_list:\t");
2731
	seq_nodemask_list(m, &task->mems_allowed);
2732
	seq_puts(m, "\n");
L
Linus Torvalds 已提交
2733
}