cpuset.c 67.3 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6
/*
 *  kernel/cpuset.c
 *
 *  Processor and Memory placement constraints for sets of tasks.
 *
 *  Copyright (C) 2003 BULL SA.
P
Paul Jackson 已提交
7
 *  Copyright (C) 2004-2007 Silicon Graphics, Inc.
8
 *  Copyright (C) 2006 Google, Inc
L
Linus Torvalds 已提交
9 10 11 12
 *
 *  Portions derived from Patrick Mochel's sysfs code.
 *  sysfs is Copyright (c) 2001-3 Patrick Mochel
 *
13
 *  2003-10-10 Written by Simon Derr.
L
Linus Torvalds 已提交
14
 *  2003-10-22 Updates by Stephen Hemminger.
15
 *  2004 May-July Rework by Paul Jackson.
16
 *  2006 Rework by Paul Menage to use generic cgroups
L
Linus Torvalds 已提交
17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34
 *
 *  This file is subject to the terms and conditions of the GNU General Public
 *  License.  See the file COPYING in the main directory of the Linux
 *  distribution for more details.
 */

#include <linux/cpu.h>
#include <linux/cpumask.h>
#include <linux/cpuset.h>
#include <linux/err.h>
#include <linux/errno.h>
#include <linux/file.h>
#include <linux/fs.h>
#include <linux/init.h>
#include <linux/interrupt.h>
#include <linux/kernel.h>
#include <linux/kmod.h>
#include <linux/list.h>
35
#include <linux/mempolicy.h>
L
Linus Torvalds 已提交
36 37 38 39 40 41
#include <linux/mm.h>
#include <linux/module.h>
#include <linux/mount.h>
#include <linux/namei.h>
#include <linux/pagemap.h>
#include <linux/proc_fs.h>
42
#include <linux/rcupdate.h>
L
Linus Torvalds 已提交
43 44
#include <linux/sched.h>
#include <linux/seq_file.h>
45
#include <linux/security.h>
L
Linus Torvalds 已提交
46 47 48 49 50 51 52 53 54 55
#include <linux/slab.h>
#include <linux/spinlock.h>
#include <linux/stat.h>
#include <linux/string.h>
#include <linux/time.h>
#include <linux/backing-dev.h>
#include <linux/sort.h>

#include <asm/uaccess.h>
#include <asm/atomic.h>
56
#include <linux/mutex.h>
P
Paul Jackson 已提交
57
#include <linux/kfifo.h>
58 59
#include <linux/workqueue.h>
#include <linux/cgroup.h>
L
Linus Torvalds 已提交
60

61 62 63 64 65
/*
 * Tracks how many cpusets are currently defined in system.
 * When there is only one cpuset (the root cpuset) we can
 * short circuit some hooks.
 */
66
int number_of_cpusets __read_mostly;
67

68
/* Forward declare cgroup structures */
69 70 71
struct cgroup_subsys cpuset_subsys;
struct cpuset;

72 73 74 75 76 77 78 79 80
/* See "Frequency meter" comments, below. */

struct fmeter {
	int cnt;		/* unprocessed events count */
	int val;		/* most recent output value */
	time_t time;		/* clock (secs) when val computed */
	spinlock_t lock;	/* guards read or write of above */
};

L
Linus Torvalds 已提交
81
struct cpuset {
82 83
	struct cgroup_subsys_state css;

L
Linus Torvalds 已提交
84 85 86 87 88 89 90 91 92 93
	unsigned long flags;		/* "unsigned long" so bitops work */
	cpumask_t cpus_allowed;		/* CPUs allowed to tasks in cpuset */
	nodemask_t mems_allowed;	/* Memory Nodes allowed to tasks */

	struct cpuset *parent;		/* my parent */

	/*
	 * Copy of global cpuset_mems_generation as of the most
	 * recent time this cpuset changed its mems_allowed.
	 */
94 95 96
	int mems_generation;

	struct fmeter fmeter;		/* memory_pressure filter */
P
Paul Jackson 已提交
97 98 99

	/* partition number for rebuild_sched_domains() */
	int pn;
100 101 102

	/* used for walking a cpuset heirarchy */
	struct list_head stack_list;
L
Linus Torvalds 已提交
103 104
};

105 106 107 108 109 110 111 112 113 114 115 116 117
/* Retrieve the cpuset for a cgroup */
static inline struct cpuset *cgroup_cs(struct cgroup *cont)
{
	return container_of(cgroup_subsys_state(cont, cpuset_subsys_id),
			    struct cpuset, css);
}

/* Retrieve the cpuset for a task */
static inline struct cpuset *task_cs(struct task_struct *task)
{
	return container_of(task_subsys_state(task, cpuset_subsys_id),
			    struct cpuset, css);
}
118 119 120 121
struct cpuset_hotplug_scanner {
	struct cgroup_scanner scan;
	struct cgroup *to;
};
122

L
Linus Torvalds 已提交
123 124 125 126
/* bits in struct cpuset flags field */
typedef enum {
	CS_CPU_EXCLUSIVE,
	CS_MEM_EXCLUSIVE,
127
	CS_MEMORY_MIGRATE,
P
Paul Jackson 已提交
128
	CS_SCHED_LOAD_BALANCE,
129 130
	CS_SPREAD_PAGE,
	CS_SPREAD_SLAB,
L
Linus Torvalds 已提交
131 132 133 134 135
} cpuset_flagbits_t;

/* convenient tests for these bits */
static inline int is_cpu_exclusive(const struct cpuset *cs)
{
136
	return test_bit(CS_CPU_EXCLUSIVE, &cs->flags);
L
Linus Torvalds 已提交
137 138 139 140
}

static inline int is_mem_exclusive(const struct cpuset *cs)
{
141
	return test_bit(CS_MEM_EXCLUSIVE, &cs->flags);
L
Linus Torvalds 已提交
142 143
}

P
Paul Jackson 已提交
144 145 146 147 148
static inline int is_sched_load_balance(const struct cpuset *cs)
{
	return test_bit(CS_SCHED_LOAD_BALANCE, &cs->flags);
}

149 150
static inline int is_memory_migrate(const struct cpuset *cs)
{
151
	return test_bit(CS_MEMORY_MIGRATE, &cs->flags);
152 153
}

154 155 156 157 158 159 160 161 162 163
static inline int is_spread_page(const struct cpuset *cs)
{
	return test_bit(CS_SPREAD_PAGE, &cs->flags);
}

static inline int is_spread_slab(const struct cpuset *cs)
{
	return test_bit(CS_SPREAD_SLAB, &cs->flags);
}

L
Linus Torvalds 已提交
164
/*
165
 * Increment this integer everytime any cpuset changes its
L
Linus Torvalds 已提交
166 167 168 169
 * mems_allowed value.  Users of cpusets can track this generation
 * number, and avoid having to lock and reload mems_allowed unless
 * the cpuset they're using changes generation.
 *
170
 * A single, global generation is needed because cpuset_attach_task() could
L
Linus Torvalds 已提交
171 172 173 174
 * reattach a task to a different cpuset, which must not have its
 * generation numbers aliased with those of that tasks previous cpuset.
 *
 * Generations are needed for mems_allowed because one task cannot
175
 * modify another's memory placement.  So we must enable every task,
L
Linus Torvalds 已提交
176 177 178
 * on every visit to __alloc_pages(), to efficiently check whether
 * its current->cpuset->mems_allowed has changed, requiring an update
 * of its current->mems_allowed.
179
 *
180
 * Since writes to cpuset_mems_generation are guarded by the cgroup lock
181
 * there is no need to mark it atomic.
L
Linus Torvalds 已提交
182
 */
183
static int cpuset_mems_generation;
L
Linus Torvalds 已提交
184 185 186 187 188 189 190 191

static struct cpuset top_cpuset = {
	.flags = ((1 << CS_CPU_EXCLUSIVE) | (1 << CS_MEM_EXCLUSIVE)),
	.cpus_allowed = CPU_MASK_ALL,
	.mems_allowed = NODE_MASK_ALL,
};

/*
192 193 194 195 196 197 198
 * There are two global mutexes guarding cpuset structures.  The first
 * is the main control groups cgroup_mutex, accessed via
 * cgroup_lock()/cgroup_unlock().  The second is the cpuset-specific
 * callback_mutex, below. They can nest.  It is ok to first take
 * cgroup_mutex, then nest callback_mutex.  We also require taking
 * task_lock() when dereferencing a task's cpuset pointer.  See "The
 * task_lock() exception", at the end of this comment.
199
 *
200
 * A task must hold both mutexes to modify cpusets.  If a task
201
 * holds cgroup_mutex, then it blocks others wanting that mutex,
202
 * ensuring that it is the only task able to also acquire callback_mutex
203 204
 * and be able to modify cpusets.  It can perform various checks on
 * the cpuset structure first, knowing nothing will change.  It can
205
 * also allocate memory while just holding cgroup_mutex.  While it is
206
 * performing these checks, various callback routines can briefly
207 208
 * acquire callback_mutex to query cpusets.  Once it is ready to make
 * the changes, it takes callback_mutex, blocking everyone else.
209 210
 *
 * Calls to the kernel memory allocator can not be made while holding
211
 * callback_mutex, as that would risk double tripping on callback_mutex
212 213 214
 * from one of the callbacks into the cpuset code from within
 * __alloc_pages().
 *
215
 * If a task is only holding callback_mutex, then it has read-only
216 217 218 219 220 221
 * access to cpusets.
 *
 * The task_struct fields mems_allowed and mems_generation may only
 * be accessed in the context of that task, so require no locks.
 *
 * The cpuset_common_file_write handler for operations that modify
222
 * the cpuset hierarchy holds cgroup_mutex across the entire operation,
223 224
 * single threading all such cpuset modifications across the system.
 *
225
 * The cpuset_common_file_read() handlers only hold callback_mutex across
226 227 228
 * small pieces of code, such as when reading out possibly multi-word
 * cpumasks and nodemasks.
 *
229 230
 * Accessing a task's cpuset should be done in accordance with the
 * guidelines for accessing subsystem state in kernel/cgroup.c
L
Linus Torvalds 已提交
231 232
 */

233
static DEFINE_MUTEX(callback_mutex);
234

235 236 237
/* This is ugly, but preserves the userspace API for existing cpuset
 * users. If someone tries to mount the "cpuset" filesystem, we
 * silently switch it to mount "cgroup" instead */
238 239 240
static int cpuset_get_sb(struct file_system_type *fs_type,
			 int flags, const char *unused_dev_name,
			 void *data, struct vfsmount *mnt)
L
Linus Torvalds 已提交
241
{
242 243 244 245 246 247 248 249 250 251 252
	struct file_system_type *cgroup_fs = get_fs_type("cgroup");
	int ret = -ENODEV;
	if (cgroup_fs) {
		char mountopts[] =
			"cpuset,noprefix,"
			"release_agent=/sbin/cpuset_release_agent";
		ret = cgroup_fs->get_sb(cgroup_fs, flags,
					   unused_dev_name, mountopts, mnt);
		put_filesystem(cgroup_fs);
	}
	return ret;
L
Linus Torvalds 已提交
253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270
}

static struct file_system_type cpuset_fs_type = {
	.name = "cpuset",
	.get_sb = cpuset_get_sb,
};

/*
 * Return in *pmask the portion of a cpusets's cpus_allowed that
 * are online.  If none are online, walk up the cpuset hierarchy
 * until we find one that does have some online cpus.  If we get
 * all the way to the top and still haven't found any online cpus,
 * return cpu_online_map.  Or if passed a NULL cs from an exit'ing
 * task, return cpu_online_map.
 *
 * One way or another, we guarantee to return some non-empty subset
 * of cpu_online_map.
 *
271
 * Call with callback_mutex held.
L
Linus Torvalds 已提交
272 273 274 275 276 277 278 279 280 281 282 283 284 285 286
 */

static void guarantee_online_cpus(const struct cpuset *cs, cpumask_t *pmask)
{
	while (cs && !cpus_intersects(cs->cpus_allowed, cpu_online_map))
		cs = cs->parent;
	if (cs)
		cpus_and(*pmask, cs->cpus_allowed, cpu_online_map);
	else
		*pmask = cpu_online_map;
	BUG_ON(!cpus_intersects(*pmask, cpu_online_map));
}

/*
 * Return in *pmask the portion of a cpusets's mems_allowed that
287 288 289 290
 * are online, with memory.  If none are online with memory, walk
 * up the cpuset hierarchy until we find one that does have some
 * online mems.  If we get all the way to the top and still haven't
 * found any online mems, return node_states[N_HIGH_MEMORY].
L
Linus Torvalds 已提交
291 292
 *
 * One way or another, we guarantee to return some non-empty subset
293
 * of node_states[N_HIGH_MEMORY].
L
Linus Torvalds 已提交
294
 *
295
 * Call with callback_mutex held.
L
Linus Torvalds 已提交
296 297 298 299
 */

static void guarantee_online_mems(const struct cpuset *cs, nodemask_t *pmask)
{
300 301
	while (cs && !nodes_intersects(cs->mems_allowed,
					node_states[N_HIGH_MEMORY]))
L
Linus Torvalds 已提交
302 303
		cs = cs->parent;
	if (cs)
304 305
		nodes_and(*pmask, cs->mems_allowed,
					node_states[N_HIGH_MEMORY]);
L
Linus Torvalds 已提交
306
	else
307 308
		*pmask = node_states[N_HIGH_MEMORY];
	BUG_ON(!nodes_intersects(*pmask, node_states[N_HIGH_MEMORY]));
L
Linus Torvalds 已提交
309 310
}

311 312 313 314 315 316
/**
 * cpuset_update_task_memory_state - update task memory placement
 *
 * If the current tasks cpusets mems_allowed changed behind our
 * backs, update current->mems_allowed, mems_generation and task NUMA
 * mempolicy to the new value.
317
 *
318 319 320 321
 * Task mempolicy is updated by rebinding it relative to the
 * current->cpuset if a task has its memory placement changed.
 * Do not call this routine if in_interrupt().
 *
322
 * Call without callback_mutex or task_lock() held.  May be
323 324
 * called with or without cgroup_mutex held.  Thanks in part to
 * 'the_top_cpuset_hack', the task's cpuset pointer will never
325
 * be NULL.  This routine also might acquire callback_mutex and
326
 * current->mm->mmap_sem during call.
327
 *
328 329
 * Reading current->cpuset->mems_generation doesn't need task_lock
 * to guard the current->cpuset derefence, because it is guarded
330
 * from concurrent freeing of current->cpuset using RCU.
331 332 333 334 335 336 337 338 339 340 341 342 343 344
 *
 * The rcu_dereference() is technically probably not needed,
 * as I don't actually mind if I see a new cpuset pointer but
 * an old value of mems_generation.  However this really only
 * matters on alpha systems using cpusets heavily.  If I dropped
 * that rcu_dereference(), it would save them a memory barrier.
 * For all other arch's, rcu_dereference is a no-op anyway, and for
 * alpha systems not using cpusets, another planned optimization,
 * avoiding the rcu critical section for tasks in the root cpuset
 * which is statically allocated, so can't vanish, will make this
 * irrelevant.  Better to use RCU as intended, than to engage in
 * some cute trick to save a memory barrier that is impossible to
 * test, for alpha systems using cpusets heavily, which might not
 * even exist.
345 346 347 348 349
 *
 * This routine is needed to update the per-task mems_allowed data,
 * within the tasks context, when it is trying to allocate memory
 * (in various mm/mempolicy.c routines) and notices that some other
 * task has been modifying its cpuset.
L
Linus Torvalds 已提交
350 351
 */

352
void cpuset_update_task_memory_state(void)
L
Linus Torvalds 已提交
353
{
354
	int my_cpusets_mem_gen;
355
	struct task_struct *tsk = current;
356
	struct cpuset *cs;
357

358
	if (task_cs(tsk) == &top_cpuset) {
359 360 361 362
		/* Don't need rcu for top_cpuset.  It's never freed. */
		my_cpusets_mem_gen = top_cpuset.mems_generation;
	} else {
		rcu_read_lock();
363
		my_cpusets_mem_gen = task_cs(current)->mems_generation;
364 365
		rcu_read_unlock();
	}
L
Linus Torvalds 已提交
366

367
	if (my_cpusets_mem_gen != tsk->cpuset_mems_generation) {
368
		mutex_lock(&callback_mutex);
369
		task_lock(tsk);
370
		cs = task_cs(tsk); /* Maybe changed when task not locked */
371 372
		guarantee_online_mems(cs, &tsk->mems_allowed);
		tsk->cpuset_mems_generation = cs->mems_generation;
373 374 375 376 377 378 379 380
		if (is_spread_page(cs))
			tsk->flags |= PF_SPREAD_PAGE;
		else
			tsk->flags &= ~PF_SPREAD_PAGE;
		if (is_spread_slab(cs))
			tsk->flags |= PF_SPREAD_SLAB;
		else
			tsk->flags &= ~PF_SPREAD_SLAB;
381
		task_unlock(tsk);
382
		mutex_unlock(&callback_mutex);
383
		mpol_rebind_task(tsk, &tsk->mems_allowed);
L
Linus Torvalds 已提交
384 385 386 387 388 389 390 391
	}
}

/*
 * is_cpuset_subset(p, q) - Is cpuset p a subset of cpuset q?
 *
 * One cpuset is a subset of another if all its allowed CPUs and
 * Memory Nodes are a subset of the other, and its exclusive flags
392
 * are only set if the other's are set.  Call holding cgroup_mutex.
L
Linus Torvalds 已提交
393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409
 */

static int is_cpuset_subset(const struct cpuset *p, const struct cpuset *q)
{
	return	cpus_subset(p->cpus_allowed, q->cpus_allowed) &&
		nodes_subset(p->mems_allowed, q->mems_allowed) &&
		is_cpu_exclusive(p) <= is_cpu_exclusive(q) &&
		is_mem_exclusive(p) <= is_mem_exclusive(q);
}

/*
 * validate_change() - Used to validate that any proposed cpuset change
 *		       follows the structural rules for cpusets.
 *
 * If we replaced the flag and mask values of the current cpuset
 * (cur) with those values in the trial cpuset (trial), would
 * our various subset and exclusive rules still be valid?  Presumes
410
 * cgroup_mutex held.
L
Linus Torvalds 已提交
411 412 413 414 415 416 417 418 419 420 421 422 423 424
 *
 * 'cur' is the address of an actual, in-use cpuset.  Operations
 * such as list traversal that depend on the actual address of the
 * cpuset in the list must use cur below, not trial.
 *
 * 'trial' is the address of bulk structure copy of cur, with
 * perhaps one or more of the fields cpus_allowed, mems_allowed,
 * or flags changed to new, trial values.
 *
 * Return 0 if valid, -errno if not.
 */

static int validate_change(const struct cpuset *cur, const struct cpuset *trial)
{
425
	struct cgroup *cont;
L
Linus Torvalds 已提交
426 427 428
	struct cpuset *c, *par;

	/* Each of our child cpusets must be a subset of us */
429 430
	list_for_each_entry(cont, &cur->css.cgroup->children, sibling) {
		if (!is_cpuset_subset(cgroup_cs(cont), trial))
L
Linus Torvalds 已提交
431 432 433 434
			return -EBUSY;
	}

	/* Remaining checks don't apply to root cpuset */
435
	if (cur == &top_cpuset)
L
Linus Torvalds 已提交
436 437
		return 0;

438 439
	par = cur->parent;

L
Linus Torvalds 已提交
440 441 442 443
	/* We must be a subset of our parent cpuset */
	if (!is_cpuset_subset(trial, par))
		return -EACCES;

444 445 446 447
	/*
	 * If either I or some sibling (!= me) is exclusive, we can't
	 * overlap
	 */
448 449
	list_for_each_entry(cont, &par->css.cgroup->children, sibling) {
		c = cgroup_cs(cont);
L
Linus Torvalds 已提交
450 451 452 453 454 455 456 457 458 459
		if ((is_cpu_exclusive(trial) || is_cpu_exclusive(c)) &&
		    c != cur &&
		    cpus_intersects(trial->cpus_allowed, c->cpus_allowed))
			return -EINVAL;
		if ((is_mem_exclusive(trial) || is_mem_exclusive(c)) &&
		    c != cur &&
		    nodes_intersects(trial->mems_allowed, c->mems_allowed))
			return -EINVAL;
	}

460 461 462 463 464 465 466 467
	/* Cpusets with tasks can't have empty cpus_allowed or mems_allowed */
	if (cgroup_task_count(cur->css.cgroup)) {
		if (cpus_empty(trial->cpus_allowed) ||
		    nodes_empty(trial->mems_allowed)) {
			return -ENOSPC;
		}
	}

L
Linus Torvalds 已提交
468 469 470
	return 0;
}

P
Paul Jackson 已提交
471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507
/*
 * Helper routine for rebuild_sched_domains().
 * Do cpusets a, b have overlapping cpus_allowed masks?
 */

static int cpusets_overlap(struct cpuset *a, struct cpuset *b)
{
	return cpus_intersects(a->cpus_allowed, b->cpus_allowed);
}

/*
 * rebuild_sched_domains()
 *
 * If the flag 'sched_load_balance' of any cpuset with non-empty
 * 'cpus' changes, or if the 'cpus' allowed changes in any cpuset
 * which has that flag enabled, or if any cpuset with a non-empty
 * 'cpus' is removed, then call this routine to rebuild the
 * scheduler's dynamic sched domains.
 *
 * This routine builds a partial partition of the systems CPUs
 * (the set of non-overlappping cpumask_t's in the array 'part'
 * below), and passes that partial partition to the kernel/sched.c
 * partition_sched_domains() routine, which will rebuild the
 * schedulers load balancing domains (sched domains) as specified
 * by that partial partition.  A 'partial partition' is a set of
 * non-overlapping subsets whose union is a subset of that set.
 *
 * See "What is sched_load_balance" in Documentation/cpusets.txt
 * for a background explanation of this.
 *
 * Does not return errors, on the theory that the callers of this
 * routine would rather not worry about failures to rebuild sched
 * domains when operating in the severe memory shortage situations
 * that could cause allocation failures below.
 *
 * Call with cgroup_mutex held.  May take callback_mutex during
 * call due to the kfifo_alloc() and kmalloc() calls.  May nest
508
 * a call to the get_online_cpus()/put_online_cpus() pair.
P
Paul Jackson 已提交
509
 * Must not be called holding callback_mutex, because we must not
510 511
 * call get_online_cpus() while holding callback_mutex.  Elsewhere
 * the kernel nests callback_mutex inside get_online_cpus() calls.
P
Paul Jackson 已提交
512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661
 * So the reverse nesting would risk an ABBA deadlock.
 *
 * The three key local variables below are:
 *    q  - a kfifo queue of cpuset pointers, used to implement a
 *	   top-down scan of all cpusets.  This scan loads a pointer
 *	   to each cpuset marked is_sched_load_balance into the
 *	   array 'csa'.  For our purposes, rebuilding the schedulers
 *	   sched domains, we can ignore !is_sched_load_balance cpusets.
 *  csa  - (for CpuSet Array) Array of pointers to all the cpusets
 *	   that need to be load balanced, for convenient iterative
 *	   access by the subsequent code that finds the best partition,
 *	   i.e the set of domains (subsets) of CPUs such that the
 *	   cpus_allowed of every cpuset marked is_sched_load_balance
 *	   is a subset of one of these domains, while there are as
 *	   many such domains as possible, each as small as possible.
 * doms  - Conversion of 'csa' to an array of cpumasks, for passing to
 *	   the kernel/sched.c routine partition_sched_domains() in a
 *	   convenient format, that can be easily compared to the prior
 *	   value to determine what partition elements (sched domains)
 *	   were changed (added or removed.)
 *
 * Finding the best partition (set of domains):
 *	The triple nested loops below over i, j, k scan over the
 *	load balanced cpusets (using the array of cpuset pointers in
 *	csa[]) looking for pairs of cpusets that have overlapping
 *	cpus_allowed, but which don't have the same 'pn' partition
 *	number and gives them in the same partition number.  It keeps
 *	looping on the 'restart' label until it can no longer find
 *	any such pairs.
 *
 *	The union of the cpus_allowed masks from the set of
 *	all cpusets having the same 'pn' value then form the one
 *	element of the partition (one sched domain) to be passed to
 *	partition_sched_domains().
 */

static void rebuild_sched_domains(void)
{
	struct kfifo *q;	/* queue of cpusets to be scanned */
	struct cpuset *cp;	/* scans q */
	struct cpuset **csa;	/* array of all cpuset ptrs */
	int csn;		/* how many cpuset ptrs in csa so far */
	int i, j, k;		/* indices for partition finding loops */
	cpumask_t *doms;	/* resulting partition; i.e. sched domains */
	int ndoms;		/* number of sched domains in result */
	int nslot;		/* next empty doms[] cpumask_t slot */

	q = NULL;
	csa = NULL;
	doms = NULL;

	/* Special case for the 99% of systems with one, full, sched domain */
	if (is_sched_load_balance(&top_cpuset)) {
		ndoms = 1;
		doms = kmalloc(sizeof(cpumask_t), GFP_KERNEL);
		if (!doms)
			goto rebuild;
		*doms = top_cpuset.cpus_allowed;
		goto rebuild;
	}

	q = kfifo_alloc(number_of_cpusets * sizeof(cp), GFP_KERNEL, NULL);
	if (IS_ERR(q))
		goto done;
	csa = kmalloc(number_of_cpusets * sizeof(cp), GFP_KERNEL);
	if (!csa)
		goto done;
	csn = 0;

	cp = &top_cpuset;
	__kfifo_put(q, (void *)&cp, sizeof(cp));
	while (__kfifo_get(q, (void *)&cp, sizeof(cp))) {
		struct cgroup *cont;
		struct cpuset *child;   /* scans child cpusets of cp */
		if (is_sched_load_balance(cp))
			csa[csn++] = cp;
		list_for_each_entry(cont, &cp->css.cgroup->children, sibling) {
			child = cgroup_cs(cont);
			__kfifo_put(q, (void *)&child, sizeof(cp));
		}
  	}

	for (i = 0; i < csn; i++)
		csa[i]->pn = i;
	ndoms = csn;

restart:
	/* Find the best partition (set of sched domains) */
	for (i = 0; i < csn; i++) {
		struct cpuset *a = csa[i];
		int apn = a->pn;

		for (j = 0; j < csn; j++) {
			struct cpuset *b = csa[j];
			int bpn = b->pn;

			if (apn != bpn && cpusets_overlap(a, b)) {
				for (k = 0; k < csn; k++) {
					struct cpuset *c = csa[k];

					if (c->pn == bpn)
						c->pn = apn;
				}
				ndoms--;	/* one less element */
				goto restart;
			}
		}
	}

	/* Convert <csn, csa> to <ndoms, doms> */
	doms = kmalloc(ndoms * sizeof(cpumask_t), GFP_KERNEL);
	if (!doms)
		goto rebuild;

	for (nslot = 0, i = 0; i < csn; i++) {
		struct cpuset *a = csa[i];
		int apn = a->pn;

		if (apn >= 0) {
			cpumask_t *dp = doms + nslot;

			if (nslot == ndoms) {
				static int warnings = 10;
				if (warnings) {
					printk(KERN_WARNING
					 "rebuild_sched_domains confused:"
					  " nslot %d, ndoms %d, csn %d, i %d,"
					  " apn %d\n",
					  nslot, ndoms, csn, i, apn);
					warnings--;
				}
				continue;
			}

			cpus_clear(*dp);
			for (j = i; j < csn; j++) {
				struct cpuset *b = csa[j];

				if (apn == b->pn) {
					cpus_or(*dp, *dp, b->cpus_allowed);
					b->pn = -1;
				}
			}
			nslot++;
		}
	}
	BUG_ON(nslot != ndoms);

rebuild:
	/* Have scheduler rebuild sched domains */
662
	get_online_cpus();
P
Paul Jackson 已提交
663
	partition_sched_domains(ndoms, doms);
664
	put_online_cpus();
P
Paul Jackson 已提交
665 666 667 668 669 670 671 672

done:
	if (q && !IS_ERR(q))
		kfifo_free(q);
	kfree(csa);
	/* Don't kfree(doms) -- partition_sched_domains() does that. */
}

P
Paul Menage 已提交
673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702
static inline int started_after_time(struct task_struct *t1,
				     struct timespec *time,
				     struct task_struct *t2)
{
	int start_diff = timespec_compare(&t1->start_time, time);
	if (start_diff > 0) {
		return 1;
	} else if (start_diff < 0) {
		return 0;
	} else {
		/*
		 * Arbitrarily, if two processes started at the same
		 * time, we'll say that the lower pointer value
		 * started first. Note that t2 may have exited by now
		 * so this may not be a valid pointer any longer, but
		 * that's fine - it still serves to distinguish
		 * between two tasks started (effectively)
		 * simultaneously.
		 */
		return t1 > t2;
	}
}

static inline int started_after(void *p1, void *p2)
{
	struct task_struct *t1 = p1;
	struct task_struct *t2 = p2;
	return started_after_time(t1, &t2->start_time, t2);
}

C
Cliff Wickman 已提交
703 704 705 706 707
/**
 * cpuset_test_cpumask - test a task's cpus_allowed versus its cpuset's
 * @tsk: task to test
 * @scan: struct cgroup_scanner contained in its struct cpuset_hotplug_scanner
 *
708
 * Call with cgroup_mutex held.  May take callback_mutex during call.
C
Cliff Wickman 已提交
709 710 711
 * Called for each task in a cgroup by cgroup_scan_tasks().
 * Return nonzero if this tasks's cpus_allowed mask should be changed (in other
 * words, if its mask is not equal to its cpuset's mask).
712
 */
C
Cliff Wickman 已提交
713 714 715 716 717
int cpuset_test_cpumask(struct task_struct *tsk, struct cgroup_scanner *scan)
{
	return !cpus_equal(tsk->cpus_allowed,
			(cgroup_cs(scan->cg))->cpus_allowed);
}
718

C
Cliff Wickman 已提交
719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739
/**
 * cpuset_change_cpumask - make a task's cpus_allowed the same as its cpuset's
 * @tsk: task to test
 * @scan: struct cgroup_scanner containing the cgroup of the task
 *
 * Called by cgroup_scan_tasks() for each task in a cgroup whose
 * cpus_allowed mask needs to be changed.
 *
 * We don't need to re-check for the cgroup/cpuset membership, since we're
 * holding cgroup_lock() at this point.
 */
void cpuset_change_cpumask(struct task_struct *tsk, struct cgroup_scanner *scan)
{
	set_cpus_allowed(tsk, (cgroup_cs(scan->cg))->cpus_allowed);
}

/**
 * update_cpumask - update the cpus_allowed mask of a cpuset and all tasks in it
 * @cs: the cpuset to consider
 * @buf: buffer of cpu numbers written to this cpuset
 */
L
Linus Torvalds 已提交
740 741 742
static int update_cpumask(struct cpuset *cs, char *buf)
{
	struct cpuset trialcs;
C
Cliff Wickman 已提交
743
	struct cgroup_scanner scan;
P
Paul Menage 已提交
744
	struct ptr_heap heap;
C
Cliff Wickman 已提交
745 746
	int retval;
	int is_load_balanced;
L
Linus Torvalds 已提交
747

748 749 750 751
	/* top_cpuset.cpus_allowed tracks cpu_online_map; it's read-only */
	if (cs == &top_cpuset)
		return -EACCES;

L
Linus Torvalds 已提交
752
	trialcs = *cs;
753 754

	/*
C
Cliff Wickman 已提交
755
	 * An empty cpus_allowed is ok if there are no tasks in the cpuset.
756 757 758
	 * Since cpulist_parse() fails on an empty mask, we special case
	 * that parsing.  The validate_change() call ensures that cpusets
	 * with tasks have cpus.
759
	 */
760 761
	buf = strstrip(buf);
	if (!*buf) {
762 763 764 765 766 767
		cpus_clear(trialcs.cpus_allowed);
	} else {
		retval = cpulist_parse(buf, trialcs.cpus_allowed);
		if (retval < 0)
			return retval;
	}
L
Linus Torvalds 已提交
768 769
	cpus_and(trialcs.cpus_allowed, trialcs.cpus_allowed, cpu_online_map);
	retval = validate_change(cs, &trialcs);
770 771
	if (retval < 0)
		return retval;
P
Paul Jackson 已提交
772

P
Paul Menage 已提交
773 774 775
	/* Nothing to do if the cpus didn't change */
	if (cpus_equal(cs->cpus_allowed, trialcs.cpus_allowed))
		return 0;
C
Cliff Wickman 已提交
776

P
Paul Menage 已提交
777 778 779 780
	retval = heap_init(&heap, PAGE_SIZE, GFP_KERNEL, &started_after);
	if (retval)
		return retval;

P
Paul Jackson 已提交
781 782
	is_load_balanced = is_sched_load_balance(&trialcs);

783
	mutex_lock(&callback_mutex);
784
	cs->cpus_allowed = trialcs.cpus_allowed;
785
	mutex_unlock(&callback_mutex);
P
Paul Jackson 已提交
786

P
Paul Menage 已提交
787 788
	/*
	 * Scan tasks in the cpuset, and update the cpumasks of any
C
Cliff Wickman 已提交
789
	 * that need an update.
P
Paul Menage 已提交
790
	 */
C
Cliff Wickman 已提交
791 792 793 794 795
	scan.cg = cs->css.cgroup;
	scan.test_task = cpuset_test_cpumask;
	scan.process_task = cpuset_change_cpumask;
	scan.heap = &heap;
	cgroup_scan_tasks(&scan);
P
Paul Menage 已提交
796
	heap_free(&heap);
C
Cliff Wickman 已提交
797

P
Paul Menage 已提交
798
	if (is_load_balanced)
P
Paul Jackson 已提交
799
		rebuild_sched_domains();
800
	return 0;
L
Linus Torvalds 已提交
801 802
}

803 804 805 806 807 808 809 810
/*
 * cpuset_migrate_mm
 *
 *    Migrate memory region from one set of nodes to another.
 *
 *    Temporarilly set tasks mems_allowed to target nodes of migration,
 *    so that the migration code can allocate pages on these nodes.
 *
811 812
 *    Call holding cgroup_mutex, so current's cpuset won't change
 *    during this call, as cgroup_mutex holds off any attach_task()
813 814
 *    calls.  Therefore we don't need to take task_lock around the
 *    call to guarantee_online_mems(), as we know no one is changing
815
 *    our task's cpuset.
816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847
 *
 *    Hold callback_mutex around the two modifications of our tasks
 *    mems_allowed to synchronize with cpuset_mems_allowed().
 *
 *    While the mm_struct we are migrating is typically from some
 *    other task, the task_struct mems_allowed that we are hacking
 *    is for our current task, which must allocate new pages for that
 *    migrating memory region.
 *
 *    We call cpuset_update_task_memory_state() before hacking
 *    our tasks mems_allowed, so that we are assured of being in
 *    sync with our tasks cpuset, and in particular, callbacks to
 *    cpuset_update_task_memory_state() from nested page allocations
 *    won't see any mismatch of our cpuset and task mems_generation
 *    values, so won't overwrite our hacked tasks mems_allowed
 *    nodemask.
 */

static void cpuset_migrate_mm(struct mm_struct *mm, const nodemask_t *from,
							const nodemask_t *to)
{
	struct task_struct *tsk = current;

	cpuset_update_task_memory_state();

	mutex_lock(&callback_mutex);
	tsk->mems_allowed = *to;
	mutex_unlock(&callback_mutex);

	do_migrate_pages(mm, from, to, MPOL_MF_MOVE_ALL);

	mutex_lock(&callback_mutex);
848
	guarantee_online_mems(task_cs(tsk),&tsk->mems_allowed);
849 850 851
	mutex_unlock(&callback_mutex);
}

852
/*
853 854 855
 * Handle user request to change the 'mems' memory placement
 * of a cpuset.  Needs to validate the request, update the
 * cpusets mems_allowed and mems_generation, and for each
856 857 858
 * task in the cpuset, rebind any vma mempolicies and if
 * the cpuset is marked 'memory_migrate', migrate the tasks
 * pages to the new memory.
859
 *
860
 * Call with cgroup_mutex held.  May take callback_mutex during call.
861 862 863
 * Will take tasklist_lock, scan tasklist for tasks in cpuset cs,
 * lock each such tasks mm->mmap_sem, scan its vma's and rebind
 * their mempolicies to the cpusets new mems_allowed.
864 865
 */

866 867
static void *cpuset_being_rebound;

L
Linus Torvalds 已提交
868 869 870
static int update_nodemask(struct cpuset *cs, char *buf)
{
	struct cpuset trialcs;
871
	nodemask_t oldmem;
872
	struct task_struct *p;
873 874
	struct mm_struct **mmarray;
	int i, n, ntasks;
875
	int migrate;
876
	int fudge;
L
Linus Torvalds 已提交
877
	int retval;
878
	struct cgroup_iter it;
L
Linus Torvalds 已提交
879

880 881 882 883
	/*
	 * top_cpuset.mems_allowed tracks node_stats[N_HIGH_MEMORY];
	 * it's read-only
	 */
884 885 886
	if (cs == &top_cpuset)
		return -EACCES;

L
Linus Torvalds 已提交
887
	trialcs = *cs;
888 889

	/*
890 891 892 893
	 * An empty mems_allowed is ok iff there are no tasks in the cpuset.
	 * Since nodelist_parse() fails on an empty mask, we special case
	 * that parsing.  The validate_change() call ensures that cpusets
	 * with tasks have memory.
894
	 */
895 896
	buf = strstrip(buf);
	if (!*buf) {
897 898 899 900 901 902
		nodes_clear(trialcs.mems_allowed);
	} else {
		retval = nodelist_parse(buf, trialcs.mems_allowed);
		if (retval < 0)
			goto done;
	}
903 904
	nodes_and(trialcs.mems_allowed, trialcs.mems_allowed,
						node_states[N_HIGH_MEMORY]);
905 906 907 908 909
	oldmem = cs->mems_allowed;
	if (nodes_equal(oldmem, trialcs.mems_allowed)) {
		retval = 0;		/* Too easy - nothing to do */
		goto done;
	}
910 911 912 913
	retval = validate_change(cs, &trialcs);
	if (retval < 0)
		goto done;

914
	mutex_lock(&callback_mutex);
915
	cs->mems_allowed = trialcs.mems_allowed;
916
	cs->mems_generation = cpuset_mems_generation++;
917
	mutex_unlock(&callback_mutex);
918

919
	cpuset_being_rebound = cs;		/* causes mpol_copy() rebind */
920 921 922 923 924 925 926 927 928 929 930 931 932

	fudge = 10;				/* spare mmarray[] slots */
	fudge += cpus_weight(cs->cpus_allowed);	/* imagine one fork-bomb/cpu */
	retval = -ENOMEM;

	/*
	 * Allocate mmarray[] to hold mm reference for each task
	 * in cpuset cs.  Can't kmalloc GFP_KERNEL while holding
	 * tasklist_lock.  We could use GFP_ATOMIC, but with a
	 * few more lines of code, we can retry until we get a big
	 * enough mmarray[] w/o using GFP_ATOMIC.
	 */
	while (1) {
933
		ntasks = cgroup_task_count(cs->css.cgroup);  /* guess */
934 935 936 937
		ntasks += fudge;
		mmarray = kmalloc(ntasks * sizeof(*mmarray), GFP_KERNEL);
		if (!mmarray)
			goto done;
938
		read_lock(&tasklist_lock);		/* block fork */
939
		if (cgroup_task_count(cs->css.cgroup) <= ntasks)
940
			break;				/* got enough */
941
		read_unlock(&tasklist_lock);		/* try again */
942 943 944 945 946 947
		kfree(mmarray);
	}

	n = 0;

	/* Load up mmarray[] with mm reference for each task in cpuset. */
948 949
	cgroup_iter_start(cs->css.cgroup, &it);
	while ((p = cgroup_iter_next(cs->css.cgroup, &it))) {
950 951 952 953 954
		struct mm_struct *mm;

		if (n >= ntasks) {
			printk(KERN_WARNING
				"Cpuset mempolicy rebind incomplete.\n");
955
			break;
956 957 958 959 960
		}
		mm = get_task_mm(p);
		if (!mm)
			continue;
		mmarray[n++] = mm;
961 962
	}
	cgroup_iter_end(cs->css.cgroup, &it);
963
	read_unlock(&tasklist_lock);
964 965 966 967 968 969 970 971 972

	/*
	 * Now that we've dropped the tasklist spinlock, we can
	 * rebind the vma mempolicies of each mm in mmarray[] to their
	 * new cpuset, and release that mm.  The mpol_rebind_mm()
	 * call takes mmap_sem, which we couldn't take while holding
	 * tasklist_lock.  Forks can happen again now - the mpol_copy()
	 * cpuset_being_rebound check will catch such forks, and rebind
	 * their vma mempolicies too.  Because we still hold the global
973
	 * cgroup_mutex, we know that no other rebind effort will
974 975
	 * be contending for the global variable cpuset_being_rebound.
	 * It's ok if we rebind the same mm twice; mpol_rebind_mm()
976
	 * is idempotent.  Also migrate pages in each mm to new nodes.
977
	 */
978
	migrate = is_memory_migrate(cs);
979 980 981 982
	for (i = 0; i < n; i++) {
		struct mm_struct *mm = mmarray[i];

		mpol_rebind_mm(mm, &cs->mems_allowed);
983 984
		if (migrate)
			cpuset_migrate_mm(mm, &oldmem, &cs->mems_allowed);
985 986 987
		mmput(mm);
	}

988
	/* We're done rebinding vmas to this cpuset's new mems_allowed. */
989
	kfree(mmarray);
990
	cpuset_being_rebound = NULL;
991
	retval = 0;
992
done:
L
Linus Torvalds 已提交
993 994 995
	return retval;
}

996 997 998 999 1000
int current_cpuset_is_being_rebound(void)
{
	return task_cs(current) == cpuset_being_rebound;
}

1001
/*
1002
 * Call with cgroup_mutex held.
1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013
 */

static int update_memory_pressure_enabled(struct cpuset *cs, char *buf)
{
	if (simple_strtoul(buf, NULL, 10) != 0)
		cpuset_memory_pressure_enabled = 1;
	else
		cpuset_memory_pressure_enabled = 0;
	return 0;
}

L
Linus Torvalds 已提交
1014 1015 1016
/*
 * update_flag - read a 0 or a 1 in a file and update associated flag
 * bit:	the bit to update (CS_CPU_EXCLUSIVE, CS_MEM_EXCLUSIVE,
P
Paul Jackson 已提交
1017
 *				CS_SCHED_LOAD_BALANCE,
1018 1019
 *				CS_NOTIFY_ON_RELEASE, CS_MEMORY_MIGRATE,
 *				CS_SPREAD_PAGE, CS_SPREAD_SLAB)
L
Linus Torvalds 已提交
1020 1021
 * cs:	the cpuset to update
 * buf:	the buffer where we read the 0 or 1
1022
 *
1023
 * Call with cgroup_mutex held.
L
Linus Torvalds 已提交
1024 1025 1026 1027 1028 1029
 */

static int update_flag(cpuset_flagbits_t bit, struct cpuset *cs, char *buf)
{
	int turning_on;
	struct cpuset trialcs;
1030
	int err;
P
Paul Jackson 已提交
1031
	int cpus_nonempty, balance_flag_changed;
L
Linus Torvalds 已提交
1032 1033 1034 1035 1036 1037 1038 1039 1040 1041

	turning_on = (simple_strtoul(buf, NULL, 10) != 0);

	trialcs = *cs;
	if (turning_on)
		set_bit(bit, &trialcs.flags);
	else
		clear_bit(bit, &trialcs.flags);

	err = validate_change(cs, &trialcs);
1042 1043
	if (err < 0)
		return err;
P
Paul Jackson 已提交
1044 1045 1046 1047 1048

	cpus_nonempty = !cpus_empty(trialcs.cpus_allowed);
	balance_flag_changed = (is_sched_load_balance(cs) !=
		 			is_sched_load_balance(&trialcs));

1049
	mutex_lock(&callback_mutex);
1050
	cs->flags = trialcs.flags;
1051
	mutex_unlock(&callback_mutex);
1052

P
Paul Jackson 已提交
1053 1054 1055
	if (cpus_nonempty && balance_flag_changed)
		rebuild_sched_domains();

1056
	return 0;
L
Linus Torvalds 已提交
1057 1058
}

1059
/*
A
Adrian Bunk 已提交
1060
 * Frequency meter - How fast is some event occurring?
1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156
 *
 * These routines manage a digitally filtered, constant time based,
 * event frequency meter.  There are four routines:
 *   fmeter_init() - initialize a frequency meter.
 *   fmeter_markevent() - called each time the event happens.
 *   fmeter_getrate() - returns the recent rate of such events.
 *   fmeter_update() - internal routine used to update fmeter.
 *
 * A common data structure is passed to each of these routines,
 * which is used to keep track of the state required to manage the
 * frequency meter and its digital filter.
 *
 * The filter works on the number of events marked per unit time.
 * The filter is single-pole low-pass recursive (IIR).  The time unit
 * is 1 second.  Arithmetic is done using 32-bit integers scaled to
 * simulate 3 decimal digits of precision (multiplied by 1000).
 *
 * With an FM_COEF of 933, and a time base of 1 second, the filter
 * has a half-life of 10 seconds, meaning that if the events quit
 * happening, then the rate returned from the fmeter_getrate()
 * will be cut in half each 10 seconds, until it converges to zero.
 *
 * It is not worth doing a real infinitely recursive filter.  If more
 * than FM_MAXTICKS ticks have elapsed since the last filter event,
 * just compute FM_MAXTICKS ticks worth, by which point the level
 * will be stable.
 *
 * Limit the count of unprocessed events to FM_MAXCNT, so as to avoid
 * arithmetic overflow in the fmeter_update() routine.
 *
 * Given the simple 32 bit integer arithmetic used, this meter works
 * best for reporting rates between one per millisecond (msec) and
 * one per 32 (approx) seconds.  At constant rates faster than one
 * per msec it maxes out at values just under 1,000,000.  At constant
 * rates between one per msec, and one per second it will stabilize
 * to a value N*1000, where N is the rate of events per second.
 * At constant rates between one per second and one per 32 seconds,
 * it will be choppy, moving up on the seconds that have an event,
 * and then decaying until the next event.  At rates slower than
 * about one in 32 seconds, it decays all the way back to zero between
 * each event.
 */

#define FM_COEF 933		/* coefficient for half-life of 10 secs */
#define FM_MAXTICKS ((time_t)99) /* useless computing more ticks than this */
#define FM_MAXCNT 1000000	/* limit cnt to avoid overflow */
#define FM_SCALE 1000		/* faux fixed point scale */

/* Initialize a frequency meter */
static void fmeter_init(struct fmeter *fmp)
{
	fmp->cnt = 0;
	fmp->val = 0;
	fmp->time = 0;
	spin_lock_init(&fmp->lock);
}

/* Internal meter update - process cnt events and update value */
static void fmeter_update(struct fmeter *fmp)
{
	time_t now = get_seconds();
	time_t ticks = now - fmp->time;

	if (ticks == 0)
		return;

	ticks = min(FM_MAXTICKS, ticks);
	while (ticks-- > 0)
		fmp->val = (FM_COEF * fmp->val) / FM_SCALE;
	fmp->time = now;

	fmp->val += ((FM_SCALE - FM_COEF) * fmp->cnt) / FM_SCALE;
	fmp->cnt = 0;
}

/* Process any previous ticks, then bump cnt by one (times scale). */
static void fmeter_markevent(struct fmeter *fmp)
{
	spin_lock(&fmp->lock);
	fmeter_update(fmp);
	fmp->cnt = min(FM_MAXCNT, fmp->cnt + FM_SCALE);
	spin_unlock(&fmp->lock);
}

/* Process any previous ticks, then return current value. */
static int fmeter_getrate(struct fmeter *fmp)
{
	int val;

	spin_lock(&fmp->lock);
	fmeter_update(fmp);
	val = fmp->val;
	spin_unlock(&fmp->lock);
	return val;
}

1157
/* Called by cgroups to determine if a cpuset is usable; cgroup_mutex held */
1158 1159
static int cpuset_can_attach(struct cgroup_subsys *ss,
			     struct cgroup *cont, struct task_struct *tsk)
L
Linus Torvalds 已提交
1160
{
1161
	struct cpuset *cs = cgroup_cs(cont);
L
Linus Torvalds 已提交
1162 1163 1164 1165

	if (cpus_empty(cs->cpus_allowed) || nodes_empty(cs->mems_allowed))
		return -ENOSPC;

1166 1167
	return security_task_setscheduler(tsk, 0, NULL);
}
L
Linus Torvalds 已提交
1168

1169 1170 1171 1172 1173 1174 1175 1176 1177
static void cpuset_attach(struct cgroup_subsys *ss,
			  struct cgroup *cont, struct cgroup *oldcont,
			  struct task_struct *tsk)
{
	cpumask_t cpus;
	nodemask_t from, to;
	struct mm_struct *mm;
	struct cpuset *cs = cgroup_cs(cont);
	struct cpuset *oldcs = cgroup_cs(oldcont);
1178

1179
	mutex_lock(&callback_mutex);
L
Linus Torvalds 已提交
1180 1181
	guarantee_online_cpus(cs, &cpus);
	set_cpus_allowed(tsk, cpus);
1182
	mutex_unlock(&callback_mutex);
L
Linus Torvalds 已提交
1183

1184 1185
	from = oldcs->mems_allowed;
	to = cs->mems_allowed;
1186 1187 1188
	mm = get_task_mm(tsk);
	if (mm) {
		mpol_rebind_mm(mm, &to);
1189
		if (is_memory_migrate(cs))
1190
			cpuset_migrate_mm(mm, &from, &to);
1191 1192 1193
		mmput(mm);
	}

L
Linus Torvalds 已提交
1194 1195 1196 1197 1198
}

/* The various types of files and directories in a cpuset file system */

typedef enum {
1199
	FILE_MEMORY_MIGRATE,
L
Linus Torvalds 已提交
1200 1201 1202 1203
	FILE_CPULIST,
	FILE_MEMLIST,
	FILE_CPU_EXCLUSIVE,
	FILE_MEM_EXCLUSIVE,
P
Paul Jackson 已提交
1204
	FILE_SCHED_LOAD_BALANCE,
1205 1206
	FILE_MEMORY_PRESSURE_ENABLED,
	FILE_MEMORY_PRESSURE,
1207 1208
	FILE_SPREAD_PAGE,
	FILE_SPREAD_SLAB,
L
Linus Torvalds 已提交
1209 1210
} cpuset_filetype_t;

1211 1212 1213
static ssize_t cpuset_common_file_write(struct cgroup *cont,
					struct cftype *cft,
					struct file *file,
1214
					const char __user *userbuf,
L
Linus Torvalds 已提交
1215 1216
					size_t nbytes, loff_t *unused_ppos)
{
1217
	struct cpuset *cs = cgroup_cs(cont);
L
Linus Torvalds 已提交
1218 1219 1220 1221 1222
	cpuset_filetype_t type = cft->private;
	char *buffer;
	int retval = 0;

	/* Crude upper limit on largest legitimate cpulist user might write. */
P
Paul Jackson 已提交
1223
	if (nbytes > 100U + 6 * max(NR_CPUS, MAX_NUMNODES))
L
Linus Torvalds 已提交
1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235
		return -E2BIG;

	/* +1 for nul-terminator */
	if ((buffer = kmalloc(nbytes + 1, GFP_KERNEL)) == 0)
		return -ENOMEM;

	if (copy_from_user(buffer, userbuf, nbytes)) {
		retval = -EFAULT;
		goto out1;
	}
	buffer[nbytes] = 0;	/* nul-terminate */

1236
	cgroup_lock();
L
Linus Torvalds 已提交
1237

1238
	if (cgroup_is_removed(cont)) {
L
Linus Torvalds 已提交
1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255
		retval = -ENODEV;
		goto out2;
	}

	switch (type) {
	case FILE_CPULIST:
		retval = update_cpumask(cs, buffer);
		break;
	case FILE_MEMLIST:
		retval = update_nodemask(cs, buffer);
		break;
	case FILE_CPU_EXCLUSIVE:
		retval = update_flag(CS_CPU_EXCLUSIVE, cs, buffer);
		break;
	case FILE_MEM_EXCLUSIVE:
		retval = update_flag(CS_MEM_EXCLUSIVE, cs, buffer);
		break;
P
Paul Jackson 已提交
1256 1257 1258
	case FILE_SCHED_LOAD_BALANCE:
		retval = update_flag(CS_SCHED_LOAD_BALANCE, cs, buffer);
		break;
1259 1260 1261
	case FILE_MEMORY_MIGRATE:
		retval = update_flag(CS_MEMORY_MIGRATE, cs, buffer);
		break;
1262 1263 1264 1265 1266 1267
	case FILE_MEMORY_PRESSURE_ENABLED:
		retval = update_memory_pressure_enabled(cs, buffer);
		break;
	case FILE_MEMORY_PRESSURE:
		retval = -EACCES;
		break;
1268 1269
	case FILE_SPREAD_PAGE:
		retval = update_flag(CS_SPREAD_PAGE, cs, buffer);
1270
		cs->mems_generation = cpuset_mems_generation++;
1271 1272 1273
		break;
	case FILE_SPREAD_SLAB:
		retval = update_flag(CS_SPREAD_SLAB, cs, buffer);
1274
		cs->mems_generation = cpuset_mems_generation++;
1275
		break;
L
Linus Torvalds 已提交
1276 1277 1278 1279 1280 1281 1282 1283
	default:
		retval = -EINVAL;
		goto out2;
	}

	if (retval == 0)
		retval = nbytes;
out2:
1284
	cgroup_unlock();
L
Linus Torvalds 已提交
1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305
out1:
	kfree(buffer);
	return retval;
}

/*
 * These ascii lists should be read in a single call, by using a user
 * buffer large enough to hold the entire map.  If read in smaller
 * chunks, there is no guarantee of atomicity.  Since the display format
 * used, list of ranges of sequential numbers, is variable length,
 * and since these maps can change value dynamically, one could read
 * gibberish by doing partial reads while a list was changing.
 * A single large read to a buffer that crosses a page boundary is
 * ok, because the result being copied to user land is not recomputed
 * across a page fault.
 */

static int cpuset_sprintf_cpulist(char *page, struct cpuset *cs)
{
	cpumask_t mask;

1306
	mutex_lock(&callback_mutex);
L
Linus Torvalds 已提交
1307
	mask = cs->cpus_allowed;
1308
	mutex_unlock(&callback_mutex);
L
Linus Torvalds 已提交
1309 1310 1311 1312 1313 1314 1315 1316

	return cpulist_scnprintf(page, PAGE_SIZE, mask);
}

static int cpuset_sprintf_memlist(char *page, struct cpuset *cs)
{
	nodemask_t mask;

1317
	mutex_lock(&callback_mutex);
L
Linus Torvalds 已提交
1318
	mask = cs->mems_allowed;
1319
	mutex_unlock(&callback_mutex);
L
Linus Torvalds 已提交
1320 1321 1322 1323

	return nodelist_scnprintf(page, PAGE_SIZE, mask);
}

1324 1325 1326 1327 1328
static ssize_t cpuset_common_file_read(struct cgroup *cont,
				       struct cftype *cft,
				       struct file *file,
				       char __user *buf,
				       size_t nbytes, loff_t *ppos)
L
Linus Torvalds 已提交
1329
{
1330
	struct cpuset *cs = cgroup_cs(cont);
L
Linus Torvalds 已提交
1331 1332 1333 1334 1335
	cpuset_filetype_t type = cft->private;
	char *page;
	ssize_t retval = 0;
	char *s;

1336
	if (!(page = (char *)__get_free_page(GFP_TEMPORARY)))
L
Linus Torvalds 已提交
1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353
		return -ENOMEM;

	s = page;

	switch (type) {
	case FILE_CPULIST:
		s += cpuset_sprintf_cpulist(s, cs);
		break;
	case FILE_MEMLIST:
		s += cpuset_sprintf_memlist(s, cs);
		break;
	case FILE_CPU_EXCLUSIVE:
		*s++ = is_cpu_exclusive(cs) ? '1' : '0';
		break;
	case FILE_MEM_EXCLUSIVE:
		*s++ = is_mem_exclusive(cs) ? '1' : '0';
		break;
P
Paul Jackson 已提交
1354 1355 1356
	case FILE_SCHED_LOAD_BALANCE:
		*s++ = is_sched_load_balance(cs) ? '1' : '0';
		break;
1357 1358 1359
	case FILE_MEMORY_MIGRATE:
		*s++ = is_memory_migrate(cs) ? '1' : '0';
		break;
1360 1361 1362 1363 1364 1365
	case FILE_MEMORY_PRESSURE_ENABLED:
		*s++ = cpuset_memory_pressure_enabled ? '1' : '0';
		break;
	case FILE_MEMORY_PRESSURE:
		s += sprintf(s, "%d", fmeter_getrate(&cs->fmeter));
		break;
1366 1367 1368 1369 1370 1371
	case FILE_SPREAD_PAGE:
		*s++ = is_spread_page(cs) ? '1' : '0';
		break;
	case FILE_SPREAD_SLAB:
		*s++ = is_spread_slab(cs) ? '1' : '0';
		break;
L
Linus Torvalds 已提交
1372 1373 1374 1375 1376 1377
	default:
		retval = -EINVAL;
		goto out;
	}
	*s++ = '\n';

A
Al Viro 已提交
1378
	retval = simple_read_from_buffer(buf, nbytes, ppos, page, s - page);
L
Linus Torvalds 已提交
1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393
out:
	free_page((unsigned long)page);
	return retval;
}





/*
 * for the common functions, 'private' gives the type of file
 */

static struct cftype cft_cpus = {
	.name = "cpus",
1394 1395
	.read = cpuset_common_file_read,
	.write = cpuset_common_file_write,
L
Linus Torvalds 已提交
1396 1397 1398 1399 1400
	.private = FILE_CPULIST,
};

static struct cftype cft_mems = {
	.name = "mems",
1401 1402
	.read = cpuset_common_file_read,
	.write = cpuset_common_file_write,
L
Linus Torvalds 已提交
1403 1404 1405 1406 1407
	.private = FILE_MEMLIST,
};

static struct cftype cft_cpu_exclusive = {
	.name = "cpu_exclusive",
1408 1409
	.read = cpuset_common_file_read,
	.write = cpuset_common_file_write,
L
Linus Torvalds 已提交
1410 1411 1412 1413 1414
	.private = FILE_CPU_EXCLUSIVE,
};

static struct cftype cft_mem_exclusive = {
	.name = "mem_exclusive",
1415 1416
	.read = cpuset_common_file_read,
	.write = cpuset_common_file_write,
L
Linus Torvalds 已提交
1417 1418 1419
	.private = FILE_MEM_EXCLUSIVE,
};

P
Paul Jackson 已提交
1420 1421 1422 1423 1424 1425 1426
static struct cftype cft_sched_load_balance = {
	.name = "sched_load_balance",
	.read = cpuset_common_file_read,
	.write = cpuset_common_file_write,
	.private = FILE_SCHED_LOAD_BALANCE,
};

1427 1428
static struct cftype cft_memory_migrate = {
	.name = "memory_migrate",
1429 1430
	.read = cpuset_common_file_read,
	.write = cpuset_common_file_write,
1431 1432 1433
	.private = FILE_MEMORY_MIGRATE,
};

1434 1435
static struct cftype cft_memory_pressure_enabled = {
	.name = "memory_pressure_enabled",
1436 1437
	.read = cpuset_common_file_read,
	.write = cpuset_common_file_write,
1438 1439 1440 1441 1442
	.private = FILE_MEMORY_PRESSURE_ENABLED,
};

static struct cftype cft_memory_pressure = {
	.name = "memory_pressure",
1443 1444
	.read = cpuset_common_file_read,
	.write = cpuset_common_file_write,
1445 1446 1447
	.private = FILE_MEMORY_PRESSURE,
};

1448 1449
static struct cftype cft_spread_page = {
	.name = "memory_spread_page",
1450 1451
	.read = cpuset_common_file_read,
	.write = cpuset_common_file_write,
1452 1453 1454 1455 1456
	.private = FILE_SPREAD_PAGE,
};

static struct cftype cft_spread_slab = {
	.name = "memory_spread_slab",
1457 1458
	.read = cpuset_common_file_read,
	.write = cpuset_common_file_write,
1459 1460 1461
	.private = FILE_SPREAD_SLAB,
};

1462
static int cpuset_populate(struct cgroup_subsys *ss, struct cgroup *cont)
L
Linus Torvalds 已提交
1463 1464 1465
{
	int err;

1466
	if ((err = cgroup_add_file(cont, ss, &cft_cpus)) < 0)
L
Linus Torvalds 已提交
1467
		return err;
1468
	if ((err = cgroup_add_file(cont, ss, &cft_mems)) < 0)
L
Linus Torvalds 已提交
1469
		return err;
1470
	if ((err = cgroup_add_file(cont, ss, &cft_cpu_exclusive)) < 0)
L
Linus Torvalds 已提交
1471
		return err;
1472
	if ((err = cgroup_add_file(cont, ss, &cft_mem_exclusive)) < 0)
L
Linus Torvalds 已提交
1473
		return err;
1474
	if ((err = cgroup_add_file(cont, ss, &cft_memory_migrate)) < 0)
L
Linus Torvalds 已提交
1475
		return err;
P
Paul Jackson 已提交
1476 1477
	if ((err = cgroup_add_file(cont, ss, &cft_sched_load_balance)) < 0)
		return err;
1478
	if ((err = cgroup_add_file(cont, ss, &cft_memory_pressure)) < 0)
1479
		return err;
1480
	if ((err = cgroup_add_file(cont, ss, &cft_spread_page)) < 0)
1481
		return err;
1482
	if ((err = cgroup_add_file(cont, ss, &cft_spread_slab)) < 0)
L
Linus Torvalds 已提交
1483
		return err;
1484 1485 1486 1487
	/* memory_pressure_enabled is in root cpuset only */
	if (err == 0 && !cont->parent)
		err = cgroup_add_file(cont, ss,
					 &cft_memory_pressure_enabled);
L
Linus Torvalds 已提交
1488 1489 1490
	return 0;
}

1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504
/*
 * post_clone() is called at the end of cgroup_clone().
 * 'cgroup' was just created automatically as a result of
 * a cgroup_clone(), and the current task is about to
 * be moved into 'cgroup'.
 *
 * Currently we refuse to set up the cgroup - thereby
 * refusing the task to be entered, and as a result refusing
 * the sys_unshare() or clone() which initiated it - if any
 * sibling cpusets have exclusive cpus or mem.
 *
 * If this becomes a problem for some users who wish to
 * allow that scenario, then cpuset_post_clone() could be
 * changed to grant parent->cpus_allowed-sibling_cpus_exclusive
1505 1506
 * (and likewise for mems) to the new cgroup. Called with cgroup_mutex
 * held.
1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527
 */
static void cpuset_post_clone(struct cgroup_subsys *ss,
			      struct cgroup *cgroup)
{
	struct cgroup *parent, *child;
	struct cpuset *cs, *parent_cs;

	parent = cgroup->parent;
	list_for_each_entry(child, &parent->children, sibling) {
		cs = cgroup_cs(child);
		if (is_mem_exclusive(cs) || is_cpu_exclusive(cs))
			return;
	}
	cs = cgroup_cs(cgroup);
	parent_cs = cgroup_cs(parent);

	cs->mems_allowed = parent_cs->mems_allowed;
	cs->cpus_allowed = parent_cs->cpus_allowed;
	return;
}

L
Linus Torvalds 已提交
1528 1529
/*
 *	cpuset_create - create a cpuset
1530 1531
 *	ss:	cpuset cgroup subsystem
 *	cont:	control group that the new cpuset will be part of
L
Linus Torvalds 已提交
1532 1533
 */

1534 1535 1536
static struct cgroup_subsys_state *cpuset_create(
	struct cgroup_subsys *ss,
	struct cgroup *cont)
L
Linus Torvalds 已提交
1537 1538
{
	struct cpuset *cs;
1539
	struct cpuset *parent;
L
Linus Torvalds 已提交
1540

1541 1542 1543 1544 1545 1546
	if (!cont->parent) {
		/* This is early initialization for the top cgroup */
		top_cpuset.mems_generation = cpuset_mems_generation++;
		return &top_cpuset.css;
	}
	parent = cgroup_cs(cont->parent);
L
Linus Torvalds 已提交
1547 1548
	cs = kmalloc(sizeof(*cs), GFP_KERNEL);
	if (!cs)
1549
		return ERR_PTR(-ENOMEM);
L
Linus Torvalds 已提交
1550

1551
	cpuset_update_task_memory_state();
L
Linus Torvalds 已提交
1552
	cs->flags = 0;
1553 1554 1555 1556
	if (is_spread_page(parent))
		set_bit(CS_SPREAD_PAGE, &cs->flags);
	if (is_spread_slab(parent))
		set_bit(CS_SPREAD_SLAB, &cs->flags);
P
Paul Jackson 已提交
1557
	set_bit(CS_SCHED_LOAD_BALANCE, &cs->flags);
L
Linus Torvalds 已提交
1558 1559
	cs->cpus_allowed = CPU_MASK_NONE;
	cs->mems_allowed = NODE_MASK_NONE;
1560
	cs->mems_generation = cpuset_mems_generation++;
1561
	fmeter_init(&cs->fmeter);
L
Linus Torvalds 已提交
1562 1563

	cs->parent = parent;
1564
	number_of_cpusets++;
1565
	return &cs->css ;
L
Linus Torvalds 已提交
1566 1567
}

P
Paul Jackson 已提交
1568 1569 1570 1571 1572
/*
 * Locking note on the strange update_flag() call below:
 *
 * If the cpuset being removed has its flag 'sched_load_balance'
 * enabled, then simulate turning sched_load_balance off, which
1573
 * will call rebuild_sched_domains().  The get_online_cpus()
P
Paul Jackson 已提交
1574 1575
 * call in rebuild_sched_domains() must not be made while holding
 * callback_mutex.  Elsewhere the kernel nests callback_mutex inside
1576
 * get_online_cpus() calls.  So the reverse nesting would risk an
P
Paul Jackson 已提交
1577 1578 1579
 * ABBA deadlock.
 */

1580
static void cpuset_destroy(struct cgroup_subsys *ss, struct cgroup *cont)
L
Linus Torvalds 已提交
1581
{
1582
	struct cpuset *cs = cgroup_cs(cont);
L
Linus Torvalds 已提交
1583

1584
	cpuset_update_task_memory_state();
P
Paul Jackson 已提交
1585 1586 1587 1588

	if (is_sched_load_balance(cs))
		update_flag(CS_SCHED_LOAD_BALANCE, cs, "0");

1589
	number_of_cpusets--;
1590
	kfree(cs);
L
Linus Torvalds 已提交
1591 1592
}

1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604
struct cgroup_subsys cpuset_subsys = {
	.name = "cpuset",
	.create = cpuset_create,
	.destroy  = cpuset_destroy,
	.can_attach = cpuset_can_attach,
	.attach = cpuset_attach,
	.populate = cpuset_populate,
	.post_clone = cpuset_post_clone,
	.subsys_id = cpuset_subsys_id,
	.early_init = 1,
};

1605 1606 1607 1608 1609 1610 1611 1612
/*
 * cpuset_init_early - just enough so that the calls to
 * cpuset_update_task_memory_state() in early init code
 * are harmless.
 */

int __init cpuset_init_early(void)
{
1613
	top_cpuset.mems_generation = cpuset_mems_generation++;
1614 1615 1616
	return 0;
}

1617

L
Linus Torvalds 已提交
1618 1619 1620 1621 1622 1623 1624 1625
/**
 * cpuset_init - initialize cpusets at system boot
 *
 * Description: Initialize top_cpuset and the cpuset internal file system,
 **/

int __init cpuset_init(void)
{
1626
	int err = 0;
L
Linus Torvalds 已提交
1627 1628 1629 1630

	top_cpuset.cpus_allowed = CPU_MASK_ALL;
	top_cpuset.mems_allowed = NODE_MASK_ALL;

1631
	fmeter_init(&top_cpuset.fmeter);
1632
	top_cpuset.mems_generation = cpuset_mems_generation++;
P
Paul Jackson 已提交
1633
	set_bit(CS_SCHED_LOAD_BALANCE, &top_cpuset.flags);
L
Linus Torvalds 已提交
1634 1635 1636

	err = register_filesystem(&cpuset_fs_type);
	if (err < 0)
1637 1638
		return err;

1639
	number_of_cpusets = 1;
1640
	return 0;
L
Linus Torvalds 已提交
1641 1642
}

1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684
/**
 * cpuset_do_move_task - move a given task to another cpuset
 * @tsk: pointer to task_struct the task to move
 * @scan: struct cgroup_scanner contained in its struct cpuset_hotplug_scanner
 *
 * Called by cgroup_scan_tasks() for each task in a cgroup.
 * Return nonzero to stop the walk through the tasks.
 */
void cpuset_do_move_task(struct task_struct *tsk, struct cgroup_scanner *scan)
{
	struct cpuset_hotplug_scanner *chsp;

	chsp = container_of(scan, struct cpuset_hotplug_scanner, scan);
	cgroup_attach_task(chsp->to, tsk);
}

/**
 * move_member_tasks_to_cpuset - move tasks from one cpuset to another
 * @from: cpuset in which the tasks currently reside
 * @to: cpuset to which the tasks will be moved
 *
 * Called with manage_sem held
 * callback_mutex must not be held, as attach_task() will take it.
 *
 * The cgroup_scan_tasks() function will scan all the tasks in a cgroup,
 * calling callback functions for each.
 */
static void move_member_tasks_to_cpuset(struct cpuset *from, struct cpuset *to)
{
	struct cpuset_hotplug_scanner scan;

	scan.scan.cg = from->css.cgroup;
	scan.scan.test_task = NULL; /* select all tasks in cgroup */
	scan.scan.process_task = cpuset_do_move_task;
	scan.scan.heap = NULL;
	scan.to = to->css.cgroup;

	if (cgroup_scan_tasks((struct cgroup_scanner *)&scan))
		printk(KERN_ERR "move_member_tasks_to_cpuset: "
				"cgroup_scan_tasks failed\n");
}

1685 1686 1687 1688
/*
 * If common_cpu_mem_hotplug_unplug(), below, unplugs any CPUs
 * or memory nodes, we need to walk over the cpuset hierarchy,
 * removing that CPU or node from all cpusets.  If this removes the
1689 1690
 * last CPU or node from a cpuset, then move the tasks in the empty
 * cpuset to its next-highest non-empty parent.
1691
 *
1692 1693
 * The parent cpuset has some superset of the 'mems' nodes that the
 * newly empty cpuset held, so no migration of memory is necessary.
1694
 *
1695
 * Called with both manage_sem and callback_sem held
1696
 */
1697 1698 1699 1700 1701 1702 1703 1704 1705
static void remove_tasks_in_empty_cpuset(struct cpuset *cs)
{
	struct cpuset *parent;

	/* the cgroup's css_sets list is in use if there are tasks
	   in the cpuset; the list is empty if there are none;
	   the cs->css.refcnt seems always 0 */
	if (list_empty(&cs->css.cgroup->css_sets))
		return;
1706

1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731
	/*
	 * Find its next-highest non-empty parent, (top cpuset
	 * has online cpus, so can't be empty).
	 */
	parent = cs->parent;
	while (cpus_empty(parent->cpus_allowed)) {
		/*
		 * this empty cpuset should now be considered to
		 * have been used, and therefore eligible for
		 * release when empty (if it is notify_on_release)
		 */
		parent = parent->parent;
	}

	move_member_tasks_to_cpuset(cs, parent);
}

/*
 * Walk the specified cpuset subtree and look for empty cpusets.
 * The tasks of such cpuset must be moved to a parent cpuset.
 *
 * Note that such a notify_on_release cpuset must have had, at some time,
 * member tasks or cpuset descendants and cpus and memory, before it can
 * be a candidate for release.
 *
1732
 * Called with cgroup_mutex held.  We take callback_mutex to modify
1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743
 * cpus_allowed and mems_allowed.
 *
 * This walk processes the tree from top to bottom, completing one layer
 * before dropping down to the next.  It always processes a node before
 * any of its children.
 *
 * For now, since we lack memory hot unplug, we'll never see a cpuset
 * that has tasks along with an empty 'mems'.  But if we did see such
 * a cpuset, we'd handle it just like we do if its 'cpus' was empty.
 */
static void scan_for_empty_cpusets(const struct cpuset *root)
1744
{
1745 1746 1747
	struct cpuset *cp;	/* scans cpusets being updated */
	struct cpuset *child;	/* scans child cpusets of cp */
	struct list_head queue;
1748
	struct cgroup *cont;
1749

1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773
	INIT_LIST_HEAD(&queue);

	list_add_tail((struct list_head *)&root->stack_list, &queue);

	mutex_lock(&callback_mutex);
	while (!list_empty(&queue)) {
		cp = container_of(queue.next, struct cpuset, stack_list);
		list_del(queue.next);
		list_for_each_entry(cont, &cp->css.cgroup->children, sibling) {
			child = cgroup_cs(cont);
			list_add_tail(&child->stack_list, &queue);
		}
		cont = cp->css.cgroup;
		/* Remove offline cpus and mems from this cpuset. */
		cpus_and(cp->cpus_allowed, cp->cpus_allowed, cpu_online_map);
		nodes_and(cp->mems_allowed, cp->mems_allowed,
						node_states[N_HIGH_MEMORY]);
		if ((cpus_empty(cp->cpus_allowed) ||
		     nodes_empty(cp->mems_allowed))) {
			/* Move tasks from the empty cpuset to a parent */
			mutex_unlock(&callback_mutex);
			remove_tasks_in_empty_cpuset(cp);
			mutex_lock(&callback_mutex);
		}
1774
	}
1775 1776
	mutex_unlock(&callback_mutex);
	return;
1777 1778 1779 1780
}

/*
 * The cpus_allowed and mems_allowed nodemasks in the top_cpuset track
1781
 * cpu_online_map and node_states[N_HIGH_MEMORY].  Force the top cpuset to
1782
 * track what's online after any CPU or memory node hotplug or unplug event.
1783 1784 1785 1786 1787 1788 1789 1790 1791
 *
 * Since there are two callers of this routine, one for CPU hotplug
 * events and one for memory node hotplug events, we could have coded
 * two separate routines here.  We code it as a single common routine
 * in order to minimize text size.
 */

static void common_cpu_mem_hotplug_unplug(void)
{
1792
	cgroup_lock();
1793 1794

	top_cpuset.cpus_allowed = cpu_online_map;
1795
	top_cpuset.mems_allowed = node_states[N_HIGH_MEMORY];
1796
	scan_for_empty_cpusets(&top_cpuset);
1797

1798
	cgroup_unlock();
1799 1800
}

1801 1802 1803 1804 1805 1806
/*
 * The top_cpuset tracks what CPUs and Memory Nodes are online,
 * period.  This is necessary in order to make cpusets transparent
 * (of no affect) on systems that are actively using CPU hotplug
 * but making no active use of cpusets.
 *
1807 1808
 * This routine ensures that top_cpuset.cpus_allowed tracks
 * cpu_online_map on each CPU hotplug (cpuhp) event.
1809 1810
 */

P
Paul Jackson 已提交
1811 1812
static int cpuset_handle_cpuhp(struct notifier_block *unused_nb,
				unsigned long phase, void *unused_cpu)
1813
{
1814 1815 1816
	if (phase == CPU_DYING || phase == CPU_DYING_FROZEN)
		return NOTIFY_DONE;

1817
	common_cpu_mem_hotplug_unplug();
1818 1819 1820
	return 0;
}

1821
#ifdef CONFIG_MEMORY_HOTPLUG
1822
/*
1823 1824 1825
 * Keep top_cpuset.mems_allowed tracking node_states[N_HIGH_MEMORY].
 * Call this routine anytime after you change
 * node_states[N_HIGH_MEMORY].
1826 1827 1828
 * See also the previous routine cpuset_handle_cpuhp().
 */

A
Al Viro 已提交
1829
void cpuset_track_online_nodes(void)
1830
{
1831
	common_cpu_mem_hotplug_unplug();
1832 1833 1834
}
#endif

L
Linus Torvalds 已提交
1835 1836 1837 1838 1839 1840 1841 1842 1843
/**
 * cpuset_init_smp - initialize cpus_allowed
 *
 * Description: Finish top cpuset after cpu, node maps are initialized
 **/

void __init cpuset_init_smp(void)
{
	top_cpuset.cpus_allowed = cpu_online_map;
1844
	top_cpuset.mems_allowed = node_states[N_HIGH_MEMORY];
1845 1846

	hotcpu_notifier(cpuset_handle_cpuhp, 0);
L
Linus Torvalds 已提交
1847 1848 1849
}

/**
1850

L
Linus Torvalds 已提交
1851 1852 1853 1854 1855 1856 1857 1858 1859
 * cpuset_cpus_allowed - return cpus_allowed mask from a tasks cpuset.
 * @tsk: pointer to task_struct from which to obtain cpuset->cpus_allowed.
 *
 * Description: Returns the cpumask_t cpus_allowed of the cpuset
 * attached to the specified @tsk.  Guaranteed to return some non-empty
 * subset of cpu_online_map, even if this means going outside the
 * tasks cpuset.
 **/

1860
cpumask_t cpuset_cpus_allowed(struct task_struct *tsk)
L
Linus Torvalds 已提交
1861 1862 1863
{
	cpumask_t mask;

1864
	mutex_lock(&callback_mutex);
1865 1866 1867 1868 1869 1870 1871 1872
	mask = cpuset_cpus_allowed_locked(tsk);
	mutex_unlock(&callback_mutex);

	return mask;
}

/**
 * cpuset_cpus_allowed_locked - return cpus_allowed mask from a tasks cpuset.
1873
 * Must be called with callback_mutex held.
1874 1875 1876 1877 1878
 **/
cpumask_t cpuset_cpus_allowed_locked(struct task_struct *tsk)
{
	cpumask_t mask;

1879
	task_lock(tsk);
1880
	guarantee_online_cpus(task_cs(tsk), &mask);
1881
	task_unlock(tsk);
L
Linus Torvalds 已提交
1882 1883 1884 1885 1886 1887 1888 1889 1890

	return mask;
}

void cpuset_init_current_mems_allowed(void)
{
	current->mems_allowed = NODE_MASK_ALL;
}

1891 1892 1893 1894 1895 1896
/**
 * cpuset_mems_allowed - return mems_allowed mask from a tasks cpuset.
 * @tsk: pointer to task_struct from which to obtain cpuset->mems_allowed.
 *
 * Description: Returns the nodemask_t mems_allowed of the cpuset
 * attached to the specified @tsk.  Guaranteed to return some non-empty
1897
 * subset of node_states[N_HIGH_MEMORY], even if this means going outside the
1898 1899 1900 1901 1902 1903 1904
 * tasks cpuset.
 **/

nodemask_t cpuset_mems_allowed(struct task_struct *tsk)
{
	nodemask_t mask;

1905
	mutex_lock(&callback_mutex);
1906
	task_lock(tsk);
1907
	guarantee_online_mems(task_cs(tsk), &mask);
1908
	task_unlock(tsk);
1909
	mutex_unlock(&callback_mutex);
1910 1911 1912 1913

	return mask;
}

1914 1915 1916 1917
/**
 * cpuset_zonelist_valid_mems_allowed - check zonelist vs. curremt mems_allowed
 * @zl: the zonelist to be checked
 *
L
Linus Torvalds 已提交
1918 1919 1920 1921 1922 1923 1924
 * Are any of the nodes on zonelist zl allowed in current->mems_allowed?
 */
int cpuset_zonelist_valid_mems_allowed(struct zonelist *zl)
{
	int i;

	for (i = 0; zl->zones[i]; i++) {
1925
		int nid = zone_to_nid(zl->zones[i]);
L
Linus Torvalds 已提交
1926 1927 1928 1929 1930 1931 1932

		if (node_isset(nid, current->mems_allowed))
			return 1;
	}
	return 0;
}

1933 1934
/*
 * nearest_exclusive_ancestor() - Returns the nearest mem_exclusive
1935
 * ancestor to the specified cpuset.  Call holding callback_mutex.
1936 1937 1938 1939 1940 1941 1942 1943 1944 1945
 * If no ancestor is mem_exclusive (an unusual configuration), then
 * returns the root cpuset.
 */
static const struct cpuset *nearest_exclusive_ancestor(const struct cpuset *cs)
{
	while (!is_mem_exclusive(cs) && cs->parent)
		cs = cs->parent;
	return cs;
}

1946
/**
1947
 * cpuset_zone_allowed_softwall - Can we allocate on zone z's memory node?
1948
 * @z: is this zone on an allowed node?
1949
 * @gfp_mask: memory allocation flags
1950
 *
1951 1952
 * If we're in interrupt, yes, we can always allocate.  If
 * __GFP_THISNODE is set, yes, we can always allocate.  If zone
1953 1954 1955
 * z's node is in our tasks mems_allowed, yes.  If it's not a
 * __GFP_HARDWALL request and this zone's nodes is in the nearest
 * mem_exclusive cpuset ancestor to this tasks cpuset, yes.
1956 1957
 * If the task has been OOM killed and has access to memory reserves
 * as specified by the TIF_MEMDIE flag, yes.
1958 1959
 * Otherwise, no.
 *
1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973
 * If __GFP_HARDWALL is set, cpuset_zone_allowed_softwall()
 * reduces to cpuset_zone_allowed_hardwall().  Otherwise,
 * cpuset_zone_allowed_softwall() might sleep, and might allow a zone
 * from an enclosing cpuset.
 *
 * cpuset_zone_allowed_hardwall() only handles the simpler case of
 * hardwall cpusets, and never sleeps.
 *
 * The __GFP_THISNODE placement logic is really handled elsewhere,
 * by forcibly using a zonelist starting at a specified node, and by
 * (in get_page_from_freelist()) refusing to consider the zones for
 * any node on the zonelist except the first.  By the time any such
 * calls get to this routine, we should just shut up and say 'yes'.
 *
1974
 * GFP_USER allocations are marked with the __GFP_HARDWALL bit,
1975 1976
 * and do not allow allocations outside the current tasks cpuset
 * unless the task has been OOM killed as is marked TIF_MEMDIE.
1977
 * GFP_KERNEL allocations are not so marked, so can escape to the
1978
 * nearest enclosing mem_exclusive ancestor cpuset.
1979
 *
1980 1981 1982 1983 1984 1985 1986
 * Scanning up parent cpusets requires callback_mutex.  The
 * __alloc_pages() routine only calls here with __GFP_HARDWALL bit
 * _not_ set if it's a GFP_KERNEL allocation, and all nodes in the
 * current tasks mems_allowed came up empty on the first pass over
 * the zonelist.  So only GFP_KERNEL allocations, if all nodes in the
 * cpuset are short of memory, might require taking the callback_mutex
 * mutex.
1987
 *
1988
 * The first call here from mm/page_alloc:get_page_from_freelist()
1989 1990 1991
 * has __GFP_HARDWALL set in gfp_mask, enforcing hardwall cpusets,
 * so no allocation on a node outside the cpuset is allowed (unless
 * in interrupt, of course).
1992 1993 1994 1995 1996 1997
 *
 * The second pass through get_page_from_freelist() doesn't even call
 * here for GFP_ATOMIC calls.  For those calls, the __alloc_pages()
 * variable 'wait' is not set, and the bit ALLOC_CPUSET is not set
 * in alloc_flags.  That logic and the checks below have the combined
 * affect that:
1998 1999
 *	in_interrupt - any node ok (current task context irrelevant)
 *	GFP_ATOMIC   - any node ok
2000
 *	TIF_MEMDIE   - any node ok
2001 2002
 *	GFP_KERNEL   - any node in enclosing mem_exclusive cpuset ok
 *	GFP_USER     - only nodes in current tasks mems allowed ok.
2003 2004
 *
 * Rule:
2005
 *    Don't call cpuset_zone_allowed_softwall if you can't sleep, unless you
2006 2007
 *    pass in the __GFP_HARDWALL flag set in gfp_flag, which disables
 *    the code that might scan up ancestor cpusets and sleep.
2008
 */
2009

2010
int __cpuset_zone_allowed_softwall(struct zone *z, gfp_t gfp_mask)
L
Linus Torvalds 已提交
2011
{
2012 2013
	int node;			/* node that zone z is on */
	const struct cpuset *cs;	/* current cpuset ancestors */
2014
	int allowed;			/* is allocation in zone z allowed? */
2015

2016
	if (in_interrupt() || (gfp_mask & __GFP_THISNODE))
2017
		return 1;
2018
	node = zone_to_nid(z);
2019
	might_sleep_if(!(gfp_mask & __GFP_HARDWALL));
2020 2021
	if (node_isset(node, current->mems_allowed))
		return 1;
2022 2023 2024 2025 2026 2027
	/*
	 * Allow tasks that have access to memory reserves because they have
	 * been OOM killed to get memory anywhere.
	 */
	if (unlikely(test_thread_flag(TIF_MEMDIE)))
		return 1;
2028 2029 2030
	if (gfp_mask & __GFP_HARDWALL)	/* If hardwall request, stop here */
		return 0;

2031 2032 2033
	if (current->flags & PF_EXITING) /* Let dying task have memory */
		return 1;

2034
	/* Not hardwall and node outside mems_allowed: scan up cpusets */
2035
	mutex_lock(&callback_mutex);
2036 2037

	task_lock(current);
2038
	cs = nearest_exclusive_ancestor(task_cs(current));
2039 2040
	task_unlock(current);

2041
	allowed = node_isset(node, cs->mems_allowed);
2042
	mutex_unlock(&callback_mutex);
2043
	return allowed;
L
Linus Torvalds 已提交
2044 2045
}

2046 2047 2048 2049 2050 2051 2052
/*
 * cpuset_zone_allowed_hardwall - Can we allocate on zone z's memory node?
 * @z: is this zone on an allowed node?
 * @gfp_mask: memory allocation flags
 *
 * If we're in interrupt, yes, we can always allocate.
 * If __GFP_THISNODE is set, yes, we can always allocate.  If zone
2053 2054 2055
 * z's node is in our tasks mems_allowed, yes.   If the task has been
 * OOM killed and has access to memory reserves as specified by the
 * TIF_MEMDIE flag, yes.  Otherwise, no.
2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078
 *
 * The __GFP_THISNODE placement logic is really handled elsewhere,
 * by forcibly using a zonelist starting at a specified node, and by
 * (in get_page_from_freelist()) refusing to consider the zones for
 * any node on the zonelist except the first.  By the time any such
 * calls get to this routine, we should just shut up and say 'yes'.
 *
 * Unlike the cpuset_zone_allowed_softwall() variant, above,
 * this variant requires that the zone be in the current tasks
 * mems_allowed or that we're in interrupt.  It does not scan up the
 * cpuset hierarchy for the nearest enclosing mem_exclusive cpuset.
 * It never sleeps.
 */

int __cpuset_zone_allowed_hardwall(struct zone *z, gfp_t gfp_mask)
{
	int node;			/* node that zone z is on */

	if (in_interrupt() || (gfp_mask & __GFP_THISNODE))
		return 1;
	node = zone_to_nid(z);
	if (node_isset(node, current->mems_allowed))
		return 1;
D
Daniel Walker 已提交
2079 2080 2081 2082 2083 2084
	/*
	 * Allow tasks that have access to memory reserves because they have
	 * been OOM killed to get memory anywhere.
	 */
	if (unlikely(test_thread_flag(TIF_MEMDIE)))
		return 1;
2085 2086 2087
	return 0;
}

P
Paul Jackson 已提交
2088 2089 2090
/**
 * cpuset_lock - lock out any changes to cpuset structures
 *
2091
 * The out of memory (oom) code needs to mutex_lock cpusets
P
Paul Jackson 已提交
2092
 * from being changed while it scans the tasklist looking for a
2093
 * task in an overlapping cpuset.  Expose callback_mutex via this
P
Paul Jackson 已提交
2094 2095
 * cpuset_lock() routine, so the oom code can lock it, before
 * locking the task list.  The tasklist_lock is a spinlock, so
2096
 * must be taken inside callback_mutex.
P
Paul Jackson 已提交
2097 2098 2099 2100
 */

void cpuset_lock(void)
{
2101
	mutex_lock(&callback_mutex);
P
Paul Jackson 已提交
2102 2103 2104 2105 2106 2107 2108 2109 2110 2111
}

/**
 * cpuset_unlock - release lock on cpuset changes
 *
 * Undo the lock taken in a previous cpuset_lock() call.
 */

void cpuset_unlock(void)
{
2112
	mutex_unlock(&callback_mutex);
P
Paul Jackson 已提交
2113 2114
}

2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152
/**
 * cpuset_mem_spread_node() - On which node to begin search for a page
 *
 * If a task is marked PF_SPREAD_PAGE or PF_SPREAD_SLAB (as for
 * tasks in a cpuset with is_spread_page or is_spread_slab set),
 * and if the memory allocation used cpuset_mem_spread_node()
 * to determine on which node to start looking, as it will for
 * certain page cache or slab cache pages such as used for file
 * system buffers and inode caches, then instead of starting on the
 * local node to look for a free page, rather spread the starting
 * node around the tasks mems_allowed nodes.
 *
 * We don't have to worry about the returned node being offline
 * because "it can't happen", and even if it did, it would be ok.
 *
 * The routines calling guarantee_online_mems() are careful to
 * only set nodes in task->mems_allowed that are online.  So it
 * should not be possible for the following code to return an
 * offline node.  But if it did, that would be ok, as this routine
 * is not returning the node where the allocation must be, only
 * the node where the search should start.  The zonelist passed to
 * __alloc_pages() will include all nodes.  If the slab allocator
 * is passed an offline node, it will fall back to the local node.
 * See kmem_cache_alloc_node().
 */

int cpuset_mem_spread_node(void)
{
	int node;

	node = next_node(current->cpuset_mem_spread_rotor, current->mems_allowed);
	if (node == MAX_NUMNODES)
		node = first_node(current->mems_allowed);
	current->cpuset_mem_spread_rotor = node;
	return node;
}
EXPORT_SYMBOL_GPL(cpuset_mem_spread_node);

2153
/**
2154 2155 2156 2157 2158 2159 2160 2161
 * cpuset_mems_allowed_intersects - Does @tsk1's mems_allowed intersect @tsk2's?
 * @tsk1: pointer to task_struct of some task.
 * @tsk2: pointer to task_struct of some other task.
 *
 * Description: Return true if @tsk1's mems_allowed intersects the
 * mems_allowed of @tsk2.  Used by the OOM killer to determine if
 * one of the task's memory usage might impact the memory available
 * to the other.
2162 2163
 **/

2164 2165
int cpuset_mems_allowed_intersects(const struct task_struct *tsk1,
				   const struct task_struct *tsk2)
2166
{
2167
	return nodes_intersects(tsk1->mems_allowed, tsk2->mems_allowed);
2168 2169
}

2170 2171 2172 2173 2174 2175
/*
 * Collection of memory_pressure is suppressed unless
 * this flag is enabled by writing "1" to the special
 * cpuset file 'memory_pressure_enabled' in the root cpuset.
 */

2176
int cpuset_memory_pressure_enabled __read_mostly;
2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198

/**
 * cpuset_memory_pressure_bump - keep stats of per-cpuset reclaims.
 *
 * Keep a running average of the rate of synchronous (direct)
 * page reclaim efforts initiated by tasks in each cpuset.
 *
 * This represents the rate at which some task in the cpuset
 * ran low on memory on all nodes it was allowed to use, and
 * had to enter the kernels page reclaim code in an effort to
 * create more free memory by tossing clean pages or swapping
 * or writing dirty pages.
 *
 * Display to user space in the per-cpuset read-only file
 * "memory_pressure".  Value displayed is an integer
 * representing the recent rate of entry into the synchronous
 * (direct) page reclaim by any task attached to the cpuset.
 **/

void __cpuset_memory_pressure_bump(void)
{
	task_lock(current);
2199
	fmeter_markevent(&task_cs(current)->fmeter);
2200 2201 2202
	task_unlock(current);
}

2203
#ifdef CONFIG_PROC_PID_CPUSET
L
Linus Torvalds 已提交
2204 2205 2206 2207
/*
 * proc_cpuset_show()
 *  - Print tasks cpuset path into seq_file.
 *  - Used for /proc/<pid>/cpuset.
2208 2209
 *  - No need to task_lock(tsk) on this tsk->cpuset reference, as it
 *    doesn't really matter if tsk->cpuset changes after we read it,
2210 2211
 *    and we take cgroup_mutex, keeping attach_task() from changing it
 *    anyway.
L
Linus Torvalds 已提交
2212
 */
P
Paul Jackson 已提交
2213
static int proc_cpuset_show(struct seq_file *m, void *unused_v)
L
Linus Torvalds 已提交
2214
{
2215
	struct pid *pid;
L
Linus Torvalds 已提交
2216 2217
	struct task_struct *tsk;
	char *buf;
2218
	struct cgroup_subsys_state *css;
2219
	int retval;
L
Linus Torvalds 已提交
2220

2221
	retval = -ENOMEM;
L
Linus Torvalds 已提交
2222 2223
	buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
	if (!buf)
2224 2225 2226
		goto out;

	retval = -ESRCH;
2227 2228
	pid = m->private;
	tsk = get_pid_task(pid, PIDTYPE_PID);
2229 2230
	if (!tsk)
		goto out_free;
L
Linus Torvalds 已提交
2231

2232
	retval = -EINVAL;
2233 2234 2235
	cgroup_lock();
	css = task_subsys_state(tsk, cpuset_subsys_id);
	retval = cgroup_path(css->cgroup, buf, PAGE_SIZE);
L
Linus Torvalds 已提交
2236
	if (retval < 0)
2237
		goto out_unlock;
L
Linus Torvalds 已提交
2238 2239
	seq_puts(m, buf);
	seq_putc(m, '\n');
2240
out_unlock:
2241
	cgroup_unlock();
2242 2243
	put_task_struct(tsk);
out_free:
L
Linus Torvalds 已提交
2244
	kfree(buf);
2245
out:
L
Linus Torvalds 已提交
2246 2247 2248 2249 2250
	return retval;
}

static int cpuset_open(struct inode *inode, struct file *file)
{
2251 2252
	struct pid *pid = PROC_I(inode)->pid;
	return single_open(file, proc_cpuset_show, pid);
L
Linus Torvalds 已提交
2253 2254
}

2255
const struct file_operations proc_cpuset_operations = {
L
Linus Torvalds 已提交
2256 2257 2258 2259 2260
	.open		= cpuset_open,
	.read		= seq_read,
	.llseek		= seq_lseek,
	.release	= single_release,
};
2261
#endif /* CONFIG_PROC_PID_CPUSET */
L
Linus Torvalds 已提交
2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273

/* Display task cpus_allowed, mems_allowed in /proc/<pid>/status file. */
char *cpuset_task_status_allowed(struct task_struct *task, char *buffer)
{
	buffer += sprintf(buffer, "Cpus_allowed:\t");
	buffer += cpumask_scnprintf(buffer, PAGE_SIZE, task->cpus_allowed);
	buffer += sprintf(buffer, "\n");
	buffer += sprintf(buffer, "Mems_allowed:\t");
	buffer += nodemask_scnprintf(buffer, PAGE_SIZE, task->mems_allowed);
	buffer += sprintf(buffer, "\n");
	return buffer;
}