intel_lrc.c 73.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
/*
 * Copyright © 2014 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 * Authors:
 *    Ben Widawsky <ben@bwidawsk.net>
 *    Michel Thierry <michel.thierry@intel.com>
 *    Thomas Daniel <thomas.daniel@intel.com>
 *    Oscar Mateo <oscar.mateo@intel.com>
 *
 */

31 32 33 34
/**
 * DOC: Logical Rings, Logical Ring Contexts and Execlists
 *
 * Motivation:
35 36 37 38
 * GEN8 brings an expansion of the HW contexts: "Logical Ring Contexts".
 * These expanded contexts enable a number of new abilities, especially
 * "Execlists" (also implemented in this file).
 *
39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89
 * One of the main differences with the legacy HW contexts is that logical
 * ring contexts incorporate many more things to the context's state, like
 * PDPs or ringbuffer control registers:
 *
 * The reason why PDPs are included in the context is straightforward: as
 * PPGTTs (per-process GTTs) are actually per-context, having the PDPs
 * contained there mean you don't need to do a ppgtt->switch_mm yourself,
 * instead, the GPU will do it for you on the context switch.
 *
 * But, what about the ringbuffer control registers (head, tail, etc..)?
 * shouldn't we just need a set of those per engine command streamer? This is
 * where the name "Logical Rings" starts to make sense: by virtualizing the
 * rings, the engine cs shifts to a new "ring buffer" with every context
 * switch. When you want to submit a workload to the GPU you: A) choose your
 * context, B) find its appropriate virtualized ring, C) write commands to it
 * and then, finally, D) tell the GPU to switch to that context.
 *
 * Instead of the legacy MI_SET_CONTEXT, the way you tell the GPU to switch
 * to a contexts is via a context execution list, ergo "Execlists".
 *
 * LRC implementation:
 * Regarding the creation of contexts, we have:
 *
 * - One global default context.
 * - One local default context for each opened fd.
 * - One local extra context for each context create ioctl call.
 *
 * Now that ringbuffers belong per-context (and not per-engine, like before)
 * and that contexts are uniquely tied to a given engine (and not reusable,
 * like before) we need:
 *
 * - One ringbuffer per-engine inside each context.
 * - One backing object per-engine inside each context.
 *
 * The global default context starts its life with these new objects fully
 * allocated and populated. The local default context for each opened fd is
 * more complex, because we don't know at creation time which engine is going
 * to use them. To handle this, we have implemented a deferred creation of LR
 * contexts:
 *
 * The local context starts its life as a hollow or blank holder, that only
 * gets populated for a given engine once we receive an execbuffer. If later
 * on we receive another execbuffer ioctl for the same context but a different
 * engine, we allocate/populate a new ringbuffer and context backing object and
 * so on.
 *
 * Finally, regarding local contexts created using the ioctl call: as they are
 * only allowed with the render ring, we can allocate & populate them right
 * away (no need to defer anything, at least for now).
 *
 * Execlists implementation:
90 91
 * Execlists are the new method by which, on gen8+ hardware, workloads are
 * submitted for execution (as opposed to the legacy, ringbuffer-based, method).
92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132
 * This method works as follows:
 *
 * When a request is committed, its commands (the BB start and any leading or
 * trailing commands, like the seqno breadcrumbs) are placed in the ringbuffer
 * for the appropriate context. The tail pointer in the hardware context is not
 * updated at this time, but instead, kept by the driver in the ringbuffer
 * structure. A structure representing this request is added to a request queue
 * for the appropriate engine: this structure contains a copy of the context's
 * tail after the request was written to the ring buffer and a pointer to the
 * context itself.
 *
 * If the engine's request queue was empty before the request was added, the
 * queue is processed immediately. Otherwise the queue will be processed during
 * a context switch interrupt. In any case, elements on the queue will get sent
 * (in pairs) to the GPU's ExecLists Submit Port (ELSP, for short) with a
 * globally unique 20-bits submission ID.
 *
 * When execution of a request completes, the GPU updates the context status
 * buffer with a context complete event and generates a context switch interrupt.
 * During the interrupt handling, the driver examines the events in the buffer:
 * for each context complete event, if the announced ID matches that on the head
 * of the request queue, then that request is retired and removed from the queue.
 *
 * After processing, if any requests were retired and the queue is not empty
 * then a new execution list can be submitted. The two requests at the front of
 * the queue are next to be submitted but since a context may not occur twice in
 * an execution list, if subsequent requests have the same ID as the first then
 * the two requests must be combined. This is done simply by discarding requests
 * at the head of the queue until either only one requests is left (in which case
 * we use a NULL second context) or the first two requests have unique IDs.
 *
 * By always executing the first two requests in the queue the driver ensures
 * that the GPU is kept as busy as possible. In the case where a single context
 * completes but a second context is still executing, the request for this second
 * context will be at the head of the queue when we remove the first one. This
 * request will then be resubmitted along with a new request for a different context,
 * which will cause the hardware to continue executing the second request and queue
 * the new request (the GPU detects the condition of a context getting preempted
 * with the same context and optimizes the context switch flow by not doing
 * preemption, but just sampling the new tail pointer).
 *
133
 */
134
#include <linux/interrupt.h>
135 136 137 138

#include <drm/drmP.h>
#include <drm/i915_drm.h>
#include "i915_drv.h"
139
#include "i915_gem_render_state.h"
140
#include "intel_lrc_reg.h"
141
#include "intel_mocs.h"
142

143 144 145 146 147 148 149 150 151 152 153 154 155
#define RING_EXECLIST_QFULL		(1 << 0x2)
#define RING_EXECLIST1_VALID		(1 << 0x3)
#define RING_EXECLIST0_VALID		(1 << 0x4)
#define RING_EXECLIST_ACTIVE_STATUS	(3 << 0xE)
#define RING_EXECLIST1_ACTIVE		(1 << 0x11)
#define RING_EXECLIST0_ACTIVE		(1 << 0x12)

#define GEN8_CTX_STATUS_IDLE_ACTIVE	(1 << 0)
#define GEN8_CTX_STATUS_PREEMPTED	(1 << 1)
#define GEN8_CTX_STATUS_ELEMENT_SWITCH	(1 << 2)
#define GEN8_CTX_STATUS_ACTIVE_IDLE	(1 << 3)
#define GEN8_CTX_STATUS_COMPLETE	(1 << 4)
#define GEN8_CTX_STATUS_LITE_RESTORE	(1 << 15)
156

157
#define GEN8_CTX_STATUS_COMPLETED_MASK \
158
	 (GEN8_CTX_STATUS_COMPLETE | GEN8_CTX_STATUS_PREEMPTED)
159

160 161
/* Typical size of the average request (2 pipecontrols and a MI_BB) */
#define EXECLISTS_REQUEST_SIZE 64 /* bytes */
162
#define WA_TAIL_DWORDS 2
163
#define WA_TAIL_BYTES (sizeof(u32) * WA_TAIL_DWORDS)
164

165
static int execlists_context_deferred_alloc(struct i915_gem_context *ctx,
166
					    struct intel_engine_cs *engine);
167 168 169 170
static void execlists_init_reg_state(u32 *reg_state,
				     struct i915_gem_context *ctx,
				     struct intel_engine_cs *engine,
				     struct intel_ring *ring);
171

172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188
static inline struct i915_priolist *to_priolist(struct rb_node *rb)
{
	return rb_entry(rb, struct i915_priolist, node);
}

static inline int rq_prio(const struct i915_request *rq)
{
	return rq->priotree.priority;
}

static inline bool need_preempt(const struct intel_engine_cs *engine,
				const struct i915_request *last,
				int prio)
{
	return engine->i915->preempt_context && prio > max(rq_prio(last), 0);
}

189
/**
190 191 192
 * intel_lr_context_descriptor_update() - calculate & cache the descriptor
 * 					  descriptor for a pinned context
 * @ctx: Context to work on
193
 * @engine: Engine the descriptor will be used with
194
 *
195 196 197 198 199
 * The context descriptor encodes various attributes of a context,
 * including its GTT address and some flags. Because it's fairly
 * expensive to calculate, we'll just do it once and cache the result,
 * which remains valid until the context is unpinned.
 *
200 201
 * This is what a descriptor looks like, from LSB to MSB::
 *
202
 *      bits  0-11:    flags, GEN8_CTX_* (cached in ctx->desc_template)
203 204 205 206
 *      bits 12-31:    LRCA, GTT address of (the HWSP of) this context
 *      bits 32-52:    ctx ID, a globally unique tag
 *      bits 53-54:    mbz, reserved for use by hardware
 *      bits 55-63:    group ID, currently unused and set to 0
207
 */
208
static void
209
intel_lr_context_descriptor_update(struct i915_gem_context *ctx,
210
				   struct intel_engine_cs *engine)
211
{
212
	struct intel_context *ce = &ctx->engine[engine->id];
213
	u64 desc;
214

215
	BUILD_BUG_ON(MAX_CONTEXT_HW_ID > (1<<GEN8_CTX_ID_WIDTH));
216

217
	desc = ctx->desc_template;				/* bits  0-11 */
218
	desc |= i915_ggtt_offset(ce->state) + LRC_HEADER_PAGES * PAGE_SIZE;
219
								/* bits 12-31 */
220
	desc |= (u64)ctx->hw_id << GEN8_CTX_ID_SHIFT;		/* bits 32-52 */
221

222
	ce->lrc_desc = desc;
223 224
}

225 226 227 228
static struct i915_priolist *
lookup_priolist(struct intel_engine_cs *engine,
		struct i915_priotree *pt,
		int prio)
229
{
230
	struct intel_engine_execlists * const execlists = &engine->execlists;
231 232 233 234
	struct i915_priolist *p;
	struct rb_node **parent, *rb;
	bool first = true;

235
	if (unlikely(execlists->no_priolist))
236 237 238 239 240
		prio = I915_PRIORITY_NORMAL;

find_priolist:
	/* most positive priority is scheduled first, equal priorities fifo */
	rb = NULL;
241
	parent = &execlists->queue.rb_node;
242 243
	while (*parent) {
		rb = *parent;
244
		p = to_priolist(rb);
245 246 247 248 249 250
		if (prio > p->priority) {
			parent = &rb->rb_left;
		} else if (prio < p->priority) {
			parent = &rb->rb_right;
			first = false;
		} else {
251
			return p;
252 253 254 255
		}
	}

	if (prio == I915_PRIORITY_NORMAL) {
256
		p = &execlists->default_priolist;
257 258 259 260 261 262 263 264 265 266 267 268 269 270
	} else {
		p = kmem_cache_alloc(engine->i915->priorities, GFP_ATOMIC);
		/* Convert an allocation failure to a priority bump */
		if (unlikely(!p)) {
			prio = I915_PRIORITY_NORMAL; /* recurses just once */

			/* To maintain ordering with all rendering, after an
			 * allocation failure we have to disable all scheduling.
			 * Requests will then be executed in fifo, and schedule
			 * will ensure that dependencies are emitted in fifo.
			 * There will be still some reordering with existing
			 * requests, so if userspace lied about their
			 * dependencies that reordering may be visible.
			 */
271
			execlists->no_priolist = true;
272 273 274 275 276
			goto find_priolist;
		}
	}

	p->priority = prio;
277
	INIT_LIST_HEAD(&p->requests);
278
	rb_link_node(&p->node, rb, parent);
279
	rb_insert_color(&p->node, &execlists->queue);
280 281

	if (first)
282
		execlists->first = &p->node;
283

284
	return p;
285 286
}

287
static void unwind_wa_tail(struct i915_request *rq)
288 289 290 291 292
{
	rq->tail = intel_ring_wrap(rq->ring, rq->wa_tail - WA_TAIL_BYTES);
	assert_ring_tail_valid(rq->ring, rq->tail);
}

293
static void __unwind_incomplete_requests(struct intel_engine_cs *engine)
294
{
295
	struct i915_request *rq, *rn;
296 297
	struct i915_priolist *uninitialized_var(p);
	int last_prio = I915_PRIORITY_INVALID;
298 299 300 301 302 303

	lockdep_assert_held(&engine->timeline->lock);

	list_for_each_entry_safe_reverse(rq, rn,
					 &engine->timeline->requests,
					 link) {
304
		if (i915_request_completed(rq))
305 306
			return;

307
		__i915_request_unsubmit(rq);
308 309
		unwind_wa_tail(rq);

310 311 312 313
		GEM_BUG_ON(rq_prio(rq) == I915_PRIORITY_INVALID);
		if (rq_prio(rq) != last_prio) {
			last_prio = rq_prio(rq);
			p = lookup_priolist(engine, &rq->priotree, last_prio);
314 315 316
		}

		list_add(&rq->priotree.link, &p->requests);
317 318 319
	}
}

320
void
321 322 323 324 325 326 327 328 329 330
execlists_unwind_incomplete_requests(struct intel_engine_execlists *execlists)
{
	struct intel_engine_cs *engine =
		container_of(execlists, typeof(*engine), execlists);

	spin_lock_irq(&engine->timeline->lock);
	__unwind_incomplete_requests(engine);
	spin_unlock_irq(&engine->timeline->lock);
}

331
static inline void
332
execlists_context_status_change(struct i915_request *rq, unsigned long status)
333
{
334 335 336 337 338 339
	/*
	 * Only used when GVT-g is enabled now. When GVT-g is disabled,
	 * The compiler should eliminate this function as dead-code.
	 */
	if (!IS_ENABLED(CONFIG_DRM_I915_GVT))
		return;
340

341 342
	atomic_notifier_call_chain(&rq->engine->context_status_notifier,
				   status, rq);
343 344
}

345
static inline void
346
execlists_context_schedule_in(struct i915_request *rq)
347 348
{
	execlists_context_status_change(rq, INTEL_CONTEXT_SCHEDULE_IN);
349
	intel_engine_context_in(rq->engine);
350 351 352
}

static inline void
353
execlists_context_schedule_out(struct i915_request *rq)
354
{
355
	intel_engine_context_out(rq->engine);
356 357 358
	execlists_context_status_change(rq, INTEL_CONTEXT_SCHEDULE_OUT);
}

359 360 361 362 363 364 365 366 367
static void
execlists_update_context_pdps(struct i915_hw_ppgtt *ppgtt, u32 *reg_state)
{
	ASSIGN_CTX_PDP(ppgtt, reg_state, 3);
	ASSIGN_CTX_PDP(ppgtt, reg_state, 2);
	ASSIGN_CTX_PDP(ppgtt, reg_state, 1);
	ASSIGN_CTX_PDP(ppgtt, reg_state, 0);
}

368
static u64 execlists_update_context(struct i915_request *rq)
369
{
370
	struct intel_context *ce = &rq->ctx->engine[rq->engine->id];
371 372
	struct i915_hw_ppgtt *ppgtt =
		rq->ctx->ppgtt ?: rq->i915->mm.aliasing_ppgtt;
373
	u32 *reg_state = ce->lrc_reg_state;
374

375
	reg_state[CTX_RING_TAIL+1] = intel_ring_set_tail(rq->ring, rq->tail);
376

377 378 379 380 381
	/* True 32b PPGTT with dynamic page allocation: update PDP
	 * registers and point the unallocated PDPs to scratch page.
	 * PML4 is allocated during ppgtt init, so this is not needed
	 * in 48-bit mode.
	 */
382
	if (ppgtt && !i915_vm_is_48bit(&ppgtt->base))
383
		execlists_update_context_pdps(ppgtt, reg_state);
384 385

	return ce->lrc_desc;
386 387
}

C
Chris Wilson 已提交
388 389 390 391 392 393
static inline void elsp_write(u64 desc, u32 __iomem *elsp)
{
	writel(upper_32_bits(desc), elsp);
	writel(lower_32_bits(desc), elsp);
}

394
static void execlists_submit_ports(struct intel_engine_cs *engine)
395
{
396
	struct execlist_port *port = engine->execlists.port;
397
	unsigned int n;
398

399
	for (n = execlists_num_ports(&engine->execlists); n--; ) {
400
		struct i915_request *rq;
401 402 403 404 405 406 407
		unsigned int count;
		u64 desc;

		rq = port_unpack(&port[n], &count);
		if (rq) {
			GEM_BUG_ON(count > !n);
			if (!count++)
408
				execlists_context_schedule_in(rq);
409 410 411
			port_set(&port[n], port_pack(rq, count));
			desc = execlists_update_context(rq);
			GEM_DEBUG_EXEC(port[n].context_id = upper_32_bits(desc));
412

413
			GEM_TRACE("%s in[%d]:  ctx=%d.%d, seqno=%x, prio=%d\n",
414
				  engine->name, n,
415
				  port[n].context_id, count,
416 417
				  rq->global_seqno,
				  rq_prio(rq));
418 419 420 421
		} else {
			GEM_BUG_ON(!n);
			desc = 0;
		}
422

423
		elsp_write(desc, engine->execlists.elsp);
424
	}
425
	execlists_clear_active(&engine->execlists, EXECLISTS_ACTIVE_HWACK);
426 427
}

428
static bool ctx_single_port_submission(const struct i915_gem_context *ctx)
429
{
430
	return (IS_ENABLED(CONFIG_DRM_I915_GVT) &&
431
		i915_gem_context_force_single_submission(ctx));
432
}
433

434 435 436 437 438
static bool can_merge_ctx(const struct i915_gem_context *prev,
			  const struct i915_gem_context *next)
{
	if (prev != next)
		return false;
439

440 441
	if (ctx_single_port_submission(prev))
		return false;
442

443
	return true;
444 445
}

446
static void port_assign(struct execlist_port *port, struct i915_request *rq)
447 448 449 450
{
	GEM_BUG_ON(rq == port_request(port));

	if (port_isset(port))
451
		i915_request_put(port_request(port));
452

453
	port_set(port, port_pack(i915_request_get(rq), port_count(port)));
454 455
}

C
Chris Wilson 已提交
456 457 458 459 460 461
static void inject_preempt_context(struct intel_engine_cs *engine)
{
	struct intel_context *ce =
		&engine->i915->preempt_context->engine[engine->id];
	unsigned int n;

462 463
	GEM_BUG_ON(engine->execlists.preempt_complete_status !=
		   upper_32_bits(ce->lrc_desc));
464 465 466 467 468 469
	GEM_BUG_ON((ce->lrc_reg_state[CTX_CONTEXT_CONTROL + 1] &
		    _MASKED_BIT_ENABLE(CTX_CTRL_ENGINE_CTX_RESTORE_INHIBIT |
				       CTX_CTRL_ENGINE_CTX_SAVE_INHIBIT)) !=
		   _MASKED_BIT_ENABLE(CTX_CTRL_ENGINE_CTX_RESTORE_INHIBIT |
				      CTX_CTRL_ENGINE_CTX_SAVE_INHIBIT));

470 471 472 473
	/*
	 * Switch to our empty preempt context so
	 * the state of the GPU is known (idle).
	 */
474
	GEM_TRACE("%s\n", engine->name);
C
Chris Wilson 已提交
475
	for (n = execlists_num_ports(&engine->execlists); --n; )
476
		elsp_write(0, engine->execlists.elsp);
C
Chris Wilson 已提交
477

478
	elsp_write(ce->lrc_desc, engine->execlists.elsp);
479
	execlists_clear_active(&engine->execlists, EXECLISTS_ACTIVE_HWACK);
480
	execlists_set_active(&engine->execlists, EXECLISTS_ACTIVE_PREEMPT);
C
Chris Wilson 已提交
481 482
}

483
static void execlists_dequeue(struct intel_engine_cs *engine)
484
{
485 486
	struct intel_engine_execlists * const execlists = &engine->execlists;
	struct execlist_port *port = execlists->port;
487 488
	const struct execlist_port * const last_port =
		&execlists->port[execlists->port_mask];
489
	struct i915_request *last = port_request(port);
490
	struct rb_node *rb;
491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511
	bool submit = false;

	/* Hardware submission is through 2 ports. Conceptually each port
	 * has a (RING_START, RING_HEAD, RING_TAIL) tuple. RING_START is
	 * static for a context, and unique to each, so we only execute
	 * requests belonging to a single context from each ring. RING_HEAD
	 * is maintained by the CS in the context image, it marks the place
	 * where it got up to last time, and through RING_TAIL we tell the CS
	 * where we want to execute up to this time.
	 *
	 * In this list the requests are in order of execution. Consecutive
	 * requests from the same context are adjacent in the ringbuffer. We
	 * can combine these requests into a single RING_TAIL update:
	 *
	 *              RING_HEAD...req1...req2
	 *                                    ^- RING_TAIL
	 * since to execute req2 the CS must first execute req1.
	 *
	 * Our goal then is to point each port to the end of a consecutive
	 * sequence of requests as being the most optimal (fewest wake ups
	 * and context switches) submission.
512
	 */
513

514
	spin_lock_irq(&engine->timeline->lock);
515 516
	rb = execlists->first;
	GEM_BUG_ON(rb_first(&execlists->queue) != rb);
C
Chris Wilson 已提交
517 518 519 520 521 522 523 524

	if (last) {
		/*
		 * Don't resubmit or switch until all outstanding
		 * preemptions (lite-restore) are seen. Then we
		 * know the next preemption status we see corresponds
		 * to this ELSP update.
		 */
525
		GEM_BUG_ON(!port_count(&port[0]));
C
Chris Wilson 已提交
526 527 528
		if (port_count(&port[0]) > 1)
			goto unlock;

529 530 531 532 533 534 535 536 537 538
		/*
		 * If we write to ELSP a second time before the HW has had
		 * a chance to respond to the previous write, we can confuse
		 * the HW and hit "undefined behaviour". After writing to ELSP,
		 * we must then wait until we see a context-switch event from
		 * the HW to indicate that it has had a chance to respond.
		 */
		if (!execlists_is_active(execlists, EXECLISTS_ACTIVE_HWACK))
			goto unlock;

539
		if (need_preempt(engine, last, execlists->queue_priority)) {
C
Chris Wilson 已提交
540 541 542
			inject_preempt_context(engine);
			goto unlock;
		}
543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576

		/*
		 * In theory, we could coalesce more requests onto
		 * the second port (the first port is active, with
		 * no preemptions pending). However, that means we
		 * then have to deal with the possible lite-restore
		 * of the second port (as we submit the ELSP, there
		 * may be a context-switch) but also we may complete
		 * the resubmission before the context-switch. Ergo,
		 * coalescing onto the second port will cause a
		 * preemption event, but we cannot predict whether
		 * that will affect port[0] or port[1].
		 *
		 * If the second port is already active, we can wait
		 * until the next context-switch before contemplating
		 * new requests. The GPU will be busy and we should be
		 * able to resubmit the new ELSP before it idles,
		 * avoiding pipeline bubbles (momentary pauses where
		 * the driver is unable to keep up the supply of new
		 * work). However, we have to double check that the
		 * priorities of the ports haven't been switch.
		 */
		if (port_count(&port[1]))
			goto unlock;

		/*
		 * WaIdleLiteRestore:bdw,skl
		 * Apply the wa NOOPs to prevent
		 * ring:HEAD == rq:TAIL as we resubmit the
		 * request. See gen8_emit_breadcrumb() for
		 * where we prepare the padding after the
		 * end of the request.
		 */
		last->tail = last->wa_tail;
C
Chris Wilson 已提交
577 578
	}

579 580
	while (rb) {
		struct i915_priolist *p = to_priolist(rb);
581
		struct i915_request *rq, *rn;
582 583 584 585 586 587 588 589 590 591 592 593

		list_for_each_entry_safe(rq, rn, &p->requests, priotree.link) {
			/*
			 * Can we combine this request with the current port?
			 * It has to be the same context/ringbuffer and not
			 * have any exceptions (e.g. GVT saying never to
			 * combine contexts).
			 *
			 * If we can combine the requests, we can execute both
			 * by updating the RING_TAIL to point to the end of the
			 * second request, and so we never need to tell the
			 * hardware about the first.
594
			 */
595 596 597 598 599 600
			if (last && !can_merge_ctx(rq->ctx, last->ctx)) {
				/*
				 * If we are on the second port and cannot
				 * combine this request with the last, then we
				 * are done.
				 */
601
				if (port == last_port) {
602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625
					__list_del_many(&p->requests,
							&rq->priotree.link);
					goto done;
				}

				/*
				 * If GVT overrides us we only ever submit
				 * port[0], leaving port[1] empty. Note that we
				 * also have to be careful that we don't queue
				 * the same context (even though a different
				 * request) to the second port.
				 */
				if (ctx_single_port_submission(last->ctx) ||
				    ctx_single_port_submission(rq->ctx)) {
					__list_del_many(&p->requests,
							&rq->priotree.link);
					goto done;
				}

				GEM_BUG_ON(last->ctx == rq->ctx);

				if (submit)
					port_assign(port, last);
				port++;
626 627

				GEM_BUG_ON(port_isset(port));
628
			}
629

630
			INIT_LIST_HEAD(&rq->priotree.link);
631 632
			__i915_request_submit(rq);
			trace_i915_request_in(rq, port_index(port, execlists));
633 634
			last = rq;
			submit = true;
635
		}
636

637
		rb = rb_next(rb);
638
		rb_erase(&p->node, &execlists->queue);
639 640
		INIT_LIST_HEAD(&p->requests);
		if (p->priority != I915_PRIORITY_NORMAL)
641
			kmem_cache_free(engine->i915->priorities, p);
642
	}
643
done:
644
	execlists->queue_priority = rb ? to_priolist(rb)->priority : INT_MIN;
645
	execlists->first = rb;
646
	if (submit)
647
		port_assign(port, last);
648 649 650 651

	/* We must always keep the beast fed if we have work piled up */
	GEM_BUG_ON(execlists->first && !port_isset(execlists->port));

C
Chris Wilson 已提交
652
unlock:
653
	spin_unlock_irq(&engine->timeline->lock);
654

655 656
	if (submit) {
		execlists_set_active(execlists, EXECLISTS_ACTIVE_USER);
657
		execlists_submit_ports(engine);
658
	}
659 660 661

	GEM_BUG_ON(port_isset(execlists->port) &&
		   !execlists_is_active(execlists, EXECLISTS_ACTIVE_USER));
662 663
}

664
void
665
execlists_cancel_port_requests(struct intel_engine_execlists * const execlists)
666
{
667
	struct execlist_port *port = execlists->port;
668
	unsigned int num_ports = execlists_num_ports(execlists);
669

670
	while (num_ports-- && port_isset(port)) {
671
		struct i915_request *rq = port_request(port);
672

673
		GEM_BUG_ON(!execlists->active);
674
		intel_engine_context_out(rq->engine);
675
		execlists_context_status_change(rq, INTEL_CONTEXT_SCHEDULE_PREEMPTED);
676
		i915_request_put(rq);
677

678 679 680
		memset(port, 0, sizeof(*port));
		port++;
	}
681 682
}

683 684
static void execlists_cancel_requests(struct intel_engine_cs *engine)
{
685
	struct intel_engine_execlists * const execlists = &engine->execlists;
686
	struct i915_request *rq, *rn;
687 688 689
	struct rb_node *rb;
	unsigned long flags;

690 691
	GEM_TRACE("%s\n", engine->name);

692 693 694
	spin_lock_irqsave(&engine->timeline->lock, flags);

	/* Cancel the requests on the HW and clear the ELSP tracker. */
695
	execlists_cancel_port_requests(execlists);
696 697 698 699

	/* Mark all executing requests as skipped. */
	list_for_each_entry(rq, &engine->timeline->requests, link) {
		GEM_BUG_ON(!rq->global_seqno);
700
		if (!i915_request_completed(rq))
701 702 703 704
			dma_fence_set_error(&rq->fence, -EIO);
	}

	/* Flush the queued requests to the timeline list (for retiring). */
705
	rb = execlists->first;
706
	while (rb) {
707
		struct i915_priolist *p = to_priolist(rb);
708 709 710 711 712

		list_for_each_entry_safe(rq, rn, &p->requests, priotree.link) {
			INIT_LIST_HEAD(&rq->priotree.link);

			dma_fence_set_error(&rq->fence, -EIO);
713
			__i915_request_submit(rq);
714 715 716
		}

		rb = rb_next(rb);
717
		rb_erase(&p->node, &execlists->queue);
718 719 720 721 722 723 724
		INIT_LIST_HEAD(&p->requests);
		if (p->priority != I915_PRIORITY_NORMAL)
			kmem_cache_free(engine->i915->priorities, p);
	}

	/* Remaining _unready_ requests will be nop'ed when submitted */

725
	execlists->queue_priority = INT_MIN;
726 727
	execlists->queue = RB_ROOT;
	execlists->first = NULL;
728
	GEM_BUG_ON(port_isset(execlists->port));
729 730 731 732 733 734 735 736 737

	/*
	 * The port is checked prior to scheduling a tasklet, but
	 * just in case we have suspended the tasklet to do the
	 * wedging make sure that when it wakes, it decides there
	 * is no work to do by clearing the irq_posted bit.
	 */
	clear_bit(ENGINE_IRQ_EXECLIST, &engine->irq_posted);

738 739 740
	/* Mark all CS interrupts as complete */
	execlists->active = 0;

741 742 743
	spin_unlock_irqrestore(&engine->timeline->lock, flags);
}

744
/*
745 746 747
 * Check the unread Context Status Buffers and manage the submission of new
 * contexts to the ELSP accordingly.
 */
748
static void execlists_submission_tasklet(unsigned long data)
749
{
750 751
	struct intel_engine_cs * const engine = (struct intel_engine_cs *)data;
	struct intel_engine_execlists * const execlists = &engine->execlists;
C
Chris Wilson 已提交
752
	struct execlist_port * const port = execlists->port;
753
	struct drm_i915_private *dev_priv = engine->i915;
754
	bool fw = false;
755

756 757 758 759 760 761 762 763 764
	/* We can skip acquiring intel_runtime_pm_get() here as it was taken
	 * on our behalf by the request (see i915_gem_mark_busy()) and it will
	 * not be relinquished until the device is idle (see
	 * i915_gem_idle_work_handler()). As a precaution, we make sure
	 * that all ELSP are drained i.e. we have processed the CSB,
	 * before allowing ourselves to idle and calling intel_runtime_pm_put().
	 */
	GEM_BUG_ON(!dev_priv->gt.awake);

765 766 767 768 769
	/* Prefer doing test_and_clear_bit() as a two stage operation to avoid
	 * imposing the cost of a locked atomic transaction when submitting a
	 * new request (outside of the context-switch interrupt).
	 */
	while (test_bit(ENGINE_IRQ_EXECLIST, &engine->irq_posted)) {
770 771 772
		/* The HWSP contains a (cacheable) mirror of the CSB */
		const u32 *buf =
			&engine->status_page.page_addr[I915_HWS_CSB_BUF0_INDEX];
773
		unsigned int head, tail;
774

775
		if (unlikely(execlists->csb_use_mmio)) {
776 777
			buf = (u32 * __force)
				(dev_priv->regs + i915_mmio_reg_offset(RING_CONTEXT_STATUS_BUF_LO(engine, 0)));
778
			execlists->csb_head = -1; /* force mmio read of CSB ptrs */
779 780
		}

781 782 783 784 785 786 787 788 789 790 791
		/* The write will be ordered by the uncached read (itself
		 * a memory barrier), so we do not need another in the form
		 * of a locked instruction. The race between the interrupt
		 * handler and the split test/clear is harmless as we order
		 * our clear before the CSB read. If the interrupt arrived
		 * first between the test and the clear, we read the updated
		 * CSB and clear the bit. If the interrupt arrives as we read
		 * the CSB or later (i.e. after we had cleared the bit) the bit
		 * is set and we do a new loop.
		 */
		__clear_bit(ENGINE_IRQ_EXECLIST, &engine->irq_posted);
792
		if (unlikely(execlists->csb_head == -1)) { /* following a reset */
793 794 795 796 797 798
			if (!fw) {
				intel_uncore_forcewake_get(dev_priv,
							   execlists->fw_domains);
				fw = true;
			}

799 800 801
			head = readl(dev_priv->regs + i915_mmio_reg_offset(RING_CONTEXT_STATUS_PTR(engine)));
			tail = GEN8_CSB_WRITE_PTR(head);
			head = GEN8_CSB_READ_PTR(head);
802
			execlists->csb_head = head;
803 804 805 806 807
		} else {
			const int write_idx =
				intel_hws_csb_write_index(dev_priv) -
				I915_HWS_CSB_BUF0_INDEX;

808
			head = execlists->csb_head;
809 810
			tail = READ_ONCE(buf[write_idx]);
		}
811
		GEM_TRACE("%s cs-irq head=%d [%d%s], tail=%d [%d%s]\n",
812
			  engine->name,
813 814
			  head, GEN8_CSB_READ_PTR(readl(dev_priv->regs + i915_mmio_reg_offset(RING_CONTEXT_STATUS_PTR(engine)))), fw ? "" : "?",
			  tail, GEN8_CSB_WRITE_PTR(readl(dev_priv->regs + i915_mmio_reg_offset(RING_CONTEXT_STATUS_PTR(engine)))), fw ? "" : "?");
815

816
		while (head != tail) {
817
			struct i915_request *rq;
818
			unsigned int status;
819
			unsigned int count;
820 821 822

			if (++head == GEN8_CSB_ENTRIES)
				head = 0;
823

824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840
			/* We are flying near dragons again.
			 *
			 * We hold a reference to the request in execlist_port[]
			 * but no more than that. We are operating in softirq
			 * context and so cannot hold any mutex or sleep. That
			 * prevents us stopping the requests we are processing
			 * in port[] from being retired simultaneously (the
			 * breadcrumb will be complete before we see the
			 * context-switch). As we only hold the reference to the
			 * request, any pointer chasing underneath the request
			 * is subject to a potential use-after-free. Thus we
			 * store all of the bookkeeping within port[] as
			 * required, and avoid using unguarded pointers beneath
			 * request itself. The same applies to the atomic
			 * status notifier.
			 */

841
			status = READ_ONCE(buf[2 * head]); /* maybe mmio! */
842
			GEM_TRACE("%s csb[%d]: status=0x%08x:0x%08x, active=0x%x\n",
843
				  engine->name, head,
844 845
				  status, buf[2*head + 1],
				  execlists->active);
846 847 848 849 850 851 852 853 854

			if (status & (GEN8_CTX_STATUS_IDLE_ACTIVE |
				      GEN8_CTX_STATUS_PREEMPTED))
				execlists_set_active(execlists,
						     EXECLISTS_ACTIVE_HWACK);
			if (status & GEN8_CTX_STATUS_ACTIVE_IDLE)
				execlists_clear_active(execlists,
						       EXECLISTS_ACTIVE_HWACK);

855 856 857
			if (!(status & GEN8_CTX_STATUS_COMPLETED_MASK))
				continue;

858 859 860
			/* We should never get a COMPLETED | IDLE_ACTIVE! */
			GEM_BUG_ON(status & GEN8_CTX_STATUS_IDLE_ACTIVE);

861
			if (status & GEN8_CTX_STATUS_COMPLETE &&
862
			    buf[2*head + 1] == execlists->preempt_complete_status) {
863 864
				GEM_TRACE("%s preempt-idle\n", engine->name);

865 866
				execlists_cancel_port_requests(execlists);
				execlists_unwind_incomplete_requests(execlists);
C
Chris Wilson 已提交
867

868 869 870 871
				GEM_BUG_ON(!execlists_is_active(execlists,
								EXECLISTS_ACTIVE_PREEMPT));
				execlists_clear_active(execlists,
						       EXECLISTS_ACTIVE_PREEMPT);
C
Chris Wilson 已提交
872 873 874 875
				continue;
			}

			if (status & GEN8_CTX_STATUS_PREEMPTED &&
876 877
			    execlists_is_active(execlists,
						EXECLISTS_ACTIVE_PREEMPT))
C
Chris Wilson 已提交
878 879
				continue;

880 881 882
			GEM_BUG_ON(!execlists_is_active(execlists,
							EXECLISTS_ACTIVE_USER));

883
			rq = port_unpack(port, &count);
884
			GEM_TRACE("%s out[0]: ctx=%d.%d, seqno=%x, prio=%d\n",
885
				  engine->name,
886
				  port->context_id, count,
887 888
				  rq ? rq->global_seqno : 0,
				  rq ? rq_prio(rq) : 0);
889 890 891 892

			/* Check the context/desc id for this event matches */
			GEM_DEBUG_BUG_ON(buf[2 * head + 1] != port->context_id);

893 894
			GEM_BUG_ON(count == 0);
			if (--count == 0) {
895
				GEM_BUG_ON(status & GEN8_CTX_STATUS_PREEMPTED);
896 897
				GEM_BUG_ON(port_isset(&port[1]) &&
					   !(status & GEN8_CTX_STATUS_ELEMENT_SWITCH));
898
				GEM_BUG_ON(!i915_request_completed(rq));
899
				execlists_context_schedule_out(rq);
900 901
				trace_i915_request_out(rq);
				i915_request_put(rq);
902

903 904 905
				GEM_TRACE("%s completed ctx=%d\n",
					  engine->name, port->context_id);

906
				execlists_port_complete(execlists, port);
907 908
			} else {
				port_set(port, port_pack(rq, count));
909
			}
910

911 912
			/* After the final element, the hw should be idle */
			GEM_BUG_ON(port_count(port) == 0 &&
913
				   !(status & GEN8_CTX_STATUS_ACTIVE_IDLE));
914 915 916
			if (port_count(port) == 0)
				execlists_clear_active(execlists,
						       EXECLISTS_ACTIVE_USER);
917
		}
918

919 920
		if (head != execlists->csb_head) {
			execlists->csb_head = head;
921 922 923
			writel(_MASKED_FIELD(GEN8_CSB_READ_PTR_MASK, head << 8),
			       dev_priv->regs + i915_mmio_reg_offset(RING_CONTEXT_STATUS_PTR(engine)));
		}
924 925
	}

926
	if (!execlists_is_active(execlists, EXECLISTS_ACTIVE_PREEMPT))
927
		execlists_dequeue(engine);
928

929 930
	if (fw)
		intel_uncore_forcewake_put(dev_priv, execlists->fw_domains);
931 932
}

933 934 935
static void queue_request(struct intel_engine_cs *engine,
			  struct i915_priotree *pt,
			  int prio)
936
{
937 938
	list_add_tail(&pt->link, &lookup_priolist(engine, pt, prio)->requests);
}
939

940 941 942 943
static void submit_queue(struct intel_engine_cs *engine, int prio)
{
	if (prio > engine->execlists.queue_priority) {
		engine->execlists.queue_priority = prio;
944
		tasklet_hi_schedule(&engine->execlists.tasklet);
945
	}
946 947
}

948
static void execlists_submit_request(struct i915_request *request)
949
{
950
	struct intel_engine_cs *engine = request->engine;
951
	unsigned long flags;
952

953 954
	/* Will be called from irq-context when using foreign fences. */
	spin_lock_irqsave(&engine->timeline->lock, flags);
955

956 957
	queue_request(engine, &request->priotree, rq_prio(request));
	submit_queue(engine, rq_prio(request));
958

959
	GEM_BUG_ON(!engine->execlists.first);
960 961
	GEM_BUG_ON(list_empty(&request->priotree.link));

962
	spin_unlock_irqrestore(&engine->timeline->lock, flags);
963 964
}

965
static struct i915_request *pt_to_request(struct i915_priotree *pt)
966
{
967
	return container_of(pt, struct i915_request, priotree);
968 969
}

970 971 972
static struct intel_engine_cs *
pt_lock_engine(struct i915_priotree *pt, struct intel_engine_cs *locked)
{
973
	struct intel_engine_cs *engine = pt_to_request(pt)->engine;
974 975

	GEM_BUG_ON(!locked);
976 977

	if (engine != locked) {
978 979
		spin_unlock(&locked->timeline->lock);
		spin_lock(&engine->timeline->lock);
980 981 982 983 984
	}

	return engine;
}

985
static void execlists_schedule(struct i915_request *request, int prio)
986
{
987
	struct intel_engine_cs *engine;
988 989 990 991
	struct i915_dependency *dep, *p;
	struct i915_dependency stack;
	LIST_HEAD(dfs);

992 993
	GEM_BUG_ON(prio == I915_PRIORITY_INVALID);

994
	if (i915_request_completed(request))
995 996
		return;

997 998 999
	if (prio <= READ_ONCE(request->priotree.priority))
		return;

1000 1001
	/* Need BKL in order to use the temporary link inside i915_dependency */
	lockdep_assert_held(&request->i915->drm.struct_mutex);
1002 1003 1004 1005

	stack.signaler = &request->priotree;
	list_add(&stack.dfs_link, &dfs);

1006 1007
	/*
	 * Recursively bump all dependent priorities to match the new request.
1008 1009 1010 1011 1012
	 *
	 * A naive approach would be to use recursion:
	 * static void update_priorities(struct i915_priotree *pt, prio) {
	 *	list_for_each_entry(dep, &pt->signalers_list, signal_link)
	 *		update_priorities(dep->signal, prio)
1013
	 *	queue_request(pt);
1014 1015 1016 1017 1018 1019 1020 1021 1022 1023
	 * }
	 * but that may have unlimited recursion depth and so runs a very
	 * real risk of overunning the kernel stack. Instead, we build
	 * a flat list of all dependencies starting with the current request.
	 * As we walk the list of dependencies, we add all of its dependencies
	 * to the end of the list (this may include an already visited
	 * request) and continue to walk onwards onto the new dependencies. The
	 * end result is a topological list of requests in reverse order, the
	 * last element in the list is the request we must execute first.
	 */
1024
	list_for_each_entry(dep, &dfs, dfs_link) {
1025 1026
		struct i915_priotree *pt = dep->signaler;

1027 1028
		/*
		 * Within an engine, there can be no cycle, but we may
1029 1030 1031 1032 1033
		 * refer to the same dependency chain multiple times
		 * (redundant dependencies are not eliminated) and across
		 * engines.
		 */
		list_for_each_entry(p, &pt->signalers_list, signal_link) {
1034 1035
			GEM_BUG_ON(p == dep); /* no cycles! */

1036
			if (i915_priotree_signaled(p->signaler))
1037 1038
				continue;

1039
			GEM_BUG_ON(p->signaler->priority < pt->priority);
1040 1041
			if (prio > READ_ONCE(p->signaler->priority))
				list_move_tail(&p->dfs_link, &dfs);
1042
		}
1043 1044
	}

1045 1046
	/*
	 * If we didn't need to bump any existing priorities, and we haven't
1047 1048 1049 1050
	 * yet submitted this request (i.e. there is no potential race with
	 * execlists_submit_request()), we can set our own priority and skip
	 * acquiring the engine locks.
	 */
1051
	if (request->priotree.priority == I915_PRIORITY_INVALID) {
1052 1053 1054 1055 1056 1057 1058
		GEM_BUG_ON(!list_empty(&request->priotree.link));
		request->priotree.priority = prio;
		if (stack.dfs_link.next == stack.dfs_link.prev)
			return;
		__list_del_entry(&stack.dfs_link);
	}

1059 1060 1061
	engine = request->engine;
	spin_lock_irq(&engine->timeline->lock);

1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073
	/* Fifo and depth-first replacement ensure our deps execute before us */
	list_for_each_entry_safe_reverse(dep, p, &dfs, dfs_link) {
		struct i915_priotree *pt = dep->signaler;

		INIT_LIST_HEAD(&dep->dfs_link);

		engine = pt_lock_engine(pt, engine);

		if (prio <= pt->priority)
			continue;

		pt->priority = prio;
1074 1075
		if (!list_empty(&pt->link)) {
			__list_del_entry(&pt->link);
1076
			queue_request(engine, pt, prio);
1077
		}
1078
		submit_queue(engine, prio);
1079 1080
	}

1081
	spin_unlock_irq(&engine->timeline->lock);
1082 1083
}

1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106
static int __context_pin(struct i915_gem_context *ctx, struct i915_vma *vma)
{
	unsigned int flags;
	int err;

	/*
	 * Clear this page out of any CPU caches for coherent swap-in/out.
	 * We only want to do this on the first bind so that we do not stall
	 * on an active context (which by nature is already on the GPU).
	 */
	if (!(vma->flags & I915_VMA_GLOBAL_BIND)) {
		err = i915_gem_object_set_to_gtt_domain(vma->obj, true);
		if (err)
			return err;
	}

	flags = PIN_GLOBAL | PIN_HIGH;
	if (ctx->ggtt_offset_bias)
		flags |= PIN_OFFSET_BIAS | ctx->ggtt_offset_bias;

	return i915_vma_pin(vma, 0, GEN8_LR_CONTEXT_ALIGN, flags);
}

1107 1108 1109
static struct intel_ring *
execlists_context_pin(struct intel_engine_cs *engine,
		      struct i915_gem_context *ctx)
1110
{
1111
	struct intel_context *ce = &ctx->engine[engine->id];
1112
	void *vaddr;
1113
	int ret;
1114

1115
	lockdep_assert_held(&ctx->i915->drm.struct_mutex);
1116

1117 1118
	if (likely(ce->pin_count++))
		goto out;
1119
	GEM_BUG_ON(!ce->pin_count); /* no overflow please! */
1120

1121 1122 1123
	ret = execlists_context_deferred_alloc(ctx, engine);
	if (ret)
		goto err;
1124
	GEM_BUG_ON(!ce->state);
1125

1126
	ret = __context_pin(ctx, ce->state);
1127
	if (ret)
1128
		goto err;
1129

1130
	vaddr = i915_gem_object_pin_map(ce->state->obj, I915_MAP_WB);
1131 1132
	if (IS_ERR(vaddr)) {
		ret = PTR_ERR(vaddr);
1133
		goto unpin_vma;
1134 1135
	}

1136
	ret = intel_ring_pin(ce->ring, ctx->i915, ctx->ggtt_offset_bias);
1137
	if (ret)
1138
		goto unpin_map;
1139

1140
	intel_lr_context_descriptor_update(ctx, engine);
1141

1142 1143
	ce->lrc_reg_state = vaddr + LRC_STATE_PN * PAGE_SIZE;
	ce->lrc_reg_state[CTX_RING_BUFFER_START+1] =
1144
		i915_ggtt_offset(ce->ring->vma);
1145

1146
	ce->state->obj->pin_global++;
1147
	i915_gem_context_get(ctx);
1148 1149
out:
	return ce->ring;
1150

1151
unpin_map:
1152 1153 1154
	i915_gem_object_unpin_map(ce->state->obj);
unpin_vma:
	__i915_vma_unpin(ce->state);
1155
err:
1156
	ce->pin_count = 0;
1157
	return ERR_PTR(ret);
1158 1159
}

1160 1161
static void execlists_context_unpin(struct intel_engine_cs *engine,
				    struct i915_gem_context *ctx)
1162
{
1163
	struct intel_context *ce = &ctx->engine[engine->id];
1164

1165
	lockdep_assert_held(&ctx->i915->drm.struct_mutex);
1166
	GEM_BUG_ON(ce->pin_count == 0);
1167

1168
	if (--ce->pin_count)
1169
		return;
1170

1171
	intel_ring_unpin(ce->ring);
1172

1173
	ce->state->obj->pin_global--;
1174 1175
	i915_gem_object_unpin_map(ce->state->obj);
	i915_vma_unpin(ce->state);
1176

1177
	i915_gem_context_put(ctx);
1178 1179
}

1180
static int execlists_request_alloc(struct i915_request *request)
1181 1182 1183
{
	struct intel_engine_cs *engine = request->engine;
	struct intel_context *ce = &request->ctx->engine[engine->id];
1184
	int ret;
1185

1186 1187
	GEM_BUG_ON(!ce->pin_count);

1188 1189 1190 1191 1192 1193
	/* Flush enough space to reduce the likelihood of waiting after
	 * we start building the request - in which case we will just
	 * have to repeat work.
	 */
	request->reserved_space += EXECLISTS_REQUEST_SIZE;

1194 1195 1196
	ret = intel_ring_wait_for_space(request->ring, request->reserved_space);
	if (ret)
		return ret;
1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208

	/* Note that after this point, we have committed to using
	 * this request as it is being used to both track the
	 * state of engine initialisation and liveness of the
	 * golden renderstate above. Think twice before you try
	 * to cancel/unwind this request now.
	 */

	request->reserved_space -= EXECLISTS_REQUEST_SIZE;
	return 0;
}

1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224
/*
 * In this WA we need to set GEN8_L3SQCREG4[21:21] and reset it after
 * PIPE_CONTROL instruction. This is required for the flush to happen correctly
 * but there is a slight complication as this is applied in WA batch where the
 * values are only initialized once so we cannot take register value at the
 * beginning and reuse it further; hence we save its value to memory, upload a
 * constant value with bit21 set and then we restore it back with the saved value.
 * To simplify the WA, a constant value is formed by using the default value
 * of this register. This shouldn't be a problem because we are only modifying
 * it for a short period and this batch in non-premptible. We can ofcourse
 * use additional instructions that read the actual value of the register
 * at that time and set our bit of interest but it makes the WA complicated.
 *
 * This WA is also required for Gen9 so extracting as a function avoids
 * code duplication.
 */
1225 1226
static u32 *
gen8_emit_flush_coherentl3_wa(struct intel_engine_cs *engine, u32 *batch)
1227
{
1228 1229 1230 1231 1232 1233 1234 1235 1236
	*batch++ = MI_STORE_REGISTER_MEM_GEN8 | MI_SRM_LRM_GLOBAL_GTT;
	*batch++ = i915_mmio_reg_offset(GEN8_L3SQCREG4);
	*batch++ = i915_ggtt_offset(engine->scratch) + 256;
	*batch++ = 0;

	*batch++ = MI_LOAD_REGISTER_IMM(1);
	*batch++ = i915_mmio_reg_offset(GEN8_L3SQCREG4);
	*batch++ = 0x40400000 | GEN8_LQSC_FLUSH_COHERENT_LINES;

1237 1238 1239 1240
	batch = gen8_emit_pipe_control(batch,
				       PIPE_CONTROL_CS_STALL |
				       PIPE_CONTROL_DC_FLUSH_ENABLE,
				       0);
1241 1242 1243 1244 1245 1246 1247

	*batch++ = MI_LOAD_REGISTER_MEM_GEN8 | MI_SRM_LRM_GLOBAL_GTT;
	*batch++ = i915_mmio_reg_offset(GEN8_L3SQCREG4);
	*batch++ = i915_ggtt_offset(engine->scratch) + 256;
	*batch++ = 0;

	return batch;
1248 1249
}

1250 1251 1252 1253 1254 1255
/*
 * Typically we only have one indirect_ctx and per_ctx batch buffer which are
 * initialized at the beginning and shared across all contexts but this field
 * helps us to have multiple batches at different offsets and select them based
 * on a criteria. At the moment this batch always start at the beginning of the page
 * and at this point we don't have multiple wa_ctx batch buffers.
1256
 *
1257 1258
 * The number of WA applied are not known at the beginning; we use this field
 * to return the no of DWORDS written.
1259
 *
1260 1261 1262 1263
 * It is to be noted that this batch does not contain MI_BATCH_BUFFER_END
 * so it adds NOOPs as padding to make it cacheline aligned.
 * MI_BATCH_BUFFER_END will be added to perctx batch and both of them together
 * makes a complete batch buffer.
1264
 */
1265
static u32 *gen8_init_indirectctx_bb(struct intel_engine_cs *engine, u32 *batch)
1266
{
1267
	/* WaDisableCtxRestoreArbitration:bdw,chv */
1268
	*batch++ = MI_ARB_ON_OFF | MI_ARB_DISABLE;
1269

1270
	/* WaFlushCoherentL3CacheLinesAtContextSwitch:bdw */
1271 1272
	if (IS_BROADWELL(engine->i915))
		batch = gen8_emit_flush_coherentl3_wa(engine, batch);
1273

1274 1275
	/* WaClearSlmSpaceAtContextSwitch:bdw,chv */
	/* Actual scratch location is at 128 bytes offset */
1276 1277 1278 1279 1280 1281 1282
	batch = gen8_emit_pipe_control(batch,
				       PIPE_CONTROL_FLUSH_L3 |
				       PIPE_CONTROL_GLOBAL_GTT_IVB |
				       PIPE_CONTROL_CS_STALL |
				       PIPE_CONTROL_QW_WRITE,
				       i915_ggtt_offset(engine->scratch) +
				       2 * CACHELINE_BYTES);
1283

C
Chris Wilson 已提交
1284 1285
	*batch++ = MI_ARB_ON_OFF | MI_ARB_ENABLE;

1286
	/* Pad to end of cacheline */
1287 1288
	while ((unsigned long)batch % CACHELINE_BYTES)
		*batch++ = MI_NOOP;
1289 1290 1291 1292 1293 1294 1295

	/*
	 * MI_BATCH_BUFFER_END is not required in Indirect ctx BB because
	 * execution depends on the length specified in terms of cache lines
	 * in the register CTX_RCS_INDIRECT_CTX
	 */

1296
	return batch;
1297 1298
}

1299
static u32 *gen9_init_indirectctx_bb(struct intel_engine_cs *engine, u32 *batch)
1300
{
C
Chris Wilson 已提交
1301 1302
	*batch++ = MI_ARB_ON_OFF | MI_ARB_DISABLE;

1303
	/* WaFlushCoherentL3CacheLinesAtContextSwitch:skl,bxt,glk */
1304
	batch = gen8_emit_flush_coherentl3_wa(engine, batch);
1305

1306
	/* WaDisableGatherAtSetShaderCommonSlice:skl,bxt,kbl,glk */
1307 1308 1309 1310 1311
	*batch++ = MI_LOAD_REGISTER_IMM(1);
	*batch++ = i915_mmio_reg_offset(COMMON_SLICE_CHICKEN2);
	*batch++ = _MASKED_BIT_DISABLE(
			GEN9_DISABLE_GATHER_AT_SET_SHADER_COMMON_SLICE);
	*batch++ = MI_NOOP;
1312

1313 1314
	/* WaClearSlmSpaceAtContextSwitch:kbl */
	/* Actual scratch location is at 128 bytes offset */
1315
	if (IS_KBL_REVID(engine->i915, 0, KBL_REVID_A0)) {
1316 1317 1318 1319 1320 1321 1322
		batch = gen8_emit_pipe_control(batch,
					       PIPE_CONTROL_FLUSH_L3 |
					       PIPE_CONTROL_GLOBAL_GTT_IVB |
					       PIPE_CONTROL_CS_STALL |
					       PIPE_CONTROL_QW_WRITE,
					       i915_ggtt_offset(engine->scratch)
					       + 2 * CACHELINE_BYTES);
1323
	}
1324

1325
	/* WaMediaPoolStateCmdInWABB:bxt,glk */
1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339
	if (HAS_POOLED_EU(engine->i915)) {
		/*
		 * EU pool configuration is setup along with golden context
		 * during context initialization. This value depends on
		 * device type (2x6 or 3x6) and needs to be updated based
		 * on which subslice is disabled especially for 2x6
		 * devices, however it is safe to load default
		 * configuration of 3x6 device instead of masking off
		 * corresponding bits because HW ignores bits of a disabled
		 * subslice and drops down to appropriate config. Please
		 * see render_state_setup() in i915_gem_render_state.c for
		 * possible configurations, to avoid duplication they are
		 * not shown here again.
		 */
1340 1341 1342 1343 1344 1345
		*batch++ = GEN9_MEDIA_POOL_STATE;
		*batch++ = GEN9_MEDIA_POOL_ENABLE;
		*batch++ = 0x00777000;
		*batch++ = 0;
		*batch++ = 0;
		*batch++ = 0;
1346 1347
	}

C
Chris Wilson 已提交
1348 1349
	*batch++ = MI_ARB_ON_OFF | MI_ARB_ENABLE;

1350
	/* Pad to end of cacheline */
1351 1352
	while ((unsigned long)batch % CACHELINE_BYTES)
		*batch++ = MI_NOOP;
1353

1354
	return batch;
1355 1356
}

1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390
static u32 *
gen10_init_indirectctx_bb(struct intel_engine_cs *engine, u32 *batch)
{
	int i;

	/*
	 * WaPipeControlBefore3DStateSamplePattern: cnl
	 *
	 * Ensure the engine is idle prior to programming a
	 * 3DSTATE_SAMPLE_PATTERN during a context restore.
	 */
	batch = gen8_emit_pipe_control(batch,
				       PIPE_CONTROL_CS_STALL,
				       0);
	/*
	 * WaPipeControlBefore3DStateSamplePattern says we need 4 dwords for
	 * the PIPE_CONTROL followed by 12 dwords of 0x0, so 16 dwords in
	 * total. However, a PIPE_CONTROL is 6 dwords long, not 4, which is
	 * confusing. Since gen8_emit_pipe_control() already advances the
	 * batch by 6 dwords, we advance the other 10 here, completing a
	 * cacheline. It's not clear if the workaround requires this padding
	 * before other commands, or if it's just the regular padding we would
	 * already have for the workaround bb, so leave it here for now.
	 */
	for (i = 0; i < 10; i++)
		*batch++ = MI_NOOP;

	/* Pad to end of cacheline */
	while ((unsigned long)batch % CACHELINE_BYTES)
		*batch++ = MI_NOOP;

	return batch;
}

1391 1392 1393
#define CTX_WA_BB_OBJ_SIZE (PAGE_SIZE)

static int lrc_setup_wa_ctx(struct intel_engine_cs *engine)
1394
{
1395 1396 1397
	struct drm_i915_gem_object *obj;
	struct i915_vma *vma;
	int err;
1398

1399
	obj = i915_gem_object_create(engine->i915, CTX_WA_BB_OBJ_SIZE);
1400 1401
	if (IS_ERR(obj))
		return PTR_ERR(obj);
1402

1403
	vma = i915_vma_instance(obj, &engine->i915->ggtt.base, NULL);
1404 1405 1406
	if (IS_ERR(vma)) {
		err = PTR_ERR(vma);
		goto err;
1407 1408
	}

1409 1410 1411 1412 1413
	err = i915_vma_pin(vma, 0, PAGE_SIZE, PIN_GLOBAL | PIN_HIGH);
	if (err)
		goto err;

	engine->wa_ctx.vma = vma;
1414
	return 0;
1415 1416 1417 1418

err:
	i915_gem_object_put(obj);
	return err;
1419 1420
}

1421
static void lrc_destroy_wa_ctx(struct intel_engine_cs *engine)
1422
{
1423
	i915_vma_unpin_and_release(&engine->wa_ctx.vma);
1424 1425
}

1426 1427
typedef u32 *(*wa_bb_func_t)(struct intel_engine_cs *engine, u32 *batch);

1428
static int intel_init_workaround_bb(struct intel_engine_cs *engine)
1429
{
1430
	struct i915_ctx_workarounds *wa_ctx = &engine->wa_ctx;
1431 1432 1433
	struct i915_wa_ctx_bb *wa_bb[2] = { &wa_ctx->indirect_ctx,
					    &wa_ctx->per_ctx };
	wa_bb_func_t wa_bb_fn[2];
1434
	struct page *page;
1435 1436
	void *batch, *batch_ptr;
	unsigned int i;
1437
	int ret;
1438

1439
	if (GEM_WARN_ON(engine->id != RCS))
1440
		return -EINVAL;
1441

1442
	switch (INTEL_GEN(engine->i915)) {
1443
	case 10:
1444 1445 1446
		wa_bb_fn[0] = gen10_init_indirectctx_bb;
		wa_bb_fn[1] = NULL;
		break;
1447 1448
	case 9:
		wa_bb_fn[0] = gen9_init_indirectctx_bb;
1449
		wa_bb_fn[1] = NULL;
1450 1451 1452
		break;
	case 8:
		wa_bb_fn[0] = gen8_init_indirectctx_bb;
1453
		wa_bb_fn[1] = NULL;
1454 1455 1456
		break;
	default:
		MISSING_CASE(INTEL_GEN(engine->i915));
1457
		return 0;
1458
	}
1459

1460
	ret = lrc_setup_wa_ctx(engine);
1461 1462 1463 1464 1465
	if (ret) {
		DRM_DEBUG_DRIVER("Failed to setup context WA page: %d\n", ret);
		return ret;
	}

1466
	page = i915_gem_object_get_dirty_page(wa_ctx->vma->obj, 0);
1467
	batch = batch_ptr = kmap_atomic(page);
1468

1469 1470 1471 1472 1473 1474 1475
	/*
	 * Emit the two workaround batch buffers, recording the offset from the
	 * start of the workaround batch buffer object for each and their
	 * respective sizes.
	 */
	for (i = 0; i < ARRAY_SIZE(wa_bb_fn); i++) {
		wa_bb[i]->offset = batch_ptr - batch;
1476 1477
		if (GEM_WARN_ON(!IS_ALIGNED(wa_bb[i]->offset,
					    CACHELINE_BYTES))) {
1478 1479 1480
			ret = -EINVAL;
			break;
		}
1481 1482
		if (wa_bb_fn[i])
			batch_ptr = wa_bb_fn[i](engine, batch_ptr);
1483
		wa_bb[i]->size = batch_ptr - (batch + wa_bb[i]->offset);
1484 1485
	}

1486 1487
	BUG_ON(batch_ptr - batch > CTX_WA_BB_OBJ_SIZE);

1488 1489
	kunmap_atomic(batch);
	if (ret)
1490
		lrc_destroy_wa_ctx(engine);
1491 1492 1493 1494

	return ret;
}

1495 1496 1497 1498 1499 1500 1501 1502
static u8 gtiir[] = {
	[RCS] = 0,
	[BCS] = 0,
	[VCS] = 1,
	[VCS2] = 1,
	[VECS] = 3,
};

1503
static void enable_execlists(struct intel_engine_cs *engine)
1504
{
1505
	struct drm_i915_private *dev_priv = engine->i915;
1506 1507

	I915_WRITE(RING_HWSTAM(engine->mmio_base), 0xffffffff);
1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523

	/*
	 * Make sure we're not enabling the new 12-deep CSB
	 * FIFO as that requires a slightly updated handling
	 * in the ctx switch irq. Since we're currently only
	 * using only 2 elements of the enhanced execlists the
	 * deeper FIFO it's not needed and it's not worth adding
	 * more statements to the irq handler to support it.
	 */
	if (INTEL_GEN(dev_priv) >= 11)
		I915_WRITE(RING_MODE_GEN7(engine),
			   _MASKED_BIT_DISABLE(GEN11_GFX_DISABLE_LEGACY_MODE));
	else
		I915_WRITE(RING_MODE_GEN7(engine),
			   _MASKED_BIT_ENABLE(GFX_RUN_LIST_ENABLE));

1524 1525 1526
	I915_WRITE(RING_HWS_PGA(engine->mmio_base),
		   engine->status_page.ggtt_offset);
	POSTING_READ(RING_HWS_PGA(engine->mmio_base));
1527 1528 1529

	/* Following the reset, we need to reload the CSB read/write pointers */
	engine->execlists.csb_head = -1;
1530 1531 1532 1533
}

static int gen8_init_common_ring(struct intel_engine_cs *engine)
{
1534
	struct intel_engine_execlists * const execlists = &engine->execlists;
1535 1536 1537 1538 1539
	int ret;

	ret = intel_mocs_init_engine(engine);
	if (ret)
		return ret;
1540

1541
	intel_engine_reset_breadcrumbs(engine);
1542
	intel_engine_init_hangcheck(engine);
1543

1544
	enable_execlists(engine);
1545

1546
	/* After a GPU reset, we may have requests to replay */
1547
	if (execlists->first)
1548
		tasklet_schedule(&execlists->tasklet);
1549

1550
	return 0;
1551 1552
}

1553
static int gen8_init_render_ring(struct intel_engine_cs *engine)
1554
{
1555
	struct drm_i915_private *dev_priv = engine->i915;
1556 1557
	int ret;

1558
	ret = gen8_init_common_ring(engine);
1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571
	if (ret)
		return ret;

	/* We need to disable the AsyncFlip performance optimisations in order
	 * to use MI_WAIT_FOR_EVENT within the CS. It should already be
	 * programmed to '1' on all products.
	 *
	 * WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv,bdw,chv
	 */
	I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(ASYNC_FLIP_PERF_DISABLE));

	I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_FORCE_ORDERING));

1572
	return init_workarounds_ring(engine);
1573 1574
}

1575
static int gen9_init_render_ring(struct intel_engine_cs *engine)
1576 1577 1578
{
	int ret;

1579
	ret = gen8_init_common_ring(engine);
1580 1581 1582
	if (ret)
		return ret;

1583
	return init_workarounds_ring(engine);
1584 1585
}

1586 1587 1588
static void reset_irq(struct intel_engine_cs *engine)
{
	struct drm_i915_private *dev_priv = engine->i915;
1589
	int i;
1590

1591 1592
	GEM_BUG_ON(engine->id >= ARRAY_SIZE(gtiir));

1593 1594 1595 1596 1597 1598 1599
	/*
	 * Clear any pending interrupt state.
	 *
	 * We do it twice out of paranoia that some of the IIR are double
	 * buffered, and if we only reset it once there may still be
	 * an interrupt pending.
	 */
1600 1601 1602 1603 1604 1605 1606 1607
	for (i = 0; i < 2; i++) {
		I915_WRITE(GEN8_GT_IIR(gtiir[engine->id]),
			   GT_CONTEXT_SWITCH_INTERRUPT << engine->irq_shift);
		POSTING_READ(GEN8_GT_IIR(gtiir[engine->id]));
	}
	GEM_BUG_ON(I915_READ(GEN8_GT_IIR(gtiir[engine->id])) &
		   (GT_CONTEXT_SWITCH_INTERRUPT << engine->irq_shift));

1608 1609 1610
	clear_bit(ENGINE_IRQ_EXECLIST, &engine->irq_posted);
}

1611
static void reset_common_ring(struct intel_engine_cs *engine,
1612
			      struct i915_request *request)
1613
{
1614
	struct intel_engine_execlists * const execlists = &engine->execlists;
1615
	struct intel_context *ce;
1616
	unsigned long flags;
1617

1618 1619
	GEM_TRACE("%s seqno=%x\n",
		  engine->name, request ? request->global_seqno : 0);
1620

1621 1622
	spin_lock_irqsave(&engine->timeline->lock, flags);

1623 1624
	reset_irq(engine);

1625 1626 1627 1628 1629 1630 1631 1632 1633
	/*
	 * Catch up with any missed context-switch interrupts.
	 *
	 * Ideally we would just read the remaining CSB entries now that we
	 * know the gpu is idle. However, the CSB registers are sometimes^W
	 * often trashed across a GPU reset! Instead we have to rely on
	 * guessing the missed context-switch events by looking at what
	 * requests were completed.
	 */
1634
	execlists_cancel_port_requests(execlists);
1635

1636
	/* Push back any incomplete requests for replay after the reset. */
1637
	__unwind_incomplete_requests(engine);
1638

1639 1640 1641
	/* Mark all CS interrupts as complete */
	execlists->active = 0;

1642 1643
	spin_unlock_irqrestore(&engine->timeline->lock, flags);

1644 1645 1646 1647 1648 1649 1650 1651 1652 1653
	/* If the request was innocent, we leave the request in the ELSP
	 * and will try to replay it on restarting. The context image may
	 * have been corrupted by the reset, in which case we may have
	 * to service a new GPU hang, but more likely we can continue on
	 * without impact.
	 *
	 * If the request was guilty, we presume the context is corrupt
	 * and have to at least restore the RING register in the context
	 * image back to the expected values to skip over the guilty request.
	 */
1654
	if (!request || request->fence.error != -EIO)
1655
		return;
1656

1657 1658 1659 1660 1661 1662 1663
	/* We want a simple context + ring to execute the breadcrumb update.
	 * We cannot rely on the context being intact across the GPU hang,
	 * so clear it and rebuild just what we need for the breadcrumb.
	 * All pending requests for this context will be zapped, and any
	 * future request will be after userspace has had the opportunity
	 * to recreate its own state.
	 */
1664
	ce = &request->ctx->engine[engine->id];
1665 1666 1667
	execlists_init_reg_state(ce->lrc_reg_state,
				 request->ctx, engine, ce->ring);

1668
	/* Move the RING_HEAD onto the breadcrumb, past the hanging batch */
1669 1670
	ce->lrc_reg_state[CTX_RING_BUFFER_START+1] =
		i915_ggtt_offset(ce->ring->vma);
1671
	ce->lrc_reg_state[CTX_RING_HEAD+1] = request->postfix;
1672

1673 1674 1675
	request->ring->head = request->postfix;
	intel_ring_update_space(request->ring);

1676
	/* Reset WaIdleLiteRestore:bdw,skl as well */
1677
	unwind_wa_tail(request);
1678 1679
}

1680
static int intel_logical_ring_emit_pdps(struct i915_request *rq)
1681
{
1682 1683
	struct i915_hw_ppgtt *ppgtt = rq->ctx->ppgtt;
	struct intel_engine_cs *engine = rq->engine;
1684
	const int num_lri_cmds = GEN8_3LVL_PDPES * 2;
1685 1686
	u32 *cs;
	int i;
1687

1688
	cs = intel_ring_begin(rq, num_lri_cmds * 2 + 2);
1689 1690
	if (IS_ERR(cs))
		return PTR_ERR(cs);
1691

1692
	*cs++ = MI_LOAD_REGISTER_IMM(num_lri_cmds);
1693
	for (i = GEN8_3LVL_PDPES - 1; i >= 0; i--) {
1694 1695
		const dma_addr_t pd_daddr = i915_page_dir_dma_addr(ppgtt, i);

1696 1697 1698 1699
		*cs++ = i915_mmio_reg_offset(GEN8_RING_PDP_UDW(engine, i));
		*cs++ = upper_32_bits(pd_daddr);
		*cs++ = i915_mmio_reg_offset(GEN8_RING_PDP_LDW(engine, i));
		*cs++ = lower_32_bits(pd_daddr);
1700 1701
	}

1702
	*cs++ = MI_NOOP;
1703
	intel_ring_advance(rq, cs);
1704 1705 1706 1707

	return 0;
}

1708
static int gen8_emit_bb_start(struct i915_request *rq,
1709
			      u64 offset, u32 len,
1710
			      const unsigned int flags)
1711
{
1712
	u32 *cs;
1713 1714
	int ret;

1715 1716 1717 1718
	/* Don't rely in hw updating PDPs, specially in lite-restore.
	 * Ideally, we should set Force PD Restore in ctx descriptor,
	 * but we can't. Force Restore would be a second option, but
	 * it is unsafe in case of lite-restore (because the ctx is
1719 1720
	 * not idle). PML4 is allocated during ppgtt init so this is
	 * not needed in 48-bit.*/
1721 1722 1723 1724 1725
	if (rq->ctx->ppgtt &&
	    (intel_engine_flag(rq->engine) & rq->ctx->ppgtt->pd_dirty_rings) &&
	    !i915_vm_is_48bit(&rq->ctx->ppgtt->base) &&
	    !intel_vgpu_active(rq->i915)) {
		ret = intel_logical_ring_emit_pdps(rq);
1726 1727
		if (ret)
			return ret;
1728

1729
		rq->ctx->ppgtt->pd_dirty_rings &= ~intel_engine_flag(rq->engine);
1730 1731
	}

1732
	cs = intel_ring_begin(rq, 4);
1733 1734
	if (IS_ERR(cs))
		return PTR_ERR(cs);
1735

1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752
	/*
	 * WaDisableCtxRestoreArbitration:bdw,chv
	 *
	 * We don't need to perform MI_ARB_ENABLE as often as we do (in
	 * particular all the gen that do not need the w/a at all!), if we
	 * took care to make sure that on every switch into this context
	 * (both ordinary and for preemption) that arbitrartion was enabled
	 * we would be fine. However, there doesn't seem to be a downside to
	 * being paranoid and making sure it is set before each batch and
	 * every context-switch.
	 *
	 * Note that if we fail to enable arbitration before the request
	 * is complete, then we do not see the context-switch interrupt and
	 * the engine hangs (with RING_HEAD == RING_TAIL).
	 *
	 * That satisfies both the GPGPU w/a and our heavy-handed paranoia.
	 */
1753 1754
	*cs++ = MI_ARB_ON_OFF | MI_ARB_ENABLE;

1755
	/* FIXME(BDW): Address space and security selectors. */
1756 1757 1758
	*cs++ = MI_BATCH_BUFFER_START_GEN8 |
		(flags & I915_DISPATCH_SECURE ? 0 : BIT(8)) |
		(flags & I915_DISPATCH_RS ? MI_BATCH_RESOURCE_STREAMER : 0);
1759 1760
	*cs++ = lower_32_bits(offset);
	*cs++ = upper_32_bits(offset);
1761
	intel_ring_advance(rq, cs);
1762 1763 1764 1765

	return 0;
}

1766
static void gen8_logical_ring_enable_irq(struct intel_engine_cs *engine)
1767
{
1768
	struct drm_i915_private *dev_priv = engine->i915;
1769 1770 1771
	I915_WRITE_IMR(engine,
		       ~(engine->irq_enable_mask | engine->irq_keep_mask));
	POSTING_READ_FW(RING_IMR(engine->mmio_base));
1772 1773
}

1774
static void gen8_logical_ring_disable_irq(struct intel_engine_cs *engine)
1775
{
1776
	struct drm_i915_private *dev_priv = engine->i915;
1777
	I915_WRITE_IMR(engine, ~engine->irq_keep_mask);
1778 1779
}

1780
static int gen8_emit_flush(struct i915_request *request, u32 mode)
1781
{
1782
	u32 cmd, *cs;
1783

1784 1785 1786
	cs = intel_ring_begin(request, 4);
	if (IS_ERR(cs))
		return PTR_ERR(cs);
1787 1788 1789

	cmd = MI_FLUSH_DW + 1;

1790 1791 1792 1793 1794 1795 1796
	/* We always require a command barrier so that subsequent
	 * commands, such as breadcrumb interrupts, are strictly ordered
	 * wrt the contents of the write cache being flushed to memory
	 * (and thus being coherent from the CPU).
	 */
	cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;

1797
	if (mode & EMIT_INVALIDATE) {
1798
		cmd |= MI_INVALIDATE_TLB;
1799
		if (request->engine->id == VCS)
1800
			cmd |= MI_INVALIDATE_BSD;
1801 1802
	}

1803 1804 1805 1806 1807
	*cs++ = cmd;
	*cs++ = I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT;
	*cs++ = 0; /* upper addr */
	*cs++ = 0; /* value */
	intel_ring_advance(request, cs);
1808 1809 1810 1811

	return 0;
}

1812
static int gen8_emit_flush_render(struct i915_request *request,
1813
				  u32 mode)
1814
{
1815
	struct intel_engine_cs *engine = request->engine;
1816 1817
	u32 scratch_addr =
		i915_ggtt_offset(engine->scratch) + 2 * CACHELINE_BYTES;
M
Mika Kuoppala 已提交
1818
	bool vf_flush_wa = false, dc_flush_wa = false;
1819
	u32 *cs, flags = 0;
M
Mika Kuoppala 已提交
1820
	int len;
1821 1822 1823

	flags |= PIPE_CONTROL_CS_STALL;

1824
	if (mode & EMIT_FLUSH) {
1825 1826
		flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
		flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
1827
		flags |= PIPE_CONTROL_DC_FLUSH_ENABLE;
1828
		flags |= PIPE_CONTROL_FLUSH_ENABLE;
1829 1830
	}

1831
	if (mode & EMIT_INVALIDATE) {
1832 1833 1834 1835 1836 1837 1838 1839 1840
		flags |= PIPE_CONTROL_TLB_INVALIDATE;
		flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_QW_WRITE;
		flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;

1841 1842 1843 1844
		/*
		 * On GEN9: before VF_CACHE_INVALIDATE we need to emit a NULL
		 * pipe control.
		 */
1845
		if (IS_GEN9(request->i915))
1846
			vf_flush_wa = true;
M
Mika Kuoppala 已提交
1847 1848 1849 1850

		/* WaForGAMHang:kbl */
		if (IS_KBL_REVID(request->i915, 0, KBL_REVID_B0))
			dc_flush_wa = true;
1851
	}
1852

M
Mika Kuoppala 已提交
1853 1854 1855 1856 1857 1858 1859 1860
	len = 6;

	if (vf_flush_wa)
		len += 6;

	if (dc_flush_wa)
		len += 12;

1861 1862 1863
	cs = intel_ring_begin(request, len);
	if (IS_ERR(cs))
		return PTR_ERR(cs);
1864

1865 1866
	if (vf_flush_wa)
		cs = gen8_emit_pipe_control(cs, 0, 0);
1867

1868 1869 1870
	if (dc_flush_wa)
		cs = gen8_emit_pipe_control(cs, PIPE_CONTROL_DC_FLUSH_ENABLE,
					    0);
M
Mika Kuoppala 已提交
1871

1872
	cs = gen8_emit_pipe_control(cs, flags, scratch_addr);
M
Mika Kuoppala 已提交
1873

1874 1875
	if (dc_flush_wa)
		cs = gen8_emit_pipe_control(cs, PIPE_CONTROL_CS_STALL, 0);
M
Mika Kuoppala 已提交
1876

1877
	intel_ring_advance(request, cs);
1878 1879 1880 1881

	return 0;
}

1882 1883 1884 1885 1886
/*
 * Reserve space for 2 NOOPs at the end of each request to be
 * used as a workaround for not being allowed to do lite
 * restore with HEAD==TAIL (WaIdleLiteRestore).
 */
1887
static void gen8_emit_wa_tail(struct i915_request *request, u32 *cs)
1888
{
C
Chris Wilson 已提交
1889 1890
	/* Ensure there's always at least one preemption point per-request. */
	*cs++ = MI_ARB_CHECK;
1891 1892
	*cs++ = MI_NOOP;
	request->wa_tail = intel_ring_offset(request, cs);
C
Chris Wilson 已提交
1893
}
1894

1895
static void gen8_emit_breadcrumb(struct i915_request *request, u32 *cs)
C
Chris Wilson 已提交
1896
{
1897 1898
	/* w/a: bit 5 needs to be zero for MI_FLUSH_DW address. */
	BUILD_BUG_ON(I915_GEM_HWS_INDEX_ADDR & (1 << 5));
1899

1900 1901
	cs = gen8_emit_ggtt_write(cs, request->global_seqno,
				  intel_hws_seqno_address(request->engine));
1902 1903 1904
	*cs++ = MI_USER_INTERRUPT;
	*cs++ = MI_NOOP;
	request->tail = intel_ring_offset(request, cs);
1905
	assert_ring_tail_valid(request->ring, request->tail);
C
Chris Wilson 已提交
1906

1907
	gen8_emit_wa_tail(request, cs);
1908
}
1909 1910
static const int gen8_emit_breadcrumb_sz = 6 + WA_TAIL_DWORDS;

1911
static void gen8_emit_breadcrumb_rcs(struct i915_request *request, u32 *cs)
1912
{
1913 1914 1915
	/* We're using qword write, seqno should be aligned to 8 bytes. */
	BUILD_BUG_ON(I915_GEM_HWS_INDEX & 1);

1916 1917
	cs = gen8_emit_ggtt_write_rcs(cs, request->global_seqno,
				      intel_hws_seqno_address(request->engine));
1918 1919 1920
	*cs++ = MI_USER_INTERRUPT;
	*cs++ = MI_NOOP;
	request->tail = intel_ring_offset(request, cs);
1921
	assert_ring_tail_valid(request->ring, request->tail);
C
Chris Wilson 已提交
1922

1923
	gen8_emit_wa_tail(request, cs);
1924
}
1925
static const int gen8_emit_breadcrumb_rcs_sz = 8 + WA_TAIL_DWORDS;
1926

1927
static int gen8_init_rcs_context(struct i915_request *rq)
1928 1929 1930
{
	int ret;

1931
	ret = intel_ring_workarounds_emit(rq);
1932 1933 1934
	if (ret)
		return ret;

1935
	ret = intel_rcs_context_init_mocs(rq);
1936 1937 1938 1939 1940 1941 1942
	/*
	 * Failing to program the MOCS is non-fatal.The system will not
	 * run at peak performance. So generate an error and carry on.
	 */
	if (ret)
		DRM_ERROR("MOCS failed to program: expect performance issues.\n");

1943
	return i915_gem_render_state_emit(rq);
1944 1945
}

1946 1947
/**
 * intel_logical_ring_cleanup() - deallocate the Engine Command Streamer
1948
 * @engine: Engine Command Streamer.
1949
 */
1950
void intel_logical_ring_cleanup(struct intel_engine_cs *engine)
1951
{
1952
	struct drm_i915_private *dev_priv;
1953

1954 1955 1956 1957
	/*
	 * Tasklet cannot be active at this point due intel_mark_active/idle
	 * so this is just for documentation.
	 */
1958 1959 1960
	if (WARN_ON(test_bit(TASKLET_STATE_SCHED,
			     &engine->execlists.tasklet.state)))
		tasklet_kill(&engine->execlists.tasklet);
1961

1962
	dev_priv = engine->i915;
1963

1964 1965
	if (engine->buffer) {
		WARN_ON((I915_READ_MODE(engine) & MODE_IDLE) == 0);
1966
	}
1967

1968 1969
	if (engine->cleanup)
		engine->cleanup(engine);
1970

1971
	intel_engine_cleanup_common(engine);
1972

1973
	lrc_destroy_wa_ctx(engine);
1974

1975
	engine->i915 = NULL;
1976 1977
	dev_priv->engine[engine->id] = NULL;
	kfree(engine);
1978 1979
}

1980
static void execlists_set_default_submission(struct intel_engine_cs *engine)
1981
{
1982
	engine->submit_request = execlists_submit_request;
1983
	engine->cancel_requests = execlists_cancel_requests;
1984
	engine->schedule = execlists_schedule;
1985
	engine->execlists.tasklet.func = execlists_submission_tasklet;
1986 1987 1988

	engine->park = NULL;
	engine->unpark = NULL;
1989 1990

	engine->flags |= I915_ENGINE_SUPPORTS_STATS;
1991 1992 1993 1994

	engine->i915->caps.scheduler =
		I915_SCHEDULER_CAP_ENABLED |
		I915_SCHEDULER_CAP_PRIORITY;
1995
	if (engine->i915->preempt_context)
1996
		engine->i915->caps.scheduler |= I915_SCHEDULER_CAP_PREEMPTION;
1997 1998
}

1999
static void
2000
logical_ring_default_vfuncs(struct intel_engine_cs *engine)
2001 2002
{
	/* Default vfuncs which can be overriden by each engine. */
2003
	engine->init_hw = gen8_init_common_ring;
2004
	engine->reset_hw = reset_common_ring;
2005 2006 2007 2008

	engine->context_pin = execlists_context_pin;
	engine->context_unpin = execlists_context_unpin;

2009 2010
	engine->request_alloc = execlists_request_alloc;

2011
	engine->emit_flush = gen8_emit_flush;
2012
	engine->emit_breadcrumb = gen8_emit_breadcrumb;
2013
	engine->emit_breadcrumb_sz = gen8_emit_breadcrumb_sz;
2014 2015

	engine->set_default_submission = execlists_set_default_submission;
2016

2017 2018
	engine->irq_enable = gen8_logical_ring_enable_irq;
	engine->irq_disable = gen8_logical_ring_disable_irq;
2019
	engine->emit_bb_start = gen8_emit_bb_start;
2020 2021
}

2022
static inline void
2023
logical_ring_default_irqs(struct intel_engine_cs *engine)
2024
{
2025
	unsigned shift = engine->irq_shift;
2026 2027
	engine->irq_enable_mask = GT_RENDER_USER_INTERRUPT << shift;
	engine->irq_keep_mask = GT_CONTEXT_SWITCH_INTERRUPT << shift;
2028 2029
}

2030 2031 2032 2033 2034 2035
static void
logical_ring_setup(struct intel_engine_cs *engine)
{
	struct drm_i915_private *dev_priv = engine->i915;
	enum forcewake_domains fw_domains;

2036 2037
	intel_engine_setup_common(engine);

2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052
	/* Intentionally left blank. */
	engine->buffer = NULL;

	fw_domains = intel_uncore_forcewake_for_reg(dev_priv,
						    RING_ELSP(engine),
						    FW_REG_WRITE);

	fw_domains |= intel_uncore_forcewake_for_reg(dev_priv,
						     RING_CONTEXT_STATUS_PTR(engine),
						     FW_REG_READ | FW_REG_WRITE);

	fw_domains |= intel_uncore_forcewake_for_reg(dev_priv,
						     RING_CONTEXT_STATUS_BUF_BASE(engine),
						     FW_REG_READ);

2053
	engine->execlists.fw_domains = fw_domains;
2054

2055 2056
	tasklet_init(&engine->execlists.tasklet,
		     execlists_submission_tasklet, (unsigned long)engine);
2057 2058 2059 2060 2061

	logical_ring_default_vfuncs(engine);
	logical_ring_default_irqs(engine);
}

2062
static int logical_ring_init(struct intel_engine_cs *engine)
2063 2064 2065
{
	int ret;

2066
	ret = intel_engine_init_common(engine);
2067 2068 2069
	if (ret)
		goto error;

2070 2071 2072
	engine->execlists.elsp =
		engine->i915->regs + i915_mmio_reg_offset(RING_ELSP(engine));

2073 2074 2075 2076 2077
	engine->execlists.preempt_complete_status = ~0u;
	if (engine->i915->preempt_context)
		engine->execlists.preempt_complete_status =
			upper_32_bits(engine->i915->preempt_context->engine[engine->id].lrc_desc);

2078 2079 2080 2081 2082 2083 2084
	return 0;

error:
	intel_logical_ring_cleanup(engine);
	return ret;
}

2085
int logical_render_ring_init(struct intel_engine_cs *engine)
2086 2087 2088 2089
{
	struct drm_i915_private *dev_priv = engine->i915;
	int ret;

2090 2091
	logical_ring_setup(engine);

2092 2093 2094 2095 2096 2097 2098 2099 2100 2101
	if (HAS_L3_DPF(dev_priv))
		engine->irq_keep_mask |= GT_RENDER_L3_PARITY_ERROR_INTERRUPT;

	/* Override some for render ring. */
	if (INTEL_GEN(dev_priv) >= 9)
		engine->init_hw = gen9_init_render_ring;
	else
		engine->init_hw = gen8_init_render_ring;
	engine->init_context = gen8_init_rcs_context;
	engine->emit_flush = gen8_emit_flush_render;
2102 2103
	engine->emit_breadcrumb = gen8_emit_breadcrumb_rcs;
	engine->emit_breadcrumb_sz = gen8_emit_breadcrumb_rcs_sz;
2104

2105
	ret = intel_engine_create_scratch(engine, PAGE_SIZE);
2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119
	if (ret)
		return ret;

	ret = intel_init_workaround_bb(engine);
	if (ret) {
		/*
		 * We continue even if we fail to initialize WA batch
		 * because we only expect rare glitches but nothing
		 * critical to prevent us from using GPU
		 */
		DRM_ERROR("WA batch buffer initialization failed: %d\n",
			  ret);
	}

2120
	return logical_ring_init(engine);
2121 2122
}

2123
int logical_xcs_ring_init(struct intel_engine_cs *engine)
2124 2125 2126 2127
{
	logical_ring_setup(engine);

	return logical_ring_init(engine);
2128 2129
}

2130
static u32
2131
make_rpcs(struct drm_i915_private *dev_priv)
2132 2133 2134 2135 2136 2137 2138
{
	u32 rpcs = 0;

	/*
	 * No explicit RPCS request is needed to ensure full
	 * slice/subslice/EU enablement prior to Gen9.
	*/
2139
	if (INTEL_GEN(dev_priv) < 9)
2140 2141 2142 2143 2144 2145 2146 2147
		return 0;

	/*
	 * Starting in Gen9, render power gating can leave
	 * slice/subslice/EU in a partially enabled state. We
	 * must make an explicit request through RPCS for full
	 * enablement.
	*/
2148
	if (INTEL_INFO(dev_priv)->sseu.has_slice_pg) {
2149
		rpcs |= GEN8_RPCS_S_CNT_ENABLE;
2150
		rpcs |= hweight8(INTEL_INFO(dev_priv)->sseu.slice_mask) <<
2151 2152 2153 2154
			GEN8_RPCS_S_CNT_SHIFT;
		rpcs |= GEN8_RPCS_ENABLE;
	}

2155
	if (INTEL_INFO(dev_priv)->sseu.has_subslice_pg) {
2156
		rpcs |= GEN8_RPCS_SS_CNT_ENABLE;
2157
		rpcs |= hweight8(INTEL_INFO(dev_priv)->sseu.subslice_mask) <<
2158 2159 2160 2161
			GEN8_RPCS_SS_CNT_SHIFT;
		rpcs |= GEN8_RPCS_ENABLE;
	}

2162 2163
	if (INTEL_INFO(dev_priv)->sseu.has_eu_pg) {
		rpcs |= INTEL_INFO(dev_priv)->sseu.eu_per_subslice <<
2164
			GEN8_RPCS_EU_MIN_SHIFT;
2165
		rpcs |= INTEL_INFO(dev_priv)->sseu.eu_per_subslice <<
2166 2167 2168 2169 2170 2171 2172
			GEN8_RPCS_EU_MAX_SHIFT;
		rpcs |= GEN8_RPCS_ENABLE;
	}

	return rpcs;
}

2173
static u32 intel_lr_indirect_ctx_offset(struct intel_engine_cs *engine)
2174 2175 2176
{
	u32 indirect_ctx_offset;

2177
	switch (INTEL_GEN(engine->i915)) {
2178
	default:
2179
		MISSING_CASE(INTEL_GEN(engine->i915));
2180
		/* fall through */
2181 2182 2183 2184
	case 10:
		indirect_ctx_offset =
			GEN10_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
		break;
2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197
	case 9:
		indirect_ctx_offset =
			GEN9_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
		break;
	case 8:
		indirect_ctx_offset =
			GEN8_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
		break;
	}

	return indirect_ctx_offset;
}

2198
static void execlists_init_reg_state(u32 *regs,
2199 2200 2201
				     struct i915_gem_context *ctx,
				     struct intel_engine_cs *engine,
				     struct intel_ring *ring)
2202
{
2203 2204
	struct drm_i915_private *dev_priv = engine->i915;
	struct i915_hw_ppgtt *ppgtt = ctx->ppgtt ?: dev_priv->mm.aliasing_ppgtt;
2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218
	u32 base = engine->mmio_base;
	bool rcs = engine->id == RCS;

	/* A context is actually a big batch buffer with several
	 * MI_LOAD_REGISTER_IMM commands followed by (reg, value) pairs. The
	 * values we are setting here are only for the first context restore:
	 * on a subsequent save, the GPU will recreate this batchbuffer with new
	 * values (including all the missing MI_LOAD_REGISTER_IMM commands that
	 * we are not initializing here).
	 */
	regs[CTX_LRI_HEADER_0] = MI_LOAD_REGISTER_IMM(rcs ? 14 : 11) |
				 MI_LRI_FORCE_POSTED;

	CTX_REG(regs, CTX_CONTEXT_CONTROL, RING_CONTEXT_CONTROL(engine),
2219 2220
		_MASKED_BIT_DISABLE(CTX_CTRL_ENGINE_CTX_RESTORE_INHIBIT |
				    CTX_CTRL_ENGINE_CTX_SAVE_INHIBIT) |
2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235
		_MASKED_BIT_ENABLE(CTX_CTRL_INHIBIT_SYN_CTX_SWITCH |
				   (HAS_RESOURCE_STREAMER(dev_priv) ?
				   CTX_CTRL_RS_CTX_ENABLE : 0)));
	CTX_REG(regs, CTX_RING_HEAD, RING_HEAD(base), 0);
	CTX_REG(regs, CTX_RING_TAIL, RING_TAIL(base), 0);
	CTX_REG(regs, CTX_RING_BUFFER_START, RING_START(base), 0);
	CTX_REG(regs, CTX_RING_BUFFER_CONTROL, RING_CTL(base),
		RING_CTL_SIZE(ring->size) | RING_VALID);
	CTX_REG(regs, CTX_BB_HEAD_U, RING_BBADDR_UDW(base), 0);
	CTX_REG(regs, CTX_BB_HEAD_L, RING_BBADDR(base), 0);
	CTX_REG(regs, CTX_BB_STATE, RING_BBSTATE(base), RING_BB_PPGTT);
	CTX_REG(regs, CTX_SECOND_BB_HEAD_U, RING_SBBADDR_UDW(base), 0);
	CTX_REG(regs, CTX_SECOND_BB_HEAD_L, RING_SBBADDR(base), 0);
	CTX_REG(regs, CTX_SECOND_BB_STATE, RING_SBBSTATE(base), 0);
	if (rcs) {
2236 2237
		struct i915_ctx_workarounds *wa_ctx = &engine->wa_ctx;

2238 2239 2240
		CTX_REG(regs, CTX_RCS_INDIRECT_CTX, RING_INDIRECT_CTX(base), 0);
		CTX_REG(regs, CTX_RCS_INDIRECT_CTX_OFFSET,
			RING_INDIRECT_CTX_OFFSET(base), 0);
2241
		if (wa_ctx->indirect_ctx.size) {
2242
			u32 ggtt_offset = i915_ggtt_offset(wa_ctx->vma);
2243

2244
			regs[CTX_RCS_INDIRECT_CTX + 1] =
2245 2246
				(ggtt_offset + wa_ctx->indirect_ctx.offset) |
				(wa_ctx->indirect_ctx.size / CACHELINE_BYTES);
2247

2248
			regs[CTX_RCS_INDIRECT_CTX_OFFSET + 1] =
2249
				intel_lr_indirect_ctx_offset(engine) << 6;
2250 2251 2252 2253 2254
		}

		CTX_REG(regs, CTX_BB_PER_CTX_PTR, RING_BB_PER_CTX_PTR(base), 0);
		if (wa_ctx->per_ctx.size) {
			u32 ggtt_offset = i915_ggtt_offset(wa_ctx->vma);
2255

2256
			regs[CTX_BB_PER_CTX_PTR + 1] =
2257
				(ggtt_offset + wa_ctx->per_ctx.offset) | 0x01;
2258
		}
2259
	}
2260 2261 2262 2263

	regs[CTX_LRI_HEADER_1] = MI_LOAD_REGISTER_IMM(9) | MI_LRI_FORCE_POSTED;

	CTX_REG(regs, CTX_CTX_TIMESTAMP, RING_CTX_TIMESTAMP(base), 0);
2264
	/* PDP values well be assigned later if needed */
2265 2266 2267 2268 2269 2270 2271 2272
	CTX_REG(regs, CTX_PDP3_UDW, GEN8_RING_PDP_UDW(engine, 3), 0);
	CTX_REG(regs, CTX_PDP3_LDW, GEN8_RING_PDP_LDW(engine, 3), 0);
	CTX_REG(regs, CTX_PDP2_UDW, GEN8_RING_PDP_UDW(engine, 2), 0);
	CTX_REG(regs, CTX_PDP2_LDW, GEN8_RING_PDP_LDW(engine, 2), 0);
	CTX_REG(regs, CTX_PDP1_UDW, GEN8_RING_PDP_UDW(engine, 1), 0);
	CTX_REG(regs, CTX_PDP1_LDW, GEN8_RING_PDP_LDW(engine, 1), 0);
	CTX_REG(regs, CTX_PDP0_UDW, GEN8_RING_PDP_UDW(engine, 0), 0);
	CTX_REG(regs, CTX_PDP0_LDW, GEN8_RING_PDP_LDW(engine, 0), 0);
2273

2274
	if (ppgtt && i915_vm_is_48bit(&ppgtt->base)) {
2275 2276 2277 2278
		/* 64b PPGTT (48bit canonical)
		 * PDP0_DESCRIPTOR contains the base address to PML4 and
		 * other PDP Descriptors are ignored.
		 */
2279
		ASSIGN_CTX_PML4(ppgtt, regs);
2280 2281
	}

2282 2283 2284 2285
	if (rcs) {
		regs[CTX_LRI_HEADER_2] = MI_LOAD_REGISTER_IMM(1);
		CTX_REG(regs, CTX_R_PWR_CLK_STATE, GEN8_R_PWR_CLK_STATE,
			make_rpcs(dev_priv));
2286 2287

		i915_oa_init_reg_state(engine, ctx, regs);
2288
	}
2289 2290 2291 2292 2293 2294 2295 2296 2297
}

static int
populate_lr_context(struct i915_gem_context *ctx,
		    struct drm_i915_gem_object *ctx_obj,
		    struct intel_engine_cs *engine,
		    struct intel_ring *ring)
{
	void *vaddr;
2298
	u32 *regs;
2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312
	int ret;

	ret = i915_gem_object_set_to_cpu_domain(ctx_obj, true);
	if (ret) {
		DRM_DEBUG_DRIVER("Could not set to CPU domain\n");
		return ret;
	}

	vaddr = i915_gem_object_pin_map(ctx_obj, I915_MAP_WB);
	if (IS_ERR(vaddr)) {
		ret = PTR_ERR(vaddr);
		DRM_DEBUG_DRIVER("Could not map object pages! (%d)\n", ret);
		return ret;
	}
C
Chris Wilson 已提交
2313
	ctx_obj->mm.dirty = true;
2314

2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332
	if (engine->default_state) {
		/*
		 * We only want to copy over the template context state;
		 * skipping over the headers reserved for GuC communication,
		 * leaving those as zero.
		 */
		const unsigned long start = LRC_HEADER_PAGES * PAGE_SIZE;
		void *defaults;

		defaults = i915_gem_object_pin_map(engine->default_state,
						   I915_MAP_WB);
		if (IS_ERR(defaults))
			return PTR_ERR(defaults);

		memcpy(vaddr + start, defaults + start, engine->context_size);
		i915_gem_object_unpin_map(engine->default_state);
	}

2333 2334
	/* The second page of the context object contains some fields which must
	 * be set up prior to the first execution. */
2335 2336 2337 2338 2339
	regs = vaddr + LRC_STATE_PN * PAGE_SIZE;
	execlists_init_reg_state(regs, ctx, engine, ring);
	if (!engine->default_state)
		regs[CTX_CONTEXT_CONTROL + 1] |=
			_MASKED_BIT_ENABLE(CTX_CTRL_ENGINE_CTX_RESTORE_INHIBIT);
2340
	if (ctx == ctx->i915->preempt_context)
2341 2342 2343
		regs[CTX_CONTEXT_CONTROL + 1] |=
			_MASKED_BIT_ENABLE(CTX_CTRL_ENGINE_CTX_RESTORE_INHIBIT |
					   CTX_CTRL_ENGINE_CTX_SAVE_INHIBIT);
2344

2345
	i915_gem_object_unpin_map(ctx_obj);
2346 2347 2348 2349

	return 0;
}

2350
static int execlists_context_deferred_alloc(struct i915_gem_context *ctx,
2351
					    struct intel_engine_cs *engine)
2352
{
2353
	struct drm_i915_gem_object *ctx_obj;
2354
	struct intel_context *ce = &ctx->engine[engine->id];
2355
	struct i915_vma *vma;
2356
	uint32_t context_size;
2357
	struct intel_ring *ring;
2358 2359
	int ret;

2360 2361
	if (ce->state)
		return 0;
2362

2363
	context_size = round_up(engine->context_size, I915_GTT_PAGE_SIZE);
2364

2365 2366 2367 2368 2369
	/*
	 * Before the actual start of the context image, we insert a few pages
	 * for our own use and for sharing with the GuC.
	 */
	context_size += LRC_HEADER_PAGES * PAGE_SIZE;
2370

2371
	ctx_obj = i915_gem_object_create(ctx->i915, context_size);
2372
	if (IS_ERR(ctx_obj)) {
2373
		DRM_DEBUG_DRIVER("Alloc LRC backing obj failed.\n");
2374
		return PTR_ERR(ctx_obj);
2375 2376
	}

2377
	vma = i915_vma_instance(ctx_obj, &ctx->i915->ggtt.base, NULL);
2378 2379 2380 2381 2382
	if (IS_ERR(vma)) {
		ret = PTR_ERR(vma);
		goto error_deref_obj;
	}

2383
	ring = intel_engine_create_ring(engine, ctx->ring_size);
2384 2385
	if (IS_ERR(ring)) {
		ret = PTR_ERR(ring);
2386
		goto error_deref_obj;
2387 2388
	}

2389
	ret = populate_lr_context(ctx, ctx_obj, engine, ring);
2390 2391
	if (ret) {
		DRM_DEBUG_DRIVER("Failed to populate LRC: %d\n", ret);
2392
		goto error_ring_free;
2393 2394
	}

2395
	ce->ring = ring;
2396
	ce->state = vma;
2397 2398

	return 0;
2399

2400
error_ring_free:
2401
	intel_ring_free(ring);
2402
error_deref_obj:
2403
	i915_gem_object_put(ctx_obj);
2404
	return ret;
2405
}
2406

2407
void intel_lr_context_resume(struct drm_i915_private *dev_priv)
2408
{
2409
	struct intel_engine_cs *engine;
2410
	struct i915_gem_context *ctx;
2411
	enum intel_engine_id id;
2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422

	/* Because we emit WA_TAIL_DWORDS there may be a disparity
	 * between our bookkeeping in ce->ring->head and ce->ring->tail and
	 * that stored in context. As we only write new commands from
	 * ce->ring->tail onwards, everything before that is junk. If the GPU
	 * starts reading from its RING_HEAD from the context, it may try to
	 * execute that junk and die.
	 *
	 * So to avoid that we reset the context images upon resume. For
	 * simplicity, we just zero everything out.
	 */
2423
	list_for_each_entry(ctx, &dev_priv->contexts.list, link) {
2424
		for_each_engine(engine, dev_priv, id) {
2425 2426
			struct intel_context *ce = &ctx->engine[engine->id];
			u32 *reg;
2427

2428 2429
			if (!ce->state)
				continue;
2430

2431 2432 2433 2434
			reg = i915_gem_object_pin_map(ce->state->obj,
						      I915_MAP_WB);
			if (WARN_ON(IS_ERR(reg)))
				continue;
2435

2436 2437 2438
			reg += LRC_STATE_PN * PAGE_SIZE / sizeof(*reg);
			reg[CTX_RING_HEAD+1] = 0;
			reg[CTX_RING_TAIL+1] = 0;
2439

C
Chris Wilson 已提交
2440
			ce->state->obj->mm.dirty = true;
2441
			i915_gem_object_unpin_map(ce->state->obj);
2442

2443
			intel_ring_reset(ce->ring, 0);
2444
		}
2445 2446
	}
}