i915_gem.c 131.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
/*
 * Copyright © 2008 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 * Authors:
 *    Eric Anholt <eric@anholt.net>
 *
 */

#include "drmP.h"
#include "drm.h"
#include "i915_drm.h"
#include "i915_drv.h"
C
Chris Wilson 已提交
32
#include "i915_trace.h"
33
#include "intel_drv.h"
34
#include <linux/slab.h>
35
#include <linux/swap.h>
J
Jesse Barnes 已提交
36
#include <linux/pci.h>
37
#include <linux/intel-gtt.h>
38

39
static uint32_t i915_gem_get_gtt_alignment(struct drm_gem_object *obj);
40 41 42

static int i915_gem_object_flush_gpu_write_domain(struct drm_gem_object *obj,
						  bool pipelined);
43 44 45 46 47 48 49 50
static void i915_gem_object_flush_gtt_write_domain(struct drm_gem_object *obj);
static void i915_gem_object_flush_cpu_write_domain(struct drm_gem_object *obj);
static int i915_gem_object_set_to_cpu_domain(struct drm_gem_object *obj,
					     int write);
static int i915_gem_object_set_cpu_read_domain_range(struct drm_gem_object *obj,
						     uint64_t offset,
						     uint64_t size);
static void i915_gem_object_set_to_full_cpu_read_domain(struct drm_gem_object *obj);
51 52
static int i915_gem_object_wait_rendering(struct drm_gem_object *obj,
					  bool interruptible);
53 54 55
static int i915_gem_object_bind_to_gtt(struct drm_gem_object *obj,
					   unsigned alignment);
static void i915_gem_clear_fence_reg(struct drm_gem_object *obj);
56 57 58
static int i915_gem_phys_pwrite(struct drm_device *dev, struct drm_gem_object *obj,
				struct drm_i915_gem_pwrite *args,
				struct drm_file *file_priv);
59
static void i915_gem_free_object_tail(struct drm_gem_object *obj);
60

61 62 63 64 65 66 67
static int
i915_gem_object_get_pages(struct drm_gem_object *obj,
			  gfp_t gfpmask);

static void
i915_gem_object_put_pages(struct drm_gem_object *obj);

68 69 70
static LIST_HEAD(shrink_list);
static DEFINE_SPINLOCK(shrink_list_lock);

71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113
/* some bookkeeping */
static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
				  size_t size)
{
	dev_priv->mm.object_count++;
	dev_priv->mm.object_memory += size;
}

static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
				     size_t size)
{
	dev_priv->mm.object_count--;
	dev_priv->mm.object_memory -= size;
}

static void i915_gem_info_add_gtt(struct drm_i915_private *dev_priv,
				  size_t size)
{
	dev_priv->mm.gtt_count++;
	dev_priv->mm.gtt_memory += size;
}

static void i915_gem_info_remove_gtt(struct drm_i915_private *dev_priv,
				     size_t size)
{
	dev_priv->mm.gtt_count--;
	dev_priv->mm.gtt_memory -= size;
}

static void i915_gem_info_add_pin(struct drm_i915_private *dev_priv,
				  size_t size)
{
	dev_priv->mm.pin_count++;
	dev_priv->mm.pin_memory += size;
}

static void i915_gem_info_remove_pin(struct drm_i915_private *dev_priv,
				     size_t size)
{
	dev_priv->mm.pin_count--;
	dev_priv->mm.pin_memory -= size;
}

114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143
int
i915_gem_check_is_wedged(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct completion *x = &dev_priv->error_completion;
	unsigned long flags;
	int ret;

	if (!atomic_read(&dev_priv->mm.wedged))
		return 0;

	ret = wait_for_completion_interruptible(x);
	if (ret)
		return ret;

	/* Success, we reset the GPU! */
	if (!atomic_read(&dev_priv->mm.wedged))
		return 0;

	/* GPU is hung, bump the completion count to account for
	 * the token we just consumed so that we never hit zero and
	 * end up waiting upon a subsequent completion event that
	 * will never happen.
	 */
	spin_lock_irqsave(&x->wait.lock, flags);
	x->done++;
	spin_unlock_irqrestore(&x->wait.lock, flags);
	return -EIO;
}

144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161
static int i915_mutex_lock_interruptible(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	int ret;

	ret = i915_gem_check_is_wedged(dev);
	if (ret)
		return ret;

	ret = mutex_lock_interruptible(&dev->struct_mutex);
	if (ret)
		return ret;

	if (atomic_read(&dev_priv->mm.wedged)) {
		mutex_unlock(&dev->struct_mutex);
		return -EAGAIN;
	}

162
	WARN_ON(i915_verify_lists(dev));
163 164
	return 0;
}
165

166 167 168 169 170 171 172 173
static inline bool
i915_gem_object_is_inactive(struct drm_i915_gem_object *obj_priv)
{
	return obj_priv->gtt_space &&
		!obj_priv->active &&
		obj_priv->pin_count == 0;
}

174 175
int i915_gem_do_init(struct drm_device *dev,
		     unsigned long start,
J
Jesse Barnes 已提交
176
		     unsigned long end)
177 178 179
{
	drm_i915_private_t *dev_priv = dev->dev_private;

J
Jesse Barnes 已提交
180 181 182
	if (start >= end ||
	    (start & (PAGE_SIZE - 1)) != 0 ||
	    (end & (PAGE_SIZE - 1)) != 0) {
183 184 185
		return -EINVAL;
	}

J
Jesse Barnes 已提交
186 187
	drm_mm_init(&dev_priv->mm.gtt_space, start,
		    end - start);
188

189
	dev_priv->mm.gtt_total = end - start;
J
Jesse Barnes 已提交
190 191 192

	return 0;
}
193

J
Jesse Barnes 已提交
194 195 196 197 198 199 200 201 202
int
i915_gem_init_ioctl(struct drm_device *dev, void *data,
		    struct drm_file *file_priv)
{
	struct drm_i915_gem_init *args = data;
	int ret;

	mutex_lock(&dev->struct_mutex);
	ret = i915_gem_do_init(dev, args->gtt_start, args->gtt_end);
203 204
	mutex_unlock(&dev->struct_mutex);

J
Jesse Barnes 已提交
205
	return ret;
206 207
}

208 209 210 211
int
i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
			    struct drm_file *file_priv)
{
212
	struct drm_i915_private *dev_priv = dev->dev_private;
213 214 215 216 217
	struct drm_i915_gem_get_aperture *args = data;

	if (!(dev->driver->driver_features & DRIVER_GEM))
		return -ENODEV;

218 219 220 221
	mutex_lock(&dev->struct_mutex);
	args->aper_size = dev_priv->mm.gtt_total;
	args->aper_available_size = args->aper_size - dev_priv->mm.pin_memory;
	mutex_unlock(&dev->struct_mutex);
222 223 224 225

	return 0;
}

226 227 228 229 230 231 232 233 234 235

/**
 * Creates a new mm object and returns a handle to it.
 */
int
i915_gem_create_ioctl(struct drm_device *dev, void *data,
		      struct drm_file *file_priv)
{
	struct drm_i915_gem_create *args = data;
	struct drm_gem_object *obj;
236 237
	int ret;
	u32 handle;
238 239 240 241

	args->size = roundup(args->size, PAGE_SIZE);

	/* Allocate the new object */
242
	obj = i915_gem_alloc_object(dev, args->size);
243 244 245 246
	if (obj == NULL)
		return -ENOMEM;

	ret = drm_gem_handle_create(file_priv, obj, &handle);
247 248
	/* drop reference from allocate - handle holds it now */
	drm_gem_object_unreference_unlocked(obj);
249
	if (ret) {
250
		return ret;
251
	}
252

253
	args->handle = handle;
254 255 256
	return 0;
}

257 258 259 260 261 262 263
static inline int
fast_shmem_read(struct page **pages,
		loff_t page_base, int page_offset,
		char __user *data,
		int length)
{
	char __iomem *vaddr;
264
	int unwritten;
265 266 267 268

	vaddr = kmap_atomic(pages[page_base >> PAGE_SHIFT], KM_USER0);
	if (vaddr == NULL)
		return -ENOMEM;
269
	unwritten = __copy_to_user_inatomic(data, vaddr + page_offset, length);
270 271
	kunmap_atomic(vaddr, KM_USER0);

272 273 274 275
	if (unwritten)
		return -EFAULT;

	return 0;
276 277
}

278 279 280
static int i915_gem_object_needs_bit17_swizzle(struct drm_gem_object *obj)
{
	drm_i915_private_t *dev_priv = obj->dev->dev_private;
281
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
282 283 284 285 286

	return dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_9_10_17 &&
		obj_priv->tiling_mode != I915_TILING_NONE;
}

287
static inline void
288 289 290 291 292 293 294 295
slow_shmem_copy(struct page *dst_page,
		int dst_offset,
		struct page *src_page,
		int src_offset,
		int length)
{
	char *dst_vaddr, *src_vaddr;

296 297
	dst_vaddr = kmap(dst_page);
	src_vaddr = kmap(src_page);
298 299 300

	memcpy(dst_vaddr + dst_offset, src_vaddr + src_offset, length);

301 302
	kunmap(src_page);
	kunmap(dst_page);
303 304
}

305
static inline void
306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324
slow_shmem_bit17_copy(struct page *gpu_page,
		      int gpu_offset,
		      struct page *cpu_page,
		      int cpu_offset,
		      int length,
		      int is_read)
{
	char *gpu_vaddr, *cpu_vaddr;

	/* Use the unswizzled path if this page isn't affected. */
	if ((page_to_phys(gpu_page) & (1 << 17)) == 0) {
		if (is_read)
			return slow_shmem_copy(cpu_page, cpu_offset,
					       gpu_page, gpu_offset, length);
		else
			return slow_shmem_copy(gpu_page, gpu_offset,
					       cpu_page, cpu_offset, length);
	}

325 326
	gpu_vaddr = kmap(gpu_page);
	cpu_vaddr = kmap(cpu_page);
327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349

	/* Copy the data, XORing A6 with A17 (1). The user already knows he's
	 * XORing with the other bits (A9 for Y, A9 and A10 for X)
	 */
	while (length > 0) {
		int cacheline_end = ALIGN(gpu_offset + 1, 64);
		int this_length = min(cacheline_end - gpu_offset, length);
		int swizzled_gpu_offset = gpu_offset ^ 64;

		if (is_read) {
			memcpy(cpu_vaddr + cpu_offset,
			       gpu_vaddr + swizzled_gpu_offset,
			       this_length);
		} else {
			memcpy(gpu_vaddr + swizzled_gpu_offset,
			       cpu_vaddr + cpu_offset,
			       this_length);
		}
		cpu_offset += this_length;
		gpu_offset += this_length;
		length -= this_length;
	}

350 351
	kunmap(cpu_page);
	kunmap(gpu_page);
352 353
}

354 355 356 357 358 359 360 361 362 363
/**
 * This is the fast shmem pread path, which attempts to copy_from_user directly
 * from the backing pages of the object to the user's address space.  On a
 * fault, it fails so we can fall back to i915_gem_shmem_pwrite_slow().
 */
static int
i915_gem_shmem_pread_fast(struct drm_device *dev, struct drm_gem_object *obj,
			  struct drm_i915_gem_pread *args,
			  struct drm_file *file_priv)
{
364
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
365 366 367 368 369 370 371 372 373
	ssize_t remain;
	loff_t offset, page_base;
	char __user *user_data;
	int page_offset, page_length;
	int ret;

	user_data = (char __user *) (uintptr_t) args->data_ptr;
	remain = args->size;

374 375 376
	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		return ret;
377

378
	ret = i915_gem_object_get_pages(obj, 0);
379 380 381 382 383 384 385 386
	if (ret != 0)
		goto fail_unlock;

	ret = i915_gem_object_set_cpu_read_domain_range(obj, args->offset,
							args->size);
	if (ret != 0)
		goto fail_put_pages;

387
	obj_priv = to_intel_bo(obj);
388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421
	offset = args->offset;

	while (remain > 0) {
		/* Operation in this page
		 *
		 * page_base = page offset within aperture
		 * page_offset = offset within page
		 * page_length = bytes to copy for this page
		 */
		page_base = (offset & ~(PAGE_SIZE-1));
		page_offset = offset & (PAGE_SIZE-1);
		page_length = remain;
		if ((page_offset + remain) > PAGE_SIZE)
			page_length = PAGE_SIZE - page_offset;

		ret = fast_shmem_read(obj_priv->pages,
				      page_base, page_offset,
				      user_data, page_length);
		if (ret)
			goto fail_put_pages;

		remain -= page_length;
		user_data += page_length;
		offset += page_length;
	}

fail_put_pages:
	i915_gem_object_put_pages(obj);
fail_unlock:
	mutex_unlock(&dev->struct_mutex);

	return ret;
}

422 423 424 425 426
static int
i915_gem_object_get_pages_or_evict(struct drm_gem_object *obj)
{
	int ret;

427
	ret = i915_gem_object_get_pages(obj, __GFP_NORETRY | __GFP_NOWARN);
428 429 430 431 432 433 434

	/* If we've insufficient memory to map in the pages, attempt
	 * to make some space by throwing out some old buffers.
	 */
	if (ret == -ENOMEM) {
		struct drm_device *dev = obj->dev;

435 436
		ret = i915_gem_evict_something(dev, obj->size,
					       i915_gem_get_gtt_alignment(obj));
437 438 439
		if (ret)
			return ret;

440
		ret = i915_gem_object_get_pages(obj, 0);
441 442 443 444 445
	}

	return ret;
}

446 447 448 449 450 451 452 453 454 455 456
/**
 * This is the fallback shmem pread path, which allocates temporary storage
 * in kernel space to copy_to_user into outside of the struct_mutex, so we
 * can copy out of the object's backing pages while holding the struct mutex
 * and not take page faults.
 */
static int
i915_gem_shmem_pread_slow(struct drm_device *dev, struct drm_gem_object *obj,
			  struct drm_i915_gem_pread *args,
			  struct drm_file *file_priv)
{
457
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
458 459 460 461 462 463 464 465 466 467
	struct mm_struct *mm = current->mm;
	struct page **user_pages;
	ssize_t remain;
	loff_t offset, pinned_pages, i;
	loff_t first_data_page, last_data_page, num_pages;
	int shmem_page_index, shmem_page_offset;
	int data_page_index,  data_page_offset;
	int page_length;
	int ret;
	uint64_t data_ptr = args->data_ptr;
468
	int do_bit17_swizzling;
469 470 471 472 473 474 475 476 477 478 479

	remain = args->size;

	/* Pin the user pages containing the data.  We can't fault while
	 * holding the struct mutex, yet we want to hold it while
	 * dereferencing the user data.
	 */
	first_data_page = data_ptr / PAGE_SIZE;
	last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
	num_pages = last_data_page - first_data_page + 1;

480
	user_pages = drm_calloc_large(num_pages, sizeof(struct page *));
481 482 483 484 485
	if (user_pages == NULL)
		return -ENOMEM;

	down_read(&mm->mmap_sem);
	pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
486
				      num_pages, 1, 0, user_pages, NULL);
487 488 489 490 491 492
	up_read(&mm->mmap_sem);
	if (pinned_pages < num_pages) {
		ret = -EFAULT;
		goto fail_put_user_pages;
	}

493 494
	do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);

495 496 497
	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		goto fail_put_user_pages;
498

499 500
	ret = i915_gem_object_get_pages_or_evict(obj);
	if (ret)
501 502 503 504 505 506 507
		goto fail_unlock;

	ret = i915_gem_object_set_cpu_read_domain_range(obj, args->offset,
							args->size);
	if (ret != 0)
		goto fail_put_pages;

508
	obj_priv = to_intel_bo(obj);
509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530
	offset = args->offset;

	while (remain > 0) {
		/* Operation in this page
		 *
		 * shmem_page_index = page number within shmem file
		 * shmem_page_offset = offset within page in shmem file
		 * data_page_index = page number in get_user_pages return
		 * data_page_offset = offset with data_page_index page.
		 * page_length = bytes to copy for this page
		 */
		shmem_page_index = offset / PAGE_SIZE;
		shmem_page_offset = offset & ~PAGE_MASK;
		data_page_index = data_ptr / PAGE_SIZE - first_data_page;
		data_page_offset = data_ptr & ~PAGE_MASK;

		page_length = remain;
		if ((shmem_page_offset + page_length) > PAGE_SIZE)
			page_length = PAGE_SIZE - shmem_page_offset;
		if ((data_page_offset + page_length) > PAGE_SIZE)
			page_length = PAGE_SIZE - data_page_offset;

531
		if (do_bit17_swizzling) {
532
			slow_shmem_bit17_copy(obj_priv->pages[shmem_page_index],
533
					      shmem_page_offset,
534 535 536 537 538 539 540 541 542 543
					      user_pages[data_page_index],
					      data_page_offset,
					      page_length,
					      1);
		} else {
			slow_shmem_copy(user_pages[data_page_index],
					data_page_offset,
					obj_priv->pages[shmem_page_index],
					shmem_page_offset,
					page_length);
544
		}
545 546 547 548 549 550 551 552 553 554 555 556 557 558 559

		remain -= page_length;
		data_ptr += page_length;
		offset += page_length;
	}

fail_put_pages:
	i915_gem_object_put_pages(obj);
fail_unlock:
	mutex_unlock(&dev->struct_mutex);
fail_put_user_pages:
	for (i = 0; i < pinned_pages; i++) {
		SetPageDirty(user_pages[i]);
		page_cache_release(user_pages[i]);
	}
560
	drm_free_large(user_pages);
561 562 563 564

	return ret;
}

565 566 567 568 569 570 571 572 573 574 575 576
/**
 * Reads data from the object referenced by handle.
 *
 * On error, the contents of *data are undefined.
 */
int
i915_gem_pread_ioctl(struct drm_device *dev, void *data,
		     struct drm_file *file_priv)
{
	struct drm_i915_gem_pread *args = data;
	struct drm_gem_object *obj;
	struct drm_i915_gem_object *obj_priv;
577
	int ret = 0;
578 579 580

	obj = drm_gem_object_lookup(dev, file_priv, args->handle);
	if (obj == NULL)
581
		return -ENOENT;
582
	obj_priv = to_intel_bo(obj);
583

584 585
	/* Bounds check source.  */
	if (args->offset > obj->size || args->size > obj->size - args->offset) {
C
Chris Wilson 已提交
586
		ret = -EINVAL;
587
		goto out;
C
Chris Wilson 已提交
588 589
	}

590 591 592
	if (args->size == 0)
		goto out;

C
Chris Wilson 已提交
593 594 595 596
	if (!access_ok(VERIFY_WRITE,
		       (char __user *)(uintptr_t)args->data_ptr,
		       args->size)) {
		ret = -EFAULT;
597
		goto out;
598 599
	}

600
	if (i915_gem_object_needs_bit17_swizzle(obj)) {
601
		ret = i915_gem_shmem_pread_slow(dev, obj, args, file_priv);
602 603 604 605 606 607
	} else {
		ret = i915_gem_shmem_pread_fast(dev, obj, args, file_priv);
		if (ret != 0)
			ret = i915_gem_shmem_pread_slow(dev, obj, args,
							file_priv);
	}
608

609
out:
610
	drm_gem_object_unreference_unlocked(obj);
611
	return ret;
612 613
}

614 615
/* This is the fast write path which cannot handle
 * page faults in the source data
616
 */
617 618 619 620 621 622

static inline int
fast_user_write(struct io_mapping *mapping,
		loff_t page_base, int page_offset,
		char __user *user_data,
		int length)
623 624
{
	char *vaddr_atomic;
625
	unsigned long unwritten;
626

627
	vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base, KM_USER0);
628 629
	unwritten = __copy_from_user_inatomic_nocache(vaddr_atomic + page_offset,
						      user_data, length);
630
	io_mapping_unmap_atomic(vaddr_atomic, KM_USER0);
631 632 633 634 635 636 637 638 639
	if (unwritten)
		return -EFAULT;
	return 0;
}

/* Here's the write path which can sleep for
 * page faults
 */

640
static inline void
641 642 643 644
slow_kernel_write(struct io_mapping *mapping,
		  loff_t gtt_base, int gtt_offset,
		  struct page *user_page, int user_offset,
		  int length)
645
{
646 647
	char __iomem *dst_vaddr;
	char *src_vaddr;
648

649 650 651 652 653 654 655 656 657
	dst_vaddr = io_mapping_map_wc(mapping, gtt_base);
	src_vaddr = kmap(user_page);

	memcpy_toio(dst_vaddr + gtt_offset,
		    src_vaddr + user_offset,
		    length);

	kunmap(user_page);
	io_mapping_unmap(dst_vaddr);
658 659
}

660 661 662 663 664 665 666
static inline int
fast_shmem_write(struct page **pages,
		 loff_t page_base, int page_offset,
		 char __user *data,
		 int length)
{
	char __iomem *vaddr;
667
	unsigned long unwritten;
668 669 670 671

	vaddr = kmap_atomic(pages[page_base >> PAGE_SHIFT], KM_USER0);
	if (vaddr == NULL)
		return -ENOMEM;
672
	unwritten = __copy_from_user_inatomic(vaddr + page_offset, data, length);
673 674
	kunmap_atomic(vaddr, KM_USER0);

675 676
	if (unwritten)
		return -EFAULT;
677 678 679
	return 0;
}

680 681 682 683
/**
 * This is the fast pwrite path, where we copy the data directly from the
 * user into the GTT, uncached.
 */
684
static int
685 686 687
i915_gem_gtt_pwrite_fast(struct drm_device *dev, struct drm_gem_object *obj,
			 struct drm_i915_gem_pwrite *args,
			 struct drm_file *file_priv)
688
{
689
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
690
	drm_i915_private_t *dev_priv = dev->dev_private;
691
	ssize_t remain;
692
	loff_t offset, page_base;
693
	char __user *user_data;
694 695
	int page_offset, page_length;
	int ret;
696 697 698 699

	user_data = (char __user *) (uintptr_t) args->data_ptr;
	remain = args->size;

700 701 702
	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		return ret;
703 704 705 706 707 708

	ret = i915_gem_object_pin(obj, 0);
	if (ret) {
		mutex_unlock(&dev->struct_mutex);
		return ret;
	}
709
	ret = i915_gem_object_set_to_gtt_domain(obj, 1);
710 711 712
	if (ret)
		goto fail;

713
	obj_priv = to_intel_bo(obj);
714 715 716 717 718
	offset = obj_priv->gtt_offset + args->offset;

	while (remain > 0) {
		/* Operation in this page
		 *
719 720 721
		 * page_base = page offset within aperture
		 * page_offset = offset within page
		 * page_length = bytes to copy for this page
722
		 */
723 724 725 726 727 728 729 730 731 732
		page_base = (offset & ~(PAGE_SIZE-1));
		page_offset = offset & (PAGE_SIZE-1);
		page_length = remain;
		if ((page_offset + remain) > PAGE_SIZE)
			page_length = PAGE_SIZE - page_offset;

		ret = fast_user_write (dev_priv->mm.gtt_mapping, page_base,
				       page_offset, user_data, page_length);

		/* If we get a fault while copying data, then (presumably) our
733 734
		 * source page isn't available.  Return the error and we'll
		 * retry in the slow path.
735
		 */
736 737
		if (ret)
			goto fail;
738

739 740 741
		remain -= page_length;
		user_data += page_length;
		offset += page_length;
742 743 744 745 746 747 748 749 750
	}

fail:
	i915_gem_object_unpin(obj);
	mutex_unlock(&dev->struct_mutex);

	return ret;
}

751 752 753 754 755 756 757
/**
 * This is the fallback GTT pwrite path, which uses get_user_pages to pin
 * the memory and maps it using kmap_atomic for copying.
 *
 * This code resulted in x11perf -rgb10text consuming about 10% more CPU
 * than using i915_gem_gtt_pwrite_fast on a G45 (32-bit).
 */
758
static int
759 760 761
i915_gem_gtt_pwrite_slow(struct drm_device *dev, struct drm_gem_object *obj,
			 struct drm_i915_gem_pwrite *args,
			 struct drm_file *file_priv)
762
{
763
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
764 765 766 767 768 769 770 771
	drm_i915_private_t *dev_priv = dev->dev_private;
	ssize_t remain;
	loff_t gtt_page_base, offset;
	loff_t first_data_page, last_data_page, num_pages;
	loff_t pinned_pages, i;
	struct page **user_pages;
	struct mm_struct *mm = current->mm;
	int gtt_page_offset, data_page_offset, data_page_index, page_length;
772
	int ret;
773 774 775 776 777 778 779 780 781 782 783 784
	uint64_t data_ptr = args->data_ptr;

	remain = args->size;

	/* Pin the user pages containing the data.  We can't fault while
	 * holding the struct mutex, and all of the pwrite implementations
	 * want to hold it while dereferencing the user data.
	 */
	first_data_page = data_ptr / PAGE_SIZE;
	last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
	num_pages = last_data_page - first_data_page + 1;

785
	user_pages = drm_calloc_large(num_pages, sizeof(struct page *));
786 787 788 789 790 791 792 793 794 795 796
	if (user_pages == NULL)
		return -ENOMEM;

	down_read(&mm->mmap_sem);
	pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
				      num_pages, 0, 0, user_pages, NULL);
	up_read(&mm->mmap_sem);
	if (pinned_pages < num_pages) {
		ret = -EFAULT;
		goto out_unpin_pages;
	}
797

798 799 800 801
	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		goto out_unpin_pages;

802 803 804 805 806 807 808 809
	ret = i915_gem_object_pin(obj, 0);
	if (ret)
		goto out_unlock;

	ret = i915_gem_object_set_to_gtt_domain(obj, 1);
	if (ret)
		goto out_unpin_object;

810
	obj_priv = to_intel_bo(obj);
811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832
	offset = obj_priv->gtt_offset + args->offset;

	while (remain > 0) {
		/* Operation in this page
		 *
		 * gtt_page_base = page offset within aperture
		 * gtt_page_offset = offset within page in aperture
		 * data_page_index = page number in get_user_pages return
		 * data_page_offset = offset with data_page_index page.
		 * page_length = bytes to copy for this page
		 */
		gtt_page_base = offset & PAGE_MASK;
		gtt_page_offset = offset & ~PAGE_MASK;
		data_page_index = data_ptr / PAGE_SIZE - first_data_page;
		data_page_offset = data_ptr & ~PAGE_MASK;

		page_length = remain;
		if ((gtt_page_offset + page_length) > PAGE_SIZE)
			page_length = PAGE_SIZE - gtt_page_offset;
		if ((data_page_offset + page_length) > PAGE_SIZE)
			page_length = PAGE_SIZE - data_page_offset;

833 834 835 836 837
		slow_kernel_write(dev_priv->mm.gtt_mapping,
				  gtt_page_base, gtt_page_offset,
				  user_pages[data_page_index],
				  data_page_offset,
				  page_length);
838 839 840 841 842 843 844 845 846 847 848 849 850

		remain -= page_length;
		offset += page_length;
		data_ptr += page_length;
	}

out_unpin_object:
	i915_gem_object_unpin(obj);
out_unlock:
	mutex_unlock(&dev->struct_mutex);
out_unpin_pages:
	for (i = 0; i < pinned_pages; i++)
		page_cache_release(user_pages[i]);
851
	drm_free_large(user_pages);
852 853 854 855

	return ret;
}

856 857 858 859
/**
 * This is the fast shmem pwrite path, which attempts to directly
 * copy_from_user into the kmapped pages backing the object.
 */
860
static int
861 862 863
i915_gem_shmem_pwrite_fast(struct drm_device *dev, struct drm_gem_object *obj,
			   struct drm_i915_gem_pwrite *args,
			   struct drm_file *file_priv)
864
{
865
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
866 867 868 869
	ssize_t remain;
	loff_t offset, page_base;
	char __user *user_data;
	int page_offset, page_length;
870
	int ret;
871 872 873

	user_data = (char __user *) (uintptr_t) args->data_ptr;
	remain = args->size;
874

875 876 877
	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		return ret;
878

879
	ret = i915_gem_object_get_pages(obj, 0);
880 881
	if (ret != 0)
		goto fail_unlock;
882

883
	ret = i915_gem_object_set_to_cpu_domain(obj, 1);
884 885 886
	if (ret != 0)
		goto fail_put_pages;

887
	obj_priv = to_intel_bo(obj);
888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934
	offset = args->offset;
	obj_priv->dirty = 1;

	while (remain > 0) {
		/* Operation in this page
		 *
		 * page_base = page offset within aperture
		 * page_offset = offset within page
		 * page_length = bytes to copy for this page
		 */
		page_base = (offset & ~(PAGE_SIZE-1));
		page_offset = offset & (PAGE_SIZE-1);
		page_length = remain;
		if ((page_offset + remain) > PAGE_SIZE)
			page_length = PAGE_SIZE - page_offset;

		ret = fast_shmem_write(obj_priv->pages,
				       page_base, page_offset,
				       user_data, page_length);
		if (ret)
			goto fail_put_pages;

		remain -= page_length;
		user_data += page_length;
		offset += page_length;
	}

fail_put_pages:
	i915_gem_object_put_pages(obj);
fail_unlock:
	mutex_unlock(&dev->struct_mutex);

	return ret;
}

/**
 * This is the fallback shmem pwrite path, which uses get_user_pages to pin
 * the memory and maps it using kmap_atomic for copying.
 *
 * This avoids taking mmap_sem for faulting on the user's address while the
 * struct_mutex is held.
 */
static int
i915_gem_shmem_pwrite_slow(struct drm_device *dev, struct drm_gem_object *obj,
			   struct drm_i915_gem_pwrite *args,
			   struct drm_file *file_priv)
{
935
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
936 937 938 939 940 941 942 943 944 945
	struct mm_struct *mm = current->mm;
	struct page **user_pages;
	ssize_t remain;
	loff_t offset, pinned_pages, i;
	loff_t first_data_page, last_data_page, num_pages;
	int shmem_page_index, shmem_page_offset;
	int data_page_index,  data_page_offset;
	int page_length;
	int ret;
	uint64_t data_ptr = args->data_ptr;
946
	int do_bit17_swizzling;
947 948 949 950 951 952 953 954 955 956 957

	remain = args->size;

	/* Pin the user pages containing the data.  We can't fault while
	 * holding the struct mutex, and all of the pwrite implementations
	 * want to hold it while dereferencing the user data.
	 */
	first_data_page = data_ptr / PAGE_SIZE;
	last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
	num_pages = last_data_page - first_data_page + 1;

958
	user_pages = drm_calloc_large(num_pages, sizeof(struct page *));
959 960 961 962 963 964 965 966 967 968
	if (user_pages == NULL)
		return -ENOMEM;

	down_read(&mm->mmap_sem);
	pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
				      num_pages, 0, 0, user_pages, NULL);
	up_read(&mm->mmap_sem);
	if (pinned_pages < num_pages) {
		ret = -EFAULT;
		goto fail_put_user_pages;
969 970
	}

971 972
	do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);

973 974 975
	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		goto fail_put_user_pages;
976

977 978
	ret = i915_gem_object_get_pages_or_evict(obj);
	if (ret)
979 980 981 982 983 984
		goto fail_unlock;

	ret = i915_gem_object_set_to_cpu_domain(obj, 1);
	if (ret != 0)
		goto fail_put_pages;

985
	obj_priv = to_intel_bo(obj);
986
	offset = args->offset;
987
	obj_priv->dirty = 1;
988

989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008
	while (remain > 0) {
		/* Operation in this page
		 *
		 * shmem_page_index = page number within shmem file
		 * shmem_page_offset = offset within page in shmem file
		 * data_page_index = page number in get_user_pages return
		 * data_page_offset = offset with data_page_index page.
		 * page_length = bytes to copy for this page
		 */
		shmem_page_index = offset / PAGE_SIZE;
		shmem_page_offset = offset & ~PAGE_MASK;
		data_page_index = data_ptr / PAGE_SIZE - first_data_page;
		data_page_offset = data_ptr & ~PAGE_MASK;

		page_length = remain;
		if ((shmem_page_offset + page_length) > PAGE_SIZE)
			page_length = PAGE_SIZE - shmem_page_offset;
		if ((data_page_offset + page_length) > PAGE_SIZE)
			page_length = PAGE_SIZE - data_page_offset;

1009
		if (do_bit17_swizzling) {
1010
			slow_shmem_bit17_copy(obj_priv->pages[shmem_page_index],
1011 1012 1013
					      shmem_page_offset,
					      user_pages[data_page_index],
					      data_page_offset,
1014 1015 1016 1017 1018 1019 1020 1021
					      page_length,
					      0);
		} else {
			slow_shmem_copy(obj_priv->pages[shmem_page_index],
					shmem_page_offset,
					user_pages[data_page_index],
					data_page_offset,
					page_length);
1022
		}
1023 1024 1025 1026

		remain -= page_length;
		data_ptr += page_length;
		offset += page_length;
1027 1028
	}

1029 1030 1031
fail_put_pages:
	i915_gem_object_put_pages(obj);
fail_unlock:
1032
	mutex_unlock(&dev->struct_mutex);
1033 1034 1035
fail_put_user_pages:
	for (i = 0; i < pinned_pages; i++)
		page_cache_release(user_pages[i]);
1036
	drm_free_large(user_pages);
1037

1038
	return ret;
1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056
}

/**
 * Writes data to the object referenced by handle.
 *
 * On error, the contents of the buffer that were to be modified are undefined.
 */
int
i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
		      struct drm_file *file_priv)
{
	struct drm_i915_gem_pwrite *args = data;
	struct drm_gem_object *obj;
	struct drm_i915_gem_object *obj_priv;
	int ret = 0;

	obj = drm_gem_object_lookup(dev, file_priv, args->handle);
	if (obj == NULL)
1057
		return -ENOENT;
1058
	obj_priv = to_intel_bo(obj);
1059

1060 1061
	/* Bounds check destination. */
	if (args->offset > obj->size || args->size > obj->size - args->offset) {
C
Chris Wilson 已提交
1062
		ret = -EINVAL;
1063
		goto out;
C
Chris Wilson 已提交
1064 1065
	}

1066 1067 1068
	if (args->size == 0)
		goto out;

C
Chris Wilson 已提交
1069 1070 1071 1072
	if (!access_ok(VERIFY_READ,
		       (char __user *)(uintptr_t)args->data_ptr,
		       args->size)) {
		ret = -EFAULT;
1073
		goto out;
1074 1075 1076 1077 1078 1079 1080 1081
	}

	/* We can only do the GTT pwrite on untiled buffers, as otherwise
	 * it would end up going through the fenced access, and we'll get
	 * different detiling behavior between reading and writing.
	 * pread/pwrite currently are reading and writing from the CPU
	 * perspective, requiring manual detiling by the client.
	 */
1082 1083 1084
	if (obj_priv->phys_obj)
		ret = i915_gem_phys_pwrite(dev, obj, args, file_priv);
	else if (obj_priv->tiling_mode == I915_TILING_NONE &&
1085
		 obj_priv->gtt_space &&
1086
		 obj->write_domain != I915_GEM_DOMAIN_CPU) {
1087 1088 1089 1090 1091
		ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file_priv);
		if (ret == -EFAULT) {
			ret = i915_gem_gtt_pwrite_slow(dev, obj, args,
						       file_priv);
		}
1092 1093
	} else if (i915_gem_object_needs_bit17_swizzle(obj)) {
		ret = i915_gem_shmem_pwrite_slow(dev, obj, args, file_priv);
1094 1095 1096 1097 1098 1099 1100
	} else {
		ret = i915_gem_shmem_pwrite_fast(dev, obj, args, file_priv);
		if (ret == -EFAULT) {
			ret = i915_gem_shmem_pwrite_slow(dev, obj, args,
							 file_priv);
		}
	}
1101 1102 1103 1104 1105 1106

#if WATCH_PWRITE
	if (ret)
		DRM_INFO("pwrite failed %d\n", ret);
#endif

1107
out:
1108
	drm_gem_object_unreference_unlocked(obj);
1109 1110 1111 1112
	return ret;
}

/**
1113 1114
 * Called when user space prepares to use an object with the CPU, either
 * through the mmap ioctl's mapping or a GTT mapping.
1115 1116 1117 1118 1119
 */
int
i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
			  struct drm_file *file_priv)
{
1120
	struct drm_i915_private *dev_priv = dev->dev_private;
1121 1122
	struct drm_i915_gem_set_domain *args = data;
	struct drm_gem_object *obj;
1123
	struct drm_i915_gem_object *obj_priv;
1124 1125
	uint32_t read_domains = args->read_domains;
	uint32_t write_domain = args->write_domain;
1126 1127 1128 1129 1130
	int ret;

	if (!(dev->driver->driver_features & DRIVER_GEM))
		return -ENODEV;

1131
	/* Only handle setting domains to types used by the CPU. */
1132
	if (write_domain & I915_GEM_GPU_DOMAINS)
1133 1134
		return -EINVAL;

1135
	if (read_domains & I915_GEM_GPU_DOMAINS)
1136 1137 1138 1139 1140 1141 1142 1143
		return -EINVAL;

	/* Having something in the write domain implies it's in the read
	 * domain, and only that read domain.  Enforce that in the request.
	 */
	if (write_domain != 0 && read_domains != write_domain)
		return -EINVAL;

1144 1145
	obj = drm_gem_object_lookup(dev, file_priv, args->handle);
	if (obj == NULL)
1146
		return -ENOENT;
1147
	obj_priv = to_intel_bo(obj);
1148

1149 1150 1151 1152 1153
	ret = i915_mutex_lock_interruptible(dev);
	if (ret) {
		drm_gem_object_unreference_unlocked(obj);
		return ret;
	}
1154 1155 1156

	intel_mark_busy(dev, obj);

1157 1158
	if (read_domains & I915_GEM_DOMAIN_GTT) {
		ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
1159

1160 1161 1162 1163
		/* Update the LRU on the fence for the CPU access that's
		 * about to occur.
		 */
		if (obj_priv->fence_reg != I915_FENCE_REG_NONE) {
1164 1165 1166
			struct drm_i915_fence_reg *reg =
				&dev_priv->fence_regs[obj_priv->fence_reg];
			list_move_tail(&reg->lru_list,
1167 1168 1169
				       &dev_priv->mm.fence_list);
		}

1170 1171 1172 1173 1174 1175
		/* Silently promote "you're not bound, there was nothing to do"
		 * to success, since the client was just asking us to
		 * make sure everything was done.
		 */
		if (ret == -EINVAL)
			ret = 0;
1176
	} else {
1177
		ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
1178 1179
	}

1180 1181 1182 1183
	/* Maintain LRU order of "inactive" objects */
	if (ret == 0 && i915_gem_object_is_inactive(obj_priv))
		list_move_tail(&obj_priv->list, &dev_priv->mm.inactive_list);

1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203
	drm_gem_object_unreference(obj);
	mutex_unlock(&dev->struct_mutex);
	return ret;
}

/**
 * Called when user space has done writes to this buffer
 */
int
i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
		      struct drm_file *file_priv)
{
	struct drm_i915_gem_sw_finish *args = data;
	struct drm_gem_object *obj;
	int ret = 0;

	if (!(dev->driver->driver_features & DRIVER_GEM))
		return -ENODEV;

	obj = drm_gem_object_lookup(dev, file_priv, args->handle);
1204
	if (obj == NULL)
1205
		return -ENOENT;
1206 1207 1208 1209 1210

	ret = i915_mutex_lock_interruptible(dev);
	if (ret) {
		drm_gem_object_unreference_unlocked(obj);
		return ret;
1211 1212 1213
	}

	/* Pinned buffers may be scanout, so flush the cache */
1214
	if (to_intel_bo(obj)->pin_count)
1215 1216
		i915_gem_object_flush_cpu_write_domain(obj);

1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242
	drm_gem_object_unreference(obj);
	mutex_unlock(&dev->struct_mutex);
	return ret;
}

/**
 * Maps the contents of an object, returning the address it is mapped
 * into.
 *
 * While the mapping holds a reference on the contents of the object, it doesn't
 * imply a ref on the object itself.
 */
int
i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
		   struct drm_file *file_priv)
{
	struct drm_i915_gem_mmap *args = data;
	struct drm_gem_object *obj;
	loff_t offset;
	unsigned long addr;

	if (!(dev->driver->driver_features & DRIVER_GEM))
		return -ENODEV;

	obj = drm_gem_object_lookup(dev, file_priv, args->handle);
	if (obj == NULL)
1243
		return -ENOENT;
1244 1245 1246 1247 1248 1249 1250 1251

	offset = args->offset;

	down_write(&current->mm->mmap_sem);
	addr = do_mmap(obj->filp, 0, args->size,
		       PROT_READ | PROT_WRITE, MAP_SHARED,
		       args->offset);
	up_write(&current->mm->mmap_sem);
1252
	drm_gem_object_unreference_unlocked(obj);
1253 1254 1255 1256 1257 1258 1259 1260
	if (IS_ERR((void *)addr))
		return addr;

	args->addr_ptr = (uint64_t) addr;

	return 0;
}

1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280
/**
 * i915_gem_fault - fault a page into the GTT
 * vma: VMA in question
 * vmf: fault info
 *
 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
 * from userspace.  The fault handler takes care of binding the object to
 * the GTT (if needed), allocating and programming a fence register (again,
 * only if needed based on whether the old reg is still valid or the object
 * is tiled) and inserting a new PTE into the faulting process.
 *
 * Note that the faulting process may involve evicting existing objects
 * from the GTT and/or fence registers to make room.  So performance may
 * suffer if the GTT working set is large or there are few fence registers
 * left.
 */
int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
{
	struct drm_gem_object *obj = vma->vm_private_data;
	struct drm_device *dev = obj->dev;
1281
	drm_i915_private_t *dev_priv = dev->dev_private;
1282
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1283 1284 1285
	pgoff_t page_offset;
	unsigned long pfn;
	int ret = 0;
1286
	bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
1287 1288 1289 1290 1291 1292 1293 1294

	/* We don't use vmf->pgoff since that has the fake offset */
	page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
		PAGE_SHIFT;

	/* Now bind it into the GTT if needed */
	mutex_lock(&dev->struct_mutex);
	if (!obj_priv->gtt_space) {
1295
		ret = i915_gem_object_bind_to_gtt(obj, 0);
1296 1297
		if (ret)
			goto unlock;
1298 1299

		ret = i915_gem_object_set_to_gtt_domain(obj, write);
1300 1301
		if (ret)
			goto unlock;
1302 1303 1304
	}

	/* Need a new fence register? */
1305
	if (obj_priv->tiling_mode != I915_TILING_NONE) {
1306
		ret = i915_gem_object_get_fence_reg(obj, true);
1307 1308
		if (ret)
			goto unlock;
1309
	}
1310

1311 1312 1313
	if (i915_gem_object_is_inactive(obj_priv))
		list_move_tail(&obj_priv->list, &dev_priv->mm.inactive_list);

1314 1315 1316 1317 1318
	pfn = ((dev->agp->base + obj_priv->gtt_offset) >> PAGE_SHIFT) +
		page_offset;

	/* Finally, remap it using the new GTT offset */
	ret = vm_insert_pfn(vma, (unsigned long)vmf->virtual_address, pfn);
1319
unlock:
1320 1321 1322
	mutex_unlock(&dev->struct_mutex);

	switch (ret) {
1323 1324 1325
	case 0:
	case -ERESTARTSYS:
		return VM_FAULT_NOPAGE;
1326 1327 1328 1329
	case -ENOMEM:
	case -EAGAIN:
		return VM_FAULT_OOM;
	default:
1330
		return VM_FAULT_SIGBUS;
1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349
	}
}

/**
 * i915_gem_create_mmap_offset - create a fake mmap offset for an object
 * @obj: obj in question
 *
 * GEM memory mapping works by handing back to userspace a fake mmap offset
 * it can use in a subsequent mmap(2) call.  The DRM core code then looks
 * up the object based on the offset and sets up the various memory mapping
 * structures.
 *
 * This routine allocates and attaches a fake offset for @obj.
 */
static int
i915_gem_create_mmap_offset(struct drm_gem_object *obj)
{
	struct drm_device *dev = obj->dev;
	struct drm_gem_mm *mm = dev->mm_private;
1350
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1351
	struct drm_map_list *list;
1352
	struct drm_local_map *map;
1353 1354 1355 1356
	int ret = 0;

	/* Set the object up for mmap'ing */
	list = &obj->map_list;
1357
	list->map = kzalloc(sizeof(struct drm_map_list), GFP_KERNEL);
1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370
	if (!list->map)
		return -ENOMEM;

	map = list->map;
	map->type = _DRM_GEM;
	map->size = obj->size;
	map->handle = obj;

	/* Get a DRM GEM mmap offset allocated... */
	list->file_offset_node = drm_mm_search_free(&mm->offset_manager,
						    obj->size / PAGE_SIZE, 0, 0);
	if (!list->file_offset_node) {
		DRM_ERROR("failed to allocate offset for bo %d\n", obj->name);
1371
		ret = -ENOSPC;
1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382
		goto out_free_list;
	}

	list->file_offset_node = drm_mm_get_block(list->file_offset_node,
						  obj->size / PAGE_SIZE, 0);
	if (!list->file_offset_node) {
		ret = -ENOMEM;
		goto out_free_list;
	}

	list->hash.key = list->file_offset_node->start;
1383 1384
	ret = drm_ht_insert_item(&mm->offset_hash, &list->hash);
	if (ret) {
1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397
		DRM_ERROR("failed to add to map hash\n");
		goto out_free_mm;
	}

	/* By now we should be all set, any drm_mmap request on the offset
	 * below will get to our mmap & fault handler */
	obj_priv->mmap_offset = ((uint64_t) list->hash.key) << PAGE_SHIFT;

	return 0;

out_free_mm:
	drm_mm_put_block(list->file_offset_node);
out_free_list:
1398
	kfree(list->map);
1399 1400 1401 1402

	return ret;
}

1403 1404 1405 1406
/**
 * i915_gem_release_mmap - remove physical page mappings
 * @obj: obj in question
 *
1407
 * Preserve the reservation of the mmapping with the DRM core code, but
1408 1409 1410 1411 1412 1413 1414 1415 1416
 * relinquish ownership of the pages back to the system.
 *
 * It is vital that we remove the page mapping if we have mapped a tiled
 * object through the GTT and then lose the fence register due to
 * resource pressure. Similarly if the object has been moved out of the
 * aperture, than pages mapped into userspace must be revoked. Removing the
 * mapping will then trigger a page fault on the next user access, allowing
 * fixup by i915_gem_fault().
 */
1417
void
1418 1419 1420
i915_gem_release_mmap(struct drm_gem_object *obj)
{
	struct drm_device *dev = obj->dev;
1421
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1422 1423 1424 1425 1426 1427

	if (dev->dev_mapping)
		unmap_mapping_range(dev->dev_mapping,
				    obj_priv->mmap_offset, obj->size, 1);
}

1428 1429 1430 1431
static void
i915_gem_free_mmap_offset(struct drm_gem_object *obj)
{
	struct drm_device *dev = obj->dev;
1432
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444
	struct drm_gem_mm *mm = dev->mm_private;
	struct drm_map_list *list;

	list = &obj->map_list;
	drm_ht_remove_item(&mm->offset_hash, &list->hash);

	if (list->file_offset_node) {
		drm_mm_put_block(list->file_offset_node);
		list->file_offset_node = NULL;
	}

	if (list->map) {
1445
		kfree(list->map);
1446 1447 1448 1449 1450 1451
		list->map = NULL;
	}

	obj_priv->mmap_offset = 0;
}

1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462
/**
 * i915_gem_get_gtt_alignment - return required GTT alignment for an object
 * @obj: object to check
 *
 * Return the required GTT alignment for an object, taking into account
 * potential fence register mapping if needed.
 */
static uint32_t
i915_gem_get_gtt_alignment(struct drm_gem_object *obj)
{
	struct drm_device *dev = obj->dev;
1463
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1464 1465 1466 1467 1468 1469
	int start, i;

	/*
	 * Minimum alignment is 4k (GTT page size), but might be greater
	 * if a fence register is needed for the object.
	 */
1470
	if (INTEL_INFO(dev)->gen >= 4 || obj_priv->tiling_mode == I915_TILING_NONE)
1471 1472 1473 1474 1475 1476
		return 4096;

	/*
	 * Previous chips need to be aligned to the size of the smallest
	 * fence register that can contain the object.
	 */
1477
	if (INTEL_INFO(dev)->gen == 3)
1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516
		start = 1024*1024;
	else
		start = 512*1024;

	for (i = start; i < obj->size; i <<= 1)
		;

	return i;
}

/**
 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
 * @dev: DRM device
 * @data: GTT mapping ioctl data
 * @file_priv: GEM object info
 *
 * Simply returns the fake offset to userspace so it can mmap it.
 * The mmap call will end up in drm_gem_mmap(), which will set things
 * up so we can get faults in the handler above.
 *
 * The fault handler will take care of binding the object into the GTT
 * (since it may have been evicted to make room for something), allocating
 * a fence register, and mapping the appropriate aperture address into
 * userspace.
 */
int
i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
			struct drm_file *file_priv)
{
	struct drm_i915_gem_mmap_gtt *args = data;
	struct drm_gem_object *obj;
	struct drm_i915_gem_object *obj_priv;
	int ret;

	if (!(dev->driver->driver_features & DRIVER_GEM))
		return -ENODEV;

	obj = drm_gem_object_lookup(dev, file_priv, args->handle);
	if (obj == NULL)
1517
		return -ENOENT;
1518

1519 1520 1521 1522 1523
	ret = i915_mutex_lock_interruptible(dev);
	if (ret) {
		drm_gem_object_unreference_unlocked(obj);
		return ret;
	}
1524

1525
	obj_priv = to_intel_bo(obj);
1526

1527 1528 1529 1530 1531 1532 1533 1534
	if (obj_priv->madv != I915_MADV_WILLNEED) {
		DRM_ERROR("Attempting to mmap a purgeable buffer\n");
		drm_gem_object_unreference(obj);
		mutex_unlock(&dev->struct_mutex);
		return -EINVAL;
	}


1535 1536
	if (!obj_priv->mmap_offset) {
		ret = i915_gem_create_mmap_offset(obj);
1537 1538 1539
		if (ret) {
			drm_gem_object_unreference(obj);
			mutex_unlock(&dev->struct_mutex);
1540
			return ret;
1541
		}
1542 1543 1544 1545 1546 1547 1548 1549 1550
	}

	args->offset = obj_priv->mmap_offset;

	/*
	 * Pull it into the GTT so that we have a page list (makes the
	 * initial fault faster and any subsequent flushing possible).
	 */
	if (!obj_priv->agp_mem) {
1551
		ret = i915_gem_object_bind_to_gtt(obj, 0);
1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564
		if (ret) {
			drm_gem_object_unreference(obj);
			mutex_unlock(&dev->struct_mutex);
			return ret;
		}
	}

	drm_gem_object_unreference(obj);
	mutex_unlock(&dev->struct_mutex);

	return 0;
}

1565
static void
1566
i915_gem_object_put_pages(struct drm_gem_object *obj)
1567
{
1568
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1569 1570 1571
	int page_count = obj->size / PAGE_SIZE;
	int i;

1572
	BUG_ON(obj_priv->pages_refcount == 0);
C
Chris Wilson 已提交
1573
	BUG_ON(obj_priv->madv == __I915_MADV_PURGED);
1574

1575 1576
	if (--obj_priv->pages_refcount != 0)
		return;
1577

1578 1579 1580
	if (obj_priv->tiling_mode != I915_TILING_NONE)
		i915_gem_object_save_bit_17_swizzle(obj);

1581
	if (obj_priv->madv == I915_MADV_DONTNEED)
1582
		obj_priv->dirty = 0;
1583 1584 1585 1586 1587 1588

	for (i = 0; i < page_count; i++) {
		if (obj_priv->dirty)
			set_page_dirty(obj_priv->pages[i]);

		if (obj_priv->madv == I915_MADV_WILLNEED)
1589
			mark_page_accessed(obj_priv->pages[i]);
1590 1591 1592

		page_cache_release(obj_priv->pages[i]);
	}
1593 1594
	obj_priv->dirty = 0;

1595
	drm_free_large(obj_priv->pages);
1596
	obj_priv->pages = NULL;
1597 1598
}

1599 1600 1601 1602 1603 1604 1605 1606 1607 1608
static uint32_t
i915_gem_next_request_seqno(struct drm_device *dev,
			    struct intel_ring_buffer *ring)
{
	drm_i915_private_t *dev_priv = dev->dev_private;

	ring->outstanding_lazy_request = true;
	return dev_priv->next_seqno;
}

1609
static void
1610
i915_gem_object_move_to_active(struct drm_gem_object *obj,
1611
			       struct intel_ring_buffer *ring)
1612
{
1613
	struct drm_device *dev = obj->dev;
1614
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1615
	uint32_t seqno = i915_gem_next_request_seqno(dev, ring);
1616

1617 1618
	BUG_ON(ring == NULL);
	obj_priv->ring = ring;
1619 1620 1621 1622 1623 1624

	/* Add a reference if we're newly entering the active list. */
	if (!obj_priv->active) {
		drm_gem_object_reference(obj);
		obj_priv->active = 1;
	}
1625

1626
	/* Move from whatever list we were on to the tail of execution. */
1627
	list_move_tail(&obj_priv->list, &ring->active_list);
1628
	obj_priv->last_rendering_seqno = seqno;
1629 1630
}

1631 1632 1633 1634 1635
static void
i915_gem_object_move_to_flushing(struct drm_gem_object *obj)
{
	struct drm_device *dev = obj->dev;
	drm_i915_private_t *dev_priv = dev->dev_private;
1636
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1637 1638 1639 1640 1641

	BUG_ON(!obj_priv->active);
	list_move_tail(&obj_priv->list, &dev_priv->mm.flushing_list);
	obj_priv->last_rendering_seqno = 0;
}
1642

1643 1644 1645 1646
/* Immediately discard the backing storage */
static void
i915_gem_object_truncate(struct drm_gem_object *obj)
{
1647
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
C
Chris Wilson 已提交
1648
	struct inode *inode;
1649

1650 1651 1652 1653 1654 1655
	/* Our goal here is to return as much of the memory as
	 * is possible back to the system as we are called from OOM.
	 * To do this we must instruct the shmfs to drop all of its
	 * backing pages, *now*. Here we mirror the actions taken
	 * when by shmem_delete_inode() to release the backing store.
	 */
C
Chris Wilson 已提交
1656
	inode = obj->filp->f_path.dentry->d_inode;
1657 1658 1659
	truncate_inode_pages(inode->i_mapping, 0);
	if (inode->i_op->truncate_range)
		inode->i_op->truncate_range(inode, 0, (loff_t)-1);
C
Chris Wilson 已提交
1660 1661

	obj_priv->madv = __I915_MADV_PURGED;
1662 1663 1664 1665 1666 1667 1668 1669
}

static inline int
i915_gem_object_is_purgeable(struct drm_i915_gem_object *obj_priv)
{
	return obj_priv->madv == I915_MADV_DONTNEED;
}

1670 1671 1672 1673 1674
static void
i915_gem_object_move_to_inactive(struct drm_gem_object *obj)
{
	struct drm_device *dev = obj->dev;
	drm_i915_private_t *dev_priv = dev->dev_private;
1675
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1676 1677

	if (obj_priv->pin_count != 0)
C
Chris Wilson 已提交
1678
		list_move_tail(&obj_priv->list, &dev_priv->mm.pinned_list);
1679 1680 1681
	else
		list_move_tail(&obj_priv->list, &dev_priv->mm.inactive_list);

1682 1683
	BUG_ON(!list_empty(&obj_priv->gpu_write_list));

1684
	obj_priv->last_rendering_seqno = 0;
1685
	obj_priv->ring = NULL;
1686 1687 1688 1689
	if (obj_priv->active) {
		obj_priv->active = 0;
		drm_gem_object_unreference(obj);
	}
1690
	WARN_ON(i915_verify_lists(dev));
1691 1692
}

1693
static void
1694
i915_gem_process_flushing_list(struct drm_device *dev,
1695
			       uint32_t flush_domains,
1696
			       struct intel_ring_buffer *ring)
1697 1698 1699 1700 1701 1702 1703
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	struct drm_i915_gem_object *obj_priv, *next;

	list_for_each_entry_safe(obj_priv, next,
				 &dev_priv->mm.gpu_write_list,
				 gpu_write_list) {
1704
		struct drm_gem_object *obj = &obj_priv->base;
1705

1706 1707
		if (obj->write_domain & flush_domains &&
		    obj_priv->ring == ring) {
1708 1709 1710 1711
			uint32_t old_write_domain = obj->write_domain;

			obj->write_domain = 0;
			list_del_init(&obj_priv->gpu_write_list);
1712
			i915_gem_object_move_to_active(obj, ring);
1713 1714

			/* update the fence lru list */
1715 1716 1717 1718
			if (obj_priv->fence_reg != I915_FENCE_REG_NONE) {
				struct drm_i915_fence_reg *reg =
					&dev_priv->fence_regs[obj_priv->fence_reg];
				list_move_tail(&reg->lru_list,
1719
						&dev_priv->mm.fence_list);
1720
			}
1721 1722 1723 1724 1725 1726 1727

			trace_i915_gem_object_change_domain(obj,
							    obj->read_domains,
							    old_write_domain);
		}
	}
}
1728

1729
uint32_t
1730
i915_add_request(struct drm_device *dev,
1731
		 struct drm_file *file,
C
Chris Wilson 已提交
1732
		 struct drm_i915_gem_request *request,
1733
		 struct intel_ring_buffer *ring)
1734 1735
{
	drm_i915_private_t *dev_priv = dev->dev_private;
1736
	struct drm_i915_file_private *file_priv = NULL;
1737 1738 1739
	uint32_t seqno;
	int was_empty;

1740 1741
	if (file != NULL)
		file_priv = file->driver_priv;
1742

C
Chris Wilson 已提交
1743 1744 1745 1746 1747
	if (request == NULL) {
		request = kzalloc(sizeof(*request), GFP_KERNEL);
		if (request == NULL)
			return 0;
	}
1748

1749
	seqno = ring->add_request(dev, ring, 0);
1750
	ring->outstanding_lazy_request = false;
1751 1752

	request->seqno = seqno;
1753
	request->ring = ring;
1754
	request->emitted_jiffies = jiffies;
1755 1756 1757
	was_empty = list_empty(&ring->request_list);
	list_add_tail(&request->list, &ring->request_list);

1758
	if (file_priv) {
1759
		spin_lock(&file_priv->mm.lock);
1760
		request->file_priv = file_priv;
1761
		list_add_tail(&request->client_list,
1762
			      &file_priv->mm.request_list);
1763
		spin_unlock(&file_priv->mm.lock);
1764
	}
1765

B
Ben Gamari 已提交
1766
	if (!dev_priv->mm.suspended) {
1767 1768
		mod_timer(&dev_priv->hangcheck_timer,
			  jiffies + msecs_to_jiffies(DRM_I915_HANGCHECK_PERIOD));
B
Ben Gamari 已提交
1769
		if (was_empty)
1770 1771
			queue_delayed_work(dev_priv->wq,
					   &dev_priv->mm.retire_work, HZ);
B
Ben Gamari 已提交
1772
	}
1773 1774 1775 1776 1777 1778 1779 1780 1781
	return seqno;
}

/**
 * Command execution barrier
 *
 * Ensures that all commands in the ring are finished
 * before signalling the CPU
 */
1782
static void
1783
i915_retire_commands(struct drm_device *dev, struct intel_ring_buffer *ring)
1784 1785 1786 1787
{
	uint32_t flush_domains = 0;

	/* The sampler always gets flushed on i965 (sigh) */
1788
	if (INTEL_INFO(dev)->gen >= 4)
1789
		flush_domains |= I915_GEM_DOMAIN_SAMPLER;
1790 1791 1792

	ring->flush(dev, ring,
			I915_GEM_DOMAIN_COMMAND, flush_domains);
1793 1794
}

1795 1796
static inline void
i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
1797
{
1798 1799 1800 1801 1802 1803 1804 1805 1806
	struct drm_i915_file_private *file_priv = request->file_priv;

	if (!file_priv)
		return;

	spin_lock(&file_priv->mm.lock);
	list_del(&request->client_list);
	request->file_priv = NULL;
	spin_unlock(&file_priv->mm.lock);
1807 1808
}

1809 1810
static void i915_gem_reset_ring_lists(struct drm_i915_private *dev_priv,
				      struct intel_ring_buffer *ring)
1811
{
1812 1813
	while (!list_empty(&ring->request_list)) {
		struct drm_i915_gem_request *request;
1814

1815 1816 1817 1818 1819
		request = list_first_entry(&ring->request_list,
					   struct drm_i915_gem_request,
					   list);

		list_del(&request->list);
1820
		i915_gem_request_remove_from_client(request);
1821 1822 1823 1824
		kfree(request);
	}

	while (!list_empty(&ring->active_list)) {
1825 1826
		struct drm_i915_gem_object *obj_priv;

1827
		obj_priv = list_first_entry(&ring->active_list,
1828 1829 1830 1831
					    struct drm_i915_gem_object,
					    list);

		obj_priv->base.write_domain = 0;
1832
		list_del_init(&obj_priv->gpu_write_list);
1833 1834 1835 1836
		i915_gem_object_move_to_inactive(&obj_priv->base);
	}
}

1837
void i915_gem_reset(struct drm_device *dev)
1838 1839 1840
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct drm_i915_gem_object *obj_priv;
1841
	int i;
1842

1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863
	i915_gem_reset_ring_lists(dev_priv, &dev_priv->render_ring);
	if (HAS_BSD(dev))
		i915_gem_reset_ring_lists(dev_priv, &dev_priv->bsd_ring);

	/* Remove anything from the flushing lists. The GPU cache is likely
	 * to be lost on reset along with the data, so simply move the
	 * lost bo to the inactive list.
	 */
	while (!list_empty(&dev_priv->mm.flushing_list)) {
		obj_priv = list_first_entry(&dev_priv->mm.flushing_list,
					    struct drm_i915_gem_object,
					    list);

		obj_priv->base.write_domain = 0;
		list_del_init(&obj_priv->gpu_write_list);
		i915_gem_object_move_to_inactive(&obj_priv->base);
	}

	/* Move everything out of the GPU domains to ensure we do any
	 * necessary invalidation upon reuse.
	 */
1864 1865 1866 1867 1868 1869
	list_for_each_entry(obj_priv,
			    &dev_priv->mm.inactive_list,
			    list)
	{
		obj_priv->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
	}
1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880

	/* The fence registers are invalidated so clear them out */
	for (i = 0; i < 16; i++) {
		struct drm_i915_fence_reg *reg;

		reg = &dev_priv->fence_regs[i];
		if (!reg->obj)
			continue;

		i915_gem_clear_fence_reg(reg->obj);
	}
1881 1882
}

1883 1884 1885
/**
 * This function clears the request list as sequence numbers are passed.
 */
1886 1887 1888
static void
i915_gem_retire_requests_ring(struct drm_device *dev,
			      struct intel_ring_buffer *ring)
1889 1890 1891 1892
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	uint32_t seqno;

1893 1894
	if (!ring->status_page.page_addr ||
	    list_empty(&ring->request_list))
1895 1896
		return;

1897 1898
	WARN_ON(i915_verify_lists(dev));

1899
	seqno = ring->get_seqno(dev, ring);
1900
	while (!list_empty(&ring->request_list)) {
1901 1902
		struct drm_i915_gem_request *request;

1903
		request = list_first_entry(&ring->request_list,
1904 1905 1906
					   struct drm_i915_gem_request,
					   list);

1907
		if (!i915_seqno_passed(seqno, request->seqno))
1908 1909 1910 1911 1912
			break;

		trace_i915_gem_request_retire(dev, request->seqno);

		list_del(&request->list);
1913
		i915_gem_request_remove_from_client(request);
1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926
		kfree(request);
	}

	/* Move any buffers on the active list that are no longer referenced
	 * by the ringbuffer to the flushing/inactive lists as appropriate.
	 */
	while (!list_empty(&ring->active_list)) {
		struct drm_gem_object *obj;
		struct drm_i915_gem_object *obj_priv;

		obj_priv = list_first_entry(&ring->active_list,
					    struct drm_i915_gem_object,
					    list);
1927

1928
		if (!i915_seqno_passed(seqno, obj_priv->last_rendering_seqno))
1929
			break;
1930 1931 1932 1933 1934 1935

		obj = &obj_priv->base;
		if (obj->write_domain != 0)
			i915_gem_object_move_to_flushing(obj);
		else
			i915_gem_object_move_to_inactive(obj);
1936
	}
1937 1938 1939

	if (unlikely (dev_priv->trace_irq_seqno &&
		      i915_seqno_passed(dev_priv->trace_irq_seqno, seqno))) {
1940
		ring->user_irq_put(dev, ring);
1941 1942
		dev_priv->trace_irq_seqno = 0;
	}
1943 1944

	WARN_ON(i915_verify_lists(dev));
1945 1946
}

1947 1948 1949 1950 1951
void
i915_gem_retire_requests(struct drm_device *dev)
{
	drm_i915_private_t *dev_priv = dev->dev_private;

1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965
	if (!list_empty(&dev_priv->mm.deferred_free_list)) {
	    struct drm_i915_gem_object *obj_priv, *tmp;

	    /* We must be careful that during unbind() we do not
	     * accidentally infinitely recurse into retire requests.
	     * Currently:
	     *   retire -> free -> unbind -> wait -> retire_ring
	     */
	    list_for_each_entry_safe(obj_priv, tmp,
				     &dev_priv->mm.deferred_free_list,
				     list)
		    i915_gem_free_object_tail(&obj_priv->base);
	}

1966 1967 1968 1969 1970
	i915_gem_retire_requests_ring(dev, &dev_priv->render_ring);
	if (HAS_BSD(dev))
		i915_gem_retire_requests_ring(dev, &dev_priv->bsd_ring);
}

1971
static void
1972 1973 1974 1975 1976 1977 1978 1979 1980
i915_gem_retire_work_handler(struct work_struct *work)
{
	drm_i915_private_t *dev_priv;
	struct drm_device *dev;

	dev_priv = container_of(work, drm_i915_private_t,
				mm.retire_work.work);
	dev = dev_priv->dev;

1981 1982 1983 1984 1985 1986
	/* Come back later if the device is busy... */
	if (!mutex_trylock(&dev->struct_mutex)) {
		queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
		return;
	}

1987
	i915_gem_retire_requests(dev);
1988

1989
	if (!dev_priv->mm.suspended &&
1990 1991 1992
		(!list_empty(&dev_priv->render_ring.request_list) ||
			(HAS_BSD(dev) &&
			 !list_empty(&dev_priv->bsd_ring.request_list))))
1993
		queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
1994 1995 1996
	mutex_unlock(&dev->struct_mutex);
}

1997
int
1998
i915_do_wait_request(struct drm_device *dev, uint32_t seqno,
1999
		     bool interruptible, struct intel_ring_buffer *ring)
2000 2001
{
	drm_i915_private_t *dev_priv = dev->dev_private;
2002
	u32 ier;
2003 2004 2005 2006
	int ret = 0;

	BUG_ON(seqno == 0);

2007 2008 2009
	if (atomic_read(&dev_priv->mm.wedged))
		return -EAGAIN;

2010
	if (ring->outstanding_lazy_request) {
C
Chris Wilson 已提交
2011
		seqno = i915_add_request(dev, NULL, NULL, ring);
2012 2013 2014
		if (seqno == 0)
			return -ENOMEM;
	}
2015
	BUG_ON(seqno == dev_priv->next_seqno);
2016

2017
	if (!i915_seqno_passed(ring->get_seqno(dev, ring), seqno)) {
2018
		if (HAS_PCH_SPLIT(dev))
2019 2020 2021
			ier = I915_READ(DEIER) | I915_READ(GTIER);
		else
			ier = I915_READ(IER);
2022 2023 2024 2025 2026 2027 2028
		if (!ier) {
			DRM_ERROR("something (likely vbetool) disabled "
				  "interrupts, re-enabling\n");
			i915_driver_irq_preinstall(dev);
			i915_driver_irq_postinstall(dev);
		}

C
Chris Wilson 已提交
2029 2030
		trace_i915_gem_request_wait_begin(dev, seqno);

2031
		ring->waiting_gem_seqno = seqno;
2032
		ring->user_irq_get(dev, ring);
2033
		if (interruptible)
2034 2035
			ret = wait_event_interruptible(ring->irq_queue,
				i915_seqno_passed(
2036
					ring->get_seqno(dev, ring), seqno)
2037
				|| atomic_read(&dev_priv->mm.wedged));
2038
		else
2039 2040
			wait_event(ring->irq_queue,
				i915_seqno_passed(
2041
					ring->get_seqno(dev, ring), seqno)
2042
				|| atomic_read(&dev_priv->mm.wedged));
2043

2044
		ring->user_irq_put(dev, ring);
2045
		ring->waiting_gem_seqno = 0;
C
Chris Wilson 已提交
2046 2047

		trace_i915_gem_request_wait_end(dev, seqno);
2048
	}
2049
	if (atomic_read(&dev_priv->mm.wedged))
2050
		ret = -EAGAIN;
2051 2052

	if (ret && ret != -ERESTARTSYS)
2053
		DRM_ERROR("%s returns %d (awaiting %d at %d, next %d)\n",
2054
			  __func__, ret, seqno, ring->get_seqno(dev, ring),
2055
			  dev_priv->next_seqno);
2056 2057 2058 2059 2060 2061 2062

	/* Directly dispatch request retiring.  While we have the work queue
	 * to handle this, the waiter on a request often wants an associated
	 * buffer to have made it to the inactive list, and we would need
	 * a separate wait queue to handle that.
	 */
	if (ret == 0)
2063
		i915_gem_retire_requests_ring(dev, ring);
2064 2065 2066 2067

	return ret;
}

2068 2069 2070 2071 2072
/**
 * Waits for a sequence number to be signaled, and cleans up the
 * request and object lists appropriately for that event.
 */
static int
2073
i915_wait_request(struct drm_device *dev, uint32_t seqno,
2074
		  struct intel_ring_buffer *ring)
2075
{
2076
	return i915_do_wait_request(dev, seqno, 1, ring);
2077 2078
}

2079
static void
2080
i915_gem_flush_ring(struct drm_device *dev,
2081
		    struct drm_file *file_priv,
2082 2083 2084 2085 2086 2087 2088 2089
		    struct intel_ring_buffer *ring,
		    uint32_t invalidate_domains,
		    uint32_t flush_domains)
{
	ring->flush(dev, ring, invalidate_domains, flush_domains);
	i915_gem_process_flushing_list(dev, flush_domains, ring);
}

2090 2091
static void
i915_gem_flush(struct drm_device *dev,
2092
	       struct drm_file *file_priv,
2093
	       uint32_t invalidate_domains,
2094 2095
	       uint32_t flush_domains,
	       uint32_t flush_rings)
2096 2097
{
	drm_i915_private_t *dev_priv = dev->dev_private;
2098

2099 2100
	if (flush_domains & I915_GEM_DOMAIN_CPU)
		drm_agp_chipset_flush(dev);
2101

2102 2103
	if ((flush_domains | invalidate_domains) & I915_GEM_GPU_DOMAINS) {
		if (flush_rings & RING_RENDER)
2104
			i915_gem_flush_ring(dev, file_priv,
2105 2106 2107
					    &dev_priv->render_ring,
					    invalidate_domains, flush_domains);
		if (flush_rings & RING_BSD)
2108
			i915_gem_flush_ring(dev, file_priv,
2109 2110 2111
					    &dev_priv->bsd_ring,
					    invalidate_domains, flush_domains);
	}
2112 2113
}

2114 2115 2116 2117 2118
/**
 * Ensures that all rendering to the object has completed and the object is
 * safe to unbind from the GTT or access from the CPU.
 */
static int
2119 2120
i915_gem_object_wait_rendering(struct drm_gem_object *obj,
			       bool interruptible)
2121 2122
{
	struct drm_device *dev = obj->dev;
2123
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2124 2125
	int ret;

2126 2127
	/* This function only exists to support waiting for existing rendering,
	 * not for emitting required flushes.
2128
	 */
2129
	BUG_ON((obj->write_domain & I915_GEM_GPU_DOMAINS) != 0);
2130 2131 2132 2133 2134

	/* If there is rendering queued on the buffer being evicted, wait for
	 * it.
	 */
	if (obj_priv->active) {
2135 2136 2137 2138 2139
		ret = i915_do_wait_request(dev,
					   obj_priv->last_rendering_seqno,
					   interruptible,
					   obj_priv->ring);
		if (ret)
2140 2141 2142 2143 2144 2145 2146 2147 2148
			return ret;
	}

	return 0;
}

/**
 * Unbinds an object from the GTT aperture.
 */
2149
int
2150 2151 2152
i915_gem_object_unbind(struct drm_gem_object *obj)
{
	struct drm_device *dev = obj->dev;
2153
	struct drm_i915_private *dev_priv = dev->dev_private;
2154
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2155 2156 2157 2158 2159 2160 2161 2162 2163 2164
	int ret = 0;

	if (obj_priv->gtt_space == NULL)
		return 0;

	if (obj_priv->pin_count != 0) {
		DRM_ERROR("Attempting to unbind pinned buffer\n");
		return -EINVAL;
	}

2165 2166 2167
	/* blow away mappings if mapped through GTT */
	i915_gem_release_mmap(obj);

2168 2169 2170 2171 2172 2173
	/* Move the object to the CPU domain to ensure that
	 * any possible CPU writes while it's not in the GTT
	 * are flushed when we go to remap it. This will
	 * also ensure that all pending GPU writes are finished
	 * before we unbind.
	 */
2174
	ret = i915_gem_object_set_to_cpu_domain(obj, 1);
2175
	if (ret == -ERESTARTSYS)
2176
		return ret;
2177 2178 2179 2180
	/* Continue on if we fail due to EIO, the GPU is hung so we
	 * should be safe and we need to cleanup or else we might
	 * cause memory corruption through use-after-free.
	 */
2181 2182 2183 2184
	if (ret) {
		i915_gem_clflush_object(obj);
		obj->read_domains = obj->write_domain = I915_GEM_DOMAIN_CPU;
	}
2185

2186 2187 2188 2189
	/* release the fence reg _after_ flushing */
	if (obj_priv->fence_reg != I915_FENCE_REG_NONE)
		i915_gem_clear_fence_reg(obj);

2190 2191
	drm_unbind_agp(obj_priv->agp_mem);
	drm_free_agp(obj_priv->agp_mem, obj->size / PAGE_SIZE);
2192

2193
	i915_gem_object_put_pages(obj);
2194
	BUG_ON(obj_priv->pages_refcount);
2195

2196
	i915_gem_info_remove_gtt(dev_priv, obj->size);
C
Chris Wilson 已提交
2197
	list_del_init(&obj_priv->list);
2198

2199 2200 2201
	drm_mm_put_block(obj_priv->gtt_space);
	obj_priv->gtt_space = NULL;

2202 2203 2204
	if (i915_gem_object_is_purgeable(obj_priv))
		i915_gem_object_truncate(obj);

C
Chris Wilson 已提交
2205 2206
	trace_i915_gem_object_unbind(obj);

2207
	return ret;
2208 2209
}

2210 2211 2212 2213 2214 2215 2216 2217 2218 2219
static int i915_ring_idle(struct drm_device *dev,
			  struct intel_ring_buffer *ring)
{
	i915_gem_flush_ring(dev, NULL, ring,
			    I915_GEM_GPU_DOMAINS, I915_GEM_GPU_DOMAINS);
	return i915_wait_request(dev,
				 i915_gem_next_request_seqno(dev, ring),
				 ring);
}

2220
int
2221 2222 2223 2224
i915_gpu_idle(struct drm_device *dev)
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	bool lists_empty;
2225
	int ret;
2226

2227 2228 2229 2230
	lists_empty = (list_empty(&dev_priv->mm.flushing_list) &&
		       list_empty(&dev_priv->render_ring.active_list) &&
		       (!HAS_BSD(dev) ||
			list_empty(&dev_priv->bsd_ring.active_list)));
2231 2232 2233 2234
	if (lists_empty)
		return 0;

	/* Flush everything onto the inactive list. */
2235
	ret = i915_ring_idle(dev, &dev_priv->render_ring);
2236 2237
	if (ret)
		return ret;
2238 2239

	if (HAS_BSD(dev)) {
2240
		ret = i915_ring_idle(dev, &dev_priv->bsd_ring);
2241 2242 2243 2244
		if (ret)
			return ret;
	}

2245
	return 0;
2246 2247
}

2248
static int
2249 2250
i915_gem_object_get_pages(struct drm_gem_object *obj,
			  gfp_t gfpmask)
2251
{
2252
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2253 2254 2255 2256 2257
	int page_count, i;
	struct address_space *mapping;
	struct inode *inode;
	struct page *page;

2258 2259 2260
	BUG_ON(obj_priv->pages_refcount
			== DRM_I915_GEM_OBJECT_MAX_PAGES_REFCOUNT);

2261
	if (obj_priv->pages_refcount++ != 0)
2262 2263 2264 2265 2266 2267
		return 0;

	/* Get the list of pages out of our struct file.  They'll be pinned
	 * at this point until we release them.
	 */
	page_count = obj->size / PAGE_SIZE;
2268
	BUG_ON(obj_priv->pages != NULL);
2269
	obj_priv->pages = drm_calloc_large(page_count, sizeof(struct page *));
2270 2271
	if (obj_priv->pages == NULL) {
		obj_priv->pages_refcount--;
2272 2273 2274 2275 2276 2277
		return -ENOMEM;
	}

	inode = obj->filp->f_path.dentry->d_inode;
	mapping = inode->i_mapping;
	for (i = 0; i < page_count; i++) {
2278
		page = read_cache_page_gfp(mapping, i,
2279
					   GFP_HIGHUSER |
2280
					   __GFP_COLD |
2281
					   __GFP_RECLAIMABLE |
2282
					   gfpmask);
2283 2284 2285
		if (IS_ERR(page))
			goto err_pages;

2286
		obj_priv->pages[i] = page;
2287
	}
2288 2289 2290 2291

	if (obj_priv->tiling_mode != I915_TILING_NONE)
		i915_gem_object_do_bit_17_swizzle(obj);

2292
	return 0;
2293 2294 2295 2296 2297 2298 2299 2300 2301

err_pages:
	while (i--)
		page_cache_release(obj_priv->pages[i]);

	drm_free_large(obj_priv->pages);
	obj_priv->pages = NULL;
	obj_priv->pages_refcount--;
	return PTR_ERR(page);
2302 2303
}

2304 2305 2306 2307 2308
static void sandybridge_write_fence_reg(struct drm_i915_fence_reg *reg)
{
	struct drm_gem_object *obj = reg->obj;
	struct drm_device *dev = obj->dev;
	drm_i915_private_t *dev_priv = dev->dev_private;
2309
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325
	int regnum = obj_priv->fence_reg;
	uint64_t val;

	val = (uint64_t)((obj_priv->gtt_offset + obj->size - 4096) &
		    0xfffff000) << 32;
	val |= obj_priv->gtt_offset & 0xfffff000;
	val |= (uint64_t)((obj_priv->stride / 128) - 1) <<
		SANDYBRIDGE_FENCE_PITCH_SHIFT;

	if (obj_priv->tiling_mode == I915_TILING_Y)
		val |= 1 << I965_FENCE_TILING_Y_SHIFT;
	val |= I965_FENCE_REG_VALID;

	I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 + (regnum * 8), val);
}

2326 2327 2328 2329 2330
static void i965_write_fence_reg(struct drm_i915_fence_reg *reg)
{
	struct drm_gem_object *obj = reg->obj;
	struct drm_device *dev = obj->dev;
	drm_i915_private_t *dev_priv = dev->dev_private;
2331
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350
	int regnum = obj_priv->fence_reg;
	uint64_t val;

	val = (uint64_t)((obj_priv->gtt_offset + obj->size - 4096) &
		    0xfffff000) << 32;
	val |= obj_priv->gtt_offset & 0xfffff000;
	val |= ((obj_priv->stride / 128) - 1) << I965_FENCE_PITCH_SHIFT;
	if (obj_priv->tiling_mode == I915_TILING_Y)
		val |= 1 << I965_FENCE_TILING_Y_SHIFT;
	val |= I965_FENCE_REG_VALID;

	I915_WRITE64(FENCE_REG_965_0 + (regnum * 8), val);
}

static void i915_write_fence_reg(struct drm_i915_fence_reg *reg)
{
	struct drm_gem_object *obj = reg->obj;
	struct drm_device *dev = obj->dev;
	drm_i915_private_t *dev_priv = dev->dev_private;
2351
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2352
	int regnum = obj_priv->fence_reg;
2353
	int tile_width;
2354
	uint32_t fence_reg, val;
2355 2356 2357 2358
	uint32_t pitch_val;

	if ((obj_priv->gtt_offset & ~I915_FENCE_START_MASK) ||
	    (obj_priv->gtt_offset & (obj->size - 1))) {
2359
		WARN(1, "%s: object 0x%08x not 1M or size (0x%zx) aligned\n",
2360
		     __func__, obj_priv->gtt_offset, obj->size);
2361 2362 2363
		return;
	}

2364 2365 2366
	if (obj_priv->tiling_mode == I915_TILING_Y &&
	    HAS_128_BYTE_Y_TILING(dev))
		tile_width = 128;
2367
	else
2368 2369 2370 2371 2372
		tile_width = 512;

	/* Note: pitch better be a power of two tile widths */
	pitch_val = obj_priv->stride / tile_width;
	pitch_val = ffs(pitch_val) - 1;
2373

2374 2375 2376 2377 2378 2379
	if (obj_priv->tiling_mode == I915_TILING_Y &&
	    HAS_128_BYTE_Y_TILING(dev))
		WARN_ON(pitch_val > I830_FENCE_MAX_PITCH_VAL);
	else
		WARN_ON(pitch_val > I915_FENCE_MAX_PITCH_VAL);

2380 2381 2382 2383 2384 2385 2386
	val = obj_priv->gtt_offset;
	if (obj_priv->tiling_mode == I915_TILING_Y)
		val |= 1 << I830_FENCE_TILING_Y_SHIFT;
	val |= I915_FENCE_SIZE_BITS(obj->size);
	val |= pitch_val << I830_FENCE_PITCH_SHIFT;
	val |= I830_FENCE_REG_VALID;

2387 2388 2389 2390 2391
	if (regnum < 8)
		fence_reg = FENCE_REG_830_0 + (regnum * 4);
	else
		fence_reg = FENCE_REG_945_8 + ((regnum - 8) * 4);
	I915_WRITE(fence_reg, val);
2392 2393 2394 2395 2396 2397 2398
}

static void i830_write_fence_reg(struct drm_i915_fence_reg *reg)
{
	struct drm_gem_object *obj = reg->obj;
	struct drm_device *dev = obj->dev;
	drm_i915_private_t *dev_priv = dev->dev_private;
2399
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2400 2401 2402
	int regnum = obj_priv->fence_reg;
	uint32_t val;
	uint32_t pitch_val;
2403
	uint32_t fence_size_bits;
2404

2405
	if ((obj_priv->gtt_offset & ~I830_FENCE_START_MASK) ||
2406
	    (obj_priv->gtt_offset & (obj->size - 1))) {
2407
		WARN(1, "%s: object 0x%08x not 512K or size aligned\n",
2408
		     __func__, obj_priv->gtt_offset);
2409 2410 2411
		return;
	}

2412 2413 2414 2415
	pitch_val = obj_priv->stride / 128;
	pitch_val = ffs(pitch_val) - 1;
	WARN_ON(pitch_val > I830_FENCE_MAX_PITCH_VAL);

2416 2417 2418
	val = obj_priv->gtt_offset;
	if (obj_priv->tiling_mode == I915_TILING_Y)
		val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2419 2420 2421
	fence_size_bits = I830_FENCE_SIZE_BITS(obj->size);
	WARN_ON(fence_size_bits & ~0x00000f00);
	val |= fence_size_bits;
2422 2423 2424 2425 2426 2427
	val |= pitch_val << I830_FENCE_PITCH_SHIFT;
	val |= I830_FENCE_REG_VALID;

	I915_WRITE(FENCE_REG_830_0 + (regnum * 4), val);
}

2428 2429
static int i915_find_fence_reg(struct drm_device *dev,
			       bool interruptible)
2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443
{
	struct drm_i915_fence_reg *reg = NULL;
	struct drm_i915_gem_object *obj_priv = NULL;
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct drm_gem_object *obj = NULL;
	int i, avail, ret;

	/* First try to find a free reg */
	avail = 0;
	for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
		reg = &dev_priv->fence_regs[i];
		if (!reg->obj)
			return i;

2444
		obj_priv = to_intel_bo(reg->obj);
2445 2446 2447 2448 2449 2450 2451 2452 2453
		if (!obj_priv->pin_count)
		    avail++;
	}

	if (avail == 0)
		return -ENOSPC;

	/* None available, try to steal one or wait for a user to finish */
	i = I915_FENCE_REG_NONE;
2454 2455 2456 2457
	list_for_each_entry(reg, &dev_priv->mm.fence_list,
			    lru_list) {
		obj = reg->obj;
		obj_priv = to_intel_bo(obj);
2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473

		if (obj_priv->pin_count)
			continue;

		/* found one! */
		i = obj_priv->fence_reg;
		break;
	}

	BUG_ON(i == I915_FENCE_REG_NONE);

	/* We only have a reference on obj from the active list. put_fence_reg
	 * might drop that one, causing a use-after-free in it. So hold a
	 * private reference to obj like the other callers of put_fence_reg
	 * (set_tiling ioctl) do. */
	drm_gem_object_reference(obj);
2474
	ret = i915_gem_object_put_fence_reg(obj, interruptible);
2475 2476 2477 2478 2479 2480 2481
	drm_gem_object_unreference(obj);
	if (ret != 0)
		return ret;

	return i;
}

2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494
/**
 * i915_gem_object_get_fence_reg - set up a fence reg for an object
 * @obj: object to map through a fence reg
 *
 * When mapping objects through the GTT, userspace wants to be able to write
 * to them without having to worry about swizzling if the object is tiled.
 *
 * This function walks the fence regs looking for a free one for @obj,
 * stealing one if it can't find any.
 *
 * It then sets up the reg based on the object's properties: address, pitch
 * and tiling format.
 */
2495
int
2496 2497
i915_gem_object_get_fence_reg(struct drm_gem_object *obj,
			      bool interruptible)
2498 2499
{
	struct drm_device *dev = obj->dev;
J
Jesse Barnes 已提交
2500
	struct drm_i915_private *dev_priv = dev->dev_private;
2501
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2502
	struct drm_i915_fence_reg *reg = NULL;
2503
	int ret;
2504

2505 2506
	/* Just update our place in the LRU if our fence is getting used. */
	if (obj_priv->fence_reg != I915_FENCE_REG_NONE) {
2507 2508
		reg = &dev_priv->fence_regs[obj_priv->fence_reg];
		list_move_tail(&reg->lru_list, &dev_priv->mm.fence_list);
2509 2510 2511
		return 0;
	}

2512 2513 2514 2515 2516
	switch (obj_priv->tiling_mode) {
	case I915_TILING_NONE:
		WARN(1, "allocating a fence for non-tiled object?\n");
		break;
	case I915_TILING_X:
2517 2518 2519 2520 2521
		if (!obj_priv->stride)
			return -EINVAL;
		WARN((obj_priv->stride & (512 - 1)),
		     "object 0x%08x is X tiled but has non-512B pitch\n",
		     obj_priv->gtt_offset);
2522 2523
		break;
	case I915_TILING_Y:
2524 2525 2526 2527 2528
		if (!obj_priv->stride)
			return -EINVAL;
		WARN((obj_priv->stride & (128 - 1)),
		     "object 0x%08x is Y tiled but has non-128B pitch\n",
		     obj_priv->gtt_offset);
2529 2530 2531
		break;
	}

2532
	ret = i915_find_fence_reg(dev, interruptible);
2533 2534
	if (ret < 0)
		return ret;
2535

2536 2537
	obj_priv->fence_reg = ret;
	reg = &dev_priv->fence_regs[obj_priv->fence_reg];
2538
	list_add_tail(&reg->lru_list, &dev_priv->mm.fence_list);
2539

2540 2541
	reg->obj = obj;

2542 2543
	switch (INTEL_INFO(dev)->gen) {
	case 6:
2544
		sandybridge_write_fence_reg(reg);
2545 2546 2547
		break;
	case 5:
	case 4:
2548
		i965_write_fence_reg(reg);
2549 2550
		break;
	case 3:
2551
		i915_write_fence_reg(reg);
2552 2553
		break;
	case 2:
2554
		i830_write_fence_reg(reg);
2555 2556
		break;
	}
2557

2558 2559
	trace_i915_gem_object_get_fence(obj, obj_priv->fence_reg,
			obj_priv->tiling_mode);
C
Chris Wilson 已提交
2560

2561
	return 0;
2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574
}

/**
 * i915_gem_clear_fence_reg - clear out fence register info
 * @obj: object to clear
 *
 * Zeroes out the fence register itself and clears out the associated
 * data structures in dev_priv and obj_priv.
 */
static void
i915_gem_clear_fence_reg(struct drm_gem_object *obj)
{
	struct drm_device *dev = obj->dev;
J
Jesse Barnes 已提交
2575
	drm_i915_private_t *dev_priv = dev->dev_private;
2576
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2577 2578
	struct drm_i915_fence_reg *reg =
		&dev_priv->fence_regs[obj_priv->fence_reg];
2579
	uint32_t fence_reg;
2580

2581 2582
	switch (INTEL_INFO(dev)->gen) {
	case 6:
2583 2584
		I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 +
			     (obj_priv->fence_reg * 8), 0);
2585 2586 2587
		break;
	case 5:
	case 4:
2588
		I915_WRITE64(FENCE_REG_965_0 + (obj_priv->fence_reg * 8), 0);
2589 2590
		break;
	case 3:
2591
		if (obj_priv->fence_reg >= 8)
2592
			fence_reg = FENCE_REG_945_8 + (obj_priv->fence_reg - 8) * 4;
2593
		else
2594 2595
	case 2:
			fence_reg = FENCE_REG_830_0 + obj_priv->fence_reg * 4;
2596 2597

		I915_WRITE(fence_reg, 0);
2598
		break;
2599
	}
2600

2601
	reg->obj = NULL;
2602
	obj_priv->fence_reg = I915_FENCE_REG_NONE;
2603
	list_del_init(&reg->lru_list);
2604 2605
}

2606 2607 2608 2609
/**
 * i915_gem_object_put_fence_reg - waits on outstanding fenced access
 * to the buffer to finish, and then resets the fence register.
 * @obj: tiled object holding a fence register.
2610
 * @bool: whether the wait upon the fence is interruptible
2611 2612 2613 2614 2615
 *
 * Zeroes out the fence register itself and clears out the associated
 * data structures in dev_priv and obj_priv.
 */
int
2616 2617
i915_gem_object_put_fence_reg(struct drm_gem_object *obj,
			      bool interruptible)
2618 2619
{
	struct drm_device *dev = obj->dev;
C
Chris Wilson 已提交
2620
	struct drm_i915_private *dev_priv = dev->dev_private;
2621
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
C
Chris Wilson 已提交
2622
	struct drm_i915_fence_reg *reg;
2623 2624 2625 2626

	if (obj_priv->fence_reg == I915_FENCE_REG_NONE)
		return 0;

2627 2628 2629 2630 2631 2632
	/* If we've changed tiling, GTT-mappings of the object
	 * need to re-fault to ensure that the correct fence register
	 * setup is in place.
	 */
	i915_gem_release_mmap(obj);

2633 2634 2635 2636
	/* On the i915, GPU access to tiled buffers is via a fence,
	 * therefore we must wait for any outstanding access to complete
	 * before clearing the fence.
	 */
C
Chris Wilson 已提交
2637 2638
	reg = &dev_priv->fence_regs[obj_priv->fence_reg];
	if (reg->gpu) {
2639 2640
		int ret;

2641
		ret = i915_gem_object_flush_gpu_write_domain(obj, true);
2642 2643 2644
		if (ret)
			return ret;

2645
		ret = i915_gem_object_wait_rendering(obj, interruptible);
2646
		if (ret)
2647
			return ret;
C
Chris Wilson 已提交
2648 2649

		reg->gpu = false;
2650 2651
	}

2652
	i915_gem_object_flush_gtt_write_domain(obj);
2653
	i915_gem_clear_fence_reg(obj);
2654 2655 2656 2657

	return 0;
}

2658 2659 2660 2661 2662 2663 2664 2665
/**
 * Finds free space in the GTT aperture and binds the object there.
 */
static int
i915_gem_object_bind_to_gtt(struct drm_gem_object *obj, unsigned alignment)
{
	struct drm_device *dev = obj->dev;
	drm_i915_private_t *dev_priv = dev->dev_private;
2666
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2667
	struct drm_mm_node *free_space;
2668
	gfp_t gfpmask =  __GFP_NORETRY | __GFP_NOWARN;
2669
	int ret;
2670

C
Chris Wilson 已提交
2671
	if (obj_priv->madv != I915_MADV_WILLNEED) {
2672 2673 2674 2675
		DRM_ERROR("Attempting to bind a purgeable object\n");
		return -EINVAL;
	}

2676
	if (alignment == 0)
2677
		alignment = i915_gem_get_gtt_alignment(obj);
2678
	if (alignment & (i915_gem_get_gtt_alignment(obj) - 1)) {
2679 2680 2681 2682
		DRM_ERROR("Invalid object alignment requested %u\n", alignment);
		return -EINVAL;
	}

2683 2684 2685
	/* If the object is bigger than the entire aperture, reject it early
	 * before evicting everything in a vain attempt to find space.
	 */
2686
	if (obj->size > dev_priv->mm.gtt_total) {
2687 2688 2689 2690
		DRM_ERROR("Attempting to bind an object larger than the aperture\n");
		return -E2BIG;
	}

2691 2692 2693 2694 2695 2696
 search_free:
	free_space = drm_mm_search_free(&dev_priv->mm.gtt_space,
					obj->size, alignment, 0);
	if (free_space != NULL) {
		obj_priv->gtt_space = drm_mm_get_block(free_space, obj->size,
						       alignment);
D
Daniel Vetter 已提交
2697
		if (obj_priv->gtt_space != NULL)
2698 2699 2700 2701 2702 2703
			obj_priv->gtt_offset = obj_priv->gtt_space->start;
	}
	if (obj_priv->gtt_space == NULL) {
		/* If the gtt is empty and we're still having trouble
		 * fitting our object in, we're out of memory.
		 */
2704
		ret = i915_gem_evict_something(dev, obj->size, alignment);
2705
		if (ret)
2706
			return ret;
2707

2708 2709 2710
		goto search_free;
	}

2711
	ret = i915_gem_object_get_pages(obj, gfpmask);
2712 2713 2714
	if (ret) {
		drm_mm_put_block(obj_priv->gtt_space);
		obj_priv->gtt_space = NULL;
2715 2716 2717

		if (ret == -ENOMEM) {
			/* first try to clear up some space from the GTT */
2718 2719
			ret = i915_gem_evict_something(dev, obj->size,
						       alignment);
2720 2721
			if (ret) {
				/* now try to shrink everyone else */
2722 2723 2724
				if (gfpmask) {
					gfpmask = 0;
					goto search_free;
2725 2726 2727 2728 2729 2730 2731 2732
				}

				return ret;
			}

			goto search_free;
		}

2733 2734 2735 2736 2737 2738 2739
		return ret;
	}

	/* Create an AGP memory structure pointing at our pages, and bind it
	 * into the GTT.
	 */
	obj_priv->agp_mem = drm_agp_bind_pages(dev,
2740
					       obj_priv->pages,
2741
					       obj->size >> PAGE_SHIFT,
2742 2743
					       obj_priv->gtt_offset,
					       obj_priv->agp_type);
2744
	if (obj_priv->agp_mem == NULL) {
2745
		i915_gem_object_put_pages(obj);
2746 2747
		drm_mm_put_block(obj_priv->gtt_space);
		obj_priv->gtt_space = NULL;
2748

2749
		ret = i915_gem_evict_something(dev, obj->size, alignment);
2750
		if (ret)
2751 2752 2753
			return ret;

		goto search_free;
2754 2755
	}

2756 2757
	/* keep track of bounds object by adding it to the inactive list */
	list_add_tail(&obj_priv->list, &dev_priv->mm.inactive_list);
2758
	i915_gem_info_add_gtt(dev_priv, obj->size);
2759

2760 2761 2762 2763
	/* Assert that the object is not currently in any GPU domain. As it
	 * wasn't in the GTT, there shouldn't be any way it could have been in
	 * a GPU cache
	 */
2764 2765
	BUG_ON(obj->read_domains & I915_GEM_GPU_DOMAINS);
	BUG_ON(obj->write_domain & I915_GEM_GPU_DOMAINS);
2766

C
Chris Wilson 已提交
2767 2768
	trace_i915_gem_object_bind(obj, obj_priv->gtt_offset);

2769 2770 2771 2772 2773 2774
	return 0;
}

void
i915_gem_clflush_object(struct drm_gem_object *obj)
{
2775
	struct drm_i915_gem_object	*obj_priv = to_intel_bo(obj);
2776 2777 2778 2779 2780

	/* If we don't have a page list set up, then we're not pinned
	 * to GPU, and we can ignore the cache flush because it'll happen
	 * again at bind time.
	 */
2781
	if (obj_priv->pages == NULL)
2782 2783
		return;

C
Chris Wilson 已提交
2784
	trace_i915_gem_object_clflush(obj);
2785

2786
	drm_clflush_pages(obj_priv->pages, obj->size / PAGE_SIZE);
2787 2788
}

2789
/** Flushes any GPU write domain for the object if it's dirty. */
2790
static int
2791 2792
i915_gem_object_flush_gpu_write_domain(struct drm_gem_object *obj,
				       bool pipelined)
2793 2794
{
	struct drm_device *dev = obj->dev;
C
Chris Wilson 已提交
2795
	uint32_t old_write_domain;
2796 2797

	if ((obj->write_domain & I915_GEM_GPU_DOMAINS) == 0)
2798
		return 0;
2799 2800

	/* Queue the GPU write cache flushing we need. */
C
Chris Wilson 已提交
2801
	old_write_domain = obj->write_domain;
2802
	i915_gem_flush_ring(dev, NULL,
2803 2804
			    to_intel_bo(obj)->ring,
			    0, obj->write_domain);
2805
	BUG_ON(obj->write_domain);
C
Chris Wilson 已提交
2806 2807 2808 2809

	trace_i915_gem_object_change_domain(obj,
					    obj->read_domains,
					    old_write_domain);
2810 2811 2812 2813

	if (pipelined)
		return 0;

2814
	return i915_gem_object_wait_rendering(obj, true);
2815 2816 2817 2818 2819 2820
}

/** Flushes the GTT write domain for the object if it's dirty. */
static void
i915_gem_object_flush_gtt_write_domain(struct drm_gem_object *obj)
{
C
Chris Wilson 已提交
2821 2822
	uint32_t old_write_domain;

2823 2824 2825 2826 2827 2828 2829
	if (obj->write_domain != I915_GEM_DOMAIN_GTT)
		return;

	/* No actual flushing is required for the GTT write domain.   Writes
	 * to it immediately go to main memory as far as we know, so there's
	 * no chipset flush.  It also doesn't land in render cache.
	 */
C
Chris Wilson 已提交
2830
	old_write_domain = obj->write_domain;
2831
	obj->write_domain = 0;
C
Chris Wilson 已提交
2832 2833 2834 2835

	trace_i915_gem_object_change_domain(obj,
					    obj->read_domains,
					    old_write_domain);
2836 2837 2838 2839 2840 2841 2842
}

/** Flushes the CPU write domain for the object if it's dirty. */
static void
i915_gem_object_flush_cpu_write_domain(struct drm_gem_object *obj)
{
	struct drm_device *dev = obj->dev;
C
Chris Wilson 已提交
2843
	uint32_t old_write_domain;
2844 2845 2846 2847 2848 2849

	if (obj->write_domain != I915_GEM_DOMAIN_CPU)
		return;

	i915_gem_clflush_object(obj);
	drm_agp_chipset_flush(dev);
C
Chris Wilson 已提交
2850
	old_write_domain = obj->write_domain;
2851
	obj->write_domain = 0;
C
Chris Wilson 已提交
2852 2853 2854 2855

	trace_i915_gem_object_change_domain(obj,
					    obj->read_domains,
					    old_write_domain);
2856 2857
}

2858 2859 2860 2861 2862 2863
/**
 * Moves a single object to the GTT read, and possibly write domain.
 *
 * This function returns when the move is complete, including waiting on
 * flushes to occur.
 */
J
Jesse Barnes 已提交
2864
int
2865 2866
i915_gem_object_set_to_gtt_domain(struct drm_gem_object *obj, int write)
{
2867
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
C
Chris Wilson 已提交
2868
	uint32_t old_write_domain, old_read_domains;
2869
	int ret;
2870

2871 2872 2873 2874
	/* Not valid to be called on unbound objects. */
	if (obj_priv->gtt_space == NULL)
		return -EINVAL;

2875
	ret = i915_gem_object_flush_gpu_write_domain(obj, false);
2876 2877 2878
	if (ret != 0)
		return ret;

2879
	i915_gem_object_flush_cpu_write_domain(obj);
C
Chris Wilson 已提交
2880

2881
	if (write) {
2882
		ret = i915_gem_object_wait_rendering(obj, true);
2883 2884 2885
		if (ret)
			return ret;
	}
2886

2887 2888
	old_write_domain = obj->write_domain;
	old_read_domains = obj->read_domains;
2889

2890 2891 2892 2893 2894 2895
	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
	BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
	obj->read_domains |= I915_GEM_DOMAIN_GTT;
	if (write) {
2896
		obj->read_domains = I915_GEM_DOMAIN_GTT;
2897 2898
		obj->write_domain = I915_GEM_DOMAIN_GTT;
		obj_priv->dirty = 1;
2899 2900
	}

C
Chris Wilson 已提交
2901 2902 2903 2904
	trace_i915_gem_object_change_domain(obj,
					    old_read_domains,
					    old_write_domain);

2905 2906 2907
	return 0;
}

2908 2909 2910 2911 2912
/*
 * Prepare buffer for display plane. Use uninterruptible for possible flush
 * wait, as in modesetting process we're not supposed to be interrupted.
 */
int
2913 2914
i915_gem_object_set_to_display_plane(struct drm_gem_object *obj,
				     bool pipelined)
2915
{
2916
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2917
	uint32_t old_read_domains;
2918 2919 2920 2921 2922 2923
	int ret;

	/* Not valid to be called on unbound objects. */
	if (obj_priv->gtt_space == NULL)
		return -EINVAL;

2924
	ret = i915_gem_object_flush_gpu_write_domain(obj, true);
2925
	if (ret)
2926
		return ret;
2927

2928 2929 2930 2931 2932 2933 2934
	/* Currently, we are always called from an non-interruptible context. */
	if (!pipelined) {
		ret = i915_gem_object_wait_rendering(obj, false);
		if (ret)
			return ret;
	}

2935 2936
	i915_gem_object_flush_cpu_write_domain(obj);

2937
	old_read_domains = obj->read_domains;
2938
	obj->read_domains |= I915_GEM_DOMAIN_GTT;
2939 2940 2941

	trace_i915_gem_object_change_domain(obj,
					    old_read_domains,
2942
					    obj->write_domain);
2943 2944 2945 2946

	return 0;
}

2947 2948 2949 2950 2951 2952 2953 2954 2955
/**
 * Moves a single object to the CPU read, and possibly write domain.
 *
 * This function returns when the move is complete, including waiting on
 * flushes to occur.
 */
static int
i915_gem_object_set_to_cpu_domain(struct drm_gem_object *obj, int write)
{
C
Chris Wilson 已提交
2956
	uint32_t old_write_domain, old_read_domains;
2957 2958
	int ret;

2959
	ret = i915_gem_object_flush_gpu_write_domain(obj, false);
2960 2961
	if (ret != 0)
		return ret;
2962

2963
	i915_gem_object_flush_gtt_write_domain(obj);
2964

2965 2966
	/* If we have a partially-valid cache of the object in the CPU,
	 * finish invalidating it and free the per-page flags.
2967
	 */
2968
	i915_gem_object_set_to_full_cpu_read_domain(obj);
2969

2970
	if (write) {
2971
		ret = i915_gem_object_wait_rendering(obj, true);
2972 2973 2974 2975
		if (ret)
			return ret;
	}

C
Chris Wilson 已提交
2976 2977 2978
	old_write_domain = obj->write_domain;
	old_read_domains = obj->read_domains;

2979 2980
	/* Flush the CPU cache if it's still invalid. */
	if ((obj->read_domains & I915_GEM_DOMAIN_CPU) == 0) {
2981 2982
		i915_gem_clflush_object(obj);

2983
		obj->read_domains |= I915_GEM_DOMAIN_CPU;
2984 2985 2986 2987 2988
	}

	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
2989 2990 2991 2992 2993 2994
	BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_CPU) != 0);

	/* If we're writing through the CPU, then the GPU read domains will
	 * need to be invalidated at next use.
	 */
	if (write) {
2995
		obj->read_domains = I915_GEM_DOMAIN_CPU;
2996 2997
		obj->write_domain = I915_GEM_DOMAIN_CPU;
	}
2998

C
Chris Wilson 已提交
2999 3000 3001 3002
	trace_i915_gem_object_change_domain(obj,
					    old_read_domains,
					    old_write_domain);

3003 3004 3005
	return 0;
}

3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116
/*
 * Set the next domain for the specified object. This
 * may not actually perform the necessary flushing/invaliding though,
 * as that may want to be batched with other set_domain operations
 *
 * This is (we hope) the only really tricky part of gem. The goal
 * is fairly simple -- track which caches hold bits of the object
 * and make sure they remain coherent. A few concrete examples may
 * help to explain how it works. For shorthand, we use the notation
 * (read_domains, write_domain), e.g. (CPU, CPU) to indicate the
 * a pair of read and write domain masks.
 *
 * Case 1: the batch buffer
 *
 *	1. Allocated
 *	2. Written by CPU
 *	3. Mapped to GTT
 *	4. Read by GPU
 *	5. Unmapped from GTT
 *	6. Freed
 *
 *	Let's take these a step at a time
 *
 *	1. Allocated
 *		Pages allocated from the kernel may still have
 *		cache contents, so we set them to (CPU, CPU) always.
 *	2. Written by CPU (using pwrite)
 *		The pwrite function calls set_domain (CPU, CPU) and
 *		this function does nothing (as nothing changes)
 *	3. Mapped by GTT
 *		This function asserts that the object is not
 *		currently in any GPU-based read or write domains
 *	4. Read by GPU
 *		i915_gem_execbuffer calls set_domain (COMMAND, 0).
 *		As write_domain is zero, this function adds in the
 *		current read domains (CPU+COMMAND, 0).
 *		flush_domains is set to CPU.
 *		invalidate_domains is set to COMMAND
 *		clflush is run to get data out of the CPU caches
 *		then i915_dev_set_domain calls i915_gem_flush to
 *		emit an MI_FLUSH and drm_agp_chipset_flush
 *	5. Unmapped from GTT
 *		i915_gem_object_unbind calls set_domain (CPU, CPU)
 *		flush_domains and invalidate_domains end up both zero
 *		so no flushing/invalidating happens
 *	6. Freed
 *		yay, done
 *
 * Case 2: The shared render buffer
 *
 *	1. Allocated
 *	2. Mapped to GTT
 *	3. Read/written by GPU
 *	4. set_domain to (CPU,CPU)
 *	5. Read/written by CPU
 *	6. Read/written by GPU
 *
 *	1. Allocated
 *		Same as last example, (CPU, CPU)
 *	2. Mapped to GTT
 *		Nothing changes (assertions find that it is not in the GPU)
 *	3. Read/written by GPU
 *		execbuffer calls set_domain (RENDER, RENDER)
 *		flush_domains gets CPU
 *		invalidate_domains gets GPU
 *		clflush (obj)
 *		MI_FLUSH and drm_agp_chipset_flush
 *	4. set_domain (CPU, CPU)
 *		flush_domains gets GPU
 *		invalidate_domains gets CPU
 *		wait_rendering (obj) to make sure all drawing is complete.
 *		This will include an MI_FLUSH to get the data from GPU
 *		to memory
 *		clflush (obj) to invalidate the CPU cache
 *		Another MI_FLUSH in i915_gem_flush (eliminate this somehow?)
 *	5. Read/written by CPU
 *		cache lines are loaded and dirtied
 *	6. Read written by GPU
 *		Same as last GPU access
 *
 * Case 3: The constant buffer
 *
 *	1. Allocated
 *	2. Written by CPU
 *	3. Read by GPU
 *	4. Updated (written) by CPU again
 *	5. Read by GPU
 *
 *	1. Allocated
 *		(CPU, CPU)
 *	2. Written by CPU
 *		(CPU, CPU)
 *	3. Read by GPU
 *		(CPU+RENDER, 0)
 *		flush_domains = CPU
 *		invalidate_domains = RENDER
 *		clflush (obj)
 *		MI_FLUSH
 *		drm_agp_chipset_flush
 *	4. Updated (written) by CPU again
 *		(CPU, CPU)
 *		flush_domains = 0 (no previous write domain)
 *		invalidate_domains = 0 (no new read domains)
 *	5. Read by GPU
 *		(CPU+RENDER, 0)
 *		flush_domains = CPU
 *		invalidate_domains = RENDER
 *		clflush (obj)
 *		MI_FLUSH
 *		drm_agp_chipset_flush
 */
3117
static void
3118
i915_gem_object_set_to_gpu_domain(struct drm_gem_object *obj)
3119 3120
{
	struct drm_device		*dev = obj->dev;
3121
	struct drm_i915_private		*dev_priv = dev->dev_private;
3122
	struct drm_i915_gem_object	*obj_priv = to_intel_bo(obj);
3123 3124
	uint32_t			invalidate_domains = 0;
	uint32_t			flush_domains = 0;
C
Chris Wilson 已提交
3125
	uint32_t			old_read_domains;
3126

3127 3128
	BUG_ON(obj->pending_read_domains & I915_GEM_DOMAIN_CPU);
	BUG_ON(obj->pending_write_domain == I915_GEM_DOMAIN_CPU);
3129

3130 3131
	intel_mark_busy(dev, obj);

3132 3133 3134 3135
	/*
	 * If the object isn't moving to a new write domain,
	 * let the object stay in multiple read domains
	 */
3136 3137
	if (obj->pending_write_domain == 0)
		obj->pending_read_domains |= obj->read_domains;
3138 3139 3140 3141 3142 3143 3144 3145 3146
	else
		obj_priv->dirty = 1;

	/*
	 * Flush the current write domain if
	 * the new read domains don't match. Invalidate
	 * any read domains which differ from the old
	 * write domain
	 */
3147 3148
	if (obj->write_domain &&
	    obj->write_domain != obj->pending_read_domains) {
3149
		flush_domains |= obj->write_domain;
3150 3151
		invalidate_domains |=
			obj->pending_read_domains & ~obj->write_domain;
3152 3153 3154 3155 3156
	}
	/*
	 * Invalidate any read caches which may have
	 * stale data. That is, any new read domains.
	 */
3157
	invalidate_domains |= obj->pending_read_domains & ~obj->read_domains;
3158
	if ((flush_domains | invalidate_domains) & I915_GEM_DOMAIN_CPU)
3159 3160
		i915_gem_clflush_object(obj);

C
Chris Wilson 已提交
3161 3162
	old_read_domains = obj->read_domains;

3163 3164 3165 3166 3167 3168 3169 3170
	/* The actual obj->write_domain will be updated with
	 * pending_write_domain after we emit the accumulated flush for all
	 * of our domain changes in execbuffers (which clears objects'
	 * write_domains).  So if we have a current write domain that we
	 * aren't changing, set pending_write_domain to that.
	 */
	if (flush_domains == 0 && obj->pending_write_domain == 0)
		obj->pending_write_domain = obj->write_domain;
3171
	obj->read_domains = obj->pending_read_domains;
3172 3173 3174

	dev->invalidate_domains |= invalidate_domains;
	dev->flush_domains |= flush_domains;
3175 3176
	if (obj_priv->ring)
		dev_priv->mm.flush_rings |= obj_priv->ring->id;
C
Chris Wilson 已提交
3177 3178 3179 3180

	trace_i915_gem_object_change_domain(obj,
					    old_read_domains,
					    obj->write_domain);
3181 3182 3183
}

/**
3184
 * Moves the object from a partially CPU read to a full one.
3185
 *
3186 3187
 * Note that this only resolves i915_gem_object_set_cpu_read_domain_range(),
 * and doesn't handle transitioning from !(read_domains & I915_GEM_DOMAIN_CPU).
3188
 */
3189 3190
static void
i915_gem_object_set_to_full_cpu_read_domain(struct drm_gem_object *obj)
3191
{
3192
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
3193

3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204
	if (!obj_priv->page_cpu_valid)
		return;

	/* If we're partially in the CPU read domain, finish moving it in.
	 */
	if (obj->read_domains & I915_GEM_DOMAIN_CPU) {
		int i;

		for (i = 0; i <= (obj->size - 1) / PAGE_SIZE; i++) {
			if (obj_priv->page_cpu_valid[i])
				continue;
3205
			drm_clflush_pages(obj_priv->pages + i, 1);
3206 3207 3208 3209 3210 3211
		}
	}

	/* Free the page_cpu_valid mappings which are now stale, whether
	 * or not we've got I915_GEM_DOMAIN_CPU.
	 */
3212
	kfree(obj_priv->page_cpu_valid);
3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231
	obj_priv->page_cpu_valid = NULL;
}

/**
 * Set the CPU read domain on a range of the object.
 *
 * The object ends up with I915_GEM_DOMAIN_CPU in its read flags although it's
 * not entirely valid.  The page_cpu_valid member of the object flags which
 * pages have been flushed, and will be respected by
 * i915_gem_object_set_to_cpu_domain() if it's called on to get a valid mapping
 * of the whole object.
 *
 * This function returns when the move is complete, including waiting on
 * flushes to occur.
 */
static int
i915_gem_object_set_cpu_read_domain_range(struct drm_gem_object *obj,
					  uint64_t offset, uint64_t size)
{
3232
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
C
Chris Wilson 已提交
3233
	uint32_t old_read_domains;
3234
	int i, ret;
3235

3236 3237
	if (offset == 0 && size == obj->size)
		return i915_gem_object_set_to_cpu_domain(obj, 0);
3238

3239
	ret = i915_gem_object_flush_gpu_write_domain(obj, false);
3240
	if (ret != 0)
3241
		return ret;
3242 3243 3244 3245 3246 3247
	i915_gem_object_flush_gtt_write_domain(obj);

	/* If we're already fully in the CPU read domain, we're done. */
	if (obj_priv->page_cpu_valid == NULL &&
	    (obj->read_domains & I915_GEM_DOMAIN_CPU) != 0)
		return 0;
3248

3249 3250 3251
	/* Otherwise, create/clear the per-page CPU read domain flag if we're
	 * newly adding I915_GEM_DOMAIN_CPU
	 */
3252
	if (obj_priv->page_cpu_valid == NULL) {
3253 3254
		obj_priv->page_cpu_valid = kzalloc(obj->size / PAGE_SIZE,
						   GFP_KERNEL);
3255 3256 3257 3258
		if (obj_priv->page_cpu_valid == NULL)
			return -ENOMEM;
	} else if ((obj->read_domains & I915_GEM_DOMAIN_CPU) == 0)
		memset(obj_priv->page_cpu_valid, 0, obj->size / PAGE_SIZE);
3259 3260 3261 3262

	/* Flush the cache on any pages that are still invalid from the CPU's
	 * perspective.
	 */
3263 3264
	for (i = offset / PAGE_SIZE; i <= (offset + size - 1) / PAGE_SIZE;
	     i++) {
3265 3266 3267
		if (obj_priv->page_cpu_valid[i])
			continue;

3268
		drm_clflush_pages(obj_priv->pages + i, 1);
3269 3270 3271 3272

		obj_priv->page_cpu_valid[i] = 1;
	}

3273 3274 3275 3276 3277
	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
	BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_CPU) != 0);

C
Chris Wilson 已提交
3278
	old_read_domains = obj->read_domains;
3279 3280
	obj->read_domains |= I915_GEM_DOMAIN_CPU;

C
Chris Wilson 已提交
3281 3282 3283 3284
	trace_i915_gem_object_change_domain(obj,
					    old_read_domains,
					    obj->write_domain);

3285 3286 3287 3288 3289 3290 3291 3292 3293
	return 0;
}

/**
 * Pin an object to the GTT and evaluate the relocations landing in it.
 */
static int
i915_gem_object_pin_and_relocate(struct drm_gem_object *obj,
				 struct drm_file *file_priv,
3294
				 struct drm_i915_gem_exec_object2 *entry)
3295 3296
{
	struct drm_device *dev = obj->dev;
3297
	drm_i915_private_t *dev_priv = dev->dev_private;
3298
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
3299
	struct drm_i915_gem_relocation_entry __user *user_relocs;
3300
	int i, ret;
3301
	void __iomem *reloc_page;
J
Jesse Barnes 已提交
3302 3303 3304 3305 3306 3307
	bool need_fence;

	need_fence = entry->flags & EXEC_OBJECT_NEEDS_FENCE &&
	             obj_priv->tiling_mode != I915_TILING_NONE;

	/* Check fence reg constraints and rebind if necessary */
3308 3309 3310 3311 3312 3313 3314
	if (need_fence &&
	    !i915_gem_object_fence_offset_ok(obj,
					     obj_priv->tiling_mode)) {
		ret = i915_gem_object_unbind(obj);
		if (ret)
			return ret;
	}
3315 3316 3317 3318 3319 3320

	/* Choose the GTT offset for our buffer and put it there. */
	ret = i915_gem_object_pin(obj, (uint32_t) entry->alignment);
	if (ret)
		return ret;

J
Jesse Barnes 已提交
3321 3322 3323 3324 3325
	/*
	 * Pre-965 chips need a fence register set up in order to
	 * properly handle blits to/from tiled surfaces.
	 */
	if (need_fence) {
C
Chris Wilson 已提交
3326
		ret = i915_gem_object_get_fence_reg(obj, true);
J
Jesse Barnes 已提交
3327 3328 3329 3330
		if (ret != 0) {
			i915_gem_object_unpin(obj);
			return ret;
		}
C
Chris Wilson 已提交
3331 3332

		dev_priv->fence_regs[obj_priv->fence_reg].gpu = true;
J
Jesse Barnes 已提交
3333 3334
	}

3335 3336 3337 3338 3339
	entry->offset = obj_priv->gtt_offset;

	/* Apply the relocations, using the GTT aperture to avoid cache
	 * flushing requirements.
	 */
3340
	user_relocs = (void __user *)(uintptr_t)entry->relocs_ptr;
3341
	for (i = 0; i < entry->relocation_count; i++) {
3342
		struct drm_i915_gem_relocation_entry reloc;
3343 3344
		struct drm_gem_object *target_obj;
		struct drm_i915_gem_object *target_obj_priv;
3345 3346
		uint32_t reloc_val, reloc_offset;
		uint32_t __iomem *reloc_entry;
3347

3348 3349 3350 3351 3352 3353 3354 3355
		ret = __copy_from_user_inatomic(&reloc,
						user_relocs+i,
						sizeof(reloc));
		if (ret) {
			i915_gem_object_unpin(obj);
			return -EFAULT;
		}

3356
		target_obj = drm_gem_object_lookup(obj->dev, file_priv,
3357
						   reloc.target_handle);
3358 3359
		if (target_obj == NULL) {
			i915_gem_object_unpin(obj);
3360
			return -ENOENT;
3361
		}
3362
		target_obj_priv = to_intel_bo(target_obj);
3363

3364 3365 3366 3367 3368 3369
#if WATCH_RELOC
		DRM_INFO("%s: obj %p offset %08x target %d "
			 "read %08x write %08x gtt %08x "
			 "presumed %08x delta %08x\n",
			 __func__,
			 obj,
3370 3371 3372 3373
			 (int) reloc.offset,
			 (int) reloc.target_handle,
			 (int) reloc.read_domains,
			 (int) reloc.write_domain,
3374
			 (int) target_obj_priv->gtt_offset,
3375 3376
			 (int) reloc.presumed_offset,
			 reloc.delta);
3377 3378
#endif

3379 3380 3381 3382 3383
		/* The target buffer should have appeared before us in the
		 * exec_object list, so it should have a GTT space bound by now.
		 */
		if (target_obj_priv->gtt_space == NULL) {
			DRM_ERROR("No GTT space found for object %d\n",
3384
				  reloc.target_handle);
3385 3386 3387 3388 3389
			drm_gem_object_unreference(target_obj);
			i915_gem_object_unpin(obj);
			return -EINVAL;
		}

3390
		/* Validate that the target is in a valid r/w GPU domain */
3391
		if (reloc.write_domain & (reloc.write_domain - 1)) {
3392 3393 3394
			DRM_ERROR("reloc with multiple write domains: "
				  "obj %p target %d offset %d "
				  "read %08x write %08x",
3395 3396 3397 3398
				  obj, reloc.target_handle,
				  (int) reloc.offset,
				  reloc.read_domains,
				  reloc.write_domain);
3399 3400
			drm_gem_object_unreference(target_obj);
			i915_gem_object_unpin(obj);
3401 3402
			return -EINVAL;
		}
3403 3404
		if (reloc.write_domain & I915_GEM_DOMAIN_CPU ||
		    reloc.read_domains & I915_GEM_DOMAIN_CPU) {
3405 3406 3407
			DRM_ERROR("reloc with read/write CPU domains: "
				  "obj %p target %d offset %d "
				  "read %08x write %08x",
3408 3409 3410 3411
				  obj, reloc.target_handle,
				  (int) reloc.offset,
				  reloc.read_domains,
				  reloc.write_domain);
3412 3413
			drm_gem_object_unreference(target_obj);
			i915_gem_object_unpin(obj);
3414 3415
			return -EINVAL;
		}
3416 3417
		if (reloc.write_domain && target_obj->pending_write_domain &&
		    reloc.write_domain != target_obj->pending_write_domain) {
3418 3419 3420
			DRM_ERROR("Write domain conflict: "
				  "obj %p target %d offset %d "
				  "new %08x old %08x\n",
3421 3422 3423
				  obj, reloc.target_handle,
				  (int) reloc.offset,
				  reloc.write_domain,
3424 3425 3426 3427 3428 3429
				  target_obj->pending_write_domain);
			drm_gem_object_unreference(target_obj);
			i915_gem_object_unpin(obj);
			return -EINVAL;
		}

3430 3431
		target_obj->pending_read_domains |= reloc.read_domains;
		target_obj->pending_write_domain |= reloc.write_domain;
3432 3433 3434 3435

		/* If the relocation already has the right value in it, no
		 * more work needs to be done.
		 */
3436
		if (target_obj_priv->gtt_offset == reloc.presumed_offset) {
3437 3438 3439 3440
			drm_gem_object_unreference(target_obj);
			continue;
		}

3441
		/* Check that the relocation address is valid... */
3442
		if (reloc.offset > obj->size - 4) {
3443 3444
			DRM_ERROR("Relocation beyond object bounds: "
				  "obj %p target %d offset %d size %d.\n",
3445 3446
				  obj, reloc.target_handle,
				  (int) reloc.offset, (int) obj->size);
3447 3448 3449 3450
			drm_gem_object_unreference(target_obj);
			i915_gem_object_unpin(obj);
			return -EINVAL;
		}
3451
		if (reloc.offset & 3) {
3452 3453
			DRM_ERROR("Relocation not 4-byte aligned: "
				  "obj %p target %d offset %d.\n",
3454 3455
				  obj, reloc.target_handle,
				  (int) reloc.offset);
3456 3457 3458 3459 3460 3461
			drm_gem_object_unreference(target_obj);
			i915_gem_object_unpin(obj);
			return -EINVAL;
		}

		/* and points to somewhere within the target object. */
3462
		if (reloc.delta >= target_obj->size) {
3463 3464
			DRM_ERROR("Relocation beyond target object bounds: "
				  "obj %p target %d delta %d size %d.\n",
3465 3466
				  obj, reloc.target_handle,
				  (int) reloc.delta, (int) target_obj->size);
3467 3468 3469 3470 3471
			drm_gem_object_unreference(target_obj);
			i915_gem_object_unpin(obj);
			return -EINVAL;
		}

3472 3473 3474 3475
		ret = i915_gem_object_set_to_gtt_domain(obj, 1);
		if (ret != 0) {
			drm_gem_object_unreference(target_obj);
			i915_gem_object_unpin(obj);
3476
			return ret;
3477 3478 3479 3480 3481
		}

		/* Map the page containing the relocation we're going to
		 * perform.
		 */
3482
		reloc_offset = obj_priv->gtt_offset + reloc.offset;
3483 3484
		reloc_page = io_mapping_map_atomic_wc(dev_priv->mm.gtt_mapping,
						      (reloc_offset &
3485 3486
						       ~(PAGE_SIZE - 1)),
						      KM_USER0);
3487
		reloc_entry = (uint32_t __iomem *)(reloc_page +
3488
						   (reloc_offset & (PAGE_SIZE - 1)));
3489
		reloc_val = target_obj_priv->gtt_offset + reloc.delta;
3490 3491

		writel(reloc_val, reloc_entry);
3492
		io_mapping_unmap_atomic(reloc_page, KM_USER0);
3493 3494 3495 3496 3497 3498 3499 3500 3501 3502

		drm_gem_object_unreference(target_obj);
	}

	return 0;
}

/* Throttle our rendering by waiting until the ring has completed our requests
 * emitted over 20 msec ago.
 *
3503 3504 3505 3506
 * Note that if we were to use the current jiffies each time around the loop,
 * we wouldn't escape the function with any frames outstanding if the time to
 * render a frame was over 20ms.
 *
3507 3508 3509 3510
 * This should get us reasonable parallelism between CPU and GPU but also
 * relatively low latency when blocking on a particular request to finish.
 */
static int
3511
i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
3512
{
3513 3514
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct drm_i915_file_private *file_priv = file->driver_priv;
3515
	unsigned long recent_enough = jiffies - msecs_to_jiffies(20);
3516 3517 3518 3519
	struct drm_i915_gem_request *request;
	struct intel_ring_buffer *ring = NULL;
	u32 seqno = 0;
	int ret;
3520

3521
	spin_lock(&file_priv->mm.lock);
3522
	list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
3523 3524 3525
		if (time_after_eq(request->emitted_jiffies, recent_enough))
			break;

3526 3527
		ring = request->ring;
		seqno = request->seqno;
3528
	}
3529
	spin_unlock(&file_priv->mm.lock);
3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552

	if (seqno == 0)
		return 0;

	ret = 0;
	if (!i915_seqno_passed(ring->get_seqno(dev, ring), seqno)) {
		/* And wait for the seqno passing without holding any locks and
		 * causing extra latency for others. This is safe as the irq
		 * generation is designed to be run atomically and so is
		 * lockless.
		 */
		ring->user_irq_get(dev, ring);
		ret = wait_event_interruptible(ring->irq_queue,
					       i915_seqno_passed(ring->get_seqno(dev, ring), seqno)
					       || atomic_read(&dev_priv->mm.wedged));
		ring->user_irq_put(dev, ring);

		if (ret == 0 && atomic_read(&dev_priv->mm.wedged))
			ret = -EIO;
	}

	if (ret == 0)
		queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
3553

3554 3555 3556
	return ret;
}

3557
static int
3558 3559
i915_gem_check_execbuffer(struct drm_i915_gem_execbuffer2 *exec,
			  uint64_t exec_offset)
3560
{
3561
	uint32_t exec_start, exec_len;
3562

3563 3564
	exec_start = (uint32_t) exec_offset + exec->batch_start_offset;
	exec_len = (uint32_t) exec->batch_len;
3565

3566 3567
	if ((exec_start | exec_len) & 0x7)
		return -EINVAL;
3568

3569 3570
	if (!exec_start)
		return -EINVAL;
3571

3572
	return 0;
3573 3574 3575
}

static int
3576 3577
validate_exec_list(struct drm_i915_gem_exec_object2 *exec,
		   int count)
3578
{
3579
	int i;
3580

3581 3582 3583
	for (i = 0; i < count; i++) {
		char __user *ptr = (char __user *)(uintptr_t)exec[i].relocs_ptr;
		size_t length = exec[i].relocation_count * sizeof(struct drm_i915_gem_relocation_entry);
3584

3585 3586
		if (!access_ok(VERIFY_READ, ptr, length))
			return -EFAULT;
3587

3588 3589
		if (fault_in_pages_readable(ptr, length))
			return -EFAULT;
3590 3591
	}

3592 3593 3594
	return 0;
}

C
Chris Wilson 已提交
3595
static int
J
Jesse Barnes 已提交
3596 3597 3598 3599
i915_gem_do_execbuffer(struct drm_device *dev, void *data,
		       struct drm_file *file_priv,
		       struct drm_i915_gem_execbuffer2 *args,
		       struct drm_i915_gem_exec_object2 *exec_list)
3600 3601 3602 3603
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	struct drm_gem_object **object_list = NULL;
	struct drm_gem_object *batch_obj;
3604
	struct drm_i915_gem_object *obj_priv;
3605
	struct drm_clip_rect *cliprects = NULL;
C
Chris Wilson 已提交
3606
	struct drm_i915_gem_request *request = NULL;
3607
	int ret, i, pinned = 0;
3608
	uint64_t exec_offset;
3609
	int pin_tries, flips;
3610

3611 3612
	struct intel_ring_buffer *ring = NULL;

3613 3614 3615 3616
	ret = i915_gem_check_is_wedged(dev);
	if (ret)
		return ret;

3617 3618 3619 3620
	ret = validate_exec_list(exec_list, args->buffer_count);
	if (ret)
		return ret;

3621 3622 3623 3624
#if WATCH_EXEC
	DRM_INFO("buffers_ptr %d buffer_count %d len %08x\n",
		  (int) args->buffers_ptr, args->buffer_count, args->batch_len);
#endif
3625 3626 3627 3628 3629 3630 3631 3632 3633 3634
	if (args->flags & I915_EXEC_BSD) {
		if (!HAS_BSD(dev)) {
			DRM_ERROR("execbuf with wrong flag\n");
			return -EINVAL;
		}
		ring = &dev_priv->bsd_ring;
	} else {
		ring = &dev_priv->render_ring;
	}

3635 3636 3637 3638
	if (args->buffer_count < 1) {
		DRM_ERROR("execbuf with %d buffers\n", args->buffer_count);
		return -EINVAL;
	}
3639
	object_list = drm_malloc_ab(sizeof(*object_list), args->buffer_count);
J
Jesse Barnes 已提交
3640 3641
	if (object_list == NULL) {
		DRM_ERROR("Failed to allocate object list for %d buffers\n",
3642 3643 3644 3645 3646
			  args->buffer_count);
		ret = -ENOMEM;
		goto pre_mutex_err;
	}

3647
	if (args->num_cliprects != 0) {
3648 3649
		cliprects = kcalloc(args->num_cliprects, sizeof(*cliprects),
				    GFP_KERNEL);
3650 3651
		if (cliprects == NULL) {
			ret = -ENOMEM;
3652
			goto pre_mutex_err;
3653
		}
3654 3655 3656 3657 3658 3659 3660 3661

		ret = copy_from_user(cliprects,
				     (struct drm_clip_rect __user *)
				     (uintptr_t) args->cliprects_ptr,
				     sizeof(*cliprects) * args->num_cliprects);
		if (ret != 0) {
			DRM_ERROR("copy %d cliprects failed: %d\n",
				  args->num_cliprects, ret);
3662
			ret = -EFAULT;
3663 3664 3665 3666
			goto pre_mutex_err;
		}
	}

C
Chris Wilson 已提交
3667 3668 3669 3670 3671 3672
	request = kzalloc(sizeof(*request), GFP_KERNEL);
	if (request == NULL) {
		ret = -ENOMEM;
		goto pre_mutex_err;
	}

3673 3674 3675
	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		goto pre_mutex_err;
3676 3677 3678

	if (dev_priv->mm.suspended) {
		mutex_unlock(&dev->struct_mutex);
3679 3680
		ret = -EBUSY;
		goto pre_mutex_err;
3681 3682
	}

3683
	/* Look up object handles */
3684 3685 3686 3687 3688 3689
	for (i = 0; i < args->buffer_count; i++) {
		object_list[i] = drm_gem_object_lookup(dev, file_priv,
						       exec_list[i].handle);
		if (object_list[i] == NULL) {
			DRM_ERROR("Invalid object handle %d at index %d\n",
				   exec_list[i].handle, i);
3690 3691
			/* prevent error path from reading uninitialized data */
			args->buffer_count = i + 1;
3692
			ret = -ENOENT;
3693 3694
			goto err;
		}
3695

3696
		obj_priv = to_intel_bo(object_list[i]);
3697 3698 3699
		if (obj_priv->in_execbuffer) {
			DRM_ERROR("Object %p appears more than once in object list\n",
				   object_list[i]);
3700 3701
			/* prevent error path from reading uninitialized data */
			args->buffer_count = i + 1;
3702
			ret = -EINVAL;
3703 3704 3705
			goto err;
		}
		obj_priv->in_execbuffer = true;
3706
	}
3707

3708 3709 3710
	/* Pin and relocate */
	for (pin_tries = 0; ; pin_tries++) {
		ret = 0;
3711

3712 3713 3714 3715 3716
		for (i = 0; i < args->buffer_count; i++) {
			object_list[i]->pending_read_domains = 0;
			object_list[i]->pending_write_domain = 0;
			ret = i915_gem_object_pin_and_relocate(object_list[i],
							       file_priv,
3717
							       &exec_list[i]);
3718 3719 3720 3721 3722 3723 3724 3725 3726
			if (ret)
				break;
			pinned = i + 1;
		}
		/* success */
		if (ret == 0)
			break;

		/* error other than GTT full, or we've already tried again */
C
Chris Wilson 已提交
3727
		if (ret != -ENOSPC || pin_tries >= 1) {
3728 3729
			if (ret != -ERESTARTSYS) {
				unsigned long long total_size = 0;
3730 3731
				int num_fences = 0;
				for (i = 0; i < args->buffer_count; i++) {
3732
					obj_priv = to_intel_bo(object_list[i]);
3733

3734
					total_size += object_list[i]->size;
3735 3736 3737 3738 3739
					num_fences +=
						exec_list[i].flags & EXEC_OBJECT_NEEDS_FENCE &&
						obj_priv->tiling_mode != I915_TILING_NONE;
				}
				DRM_ERROR("Failed to pin buffer %d of %d, total %llu bytes, %d fences: %d\n",
3740
					  pinned+1, args->buffer_count,
3741 3742
					  total_size, num_fences,
					  ret);
3743 3744 3745 3746 3747 3748 3749 3750 3751 3752
				DRM_ERROR("%u objects [%u pinned, %u GTT], "
					  "%zu object bytes [%zu pinned], "
					  "%zu /%zu gtt bytes\n",
					  dev_priv->mm.object_count,
					  dev_priv->mm.pin_count,
					  dev_priv->mm.gtt_count,
					  dev_priv->mm.object_memory,
					  dev_priv->mm.pin_memory,
					  dev_priv->mm.gtt_memory,
					  dev_priv->mm.gtt_total);
3753
			}
3754 3755
			goto err;
		}
3756 3757 3758 3759

		/* unpin all of our buffers */
		for (i = 0; i < pinned; i++)
			i915_gem_object_unpin(object_list[i]);
3760
		pinned = 0;
3761 3762 3763

		/* evict everyone we can from the aperture */
		ret = i915_gem_evict_everything(dev);
3764
		if (ret && ret != -ENOSPC)
3765
			goto err;
3766 3767 3768 3769
	}

	/* Set the pending read domains for the batch buffer to COMMAND */
	batch_obj = object_list[args->buffer_count-1];
3770 3771 3772 3773 3774 3775
	if (batch_obj->pending_write_domain) {
		DRM_ERROR("Attempting to use self-modifying batch buffer\n");
		ret = -EINVAL;
		goto err;
	}
	batch_obj->pending_read_domains |= I915_GEM_DOMAIN_COMMAND;
3776

3777 3778 3779 3780 3781 3782 3783 3784
	/* Sanity check the batch buffer, prior to moving objects */
	exec_offset = exec_list[args->buffer_count - 1].offset;
	ret = i915_gem_check_execbuffer (args, exec_offset);
	if (ret != 0) {
		DRM_ERROR("execbuf with invalid offset/length\n");
		goto err;
	}

3785 3786 3787 3788 3789 3790
	/* Zero the global flush/invalidate flags. These
	 * will be modified as new domains are computed
	 * for each object
	 */
	dev->invalidate_domains = 0;
	dev->flush_domains = 0;
3791
	dev_priv->mm.flush_rings = 0;
3792

3793 3794 3795
	for (i = 0; i < args->buffer_count; i++) {
		struct drm_gem_object *obj = object_list[i];

3796
		/* Compute new gpu domains and update invalidate/flush */
3797
		i915_gem_object_set_to_gpu_domain(obj);
3798 3799
	}

3800 3801 3802 3803 3804 3805 3806
	if (dev->invalidate_domains | dev->flush_domains) {
#if WATCH_EXEC
		DRM_INFO("%s: invalidate_domains %08x flush_domains %08x\n",
			  __func__,
			 dev->invalidate_domains,
			 dev->flush_domains);
#endif
3807
		i915_gem_flush(dev, file_priv,
3808
			       dev->invalidate_domains,
3809 3810
			       dev->flush_domains,
			       dev_priv->mm.flush_rings);
3811 3812
	}

3813 3814
	for (i = 0; i < args->buffer_count; i++) {
		struct drm_gem_object *obj = object_list[i];
3815
		struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
C
Chris Wilson 已提交
3816
		uint32_t old_write_domain = obj->write_domain;
3817 3818

		obj->write_domain = obj->pending_write_domain;
3819 3820 3821 3822
		if (obj->write_domain)
			list_move_tail(&obj_priv->gpu_write_list,
				       &dev_priv->mm.gpu_write_list);

C
Chris Wilson 已提交
3823 3824 3825
		trace_i915_gem_object_change_domain(obj,
						    obj->read_domains,
						    old_write_domain);
3826 3827
	}

3828 3829 3830 3831 3832 3833 3834 3835
#if WATCH_COHERENCY
	for (i = 0; i < args->buffer_count; i++) {
		i915_gem_object_check_coherency(object_list[i],
						exec_list[i].handle);
	}
#endif

#if WATCH_EXEC
3836
	i915_gem_dump_object(batch_obj,
3837 3838 3839 3840 3841
			      args->batch_len,
			      __func__,
			      ~0);
#endif

3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870
	/* Check for any pending flips. As we only maintain a flip queue depth
	 * of 1, we can simply insert a WAIT for the next display flip prior
	 * to executing the batch and avoid stalling the CPU.
	 */
	flips = 0;
	for (i = 0; i < args->buffer_count; i++) {
		if (object_list[i]->write_domain)
			flips |= atomic_read(&to_intel_bo(object_list[i])->pending_flip);
	}
	if (flips) {
		int plane, flip_mask;

		for (plane = 0; flips >> plane; plane++) {
			if (((flips >> plane) & 1) == 0)
				continue;

			if (plane)
				flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
			else
				flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;

			intel_ring_begin(dev, ring, 2);
			intel_ring_emit(dev, ring,
					MI_WAIT_FOR_EVENT | flip_mask);
			intel_ring_emit(dev, ring, MI_NOOP);
			intel_ring_advance(dev, ring);
		}
	}

3871
	/* Exec the batchbuffer */
3872
	ret = ring->dispatch_gem_execbuffer(dev, ring, args,
3873
					    cliprects, exec_offset);
3874 3875 3876 3877 3878 3879 3880 3881 3882
	if (ret) {
		DRM_ERROR("dispatch failed %d\n", ret);
		goto err;
	}

	/*
	 * Ensure that the commands in the batch buffer are
	 * finished before the interrupt fires
	 */
3883
	i915_retire_commands(dev, ring);
3884

3885 3886 3887 3888 3889 3890
	for (i = 0; i < args->buffer_count; i++) {
		struct drm_gem_object *obj = object_list[i];
		obj_priv = to_intel_bo(obj);

		i915_gem_object_move_to_active(obj, ring);
	}
3891

C
Chris Wilson 已提交
3892
	i915_add_request(dev, file_priv, request, ring);
C
Chris Wilson 已提交
3893
	request = NULL;
3894 3895

err:
3896 3897 3898
	for (i = 0; i < pinned; i++)
		i915_gem_object_unpin(object_list[i]);

3899 3900
	for (i = 0; i < args->buffer_count; i++) {
		if (object_list[i]) {
3901
			obj_priv = to_intel_bo(object_list[i]);
3902 3903
			obj_priv->in_execbuffer = false;
		}
3904
		drm_gem_object_unreference(object_list[i]);
3905
	}
3906 3907 3908

	mutex_unlock(&dev->struct_mutex);

3909
pre_mutex_err:
3910
	drm_free_large(object_list);
3911
	kfree(cliprects);
C
Chris Wilson 已提交
3912
	kfree(request);
3913 3914 3915 3916

	return ret;
}

J
Jesse Barnes 已提交
3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968
/*
 * Legacy execbuffer just creates an exec2 list from the original exec object
 * list array and passes it to the real function.
 */
int
i915_gem_execbuffer(struct drm_device *dev, void *data,
		    struct drm_file *file_priv)
{
	struct drm_i915_gem_execbuffer *args = data;
	struct drm_i915_gem_execbuffer2 exec2;
	struct drm_i915_gem_exec_object *exec_list = NULL;
	struct drm_i915_gem_exec_object2 *exec2_list = NULL;
	int ret, i;

#if WATCH_EXEC
	DRM_INFO("buffers_ptr %d buffer_count %d len %08x\n",
		  (int) args->buffers_ptr, args->buffer_count, args->batch_len);
#endif

	if (args->buffer_count < 1) {
		DRM_ERROR("execbuf with %d buffers\n", args->buffer_count);
		return -EINVAL;
	}

	/* Copy in the exec list from userland */
	exec_list = drm_malloc_ab(sizeof(*exec_list), args->buffer_count);
	exec2_list = drm_malloc_ab(sizeof(*exec2_list), args->buffer_count);
	if (exec_list == NULL || exec2_list == NULL) {
		DRM_ERROR("Failed to allocate exec list for %d buffers\n",
			  args->buffer_count);
		drm_free_large(exec_list);
		drm_free_large(exec2_list);
		return -ENOMEM;
	}
	ret = copy_from_user(exec_list,
			     (struct drm_i915_relocation_entry __user *)
			     (uintptr_t) args->buffers_ptr,
			     sizeof(*exec_list) * args->buffer_count);
	if (ret != 0) {
		DRM_ERROR("copy %d exec entries failed %d\n",
			  args->buffer_count, ret);
		drm_free_large(exec_list);
		drm_free_large(exec2_list);
		return -EFAULT;
	}

	for (i = 0; i < args->buffer_count; i++) {
		exec2_list[i].handle = exec_list[i].handle;
		exec2_list[i].relocation_count = exec_list[i].relocation_count;
		exec2_list[i].relocs_ptr = exec_list[i].relocs_ptr;
		exec2_list[i].alignment = exec_list[i].alignment;
		exec2_list[i].offset = exec_list[i].offset;
3969
		if (INTEL_INFO(dev)->gen < 4)
J
Jesse Barnes 已提交
3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982
			exec2_list[i].flags = EXEC_OBJECT_NEEDS_FENCE;
		else
			exec2_list[i].flags = 0;
	}

	exec2.buffers_ptr = args->buffers_ptr;
	exec2.buffer_count = args->buffer_count;
	exec2.batch_start_offset = args->batch_start_offset;
	exec2.batch_len = args->batch_len;
	exec2.DR1 = args->DR1;
	exec2.DR4 = args->DR4;
	exec2.num_cliprects = args->num_cliprects;
	exec2.cliprects_ptr = args->cliprects_ptr;
3983
	exec2.flags = I915_EXEC_RENDER;
J
Jesse Barnes 已提交
3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061

	ret = i915_gem_do_execbuffer(dev, data, file_priv, &exec2, exec2_list);
	if (!ret) {
		/* Copy the new buffer offsets back to the user's exec list. */
		for (i = 0; i < args->buffer_count; i++)
			exec_list[i].offset = exec2_list[i].offset;
		/* ... and back out to userspace */
		ret = copy_to_user((struct drm_i915_relocation_entry __user *)
				   (uintptr_t) args->buffers_ptr,
				   exec_list,
				   sizeof(*exec_list) * args->buffer_count);
		if (ret) {
			ret = -EFAULT;
			DRM_ERROR("failed to copy %d exec entries "
				  "back to user (%d)\n",
				  args->buffer_count, ret);
		}
	}

	drm_free_large(exec_list);
	drm_free_large(exec2_list);
	return ret;
}

int
i915_gem_execbuffer2(struct drm_device *dev, void *data,
		     struct drm_file *file_priv)
{
	struct drm_i915_gem_execbuffer2 *args = data;
	struct drm_i915_gem_exec_object2 *exec2_list = NULL;
	int ret;

#if WATCH_EXEC
	DRM_INFO("buffers_ptr %d buffer_count %d len %08x\n",
		  (int) args->buffers_ptr, args->buffer_count, args->batch_len);
#endif

	if (args->buffer_count < 1) {
		DRM_ERROR("execbuf2 with %d buffers\n", args->buffer_count);
		return -EINVAL;
	}

	exec2_list = drm_malloc_ab(sizeof(*exec2_list), args->buffer_count);
	if (exec2_list == NULL) {
		DRM_ERROR("Failed to allocate exec list for %d buffers\n",
			  args->buffer_count);
		return -ENOMEM;
	}
	ret = copy_from_user(exec2_list,
			     (struct drm_i915_relocation_entry __user *)
			     (uintptr_t) args->buffers_ptr,
			     sizeof(*exec2_list) * args->buffer_count);
	if (ret != 0) {
		DRM_ERROR("copy %d exec entries failed %d\n",
			  args->buffer_count, ret);
		drm_free_large(exec2_list);
		return -EFAULT;
	}

	ret = i915_gem_do_execbuffer(dev, data, file_priv, args, exec2_list);
	if (!ret) {
		/* Copy the new buffer offsets back to the user's exec list. */
		ret = copy_to_user((struct drm_i915_relocation_entry __user *)
				   (uintptr_t) args->buffers_ptr,
				   exec2_list,
				   sizeof(*exec2_list) * args->buffer_count);
		if (ret) {
			ret = -EFAULT;
			DRM_ERROR("failed to copy %d exec entries "
				  "back to user (%d)\n",
				  args->buffer_count, ret);
		}
	}

	drm_free_large(exec2_list);
	return ret;
}

4062 4063 4064 4065
int
i915_gem_object_pin(struct drm_gem_object *obj, uint32_t alignment)
{
	struct drm_device *dev = obj->dev;
C
Chris Wilson 已提交
4066
	struct drm_i915_private *dev_priv = dev->dev_private;
4067
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
4068 4069
	int ret;

4070
	BUG_ON(obj_priv->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT);
4071
	WARN_ON(i915_verify_lists(dev));
4072 4073 4074 4075 4076

	if (obj_priv->gtt_space != NULL) {
		if (alignment == 0)
			alignment = i915_gem_get_gtt_alignment(obj);
		if (obj_priv->gtt_offset & (alignment - 1)) {
4077 4078 4079 4080
			WARN(obj_priv->pin_count,
			     "bo is already pinned with incorrect alignment:"
			     " offset=%x, req.alignment=%x\n",
			     obj_priv->gtt_offset, alignment);
4081 4082 4083 4084 4085 4086
			ret = i915_gem_object_unbind(obj);
			if (ret)
				return ret;
		}
	}

4087 4088
	if (obj_priv->gtt_space == NULL) {
		ret = i915_gem_object_bind_to_gtt(obj, alignment);
4089
		if (ret)
4090
			return ret;
4091
	}
J
Jesse Barnes 已提交
4092

4093 4094 4095 4096 4097 4098
	obj_priv->pin_count++;

	/* If the object is not active and not pending a flush,
	 * remove it from the inactive list
	 */
	if (obj_priv->pin_count == 1) {
4099
		i915_gem_info_add_pin(dev_priv, obj->size);
C
Chris Wilson 已提交
4100 4101 4102
		if (!obj_priv->active)
			list_move_tail(&obj_priv->list,
				       &dev_priv->mm.pinned_list);
4103 4104
	}

4105
	WARN_ON(i915_verify_lists(dev));
4106 4107 4108 4109 4110 4111 4112 4113
	return 0;
}

void
i915_gem_object_unpin(struct drm_gem_object *obj)
{
	struct drm_device *dev = obj->dev;
	drm_i915_private_t *dev_priv = dev->dev_private;
4114
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
4115

4116
	WARN_ON(i915_verify_lists(dev));
4117 4118 4119 4120 4121 4122 4123 4124 4125
	obj_priv->pin_count--;
	BUG_ON(obj_priv->pin_count < 0);
	BUG_ON(obj_priv->gtt_space == NULL);

	/* If the object is no longer pinned, and is
	 * neither active nor being flushed, then stick it on
	 * the inactive list
	 */
	if (obj_priv->pin_count == 0) {
C
Chris Wilson 已提交
4126
		if (!obj_priv->active)
4127 4128
			list_move_tail(&obj_priv->list,
				       &dev_priv->mm.inactive_list);
4129
		i915_gem_info_remove_pin(dev_priv, obj->size);
4130
	}
4131
	WARN_ON(i915_verify_lists(dev));
4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146
}

int
i915_gem_pin_ioctl(struct drm_device *dev, void *data,
		   struct drm_file *file_priv)
{
	struct drm_i915_gem_pin *args = data;
	struct drm_gem_object *obj;
	struct drm_i915_gem_object *obj_priv;
	int ret;

	obj = drm_gem_object_lookup(dev, file_priv, args->handle);
	if (obj == NULL) {
		DRM_ERROR("Bad handle in i915_gem_pin_ioctl(): %d\n",
			  args->handle);
4147
		return -ENOENT;
4148
	}
4149
	obj_priv = to_intel_bo(obj);
4150

4151 4152 4153 4154 4155 4156
	ret = i915_mutex_lock_interruptible(dev);
	if (ret) {
		drm_gem_object_unreference_unlocked(obj);
		return ret;
	}

C
Chris Wilson 已提交
4157 4158
	if (obj_priv->madv != I915_MADV_WILLNEED) {
		DRM_ERROR("Attempting to pin a purgeable buffer\n");
4159 4160 4161 4162 4163
		drm_gem_object_unreference(obj);
		mutex_unlock(&dev->struct_mutex);
		return -EINVAL;
	}

J
Jesse Barnes 已提交
4164 4165 4166
	if (obj_priv->pin_filp != NULL && obj_priv->pin_filp != file_priv) {
		DRM_ERROR("Already pinned in i915_gem_pin_ioctl(): %d\n",
			  args->handle);
4167
		drm_gem_object_unreference(obj);
4168
		mutex_unlock(&dev->struct_mutex);
J
Jesse Barnes 已提交
4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180
		return -EINVAL;
	}

	obj_priv->user_pin_count++;
	obj_priv->pin_filp = file_priv;
	if (obj_priv->user_pin_count == 1) {
		ret = i915_gem_object_pin(obj, args->alignment);
		if (ret != 0) {
			drm_gem_object_unreference(obj);
			mutex_unlock(&dev->struct_mutex);
			return ret;
		}
4181 4182 4183 4184 4185
	}

	/* XXX - flush the CPU caches for pinned objects
	 * as the X server doesn't manage domains yet
	 */
4186
	i915_gem_object_flush_cpu_write_domain(obj);
4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199
	args->offset = obj_priv->gtt_offset;
	drm_gem_object_unreference(obj);
	mutex_unlock(&dev->struct_mutex);

	return 0;
}

int
i915_gem_unpin_ioctl(struct drm_device *dev, void *data,
		     struct drm_file *file_priv)
{
	struct drm_i915_gem_pin *args = data;
	struct drm_gem_object *obj;
J
Jesse Barnes 已提交
4200
	struct drm_i915_gem_object *obj_priv;
4201
	int ret;
4202 4203 4204 4205 4206

	obj = drm_gem_object_lookup(dev, file_priv, args->handle);
	if (obj == NULL) {
		DRM_ERROR("Bad handle in i915_gem_unpin_ioctl(): %d\n",
			  args->handle);
4207
		return -ENOENT;
4208 4209
	}

4210
	obj_priv = to_intel_bo(obj);
4211 4212 4213 4214 4215 4216 4217

	ret = i915_mutex_lock_interruptible(dev);
	if (ret) {
		drm_gem_object_unreference_unlocked(obj);
		return ret;
	}

J
Jesse Barnes 已提交
4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229
	if (obj_priv->pin_filp != file_priv) {
		DRM_ERROR("Not pinned by caller in i915_gem_pin_ioctl(): %d\n",
			  args->handle);
		drm_gem_object_unreference(obj);
		mutex_unlock(&dev->struct_mutex);
		return -EINVAL;
	}
	obj_priv->user_pin_count--;
	if (obj_priv->user_pin_count == 0) {
		obj_priv->pin_filp = NULL;
		i915_gem_object_unpin(obj);
	}
4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242

	drm_gem_object_unreference(obj);
	mutex_unlock(&dev->struct_mutex);
	return 0;
}

int
i915_gem_busy_ioctl(struct drm_device *dev, void *data,
		    struct drm_file *file_priv)
{
	struct drm_i915_gem_busy *args = data;
	struct drm_gem_object *obj;
	struct drm_i915_gem_object *obj_priv;
4243 4244
	int ret;

4245 4246 4247 4248
	obj = drm_gem_object_lookup(dev, file_priv, args->handle);
	if (obj == NULL) {
		DRM_ERROR("Bad handle in i915_gem_busy_ioctl(): %d\n",
			  args->handle);
4249
		return -ENOENT;
4250 4251
	}

4252 4253 4254 4255
	ret = i915_mutex_lock_interruptible(dev);
	if (ret) {
		drm_gem_object_unreference_unlocked(obj);
		return ret;
4256 4257
	}

4258 4259 4260 4261
	/* Count all active objects as busy, even if they are currently not used
	 * by the gpu. Users of this interface expect objects to eventually
	 * become non-busy without any further actions, therefore emit any
	 * necessary flushes here.
4262
	 */
4263 4264 4265 4266 4267 4268 4269 4270
	obj_priv = to_intel_bo(obj);
	args->busy = obj_priv->active;
	if (args->busy) {
		/* Unconditionally flush objects, even when the gpu still uses this
		 * object. Userspace calling this function indicates that it wants to
		 * use this buffer rather sooner than later, so issuing the required
		 * flush earlier is beneficial.
		 */
4271 4272
		if (obj->write_domain & I915_GEM_GPU_DOMAINS)
			i915_gem_flush_ring(dev, file_priv,
4273 4274
					    obj_priv->ring,
					    0, obj->write_domain);
4275 4276 4277 4278 4279 4280 4281 4282 4283 4284

		/* Update the active list for the hardware's current position.
		 * Otherwise this only updates on a delayed timer or when irqs
		 * are actually unmasked, and our working set ends up being
		 * larger than required.
		 */
		i915_gem_retire_requests_ring(dev, obj_priv->ring);

		args->busy = obj_priv->active;
	}
4285 4286 4287

	drm_gem_object_unreference(obj);
	mutex_unlock(&dev->struct_mutex);
4288
	return 0;
4289 4290 4291 4292 4293 4294 4295 4296 4297
}

int
i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
			struct drm_file *file_priv)
{
    return i915_gem_ring_throttle(dev, file_priv);
}

4298 4299 4300 4301 4302 4303 4304
int
i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
		       struct drm_file *file_priv)
{
	struct drm_i915_gem_madvise *args = data;
	struct drm_gem_object *obj;
	struct drm_i915_gem_object *obj_priv;
4305
	int ret;
4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318

	switch (args->madv) {
	case I915_MADV_DONTNEED:
	case I915_MADV_WILLNEED:
	    break;
	default:
	    return -EINVAL;
	}

	obj = drm_gem_object_lookup(dev, file_priv, args->handle);
	if (obj == NULL) {
		DRM_ERROR("Bad handle in i915_gem_madvise_ioctl(): %d\n",
			  args->handle);
4319
		return -ENOENT;
4320
	}
4321
	obj_priv = to_intel_bo(obj);
4322

4323 4324 4325 4326 4327 4328
	ret = i915_mutex_lock_interruptible(dev);
	if (ret) {
		drm_gem_object_unreference_unlocked(obj);
		return ret;
	}

4329 4330 4331 4332 4333 4334 4335 4336
	if (obj_priv->pin_count) {
		drm_gem_object_unreference(obj);
		mutex_unlock(&dev->struct_mutex);

		DRM_ERROR("Attempted i915_gem_madvise_ioctl() on a pinned object\n");
		return -EINVAL;
	}

C
Chris Wilson 已提交
4337 4338
	if (obj_priv->madv != __I915_MADV_PURGED)
		obj_priv->madv = args->madv;
4339

4340 4341 4342 4343 4344
	/* if the object is no longer bound, discard its backing storage */
	if (i915_gem_object_is_purgeable(obj_priv) &&
	    obj_priv->gtt_space == NULL)
		i915_gem_object_truncate(obj);

C
Chris Wilson 已提交
4345 4346
	args->retained = obj_priv->madv != __I915_MADV_PURGED;

4347 4348 4349 4350 4351 4352
	drm_gem_object_unreference(obj);
	mutex_unlock(&dev->struct_mutex);

	return 0;
}

4353 4354 4355
struct drm_gem_object * i915_gem_alloc_object(struct drm_device *dev,
					      size_t size)
{
4356
	struct drm_i915_private *dev_priv = dev->dev_private;
4357
	struct drm_i915_gem_object *obj;
4358

4359 4360 4361
	obj = kzalloc(sizeof(*obj), GFP_KERNEL);
	if (obj == NULL)
		return NULL;
4362

4363 4364 4365 4366
	if (drm_gem_object_init(dev, &obj->base, size) != 0) {
		kfree(obj);
		return NULL;
	}
4367

4368 4369
	i915_gem_info_add_obj(dev_priv, size);

4370 4371
	obj->base.write_domain = I915_GEM_DOMAIN_CPU;
	obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4372

4373
	obj->agp_type = AGP_USER_MEMORY;
4374
	obj->base.driver_private = NULL;
4375 4376 4377 4378
	obj->fence_reg = I915_FENCE_REG_NONE;
	INIT_LIST_HEAD(&obj->list);
	INIT_LIST_HEAD(&obj->gpu_write_list);
	obj->madv = I915_MADV_WILLNEED;
4379

4380 4381 4382 4383 4384 4385 4386 4387
	trace_i915_gem_object_create(&obj->base);

	return &obj->base;
}

int i915_gem_init_object(struct drm_gem_object *obj)
{
	BUG();
4388

4389 4390 4391
	return 0;
}

4392
static void i915_gem_free_object_tail(struct drm_gem_object *obj)
4393
{
4394
	struct drm_device *dev = obj->dev;
4395
	drm_i915_private_t *dev_priv = dev->dev_private;
4396
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
4397
	int ret;
4398

4399 4400 4401 4402 4403 4404
	ret = i915_gem_object_unbind(obj);
	if (ret == -ERESTARTSYS) {
		list_move(&obj_priv->list,
			  &dev_priv->mm.deferred_free_list);
		return;
	}
4405

4406 4407
	if (obj_priv->mmap_offset)
		i915_gem_free_mmap_offset(obj);
4408

4409
	drm_gem_object_release(obj);
4410
	i915_gem_info_remove_obj(dev_priv, obj->size);
4411

4412
	kfree(obj_priv->page_cpu_valid);
4413
	kfree(obj_priv->bit_17);
4414
	kfree(obj_priv);
4415 4416
}

4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432
void i915_gem_free_object(struct drm_gem_object *obj)
{
	struct drm_device *dev = obj->dev;
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);

	trace_i915_gem_object_destroy(obj);

	while (obj_priv->pin_count > 0)
		i915_gem_object_unpin(obj);

	if (obj_priv->phys_obj)
		i915_gem_detach_phys_object(dev, obj);

	i915_gem_free_object_tail(obj);
}

4433 4434 4435 4436 4437
int
i915_gem_idle(struct drm_device *dev)
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	int ret;
4438

4439
	mutex_lock(&dev->struct_mutex);
C
Chris Wilson 已提交
4440

4441
	if (dev_priv->mm.suspended ||
4442 4443 4444
			(dev_priv->render_ring.gem_object == NULL) ||
			(HAS_BSD(dev) &&
			 dev_priv->bsd_ring.gem_object == NULL)) {
4445 4446
		mutex_unlock(&dev->struct_mutex);
		return 0;
4447 4448
	}

4449
	ret = i915_gpu_idle(dev);
4450 4451
	if (ret) {
		mutex_unlock(&dev->struct_mutex);
4452
		return ret;
4453
	}
4454

4455 4456
	/* Under UMS, be paranoid and evict. */
	if (!drm_core_check_feature(dev, DRIVER_MODESET)) {
4457
		ret = i915_gem_evict_inactive(dev);
4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468
		if (ret) {
			mutex_unlock(&dev->struct_mutex);
			return ret;
		}
	}

	/* Hack!  Don't let anybody do execbuf while we don't control the chip.
	 * We need to replace this with a semaphore, or something.
	 * And not confound mm.suspended!
	 */
	dev_priv->mm.suspended = 1;
4469
	del_timer_sync(&dev_priv->hangcheck_timer);
4470 4471

	i915_kernel_lost_context(dev);
4472
	i915_gem_cleanup_ringbuffer(dev);
4473

4474 4475
	mutex_unlock(&dev->struct_mutex);

4476 4477 4478
	/* Cancel the retire work handler, which should be idle now. */
	cancel_delayed_work_sync(&dev_priv->mm.retire_work);

4479 4480 4481
	return 0;
}

4482 4483 4484 4485
/*
 * 965+ support PIPE_CONTROL commands, which provide finer grained control
 * over cache flushing.
 */
4486
static int
4487 4488 4489 4490 4491 4492 4493
i915_gem_init_pipe_control(struct drm_device *dev)
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	struct drm_gem_object *obj;
	struct drm_i915_gem_object *obj_priv;
	int ret;

4494
	obj = i915_gem_alloc_object(dev, 4096);
4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524
	if (obj == NULL) {
		DRM_ERROR("Failed to allocate seqno page\n");
		ret = -ENOMEM;
		goto err;
	}
	obj_priv = to_intel_bo(obj);
	obj_priv->agp_type = AGP_USER_CACHED_MEMORY;

	ret = i915_gem_object_pin(obj, 4096);
	if (ret)
		goto err_unref;

	dev_priv->seqno_gfx_addr = obj_priv->gtt_offset;
	dev_priv->seqno_page =  kmap(obj_priv->pages[0]);
	if (dev_priv->seqno_page == NULL)
		goto err_unpin;

	dev_priv->seqno_obj = obj;
	memset(dev_priv->seqno_page, 0, PAGE_SIZE);

	return 0;

err_unpin:
	i915_gem_object_unpin(obj);
err_unref:
	drm_gem_object_unreference(obj);
err:
	return ret;
}

4525 4526

static void
4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540
i915_gem_cleanup_pipe_control(struct drm_device *dev)
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	struct drm_gem_object *obj;
	struct drm_i915_gem_object *obj_priv;

	obj = dev_priv->seqno_obj;
	obj_priv = to_intel_bo(obj);
	kunmap(obj_priv->pages[0]);
	i915_gem_object_unpin(obj);
	drm_gem_object_unreference(obj);
	dev_priv->seqno_obj = NULL;

	dev_priv->seqno_page = NULL;
4541 4542
}

4543 4544 4545 4546 4547
int
i915_gem_init_ringbuffer(struct drm_device *dev)
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	int ret;
4548

4549 4550 4551 4552 4553
	if (HAS_PIPE_CONTROL(dev)) {
		ret = i915_gem_init_pipe_control(dev);
		if (ret)
			return ret;
	}
4554

4555
	ret = intel_init_render_ring_buffer(dev);
4556 4557 4558 4559
	if (ret)
		goto cleanup_pipe_control;

	if (HAS_BSD(dev)) {
4560
		ret = intel_init_bsd_ring_buffer(dev);
4561 4562
		if (ret)
			goto cleanup_render_ring;
4563
	}
4564

4565 4566
	dev_priv->next_seqno = 1;

4567 4568 4569 4570 4571 4572 4573
	return 0;

cleanup_render_ring:
	intel_cleanup_ring_buffer(dev, &dev_priv->render_ring);
cleanup_pipe_control:
	if (HAS_PIPE_CONTROL(dev))
		i915_gem_cleanup_pipe_control(dev);
4574 4575 4576 4577 4578 4579 4580 4581 4582
	return ret;
}

void
i915_gem_cleanup_ringbuffer(struct drm_device *dev)
{
	drm_i915_private_t *dev_priv = dev->dev_private;

	intel_cleanup_ring_buffer(dev, &dev_priv->render_ring);
4583 4584
	if (HAS_BSD(dev))
		intel_cleanup_ring_buffer(dev, &dev_priv->bsd_ring);
4585 4586 4587 4588
	if (HAS_PIPE_CONTROL(dev))
		i915_gem_cleanup_pipe_control(dev);
}

4589 4590 4591 4592 4593 4594 4595
int
i915_gem_entervt_ioctl(struct drm_device *dev, void *data,
		       struct drm_file *file_priv)
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	int ret;

J
Jesse Barnes 已提交
4596 4597 4598
	if (drm_core_check_feature(dev, DRIVER_MODESET))
		return 0;

4599
	if (atomic_read(&dev_priv->mm.wedged)) {
4600
		DRM_ERROR("Reenabling wedged hardware, good luck\n");
4601
		atomic_set(&dev_priv->mm.wedged, 0);
4602 4603 4604
	}

	mutex_lock(&dev->struct_mutex);
4605 4606 4607
	dev_priv->mm.suspended = 0;

	ret = i915_gem_init_ringbuffer(dev);
4608 4609
	if (ret != 0) {
		mutex_unlock(&dev->struct_mutex);
4610
		return ret;
4611
	}
4612

4613
	BUG_ON(!list_empty(&dev_priv->render_ring.active_list));
4614
	BUG_ON(HAS_BSD(dev) && !list_empty(&dev_priv->bsd_ring.active_list));
4615 4616
	BUG_ON(!list_empty(&dev_priv->mm.flushing_list));
	BUG_ON(!list_empty(&dev_priv->mm.inactive_list));
4617
	BUG_ON(!list_empty(&dev_priv->render_ring.request_list));
4618
	BUG_ON(HAS_BSD(dev) && !list_empty(&dev_priv->bsd_ring.request_list));
4619
	mutex_unlock(&dev->struct_mutex);
4620

4621 4622 4623
	ret = drm_irq_install(dev);
	if (ret)
		goto cleanup_ringbuffer;
4624

4625
	return 0;
4626 4627 4628 4629 4630 4631 4632 4633

cleanup_ringbuffer:
	mutex_lock(&dev->struct_mutex);
	i915_gem_cleanup_ringbuffer(dev);
	dev_priv->mm.suspended = 1;
	mutex_unlock(&dev->struct_mutex);

	return ret;
4634 4635 4636 4637 4638 4639
}

int
i915_gem_leavevt_ioctl(struct drm_device *dev, void *data,
		       struct drm_file *file_priv)
{
J
Jesse Barnes 已提交
4640 4641 4642
	if (drm_core_check_feature(dev, DRIVER_MODESET))
		return 0;

4643
	drm_irq_uninstall(dev);
4644
	return i915_gem_idle(dev);
4645 4646 4647 4648 4649 4650 4651
}

void
i915_gem_lastclose(struct drm_device *dev)
{
	int ret;

4652 4653 4654
	if (drm_core_check_feature(dev, DRIVER_MODESET))
		return;

4655 4656 4657
	ret = i915_gem_idle(dev);
	if (ret)
		DRM_ERROR("failed to idle hardware: %d\n", ret);
4658 4659 4660 4661 4662
}

void
i915_gem_load(struct drm_device *dev)
{
4663
	int i;
4664 4665 4666
	drm_i915_private_t *dev_priv = dev->dev_private;

	INIT_LIST_HEAD(&dev_priv->mm.flushing_list);
4667
	INIT_LIST_HEAD(&dev_priv->mm.gpu_write_list);
4668
	INIT_LIST_HEAD(&dev_priv->mm.inactive_list);
C
Chris Wilson 已提交
4669
	INIT_LIST_HEAD(&dev_priv->mm.pinned_list);
4670
	INIT_LIST_HEAD(&dev_priv->mm.fence_list);
4671
	INIT_LIST_HEAD(&dev_priv->mm.deferred_free_list);
4672 4673
	INIT_LIST_HEAD(&dev_priv->render_ring.active_list);
	INIT_LIST_HEAD(&dev_priv->render_ring.request_list);
4674 4675 4676 4677
	if (HAS_BSD(dev)) {
		INIT_LIST_HEAD(&dev_priv->bsd_ring.active_list);
		INIT_LIST_HEAD(&dev_priv->bsd_ring.request_list);
	}
4678 4679
	for (i = 0; i < 16; i++)
		INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
4680 4681
	INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
			  i915_gem_retire_work_handler);
4682
	init_completion(&dev_priv->error_completion);
4683 4684 4685 4686
	spin_lock(&shrink_list_lock);
	list_add(&dev_priv->mm.shrink_list, &shrink_list);
	spin_unlock(&shrink_list_lock);

4687 4688 4689 4690 4691 4692 4693 4694 4695 4696
	/* On GEN3 we really need to make sure the ARB C3 LP bit is set */
	if (IS_GEN3(dev)) {
		u32 tmp = I915_READ(MI_ARB_STATE);
		if (!(tmp & MI_ARB_C3_LP_WRITE_ENABLE)) {
			/* arb state is a masked write, so set bit + bit in mask */
			tmp = MI_ARB_C3_LP_WRITE_ENABLE | (MI_ARB_C3_LP_WRITE_ENABLE << MI_ARB_MASK_SHIFT);
			I915_WRITE(MI_ARB_STATE, tmp);
		}
	}

4697
	/* Old X drivers will take 0-2 for front, back, depth buffers */
4698 4699
	if (!drm_core_check_feature(dev, DRIVER_MODESET))
		dev_priv->fence_reg_start = 3;
4700

4701
	if (INTEL_INFO(dev)->gen >= 4 || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
4702 4703 4704 4705
		dev_priv->num_fence_regs = 16;
	else
		dev_priv->num_fence_regs = 8;

4706
	/* Initialize fence registers to zero */
4707 4708 4709 4710 4711 4712 4713
	switch (INTEL_INFO(dev)->gen) {
	case 6:
		for (i = 0; i < 16; i++)
			I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 + (i * 8), 0);
		break;
	case 5:
	case 4:
4714 4715
		for (i = 0; i < 16; i++)
			I915_WRITE64(FENCE_REG_965_0 + (i * 8), 0);
4716 4717
		break;
	case 3:
4718 4719 4720
		if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
			for (i = 0; i < 8; i++)
				I915_WRITE(FENCE_REG_945_8 + (i * 4), 0);
4721 4722 4723 4724
	case 2:
		for (i = 0; i < 8; i++)
			I915_WRITE(FENCE_REG_830_0 + (i * 4), 0);
		break;
4725
	}
4726
	i915_gem_detect_bit_6_swizzle(dev);
4727
	init_waitqueue_head(&dev_priv->pending_flip_queue);
4728
}
4729 4730 4731 4732 4733

/*
 * Create a physically contiguous memory object for this object
 * e.g. for cursor + overlay regs
 */
4734 4735
static int i915_gem_init_phys_object(struct drm_device *dev,
				     int id, int size, int align)
4736 4737 4738 4739 4740 4741 4742 4743
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	struct drm_i915_gem_phys_object *phys_obj;
	int ret;

	if (dev_priv->mm.phys_objs[id - 1] || !size)
		return 0;

4744
	phys_obj = kzalloc(sizeof(struct drm_i915_gem_phys_object), GFP_KERNEL);
4745 4746 4747 4748 4749
	if (!phys_obj)
		return -ENOMEM;

	phys_obj->id = id;

4750
	phys_obj->handle = drm_pci_alloc(dev, size, align);
4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762
	if (!phys_obj->handle) {
		ret = -ENOMEM;
		goto kfree_obj;
	}
#ifdef CONFIG_X86
	set_memory_wc((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
#endif

	dev_priv->mm.phys_objs[id - 1] = phys_obj;

	return 0;
kfree_obj:
4763
	kfree(phys_obj);
4764 4765 4766
	return ret;
}

4767
static void i915_gem_free_phys_object(struct drm_device *dev, int id)
4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	struct drm_i915_gem_phys_object *phys_obj;

	if (!dev_priv->mm.phys_objs[id - 1])
		return;

	phys_obj = dev_priv->mm.phys_objs[id - 1];
	if (phys_obj->cur_obj) {
		i915_gem_detach_phys_object(dev, phys_obj->cur_obj);
	}

#ifdef CONFIG_X86
	set_memory_wb((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
#endif
	drm_pci_free(dev, phys_obj->handle);
	kfree(phys_obj);
	dev_priv->mm.phys_objs[id - 1] = NULL;
}

void i915_gem_free_all_phys_object(struct drm_device *dev)
{
	int i;

4792
	for (i = I915_GEM_PHYS_CURSOR_0; i <= I915_MAX_PHYS_OBJECT; i++)
4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803
		i915_gem_free_phys_object(dev, i);
}

void i915_gem_detach_phys_object(struct drm_device *dev,
				 struct drm_gem_object *obj)
{
	struct drm_i915_gem_object *obj_priv;
	int i;
	int ret;
	int page_count;

4804
	obj_priv = to_intel_bo(obj);
4805 4806 4807
	if (!obj_priv->phys_obj)
		return;

4808
	ret = i915_gem_object_get_pages(obj, 0);
4809 4810 4811 4812 4813 4814
	if (ret)
		goto out;

	page_count = obj->size / PAGE_SIZE;

	for (i = 0; i < page_count; i++) {
4815
		char *dst = kmap_atomic(obj_priv->pages[i], KM_USER0);
4816 4817 4818 4819 4820
		char *src = obj_priv->phys_obj->handle->vaddr + (i * PAGE_SIZE);

		memcpy(dst, src, PAGE_SIZE);
		kunmap_atomic(dst, KM_USER0);
	}
4821
	drm_clflush_pages(obj_priv->pages, page_count);
4822
	drm_agp_chipset_flush(dev);
4823 4824

	i915_gem_object_put_pages(obj);
4825 4826 4827 4828 4829 4830 4831
out:
	obj_priv->phys_obj->cur_obj = NULL;
	obj_priv->phys_obj = NULL;
}

int
i915_gem_attach_phys_object(struct drm_device *dev,
4832 4833 4834
			    struct drm_gem_object *obj,
			    int id,
			    int align)
4835 4836 4837 4838 4839 4840 4841 4842 4843 4844
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	struct drm_i915_gem_object *obj_priv;
	int ret = 0;
	int page_count;
	int i;

	if (id > I915_MAX_PHYS_OBJECT)
		return -EINVAL;

4845
	obj_priv = to_intel_bo(obj);
4846 4847 4848 4849 4850 4851 4852 4853 4854 4855

	if (obj_priv->phys_obj) {
		if (obj_priv->phys_obj->id == id)
			return 0;
		i915_gem_detach_phys_object(dev, obj);
	}

	/* create a new object */
	if (!dev_priv->mm.phys_objs[id - 1]) {
		ret = i915_gem_init_phys_object(dev, id,
4856
						obj->size, align);
4857
		if (ret) {
4858
			DRM_ERROR("failed to init phys object %d size: %zu\n", id, obj->size);
4859 4860 4861 4862 4863 4864 4865 4866
			goto out;
		}
	}

	/* bind to the object */
	obj_priv->phys_obj = dev_priv->mm.phys_objs[id - 1];
	obj_priv->phys_obj->cur_obj = obj;

4867
	ret = i915_gem_object_get_pages(obj, 0);
4868 4869 4870 4871 4872 4873 4874 4875
	if (ret) {
		DRM_ERROR("failed to get page list\n");
		goto out;
	}

	page_count = obj->size / PAGE_SIZE;

	for (i = 0; i < page_count; i++) {
4876
		char *src = kmap_atomic(obj_priv->pages[i], KM_USER0);
4877 4878 4879 4880 4881 4882
		char *dst = obj_priv->phys_obj->handle->vaddr + (i * PAGE_SIZE);

		memcpy(dst, src, PAGE_SIZE);
		kunmap_atomic(src, KM_USER0);
	}

4883 4884
	i915_gem_object_put_pages(obj);

4885 4886 4887 4888 4889 4890 4891 4892 4893 4894
	return 0;
out:
	return ret;
}

static int
i915_gem_phys_pwrite(struct drm_device *dev, struct drm_gem_object *obj,
		     struct drm_i915_gem_pwrite *args,
		     struct drm_file *file_priv)
{
4895
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
4896 4897 4898 4899 4900 4901 4902
	void *obj_addr;
	int ret;
	char __user *user_data;

	user_data = (char __user *) (uintptr_t) args->data_ptr;
	obj_addr = obj_priv->phys_obj->handle->vaddr + args->offset;

4903
	DRM_DEBUG_DRIVER("obj_addr %p, %lld\n", obj_addr, args->size);
4904 4905 4906 4907 4908 4909 4910
	ret = copy_from_user(obj_addr, user_data, args->size);
	if (ret)
		return -EFAULT;

	drm_agp_chipset_flush(dev);
	return 0;
}
4911

4912
void i915_gem_release(struct drm_device *dev, struct drm_file *file)
4913
{
4914
	struct drm_i915_file_private *file_priv = file->driver_priv;
4915 4916 4917 4918 4919

	/* Clean up our request list when the client is going away, so that
	 * later retire_requests won't dereference our soon-to-be-gone
	 * file_priv.
	 */
4920
	spin_lock(&file_priv->mm.lock);
4921 4922 4923 4924 4925 4926 4927 4928 4929
	while (!list_empty(&file_priv->mm.request_list)) {
		struct drm_i915_gem_request *request;

		request = list_first_entry(&file_priv->mm.request_list,
					   struct drm_i915_gem_request,
					   client_list);
		list_del(&request->client_list);
		request->file_priv = NULL;
	}
4930
	spin_unlock(&file_priv->mm.lock);
4931
}
4932

4933 4934 4935 4936 4937 4938 4939
static int
i915_gpu_is_active(struct drm_device *dev)
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	int lists_empty;

	lists_empty = list_empty(&dev_priv->mm.flushing_list) &&
4940
		      list_empty(&dev_priv->render_ring.active_list);
4941 4942
	if (HAS_BSD(dev))
		lists_empty &= list_empty(&dev_priv->bsd_ring.active_list);
4943 4944 4945 4946

	return !lists_empty;
}

4947
static int
4948
i915_gem_shrink(struct shrinker *shrink, int nr_to_scan, gfp_t gfp_mask)
4949 4950 4951 4952 4953 4954 4955 4956 4957 4958 4959 4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974 4975
{
	drm_i915_private_t *dev_priv, *next_dev;
	struct drm_i915_gem_object *obj_priv, *next_obj;
	int cnt = 0;
	int would_deadlock = 1;

	/* "fast-path" to count number of available objects */
	if (nr_to_scan == 0) {
		spin_lock(&shrink_list_lock);
		list_for_each_entry(dev_priv, &shrink_list, mm.shrink_list) {
			struct drm_device *dev = dev_priv->dev;

			if (mutex_trylock(&dev->struct_mutex)) {
				list_for_each_entry(obj_priv,
						    &dev_priv->mm.inactive_list,
						    list)
					cnt++;
				mutex_unlock(&dev->struct_mutex);
			}
		}
		spin_unlock(&shrink_list_lock);

		return (cnt / 100) * sysctl_vfs_cache_pressure;
	}

	spin_lock(&shrink_list_lock);

4976
rescan:
4977 4978 4979 4980 4981 4982 4983 4984 4985
	/* first scan for clean buffers */
	list_for_each_entry_safe(dev_priv, next_dev,
				 &shrink_list, mm.shrink_list) {
		struct drm_device *dev = dev_priv->dev;

		if (! mutex_trylock(&dev->struct_mutex))
			continue;

		spin_unlock(&shrink_list_lock);
4986
		i915_gem_retire_requests(dev);
4987 4988 4989 4990 4991

		list_for_each_entry_safe(obj_priv, next_obj,
					 &dev_priv->mm.inactive_list,
					 list) {
			if (i915_gem_object_is_purgeable(obj_priv)) {
4992
				i915_gem_object_unbind(&obj_priv->base);
4993 4994 4995 4996 4997 4998 4999 5000
				if (--nr_to_scan <= 0)
					break;
			}
		}

		spin_lock(&shrink_list_lock);
		mutex_unlock(&dev->struct_mutex);

5001 5002
		would_deadlock = 0;

5003 5004 5005 5006 5007 5008 5009 5010 5011 5012 5013 5014 5015 5016 5017 5018 5019 5020
		if (nr_to_scan <= 0)
			break;
	}

	/* second pass, evict/count anything still on the inactive list */
	list_for_each_entry_safe(dev_priv, next_dev,
				 &shrink_list, mm.shrink_list) {
		struct drm_device *dev = dev_priv->dev;

		if (! mutex_trylock(&dev->struct_mutex))
			continue;

		spin_unlock(&shrink_list_lock);

		list_for_each_entry_safe(obj_priv, next_obj,
					 &dev_priv->mm.inactive_list,
					 list) {
			if (nr_to_scan > 0) {
5021
				i915_gem_object_unbind(&obj_priv->base);
5022 5023 5024 5025 5026 5027 5028 5029 5030 5031 5032
				nr_to_scan--;
			} else
				cnt++;
		}

		spin_lock(&shrink_list_lock);
		mutex_unlock(&dev->struct_mutex);

		would_deadlock = 0;
	}

5033 5034 5035 5036 5037 5038 5039 5040 5041 5042 5043 5044 5045 5046 5047 5048 5049 5050 5051 5052 5053 5054 5055 5056 5057 5058 5059 5060 5061 5062
	if (nr_to_scan) {
		int active = 0;

		/*
		 * We are desperate for pages, so as a last resort, wait
		 * for the GPU to finish and discard whatever we can.
		 * This has a dramatic impact to reduce the number of
		 * OOM-killer events whilst running the GPU aggressively.
		 */
		list_for_each_entry(dev_priv, &shrink_list, mm.shrink_list) {
			struct drm_device *dev = dev_priv->dev;

			if (!mutex_trylock(&dev->struct_mutex))
				continue;

			spin_unlock(&shrink_list_lock);

			if (i915_gpu_is_active(dev)) {
				i915_gpu_idle(dev);
				active++;
			}

			spin_lock(&shrink_list_lock);
			mutex_unlock(&dev->struct_mutex);
		}

		if (active)
			goto rescan;
	}

5063 5064 5065 5066 5067 5068 5069 5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082 5083 5084 5085 5086 5087 5088
	spin_unlock(&shrink_list_lock);

	if (would_deadlock)
		return -1;
	else if (cnt > 0)
		return (cnt / 100) * sysctl_vfs_cache_pressure;
	else
		return 0;
}

static struct shrinker shrinker = {
	.shrink = i915_gem_shrink,
	.seeks = DEFAULT_SEEKS,
};

__init void
i915_gem_shrinker_init(void)
{
    register_shrinker(&shrinker);
}

__exit void
i915_gem_shrinker_exit(void)
{
    unregister_shrinker(&shrinker);
}