i915_gem.c 131.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
/*
 * Copyright © 2008 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 * Authors:
 *    Eric Anholt <eric@anholt.net>
 *
 */

#include "drmP.h"
#include "drm.h"
#include "i915_drm.h"
#include "i915_drv.h"
C
Chris Wilson 已提交
32
#include "i915_trace.h"
33
#include "intel_drv.h"
34
#include <linux/slab.h>
35
#include <linux/swap.h>
J
Jesse Barnes 已提交
36
#include <linux/pci.h>
37
#include <linux/intel-gtt.h>
38

39
static uint32_t i915_gem_get_gtt_alignment(struct drm_gem_object *obj);
40 41 42

static int i915_gem_object_flush_gpu_write_domain(struct drm_gem_object *obj,
						  bool pipelined);
43 44 45 46 47 48 49 50
static void i915_gem_object_flush_gtt_write_domain(struct drm_gem_object *obj);
static void i915_gem_object_flush_cpu_write_domain(struct drm_gem_object *obj);
static int i915_gem_object_set_to_cpu_domain(struct drm_gem_object *obj,
					     int write);
static int i915_gem_object_set_cpu_read_domain_range(struct drm_gem_object *obj,
						     uint64_t offset,
						     uint64_t size);
static void i915_gem_object_set_to_full_cpu_read_domain(struct drm_gem_object *obj);
51 52
static int i915_gem_object_wait_rendering(struct drm_gem_object *obj,
					  bool interruptible);
53 54 55
static int i915_gem_object_bind_to_gtt(struct drm_gem_object *obj,
					   unsigned alignment);
static void i915_gem_clear_fence_reg(struct drm_gem_object *obj);
56 57 58
static int i915_gem_phys_pwrite(struct drm_device *dev, struct drm_gem_object *obj,
				struct drm_i915_gem_pwrite *args,
				struct drm_file *file_priv);
59
static void i915_gem_free_object_tail(struct drm_gem_object *obj);
60

61 62 63 64 65 66 67
static int
i915_gem_object_get_pages(struct drm_gem_object *obj,
			  gfp_t gfpmask);

static void
i915_gem_object_put_pages(struct drm_gem_object *obj);

68 69 70
static LIST_HEAD(shrink_list);
static DEFINE_SPINLOCK(shrink_list_lock);

71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113
/* some bookkeeping */
static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
				  size_t size)
{
	dev_priv->mm.object_count++;
	dev_priv->mm.object_memory += size;
}

static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
				     size_t size)
{
	dev_priv->mm.object_count--;
	dev_priv->mm.object_memory -= size;
}

static void i915_gem_info_add_gtt(struct drm_i915_private *dev_priv,
				  size_t size)
{
	dev_priv->mm.gtt_count++;
	dev_priv->mm.gtt_memory += size;
}

static void i915_gem_info_remove_gtt(struct drm_i915_private *dev_priv,
				     size_t size)
{
	dev_priv->mm.gtt_count--;
	dev_priv->mm.gtt_memory -= size;
}

static void i915_gem_info_add_pin(struct drm_i915_private *dev_priv,
				  size_t size)
{
	dev_priv->mm.pin_count++;
	dev_priv->mm.pin_memory += size;
}

static void i915_gem_info_remove_pin(struct drm_i915_private *dev_priv,
				     size_t size)
{
	dev_priv->mm.pin_count--;
	dev_priv->mm.pin_memory -= size;
}

114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143
int
i915_gem_check_is_wedged(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct completion *x = &dev_priv->error_completion;
	unsigned long flags;
	int ret;

	if (!atomic_read(&dev_priv->mm.wedged))
		return 0;

	ret = wait_for_completion_interruptible(x);
	if (ret)
		return ret;

	/* Success, we reset the GPU! */
	if (!atomic_read(&dev_priv->mm.wedged))
		return 0;

	/* GPU is hung, bump the completion count to account for
	 * the token we just consumed so that we never hit zero and
	 * end up waiting upon a subsequent completion event that
	 * will never happen.
	 */
	spin_lock_irqsave(&x->wait.lock, flags);
	x->done++;
	spin_unlock_irqrestore(&x->wait.lock, flags);
	return -EIO;
}

144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161
static int i915_mutex_lock_interruptible(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	int ret;

	ret = i915_gem_check_is_wedged(dev);
	if (ret)
		return ret;

	ret = mutex_lock_interruptible(&dev->struct_mutex);
	if (ret)
		return ret;

	if (atomic_read(&dev_priv->mm.wedged)) {
		mutex_unlock(&dev->struct_mutex);
		return -EAGAIN;
	}

162
	WARN_ON(i915_verify_lists(dev));
163 164
	return 0;
}
165

166 167 168 169 170 171 172 173
static inline bool
i915_gem_object_is_inactive(struct drm_i915_gem_object *obj_priv)
{
	return obj_priv->gtt_space &&
		!obj_priv->active &&
		obj_priv->pin_count == 0;
}

174 175
int i915_gem_do_init(struct drm_device *dev,
		     unsigned long start,
J
Jesse Barnes 已提交
176
		     unsigned long end)
177 178 179
{
	drm_i915_private_t *dev_priv = dev->dev_private;

J
Jesse Barnes 已提交
180 181 182
	if (start >= end ||
	    (start & (PAGE_SIZE - 1)) != 0 ||
	    (end & (PAGE_SIZE - 1)) != 0) {
183 184 185
		return -EINVAL;
	}

J
Jesse Barnes 已提交
186 187
	drm_mm_init(&dev_priv->mm.gtt_space, start,
		    end - start);
188

189
	dev_priv->mm.gtt_total = end - start;
J
Jesse Barnes 已提交
190 191 192

	return 0;
}
193

J
Jesse Barnes 已提交
194 195 196 197 198 199 200 201 202
int
i915_gem_init_ioctl(struct drm_device *dev, void *data,
		    struct drm_file *file_priv)
{
	struct drm_i915_gem_init *args = data;
	int ret;

	mutex_lock(&dev->struct_mutex);
	ret = i915_gem_do_init(dev, args->gtt_start, args->gtt_end);
203 204
	mutex_unlock(&dev->struct_mutex);

J
Jesse Barnes 已提交
205
	return ret;
206 207
}

208 209 210 211
int
i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
			    struct drm_file *file_priv)
{
212
	struct drm_i915_private *dev_priv = dev->dev_private;
213 214 215 216 217
	struct drm_i915_gem_get_aperture *args = data;

	if (!(dev->driver->driver_features & DRIVER_GEM))
		return -ENODEV;

218 219 220 221
	mutex_lock(&dev->struct_mutex);
	args->aper_size = dev_priv->mm.gtt_total;
	args->aper_available_size = args->aper_size - dev_priv->mm.pin_memory;
	mutex_unlock(&dev->struct_mutex);
222 223 224 225

	return 0;
}

226 227 228 229 230 231 232 233 234 235

/**
 * Creates a new mm object and returns a handle to it.
 */
int
i915_gem_create_ioctl(struct drm_device *dev, void *data,
		      struct drm_file *file_priv)
{
	struct drm_i915_gem_create *args = data;
	struct drm_gem_object *obj;
236 237
	int ret;
	u32 handle;
238 239 240 241

	args->size = roundup(args->size, PAGE_SIZE);

	/* Allocate the new object */
242
	obj = i915_gem_alloc_object(dev, args->size);
243 244 245 246
	if (obj == NULL)
		return -ENOMEM;

	ret = drm_gem_handle_create(file_priv, obj, &handle);
247
	if (ret) {
248 249 250
		drm_gem_object_release(obj);
		i915_gem_info_remove_obj(dev->dev_private, obj->size);
		kfree(obj);
251
		return ret;
252
	}
253

254 255 256 257
	/* drop reference from allocate - handle holds it now */
	drm_gem_object_unreference(obj);
	trace_i915_gem_object_create(obj);

258
	args->handle = handle;
259 260 261
	return 0;
}

262 263 264 265 266 267 268
static inline int
fast_shmem_read(struct page **pages,
		loff_t page_base, int page_offset,
		char __user *data,
		int length)
{
	char __iomem *vaddr;
269
	int unwritten;
270 271 272 273

	vaddr = kmap_atomic(pages[page_base >> PAGE_SHIFT], KM_USER0);
	if (vaddr == NULL)
		return -ENOMEM;
274
	unwritten = __copy_to_user_inatomic(data, vaddr + page_offset, length);
275 276
	kunmap_atomic(vaddr, KM_USER0);

277 278 279 280
	if (unwritten)
		return -EFAULT;

	return 0;
281 282
}

283 284 285
static int i915_gem_object_needs_bit17_swizzle(struct drm_gem_object *obj)
{
	drm_i915_private_t *dev_priv = obj->dev->dev_private;
286
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
287 288 289 290 291

	return dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_9_10_17 &&
		obj_priv->tiling_mode != I915_TILING_NONE;
}

292
static inline void
293 294 295 296 297 298 299 300
slow_shmem_copy(struct page *dst_page,
		int dst_offset,
		struct page *src_page,
		int src_offset,
		int length)
{
	char *dst_vaddr, *src_vaddr;

301 302
	dst_vaddr = kmap(dst_page);
	src_vaddr = kmap(src_page);
303 304 305

	memcpy(dst_vaddr + dst_offset, src_vaddr + src_offset, length);

306 307
	kunmap(src_page);
	kunmap(dst_page);
308 309
}

310
static inline void
311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329
slow_shmem_bit17_copy(struct page *gpu_page,
		      int gpu_offset,
		      struct page *cpu_page,
		      int cpu_offset,
		      int length,
		      int is_read)
{
	char *gpu_vaddr, *cpu_vaddr;

	/* Use the unswizzled path if this page isn't affected. */
	if ((page_to_phys(gpu_page) & (1 << 17)) == 0) {
		if (is_read)
			return slow_shmem_copy(cpu_page, cpu_offset,
					       gpu_page, gpu_offset, length);
		else
			return slow_shmem_copy(gpu_page, gpu_offset,
					       cpu_page, cpu_offset, length);
	}

330 331
	gpu_vaddr = kmap(gpu_page);
	cpu_vaddr = kmap(cpu_page);
332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354

	/* Copy the data, XORing A6 with A17 (1). The user already knows he's
	 * XORing with the other bits (A9 for Y, A9 and A10 for X)
	 */
	while (length > 0) {
		int cacheline_end = ALIGN(gpu_offset + 1, 64);
		int this_length = min(cacheline_end - gpu_offset, length);
		int swizzled_gpu_offset = gpu_offset ^ 64;

		if (is_read) {
			memcpy(cpu_vaddr + cpu_offset,
			       gpu_vaddr + swizzled_gpu_offset,
			       this_length);
		} else {
			memcpy(gpu_vaddr + swizzled_gpu_offset,
			       cpu_vaddr + cpu_offset,
			       this_length);
		}
		cpu_offset += this_length;
		gpu_offset += this_length;
		length -= this_length;
	}

355 356
	kunmap(cpu_page);
	kunmap(gpu_page);
357 358
}

359 360 361 362 363 364 365 366 367 368
/**
 * This is the fast shmem pread path, which attempts to copy_from_user directly
 * from the backing pages of the object to the user's address space.  On a
 * fault, it fails so we can fall back to i915_gem_shmem_pwrite_slow().
 */
static int
i915_gem_shmem_pread_fast(struct drm_device *dev, struct drm_gem_object *obj,
			  struct drm_i915_gem_pread *args,
			  struct drm_file *file_priv)
{
369
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
370 371 372 373 374 375 376 377 378
	ssize_t remain;
	loff_t offset, page_base;
	char __user *user_data;
	int page_offset, page_length;
	int ret;

	user_data = (char __user *) (uintptr_t) args->data_ptr;
	remain = args->size;

379 380 381
	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		return ret;
382

383
	ret = i915_gem_object_get_pages(obj, 0);
384 385 386 387 388 389 390 391
	if (ret != 0)
		goto fail_unlock;

	ret = i915_gem_object_set_cpu_read_domain_range(obj, args->offset,
							args->size);
	if (ret != 0)
		goto fail_put_pages;

392
	obj_priv = to_intel_bo(obj);
393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426
	offset = args->offset;

	while (remain > 0) {
		/* Operation in this page
		 *
		 * page_base = page offset within aperture
		 * page_offset = offset within page
		 * page_length = bytes to copy for this page
		 */
		page_base = (offset & ~(PAGE_SIZE-1));
		page_offset = offset & (PAGE_SIZE-1);
		page_length = remain;
		if ((page_offset + remain) > PAGE_SIZE)
			page_length = PAGE_SIZE - page_offset;

		ret = fast_shmem_read(obj_priv->pages,
				      page_base, page_offset,
				      user_data, page_length);
		if (ret)
			goto fail_put_pages;

		remain -= page_length;
		user_data += page_length;
		offset += page_length;
	}

fail_put_pages:
	i915_gem_object_put_pages(obj);
fail_unlock:
	mutex_unlock(&dev->struct_mutex);

	return ret;
}

427 428 429 430 431
static int
i915_gem_object_get_pages_or_evict(struct drm_gem_object *obj)
{
	int ret;

432
	ret = i915_gem_object_get_pages(obj, __GFP_NORETRY | __GFP_NOWARN);
433 434 435 436 437 438 439

	/* If we've insufficient memory to map in the pages, attempt
	 * to make some space by throwing out some old buffers.
	 */
	if (ret == -ENOMEM) {
		struct drm_device *dev = obj->dev;

440 441
		ret = i915_gem_evict_something(dev, obj->size,
					       i915_gem_get_gtt_alignment(obj));
442 443 444
		if (ret)
			return ret;

445
		ret = i915_gem_object_get_pages(obj, 0);
446 447 448 449 450
	}

	return ret;
}

451 452 453 454 455 456 457 458 459 460 461
/**
 * This is the fallback shmem pread path, which allocates temporary storage
 * in kernel space to copy_to_user into outside of the struct_mutex, so we
 * can copy out of the object's backing pages while holding the struct mutex
 * and not take page faults.
 */
static int
i915_gem_shmem_pread_slow(struct drm_device *dev, struct drm_gem_object *obj,
			  struct drm_i915_gem_pread *args,
			  struct drm_file *file_priv)
{
462
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
463 464 465 466 467 468 469 470 471 472
	struct mm_struct *mm = current->mm;
	struct page **user_pages;
	ssize_t remain;
	loff_t offset, pinned_pages, i;
	loff_t first_data_page, last_data_page, num_pages;
	int shmem_page_index, shmem_page_offset;
	int data_page_index,  data_page_offset;
	int page_length;
	int ret;
	uint64_t data_ptr = args->data_ptr;
473
	int do_bit17_swizzling;
474 475 476 477 478 479 480 481 482 483 484

	remain = args->size;

	/* Pin the user pages containing the data.  We can't fault while
	 * holding the struct mutex, yet we want to hold it while
	 * dereferencing the user data.
	 */
	first_data_page = data_ptr / PAGE_SIZE;
	last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
	num_pages = last_data_page - first_data_page + 1;

485
	user_pages = drm_calloc_large(num_pages, sizeof(struct page *));
486 487 488 489 490
	if (user_pages == NULL)
		return -ENOMEM;

	down_read(&mm->mmap_sem);
	pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
491
				      num_pages, 1, 0, user_pages, NULL);
492 493 494 495 496 497
	up_read(&mm->mmap_sem);
	if (pinned_pages < num_pages) {
		ret = -EFAULT;
		goto fail_put_user_pages;
	}

498 499
	do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);

500 501 502
	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		goto fail_put_user_pages;
503

504 505
	ret = i915_gem_object_get_pages_or_evict(obj);
	if (ret)
506 507 508 509 510 511 512
		goto fail_unlock;

	ret = i915_gem_object_set_cpu_read_domain_range(obj, args->offset,
							args->size);
	if (ret != 0)
		goto fail_put_pages;

513
	obj_priv = to_intel_bo(obj);
514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535
	offset = args->offset;

	while (remain > 0) {
		/* Operation in this page
		 *
		 * shmem_page_index = page number within shmem file
		 * shmem_page_offset = offset within page in shmem file
		 * data_page_index = page number in get_user_pages return
		 * data_page_offset = offset with data_page_index page.
		 * page_length = bytes to copy for this page
		 */
		shmem_page_index = offset / PAGE_SIZE;
		shmem_page_offset = offset & ~PAGE_MASK;
		data_page_index = data_ptr / PAGE_SIZE - first_data_page;
		data_page_offset = data_ptr & ~PAGE_MASK;

		page_length = remain;
		if ((shmem_page_offset + page_length) > PAGE_SIZE)
			page_length = PAGE_SIZE - shmem_page_offset;
		if ((data_page_offset + page_length) > PAGE_SIZE)
			page_length = PAGE_SIZE - data_page_offset;

536
		if (do_bit17_swizzling) {
537
			slow_shmem_bit17_copy(obj_priv->pages[shmem_page_index],
538
					      shmem_page_offset,
539 540 541 542 543 544 545 546 547 548
					      user_pages[data_page_index],
					      data_page_offset,
					      page_length,
					      1);
		} else {
			slow_shmem_copy(user_pages[data_page_index],
					data_page_offset,
					obj_priv->pages[shmem_page_index],
					shmem_page_offset,
					page_length);
549
		}
550 551 552 553 554 555 556 557 558 559 560 561 562 563 564

		remain -= page_length;
		data_ptr += page_length;
		offset += page_length;
	}

fail_put_pages:
	i915_gem_object_put_pages(obj);
fail_unlock:
	mutex_unlock(&dev->struct_mutex);
fail_put_user_pages:
	for (i = 0; i < pinned_pages; i++) {
		SetPageDirty(user_pages[i]);
		page_cache_release(user_pages[i]);
	}
565
	drm_free_large(user_pages);
566 567 568 569

	return ret;
}

570 571 572 573 574 575 576 577 578 579 580 581
/**
 * Reads data from the object referenced by handle.
 *
 * On error, the contents of *data are undefined.
 */
int
i915_gem_pread_ioctl(struct drm_device *dev, void *data,
		     struct drm_file *file_priv)
{
	struct drm_i915_gem_pread *args = data;
	struct drm_gem_object *obj;
	struct drm_i915_gem_object *obj_priv;
582
	int ret = 0;
583 584 585

	obj = drm_gem_object_lookup(dev, file_priv, args->handle);
	if (obj == NULL)
586
		return -ENOENT;
587
	obj_priv = to_intel_bo(obj);
588

589 590
	/* Bounds check source.  */
	if (args->offset > obj->size || args->size > obj->size - args->offset) {
C
Chris Wilson 已提交
591
		ret = -EINVAL;
592
		goto out;
C
Chris Wilson 已提交
593 594
	}

595 596 597
	if (args->size == 0)
		goto out;

C
Chris Wilson 已提交
598 599 600 601
	if (!access_ok(VERIFY_WRITE,
		       (char __user *)(uintptr_t)args->data_ptr,
		       args->size)) {
		ret = -EFAULT;
602
		goto out;
603 604
	}

605
	if (i915_gem_object_needs_bit17_swizzle(obj)) {
606
		ret = i915_gem_shmem_pread_slow(dev, obj, args, file_priv);
607 608 609 610 611 612
	} else {
		ret = i915_gem_shmem_pread_fast(dev, obj, args, file_priv);
		if (ret != 0)
			ret = i915_gem_shmem_pread_slow(dev, obj, args,
							file_priv);
	}
613

614
out:
615
	drm_gem_object_unreference_unlocked(obj);
616
	return ret;
617 618
}

619 620
/* This is the fast write path which cannot handle
 * page faults in the source data
621
 */
622 623 624 625 626 627

static inline int
fast_user_write(struct io_mapping *mapping,
		loff_t page_base, int page_offset,
		char __user *user_data,
		int length)
628 629
{
	char *vaddr_atomic;
630
	unsigned long unwritten;
631

632
	vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base, KM_USER0);
633 634
	unwritten = __copy_from_user_inatomic_nocache(vaddr_atomic + page_offset,
						      user_data, length);
635
	io_mapping_unmap_atomic(vaddr_atomic, KM_USER0);
636 637 638 639 640 641 642 643 644
	if (unwritten)
		return -EFAULT;
	return 0;
}

/* Here's the write path which can sleep for
 * page faults
 */

645
static inline void
646 647 648 649
slow_kernel_write(struct io_mapping *mapping,
		  loff_t gtt_base, int gtt_offset,
		  struct page *user_page, int user_offset,
		  int length)
650
{
651 652
	char __iomem *dst_vaddr;
	char *src_vaddr;
653

654 655 656 657 658 659 660 661 662
	dst_vaddr = io_mapping_map_wc(mapping, gtt_base);
	src_vaddr = kmap(user_page);

	memcpy_toio(dst_vaddr + gtt_offset,
		    src_vaddr + user_offset,
		    length);

	kunmap(user_page);
	io_mapping_unmap(dst_vaddr);
663 664
}

665 666 667 668 669 670 671
static inline int
fast_shmem_write(struct page **pages,
		 loff_t page_base, int page_offset,
		 char __user *data,
		 int length)
{
	char __iomem *vaddr;
672
	unsigned long unwritten;
673 674 675 676

	vaddr = kmap_atomic(pages[page_base >> PAGE_SHIFT], KM_USER0);
	if (vaddr == NULL)
		return -ENOMEM;
677
	unwritten = __copy_from_user_inatomic(vaddr + page_offset, data, length);
678 679
	kunmap_atomic(vaddr, KM_USER0);

680 681
	if (unwritten)
		return -EFAULT;
682 683 684
	return 0;
}

685 686 687 688
/**
 * This is the fast pwrite path, where we copy the data directly from the
 * user into the GTT, uncached.
 */
689
static int
690 691 692
i915_gem_gtt_pwrite_fast(struct drm_device *dev, struct drm_gem_object *obj,
			 struct drm_i915_gem_pwrite *args,
			 struct drm_file *file_priv)
693
{
694
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
695
	drm_i915_private_t *dev_priv = dev->dev_private;
696
	ssize_t remain;
697
	loff_t offset, page_base;
698
	char __user *user_data;
699 700
	int page_offset, page_length;
	int ret;
701 702 703 704

	user_data = (char __user *) (uintptr_t) args->data_ptr;
	remain = args->size;

705 706 707
	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		return ret;
708 709 710 711 712 713

	ret = i915_gem_object_pin(obj, 0);
	if (ret) {
		mutex_unlock(&dev->struct_mutex);
		return ret;
	}
714
	ret = i915_gem_object_set_to_gtt_domain(obj, 1);
715 716 717
	if (ret)
		goto fail;

718
	obj_priv = to_intel_bo(obj);
719 720 721 722 723
	offset = obj_priv->gtt_offset + args->offset;

	while (remain > 0) {
		/* Operation in this page
		 *
724 725 726
		 * page_base = page offset within aperture
		 * page_offset = offset within page
		 * page_length = bytes to copy for this page
727
		 */
728 729 730 731 732 733 734 735 736 737
		page_base = (offset & ~(PAGE_SIZE-1));
		page_offset = offset & (PAGE_SIZE-1);
		page_length = remain;
		if ((page_offset + remain) > PAGE_SIZE)
			page_length = PAGE_SIZE - page_offset;

		ret = fast_user_write (dev_priv->mm.gtt_mapping, page_base,
				       page_offset, user_data, page_length);

		/* If we get a fault while copying data, then (presumably) our
738 739
		 * source page isn't available.  Return the error and we'll
		 * retry in the slow path.
740
		 */
741 742
		if (ret)
			goto fail;
743

744 745 746
		remain -= page_length;
		user_data += page_length;
		offset += page_length;
747 748 749 750 751 752 753 754 755
	}

fail:
	i915_gem_object_unpin(obj);
	mutex_unlock(&dev->struct_mutex);

	return ret;
}

756 757 758 759 760 761 762
/**
 * This is the fallback GTT pwrite path, which uses get_user_pages to pin
 * the memory and maps it using kmap_atomic for copying.
 *
 * This code resulted in x11perf -rgb10text consuming about 10% more CPU
 * than using i915_gem_gtt_pwrite_fast on a G45 (32-bit).
 */
763
static int
764 765 766
i915_gem_gtt_pwrite_slow(struct drm_device *dev, struct drm_gem_object *obj,
			 struct drm_i915_gem_pwrite *args,
			 struct drm_file *file_priv)
767
{
768
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
769 770 771 772 773 774 775 776
	drm_i915_private_t *dev_priv = dev->dev_private;
	ssize_t remain;
	loff_t gtt_page_base, offset;
	loff_t first_data_page, last_data_page, num_pages;
	loff_t pinned_pages, i;
	struct page **user_pages;
	struct mm_struct *mm = current->mm;
	int gtt_page_offset, data_page_offset, data_page_index, page_length;
777
	int ret;
778 779 780 781 782 783 784 785 786 787 788 789
	uint64_t data_ptr = args->data_ptr;

	remain = args->size;

	/* Pin the user pages containing the data.  We can't fault while
	 * holding the struct mutex, and all of the pwrite implementations
	 * want to hold it while dereferencing the user data.
	 */
	first_data_page = data_ptr / PAGE_SIZE;
	last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
	num_pages = last_data_page - first_data_page + 1;

790
	user_pages = drm_calloc_large(num_pages, sizeof(struct page *));
791 792 793 794 795 796 797 798 799 800 801
	if (user_pages == NULL)
		return -ENOMEM;

	down_read(&mm->mmap_sem);
	pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
				      num_pages, 0, 0, user_pages, NULL);
	up_read(&mm->mmap_sem);
	if (pinned_pages < num_pages) {
		ret = -EFAULT;
		goto out_unpin_pages;
	}
802

803 804 805 806
	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		goto out_unpin_pages;

807 808 809 810 811 812 813 814
	ret = i915_gem_object_pin(obj, 0);
	if (ret)
		goto out_unlock;

	ret = i915_gem_object_set_to_gtt_domain(obj, 1);
	if (ret)
		goto out_unpin_object;

815
	obj_priv = to_intel_bo(obj);
816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837
	offset = obj_priv->gtt_offset + args->offset;

	while (remain > 0) {
		/* Operation in this page
		 *
		 * gtt_page_base = page offset within aperture
		 * gtt_page_offset = offset within page in aperture
		 * data_page_index = page number in get_user_pages return
		 * data_page_offset = offset with data_page_index page.
		 * page_length = bytes to copy for this page
		 */
		gtt_page_base = offset & PAGE_MASK;
		gtt_page_offset = offset & ~PAGE_MASK;
		data_page_index = data_ptr / PAGE_SIZE - first_data_page;
		data_page_offset = data_ptr & ~PAGE_MASK;

		page_length = remain;
		if ((gtt_page_offset + page_length) > PAGE_SIZE)
			page_length = PAGE_SIZE - gtt_page_offset;
		if ((data_page_offset + page_length) > PAGE_SIZE)
			page_length = PAGE_SIZE - data_page_offset;

838 839 840 841 842
		slow_kernel_write(dev_priv->mm.gtt_mapping,
				  gtt_page_base, gtt_page_offset,
				  user_pages[data_page_index],
				  data_page_offset,
				  page_length);
843 844 845 846 847 848 849 850 851 852 853 854 855

		remain -= page_length;
		offset += page_length;
		data_ptr += page_length;
	}

out_unpin_object:
	i915_gem_object_unpin(obj);
out_unlock:
	mutex_unlock(&dev->struct_mutex);
out_unpin_pages:
	for (i = 0; i < pinned_pages; i++)
		page_cache_release(user_pages[i]);
856
	drm_free_large(user_pages);
857 858 859 860

	return ret;
}

861 862 863 864
/**
 * This is the fast shmem pwrite path, which attempts to directly
 * copy_from_user into the kmapped pages backing the object.
 */
865
static int
866 867 868
i915_gem_shmem_pwrite_fast(struct drm_device *dev, struct drm_gem_object *obj,
			   struct drm_i915_gem_pwrite *args,
			   struct drm_file *file_priv)
869
{
870
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
871 872 873 874
	ssize_t remain;
	loff_t offset, page_base;
	char __user *user_data;
	int page_offset, page_length;
875
	int ret;
876 877 878

	user_data = (char __user *) (uintptr_t) args->data_ptr;
	remain = args->size;
879

880 881 882
	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		return ret;
883

884
	ret = i915_gem_object_get_pages(obj, 0);
885 886
	if (ret != 0)
		goto fail_unlock;
887

888
	ret = i915_gem_object_set_to_cpu_domain(obj, 1);
889 890 891
	if (ret != 0)
		goto fail_put_pages;

892
	obj_priv = to_intel_bo(obj);
893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939
	offset = args->offset;
	obj_priv->dirty = 1;

	while (remain > 0) {
		/* Operation in this page
		 *
		 * page_base = page offset within aperture
		 * page_offset = offset within page
		 * page_length = bytes to copy for this page
		 */
		page_base = (offset & ~(PAGE_SIZE-1));
		page_offset = offset & (PAGE_SIZE-1);
		page_length = remain;
		if ((page_offset + remain) > PAGE_SIZE)
			page_length = PAGE_SIZE - page_offset;

		ret = fast_shmem_write(obj_priv->pages,
				       page_base, page_offset,
				       user_data, page_length);
		if (ret)
			goto fail_put_pages;

		remain -= page_length;
		user_data += page_length;
		offset += page_length;
	}

fail_put_pages:
	i915_gem_object_put_pages(obj);
fail_unlock:
	mutex_unlock(&dev->struct_mutex);

	return ret;
}

/**
 * This is the fallback shmem pwrite path, which uses get_user_pages to pin
 * the memory and maps it using kmap_atomic for copying.
 *
 * This avoids taking mmap_sem for faulting on the user's address while the
 * struct_mutex is held.
 */
static int
i915_gem_shmem_pwrite_slow(struct drm_device *dev, struct drm_gem_object *obj,
			   struct drm_i915_gem_pwrite *args,
			   struct drm_file *file_priv)
{
940
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
941 942 943 944 945 946 947 948 949 950
	struct mm_struct *mm = current->mm;
	struct page **user_pages;
	ssize_t remain;
	loff_t offset, pinned_pages, i;
	loff_t first_data_page, last_data_page, num_pages;
	int shmem_page_index, shmem_page_offset;
	int data_page_index,  data_page_offset;
	int page_length;
	int ret;
	uint64_t data_ptr = args->data_ptr;
951
	int do_bit17_swizzling;
952 953 954 955 956 957 958 959 960 961 962

	remain = args->size;

	/* Pin the user pages containing the data.  We can't fault while
	 * holding the struct mutex, and all of the pwrite implementations
	 * want to hold it while dereferencing the user data.
	 */
	first_data_page = data_ptr / PAGE_SIZE;
	last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
	num_pages = last_data_page - first_data_page + 1;

963
	user_pages = drm_calloc_large(num_pages, sizeof(struct page *));
964 965 966 967 968 969 970 971 972 973
	if (user_pages == NULL)
		return -ENOMEM;

	down_read(&mm->mmap_sem);
	pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
				      num_pages, 0, 0, user_pages, NULL);
	up_read(&mm->mmap_sem);
	if (pinned_pages < num_pages) {
		ret = -EFAULT;
		goto fail_put_user_pages;
974 975
	}

976 977
	do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);

978 979 980
	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		goto fail_put_user_pages;
981

982 983
	ret = i915_gem_object_get_pages_or_evict(obj);
	if (ret)
984 985 986 987 988 989
		goto fail_unlock;

	ret = i915_gem_object_set_to_cpu_domain(obj, 1);
	if (ret != 0)
		goto fail_put_pages;

990
	obj_priv = to_intel_bo(obj);
991
	offset = args->offset;
992
	obj_priv->dirty = 1;
993

994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013
	while (remain > 0) {
		/* Operation in this page
		 *
		 * shmem_page_index = page number within shmem file
		 * shmem_page_offset = offset within page in shmem file
		 * data_page_index = page number in get_user_pages return
		 * data_page_offset = offset with data_page_index page.
		 * page_length = bytes to copy for this page
		 */
		shmem_page_index = offset / PAGE_SIZE;
		shmem_page_offset = offset & ~PAGE_MASK;
		data_page_index = data_ptr / PAGE_SIZE - first_data_page;
		data_page_offset = data_ptr & ~PAGE_MASK;

		page_length = remain;
		if ((shmem_page_offset + page_length) > PAGE_SIZE)
			page_length = PAGE_SIZE - shmem_page_offset;
		if ((data_page_offset + page_length) > PAGE_SIZE)
			page_length = PAGE_SIZE - data_page_offset;

1014
		if (do_bit17_swizzling) {
1015
			slow_shmem_bit17_copy(obj_priv->pages[shmem_page_index],
1016 1017 1018
					      shmem_page_offset,
					      user_pages[data_page_index],
					      data_page_offset,
1019 1020 1021 1022 1023 1024 1025 1026
					      page_length,
					      0);
		} else {
			slow_shmem_copy(obj_priv->pages[shmem_page_index],
					shmem_page_offset,
					user_pages[data_page_index],
					data_page_offset,
					page_length);
1027
		}
1028 1029 1030 1031

		remain -= page_length;
		data_ptr += page_length;
		offset += page_length;
1032 1033
	}

1034 1035 1036
fail_put_pages:
	i915_gem_object_put_pages(obj);
fail_unlock:
1037
	mutex_unlock(&dev->struct_mutex);
1038 1039 1040
fail_put_user_pages:
	for (i = 0; i < pinned_pages; i++)
		page_cache_release(user_pages[i]);
1041
	drm_free_large(user_pages);
1042

1043
	return ret;
1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061
}

/**
 * Writes data to the object referenced by handle.
 *
 * On error, the contents of the buffer that were to be modified are undefined.
 */
int
i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
		      struct drm_file *file_priv)
{
	struct drm_i915_gem_pwrite *args = data;
	struct drm_gem_object *obj;
	struct drm_i915_gem_object *obj_priv;
	int ret = 0;

	obj = drm_gem_object_lookup(dev, file_priv, args->handle);
	if (obj == NULL)
1062
		return -ENOENT;
1063
	obj_priv = to_intel_bo(obj);
1064

1065 1066
	/* Bounds check destination. */
	if (args->offset > obj->size || args->size > obj->size - args->offset) {
C
Chris Wilson 已提交
1067
		ret = -EINVAL;
1068
		goto out;
C
Chris Wilson 已提交
1069 1070
	}

1071 1072 1073
	if (args->size == 0)
		goto out;

C
Chris Wilson 已提交
1074 1075 1076 1077
	if (!access_ok(VERIFY_READ,
		       (char __user *)(uintptr_t)args->data_ptr,
		       args->size)) {
		ret = -EFAULT;
1078
		goto out;
1079 1080 1081 1082 1083 1084 1085 1086
	}

	/* We can only do the GTT pwrite on untiled buffers, as otherwise
	 * it would end up going through the fenced access, and we'll get
	 * different detiling behavior between reading and writing.
	 * pread/pwrite currently are reading and writing from the CPU
	 * perspective, requiring manual detiling by the client.
	 */
1087 1088 1089
	if (obj_priv->phys_obj)
		ret = i915_gem_phys_pwrite(dev, obj, args, file_priv);
	else if (obj_priv->tiling_mode == I915_TILING_NONE &&
1090
		 obj_priv->gtt_space &&
1091
		 obj->write_domain != I915_GEM_DOMAIN_CPU) {
1092 1093 1094 1095 1096
		ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file_priv);
		if (ret == -EFAULT) {
			ret = i915_gem_gtt_pwrite_slow(dev, obj, args,
						       file_priv);
		}
1097 1098
	} else if (i915_gem_object_needs_bit17_swizzle(obj)) {
		ret = i915_gem_shmem_pwrite_slow(dev, obj, args, file_priv);
1099 1100 1101 1102 1103 1104 1105
	} else {
		ret = i915_gem_shmem_pwrite_fast(dev, obj, args, file_priv);
		if (ret == -EFAULT) {
			ret = i915_gem_shmem_pwrite_slow(dev, obj, args,
							 file_priv);
		}
	}
1106 1107 1108 1109 1110 1111

#if WATCH_PWRITE
	if (ret)
		DRM_INFO("pwrite failed %d\n", ret);
#endif

1112
out:
1113
	drm_gem_object_unreference_unlocked(obj);
1114 1115 1116 1117
	return ret;
}

/**
1118 1119
 * Called when user space prepares to use an object with the CPU, either
 * through the mmap ioctl's mapping or a GTT mapping.
1120 1121 1122 1123 1124
 */
int
i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
			  struct drm_file *file_priv)
{
1125
	struct drm_i915_private *dev_priv = dev->dev_private;
1126 1127
	struct drm_i915_gem_set_domain *args = data;
	struct drm_gem_object *obj;
1128
	struct drm_i915_gem_object *obj_priv;
1129 1130
	uint32_t read_domains = args->read_domains;
	uint32_t write_domain = args->write_domain;
1131 1132 1133 1134 1135
	int ret;

	if (!(dev->driver->driver_features & DRIVER_GEM))
		return -ENODEV;

1136
	/* Only handle setting domains to types used by the CPU. */
1137
	if (write_domain & I915_GEM_GPU_DOMAINS)
1138 1139
		return -EINVAL;

1140
	if (read_domains & I915_GEM_GPU_DOMAINS)
1141 1142 1143 1144 1145 1146 1147 1148
		return -EINVAL;

	/* Having something in the write domain implies it's in the read
	 * domain, and only that read domain.  Enforce that in the request.
	 */
	if (write_domain != 0 && read_domains != write_domain)
		return -EINVAL;

1149 1150
	obj = drm_gem_object_lookup(dev, file_priv, args->handle);
	if (obj == NULL)
1151
		return -ENOENT;
1152
	obj_priv = to_intel_bo(obj);
1153

1154 1155 1156 1157 1158
	ret = i915_mutex_lock_interruptible(dev);
	if (ret) {
		drm_gem_object_unreference_unlocked(obj);
		return ret;
	}
1159 1160 1161

	intel_mark_busy(dev, obj);

1162 1163
	if (read_domains & I915_GEM_DOMAIN_GTT) {
		ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
1164

1165 1166 1167 1168
		/* Update the LRU on the fence for the CPU access that's
		 * about to occur.
		 */
		if (obj_priv->fence_reg != I915_FENCE_REG_NONE) {
1169 1170 1171
			struct drm_i915_fence_reg *reg =
				&dev_priv->fence_regs[obj_priv->fence_reg];
			list_move_tail(&reg->lru_list,
1172 1173 1174
				       &dev_priv->mm.fence_list);
		}

1175 1176 1177 1178 1179 1180
		/* Silently promote "you're not bound, there was nothing to do"
		 * to success, since the client was just asking us to
		 * make sure everything was done.
		 */
		if (ret == -EINVAL)
			ret = 0;
1181
	} else {
1182
		ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
1183 1184
	}

1185 1186 1187 1188
	/* Maintain LRU order of "inactive" objects */
	if (ret == 0 && i915_gem_object_is_inactive(obj_priv))
		list_move_tail(&obj_priv->list, &dev_priv->mm.inactive_list);

1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208
	drm_gem_object_unreference(obj);
	mutex_unlock(&dev->struct_mutex);
	return ret;
}

/**
 * Called when user space has done writes to this buffer
 */
int
i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
		      struct drm_file *file_priv)
{
	struct drm_i915_gem_sw_finish *args = data;
	struct drm_gem_object *obj;
	int ret = 0;

	if (!(dev->driver->driver_features & DRIVER_GEM))
		return -ENODEV;

	obj = drm_gem_object_lookup(dev, file_priv, args->handle);
1209
	if (obj == NULL)
1210
		return -ENOENT;
1211 1212 1213 1214 1215

	ret = i915_mutex_lock_interruptible(dev);
	if (ret) {
		drm_gem_object_unreference_unlocked(obj);
		return ret;
1216 1217 1218
	}

	/* Pinned buffers may be scanout, so flush the cache */
1219
	if (to_intel_bo(obj)->pin_count)
1220 1221
		i915_gem_object_flush_cpu_write_domain(obj);

1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247
	drm_gem_object_unreference(obj);
	mutex_unlock(&dev->struct_mutex);
	return ret;
}

/**
 * Maps the contents of an object, returning the address it is mapped
 * into.
 *
 * While the mapping holds a reference on the contents of the object, it doesn't
 * imply a ref on the object itself.
 */
int
i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
		   struct drm_file *file_priv)
{
	struct drm_i915_gem_mmap *args = data;
	struct drm_gem_object *obj;
	loff_t offset;
	unsigned long addr;

	if (!(dev->driver->driver_features & DRIVER_GEM))
		return -ENODEV;

	obj = drm_gem_object_lookup(dev, file_priv, args->handle);
	if (obj == NULL)
1248
		return -ENOENT;
1249 1250 1251 1252 1253 1254 1255 1256

	offset = args->offset;

	down_write(&current->mm->mmap_sem);
	addr = do_mmap(obj->filp, 0, args->size,
		       PROT_READ | PROT_WRITE, MAP_SHARED,
		       args->offset);
	up_write(&current->mm->mmap_sem);
1257
	drm_gem_object_unreference_unlocked(obj);
1258 1259 1260 1261 1262 1263 1264 1265
	if (IS_ERR((void *)addr))
		return addr;

	args->addr_ptr = (uint64_t) addr;

	return 0;
}

1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285
/**
 * i915_gem_fault - fault a page into the GTT
 * vma: VMA in question
 * vmf: fault info
 *
 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
 * from userspace.  The fault handler takes care of binding the object to
 * the GTT (if needed), allocating and programming a fence register (again,
 * only if needed based on whether the old reg is still valid or the object
 * is tiled) and inserting a new PTE into the faulting process.
 *
 * Note that the faulting process may involve evicting existing objects
 * from the GTT and/or fence registers to make room.  So performance may
 * suffer if the GTT working set is large or there are few fence registers
 * left.
 */
int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
{
	struct drm_gem_object *obj = vma->vm_private_data;
	struct drm_device *dev = obj->dev;
1286
	drm_i915_private_t *dev_priv = dev->dev_private;
1287
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1288 1289 1290
	pgoff_t page_offset;
	unsigned long pfn;
	int ret = 0;
1291
	bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
1292 1293 1294 1295 1296 1297 1298 1299

	/* We don't use vmf->pgoff since that has the fake offset */
	page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
		PAGE_SHIFT;

	/* Now bind it into the GTT if needed */
	mutex_lock(&dev->struct_mutex);
	if (!obj_priv->gtt_space) {
1300
		ret = i915_gem_object_bind_to_gtt(obj, 0);
1301 1302
		if (ret)
			goto unlock;
1303 1304

		ret = i915_gem_object_set_to_gtt_domain(obj, write);
1305 1306
		if (ret)
			goto unlock;
1307 1308 1309
	}

	/* Need a new fence register? */
1310
	if (obj_priv->tiling_mode != I915_TILING_NONE) {
1311
		ret = i915_gem_object_get_fence_reg(obj, true);
1312 1313
		if (ret)
			goto unlock;
1314
	}
1315

1316 1317 1318
	if (i915_gem_object_is_inactive(obj_priv))
		list_move_tail(&obj_priv->list, &dev_priv->mm.inactive_list);

1319 1320 1321 1322 1323
	pfn = ((dev->agp->base + obj_priv->gtt_offset) >> PAGE_SHIFT) +
		page_offset;

	/* Finally, remap it using the new GTT offset */
	ret = vm_insert_pfn(vma, (unsigned long)vmf->virtual_address, pfn);
1324
unlock:
1325 1326 1327
	mutex_unlock(&dev->struct_mutex);

	switch (ret) {
1328 1329 1330
	case 0:
	case -ERESTARTSYS:
		return VM_FAULT_NOPAGE;
1331 1332 1333 1334
	case -ENOMEM:
	case -EAGAIN:
		return VM_FAULT_OOM;
	default:
1335
		return VM_FAULT_SIGBUS;
1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354
	}
}

/**
 * i915_gem_create_mmap_offset - create a fake mmap offset for an object
 * @obj: obj in question
 *
 * GEM memory mapping works by handing back to userspace a fake mmap offset
 * it can use in a subsequent mmap(2) call.  The DRM core code then looks
 * up the object based on the offset and sets up the various memory mapping
 * structures.
 *
 * This routine allocates and attaches a fake offset for @obj.
 */
static int
i915_gem_create_mmap_offset(struct drm_gem_object *obj)
{
	struct drm_device *dev = obj->dev;
	struct drm_gem_mm *mm = dev->mm_private;
1355
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1356
	struct drm_map_list *list;
1357
	struct drm_local_map *map;
1358 1359 1360 1361
	int ret = 0;

	/* Set the object up for mmap'ing */
	list = &obj->map_list;
1362
	list->map = kzalloc(sizeof(struct drm_map_list), GFP_KERNEL);
1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375
	if (!list->map)
		return -ENOMEM;

	map = list->map;
	map->type = _DRM_GEM;
	map->size = obj->size;
	map->handle = obj;

	/* Get a DRM GEM mmap offset allocated... */
	list->file_offset_node = drm_mm_search_free(&mm->offset_manager,
						    obj->size / PAGE_SIZE, 0, 0);
	if (!list->file_offset_node) {
		DRM_ERROR("failed to allocate offset for bo %d\n", obj->name);
1376
		ret = -ENOSPC;
1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387
		goto out_free_list;
	}

	list->file_offset_node = drm_mm_get_block(list->file_offset_node,
						  obj->size / PAGE_SIZE, 0);
	if (!list->file_offset_node) {
		ret = -ENOMEM;
		goto out_free_list;
	}

	list->hash.key = list->file_offset_node->start;
1388 1389
	ret = drm_ht_insert_item(&mm->offset_hash, &list->hash);
	if (ret) {
1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402
		DRM_ERROR("failed to add to map hash\n");
		goto out_free_mm;
	}

	/* By now we should be all set, any drm_mmap request on the offset
	 * below will get to our mmap & fault handler */
	obj_priv->mmap_offset = ((uint64_t) list->hash.key) << PAGE_SHIFT;

	return 0;

out_free_mm:
	drm_mm_put_block(list->file_offset_node);
out_free_list:
1403
	kfree(list->map);
1404 1405 1406 1407

	return ret;
}

1408 1409 1410 1411
/**
 * i915_gem_release_mmap - remove physical page mappings
 * @obj: obj in question
 *
1412
 * Preserve the reservation of the mmapping with the DRM core code, but
1413 1414 1415 1416 1417 1418 1419 1420 1421
 * relinquish ownership of the pages back to the system.
 *
 * It is vital that we remove the page mapping if we have mapped a tiled
 * object through the GTT and then lose the fence register due to
 * resource pressure. Similarly if the object has been moved out of the
 * aperture, than pages mapped into userspace must be revoked. Removing the
 * mapping will then trigger a page fault on the next user access, allowing
 * fixup by i915_gem_fault().
 */
1422
void
1423 1424 1425
i915_gem_release_mmap(struct drm_gem_object *obj)
{
	struct drm_device *dev = obj->dev;
1426
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1427 1428 1429 1430 1431 1432

	if (dev->dev_mapping)
		unmap_mapping_range(dev->dev_mapping,
				    obj_priv->mmap_offset, obj->size, 1);
}

1433 1434 1435 1436
static void
i915_gem_free_mmap_offset(struct drm_gem_object *obj)
{
	struct drm_device *dev = obj->dev;
1437
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449
	struct drm_gem_mm *mm = dev->mm_private;
	struct drm_map_list *list;

	list = &obj->map_list;
	drm_ht_remove_item(&mm->offset_hash, &list->hash);

	if (list->file_offset_node) {
		drm_mm_put_block(list->file_offset_node);
		list->file_offset_node = NULL;
	}

	if (list->map) {
1450
		kfree(list->map);
1451 1452 1453 1454 1455 1456
		list->map = NULL;
	}

	obj_priv->mmap_offset = 0;
}

1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467
/**
 * i915_gem_get_gtt_alignment - return required GTT alignment for an object
 * @obj: object to check
 *
 * Return the required GTT alignment for an object, taking into account
 * potential fence register mapping if needed.
 */
static uint32_t
i915_gem_get_gtt_alignment(struct drm_gem_object *obj)
{
	struct drm_device *dev = obj->dev;
1468
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1469 1470 1471 1472 1473 1474
	int start, i;

	/*
	 * Minimum alignment is 4k (GTT page size), but might be greater
	 * if a fence register is needed for the object.
	 */
1475
	if (INTEL_INFO(dev)->gen >= 4 || obj_priv->tiling_mode == I915_TILING_NONE)
1476 1477 1478 1479 1480 1481
		return 4096;

	/*
	 * Previous chips need to be aligned to the size of the smallest
	 * fence register that can contain the object.
	 */
1482
	if (INTEL_INFO(dev)->gen == 3)
1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521
		start = 1024*1024;
	else
		start = 512*1024;

	for (i = start; i < obj->size; i <<= 1)
		;

	return i;
}

/**
 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
 * @dev: DRM device
 * @data: GTT mapping ioctl data
 * @file_priv: GEM object info
 *
 * Simply returns the fake offset to userspace so it can mmap it.
 * The mmap call will end up in drm_gem_mmap(), which will set things
 * up so we can get faults in the handler above.
 *
 * The fault handler will take care of binding the object into the GTT
 * (since it may have been evicted to make room for something), allocating
 * a fence register, and mapping the appropriate aperture address into
 * userspace.
 */
int
i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
			struct drm_file *file_priv)
{
	struct drm_i915_gem_mmap_gtt *args = data;
	struct drm_gem_object *obj;
	struct drm_i915_gem_object *obj_priv;
	int ret;

	if (!(dev->driver->driver_features & DRIVER_GEM))
		return -ENODEV;

	obj = drm_gem_object_lookup(dev, file_priv, args->handle);
	if (obj == NULL)
1522
		return -ENOENT;
1523

1524 1525 1526 1527 1528
	ret = i915_mutex_lock_interruptible(dev);
	if (ret) {
		drm_gem_object_unreference_unlocked(obj);
		return ret;
	}
1529

1530
	obj_priv = to_intel_bo(obj);
1531

1532 1533 1534 1535 1536 1537 1538 1539
	if (obj_priv->madv != I915_MADV_WILLNEED) {
		DRM_ERROR("Attempting to mmap a purgeable buffer\n");
		drm_gem_object_unreference(obj);
		mutex_unlock(&dev->struct_mutex);
		return -EINVAL;
	}


1540 1541
	if (!obj_priv->mmap_offset) {
		ret = i915_gem_create_mmap_offset(obj);
1542 1543 1544
		if (ret) {
			drm_gem_object_unreference(obj);
			mutex_unlock(&dev->struct_mutex);
1545
			return ret;
1546
		}
1547 1548 1549 1550 1551 1552 1553 1554 1555
	}

	args->offset = obj_priv->mmap_offset;

	/*
	 * Pull it into the GTT so that we have a page list (makes the
	 * initial fault faster and any subsequent flushing possible).
	 */
	if (!obj_priv->agp_mem) {
1556
		ret = i915_gem_object_bind_to_gtt(obj, 0);
1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569
		if (ret) {
			drm_gem_object_unreference(obj);
			mutex_unlock(&dev->struct_mutex);
			return ret;
		}
	}

	drm_gem_object_unreference(obj);
	mutex_unlock(&dev->struct_mutex);

	return 0;
}

1570
static void
1571
i915_gem_object_put_pages(struct drm_gem_object *obj)
1572
{
1573
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1574 1575 1576
	int page_count = obj->size / PAGE_SIZE;
	int i;

1577
	BUG_ON(obj_priv->pages_refcount == 0);
C
Chris Wilson 已提交
1578
	BUG_ON(obj_priv->madv == __I915_MADV_PURGED);
1579

1580 1581
	if (--obj_priv->pages_refcount != 0)
		return;
1582

1583 1584 1585
	if (obj_priv->tiling_mode != I915_TILING_NONE)
		i915_gem_object_save_bit_17_swizzle(obj);

1586
	if (obj_priv->madv == I915_MADV_DONTNEED)
1587
		obj_priv->dirty = 0;
1588 1589 1590 1591 1592 1593

	for (i = 0; i < page_count; i++) {
		if (obj_priv->dirty)
			set_page_dirty(obj_priv->pages[i]);

		if (obj_priv->madv == I915_MADV_WILLNEED)
1594
			mark_page_accessed(obj_priv->pages[i]);
1595 1596 1597

		page_cache_release(obj_priv->pages[i]);
	}
1598 1599
	obj_priv->dirty = 0;

1600
	drm_free_large(obj_priv->pages);
1601
	obj_priv->pages = NULL;
1602 1603
}

1604 1605 1606 1607 1608 1609 1610 1611 1612 1613
static uint32_t
i915_gem_next_request_seqno(struct drm_device *dev,
			    struct intel_ring_buffer *ring)
{
	drm_i915_private_t *dev_priv = dev->dev_private;

	ring->outstanding_lazy_request = true;
	return dev_priv->next_seqno;
}

1614
static void
1615
i915_gem_object_move_to_active(struct drm_gem_object *obj,
1616
			       struct intel_ring_buffer *ring)
1617
{
1618
	struct drm_device *dev = obj->dev;
1619
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1620
	uint32_t seqno = i915_gem_next_request_seqno(dev, ring);
1621

1622 1623
	BUG_ON(ring == NULL);
	obj_priv->ring = ring;
1624 1625 1626 1627 1628 1629

	/* Add a reference if we're newly entering the active list. */
	if (!obj_priv->active) {
		drm_gem_object_reference(obj);
		obj_priv->active = 1;
	}
1630

1631
	/* Move from whatever list we were on to the tail of execution. */
1632
	list_move_tail(&obj_priv->list, &ring->active_list);
1633
	obj_priv->last_rendering_seqno = seqno;
1634 1635
}

1636 1637 1638 1639 1640
static void
i915_gem_object_move_to_flushing(struct drm_gem_object *obj)
{
	struct drm_device *dev = obj->dev;
	drm_i915_private_t *dev_priv = dev->dev_private;
1641
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1642 1643 1644 1645 1646

	BUG_ON(!obj_priv->active);
	list_move_tail(&obj_priv->list, &dev_priv->mm.flushing_list);
	obj_priv->last_rendering_seqno = 0;
}
1647

1648 1649 1650 1651
/* Immediately discard the backing storage */
static void
i915_gem_object_truncate(struct drm_gem_object *obj)
{
1652
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
C
Chris Wilson 已提交
1653
	struct inode *inode;
1654

1655 1656 1657 1658 1659 1660
	/* Our goal here is to return as much of the memory as
	 * is possible back to the system as we are called from OOM.
	 * To do this we must instruct the shmfs to drop all of its
	 * backing pages, *now*. Here we mirror the actions taken
	 * when by shmem_delete_inode() to release the backing store.
	 */
C
Chris Wilson 已提交
1661
	inode = obj->filp->f_path.dentry->d_inode;
1662 1663 1664
	truncate_inode_pages(inode->i_mapping, 0);
	if (inode->i_op->truncate_range)
		inode->i_op->truncate_range(inode, 0, (loff_t)-1);
C
Chris Wilson 已提交
1665 1666

	obj_priv->madv = __I915_MADV_PURGED;
1667 1668 1669 1670 1671 1672 1673 1674
}

static inline int
i915_gem_object_is_purgeable(struct drm_i915_gem_object *obj_priv)
{
	return obj_priv->madv == I915_MADV_DONTNEED;
}

1675 1676 1677 1678 1679
static void
i915_gem_object_move_to_inactive(struct drm_gem_object *obj)
{
	struct drm_device *dev = obj->dev;
	drm_i915_private_t *dev_priv = dev->dev_private;
1680
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1681 1682

	if (obj_priv->pin_count != 0)
C
Chris Wilson 已提交
1683
		list_move_tail(&obj_priv->list, &dev_priv->mm.pinned_list);
1684 1685 1686
	else
		list_move_tail(&obj_priv->list, &dev_priv->mm.inactive_list);

1687 1688
	BUG_ON(!list_empty(&obj_priv->gpu_write_list));

1689
	obj_priv->last_rendering_seqno = 0;
1690
	obj_priv->ring = NULL;
1691 1692 1693 1694
	if (obj_priv->active) {
		obj_priv->active = 0;
		drm_gem_object_unreference(obj);
	}
1695
	WARN_ON(i915_verify_lists(dev));
1696 1697
}

1698
static void
1699
i915_gem_process_flushing_list(struct drm_device *dev,
1700
			       uint32_t flush_domains,
1701
			       struct intel_ring_buffer *ring)
1702 1703 1704 1705 1706 1707 1708
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	struct drm_i915_gem_object *obj_priv, *next;

	list_for_each_entry_safe(obj_priv, next,
				 &dev_priv->mm.gpu_write_list,
				 gpu_write_list) {
1709
		struct drm_gem_object *obj = &obj_priv->base;
1710

1711 1712
		if (obj->write_domain & flush_domains &&
		    obj_priv->ring == ring) {
1713 1714 1715 1716
			uint32_t old_write_domain = obj->write_domain;

			obj->write_domain = 0;
			list_del_init(&obj_priv->gpu_write_list);
1717
			i915_gem_object_move_to_active(obj, ring);
1718 1719

			/* update the fence lru list */
1720 1721 1722 1723
			if (obj_priv->fence_reg != I915_FENCE_REG_NONE) {
				struct drm_i915_fence_reg *reg =
					&dev_priv->fence_regs[obj_priv->fence_reg];
				list_move_tail(&reg->lru_list,
1724
						&dev_priv->mm.fence_list);
1725
			}
1726 1727 1728 1729 1730 1731 1732

			trace_i915_gem_object_change_domain(obj,
							    obj->read_domains,
							    old_write_domain);
		}
	}
}
1733

1734
uint32_t
1735
i915_add_request(struct drm_device *dev,
1736
		 struct drm_file *file,
C
Chris Wilson 已提交
1737
		 struct drm_i915_gem_request *request,
1738
		 struct intel_ring_buffer *ring)
1739 1740
{
	drm_i915_private_t *dev_priv = dev->dev_private;
1741
	struct drm_i915_file_private *file_priv = NULL;
1742 1743 1744
	uint32_t seqno;
	int was_empty;

1745 1746
	if (file != NULL)
		file_priv = file->driver_priv;
1747

C
Chris Wilson 已提交
1748 1749 1750 1751 1752
	if (request == NULL) {
		request = kzalloc(sizeof(*request), GFP_KERNEL);
		if (request == NULL)
			return 0;
	}
1753

1754
	seqno = ring->add_request(dev, ring, 0);
1755
	ring->outstanding_lazy_request = false;
1756 1757

	request->seqno = seqno;
1758
	request->ring = ring;
1759
	request->emitted_jiffies = jiffies;
1760 1761 1762
	was_empty = list_empty(&ring->request_list);
	list_add_tail(&request->list, &ring->request_list);

1763
	if (file_priv) {
1764
		spin_lock(&file_priv->mm.lock);
1765
		request->file_priv = file_priv;
1766
		list_add_tail(&request->client_list,
1767
			      &file_priv->mm.request_list);
1768
		spin_unlock(&file_priv->mm.lock);
1769
	}
1770

B
Ben Gamari 已提交
1771
	if (!dev_priv->mm.suspended) {
1772 1773
		mod_timer(&dev_priv->hangcheck_timer,
			  jiffies + msecs_to_jiffies(DRM_I915_HANGCHECK_PERIOD));
B
Ben Gamari 已提交
1774
		if (was_empty)
1775 1776
			queue_delayed_work(dev_priv->wq,
					   &dev_priv->mm.retire_work, HZ);
B
Ben Gamari 已提交
1777
	}
1778 1779 1780 1781 1782 1783 1784 1785 1786
	return seqno;
}

/**
 * Command execution barrier
 *
 * Ensures that all commands in the ring are finished
 * before signalling the CPU
 */
1787
static void
1788
i915_retire_commands(struct drm_device *dev, struct intel_ring_buffer *ring)
1789 1790 1791 1792
{
	uint32_t flush_domains = 0;

	/* The sampler always gets flushed on i965 (sigh) */
1793
	if (INTEL_INFO(dev)->gen >= 4)
1794
		flush_domains |= I915_GEM_DOMAIN_SAMPLER;
1795 1796 1797

	ring->flush(dev, ring,
			I915_GEM_DOMAIN_COMMAND, flush_domains);
1798 1799
}

1800 1801
static inline void
i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
1802
{
1803 1804 1805 1806 1807 1808 1809 1810 1811
	struct drm_i915_file_private *file_priv = request->file_priv;

	if (!file_priv)
		return;

	spin_lock(&file_priv->mm.lock);
	list_del(&request->client_list);
	request->file_priv = NULL;
	spin_unlock(&file_priv->mm.lock);
1812 1813
}

1814 1815
static void i915_gem_reset_ring_lists(struct drm_i915_private *dev_priv,
				      struct intel_ring_buffer *ring)
1816
{
1817 1818
	while (!list_empty(&ring->request_list)) {
		struct drm_i915_gem_request *request;
1819

1820 1821 1822 1823 1824
		request = list_first_entry(&ring->request_list,
					   struct drm_i915_gem_request,
					   list);

		list_del(&request->list);
1825
		i915_gem_request_remove_from_client(request);
1826 1827 1828 1829
		kfree(request);
	}

	while (!list_empty(&ring->active_list)) {
1830 1831
		struct drm_i915_gem_object *obj_priv;

1832
		obj_priv = list_first_entry(&ring->active_list,
1833 1834 1835 1836
					    struct drm_i915_gem_object,
					    list);

		obj_priv->base.write_domain = 0;
1837
		list_del_init(&obj_priv->gpu_write_list);
1838 1839 1840 1841
		i915_gem_object_move_to_inactive(&obj_priv->base);
	}
}

1842
void i915_gem_reset(struct drm_device *dev)
1843 1844 1845
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct drm_i915_gem_object *obj_priv;
1846
	int i;
1847

1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868
	i915_gem_reset_ring_lists(dev_priv, &dev_priv->render_ring);
	if (HAS_BSD(dev))
		i915_gem_reset_ring_lists(dev_priv, &dev_priv->bsd_ring);

	/* Remove anything from the flushing lists. The GPU cache is likely
	 * to be lost on reset along with the data, so simply move the
	 * lost bo to the inactive list.
	 */
	while (!list_empty(&dev_priv->mm.flushing_list)) {
		obj_priv = list_first_entry(&dev_priv->mm.flushing_list,
					    struct drm_i915_gem_object,
					    list);

		obj_priv->base.write_domain = 0;
		list_del_init(&obj_priv->gpu_write_list);
		i915_gem_object_move_to_inactive(&obj_priv->base);
	}

	/* Move everything out of the GPU domains to ensure we do any
	 * necessary invalidation upon reuse.
	 */
1869 1870 1871 1872 1873 1874
	list_for_each_entry(obj_priv,
			    &dev_priv->mm.inactive_list,
			    list)
	{
		obj_priv->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
	}
1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885

	/* The fence registers are invalidated so clear them out */
	for (i = 0; i < 16; i++) {
		struct drm_i915_fence_reg *reg;

		reg = &dev_priv->fence_regs[i];
		if (!reg->obj)
			continue;

		i915_gem_clear_fence_reg(reg->obj);
	}
1886 1887
}

1888 1889 1890
/**
 * This function clears the request list as sequence numbers are passed.
 */
1891 1892 1893
static void
i915_gem_retire_requests_ring(struct drm_device *dev,
			      struct intel_ring_buffer *ring)
1894 1895 1896 1897
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	uint32_t seqno;

1898 1899
	if (!ring->status_page.page_addr ||
	    list_empty(&ring->request_list))
1900 1901
		return;

1902 1903
	WARN_ON(i915_verify_lists(dev));

1904
	seqno = ring->get_seqno(dev, ring);
1905
	while (!list_empty(&ring->request_list)) {
1906 1907
		struct drm_i915_gem_request *request;

1908
		request = list_first_entry(&ring->request_list,
1909 1910 1911
					   struct drm_i915_gem_request,
					   list);

1912
		if (!i915_seqno_passed(seqno, request->seqno))
1913 1914 1915 1916 1917
			break;

		trace_i915_gem_request_retire(dev, request->seqno);

		list_del(&request->list);
1918
		i915_gem_request_remove_from_client(request);
1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931
		kfree(request);
	}

	/* Move any buffers on the active list that are no longer referenced
	 * by the ringbuffer to the flushing/inactive lists as appropriate.
	 */
	while (!list_empty(&ring->active_list)) {
		struct drm_gem_object *obj;
		struct drm_i915_gem_object *obj_priv;

		obj_priv = list_first_entry(&ring->active_list,
					    struct drm_i915_gem_object,
					    list);
1932

1933
		if (!i915_seqno_passed(seqno, obj_priv->last_rendering_seqno))
1934
			break;
1935 1936 1937 1938 1939 1940

		obj = &obj_priv->base;
		if (obj->write_domain != 0)
			i915_gem_object_move_to_flushing(obj);
		else
			i915_gem_object_move_to_inactive(obj);
1941
	}
1942 1943 1944

	if (unlikely (dev_priv->trace_irq_seqno &&
		      i915_seqno_passed(dev_priv->trace_irq_seqno, seqno))) {
1945
		ring->user_irq_put(dev, ring);
1946 1947
		dev_priv->trace_irq_seqno = 0;
	}
1948 1949

	WARN_ON(i915_verify_lists(dev));
1950 1951
}

1952 1953 1954 1955 1956
void
i915_gem_retire_requests(struct drm_device *dev)
{
	drm_i915_private_t *dev_priv = dev->dev_private;

1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970
	if (!list_empty(&dev_priv->mm.deferred_free_list)) {
	    struct drm_i915_gem_object *obj_priv, *tmp;

	    /* We must be careful that during unbind() we do not
	     * accidentally infinitely recurse into retire requests.
	     * Currently:
	     *   retire -> free -> unbind -> wait -> retire_ring
	     */
	    list_for_each_entry_safe(obj_priv, tmp,
				     &dev_priv->mm.deferred_free_list,
				     list)
		    i915_gem_free_object_tail(&obj_priv->base);
	}

1971 1972 1973 1974 1975
	i915_gem_retire_requests_ring(dev, &dev_priv->render_ring);
	if (HAS_BSD(dev))
		i915_gem_retire_requests_ring(dev, &dev_priv->bsd_ring);
}

1976
static void
1977 1978 1979 1980 1981 1982 1983 1984 1985
i915_gem_retire_work_handler(struct work_struct *work)
{
	drm_i915_private_t *dev_priv;
	struct drm_device *dev;

	dev_priv = container_of(work, drm_i915_private_t,
				mm.retire_work.work);
	dev = dev_priv->dev;

1986 1987 1988 1989 1990 1991
	/* Come back later if the device is busy... */
	if (!mutex_trylock(&dev->struct_mutex)) {
		queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
		return;
	}

1992
	i915_gem_retire_requests(dev);
1993

1994
	if (!dev_priv->mm.suspended &&
1995 1996 1997
		(!list_empty(&dev_priv->render_ring.request_list) ||
			(HAS_BSD(dev) &&
			 !list_empty(&dev_priv->bsd_ring.request_list))))
1998
		queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
1999 2000 2001
	mutex_unlock(&dev->struct_mutex);
}

2002
int
2003
i915_do_wait_request(struct drm_device *dev, uint32_t seqno,
2004
		     bool interruptible, struct intel_ring_buffer *ring)
2005 2006
{
	drm_i915_private_t *dev_priv = dev->dev_private;
2007
	u32 ier;
2008 2009 2010 2011
	int ret = 0;

	BUG_ON(seqno == 0);

2012 2013 2014
	if (atomic_read(&dev_priv->mm.wedged))
		return -EAGAIN;

2015
	if (ring->outstanding_lazy_request) {
C
Chris Wilson 已提交
2016
		seqno = i915_add_request(dev, NULL, NULL, ring);
2017 2018 2019
		if (seqno == 0)
			return -ENOMEM;
	}
2020
	BUG_ON(seqno == dev_priv->next_seqno);
2021

2022
	if (!i915_seqno_passed(ring->get_seqno(dev, ring), seqno)) {
2023
		if (HAS_PCH_SPLIT(dev))
2024 2025 2026
			ier = I915_READ(DEIER) | I915_READ(GTIER);
		else
			ier = I915_READ(IER);
2027 2028 2029 2030 2031 2032 2033
		if (!ier) {
			DRM_ERROR("something (likely vbetool) disabled "
				  "interrupts, re-enabling\n");
			i915_driver_irq_preinstall(dev);
			i915_driver_irq_postinstall(dev);
		}

C
Chris Wilson 已提交
2034 2035
		trace_i915_gem_request_wait_begin(dev, seqno);

2036
		ring->waiting_gem_seqno = seqno;
2037
		ring->user_irq_get(dev, ring);
2038
		if (interruptible)
2039 2040
			ret = wait_event_interruptible(ring->irq_queue,
				i915_seqno_passed(
2041
					ring->get_seqno(dev, ring), seqno)
2042
				|| atomic_read(&dev_priv->mm.wedged));
2043
		else
2044 2045
			wait_event(ring->irq_queue,
				i915_seqno_passed(
2046
					ring->get_seqno(dev, ring), seqno)
2047
				|| atomic_read(&dev_priv->mm.wedged));
2048

2049
		ring->user_irq_put(dev, ring);
2050
		ring->waiting_gem_seqno = 0;
C
Chris Wilson 已提交
2051 2052

		trace_i915_gem_request_wait_end(dev, seqno);
2053
	}
2054
	if (atomic_read(&dev_priv->mm.wedged))
2055
		ret = -EAGAIN;
2056 2057

	if (ret && ret != -ERESTARTSYS)
2058
		DRM_ERROR("%s returns %d (awaiting %d at %d, next %d)\n",
2059
			  __func__, ret, seqno, ring->get_seqno(dev, ring),
2060
			  dev_priv->next_seqno);
2061 2062 2063 2064 2065 2066 2067

	/* Directly dispatch request retiring.  While we have the work queue
	 * to handle this, the waiter on a request often wants an associated
	 * buffer to have made it to the inactive list, and we would need
	 * a separate wait queue to handle that.
	 */
	if (ret == 0)
2068
		i915_gem_retire_requests_ring(dev, ring);
2069 2070 2071 2072

	return ret;
}

2073 2074 2075 2076 2077
/**
 * Waits for a sequence number to be signaled, and cleans up the
 * request and object lists appropriately for that event.
 */
static int
2078
i915_wait_request(struct drm_device *dev, uint32_t seqno,
2079
		  struct intel_ring_buffer *ring)
2080
{
2081
	return i915_do_wait_request(dev, seqno, 1, ring);
2082 2083
}

2084
static void
2085
i915_gem_flush_ring(struct drm_device *dev,
2086
		    struct drm_file *file_priv,
2087 2088 2089 2090 2091 2092 2093 2094
		    struct intel_ring_buffer *ring,
		    uint32_t invalidate_domains,
		    uint32_t flush_domains)
{
	ring->flush(dev, ring, invalidate_domains, flush_domains);
	i915_gem_process_flushing_list(dev, flush_domains, ring);
}

2095 2096
static void
i915_gem_flush(struct drm_device *dev,
2097
	       struct drm_file *file_priv,
2098
	       uint32_t invalidate_domains,
2099 2100
	       uint32_t flush_domains,
	       uint32_t flush_rings)
2101 2102
{
	drm_i915_private_t *dev_priv = dev->dev_private;
2103

2104 2105
	if (flush_domains & I915_GEM_DOMAIN_CPU)
		drm_agp_chipset_flush(dev);
2106

2107 2108
	if ((flush_domains | invalidate_domains) & I915_GEM_GPU_DOMAINS) {
		if (flush_rings & RING_RENDER)
2109
			i915_gem_flush_ring(dev, file_priv,
2110 2111 2112
					    &dev_priv->render_ring,
					    invalidate_domains, flush_domains);
		if (flush_rings & RING_BSD)
2113
			i915_gem_flush_ring(dev, file_priv,
2114 2115 2116
					    &dev_priv->bsd_ring,
					    invalidate_domains, flush_domains);
	}
2117 2118
}

2119 2120 2121 2122 2123
/**
 * Ensures that all rendering to the object has completed and the object is
 * safe to unbind from the GTT or access from the CPU.
 */
static int
2124 2125
i915_gem_object_wait_rendering(struct drm_gem_object *obj,
			       bool interruptible)
2126 2127
{
	struct drm_device *dev = obj->dev;
2128
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2129 2130
	int ret;

2131 2132
	/* This function only exists to support waiting for existing rendering,
	 * not for emitting required flushes.
2133
	 */
2134
	BUG_ON((obj->write_domain & I915_GEM_GPU_DOMAINS) != 0);
2135 2136 2137 2138 2139

	/* If there is rendering queued on the buffer being evicted, wait for
	 * it.
	 */
	if (obj_priv->active) {
2140 2141 2142 2143 2144
		ret = i915_do_wait_request(dev,
					   obj_priv->last_rendering_seqno,
					   interruptible,
					   obj_priv->ring);
		if (ret)
2145 2146 2147 2148 2149 2150 2151 2152 2153
			return ret;
	}

	return 0;
}

/**
 * Unbinds an object from the GTT aperture.
 */
2154
int
2155 2156 2157
i915_gem_object_unbind(struct drm_gem_object *obj)
{
	struct drm_device *dev = obj->dev;
2158
	struct drm_i915_private *dev_priv = dev->dev_private;
2159
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2160 2161 2162 2163 2164 2165 2166 2167 2168 2169
	int ret = 0;

	if (obj_priv->gtt_space == NULL)
		return 0;

	if (obj_priv->pin_count != 0) {
		DRM_ERROR("Attempting to unbind pinned buffer\n");
		return -EINVAL;
	}

2170 2171 2172
	/* blow away mappings if mapped through GTT */
	i915_gem_release_mmap(obj);

2173 2174 2175 2176 2177 2178
	/* Move the object to the CPU domain to ensure that
	 * any possible CPU writes while it's not in the GTT
	 * are flushed when we go to remap it. This will
	 * also ensure that all pending GPU writes are finished
	 * before we unbind.
	 */
2179
	ret = i915_gem_object_set_to_cpu_domain(obj, 1);
2180
	if (ret == -ERESTARTSYS)
2181
		return ret;
2182 2183 2184 2185
	/* Continue on if we fail due to EIO, the GPU is hung so we
	 * should be safe and we need to cleanup or else we might
	 * cause memory corruption through use-after-free.
	 */
2186 2187 2188 2189
	if (ret) {
		i915_gem_clflush_object(obj);
		obj->read_domains = obj->write_domain = I915_GEM_DOMAIN_CPU;
	}
2190

2191 2192 2193 2194
	/* release the fence reg _after_ flushing */
	if (obj_priv->fence_reg != I915_FENCE_REG_NONE)
		i915_gem_clear_fence_reg(obj);

2195 2196
	drm_unbind_agp(obj_priv->agp_mem);
	drm_free_agp(obj_priv->agp_mem, obj->size / PAGE_SIZE);
2197

2198
	i915_gem_object_put_pages(obj);
2199
	BUG_ON(obj_priv->pages_refcount);
2200

2201
	i915_gem_info_remove_gtt(dev_priv, obj->size);
C
Chris Wilson 已提交
2202
	list_del_init(&obj_priv->list);
2203

2204 2205 2206
	drm_mm_put_block(obj_priv->gtt_space);
	obj_priv->gtt_space = NULL;

2207 2208 2209
	if (i915_gem_object_is_purgeable(obj_priv))
		i915_gem_object_truncate(obj);

C
Chris Wilson 已提交
2210 2211
	trace_i915_gem_object_unbind(obj);

2212
	return ret;
2213 2214
}

2215 2216 2217 2218 2219 2220 2221 2222 2223 2224
static int i915_ring_idle(struct drm_device *dev,
			  struct intel_ring_buffer *ring)
{
	i915_gem_flush_ring(dev, NULL, ring,
			    I915_GEM_GPU_DOMAINS, I915_GEM_GPU_DOMAINS);
	return i915_wait_request(dev,
				 i915_gem_next_request_seqno(dev, ring),
				 ring);
}

2225
int
2226 2227 2228 2229
i915_gpu_idle(struct drm_device *dev)
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	bool lists_empty;
2230
	int ret;
2231

2232 2233 2234 2235
	lists_empty = (list_empty(&dev_priv->mm.flushing_list) &&
		       list_empty(&dev_priv->render_ring.active_list) &&
		       (!HAS_BSD(dev) ||
			list_empty(&dev_priv->bsd_ring.active_list)));
2236 2237 2238 2239
	if (lists_empty)
		return 0;

	/* Flush everything onto the inactive list. */
2240
	ret = i915_ring_idle(dev, &dev_priv->render_ring);
2241 2242
	if (ret)
		return ret;
2243 2244

	if (HAS_BSD(dev)) {
2245
		ret = i915_ring_idle(dev, &dev_priv->bsd_ring);
2246 2247 2248 2249
		if (ret)
			return ret;
	}

2250
	return 0;
2251 2252
}

2253
static int
2254 2255
i915_gem_object_get_pages(struct drm_gem_object *obj,
			  gfp_t gfpmask)
2256
{
2257
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2258 2259 2260 2261 2262
	int page_count, i;
	struct address_space *mapping;
	struct inode *inode;
	struct page *page;

2263 2264 2265
	BUG_ON(obj_priv->pages_refcount
			== DRM_I915_GEM_OBJECT_MAX_PAGES_REFCOUNT);

2266
	if (obj_priv->pages_refcount++ != 0)
2267 2268 2269 2270 2271 2272
		return 0;

	/* Get the list of pages out of our struct file.  They'll be pinned
	 * at this point until we release them.
	 */
	page_count = obj->size / PAGE_SIZE;
2273
	BUG_ON(obj_priv->pages != NULL);
2274
	obj_priv->pages = drm_calloc_large(page_count, sizeof(struct page *));
2275 2276
	if (obj_priv->pages == NULL) {
		obj_priv->pages_refcount--;
2277 2278 2279 2280 2281 2282
		return -ENOMEM;
	}

	inode = obj->filp->f_path.dentry->d_inode;
	mapping = inode->i_mapping;
	for (i = 0; i < page_count; i++) {
2283
		page = read_cache_page_gfp(mapping, i,
2284
					   GFP_HIGHUSER |
2285
					   __GFP_COLD |
2286
					   __GFP_RECLAIMABLE |
2287
					   gfpmask);
2288 2289 2290
		if (IS_ERR(page))
			goto err_pages;

2291
		obj_priv->pages[i] = page;
2292
	}
2293 2294 2295 2296

	if (obj_priv->tiling_mode != I915_TILING_NONE)
		i915_gem_object_do_bit_17_swizzle(obj);

2297
	return 0;
2298 2299 2300 2301 2302 2303 2304 2305 2306

err_pages:
	while (i--)
		page_cache_release(obj_priv->pages[i]);

	drm_free_large(obj_priv->pages);
	obj_priv->pages = NULL;
	obj_priv->pages_refcount--;
	return PTR_ERR(page);
2307 2308
}

2309 2310 2311 2312 2313
static void sandybridge_write_fence_reg(struct drm_i915_fence_reg *reg)
{
	struct drm_gem_object *obj = reg->obj;
	struct drm_device *dev = obj->dev;
	drm_i915_private_t *dev_priv = dev->dev_private;
2314
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330
	int regnum = obj_priv->fence_reg;
	uint64_t val;

	val = (uint64_t)((obj_priv->gtt_offset + obj->size - 4096) &
		    0xfffff000) << 32;
	val |= obj_priv->gtt_offset & 0xfffff000;
	val |= (uint64_t)((obj_priv->stride / 128) - 1) <<
		SANDYBRIDGE_FENCE_PITCH_SHIFT;

	if (obj_priv->tiling_mode == I915_TILING_Y)
		val |= 1 << I965_FENCE_TILING_Y_SHIFT;
	val |= I965_FENCE_REG_VALID;

	I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 + (regnum * 8), val);
}

2331 2332 2333 2334 2335
static void i965_write_fence_reg(struct drm_i915_fence_reg *reg)
{
	struct drm_gem_object *obj = reg->obj;
	struct drm_device *dev = obj->dev;
	drm_i915_private_t *dev_priv = dev->dev_private;
2336
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355
	int regnum = obj_priv->fence_reg;
	uint64_t val;

	val = (uint64_t)((obj_priv->gtt_offset + obj->size - 4096) &
		    0xfffff000) << 32;
	val |= obj_priv->gtt_offset & 0xfffff000;
	val |= ((obj_priv->stride / 128) - 1) << I965_FENCE_PITCH_SHIFT;
	if (obj_priv->tiling_mode == I915_TILING_Y)
		val |= 1 << I965_FENCE_TILING_Y_SHIFT;
	val |= I965_FENCE_REG_VALID;

	I915_WRITE64(FENCE_REG_965_0 + (regnum * 8), val);
}

static void i915_write_fence_reg(struct drm_i915_fence_reg *reg)
{
	struct drm_gem_object *obj = reg->obj;
	struct drm_device *dev = obj->dev;
	drm_i915_private_t *dev_priv = dev->dev_private;
2356
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2357
	int regnum = obj_priv->fence_reg;
2358
	int tile_width;
2359
	uint32_t fence_reg, val;
2360 2361 2362 2363
	uint32_t pitch_val;

	if ((obj_priv->gtt_offset & ~I915_FENCE_START_MASK) ||
	    (obj_priv->gtt_offset & (obj->size - 1))) {
2364
		WARN(1, "%s: object 0x%08x not 1M or size (0x%zx) aligned\n",
2365
		     __func__, obj_priv->gtt_offset, obj->size);
2366 2367 2368
		return;
	}

2369 2370 2371
	if (obj_priv->tiling_mode == I915_TILING_Y &&
	    HAS_128_BYTE_Y_TILING(dev))
		tile_width = 128;
2372
	else
2373 2374 2375 2376 2377
		tile_width = 512;

	/* Note: pitch better be a power of two tile widths */
	pitch_val = obj_priv->stride / tile_width;
	pitch_val = ffs(pitch_val) - 1;
2378

2379 2380 2381 2382 2383 2384
	if (obj_priv->tiling_mode == I915_TILING_Y &&
	    HAS_128_BYTE_Y_TILING(dev))
		WARN_ON(pitch_val > I830_FENCE_MAX_PITCH_VAL);
	else
		WARN_ON(pitch_val > I915_FENCE_MAX_PITCH_VAL);

2385 2386 2387 2388 2389 2390 2391
	val = obj_priv->gtt_offset;
	if (obj_priv->tiling_mode == I915_TILING_Y)
		val |= 1 << I830_FENCE_TILING_Y_SHIFT;
	val |= I915_FENCE_SIZE_BITS(obj->size);
	val |= pitch_val << I830_FENCE_PITCH_SHIFT;
	val |= I830_FENCE_REG_VALID;

2392 2393 2394 2395 2396
	if (regnum < 8)
		fence_reg = FENCE_REG_830_0 + (regnum * 4);
	else
		fence_reg = FENCE_REG_945_8 + ((regnum - 8) * 4);
	I915_WRITE(fence_reg, val);
2397 2398 2399 2400 2401 2402 2403
}

static void i830_write_fence_reg(struct drm_i915_fence_reg *reg)
{
	struct drm_gem_object *obj = reg->obj;
	struct drm_device *dev = obj->dev;
	drm_i915_private_t *dev_priv = dev->dev_private;
2404
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2405 2406 2407
	int regnum = obj_priv->fence_reg;
	uint32_t val;
	uint32_t pitch_val;
2408
	uint32_t fence_size_bits;
2409

2410
	if ((obj_priv->gtt_offset & ~I830_FENCE_START_MASK) ||
2411
	    (obj_priv->gtt_offset & (obj->size - 1))) {
2412
		WARN(1, "%s: object 0x%08x not 512K or size aligned\n",
2413
		     __func__, obj_priv->gtt_offset);
2414 2415 2416
		return;
	}

2417 2418 2419 2420
	pitch_val = obj_priv->stride / 128;
	pitch_val = ffs(pitch_val) - 1;
	WARN_ON(pitch_val > I830_FENCE_MAX_PITCH_VAL);

2421 2422 2423
	val = obj_priv->gtt_offset;
	if (obj_priv->tiling_mode == I915_TILING_Y)
		val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2424 2425 2426
	fence_size_bits = I830_FENCE_SIZE_BITS(obj->size);
	WARN_ON(fence_size_bits & ~0x00000f00);
	val |= fence_size_bits;
2427 2428 2429 2430 2431 2432
	val |= pitch_val << I830_FENCE_PITCH_SHIFT;
	val |= I830_FENCE_REG_VALID;

	I915_WRITE(FENCE_REG_830_0 + (regnum * 4), val);
}

2433 2434
static int i915_find_fence_reg(struct drm_device *dev,
			       bool interruptible)
2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448
{
	struct drm_i915_fence_reg *reg = NULL;
	struct drm_i915_gem_object *obj_priv = NULL;
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct drm_gem_object *obj = NULL;
	int i, avail, ret;

	/* First try to find a free reg */
	avail = 0;
	for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
		reg = &dev_priv->fence_regs[i];
		if (!reg->obj)
			return i;

2449
		obj_priv = to_intel_bo(reg->obj);
2450 2451 2452 2453 2454 2455 2456 2457 2458
		if (!obj_priv->pin_count)
		    avail++;
	}

	if (avail == 0)
		return -ENOSPC;

	/* None available, try to steal one or wait for a user to finish */
	i = I915_FENCE_REG_NONE;
2459 2460 2461 2462
	list_for_each_entry(reg, &dev_priv->mm.fence_list,
			    lru_list) {
		obj = reg->obj;
		obj_priv = to_intel_bo(obj);
2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478

		if (obj_priv->pin_count)
			continue;

		/* found one! */
		i = obj_priv->fence_reg;
		break;
	}

	BUG_ON(i == I915_FENCE_REG_NONE);

	/* We only have a reference on obj from the active list. put_fence_reg
	 * might drop that one, causing a use-after-free in it. So hold a
	 * private reference to obj like the other callers of put_fence_reg
	 * (set_tiling ioctl) do. */
	drm_gem_object_reference(obj);
2479
	ret = i915_gem_object_put_fence_reg(obj, interruptible);
2480 2481 2482 2483 2484 2485 2486
	drm_gem_object_unreference(obj);
	if (ret != 0)
		return ret;

	return i;
}

2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499
/**
 * i915_gem_object_get_fence_reg - set up a fence reg for an object
 * @obj: object to map through a fence reg
 *
 * When mapping objects through the GTT, userspace wants to be able to write
 * to them without having to worry about swizzling if the object is tiled.
 *
 * This function walks the fence regs looking for a free one for @obj,
 * stealing one if it can't find any.
 *
 * It then sets up the reg based on the object's properties: address, pitch
 * and tiling format.
 */
2500
int
2501 2502
i915_gem_object_get_fence_reg(struct drm_gem_object *obj,
			      bool interruptible)
2503 2504
{
	struct drm_device *dev = obj->dev;
J
Jesse Barnes 已提交
2505
	struct drm_i915_private *dev_priv = dev->dev_private;
2506
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2507
	struct drm_i915_fence_reg *reg = NULL;
2508
	int ret;
2509

2510 2511
	/* Just update our place in the LRU if our fence is getting used. */
	if (obj_priv->fence_reg != I915_FENCE_REG_NONE) {
2512 2513
		reg = &dev_priv->fence_regs[obj_priv->fence_reg];
		list_move_tail(&reg->lru_list, &dev_priv->mm.fence_list);
2514 2515 2516
		return 0;
	}

2517 2518 2519 2520 2521
	switch (obj_priv->tiling_mode) {
	case I915_TILING_NONE:
		WARN(1, "allocating a fence for non-tiled object?\n");
		break;
	case I915_TILING_X:
2522 2523 2524 2525 2526
		if (!obj_priv->stride)
			return -EINVAL;
		WARN((obj_priv->stride & (512 - 1)),
		     "object 0x%08x is X tiled but has non-512B pitch\n",
		     obj_priv->gtt_offset);
2527 2528
		break;
	case I915_TILING_Y:
2529 2530 2531 2532 2533
		if (!obj_priv->stride)
			return -EINVAL;
		WARN((obj_priv->stride & (128 - 1)),
		     "object 0x%08x is Y tiled but has non-128B pitch\n",
		     obj_priv->gtt_offset);
2534 2535 2536
		break;
	}

2537
	ret = i915_find_fence_reg(dev, interruptible);
2538 2539
	if (ret < 0)
		return ret;
2540

2541 2542
	obj_priv->fence_reg = ret;
	reg = &dev_priv->fence_regs[obj_priv->fence_reg];
2543
	list_add_tail(&reg->lru_list, &dev_priv->mm.fence_list);
2544

2545 2546
	reg->obj = obj;

2547 2548
	switch (INTEL_INFO(dev)->gen) {
	case 6:
2549
		sandybridge_write_fence_reg(reg);
2550 2551 2552
		break;
	case 5:
	case 4:
2553
		i965_write_fence_reg(reg);
2554 2555
		break;
	case 3:
2556
		i915_write_fence_reg(reg);
2557 2558
		break;
	case 2:
2559
		i830_write_fence_reg(reg);
2560 2561
		break;
	}
2562

2563 2564
	trace_i915_gem_object_get_fence(obj, obj_priv->fence_reg,
			obj_priv->tiling_mode);
C
Chris Wilson 已提交
2565

2566
	return 0;
2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579
}

/**
 * i915_gem_clear_fence_reg - clear out fence register info
 * @obj: object to clear
 *
 * Zeroes out the fence register itself and clears out the associated
 * data structures in dev_priv and obj_priv.
 */
static void
i915_gem_clear_fence_reg(struct drm_gem_object *obj)
{
	struct drm_device *dev = obj->dev;
J
Jesse Barnes 已提交
2580
	drm_i915_private_t *dev_priv = dev->dev_private;
2581
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2582 2583
	struct drm_i915_fence_reg *reg =
		&dev_priv->fence_regs[obj_priv->fence_reg];
2584
	uint32_t fence_reg;
2585

2586 2587
	switch (INTEL_INFO(dev)->gen) {
	case 6:
2588 2589
		I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 +
			     (obj_priv->fence_reg * 8), 0);
2590 2591 2592
		break;
	case 5:
	case 4:
2593
		I915_WRITE64(FENCE_REG_965_0 + (obj_priv->fence_reg * 8), 0);
2594 2595
		break;
	case 3:
2596
		if (obj_priv->fence_reg >= 8)
2597
			fence_reg = FENCE_REG_945_8 + (obj_priv->fence_reg - 8) * 4;
2598
		else
2599 2600
	case 2:
			fence_reg = FENCE_REG_830_0 + obj_priv->fence_reg * 4;
2601 2602

		I915_WRITE(fence_reg, 0);
2603
		break;
2604
	}
2605

2606
	reg->obj = NULL;
2607
	obj_priv->fence_reg = I915_FENCE_REG_NONE;
2608
	list_del_init(&reg->lru_list);
2609 2610
}

2611 2612 2613 2614
/**
 * i915_gem_object_put_fence_reg - waits on outstanding fenced access
 * to the buffer to finish, and then resets the fence register.
 * @obj: tiled object holding a fence register.
2615
 * @bool: whether the wait upon the fence is interruptible
2616 2617 2618 2619 2620
 *
 * Zeroes out the fence register itself and clears out the associated
 * data structures in dev_priv and obj_priv.
 */
int
2621 2622
i915_gem_object_put_fence_reg(struct drm_gem_object *obj,
			      bool interruptible)
2623 2624
{
	struct drm_device *dev = obj->dev;
C
Chris Wilson 已提交
2625
	struct drm_i915_private *dev_priv = dev->dev_private;
2626
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
C
Chris Wilson 已提交
2627
	struct drm_i915_fence_reg *reg;
2628 2629 2630 2631

	if (obj_priv->fence_reg == I915_FENCE_REG_NONE)
		return 0;

2632 2633 2634 2635 2636 2637
	/* If we've changed tiling, GTT-mappings of the object
	 * need to re-fault to ensure that the correct fence register
	 * setup is in place.
	 */
	i915_gem_release_mmap(obj);

2638 2639 2640 2641
	/* On the i915, GPU access to tiled buffers is via a fence,
	 * therefore we must wait for any outstanding access to complete
	 * before clearing the fence.
	 */
C
Chris Wilson 已提交
2642 2643
	reg = &dev_priv->fence_regs[obj_priv->fence_reg];
	if (reg->gpu) {
2644 2645
		int ret;

2646
		ret = i915_gem_object_flush_gpu_write_domain(obj, true);
2647 2648 2649
		if (ret)
			return ret;

2650
		ret = i915_gem_object_wait_rendering(obj, interruptible);
2651
		if (ret)
2652
			return ret;
C
Chris Wilson 已提交
2653 2654

		reg->gpu = false;
2655 2656
	}

2657
	i915_gem_object_flush_gtt_write_domain(obj);
2658
	i915_gem_clear_fence_reg(obj);
2659 2660 2661 2662

	return 0;
}

2663 2664 2665 2666 2667 2668 2669 2670
/**
 * Finds free space in the GTT aperture and binds the object there.
 */
static int
i915_gem_object_bind_to_gtt(struct drm_gem_object *obj, unsigned alignment)
{
	struct drm_device *dev = obj->dev;
	drm_i915_private_t *dev_priv = dev->dev_private;
2671
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2672
	struct drm_mm_node *free_space;
2673
	gfp_t gfpmask =  __GFP_NORETRY | __GFP_NOWARN;
2674
	int ret;
2675

C
Chris Wilson 已提交
2676
	if (obj_priv->madv != I915_MADV_WILLNEED) {
2677 2678 2679 2680
		DRM_ERROR("Attempting to bind a purgeable object\n");
		return -EINVAL;
	}

2681
	if (alignment == 0)
2682
		alignment = i915_gem_get_gtt_alignment(obj);
2683
	if (alignment & (i915_gem_get_gtt_alignment(obj) - 1)) {
2684 2685 2686 2687
		DRM_ERROR("Invalid object alignment requested %u\n", alignment);
		return -EINVAL;
	}

2688 2689 2690
	/* If the object is bigger than the entire aperture, reject it early
	 * before evicting everything in a vain attempt to find space.
	 */
2691
	if (obj->size > dev_priv->mm.gtt_total) {
2692 2693 2694 2695
		DRM_ERROR("Attempting to bind an object larger than the aperture\n");
		return -E2BIG;
	}

2696 2697 2698 2699 2700 2701
 search_free:
	free_space = drm_mm_search_free(&dev_priv->mm.gtt_space,
					obj->size, alignment, 0);
	if (free_space != NULL) {
		obj_priv->gtt_space = drm_mm_get_block(free_space, obj->size,
						       alignment);
D
Daniel Vetter 已提交
2702
		if (obj_priv->gtt_space != NULL)
2703 2704 2705 2706 2707 2708
			obj_priv->gtt_offset = obj_priv->gtt_space->start;
	}
	if (obj_priv->gtt_space == NULL) {
		/* If the gtt is empty and we're still having trouble
		 * fitting our object in, we're out of memory.
		 */
2709
		ret = i915_gem_evict_something(dev, obj->size, alignment);
2710
		if (ret)
2711
			return ret;
2712

2713 2714 2715
		goto search_free;
	}

2716
	ret = i915_gem_object_get_pages(obj, gfpmask);
2717 2718 2719
	if (ret) {
		drm_mm_put_block(obj_priv->gtt_space);
		obj_priv->gtt_space = NULL;
2720 2721 2722

		if (ret == -ENOMEM) {
			/* first try to clear up some space from the GTT */
2723 2724
			ret = i915_gem_evict_something(dev, obj->size,
						       alignment);
2725 2726
			if (ret) {
				/* now try to shrink everyone else */
2727 2728 2729
				if (gfpmask) {
					gfpmask = 0;
					goto search_free;
2730 2731 2732 2733 2734 2735 2736 2737
				}

				return ret;
			}

			goto search_free;
		}

2738 2739 2740 2741 2742 2743 2744
		return ret;
	}

	/* Create an AGP memory structure pointing at our pages, and bind it
	 * into the GTT.
	 */
	obj_priv->agp_mem = drm_agp_bind_pages(dev,
2745
					       obj_priv->pages,
2746
					       obj->size >> PAGE_SHIFT,
2747 2748
					       obj_priv->gtt_offset,
					       obj_priv->agp_type);
2749
	if (obj_priv->agp_mem == NULL) {
2750
		i915_gem_object_put_pages(obj);
2751 2752
		drm_mm_put_block(obj_priv->gtt_space);
		obj_priv->gtt_space = NULL;
2753

2754
		ret = i915_gem_evict_something(dev, obj->size, alignment);
2755
		if (ret)
2756 2757 2758
			return ret;

		goto search_free;
2759 2760
	}

2761 2762
	/* keep track of bounds object by adding it to the inactive list */
	list_add_tail(&obj_priv->list, &dev_priv->mm.inactive_list);
2763
	i915_gem_info_add_gtt(dev_priv, obj->size);
2764

2765 2766 2767 2768
	/* Assert that the object is not currently in any GPU domain. As it
	 * wasn't in the GTT, there shouldn't be any way it could have been in
	 * a GPU cache
	 */
2769 2770
	BUG_ON(obj->read_domains & I915_GEM_GPU_DOMAINS);
	BUG_ON(obj->write_domain & I915_GEM_GPU_DOMAINS);
2771

C
Chris Wilson 已提交
2772 2773
	trace_i915_gem_object_bind(obj, obj_priv->gtt_offset);

2774 2775 2776 2777 2778 2779
	return 0;
}

void
i915_gem_clflush_object(struct drm_gem_object *obj)
{
2780
	struct drm_i915_gem_object	*obj_priv = to_intel_bo(obj);
2781 2782 2783 2784 2785

	/* If we don't have a page list set up, then we're not pinned
	 * to GPU, and we can ignore the cache flush because it'll happen
	 * again at bind time.
	 */
2786
	if (obj_priv->pages == NULL)
2787 2788
		return;

C
Chris Wilson 已提交
2789
	trace_i915_gem_object_clflush(obj);
2790

2791
	drm_clflush_pages(obj_priv->pages, obj->size / PAGE_SIZE);
2792 2793
}

2794
/** Flushes any GPU write domain for the object if it's dirty. */
2795
static int
2796 2797
i915_gem_object_flush_gpu_write_domain(struct drm_gem_object *obj,
				       bool pipelined)
2798 2799
{
	struct drm_device *dev = obj->dev;
C
Chris Wilson 已提交
2800
	uint32_t old_write_domain;
2801 2802

	if ((obj->write_domain & I915_GEM_GPU_DOMAINS) == 0)
2803
		return 0;
2804 2805

	/* Queue the GPU write cache flushing we need. */
C
Chris Wilson 已提交
2806
	old_write_domain = obj->write_domain;
2807
	i915_gem_flush_ring(dev, NULL,
2808 2809
			    to_intel_bo(obj)->ring,
			    0, obj->write_domain);
2810
	BUG_ON(obj->write_domain);
C
Chris Wilson 已提交
2811 2812 2813 2814

	trace_i915_gem_object_change_domain(obj,
					    obj->read_domains,
					    old_write_domain);
2815 2816 2817 2818

	if (pipelined)
		return 0;

2819
	return i915_gem_object_wait_rendering(obj, true);
2820 2821 2822 2823 2824 2825
}

/** Flushes the GTT write domain for the object if it's dirty. */
static void
i915_gem_object_flush_gtt_write_domain(struct drm_gem_object *obj)
{
C
Chris Wilson 已提交
2826 2827
	uint32_t old_write_domain;

2828 2829 2830 2831 2832 2833 2834
	if (obj->write_domain != I915_GEM_DOMAIN_GTT)
		return;

	/* No actual flushing is required for the GTT write domain.   Writes
	 * to it immediately go to main memory as far as we know, so there's
	 * no chipset flush.  It also doesn't land in render cache.
	 */
C
Chris Wilson 已提交
2835
	old_write_domain = obj->write_domain;
2836
	obj->write_domain = 0;
C
Chris Wilson 已提交
2837 2838 2839 2840

	trace_i915_gem_object_change_domain(obj,
					    obj->read_domains,
					    old_write_domain);
2841 2842 2843 2844 2845 2846 2847
}

/** Flushes the CPU write domain for the object if it's dirty. */
static void
i915_gem_object_flush_cpu_write_domain(struct drm_gem_object *obj)
{
	struct drm_device *dev = obj->dev;
C
Chris Wilson 已提交
2848
	uint32_t old_write_domain;
2849 2850 2851 2852 2853 2854

	if (obj->write_domain != I915_GEM_DOMAIN_CPU)
		return;

	i915_gem_clflush_object(obj);
	drm_agp_chipset_flush(dev);
C
Chris Wilson 已提交
2855
	old_write_domain = obj->write_domain;
2856
	obj->write_domain = 0;
C
Chris Wilson 已提交
2857 2858 2859 2860

	trace_i915_gem_object_change_domain(obj,
					    obj->read_domains,
					    old_write_domain);
2861 2862
}

2863 2864 2865 2866 2867 2868
/**
 * Moves a single object to the GTT read, and possibly write domain.
 *
 * This function returns when the move is complete, including waiting on
 * flushes to occur.
 */
J
Jesse Barnes 已提交
2869
int
2870 2871
i915_gem_object_set_to_gtt_domain(struct drm_gem_object *obj, int write)
{
2872
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
C
Chris Wilson 已提交
2873
	uint32_t old_write_domain, old_read_domains;
2874
	int ret;
2875

2876 2877 2878 2879
	/* Not valid to be called on unbound objects. */
	if (obj_priv->gtt_space == NULL)
		return -EINVAL;

2880
	ret = i915_gem_object_flush_gpu_write_domain(obj, false);
2881 2882 2883
	if (ret != 0)
		return ret;

2884
	i915_gem_object_flush_cpu_write_domain(obj);
C
Chris Wilson 已提交
2885

2886
	if (write) {
2887
		ret = i915_gem_object_wait_rendering(obj, true);
2888 2889 2890
		if (ret)
			return ret;
	}
2891

2892 2893
	old_write_domain = obj->write_domain;
	old_read_domains = obj->read_domains;
2894

2895 2896 2897 2898 2899 2900
	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
	BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
	obj->read_domains |= I915_GEM_DOMAIN_GTT;
	if (write) {
2901
		obj->read_domains = I915_GEM_DOMAIN_GTT;
2902 2903
		obj->write_domain = I915_GEM_DOMAIN_GTT;
		obj_priv->dirty = 1;
2904 2905
	}

C
Chris Wilson 已提交
2906 2907 2908 2909
	trace_i915_gem_object_change_domain(obj,
					    old_read_domains,
					    old_write_domain);

2910 2911 2912
	return 0;
}

2913 2914 2915 2916 2917
/*
 * Prepare buffer for display plane. Use uninterruptible for possible flush
 * wait, as in modesetting process we're not supposed to be interrupted.
 */
int
2918 2919
i915_gem_object_set_to_display_plane(struct drm_gem_object *obj,
				     bool pipelined)
2920
{
2921
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2922
	uint32_t old_read_domains;
2923 2924 2925 2926 2927 2928
	int ret;

	/* Not valid to be called on unbound objects. */
	if (obj_priv->gtt_space == NULL)
		return -EINVAL;

2929
	ret = i915_gem_object_flush_gpu_write_domain(obj, true);
2930
	if (ret)
2931
		return ret;
2932

2933 2934 2935 2936 2937 2938 2939
	/* Currently, we are always called from an non-interruptible context. */
	if (!pipelined) {
		ret = i915_gem_object_wait_rendering(obj, false);
		if (ret)
			return ret;
	}

2940 2941
	i915_gem_object_flush_cpu_write_domain(obj);

2942
	old_read_domains = obj->read_domains;
2943
	obj->read_domains |= I915_GEM_DOMAIN_GTT;
2944 2945 2946

	trace_i915_gem_object_change_domain(obj,
					    old_read_domains,
2947
					    obj->write_domain);
2948 2949 2950 2951

	return 0;
}

2952 2953 2954 2955 2956 2957 2958 2959 2960
/**
 * Moves a single object to the CPU read, and possibly write domain.
 *
 * This function returns when the move is complete, including waiting on
 * flushes to occur.
 */
static int
i915_gem_object_set_to_cpu_domain(struct drm_gem_object *obj, int write)
{
C
Chris Wilson 已提交
2961
	uint32_t old_write_domain, old_read_domains;
2962 2963
	int ret;

2964
	ret = i915_gem_object_flush_gpu_write_domain(obj, false);
2965 2966
	if (ret != 0)
		return ret;
2967

2968
	i915_gem_object_flush_gtt_write_domain(obj);
2969

2970 2971
	/* If we have a partially-valid cache of the object in the CPU,
	 * finish invalidating it and free the per-page flags.
2972
	 */
2973
	i915_gem_object_set_to_full_cpu_read_domain(obj);
2974

2975
	if (write) {
2976
		ret = i915_gem_object_wait_rendering(obj, true);
2977 2978 2979 2980
		if (ret)
			return ret;
	}

C
Chris Wilson 已提交
2981 2982 2983
	old_write_domain = obj->write_domain;
	old_read_domains = obj->read_domains;

2984 2985
	/* Flush the CPU cache if it's still invalid. */
	if ((obj->read_domains & I915_GEM_DOMAIN_CPU) == 0) {
2986 2987
		i915_gem_clflush_object(obj);

2988
		obj->read_domains |= I915_GEM_DOMAIN_CPU;
2989 2990 2991 2992 2993
	}

	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
2994 2995 2996 2997 2998 2999
	BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_CPU) != 0);

	/* If we're writing through the CPU, then the GPU read domains will
	 * need to be invalidated at next use.
	 */
	if (write) {
3000
		obj->read_domains = I915_GEM_DOMAIN_CPU;
3001 3002
		obj->write_domain = I915_GEM_DOMAIN_CPU;
	}
3003

C
Chris Wilson 已提交
3004 3005 3006 3007
	trace_i915_gem_object_change_domain(obj,
					    old_read_domains,
					    old_write_domain);

3008 3009 3010
	return 0;
}

3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121
/*
 * Set the next domain for the specified object. This
 * may not actually perform the necessary flushing/invaliding though,
 * as that may want to be batched with other set_domain operations
 *
 * This is (we hope) the only really tricky part of gem. The goal
 * is fairly simple -- track which caches hold bits of the object
 * and make sure they remain coherent. A few concrete examples may
 * help to explain how it works. For shorthand, we use the notation
 * (read_domains, write_domain), e.g. (CPU, CPU) to indicate the
 * a pair of read and write domain masks.
 *
 * Case 1: the batch buffer
 *
 *	1. Allocated
 *	2. Written by CPU
 *	3. Mapped to GTT
 *	4. Read by GPU
 *	5. Unmapped from GTT
 *	6. Freed
 *
 *	Let's take these a step at a time
 *
 *	1. Allocated
 *		Pages allocated from the kernel may still have
 *		cache contents, so we set them to (CPU, CPU) always.
 *	2. Written by CPU (using pwrite)
 *		The pwrite function calls set_domain (CPU, CPU) and
 *		this function does nothing (as nothing changes)
 *	3. Mapped by GTT
 *		This function asserts that the object is not
 *		currently in any GPU-based read or write domains
 *	4. Read by GPU
 *		i915_gem_execbuffer calls set_domain (COMMAND, 0).
 *		As write_domain is zero, this function adds in the
 *		current read domains (CPU+COMMAND, 0).
 *		flush_domains is set to CPU.
 *		invalidate_domains is set to COMMAND
 *		clflush is run to get data out of the CPU caches
 *		then i915_dev_set_domain calls i915_gem_flush to
 *		emit an MI_FLUSH and drm_agp_chipset_flush
 *	5. Unmapped from GTT
 *		i915_gem_object_unbind calls set_domain (CPU, CPU)
 *		flush_domains and invalidate_domains end up both zero
 *		so no flushing/invalidating happens
 *	6. Freed
 *		yay, done
 *
 * Case 2: The shared render buffer
 *
 *	1. Allocated
 *	2. Mapped to GTT
 *	3. Read/written by GPU
 *	4. set_domain to (CPU,CPU)
 *	5. Read/written by CPU
 *	6. Read/written by GPU
 *
 *	1. Allocated
 *		Same as last example, (CPU, CPU)
 *	2. Mapped to GTT
 *		Nothing changes (assertions find that it is not in the GPU)
 *	3. Read/written by GPU
 *		execbuffer calls set_domain (RENDER, RENDER)
 *		flush_domains gets CPU
 *		invalidate_domains gets GPU
 *		clflush (obj)
 *		MI_FLUSH and drm_agp_chipset_flush
 *	4. set_domain (CPU, CPU)
 *		flush_domains gets GPU
 *		invalidate_domains gets CPU
 *		wait_rendering (obj) to make sure all drawing is complete.
 *		This will include an MI_FLUSH to get the data from GPU
 *		to memory
 *		clflush (obj) to invalidate the CPU cache
 *		Another MI_FLUSH in i915_gem_flush (eliminate this somehow?)
 *	5. Read/written by CPU
 *		cache lines are loaded and dirtied
 *	6. Read written by GPU
 *		Same as last GPU access
 *
 * Case 3: The constant buffer
 *
 *	1. Allocated
 *	2. Written by CPU
 *	3. Read by GPU
 *	4. Updated (written) by CPU again
 *	5. Read by GPU
 *
 *	1. Allocated
 *		(CPU, CPU)
 *	2. Written by CPU
 *		(CPU, CPU)
 *	3. Read by GPU
 *		(CPU+RENDER, 0)
 *		flush_domains = CPU
 *		invalidate_domains = RENDER
 *		clflush (obj)
 *		MI_FLUSH
 *		drm_agp_chipset_flush
 *	4. Updated (written) by CPU again
 *		(CPU, CPU)
 *		flush_domains = 0 (no previous write domain)
 *		invalidate_domains = 0 (no new read domains)
 *	5. Read by GPU
 *		(CPU+RENDER, 0)
 *		flush_domains = CPU
 *		invalidate_domains = RENDER
 *		clflush (obj)
 *		MI_FLUSH
 *		drm_agp_chipset_flush
 */
3122
static void
3123
i915_gem_object_set_to_gpu_domain(struct drm_gem_object *obj)
3124 3125
{
	struct drm_device		*dev = obj->dev;
3126
	struct drm_i915_private		*dev_priv = dev->dev_private;
3127
	struct drm_i915_gem_object	*obj_priv = to_intel_bo(obj);
3128 3129
	uint32_t			invalidate_domains = 0;
	uint32_t			flush_domains = 0;
C
Chris Wilson 已提交
3130
	uint32_t			old_read_domains;
3131

3132 3133
	intel_mark_busy(dev, obj);

3134 3135 3136 3137
	/*
	 * If the object isn't moving to a new write domain,
	 * let the object stay in multiple read domains
	 */
3138 3139
	if (obj->pending_write_domain == 0)
		obj->pending_read_domains |= obj->read_domains;
3140 3141 3142 3143 3144 3145 3146 3147 3148
	else
		obj_priv->dirty = 1;

	/*
	 * Flush the current write domain if
	 * the new read domains don't match. Invalidate
	 * any read domains which differ from the old
	 * write domain
	 */
3149 3150
	if (obj->write_domain &&
	    obj->write_domain != obj->pending_read_domains) {
3151
		flush_domains |= obj->write_domain;
3152 3153
		invalidate_domains |=
			obj->pending_read_domains & ~obj->write_domain;
3154 3155 3156 3157 3158
	}
	/*
	 * Invalidate any read caches which may have
	 * stale data. That is, any new read domains.
	 */
3159
	invalidate_domains |= obj->pending_read_domains & ~obj->read_domains;
3160
	if ((flush_domains | invalidate_domains) & I915_GEM_DOMAIN_CPU)
3161 3162
		i915_gem_clflush_object(obj);

C
Chris Wilson 已提交
3163 3164
	old_read_domains = obj->read_domains;

3165 3166 3167 3168 3169 3170 3171 3172
	/* The actual obj->write_domain will be updated with
	 * pending_write_domain after we emit the accumulated flush for all
	 * of our domain changes in execbuffers (which clears objects'
	 * write_domains).  So if we have a current write domain that we
	 * aren't changing, set pending_write_domain to that.
	 */
	if (flush_domains == 0 && obj->pending_write_domain == 0)
		obj->pending_write_domain = obj->write_domain;
3173
	obj->read_domains = obj->pending_read_domains;
3174 3175 3176

	dev->invalidate_domains |= invalidate_domains;
	dev->flush_domains |= flush_domains;
3177 3178
	if (obj_priv->ring)
		dev_priv->mm.flush_rings |= obj_priv->ring->id;
C
Chris Wilson 已提交
3179 3180 3181 3182

	trace_i915_gem_object_change_domain(obj,
					    old_read_domains,
					    obj->write_domain);
3183 3184 3185
}

/**
3186
 * Moves the object from a partially CPU read to a full one.
3187
 *
3188 3189
 * Note that this only resolves i915_gem_object_set_cpu_read_domain_range(),
 * and doesn't handle transitioning from !(read_domains & I915_GEM_DOMAIN_CPU).
3190
 */
3191 3192
static void
i915_gem_object_set_to_full_cpu_read_domain(struct drm_gem_object *obj)
3193
{
3194
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
3195

3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206
	if (!obj_priv->page_cpu_valid)
		return;

	/* If we're partially in the CPU read domain, finish moving it in.
	 */
	if (obj->read_domains & I915_GEM_DOMAIN_CPU) {
		int i;

		for (i = 0; i <= (obj->size - 1) / PAGE_SIZE; i++) {
			if (obj_priv->page_cpu_valid[i])
				continue;
3207
			drm_clflush_pages(obj_priv->pages + i, 1);
3208 3209 3210 3211 3212 3213
		}
	}

	/* Free the page_cpu_valid mappings which are now stale, whether
	 * or not we've got I915_GEM_DOMAIN_CPU.
	 */
3214
	kfree(obj_priv->page_cpu_valid);
3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233
	obj_priv->page_cpu_valid = NULL;
}

/**
 * Set the CPU read domain on a range of the object.
 *
 * The object ends up with I915_GEM_DOMAIN_CPU in its read flags although it's
 * not entirely valid.  The page_cpu_valid member of the object flags which
 * pages have been flushed, and will be respected by
 * i915_gem_object_set_to_cpu_domain() if it's called on to get a valid mapping
 * of the whole object.
 *
 * This function returns when the move is complete, including waiting on
 * flushes to occur.
 */
static int
i915_gem_object_set_cpu_read_domain_range(struct drm_gem_object *obj,
					  uint64_t offset, uint64_t size)
{
3234
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
C
Chris Wilson 已提交
3235
	uint32_t old_read_domains;
3236
	int i, ret;
3237

3238 3239
	if (offset == 0 && size == obj->size)
		return i915_gem_object_set_to_cpu_domain(obj, 0);
3240

3241
	ret = i915_gem_object_flush_gpu_write_domain(obj, false);
3242
	if (ret != 0)
3243
		return ret;
3244 3245 3246 3247 3248 3249
	i915_gem_object_flush_gtt_write_domain(obj);

	/* If we're already fully in the CPU read domain, we're done. */
	if (obj_priv->page_cpu_valid == NULL &&
	    (obj->read_domains & I915_GEM_DOMAIN_CPU) != 0)
		return 0;
3250

3251 3252 3253
	/* Otherwise, create/clear the per-page CPU read domain flag if we're
	 * newly adding I915_GEM_DOMAIN_CPU
	 */
3254
	if (obj_priv->page_cpu_valid == NULL) {
3255 3256
		obj_priv->page_cpu_valid = kzalloc(obj->size / PAGE_SIZE,
						   GFP_KERNEL);
3257 3258 3259 3260
		if (obj_priv->page_cpu_valid == NULL)
			return -ENOMEM;
	} else if ((obj->read_domains & I915_GEM_DOMAIN_CPU) == 0)
		memset(obj_priv->page_cpu_valid, 0, obj->size / PAGE_SIZE);
3261 3262 3263 3264

	/* Flush the cache on any pages that are still invalid from the CPU's
	 * perspective.
	 */
3265 3266
	for (i = offset / PAGE_SIZE; i <= (offset + size - 1) / PAGE_SIZE;
	     i++) {
3267 3268 3269
		if (obj_priv->page_cpu_valid[i])
			continue;

3270
		drm_clflush_pages(obj_priv->pages + i, 1);
3271 3272 3273 3274

		obj_priv->page_cpu_valid[i] = 1;
	}

3275 3276 3277 3278 3279
	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
	BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_CPU) != 0);

C
Chris Wilson 已提交
3280
	old_read_domains = obj->read_domains;
3281 3282
	obj->read_domains |= I915_GEM_DOMAIN_CPU;

C
Chris Wilson 已提交
3283 3284 3285 3286
	trace_i915_gem_object_change_domain(obj,
					    old_read_domains,
					    obj->write_domain);

3287 3288 3289 3290 3291 3292 3293 3294 3295
	return 0;
}

/**
 * Pin an object to the GTT and evaluate the relocations landing in it.
 */
static int
i915_gem_object_pin_and_relocate(struct drm_gem_object *obj,
				 struct drm_file *file_priv,
3296
				 struct drm_i915_gem_exec_object2 *entry)
3297 3298
{
	struct drm_device *dev = obj->dev;
3299
	drm_i915_private_t *dev_priv = dev->dev_private;
3300
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
3301
	struct drm_i915_gem_relocation_entry __user *user_relocs;
3302
	int i, ret;
J
Jesse Barnes 已提交
3303 3304 3305 3306 3307 3308
	bool need_fence;

	need_fence = entry->flags & EXEC_OBJECT_NEEDS_FENCE &&
	             obj_priv->tiling_mode != I915_TILING_NONE;

	/* Check fence reg constraints and rebind if necessary */
3309 3310 3311 3312 3313 3314 3315
	if (need_fence &&
	    !i915_gem_object_fence_offset_ok(obj,
					     obj_priv->tiling_mode)) {
		ret = i915_gem_object_unbind(obj);
		if (ret)
			return ret;
	}
3316 3317 3318 3319 3320 3321

	/* Choose the GTT offset for our buffer and put it there. */
	ret = i915_gem_object_pin(obj, (uint32_t) entry->alignment);
	if (ret)
		return ret;

J
Jesse Barnes 已提交
3322 3323 3324 3325 3326
	/*
	 * Pre-965 chips need a fence register set up in order to
	 * properly handle blits to/from tiled surfaces.
	 */
	if (need_fence) {
C
Chris Wilson 已提交
3327
		ret = i915_gem_object_get_fence_reg(obj, true);
J
Jesse Barnes 已提交
3328 3329 3330 3331
		if (ret != 0) {
			i915_gem_object_unpin(obj);
			return ret;
		}
C
Chris Wilson 已提交
3332 3333

		dev_priv->fence_regs[obj_priv->fence_reg].gpu = true;
J
Jesse Barnes 已提交
3334 3335
	}

3336 3337 3338 3339 3340
	entry->offset = obj_priv->gtt_offset;

	/* Apply the relocations, using the GTT aperture to avoid cache
	 * flushing requirements.
	 */
3341
	user_relocs = (void __user *)(uintptr_t)entry->relocs_ptr;
3342
	for (i = 0; i < entry->relocation_count; i++) {
3343
		struct drm_i915_gem_relocation_entry reloc;
3344 3345 3346
		struct drm_gem_object *target_obj;
		struct drm_i915_gem_object *target_obj_priv;

3347 3348 3349 3350 3351 3352 3353 3354
		ret = __copy_from_user_inatomic(&reloc,
						user_relocs+i,
						sizeof(reloc));
		if (ret) {
			i915_gem_object_unpin(obj);
			return -EFAULT;
		}

3355
		target_obj = drm_gem_object_lookup(obj->dev, file_priv,
3356
						   reloc.target_handle);
3357 3358
		if (target_obj == NULL) {
			i915_gem_object_unpin(obj);
3359
			return -ENOENT;
3360
		}
3361
		target_obj_priv = to_intel_bo(target_obj);
3362

3363 3364 3365 3366 3367 3368
#if WATCH_RELOC
		DRM_INFO("%s: obj %p offset %08x target %d "
			 "read %08x write %08x gtt %08x "
			 "presumed %08x delta %08x\n",
			 __func__,
			 obj,
3369 3370 3371 3372
			 (int) reloc.offset,
			 (int) reloc.target_handle,
			 (int) reloc.read_domains,
			 (int) reloc.write_domain,
3373
			 (int) target_obj_priv->gtt_offset,
3374 3375
			 (int) reloc.presumed_offset,
			 reloc.delta);
3376 3377
#endif

3378 3379 3380 3381 3382
		/* The target buffer should have appeared before us in the
		 * exec_object list, so it should have a GTT space bound by now.
		 */
		if (target_obj_priv->gtt_space == NULL) {
			DRM_ERROR("No GTT space found for object %d\n",
3383
				  reloc.target_handle);
3384 3385 3386 3387 3388
			drm_gem_object_unreference(target_obj);
			i915_gem_object_unpin(obj);
			return -EINVAL;
		}

3389
		/* Validate that the target is in a valid r/w GPU domain */
3390
		if (reloc.write_domain & (reloc.write_domain - 1)) {
3391 3392 3393
			DRM_ERROR("reloc with multiple write domains: "
				  "obj %p target %d offset %d "
				  "read %08x write %08x",
3394 3395 3396 3397
				  obj, reloc.target_handle,
				  (int) reloc.offset,
				  reloc.read_domains,
				  reloc.write_domain);
3398 3399
			drm_gem_object_unreference(target_obj);
			i915_gem_object_unpin(obj);
3400 3401
			return -EINVAL;
		}
3402 3403
		if (reloc.write_domain & I915_GEM_DOMAIN_CPU ||
		    reloc.read_domains & I915_GEM_DOMAIN_CPU) {
3404 3405 3406
			DRM_ERROR("reloc with read/write CPU domains: "
				  "obj %p target %d offset %d "
				  "read %08x write %08x",
3407 3408 3409 3410
				  obj, reloc.target_handle,
				  (int) reloc.offset,
				  reloc.read_domains,
				  reloc.write_domain);
3411 3412
			drm_gem_object_unreference(target_obj);
			i915_gem_object_unpin(obj);
3413 3414
			return -EINVAL;
		}
3415 3416
		if (reloc.write_domain && target_obj->pending_write_domain &&
		    reloc.write_domain != target_obj->pending_write_domain) {
3417 3418 3419
			DRM_ERROR("Write domain conflict: "
				  "obj %p target %d offset %d "
				  "new %08x old %08x\n",
3420 3421 3422
				  obj, reloc.target_handle,
				  (int) reloc.offset,
				  reloc.write_domain,
3423 3424 3425 3426 3427 3428
				  target_obj->pending_write_domain);
			drm_gem_object_unreference(target_obj);
			i915_gem_object_unpin(obj);
			return -EINVAL;
		}

3429 3430
		target_obj->pending_read_domains |= reloc.read_domains;
		target_obj->pending_write_domain |= reloc.write_domain;
3431 3432 3433 3434

		/* If the relocation already has the right value in it, no
		 * more work needs to be done.
		 */
3435
		if (target_obj_priv->gtt_offset == reloc.presumed_offset) {
3436 3437 3438 3439
			drm_gem_object_unreference(target_obj);
			continue;
		}

3440
		/* Check that the relocation address is valid... */
3441
		if (reloc.offset > obj->size - 4) {
3442 3443
			DRM_ERROR("Relocation beyond object bounds: "
				  "obj %p target %d offset %d size %d.\n",
3444 3445
				  obj, reloc.target_handle,
				  (int) reloc.offset, (int) obj->size);
3446 3447 3448 3449
			drm_gem_object_unreference(target_obj);
			i915_gem_object_unpin(obj);
			return -EINVAL;
		}
3450
		if (reloc.offset & 3) {
3451 3452
			DRM_ERROR("Relocation not 4-byte aligned: "
				  "obj %p target %d offset %d.\n",
3453 3454
				  obj, reloc.target_handle,
				  (int) reloc.offset);
3455 3456 3457 3458 3459 3460
			drm_gem_object_unreference(target_obj);
			i915_gem_object_unpin(obj);
			return -EINVAL;
		}

		/* and points to somewhere within the target object. */
3461
		if (reloc.delta >= target_obj->size) {
3462 3463
			DRM_ERROR("Relocation beyond target object bounds: "
				  "obj %p target %d delta %d size %d.\n",
3464 3465
				  obj, reloc.target_handle,
				  (int) reloc.delta, (int) target_obj->size);
3466 3467 3468 3469 3470
			drm_gem_object_unreference(target_obj);
			i915_gem_object_unpin(obj);
			return -EINVAL;
		}

3471 3472 3473 3474
		reloc.delta += target_obj_priv->gtt_offset;
		if (obj->write_domain == I915_GEM_DOMAIN_CPU) {
			uint32_t page_offset = reloc.offset & ~PAGE_MASK;
			char *vaddr;
3475

3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500
			vaddr = kmap_atomic(obj_priv->pages[reloc.offset >> PAGE_SHIFT], KM_USER0);
			*(uint32_t *)(vaddr + page_offset) = reloc.delta;
			kunmap_atomic(vaddr, KM_USER0);
		} else {
			uint32_t __iomem *reloc_entry;
			void __iomem *reloc_page;
			int ret;

			ret = i915_gem_object_set_to_gtt_domain(obj, 1);
			if (ret) {
				drm_gem_object_unreference(target_obj);
				i915_gem_object_unpin(obj);
				return ret;
			}

			/* Map the page containing the relocation we're going to perform.  */
			reloc.offset += obj_priv->gtt_offset;
			reloc_page = io_mapping_map_atomic_wc(dev_priv->mm.gtt_mapping,
							      reloc.offset & PAGE_MASK,
							      KM_USER0);
			reloc_entry = (uint32_t __iomem *)
				(reloc_page + (reloc.offset & ~PAGE_MASK));
			iowrite32(reloc.delta, reloc_entry);
			io_mapping_unmap_atomic(reloc_page, KM_USER0);
		}
3501 3502 3503 3504 3505 3506 3507 3508 3509 3510

		drm_gem_object_unreference(target_obj);
	}

	return 0;
}

/* Throttle our rendering by waiting until the ring has completed our requests
 * emitted over 20 msec ago.
 *
3511 3512 3513 3514
 * Note that if we were to use the current jiffies each time around the loop,
 * we wouldn't escape the function with any frames outstanding if the time to
 * render a frame was over 20ms.
 *
3515 3516 3517 3518
 * This should get us reasonable parallelism between CPU and GPU but also
 * relatively low latency when blocking on a particular request to finish.
 */
static int
3519
i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
3520
{
3521 3522
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct drm_i915_file_private *file_priv = file->driver_priv;
3523
	unsigned long recent_enough = jiffies - msecs_to_jiffies(20);
3524 3525 3526 3527
	struct drm_i915_gem_request *request;
	struct intel_ring_buffer *ring = NULL;
	u32 seqno = 0;
	int ret;
3528

3529
	spin_lock(&file_priv->mm.lock);
3530
	list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
3531 3532 3533
		if (time_after_eq(request->emitted_jiffies, recent_enough))
			break;

3534 3535
		ring = request->ring;
		seqno = request->seqno;
3536
	}
3537
	spin_unlock(&file_priv->mm.lock);
3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560

	if (seqno == 0)
		return 0;

	ret = 0;
	if (!i915_seqno_passed(ring->get_seqno(dev, ring), seqno)) {
		/* And wait for the seqno passing without holding any locks and
		 * causing extra latency for others. This is safe as the irq
		 * generation is designed to be run atomically and so is
		 * lockless.
		 */
		ring->user_irq_get(dev, ring);
		ret = wait_event_interruptible(ring->irq_queue,
					       i915_seqno_passed(ring->get_seqno(dev, ring), seqno)
					       || atomic_read(&dev_priv->mm.wedged));
		ring->user_irq_put(dev, ring);

		if (ret == 0 && atomic_read(&dev_priv->mm.wedged))
			ret = -EIO;
	}

	if (ret == 0)
		queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
3561

3562 3563 3564
	return ret;
}

3565
static int
3566 3567
i915_gem_check_execbuffer(struct drm_i915_gem_execbuffer2 *exec,
			  uint64_t exec_offset)
3568
{
3569
	uint32_t exec_start, exec_len;
3570

3571 3572
	exec_start = (uint32_t) exec_offset + exec->batch_start_offset;
	exec_len = (uint32_t) exec->batch_len;
3573

3574 3575
	if ((exec_start | exec_len) & 0x7)
		return -EINVAL;
3576

3577 3578
	if (!exec_start)
		return -EINVAL;
3579

3580
	return 0;
3581 3582 3583
}

static int
3584 3585
validate_exec_list(struct drm_i915_gem_exec_object2 *exec,
		   int count)
3586
{
3587
	int i;
3588

3589 3590 3591
	for (i = 0; i < count; i++) {
		char __user *ptr = (char __user *)(uintptr_t)exec[i].relocs_ptr;
		size_t length = exec[i].relocation_count * sizeof(struct drm_i915_gem_relocation_entry);
3592

3593 3594
		if (!access_ok(VERIFY_READ, ptr, length))
			return -EFAULT;
3595

3596 3597
		if (fault_in_pages_readable(ptr, length))
			return -EFAULT;
3598 3599
	}

3600 3601 3602
	return 0;
}

C
Chris Wilson 已提交
3603
static int
J
Jesse Barnes 已提交
3604 3605 3606 3607
i915_gem_do_execbuffer(struct drm_device *dev, void *data,
		       struct drm_file *file_priv,
		       struct drm_i915_gem_execbuffer2 *args,
		       struct drm_i915_gem_exec_object2 *exec_list)
3608 3609 3610 3611
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	struct drm_gem_object **object_list = NULL;
	struct drm_gem_object *batch_obj;
3612
	struct drm_i915_gem_object *obj_priv;
3613
	struct drm_clip_rect *cliprects = NULL;
C
Chris Wilson 已提交
3614
	struct drm_i915_gem_request *request = NULL;
3615
	int ret, i, pinned = 0;
3616
	uint64_t exec_offset;
3617
	int pin_tries, flips;
3618

3619 3620
	struct intel_ring_buffer *ring = NULL;

3621 3622 3623 3624
	ret = i915_gem_check_is_wedged(dev);
	if (ret)
		return ret;

3625 3626 3627 3628
	ret = validate_exec_list(exec_list, args->buffer_count);
	if (ret)
		return ret;

3629 3630 3631 3632
#if WATCH_EXEC
	DRM_INFO("buffers_ptr %d buffer_count %d len %08x\n",
		  (int) args->buffers_ptr, args->buffer_count, args->batch_len);
#endif
3633 3634 3635 3636 3637 3638 3639 3640 3641 3642
	if (args->flags & I915_EXEC_BSD) {
		if (!HAS_BSD(dev)) {
			DRM_ERROR("execbuf with wrong flag\n");
			return -EINVAL;
		}
		ring = &dev_priv->bsd_ring;
	} else {
		ring = &dev_priv->render_ring;
	}

3643 3644 3645 3646
	if (args->buffer_count < 1) {
		DRM_ERROR("execbuf with %d buffers\n", args->buffer_count);
		return -EINVAL;
	}
3647
	object_list = drm_malloc_ab(sizeof(*object_list), args->buffer_count);
J
Jesse Barnes 已提交
3648 3649
	if (object_list == NULL) {
		DRM_ERROR("Failed to allocate object list for %d buffers\n",
3650 3651 3652 3653 3654
			  args->buffer_count);
		ret = -ENOMEM;
		goto pre_mutex_err;
	}

3655
	if (args->num_cliprects != 0) {
3656 3657
		cliprects = kcalloc(args->num_cliprects, sizeof(*cliprects),
				    GFP_KERNEL);
3658 3659
		if (cliprects == NULL) {
			ret = -ENOMEM;
3660
			goto pre_mutex_err;
3661
		}
3662 3663 3664 3665 3666 3667 3668 3669

		ret = copy_from_user(cliprects,
				     (struct drm_clip_rect __user *)
				     (uintptr_t) args->cliprects_ptr,
				     sizeof(*cliprects) * args->num_cliprects);
		if (ret != 0) {
			DRM_ERROR("copy %d cliprects failed: %d\n",
				  args->num_cliprects, ret);
3670
			ret = -EFAULT;
3671 3672 3673 3674
			goto pre_mutex_err;
		}
	}

C
Chris Wilson 已提交
3675 3676 3677 3678 3679 3680
	request = kzalloc(sizeof(*request), GFP_KERNEL);
	if (request == NULL) {
		ret = -ENOMEM;
		goto pre_mutex_err;
	}

3681 3682 3683
	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		goto pre_mutex_err;
3684 3685 3686

	if (dev_priv->mm.suspended) {
		mutex_unlock(&dev->struct_mutex);
3687 3688
		ret = -EBUSY;
		goto pre_mutex_err;
3689 3690
	}

3691
	/* Look up object handles */
3692 3693 3694 3695 3696 3697
	for (i = 0; i < args->buffer_count; i++) {
		object_list[i] = drm_gem_object_lookup(dev, file_priv,
						       exec_list[i].handle);
		if (object_list[i] == NULL) {
			DRM_ERROR("Invalid object handle %d at index %d\n",
				   exec_list[i].handle, i);
3698 3699
			/* prevent error path from reading uninitialized data */
			args->buffer_count = i + 1;
3700
			ret = -ENOENT;
3701 3702
			goto err;
		}
3703

3704
		obj_priv = to_intel_bo(object_list[i]);
3705 3706 3707
		if (obj_priv->in_execbuffer) {
			DRM_ERROR("Object %p appears more than once in object list\n",
				   object_list[i]);
3708 3709
			/* prevent error path from reading uninitialized data */
			args->buffer_count = i + 1;
3710
			ret = -EINVAL;
3711 3712 3713
			goto err;
		}
		obj_priv->in_execbuffer = true;
3714
	}
3715

3716 3717 3718
	/* Pin and relocate */
	for (pin_tries = 0; ; pin_tries++) {
		ret = 0;
3719

3720 3721 3722 3723 3724
		for (i = 0; i < args->buffer_count; i++) {
			object_list[i]->pending_read_domains = 0;
			object_list[i]->pending_write_domain = 0;
			ret = i915_gem_object_pin_and_relocate(object_list[i],
							       file_priv,
3725
							       &exec_list[i]);
3726 3727 3728 3729 3730 3731 3732 3733 3734
			if (ret)
				break;
			pinned = i + 1;
		}
		/* success */
		if (ret == 0)
			break;

		/* error other than GTT full, or we've already tried again */
C
Chris Wilson 已提交
3735
		if (ret != -ENOSPC || pin_tries >= 1) {
3736 3737
			if (ret != -ERESTARTSYS) {
				unsigned long long total_size = 0;
3738 3739
				int num_fences = 0;
				for (i = 0; i < args->buffer_count; i++) {
3740
					obj_priv = to_intel_bo(object_list[i]);
3741

3742
					total_size += object_list[i]->size;
3743 3744 3745 3746 3747
					num_fences +=
						exec_list[i].flags & EXEC_OBJECT_NEEDS_FENCE &&
						obj_priv->tiling_mode != I915_TILING_NONE;
				}
				DRM_ERROR("Failed to pin buffer %d of %d, total %llu bytes, %d fences: %d\n",
3748
					  pinned+1, args->buffer_count,
3749 3750
					  total_size, num_fences,
					  ret);
3751 3752 3753 3754 3755 3756 3757 3758 3759 3760
				DRM_ERROR("%u objects [%u pinned, %u GTT], "
					  "%zu object bytes [%zu pinned], "
					  "%zu /%zu gtt bytes\n",
					  dev_priv->mm.object_count,
					  dev_priv->mm.pin_count,
					  dev_priv->mm.gtt_count,
					  dev_priv->mm.object_memory,
					  dev_priv->mm.pin_memory,
					  dev_priv->mm.gtt_memory,
					  dev_priv->mm.gtt_total);
3761
			}
3762 3763
			goto err;
		}
3764 3765 3766 3767

		/* unpin all of our buffers */
		for (i = 0; i < pinned; i++)
			i915_gem_object_unpin(object_list[i]);
3768
		pinned = 0;
3769 3770 3771

		/* evict everyone we can from the aperture */
		ret = i915_gem_evict_everything(dev);
3772
		if (ret && ret != -ENOSPC)
3773
			goto err;
3774 3775 3776 3777
	}

	/* Set the pending read domains for the batch buffer to COMMAND */
	batch_obj = object_list[args->buffer_count-1];
3778 3779 3780 3781 3782 3783
	if (batch_obj->pending_write_domain) {
		DRM_ERROR("Attempting to use self-modifying batch buffer\n");
		ret = -EINVAL;
		goto err;
	}
	batch_obj->pending_read_domains |= I915_GEM_DOMAIN_COMMAND;
3784

3785 3786 3787 3788 3789 3790 3791 3792
	/* Sanity check the batch buffer, prior to moving objects */
	exec_offset = exec_list[args->buffer_count - 1].offset;
	ret = i915_gem_check_execbuffer (args, exec_offset);
	if (ret != 0) {
		DRM_ERROR("execbuf with invalid offset/length\n");
		goto err;
	}

3793 3794 3795 3796 3797 3798
	/* Zero the global flush/invalidate flags. These
	 * will be modified as new domains are computed
	 * for each object
	 */
	dev->invalidate_domains = 0;
	dev->flush_domains = 0;
3799
	dev_priv->mm.flush_rings = 0;
3800

3801 3802 3803
	for (i = 0; i < args->buffer_count; i++) {
		struct drm_gem_object *obj = object_list[i];

3804
		/* Compute new gpu domains and update invalidate/flush */
3805
		i915_gem_object_set_to_gpu_domain(obj);
3806 3807
	}

3808 3809 3810 3811 3812 3813 3814
	if (dev->invalidate_domains | dev->flush_domains) {
#if WATCH_EXEC
		DRM_INFO("%s: invalidate_domains %08x flush_domains %08x\n",
			  __func__,
			 dev->invalidate_domains,
			 dev->flush_domains);
#endif
3815
		i915_gem_flush(dev, file_priv,
3816
			       dev->invalidate_domains,
3817 3818
			       dev->flush_domains,
			       dev_priv->mm.flush_rings);
3819 3820
	}

3821 3822
	for (i = 0; i < args->buffer_count; i++) {
		struct drm_gem_object *obj = object_list[i];
3823
		struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
C
Chris Wilson 已提交
3824
		uint32_t old_write_domain = obj->write_domain;
3825 3826

		obj->write_domain = obj->pending_write_domain;
3827 3828 3829 3830
		if (obj->write_domain)
			list_move_tail(&obj_priv->gpu_write_list,
				       &dev_priv->mm.gpu_write_list);

C
Chris Wilson 已提交
3831 3832 3833
		trace_i915_gem_object_change_domain(obj,
						    obj->read_domains,
						    old_write_domain);
3834 3835
	}

3836 3837 3838 3839 3840 3841 3842 3843
#if WATCH_COHERENCY
	for (i = 0; i < args->buffer_count; i++) {
		i915_gem_object_check_coherency(object_list[i],
						exec_list[i].handle);
	}
#endif

#if WATCH_EXEC
3844
	i915_gem_dump_object(batch_obj,
3845 3846 3847 3848 3849
			      args->batch_len,
			      __func__,
			      ~0);
#endif

3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878
	/* Check for any pending flips. As we only maintain a flip queue depth
	 * of 1, we can simply insert a WAIT for the next display flip prior
	 * to executing the batch and avoid stalling the CPU.
	 */
	flips = 0;
	for (i = 0; i < args->buffer_count; i++) {
		if (object_list[i]->write_domain)
			flips |= atomic_read(&to_intel_bo(object_list[i])->pending_flip);
	}
	if (flips) {
		int plane, flip_mask;

		for (plane = 0; flips >> plane; plane++) {
			if (((flips >> plane) & 1) == 0)
				continue;

			if (plane)
				flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
			else
				flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;

			intel_ring_begin(dev, ring, 2);
			intel_ring_emit(dev, ring,
					MI_WAIT_FOR_EVENT | flip_mask);
			intel_ring_emit(dev, ring, MI_NOOP);
			intel_ring_advance(dev, ring);
		}
	}

3879
	/* Exec the batchbuffer */
3880
	ret = ring->dispatch_gem_execbuffer(dev, ring, args,
3881
					    cliprects, exec_offset);
3882 3883 3884 3885 3886 3887 3888 3889 3890
	if (ret) {
		DRM_ERROR("dispatch failed %d\n", ret);
		goto err;
	}

	/*
	 * Ensure that the commands in the batch buffer are
	 * finished before the interrupt fires
	 */
3891
	i915_retire_commands(dev, ring);
3892

3893 3894 3895 3896 3897 3898
	for (i = 0; i < args->buffer_count; i++) {
		struct drm_gem_object *obj = object_list[i];
		obj_priv = to_intel_bo(obj);

		i915_gem_object_move_to_active(obj, ring);
	}
3899

C
Chris Wilson 已提交
3900
	i915_add_request(dev, file_priv, request, ring);
C
Chris Wilson 已提交
3901
	request = NULL;
3902 3903

err:
3904 3905 3906
	for (i = 0; i < pinned; i++)
		i915_gem_object_unpin(object_list[i]);

3907 3908
	for (i = 0; i < args->buffer_count; i++) {
		if (object_list[i]) {
3909
			obj_priv = to_intel_bo(object_list[i]);
3910 3911
			obj_priv->in_execbuffer = false;
		}
3912
		drm_gem_object_unreference(object_list[i]);
3913
	}
3914 3915 3916

	mutex_unlock(&dev->struct_mutex);

3917
pre_mutex_err:
3918
	drm_free_large(object_list);
3919
	kfree(cliprects);
C
Chris Wilson 已提交
3920
	kfree(request);
3921 3922 3923 3924

	return ret;
}

J
Jesse Barnes 已提交
3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976
/*
 * Legacy execbuffer just creates an exec2 list from the original exec object
 * list array and passes it to the real function.
 */
int
i915_gem_execbuffer(struct drm_device *dev, void *data,
		    struct drm_file *file_priv)
{
	struct drm_i915_gem_execbuffer *args = data;
	struct drm_i915_gem_execbuffer2 exec2;
	struct drm_i915_gem_exec_object *exec_list = NULL;
	struct drm_i915_gem_exec_object2 *exec2_list = NULL;
	int ret, i;

#if WATCH_EXEC
	DRM_INFO("buffers_ptr %d buffer_count %d len %08x\n",
		  (int) args->buffers_ptr, args->buffer_count, args->batch_len);
#endif

	if (args->buffer_count < 1) {
		DRM_ERROR("execbuf with %d buffers\n", args->buffer_count);
		return -EINVAL;
	}

	/* Copy in the exec list from userland */
	exec_list = drm_malloc_ab(sizeof(*exec_list), args->buffer_count);
	exec2_list = drm_malloc_ab(sizeof(*exec2_list), args->buffer_count);
	if (exec_list == NULL || exec2_list == NULL) {
		DRM_ERROR("Failed to allocate exec list for %d buffers\n",
			  args->buffer_count);
		drm_free_large(exec_list);
		drm_free_large(exec2_list);
		return -ENOMEM;
	}
	ret = copy_from_user(exec_list,
			     (struct drm_i915_relocation_entry __user *)
			     (uintptr_t) args->buffers_ptr,
			     sizeof(*exec_list) * args->buffer_count);
	if (ret != 0) {
		DRM_ERROR("copy %d exec entries failed %d\n",
			  args->buffer_count, ret);
		drm_free_large(exec_list);
		drm_free_large(exec2_list);
		return -EFAULT;
	}

	for (i = 0; i < args->buffer_count; i++) {
		exec2_list[i].handle = exec_list[i].handle;
		exec2_list[i].relocation_count = exec_list[i].relocation_count;
		exec2_list[i].relocs_ptr = exec_list[i].relocs_ptr;
		exec2_list[i].alignment = exec_list[i].alignment;
		exec2_list[i].offset = exec_list[i].offset;
3977
		if (INTEL_INFO(dev)->gen < 4)
J
Jesse Barnes 已提交
3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990
			exec2_list[i].flags = EXEC_OBJECT_NEEDS_FENCE;
		else
			exec2_list[i].flags = 0;
	}

	exec2.buffers_ptr = args->buffers_ptr;
	exec2.buffer_count = args->buffer_count;
	exec2.batch_start_offset = args->batch_start_offset;
	exec2.batch_len = args->batch_len;
	exec2.DR1 = args->DR1;
	exec2.DR4 = args->DR4;
	exec2.num_cliprects = args->num_cliprects;
	exec2.cliprects_ptr = args->cliprects_ptr;
3991
	exec2.flags = I915_EXEC_RENDER;
J
Jesse Barnes 已提交
3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069

	ret = i915_gem_do_execbuffer(dev, data, file_priv, &exec2, exec2_list);
	if (!ret) {
		/* Copy the new buffer offsets back to the user's exec list. */
		for (i = 0; i < args->buffer_count; i++)
			exec_list[i].offset = exec2_list[i].offset;
		/* ... and back out to userspace */
		ret = copy_to_user((struct drm_i915_relocation_entry __user *)
				   (uintptr_t) args->buffers_ptr,
				   exec_list,
				   sizeof(*exec_list) * args->buffer_count);
		if (ret) {
			ret = -EFAULT;
			DRM_ERROR("failed to copy %d exec entries "
				  "back to user (%d)\n",
				  args->buffer_count, ret);
		}
	}

	drm_free_large(exec_list);
	drm_free_large(exec2_list);
	return ret;
}

int
i915_gem_execbuffer2(struct drm_device *dev, void *data,
		     struct drm_file *file_priv)
{
	struct drm_i915_gem_execbuffer2 *args = data;
	struct drm_i915_gem_exec_object2 *exec2_list = NULL;
	int ret;

#if WATCH_EXEC
	DRM_INFO("buffers_ptr %d buffer_count %d len %08x\n",
		  (int) args->buffers_ptr, args->buffer_count, args->batch_len);
#endif

	if (args->buffer_count < 1) {
		DRM_ERROR("execbuf2 with %d buffers\n", args->buffer_count);
		return -EINVAL;
	}

	exec2_list = drm_malloc_ab(sizeof(*exec2_list), args->buffer_count);
	if (exec2_list == NULL) {
		DRM_ERROR("Failed to allocate exec list for %d buffers\n",
			  args->buffer_count);
		return -ENOMEM;
	}
	ret = copy_from_user(exec2_list,
			     (struct drm_i915_relocation_entry __user *)
			     (uintptr_t) args->buffers_ptr,
			     sizeof(*exec2_list) * args->buffer_count);
	if (ret != 0) {
		DRM_ERROR("copy %d exec entries failed %d\n",
			  args->buffer_count, ret);
		drm_free_large(exec2_list);
		return -EFAULT;
	}

	ret = i915_gem_do_execbuffer(dev, data, file_priv, args, exec2_list);
	if (!ret) {
		/* Copy the new buffer offsets back to the user's exec list. */
		ret = copy_to_user((struct drm_i915_relocation_entry __user *)
				   (uintptr_t) args->buffers_ptr,
				   exec2_list,
				   sizeof(*exec2_list) * args->buffer_count);
		if (ret) {
			ret = -EFAULT;
			DRM_ERROR("failed to copy %d exec entries "
				  "back to user (%d)\n",
				  args->buffer_count, ret);
		}
	}

	drm_free_large(exec2_list);
	return ret;
}

4070 4071 4072 4073
int
i915_gem_object_pin(struct drm_gem_object *obj, uint32_t alignment)
{
	struct drm_device *dev = obj->dev;
C
Chris Wilson 已提交
4074
	struct drm_i915_private *dev_priv = dev->dev_private;
4075
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
4076 4077
	int ret;

4078
	BUG_ON(obj_priv->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT);
4079
	WARN_ON(i915_verify_lists(dev));
4080 4081 4082 4083 4084

	if (obj_priv->gtt_space != NULL) {
		if (alignment == 0)
			alignment = i915_gem_get_gtt_alignment(obj);
		if (obj_priv->gtt_offset & (alignment - 1)) {
4085 4086 4087 4088
			WARN(obj_priv->pin_count,
			     "bo is already pinned with incorrect alignment:"
			     " offset=%x, req.alignment=%x\n",
			     obj_priv->gtt_offset, alignment);
4089 4090 4091 4092 4093 4094
			ret = i915_gem_object_unbind(obj);
			if (ret)
				return ret;
		}
	}

4095 4096
	if (obj_priv->gtt_space == NULL) {
		ret = i915_gem_object_bind_to_gtt(obj, alignment);
4097
		if (ret)
4098
			return ret;
4099
	}
J
Jesse Barnes 已提交
4100

4101 4102 4103 4104 4105 4106
	obj_priv->pin_count++;

	/* If the object is not active and not pending a flush,
	 * remove it from the inactive list
	 */
	if (obj_priv->pin_count == 1) {
4107
		i915_gem_info_add_pin(dev_priv, obj->size);
C
Chris Wilson 已提交
4108 4109 4110
		if (!obj_priv->active)
			list_move_tail(&obj_priv->list,
				       &dev_priv->mm.pinned_list);
4111 4112
	}

4113
	WARN_ON(i915_verify_lists(dev));
4114 4115 4116 4117 4118 4119 4120 4121
	return 0;
}

void
i915_gem_object_unpin(struct drm_gem_object *obj)
{
	struct drm_device *dev = obj->dev;
	drm_i915_private_t *dev_priv = dev->dev_private;
4122
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
4123

4124
	WARN_ON(i915_verify_lists(dev));
4125 4126 4127 4128 4129 4130 4131 4132 4133
	obj_priv->pin_count--;
	BUG_ON(obj_priv->pin_count < 0);
	BUG_ON(obj_priv->gtt_space == NULL);

	/* If the object is no longer pinned, and is
	 * neither active nor being flushed, then stick it on
	 * the inactive list
	 */
	if (obj_priv->pin_count == 0) {
C
Chris Wilson 已提交
4134
		if (!obj_priv->active)
4135 4136
			list_move_tail(&obj_priv->list,
				       &dev_priv->mm.inactive_list);
4137
		i915_gem_info_remove_pin(dev_priv, obj->size);
4138
	}
4139
	WARN_ON(i915_verify_lists(dev));
4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154
}

int
i915_gem_pin_ioctl(struct drm_device *dev, void *data,
		   struct drm_file *file_priv)
{
	struct drm_i915_gem_pin *args = data;
	struct drm_gem_object *obj;
	struct drm_i915_gem_object *obj_priv;
	int ret;

	obj = drm_gem_object_lookup(dev, file_priv, args->handle);
	if (obj == NULL) {
		DRM_ERROR("Bad handle in i915_gem_pin_ioctl(): %d\n",
			  args->handle);
4155
		return -ENOENT;
4156
	}
4157
	obj_priv = to_intel_bo(obj);
4158

4159 4160 4161 4162 4163 4164
	ret = i915_mutex_lock_interruptible(dev);
	if (ret) {
		drm_gem_object_unreference_unlocked(obj);
		return ret;
	}

C
Chris Wilson 已提交
4165 4166
	if (obj_priv->madv != I915_MADV_WILLNEED) {
		DRM_ERROR("Attempting to pin a purgeable buffer\n");
4167 4168 4169 4170 4171
		drm_gem_object_unreference(obj);
		mutex_unlock(&dev->struct_mutex);
		return -EINVAL;
	}

J
Jesse Barnes 已提交
4172 4173 4174
	if (obj_priv->pin_filp != NULL && obj_priv->pin_filp != file_priv) {
		DRM_ERROR("Already pinned in i915_gem_pin_ioctl(): %d\n",
			  args->handle);
4175
		drm_gem_object_unreference(obj);
4176
		mutex_unlock(&dev->struct_mutex);
J
Jesse Barnes 已提交
4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188
		return -EINVAL;
	}

	obj_priv->user_pin_count++;
	obj_priv->pin_filp = file_priv;
	if (obj_priv->user_pin_count == 1) {
		ret = i915_gem_object_pin(obj, args->alignment);
		if (ret != 0) {
			drm_gem_object_unreference(obj);
			mutex_unlock(&dev->struct_mutex);
			return ret;
		}
4189 4190 4191 4192 4193
	}

	/* XXX - flush the CPU caches for pinned objects
	 * as the X server doesn't manage domains yet
	 */
4194
	i915_gem_object_flush_cpu_write_domain(obj);
4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207
	args->offset = obj_priv->gtt_offset;
	drm_gem_object_unreference(obj);
	mutex_unlock(&dev->struct_mutex);

	return 0;
}

int
i915_gem_unpin_ioctl(struct drm_device *dev, void *data,
		     struct drm_file *file_priv)
{
	struct drm_i915_gem_pin *args = data;
	struct drm_gem_object *obj;
J
Jesse Barnes 已提交
4208
	struct drm_i915_gem_object *obj_priv;
4209
	int ret;
4210 4211 4212 4213 4214

	obj = drm_gem_object_lookup(dev, file_priv, args->handle);
	if (obj == NULL) {
		DRM_ERROR("Bad handle in i915_gem_unpin_ioctl(): %d\n",
			  args->handle);
4215
		return -ENOENT;
4216 4217
	}

4218
	obj_priv = to_intel_bo(obj);
4219 4220 4221 4222 4223 4224 4225

	ret = i915_mutex_lock_interruptible(dev);
	if (ret) {
		drm_gem_object_unreference_unlocked(obj);
		return ret;
	}

J
Jesse Barnes 已提交
4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237
	if (obj_priv->pin_filp != file_priv) {
		DRM_ERROR("Not pinned by caller in i915_gem_pin_ioctl(): %d\n",
			  args->handle);
		drm_gem_object_unreference(obj);
		mutex_unlock(&dev->struct_mutex);
		return -EINVAL;
	}
	obj_priv->user_pin_count--;
	if (obj_priv->user_pin_count == 0) {
		obj_priv->pin_filp = NULL;
		i915_gem_object_unpin(obj);
	}
4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250

	drm_gem_object_unreference(obj);
	mutex_unlock(&dev->struct_mutex);
	return 0;
}

int
i915_gem_busy_ioctl(struct drm_device *dev, void *data,
		    struct drm_file *file_priv)
{
	struct drm_i915_gem_busy *args = data;
	struct drm_gem_object *obj;
	struct drm_i915_gem_object *obj_priv;
4251 4252
	int ret;

4253 4254 4255 4256
	obj = drm_gem_object_lookup(dev, file_priv, args->handle);
	if (obj == NULL) {
		DRM_ERROR("Bad handle in i915_gem_busy_ioctl(): %d\n",
			  args->handle);
4257
		return -ENOENT;
4258 4259
	}

4260 4261 4262 4263
	ret = i915_mutex_lock_interruptible(dev);
	if (ret) {
		drm_gem_object_unreference_unlocked(obj);
		return ret;
4264 4265
	}

4266 4267 4268 4269
	/* Count all active objects as busy, even if they are currently not used
	 * by the gpu. Users of this interface expect objects to eventually
	 * become non-busy without any further actions, therefore emit any
	 * necessary flushes here.
4270
	 */
4271 4272 4273 4274 4275 4276 4277 4278
	obj_priv = to_intel_bo(obj);
	args->busy = obj_priv->active;
	if (args->busy) {
		/* Unconditionally flush objects, even when the gpu still uses this
		 * object. Userspace calling this function indicates that it wants to
		 * use this buffer rather sooner than later, so issuing the required
		 * flush earlier is beneficial.
		 */
4279 4280
		if (obj->write_domain & I915_GEM_GPU_DOMAINS)
			i915_gem_flush_ring(dev, file_priv,
4281 4282
					    obj_priv->ring,
					    0, obj->write_domain);
4283 4284 4285 4286 4287 4288 4289 4290 4291 4292

		/* Update the active list for the hardware's current position.
		 * Otherwise this only updates on a delayed timer or when irqs
		 * are actually unmasked, and our working set ends up being
		 * larger than required.
		 */
		i915_gem_retire_requests_ring(dev, obj_priv->ring);

		args->busy = obj_priv->active;
	}
4293 4294 4295

	drm_gem_object_unreference(obj);
	mutex_unlock(&dev->struct_mutex);
4296
	return 0;
4297 4298 4299 4300 4301 4302 4303 4304 4305
}

int
i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
			struct drm_file *file_priv)
{
    return i915_gem_ring_throttle(dev, file_priv);
}

4306 4307 4308 4309 4310 4311 4312
int
i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
		       struct drm_file *file_priv)
{
	struct drm_i915_gem_madvise *args = data;
	struct drm_gem_object *obj;
	struct drm_i915_gem_object *obj_priv;
4313
	int ret;
4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326

	switch (args->madv) {
	case I915_MADV_DONTNEED:
	case I915_MADV_WILLNEED:
	    break;
	default:
	    return -EINVAL;
	}

	obj = drm_gem_object_lookup(dev, file_priv, args->handle);
	if (obj == NULL) {
		DRM_ERROR("Bad handle in i915_gem_madvise_ioctl(): %d\n",
			  args->handle);
4327
		return -ENOENT;
4328
	}
4329
	obj_priv = to_intel_bo(obj);
4330

4331 4332 4333 4334 4335 4336
	ret = i915_mutex_lock_interruptible(dev);
	if (ret) {
		drm_gem_object_unreference_unlocked(obj);
		return ret;
	}

4337 4338 4339 4340 4341 4342 4343 4344
	if (obj_priv->pin_count) {
		drm_gem_object_unreference(obj);
		mutex_unlock(&dev->struct_mutex);

		DRM_ERROR("Attempted i915_gem_madvise_ioctl() on a pinned object\n");
		return -EINVAL;
	}

C
Chris Wilson 已提交
4345 4346
	if (obj_priv->madv != __I915_MADV_PURGED)
		obj_priv->madv = args->madv;
4347

4348 4349 4350 4351 4352
	/* if the object is no longer bound, discard its backing storage */
	if (i915_gem_object_is_purgeable(obj_priv) &&
	    obj_priv->gtt_space == NULL)
		i915_gem_object_truncate(obj);

C
Chris Wilson 已提交
4353 4354
	args->retained = obj_priv->madv != __I915_MADV_PURGED;

4355 4356 4357 4358 4359 4360
	drm_gem_object_unreference(obj);
	mutex_unlock(&dev->struct_mutex);

	return 0;
}

4361 4362 4363
struct drm_gem_object * i915_gem_alloc_object(struct drm_device *dev,
					      size_t size)
{
4364
	struct drm_i915_private *dev_priv = dev->dev_private;
4365
	struct drm_i915_gem_object *obj;
4366

4367 4368 4369
	obj = kzalloc(sizeof(*obj), GFP_KERNEL);
	if (obj == NULL)
		return NULL;
4370

4371 4372 4373 4374
	if (drm_gem_object_init(dev, &obj->base, size) != 0) {
		kfree(obj);
		return NULL;
	}
4375

4376 4377
	i915_gem_info_add_obj(dev_priv, size);

4378 4379
	obj->base.write_domain = I915_GEM_DOMAIN_CPU;
	obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4380

4381
	obj->agp_type = AGP_USER_MEMORY;
4382
	obj->base.driver_private = NULL;
4383 4384 4385 4386
	obj->fence_reg = I915_FENCE_REG_NONE;
	INIT_LIST_HEAD(&obj->list);
	INIT_LIST_HEAD(&obj->gpu_write_list);
	obj->madv = I915_MADV_WILLNEED;
4387

4388 4389 4390 4391 4392 4393
	return &obj->base;
}

int i915_gem_init_object(struct drm_gem_object *obj)
{
	BUG();
4394

4395 4396 4397
	return 0;
}

4398
static void i915_gem_free_object_tail(struct drm_gem_object *obj)
4399
{
4400
	struct drm_device *dev = obj->dev;
4401
	drm_i915_private_t *dev_priv = dev->dev_private;
4402
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
4403
	int ret;
4404

4405 4406 4407 4408 4409 4410
	ret = i915_gem_object_unbind(obj);
	if (ret == -ERESTARTSYS) {
		list_move(&obj_priv->list,
			  &dev_priv->mm.deferred_free_list);
		return;
	}
4411

4412 4413
	if (obj_priv->mmap_offset)
		i915_gem_free_mmap_offset(obj);
4414

4415
	drm_gem_object_release(obj);
4416
	i915_gem_info_remove_obj(dev_priv, obj->size);
4417

4418
	kfree(obj_priv->page_cpu_valid);
4419
	kfree(obj_priv->bit_17);
4420
	kfree(obj_priv);
4421 4422
}

4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438
void i915_gem_free_object(struct drm_gem_object *obj)
{
	struct drm_device *dev = obj->dev;
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);

	trace_i915_gem_object_destroy(obj);

	while (obj_priv->pin_count > 0)
		i915_gem_object_unpin(obj);

	if (obj_priv->phys_obj)
		i915_gem_detach_phys_object(dev, obj);

	i915_gem_free_object_tail(obj);
}

4439 4440 4441 4442 4443
int
i915_gem_idle(struct drm_device *dev)
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	int ret;
4444

4445
	mutex_lock(&dev->struct_mutex);
C
Chris Wilson 已提交
4446

4447
	if (dev_priv->mm.suspended ||
4448 4449 4450
			(dev_priv->render_ring.gem_object == NULL) ||
			(HAS_BSD(dev) &&
			 dev_priv->bsd_ring.gem_object == NULL)) {
4451 4452
		mutex_unlock(&dev->struct_mutex);
		return 0;
4453 4454
	}

4455
	ret = i915_gpu_idle(dev);
4456 4457
	if (ret) {
		mutex_unlock(&dev->struct_mutex);
4458
		return ret;
4459
	}
4460

4461 4462
	/* Under UMS, be paranoid and evict. */
	if (!drm_core_check_feature(dev, DRIVER_MODESET)) {
4463
		ret = i915_gem_evict_inactive(dev);
4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474
		if (ret) {
			mutex_unlock(&dev->struct_mutex);
			return ret;
		}
	}

	/* Hack!  Don't let anybody do execbuf while we don't control the chip.
	 * We need to replace this with a semaphore, or something.
	 * And not confound mm.suspended!
	 */
	dev_priv->mm.suspended = 1;
4475
	del_timer_sync(&dev_priv->hangcheck_timer);
4476 4477

	i915_kernel_lost_context(dev);
4478
	i915_gem_cleanup_ringbuffer(dev);
4479

4480 4481
	mutex_unlock(&dev->struct_mutex);

4482 4483 4484
	/* Cancel the retire work handler, which should be idle now. */
	cancel_delayed_work_sync(&dev_priv->mm.retire_work);

4485 4486 4487
	return 0;
}

4488 4489 4490 4491
/*
 * 965+ support PIPE_CONTROL commands, which provide finer grained control
 * over cache flushing.
 */
4492
static int
4493 4494 4495 4496 4497 4498 4499
i915_gem_init_pipe_control(struct drm_device *dev)
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	struct drm_gem_object *obj;
	struct drm_i915_gem_object *obj_priv;
	int ret;

4500
	obj = i915_gem_alloc_object(dev, 4096);
4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530
	if (obj == NULL) {
		DRM_ERROR("Failed to allocate seqno page\n");
		ret = -ENOMEM;
		goto err;
	}
	obj_priv = to_intel_bo(obj);
	obj_priv->agp_type = AGP_USER_CACHED_MEMORY;

	ret = i915_gem_object_pin(obj, 4096);
	if (ret)
		goto err_unref;

	dev_priv->seqno_gfx_addr = obj_priv->gtt_offset;
	dev_priv->seqno_page =  kmap(obj_priv->pages[0]);
	if (dev_priv->seqno_page == NULL)
		goto err_unpin;

	dev_priv->seqno_obj = obj;
	memset(dev_priv->seqno_page, 0, PAGE_SIZE);

	return 0;

err_unpin:
	i915_gem_object_unpin(obj);
err_unref:
	drm_gem_object_unreference(obj);
err:
	return ret;
}

4531 4532

static void
4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546
i915_gem_cleanup_pipe_control(struct drm_device *dev)
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	struct drm_gem_object *obj;
	struct drm_i915_gem_object *obj_priv;

	obj = dev_priv->seqno_obj;
	obj_priv = to_intel_bo(obj);
	kunmap(obj_priv->pages[0]);
	i915_gem_object_unpin(obj);
	drm_gem_object_unreference(obj);
	dev_priv->seqno_obj = NULL;

	dev_priv->seqno_page = NULL;
4547 4548
}

4549 4550 4551 4552 4553
int
i915_gem_init_ringbuffer(struct drm_device *dev)
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	int ret;
4554

4555 4556 4557 4558 4559
	if (HAS_PIPE_CONTROL(dev)) {
		ret = i915_gem_init_pipe_control(dev);
		if (ret)
			return ret;
	}
4560

4561
	ret = intel_init_render_ring_buffer(dev);
4562 4563 4564 4565
	if (ret)
		goto cleanup_pipe_control;

	if (HAS_BSD(dev)) {
4566
		ret = intel_init_bsd_ring_buffer(dev);
4567 4568
		if (ret)
			goto cleanup_render_ring;
4569
	}
4570

4571 4572
	dev_priv->next_seqno = 1;

4573 4574 4575 4576 4577 4578 4579
	return 0;

cleanup_render_ring:
	intel_cleanup_ring_buffer(dev, &dev_priv->render_ring);
cleanup_pipe_control:
	if (HAS_PIPE_CONTROL(dev))
		i915_gem_cleanup_pipe_control(dev);
4580 4581 4582 4583 4584 4585 4586 4587 4588
	return ret;
}

void
i915_gem_cleanup_ringbuffer(struct drm_device *dev)
{
	drm_i915_private_t *dev_priv = dev->dev_private;

	intel_cleanup_ring_buffer(dev, &dev_priv->render_ring);
4589 4590
	if (HAS_BSD(dev))
		intel_cleanup_ring_buffer(dev, &dev_priv->bsd_ring);
4591 4592 4593 4594
	if (HAS_PIPE_CONTROL(dev))
		i915_gem_cleanup_pipe_control(dev);
}

4595 4596 4597 4598 4599 4600 4601
int
i915_gem_entervt_ioctl(struct drm_device *dev, void *data,
		       struct drm_file *file_priv)
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	int ret;

J
Jesse Barnes 已提交
4602 4603 4604
	if (drm_core_check_feature(dev, DRIVER_MODESET))
		return 0;

4605
	if (atomic_read(&dev_priv->mm.wedged)) {
4606
		DRM_ERROR("Reenabling wedged hardware, good luck\n");
4607
		atomic_set(&dev_priv->mm.wedged, 0);
4608 4609 4610
	}

	mutex_lock(&dev->struct_mutex);
4611 4612 4613
	dev_priv->mm.suspended = 0;

	ret = i915_gem_init_ringbuffer(dev);
4614 4615
	if (ret != 0) {
		mutex_unlock(&dev->struct_mutex);
4616
		return ret;
4617
	}
4618

4619
	BUG_ON(!list_empty(&dev_priv->render_ring.active_list));
4620
	BUG_ON(HAS_BSD(dev) && !list_empty(&dev_priv->bsd_ring.active_list));
4621 4622
	BUG_ON(!list_empty(&dev_priv->mm.flushing_list));
	BUG_ON(!list_empty(&dev_priv->mm.inactive_list));
4623
	BUG_ON(!list_empty(&dev_priv->render_ring.request_list));
4624
	BUG_ON(HAS_BSD(dev) && !list_empty(&dev_priv->bsd_ring.request_list));
4625
	mutex_unlock(&dev->struct_mutex);
4626

4627 4628 4629
	ret = drm_irq_install(dev);
	if (ret)
		goto cleanup_ringbuffer;
4630

4631
	return 0;
4632 4633 4634 4635 4636 4637 4638 4639

cleanup_ringbuffer:
	mutex_lock(&dev->struct_mutex);
	i915_gem_cleanup_ringbuffer(dev);
	dev_priv->mm.suspended = 1;
	mutex_unlock(&dev->struct_mutex);

	return ret;
4640 4641 4642 4643 4644 4645
}

int
i915_gem_leavevt_ioctl(struct drm_device *dev, void *data,
		       struct drm_file *file_priv)
{
J
Jesse Barnes 已提交
4646 4647 4648
	if (drm_core_check_feature(dev, DRIVER_MODESET))
		return 0;

4649
	drm_irq_uninstall(dev);
4650
	return i915_gem_idle(dev);
4651 4652 4653 4654 4655 4656 4657
}

void
i915_gem_lastclose(struct drm_device *dev)
{
	int ret;

4658 4659 4660
	if (drm_core_check_feature(dev, DRIVER_MODESET))
		return;

4661 4662 4663
	ret = i915_gem_idle(dev);
	if (ret)
		DRM_ERROR("failed to idle hardware: %d\n", ret);
4664 4665 4666 4667 4668
}

void
i915_gem_load(struct drm_device *dev)
{
4669
	int i;
4670 4671 4672
	drm_i915_private_t *dev_priv = dev->dev_private;

	INIT_LIST_HEAD(&dev_priv->mm.flushing_list);
4673
	INIT_LIST_HEAD(&dev_priv->mm.gpu_write_list);
4674
	INIT_LIST_HEAD(&dev_priv->mm.inactive_list);
C
Chris Wilson 已提交
4675
	INIT_LIST_HEAD(&dev_priv->mm.pinned_list);
4676
	INIT_LIST_HEAD(&dev_priv->mm.fence_list);
4677
	INIT_LIST_HEAD(&dev_priv->mm.deferred_free_list);
4678 4679
	INIT_LIST_HEAD(&dev_priv->render_ring.active_list);
	INIT_LIST_HEAD(&dev_priv->render_ring.request_list);
4680 4681 4682 4683
	if (HAS_BSD(dev)) {
		INIT_LIST_HEAD(&dev_priv->bsd_ring.active_list);
		INIT_LIST_HEAD(&dev_priv->bsd_ring.request_list);
	}
4684 4685
	for (i = 0; i < 16; i++)
		INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
4686 4687
	INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
			  i915_gem_retire_work_handler);
4688
	init_completion(&dev_priv->error_completion);
4689 4690 4691 4692
	spin_lock(&shrink_list_lock);
	list_add(&dev_priv->mm.shrink_list, &shrink_list);
	spin_unlock(&shrink_list_lock);

4693 4694 4695 4696 4697 4698 4699 4700 4701 4702
	/* On GEN3 we really need to make sure the ARB C3 LP bit is set */
	if (IS_GEN3(dev)) {
		u32 tmp = I915_READ(MI_ARB_STATE);
		if (!(tmp & MI_ARB_C3_LP_WRITE_ENABLE)) {
			/* arb state is a masked write, so set bit + bit in mask */
			tmp = MI_ARB_C3_LP_WRITE_ENABLE | (MI_ARB_C3_LP_WRITE_ENABLE << MI_ARB_MASK_SHIFT);
			I915_WRITE(MI_ARB_STATE, tmp);
		}
	}

4703
	/* Old X drivers will take 0-2 for front, back, depth buffers */
4704 4705
	if (!drm_core_check_feature(dev, DRIVER_MODESET))
		dev_priv->fence_reg_start = 3;
4706

4707
	if (INTEL_INFO(dev)->gen >= 4 || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
4708 4709 4710 4711
		dev_priv->num_fence_regs = 16;
	else
		dev_priv->num_fence_regs = 8;

4712
	/* Initialize fence registers to zero */
4713 4714 4715 4716 4717 4718 4719
	switch (INTEL_INFO(dev)->gen) {
	case 6:
		for (i = 0; i < 16; i++)
			I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 + (i * 8), 0);
		break;
	case 5:
	case 4:
4720 4721
		for (i = 0; i < 16; i++)
			I915_WRITE64(FENCE_REG_965_0 + (i * 8), 0);
4722 4723
		break;
	case 3:
4724 4725 4726
		if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
			for (i = 0; i < 8; i++)
				I915_WRITE(FENCE_REG_945_8 + (i * 4), 0);
4727 4728 4729 4730
	case 2:
		for (i = 0; i < 8; i++)
			I915_WRITE(FENCE_REG_830_0 + (i * 4), 0);
		break;
4731
	}
4732
	i915_gem_detect_bit_6_swizzle(dev);
4733
	init_waitqueue_head(&dev_priv->pending_flip_queue);
4734
}
4735 4736 4737 4738 4739

/*
 * Create a physically contiguous memory object for this object
 * e.g. for cursor + overlay regs
 */
4740 4741
static int i915_gem_init_phys_object(struct drm_device *dev,
				     int id, int size, int align)
4742 4743 4744 4745 4746 4747 4748 4749
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	struct drm_i915_gem_phys_object *phys_obj;
	int ret;

	if (dev_priv->mm.phys_objs[id - 1] || !size)
		return 0;

4750
	phys_obj = kzalloc(sizeof(struct drm_i915_gem_phys_object), GFP_KERNEL);
4751 4752 4753 4754 4755
	if (!phys_obj)
		return -ENOMEM;

	phys_obj->id = id;

4756
	phys_obj->handle = drm_pci_alloc(dev, size, align);
4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768
	if (!phys_obj->handle) {
		ret = -ENOMEM;
		goto kfree_obj;
	}
#ifdef CONFIG_X86
	set_memory_wc((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
#endif

	dev_priv->mm.phys_objs[id - 1] = phys_obj;

	return 0;
kfree_obj:
4769
	kfree(phys_obj);
4770 4771 4772
	return ret;
}

4773
static void i915_gem_free_phys_object(struct drm_device *dev, int id)
4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	struct drm_i915_gem_phys_object *phys_obj;

	if (!dev_priv->mm.phys_objs[id - 1])
		return;

	phys_obj = dev_priv->mm.phys_objs[id - 1];
	if (phys_obj->cur_obj) {
		i915_gem_detach_phys_object(dev, phys_obj->cur_obj);
	}

#ifdef CONFIG_X86
	set_memory_wb((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
#endif
	drm_pci_free(dev, phys_obj->handle);
	kfree(phys_obj);
	dev_priv->mm.phys_objs[id - 1] = NULL;
}

void i915_gem_free_all_phys_object(struct drm_device *dev)
{
	int i;

4798
	for (i = I915_GEM_PHYS_CURSOR_0; i <= I915_MAX_PHYS_OBJECT; i++)
4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809
		i915_gem_free_phys_object(dev, i);
}

void i915_gem_detach_phys_object(struct drm_device *dev,
				 struct drm_gem_object *obj)
{
	struct drm_i915_gem_object *obj_priv;
	int i;
	int ret;
	int page_count;

4810
	obj_priv = to_intel_bo(obj);
4811 4812 4813
	if (!obj_priv->phys_obj)
		return;

4814
	ret = i915_gem_object_get_pages(obj, 0);
4815 4816 4817 4818 4819 4820
	if (ret)
		goto out;

	page_count = obj->size / PAGE_SIZE;

	for (i = 0; i < page_count; i++) {
4821
		char *dst = kmap_atomic(obj_priv->pages[i], KM_USER0);
4822 4823 4824 4825 4826
		char *src = obj_priv->phys_obj->handle->vaddr + (i * PAGE_SIZE);

		memcpy(dst, src, PAGE_SIZE);
		kunmap_atomic(dst, KM_USER0);
	}
4827
	drm_clflush_pages(obj_priv->pages, page_count);
4828
	drm_agp_chipset_flush(dev);
4829 4830

	i915_gem_object_put_pages(obj);
4831 4832 4833 4834 4835 4836 4837
out:
	obj_priv->phys_obj->cur_obj = NULL;
	obj_priv->phys_obj = NULL;
}

int
i915_gem_attach_phys_object(struct drm_device *dev,
4838 4839 4840
			    struct drm_gem_object *obj,
			    int id,
			    int align)
4841 4842 4843 4844 4845 4846 4847 4848 4849 4850
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	struct drm_i915_gem_object *obj_priv;
	int ret = 0;
	int page_count;
	int i;

	if (id > I915_MAX_PHYS_OBJECT)
		return -EINVAL;

4851
	obj_priv = to_intel_bo(obj);
4852 4853 4854 4855 4856 4857 4858 4859 4860 4861

	if (obj_priv->phys_obj) {
		if (obj_priv->phys_obj->id == id)
			return 0;
		i915_gem_detach_phys_object(dev, obj);
	}

	/* create a new object */
	if (!dev_priv->mm.phys_objs[id - 1]) {
		ret = i915_gem_init_phys_object(dev, id,
4862
						obj->size, align);
4863
		if (ret) {
4864
			DRM_ERROR("failed to init phys object %d size: %zu\n", id, obj->size);
4865 4866 4867 4868 4869 4870 4871 4872
			goto out;
		}
	}

	/* bind to the object */
	obj_priv->phys_obj = dev_priv->mm.phys_objs[id - 1];
	obj_priv->phys_obj->cur_obj = obj;

4873
	ret = i915_gem_object_get_pages(obj, 0);
4874 4875 4876 4877 4878 4879 4880 4881
	if (ret) {
		DRM_ERROR("failed to get page list\n");
		goto out;
	}

	page_count = obj->size / PAGE_SIZE;

	for (i = 0; i < page_count; i++) {
4882
		char *src = kmap_atomic(obj_priv->pages[i], KM_USER0);
4883 4884 4885 4886 4887 4888
		char *dst = obj_priv->phys_obj->handle->vaddr + (i * PAGE_SIZE);

		memcpy(dst, src, PAGE_SIZE);
		kunmap_atomic(src, KM_USER0);
	}

4889 4890
	i915_gem_object_put_pages(obj);

4891 4892 4893 4894 4895 4896 4897 4898 4899 4900
	return 0;
out:
	return ret;
}

static int
i915_gem_phys_pwrite(struct drm_device *dev, struct drm_gem_object *obj,
		     struct drm_i915_gem_pwrite *args,
		     struct drm_file *file_priv)
{
4901
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
4902 4903 4904 4905 4906 4907 4908
	void *obj_addr;
	int ret;
	char __user *user_data;

	user_data = (char __user *) (uintptr_t) args->data_ptr;
	obj_addr = obj_priv->phys_obj->handle->vaddr + args->offset;

4909
	DRM_DEBUG_DRIVER("obj_addr %p, %lld\n", obj_addr, args->size);
4910 4911 4912 4913 4914 4915 4916
	ret = copy_from_user(obj_addr, user_data, args->size);
	if (ret)
		return -EFAULT;

	drm_agp_chipset_flush(dev);
	return 0;
}
4917

4918
void i915_gem_release(struct drm_device *dev, struct drm_file *file)
4919
{
4920
	struct drm_i915_file_private *file_priv = file->driver_priv;
4921 4922 4923 4924 4925

	/* Clean up our request list when the client is going away, so that
	 * later retire_requests won't dereference our soon-to-be-gone
	 * file_priv.
	 */
4926
	spin_lock(&file_priv->mm.lock);
4927 4928 4929 4930 4931 4932 4933 4934 4935
	while (!list_empty(&file_priv->mm.request_list)) {
		struct drm_i915_gem_request *request;

		request = list_first_entry(&file_priv->mm.request_list,
					   struct drm_i915_gem_request,
					   client_list);
		list_del(&request->client_list);
		request->file_priv = NULL;
	}
4936
	spin_unlock(&file_priv->mm.lock);
4937
}
4938

4939 4940 4941 4942 4943 4944 4945
static int
i915_gpu_is_active(struct drm_device *dev)
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	int lists_empty;

	lists_empty = list_empty(&dev_priv->mm.flushing_list) &&
4946
		      list_empty(&dev_priv->render_ring.active_list);
4947 4948
	if (HAS_BSD(dev))
		lists_empty &= list_empty(&dev_priv->bsd_ring.active_list);
4949 4950 4951 4952

	return !lists_empty;
}

4953
static int
4954
i915_gem_shrink(struct shrinker *shrink, int nr_to_scan, gfp_t gfp_mask)
4955 4956 4957 4958 4959 4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 4978 4979 4980 4981
{
	drm_i915_private_t *dev_priv, *next_dev;
	struct drm_i915_gem_object *obj_priv, *next_obj;
	int cnt = 0;
	int would_deadlock = 1;

	/* "fast-path" to count number of available objects */
	if (nr_to_scan == 0) {
		spin_lock(&shrink_list_lock);
		list_for_each_entry(dev_priv, &shrink_list, mm.shrink_list) {
			struct drm_device *dev = dev_priv->dev;

			if (mutex_trylock(&dev->struct_mutex)) {
				list_for_each_entry(obj_priv,
						    &dev_priv->mm.inactive_list,
						    list)
					cnt++;
				mutex_unlock(&dev->struct_mutex);
			}
		}
		spin_unlock(&shrink_list_lock);

		return (cnt / 100) * sysctl_vfs_cache_pressure;
	}

	spin_lock(&shrink_list_lock);

4982
rescan:
4983 4984 4985 4986 4987 4988 4989 4990 4991
	/* first scan for clean buffers */
	list_for_each_entry_safe(dev_priv, next_dev,
				 &shrink_list, mm.shrink_list) {
		struct drm_device *dev = dev_priv->dev;

		if (! mutex_trylock(&dev->struct_mutex))
			continue;

		spin_unlock(&shrink_list_lock);
4992
		i915_gem_retire_requests(dev);
4993 4994 4995 4996 4997

		list_for_each_entry_safe(obj_priv, next_obj,
					 &dev_priv->mm.inactive_list,
					 list) {
			if (i915_gem_object_is_purgeable(obj_priv)) {
4998
				i915_gem_object_unbind(&obj_priv->base);
4999 5000 5001 5002 5003 5004 5005 5006
				if (--nr_to_scan <= 0)
					break;
			}
		}

		spin_lock(&shrink_list_lock);
		mutex_unlock(&dev->struct_mutex);

5007 5008
		would_deadlock = 0;

5009 5010 5011 5012 5013 5014 5015 5016 5017 5018 5019 5020 5021 5022 5023 5024 5025 5026
		if (nr_to_scan <= 0)
			break;
	}

	/* second pass, evict/count anything still on the inactive list */
	list_for_each_entry_safe(dev_priv, next_dev,
				 &shrink_list, mm.shrink_list) {
		struct drm_device *dev = dev_priv->dev;

		if (! mutex_trylock(&dev->struct_mutex))
			continue;

		spin_unlock(&shrink_list_lock);

		list_for_each_entry_safe(obj_priv, next_obj,
					 &dev_priv->mm.inactive_list,
					 list) {
			if (nr_to_scan > 0) {
5027
				i915_gem_object_unbind(&obj_priv->base);
5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038
				nr_to_scan--;
			} else
				cnt++;
		}

		spin_lock(&shrink_list_lock);
		mutex_unlock(&dev->struct_mutex);

		would_deadlock = 0;
	}

5039 5040 5041 5042 5043 5044 5045 5046 5047 5048 5049 5050 5051 5052 5053 5054 5055 5056 5057 5058 5059 5060 5061 5062 5063 5064 5065 5066 5067 5068
	if (nr_to_scan) {
		int active = 0;

		/*
		 * We are desperate for pages, so as a last resort, wait
		 * for the GPU to finish and discard whatever we can.
		 * This has a dramatic impact to reduce the number of
		 * OOM-killer events whilst running the GPU aggressively.
		 */
		list_for_each_entry(dev_priv, &shrink_list, mm.shrink_list) {
			struct drm_device *dev = dev_priv->dev;

			if (!mutex_trylock(&dev->struct_mutex))
				continue;

			spin_unlock(&shrink_list_lock);

			if (i915_gpu_is_active(dev)) {
				i915_gpu_idle(dev);
				active++;
			}

			spin_lock(&shrink_list_lock);
			mutex_unlock(&dev->struct_mutex);
		}

		if (active)
			goto rescan;
	}

5069 5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082 5083 5084 5085 5086 5087 5088 5089 5090 5091 5092 5093 5094
	spin_unlock(&shrink_list_lock);

	if (would_deadlock)
		return -1;
	else if (cnt > 0)
		return (cnt / 100) * sysctl_vfs_cache_pressure;
	else
		return 0;
}

static struct shrinker shrinker = {
	.shrink = i915_gem_shrink,
	.seeks = DEFAULT_SEEKS,
};

__init void
i915_gem_shrinker_init(void)
{
    register_shrinker(&shrinker);
}

__exit void
i915_gem_shrinker_exit(void)
{
    unregister_shrinker(&shrinker);
}